
FLOW-INDUCED VIBRATION OF A WEB FLOATING

OVER A PRESSURE-PAD AIR BAR

By

HYUN-KI CHO

Bachelor of Science
Konkuk University

Seoul, Korea
1997

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
July, 2005



C O P Y R I G H T

BY

HYUN-KI CHO

JULY, 2005



ii

FLOW-INDUCED VIBRATION OF A WEB FLOATING

OVER A PRESSURE-PAD AIR BAR

Dissertation Approved:

Dr. Peter M. Moretti

   Thesis Adviser
 Dr. Andrew S. Arena

 Dr. Arland H. Johannes

Dr. John J. Shelton

Dr. A. Gordon Emslie

   Dean of the Graduate College



iii

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my advisor, Dr. Peter. M.

Moretti, for his excellent guidance and inspiration throughout this study. My sincere

appreciation extends to my other committee members, Dr. John J. Shelton, Dr. Andrew S.

Arena, and Dr. Arland H. Johannes, who provided invaluable suggestions, discussions,

and assistance.

I would also like to give my special gratitude to my wife, Myungjin for

encouraging and praying for me at times of difficulty. Thanks also go to my beloved

parents and sisters for their support and encouragement.

This study was supported by the Web Handling Research Center (WHRC) at

Oklahoma State University.



iv

TABLE OF CONTENTS

Chapter     Page

    I.   INTRODUCTION .................................................................................................... 1

            1.1   Problem Statement ......................................................................................... 1
1.2   Objectives of the Study .................................................................................. 3
1.3   Scope and Limitations ................................................................................... 3

   II.   LITERATURE REVIEW ......................................................................................... 5

            2.1   Air-Flotation Devices .................................................................................... 5
2.2   Ground-Effect Theories ................................................................................. 6
2.3   Dynamics of Traveling Continua ................................................................... 9

  III.   THEORIES ............................................................................................................ 13

            3.1   Equations of Motion .................................................................................... 13
3.2   Equilibrium Solution .................................................................................... 20
3.3   Linearization ................................................................................................ 35
3.4   Eigenvalue Problem ..................................................................................... 39
3.5   Discrete Model ............................................................................................. 47

  IV.   EXPERIMENTS .................................................................................................... 62

4.1   Test Setup .................................................................................................... 62
4.2   Test Results .................................................................................................. 64

   V.   CONCLUSIONS .................................................................................................... 75

REFERENCES ................................................................................................................ 77

APPENDIX  A - DERIVATION OF FRICTION FACTORS ........................................ 81
APPENDIX  B - CONSTRUCTION OF THE GREEN’S FUNCTION ......................... 84
APPENDIX  C - NUMERICAL ANALYSIS FOR EQUILIBRIUM SOLUTIONS ...... 88
APPENDIX  D - COMPUTER CODE ............................................................................ 91



v

LIST OF FIGURES

Figure      Page

    1.  A Sinusoidally Deflected Web and Air Bars in an Air Flotation Oven .................... 1

    2.  Schematic of a Moving Web over a Pressure-Pad Air Bar ....................................... 2

    3.  Comparison of Thin Jet Model and Thick Jet Model ............................................... 9

    4.  Effect of Supply Pressure on Cushion Pressure ...................................................... 26

    5.  Effect of Supply Pressure on Web Deflection ........................................................ 27

    6.  Effect of Tension on Cushion Pressure ................................................................... 28

    7.  Effect of Tension on Web Deflection ..................................................................... 28

    8.  Effect of Horizontal Location of Air-Bar Center on Cushion Pressure .................. 29

    9.  Effect of Horizontal Location of Air-Bar Center on Web Deflection .................... 30

  10.  Effect of Web Length on Cushion Pressure ............................................................ 31

  11.  Effect of Web Length on Web Deflection .............................................................. 31

  12.  Effect of Vertical Location of Air-Bar Head on Cushion Pressure ........................ 32

  13.  Effect of Vertical Location of Air-Bar Head on Web Deflection ........................... 33

  14.  Effect of Web Speed on Cushion Pressure ............................................................. 34

  15.  Effect of Web Speed on Web Deflection ................................................................ 34

  16.  Superposed First Four Modes ................................................................................. 61

  17.  Schematic of Experimental Setup ........................................................................... 63

  18.  Effect of Tension on Pressure at Cx  = 0.5 .............................................................. 65



vi

 Figure      Page

  19.  Effect of Supply Pressure on Pressure at Cx  = 0.43125 ......................................... 65

  20.  Effect of Tension on Pressure at Cx  = 0.43125 ...................................................... 66

  21.  Effect of Tension on Pressure at Cx  = 0.3625 ........................................................ 67

  22.  Effect of Horizontal Location of Air-Bar Center on Pressure ................................ 67

  23.  Effect of Horizontal Location of Air-Bar Center on Web Deflection .................... 68

  24.  Effect of Tension on Flutter Pressure ..................................................................... 69

  25.  Effect of Tension on Flutter Frequency .................................................................. 70

  26.  Effect of Horizontal Location of Air-Bar Center on Flutter Pressure .................... 71

  27.  Effect of Web Length on Flutter Pressure .............................................................. 72

  28.  Effect of Web Length on Flutter Frequency ........................................................... 72

  29.  Effect of Vertical Location of Air-Bar Head on Flutter Pressure ........................... 73

  30.  Effect of Vertical Location of Air-Bar Head on Flutter Frequency ........................ 74



vii

NOMENCLATURE

A  Flow area of cross section

b  Nozzle thickness of the pressure-pad air bar

b  Nondimensional nozzle thickness, b L

dC  Discharge coefficient

fC  Skin-friction coefficient

D  Nondimensional flexural rigidity, 2EI TL

eD  Effective diameter

hD  Hydraulic diameter

E  Young’s modulus

EI  Flexural rigidity-per-unit-width

f Darcy friction factor

G Gyral operator, 2V x∂ ∂

G Green’s function

Η Heaviside unit function

h  Flotation height (air gap between the web and air bar)

h  Nondimensional flotation height, h L

h�  Unsteady flotation height



viii

I Identity operator

I     Identity matrix

i     1−

K Stiffness operator, ( )2 2 2 2 4 41V x D x− ∂ ∂ + ∂ ∂

k     Friction coefficient

L     Web length

M Mass operator

m Mass-per-unit-area

N Number of displacement mode

n Order of mode

P  Wetted perimeter of cross section

p Cushion pressure

p Nondimensional pressure, pL T

p� Unsteady pressure

jp Effective total pressure

0p Supply pressure

0p Nondimensional supply pressure, 0p L T

Q Flow-rate-per-unit-depth, avehu

Q  Nondimensional flow rate, 2Q m TL

Q�  Unsteady flow rate

q External excitation vector



ix

0q Eigenvector

Re Reynolds number, Q ν

T Tension-per-unit-width

t Time

t Nondimensional time, 2t T mL

U Air velocity at the nozzle

u Air velocity in the x  direction

aveu Average air velocity in the x  direction

V Nondimensional web velocity, wV m T

wV Web velocity

v Air velocity in the y  direction

w Real state vector

w Width of the air bar

x  Coordinate in machine direction

Cx Location of the air bar, ( ) 2R Lx x+

Lx Left endpoint of the cushion region

Rx Right endpoint of the cushion region

x  Nondimensional x , x L

Cx Nondimensional Cx , Cx L

Lx Nondimensional Lx , Lx L

Rx Nondimensional Rx , Rx L



x

y Coordinate in the out-of-plane direction

y  Nondimensional y , y L

y� Unsteady web displacement

Greek Symbols

α   Nondimensional parameter, 21 V D−

δ   Vertical distance from the x  axis to the head surface of the air bar

δ Nondimensional δ , Lδ

nmδ   Kronecker delta

ε   Deviation from equilibrium

Φ Vector eigenfunction

λ Eigenvalue

µ Air viscosity

ν Kinetic viscosity of air

ν Nondimensional air density, 2m TLν

θ Angle of jet ejection

ρ Air density

ρ Nondimensional air density, L mρ

τ Fluid shear stress

Ω Dimensional circular frequency

Ω Diagonal matrix composed of the natural frequencies of the web, ( )Diag nω

ω Natural frequency



xi

ξ Generalized coordinate

ψ Scalar eigenfunction

inζ        Pressure loss coefficient at the inlet

exζ Pressure loss coefficient at the outlet

Superscripts

− Nondimensional value

~ Unsteady value

∗ Equilibrium value



1

CHAPTER  I

INTRODUCTION

1.1  Problem Statement

Continuous, strip-formed, and flexible materials are called webs, and are manufactured

through various processes, e.g., coating, printing, and drying. When newly coated webs

are transported, good quality requires non-contact suspension; webs are floated on the air,

which avoids damage to coatings. Air flotation ovens, which consist of air bars arranged

as shown in Figure 1, are widely used for effective drying and suspending the coated

webs, using hot air which emerges from two nozzles of each air bar. This type of the air

bar is called a pressure-pad air bar because the pressure generated between the air bar and

the web plays the role of a cushion supporting the web without contact.

Air bar

Air bar Air bar

Web
V

w

p0

p0p0

Oven

x

y

Figure 1  A Sinusoidally Deflected Web and Air Bars in an Air Flotation Oven
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In order to study the air-web interaction system in a fundamental and academic

approach, the flexible web can be modeled as a traveling Euler-Bernoulli beam under

tension which is exposed to high-speed air flows underneath it, and subjected to two

pinned supports. When a web travels at the constant speed wV  over a pressure-pad air bar,

the cushion pressure p  developed in the region ( )RL xxx ,∈  suspends the web floating

over the air bar as shown in Figure 2. The sinusoidal web path usually tends closer

towards one of the two slot nozzles, and away from the other, while the web is running

over multiple air bars. The air-jet flow emerging from the nozzle closer to the web

follows along the top surface of the air bar, called Coanda effect, and the air jet from the

other nozzle flows out into the ambient, along with the flow. By virtue of the Coanda

flows, effects of air-jet impingement on webs are negligible, because most of the air-jet

flows along the rounded corner right after the nozzle.

y
u(x)

h(x)

b

p0

xL xR

δ

0 L

Vw

xxC

Figure 2  Schematic of a Moving Web over a Pressure-Pad Air Bar

Proper operating conditions for high productivity and stable travel of webs

involve many factors such as web speed, pressure supplied to air bars, or web tension.
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One of the most serious problems with the air flotation oven is web flutter which  leads to

poor web quality. It is necessary, therefore, to carry out a fundamental study on the

aeroelastically coupled web and air jet to find flutter prediction criteria.

1.2  Objectives of the Study

The primary objectives of the present study are as follows:

(1) To develop the analytical model for air-web interaction over a pressure-pad air

bar and predict the string-mode instability.

(2) To verify the analytical model through experiments.

(3) To provide design guides and operating conditions of air-flotation devices that

may prevent flutter problems in air flotation ovens.

1.3  Scope and Limitations

The present study is largely divided into two main phases. One is the analytical

development of the air-web interaction model and its computational implementation.

Theories of elasticity and fluid dynamics are applied to develop the aeroelastic model. As

shown in Figure 2, the continuous web running through multiple air bars is reduced to the

web traveling over one air bar between two fixed supports. The web can be modeled as a

traveling threadline (no variation across the width) if the web is assumed to be wide

enough, which allows web instability to be classified into a string-mode flutter. Although

simplified, the proposed model is effective for identifying the mechanism of air-web

instability over pressure-pad air bars.
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The other part of this study is experimentation to verify the analytical model. Air

dams are installed along both free edges of the web to block the air from escaping in the

cross-machine direction, which keeps air flows two-dimensional. Due to limitation of

experimental set-up, experiments are performed for the case of a non-traveling web

exposed to air-jet flows. The present study is focused on effects of high-speed air flows

on the flexible tensioned web; the velocity of the web is neglected because the velocity of

the air jet is much higher than the translational velocity in practical applications. Stability

criteria are provided and compared through experiments and computations.
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CHAPTER  II

LITERATURE REVIEW

2.1  Air-Flotation Devices

Air-flotation systems represent the latest technology for drying coated webs transported

without contact. Bezella (1976) summarized applications of air-flotation ovens and

various drying methods. Obrzut (1976) explained the unique characteristics of air-

flotation ovens. Krizek (1986) discussed some design aspects of various commercial air

bars used to aerodynamically support and dry webs.

Several experimental studies of various commercial air bars have been carried out

to determine aerodynamic forces on rigid-stationary webs. Pinnamaraju (1992) measured

pressure distributions on a flat plate to investigate the effects of flotation height (distance

between an air bar and a web) on the aerodynamic forces. Another series of experiments

on measuring pressures on a plate was performed by Perdue (1993). He studied the

effects of the machine-directional tilt angle of a flat web on out-of-plane instability of

webs in air-flotation ovens. Pinnamaraju's experiments were continued and extended by

Nisankararao (1994). He examined the effects of the cross-machine-directional tilt angle

of a rigid web on the cushion pressure, which might cause lateral instability of webs in

air-flotation ovens. In general, their experimental studies show that the cushion pressure

acting on flat webs decreases with increase in flotation height and tilt angle of webs, and
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the cushion pressure is almost uniform within a small tilt angle, which provides good

agreement with ground-effect theories.

Muftu et al. (1998) analyzed the cushion pressure on an air reverser, which is a

large hollow drum with holes in its surface for changing the direction of a coated web.

They pointed out that viscous forces dominate the air pressure generation rather than

inertial forces associated with acceleration of the air jet at low operating clearances on the

order of microns; the air flow between the web and air-flotation device is commonly

represented by the Reynolds equation, and the effects of fluid inertia on the momentum

equations are significant at clearances on the order of centimeters; the air flow is

governed by Euler’s equations.

2.2  Ground-Effect Theories

With the advent of workable air-cushion devices such as hovercrafts in the 1950's,

several ground-effect theories were developed and have been applied in industry. They

provide aerodynamic characteristics between air-cushion forces acting on the ground and

floating heights; aerodynamic forces reduce as a flotation height increases or a jet-nozzle

width decreases. These theories are generally divided into two models, by whether the

flow profile across air jets is uniform or not. This is largely a function of whether the jet

is thick or thin, relative to floating heights.

Thin Jet Model

Mair (1964) studied the peripheral-jet hovercraft that travels at high speed over land or

water. Using the momentum balance between the air jet and the cushion pressure, which
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acts like a spring, a ground-effect model was developed. He discussed stability, control,

and design parameters for the hovercraft with a simple peripheral jet system. Jaumotte

and Kiedrzynski (1965) also a presented ground-effect model similar to Mair's and

carried out experiments to verify the derived equations. They examined the effects of

viscosity of the air jet and the flying speed of a cushion vehicle. The effects of both

viscosity and flying speed are a reduction of lift force or cushion pressure. They

attempted to compare their ground-effect theories with various other theories that had

been presented. The ground-effect theory was applied to the basic aerodynamics of air

flotation ovens by Davies and Wood (1983). They pointed out that although the basic

theory was originally derived by using extremely crude assumptions, it is accurate and

useful for practical engineering purposes, because it can be derived by approximating the

full Navier-Stokes equations. Cho (1999) developed the ground-effect model for a flat

web tilted in the machine direction to analyze the effects of the tilt angle of a web on the

cushion pressure.

When the classical thin jet model is applied to the pressure-pad air bar, the

cushion pressure can be expressed as

( )2 1 cos
1 cosj

p
p h b

θ
θ

+
=

+ +
               (2.2.1)

where p is the cushion pressure, jp  is the effective total pressure at the nozzle, h  is the

flotation height, b  is the nozzle width, and θ  is the angle of jet ejection. However, the

thin-jet model is valid only for a large flotation height, 1b h << , because it overpredicts

the cushion pressure at small flotation heights; cushion pressure is greater than the total

jet pressure at the nozzle, which is physically impossible.
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Thick Jet Model

In order to make up for the drawback of the thin-jet model overestimating the cushion

pressure at small flotation heights, Crewe and Eggington (1960) derived a thick-jet model

for air-cushion vehicles by considering the equilibrium for the pressure difference across

the air jet having a pressure gradient within it from the centrifugal force, and performing

integration using the Bernoulli equation. The thick-jet model improved by Stanton-Jones

was re-examined by Mair (1964), and Jaumotte and Kiedrzynski (1965). This model

treated the radius of the jet-flow path as a constant while Crewe and Eggington

considered it as a variable. The above thick jet models, however, still have problems at

small flotation heights. Chang and Moretti (2000) presented comprehensive summaries

and comparison of various ground-effect theories, and investigated the aerodynamic

forces of air bars with vent holes. They pointed out that the thick-jet model derived by

Stanton-Jones is the best choice for all ranges of flotation height;

( )2 1 cos

1 h b

j

p e
p

θ+
−

= − .  (2.2.2)

Figure 3 shows a typical trend of the ground-effect model. The thin jet model

(2.2.1) predicts a higher cushion pressure than the thick jet model (2.2.2) as the flotation

height decreases. It is shown that the ground-effect theories can be useful for analysis of

the aerodynamic characteristics of pressure-pad air bars.
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Figure 3  Comparison of Thin Jet Model and Thick Jet Model

2.3  Dynamics of Traveling Continua

Due to technological importance, many researchers have given considerable attention to

the dynamics of axially traveling continua such as threadlines, strings, magnetic tapes,

belts, band-saw blades, beams, and pipes conveying fluids.

The vast literature on vibrations of axially moving materials is reviewed by Ulsoy

et al. (1978), and Wickert and Mote (1988). Basic characteristics of axially moving

continua show that they lose stability due to high speed of continua and surrounding fluid

flows.

Pramila (1986) considered the effects of surrounding air-flows on instability of a

web traveling between two rollers. His results show that the critical velocities and the

eigenfrequencies are only 15-30% of the values of earlier predictions that neglected the
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interaction between a web and surrounding air. A more extended model was presented by

Chang (1990). His threadline model of a running web shows that each of the

aerodynamic terms (transverse, Coriolis, and centripetal acceleration) in a traveling

threadline model is affected differently by the surrounding air. Stability criteria for edge

flutter induced by lateral air flows were also presented. Some simple experiments on

stability of a flexible web with an air bar were performed by Moretti and Chang (1998).

The results demonstrate that when a web is forced to be tilted in the machine direction, it

starts to flutter violently with increases in web tension and supply pressure. The main

reason for onset of flutter is that the tilted web can destabilize itself. When the tension of

an air-floated web running in ovens fluctuates, it causes the flotation height to change.

This tension fluctuation can affect the longitudinal dynamics of the air-floated web so

that it may touch air bars or begin to flutter. Chang et al. (1999) presented an analytical

model for prediction of both out-of-plane and longitudinal stiffness (inverse of resiliency)

of an air-floated web. The results show that at low tension the longitudinal stiffness is

small (i.e., the effect of the air cushion is dominant) while at high tension the effect of

material deformation becomes more significant than that of the air cushion.

Wickert and Mote (1990) examined transverse vibrations of traveling strings and

beams with the aid of a novel modal analysis proposed by Meirovitch (1974; 1975) who

studied the matrix eigenvalue problem for discrete gyroscopic systems. Using traveling

string eigenfunctions and a convenient orthogonal basis suitable for discretization, they

cast the equations of motion for axially moving materials in a canonical first-order form

that is amenable to the formal solution, and established a modal analysis and a Green’s

function representation of the response to arbitrary excitation and initial conditions.
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Wickert (1993) studied free linear vibration of coupled traveling string and air bearing

systems. Through the Green’s function for the moving string, its deformation is

embedded directly in the lubrication equation, and the resulting integro-differential

equation governs the equilibrium pressure distribution. The string’s equation of motion

and the fluid film lubrication equation are linearized about equilibrium and then

discretized using the Galerkin’s method. The free vibration analysis directly provides

natural frequencies, damping ratios, and vibration modes.

Some researches have been conducted on theoretical instability analysis of

continua axially moving in a fluid-filled narrow passage with axial leakage flows or shear

fluid flows. In most of these studies, governing equations of motion of continua coupled

with the shear fluid flow in the narrow channel are derived from the Bernoulli-Euler’s

beam equation and the Navier-Stokes equations, and the characteristic equation of the

system whose roots are used to examine stabilities is presented as a function of the axial

speed of the continua. Nagakura and Kaneko (1991) studied instabilities of a flexible

cantilever beam subjected to one-dimensional leakage flows while Inada and Hayama

(1990) examined the case of an elastically supported rigid plat subjected to the leakage

flow. For a rigid body supported by a damper-spring system in a narrow passage, Fujita

et al. (2000) investigated effects on stability of gap width, body length, and pressure loss

coefficients at the inlet and outlet of the passage. Watanabe and Kobayashi (2001)

studied vibrations of an axially moving web subjected to two rollers and exposed to shear

fluid flows in a narrow passage. The analytical results showed that both divergence-type

instability and flutter-type instability occur in the traveling web due to shear fluid flows,
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clarifying the effects of the added mass, tensile force, and viscous damping on the

instability region.
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CHAPTER  III

THEORIES

3.1 Equations of Motion

Assuming that a web vibrates in the direction perpendicular to the flow direction, its

motion with velocity wV , mass-per-unit-area m , tension-per-unit-width T , and flexural

rigidity-per-unit-width EI  is given over 0 x L≤ ≤  by

( ) ( )( )

2 2 2 2 4
2

2 2 2 42 w w

L R

y y y y ym V V T EI
t xt x x x

p x x x x

 ∂ ∂ ∂ ∂ ∂
+ + − + ∂ ∂∂ ∂ ∂ ∂ 

= Η − −Η −

 (3.1.1)

where p  is the cushion-pressure which develops within ( ),L Rx x , and deflects the web

from its initial configuration. Η  is the Heaviside unit function defined as

( )
 1  ,   0 
 0  ,   0 

x
x

x
>

Η =  <
.

The web is subjected to the pinned boundary conditons such that

( ) ( )
( ) ( )

0 0 0

0

y y

y L y L

′′= =

′′= =
.   (3.1.2)

With introduction of the independent variables

2

xx
L

Tt t
mL

=

=
,    (3.1.3)
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the dependent variables

yy
L
pLp
T

=

=
,    (3.1.4)

and the parameters

2

L
L

R
R

w

xx
L
xx
L

EID
TL

mV V
T

=

=

=

=

,    (3.1.5)

the governing equation for the axially-moving web over 0 1x≤ ≤  is written in the

dimensionless form

( ) ( ) ( )( )
2 2 2 4

2 2
2 2 42 1 L R
y y y yV V D p x x x x

t t x x x
∂ ∂ ∂ ∂

+ + − + = Η − −Η −
∂ ∂ ∂ ∂ ∂

.          (3.1.6)

The boundary conditons also are given in the dimensionless form by

( ) ( )
( ) ( )
0 0 0

1 1 0

y y

y y

′′= =

′′= =
.  (3.1.7)

The motion of air flows between the web and air bar in L Rx x x≤ ≤  are described

by the continuity and Navier-Stokes equations

0=
∂
∂

+
∂
∂

y
v

x
u                   (3.1.8)









∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

+
∂
∂

2

2

2

21
y
u

x
u

x
p

y
uv

x
uu

t
u ν

ρ
                         (3.1.9)
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2 2

2 2

1v v v p v vu v
t x y y x y

ν
ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

                                   (3.1.10)

where u  and v  are the velocities of the air flow in the x  and y  directions, respectively,

p  is the air pressure, ρ  is the density of air, and ν  is the kinetic viscosity of air. The air

flow is incompressible, viscous, and Newtonian.

The air flow is assumed to be almost parallel to the axial direction x , which

allows the velocity v  and its derivatives to be neglected in Eq. (3.1.10). The transverse

pressure gradient is negligible; 0p y∂ ∂ ≈ , so that the air pressure is the function of only

axial displacment; ( )p p x= .

Integrating the continuity (3.1.8) over y  from 0 to h  yields

0 0
0

h hu vdy dy
x y
∂ ∂

+ =
∂ ∂∫ ∫            (3.1.11)

where h  is the air gap between the web and air bar defined as

δ−= yh ,            (3.1.12)

and δ  denotes the vertical distance from the x  axis to the head surface of the air bar. In

view of the fact that we can always write

( )
( )

( ) ( )
( )

( ) ( )( ) ( )( ), , , ,
g x g x

f x f x

g fF x y dy F x y dy F x g x F x f x
x x x x
∂ ∂ ∂ ∂

= + −
∂ ∂ ∂ ∂∫ ∫   (3.1.13)

which is the Leibnitz integral rule, i.e., a formula for differentiation of a definite integral

whose limits are functions of the differential variable, and Eq. (3.1.11) becomes

00
0

h y h

y h y

hudy u v
x x

=

= =

∂ ∂
− + =

∂ ∂∫ .                      (3.1.14)

By virtue of the kinematic condition at the upper surface (flexible web) and the zero

vertical velocity at the lower surface (air-bar head)
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y h y h

h hv u
t x= =

∂ ∂
= +
∂ ∂

    and    
0

0
y

v
=
= ,            (3.1.15)

Eq. (3.1.14) is rewritten as

0h Q
t x

∂ ∂
+ =

∂ ∂
           (3.1.16)

where Q  is the flow-rate-per-unit-depth defined as

0

h
Q udy= ∫ .             (3.1.17)

On the other hand, in order to integrate Eq. (3.1.9), multiplying the continuity

(3.1.8) by u , and adding the resultant equation and Navier-Stokes equation (3.1.9), we

have

2 2 2

2 2

1u u uv p u u
t x y x x y

ν
ρ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + = − + + ∂ ∂ ∂ ∂ ∂ ∂ 

.             (3.1.18)

To investigate the relation between pressure and gap height, integrating both sides of Eq.

(3.1.18) over y  from 0 to h  gives

2 2 2

2 20 0 0 0 0 0

1h h h h h hu u uv p u udy dy dy dy dy dy
t x y x x y

ν ν
ρ

∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +

∂ ∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫ ∫ ∫ .   (3.1.19)

Applying the formula (3.1.13) yields

2
00 0

2

20 0
0

1

h h y h

y h y h y

y h
h h

y

h hudy u dy u u uv
t x t x

p u udy dy
x x y

ν ν
ρ

=

= = =

=

=

∂ ∂ ∂ ∂ + − + + ∂ ∂ ∂ ∂ 

∂ ∂ ∂
= − + +

∂ ∂ ∂

∫ ∫

∫ ∫
,                      (3.1.20)

and using the given conditions (3.1.15) gives

2
2

20 0 0 0
0

1
y h

h h h h

y

p u uudy u dy dy dy
t x x x y

ν ν
ρ

=

=

∂ ∂ ∂ ∂ ∂
+ = − + +

∂ ∂ ∂ ∂ ∂∫ ∫ ∫ ∫ .            (3.1.21)

When Eq. (3.1.8) is differentiated with respect to x , we have
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2 2

2

u v
x x y
∂ ∂

= −
∂ ∂ ∂

                     (3.1.22)

so that, in view of the assumption that the velocity v  is negligible, it is concluded that

2 2 0u x∂ ∂ ≈ . Furthermore, by virtue of the assumption that h  and p  are independent of

y  and the replacement of u  by Q , Eq. (3.1.21) becomes in the simpler form

2

0

y h

y

Q Q h p u
t x h x y

ν
ρ

=

=

 ∂ ∂ ∂ ∂
+ = − + ∂ ∂ ∂ ∂ 

           (3.1.23)

where the second term on the left hand side is approximated (Cancelli and Pedley, 1985;

Inada and Hayama, 1990; Hayashi et al., 1999; Samin, 1999) as

h
Qudy

h
dyu

hh 22

00

2 1
=





≈ ∫∫ .            (3.1.24)

The second term on the right hand side represents the difference between the

viscous stresses on the two surfaces defined by

u
y

τ ν
ρ

∂
=

∂
.            (3.1.25)

In view of the classical relation that the fluid shear stress τ  imposed on the wall by the

fluid friction is proportional to the friction factor, it is expressed by

2 2

2 2 4
ave ave

f
u u fCρ ρτ = =            (3.1.26)

where fC  is the skin-friction coefficient, f  is the Darcy friction factor, and aveu  is the

average flow velocity over the cross section such that

0

1 h

ave
Qu udy

h h
= =∫ .                       (3.1.27)

Therefore, the last term becomes
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2 2

2
0

2
4 4

y h

ave

y

u fu Q f
y h

τν
ρ

=

=

∂
= − = − = −

∂
                                  (3.1.28)

so that the integral of Navier-Stokes equation (3.1.9) over y  is cast into the form

2 2

24
Q Q h p Q f
t x h x hρ

 ∂ ∂ ∂
+ = − − ∂ ∂ ∂ 

.              (3.1.29)

There is, however, the friction factor f  which needs to be expressed in terms of

the flow rate Q . It is given in Appendix A such that

48
Re

f =         for laminar flow                    (3.1.30)

and

0.25

0.280
Re

f =     for turbulent flow                 (3.1.31)

where

Re avehu Q
ν ν

= = .                        (3.1.32)

To examine the flow rate Q , applying the Bernoulli’s equation to the air jet at the

nozzle provides the velocity of the air jet through the nozzle

2

0 2 2
p Up ρ

= +            (3.1.33)

where 0p  is the supply pressure. Since the air jet emerging through the nozzle faces both

the ambient pressure and the cushion pressure, it is reasonable to assume that the static

pressure can be taken as the average of these two pressures. Introducing the discharge

coefficient dC , the velocity is expressed by
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( )02 0.5
d

p p
U C

ρ
−

=                      (3.1.34)

where the empirical constant dC  accounts for the losses due to turbulence and

contraction of the effective flow rate area near the nozzle. The flow rate Q  in the entire

flow field can be assumed as the same as the total flow rate through the nozzle with its

width b

( )02 0.5
d

p p
Q bU bC

ρ
−

= = .            (3.1.35)

Introducing the independent variables

2

xx
L

Tt t
mL

=

=
,   (3.1.3)

the dependent variables

2

hh
L
yy
L
pLp
T

mU U
T
mQ Q

TL

=

=

=

=

=

,                  (3.1.36)

and the parameters
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2

bb
L

L
L
m

m
TL

δδ

ρ ρ

ν ν

=

=

=

=

                                 (3.1.37)

into the integrated continuity (3.1.16) and Navier-Stokes equation (3.1.29) over y , and

the air gap (3.1.12), the governing equations over L Rx x x≤ ≤  with the coupling condition

h y δ= −                       (3.1.38)

are given in the nondimensional forms

0h Q
t x

∂ ∂
+ =

∂ ∂
                                  (3.1.39)

and

2 2

24
Q Q h p Q f
t x h x hρ

 ∂ ∂ ∂
+ = − − ∂ ∂ ∂ 

                      (3.1.40)

where

( )02 0.5
d

p p
Q bC

ρ
−

= .                       (3.1.41)

3.2  Equilibrium Solution

The equilibrium web displacement ( )y x∗  and air pressure ( )p x∗  satisfy the time-

independent form of Eqs. (3.1.6), (3.1.38), (3.1.39), and (3.1.40) such that, respectively,

( ) ( ) ( )( )
4 2

2 2
4 21 L R

y yD V p x x x x
x x

∗ ∗
∗∂ ∂

+ − = Η − −Η −
∂ ∂

,  (3.2.1)
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h y δ∗ ∗= − ,   (3.2.2)

0Q
x

∗∂
=

∂
,   (3.2.3)

and

2 2

24
Q h p Q f

x xh hρ

∗ ∗ ∗ ∗ ∗

∗ ∗

 ∂ ∂
= − − ∂ ∂ 

,  (3.2.4)

where the equilibrium flow rate Q∗  is the same as the total flow rate through the nozzle

with its width b b L=  in view of Eq. (3.1.41)

( )02 0.5
d

p p
Q bC

ρ

∗
∗

−
= .  (3.2.5)

Eq. (3.2.4) can be rewritten to solve the equilibrium pressure

2

3

2
4

p Q h h Q f
x h x Q x

ρ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

 ∂ ∂ ∂
= − − ∂ ∂ ∂ 

.   (3.2.6)

Using using Eqs. (3.2.2), (3.2.3), and (3.2.5), the equilibrium air pressure can be

expressed by

( )
( )

2 2
0

3

2 0.5
4

db C p pp y f
x xy δ

∗∗ ∗ ∗

∗

−  ∂ ∂
= − ∂ ∂ −

  (3.2.7)

where, for laminar and turbulent flows, respectively,

48 48
Re

f
Q ν

∗
∗ ∗= =   (3.2.8)

and

( )0.250.25

0.280 0.280
Re

f
Q ν

∗
∗ ∗

= = .       (3.2.9)
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Because Eq. (3.2.7) is the first-order differential equation, one boundary condition

is necessary to solve it. The condition can be given from ground-effect theories. Applying

the Stanton-Jones’ thick jet model to the air jet coming through the right-hand nozzle as

shown in Figure 1 provides (Chang and Moretti, 2000)

22

0

1
dC b

yp e
p

δ∗
∗ −

−= − .                                                         (3.2.10)

The aero-elastic equations to describe the air-web system are presented. A

Green’s function is one of useful methods to solve an inhomogeneous differential

equation with boundary conditions. The Green’s function is introduced to the coupled

system in order to obtain equilibrium solution to the problem. It enables us to avoid

simultaneous solution of, and iteration between, the elastic and pressure equations.

Through the Green’s function for static deflection of a traveling web, the elastic equation

(3.2.1) is inverted in closed form for y∗  so that its diplacement is represented explicitly

in terms of the pressure by convolution. Substitution of that solution into the pressure

equation (3.2.7) provides a single integro-differential equation for p∗ . Furthermore, only

p∗  is discretized in the present approach so that fewer degrees of freedom are required

for numerical solution.

In order to construct the Green’s function for the elastic equation (3.2.1), it can be

rewritten by

( )
4 2

2
4 2 2

1G G x
x x D

α δ ξ∂ ∂
− = −

∂ ∂
,                                  (3.2.11)

which has the concentrated load at L Rx x xξ≤ = ≤ , and α  denotes 21 V D− . Because

of the Dirac delta function, we have two solutions to this equation as follows:
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( )1 1 1 1 1
x xG x A B x C e D eα α−= + + + , ( )x ξ<                       (3.2.12)

( )2 2 2 2 2
x xG x A B x C e D eα α−= + + + , ( )x ξ>                       (3.2.13)

which are subject to the boundary conditions

( ) ( )
( ) ( )

1 1

2 2

0 0 0

1 1 0

G G

G G

′′= =

′′= =
.                                  (3.2.14)

The two boundary conditions at 0x =  can enable two of the constants of the set 1A , 1B ,

1C , 1D  to be eliminated, while the two boundary conditions at 1x =  can allow the set 2A ,

2B , 2C , 2D  to be reduced to two.

Four conditions are required at x ξ=  to determine the others. Continuity

conditions on the deflection, slope, and curvature provide three of them

( ) ( )
( ) ( )
( ) ( )

1 2

1 2

1 2

G G

G G

G G

ξ ε ξ ε

ξ ε ξ ε

ξ ε ξ ε

− = +

′ ′− = +

′′ ′′− = +

                      (3.2.15)

where ε  is an arbitrarily small quantity.

The fourth is a jump condition on the shear, and may be established by integration

across the load discontinuity x ξ= . Thus,

( )2
2

1IVG dx G dx x dx
D

ξ ε ξ ε ξ ε

ξ ε ξ ε ξ ε
α δ ζ

+ + +

− − −
′′− = −∫ ∫ ∫                       (3.2.16)

or

( ) ( )2
2

1G x G x
D

ξ ε ξ ε

ξ ε ξ ε
α

+ +

− −
′′′ ′− = .             (3.2.17)

In view of ( ) ( )1 2G Gξ ε ξ ε′ ′− = + , that is, the slope is continuous across x ξ= , the

second term on the left hand side vanishes so that the fourth condition can be found as
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( ) ( )2 1 2

1G G
D

ξ ξ′′′ ′′′− = .            (3.2.18)

The Green’s function associated with Eq. (3.2.1) can be constructed through the

application of the eight conditions (3.2.14), (3.2.15), and (3.2.18) into Eqs. (3.2.12) and

(3.2.13) (See Appendix B)

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

sinh 1 sinh1, 1
1 sinh

sinh sinh 11 1
1 sinh

x
G x x x

V

x
x x

V

α ξ α
ξ ξ ξ

α α

αξ α
ξ ξ

α α

− 
= − − Η − −  

− 
+ − − Η − −  

.                   (3.2.19)

A Green’s function is called a structural influence function because it is possible to

interpret the Green’s function as the transverse deflection of a web at x  when the only

load is a unit concentrated force at ξ , and its ends are kept fixed. It is notable that the

Green’s function is itself symmetric in its arguments such that

( ) ( ), ,G x G xξ ξ= .            (3.2.20)

The displacement can be expressed explicitly in terms of the pressure by

convolution

( ) ( ) ( ),R

L

x

x
y x G x p dξ ξ ξ∗ ∗= ∫ .                       (3.2.21)

Substitution of the equilibrium displacement (3.2.21) into the pressure equation (3.2.7)

yields an integro-differential equation for ∗p

( )
( ) ( )

( ) ( )( )
2 2

0 3

,
42 0.5

,

R

L

R

L

x

x
d x

x

G x fp dp xb C p p
x G x p d

ξ
ξ ξ

ξ ξ ξ δ

∗
∗

∗
∗

∗

∂
−∂ ∂= −

∂ −

∫

∫
                       (3.2.22)

where
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( ) ( ) ( )

( ) ( )

2

2

, sinh 1 cosh1 1
1 sinh

sinh cosh 11
1 sinh

G x x
x

x V

x
x

V

ξ α ξ α
ξ ξ

α

αξ α
ξ ξ

α

∂ − 
= − − Η − ∂ −  

− 
+ − + Η − −  

.                       (3.2.23)

Also, substitution into the boundary condition (3.2.10) gives

( ) ( )
1

22 ,

0

1
xR

d xL
C b G x p dp e

p

ξ ξ ξ δ
−

∗ ∗ − − 
 ∫= − .                       (3.2.24)

For numerical solutions, the displacement is expressed in terms of the nodal

pressures

( ) ( )( )
1

1
1 1

1
, ,

2

N
m m

n n m m n m m
m

x xy G x x p G x x p
−

∗ ∗ ∗+
+ +

=

−
= +∑                       (3.2.25)

at the spatial nodes, for  = 1, 2, , n N… ,

( )1
1

R L
n L

x xx x n
N
−

= + −
−

.                       (3.2.26)

The equilibrium pressures (3.2.22) and (3.2.24) are discretized by a finite difference

method to obtain the set ( ) 0∗ =f p  of nonlinear algebraic equations in terms of the vector

∗p  of nodal pressure np∗  at N  stations within ( ),L Rx x . When the multi-dimensional

Newton-Raphson method is used to find roots, estimates of the solution at each stage of

iteration are updated as

( )( ) ( )1

new old old old

−
∗ ∗ ∗ ∗= − ∇p p f p f p .                       (3.2.27)

where ∇  is the Jacobian operator. The numerical procedure for equilibrium solution is

presented in Appendix C. Both the equilibrium pressure distribution and deflection

profile are obtained for the web and air-bar system through the numerical

implementation. Calculated results show good agreement with ground-effect theories.
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The effect of supply pressure on the cushion pressure and web deflection is

plotted in Figures 4 and 5, respectively. Higher pressure supplied to the air bar makes the

static cushion pressure larger so that the web deflection also increases with the

corresponding air pressure.
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Figure 4  Effect of Supply Pressure on Cushion Pressure



27

0

0.02

0.04

0.06

0.08

0 0.25 0.5 0.75 1

p0 = 0.05 psi
p0 = 0.1 psi
p0 = 0.15 psi
p0 = 0.2 psi

W
eb

 D
ef

le
ct

io
n,

 y/
L

Span Coordinate, x/L

L = 15 in
xC/L = 0.3
T = 1/3 pli
δ = 0
C = 0.85
V = 0

Figure 5  Effect of Supply Pressure on Web Deflection

Figure 6 shows the effect of tension on the air pressure. When the web tension

increases with keeping a certain supply pressure, the static pressure also increases but

drops significantly in the entrance region of the air-bar head while it becomes almost

uniform in the other region. As presented in Figure 7, since the higher tension results in

the smaller gap at the entrance, the air velocity increases so that the air pressure should be

reduced.
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Figure 7  Effect of Tension on Web Deflection
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The horizontal location of the air bar has a remarkable effect on the cushion

pressure as shown in Figure 8. With the supply pressure and tension being constant, as

the air bar moves from the middle of the web span to the left-end support, and vice versa,

the cushion pressure decreases, and loses its uniformity; a significant pressure drop

occurs in the entrance region. Also, the web deflection decreases, and shifts to the origin

as plotted in Figure 9.
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Figure 8  Effect of Horizontal Location of Air-Bar Center on Cushion Pressure
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Figure 9  Effect of Horizontal Location of Air-Bar Center on Web Deflection

The effect of web length on the cushion pressure and web deflection is presented

in Figures 10 and 11, respectively. When the supply pressure and tension are kept

constant, and the air bar is positioned at the center half of the web span, the longer web

length results in the lower static pressure and higher deflection; the longer web is

deformed more easily than the shorter at the same air pressure.
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Figure 11  Effect of Web Length on Web Deflection
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Figures 12 and 13 show the effect of vertical distance from the air-bar head on the

cushion pressure and web deflection, respectively. With the supply pressure, tension, and

air-bar position being fixed, as the vertical distance from the air-bar head to the x  axis

increases, the cushion pressure increases but loses its uniformity. It is shown in Figure 13

that an increase in δ  leads to an increase in web deflection. It is notable that, however,

the actual air gap becomes smaller as δ  becomes larger.
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Figure 13  Effect of Vertical Location of Air-Bar Head on Web Deflection

With the supply pressure, tension, and air-bar position being fixed, as the web

transports at high speed, the web becomes bulging so that the cushion pressure decreses

as plotted in Figures 14 and 15. It is concluded that the effect of web speed (centrifugal

effect) on the pressure and deformation is opposite to that of web tension (centripetal

effect).
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3.3  Linearization

The elastic equation (3.1.6) can be linearized about equilibrium by the following

substitutions

y y y
p p p

ε

ε

∗

∗

→ +

→ +

�
�

,   (3.3.1)

where the small parameter ε  scales the deviation from equilibrium, such that

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

2 2 2
2

2 2

4
2

4

2 1

L R

y y V y y V y y
t xt x

D y y p p x x x x
x

ε ε ε

ε ε

∗ ∗ ∗

∗ ∗

∂ ∂ ∂
+ + + + − +

∂ ∂∂ ∂
∂

+ + = + Η − −Η −
∂

� � �

� �
   (3.3.2)

or

( )

( )

( ) ( )( ) ( ) ( )( )

2 2 2 4
2 2

2 2 4

2 2 2 4
2 2

2 2 4

2 1

2 1

L R L R

y y y yV V D
t xt x x

y y y yV V D
t xt x x

p x x x x p x x x x

ε

ε

∗ ∗ ∗ ∗

∗

∂ ∂ ∂ ∂
+ + − +

∂ ∂∂ ∂ ∂
 ∂ ∂ ∂ ∂

+ + + − + ∂ ∂∂ ∂ ∂ 
= Η − −Η − + Η − −Η −

� � � �

�

.   (3.3.3)

The terms in 0ε  imply the elastic equation in equilibrium which is presented in Eq.

(3.2.1). Retaining only the first order terms in ε , we have the linearized elastic equation

( ) ( ) ( )( )
2 2 2 4

2 2
2 2 42 1 L R
y y y yV V D p x x x x

t t x x x
∂ ∂ ∂ ∂

+ + − + = Η − −Η −
∂ ∂ ∂ ∂ ∂
� � � � � .  (3.3.4)

In a similar way, the fluid equations (3.1.39) and (3.1.40) are linearized about

equilibrium. Following the substitutions

h h h
p p p

Q Q Q
ff f Q
Q

ε

ε

ε

ε

∗

∗

∗

∗
∗

∗

→ +

→ +

→ +

∂
→ +

∂

�

�
�

�

,       (3.3.5)
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we have, respectively,

( ) ( ) 0h h Q Q
t x

ε ε∗ ∗∂ ∂
+ + + =

∂ ∂
� �   (3.3.6)

and

( ) ( )

( ) ( )
( )

2

2

2
4

Q Q
Q Q

t x h h

Q Qh h fp p f Q
x Qh h

ε
ε

ε

εε ε ε
ρ ε

∗
∗

∗

∗∗ ∗
∗ ∗

∗∗

 +∂ ∂  + +
 ∂ ∂ + 
 

+  + ∂ ∂
= − + − + ∂ ∂ +

�
�

�

�� ��
�

.      (3.3.7)

Retaining only the first order terms of the unsteady components and using the following

0Q Q
t x

∗ ∗∂ ∂
= =

∂ ∂
,   (3.3.8)

the linearized fluid equations with respect to the unsteady components are obtained

0h Q
t x
∂ ∂

+ =
∂ ∂

� �
              (3.3.9)

and

2 2

2

2

22
4

2 3

h p Q f Q Q f Q h Q
x t xf Qh h

Q Q p Q hh
x x xh h

ρ

ρ

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

∗ ∗ ∗

∗ ∗

  ∂ ∂ ∂ ∂
− = + + −  ∂ ∂ ∂∂  

∂ ∂ ∂
+ + −

∂ ∂ ∂

�� �

�� �
           (3.3.10)

where

2

3 4
p Q h f
x h x

ρ∗ ∗ ∗ ∗

∗

 ∂ ∂
= − ∂ ∂ 

.                       (3.3.11)

Substituting Eqs. (3.3.9) and (3.3.11) into Eq. (3.3.10) yields
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2 2

2 2

3 2

22
4

2 3 0
4

Q f Q Q f Q h Q
t xf Qh h

Q h Q h f Q h h ph
t x x xh h h ρ

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

  ∂ ∂ ∂
+ + −  ∂ ∂∂  

 ∂ ∂ ∂ ∂
− + − − + = ∂ ∂ ∂ ∂ 

� �

� � ��
.             (3.3.12)

Moreover, the substitutions

h h h
y y y

ε

ε

∗

∗

→ +

→ +

�

�
                      (3.3.13)

 into Eq. (3.1.38) gives

h y=� � .                       (3.3.14)

Using Eqs. (3.3.9) and (3.3.14), the unsteady flow rate Q�  can be expressed as

( )

( )

,

,

L

L

QQ dx Q x t
x

y dx Q x t
t

∂
= +

∂
∂

= − +
∂

∫

∫

�� �

� �
.                       (3.3.15)

In order to find ( ),LQ x t� , following the substitutions

p p p
Q Q Q

ε

ε

∗

∗

→ +

→ +

�
�            (3.3.16)

into Eq. (3.1.41)

( )
( )( )02 0.5 ,

, L
L d

p p x t
Q x t bC

ρ
−

= ,

we have its linearized form

( ) ( )
2 2

, ,
2

d
L L

b C
Q x t p x t

Qρ ∗= −� � .            (3.3.17)

And following the substitutions
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h h h
p p p
Q Q Q

ε

ε

ε

∗

∗

∗

→ +

→ +

→ +

�

�
�

,                          (3.3.18)

into the boundary conditions at the inlet and the oulet,

( ) ( )
( )

( ) ( )
( )

2

2

2

2

,
,

2 ,

,
,

2 ,

L
L in in

L

R
R ex ex

R

Q x t
p x t p

h x t

Q x t
p x t p

h x t

ρ
ζ

ρ
ζ

= −

= +

,                       (3.3.19)

we have the linearized boundary conditions

( ) ( )
( )

( )
( )

( )
( )

( ) ( )
( )

( )
( )

( )
( )

2

2

2

2

, , ,
,

,, ,

, , ,
,

,, ,

L L L
L in

LL L

R R R
R ex

RR R

Q x t h x t Q x t
p x t

Q x th x t h x t

Q x t h x t Q x t
p x t

Q x th x t h x t

ρ
ζ

ρ
ζ

∗

∗∗ ∗

∗

∗∗ ∗

 
= −  

 
 

= − −  
 

� �
�

� �
�

                      (3.3.20)

where inp  and exp  are constant air pressures, and inζ  and exζ  are pressure loss

coefficients at the inlet and oulet, respectively. Assuming that the variation of flow rate is

smaller that the variation of gap,

( )
( )

( )
( )

, ,
, ,

L L

L L

Q x t h x t
Q x t h x t∗ ∗<<

��
           (3.3.21)

then, using Eq. (3.3.14), we have

( ) ( )
( )

2
3

,
,

,
L

L in
L

y x t
p x t Q

h x t
ζ ρ ∗

∗=
�

�                       (3.3.22)

Using Eqs. (3.3.17) and (3.3.22), Q�  is given by

( )
( )

2 2

3

,
2 ,

Lin d

L

y x tb C QyQ dx
t h x t

ζ ∗

∗

∂
= − −

∂∫
��� .            (3.3.23)
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Introducing Eqs. (3.3.14) and (3.3.23) into the linearized Navier-Stokes equation (3.3.12),

it can be expressed in terms of the unsteady components y�  and p�

( )
( )

( )
( )

2 2

3

2 2

3 3

2 2

2 4 3

,
2 ,

,2 2
8 2 ,

2 3
4

Lin d

L

Lin d

L

y x tb C Qp y dx
x t th h x t

y x tb C QQ h f Q f y dx
x tf Qh h x t

Q y Q h f Q yy
t x xh h h

ζρ

ζρ

ρ ρ ρ

∗

∗ ∗

∗∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

 ∂ ∂ ∂
= +  ∂ ∂ ∂ 

   ∂ ∂ ∂
− − + +     ∂ ∂∂   

 ∂ ∂ ∂
+ − − + ∂ ∂ ∂ 

∫

∫

�� �

��

� ��

           (3.3.24)

where

1 for laminar flow
          

0.25 for turbulent flow
Q f
f Q

∗ ∗

∗ ∗

−∂
= −∂ 

.                       (3.3.25)

3.4  Eigenvalue Problem

In order to obtain a discrete model of the linearized system presented in Sec. 3.3, it is

necessary to review the eigenvalue problem for linear gyroscopic systems. The equation

of motion cast in a first order form defined by one symmetric and one skew symmetric

matrix represents a general linear gyroscopic system, and arises in connection with its

small oscillation about steady motion. It is notable that the character of the eigenvalue

problem for linear gyroscopic systems is different from that for natural systems.

Meirovitch (1974) developed a new method of eigensolutions to the matrix eigenvalue

problem for discrete gyroscopic systems, and Meirovitch (1975) subsequently presented a

closed-form modal analysis for the response of linear gyroscopic systems.
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Let us consider a system described by a set of ordinary differential equations in

the first order form

+ =Aw Bw q�   (3.4.1)

where A  and B  are real nonsingular matrices, the first symmetric and the second skew

symmetric, w  is a real state vector, and q  is an external excitation vector.

The general solution to Eq. (3.4.1) can be represented as

( ) ( ){ }, Re tx t x eλ=w Φ .   (3.4.2)

where ( )xΦ  is a two-dimensional vector eigenfunction with complex components, λ  is

a complex eigenvalue. Substitution of the separable solution (3.4.2) into the first order

homogeneous differential equation of Eq. (3.4.1) in which the external excitation is zero,

leads to the eigenvalue problem for the linear gyroscopic system

λ + =AΦ BΦ 0 ,   (3.4.3)

where 0 is the two-dimensional null vector. The solution to the eigenvalue problem

consists of a pair of eigenvalues nλ  and associated eigenfunctions nΦ .

By virtue of the fact that A  is symmetric and B  is skew symmetric, i.e.,

AA =T     and    BB −=T ,    (3.4.4)

and the determinant of a matrix is equal to that of its transposed matrix, we have

characteristic equations

( ) ( )
( )
( )
( )

det det

det

det

det
0

T

T T

λ λ

λ

λ

λ

+ = +

= +

= −

= − +

=

A B A B

A B

A B

A B

   (3.4.5)
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so that, if λ  is an eigenvalue, then λ−  is also an eigenvalue.

For given eigensolutions nλ  and nΦ , multiplying the eigenvalue problem (3.4.3) on the

left by the complex conjugates T
nΦ  gives

0T T
n n n n nλ + =Φ AΦ Φ BΦ .   (3.4.6)

Let the complex vectors have the structure

R I
n n ni= +Φ Φ Φ ,   (3.4.7)

where R
nΦ  and I

nΦ  are their real and imaginary parts, respectively. Substitution Eq.

(3.4.7) into Eq. (3.4.6) gives

( ) ( ) ( ) ( ) 0
T TR I R I R I R I

n n n n n n n n ni i i iλ − + + − + =Φ Φ A Φ Φ Φ Φ B Φ Φ   (3.4.8)

or

( ) ( )
( ) 0

T T T TR R I I R I I R
n n n n n n n n n n

T T T TR R I I R I I R
n n n n n n n n

i

i

λ λ+ + −

+ + + − =

Φ AΦ Φ AΦ Φ AΦ Φ AΦ

Φ BΦ Φ BΦ Φ BΦ Φ BΦ
.   (3.4.9)

By virtue of Eq. (3.4.4), we have the following

( )
( )
( )
( )

TT TI R R I
n n n n

TT TR R R R
n n n n

TT TI I I I
n n n n

TT TI R R I
n n n n

=

= −

= −

= −

Φ AΦ Φ AΦ

Φ BΦ Φ BΦ

Φ BΦ Φ BΦ

Φ BΦ Φ BΦ

.                       (3.4.10)

Because each triple matrix product represents a real scalar function, its transpose is equal

to itself. Eq. (3.4.9) can be rewritten as

( ) 2 0
T T TR R I I R I

n n n n n n niλ + + =Φ AΦ Φ AΦ Φ BΦ ,                       (3.4.11)
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which implies that nλ  should be pure imaginary. Since nλ−  are also an eigenvalue, the

solution to the eigenvalue problem consists of a pair of pure imaginary complex

conjugate eigenvalues nλ  and n nλ λ= − , and a pair of complex conjugate eigenfunctions

nΦ  and nΦ . When eigenvalues are denoted by n niλ ω= ±  where nω  are the real

oscillation frequencies, it is concluded that if niω  and nΦ  constitute a solution of the

eigenvalue problem, then niω−  and nΦ  also do its solution.

Next, a simple standard form of the eigenvalue problem is examined. Substituting

n niλ ω=  and R I
n n ni= +Φ Φ Φ  into the eigenvalue problem (3.4.3), and separating the real

and imaginary parts of the resultant equation, we obtain two equations in terms of real

quantities

0I R
n n nω− + =AΦ BΦ                       (3.4.12)

and

0R I
n n nω + =AΦ BΦ .                       (3.4.13)

Solving Eq. (3.4.12) for I
nΦ  gives

1 R
I n
n

nω

−

=
A BΦΦ                       (3.4.14)

so that substitution into Eq. (3.4.13) gives

2 R R
n n nω =AΦ KΦ                       (3.4.15)

where

1 1T− −= − =K BA B B A B                       (3.4.16)

is a real symmetric matrix, TKK = , because A is a real symmetric matrix, and B is a real

skew symmetric matrix. In a similar way, solving Eq. (3.4.13) for R
nΦ  yields
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1 I
R n
n

nω

−

= −
A BΦΦ                       (3.4.17)

so that, inserting into Eq. (3.4.12), we obtain

2 I I
n n nω =AΦ KΦ .                       (3.4.18)

As shown by working with real quantities instead of complex quantities, the complex

solution of the eigenvalue problem defined by A  and B  is transformed to the real

solution of the eigenvalue problems (3.4.15) and (3.4.18) defined by two real symmetric

matrices A and K which consists of a pair of repeated eigenvalues 2
nω  and a pair of

associated eigenfunctions R
nΦ  and I

nΦ .

To obtain a more convenient standard form of the eigenvalue problem, i.e., one

defined by only one symmetric matrix instead of two, we rewrite Eq. (3.4.15) as

2 1 2 1 2 1 2 1 2R R
n n nω −=A A Φ KA A Φ .                       (3.4.19)

Introducing the linear transformation

1 2R R
n n
′ =Φ A Φ ,                       (3.4.20)

and multipling Eq. (3.4.19) on the left by 21−A  provide

2 R R
n n nω ′ ′′=Φ K Φ                       (3.4.21)

where

1 2 1 2− −′ =K A KA                       (3.4.22)

is a real symmetric matrix because both A and K are real symmetric matrices. Similarly,

rewritng Eq. (3.4.18) as

2 1 2 1 2 1 2 1 2I I
n n nω −=A A Φ KA A Φ ,                       (3.4.23)

introducing the linear transformation
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1 2I I
n n
′ =Φ A Φ ,                       (3.4.24)

and multipling Eq. (3.4.23) on the left by 21−A , we have

2 I I
n n nω ′ ′′=Φ K Φ .                       (3.4.25)

The standard form through the linear transformations is possible only if 1 2A  and

1 2−A  exist. According to Theorem 6.12 of Murdoch (1970), if A  is a real symmetric

matrix, a nonsingular transformation matrix P  exists such that

1− =P AP R                       (3.4.26)

where R  is a diagonal matrix, and diagonalizes A . Then, A  is said to be similar to R

so that diagonal elements of R  are eigenvalues of A  (Theorem 6.4 of Murdoch). Eq.

(3.4.26) can be written as

( )( )1 1 2 1 1 2− − =P A P P A P R                       (3.4.27)

so that

1 2 1 1 2−=R P A P                       (3.4.28)

where 1 2R  is also a diagonal matrix whose elements are equal to the square root of

diagonal elements of R . Therefore, the necessary condition for 1 2A  to exist is that all

the eigenvalues of A  are positive because the diagonal elements of 1 2R  cannot be

complex. To meet the condition, A  must be positive definite (Theorem 6.15 of

Murdoch), and then 1 2A  exists. Similarly, because 1 2−R  is  the inverse of 1 2R  such that

1 2 1 1 2− − −=R P A P ,                       (3.4.29)

1 2−A  exists if A  is positive definite. Moreover, in view of Eq. (3.4.22), ′K  also exists if

A  is positive definite. Inserting Eq. (3.4.16) into (3.4.22) yields
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( )( )
1 2 1 1 2

1 2 1 2 1 2 1 2

T

T

T

− − −

− − − −

′ =

=

=

K A B A BA

A B A A BA

C C

                     (3.4.30)

where

1 2 1 2− −=C A BA                       (3.4.31)

is a nonsingular matrix because 1 2−A  and B  are nonsingular. It follows that if A  is

positive definite, then ′K  is positive definite (Theorem 6.16 of Murdoch) so that ′K  has

only positive eigenvalues, namely, no nω  can be zero.

Orthonormality properties of eigenfunctions nΦ  with respect to the matrices A

and B  are investigated through the developed standard form of the eigenvalue problem

defined by a real symmetric matrix. In view of the fact that two eigenfunctions R
n
′Φ  and

I
n
′Φ  of the real symmetric matrix K ′  corresponding to two different eigenvalues are

orthogonal (Theorem 6.13 of Murdoch), we have the orthogonality relations for 2 2
n mω ω≠

0

 0

0

0

TR R
n m

TR I
n m

TI R
n m

TI I
n m

′ ′ =

′ ′ =

′ ′ =

′ ′ =

Φ Φ

Φ Φ

Φ Φ

Φ Φ

.            (3.4.32)

Because 2
nω  is a double root with corresponding eigenfunctions R

n
′Φ  and I

n
′Φ , the second

and third of the preceding orthogonality relations (3.4.32) are valid also for repeated

roots. Recalling transformations (3.4.20) and (3.4.24), the orthogonality relations (3.4.32)

can be rewritten as

0
TR R

n m =Φ AΦ     and    0
TR R

n m =Φ AΦ     for 2 2
n mω ω≠                            (3.4.33)
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and

0
TR I

n m =Φ AΦ     and    0
TI R

n m =Φ AΦ ,                        (3.4.34)

which represents that the eigenfunctions R
nΦ  and I

nΦ  are orthogonal with respect to the

matrix A , and the two eigenfunctions R
nΦ  and I

nΦ   corresponding to the same

eigenvalue 2
nω  are independent, so that any linear combination of R

nΦ  and I
nΦ  is also

eigenfunctions. For convenience, when the eigenfunctions are normalized as

1
T TR R I I

n n n n= =Φ AΦ Φ AΦ                         (3.4.35)

where R
nΦ  and I

nΦ  are orthonormal, then the orthogonality relations are rewritten as

0

T TR R I I
n m n m nm

T TR I I R
n m n m

δ= =

= =

Φ AΦ Φ AΦ

Φ AΦ Φ AΦ
                        (3.4.36)

where nmδ  is the Kronecker delta. Because of  the symmetric matrix A , of course, Eq.

(3.4.36) are valid also when the positions of each eigenfunction are interchanged.

On the other hand, to examine the orthogonality relations with respect to the

matrix B , multiplying Eq. (3.4.12) on the left by 
TI

mΦ  and Eq. (3.4.13) on the left by

TR
mΦ , and applying the first two properties (3.4.36) provide

T TI R R I
m n m n n nmω δ= − =Φ BΦ Φ BΦ .                                   (3.4.37)

Similarly, multiplying Eq. (3.4.12) on the left by 
TR

mΦ  and Eq. (3.4.13) on the left by

TI
mΦ , and applying the last two properties (3.4.36), we have

0
T TR R I I

m n m n= =Φ BΦ Φ BΦ .                        (3.4.38)
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Because the vector functions R
nΦ  and I

nΦ  are orthogonal (with respect to the

matrix A), namely, independent, they form a basis in a two-dimensional vector space.

Any arbitrary two-dimensional vector can be expanded as a linear combination of the

eigenfunctions R
nΦ  and I

nΦ  so that the solution can be taken as their linear combination.

A modal analysis for gyroscopic systems is based on the expansion theorem and the

orthogonality relations.

3.5  Discrete Model

With the introduction of the mass, gyral, and stiffness operators

( )
2 4

2 2
2 4

M I

G 2

K 1

V
x

V D
x x

=
∂

=
∂

∂ ∂
= − +

∂ ∂

  (3.5.1)

where I  is the identity operator, the linearized nondimensional structure equation (3.3.4)

is presented in the dimensionless symbolic form

2

2M G Ky y y p
tt

∂ ∂
+ + =

∂∂
� � � �   (3.5.2)

where

( ) ( )( )L Rp p x x x x= Η − −Η −� � .   (3.5.3)

Following a state space representation with the real state and external excitation

vectors

( ),
y

x t
y

 
=  
 

w
��
�

   (3.5.4)
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and

( ),
0
p

x t
 

=  
 

q
�

,    (3.5.5)

Eq. (3.5.2) can be cast in first order form as shown in Eq. (3.4.1)

+ =Aw Bw q�   (3.5.6)

where the matrix differential operators A  and B  are real nonsingular matrices, the first

symmetric and the second skew symmetric such that

M 0
0 K

 
=  
 

A   (3.5.7)

and

G K
K 0

 
=  − 

B .    (3.5.8)

The general solution to Eq. (3.5.6) can be represented as

( ) ( ){ }, Re tx t x eλ=w Φ   (3.5.9)

where ( )xΦ  is a two-dimensional vector eigenfunction with complex components, λ  is

a complex eigenvalue. The vector eigenfunction ( )xΦ  associated with ( ),x tw  can be

expressed in terms of the scalar eigenfunction ( )xψ  associated with ( ),y x t� . Assuming

the solution of web displacement as

( ) ( ){ }, Re ty x t x eλψ=�                       (3.5.10)

where ( )xψ  is the normalized scalar eigenfunction associated with y� , and recalling Eqs.

(3.5.4) and (3.5.9), the eigenfunctions can be selected as

( ) ( )
( )

n n
n

n

x
x

x
λ ψ
ψ

  =  
  

Φ                         (3.5.11)
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where

( ) ( ) ( )R I
n n nx x i xψ ψ ψ= + .                       (3.5.12)

Inserting n niλ ω=  provides

( ) ( )
( )

( )
( )

I R
n n n n

n R I
n n

x x
x i

x x
ω ψ ω ψ
ψ ψ

   −   = +   
      

Φ                       (3.5.13)

so that we have

( ) ( )
( )

I
n nR

n R
n

x
x

x
ω ψ
ψ

 − =  
  

Φ                       (3.5.14)

and

( ) ( )
( )

R
n nI

n I
n

x
x

x
ω ψ
ψ

  =  
  

Φ .                       (3.5.15)

The eigenfunctions for the traveling web can be found in a closed form for the

case of vanishing flexural stiffness, which is admissible because mode shapes of a

traveling string model with fixed end conditions is a useful analog for those of a moving

beam model with the pinned end conditions. Substituting the assumed solution (3.5.10)

into the homogeneous version of Eq. (3.3.4) in the limit of vanishing flexible stiffness

yields the differential equation

( )
2

2 2
21 2 0V V

x x
ψ ψλ λ ψ∂ ∂

− + + =
∂ ∂

.                       (3.5.16)

over the domain 0 1x≤ ≤ , which is subject to the boundary conditions

( )
( )
0 0

1 0

ψ

ψ

=

=
.                                  (3.5.17)

The solution can be written in the form
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( ) 1 1
1 2

x x
V Vx C e C e

λ λ

ψ
−
+ −= + .                       (3.5.18)

Inserting the first boundary condition into Eq. (3.5.17), we have that 2 1C C= − , so that the

solution reduces to

( ) 1 1
1

x x
V Vx C e e

λ λ

ψ
−
+ −

 
= − 

 
.                       (3.5.19)

On the other hand, introducing the second boundary condition into Eq. (3.5.17), and

avoiding a nontrivial solution, we have the characteristic equation

21 1 1
22 sinh 0

1

V
V V Ve e e

V

λλ λ λ−
+ − −  − = − = − 

                      (3.5.20)

or

2sinh 0
1 V
λ  = − 

                      (3.5.21)

so that the infinite set of eigenvalues becomes

( )21n in Vλ π= − ,                       (3.5.22)

and then the natural frequencies become

( )21n n Vω π= −                       (3.5.23)

where n niλ ω= . The corresponding eigenfunctions are given by

( ) ( )sinin Vx
n nx C e n xπψ π=                      (3.5.24)

where the constants nC  are found by normalizing the eigenfunctions with respect to A

such that 
TR R

n m nmδ=Φ AΦ  or

{ } 0
1

0

I
I R n n

n n n R
n

M
K

ω ψ
ω ψ ψ

ψ
 − 

− =  
   

.                       (3.5.25)



51

Integrating Eq. (3.5.25) over 0 1x≤ ≤  yields

( ) ( )
21 2 2

20
1 1

R
I R n

n n nV dx
x
ψω ψ ψ

 ∂
+ − = ∂ 

∫                       (3.5.26)

where

( ) ( ) ( )cos sinR
n nx C n Vx n xψ π π=                       (3.5.27)

and

( ) ( ) ( )sin sinI
n nx C n Vx n xψ π π= .                       (3.5.28)

After evaluating the integral, the constants nC  are given by

2

1 2
1nC

n Vπ
=

−
                      (3.5.29)

so that the normalized eigenfunctions become

( ) ( )2

1 2 sin
1

in Vx
n x e n x

n V
πψ π

π
=

−
.                       (3.5.30)

By virtue of the expansion theorem, the solution of Eq. (3.5.6) can be assumed as

an eigenfunction expansion

( ) ( ) ( ) ( )
1

N
R R I I
n n n n

n
t x t xξ ξ

=

= +∑w Φ Φ                       (3.5.31)

where ( )R
n tξ  and ( )I

n tξ  are real and generalized coordinates associated with the

eigenfunctions R
nΦ  and I

nΦ , respectively. Also, following Eqs. (3.5.4), (3.5.14), (3.5.15),

and (3.5.31), the time history of the elastic displacement in terms of mode shapes and its

derivative are expressed by

( ) ( ) ( ) ( )
1

N
R R I I
n n n n

n
y t x t xξ ψ ξ ψ

=

= +∑�                                     (3.5.32)

and
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( ) ( ) ( ) ( )
1

N
R I I R
n n n n n n

n
y t x t xξ ω ψ ξ ω ψ

=

= − +∑��                                   (3.5.33)

Inserting the expansion (3.5.31) into the first order formed governing equation (3.5.6)

yields

1 1

N N
R R I I R R I I
n n n n n n n n

n n
ξ ξ ξ ξ

= =

   
+ + + =      

∑ ∑A Φ Φ B Φ Φ q� � .                       (3.5.34)

Multiplying Eq. (3.5.34) on the left by 
TR

mΦ , and taking integrals with respect to x  on

both sides over the web span provide

( )1

0
1

1

0

N T T T TR R R I R I R R R I R I
n m n n m n n m n n m n

n

TR
m

dx

dx

ξ ξ ξ ξ
=

+ + +

=

∑∫

∫

Φ AΦ Φ AΦ Φ BΦ Φ BΦ

Φ q

� �
.          (3.5.35)

Considering the orthogonality properties (3.4.36) to (3.4.38), we have

( ) 1

0
1

N TR I R
n nm n n nm m

n
dxξ δ ω ξ δ

=

− =∑ ∫ Φ q�                       (3.5.36)

or, using Eqs. (3.5.5) and (3.5.14)

R

L

xR I I
m m m m mx

pdxξ ω ξ ω ψ− = −∫� �      = 1, 2, ,  m N… .                       (3.5.37)

By virtue of integral by parts, we have

RR

L L

xxR I I I
m m m m m m mx x

pdx dx dx p
x

ξ ω ξ ω ψ ω ψ∂  − = −  ∂∫ ∫ ∫
�� � ,                       (3.5.38)

and, using Eqs. (3.3.20), (3.3.23), and (3.3.24), it is rewritten as
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2 2

3

2 2

3 3

2 2

2 4 3

2

2 2
8 2

2 3
4

L

L

R I
m m m

in d

x

I in d
m m

x

b C Q yydx
h h

b C QQ h f Q f yydx
x f Qh h

Q Q h f Q yy y
x xh h h

ξ ω ξ

ζρ

ζρω ψ

ρ ρ ρ

∗

∗ ∗

∗∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

− =

     +      
    ∂ ∂  − − + +       ∂ ∂      


 ∂ ∂
+ − − + ∂ ∂ 


∫

∫ ∫

�

�����

���

��� �

2 2

3 2 5

2 2

3 2 2 3

2

2

R

L

L
L

L

R
R L

R

x

x

I in d
m inx

x
x

I in d
m exx

x x
x

dx

ydx b C Qy yQ Q
h h h

ydx b C Qy yQ Q
h h h h

ζ
ψ ζ ρ

ζ
ψ ζ ρ

∗
∗ ∗

∗ ∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗

 
 
 
 
 
 
 
 

 
  


       + + +         
         + + +             

∫

∫∫

∫∫

��� �

��� �










 
 
 
 
 
 
 
 
 
 
 
 



.

           (3.5.39)

Substituting Eqs. (3.5.32) and (3.5.33) into Eq. (3.5.39) yields
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1 1

2 2

3

2 2

3 3

2

2

2 2
8 2

2

R R

L L

L

L

NY NYx xR R I I I I R
m n m n m n n m n m nx x

n n

I
L d n

n
x

R
R I I L d n
n m m n n

x

dx dx
h h

b C Q
h h

b C QQ h f Q f
x f Qh h

Q
h

ρ ρξ ξ ω ω ψ ψ ξ ω ω ψ ψ

ς ρ ψ
ω

ς ψρξ ω ψ ω ψ

ρ ω

∗ ∗
= =

∗

∗ ∗

∗∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

∗

∗

+ − =

 
−  

 

     ∂ ∂  − − + − +     ∂ ∂     

−

∑ ∑∫ ∫ ∫ ∫ ∫ ∫

∫ ∫

� � �

2 2

4 3

2 2

3 2 5

3

3
4

2

R

L

L
L L

L

R
R

x

x

R
I R n

n n n

IR R
nI n in d n

m in nx
x xx

R
I n
m ex nx

x

dx

Q h f Q
x xh h

b C Q
Q Q

h h h

Q Q
h

ψρ ρψ ψ

ψψ ζ ψ
ψ ζ ρ ω

ψψ
ψ ζ ρ ω

∗ ∗ ∗ ∗

∗ ∗

∗
∗ ∗

∗ ∗ ∗

∗ ∗
∗

 
 
 
 
 
 
 
 

  ∂∂ − − +  ∂ ∂  
         + − +             

  + −    

∫

∫∫

∫

1

2 2

2 32

2 2

3

2

3

2

2

2 2
8

LRR

L

NY

n

I R
n in d n

xxx

R
L d n

n
x

I I R L
n m m n n

b C Q
h hh

b C Q
h h

bQ h f Q f
x f Qh

ζ ψ

ς ρ ψ
ω

ςρξ ω ψ ω ψ

=

∗

∗ ∗∗

∗

∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗∗

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         +             

 
 
 

  ∂ ∂
+ − − + +  ∂ ∂  

∑

∫

∫ ∫
2

3

2 2

2 4 3

2 2

3 2 5

2

2 3
4

2

R

L
L

L
L L

L

Ix d n

x
x

I
R I n

n n n

RI I
nI n in d n

m in nx
x xx

C Q
dx

h

Q Q h f Q
x xh h h

b C Q
Q Q

h h h

ψ

ψρ ρ ρω ψ ψ

ψψ ζ ψ
ψ ζ ρ ω

∗

∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗
∗ ∗

∗ ∗ ∗

 
 
 
 

   
       

 
  ∂∂ + − − +  ∂ ∂  

         + + +             

∫

∫∫

1

2 2

3 2 322R
R LRR

NY

n

RI I
nI n in d n

m ex nx
x xxx

I
m m

b C Q
Q Q

h h hh

ψψ ζ ψ
ψ ζ ρ ω

ω ξ

=

∗
∗ ∗

∗ ∗ ∗∗

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
           + + +                  

+

∑

∫∫

.

           (3.5.40)

In a similar manner, multiplying by 
TI

mΦ , and taking integrals over both sides

provide
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( )1

0
1

1

0

N T T T TR I R I I I R I R I I I
n m n n m n n m n n m n

n

TI
m

dx

dx

ξ ξ ξ ξ
=

+ + +

=

∑∫

∫

Φ AΦ Φ AΦ Φ BΦ Φ BΦ

Φ q

� �
,          (3.5.41)

and considering the orthogonality properties (3.4.36) to (3.4.38) gives

( ) 1

0
1

N TI R I
n nm n n nm m

n
dxξ δ ω ξ δ

=

+ =∑ ∫ Φ q�                       (3.5.42)

or, using Eqs. (3.5.5) and (3.5.15),

R

L

xI R R
m m m m mx

pdxξ ω ξ ω ψ+ = ∫� �     = 1, 2, ,  m N… .                                  (3.5.43)

By virtue of integral by parts, we have

RR

L L

xxI R R R
m m m m m m mx x

p dx p
x

ξ ω ξ ω ψ ω ψ∂  + = − +  ∂∫ ∫ ∫
�� � ,                       (3.5.44)

and, using Eqs. (3.3.20), (3.3.23), and (3.3.24), it is rewritten as

2 2

3

2 2

3 3

2 2

2 4 3

2

2 2
8 2

2 3
4

L

L

I R
m m m

in d

x

R in d
m m

x

b C Q yydx
h h

b C QQ h f Q f yydx
x f Qh h

Q Q h f Q yy y
x xh h h

ξ ω ξ

ζρ

ζρω ψ

ρ ρ ρ

∗

∗ ∗

∗∗ ∗ ∗ ∗ ∗

∗ ∗∗ ∗

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

+ =

     +      
    ∂ ∂  − − − + +       ∂ ∂      

 ∂ ∂
+ − − + ∂ ∂ 


∫

∫ ∫

�

�����

���

��� �

2 2

3 2 5

2 2

3 2 2 3

2

2

R

L

L
L

L

R
R L

R

x

x

R in d
m inx

x
x

R in d
m exx

x x
x

dx

ydx b C Qy yQ Q
h h h

ydx b C Qy yQ Q
h h h h

ζ
ψ ζ ρ

ζ
ψ ζ ρ

∗
∗ ∗

∗ ∗ ∗

∗
∗ ∗

∗ ∗ ∗ ∗

 
 
 
 
 
 
 

 
 
  


       + + +         
         + + +             

∫

∫∫

∫∫

��� �

��� �









 
 
 
 
 
 
 
 
 
 
 
 
 



.

                 (3.5.45)

Substituting Eqs. (3.5.32) and (3.5.33) into Eq. (3.5.45) yields
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 
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∫ ∫
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ψψ ζ ψ
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∗ ∗
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 
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 
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 
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 
 
 
 
 
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           (3.5.46)

Therefore, the discrete model of the fluid-structure linear system obtained through

the Galerkin’s method can be expressed in the simple form

DqqC =�                       (3.5.47)
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with 2N  degrees of freedom for the air-web linear system about equilibrium. The vector

q  is the generalized coordinate such that


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=
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q                       (3.5.48)
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and the matrices C  and D  are such that, respectively,

RR RI

IR II

 +
=  + 

I C C
C

C I C
                      (3.5.50)

and

RR RI

IR II

 +
=  − 

D D Ω
D

D Ω D
                                 (3.5.51)

where

I  is the identity matrix,

( )Diag nω=Ω  is the diagonal matrix composed of the natural frequencies of the web,

R

L

xRR I I
mn m n m nx

dx
h
ρω ω ψ ψ∗= ∫ ∫ ∫C ,
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xRI I R
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dx
h
ρω ω ψ ψ∗= − ∫ ∫ ∫C ,

R

L

xIR R I
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dx
h
ρω ω ψ ψ∗= − ∫ ∫ ∫C ,

R

L

xII R R
mn m n m nx

dx
h
ρω ω ψ ψ∗= ∫ ∫ ∫C ,
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with dimension N N× . Elements of these matrices are in terms of the equilibrium web

displacement, air pressure, and expansion functions. Therefore, the equilibrium solutions

are useful to obtain unsteady motions.

Substitution of the solution
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0
teλ=q q                         (3.5.52)

leads to the asymmetric eigenvalue problem such that

00 DqCq =λ                       (3.5.53)

where λ  is the eigenvalue, and 0q  is the eigenvector. Eigensolutions occur in complex

conjugate pairs such that ( )Re λ  represents temporal variation of its amplitude in which

positive values imply instability, and negative values imply dissipation, and ( )Im λ

represents dimensionless modal frequency of the web. The dimensionless frequency is

related to the dimensional circular one (radian), Ω  by

( )Im t mL
t T

λ = Ω = Ω .            (3.5.54)

In particular, if ( )Re 0λ > , and ( )Im 0λ ≠ , a flutter (dynamic instability) occurs in the

system, and if ( )Re 0λ > , and ( )Im 0λ = , a divergence (static instability) occurs.

Substituion of the eigenvectors 0q  into the mode shapes of the web displacement

(3.5.32) provides the responses of the air-web system. The first four mode shapes of the

web over the air bar located at 0.25x =  is superposed at nine time instants during one

period of vibration as plotted in Figure 16. It seems that the node exists around the exit

region of the air-bar head ( 0.4x = ). The strong static pressure is developed at the

cushion region from 0.1Lx =  to 0.4Rx = , and it decays at the ambient (from 0.4x =  to

1x = ).
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CHAPTER  IV

EXPERIMENTS

4.1  Test Setup

Experiments were performed in order to verify the presented theory. A schematic of the

test setup is shown in Figure 17. The characteristics of the plastic web and pressure-pad

air bar are such that

Web:

Mass (per-unit-area) 59.8 10−×  2lb/in

Thickness 0.002 inches

Width 12 inches

Young’s modulus 58.7 10×  psi

Air Bar:

Nozzle width 0.13 inches

Distance between two nozzles 4.5 inches.

Longitudinal pressure distributions on the pressure-pad air bar can be obtained

from 19 pressure taps which are installed in a row on its top surface, and connected to a

Scanivalve system. The Scanivalve system is controlled by a data-acquisition program so

that it can scan and measure each static pressure from the 19 taps.
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Figure 17  Schematic of Experimental Setup

The air dams are installed along both free edges of the web to block air leakage,

and maintain two-dimensional air flows. Aluminum air-bearing bars restrain vertical

motions at the both ends of the web while reducing frictions between the web and bars so

that the web can slide easily. Tension (pound per linear inch, pli) is applied by a weight,
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and can be changed with various weights. A blower with curved blades provides the

supply pressure to the pressure-pad air bar. A variable-frequency inverter (AC drive)

controls the speed of the blower to change supply pressures.

A laser-Doppler vibrometer is used for non-contact measurement of web flutter.

The signal from the laser-Doppler vibrometer is sent to an oscilloscope, and dominant

frequencies are identified through the FFT analysis.

Due to equipment limitations, the tests were performed for stationary webs

floating over air bars. The test variables are the tension, supply pressure, web length, and

vertical and longitudinal location of the pressure-pad air bar.

4.2  Test Results

It was observed that as the pressure supplied to the air bar was increased, the flexible web

was deflected from its initial configuration. Steady deflection starts with pressure

developed by the air jet flowing under the web; it bulges upward. If the supply pressure is

increased further, then the displacement is also increased.

Figure 18 shows that cushion pressure distributions are nearly constant when the

pressure-pad air bar is located at the mid-point of the web span, that is, for symmetric

web profiles. Pressures are shown to increase with tension (because it reduces flotation

heights), which agrees with the ground-effect theory mentioned in Chapter 2. The effect

of supply pressure on the static pressure is shown in Figure 19. The prediction curves

show good agreement with the experiments.
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The effect of tension on the static pressure is presented Figures 20 and 21. The

pressure distributions change along the machine direction x as the air bar moves from the

middle of the web span to the origin. As cx  is smaller, pressure drops around Lx  become

more significant, as shown in Figure 22. It is shown that, at the region after the left-hand

nozzle, the escaping air jet flows through the region with higher velocity than at the other

region because the region has a smaller air gap (flotation height) than the other region.

The air gaps are shown in Figure 23.
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Figure 20  Effect of Tension on Pressure at Cx  = 0.43125
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For equilibrium solutions, the theoretical results show good agreement with the

experimental results. Asymmetric web profiles about the pressure-pad air bar cause the

cushion pressure to change in the longitudinal direction while it is nearly uniform under

symmetric web profiles. It is observed that the pressure variations, especially at the

entrance region of the air-bar head, are strongly related to the web deflection, while the

pressures become almost uniform as the air jet flows to the exit region.

At flow speed higher than a divergence speed, a flutter occurs. The oscillation

amplitude and frequency grow with the supply pressure into a violent flutter, so that the

boundaries between static and dynamic instability can be found. In some cases, a static

deflection is suddenly changed to a flutter by a small increase in the supply pressure. Due
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to the sudden transition, the critical supply pressure can be determined accurately. We

use 0.96in exζ ζ= =  for analytical calculations.

Figure 24 shows the effect of tension on the stability boundary of flutter. The

flutter pressure increases linearly as the web tension becomes higher. The experimental

results are higher that the prediction curves, but they show the same tendency. It is shown

that increasing tension is a factor to suppress the web flutter. It seems that the flutter

frequency also increases with increase in tension and Cx  as plotted Figure 25. However,

the effect of Cx  on the flutter frequency is insignificant as Cx  becomes higher than 0.35.
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As the air bar moves away from the middle of the span along the x  axis, the

flutter pressure becomes reduced as shown in Figure 26; this asymmetry makes the

cushion pressure unstable, and the web is vulnerable to fluttering. It is notable that,

physically, it is impossible to always keep the deflection profile of a web symmetric over

pressure-pad air bars in the air flotation oven.
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The effect of web length on the stability boundaries is shown in Figure 27. As

expected, the longer web tends to be more unstable than the shorter one. Flutter

frequency is sensitive not only to tension but also web length, as shown in Figure 28. It

seems that a longer web has a lower frequency.
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Figures 29 and 30 show the effect of vertical location of the air-bar head on the

web flutter. It seems that δ  has no appreciable effect on the flutter pressure and

frequency under the same tension.
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CHAPTER  V

CONCLUSIONS

The flow-induced vibration of a web floating over a pressure-pad air bar was studied

analytically and experimentally. The equations of motion for the web and air flows were

solved at equilibrium through the Green’s function, and the linearized discrete model was

obtained through the Galerkin’s method. The equilibrium solutions of web deflection and

air pressure provide good agreement with experimental results, and explain the relations

between the deflection, cushion pressure, tension, and location of the air bar, which

follows the results of ground-effect theories. The equilibrium solution is embedded into

the discrete model for finding flutter criteria. The theoretical model was solved through

numerical implementation for a number of cases.

Experiments were performed to verify the presented theory. It is found that

divergence-type instability (unsymmetrical static deflection) and flutter-type instability

(vibration) both occur in the web due to the air-jet flow. Computed stability criteria were

compared with experiments. The experimental results for both static deflection and flutter

have the same trends as the theory. Primary theoretical variables are supply pressure,

tension, web span, and location of the pressure-pad-air bar. It is shown that the variables

significantly affect the dynamic characteristics of the web, and flutter depends strongly

on flow speed and web deflection. Flutter can be controlled by increasing tension,

shortening the span, and (for a single span) centering the air-bar location. Except for
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small discrepancies, it is shown that the developed theory is useful to predict equilibrium

and dynamic solutions for a web floating over a pressure-pad air bar.

Both the computational and the experimental studies show a substantially lower

flutter threshold for unsymmetrical web paths. Since asymmetry is empirically observed

in air-flotation ovens, this has important application to drying, where flutter is detrimental

to wet coatings or ink.

The theory used to develop the computations was well supported by the

experimental results, and may be used to determine acceptable air pressure after the

amount of asymmetry has been estimated. Furthermore, the same theoretical and

computational approach could be used for multi-bar analysis.
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APPENDIX  A

 DERIVATION OF FRICTION FACTORS

Approximate methods to provide a better equivalent circular pipe dimension have been

developed to evaluate friction factors for laminar and tubulent flows in noncircular ducts.

The most general and simple methods are to compute equivalent diameters, i.e., hydraulic

diameter (Gerhart and Gross, 1985; Blevins, 1992) and effective diameter (Jones, 1976;

Gerhart and Gross, 1985; Blevins, 1992) for ducts to apply the friction factor f  formula

for circular pipes using equivalent diameters instead of the pipe diameters.

For laminar flow ( Re 2000d < ) in pipes where d is the pipe diameter, each

definition for the friction factors of the hydraulic diameter hD  and the effective diameter

eD  can be given by, respectively,

Reh

kf =       (A.1)

and

64
Ree

f =       (A.2)

where k  is the friction coefficient which can be found exactly by solving the Poisson

(elliptic) equation over the cross section. The friction coefficient is dependent only on the

shapes of the cross section. Reh  and Ree  are the Reynolds numbers for hD  and eD ,

respectively, defined by
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Re h ave
h

D u
ν

=          (A.3)

and

Re e ave
e

D u
ν

= .       (A.4)

The hydraulic diameter hD  and the effective diameter eD  are defined by, respectively,

P
ADh

4
=       (A.5)

and

he D
k

D 64
=          (A.6)

where A  is the flow area of cross section, and P  is the wetted perimeter of cross section.

For a high aspect ratio rectangle (very wide channel), it is given that 96k =  and

2hD h=  where h is the height of the channel. Both the hydraulic diameter method (using

Eqs. (A.1), (A.3), and (A.5)) and the hydraulic diameter method (using Eqs. (A.2), (A.4),

and (A.6)) give the same friction factor

48
Re

f =       (A.7)

where

Re avehu Q
ν ν

= = .       (A.8)

For turbulent flow ( 54000 Re 10d< < ), f  in smooth pipes was approximated by H.

Blasius

0.25

0.316
Reh

f ≈     or    0.25

0.316
Ree

f ≈ .       (A.9)
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Using the hydraulic diameter to evaluate the friction factor gives

0.25

0.266
Re

f = ,               (A.10)

and, for the effective diameter, we have

0.25

0.294
Re

f =   (A.11)

where 96k =  and 2hD h=  are used to evaluate f . As shown, each method leads to the

different f  but the discrepancy between them is relatively small. Taking an average of

the two friction factors gives (Wu and Kaneko, 2003)

0.25

0.280
Re

f =   (A.12)
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APPENDIX  B

CONSTRUCTION OF THE GREEN’S FUNCTION

Green’s function for the elastic equation (3.2.1) is constructed by solving the equation

( )
4 2

2
4 2 2

1G G x
x x D

α δ ξ∂ ∂
− = −

∂ ∂
,            (B.1)

which has the concentrated load at L Rx x xξ≤ = ≤ , where DV 21−=α . Because of

the Dirac delta function, we have two solutions to Eq. (B.1) as follows:

( ) ( )
( ) ( )

1 1 1 1 1

2 2 2 2 2

,        

,      

x x

x x

G x A B x C e D e x

G x A B x C e D e x

α α

α α

ξ

ξ

−

−

= + + + <

= + + + >
      (B.2)

which are subject to the conditions as discussed in Sec. 3.2

( ) ( )
( ) ( )

1 1

2 2

0 0 0

1 1 0

G G

G G

′′= =

′′= =
               (B.3)

( ) ( )
( ) ( )
( ) ( )

1 2

1 2

1 2

G G

G G

G G

ξ ε ξ ε

ξ ε ξ ε

ξ ε ξ ε

− = +

′ ′− = +

′′ ′′− = +

       (B.4)

( ) ( )2 1 2

1G G
D

ξ ξ′′′ ′′′− = .          (B.5)

For convenience, derivatives with respect to x  of Eq. (B.2) are presented as follows:

( )
( )

1 1 1 1

2 2 2 2

x x

x x

G x B C e D e

G x B C e D e

α α

α α

α α

α α

−

−

′ = + −

′ = + −
      (B.6)
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( )
( )

2 2
1 1 1

2 2
2 2 2

x x

x x

G x C e D e

G x C e D e

α α

α α

α α

α α

−

−

′′ = +

′′ = +
                (B.7)

( )
( )

3 3
1 1 1

3 3
2 2 2

x x

x x

G x C e D e

G x C e D e

α α

α α

α α

α α

−

−

′′′ = −

′′′ = −
.             (B.8)

Applying the conditions (B.3) into Eqs. (B.2) and (B.7) yields

( )
( )

1 1 1 1

2 2
1 1 1

0 0

0 0

G A C D

G C Dα α

= + + =

′′ = + =
      (B.9)

( )
( )

2 2 2 2 2

2 2
2 2 2

1 0

1 0

G A B e C e D

G e C e D

α α

α αα α

−

−

= + + + =

′′ = + =
   (B.10)

so that, from Eqs. (B.9) and (B.10), we have, respectively,

1

1 1

0A
D C
=
= −

   (B.11)

and

2 2
2

2 2

B A

D e Cα
= −

= −
.    (B.12)

By virtue of Eqs. (B.11) and (B.12), applying the conditions (B.4) into Eqs. (B.2),

(B.6), and (B.7) gives

( ) ( ) ( ) ( ) ( )2
1 1 1 2 2 21G B e e C A e e e C Gαξ αξ αξ α αξξ ξ ξ ξ− −= + − = − + − =  (B.13)

( ) ( ) ( ) ( )2
1 1 1 2 2 2G B e e C A e e e C Gαξ αξ αξ α αξξ α α ξ− −′ ′= + + = − + + =   (B.14)

( ) ( ) ( ) ( )2 2 2
1 1 2 2G e e C e e e C Gαξ αξ αξ α αξξ α α ξ− −′′ ′′= − = − =    (B.15)

so that, from Eq. (B.15), we have

( )2 1
sinh

sinh 1
eC C

α αξ
α ξ

−

= −
−

.     (B.16)
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In order to eliminate 2A , mutiplying Eq. (B.14) by 1 ξ− , adding the resultant equation

and Eq. (B.13), and substitutng Eq. (B.16) yield 1B  in terms of 1C

( ) ( )1 1
sinh2 1

sinh 1
B Cαα ξ

α ξ
= − −

−
    (B.17)

so that 2A  is expressed also in terms of 1C  by substituting Eqs. (B.16) and (B.17) into

Eq. (B.14)

( )2 1
sinh2

sinh 1
A Cααξ

α ξ
= −

−
.   (B.18)

Now all coefficients are expressed in terms of 1C  so that 1C  needs to be

evaluated. Applying the condition (B.5) into Eq. (B.8) gives

3 3 3 3
2 2 1 1 2

1e C e D e C e D
D

αξ αξ αξ αξα α α α− −− − + =   (B.19)

so that, using Eqs. (B.11), (B.12), and (B.16), Eq. (B.19) is solved

( )
1 3 2

sinh 11
2 sinh

C
D

α ξ
α α

−
= − .    (B.20)

For convenience, all evaluated coefficients are presented as follows:

( )

( )

1

1 2 2

1 3 2

1 3 2

0
1

sinh 11
2 sinh

sinh 11
2 sinh

A

B
D

C
D

D
D

ξ
α

α ξ
α α

α ξ
α α

=
−

=

−
= −

−
=

      and      

2 2 2

2 2 2

2 3 2

2 3 2

sinh
2 sinh

sinh
2 sinh

A
D

B
D

eC
D
eD

D

α

α

ξ
α

ξ
α

αξ
α α

αξ
α α

−

=

= −

=

= −

.   (B.21)

Substitution of all coefficients (B.21) into Eq. (B.2) provides the Green’s function
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( ) ( ) ( )
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( ) ( )
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1 1

2

sinh 11 1 sinh
1 sinh

1 11
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x x

G x x x
V
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V e e
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ξ α

α α

ξ
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− 
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, ( )x ξ<  (B.22)

and

( ) ( ) ( )

( ) ( ) ( )( )

2 2

1 1
2

1 sinh1 sinh 1
1 sinh

1 11
1 2

x x

G x x x
V

e ex e e
V e e

αξ αξ
α α

α α

αξξ α
α α

ξ
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−
− − −

−
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 −
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, ( )x ξ>  (B.23)

or, using the Heaviside function,

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

sinh 1 sinh1, 1
1 sinh

sinh sinh 11 1
1 sinh

x
G x x x

V

x
x x

V

α ξ α
ξ ξ ξ

α α

αξ α
ξ ξ

α α

− 
= − − Η − −  

− 
+ − − Η − −  

.   (B.24)

For a certain large value of α , computers cannot manage to evaluate hyperbolic

functions because they have exponential functions. To avoid this difficulty, it is necessary

for Eq. (B.24) to be modified to make exponential terms’ exponents be negative

( ) ( ) ( )( )
( )

( ) ( )( ) ( )

( )
( ) ( )

( ) ( )( ) ( )

1 1
2 2

1 1

2 2

sinh 11 1
1 1

1 1 sinh 1
1 1

x xG x x e e x
V e

e ex x x
V e

α α
α

α ξ α ξ

α

α ξ
ξ ξ

α

ξ α ξ
α

− − − +

−

− − − +

−

 −
 = − − − Η −
 − − 
 − + − − − Η −
 − − 

.  (B.25)

Also, its derivative with respect to x  is given by

( ) ( )( ) ( ) ( )( ) ( )

( ) ( )

( )( ) ( )

1 1
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V e

α α
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−
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−

 −∂
= − − + Η −  ∂ − − 

 −
+ − + − Η −  − − 

.  (B.26)
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APPENDIX  C

NUMERICAL ANALYSIS FOR EQUILIBRIUM SOLUTIONS

At the spatial nodes  = 1, 2, , n N… ,

( ) ( )1 1
1

R L
n L L

x xx x n x x n
N
−

= + − = + ∆ −
−

,       (C.1)

Eqs. (3.2.22) and (3.2.24) can be discretized with the forward-difference method and

trapezoidal rule as follows:

for  = 1, 2, , -1n N… ,
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,          (C.2)

and for n N= ,
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where
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( )
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48 ,            for laminar flow
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.       (C.6)

Therefore, 1N −  nonlinear algebraic equations in np∗  are provided for the points

 = 1, 2, , -1n N… , and one boundary condition for n N= .

The equilibrium solution can be found numerically by the Newton-Raphson

method whose calculation scheme is given by

( )( ) ( )1

new old old old
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where ( )1 2, ,..., Np p p∗ ∗ ∗f  is the set of nonlinear equations such that
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and ∇  is the Jacobian operator so that
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where
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0.21875 ,      for turbulent flow
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 ( )2 122 2
0 ,d NbC hm

N d N N mC bC p xh e G x x
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The calculation starts with initial guess values of pressure, and then it continues

iterating until the error 
2

new old
∗ ∗−∑ p p  approaches within the tolerance 1510− .
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APPENDIX  D

COMPUTER CODE

The code is written in MATLAB. This provides equilibrium solutions (web deflection

and air pressure), and solves the eigenvalue problem for the air-web system.

clear all;
format compact;
format short;

% Number of node and mode

n = 101;      % node points
N = 4;      % mode number

% Web properties

L = 15*0.0254;      % variable length [m]
t = 0.002*0.0254; % thickness [m]
w = 12*0.0254; % width [m]
M = 0.0689; % web mass-per-unit-area [Kg/m2]
v = 0; % velocity [m/s]
W = 2; % variable weight [lb]
T = 4.448222*W/w; % tension-per-unit-width [N/m]
E = 6*10^9; % Young’s modulus [Pa]
EI = E*t^3/(12*(1-0.4^2)); % flexural rigidity-per-unit-width [N*m]

% Air-bar properties

b = 0.13*0.0254; % nozzle thickness [m]
aw = 4.5*0.0254; % air-bar width [m]
p0 = 6894.757*0.1; % variable supply pressure [Pa]
rho = 1.21; % air density [kg/m3]
nu = 1.514*10^(-5); % kinematic viscosity [m2/s]

% Dimensionless parameters

B = b/L; % nondimensional nozzle thickness
delta = 0/l; % nondimensional delta
D = sqrt(EI/(T*L^2)); % nondimensional flexural rigidity
V = v*sqrt(M/T); % nondimensional web velocity



92

P0 = p0*L/T; % nondimensional supply pressure
a = sqrt(1-V^2)/D; % nondimensional parameter
Rho = rho*L/M; % nondimensional air density
Nu = nu*sqrt(M/(T*L^2)); % nondimensional kinematic viscosity
C = 0.85; % nozzle discharge coefficient
etaL = 0.96; % pressure loss coefficient at the inlet
etaR = 0.96; % pressure loss coefficient at the outlet
mu = 1.0; % acceleration factor for convergence

% Air-bar location

xc = 0.35;
xs = (L*xc-aw/2)/L;
xe = (L*xc+aw/2)/L;

% Building nodes

pt = 1:n;
x = xs+(xe-xs)*(pt-1)./(n-1);
dx = (xe-xs)/(n-1);

% Building the Green’s function

G = zeros(n,n);
Gx = zeros(n,n);

for i = 1:n
   for j = 1:n
      if i <= j
         G(i,j) = 1/(1-V^2)*((1-x(j))*x(i)-sinh(a*(1-x(j)))*(exp(-a*(1-x(i)))-exp(-a*(1+x(i))))
                      /(a*(1-exp(-2*a))));
         Gx(i,j) = 1/(1-V^2)*(1-x(j)-sinh(a*(1-x(j)))*(exp(-a*(1-x(i)))+exp(-a*(1+x(i))))/(1-exp(-2*a)));
      else
         G(i,j) = 1/(1-V^2)*(x(j)*(1-x(i))-(exp(-a*(1-x(j)))-exp(-a*(1+x(j))))
                      *sinh(a*(1-x(i)))/(a*(1-exp(-2*a))));
         Gx(i,j) = 1/(1-V^2)*(-x(j)+(exp(-a*(1-x(j)))-exp(-a*(1+x(j))))*cosh(a*(1-x(i)))/(1-exp(-2*a)));
      end
   end
end

% Calculating equilibrium solutions (web displacement and air pressure)

F = zeros(n,1);
P = ones(n,1);

error = 1;
it = 0;
while ((10e-15<error) & (it < 10))
    it = it + 1

    Y = zeros(n,1);
    Yx = zeros(n,1);

    for i = 1:n
       for j = 1:n-1
           temp1 = (x(j+1)-x(j))/2*(G(i,j+1)*P(j+1)+G(i,j)*P(j));
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           Y(i) = Y(i)+temp1;

           temp2 = (x(j+1)-x(j))/2*(Gx(i,j+1)*P(j+1)+Gx(i,j)*P(j));
           Yx(i) = Yx(i)+temp2;
       end
    end

    H(1:n) = Y(1:n) - delta;
    U = C^2*sqrt(2*(P0-0.5*P(1))/Rho);
    Q = B*U;
    f = 0.28./(Q/Nu).^0.25;

    C1(1:n-1) = B^2*C^2*dx*(Y(1:n-1)-delta).^(-3).*(P0-0.5*P(1)).*(Yx(1:n-1)-0.25*f);
    C2(1:n-1) = B^2*C^2*dx^2*(Y(1:n-1)-delta).^(-4).*(P0-0.5*P(1));
    C3(1:n-1) = 3*Yx(1:n-1)-0.75*f;
    C4(1:n-1) = B^2*C^2*dx*(Y(1:n-1)-delta).^(-3).*(Yx(1:n-1)-0.21875*f);
    C5(n) = B*C^2*P0*dx*(Y(n)-delta).^(-2)*exp(-2*B*C^2*(Y(n)-delta).^(-1));

    F(1:n-1) = P(2:n)-P(1:n-1)-2*C1(1:n-1)';
    F(n) = P(n)-P0*(1-exp(-2*B*C^2*(Y(n)-delta).^(-1)));

    dF = zeros(n,n);
    for i = 1:n-1
       dF(i,1) = C2(i)*(C3(i)*G(i,1)-Y(i)*Gx(i,1))+C4(i);
       dF(i,2:n-1) = 2*C2(i)*(C3(i)*G(i,2:n-1)-Y(i)*Gx(i,2:n-1));
       dF(i,n) = C2(i)*(C3(i)*G(i,n)-Y(i)*Gx(i,n));
    end

       dF(n,1) = C5(n)*G(n,1);
       dF(n,2:n-1) = 2*C5(n)*G(n,2:n-1);
       dF(n,n) = 1+C5(n)*G(n,n);

    dF = dF+sparse(1:n-1,1:n-1,-1,n,n)+sparse(1:n-1,2:n,1,n,n);
    dP = inv(dF)*(0-F);
    P = P + mu*dP;
    error = norm(dP)
end

% Building eigenfunctions

psir = zeros(n,N);
psirx = zeros(n,N);
psii = zeros(n,N);
psiix = zeros(n,N);

for i = 1:n
    for j = 1:N
        psir(i,j) = 1/(j*pi)*sqrt(2/(1-V^2))*sin(j*pi*x(i))*cos(j*pi*V*x(i));
        psirx(i,j) = sqrt(2/(1-V^2))*(cos(j*pi*x(i))*cos(j*pi*V*x(i))-V*sin(j*pi*x(i))*sin(j*pi*V*x(i)));
        psirI(i,j) = -1/(j*pi)^2*sqrt(2/(1- V^2)^3)*(cos(j*pi*x(i))*cos(j*pi*V*x(i))
                         +V*sin(j*pi*x(i))*sin(j*pi*V*x(i)));

        psii(i,j) = 1/(j*pi)*sqrt(2/(1-V^2))*sin(j*pi*x(i))*sin(j*pi*V*x(i));
        psiix(i,j) = sqrt(2/(1-V^2))*(cos(j*pi*x(i))*sin(j*pi*V*x(i))+V*sin(j*pi*x(i))*cos(j*pi*V*x(i)));
        psiiI(i,j) = -1/(j*pi)^2*sqrt(2/(1-V^2)^3)*(cos(j*pi*x(i))*sin(j*pi*V*x(i))
                         -V*sin(j*pi*x(i))*cos(j*pi*V*x(i)));
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    end
end

% Building the eigenvalue problem

Crr = zeros(N,N);
Cri = zeros(N,N);
Cir = zeros(N,N);
Cii = zeros(N,N);
Drr = zeros(N,N);
Dri = zeros(N,N);
Dir = zeros(N,N);
Dii = zeros(N,N);

for i = 1:N
    for j = 1:N
        for k = 1:n-1
            temp3 = (x(k+1)-x(k))/2*i*pi*(1-V^2)*j*pi*(1-V^2)*(psiiI(k+1,i)*Rho/H(k+1) *psiiI(k+1,j)
                          +psiiI(k,i)*Rho/H(k)*psiiI(k,j));
            Crr(i,j) = Crr(i,j)+temp3;

            temp4 = -(x(k+1)-x(k))/2*i*pi*(1-V^2)*j*pi*(1-V^2)*(psiiI(k+1,i)*Rho/H(k+1)*psirI(k+1,j)
                          +psiiI(k,i)*Rho/H(k)*psirI(k,j));
            Cri(i,j) = Cri(i,j)+temp4;

             temp5 = -(x(k+1)-x(k))/2*i*pi*(1-V^2)*j*pi*(1-V^2)*(psirI(k+1,i)*Rho/H(k+1)*psiiI(k+1,j)
                          +psirI(k,i)*Rho/H(k)*psiiI(k,j));
            Cir(i,j) = Cir(i,j)+temp5;

            temp6 = (x(k+1)-x(k))/2*i*pi*(1-V^2)*j*pi*(1-V^2)*(psirI(k+1,i)*Rho/H(k+1)*psirI(k+1,j)
                          +psirI(k,i)*Rho/H(k)*psirI(k,j));
            Cii(i,j) = Cii(i,j)+temp6;

            temp7 = (x(k+1)-x(k))/2*i*pi*(1-V^2)*(psiiI(k+1,i)*(-j*pi*(1-V^2) *etaL*Rho*(B*C)^2*Q
                          *psii(1,j)/(2*H(k+1)*H(1)^3) -2*Rho*Q/H(k+1)^3*(Yx(k+1)-f/8*1.75) *(-j*pi*(1-V^2)
                          *psiiI(k+1,j)+etaL*(B*C)^2*Q*psir(1,j)/(2*H(1)^3))-2*Rho*Q/H(k+1)^2*j*pi*(1-V^2)
                          *psii(k+1,j)-3*Rho*Q^2/H(k+1)^4*(Yx(k+1)- f/4)*psir(k+1,j)+Rho*Q^2/H(k+1)^3
                          *psirx(k+1,j))+psiiI(k,i)*(-j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q*psii(1,j)/(2*H(k)*H(1)^3)
                           -2*Rho*Q/H(k)^3*(Yx(k)-f/8*1.75)*(-j*pi*(1- V^2)*psiiI(k,j) +etaL*(B*C)^2*Q*psir(1,j)
                          /(2*H(1)^3))- 2*Rho*Q/H(k)^2*j*pi*(1-V^2)*psii(k,j)-3*Rho*Q^2/H(k)^4*(Yx(k)-f/4)
                         *psir(k,j)+Rho*Q^2/H(k)^3*psirx(k,j)));
            Drr(i,j) = Drr(i,j)+temp7;

            temp8 = (x(k+1)-x(k))/2*i*pi*(1-V^2)*(psiiI(k+1,i)*(j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q
                          *psir(1,j)/(2*H(k+1)*H(1)^3)-2*Rho*Q/H(k+1)^3*(Yx(k+1)-f/8*1.75)*(j*pi*(1-V^2)
                          *psirI(k+1,j)+etaL*(B*C)^2*Q*psii(1,j)/(2*H(1)^3))+2*Rho*Q/H(k+1)^2*j*pi*(1-V^2)
                          *psir(k+1,j)-3*Rho*Q^2/H(k+1)^4*(Yx(k+1)-f/4)*psii(k+1,j)+Rho*Q^2/H(k+1)^3
                          *psiix(k+1,j))+psiiI(k,i)*(j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q*psir(1,j)/(2*H(k)*H(1)^3)
                           -2*Rho*Q/H(k)^3*(Yx(k)-f/8*1.75)*(j*pi*(1-V^2)*psirI(k,j)+etaL*(B*C)^2*Q*psii(1,j)
                          /(2*H(1)^3))+2*Rho*Q/H(k)^2*j*pi*(1-V^2)*psir(k,j)-3*Rho*Q^2/H(k)^4*(Yx(k)-f/4)
                         *psii(k,j)+Rho*Q^2/H(k)^3*psiix(k,j)));
            Dri(i,j) = Dri(i,j)+temp8;

            temp9 = -(x(k+1)-x(k))/2*i*pi*(1-V^2)*(psirI(k+1,i)*(-j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q
                          *psii(1,j)/(2*H(k+1)*H(1)^3)-2*Rho*Q/H(k+1)^3*(Yx(k+1)-f/8*1.75)*(-j*pi*(1-V^2)
                          *psiiI(k+1,j)+etaL*(B*C)^2*Q*psir(1,j)/(2*H(1)^3))-2*Rho*Q/H(k+1)^2*j*pi*(1-V^2)
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                          *psii(k+1,j)-3*Rho*Q^2/H(k+1)^4*(Yx(k+1)-f/4)*psir(k+1,j)+Rho*Q^2/H(k+1)^3
                          *psirx(k+1,j))+psirI(k,i)*(-j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q*psii(1,j)/(2*H(k)*H(1)^3)
                           -2*Rho*Q/H(k)^3*(Yx(k)-f/8*1.75)*(-j*pi*(1-V^2)*psiiI(k,j)+etaL*(B*C)^2*Q*psir(1,j)
                           /(2*H(1)^3))-2*Rho*Q/H(k)^2*j*pi*(1-V^2)*psii(k,j)-3*Rho*Q^2/H(k)^4*(Yx(k)-f/4)
                          *psir(k,j)+Rho*Q^2/H(k)^3*psirx(k,j)));
            Dir(i,j) = Dir(i,j)+temp9;

            temp10 = -(x(k+1)-x(k))/2*i*pi*(1-V^2)*(psirI(k+1,i)*(j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q
                            *psir(1,j)/(2*H(k+1)*H(1)^3)-2*Rho*Q/H(k+1)^3*(Yx(k+1)-f/8*1.75)*(j*pi*(1-V^2)
                            *psirI(k+1,j)+etaL*(B*C)^2*Q*psii(1,j)/(2*H(1)^3))+2*Rho*Q/H(k+1)^2*j*pi*(1-V^2)
                            *psir(k+1,j)-3*Rho*Q^2/H(k+1)^4*(Yx(k+1)-f/4)*psii(k+1,j)+Rho*Q^2/H(k+1)^3
                            *psiix(k+1,j))+psirI(k,i)*(j*pi*(1-V^2)*etaL*Rho*(B*C)^2*Q*psir(1,j)/(2*H(k)* H(1)^3)
                            -2*Rho*Q/H(k)^3*(Yx(k)-f/8*1.75)*(j*pi*(1-V^2)*psirI(k,j)+etaL*(B*C)^2*Q*psii(1,j)
                            /(2*H(1)^3))+2*Rho*Q/H(k)^2*j*pi*(1-V^2)*psir(k,j)-3*Rho*Q^2/H(k)^4*(Yx(k)-f/4)
                            *psii(k,j)+Rho*Q^2/H(k)^3*psiix(k,j)));
            Dii(i,j) = Dii(i,j)+temp10;
        end
    end
end

for i = 1:N
    for j = 1:N
        Drr1(i,j) = i*pi*(1-V^2)*Rho*Q*(psiiI(1,i)*etaL*(Q*psir(1,j)/H(1)^3-j*pi*(1-V^2)*psiiI(1,j)/H(1)^2
                         +etaL*(B*C)^2*Q*psir(1,j)/(2*H(1)^5))+psiiI(n,i)*etaR*(Q*psir(n,j)/H(n)^3-j*pi*(1-V^2)
                         *psiiI(n,j)/H(n)^2+etaL*(B*C)^2*Q*psir(1,j)/(2*H(n)^2*H(1)^3)));
        Dri1(i,j) = i*pi*(1-V^2)*Rho*Q*(psiiI(1,i)*etaL*(Q*psii(1,j)/H(1)^3+j*pi*(1-V^2)*psirI(1,j)/H(1)^2
                         +etaL*(B*C)^2*Q*psii(1,j)/(2*H(1)^5))+psiiI(n,i)*etaR*(Q*psii(n,j)/H(n)^3+j*pi*(1-V^2)
                         *psirI(n,j)/H(n)^2+etaL*(B*C)^2*Q*psii(1,j)/(2*H(n)^2*H(1)^3)));
        Dir1(i,j) = -i*pi*(1-V^2)*Rho*Q*(psirI(1,i)*etaL*(Q*psir(1,j)/H(1)^3-j*pi*(1-V^2)*psiiI(1,j)/H(1)^2
                         +etaL*(B*C)^2*Q*psir(1,j)/(2*H(1)^5))+psirI(n,i)*etaR*(Q*psir(n,j)/H(n)^3-j*pi*(1-V^2)
                         *psiiI(n,j)/H(n)^2+etaL*(B*C)^2*Q*psir(1,j)/(2*H(n)^2*H(1)^3)));
        Dii1(i,j) = -i*pi*(1-V^2)*Rho*Q*(psirI(1,i)*etaL*(Q*psii(1,j)/H(1)^3+j*pi*(1-V^2)*psirI(1,j)/H(1)^2
                        +etaL*(B*C)^2*Q*psii(1,j)/(2*H(1)^5))+psirI(n,i)*etaR*(Q*psii(n,j)/H(n)^3+j*pi*(1-V^2)
                        *psirI(n,j)/H(n)^2+etaL*(B*C)^2*Q*psii(1,j)/(2*H(n)^2*H(1)^3)));
    end
end

Drr2 = Drr + Drr1;
Dri2 = Dri + Dri1;
Dir2 = Dir + Dir1;
Dii2 = Dii + Dii1;

MC = zeros(2*N,2*N);
MD = zeros(2*N,2*N);

for i = 1:N
    MC(i,1:N) = Crr(i,1:N);
    MC(i,N+1:2*N) = Cri(i,1:N);
    MC(N+i,1:N) = Cir(i,1:N);
    MC(N+i,N+1:2*N) = Cii(i,1:N);
    MD(i,1:N) = Drr2(i,1:N);
    MD(i,N+1:2*N) = Dri2(i,1:N);
    MD(N+i,1:N) = Dir2(i,1:N);
    MD(N+i,N+1:2*N) = Dii2(i,1:N);
end
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MC = MC+sparse(1:2*N,1:2*N,1,2*N,2*N);
MD = MD+sparse(1:N,N+1:2*N,(1:N)*pi*(1-V^2),2*N,2*N)
          +sparse(N+1:2*N,1:N,-(1:N)*pi*(1-V^2),2*N,2*N);

% Solving the eigenvalue problem

[Ve,Va]=eig(MD,MC,'qz');

[y,I]=sort(diag(Va))
plot(diag(real(Va)),diag(imag(Va)),'o')
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