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CHAPTER I 

 

 

INTRODUCTION 

 

A novel computational method, namely, the material point method (MPM) was 

introduced by Sulsky (Sulsky et al. 1995) at the University of New Mexico in 

collaboration with the researchers of the Sandia National Laboratory for solving dynamic 

problems in solid mechanics. Sulsky et al. (1995) demonstrated the advantages of MPM 

by simulating a copper bar undergoing large deformations; while other methods, such as 

finite element method (FEM) in this process were faced with extensive challenges. 

Professors Lu and Komanduri recognized the advantages of this novel method and have 

been one of the major contributors in the development of MPM since then. In this study, 

the basic numerical methodology (as introduced by Sulsky) has been used to further build 

upon the advancements, in order to make MPM more versatile and powerful. In this 

regard, various material simulations were carried out. In this process, the MPM algorithm 

was developed by either implementing completely newer capabilities of simulation or 

refining the older versions for increased robustness and versatility.  

Professors Lu, Komanduri, and Roy at Oklahoma State University in Stillwater 

recognized that the particle nature of this novel method can be used to couple atomistic to 

continuum, and to develop multiscale material simulation algorithms. To pursue this 

aspect, hierarchical mesh refinement was developed to refine the continuum material 
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(simulated using MPM) down to atomistic scale [simulated using molecular dynamics 

(MD)]. The method was verified using purely MD simulations and used to investigate 

dynamics of micro-tensile testing at high-strain rates (Lu et al. 2006).  

Further, MPM was used to study dynamic crack growth by implementing the 

cohesive zone model, the details of which are included in Chapter III. MPM, as 

generalized by Bardenhagen and Kober (2002, 2004), was used to improve the numerical 

accuracy of the explicit time-stepping solution, during convection of particles over the 

grid. Multiple velocity field technique was used in MPM to enable it to handle discrete 

discontinuity on each side of the interface. Multilevel refinements along with parallel 

computation (both were built upon SAMRAI by Ma et al. 2004) were adapted in the 

region around the crack-tip to resolve higher strain gradients. Numerical simulations of 

the crack growth in a homogeneous elastic solid under mode-II plane strain conditions 

were conducted with the crack propagating along a weak interface. A parametric study 

was conducted to investigate the dynamics of crack growth. Numerical results 

(Daphalapurkar et al. 2007) are compared qualitatively with the available experimental 

results. The simulations were able to handle the crack growth with crack-tip velocities in 

both sub-Rayleigh and intersonic regimes. Crack initiation and propagation were the 

natural outcomes of the simulations incorporating the cohesive zone model.  

Simulation of realistic microstructures has been an inherent advantage of modeling 

using MPM, due to ease in discretization of material geometry. This fact has been used to 

demonstrate the simulation of closed-cell foam structure in compression, and is discussed 

in Chapter IV. The microstructural evolution of closed-cell polymethacrylimide foam 

was simulated in compression undergoing elastic, compaction, and densification stages. 
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The three-dimensional microstructure of the foam was determined using micro-computed 

tomography (µ-CT), and was converted to the material points for simulations using the 

MPM. The properties of the cell-walls were determined from nanoindentation on the cell-

walls of the foam. MPM simulations were able to capture the three-stages of deformation 

which are typical for foams in compression. Simulated features of microstructure 

evolution were compared qualitatively with the in-situ observations of the foam under 

compression using µ-CT. 

The mechanics of granular materials (e.g. sand) has been an area of increasing 

interest in the past ten years, due mainly to the challenges it poses in addressing its 

behavior (such as mechanisms of deformation, flow, and fracture of granular materials 

under load) as well as due to the emerging technologies, such as µ-CT, X-ray 

radiography, and laminography as well as the rapidly increasing computing power 

available that facilitates in addressing its complex behavior. However, this area remains 

to be relatively insufficiently understood. One of the requirements within this study is 

measuring the properties of granular media. Measurement of mechanical properties, 

mainly, the Young’s modulus, hardness, stress-strain relationship, and failure behavior of 

granular materials (e.g. fine sand particles) by conventional material testing methods, 

such as tensile/compressive testing is difficult due to limitations on the size of individual 

particles (a few micrometers). This can be overcome by using the recently introduced 

nanoindentation testing machine. Chapter V deals with measurement of properties of one 

such granular material, namely sand. In this investigation, a Berkovich nanoindenter was 

used to measure the Young’s modulus, hardness, and fracture toughness. An inverse 

problem solving approach was used to determine the stress-strain behavior of sand at the 
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granular level, by allowing the numerically simulated nanoindentation load-displacement 

data to correlate with the measured values. A cube-corner indenter tip was used to 

generate radial cracks. The lengths of these cracks were used to determine the fracture 

toughness of sand grains. The mechanical property data (along with statistical variability 

of individual sand grains) measured in this investigation can be used in the simulations of 

sand at the granular or meso scale. 

Following the measurement of mechanical properties of granular media in 

Chapter V, Chapter VI discusses implementation of contact algorithm and friction to 

simulate the interaction between grains. In order to simulate the flow or deformation of 

granular media (e.g. sand) under various loading conditions using MPM, it would require 

implementation of various phenomenological models such as (but not limited to) 

cohesive zone model (to model the fracture and fragmentation of sand grains), contact 

algorithm and friction between sand grains, and constitutive model for sand grain 

material. In this part of the study, a contact algorithm is implemented in 3D MPM. A new 

methodology is used to update the surface normals during successive MPM simulation 

time steps. This methodology conserves the original geometry of the bodies in contact, 

thus increasing the accuracy of the results. Slip (considering Coulomb friction) has been 

implemented for the interfaces in contact. For verification, results obtained from the 

rolling simulation of a sphere on an inclined plate are used to compare with their 

corresponding analytical solutions. Both stick and slip occurrences have been 

demonstrated in these rolling simulations. 
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CHAPTER II 

 

 

MATERIAL POINT METHOD (MPM) 

 

2.1 Background 

MPM was developed by Sulsky et al. (1995) from FLIP (Fluid - implicit - particle) 

particle-in-cell (PIC) (Harlow, 1964; Brackbill and Ruppel, 1986) method by extending 

the computational fluid dynamics capability of the code, to solving solid mechanics 

problems. MPM has combined the advantages of both Eulerian scheme (provided by the 

grid) and the Lagrangian scheme (provided by the material points). The grid is usually 

held fixed, and is used to determine spatial gradients and for solving field equations. 

Irregular transitional grid can be used to improve the accuracy in the case of highly 

localized strain gradients. The material points are convected by the deformation of the 

solid throughout the background grid and are not subjected to mesh tangling. 

Additionally, incorporation of various constitutive material models in MPM is relatively 

straightforward. For example, each material point can have a different mass and Young’s 

modulus. In the case where the material points move in a single-valued velocity field, no-

slip contact between the surfaces can be handled automatically.  

Although finite element method (FEM) has been used for many years for addressing 

many solid mechanics problems, the newly introduced MPM has following advantages: 

a. It can handle no-slip contact naturally. 
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b. It is capable of handling large deformations. Since the background mesh is fixed, 

it does not experience any mesh lock-up or element degeneracy which are 

sometimes experienced in FEM; 

c. It can easily couple with molecular dynamics (MD) simulations, and link 

length/time scales, because of the use of material points (similar to atoms used in 

MD) instead of arbitrary sized elements in FEM; 

d. Parallel computation is more straightforward with MPM because of the use of a 

grid structure that is consistent with parallel computing grids;  

e. Use of the background grid in MPM enables structured adaptive refinement for 

local interested regions; and 

f. Ease in implementation of constitutive relations with history dependent variables. 

 

Essentially MPM gives same results as FEM under small deformations; however, 

under large non-linear deformations FEM sometimes quits (might be due to mesh 

distortions or degeneracy) while MPM doesn’t and still gives valid results. Sulsky et al. 

(1994) initially demonstrated the potential of MPM to 2D impact problems. A more 

general description of MPM, along with special considerations relevant to axisymmetric 

problems, was given by Sulsky and Schreyer (1996). This method combines the 

advantages of Lagrangian and Eulerian methods and has proven to be useful for solving 

solid mechanics problems involving materials with history dependent properties, such as 

plasticity or viscoelasticity effects. MPM is amendable to parallel computation (Parker 

2002), implicit integration method for unconditionally stable time increments (Guilkey 

and Weiss 2003, Sulsky and Kaul 2003, Cummins and Brackbill 2001) and alternative 
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interpolation schemes using C
1
 continuous interpolating functions for improved 

smoothness in field properties (Bardenhagen and Kober 2000). Bardenhagen and Kober 

(2000), suggested the improved MPM as generalized interpolation material point (GIMP) 

method. However, if we take a look back through decades of development of finite 

element method, there have been many improvements in its methodologies, including the 

shape functions, to further its application. Going through all its development, the original 

name phrased as ‘Finite Element Method (FEM)’ has been persistent. In this regard, 

considering a similar reasoning, this work will refer to the method ‘generalized 

interpolation material (GIMP) method’ also as ‘material point method (MPM)’ as 

originally coined by Sulsky et al. (1995).  

 

2.2   Numerical Methodology 

As stated earlier, material point method (Sulsky et al. 1995) has been improved 

further by Bardenhagen and Kober (2000) by incorporating C
1
 continuous shape function 

to overcome some of the problems encountered with MPM, such as numerical instability 

and noise in the stress field when material points cross the cell-walls. We present in some 

detail their improved material point method (MPM). 

In MPM, material continuum is discretized into a finite collection of N material areas 

(2D), or volumes (3D) as shown in Fig. 1.1 (Tan and Nairn, 2002). For convenience, each 

material volume is represented by a circle only as a schematic representation. The actual 

volume can be square for 2D case (cube for 3D case) in the reference configuration and 

quadrilateral in the deformed state with its center located at the center of the circle. Each 

material volume is assigned a mass (mp, where p = 1,…, N) consistent with the material 
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density and volume (Vp) of the point, and all other variables, such as position, 

acceleration, velocity, strain and stress, and temperature. Physical variables carried by the 

points are projected onto the background grid, and motion and energy equations are 

solved at the background computational grid (or mesh). 

 
Figure 1.1:  Schematic of MPM grid cells with material points 

(adapted from Tan and Nairn, 2002) 

 

Equations used here for MPM numerical scheme have been developed by Sulsky et 

al. (1995). The governing equations for such dynamic simulations are the mass and 

momentum conservation equations: 

0=⋅∇ρ+
ρ

v
dt

d
, and  (2.1) 

bσa +⋅∇=ρ .  (2.2) 

where ρ is the material mass density, a is the acceleration, σ  and b are the Cauchy stress 

tensor and body force density, respectively.  

The displacement and traction boundary conditions are given as 

uu =  on uΩ∂ ,   (2.3) 

ττ =  on τΩ∂ ,    (2.4) 

Background 

mesh 

              0 

Nodes 

Material points 

uΩ∂

τΩ∂

Vp 

Ω∂
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cohcoh ττ =  on cohΩ∂ ,            (2.5) 

where ∅=Ω∂Ω∂ τIu , ∅=Ω∂Ω∂ τIcoh  and cohu Ω∂Ω∂Ω∂=Ω∂ τ UU . In variational 

form, the momentum conservation equation is written as 

( ) ∫∫∫
ΩΩΩ

⋅+⋅⋅∇=⋅ρ xxx ddd δvbδvσδva ,  (2.6) 

where vδ  is an admissible velocity field. 

Applying the chain rule, ( ) vσvσvσ δ:δδ ∇−⋅⋅∇=⋅⋅∇ )( , and the divergence 

theorem, Eq. (2.6) can be written as 

∫∫∫∫∫∫
Ω∂Ω∂Ω∂ΩΩΩ

⋅+⋅+⋅+⋅=∇+⋅ρ

ucohτ

dSdSdSddd ucoh vτvτvτxvbxvσxva δδδδδ:δ .     (2.7) 

Here, uτ  is the resultant traction due to the displacement boundary condition on uΩ∂ , τ  

is the external traction vector, and cohτ  is the cohesive traction at the interface 
coh

∂Ω .  In 

MPM, the domain Ω  is discretized into a collection of material particles, with pΩ  as the 

domain of particle p. Physical quantities, such as mass, stress, and momentum are defined 

for each particle. For example, the momentum for particle p can be expressed as 

∫
Ω

=

p

dpp xxxvxp )()()( χρ , where )(xv  is the velocity and )(xpχ  is the particle 

characteristic function.  From this, the particle volume is calculated by ∫
Ω∩Ω

=

p

dV pp xx)(χ .  

The momentum conservation equation is thus discretized as 

∑ ∫ ⋅+∑ ∫ ⋅+∑ ∫ ⋅+∑ ∫ ⋅
χ

=∑ ∫ χ+∑ ∫ ⋅
χ

Ω∩Ω∂Ω∩Ω∂Ω∩τΩ∂Ω∩Ω

Ω∩ΩΩ∩Ω

p pu

u
p pcoh

coh
p pp p p

pp

p p

pp
p p p

pp

dSdSdSd
V

m

d:d
V

vτvτvτxvb

xvσxv
p

δδδδ

δδ
&

(2.8)  
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where pm  is the lumped mass of each material particle. In order to simplify 

computations, the lumped mass is used instead of consistent mass matrix. Introducing a 

background grid and the grid shape function )(xiS , the admissible velocity field can be 

represented by the grid nodal data as ∑=
i

ii S )(xvv δδ . Here, the grid shape function 

satisfies partition of unity 1)( =∑
i

iS x .  

The momentum conservation, Eq. (2.8), can eventually be written for each node i as 

coh
ii

b
iii ffffp +++= τint& .   (2.9) 

Here, the time rate of change of momentum is ∑ ∆=
p

pipi tS /pp& ,                            (2.9a) 

the nodal internal force vector ∑ ∇⋅−=
p

pippi VSσf
int ,                                               (2.9b) 

the body force vector ∑=
p

ipp
b
i Sm bf ,                                                                       (2.9c) 

and the external  force vector ∑ ∫
Ω∩Ω∂

τ

τ

=
p

ii

p

dSS )(xτf ,                                                 (2.9d) 

and the cohesive force vector ∑ ∫
Ω∩Ω∂

=
p

icoh
coh
i

pcoh

dSS )(xτf .                                         (2.9e) 

ipS  is the weighting function between particle p and node i, given as  

∫χ=
Ω∩Ω p

ip

p

ip dS
V

S xxx )()(
1

.                                                                                (2.10) 

The weighting function in MPM is C
1
 continuous and satisfies partition of unity, as 

given by Bardenhagen and Kober (2004). The momentum conservation equation [Eqn. 

(2.8)] is solved at each node to update the nodal momentum, acceleration, and velocity. 

These updated nodal quantities are interpolated to the material particles to update the 
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particle position, velocity, stress, and strain. The material constitutive relation can be 

represented as 

εCσ :=  and ( ) ( )[ ]T

2

1
uuε ∇+∇= ,                                                                     (2.11) 

where C  is the fourth-order elasticity tensor, εεεε is the infinitesimal strain tensor. This 

work will consider only the isotropic materials under infinitesimally small deformations. 

The mass of each material particle does not change throughout the computation so 

that the mass conservation equation is automatically satisfied. Using a background grid, 

the weak form of momentum conservation equation is discretized. In our computations, a 

spatially fixed structured grid is chosen for convenience. The equations listed above are 

applicable for both 2D and 3D. For a uniform structural grid, the grid shape function in 

2D is defined as the product of two nodal tent functions (Bardenhagen and Kober, 2004) 

)()()( ySxSS
y

i

x

ii =x ,                                                                                           (2.12) 

in which the nodal tent functions are in the same form, e.g., 
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                                                        (2.13) 

where 2Lx is the background mesh cell-length. 

Also, the particle characteristic function of the material particle located at (xp, yp) is taken 

as 

)()()( yx
y
p

x
pp χχ=χ x ,                                                                                             (2.14) 

and )]([)]([)( xpxp
x
p lxxHlxxHx +−−−−=χ ,                                                        (2.15) 
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where H denotes the Heavyside unit step function and 2 xl  is the particle size along x  

axis. 

With Eqn. (2.15) as particle characteristic function, the weighing function [from Eqn. 

(2.10)] can be evaluated (Bardenhagen and Kober, 2004) as 

{

( )

( )

( )
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Thus, for a cuboid particle in 3D the weighting function between particle p and node i, 

can be written as 

)()()()( zSySxSS
z

ip

y

ip

x

ipip =x .         (2.17) 
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CHAPTER III 

 

 

DYNAMIC CRACK GROWTH SIMULATION USING COHESIVE ZONE MODEL 

AND MATERIAL POINT METHOD 

 

3.1   Introduction 

Dynamic fracture has been an area of sustained interest with the aim of understanding 

various phenomena in engineering and geosciences.  Linear elastic fracture mechanics 

(LEFM) has been applied extensively to crack dynamics. However, LEFM has been 

effective mainly for brittle fracture phenomena and not so in dealing with materials 

undergoing ductile fracture. More particularly, it does not provide a physical description 

on how the crack process zone is formed and how its state affects the crack propagation 

phenomena (Yang and Ravi-Chandar, 1996). Dugdale (1960) and Barenblatt (1962) 

introduced a methodology to explicitly model the crack process zone by considering 

crack opening displacements and tractions over the crack surface. This approach is 

applicable for both ductile and quasi-brittle materials and independent of the 

microstructure at the crack-tip. As far as numerical implementation is concerned, the 

introduction of the cohesive element methods (Needleman, 1987; Camacho and Ortiz, 

1996) provided a detailed force-separation relation as well as the cohesive strength in the 

process zone. Their applications have resulted in satisfactory explanations of numerous 

phenomena related to crack dynamics.  
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MPM does not use body-fixed mesh for computation, giving it an advantage in 

simulations of some dynamic problems in solid mechanics over finite element and 

meshless methods, (Nairn and Guo, 2005). Thus, modeling a crack is relatively easier 

compared to FEM. Multiple velocity-field technique can be used to model discontinuities 

in the displacements and velocities across the propagating crack surfaces. In this part of 

the work, a methodology of incorporating cohesive zone model in MPM is proposed to 

simulate damage zone at the crack-tip. A parametric study is carried out by varying the 

impact speeds and the cohesive strengths. The results obtained for one of the cases are 

compared with the experimental results of Rosakis et al. (1999). 

 

3.2   Background 

The past decade has seen advances in the field of dynamic fracture, including 

experimental and numerical observations, determination of limiting velocities for crack 

propagation in different modes, allowable speed regimes for crack propagation, intersonic 

crack propagation, and sub-Rayleigh to intersonic transition mechanism. The research has 

been progressing towards the development of a phenomenological model as well as a 

unifying theory that incorporates the physical basis at all scales from atomistic to 

continuum, and even extending to geological scales.  

Majority of studies involving size effects were carried out using molecular dynamics 

(MD) simulations.  For example, Abraham and Gao (2000) performed MD simulations of 

mode-II crack propagation along a weak interface between two harmonic crystals. Their 

simulations showed that a shear dominated crack initially accelerates to the Rayleigh 

wave speed, followed by the nucleation of a daughter microcrack ahead of the main 
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crack, and finally coalescence of the mother and daughter-cracks with the crack-tip 

velocity reaching a value as high as the longitudinal wave speed. After coalescence, when 

the far-field loading is relaxed, the crack decelerates and propagates at a steady rate close 

to a speed of 2  cS, where cS is the shear wave speed of the bulk material. Abraham and 

Gao (2000) also reported that the essential features in the results obtained from MD 

simulations matched well with the experimental observations reported by Rosakis et al. 

(1999), as well as with the results using cohesive zone modeling (Needleman, 1999), 

even though they were results obtained at different scales.  

Even though large scale simulations of up to one-billion atoms have been reported 

using massive parallel processing (Abraham and Gao, 2000), most MD simulations 

reported in the literature are still somewhat limited in their size (a few thousand atoms). 

As a result, multiscale simulation approaches (see Lu et al. 2006) requiring seamless 

coupling between atomistic and continuum have been emerging. The applicability of 

these methods, in general, and the development of continuum methods containing 

atomistic information, in particular, are of great interest to researchers. Both microscopic 

scale and continuum scale simulations are necessary to reflect appropriate behavior of 

dynamic fracture since dominant physical processes occur at both these scales. They 

include, mechanisms seen in ductile materials, such as void formation, their coalescence 

into microcracks, and subsequent growth into macrocracks; phase transformations; and 

friction at the asperity level involving junction formation and collapse. In all these cases, 

continuum simulations of dynamic fracture require a unifying law that will take into 

account the physics of deformation as well as the length scale phenomena.  
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A critical contribution to the computational fracture mechanics has been the 

development and application of cohesive element methods (Needleman, 1987; Tvergaard 

and Hutchinson, 1993; Xu and Needleman, 1994; Camacho and Ortiz, 1996, Leonov and 

Panasyuk, 1998). Modeling using these methods enables simulation of a nonlinear zone 

at the crack-tip. The modeling of complex fracture phenomena, such as crack branching, 

kinking is still under development. For instance, using a cohesive element network, there 

is an artificial softening of material properties as the size of cohesive elements decreases 

(Falk et al. 2001).  

Belytschko and co-workers (Moes and Belytschko, 2002) developed a new class of 

cohesive elements which allows the crack to propagate through an element instead of just 

at the element boundaries and termed it the extended finite element method (XFEM). 

Thus, constraint in the direction of crack motion is relieved. Furthermore, Belytschko et 

al. (2003) developed a methodology to switch from a continuum to a discrete 

discontinuity based on loss of hyperbolicity of the governing partial differential 

equations. They used the XFEM to deal with the discontinuity.  

Gao and Klein (1998) used the virtual internal bond (VIB) method for crack growth 

simulation. In this model, randomized cohesive bond interactions are incorporated into 

the constitutive law and cohesive interactions are assumed between the material particles. 

Gao and Ji (2003) used VIB method to model nanomaterials and demonstrated that at a 

critical length scale of one nanometer, there is a change in the fracture mechanism from 

the classical Griffith fracture to one involving homogenous failure near the theoretical 

strength of solids. For this transition, they replaced the classical singular deformation 
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field near a crack-tip by a uniform stress distribution with no stress concentration near the 

crack-tip. 

Considerable amount of analytical, experimental, and numerical work has been 

reported in the literature on intersonic crack growth (Gao et. al. 2001; Huang and Gao; 

2001; Klein et. al. 2001; Rosakis 2002; Guo et. al. 2003; Hao et. al. 2004; and Xia et. al. 

2004, 2005). The term intersonic speed is referred to as the crack-tip velocity between 

shear and dilatational wave speeds of the material, while the term sub-Rayleigh speed is 

referred to as the crack-tip velocity less than the Rayleigh wave speed of the material.  

Washabaugh and Knauss (1994) observed that the sustained mode-I crack-tip velocity 

is always less than the Rayleigh wave speed of the material. Ravi-Chandar and Knauss 

[1984 (a), (b)] observed microcracks on the trailing crack surfaces and pointed out that 

this crack branching was responsible for limiting the crack-tip velocities. They designed a 

fracture specimen with a weak plane possessing varying bond strengths so that the mode-

I crack was guided to propagate along the weak plane. They concluded that for mode-I, 

the crack-tip velocity approaches asymptotically the Rayleigh wave speed of the material 

in the limit of vanishing bond strengths.  

Andrews (1976) presented numerical work on plane strain, mode-II dominated shear 

cracks and concluded that the crack would rapidly accelerate at first, toward the Rayleigh 

wave speed and then after a short period of adjustment would start propagating at a speed 

close to but greater than 2 cS. Following Andrews (1976) work, Burridge et al. (1979) 

studied the steady motion of a semi-infinite mode-II shear crack driven by a moving point 

load which remains at a constant distance d from the crack-tip. Based on their analysis, 

they reported that for very large values of d, the sub-Rayleigh regime and the regime 
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between the shear wave speed, cS and the transition speed of 2 cS is unstable for crack 

propagation.  

Broberg (1989) used energy considerations and concluded that the crack-tip velocity 

regime between cS and dilatational wave speed, cD is forbidden for mode-I and the regime 

between cR and cS is forbidden for both mode-I and mode-II propagating cracks due to 

negative energy release rate in these regions. Freund (1979) used an asymptotic analysis 

for the steady state mode-II intersonic crack and determined that 2  cS is the only stable 

intersonic crack propagation velocity. Rosakis et al. (1999) conducted experiments on 

fracture specimens with a weak plane successfully constraining a shear dominated crack 

to propagate along this weak plane under remote loading conditions. They observed 

crack-tip velocities in intersonic regime with crack pattern featuring shear shock waves 

and discussed the significance of the intersonic crack propagation at preferred velocity of 

2  cS which is consistent with the analysis by Freund (1979). 

Although considerable work has been focused on rate-independent cohesive zone 

models, Knauss (1993) presented a rate-dependent cohesive surface relation 

incorporating viscoelasticity and studied crazing in thermoplastic polymers. Since then, 

many researchers have been working on rate-dependent cohesive zone models for 

analytical (Samudrala et al. 2002) and numerical solutions (Nguyen et al. 2004). 

Cohesive zone models are anticipated to have a significant potential in dynamic fracture 

modeling, including, fragmentation (Cirak et al. 2004), crack branching (Xu and 

Needleman, 1994, Belytschko et al. 2003), and kinking (Borst et al. 2006). At larger 

scales, geophysicists model earthquakes as shear cracks propagating along tectonic plates 

with faults, or weak interfaces (Xia et. al. 2005). Depending on the local topography and 
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the geological age of a fault, the wave speeds across a fault or inhomogeneity would 

vary. Thus the fault is modeled as a weak plane along which mode-II cracks would 

dynamically propagate (Rosakis, 2002). This is of particular interest to geophysicists who 

investigate intersonic fault rupture during shallow crustal earthquake events. Preferred 

weak planes exist even in earth’s crust in which the dominant fault motion is unstable 

shear crack growth between tectonic plates during earthquakes. 

MPM has been applied to analyze a wide range of problems, including dynamic 

material failure, such as spall failure in brittle materials using decohesion constitutive 

model (Sulsky and Schreyer, 2004). Nairn and Guo (2005) applied MPM for fracture 

problems in brittle materials. They used multiple velocity fields at nodes and allowed 

MPM to handle cracks by introducing a discontinuity in the single-valued velocity field. 

In their study, the crack propagation is based on critical stress intensity factors and 

energy criteria. They reported that MPM is able to model explicit cracks very well and 

also passes the crack patch test with good accuracy. In this investigation, we 

implemented cohesive zone model in MPM method to model crack propagation. This 

method can deal with cracks in both ductile and brittle materials. Additionally, the 

incorporation of a characteristic length scale in the cohesive zone model allows 

investigation of physics-based (Klein et al. 2001) crack propagation behavior. 

 

3.3   Cohesive Zone Model Implementation in Material Point Method 

3.3.1   Cohesive surface constitutive law 

In this investigation, plane-strain conditions are assumed and the cohesive surface 

decohesion formulation of Needleman (1990) and Xu and Needleman (1994) is used. The 
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continuum is characterized by two constitutive relations, namely, one that relates stress 

and deformation in the bulk material using the generalized Hooke’s law and the other that 

relates traction and displacement jump across a cohesive surface. Strength and work of 

separation per unit area are included as part of this latter characterization and thus a 

characteristic length enters the formulation. In addition to the material models mentioned 

above, appropriate balance laws together with the initial and boundary conditions define 

completely the boundary value problem. Crack initiation and crack growth are the natural 

outcome of the cohesive law of separation. The cohesive surface constitutive relation 

used allows for both tangential and normal decohesion.  

The normal and tangential traction expressions are given as (Needleman, 1999)  
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where, ∆ n = n · ∆, ∆ t = t · ∆, Tn = n · T, and Tt = t · T with ∆ = u
+
-u

-
 is the difference 

between the displacement at the upper surface and the bottom surface; n and t are the unit 

normal and tangent vectors to the surface at a given point in the reference configuration. 

Further, the ratio q = ntq φφ=  and r = n
*
n / δ∆ , where *

n∆  is the value of n∆  after 

complete shear separation with Tn = 0.  

Figure 3.1 shows the normal and shear tractions across a cohesive surface. The 

normal work ( nφ ) and shear work ( tφ ) of separation are given as 

nn e δσ=φ max , tmaxt

e
δτ=φ

2
,                                                                      (3.2) 
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Figure 3.1 (a):  Normalized traction, Tn, on the cohesive surface as a function of  

∆n/δn with ∆t = 0. (after Needleman, 1999) 
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Figure 3.1 (b):  Normalized traction, Tt, on the cohesive surface as a function of  

∆t/δt with ∆n = 0. (after Needleman, 1999) 

 

where, σmax and τmax are the cohesive surface normal and shear strengths respectively, e is 

2.71828, and δn and δt are characteristic lengths corresponding to displacement jumps to 

the cohesive surface in the normal ( n∆ ) and tangential directions ( t∆ ), respectively. The 
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traction components given in Eqn. (3.1) are integrated over the cohesive segments, or 

cohesive elements, which are part of the discretized interface in this case. It may be noted 

that we use four point Gaussian quadrature method to integrate the traction over the crack 

segments and neglect the effect of crack segment rotation assuming that crack opening 

displacements remain infinitesimal. 

 

3.3.2   Modeling of cohesive zone in MPM 

 

Cohesive segments (or elements) are separate from MPM background mesh elements. 

Thus, MPM can allow extension of new fracture surfaces without any restrictions from 

the background mesh elements. In this investigation, we focus on the crack propagation 

along the interface in the horizontal direction by defining a weak plane directly in front of 

the initial crack-tip. To reduce computational time, we avoid additional calculations 

pertaining to the classification of nodes and particles across the interface by letting the 

material points in the upper and lower parts of the plate (with respect to the interface) to 

convect in their own velocity fields. Thus, by adopting multiple velocity fields (Hu and 

Chen, 2003; Nairn and Guo, 2005), there is no interaction between the material points on 

either side of the interface and surfaces on both sides of the interface are connected to 

each other only through the cohesive zone model.  

The interface is discretized into cohesive segments and, each segment is defined by 

two cohesive nodes, forming a line for 2D description of the crack surface. The more the 

cohesive nodes are within a particular length, the more accurate is the model of the crack 

surface. The length scales involve a macroscopic length scale characterized by the size of 

the body, a length scale associated with the computational background mesh size, lm, and 
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the cohesive zone size length, lC. The elastic properties of the bulk material (E and ν ), the 

cohesive zone strength ( maxτ ), surface energy ( γ ), and the crack propagation velocity (vc) 

determine the cohesive zone size. In our simulations, we have considered a simple finite 

traction separation potential at the continuum level, proposed by Morrissey and Rice 

(1998) as an approximate expression for the cohesive zone length at zero crack velocity 

given by ( )
2
max

2

2

132

9
0for 

τ

γ









ν−

π
≈=

E
l cC v , with lC being the cohesive segment (i.e., 

element) length. However, the cohesive zone length decreases as the crack-tip velocity 

increases. In our final simulations, we used background mesh size of 62.5 µm for impact 

velocities below 10 m/s and background mesh size of 31.25 µm for impact velocities 

higher than 10 m/s (based on the convergence study). We fixed the cohesive segment 

length to ~ 2 µm (< ml , where lm is the background mesh size) for higher resolution of the 

cohesive zone within the grid element. As a result, the grid size is ~ 15 times or higher of 

the cohesive element size. This high resolution cohesive segment length along with 

smooth interpolation functions over the background mesh elements resolves the cohesive 

zone very well in all our simulations. 

We next consider an interface defined by cohesive nodes represented by smaller solid 

black circles, as shown in Fig. 3.2. For simplicity, we shall consider an example of a plate 

with separated interfaces forming the crack surfaces. The bigger solid grey circles are the 

material points convecting over the background grid. While defining a vertical or slant 

weak plane with this methodology is also possible, we restrict our investigation to 

horizontal interfaces. Each of the surfaces, namely, upper and lower surfaces, has surface 

nodes associated with them. These nodes overlap initially when there is no displacement 
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jump over the interface. The material points in the upper and lower plates are convected 

onto two different velocity fields. Thus, there is no interaction between the material 

points in the upper and lower plates. Both surfaces along the interface move in their 

respective velocity fields, defined by material points in the upper and lower plates, 

respectively. The crack opening displacement (COD) measured at each crack node 

corresponds to the displacement jump between two crack nodes on the opposite surfaces 

at the interface when they were originally (time = 0) overlapping.  

 
Figure 3.2:  Plate with crack showing cohesive segments 

(adapted from Tan and Nairn, 2002) 

 

While carrying out the MPM calculations at each time step, we move the surfaces 

belonging to the interface in their corresponding velocity field. As the surfaces move, 

they contribute to displacement jump on nodes over the interface. We now consider a 

segment being formed between two crack nodes, initially joined in the reference state, 

which we will term as the cohesive segment. The cohesive tractions are integrated over 

cohesive segments forming the interface, using the procedure described in Needleman 

(1987). Thus, at the end of the time step, we have displacement jumps at the interface 

nodes along with the restoring forces acting on them at the interface. This restoring force 
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at crack nodes is interpolated to the surrounding background mesh nodes based on the 

weight functions and adds to the total nodal force for solving the governing equations for 

the next time step. 

 

3.4   Simulation of Mode-II Crack Propagation in a Homogeneous, Isotropic, Linear 

Elastic Material 

Rosakis et al. (1999) investigated experimentally the intersonic crack growth in 

homogeneous elastic solids subjected to remote shear loading, using Homalite plates with 

specimen geometry and loading conditions as shown in Fig. 3.3. They introduced a weak 

plane by bonding two Homalite plates with an adhesive having bonding modulus similar 

to bulk material. We use the same model geometry and introduce a weak plane using 

prearranged cohesive segments along a horizontal line and a predefined initial sharp 

crack of length 25 mm. Thus, the mode-II crack is constrained to propagate along this 

weak plane. Coker et. al. (2003) conducted simulations of crack propagation in 

bimaterials, and provided an estimate of static strength of the adhesive as σmax = τmax = 24 

MPa (or 0.4615 % of the Young’s modulus of the bulk material) and we will use the 

same values in our simulations. The remaining parameters characterizing the cohesive 

surface used are, δn = 0.4 µm, r = 0, and q = 1, which gives δt = 0.9327 µm (Needleman, 

1999). We assume elastic material behavior and plane strain conditions. Material 

properties used for Homalite are Young’s modulus E = 5.2 GPa, Poisson’s ratio ν = 0.34, 

and mass density ρ = 1246 kg/m
3
. These material properties correspond to Homalite’s 

dynamic properties at a strain rate of ~ 10
3
 s

-1
. For this material, with plane strain 
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idealization, the dilatational (cD), shear (cS), and Rayleigh (cR) wave speeds are given by 

(see, e.g., Freund, 1998 and Liu et al., 2005) 
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where, ( )νEµ 22 +=  is the shear modulus, and νκ 43 −=  for plane strain deformation 

and ( ) ( )ννκ +−= 13  for plane stress deformation. 

Thus, for Homalite material and plane strain conditions, Dc = 2,534 m/s, Sc = 1,248 m/s, 

and Rc = 1,164 m/s. These wave speeds are represented in Fig. 3.4 along with the 

terminologies for each regime. 

 
Figure 3.3:  Geometry of the specimen and loading conditions. 

 

At time t = 0, the body is stress-free and at rest. A normal velocity is prescribed at the 

edge x = 0, and -50 mm ≤  y ≤ 0. The remaining external surfaces are traction-free. The 

applied velocity is given by 
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where tp is the pulse time, and tr, and ts are the rise time and step-down time, respectively. 

The velocity profile selected is a representative of experimental conditions. The pulse 

time in the experiments depended on the length of the projectile used. In our simulations, 

the times used were adapted from Needleman (1999) and Coker et al. (2003). 
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Figure 3.4: Representative plot showing wave speeds for Homalite-100 and  

nomenclature of various regions. 

 

Numerical simulations of dynamic crack propagation were carried out using the 

methodology presented in Section 3.3 on an 8-node parallel computer cluster (processor 

speed of 3.8 GHz each) using the Linux operating system. Simulations were carried out 

until 19.2 µs time and took ~ 48 hrs of computational time to complete. The parallel 
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environment was provided by the Structured Adaptive Mesh Refinement Application 

Infrastructure (SAMRAI) (Hornung and Kohn, 2002) developed at the Lawrence 

Livermore National Laboratory (LLNL). The geometry of the plate is discretized using 

material points with different levels of refinement. The background mesh consists of two-

dimensional, 4-node, square elements covering the entire region. Four material points are 

used to represent the material in each cell. Here, each material point area equals to a 

quarter of the area of each cell. Here, each material point area equals to a quarter of the 

area of each cell. Mesh convergence study is conducted using the sustained crack-tip 

velocity and interface cohesive forces. The smallest cell length used in these simulations 

was 31.25 µm. We make use of the structured mesh refinement scheme in MPM to 

communicate between successive levels (Ma, et al. 2005) with changing mesh size. 

Fig. 3.5 is a schematic of the geometric model used with six predefined levels of 

refinement. In this case, level 0 corresponds to the background mesh of cell-length 2 mm 

while each immediate finer level has a cell-length, half of the cell-length in the 

immediate coarser level. Thus, the finest level (level 6) has cell length of 31.25 µm. The 

pattern of refinement is chosen to accommodate the cohesive zone in the finest level so as 

to reveal the structure of the cohesive zone. The background mesh defined using the 

refinement pattern is fixed in all the simulations. A total of 12,000 cohesive segments are 

pre-defined between x = 25 mm to x = 50 mm, which defines the interface in front of the 

initial notch. The simulation time ends at 19.2 µs which is before the dilatational waves 

reach the end of the predefined cohesive segments (at x = 50 mm) on the right hand side. 

The simulation results are presented in the form of shear stress contours, plots of 

crack propagation velocity and position histories, interface profile, and cohesive forces 
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along the interface. In Section 3.6, we also compare our results with the experimental 

results of Rosakis et al. (1999) in terms of photoelastic stress patterns.  

 

Figure 3.5: Specimen geometry showing structured mesh refinement levels used 

for the simulation of asymmetric impact of a projectile. 

 

In their experiments, Rosakis et al. (1999) used dynamic transmission photoelasticity to 

determine the stress field around the interface. In this technique, isochromatic fringes are 

related to the contours of ( )21 σ−σ  through the stress-optics relation, with 1σ  and 2σ  

being the maximum and minimum in-plane principle stresses. Thus 
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NFσ=σ−σ 21            (3.3)  
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where σF  is the stress optical coefficient of Homalite, h is the specimen thickness, and N 

is the bright isochromatic fringe order. 

 

3.5   Results 

Dynamic fracture simulations were carried out under the loading and geometry 

conditions identical to Rosakis et al. (1999) experiments (see Fig. 3.3 for details). The 

results are presented in terms of shear stress contours, crack-tip position and velocity 

histories, and cohesive forces at the interface. Also, features that are characteristic of 

intersonic crack growth, such as shear shock waves and transition mechanism from sub-

Rayleigh to intersonic crack-tip velocities are presented. Next, a mesh convergence study 

is presented (Section 3.5.2) to demonstrate the convergence of results with decreasing 

mesh size. In the discussion part (Section 3.6), additional results of shear dominated 

crack growth with varying impact speeds and cohesive strengths are discussed. Finally, 

the stress contours are compared with the experimental results of Rosakis et al. (1999). 

 

3.5.1   Intersonic crack growth at an impact speed of 30 m/s 

Numerical simulations were conducted for asymmetric impact of a projectile at Vimp = 

30 m/s using the specimen geometry and loading conditions shown in Fig. 3.3 with 

normal and shear cohesive strengths of 24 MPa. Fig. 3.5 shows the mesh used in the 

simulations, where the smallest mesh size used is 31.25 µm. Isochromatic fringe patterns 

(contours of maximum shear stress, τmax) at different times are shown in Fig. 3.6.  
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Figure 3.6: Snapshots of τmax (MPa), (Vimp = 30 m/s) at various durations (cR = 1164 m/s) 

(a)  Stress wavefront arriving at the initial crack-tip  

(b)  Stress wavefront loading the initial crack in predominantly shear mode 

(c)  Crack has propagated along the interface after initiation at 10.4 µs 

                0  

(b) 10.24 µs 

         1.28 cR 

(c) 10.56 µs 

                 0  

(a) 9.76 µs 
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Figure 3.6: Snapshots of τmax (MPa), (Vimp = 30 m/s) at various durations (cR = 1164 m/s) 

(d)  Maximum shear stress pattern immediately after the transition mechanism  

(e)  Formation of shear shock waves 

(f)  Crack propagation at a sustained crack-tip velocity in intersonic regime. 

 

         1.898 cR  

(e) 12.64 µs 

        1.979 cR  

(f) 19.2 µs 

         1.837 cR 

(d) 11.35 µs 
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In each frame, the corresponding time and crack-tip velocities are shown along with the 

crack-tip position indicated by an arrow. In Fig. 3.6 (a), the traveling wavefront arrives at 

the initial crack-tip, loading the crack-tip predominantly in the shear mode. The stress 

wave travels over the interface onto the upper half of the workpiece and envelops the 

initial crack-tip [Fig. 3.6 (b)]. In the next frame [Fig. 3.6 (c)] (corresponding to time 

10.56 µs), the crack has propagated along the interface after initiating at 10.4 µs. The 

maximum shear stress pattern is typical of a crack propagating at sub-Rayleigh speeds 

under shear dominated loading. The crack propagates at sub-Rayleigh speeds until 11 µs, 

after which it propagates at intersonic speeds, with the stress patterns shown in 

Figs. 3.6 (d), (e), and (f). For frames after ~ 11 µs time [Figs. 3.6 (d)-(f)] there is a 

significant change in the fringe pattern. 
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Figure 3.7:  Plot of crack-tip position versus time for Vimp = 30 m/s 
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There are two lines of discontinuity (called the shear shock waves) emanating from the 

crack-tip in all these frames. Fig. 3.6 (f) is taken downstream from the initial notch. The 

inclination of these shear shock waves with the horizontal gives the velocity of the crack-

tip. The crack-tip location and velocity history are shown in Figs. 3.7 and 3.8, 

respectively. The crack-tip is defined as the farthest point from the initial crack-tip where 

the displacement jump is 5δt. The crack-tip velocity at a particular time is obtained by the 

slope of the crack-tip history using the least square fitting of a straight line over 31 

consecutive crack-tip positions.     

At higher velocities, the angle becomes smaller. The expression relating the shear 

shock angle with the crack-tip velocity is given by 
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Figure 3.8:  Plot of normalized (with cR) crack-tip velocity with time for Vimp = 30 m/s 
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where β  is the angle made by the shear shock wave with the horizontal interface on the 

trailing side of the crack-tip and cv  is the crack-tip velocity.  

The crack-tip position as a function of time is shown in Fig. 3.7. The crack-tip is 

defined as the farthest point from the initial crack-tip where the displacement jump is 5δt. 

This corresponds to ~ 100 % of cohesive energy dissipated in the resulting cohesive zone. 

The crack-tip velocity history is shown in Fig. 3.8 and is presented in terms of the non-

dimensional parameter Rc cv , where Rc  is the Rayleigh wave speed. The crack-tip 

velocity at a particular time is obtained by the slope of the crack-tip history using the 

least square fitting of a straight line over 31 consecutive crack-tip positions. These 

calculations of cv are conversant with those obtained from the shear shock angle using 

Eqn. (3.4). The crack-tip starts accelerating from time ~ 10.75 µs to ~ 11.5 µs. 

Correspondingly, the calculated crack-tip velocity increases transiently from sub-

Rayleigh velocity to a velocity above the dilatational wave speed before settling down to 

a sustained intersonic speed of 2302 m/s (or 1.977 Rc ). This is facilitated by the formation 

of a microcrack at some distance ahead of the main crack followed by coalescence of the 

main crack with the microcrack (also called daughter-crack). This phenomenon, known 

as the Burridge-Andrews mechanism (after Burridge, 1973; Andrews, 1976), has been 

observed in the finite-element simulations by Needleman (1999) and in the experiments 

by Xia et al. (2004) for homogeneous materials as well as in the simulations in 

bimaterials by Coker et al. (2003). Through this mechanism, cracks transiently jump 

from sub-Rayleigh to intersonic speed regime without going through the forbidden region 
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between the Rayleigh wave speed and the shear wave speed. This mechanism will be 

discussed in detail in Section 3.6. 

                     

3.5.2  Convergence Study  

In this study, the governing equations of MPM [Eqn. (3.7)] are solved on the 

background mesh. The effect of mesh size on the sustained crack-tip velocity and 

cohesive forces on interface nodes in both tangential and normal directions are 

investigated. Mesh is refined by a factor of two where the smallest mesh cell-length is 

varied from 1 mm to 31.25 µm. The crack-tip positions as a function of time for different 

mesh sizes are shown in Fig. 3.9, for Vimp = 30 m/s and a cohesive strength of 24 MPa. 

The difference in the crack-tip position history for different mesh sizes is negligible.  

We next examine the mesh convergence by plotting the normalized (with cR) crack-tip 

velocities for different mesh sizes as shown in Fig. 3.10. As the mesh size is decreased 

from 1 mm to 62.5 µm, the transition from sub-Rayleigh to intersonic speeds becomes 

more abrupt. For the portion of the curves prior to 12 µs in Fig. 3.10, convergence was 

not attained for different mesh sizes because it is during this time interval that the 

transition mechanism from sub-Rayleigh to intersonic speed regime occurs aided by the 

formation of a microrupture (daughter-crack tip) ahead of the mother-crack tip.   

Further, depending on the mesh size and how accurately the daughter-crack tip can be 

resolved, the crack-tip position and velocity histories at or near this transition mechanism 

changes with larger mesh sizes tending to average the position and velocity, respectively. 

Even though the velocity history plots show crack propagation through the forbidden 

zone, it is an artifact of poor grid resolution. At the smallest mesh size of 31.25 µm, an 
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overshoot of the velocity to supersonic speed was observed. It may be noted that this is 

an artifact, the result of calculation of the velocity from the crack-tip position.   
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Figure 3.9:  Variation of crack-tip position with time for different mesh sizes 
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Figure 3.10:  Plot of normalized (with cR) crack-tip velocity with time for 

different mesh sizes for Vimp = 30 m/s 
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Figure 3.11 (a): Tangential cohesive force (Tt integrated over cohesive segments) 

on the upper interface for Vimp = 30 m/s at t = 17.6 µs 
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Figure 3.11 (b): Normal cohesive force (Tn integrated over cohesive segments) on 

the upper interface for Vimp = 30 m/s at t = 17.6 µs 
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Figure 3.11 (c): Interface surface profiles for Vimp = 30 m/s with a cell length of 

31.25 µm and t = 17.6 µs 

 

When a daughter-crack is formed ahead of the main-crack, the crack-tip algorithm 

identifies wrongly the new crack-tip as the location of the newly formed daughter-crack. 

This feature is not captured by the coarser mesh sizes. However, in all cases, the same 

sustained crack-tip velocity is reached at 2300 m/s (or ~ 1.977 Rc ). The coarser mesh 

sizes result in oscillations around this value. There is also a good agreement for all mesh 

sizes for the time at which crack initiation occurs (~ 10.4 µs). 

For all mesh sizes, the shear and normal cohesive forces at the nodes along the 

interface are plotted in Fig. 3.11 at t = 17.6 µs. The crack-tip is located at ~ 41 mm and 

both the shear and normal forces increase as the crack-tip is approached from the right 

and drops to zero when separation occurs. In the case of Fig. 3.11 (a), the values of the 

forces over the interface have a tendency to close the interface in the shear direction. In 
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the case of Fig. 3.11 (b), the nature of normal forces is compressive. In other words, the 

values of the forces over the interface have a tendency of interface opening in the normal 

direction due to bottom surface having a tendency of pressing onto the upper surface, due 

to Poisson’s effect. This is illustrated by plotting interface surface profiles in 

Fig. 3.11 (c). In Figs. 3.11 (a) and (b), for the finer mesh sizes, the cohesive region size is 

equal ~ 7 mm, which is defined by 224 background mesh elements and 3360 cohesive 

segments. From these results it is reasonable to conclude that mesh convergence is 

attained for element size of 62.5 µm; to resolve the highly transient Burridge-Andrews 

mechanism, we investigated using a finer mesh size (31.25 µm) for Vimp = 30 m/s.   

 

3.6 Discussion 

The effect of the impact speed on the crack-tip velocities was studied by varying the 

impact speeds from 5 to 60 m/s. The normal and shear cohesive strengths of 24 MPa 

were used at the interface. Normalized crack-tip velocity histories for all cases are shown 

in Fig. 3.12 (a). A mesh size of 31.25 µm was used for Vimp of 20 m/s and above. 

However, a mesh size of 62.5 µm was adopted for Vimp ≤ 10 m/s because of the 

occurrence of a numerical instability during the formation of a microcrack, as a result of 

which the simulation quit. 

A more detailed discussion pertaining to this issue is given in the latter part of this 

section. For Vimp < 9.4 m/s, the crack propagates at a velocity less than the Rayleigh wave 

speed of the Homalite. As the impact speed is increased (starting from 5 m/s), the crack-

tip velocity approaches cR earlier in time. As the crack-tip velocity approaches cR with 

increasing impact speed, the crack either crosses cR and enters the intersonic regime (Vimp 

> 9.4 m/s) or it oscillates at values lower than cR (for Vimp < 9.4 m/s).  
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Figure 3.12 (a): Variation of the normalized (with cR) crack-tip velocity with time 

for various impact speeds, considering cohesive strength of 24 MPa 

and plate modulus, E of 5.2 GPa 

 

In this latter case of sub-Rayleigh crack propagation, the crack-tip velocity approaches cR 

with time and the oscillations (maximum amplitude of ~ 40 m/s) decreases. The sustained 

crack-tip velocity is taken as the peak of the oscillating values. For the case of Vimp > 9.4 

m/s, the sustained crack-tip velocity (at time ~ 19.2 µs, which more or less remains at a 

constant value with time) is found to be in the region between 2 cS and cD. Further, as 

the impact speed is increased, the transition Burridge-Andrews mechanism occurs earlier 

in time.  

The transition of sustained crack-tip velocity from sub-Rayleigh to intersonic, with 

increasing impact speed is abrupt and occurs at Vimp ≈  9.5 m/s. This abrupt change can be 

seen in Fig. 3.12 (b) where the sustained crack-tip velocity is plotted as a function of the  
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Figure 3.12 (b): Variation of normalized (with cR) sustained crack-tip velocity for 

various impact speeds and cohesive strengths, for plate modulus, E 

of 5.2 GPa 

 

impact speed. The corresponding lowest value of the sustained crack-tip velocity in the 

intersonic regime is called the transition crack-tip velocity (Burridge et al. 1979) which, 

from our simulations is ~ 1.66 cS. Thus, in all these cases, there was no steady-state 

crack-tip velocity observed between cR and 2 cS which is consistent with the finite 

energy arguments of Freund (1979) and Rosakis et al. (1999). However, in our case, with 

the cohesive parameters selected (σmax = τmax = 24 MPa), no sustained crack-tip velocity 

was observed between 2  cS and 1.66 cS either. This result may be consistent with the 

analysis of Burridge et al. (1979) on the crack propagation under a step impact loading. 

In their analysis, Burridge et al. reported that for constant shear loading at a distance d 

from the crack-tip, the transition crack-tip velocity of 2 cS will occur only for very high 
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values (up to infinity) of distances, d, of the crack-tip from the point of load and that the 

transition crack-tip velocity increases as d decreases. However, in similar simulations 

carried out by Needleman (1999) using FEM, he reported that by changing the pulse 

duration time (as well as cohesive strengths) he obtained crack propagation with 

velocities close to 2 cS. Thus, the lowest attainable stable intersonic crack-tip velocity 

of 2 cS can still occur under such situations as reported by Burridge et al. (1979) 

(analytical work) and Rosakis et al. (1999) (experiments).  

In our simulations, we used pulse duration time of 15 µs, and cohesive strength of 24 

MPa, while in Needleman’s simulations (1999) the time duration was 1 µs and the 

cohesive strength was 30 MPa, in which case Needleman observed sustained intersonic 

crack-tip velocity of 2 cS. In our simulations it might be possible that the lowest 

sustained crack-tip velocity could reach 2 cS, if the pulse duration time were reduced, or 

if the crack were allowed to propagate over a longer length. We further investigated the 

effects of cohesive strength of the interface and Young’s modulus of the bulk material on 

the value of transition crack-tip velocity. Cohesive strength was varied from 4 to 35 MPa. 

Fig. 3.12 (b) shows the transition speed as a function of impact speed for cohesive 

strengths of 4, 12, 24, and 35 MPa. The transition speed remains at a constant value of ~ 

1.66 cS, independent of the cohesive strength. This transition speed is reached at impact 

speeds of 2.25, 5.7, 9.5, and 12.5 m/s, and for cohesive strengths of 4, 12, 24, and 35 

MPa, respectively. Thus for the cases studied in our simulations the lowest sustainable 

crack-tip velocity in intersonic region was 1.66 cS. Lastly, from Fig. 3.12 (b) we can also 

see that as the impact speed is increased, the sustained intersonic crack-tip velocity 

increases from 1.66 cS (or 0.82 cD) to 1.94 cS (or 0.95 cD) and tends to approach cD at a 
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decreasing rate with respect to the impact speed. Fig. 3.13 shows the normalized crack-tip 

velocity history plots for impact speeds corresponding to relatively lower Young’s 

modulus of the plate (E = 3 GPa, ν=0.34) and cohesive strength of 4 MPa. It can be seen 

that the transition speed value remains more or less the same (~ 1.66 cS) corresponding to 

an impact speed of 4 m/s. 
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Figure 3.13: Variation of normalized (with cR = 883 m/s) crack-tip velocity with 

time for various impact speeds, considering cohesive strength of 24 

MPa and plate modulus, E of 3 GPa 

 

 Next, simulations are conducted for an impact speed of Vimp = 10 m/s with cohesive 

strengths, σmax = τmax = 24 MPa, and background mesh size of 62.5 µm, to observe the 

Burridge-Andrews mechanism. Figs. 3.14 (a) to (d) show sequential plots of maximum 

shear stress contours showing the transition mechanism. In Fig. 3.14 (a) only a single 

crack-tip can be seen (see black arrow) propagating at a velocity below the Rayleigh 
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wave speed. In Fig. 3.14 (b) a microrupture or a daughter-crack is formed ahead of the 

trailing mother-crack–tip as indicated by a white hollow arrow-head. The criterion used 

for the formation of the daughter-crack tip should be the same as that used for the main 

crack-tip, namely, when the displacement reaches a critical value of 5δt (δt is the 

characteristic length corresponding to the cohesive surface in the tangential direction) the 

crack-tip is formed. However, in our simulations the daughter-crack was not fully 

developed at fine background mesh size (31.25 µm) as the simulation quit. We had to use 

a coarser mesh size (62.5 µm) so that the simulation could continue to run. However, at 

this coarser background mesh size, the crack-tip displacements in shear were unable to 

reach the value of 5δt due to the effect of mesh averaging, so that the daughter-crack tip 

could not be recognized in this way. As a result, the initiation of the daughter-crack was 

determined approximately through the observation of the stress contour at a small 

distance ahead of the major crack-tip and from the jump in the velocity history plot [Fig. 

3.12 (a)]. The mother-crack-tip then accelerates rapidly [Fig. 3.14 (c)] and joins the 

daughter-crack-tip as shown in Fig. 3.14 (d). It is during this process that the apparent 

crack-tip velocity increases abruptly to and above the dilatational wave speed. From this 

point, shear shock waves start developing from the crack-tip and after some time, the 

crack-tip velocity reaches a sustained value in the intersonic region.  

 This mother-daughter-crack transition mechanism has been explained theoretically 

by Broberg (1989) using the steady state analysis. In that work, Broberg pointed out that 

the crack-tip cannot travel steadily between cR and cS due to violation of the energy 

considerations. The accelerating crack-tip thus goes through a transition mechanism so as 

to pass from sub-Rayleigh to intersonic regime to avoid the forbidden region.  
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Figure 3.14: Snapshots of τmax (MPa) for Vimp = 10 m/s (a) Main crack-tip 

propagation at a sub-Rayleigh wave speed, (b) Formation of 

microrupture ahead of the main crack-tip, (c) Coalescence of main 

crack-tip with microrupture, (d) Resultant crack-tip propagation at 

intersonic wave speed.  

(d) 13.12 µs 

(a) 11.84 µs 

(b) 12.48 µs 

(c) 12.8 µs 
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This transition mechanism is called the Burridge-Andrews or the mother-daughter crack 

mechanism.   

      In all the simulations conducted in this investigation of varying mesh sizes and 

impact speeds, we observed that even though mesh convergence may have been attained 

(based on the above considerations) identifying the mother-daughter (Burridge-Andrews) 

transition mechanism requires finer mesh sizes in order to observe an abrupt increase in 

the crack position history. However, for the case Vimp = 10 m/s, we observed that the 

finest mesh size (cell-length of 31.25 µm) is limited by the instability in the simulation 

occurring during Burridge-Andrews transition mechanism after which simulation would 

quit. Fig. 3.15 shows the results obtained with a cell-length of 31.25 µm and Vimp of 10 

m/s. Fig. 3.15 (a) shows the distinct jump in the crack position history which is also the 

point where instability occurs. Fig. 3.15 (b) shows the corresponding plot of maximum 

shear stress contour at time 16.96 µs, just before the simulation quits. This instability, at 

the point where microcrack (daughter-crack) nucleates, could be attributed to elastic 

snap-back instability (Gao and Bower, 2004) occurring when the stress reaches the peak 

strength of the interface. The mesh size required to resolve the daughter-crack is different 

(less) than that required to obtain converged sustained crack-tip velocities, since 

daughter-crack formation occurs at a relatively smaller scale than the major (mother) 

crack with respect to the size of their cohesive zones. In our investigation, we have 

checked for convergence of the major crack-tip cohesive zone and not for daughter-crack 

tip cohesive zone. For potential intersonic cracks, depending on the mesh size and impact 

speeds, the daughter-crack tip cohesive zone is resolved to a certain level. The daughter-

crack is better resolved at lower impact speeds, if we keep the mesh size the same at all 
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impact speeds. One such simulation at which we were able to resolve the daughter-crack 

(resolve the actual distance between the daughter-crack and major crack in conjunction 

with crack opening displacements) is at 10 m/s impact speed and 31.25 µm mesh size at 

which we observed the sharp jump (discontinuity) in the crack-tip position history instead 

of continuous increase, as in other cases of higher impact speeds.  

 

(a)  Crack-tip position history 

 

 

(b)  Snapshot of τmax (MPa) at time 16.96 µs 

 

Figure 3.15: Results for Vimp = 10 m/s with cell-length of 31.25 µm, showing 

instability.  
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It is for this unique case (in our work) that the nucleation of daughter-crack was resolved. 

However, during nucleation, the simulation ran for some time and quit due to cohesive 

forces reaching very high values. Gao and Bower (2004) had observed a similar 

pathology in their simulations. In their work, they reported that by introducing a viscosity 

term in the constitutive equations for the cohesive law they were able to suppress the 

instability during crack nucleation and thus allow simulation to go further. 

In our case, we simulated the results [Fig. 3.12 (a)] for the case of Vimp = 10 m/s 

with the mesh size (cell-length of 62.5 µm) one level coarser than the one in which 

simulation becomes unstable (cell-length of 31.25 µm). However, this mesh size could 

not resolve the distinct jump near the crack-tip that otherwise propagates at the same 

sustained crack-tip velocity. Thus, we found mesh size of 31.25 µm to be appropriate for 

Vimp of 20 m/s and above, while a mesh size of 62.5 µm for Vimp of 10 m/s and below. 

      Our simulation results obtained for the case of Vimp = 10 m/s with cohesive strengths, 

σmax = τmax = 24 MPa, and background mesh size of 62.5 µm are compared qualitatively 

with the isochromatic fringe patterns obtained from experiments using photoelasticity by 

Rosakis et al. (1999), in Fig. 3.16. The general shape of the isochromatic patterns in front 

of the crack-tip matches with the experimental results of Rosakis et al. (1999), as shown 

in Fig. 3.16 (b) (from Rosakis et al., 2000); and theoretical predictions based on a 

Dugdale type cohesive zone model, as shown in Fig. 3.16 (c) (from Rosakis et al., 2000). 

It is somewhat difficult to compare the patterns quantitatively due to difficulty in 

extracting stress values from the fringe patterns obtained in the experiments. Furthermore, 

the velocity of the crack-tip is 1.66 cS for the numerical pattern and 1.47 cS for the 

experimental pattern. This can also be seen from the angles formed by the shear shock 
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waves; in the simulation the value is 37° and in the experiments it is 43°. Finally, due to 

the absence of contact algorithm in the numerical simulation model, we see complex 

stress patterns corresponding to waves traveling over the trailing crack surfaces, which 

are not exactly comparable with experiments.  

 

Figure 3.16: Views of (a) Simulated result showing maximum shear stress for 

Vimp = 10 m/s  and σmax = τmax = 24 MPa, compared with 

(b) experimental pattern, (c) theoretical predictions based on a 

Dugdale type cohesive zone model (after Rosakis et al. 2000).  

 

 

(a) 

(c) (b) 
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From this, it appears that in actual experiments the crack surface contact plays some role 

and it could even influence the stress contours trailing the crack-tip. 

      It may be noted that numerical implementation of the normal cohesive law has to take 

into consideration the possibility of interpenetration of crack surfaces. Interpenetration in 

the cohesive zone has been prevented by the use of steep slope of the traction-

displacement cohesive law in the case of negative (relative) displacements. The current 

simulation has taken this into consideration and prevented penetration of material points 

in the cohesive zone. In the wake of the crack-tip, where the cohesive law is turned off 

(due to difficulty associated with searching cohesive nodes within each cell, as a result of 

relatively large displacements at crack surfaces), algorithm has not been implemented to 

prevent interpenetration of the crack faces even if the displacements are negative. Based 

on published results (more details to follow), it is seen that the stress field in front of the 

crack-tip should not be affected by the interpenetration behind the crack-tip because the 

behavior of the crack-tip is governed by the asymptotic stress field around the crack-tip. 

It may be noted that the present work has focused on the stress-field in front of the crack-

tip. Comparisons between experiments and finite element simulations (Needleman, 1999; 

Rosakis et al., 1999, 2000; Coker et al., 2003; Yu et al., 2002) imply that the crack 

behavior for shear-dominated crack growth is not affected by the particular behavior in 

the wake of the crack-tip. In the FEM work cited by Needleman (1999) and Coker et al. 

(2003), the interpenetration was allowed and frictional contact was not considered in the 

wake of the crack-tip. In the 3D FEM work by Yu et al. (2002), the frictional contact was 

considered in the wake of the crack-tip. In all these cited FEM work, results were 

compared with experimental results by Rosakis et al. (1999, 2000). In the experiments, 
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interpenetration did not occur and frictional contact was present. Despite the differences 

in the conditions in the wake of crack-tip between FEM simulations, the global behavior 

(crack-tip speed) and the local behavior (fringe patterns in front of the crack-tip) showed 

good agreement between experiments (where there is contact and frictional sliding of the 

crack faces) and simulations. In this work, we have focused on implementing the 

cohesive zone model and did not implement the contact algorithm to prevent 

interpenetration behind the crack-tip because we are interested primarily in the crack-tip 

behavior.  

Some discrepancy can be seen between the simulated crack initiation time and the 

experimental values, with the experimental values being slightly higher. This can be 

attributed to the geometry of the initial crack-tip, which is mathematically sharp in the 

case of simulations but not so in experiments. There is also a possibility that some of the 

impact energy may be consumed in material nonlinearities not considered in the 

numerical model. Further, since the sustained crack velocities in the experiments are 

lower than that of the numerical simulations, for relatively higher impact speeds, it is 

possible that the actual bonding strength might be higher than the cohesive strength used 

in the simulations. Overall, the combined MPM and cohesive zone model methodology 

are able to capture the salient features of the dynamic crack growth. 

 

3.7 Conclusions 

Cohesive zone model was implemented in MPM to simulate dynamic crack 

propagation. Dynamic crack growth was investigated by numerical simulations of shear 

dominated crack growth in a nominally brittle, homogeneous, linear-elastic solid under 
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plane strain conditions with the crack constrained to grow in the direction of the initial 

notch. Based on dynamic crack growth simulation results, the following conclusions are 

reached: 

1. Dynamic crack propagation occurs in both sub-Rayleigh and intersonic crack-tip 

velocity regimes. A potential intersonic crack, after initiating, accelerates and 

experiences crack-tip velocities close to the Rayleigh wave speed. In order for the 

crack-tip velocity to increase from sub-Rayleigh to intersonic regime, it goes 

through a transition Burridge-Andrews mechanism, namely, formation of a 

microcrack at some distance ahead of the main crack, and coalescence of the main 

crack with the microcrack, after which it reaches a stable state of crack 

propagation.  

2. Mesh convergence study was carried out by varying the smallest element size 

from 1 mm to 31.25 µm. There was a good agreement for the sustained crack-tip 

velocity and cohesive force distribution over the interface for 62.5 µm and 31.25 

µm mesh sizes. However, the sub-Rayleigh to intersonic speed transition 

mechanism is only captured by the smallest mesh size of 31.25 µm used in the 

investigation.    

3. The effect of impact speed was investigated for impact speeds ranging from 5 to 

60 m/s. For a fixed set of cohesive properties, sustained crack-tip velocities 

increasing from sub-Rayleigh wave speeds to longitudinal wave speeds with 

increasing impact speed were obtained.  In the case of crack propagation in the 

sub-Rayleigh regime, as the impact speed was increased sustained crack-tip 

velocities increased and approached the Rayleigh wave speed. In the case of crack 
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propagation in the intersonic regime, for the cases simulated, sustained crack-tip 

velocities were obtained in the region between 1.66 cS (or 0.82 cD) and 1.94 cS (or 

0.95 cD), with 1.66 cS as the lowest intersonic crack-tip velocity obtained in 

simulation. The lowest crack-tip velocity obtained in these simulations did not 

reach 2 cS as reported from the analytical work by Burridge et al. (1979), 

experiments by Rosakis et al. (1999), and FEM simulations by Needleman (1999). 

Further, in our simulations, as the impact speed was increased, the sustained 

crack-tip velocity increased at a decreasing rate with respect to the impact speed.  

4. A transition crack-tip velocity of 1.66 cS was observed, which remained the same 

(for simulations in this work) for different cohesive strengths of 4, 12, 24, and 35 

MPa (for both shear and normal strengths) and corresponding impact speeds of 

2.25, 5.7, 9.5, and 12.5 m/s. 

 

Good qualitative agreement was observed between the numerical results presented 

here and the experimental results of Rosakis et al. (1999) in terms of the photoelastic 

stress patterns ahead of the crack-tip. 
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CHAPTER IV 

 

 

SIMULATION OF MICROSTRUCTURE EVOLUTION OF A CLOSED-CELL 

POLYMER FOAM IN COMPRESSION 

 

4.1   Introduction 

Polymer foams have been of particular interest in many applications due to their low 

thermal conductivity, high specific strength, high specific energy absorption, and high 

acoustic damping than continuous material. Introduction of voids leads to very low 

density, on the order of 0.1 g/cm
3
 for the polymethacrylimide (PMI) or Rohacell foam, 

allowing control over homogenous stiffness, strength, and energy absorption properties. 

It is currently used as cores for composite sandwich structures used in launch rocket, 

missile shells, military helicopter blades, and other energy absorbing packaging 

applications. 

The Rohacell foam is a closed-cell foam. A typical stress-strain curve for such foams 

in compression is characterized by three regions (Gibson and Ashby, 1997). An initial 

(nearly) linear elastic region occurs at low stress. The stress experienced in this region is 

due to cell-walls bending, stretching or contracting. The elastic region is followed by a 

long collapse plateau region or compaction region in which cells collapse by buckling, 

bending and fracture. In some foams, such as ductile metallic foams, yielding is 

experienced due to formation of hinges (Gibson and Ashby, 1997). In the third region, 
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densification occurs in which almost all the voids collapse and disappear; as a result the 

neighboring cell-walls are compressed against each other, leading to stiffening in material 

response. Before the plateau region, a yielding portion is observed which may or may not 

show a drop in the stress as the strain increases. The mechanical properties of such foams 

depend on material properties of the solid cell-walls and the microstructure of the foam. 

It may be noted that the cell-wall properties can be different from those of the monolith 

or bulk material due to size effect and processing conditions. 

Typically, modeling of foams through microstructure can be used to serve the 

following purposes (Bardenhagen et al. 2005; Brydon et al. 2005): 

(a) Optimization of overall foam mechanical properties which depend on the 

microstructure and properties of the parent material.  

(b) Predicting unit cell, representative volume element, or parent material properties. 

Particular examples where this can be useful are where such unit-cell properties 

cannot be directly measured, for example in nanofoams such as cross-linked aerogels 

(Katti et al. 2006; Leventis et al. 2007, 2008; Luo et al. 2006). 

(c) Identify deformation mechanisms for development of phenomenological or 

constitutive models, considering the microstructural evolution during deformation. 

While work has been conducted in using the material point method (MPM) to 

simulate deformation of open-celled foams (Bardenhagen et al. 2005; Brydon et al. 

2005), there is essentially no work reported using MPM to simulate closed-cell foams. In 

this part of the work, the material point method is used to model deformation of closed-

cell foams. Analysis of the foam by µ-CT provided the microstructure input to the MPM 

model. In addition, the simulation results were qualitatively compared with in-situ µ-CTs 
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of the microstructural evolution during deformation along with the compressive stress-

strain curve. Attention is focused on the deformation mechanisms in closed-cell foams 

such as initiation of collapse, formation of shear bands, and representative volume 

element for such foams. 

 

4.2   Background 

In simulations on the response of foams under compression, phenomenological 

approach is often used. In this approach, an equivalent constitutive law for the foam 

modeled as a homogeneous material is used. Although phenomenological models in the 

form of power-law relationships exist for both Young’s modulus and strength of foams 

with mass density of foams (Gibson and Ashby, 1997), those models do not explicitly 

address the relationship between microstructure and macroscopic properties; hence their 

value in guiding the design of the microstructures is limited. However, simulations of 

complex foam microstructures in compression have always been a challenge due to the 

large distortions involved and extensive contact of the cell-walls. This is particularly true 

in the simulation of the compaction and densification regions of the stress-strain curves 

where large deformations and rotations occur, which require efficient handling of the 

contact between cell-walls. To date, major efforts have been focused on finding analytical 

solutions.  

MPM can handle, relatively easily, the modeling of realistic microstructures of foams 

and multiphase materials. In the case where the material points move in a single-valued 

velocity field, no-slip contact between the surfaces can be handled automatically. 

Bardenhagen et al., (2005) demonstrated the advantage of this numerical method in 
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compression simulations of open-celled foam structure, with large material deformations 

over a full range of densification up to 90% compressive strain. They determined the 3D 

geometry using µ-CT and passed the information on to the MPM to build a discretized 

model using material points. They demonstrated the dependence of stress-strain curves in 

compression on microstructure irregularity and its material properties. A separate 

meshing requirement of such complex structure was eliminated with the use of the 

particle representation of the microstructure. They reported that, the presence of residual 

porosity (porosity at a particular strain after compression) needs to be considered for 

evaluating dynamic material response of such materials. Brydon et al. (2005) simulated 

quasi-static densification of polyurethane (polymeric) open-cell foams assuming elastic 

properties for the parent material and using no-slip contact. A representative volume 

element was used to represent the bulk response, dynamic effects, and microstructure 

evolution during deformation. In another case, Nairn (2006) used information from a 

scanning electron micrograph of wood and carried out two-dimensional MPM 

simulations of transverse compressions and densifications in softwood and hardwood. He 

reported that he was able to reproduce many features of wood under compression. 

In this study, we have carried out compression experiments on closed-cell PMI 

(Rohacell) foam and observed the foam in compression, undergoing elastic, compaction, 

and densification stages of deformation using µ-CT. A customized load frame allowed 

for simultaneous real-time compression, over 360º observations using X-rays, and 

recording the in-situ microstructure evolution (Hanan et al. 2007). In addition, the 

undeformed three-dimensional image reconstructed from the µ-CT data was converted 

into material points for simulation using the MPM. We used the MPM originally 
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developed by Sulsky et al. (1995), with C
1
 continuous shape functions (Bardenhagen and 

Kober, 2004). Direct measurement of cell-wall moduli using conventional testing 

techniques such as tensile or bending tests is difficult due to the small size of the cell-

walls and variation observed in cross-sectional area along the length. Hence, 

nanoindentation tests were carried out to determine the material properties of the solid 

polymer. These material properties along with appropriate constitutive model for the 

material points were used as input in the MPM simulation. The numerical output from 

MPM includes snapshots of the 3D deformed configurations as well as the stress-strain 

curve. These are compared qualitatively with the deformation observed under in-situ µ-

CT. 

 

4.3   Methodology 

4.3.1   Compression of PMI foam with in-situ micro-computed tomography 

Rohacell closed-cell foam samples were manufactured by Degussa. The parent (or 

cell-wall) material is polymethacrylimide (PMI). Such foams are typically manufactured 

by hot forming of methacrylic acid/methacrylonitrile copolymer followed by curing, 

which generally improves its mechanical properties. During foaming, this copolymer is 

converted to polymethacrylimide. The samples used for compression and µ-CT imaging 

were cylinders of 5 mm diameter and 5 mm height. Another set of samples were cut in a 

cube shape with side length of 12.7 mm and were used for confirming the stress-strain 

curve. Samples of required dimensions were cut without the use of lubricants. The 

samples were kept inside a sealed envelope with aluminum foil liner before testing to 

protect from UV light exposure and moisture.  
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Micro-Computed Tomography (µ-CT) images were obtained with a Scanco µCT-40. 

For in-situ observation, µ-CT was obtained at Argonne National Laboratory’s Photon 

Source synchrotron facility. However, the radiographs included significant phase contrast, 

which upon reconstruction for µ-CT showed too much noise to directly generate an MPM 

model but the in-situ tomography was used to qualitatively compare with simulation 

results. 

 

Figure 4.1: Schematic of µ-CT setup with in-situ compression 

 

In the in-situ µ-CT measurements carried out at the Advanced Photon Source (APS), 

the beamline XOR-2-BM-B was used for simultaneous radiography and 

microtomography imaging under stress (De Carlo et al. 2006). Tomographs of the foam 

were taken at a resolution of 2.6 µm/voxel. Fig. 4.1 shows a schematic diagram of the in-

situ µ-CT setup used for compression testing. During each scanning step, X-rays are 

projected on the foam sample with an initial intensity I0. As the foam absorbed part of this 

energy, the original intensity of the X-ray was thus attenuated to I. The X-rays then 

passed through a scintillator (thin single crystal phosphor), which converts the X-rays to 

visible light. The optical lens focuses the visible light on a CCD camera. CCD exposures 

were taken at quarter degree increments from 0° to 180° and appear as radiographs [Fig. 
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4.2 (a)]. These radiographs were reconstructed to tomographs (De Carlo et al., 2006) [Fig. 

4.2 (b)], representing the volume density distribution of the foam.  

A customized loading frame was used which allowed for simultaneous real-time 

compression and 360º observations using X-rays. The entire load frame was placed on a 

precision rotation and translation stage which was integrated with the µ-CT setup. A load 

cell (capacity 315 N) attached to the frame gave the applied force (bulk response of the 

foam), and the engineering stress was calculated based on the undeformed (original) 

sample cross-sectional area. Nominal strain was calculated from the cross-head 

displacements recorded by in-situ radiography. The foam sample was compressed up to 

75% strain in seven pre-selected steps. At each step µ-CT scans were carried out to 

observe the deformed structure. As a first step, to determine the strains (or top platen 

displacements) for µ-CT scanning, a preliminary test was executed giving the stress-

strain curve, without stopping for µ-CT scans. Seven strains were then chosen (based on 

the platen displacements). Each strain level was selected to represent a characteristic 

feature in one of the three regions in the foam stress-strain curve. The first µ-CT scanning 

was carried out for as received foam (0% strain). The second and third scans were in the 

elastic region, with the third scan specifically chosen before the yield stress, nearly at the 

end of the linear elastic region. This approximation was estimated based on the previous 

trials on compression of the same foam material and were carried out separately. The 

fourth scan was carried out just after a drop in stress was observed; it was also the 

beginning of the plateau region of the stress-strain curve. The fifth and the sixth scans 

were taken at the end of the collapse region and within the densification region, 

respectively. Finally the seventh scan was made when nearly all the cells had collapsed. 
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Figure 4.2 (a): Typical radiography image showing the entire foam material 

 

                  

Figure 4.2 (b): Typical micro-computed tomography (µ-CT) image showing a 

section of the foam material 
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Assembly of 3D µ-CT images at selected strain levels was then used to provide the 3D 

deformation history of the entire sample under compression and microstructural analysis, 

and to compare with the MPM simulation results. 

 

4.3.2   Modeling of closed-cell PMI foam in compression using material point method 

Two-dimensional sections in the form of digital images were obtained from the 3D µ-

CT information, and material points were assigned to the locations of the pixels forming 

cell-walls. In this way, complex microstructures can be easily converted to discretized 

MPM models. Further, MPM models naturally the no-slip contact between MPM 

particles, which eliminates the requirement for a special contact algorithm and is a 

reasonable approximation for such polymer based foams (Brydon et al, 2005). These 

features make MPM a reasonable choice for modeling and simulation of foams. 

From the regenerated 3D solid image (procedure described in Section 4.3.1), a cubic 

foam sample with side length of 4 mm was selected for analysis [Fig. 4.3 (c)]. While the 

actual specimen is a circular cylinder, in simulation it was modeled as a cube for the 

convenience of applying displacement boundary conditions. This 3D solid cube of foam 

was created with 900 2D square digital images with a size of 900 × 900 pixels. Since 

each pixel will be assigned with a material point in MPM, in order to include more cells 

in simulation to reach representative results with the available parallel computer cluster 

(limited to 16), the resolution of the original images was reduced by 3-times to a size of 

300 × 300 pixels [Fig. 4.3 (a)] (3 × 3 × 3 voxels in µ-CT to 1 voxel in MPM). With this 

resolution, on average, cell-walls along their thicknesses were represented using four 

material points. 
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Figure 4.3: (a) Digitized image of a foam section from µ-CT (b) Discretized MPM 

model showing a section of material points obtained from voxels (c) 3D 

reconstruction of foam microstructure from µ-CT information (d) 3D 

discretized MPM model obtained from µ-CT information 

 

(a) (b) 

(c) (d) 

Material points 



 65

Each pixel in these images corresponds to 14.7 µm/pixel in dimension along both X and Y 

axes. Within the cell-walls, the material was found to be nearly uniform. This was 

obtained through evaluation of the grayscale of the tomographs representing the densities 

of the material; the parent material was thus assumed homogeneous and isotropic. The 

pixels from the 2D images were then converted to material points by applying a threshold 

to the gray scale values of the pixels. The intensity of the pixel (black or white in Fig. 

4.3) represents presence of parent material (cell-walls) or absence of material (voids), 

respectively. From these images, each black pixel was converted to a material point [Fig. 

4.3 (b)] for MPM analysis and was assigned material properties. Such numerous 2D 

MPM sections were combined to form a 3D discretized foam model [Fig. 4.3 (d)] for 

analysis using MPM. The density and Poisson’s ratio of the parent plastic material were 

taken as 1.2 g/cm
3
 and 0.35, respectively, which are typical for an amorphous polymer at 

temperatures below the glass transition temperature (Lu et al. 1997).  

 We assigned the value of Young’s modulus based on the nanoindentation 

measurements. The nanoindentation technique, suitable for measurements of mechanical 

properties of small volumes of materials, is an effective tool to measure parent material 

properties of such foams. Nanoindentation has been used to measure elastic (Oliver and 

Pharr, 1992) and plastic properties (Knapp et al., 1998). Methods have been developed to 

measure viscoelastic properties.  

Lu et al. (2003) and Huang and Lu (2006) developed methods for measuring creep 

compliance, Young’s relaxation modulus, complex modulus in the frequency domain 

(Huang et al., 2004), as well as both bulk and shear relaxation functions in the time-

domain (Huang and Lu, 2007). The requirement here for sample preparation was to find a 
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suitable flat parent material site supported by a filler material around it to make 

nanoindentations. For this, small pieces of foam sample material (small enough to create 

an open structure with no closed pores) were embedded into epoxy. The foam with pores 

filled with epoxy was held at room temperature for a considerable amount of time (1 

week) to allow the epoxy to harden. A Berkovich indenter with tip radius less than 50 nm 

was used to indent into the material. Nanoindentations were made at numerous sites over 

the polished cross section of parent material of the foam cell-walls. Indentations were 

made under a constant loading rate (47.5 µN/s), up to a maximum load of 2 mN.  

Fig. 4.4 (a) shows the nanoindentation load-displacement curves with maximum 

depth less than 500 nm. These maximum displacements were acceptable since the 

nanoindents (less than 3 µm in size) were made on considerably larger sites (wall 

thickness > 50 µm), thus satisfying the semi-infinite workpiece approximation for 

analysis. The curves obtained were reasonably consistent. Based on the unloading 

stiffness
1
 as used by Oliver and Pharr (1992) the Young’s modulus of the material was 10 

± 1.3 GPa. However, since the parent material is a polymeric (time-dependent) material, 

this modulus obtained is incorrect and one needs to find the creep compliance through 

viscoelastic analysis, following the method developed by Lu et al., (2003), and invert it to 

obtain the Young’s relaxation modulus. Using this approach, the Young’s relaxation 

modulus relation for PMI as parent material in the foam was obtained and is plotted in 

Fig. 4.4 (b). The steady-state value was 3.7 ± 0.2 GPa. In our simulation, the governing 

equations are solved in an explicit way. Simulation of such complex microstructures 

usually needs huge computational power. Use of a viscoelastic constitutive model would 

have required additional computational time per step. To reduce computational time in 

                                                 
1
MTS Nano Indenter XP system with TestWorks (version number 4.08) software.  
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this work, the material model of the parent material is approximated as linear elastic-

plastic (time-independent), with a constant value of 3.7 GPa for Young’s modulus. The 

intensity of each voxel in a µ-CT is related to the density of the material at that point and 

is assigned a grayscale value. The material particles in MPM can be assigned 

proportional values of Young’s modulus (or density), but for these Rohacell foam µ-CT 

scans, the intensities obtained were almost uniform, indicating a uniform density of the 

parent material throughout the foam. Hence, a constant value of Young’s modulus and 

density, for all material points, were assigned to the foam model. 

In the simulation of foam compression using MPM, a cube with side length of 2.1 

mm was used. The bottom side of the foam was fixed using displacement boundary 

conditions. Additionally, the foam material points were confined on all four sides of the 

cube faces; they can slide along the side surfaces but cannot move outside of the cube 

faces. On the top face, four layers of material points (with material properties, E and ρ, 

for these layers 1000 times higher than foam parent material properties) were added to 

model as a rigid platen. A velocity boundary condition was applied to the top-most layer 

of the platen material points. To reduce computational time the platen velocity and the 

simulated strain rates used in simulations are considerably higher than those used in 

actual experiments. A velocity of 3 m/s was applied, and this velocity was initially 

ramped-up linearly from 0 to 3m/s in 5µs. The time step ( t∆ ) used in the simulations was 

dc/kLt =∆ , where L  is the background mesh grid length, dc  is the dilatational wave 

speed of the parent material, and k is a positive constant satisfying 1≤k . A smaller k 

leads to improved accuracy in the solution, and typically k = 0.1 was used in our 

simulations. 
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Figure 4.4: Direct measurement of matrix mechanical properties using 

nanoindentation on cell-walls of the foam (a) Nanoindentation 

load-displacement curves (b) Young’s relaxation modulus of PMI 

foam parent material. 
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With this consideration, the resulting time step was 3 ns which made the task of running 

the simulations at experimental quasistatic strain rates time consuming. Thus an increased 

velocity was used in simulations, and corresponds to ~ 0.18% of the longitudinal wave 

speed of the parent material. The loading may thus be considered as quasistatic 

(Bardenhagen et al., 2005; Nairn, 2006). 

In the simulation of such a dynamic problem, the force is applied at the top, while 

the bottom side of the sample does not initially feel the force. The compressive wave will 

travel to the bottom and reflect back. It normally takes three to five cycles of reflections 

for the stresses applied on both top and bottom to reach dynamic equilibrium. Hence, one 

has to check for the forces applied on both top face (moving platen) and bottom (fixed) 

face to determine whether the dynamic equilibrium state has been established. The net 

force on the bottom face was obtained by summing up the forces on the background grid 

nodes (at which the displacement boundary condition was applied), which were further 

obtained from the interpolated material point forces. The net force on the top face was 

calculated by summing up the force acting on the bottom-most layer of material points 

forming the rigid moving platen. The stresses for deducing the stress-strain curve were 

calculated based on the undeformed cross-sectional area of the foam. Each time, when 

the material points on the platen move, their average displacement was registered. This 

was then divided by the original length of the undeformed foam to calculate the nominal 

strain. 

For the MPM simulations, a 16-node cluster (each with a 2.8 GHz processor) was 

used to simulate an RVE of the foam structure. During the compression, the faces on the 

five sides surrounding the foam (except the top face where the velocity boundary 
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condition was applied) were constrained to prevent material points from moving outside 

of the faces of the cube, following the approaches taken by Brydon et al., (2005), and 

Nairn (2006). To simulate the failure of foam cell-walls, von Mises plasticity with 

isotropic bilinear hardening along with a stress based failure criterion was used. An 

attempt was made to determine the values of these parameters using inverse-problem 

solving methodology to allow the simulated stress-strain curve to correlate with the 

experimental curve. 

Simulations were run until a compressive strain limit of 75 % was reached. Each 

simulation took at a minimum 5 days of computational time for a foam size of 2.1 × 2.1 × 

2.1 mm
3
 using a background computational element size of 30 µm. The parallel 

environment was provided by the Structured Adaptive Mesh Refinement Application 

Infrastructure (SAMRAI) (Hornung and Kohn, 2002) developed at the Lawrence 

Livermore National Laboratory (LLNL). The geometry of the foam is discretized using 

cubic material points having dimensions 14.7 × 14.7 × 14.7 µm
3
. The background mesh 

consists of three-dimensional solid, 8-node, cubic elements covering the entire region, 

with element-length of 30 µm which is approximately twice the particle size used for 

discretization. With this, the number of particles per background grid element is 

approximately eight, which is an appropriate number for such problems (Nairn, 2006). 

Considering the limitations in the available computational capacity, in order to determine 

the behavior of the larger foam structure from a smaller model, simulations need to be 

carried out on a representative volume element (RVE). An RVE study is conducted to 

find an appropriate size, based on the convergence of the initial portion of the foam 

strain-strain response. 
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4.4   Results 

4.4.1   Experiments on compression and in-situ µ-CT imaging of closed-cell PMI foam 

Fig. 4.3 (c) shows the 3D rendering obtained from X-ray µ-CT imaging using a 

Scanco µCT-40. A threshold value of 25 was used for 3D model regeneration. The 3D 

rendering software
2
 had integrated post-analysis capabilities, which gave values of 

porosity, and average values of cell-wall thickness and cell-size. The porosity of the foam 

was found to be ~ 70 %. The average values of cell-size and cell-wall thickness were 0.3 

mm and 0.05 mm, respectively. Synchrotron X-rays were used for the in-situ µ-CT scans 

while the foam was under compression. An initial scan was taken for the undeformed (0 

% strain) foam with a scanning resolution of 2.6 µm/voxel. As the compressive 

experiment progressed, six more scans were made by stopping the moving piston 

(platen). It took 3 hours to complete X-ray scanning of an entire sample at a given strain. 

Simultaneous radiograph images, which could be acquired relatively quickly, gave the 

information of global strain in the sample corresponding to the moving platen position.  

Fig. 4.5 (a) shows a typical stress-strain curve obtained from the compression tests on 

a cube of foam. Similar curves were observed on the cylindrical samples used in the 

synchrotron µ-CT with in-situ compression, which also provided radiography 

capabilities. The stress-strain curve of a typical foam as pointed out earlier, is 

characterized by three regions, initial linear elastic (up to 5.5 % compressive strain), a 

plateau region (between 5.5 % and 53 %), and densification region (greater than 53 %). 

The Young’s modulus of this foam, as measured from the slope of the linear elastic 

region, was 247 MPa.  

 

                                                 
2
 From Scanco, www.scanco.ch 
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Figure 4.5 (a): Experimental stress-strain curve from Rohacell foam in compression 
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Figure 4.5 (b): Energy absorption diagram for Rohacell foam, The skeletal 

Young’s modulus ES = 3.7 GPa. 
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It is seen that this foam has a considerably higher modulus as well as higher yield stress 

(10 MPa), compared to other similar polymer foams. The specific energy absorption 

obtained was 35.2 J/g. Fig. 4.5 (b) shows the normalized energy absorption (W/Es) as a 

function of normalized peak stress (σp/Es). Here, Es = 3.7 GPa, is the skeletal Young’s 

modulus, W is the energy density calculated as area below the stress-strain curve up to a 

strain corresponding to the peak stress, σp. The lower strain limit of the densification 

region is termed as the densification strain (εD = 0.62) and is indicated as shoulder. The 

specific energy absorption up to εD is 25.5 J/g.  

Fig. 4.6 shows the central 2D sections of the 3D X-ray µ-CT corresponding to 

compression of foam carried out in seven steps, each corresponding to an increased strain. 

Many cell-walls, on both the top and bottom bend and buckle during deformation. 

Localized buckling of cell-walls was observed even in the initial elastic regime of foam 

compression. This microstructure deformation pattern can be seen clearly in Figs. 4.6 (a) 

– (c), which shows 2D sections of the deformed foam for strains less than 5.5 %. At a 

point midway through this elastic region, at 2% compressive strain the deformed 

microstructure is shown in Fig. 4.6 (b). This image shows localized bending and buckling 

of cell-walls, as compared to the initial undeformed image [Fig. 4.6 (a)]. Some buckled 

sites are circled in the figure. Further, Fig. 4.6 (c) shows deformation at slightly higher 

strain (ε = 4 %), which corresponds to the end of the linear elastic region, and prior to the 

yield point. At this stage, it is seen that a number of cell-walls have buckled, and these are 

mostly the ones which are parallel or which form small angles with the loading axis 

(vertical in Fig. 4.6). Further, comparing Fig. 4.6 (c) with Figs. 4.6 (a) and (b), it can be 

seen that the shape of the cells has changed. 
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Figure 4.6: Snapshots showing sections along the loading axis from in-situ µ-CT of foam 

at different  compressive strains (a) Undeformed (b) Initial linear elastic region, with 

some localized buckling of cell-walls, at 2% strain (c) Cells change shape at 4% strain, 

before first collapse (d) Immediately after first collapse in the stress-strain curve at 9% 

strain with relatively many buckled cell-walls (e) Visible shear band at strain of 57%, 

approximately corresponding to the end of plateau region (f) Flattening with residual 

cells (strain of 68%) (g) Densified foam structure at compressive strain of 74% 

(c) (d) 

(b) (a) 

Buckled cell-

walls indicated 

using blue circles 

(e) Shear band  

(g) (f) 
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After a strain of 5.5 %, a yield point is observed and it is reflected as a dip in the 

measured stress in the stress-strain curve. During this yielding, the stress decreases from 

10 MPa at 5.5 % strain to 8.5 MPa at 9 % strain. This stress-dip with increase in strain is 

similar to the behavior of brittle metal foams (Gibson and Ashby, 1997). Fig. 4.6 (d) 

shows the µ-CT image immediately after this dip in the stress is observed, corresponding 

to the compressive strain of 9 %. From the µ-CT image, it is seen that the number of 

buckled sites has increased. At this point, the buckled sites were observed not only on 

vertical walls, but even on the some inclined walls which formed an angle as much as 45° 

with the loading axis. Further, in this case, a sufficient number of localized buckling 

(weak) sites existed prior to a strain of 5.5 %, which may have linked together to form a 

weak zone.  

Compression beyond the yield stress initiated a collapse along this weak zone. During 

this process, it was observed that, the cell-walls which formed smaller angles with the 

loading direction showed a tendency to bend, buckle, or even fail; and twist, while the 

cell-walls forming higher angles (close to being perpendicular) with the loading direction 

showed a tendency to stretch and twist or even bend. As a result of stretching, bending, or 

twisting of these cell-walls in the weak zone, neighboring cells (which may have been 

subjected to higher compressive stress) were affected, and as a result, the neighboring 

cells may have started to collapse. The neighboring cells besides the shear strain-

localization zone continued to collapse, and a collapse wave, was observed travelling on 

both sides of the initial weak zone. Fig. 4.6 (e) shows one such instant showing the shear 

band formed due to collapsed cells after a considerable compressive strain of 55 %. In 

this figure, some of the residual cells can be seen on the top-right and bottom-left region 
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across the shear band. Further compression made almost all the cells in the foam collapse. 

Consequently, the foam approached densification as seen in Fig. 4.6 (f), and corresponds 

to a compressive strain of 68 %. Further compression flattens almost all the cells at 74 % 

strain. Further compression of this structure was seen associated mostly with neighboring 

cell-walls pushing against each other, somewhat similar to compressing the parent 

material itself. 

A few points that should be noted are mentioned here. In Fig. 4.6, observations were 

made on a fixed spatial plane. From Fig. 4.6 (d) onwards, as the deformation increases 

some material comes in and goes out of the selected central section. Therefore, some of 

the cells from Figs. 4.6 (a) – (c) may not correspond or show up in Figs. 4.6 (d) – (g). 

Additionally, since the foam compressed under in-situ X-ray imaging was not laterally 

constrained, the overall deformation of the sample turned out to be somewhat similar to 

shear failure without material separation. In this case a tilted band of cell collapsed first, 

and due to this the top-half of the residual (non-collapsed cells) foam shifted with respect 

to the bottom portion of the foam in the transverse direction. As the compressed foam 

widens, in order to maintain the field of view, the optical magnification was halved to 

1.25x and this in-turn doubled the pixel to length scaling factor within the latter three 

tomographs [Figs. 4.6 (e) – (g)].  

 

4.4.2   Simulation of compression in foam using MPM  

4.4.2.1   Representative volume element (RVE) study 

Compression simulations were carried out on closed-cell foam structure discretized 

using cubic material particles. We have considered approximately eight material points 
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per cell belonging to the background grid and has been a suitable number for 3D MPM 

simulations (Nairn, 2006). Sizes of foam microstructure that can be simulated were 

limited by the available computational capacity. In order to reproduce the behavior 

(stress-strain curve) of the entire foam model, in this study, simulations were carried out 

on an RVE of the foam microstructure. Thereby, results such as the stress-strain curve 

and microstructural evolution during deformation for sizes greater than the RVE can be 

predicted by repeating the RVE over the desired volume. 

To find the representative volume from the available 3D µ-CT information [Fig. 4.3 

(d)], increasing the volume of the foam cube was considered. The smaller of these was 

given a side length of 2x. Here ‘x’ represents the average foam cell diameter determined 

form µ-CT (0.3 mm). For purpose of convergence, the linear elastic region of the stress-

strain curve (up to a strain of 5%) was selected for comparison. Stress-strain curves were 

obtained for five different sizes of foam, namely 2x, 3x, 4x, 5x, and 7x, and are plotted in 

Fig. 4.7. In all cases, the platen velocity was kept the same. It was seen that, as the model 

size increased from 2x to 4x, different values of stresses are obtained for a given value on 

the strain axis. However, the difference in stress decreases as the sample size increases to 

7x. For the stress-strain curve obtained at the 7x side length, it took relatively more time 

to establish dynamic equilibrium within the sample, and hence initially some higher stress 

oscillations are seen in the stress-strain curve. The results obtained from foam sizes 5x 

and 7x are comparable. Thus the size of foam with minimum side-length of 7x (2.1 mm) 

gives a true RVE.  
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Figure 4.7: Comparison of stress-strain curves obtained using MPM simulation 

from different sizes of volume elements of the foam 

  

 

4.4.2.2   Results from compression of the foam’s RVE 

The foam used for compression simulations was a cube with 2.1 mm side length. A 

moving top platen was used to compress the foam against the fixed bottom platen. 

Velocity applied to the top platen was 3 m/s. The global stress, calculated from loads 

experienced on both the top (moving) and bottom (fixed displacement) platens were 

archived. In experiments, the parent material in the foam showed elastic-plastic as well as 

viscoelastic material response, along with some material failure. In MPM simulations, a 

von Mises elastic-plastic constitutive material model with isotropic hardening was used 

for the parent (cell-wall) material. Failure criterion based on von Mises stress exceeding a 

pre-defined critical failure stress value was used to model the material failure. It should 

be noted that, in obtaining the numerical stress-strain curve an inverse methodology was 
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used to match the experimental results by varying the failure stress, yield stress, and the 

hardening coefficient for the parent material. Initially, the parent material was assigned a 

linear purely-elastic constitutive model with no material failure. Fig. 4.8 shows the stress-

strain response obtained from the foam with an elastic material model for the parent 

material.  
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Figure 4.8: Stress-strain curve obtained from numerical simulation using purely 

elastic properties for the parent material. The three stages of 

deformation are captured in this simulation 

 

It is seen that the typical features of a foam response were very well reproduced, with an 

initial elastic region, then yielding, followed by a stress plateau with slight hardening, and 

finally the densification region. The initial linear elastic region of the stress-strain curve 

from simulation compares well with the experimental data. The yielding occurs at a stress 

of 10 MPa, which is very close to the experimental value. However, in the stress plateau 
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and densification regions the stress response is considerably higher than experimental 

results. 

In order to allow the stress-strain curve to correlate with experimental results, the 

parent material was then assigned an elastic-plastic material model that allowed material 

failure. Fig. 4.9 (a) shows the nominal stress plotted as a function of strain; the strain is 

calculated from the displacement of the platen divided by the undeformed length of the 

foam. As the foam was compressed, there was initially a nearly linear elastic increase in 

the stress corresponding to the increase in the strain. After a few cycles of wave 

reflections, within a short period, dynamic equilibrium was established. It is seen that the 

stress-strain curve starts to yield at a compressive strain of 5.5 % and after which it 

flattens. The elastic modulus recovered from the slope of the initial linear elastic region 

was 303 MPa.  

Fig. 4.9 (b) shows the comparison of stress-strain curves from the numerical 

simulation with the experimental result. The material properties used for this particular 

simulation were 120 MPa for yield stress, 290 MPa for hardening modulus, and 300 MPa 

for the failure stress. However, with the limited computational capacity, each of such 

simulations took a minimum of 5 days. As a result, the inverse methodology approach to 

find the elastic-plastic material model properties of the parent material, by fitting the 

simulated curve through refining three parameters against the experimental curve remains 

ongoing. Fig. 4.10 shows 3D views of the simulation of foam undergoing compression. 

The material points are colored according to their value of stress (σzz) in MPa. Fig. 4.10 

(a) is the initial undeformed foam structure. The foam undergoes elastic deformation and 

compaction during compression.  
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Figure 4.9 (a): Comparison of stress-strains curves from MPM simulation 

indicating dynamic equilibrium 
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Figure 4.9 (b): Comparison of stress-strain curve obtained from numerical 

simulation using MPM with experimental data 
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Fig. 4.10 (b) shows the deformed microstructure (with collapsed cells), nearly at the end 

of the stress plateau, corresponding to 57 % compressive strain. Finally, Fig. 4.10 (c) 

shows the fully densified foam structure at 75 % compressive strain. 

Figs. 4.11 and 4.12 show 2D sectional snapshots of microstructural deformation 

during compression. The location of sections shown in Fig. 4.11 correspond to a depth of 

67.5% of the thickness of the foam in simulation. The sections in Fig. 4.12 correspond to 

a depth of 42.5% within the model along the X-axis [indicated in Fig. 4.3 (d)]. In both the 

figures, the thickness of the section is 0.1 mm (5% of the total depth along X-axis, 

measured from the Y-Z plane) and Figs. (a) to (g) (of Figs. 4.11 and 4.12) correspond to 

compressive strains of 0, 2, 8, 12, 57, 68, and 75%, respectively. As the top platen starts 

compressing the initial undeformed foam microstructure [Figs. 4.11 (a) and 12 (a)], an 

initial loading (stress) wave travels through the foam wall material and reflects within the 

cells and from the fixed boundaries, back and forth. After some simulation-time, the 

stress waves are superimposed and dynamic equilibrium was established. After which the 

foam experienced almost uniform loading at a constant strain rate.  

During compression, most of the cell-walls forming smaller angles with the loading 

axis act as a load path and carry the majority of the stress. Some of these cell-walls, 

inclined at a relatively higher angle with the loading axis, start bending and show 

tendencies of buckling even at low overall strains levels. At 2% global compressive strain 

corresponding to the initial elastic portion of the stress-strain curve Fig. 4.11 (b) shows 

some of the cell-walls undergoing bending and Fig. 4.12 (b) shows locally buckled cell-

walls.  
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Figure 4.10: Snapshots showing 3D views of foam RVE in compression from 

MPM simulation, and contours indicate stress σzz (MPa) (a) Undeformed 

(b) At 57% compressive strain (c) At 75% compressive strain  

(c) 

(b) 

(a) 
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Figure 4.11: Snapshots showing sections (thickness 5% of the model length and located 

at a depth of 67.5% within the model along the X-axis) along the loading axis 

from MPM simulation of foam RVE in compression (a) Undeformed (b) 

Initial linear elastic region, at 2% compressive strain (c) Cells change shape 

at 8% compressive strain (d) After yielding, at 12% compressive strain (e) At 

compressive strain of 57% (f) Flattening with residual cells (compressive 

strain of 68%) (g) Densified foam structure at compressive strain of 75% 

(c) (d) 

(f) (g) 

(e) 

(b) (a) 

Initial collapse 

region 

Buckled cell-walls 

indicated using 

black circles 
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Figure 4.12: Snapshots showing sections (thickness 5% of the model length and located 

at a depth of 42.5% within the model along the X-axis) along the loading 

axis from MPM simulation of foam RVE in compression (a) Undeformed 

(b) Initial linear elastic region, at 2% compressive strain (c) Cells change 

shape at 8% strain (d) After yielding, at 12% compressive strain (e) At 

compressive strain of 57% (f) Flattening with residual cells (compressive 

strain of 68%) (g) Densified foam structure at compressive strain of 75% 

(c) (d) 

(f) (g) 

(e) 

(b) (a) 

Initial collapse 

region 

Buckled cell-walls 

indicated using 

black circles 
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Further increase in the compressive strain would have increased the stresses in the cell-

walls which carry the majority of the stress, and thus an increasing number of localized 

cell-walls were seen to buckle [Figs. 4.11 (c) and 4.12 (c)]. At a certain stress value, the 

weakest zone formed by aggregates of locally buckled cell-walls was no longer able to 

support the load and it collapsed. 

Figs. 4.11 (d) and 4.12 (d) show snapshots just after yielding was observed in the 

simulated stress-strain curve. The cell-walls corresponding to the collapsing cells were 

seen to bend, extend, and twist thereby weakening the surrounding intact cells. The initial 

collapsed cell-walls forming a weak zone (region) can be observed in Figs. 4.11 (e) and 

4.12 (e), and are indicated between the dotted lines. The cells within these dotted lines are 

relatively highly collapsed, while in the regions above and below this weak region, many 

sites of residual uncollapsed cells can be seen. With further increase in the compressive 

strain, eventually, the entire structure collapses. The residual voids vanish [Figs. 4.11 (f) 

and 4.12 (f)] leading to a densified structure with extensive contact between the cell-walls 

[Figs. 4.11 (g) and 4.12 (g)]. 

 

4.5   Discussion  

From the microstructure deformations observed in Figs. 4.11 and 4.12, it was clear 

that many of the cells walls that initially underwent buckling or bending were inclined 

forming angles as much as 45° with the loading axis. These were a part of the structure 

which carried the majority of the stress. Fig. 4.13 shows 2D sections of foam located at a 

depth of 67.5% and 42.5%, along the X-axis, and the color of the material points 

indicating the value of stress component along the loading axis, σzz. The blue color 



 87

indicates material points with relatively higher compressive stress (< -40 MPa). From 

both the sections, it can be seen that, the areas with higher stress are mainly the cell-walls 

which are either almost vertical or they make angles as much as 45° with the vertical, 

which together act as load paths for the foam undergoing compression. In order to 

determine out the amount of material which actually carried a majority of the load, 

calculations were made for the entire model to determine the number of material points 

having a compressive stress higher than the cut-off stress. This cut-off stress was selected 

based on the average compressive stress in the section, which was approximately -32 

MPa for 8% strain and -18 MPa for 2% global strain, corresponding to deformation in the 

elastic region. The ratio of this number to the total number of material points was 

obtained. It was inferred from these calculations that, at both strains 35% of the material 

(with compression stresses greater than -40 MPa in case of 8% strain and -20 MPa in case 

of 2% global strain during foam simulation) carried nearly 75% of the load in 

compression. It should be noted that, in the simulation of foam in compression, the sides 

of the cube were constrained. Simulations were also conducted on unconstrained foam.  

Fig. 4.14 shows a comparison between the two simulated cases and the experimental 

measurements. It shows that in the case of constrained foam, the stiffness and the yield 

stress are approximately twice that for unconfined case. In the constrained case, the 

confinement pressure (lower than axial compressive stress) will induce compressive 

stress in the lateral direction to resist the buckling of highly inclined cell-walls, compared 

with the unconstrained case. The foam cell-walls are thus able to delay the onset of 

buckling, and hence increase the plateau stress associated with buckling and collapse of 

cell-walls and stiffen the response. 
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Figure 4.13: Snapshots showing stress component σzz (MPa) on the sections 

(thickness 5% of the model length) aligned along the loading axis 

(Z), at 8% compressive strain, and located at a depth of (a) 67.5% 

(b) 42.5% of the entire model length, along the X-axis 

(a) 

(b) 
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The results indicate that the elastic-plastic constitutive model used in this study was 

capable of simulating the features in the stress-strain curve and the microstructure 

evolution. However, the stress-dip in the stress-strain curve after yielding was not 

captured. Future work will involve use of other phenomenological based material 

constitutive models for the parent material (cell-walls). Models such as viscoelastic, 

viscoplastic, or power-law hardening are under consideration including failure criteria, in 

order to obtain simulation results closer to the observed values. The value of Young’s 

modulus obtained using the linear elastic region from simulation was found to be higher 

than the one obtained from experiments. This might be due to the higher strain rate used 

in the simulations which may have induced higher inertial effects, or even due to 

constrained side walls. Secondly, the same background mesh element-length as that of 

material particle size, would have been able to model the cell-walls with sharper 

boundaries at the cost of increased requirement of computational capacity. To save on the 

already lengthy computational time, the mesh element-length used in this study was 

coarse (twice of the particle size), which in-turn might have caused a stiffer material 

response in the collapse and densification regions.  

Simulation of foam in compression is a challenging task. While MPM has 

demonstrated its potential to capture major features of foam compaction (Bardenhagen et 

al., 2005, Brydon et al., 2005), to date, no results have been reported to give excellent 

agreement between simulation and experimental results. In our current work, we have 

conducted compression experiments with in-situ micro-computed tomography to observe 

the microstructural evolution during compression of closed-cell Rohacell foam.  
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Figure 4.14: Comparison of stress-strain curve obtained from numerical 

simulation using MPM between confined and unconfined foam in 

compression 

 

A stress-strain response was also obtained from these experiments. MPM simulations 

were carried out for finding a RVE of Rohacell foam. Microstructural deformations 

obtained from simulations were qualitatively compared with experimentally observed 

deformation in 3D. The simulations were able to reproduce many of the features in the 

stress-strain curve and microstructural deformations observed in experiments. However, 

further work in foam compression is needed to close the gap between simulations and 

experiments.  

 

4.6   Conclusions 

In this work, the material point method (MPM) has been used to simulate the 

compression of foam using the actual microstructure determined from micro-computed 

tomography. The essential features of the stress-strain response have been reproduced by 
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simulating the foam microstructure without the use of any special hyperfoam constitutive 

material model. This method can handle deformations at large compressive strains 

(greater than 75 %) within the densification region.  

A RVE of the foam was found to be seven times the average cell-size. The 

simulations of microstructure evolution, which occurred during deformation, were able to 

capture many features observed in the experiments, such as occurrences of localized 

elastic buckling even in the elastic regime of compression, collapse of cells on a weak 

zone, stretching and bending of cell-walls, and propagation of a compaction wave. 

Further analysis from the simulated deformation history indicated that, within the elastic 

regime of compression, not all the cell-walls take part in carrying the stress and only a 

certain number of walls carry a majority of the compressive load. From our simulations, 

35 % of the material points carried 75 % of the compressive load.  

Additionally, inverse problem solving methodology was employed with an attempt to 

determine the parent material properties by correlating the simulated foam stress-strain 

curve with the experimental curve using a bilinear hardening elastic-plastic constitutive 

material model with von Mises stress-based failure criterion. The predicted elastic 

modulus of 3.7 GPa reproduces satisfactorily the initial linear elastic region of the stress-

strain curve. While simulations were capable of capturing features in foam compression, 

there are still differences between the simulated stress-strain response and the 

experimental results. With additional simulations, the MPM method has the potential to 

determine the optimal material parameters to represent the stress-strain relation and 

microstructure evolution by direct comparison with measurements. Thus it can provide an 
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accurate microstructure-property relationship to guide in foam microstructure design for 

optimal mechanical performance. 
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CHAPTER V 

 

 

MEASUREMENT OF MECHANICAL PROPERTIES OF SAND GRAINS  

USING NANOINDENTATION 

 

5.1   Introduction 

Granular materials, such as sand, are conglomerates of discrete particles held together 

(but not bonded) with significant void space in between. They are unique in that they 

behave in some respects similar to the other familiar forms of matter, namely, solids, 

liquids, and gases and in other respects in a dissimilar form. For example, they pack like 

solids but flow like liquids. Like liquids, they take the shape of the container but unlike 

them they can adapt to a variety of shapes when they are free standing. Similarly, like 

gases, they are made of discrete particles with negligible cohesive forces between them. 

Like solid, they can support load, but unlike solids, they (almost) cannot support a tensile 

force. In view of their unique behavior, some consider granular materials as the fifth state 

of matter, alongside, solids, liquids, gases, and plasma. They cannot strictly be modeled 

as continuum, yet it is done by considering the movement of particles in the void space 

under load akin to the deformation and flow in solids. 

Sand is formed largely by erosion and disintegration of larger rocks into particles by 

natural forces, such as wind, pressure, water, ice, friction, and heat. Over millions of 

years, such processes have led to the formation of sand of various grain sizes ranging 
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from a fraction of a micrometer to several hundred micrometers. Investigation of the 

mechanical behavior of sand from granular (meso scale) to macro (continuum) scale can 

contribute towards a fundamental understanding of the underlying mechanisms of 

deformation, flow, and fracture of granular materials under load and ultimately realize the 

underlying science-base for large scale phenomena, such as the motion of an impacting 

solid with sand, and the size (typically a few mm) of the influential shearing zones in 

tectonic plates in sliding during earthquakes and landslides. 

Mechanical properties of sand grains, such as the Young’s modulus, hardness, 

fracture toughness, and stress-strain relations are of particular importance since their 

individual behavior dictates the overall behavior of the sand at macroscale.  Moreover, 

the mechanical properties of the grains can vary with the mineral composition of sand, 

size, defect structure, and crystal orientation. The effect of grain size is due to the fact that 

larger grains would contain higher number of defects in the form of voids and ridges as 

well as cracks which may yield mechanical properties different than the smaller grain 

sizes and hence cannot be directly used to imply the behavior of finer sand grains. As far 

as larger (on the order of a centimeter or more) sand particles (rocks) are concerned, 

measurement of their properties using tensile/compression testing machine can be carried 

out to determine their mechanical properties. However, small sand grains can hardly be 

tested in compression or pulled in tension for measurements of mechanical properties due 

to difficulties involved in holding the specimen or in the preparation of the sample.  

For the past two decades, nanoindentation has been used for measurement of 

mechanical properties of different types of materials (e.g. elastic, viscoelastic). The 

instrumented nanoindenter is widely accepted as a standardized testing method for 
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characterization of properties for elastic-plastic materials. The resolution in such a testing 

can reach a fraction of nanometer in displacement and µN in load. The added advantage 

of such testing is that in some cases, wherein the materials exhibit length scale dependent 

properties, it becomes possible to characterize such materials and extract the moduli and 

hardness at different depths of indentation and the material properties extracted will be a 

function of the maximum indentation depth reached or the deformation zone beneath the 

indenter tip. Such easiness in characterization of length-scale dependent material 

properties can be very challenging and tedious using conventional tensile testing 

procedures. Thus, extracting the material properties by indenting at depths less than 100 

nm would essentially give mechanical properties at nanoscale. As a result, 

nanoindentation technique is widely used to extract mechanical properties of very small 

volume of materials, such as thin films, wires and coatings, MEMS, and NEMS 

components.  

In this investigation, we used the nanoindentation technique to determine the 

nanoindentation force-displacement relation and extracted the mechanical properties, 

such as Young’s modulus, hardness, fracture toughness, and stress-strain relationship of 

sand granules at microscale. We have conducted nanoindentations on several grains to 

assess the variance in the mechanical properties. Furthermore, by adopting an inverse 

methodology approach, i.e., by using the experimental load-depth information in 

combination with Finite Element (FE) numerical simulations, we predicted the stress-

strain response of the sand grains. By using cube-corner indenter tip to induce cracks in 

the sand grain, we characterized the failure behavior of the sand particles. 
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5.2   Background 

The mechanics of granular materials, such as sand, or particulate materials, has been 

an area of increasing interest in the past decade or so, due mainly to the challenges it 

poses in addressing this problem as well as the opportunities provided by the emerging 

technological instruments as well as the rapidly increasing computing power available 

that facilitates in addressing this difficult problem. However, this area still remains to be 

relatively insufficiently understood.  

Considerable work had been reported in the literature on the mechanical behavior of 

sand. Poorooshasb et al., (1966) and Lade and Duncan (1973) conducted triaxial 

compression tests on sand to determine the nature of deformation and attempted to 

describe it using a constitutive law. Triaxial compression tests were also carried out by 

others to investigate anisotropy (Arthur and Menzies, 1972), softening and preshearing 

effects (Lade and Prabucki, 1995), and shear band formation (Wang and Lade, 2001). 

Additionally, simple shear tests were conducted (Haythornthwaite, 1997) to determine 

shear locus of sand. However, for small systems of grain size scales, the stress is claimed 

to propagate in a manner described by wave-like (hyperbolic) equations (Goldenberg and 

Goldhirsch, 2005, Geng et al., 2001, Oda et al., 1980) rather than the elliptic equations of 

static elasticity. For small-scale systems, the localization of deformation (Desrues et al., 

1985), such as the formation of force-chains is more pronounced and deformation 

mechanisms at meso/micro scales need to be considered (Oda and Konishi, 1974). 

Most of the literature on characterization of mechanical properties of sand or rocks 

has focused on either compressive behavior of sand as bulk or macroscale properties of 

rocks by pulling them in a tensile testing machine. For geomechanics applications and 
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simulations, it is necessary to know the mechanical properties of individual grains. There 

have been many efforts on characterizing mechanical behavior, including, failure 

behavior of rocks. For example, Liao et al. (1996) conducted direct tensile tests on 

transversely isotropic cylindrical argillite specimens and reported the stress-strain 

relationships. They determined the material properties and found significant variations 

depending on the amount and orientation of the micro-fissures. However, the data for 

larger rocks cannot be extended directly for individual sand grains mainly due to the 

difference in the length scales. The mechanisms of deformation and fracture in individual 

sand grains can be different from their larger counterparts. Ulm and Abousleiman (2006) 

conducted nanoindentation measurements on shales, a type of sedimentary rock, and 

concluded that shales are nanogranular composite materials with their mechanical 

properties dictated by particle-to-particle contact and packing density.  

Nanoindentation provides an effective technique to measure the local material 

response in terms of hardness and Young’s modulus at micro- and nano- length scales 

(for e.g. see Refs. Pethica et al., 1983; Oliver et al., 1986; Li and Bhushan, 2002; Pethica 

and Oliver, 1987). Methods for measuring the elastic-plastic properties, such as dynamic 

Young’s modulus and hardness have been well established (Doerner and Nix, 1986, 

Oliver and Pharr, 1992). The wide acceptance of nanoindentation technique stems from 

the improvements in the technique incorporated by Oliver and Pharr (1992). They 

eliminated the need for knowing the residual indentation impressions. Instead, they used 

the unloading curve to extract the elastic properties of an elastic-plastic material, namely, 

elastic modulus and hardness. This method is very well established and has been 

implemented in commercial instrumented nanoindenters for use on elastic-plastic 
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materials. Inverse methodologies using numerical techniques in combination with 

experimental results have been developed effectively to predict the material properties 

and even the stress-strain relationships (Liu et al., 2005). In addition to the measurement 

of elastic modulus and hardness, nanoindentation can also be used to determine the 

fracture toughness of brittle materials (Pharr et al., 1993). This procedure was found to be 

adequate for estimating the fracture toughness in homogeneous materials.  

In this investigation, we have carried out nanoindentation tests using a Berkovich 

indenter tip on several (~ 250) different sand grains of ~ 1 mm size and recorded the 

load-displacement data. Young’s modulus and hardness were obtained directly from the 

MTS Testworks software output based on analysis of unloading segment using the 

method developed by Oliver and Pharr (1992). A representative stress-strain curve was 

obtained, corresponding to the average modulus obtained, for solving an inverse problem 

to determine the stress-strain curve using FEM. Nanoindents were also made using a 

cube-corner indenter tip to generate cracks for estimation of fracture toughness. In all the 

cases the indent impressions were obtained using Nanovision (MTS) setup. The lengths 

of the cracks developed were used to predict the range of fracture toughness values for 

the sand grains. Statistical analysis was conducted to determine the variability in the 

mechanical properties of sand grains. 

 

5.3   Nanoindentation tests on sand grains 

A sample of sand, collected locally, was washed and subsequently dried in an oven at 

~ 55 ºC. It was sieved to collect sand grains of ~ 1 mm size. The sand grains were 

embedded in an epoxy matrix and mounted in a sample holder. The samples were cured 
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in an oven resulting in a composite of sand grains in a hardened epoxy matrix. Fig. 5.1 (a) 

shows sand grains embedded in an epoxy matrix exhibiting different colors due to 

differences in density, crystal orientation, defect structure, and mineral content. No 

particular analysis was carried out to determine the type of sand within this sample size, 

as the main objective of this investigation is to determine the mechanical properties of 

individual grains by nanoindentation. The samples were wet polished using an alumina 

abrasive powder (from Buehler Inc.) in a water slurry. To obtain a smooth surface 

suitable for nanoindentation, the maximum abrasive size used in the final polishing was 

50 nm. Fig. 5.1 (b) shows a polished sand surface with different grains oriented in 

different directions. Small pits and ridges observed are attributed to the presence of 

defects within the sand grains. 

An MTS Nano Indenter XP system was used for the nanoindentation measurements. 

This indenter can reach a maximum indentation depth of 500 µm and a maximum load of 

500 mN. The displacement and load resolutions are 0.2 nm and 50 nN, respectively. Both 

Berkovich and cube-corner indenter tips, made of single crystal diamond, were used in 

this investigation.  Nanoindentations were made on flat, polished sand grain surfaces 

under constant rate of loading. The applied load on the indenter tip was increased until it 

reached a user-defined value. At this point, the load may be held constant for a period or 

removed. Since, we do not extract any information from the hold segment of the cycle, 

the holding time in our experiments is zero. The load-displacement curves obtained thus 

would be characteristic for that particular sand grain. Analysis can be carried out on the 

load-displacement output to determine the mechanical properties of the sand grains. This 

is achieved, based on contact mechanics of nanoindentation.  
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Figure 5.1 (a): Embedded sand grain samples in an epoxy matrix 

 

 

 

Figure 5.1 (b): Magnified image of polished sand grains in an epoxy matrix 

1mm 
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Hardness (H) is obtained using, 

c
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P
H =

  
(5.1) 

where Pmax is the maximum indentation force and Ac is the contact area corresponding to 

the contact depth (hc) at maximum load, and is calculated based on the tip area function. 

The modulus of the specimen (E) is obtained using (Oliver and Pharr, 1992), 
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where Es and sν are the Young’s modulus and Poisson’s ratio of the specimen, 

respectively, while Ei and iν  are the Young’s modulus and Poisson’s ratio of the 

indenter tip (made up of diamond), respectively. Due to finite stiffness of the indenter tip, 

its modulus has to be considered in the expression for the calculation of specimen 

modulus from the contact stiffness. The contact stiffness, S, is provided by the slope of 

the initial unloading curve. Thus,  
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Eqns. (5.2) and (5.3) along with the known values of the area function, slope of the 

unloading curve, and modulus and Poisson’s ratio values for the indenter tip can be used 

to determine the elastic modulus for a specimen corresponding to its Poisson’s ratio. 

 

5.4   Results and Discussion 

5.4.1   Young’s modulus and hardness of sand grains 

For measurement of modulus and hardness, a force was applied by the nanoindenter 

using a Berkovich tip on the sand grain. Fig. 5.2 (a) shows an inverted image (3D) and a 
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typical nanoindentation residual impression obtained using Nanovision, a part of the 

MTS Nanoindenter system. The inverted image enables the determination of the depth of 

the indent more accurately and delineates its topographical features. Fig. 5.2 (b) shows a 

typical nanoindentation load-displacement curve. Nanoindentations were carried out 

under load-control, in which the indenter-tip was pressed onto the sample and the load on 

it was increased (linearly). The initial part of the load displacement curve, characterized 

by an increase in the load from zero to maximum load is termed, the loading segment. 

Once the user-defined maximum load was reached, the load was removed, again in a 

controlled manner (linearly) and is termed, the unloading segment. Fig. 5.3 shows 

residual indent impressions from a Berkovich tip for maximum loads varying from 100 

mN to 400 mN. These indents were carried out at different locations on the sand grain. It 

can be seen, in general, as the maximum load increases, the corresponding indent sizes 

increases. It can also be seen that no cracks were formed when indented with a Berkovich 

indenter-tip. Hence, the continuum approximation can be applied and Eqns. (5.1) to (5.3) 

can be used to determine the modulus and hardness of the samples.  

In order to determine the variability in properties over a single sand grain (size ~ 0.7 

mm), nanoindentations were carried out for a sand grain having the same maximum load. 

Figs. 5.4 (a) and 5.5 (a) show histograms of the distribution of Young’s modulus and 

hardness, respectively, for a single sand grain. Figs. 5.4 (b) and 5.5 (b) show Weibull 

plots for the data obtained on Young’s modulus and hardness, respectively. The median 

value (corresponding to P50 probability) for Young’s modulus and hardness are 66.9 GPa 

and 10.74 GPa, respectively.  
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(a) 3D inverse image and 2D residual indent impression from nanoindentation. 
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(b) Load-displacement relationship 

Figure 5.2: Typical results from nanoindentation test on sand grain using Berkovich tip 
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(a) 100 mN                                         (b) 150 mN 

              

(c) 200 mN                                            (d) 300 mN 

         

(e) 350 mN                                             (f) 400 mN 

 

Figure 5.3: Residual indent impressions from Berkovich tip for maximum loads from 

100 to 400 mN 

 

 

 



 105

 

Figure 5.4 (a): Distribution of Young’s Modulus for nanoindentations on a single 

sand grain 

 

 

 

Figure 5.4 (b): Weibull plot for the Young’s modulus for nanoindentations on a 

single sand grain 
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Figure 5.5 (a): Distribution of hardness for nanoindentations on a single sand grain 

 

 

Figure 5.5 (b): Weibull plot for hardness for nanoindentations on a single sand grain 
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The variations in the measured modulus and hardness at different locations, in Figs. 5.4 

and 5.5 are attributed to the anisotropy and heterogeneity in the sand grain. 

Once an estimate was obtained for a single grain (of representative size ~ 0.7 mm), 

nanoindentations were carried out on 250 different grains with two tests per grain. The 

results from the two tests were averaged and taken as the mean value for that grain. 

Young’s modulus and hardness were obtained using the slope of the unloading curve and 

the values of load and contact area at maximum indentation depth. These were a direct 

output from the nanoindentation software. The distributions of modulus and hardness 

values are plotted in Figs. 5.6 and 5.7, respectively. Using Weibull distribution function, 

we determined the median value (corresponding to P50 value) for Young’s modulus of 

the sand to be 90.1 GPa (range 41.4 to 115.8 GPa) and hardness to be 10.7 GPa (range 

5.4 to 13.7 GPa). Scatter in the data is attributed to different types of sand grains due 

primarily to variations in the material constituents, defect structure, and crystal 

orientations. 

 

5.4.2   Stress-strain response of sand grains 

The solution for the indentation problem has been well established (Prandtl, 1920; Hill et 

al., 1947; Ishlinskii, 1944; Shield, 1955; Tabor, 1970; Johnson, 1970). Inverse 

methodologies, which use experimentation in combination with numerical techniques to 

aid in characterizing the material properties are used in situations where it is difficult to 

extract the properties using analytical solutions alone due to non-linearities or complexity 

in material, geometry and loading conditions. In such cases, it is easier to simulate the 

equivalent model using a numerical method, such as Finite Element Method (FEM). 
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Figure 5.6 (a): Distribution of Young’s Modulus for nanoindentations on different 

sand grains 

 

 

Figure 5.6 (b): Weibull plot for the Young’s modulus from nanoindentations on 

different sand grains 
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Figure 5.7 (a): Distribution of hardness for nanoindentations on different sand grains 

 

 

Figure 5.7 (b): Weibull plot for the hardness from nanoindentations on different 

sand grains 
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Initially, we can start with certain assumed values of material parameters for e.g. 

plastic flow. The values are adjusted so that numerical results obtained can be 

comparable with the experimentally obtained values, for e.g. by comparing the load-

displacement curves, in the case of nanoindentation. It may be noted that FEM has been 

applied successfully in the simulation of nanoindentation problem (Bhattacharya and Nix, 

1988, 1991; Wang and Bangert, 1993; Sun et al., 1995; Lichinchi et al., 1998; Fivel et 

al., 1998; Knapp et al., 1998). 

For determining the stress-strain relationship for granular sand, nanoindentation was 

modeled using FEM. To predict the elastic-plastic properties, von Mises yield criteria 

was used along with isotropic hardening to simulate the deformation characteristics of a 

sand grain. The plastic behavior under compression was approximated by a power law as  

n
Rεσ = ,   for yσσ ≥            (5.4) 

where n is the strain hardening exponent, R is the strength coefficient, and ε  is the 

equivalent strain, ( )
pyijij εεεεε +== , where yε  is the yield strain and pε  is the plastic 

strain. The von Mises equivalent stress is given as, ijijσσσ
2

3
= .  

Within the elasticity limits, 

Eεσ = , for yσσ ≤                        (5.5) 

where E is the Young’s modulus.  

From (4) and (5), we get 
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ABAQUS standard was used to perform the calculations, assuming finite deformation 

characteristics. The von Mises yield criteria can be written as  

( ) ( ) ( ) 22

13

2

32

2

21 2 yσσσσσσσ =−+−+−                                                              (5.7) 

where, 1σ , 2σ , and 3σ  are the principal stresses and yσ is the yield strength measured in 

uniaxial tension test. 

 

Figure 5.8: Axisymmetric Finite Element Analysis model for nanoindentation 

 

The configuration for the FEM simulation of nanoindentation is shown in Fig. 5.8. 

The Berkovich indenter was approximated to an equivalent conical indenter with a half-

cone angle of 70.3º. This value was obtained by equating the Berkovich tip cross-

sectional area as a function of depth equals to that of a conical indenter (Fischer-Cripps, 

2002). The displacement history from the experiment was given as input for the Finite 

Element (FE) analysis. Poisson’s ratio was taken as 0.17. The output of the FE analysis 

was the resulting reaction force or load. This numerical load was plotted versus the 

displacement into the surface, to give load-displacement curve from the simulation. The 

mesh size selected was tested for convergence of the load-displacement curve.  
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Figure 5.9 (a): Comparison of load-displacement curves from nanoindentation and 

FE simulation 

 

 

Figure 5.9 (b): Stress-strain curve (in compression) from FE simulation 

 

The numerical values of the load-displacement curve were compared with the 

experimental and the measure of fit was carried out by minimizing the least squares 

correlation coefficient. In order to obtain a better fit, the initial assumed values were so 

adjusted as to minimize the least squares correlation coefficient. Thus, the material 
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parameters were adjusted until good agreement was reached between experimental and 

numerical data. The best-fit parameters were then used to determine the stress-strain 

relationship for the sand grain sample.   

It should be noted, the maximum strain up to which the stress-strain curve is valid, 

using this approach, is limited by the strain produced by the nanoindentation test [see 

Ref. Dao et al., 2001)]. No cracks were observed by examining the indent impressions 

(for Berkovich indenter tip) obtained from Nanovision. Thus, the continuum plasticity 

material model was justified. As stated earlier, we used an inverse problem solving 

approach to determine the stress-strain relationship of sand at granular level by 

correlating the FEM simulated nanoindentation load-displacement data with the 

measured results. Fig. 5.9 (a) shows the fitting obtained using the FEM simulation 

(obtained using ABAQUS-Standard) to the representative experimental data. The 

predicted stress-strain response [Fig. 5.9 (b)] is represented in the form of power-law 

model and the parameters obtained were n = 0.5 and yσ  = 6.1 GPa. 

 

5.4.3   Fracture toughness of sand grains 

When a brittle material is loaded by a sharp indenter with sufficient load, radial 

cracks propagate out of the indenter corners. In such a case, the fracture toughness can be 

estimated by measuring the length of the radial cracks produced at a given indentation 

load. In order to understand the failure behavior of the sand grains, a cube corner indenter 

was used to indent into a polished sand grain to initiate cracks at the corners of three 

edges of the tip.  



 114

It is well known that sand grains would generally behave in a brittle material under 

load. In order to estimate the fracture toughness, a formula derived by Pharr et al. (1993) 

was used, 
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where α is an empirical constant which takes into account, the geometry of the indenter 

tip (for a cube-corner tip α = 0.032). Before proceeding with the nanoindentation on sand 

grains, a sample test was run on a standard fused silica sample. The average value for 

fracture toughness obtained was 0.6 MPa-m
0.5

 which is in reasonable agreement with the 

value of 0.5 MPa-m
0.5

 reported for fused silica by Harding (1995).  

 For sand, the values of the elastic modulus (E) and hardness (H) were obtained 

using the Berkovich nanoindenter tip prior to indenting with a cube-corner tip (see Sec. 

4.1). Since we are interested in the ratio of E/H from the nanoindentation tests, we 

obtained an average value for the ratio as 8.5. In Eqn. (5.8), c is the crack length and can 

be determined from the surface scans obtained (two of the scans along with inverse 

images) are shown in Figs. 5.10 (a) and (b). Both 3D inverse images and 2D 

nanoindentation residual images are shown for details on the crack formation and 

fracture. It may be noted that due to slight errors in the alignment and inhomogeniety of 

the sand grain, it is rather difficult to get all the three cracks to be of equal length. When 

there are differences between the crack lengths from the same indent, we have taken the 

average crack length for a particular indent. The histogram of the fracture toughness 

values obtained is shown in Fig. 5.11 (a) and the Weibull distribution in Fig. 5.11 (b). 

From the Weibull distribution, median value for the fracture toughness observed was 1.77 

MPa-m
0.5

 (range 0.8 to 3.6 MPa-m
0.5

). 
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(a) At maximum load of 80 mN  

  

(b) At maximum load of 70 mN 

 

Figure 5.10: 3D inverse image and 2D residual surface profile showing cracks 

generated after nanoindentation using a cube corner tip 
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Figure 5.11 (a): Distribution of fracture toughness for nanoindentations on 

different sand grains 

 

 

Figure 5.11 (b): Weibull plot for fracture toughness from nanoindentations on 

different sand grains 

 



 117

 

 

 

  

    

 

 

Figure 5.12: Surface profile showing cracks generated under different loads using 

nanoindentation (cube corner tip), at different locations on a sand grain 
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Figure 5.13: Inverse image of nanoindentation on a sand grain at 5 mN load using 

a cube corner nanoindenter tip. 

 

Indentations were also made on a sand grain with different maximum loads. Fig. 5.12 

shows the cracks generated after indentation under different maximum loads at different 

locations on a same sand grain. Theoretically, for an isotropic homogeneous brittle 

material, one can expect consistent increase in the crack length as the maximum load 

increases as well as formation of straight cracks. However, the cracks observed on sand 

grains were not exactly straight. This is attributed to the inhomogeneity even within a 

single sand grain, such as presence of defects and different crystal orientations. 

Additionally, not all the sand grains exhibit the same tendency for producing cracks. 

Fig. 5.13 shows a 3D inverse image of nanoindentation on a sand grain using a 

nanoindenter with a cube corner at 5 mN load. No cracks can be seen and indentation 

clearly shows the flow lines from the surface down to the bottom of indentation 

indicating ductile flow in a nominally brittle material. This may be the minimal load 

below which the sand grains behave in a ductile manner with a possible size-effect 

implications. Further studies are needed to confirm this hypothesis. 
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5.5   Conclusions 

In order to assess the granular level mechanical behavior of sand, nanoindentation 

tests were conducted on individual sand grains to characterize their mechanical 

properties, namely, Young’s elastic modulus, hardness, fracture toughness, and stress-

strain relationship. As can be expected, a wide variation in the granular properties of sand 

was observed. Representative Young’s modulus for the sand grains was found to be 90.1 

GPa (range 41.4 to 115.8 GPa), hardness to be 10.7 GPa (range 5.4 to 13.7 GPa), and 

fracture toughness to be 1.77 MPa-m
0.5

 (range 0.8 to 3.6 MPa-m
0.5

). Power-law was used 

to represent the homogenized and isotropic stress-strain behavior for sand at the granular 

level. However, the variation in the property value indicates that sand at granular level is 

very inhomogeneous and not isotropic due to different material constituents, defect 

structure, and crystal orientations. Need exists to establish the link between 

nanoindentation measured properties of sand grains with the observed macro properties 

for correct prediction of bulk behavior of sand. The data reported here can be used for 

meso scale (granular) simulations of sand in which the individual sand grains would have 

different properties with the distributions obtained in this study. 
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CHAPTER VI 

 

 

CONTACT ALGORITHM IN MATERIAL POINT METHOD FOR SIMULATION OF 

GRANULAR MATERIALS  

 

6.1   Introduction 

The mechanics of granular materials, such as sand, or particulate mechanics, has been 

an area of increasing interest in the past ten years, due mainly to the challenges it poses in 

addressing various problem as well as the emerging technologies, such as µ-CT, X-ray 

radiography, and laminography and rapidly increasing computing power available that 

facilitates in addressing the mechanical behavior of granular matter. However, this area 

remains to be relatively insufficiently understood. 

Investigation of the mechanical behavior of sand from micro- (meso scale) to macro 

(granular level) can enable us to contribute towards a fundamental understanding of the 

underlying mechanisms of deformation, flow, and fracture of granular materials under 

load and ultimately realize the science behind large scale phenomena, such as the motion 

of an impacting solid with sand, and the size (typically a few mm) of the influential 

shearing zones in tectonic plates in sliding during earthquakes and landslides. To 

investigate the trajectory of an impacting solid with sand, it is essential to understand the 

mechanical behavior of sand under pressure and deviatoric stresses. Due to the loosely 

connected nature, sand cannot sustain any tensile load and has relatively low shear 
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strength compared to compressive strength. This feature, in combination with the 

irregular shape of individual sand grains, allows an impacting object to sometimes 

deviate from initial impacting trajectory. Understanding and characterizing such 

asymmetric mechanical behavior of sand requires consideration of sand from granular 

scale to conglomerate of sand (micrometer scale for finer granules) and up to continuum 

and even at geological scales. This requires extensive experimental and numerical 

simulation work to determine the mechanical behavior of sand. 

 

6.2 Background 

Simulations of granular materials has been a challenging problem in different 

disciplines. Material point method (MPM) has been used to simulate the behavior of 

granular materials under different loading conditions. Bardenhagen et al. (2000) applied 

MPM to investigate the stress distribution in sheared granular material using simulations 

at meso scale. A contact algorithm was used to define the interaction between grains and 

model friction between them. Wieckowski (2004) used MPM for granular flow in a silo 

while filling and discharging, using elastic-viscoplastic constitutive material model with 

the Drucker-Prager yield criteria and non-associative flow rule. Due to the advantage of 

combined Eulerian and Lagrangian schemes, MPM was found suitable for many 

engineering problems, including penetration, impact, and large rotations of solid bodies 

which otherwise would cause severe numerical problems in purely Lagrangian methods, 

and thus a suitable candidate for simulation of sand at meso scale. 

In this part of the current investigation, a contact algorithm is implemented in MPM 

to enable it to handle slip and friction between bodies in contact. Verification of the 
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implementation is carried out using simulations of a rolling sphere over an inclined plane. 

A new methodology is used to update the normals required for contact algorithm in 

MPM, which uses gradients of displacements. In MPM, during the process of discretizing 

geometries, especially the ones involving curved surfaces (for e.g. sphere), the resulting 

discretized surface loses information (original surface geometry), depending on the size 

of the background mesh used. In this investigation, the method used of calculating 

normals in the deformed and undeformed configurations considers the original geometry 

of the bodies. Velocity gradients are used to update the normals, which confirms with the 

deformation of the geometric surface. No complicated neighbor search algorithms or 

surface fittings are required for successive MPM steps, and it thus saves computational 

time as compared with other algorithms reported in the literature.  

 

6.3 Methodology of contact algorithm at granular level: 

During motion, sand cannot sustain tensile stresses. Furthermore, sand grains cannot 

penetrate into each other, but are allowed to separate. In the simulation of discrete 

particulate matter, we have used the contact algorithm developed for MPM by 

Bardenhagen, et al. (2000, 2001). The grains would be first discretized into a collection 

of material points in a single valued velocity field for calculation using MPM 

computation as described in Chapter II. Through this computation the velocity field will 

be determined and is designated as center-of-mass field vi at node i. The velocity of each 

material point on the grain is given as g

iv  with g ranging from one to the total number of 

grains, Ng, and i = 1, …, Nn indicate the number of nodes. Only those nodes in the 

neighborhood of the grain will have meaningful velocity and the grain velocity at other 
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nodes will be zero. Let g

in  be the unit outward normal vector at grid points along the 

grain boundary. When one grain approaches the other, the two velocity fields g

iv  and the 

center-of-mass field iv  will be different. Consequently, the contact can be defined when 

the two velocities differ, given by the condition (Bardenhagen et al. 2000) 

( ) 0>⋅− g

ii

g

i nvv ,             (6.1) 

which indicates that the grain velocity is overtaking the center-of-mass velocity along the 

normal to the surface. Once this condition is satisfied, the grain velocity is adjusted to a 

new value g

iv , so that  

g

ii

g

i

g

i nvnv ⋅=⋅              (6.2) 

holds. That is, the normal component of the grain velocity is set equal to the normal 

component of the center-of-mass velocity. Since the center-of-mass velocity does not 

allow interpenetration of the grains in MPM simulation, this choice of contact is natural. 

The constraint in velocity at the interface can be converted to normal force that will be 

applied to the grain for computation to proceed to the next computational step. A normal 

force magnitude equivalent to the Eqn. (6.2), which can be applied to the grain is given as 

( )[ ] tmf
g

ii

g

i

g

i

g

i,n ∆⋅−−= nvv .           (6.3) 

Here, g

im is the nodal mass corresponding to the particles making up the grain g, and t∆  

is the simulation time-step. In the case of frictionless slip, no tangential contact force is 

induced. Therefore, the net contact force at the node is given by 

g

i

g

i,n

cont

i,g f nf = ,             (6.4) 

and can be applied for each grain in contact at the node to form a net force vector as 

cont

i,g

coh

ii

b

i

int

ii fffffp ++++= τ& .           (6.5) 
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In the presence of friction, the frictional slip is accomplished by adjusting the 

tangential component of grain velocity. In this work, we have assumed Coulomb friction 

in which the frictional force equals the product of coefficient of friction (µ) and the 

normal force at contact. This frictional force acts in the direction opposing the relative 

motion between the surfaces of the bodies in contact. The sticking force obtained from 

common mesh velocity field is given by 

( )[ ] tm
g

ii

g

i

g

i

g

i

g

i,stick ∆×−×−= nvvnf           (6.6) 

However, in the case of slip, the tangential force considering friction is given by 

( )[ ]( ) tˆµm
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Generalizing Eqns. (6.6) and (6.7), we get 
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where ='µ minimum
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and the unit vector 
( )
( ) g
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So, the net contact force at the node is given by 

g

i,fric

g

i

g

i,n

cont

i,g f fnf += ,          (6.11) 

and is applied for each grain through equation (6.5). 

The computational cost for this contact algorithm was found to be linear with the 

number of grains in the simulation and requires no iteration. This contact algorithm has 

been applied to simulation of cylindrical sand grains of uniform as well as non-uniform 

size in 2D case (Bardenhagen and Brackbill, 2001), for irregular sand grains in contact 
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(Sulsky, 2003), and was found to be effective in capturing features such as force chains in 

mono- or polydispersed grains of sand (Bardenhagen et al. 2000, 2001). 

 

6.4 Method for determining normals to the surface for contact algorithm implementation: 

The normals to the surface at any point on the surface can be determined by taking 

the spatial gradient of the known surface geometry at that point. For irregular and 

unknown surface geometries, the normals to the contact surface can be determined by 

taking the gradient of the equation for the surface determined by fitting a cubic b-spline 

to the surface material points. In this work we have focused upon simple geometries. For 

example, consider the determination of normals for the surface material points of a solid 

sphere. The equation of a solid sphere is given by  

( ) ( ) ( ) 22

0

2

0

2

0 Rzzyyxx ≤−+−+− ,                 (6.12a) 

and let the surface ( ) ( ) ( ) ( ) 22

0

2

0

2

0 Rzzyyxxz,y,xS =−+−+−= .             (6.12b) 

where (x0, y0, z0) are the co-ordinates of the geometric center. 

When the spherical geometry is discretized, the material points near the surface will 

not form a smooth surface. In this case, we have adopted using a cut-off radius (smaller 

than the geometric radius) to determine the surface material points. As such, the surface 

material points determined in this way do not necessarily lie on the geometric surface 

defined by equation (6.12b). For such material points, a new surface S’ is defined with 

radius equal to the radial distance of this surface material point to the geometric center. 
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2
zzyyxx'R ppp −+−+−= .     (6.13b) 
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and (xp, yp, zp) are the co-ordinates of the material point for which the normal vector 

needs to be found. 

The normal vector (n) to the surface at any surface point is then given by evaluating 

the gradient of surface S’ at that material point location. Additionally, the tangents to the 

surface (S’) are determined at that point (corresponding to the surface material point). 

Numerous ways exist to determine tangents. One of which is to determine the equation 

for the tangent plane and extracting a vector (t1) which would be tangent to the surface. A 

second tangent (t2) can then be found using cross-product of unitized vectors 1t̂  and n̂ . 

Thus we have defined two tangents at the surface material point, which will be tracked as 

the material points convect over the background grid during MPM simulation. Thus, with 

known velocity gradients the tangents can be updated during successive simulation steps 

as 

( ) tuδt ˆˆ new
∇+= ,                     (6.14) 

where u∇  are the displacement gradients for that simulation step, δ  is the Kronecker 

delta function, new

jt̂  is the updated tangent vector for the next time-step. 

Further, the updated normal for the deformed/updated configuration of material 

points can then be computed using the cross-product of updated tangent vectors. The 

normals calculated at the material points in this manner can be used for the next timestep 

by projecting them on to the nodes of the background grid with the help of shape 

functions.  
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6.5 Numerical simulation results: Verification using simulation of a sphere rolling on an 

inclined plane 

The contact algorithm presented in Section 6.3 and the procedure proposed to 

determine normals presented in Section 6.4 was implemented in 3D MPM for two 

geometries considered here, namely, a sphere and a cuboid. For verification of the 

implementation, a 3D rolling simulation is considered. 

 

 

 

Figure 6.1: Schematic showing rolling of a sphere on an inclined plane. 

 

Figure 6.1 shows a schematic for simulation of sphere rolling on an inclined which is 

at an angle θ with the horizontal. An acceleration a is acting on the sphere which acts as a 

body force on the material points resulting from discretization of the geometry. For 

modeling this example, the boundary of the computational mesh is aligned with the 

inclined plane. The 3D contact algorithm in this work considers friction between the 

interacting surfaces of the sphere and the plane. 

Theoretical solution for a rigid sphere rolling on a rigid plane is used for verification 

of simulation results. Depending on the value of the coefficient of friction and the angle 
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of inclination for the plane, the sphere will either purely roll on the surface or it will slip. 

For a rigid sphere rolling on a rigid surface, the center-of-mass position as a function of 

time is given as 

( )
( )








µ≥θθµ−θ++
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(slip)3for
2

1

rolling)(pure3for
2

1

2

0

2

0

tan,cossinatwtz

tan,sinatwtz
tzcm    (6.15) 

where w is the initial velocity along z-axis at time, t = 0 s, and z0 is the initial z-

component of the center-of-mass position. 

A sphere of diameter 10 mm is used in the simulation of rolling, and an acceleration 

of magnitude a = 9800 m/s. It should be noted that acceleration used are on the higher 

side, so that the total computational time required for the entire simulation is short, in this 

case ~ 20 minutes. The background grid uses 8-node cubic elements with length of their 

sides as 0.5 mm, and one material point is used to represent the volume in each cell. 

Figure 6.2 shows the discretized model used in the simulations. In order to allow for large 

time-steps using an explicit code, material properties chosen are for a soft material. Both 

the sphere and the plane are modeled using material model for hypoelastic bodies. It is 

assumed that the sphere has bulk modulus of 6 MPa, a shear modulus of 3 MPa, and a 

density of 1000 kg/m
3
 (roughly approximating to those of natural rubber) (Bardenhagen 

et al., 2004). The body force is applied on the material points as 

af ρ=b .           (6.16) 
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Figure 6.2: Discretized MPM model of rolling simulation. 

 

A parametric study is carried out with respect to varying the inclination of the plane 

and changing the coefficient of friction. For the first part of study, the coefficient of 

friction is held constant of µ = 3, and the angle of inclination used are π/6, π/4, and π/3 

radians. Fig. 6.3 shows the variation of normalized center-of-mass positions with 

normalized time, obtained for three different angles of inclination. In all the cases, the 

simulations consist of pure rolling of the sphere over the inclined plane. The figure also 

shows the corresponding analytical solutions for rigid bodies applicable for the stick or 

pure rolling case. The next parametric study involved keeping the angle of inclination 

fixed to θ = π/4 radians and changing the coefficient of friction from 0.1 to 3.  

Fig. 6.4 shows the normalized center-of-mass positions at different times 

(normalized), obtained for three different coefficients of friction 0.1, 1, and 3. The 
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simulation results show pure rolling of the sphere over the inclined place for the case of µ 

= 1 and 3. The corresponding analytical solutions for the center-of-mass positions 

applicable for the pure rolling case are used to verify the simulation results. The 

simulation results for µ = 0.1 agree with the theoretical predictions indicating slip of the 

sphere over the inclined plane. In this case, the analytical solution given by Eqn. (6.15) 

for the slip case is used to compare with the simulation results. Overall, the computed 

solutions for the deformable sphere compares well with the rigid-sphere solutions. The 

difference observed can be attributed to the use of deformable bodies in simulations. 

 

 

Figure 6.3: Discretized MPM model of rolling simulation. 
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Figure 6.4: Discretized MPM model of rolling simulation. 

 

 

6.6 Conclusions 

 A contact algorithm was implemented in 3D MPM based on multimesh technique. 

The contact condition based on center-of-mass velocity field can effectively detect 

contact between surfaces. A new methodology was developed to update the normals for 

the surface material points in contact, which conserved the original surface geometry 

before MPM discretization. This method does not require time-consuming neighbor 

search algorithm in order to find the normals for successive MPM simulation steps and 

hence is computationally efficient. The algorithm was demonstrated and verified using a 
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rolling simulation example, for which the deformable body solution compared favorably 

well with the rigid body solutions. Contact algorithm, considering friction and 3D µ-CT 

information of sand grains, can be used for simulation of granular materials in 

compression.  
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CHAPTER VII 

 

 

SUMMARY OF CONCLUSIONS AND FUTURE WORK 

 

7.1 Summary of conclusions 

Material Point method (MPM) can effectively simulate many dynamic problems in 

solid mechanics, which otherwise would be challenging using purely Lagrangian or 

Eulerian based methods. Application of MPM has been demonstrated through various 

problems involving dynamic mode-II crack propagation, simulations of Rohacell foam in 

compression considering its real microstructure, and its potential for simulation of 

granular media with implementation of highly efficient contact algorithm for frictional 

slip considerations. 

Cohesive zone model was implemented in MPM so that it can handle dynamic crack 

propagation. The particle nature of the material makes it relatively easier (compared with 

FEM) to incorporate cohesive segments to model the crack surfaces independent of the 

background mesh. For the MPM simulations of crack propagation in the intersonic 

regime, the dependence of shear shock angle on the crack-tip speed conforms to the 

theoretical prediction. A transition crack-tip velocity of 1.66 cS m/s was observed, which 

remained more or less constant for cohesive strengths of 4, 12, 24, and 35 MPa (in both 

shear and normal directions) corresponding to the impact speeds of 2.25, 5.7, 9.5, and 

12.5 m/s, respectively. The Burridge-Andrews transitions mechanism, which relates to 
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transitions of crack-tip speed from sub-Rayleigh to intersonic regime, was observed over 

a range of impact speeds.  

Further, MPM was demonstrated as an effective method for the simulation of foam 

microstructures with ease in discretization. MPM simulations of Rohacell foam under 

compression were able to capture features observed during in-situ experiments using µ-

CT. Cohesive zone model along with foam microstructures can be used in MPM to 

simulate interfacial failure of composite sandwich structures. 

Nanoindentation was shown to be an effective technique for the characterization of 

mechanical properties of sand grains at the granular level and skeletal properties of foam 

microstructure. Properties determined using nanoindentation can be used as input for 

MPM simulations of granular materials. An improved contact algorithm was 

implemented in MPM. This algorithm forbids interpenetration of surfaces but allows 

separation, sliding and rolling with friction. No separate contact detection step is required 

and the computational cost scales linearly with the number of grains. Material properties 

determined from nanoindentation and geometry information obtained from µ-CT will 

enable MPM simulations of granular materials.  

 

7.2   Future work 

7.2.1   Crack surface contact and dynamic friction model in the wake of the crack-tip 

With respect to the dynamic mode-II crack propagation simulation results (from a 

comparison between numerical and experimental photoelastic patterns in Fig. 3.16) we 

concluded that the crack surface contact behind the cohesive zone can affect the stress 

field in the wake of the crack-tip.  Thus, as part of future work, contact and friction 
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between the crack surfaces in the wake of the crack-tip can be considered. The classical 

Amontons-Coulomb law fails to consider the length scale and rate dependency. Rate and 

state dependent relation (Prakash and Clifton, 1993; Prakash, 1998) needs to be 

implemented in MPM to simulate friction in the wake of the crack-tip and as outlined in 

the following:  

Following Chapter-2, the friction at the interface can be considered through traction 

boundary conditions as 

      fricfric ττ =  on fricΩ∂ ,           (7.1) 

where ∅=Ω∂Ω∂ friccoh I , ∅=Ω∂Ω∂ τIfric  and friccohu Ω∂Ω∂Ω∂Ω∂=Ω∂ τ UUU . 

Applying chain rule and divergence theorem to the variational form of conservation of 

momentum equation (incorporating traction vector for friction considerations at the 

boundary, fricΩ∂ ), we get 
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Here, uτ  is the resultant traction due to the displacement boundary condition on uΩ∂ , and 

τ  is the external traction vector and cohτ  and fricτ  are the cohesive and frictional 

traction, respectively, at the interface, cohΩ∂  and fricΩ∂ .   

       The momentum conservation equation is modified as 
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Finally, the momentum conservation, can eventually be written for each node i as 

fric
i

coh
ii

b
iii fffffp ++++= τint& .  (7.4) 

and the frictional force vector ∑ ∫
Ω∩Ω∂

=
p

ifric
fric

i

pfric

dSS )(xτf .  (7.5) 

with other parameters remaining the same as given in Chapter-2. 

Coker et al. (2005) summarizes the rate and state dependent friction law proposed by 

Prakash and Clifton (1993), and Prakash (1998). They also describe the explicit time 

integration procedure to calculate the frictional traction vector for each integration point, 

which they implemented in the finite element method. In MPM, this procedure will 

remain the same and can be used to calculate the frictional traction on the material points 

forming the boundary in the wake of the crack-tip. 

In order to avoid interpenetration of crack surfaces behind the crack tip, the 

multimesh contact algorithm present in Chapter VI can be used. The normals can be 

determined based on the positions of the cohesive segments and the contact forces, 

considering of normal and frictional forces can be applied at the cohesive nodes in the 

wake of the crack tip. 

 

7.2.2   MPM simulation of sand under compression 

Since MPM does not use body-fixed mesh for computation, it offers an advantage 

in the simulation of dynamic problems in solid mechanics over finite element and 

meshless methods. MPM can handle relatively easily, the modeling of realistic 

microstructures and particulate media at meso level. Bardenhagen et al. (2000) 

demonstrated 2D MPM for simulation of particulate matter. MPM offers advantages over 

discrete element method. MPM considers size, shape, and material properties of each 
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individual sand grain at meso level to model the realistic structures instead of modeling 

them as rigid spheres, as in Discrete Element Method (DEM). MPM has three major 

advantages in sand simulations: (1) capability to handle large deformations; (2) ability to 

model real microstructures; and (3) ability to handle extensive contact. Additionally, 

implementation of various history-dependent constitutive models (e.g. elastic-plastic, 

viscoelastic, single crystal plasticity) is straightforward.  MPM can consider the 

phenomenological models for friction and sand grains to effectively model the behavior 

of sand. For simulations at the granular level, the mechanical properties of sand grains 

determined from nanoindentations can be used. 

 Fig. 7.1 shows the microstructure of sand in a cylindrical container. Material 

points are assigned at locations within the material to generate a MPM model, as shown 

in Fig. 7.2. Experimentally characterized material properties for individual sand grains 

can be assigned. 

 

          

Figure 7.1: µ-CT of sand 

sample 
Figure 7.2: A discretized MPM model 
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Modulus values can be assigned for each sand grain based on their grayscale value 

(indicating the density of sand, which is output from the µ-CT scanning) following the 

same distribution as observed in experiments. This is under the assumption that the sand 

grains being modeled are isotropic. To consider the inhomogeneity of the sand grain, the 

distribution of stress-strain properties obtained from nanoindentation can be used. 

Further, the model shown in Figure 7.2 and similar models obtained considering variation 

in grain size and sand type can be used in MPM simulations using parallel computing.   
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Scope and Method of Study:  

A relatively new computational method, namely, material point method (MPM), 

developed by Prof. Sulsky
1
 of University of New Mexico from the Particle-In-Cell (PIC) 

method in computational fluid mechanics, was used for simulations of dynamic problems 

in solid mechanics. In this regard, some dynamic and material simulations have been 

carried out, such as dynamic crack growth using cohesive zone model, microstructure 

evolution of closed-cell polymer foam in compression, and simulation of granular 

materials. In this process, the MPM algorithm was developed by either implementing 

completely newer capabilities of simulation or refining the older versions for increased 

robustness and versatility. 

 

Findings and Conclusions:   

The incorporation of a characteristic length scale in MPM through cohesive zone 

model enabled investigation of physics-based dynamic crack propagation. The 

simulations are capable of handling crack growth with crack-tip velocities in both sub-

Rayleigh and intersonic regimes. Crack initiation and propagation are the natural 

outcomes of the simulations incorporating the cohesive zone model. Good qualitative 

agreement was obtained between numerical results presented here and the experimental 

results reported in the literature in terms of the photoelastic stress patterns ahead of the 

crack-tip. 

MPM can be used to predict of material properties for microstructures driving the 

optimization of processing and performance in foam materials through simulation of real 

microstructures. The simulations are capable of capturing various stages of deformations 

in foam compression. The stress-strain curve simulated from MPM compares reasonably 

with the experimental results. Based on the results from µ-CT and MPM simulations, it 

was found that elastic buckling of cell-walls occur even in the elastic regime of 

compression. Within the elastic region, less than 35% of the cell-wall material carries 

majority of the compressive load.  

The particle nature in MPM was found to be suitable for simulation of granular 

materials. A contact algorithm has been implemented in MPM to allow MPM to handle 

slip and friction between bodies in contact. Nanoindentation was carried out on sand 

grains to determine its properties at the granular level, which can be used along with µ-

CT to carry out granular simulations of sand. 


