
POLYHEDRAL COMBINATORICS, COMPLEXITY &

ALGORITHMS FOR k-CLUBS IN GRAPHS

By

FOAD MAHDAVI PAJOUH

Bachelor of Science in Industrial Engineering
Sharif University of Technology

Tehran, Iran
2004

Master of Science in Industrial Engineering
Tarbiat Modares University

Tehran, Iran
2006

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

July, 2012

COPYRIGHT c©

By

FOAD MAHDAVI PAJOUH

July, 2012

POLYHEDRAL COMBINATORICS, COMPLEXITY &

ALGORITHMS FOR k-CLUBS IN GRAPHS

Dissertation Approved:

Dr. Balabhaskar Balasundaram

Dissertation Advisor

Dr. Ricki Ingalls

Dr. Manjunath Kamath

Dr. Ramesh Sharda

Dr. Sheryl Tucker

Dean of the Graduate College

iii

Dedicated to my parents

iv

ACKNOWLEDGMENTS

I would like to wholeheartedly express my sincere gratitude to my advisor, Dr.

Balabhaskar Balasundaram, for his continuous support of my Ph.D. study, for his

patience, enthusiasm, motivation, and valuable knowledge. It has been a great honor

for me to be his first Ph.D. student and I could not have imagined having a better

advisor for my Ph.D. research and role model for my future academic career. He

has not only been a great mentor during the course of my Ph.D. and professional

development but also a real friend and colleague. I hope that I can in turn pass on

the research values and the dreams that he has given to me, to my future students.

I wish to express my warm and sincere thanks to my wonderful committee mem-

bers, Dr. Ricki Ingalls, Dr. Manjunath Kamath and Dr. Ramesh Sharda for their

support, guidance and helpful suggestions throughout my Ph.D. research and appli-

cations for academic positions. Their guidance and support served me well and I owe

them my heartfelt appreciation.

I am also deeply grateful to Dr. Illya V. Hicks, Dr. Sergiy Butenko, Dr. Oleg

Prokopyev, Dr. Vladimir Boginski, for advising me and supporting me in my research

and during my search for a faculty position. I consider myself truly lucky to be able

to receive guidance and support from these great and knowledgable individuals.

The School of Industrial Engineering and Management (IE&M) at Oklahoma State

University (OSU) continuously supported my Ph.D. study and provided me with won-

derful opportunities for professional development. I owe my sincere gratitude to Dr.

William J. Kolarik, Head of IE&M department, for supporting me to pursue my Ph.D.

in the Operations Research area, and also providing me with several opportunities to

v

teach in IE&M department.

My warm thanks are due to efficient and friendly administrative staff at IE&M

department. I want to specially thank Mindy Bumgarner, Melissa Miller and Lyndsey

Wenninger for their help and support during my Ph.D. study at OSU.

I wish to also thank Esmaeel Moradi, Zhuqi Miao and Juan Ma for being wonderful

friends and great colleagues in our research group at OSU.

This Ph.D. dissertation research was partially sponsored by U.S. Department of

Energy grant DE-SC0002051. This financial support is greatly appreciated. Some of

the computational experiments discussed in this dissertation were performed at the

OSU High Performance Computing Center. I am grateful to Dr. Dana Brunson for

her support in conducting these experiments.

Words cannot express the love I have for my parents. I wish to express my heartfelt

gratitude to my parents, Rouhollah Mahdavi Pajouh and Manijeh Keyhanshekouh,

for their never-ending love, support and encouragement. I am forever indebted to my

parents and wish I could show them just how much I love and appreciate them. Last

but not the least, I want to deeply thank my lovely wife, Pia Guyman, for her faithful

support, encouragement and patience. Her presence and companionship has turned

my journey through this Ph.D. program into a pleasure. For all that, and for giving

me life and her heart, she has my everlasting love.

vi

TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 1

1.1 Graph models of data . 1

1.2 Cluster models in graphs . 3

1.3 Notations and definitions . 4

1.4 Applications of k-clubs . 8

2 BACKGROUND 12

2.1 Complexity and approximation . 12

2.2 Polyhedral combinatorics . 14

2.3 Algorithms . 17

2.4 Research statement . 17

2.5 Outline of the dissertation . 19

3 COMPLEXITY OF k-CLUB MAXIMALITY TESTING 20

3.1 The nonhereditary nature of k-clubs 20

3.2 NP-completeness of k-club maximality testing 21

3.3 Some implications of Theorem 4 . 28

3.4 Graphs on which k-club maximality is polynomially verifiable 30

4 COMBINATORIAL BRANCH-AND-BOUND FOR THE MAXI-

MUM k-CLUB PROBLEM 34

4.1 Bounding strategies for the k-club number of a graph 36

4.1.1 Distance k-coloring based upper-bounding technique 36

vii

4.1.2 Bounded enumeration based lower-bounding technique 37

4.2 Branch-and-bound framework to find the k-club number of a graph . 39

4.3 Implementation details and computational test results 42

4.3.1 Experiments with the lower-bounding techniques 44

4.3.2 Experiments with the branch-and-bound framework 45

5 THE 2-CLUB POLYTOPE 51

5.1 Independent 2-dominating set inequalities 52

5.2 Independent 2-dominating set inequalities separation complexity . . . 55

5.3 The 2-club polytope of trees . 59

5.4 Odd-mod-3 cycles . 65

6 MAXIMUM 2-CLUBS UNDER UNCERTAINTY 67

6.1 Background on Conditional Value-at-Risk (CVaR) 67

6.1.1 CVaR minimization . 68

6.1.2 CVaR constrained optimization 70

6.2 The CVaR constrained maximum 2-club problem 71

6.3 A decomposition algorithm . 74

6.4 A brief numerical study . 80

7 CONTRIBUTIONS AND FUTURE WORK 85

7.1 Contributions . 85

7.2 Future work . 86

BIBLIOGRAPHY 88

A PROOF OF CLAIMS 1-3 IN SECTION 3.2 98

B DETAILED NUMERICAL RESULTS OF THE COMPUTATIONAL

EXPERIMENTS DESCRIBED IN SECTION 4.3 101

viii

C PROOF OF CLAIMS 4-10 IN SECTION 5.3 113

ix

LIST OF TABLES

Table Page

4.1 Average size of the largest connected component in generated test in-

stances . 43

4.2 Number of trivial test instances in each sample of 10 instances 44

4.3 Challenging densities (among the ones considered) where both BE and

DC took the maximum time among all densities 45

4.4 Minimum and maximum percentage increase in average best objective

value found by BE over DC, and increase in average running time in

seconds for the challenging densities (over 10 samples) 46

4.5 Average size of the best 2-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 200-

vertex instances . 47

4.6 Average size of the best 3-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 200-

vertex instances . 48

4.7 Challenging densities (among the ones considered) where all four BB

algorithms took the maximum time across all densities 49

6.1 Computational results obtained by solving CVaR constrained maxi-

mum 2-club problem using Algorithms 1 and 2 on the selected test

instance . 82

B.1 Average size of the best 2-club found by DC compared to BE, and their

average running time (in seconds) on minimum VDV instances 101

x

B.2 Average size of the best 2-club found by DC compared to BE, and their

average running time (in seconds) on maximum VDV instances 102

B.3 Average size of the best 3-club found by DC compared to BE, and their

average running time (in seconds) on minimum VDV instances 103

B.4 Average size of the best 3-club found by DC compared to BE, and their

average running time (in seconds) on maximum VDV instances 104

B.5 Average size of the best 2-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 50-

vertex instances . 105

B.6 Average size of the best 2-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 100-

vertex instances . 106

B.7 Average size of the best 2-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 150-

vertex instances . 107

B.8 Average size of the best 2-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 200-

vertex instances . 108

B.9 Average size of the best 3-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 50-

vertex instances . 109

B.10 Average size of the best 3-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 100-

vertex instances . 110

B.11 Average size of the best 3-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 150-

vertex instances . 111

xi

B.12 Average size of the best 3-club found, average running time (in sec-

onds), and percentage optimality gap for each BB algorithm on 200-

vertex instances . 112

xii

LIST OF FIGURES

Figure Page

1.1 A graph in which set {2, 3, 4, 5} forms a maximum clique and set

{1, 2, 5} is a maximal clique which is not maximum 3

1.2 A graph G in which set S = {1, 2, 3, 4, 5} is a 2-clique but not a 2-club 7

1.3 (a) A maximum 2-club cluster and (b) a large 3-club cluster in the

protein interaction network of Helicobacter Pylori 11

3.1 Inclusionwise maximality testing of 2-cliques and 2-clubs 21

3.2 Illustration of the construction for (a) even k and (b) odd k 25

3.3 An asymmetric partitionable cycle with respect to nodes 1 and 4, and

W = 1 − 2 − · · · − 7 − 1 . 31

4.1 A graph in which every maximal 2-clique is not a 2-club 35

4.2 A proper distance 2-coloring (each number represents an specific color

class) . 37

5.1 A graph in which
∑

i∈S xi ≤ 1 is not valid for the 2-club polytope while

it induces a facet of the 2-club polytope of G[S], where S = {1, 2, 3, 4, 5} 52

5.2 A graph in which x1 +x3 +x4 +x7 +x8 − 2x2 −x5 −x6 ≤ 1 is an I2DS

facet for the 2-club polytope which was previously unknown 55

6.1 Illustration of the CVaR concept . 68

6.2 Solutions found for all 16 combinations of α and d by Algorithm 1 . . 83

6.3 Solution found by Algorithm 1 for problem instance with α = 0.7 and

d = 10 . 84

xiii

CHAPTER 1

INTRODUCTION

Recent advances in high-throughput data collection in different fields such as internet

analytics, social network analysis, bioinformatics, finance, and telecommunication

among others have led to an increased demand for effective models and tools for

data mining. Data mining is the process of summarizing, visualizing and processing

large datasets in order to extract useful knowledge from the data by using advanced

mathematical techniques [1]. In a variety of data mining applications, the elements

of a system and the relationships among them are modeled as a graph which is

often visualized as vertices (points, nodes) connected by edges (lines, arcs). Graph

algorithms and optimization techniques are used to uncover specific patterns in such

graph models of data [2, 3].

1.1 Graph models of data

In several real world systems, the data can be modeled by a graph in which an edge

implies similarity (or dissimilarity) between the entities represented by the endpoints

of the edge. Some examples are social networks, internet graphs, call graphs, stock-

market graphs and biological networks. Social networks are graph models representing

sociological information such as acquaintance among people. Vertices usually repre-

sent people and an edge indicates a “tie” between two people. A tie could mean that

they know each other, they visited the same place or any other sociological connection.

Scientific collaboration networks with vertices representing authors (in a particular

field or with publications in a particular journal) and edges indicating co-authorship

1

fall under this category [4, 5, 6, 7, 8]. An internet graph has vertices representing IP

addresses and edges in such graphs are determined based on information from routing

protocols or using traceroute probes [9]. In web mining and internet analytics, the

web can be modeled by a graph in which each webpage is represented by a vertex and

two vertices are adjacent if the corresponding webpages are linked together [10]. In

call graphs, vertices represent telephone numbers and an edge represents a call placed

from one vertex to another in a specified time interval [11]. Stock-market graphs

have vertices representing stocks and two stocks are connected by an edge if their

prices are positively correlated over some threshold value over a period of time in

history [12, 13, 14]. Biological networks such as protein interaction networks (PIN),

gene co-expression networks (GCN) and metabolic networks are used to model bio-

logical information. A protein interaction network is represented by a graph with the

proteins as vertices, and an edge exists between two vertices if the proteins are known

to interact based on two-hybrid assays and other biological experiments [15, 16, 17].

In gene co-expression networks, vertices represent genes and an edge exists between

two vertices if the corresponding genes are co-expressed with correlation higher than

a specified threshold in microarray experiments [18]. A metabolic network represents

metabolites (molecules of glucose, amino acids, and macro-molecules like polysaccha-

rides) and their conversion through enzyme-catalyzed biochemical reactions. In these

networks, metabolites are represented by vertices and a directed edge from metabolite

A to B indicates that A is converted to B by some reaction [19].

In some practical situations, one has to deal with uncertainties associated with

the system which may result in probabilistic availability/failure of the system compo-

nents. In such situations, the graph model can be random in which every node/edge

has a probability of partial or complete failure. Some examples include power grid

component failures, airline hub failures due to weather, or freeway closures due to

emergencies. Additionally, some graph models of data such as protein interaction

2

networks, gene co-expression networks and metabolic networks are constructed based

on experimental studies that are subject to incomplete information, as well as experi-

mental errors. For instance, the authors of [19] analyzed the metabolic network of 43

organisms and recognized two main sources of error as the erroneous annotation of

biochemical reactions, and missing reactions. In such graphs, the level of confidence

about the existence of each component is modeled by a probability distribution.

1.2 Cluster models in graphs

Detecting clusters in graph models of data is a powerful data mining tool. One

could formalize the notion of a graph-theoretic cluster by requiring one or more of

the following structural properties: (a) Each vertex has a large number of neighbors

inside the cluster, (b) The pairwise distances between vertices in the cluster (or in

the subgraph induced by the cluster) is small, (c) The cluster has a large number

(fraction) of edges with both endpoints inside the cluster, (d) The minimum number

of vertices or edges whose removal results in a disconnected cluster is large.

A clique in a graph is a set of pairwise adjacent vertices. A clique is said to be

maximum, if it is a clique of the largest cardinality in the graph and is said to be

maximal by inclusion, if it is not strictly contained in a larger clique. In the graph

shown by Figure 1.1, set {2, 3, 4, 5} forms a maximum clique and set {1, 2, 5} is a

maximal clique which is not maximum.

Figure 1.1: A graph in which set {2, 3, 4, 5} forms a maximum clique and set {1, 2, 5}

is a maximal clique which is not maximum

3

Given a simple, undirected and finite graph, finding a maximum clique, clustering

the graph into minimum number of cliques that cover or partition the vertex set, and

enumerating inclusionwise maximal cliques are fundamental combinatorial optimiza-

tion problems associated with cliques. This basic model and the associated problems

have been well studied in graph theory, polyhedral combinatorics, and complexity

theory leading to many deep results in these areas.

Clique is an ideal graph model for a cluster in which every vertex has maximum

degree, the pairwise distances within the cluster is minimum, the number of possible

edges within the cluster and the edge/vertex connectivity is maximum. Cliques, and

many graph theoretic clique relaxations were originally proposed in social network

analysis (SNA) to model cohesive subgroups in social networks [20]. The need for

relaxations of the clique model arises in practice when dealing with massive data

sets which are inevitably prone to errors that manifest in the graph model as false

or missing edges. The clique definition which requires complete pairwise adjacency

in the cluster becomes overly restrictive in such situations. Graph-theoretic clique

relaxations address this need by relaxing the aforementioned structural properties in

a controlled manner via user-specified parameters. This relaxation can be based on

vertex degree (k-plex), distance (k-clique, k-club) or edge density (γ-quasi-clique).

The focus of this dissertation is on a distance-based relaxation of cliques known as

k-clubs which model low diameter clusters in graphs.

1.3 Notations and definitions

In this dissertation, an arbitrary, simple, finite, undirected graph of order n and size

m is denoted by G = (V, E) where V = {1, . . . , n} and (i, j) ∈ E when vertices i and

j are adjacent with |E| = m. For a vertex i ∈ V, NG(i) denotes the set of vertices

adjacent to i in G, called the neighborhood of i and NG[i] = {i} ∪ NG(i) denotes

the closed neighborhood of i. The set of non-neighbors of i is given by V \ NG[i].

4

Denote by degG(i), the degree of vertex i in G given by |NG(i)|. The maximum

and minimum degrees in a graph are denoted respectively by ∆(G) and δ(G). The

complement graph of G is denoted by G = (V, E). Given a simple, undirected graph

G = (V, E), the subgraph induced by S ⊆ V is denoted by G[S] = (S, E
⋂

(S × S))

(see [21] for basic definitions from graph theory). The vertex connectivity κ(G) and

edge connectivity λ(G) of a graph are the minimum number of vertices and edges,

respectively, whose removal results in a disconnected or trivial graph. It is known

that when G is nontrivial, κ(G) ≤ λ(G) ≤ δ(G) [22].

Definition 1.1 A subset S ⊆ V is called a clique if G[S] is complete and it is called

an independent set if G[S] is edgeless.

The maximum clique problem is to find a clique of maximum cardinality, referred

to as the clique number of G, denoted by ω(G). The maximum cardinality of an

independent set of G is called the independence number of the graph G and is denoted

by α(G). The associated problem of finding a largest independent set is the maximum

independent set problem. Clearly, I is an independent set in G if and only if I is a

clique in G and consequently α(G) = ω(G). In this dissertation, maximality and

minimality of sets are always defined based on inclusion and exclusion, respectively.

The maximum clique and independent set problems on arbitrary graphs are NP-

hard [23] and are hard to approximate within n1−ε for any ε > 0 [24].

Definition 1.2 A proper coloring of a graph is one in which every vertex is colored

such that no two vertices of the same color are adjacent.

A graph is said to be t-colorable if it admits a proper coloring with t colors. Vertices

of the same color are referred to as a color class and they induce an independent set.

The chromatic number of the graph, denoted by χ(G) is the minimum number of

colors required to properly color G. For any graph G, ω(G) ≤ χ(G), as different

colors are required to color the vertices of a clique.

5

Definition 1.3 A vertex cover is a subset of vertices such that every edge in the

graph is incident at some vertex in the vertex cover.

Clearly, C is a vertex cover of G if and only if V \C is an independent set in G. The

minimum vertex cover problem seeks to find a vertex cover of minimum cardinality.

Definition 1.4 A dominating set is a subset of vertices such that every vertex in the

graph is either in this set or has a neighbor in this set.

The minimum cardinality of a dominating set is called the domination number, de-

noted by γ(G). It should be noted that every maximal independent set is also a

minimal dominating set.

For two vertices i, j ∈ V , dG(i, j) denotes the length of the shortest path (in

number of edges) between i and j in G. By convention, when no path exists between

two vertices, the shortest distance between them is infinity. Given a graph G = (V, E),

the k-th power of G is denoted by Gk = (V, Ek) where Ek = {(u, v) : dG(u, v) ≤ k}.

For any given i ∈ V , define distance k-neighborhood of i in G as Nk
G(i) = {j ∈ V : 1 ≤

dG(i, j) ≤ k} = NGk(i), that is the neighborhood of i in the power graph Gk. For any

given set S ⊆ V , define distance k-neighborhood of S in G as Nk
G[S] = S∪(∪i∈SNk

G(i)).

The diameter of G = (V, E) is given by diam(G) = max
i,j∈V

dG(i, j). The diameter of G

is said to be infinite if there does not exist a path between a pair of vertices. If the

graph G under consideration is obvious, the subscript G in the neighborhood, degree

and distance notations is sometimes dropped for simplicity.

Definition 1.5 A k-clique is a subset S ⊆ V for which dG(u, v) ≤ k for all u, v ∈ S.

Definition 1.6 A k-club is a subset S ⊆ V for which dG[S](u, v) ≤ k for all u, v ∈ S.

Equivalently, S is a k-club if diam(G[S]) ≤ k.

Clearly, every k-club is also a k-clique since dG[S](u, v) ≤ k ⇒ dG(u, v) ≤ k.

However, for k ≥ 2 the converse is not always true. In fact for k ≥ 2, a k-clique S can

6

contain vertices u, v ∈ S such that dG(u, v) ≤ k but dG[S](u, v) > k. In the graph G

shown in Figure 1.2 [25], set S = {1, 2, 3, 4, 5} forms a 2-clique which is not a 2-club.

It should be noted that dG(1, 5) = 2 and dG[S](1, 5) = 3.

Figure 1.2: A graph G in which set S = {1, 2, 3, 4, 5} is a 2-clique but not a 2-club

Both k-cliques and k-clubs describe a clique when k = 1 and are relaxations

when k ≥ 2. Further, every k-club is also a (k + 1)-club by definition. The k-clique

number of G denoted by ω̃k(G) is the cardinality of a maximum k-clique in G and

the maximum k-clique problem is to find a k-clique of the maximum cardinality in

G. The k-club number of G denoted by ωk(G) and the maximum k-club problem

are similarly defined. For a given graph G and a positive integer k, the following

inequality is true:

ω(G) ≤ ωk(G) ≤ ω̃k(G).

Concepts of particular relevance to these models are distance-k independence [26]

and distance-k domination.

Definition 1.7 Given a graph G = (V, E), I ⊆ V is a distance-k independent set

(k-independent set for short) if for every distinct pair i, j ∈ I, dG(i, j) ≥ k + 1.

Clearly, distance-1 independence is equivalent to pairwise nonadjacency, that is a

classical independent set. It should be noted that the definition becomes more restric-

tive as k increases. A distance-(k+1) independent set is also distance-k independent,

7

but the converse is not always true. Further, I is a k-independent set in G if and only

if I is an independent set in the power graph Gk. Also note that if I is a k-clique

in G, I need not be a k-independent set in the complement graph Ḡ for k ≥ 2. For

instance, {1, 2, 4, 5, 6} is a 2-clique/2-club in the graph in Figure 1.2, but it is not

a 2-independent set in the complement. In fact, it is still a 2-clique/2-club in the

complement graph. Additionally, a k-clique or a k-club can intersect a k-independent

set in at most one vertex.

Definition 1.8 A set S ⊆ V is called a distance-k dominating set (k-dominating set

for short) if for any v ∈ V \ S, there exists a u ∈ S such that dG(u, v) ≤ k.

A distance-1 dominating set is a classical dominating set. A distance-k dominat-

ing set is also distance-(k + 1) dominating, but the converse is not necessarily true.

Additionally, I is a k-dominating set in G if and only if I is a dominating set in the

power graph Gk.

Note that k-cliques are equivalent to cliques through a simple observation concern-

ing power graphs. Set S ⊆ V is a k-clique in G if and only if S is a clique in Gk. For

instance, set {1, 2, 4, 5, 6} which is a 2-clique in graph G shown in Figure 1.2, forms a

clique in G2. Accordingly, given a graph G and a positive integer k, ω̃k(G) = ω(Gk).

Hence, the maximum k-clique problem for any k is equivalent to the maximum clique

problem on the corresponding power graph. Because of this close correspondence be-

tween k-cliques in original graph and cliques in the power graph, the k-clique model

has not been extensively studied.

1.4 Applications of k-clubs

The k-clubs, in particular 2-clubs, have been a practical and popular choice for clusters

in various applications. This is possibly encouraged by the fact that graph models of

data from biology, internet analytics and social sciences are known to exhibit power-

8

law degree distribution (also referred to as “scale-free graphs”). In such graphs, nt

which denotes the number of vertices of degree t has been empirically observed to

obey a power law nt ∝ t−β where β > 1 is a constant. Such graphs tend to have a large

number of vertices and an extremely small number of edges, and it has been argued

that underlying their evolution is a preferential attachment scheme where new edges

tend to appear at vertices that already have high degree, resulting in the power-law

degree distribution and a large connected component of low diameter [27, 28, 29].

The probabilistic combinatorics of large, sparse graphs such as power-law graphs

are not appropriately described by the classical Erdös-Rényi uniform random graph

model G(n, p) [30, 31]. An extension of the Erdös-Rényi model for large, sparse

graphs are random graphs of given expected degree sequence [32]. Given a sequence

w = (w1, w2, . . . , wn), a random graph G(w) is defined where the probability of an

edge between i, j ∈ V is pij = wiwj/
∑

k∈V wk. This model includes the classical

G(n, p) model which is obtained by choosing w = (np, np, . . . , np), and it represents

a power-law random graph model when w is a sequence that obeys a power law.

Employing such models, it has been recently shown that power-law random graphs

with exponent β ∈ (2, 3) (empirically observed values of β often lie in this range)

have connected components of diameter O(log n) and a distinct core of diameter

O(log log n) with high probability. This result has been noted empirically in other

disciplines as “small world phenomenon” [33, 34] and “six degrees of separation” [35].

Due to the low diameter of G in which we seek to find clusters, 2-clubs have been

more popular in practice than k-clubs with larger k. Furthermore, 2-clubs can be

viewed as a subset of vertices in which every pair of vertices either have a direct edge

or have a common neighbor in the subset. This intuitive “two-hop” interpretation

has encouraged the choice of 2-clubs in many applications where such a two-hop

transitivity is expected. In other words, it is expected that if two vertices have a

common neighbor, then the two vertices are likely to be related even if a direct edge

9

does not exist. This is employed in data mining applications in internet analytics and

text mining. For instance, the 2-club model is used to cluster web sites to facilitate

faster search and retrieval of topically related information from the internet in [10].

Authors of [10] note that the 2-club is a “key construct that productively formalizes”

the notion of local collections of topically related web sites. Similar approaches are

used in a text mining application in hyper-linked documents in [36]. Authors of [36]

conclude that the two-hop transitivity captured by the 2-club concept is particularly

insightful in this application, even compared to other k-clubs for k different from 2.

The concept of k-clubs can be used to detect protein complexes from protein in-

teraction networks of organisms [37, 38]. It was observed in [37] that the maximum

k-club identified in the protein interaction networks of Helicobacter Pylori and Sac-

charomyces Cerevisiae contained a (k−2)-club kernel and vertices outside this kernel

were adjacent to some vertex inside the kernel. This was interesting in the light of

observations that structures where interactions of proteins occur through a central

protein are likely to be found in similar biological processes [39]. Figure 1.3 shows a

maximum 2-club cluster and a large 3-club cluster in the protein interaction network

of Helicobacter Pylori. As shown in this figure, these 2-club and 3-club clusters re-

spectively contain a 0-club (single vertex) and a 1-club (single edge) kernels through

which the interactions of proteins occur.

10

Figure 1.3: (a) A maximum 2-club cluster and (b) a large 3-club cluster in the protein

interaction network of Helicobacter Pylori

11

CHAPTER 2

BACKGROUND∗

This chapter provides some background on the k-club model, related optimization

problems, and presents a review of available literature on this distance-based clique

relaxation. The distance-based clique relaxations were introduced in social network

analysis soon after cliques were introduced to model cohesive subgroups [40]. These

models relaxed the adjacency requirement of cliques to a short path requirement. The

k-clique model was originally introduced in social network analysis by Luce [41] to

model cohesive subgroups. The k-club model was introduced by Alba [25] and further

developed by Mokken [42], to address the drawback of k-cliques where members out-

side the cohesive subgroup can be used on the short paths required between members

inside the group. Recall the formal definitions from Section 1.3. This chapter reviews

the current literature on k-clubs, with a special focus on computational complexity,

algorithms, and polyhedral results.

2.1 Complexity and approximation

The maximum k-clique and k-club problems are NP-hard for any fixed positive integer

k [37, 43] and they remain NP-hard even in graphs of fixed diameter with diam(G) >

k [37]. Hence, the maximum k-club problem is known to be NP-hard for every fixed

k even on graphs of diameter k + 1. For given positive integers k and l (k 6= l), the

∗Parts of this chapter will appear in B. Balasundaram and F. Mahdavi Pajouh: Graph-theoretic

clique relaxations and applications. P. Pardalos, D-Z. Du and R. Graham (Eds) Handbook of

Combinatorial Optimization, 2nd Edition c©Springer.

12

problem of recognizing whether ωk(G) = ωl(G) is also NP-hard. This gap-recognition

complexity result was further used to show that for an integer k ≥ 2 and in a graph

G with ωk(G) > ∆(G) + 1, unless P=NP, there does not exist a polynomial time

algorithm for finding a k-club of size strictly larger than ∆(G) + 1 [44]. Recalling

that ∆(G) denotes the maximum vertex degree in G, it is clear that a vertex of

maximum degree along with all its neighbors forms a k-club in G for any k ≥ 2.

Unless P=NP, the maximum k-club problem was shown to be inapproximable

within a factor of n
1
3
−ε for any ε > 0 [45], which has been strengthened to n

1
2
−ε

recently [46]. Approximation algorithms of factor n
1
2 and n

1
3 for even and odd k

respectively, have also been proposed recently [46].

It is well known that cliques parameterized by solution size (identifying cliques of

a particular size) is not fixed-parameter tractable, and in fact is a basic W [1]-hard

problem [47]. An encouraging result for k-clubs is that it is fixed-parameter tractable

when parameterized by solution size [48, 49]. The k-club problem is one of the

few parameterized problems for which nonexistence of a polynomial-size many-to-one

kernel and existence of a polynomial-size Turing kernel are known [48, 49]. The k-club

problem can be solved on trees and interval graphs in O(nk2) and O(n2), respectively

and it is polynomial time solvable on graphs with bounded tree- or cliquewidth [48].

The 2-club problem can be solved on bipartite graphs in O(n5) [48].

13

2.2 Polyhedral combinatorics

The maximum k-club problem admits the following integer programming formula-

tion [43, 37].

ω̄k(G) = max
∑

i∈V

xi

subject to:

xi + xj ≤ 1 +
∑

l:P l
ij∈Pij

yl
ij ∀ (i, j) /∈ E

xp ≥ yl
ij ∀ p ∈ V (P l

ij), P l
ij ∈ Pij, (i, j) /∈ E

xi ∈ {0, 1} ∀ i ∈ V

yl
ij ∈ {0, 1} ∀ P l

ij ∈ Pij, (i, j) /∈ E

where Pij is an indexed collection of all paths of length at most k between vertices i, j

in G and P l
ij is the path with index l between vertices i, j. The formulation essentially

ensures that if two vertices are in a k-club, then all the vertices in at least one path

between them with length less than or equal to k are also included in the k-club. Note

that the size of Pij could be very large making this formulation difficult to handle. A

more compact formulation available for the maximum 2-club problem is stated next.

ω̄2(G) = max
∑

i∈V

xi

subject to:

xi + xj −
∑

k∈N(i)∩N(j)

xk ≤ 1 ∀ (i, j) /∈ E

xi ∈ {0, 1} ∀i ∈ V

Given a graph G = (V, E), the convex hull of the incidence vectors of k-clubs

in G is called the k-club polytope of G denoted by Qk(G). Some preliminary re-

sults on these polytopes, especially the 2-club polytope are available from [37, 50].

14

Theorem 1 [37] presents the basic results on Q2(G) and the first family of facets

developed.

Proposition 1 ([51]) (Distance-k independent set inequalities) Given a graph G =

(V, E), let I ⊆ V be a maximal k-independent set. Then the following inequality is

valid for Qk(G).
∑

i∈I

xi ≤ 1

Theorem 1 ([37]) Consider the 2-club polytope Q2(G) of a graph G = (V, E).

a. dim(Q2(G)) = n.

b. xi ≥ 0 induces a facet of Q2(G) for every i ∈ V .

c. For i ∈ V , xi ≤ 1 induces a facet of Q2(G) if and only if dG(i, j) ≤ 2 ∀ j ∈ V .

d. The inequality
∑

i∈I xi ≤ 1 induces a facet of Q2(G) if and only if I is a maximal

distance-2 independent set in G.

Notice that Theorem 1c is implied by Theorem 1d, which is analogous to Padberg’s

maximal independent inequalities for the clique polytope [52]. This line of research

has been recently furthered in [50]. Theorem 2 provides necessary and sufficient

conditions under which the common neighborhood constraint in the formulation is

facet inducing upon strengthening. Theorem 3 introduces another facet defining

inequality for Q2(G).

Theorem 2 ([50]) Given a graph G = (V, E), let a, b ∈ V and I ⊆ V \{a, b} be such

that I ∪ {a} and I ∪ {b} are distance-2 independent sets in G and distG(a, b) = 2.

The following inequality is valid for Q2(G) and induces a facet if and only if I is a

maximal set.
∑

i∈I∪{a,b}

xi −
∑

j∈N(a)∩N(b)

xj ≤ 1

15

Theorem 3 ([50]) Given a graph G = (V, E), let a, b, c ∈ V and I ⊆ V \ {a, b, c}

be such that set {a, b, c} is independent and sets I ∪ {a}, I ∪ {b} and I ∪ {c} are

distance-2 independent in G. The following inequality is valid for Q2(G) and induces

a facet if and only if I is a maximal set.

∑

i∈I∪{a,b,c}

xi −
∑

j∈V

αjxj ≤ 1

where

αj =






2, if j ∈ N(a) ∩ N(b) ∩ N(c),

1, if j ∈ [N(a) ∩ N(b)] ∪ [N(a) ∩ N(c)] ∪ [N(b) ∩ N(c)] \ [N(a) ∩ N(b) ∩ N(c)],

0, Otherwise.

The k-club polytope for k ≥ 3 has fewer associated results and there is ongo-

ing research on polyhedral approaches to these cases. Alternate formulations and

valid inequalities for the maximum 3-club problem were introduced along with com-

putational experiments in [53, 54]. It should be noted that while the exponential

formulation for the maximum k-club problem discussed here is unsuitable for explicit

use with integer programming solvers for large k, a more compact formulation has

been recently developed in [55] that permits such use. The approach taken here is to

first formulate the problem as a nonlinear integer program followed by linearizing the

products of binary variables resulting in a linear integer program which uses O(kn2)

variables and constraints. The authors also introduce the notion of an r-robust k-club

which is a subset of vertices S such that G[S] has at least r internally vertex disjoint

paths of length at most k (in G[S]) between every pair of vertices. This model allows

the detection of low diameter clusters that also have higher vertex connectivity, and

thereby more robust to vertex or edge deletions.

16

2.3 Algorithms

Combinatorial exact algorithms appear to be the preferred approach presently for

solving the maximum k-club problem for arbitrary k. The only existing combinato-

rial algorithm from [43] is a classical branch-and-bound approach based on variable

dichotomy. The approach taken in this work to obtain upper-bounds on ωk(G) is

to solve the maximum k-clique problem at each node of the search tree. Note that,

the maximum k-clique problem (which is also NP-hard) must be solved to optimality

to produce a valid bound. Details on this algorithm can be found in [43]. A fixed

parameter tractable algorithm is presented in [48] to find a k-club of size c if one

exists in G in O((c − 2)c · c! · c3n + nm) time.

The results on the 2-club polytope have also led to branch-and-cut approaches for

solving the maximum 2-club problem incorporating maximal distance-2 independent

set facets discussed in [37, 51]. A sequential cutting-plane method for solving this

problem is also proposed in [50]. Heuristic algorithms for finding large k-cliques or

k-clubs in a given graph have been proposed in [56, 50, 57, 58].

2.4 Research statement

The available theoretical and algorithmic results addressing k-club model and related

optimization problems are limited. A fundamental challenge in the development of

theory and algorithms for the k-club model is its nonhereditary nature. Unlike k-

cliques, the k-club model is nonhereditary, meaning every subset of a k-club is not

necessarily a k-club. While the nonhereditary nature of k-clubs has been noted in

literature (see [42, 37]), the computational complexity of testing maximality of k-

clubs has remained open. The known polyhedral results associated with k-clubs are

limited to some trivial and very specific facet inducing inequalities. There is a need

for discovering more facet defining inequalities for the k-club polytope and identify-

17

ing classes of graphs in which complete description of the k-club polytope is known.

The available integer programming formulations for the maximum k-club problem

suffer from drastic increase of the number of decision variables and constraints for

larger values of k. Therefore, the preferred approach available for solving the maxi-

mum k-club problem for arbitrary k is a combinatorial branch-and-bound algorithm.

The only available combinatorial branch-and-bound algorithm employs a bounding

strategy that requires solving an NP-hard problem to optimality.

Additionally, the existing literature on the k-club model restrict their attention to

deterministic graphs. There is a need to study k-clubs and related optimization prob-

lems on random graphs in which nodes/arcs have probabilities for complete/partial

failure.

These facts motivate a theoretical and algorithmic study of the k-club model on

deterministic and random graphs in order to enrich the literature on this distance-

based clique relaxation model in the following four major areas: complexity, combi-

natorial algorithms, polyhedral studies, and the problem in a probabilistic setting.

The specific research objectives (RO) addressed in this dissertation are as follows.

RO1. Investigate the computational complexity of testing the inclusionwise maximal-

ity of k-clubs on arbitrary and restricted graph classes.

RO2. Investigate new lower- and upper-bounding strategies to develop new combina-

torial branch-and-bound algorithms for solving the maximum k-club problem

and study their computational performance on benchmark instances.

RO3. Investigate the 2-club polytope in order to discover new facet inducing inequal-

ities, and study their separation complexity. Further, explore the derivation of

complete polyhedral description for special graph classes.

RO4. Study the maximum 2-club problem under uncertainty, specially in graphs sub-

ject to probabilistic edge failures, in order to develop a stochastic optimization

18

formulation and decomposition algorithms for the problem.

2.5 Outline of the dissertation

The remainder of this document is structured as follows. The computational com-

plexity of k-clubs maximality testing, which has been open for almost a decade, is

addressed in Chapter 3. The NP-completeness of k-clubs maximality testing is proved

in this chapter and a class of graphs on which this problem is polynomial-time solvable

is also presented. Chapter 4 presents new bounding strategies for the k-club number

of a graph and provides a general framework for a combinatorial branch-and-bound

algorithm for solving the maximum k-club problem. This chapter also includes the ex-

perimental results of solving the maximum k-club problem on a test-bed of benchmark

graphs by utilizing the proposed branch-and-bound algorithm. The 2-club polytope

is studied in Chapter 5 and a new family of facet inducing inequalities, which strictly

includes all known nontrivial facets for this polytope, is introduced in this chapter.

The separation complexity of the newly discovered facet inducing inequalities and

the complete description of the 2-club polytope of trees are also addressed in this

chapter. The focus of Chapter 6 is on the maximum 2-club problem under uncer-

tainty. Here, we are interested in detecting large “risk-averse” 2-clubs in a network

subject to probabilistic edge failures. Conditional Value-at-Risk (CVaR) is used as a

quantitative measure of risk aversion and a new decomposition algorithm for solving

CVaR constrained maximum 2-club problem is proposed. This chapter also includes

preliminary numerical results to compare the computational performance of the de-

veloped algorithm with a recent algorithm from the literature. Chapter 7 presents

the concluding remarks summarizing the contributions and identifies some directions

for future research in this area.

19

CHAPTER 3

COMPLEXITY OF k-CLUB MAXIMALITY TESTING∗

As discussed in Section 2.1, the maximum k-club problem is known to be NP-hard

for any fixed positive integer k, while the computational complexity of the k-club

maximality testing has remained open. Answering this question has important impli-

cations for developing theory and algorithms for k-clubs. The complexity of k-club

maximality testing is addressed in this chapter and it is shown that this problem is

also NP-hard. The NP-completeness of k-clubs maximality testing is a direct con-

sequence of the property being nonhereditary. This observation will be discussed in

detail in the next section before presenting the main complexity result. Additionally,

a class of graphs on which maximality of a k-club is polynomially verifiable, is also

introduced in this chapter.

3.1 The nonhereditary nature of k-clubs

A graph property Π is said to be hereditary on induced subgraphs, if every vertex

induced subgraph of G satisfies Π whenever G satisfies Π. The fundamental challenge

in the study of k-clubs is their lack of heredity. We explain this with examples and

consider some basic consequences.

For any integer k ≥ 1, the k-clique model is hereditary on induced subgraphs,

since every subset of a k-clique is also a k-clique. This property however does not

∗Parts of this chapter are reprinted with permission from F. Mahdavi Pajouh and B. Balasun-

daram: On inclusionwise maximal and maximum cardinality k-clubs in graphs. Discrete Optimiza-

tion, 2012, DOI: http://dx.doi.org/10.1016/j.disopt.2012.02.002 c©Elsevier.

20

hold for the k-club model for k ≥ 2. For example, in the graph shown in Figure 1.2,

the set {1, 2, 4, 5, 6} is a 2-club which means it is also a 2-clique. Every subset of this

set is a 2-clique but subset {1, 2, 4, 5} for instance is not a 2-club.

Inclusionwise maximality of any polynomially verifiable hereditary property such

as k-clique can be tested in polynomial time. For example, to verify maximality of

a k-clique S, it suffices to show that there is no single vertex in V \ S that could be

added to S to form a larger k-clique. However, for the k-club model nonexistence of a

vertex that could increase the size of the k-club by one is a necessary but not sufficient

condition for its maximality. For example, in the graph shown in Figure 3.1(a), set

S1 = {1, 2, 3} is a 2-clique and since sets S2 = S1 ∪ {4} and S3 = S1 ∪ {5} are not

2-cliques, it can be concluded that S1 is a maximal 2-clique. In Figure 3.1(b), S1 is

not a maximal 2-clique which can be deduced by observing that both S2 and S3 are

also 2-cliques. Set S1 in the graph shown in Figure 3.1(b) forms a 2-club while sets

S2 and S3 are not 2-clubs. But S1 is not maximal because set V = S1 ∪ {4, 5} is a

larger 2-club containing S1.

1

2 3

4

5

1

2 3

4

5

(a) (b)

Figure 3.1: Inclusionwise maximality testing of 2-cliques and 2-clubs

3.2 NP-completeness of k-club maximality testing

An instance of k-club maximality testing is given by a simple undirected graph

G = (V, E) and a k-club D in G, and we ask if there exists a k-club D′ in G such

21

that D ⊂ D′? The following theorem establishes that k-club maximality testing

(k-CMT) is NP-complete.

Theorem 4 k-club maximality testing is NP-complete for any fixed integer k ≥ 2.

Proof. We prove this theorem by a polynomial-time reduction from 3-SAT [23]. We

assume that the 3-SAT instances satisfy the following restrictions: (a) No clause

contains a literal and its negation; (b) There are at least 3 clauses in the 3-SAT

formula. Note that the 3-SAT problem is still NP-complete under these restrictions.

Before providing the transformation, we present some terminology that we use in the

proof. The construction is slightly different depending on whether k is odd or even.

A k-chain is a path of length k (on k + 1 nodes). When k is even, the (k
2

+ 1)th node

is called the midpoint of the k-chain. When k is odd, the k+1
2

th
and k+3

2

th
nodes are

called midpoints. Define q = 1
2
[k − 2 + (k mod 2)]. A q-pendant is a path of length

q. One endpoint of a q-pendant is called the head and the other is called the tail.

The node preceding the tail on the path from head to tail is called the penultimate

node. For a pendant or a chain P containing vertices v1, v2, by P [v1, v2] we denote

the subpath from v1 to v2 including both end-points. We use the convention that

a single vertex path is a path of length zero. Denote the 3-SAT instance with n

boolean variables, m clauses with 3m literals as B =
∧m

i=1(pi1 ∨ pi2 ∨ pi3). For any

such 3-SAT instance < B >, the following steps construct in polynomial time, an

instance < G, D > for k-CMT such that the 3-SAT instance is satisfiable if and only

if D is not a maximal k-club in G.

Construction

1. For each clause i = 1, . . . , m in B, G contains a clique of size 3, with nodes

labeled by the literals pij . We call these nodes in G, the literal nodes.

2. Every pair of literal nodes pij and puv that belong to different clauses (i 6= u)

22

and are not negations of each other (pij 6= puv) are connected by a k-chain.

Such pairs of literal nodes are called dcnn-pairs. Each such k-chain consists of

k−1 new internal nodes with the dcnn-pair forming the endpoints. The internal

nodes created will be called the chain nodes.

3. If k is even, we add all possible edges among the midpoints of all the k-chains

so that they form a clique. If k is odd, we create a new node called the nucleus

node and both midpoints of every k-chain are made adjacent to the nucleus

node.

4. We always traverse all k-chains going from a lower index clause to a higher

index clause, with the exception of k-chains between two clauses 1 and m.

We traverse these k-chains going from clause m to clause 1. This imposes an

orientation to these paths allowing us to refer to succeeding or preceding nodes

on a path without ambiguity. We follow this convention in the remainder of

this proof. Note that G is an undirected graph, and the direction is simply for

path traversal. We refer to a k-chain that connects two literal nodes from two

consecutive clauses i, i + 1 as a k-bridge for i = 1, . . . , m − 1. The k-chains

connecting literal nodes from clauses m to 1 are also called k-bridges. The set

of all nodes thus created (literal nodes, chain nodes and the nucleus in case of

odd k) are denoted by U . Note that |U | = total # dcnn-pairs×(k−1)+3m+(k

mod 2).

5. To every node v ∈ U , a q-pendant is attached by making its head adjacent to v.

We refer to such a q-pendant as the connector pendant of v. We associate with

every node v ∈ U , a q-pendant called the opposing pendant of v (can be taken

to mean “indexed by v” as the opposing pendant of v will not be attached to

v). Each opposing pendant will be connected to nodes in U once the notion of

a supporting node is defined in the next step. Note that each such q-pendant of

23

length q from head to tail results in the creation of q +1 new nodes. We denote

these q-pendant nodes by D where |D| = 2(q + 1)|U |.

6. For two chain nodes i, j, we say i supports j if i immediately precedes j on

some k-chain. Every literal node supports the first chain node on every k-

chain starting from it, and it is supported by the last chain node on every

k-bridge ending at it. In case of odd k, we say the nucleus node is supported

by all the chain midpoints that are adjacent to it. So in set U , every chain

node has exactly one supporting node. Every literal node pij corresponding

to clause i (i = 2, . . . , m), has as many supporters as there are dcnn-pairs of

pij in clause i − 1. Every literal node p1j has as many supporters as there are

dcnn-pairs of p1j in clause m. Every literal node pij corresponding to clause i

(i = 2, . . . , m − 1) supports as many chain nodes as there are dcnn-pairs of pij

in clauses i + 1, . . . , m. Every literal node p1j supports as many chain nodes

as there are dcnn-pairs of p1j in clauses 2, ..., m − 1 and every literal node pmj

supports as many chain nodes as there are dcnn-pairs of pmj in clause 1.

7. Consider any k-bridge connecting literal node pij to pi+1,v (including k-bridges

from pmj to p1v) with chain nodes a1, . . . , ak−1. Each node in the subpath from

pij to ak−1 is made adjacent to the head of the opposing pendant of the node it

supports.

8. Consider any k-chain connecting literal node pij to puv (traversed from clause

i to clause u) that is not a k-bridge with chain nodes a1, . . . , ak−1. Each node

in the subpath from pij to ak−2 is made adjacent to the head of the opposing

pendant of the node it supports. Note that in this case, we stop at the chain

node ak−2 since ak−1 doesn’t support puv.

9. If k is odd, all midpoints adjacent to the nucleus are also made adjacent to the

head of the nucleus’ opposing pendant.

24

10. If k is even, for each v ∈ U , the tail of connector pendant of v is made adjacent

to the tail of every other q-pendant except the tail of the opposing pendant of

v. For odd k, for each v ∈ U , the penultimate node of connector pendant of

v is made adjacent to the tail of every other q-pendant except the tail of the

opposing pendant of v. For odd k, we also create a clique among tail nodes of

all opposing pendants.

This completes the construction of graph G = (D ∪ U, E). Figure 3.2 illustrates

the construction for even and odd k. We establish the desired NP-completeness result

through a sequence of three claims. These claims essentially follow from construction

and are provided for the sake of clarity since the construction is somewhat elaborate.

The proofs for these claims are provided in Appendix A.

....…
…
..

.….… .…

.…
..…

....

a

b

c

node a

connector

pendant

node b

opposing

pendant

node b

connector

pendant

node c

opposing

pendant

node c

connector

pendant

d

node d

opposing

pendant

clause i

clause i+1
clause i+t

chains midpoints

pendant

head node

pendant

tail node

(a)

....

…
…
..

…
…

…
.…

..…

.…

..…

….

a

b

c

node a

connector

pendant

node b

opposing

pendant

node b

connector

pendant

node c

opposing

pendant

node c

connector

pendant

nucleus

d

node d

opposing

pendant

literal node

chain node

connector pendant node

opposing pendant node

clause i

clause i+1
clause i+t

chains midpoints

pendant

penultimate

node

pendant

tail node

pendant

head node

(b)

Figure 3.2: Illustration of the construction for (a) even k and (b) odd k

Claim 1 D is a k-club.

Claim 2 For any v1 ∈ U :

a. If v2 ∈ D is the head of v1’s opposing pendant then dG[D∪{v1}](v1, v2) > k.

25

b. If v2 ∈ D is not the head of v1’s opposing pendant then dG[D∪{v1}](v1, v2) ≤ k.

c. If v2 ∈ D is the head of v1’s opposing pendant then for a set S ⊆ U , dG[D∪S∪{v1}](v1, v2) ≤

k, if and only if set S contains at least one supporter of v1.

Claim 3 For any two literal nodes v1, v2 ∈ U , dG(v1, v2) > k if and only if v1 = v2.

We now show that the 3-SAT instance is satisfiable if and only if D is not a

maximal k-club in G. Suppose the 3-SAT instance has a satisfying assignment. Let

S be the set of all literal nodes corresponding to literals with value equal to 1 in this

assignment and all chain nodes in all k-chains connecting them. For odd k, S also

contains nucleus node. S ⊆ U and contains at least one literal node from each clause.

For every literal node in S, there exists at least one k-chain with this literal node as

one of its endpoints. We show that S ∪ D is a k-club in G.

Consider any two literal nodes v1, v2 ∈ S, either they belong to the same clause

or they are from two different clauses. In the first case, v1 and v2 are adjacent. In

the second case, v1 and v2 form a dcnn-pair and there is a k-chain connecting them

in G[D ∪ S].

Now let v1 be a literal node in S and v2 be any chain node in this set. Either v2

belongs to a k-chain that has v1 as one of its endpoints or not. In the first case, it is

easy to see that dG[D∪S](v1, v2) ≤ k. In the second case, let c1 be a k-chain that has

v1 as one of its endpoints and c2 denote the k-chain which contains v2. For even k,

consider the path c1[v1, midpoint(c1)] − c2[midpoint(c2), v2] in G[D ∪ S]. The length

of this path is less than or equal to k/2 + 1 + k/2− 1 = k. For odd k, without loss of

generality, consider the closest midpoint to v1 and v2 on c1 and c2 respectively, that

are both adjacent to the nucleus. This yields a path of length less than or equal to

k−1
2

+ 2 + (k−1
2

− 1) = k.

Now suppose v1 and v2 are two different chain nodes in S. They either belong to

the same k-chain or they belong to two different k-chains c1 and c2. In the first case,

26

it is easy to see that dG[D∪S](v1, v2) ≤ k. For the second case, for an even k, consider

the path c1[v1, midpoint(c1)]−c2[midpoint(c2), v2]. The length of this path is at most

k/2 − 1 + 1 + k/2 − 1 = k − 1. For an odd k, consider the closest midpoint to v1

and v2 on c1 and c2 respectively. The path through these nodes and the nucleus is of

length at most (k−1
2

− 1) + 2 + (k−1
2

− 1) = k − 1. So for every two nodes v1, v2 ∈ S,

dG[D∪S](v1, v2) ≤ k.

Consider any literal node v1 in clause i, 2 ≤ i ≤ m. S contains a literal node

v2 from clause i − 1 which forms a dcnn-pair with v1. In case of i = 1, it contains

such a dcnn-pair literal node from clause m. Because the k-chain connecting v1 and

v2 is also in S, set S contains at least one supporter of v1. Now consider any chain

node v1 ∈ S, since the k-chain containing v1 is also in S, the supporter of v1 is also

available in S. So for any v1 ∈ S, S contains at least one supporter of v1. So by

Claim 2, dG[D∪S](v1, v2) ≤ k for each v1 ∈ S, v2 ∈ D. By Claim 1, dG[D∪S](v1, v2) ≤ k

for each v1, v2 ∈ D. So G[D ∪ S] is a k-club containing D and because S 6= ∅, D is

not maximal.

Suppose D is not a maximal k-club and there exists a nonempty S ⊆ U such that

S ∪ D is a k-club. Select an arbitrary node v1 ∈ S. v1 is either a literal node or a

chain node. If it is a chain node, by Claim 2c, S should contain a supporter of v1.

This supporter is again either a literal node or another chain node. By repeating

this argument, we can conclude that S should contain at least one literal node v′
1.

Suppose v′
1 is located in clause i. Again by Claim 2c, the supporter of v′

1 which

is a chain node in some k-bridge should also be in S which results in the following

conclusion. If 2 ≤ i ≤ m, S should contain a literal node v2 in clause i − 1 (in case

of i = 1, the literal node v2 is from clause m). Now by repeating this argument, we

can conclude that set S should contain at least one literal node from each clause in

B. Let v1, v2 ∈ S be any two literal nodes. Since dG[D∪S](v1, v2) ≤ k, we can conclude

that dG(v1, v2) ≤ k. Now by Claim 3, we have v1 6= v2. So by setting the value of the

27

literals corresponding to literal nodes in S to 1 and the rest of them to zero, we will

have a satisfying assignment for B. This establishes that k-club maximality testing is

NP-hard. It is easy to see that the problem is in class NP. This completes the proof

of Theorem 4.

Contrasting this result with the polynomial-time solvability clique (and k-clique)

maximality testing, it is essential to understand the reason for Theorem 4. Despite

the conceptual similarity of k-clubs to k-cliques and cliques, there is a fundamental

characteristic that distinguishes k-clubs. Cliques and k-cliques are hereditary prop-

erties as every subset of a k-clique is also a k-clique, for every fixed positive integer

k. This allows us to verify maximality by inclusion of a k-clique C in polynomial

time using the following algorithm. Let C ′ = C, pick any v ∈ V \ C ′, if C ′ ∪ {v} is a

k-clique, then add v to C ′, otherwise delete v from V and repeat until V \C ′ = ∅. At

termination, C ′ is a maximal k-clique containing C. However, this approach is not

valid for finding maximal k-clubs for k ≥ 2 as the k-club property is not hereditary.

Consider the graph in Figure 1.2. Set {1, 5, 6} is a 2-club in this graph. The sets

{1, 5, 6, 4}, {1, 5, 6, 3}, {1, 5, 6, 2} however are not 2-clubs. But the maximal 2-club

containing {1, 5, 6} is {1, 5, 6, 2, 4}.

3.3 Some implications of Theorem 4

As mentioned in Section 3.1, a graph property Π is said to be hereditary on induced

subgraphs, if G is a graph with property Π then every vertex induced subgraph of

G also satisfies property Π. Further, property Π is said to be nontrivial if it is true

for a single vertex graph and is not satisfied by every graph. A property is said

to be interesting if there are arbitrarily large graphs satisfying Π. Yannakakis [59]

showed that the maximum Π problem to find the largest order induced subgraph

that does not violate property Π is NP-hard for any property Π that is nontrivial,

28

interesting and hereditary on induced subgraphs. This result has a very broad scope

as complete subgraphs, edgeless subgraphs, planar subgraphs, bipartite subgraphs,

perfect subgraphs are examples of Π that are nontrivial, interesting and hereditary.

If Π is hereditary and G = (V, E) is an arbitrary graph with V ⊇ C ′ ⊃ C such

that G[C] and G[C ′] satisfy Π, the elements in C ′ \ C can be added to C in any

order with all the intermediate sets inducing subgraphs satisfying Π. Hence, if Π is

hereditary, proving maximality by inclusion of C ⊆ V such that G[C] satisfies Π is

equivalent to establishing the nonexistence of any single vertex v ∈ V \ C such that

G[C∪{v}] satisfies Π. Our result in Section 3.2 shows that there is no polynomial-time

algorithm available to test k-club maximality unless P = NP . Hence, there could

be no generic polynomial-time algorithm (as the one described above for hereditary

properties) unless P = NP , to test maximality by inclusion of subgraphs satisfying

any nonhereditary property.

In addition to the complexity theoretic perspective afforded by the result of Yan-

nakakis, we can also view the impact of nonhereditary graph properties from a matroid

theory perspective. A combinatorial system described by the pair M = (S, I) where

S is a finite ground set and I is a collection of subsets of S satisfying some specified

property Π, is a matroid if the following three axioms hold: (M0) ∅ ∈ F ; (M1) If

J ′ ⊆ J ∈ F , then J ′ ∈ F ; (M2) For every J ∈ F , every maximal (by inclusion)

subset in F containing J has the same cardinality. A fundamental result in matroid

theory is that the maximum Π problem for a matroid can be solved in polynomial

time using the greedy algorithm [60]. If M satisfies axioms (M0) and (M1), it is

called an independence system and the maximum Π problem in general is NP-hard

on independence systems [61]. Note that collection of cliques in a graph form an in-

dependence system. In contrast, the greedy algorithm can be used to find a maximal

by inclusion subset satisfying Π in polynomial time. In light of Theorem 4, combina-

torial systems built on nonhereditary properties are much harder to deal with than

29

matroids or independence systems.

3.4 Graphs on which k-club maximality is polynomially verifiable

In this section, we characterize a class of graphs on which k-club maximality testing

is polynomial-time solvable. Let us refer to a k-clique which induces a connected

subgraph as a connected k-clique. In a given graph, if every connected k-clique is also

a k-club then a k-club’s maximality can be checked using a method similar to k-clique

maximality testing. Since, by definition every k-club is a connected k-clique and in

such graphs every connected k-clique is also a k-club, a maximal connected k-clique

is also a maximal k-club. Given a graph G = (V, E), maximality of a connected

k-clique D can be checked by testing nodes in V \ D that have at least one edge to

some node in D, one at a time, to see if they can be added to D. In order to specify

a class of graphs with polynomially verifiable maximal k-clubs, we need to define an

asymmetric partitionable cycle as follows.

Definition 3.1 A graph G = (V, E) is called a partitionable cycle, if it contains a

spanning cycle W and a pair of nonadjacent nodes i and j such that every edge in

E \ E(W) has one endpoint in AW (i, j) and the other endpoint in AW (j, i), where

AW (i, j) and AW (j, i) are the internal nodes on the two paths between i and j in

W . A partitionable cycle is said to be asymmetric if |AW (i, j)| 6= |AW (j, i)|. (See

Figure 3.3)

Theorem 5 characterizes the class of graphs on which maximality of a k-club can

be verified in polynomial-time.

Theorem 5 Given a graph G = (V, E) and fixed integer k ≥ 2, every connected k-

clique is a k-club if G does not contain an asymmetric partitionable cycle on c vertices

as an induced subgraph, where 5 ≤ c ≤ 2k + 1.

30

1

2 3

4

7

6

5

)4,1(
W
A

)1,4(
W
A

Figure 3.3: An asymmetric partitionable cycle with respect to nodes 1 and 4, and

W = 1 − 2 − · · · − 7 − 1

Proof. Suppose a given graph G = (V, E) contains a connected k-clique D which is

not a k-club. Then there exist i, j ∈ D such that 2 ≤ dG(i, j) ≤ k but dG[D](i, j) =

k+ l < ∞ where 1 ≤ l < ∞. Let i = i0−i1−· · ·−ik+l = j be a shortest path between

i and j in G[D]. Now P1 : i = i0 − i1 − · · · − ik+1 is a shortest path between i and

ik+1 in G[D] and dG[D](i, ik+1) = k + 1. Since i, ik+1 ∈ D, there must be a shortest

path P2 between i and ik+1 in G with length 2 ≤ l′ ≤ k. Since P1 is a shortest path

in G[D] and P2 is shorter than P1, there exists node v ∈ P2 such that v 6∈ D and

therefore v 6∈ P1.

Now consider G[V (P1)∪V (P2)]. Moving along P1 from i to ik+1, let S denote the

sequence of nodes in P1 which also belong to P2. So we have S : i = s0, s1, . . . , sp =

ik+1. If (sj, sj+1) ∈ E for a j ∈ {0, . . . , p − 1} then (sj, sj+1) ∈ P1 and (sj, sj+1) ∈ P2

because otherwise P1 and P2 are not shortest paths between i and ik+1 in G[D] and

G respectively. Further, if (sj, sj+1) ∈ E for all j ∈ {0, . . . , p − 1} then S = P1 = P2

which is a contradiction since length of P2 is strictly less than length of P1. So there

exist h ∈ {0, . . . , p − 1} such that (sh, sh+1) 6∈ E. Since sh, sh+1 ∈ P1, there exists at

least one node between sh and sh+1 on P1. Let I1 denote the set of all such nodes.

Similarly for P2, there exists at least one node between sh and sh+1 on P2 and let I2

denote the set of all such nodes. I1 ∩ I2 = ∅ because moving along P1 from i to ik+1,

sh+1 is the first node in P2 after sh. G[{sh, sh+1} ∪ I1 ∪ I2] is a partitionable cycle

with respect to sh, sh+1, hence, G[V (P1) ∪ V (P2)] contains at least one partitionable

31

cycle.

Suppose every partitionable cycle in G[V (P1)∪ V (P2)] is symmetric. Like before,

moving along P1 from i to ik+1, let S be the sequence of the nodes in P1 which are

also in P2 and moving along P2 from i to ik+1, let T be the sequence of the nodes in

P2 which are also in P1. So S : i = s0, s1, ..., sp = ik+1 and T : i = t0, t1, . . . , tp = ik+1.

The elements of S and T are the same but their sequence might be different. We

know length of P1 =
∑p−1

j=0 dG[D](sj , sj+1) and length of P2 =
∑p−1

j=0 dG(tj , tj+1).

Now suppose the sequences S and T are the same, that is sj = tj for each j ∈

{0, . . . , p}. So length of P1 =
∑p−1

j=0 dG[D](sj , sj+1) and length of P2 =
∑p−1

j=0 dG(sj, sj+1).

Now if for some j ∈ {0, . . . , p−1}, (sj, sj+1) ∈ E then dG[D](sj, sj+1) = dG(sj , sj+1) =

1 and if for some j ∈ {0, . . . , p − 1}, (sj , sj+1) 6∈ E, according to the previous discus-

sion, there exists a partitionable cycle W with respect to sj, sj+1. Let AW (sj, sj+1)

contains the nodes between sj and sj+1 on P1 and AW (sj+1, sj) contains the nodes be-

tween sj and sj+1 on P2. We know dG[D](sj, sj+1) = |AW (sj , sj+1)|+1 and dG(sj, sj+1) =

|AW (sj+1, sj)|+1. Since every partitionable cycle is symmetric, we have |AW (sj , sj+1)| =

|AW (sj+1, sj)| which results in dG[D](sj, sj+1) = dG(sj , sj+1). So finally we have length

of P1 is equal to the length of P2 which is a contradiction.

Now suppose sequences S and T are different. Let sj be the first node in sequence

S which is different from the corresponding node in sequence T (which is tj). Note

that sj is located after tj in T and tj is located after sj in S. Hence, dG[D](sj−1, tj) =

dG[D](sj−1, sj) + dG[D](sj , tj) and since dG[D](sj, tj) > 0 we have,

dG[D](sj−1, tj) > dG[D](sj−1, sj). (3.1)

Considering T , we know tj is the first node after sj−1 and (sj−1, tj) 6∈ E as otherwise

P1 is not a shortest path since sj is located between sj−1 and tj in P1. So according to

the previous discussion, there exists a partitionable cycle W with respect to sj−1, tj.

Let AW (sj−1, tj) contain the nodes between sj−1 and tj in P1 and AW (tj , sj−1) contain

the nodes between sj−1 and tj in P2. Since every partitionable cycle is symmetric,

32

we have |AW (sj−1, tj)| = |AW (tj , sj−1)|. So dG[D](sj−1, tj) = dG(sj−1, tj). Now using

Equation 3.1 we have,

dG(sj−1, tj) > dG[D](sj−1, sj). (3.2)

In T , sj is located after tj . So,

dG(sj−1, tj) < dG(sj−1, sj). (3.3)

Equations 3.2 and 3.3 imply dG(sj−1, sj) > dG[D](sj−1, sj) which is impossible.

So in G[V (P1) ∪ V (P2)], there must exists at least one asymmetric partitionable

cycle. Since the length of P1 is k + 1 and maximum length of P2 is k, the order of

such an asymmetric partitionable cycle is at most (k + 1) + k = 2k + 1. On the other

hand, it is at least 5 because graphs of smaller order will never form an asymmetric

partitionable cycle.

Corollary 1 shows that a 2-club maximality can be polynomially verified in bipar-

tite graphs.

Corollary 1 In a bipartite graph G = (X∪Y, E), every connected 2-clique is a 2-club.

Furthermore, every 2-club induces a complete bipartite subgraph.

Proof. Since G is bipartite, it does not contain an odd cycle and hence, does not

contain an asymmetric partitionable cycle of size 5. Any 2-club in G of size at least

two, contains vertices x ∈ X and y ∈ Y . If (x, y) /∈ E then dG(x, y) ≥ 3. Hence, the

2-club must induce a complete bipartite subgraph.

33

CHAPTER 4

COMBINATORIAL BRANCH-AND-BOUND FOR THE MAXIMUM

k-CLUB PROBLEM∗

In this chapter, new lower- and upper-bounding techniques for the k-club number of

a graph are presented. A general framework for a combinatorial branch-and-bound

(BB) algorithm for solving the maximum k-club problem is also developed and the

experimental results from solving this problem on a test-bed of benchmark graphs by

utilizing the proposed BB algorithm are presented.

First, we outline some algorithmic implications of the nonhereditary nature of

k-clubs, especially for combinatorial algorithms. Since the k-club definition is more

restrictive than the k-clique, it is possible that a maximal k-club is not a maximal k-

clique. For instance, {1, 2, 3, 4} is a maximal 2-club in Figure 1.2, but not a maximal

2-clique as it is contained in 2-clique {1, 2, 3, 4, 5}. On the other hand, if a maximal

k-clique satisfies the diameter requirement it is also a maximal k-club. However, it is

possible in a graph for k ≥ 2 that no maximal k-clique is a k-club. Figure 4.1 shows a

graph with exactly two maximal 2-cliques {1, 2, 3, 4, 5, 6, 7} and {1, 2, 3, 5, 6, 7, 8}, nei-

ther of which is a 2-club. Hence, even enumerating all maximal k-cliques in the graph

to select the ones satisfying the diameter-k condition may not identify a maximum

k-club. Furthermore, in the extreme case, fail to identify a single k-club.

Furthermore, simple extensions of well known exact algorithms for maximum

∗Parts of this chapter are reprinted with permission from F. Mahdavi Pajouh and B. Balasun-

daram: On inclusionwise maximal and maximum cardinality k-clubs in graphs. Discrete Optimiza-

tion, 2012, DOI: http://dx.doi.org/10.1016/j.disopt.2012.02.002 c©Elsevier.

34

1

2

5

8

3

6

4

7

Figure 4.1: A graph in which every maximal 2-clique is not a 2-club

cliques such as the Carraghan-Pardalos algorithm [62], or the Österg̊ard’s algorithm [63]

are not likely. The Carraghan-Pardalos algorithm is a back-tracking algorithm (a

depth-first search order implicit enumeration) which requires that a maximal clique

be found prior to back-tracking, which cannot be accomplished in polynomial time for

k-clubs unless P = NP . Given G = (V, E) with V = {1, . . . , n}, Österg̊ard’s clique

algorithm relies on the bounded increase in the size of a maximum clique going from

G[Vi+1] to G[Vi] where Vi = {i, . . . , n}. This is true for cliques as the size can at most

go up by one vertex. Now consider the graph G = (V, E) where V = {1, . . . , n} and

E = {(1, i) : i = 2, · · · , n}, i.e., G is a star graph with central vertex 1 and leaves

2, . . . , n. The 2-club number of G[Vi] = 1 for each i = 2, . . . , n, but ω̄2(G[V1]) = n.

Even designing a basic branch-and-bound where the branching is carried out by a

selected vertex being included or excluded to create two child nodes, presents inter-

esting challenges. For instance, at some node of the search tree, let F 1 be the set

of nodes fixed to be included and F 0 be the set of nodes deleted from consideration.

For k ≥ 2, we cannot fathom by infeasibility if G[F 1] is not a k-club, as addition of

vertices from V \ {F 0 ∪ F 1} could turn it into one. Likewise, if G[F 1] is a k-club, we

cannot fathom by feasibility unless we know it is indeed a maximal k-club. Hence, in

the algorithm developed in Section 4.2, the pruning of the search tree is accomplished

by using bounds in combination with other necessary conditions.

35

4.1 Bounding strategies for the k-club number of a graph

As discussed in Section 2.3, the only available exact combinatorial algorithm for

solving the maximum k-club problem for k ≥ 2 is the BB algorithm presented in [43].

In this approach, the authors find the k-clique number of the graph associated with

the node of the BB tree to obtain an upper-bound. Note that the maximum k-clique

problem must be solved to optimality to obtain a valid upper-bound, and it is NP-

hard even on graphs of fixed diameter k + 1 [37]. In the next section, we consider a

dual to the maximum k-club problem so that any feasible solution of this dual could

be used to obtain a valid upper-bound. In Section 4.1.2, we discuss a lower-bounding

technique that builds on existing heuristic approaches for the problem [56].

4.1.1 Distance k-coloring based upper-bounding technique

In order to present the new upper-bounding approach, we need to provide the defini-

tion for a proper distance k-coloring of a graph as follows.

Definition 4.1 A proper distance k-coloring of G = (V, E) is a map c : V −→

{1, . . . , n} such that for every pair of vertices u, v ∈ V , if c(u) = c(v) then dG(u, v) ≥

k + 1 [64]. For each v ∈ V , c(v) is called the color of v, and the subset of nodes

receiving the same color form a color class.

Note that this definition reduces to classical graph coloring when k = 1 and is

restrictive as k increases. Furthermore, every color class forms a k-independent set

and hence, any k-club or k-clique in G can contain at most one vertex from a color

class for every proper distance k-coloring of G. Denote the minimum number of colors

to properly distance k-color G by χd
k(G). We have the following duality relationship

for every fixed positive integer k:

ωk(G) ≤ ω̃k(G) ≤ χd
k(G). (4.1)

36

Figure 4.2 shows an example of a proper distance 2-coloring of a graph using 5

colors. Finding a minimum distance k-coloring is also an NP-hard problem [64], but

for obtaining valid upper-bounds, we only need a proper distance k-coloring. By not-

ing that distance k-coloring is equivalent to classical graph coloring on power graphs,

we can employ fast coloring heuristics to yield a proper distance k-coloring [65]. A

compromise must be made in the quality of the bound, as k-clique number which is

a tighter bound can be hard to obtain, especially at the root node of the BB tree.

23

5 4

12

3
1

4

5

Figure 4.2: A proper distance 2-coloring (each number represents an specific color

class)

4.1.2 Bounded enumeration based lower-bounding technique

The proposed lower-bounding technique is based on finding an initial k-club S, fol-

lowed by a tree search that enumerates k-clubs containing S. If left unchecked, this

worst-case complete enumeration would return a maximal k-club containing S. How-

ever, we employ pruning and termination criteria that would prevent this procedure

from consuming an excessive amount of time. The “drop” and “constellation” heuris-

tics described in [56] are used to identify the initial k-club. Both heuristics are run

and the larger of the two k-clubs found is used as the initial solution S. The goal of

the bounded enumeration search is to improve upon this initial solution if possible

by spending a reasonable amount of time.

Given an initial k-club S, consider the graph H initially equal to G. We recursively

check H for a vertex v such that dH(v, u) > k for some u ∈ S and delete v. Note that

37

v cannot be a part of any k-club in G containing S. When this recursive procedure

terminates, S ⊆ V (H) and dH(v, u) ≤ k for all u ∈ S and v ∈ V (H)\S. Every k-club

in G that contains S is contained in V (H), and we call V (H) \ S the candidate set.

In this bounded enumeration search, at each node of the search tree, the corre-

sponding graph G = G[F ∪U] consists of two types of vertices. The first is the set of

vertices fixed to be included denoted by F , the second is the set of unexplored vertices

denoted by U . The root node of the search tree is initialized by setting F = S and

U = V (H) \S. The search order is depth-first search (DFS), with a vertex in U with

the largest number of vertices at distance k or less in G chosen first to be included.

Note that the search order and the greedy selection rule are chosen to encourage early

detection of better feasible solutions.

If V (H) \ S = ∅ then there is no larger k-club that contains S. Now suppose

V (H) \ S 6= ∅. For each integer 1 ≤ l ≤ |V (H) \ S|, starting from l = 1, we initiate a

bounded enumeration search with the goal of adding l vertices to the current feasible

solution. If at any point in this search we are successful in adding l vertices, we

update S, recompute the candidate set as described before, and repeat. If we are

unsuccessful in this search for l vertices to add, either because it is not possible, or

because we have reached a termination criterion specified in terms of number of tree

nodes pruned, we increment l and restart the search with the same S and V (H) as

long as l ≤ |V (H) \ S|. The overall procedure stops when either l exceeds |V (H) \S|

or if a user-specified time limit is reached.

We maintain the following conditions for the graph G associated with any active

tree node: (C1) F is a k-clique in G; (C2) dG(v, u) ≤ k, ∀u ∈ F, v ∈ U . Note that

at each such node, S ⊆ F , F \ S ⊆ V (H) \ S, U ⊆ V (H) \ S and vertices in

(V (H) \S) \ (F ∪U) have been deleted leading to this node of the search tree. While

processing a tree node created to include a vertex i ∈ U , if |F \ S| = l then the

present node is pruned since we are only interested in subsets of V (H) \ S of size

38

l. Otherwise, vertex i is added to F and removed from U . Note that F ∪ {i} will

be a k-clique in G. However, (C2) may be violated by some vertices too far from i

in the new U . Thus every vertex v ∈ U \ {i} violating (C2) is recursively deleted

until no such vertex exists. Similarly, while processing a tree node created to delete a

vertex i ∈ U , if |(V (H) \ S) \ (F ∪U)| = |V (H) \ S| − l then the present tree node is

pruned. Otherwise, after removing vertex i, every vertex v ∈ U \ {i} violating (C2)

is recursively deleted until no such vertex exists.

In any of these two cases, if removing these vertices results in (C1) being violated,

the present node is pruned by infeasibility. If (C1) and (C2) are still satisfied and

U = ∅ or if dG(u, v) ≤ k, ∀u, v ∈ U then G is a k-club. In this case, the lower-

bounding procedure is terminated and restarted with the initial solution S = F ∪ U ,

the associated candidate set V (H) \ S and l = 1. Otherwise, two new child nodes

are created by using the branching strategy and added to the list of active search

tree nodes. After processing a tree node, this node will be removed from the set of

active nodes. Whenever the set of active nodes is empty, the bounded enumeration

for the present value of l terminates. After terminating the search for the subsets of

V (H) \S with size l, if l = |V (H) \S| then the lower-bounding algorithm terminates

otherwise, a new bounded enumeration starts for the subsets of size l+1. The overall

lower-bounding procedure is also limited by a user-specified time limit.

4.2 Branch-and-bound framework to find the k-club number of a graph

In order to study the effectiveness of the bounding techniques proposed in Sec-

tion 4.1, we incorporate them in a BB algorithm. Two lower-bounding and two

upper-bounding schemes (in total four combinations) are tested. Given a graph

G = (V, E) and an integer k ≥ 2, the first lower-bounding technique is to select

the larger of the two solutions found by drop and constellation heuristics (denoted

by DC). The second technique is the bounded enumeration based lower-bounding

39

technique (denoted by BE) proposed in Section 4.1.2 which will return a solution

at least as good as the first. The lower-bounding scheme is only used once at the

beginning of the BB algorithm in order to initialize the incumbent solution.

The upper-bounding scheme is used at each node of the BB tree to find an upper-

bound on the k-club number of the graph G associated with that node. The first tech-

nique is to use ω̃k(G) as the upper-bound on ωk(G) (denoted by KC). To find ω̃k(G),

the maximum clique problem is solved on Gk by using Österg̊ard’s algorithm [63].

The second technique is the distance k-coloring based upper-bounding technique (de-

noted by CO) introduced in Section 4.1.1. To properly color Gk, two heuristics are

employed. First, a simple greedy heuristic that repeatedly colors the largest degree

uncolored node in the power graph with the color not yet assigned to any of its neigh-

bors. Second, we use the well known DSATUR heuristic [65] for graph coloring. In

general, the greedy heuristic is faster than DSATUR, but the quality of the solution

found by DSATUR is better. Since finding tighter upper-bounds in top levels of the

search tree is much more critical, we use DSATUR while processing higher tree levels

and use the greedy heuristic for finding upper-bounds in lower levels. A threshold pa-

rameter was used to determine the tree level after which the upper-bounding heuristic

should be switched from DSATUR to greedy algorithm.

The structure of each BB tree node is similar to the one used for the proposed

BE algorithm with the difference that the root node of the BB tree is initialized by

setting F = ∅ and U = V . A vertex dichotomy branching rule is also employed in

this algorithm. Based on the preliminary computational results, selecting a vertex in

U with minimum number of vertices at distance at most k in G for branching along

with the best bound search (BBS) strategy performed better than other branching

and search strategies. The reason for this observation is that in this BB algorithm,

unlike the proposed BE technique which focuses on feasibility, the emphasis is on

finding a maximum k-club in G and proving optimality. In case of a tie in choosing

40

the branching vertex, the vertex with minimum degree in G will be selected to branch

upon. If a tie still exists, the branching vertex will be selected randomly from tied

vertices. Properties (C1) and (C2), mentioned in Section 4.1.2, are also maintained

during the course of this BB algorithm. Note that at each node of the BB search tree,

vertices in V \ (F ∪U) have been deleted along the path connecting the root node of

the search tree to the current node.

While processing a BB tree node, if the corresponding upper-bound is less than

or equal to the size of the incumbent k-club, the node is then pruned by bound.

Otherwise, if the BB node is created to delete a vertex i ∈ U , this vertex is removed

from U and every vertex v ∈ U \ {i} violating (C2) is recursively deleted until no

such vertex exists. Similarly, if the BB node is created to include a vertex i ∈ U , this

vertex is added to F and removed from U . Note that the new F will satisfy (C1) but

(C2) can be violated by some vertices in U \ {i} which are too far from i. Thus every

vertex v ∈ U \ {i} violating (C2) is recursively deleted until no such vertex exists.

If deleting these vertices in any of these two cases results in (C1) being violated,

the current BB tree node is pruned by infeasibility. Note that it would be incorrect

to prune a BB tree node by infeasibility if diam(G[F]) > k. We employ the necessary

condition that F must be a k-clique in G for this purpose. If (C1) and (C2) are still

satisfied and U = ∅ or if dG(u, v) ≤ k, ∀u, v ∈ U then G is a k-club. So the current BB

tree node is pruned by feasibility and the incumbent solution is updated if necessary.

Otherwise, the upper-bounding technique is used to find an upper-bound on the k-

club number of the new G. Again, if the estimated upper-bound is less than or equal

to the size of the incumbent solution, the node is fathomed by bound otherwise by

using the branching strategy, two new child nodes are created and added to the list

of active BB tree nodes. The processed BB node then will be removed from the set

of active BB nodes. Whenever the set of active BB nodes is empty, the BB algorithm

terminates and the size of the incumbent solution will be equal to the k-club number

41

of G. In addition to this termination criterion, a maximum time allowed is also used

to stop the BB algorithm. In case of termination by time limit, the gap between

the best upper-bound (the largest upper-bound among all active BB nodes) and the

incumbent solution is reported.

Note that for any active node, to compute the upper-bound by distance coloring

G, we only need to distance color G[U] as F is a k-clique and every vertex in U is at

distance no more than k from every vertex in F . That is, we need |F | colors to color

nodes in F and none of these can be used to color nodes in U . The upper-bound for

the active node under consideration is equal to the number of colors used to color

G[U] plus the cardinality of set F . Another key operation which has a clear effect on

the algorithm running time is updating the distance k-neighborhood of each vertex

of the graph obtained by deleting vertices. After deleting a vertex i, we only need to

update the k-neighborhood of vertices in Nk
G(i). This observation also helps reduce

the time taken to update pairwise distances in G − i, after vertex deletion.

4.3 Implementation details and computational test results

All algorithms were implemented in C++ and all numerical experiments were con-

ducted on a Dellr workstation with Intelr Xeonr W3550 @ 3.07 GHz processor and

3.00 GB RAM. The test-bed of instances consists of benchmark graphs generated

using the algorithm introduced in [43]. The edge density of the graphs produced by

this algorithm is controlled by two parameters a and b. The expected edge density d

is (a + b)/2 and vertex degree variance (VDV) increases with b − a. We considered

k = 2 and 3 and edge densities d = 0.0125, 0.025, 0.05, 0.1, 0.15, 0.2 and 0.25 were

studied. The experiments were performed on graphs of order n = 50, 100, 150 and

200. For each order and density, 10 samples with minimum VDV (a = b = d) and 10

samples with maximum VDV (a = 0, b = 2d) were generated.

It should be noted that we do not explicitly require the test instances to be con-

42

nected. Especially the sparse instances could consist of multiple connected compo-

nents in which case the maximum k-club problem can be decomposed by component.

This would be particularly useful to recognize in integer programming approaches,

and is implicitly used in our BB algorithm. Also important to note is the fact that the

maximum k-club may or may not be in the largest order or the most dense connected

component. Table 4.1 shows the average size of the largest connected component in

generated test instances. For a given n and for low edge densities, the average size

of the largest connected component in instances with minimum VDV is larger than

the one for instances with maximum VDV (except for n = 50 and density 0.025) and

this difference disappears as the edge density increases.

Table 4.1: Average size of the largest connected component in generated test instances

n VDV
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

50
Min 5.6 16.6 43.6 49.5 50 50 50

Max 4.4 21.6 41.8 48.8 49.1 50 50

100
Min 37.2 91.1 99.7 100 100 100 100

Max 29.4 87.6 99.4 100 100 100 100

150
Min 112.5 147.6 149.9 150 150 150 150

Max 109 144 149.6 150 150 150 150

200
Min 178.4 198 200 200 200 200 200

Max 172.7 197.3 199.9 200 200 200 200

We also observed that some of the higher order, higher density test instances were

trivial since their diameter was less than or equal to the value of k under consideration.

While this is expected in general, it was interesting to note that in such cases, for

any given k, the minimum VDV scheme appears to have a propensity for producing

trivial instances. This is attributable to the fact that when VDV is maximum, there

43

is potential for both large k-clubs (higher degree vertices) as well as isolated vertices.

Hence, the entire graph may not have low diameter. We have summarized the number

of such trivial instances in Table 4.2.

Table 4.2: Number of trivial test instances in each sample of 10 instances

d=0.1 d=0.15 d=0.2 d=0.25

k=2

n=150
Min VDV – – – 7

Max VDV – – – –

n=200
Min VDV – – – 10

Max VDV – – – 1

k=3

n=50
Min VDV – 2 10 10

Max VDV – 1 1 10

n=100
Min VDV – 10 10 10

Max VDV – 7 10 10

n=150
Min VDV 9 10 10 10

Max VDV 1 10 10 10

n=200
Min VDV 10 10 10 10

Max VDV 7 10 10 10

4.3.1 Experiments with the lower-bounding techniques

We first consider the numerical results comparing the two lower-bounding techniques

DC and BE discussed in Section 4.2. The maximum time allowed for BE is 600

seconds and the number of nodes pruned during BE is limited to 200 for each sub-

set size. We summarize the key observations here but the detailed numerical results

showing the performance of these two lower-bounding techniques on our test-bed of

instances are provided in Tables B.1–B.4 in Appendix B. For a particular k, VDV and

n, the average solution size increases as expected with edge density, and more inter-

44

estingly, the average running time reaches a peak and then drops. This peak occurs

at the same or consecutive densities for both lower-bounding techniques indicating

that finding good feasible solutions is challenging in these instances. Furthermore for

a given k, we find the densities that are challenging to be the same across minimum

and maximum VDV instances, and to be decreasing as n increases. This information

is summarized in Table 4.3.

Table 4.3: Challenging densities (among the ones considered) where both BE and

DC took the maximum time among all densities

n = 50 n = 100 n = 150 n = 200

k = 2 0.25 0.2 0.15, 0.2 0.15

k = 3 0.1 0.1 0.05 0.05

The main result of these experiments is that the BE approach is beneficial com-

pared to DC when used on such challenging densities (especially on 150 and 200

vertex instances) as opposed to the non-challenging ones where the DC approach is

preferable. Recall that BE approach will take more time as it includes DC in it, but

has the potential for returning larger k-clubs. Table 4.4 summarizes the results of

these experiments.

4.3.2 Experiments with the branch-and-bound framework

The remainder of our computational experiments are designed to study the perfor-

mance of four different BB algorithms obtained by using different strategies for lower-

bounding and upper-bounding. The four BB algorithms are denoted by DC/CO,

DC/KC, BE/CO and BE/KC (see Section 4.2) in the numerical results. Tables 4.5

and 4.6 report the computational results obtained by solving the maximum k-club

problem on 200-vertex graphs for k = 2 and k = 3, respectively. Average best objec-

tive value, running time and optimality gap across the 10 samples in each category

45

Table 4.4: Minimum and maximum percentage increase in average best objective

value found by BE over DC, and increase in average running time in seconds for the

challenging densities (over 10 samples)

Metric n = 50 n = 100 n = 150 n = 200

k = 2
Best Obj (1.48, 2.53) (0.71, 3.92) (0.25, 5.31) (2.06, 17.44)

Time (0.75, 0.75) (8.20,10.20) (15.51, 36.93) (98.81, 218.45)

k = 3
Best Obj (0.69, 1.59) (0.00, 0.11) (4.22, 7.26) (3.03, 5.35)

Time (0.68, 0.70) (7.10, 7.64) (25.24, 30.00) (143.55, 159.93)

of test instances are reported in these tables.

Although we present the results for 200-vertex instances here, the results are

similar across different orders and the subsequent observations are made considering

all the instances in our test-bed. The complete set of computational results including

instances of smaller orders (n = 50, 100 and 150) are provided in Tables B.5–B.12 in

Appendix B.

The running time limit for all algorithms is 3600 seconds. This was enforced by

checking the elapsed time after each BB node was processed, which in some instances

exceeded the time limit due to the time it took to process the last BB node before

termination. If an instance cannot be solved to optimality within the time limit,

relative optimality gap is reported. The percentage gap is calculated as 100×(upper-

bound - best solution size)/upper-bound. The settings used for BE are as stated before.

The tree level threshold parameter for switching the upper-bounding heuristic from

DSATUR to simple greedy is set at 0.10 × n.

For a given k, VDV and n, as edge density increases the average incumbent solu-

tion size found by all algorithms increases, while generally the average running time

and optimality gap increase up to a peak and then decrease. The peak average run-

ning time can be used to determine the challenging densities for these BB algorithms.

46

Table 4.5: Average size of the best 2-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 200-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 8.20 12.70 20.70 33.60 58.50 195.50 200.00

DC/KC 8.20 12.70 20.70 33.60 58.50 195.50 200.00

BE/CO 8.20 12.70 20.70 33.60 68.70 195.50 200.00

BE/KC 8.20 12.70 20.70 33.60 68.70 195.50 200.00

Time

DC/CO 2.54 71.62 298.98 3604.30 3613.16 880.00 0.00

DC/KC 0.95 2.12 16.71 4554.49 5276.76 331.06 0.00

BE/CO 2.65 71.93 300.04 3605.00 3618.83 913.00 0.00

BE/KC 1.01 2.53 18.18 4548.06 4542.85 361.98 0.00

Gap

DC/CO 0.00 0.00 0.00 37.78 56.14 0.00 0.00

DC/KC 0.00 0.00 0.00 83.20 70.75 0.00 0.00

BE/CO 0.00 0.00 0.00 37.66 48.78 0.00 0.00

BE/KC 0.00 0.00 0.00 83.20 65.65 0.00 0.00

Max

Best Obj

DC/CO 9.20 14.30 23.40 39.10 126.20 178.20 196.40

DC/KC 9.20 14.30 23.40 39.10 126.20 177.20 196.40

BE/CO 9.20 14.30 23.40 39.10 128.80 178.20 196.40

BE/KC 9.20 14.30 23.40 39.10 128.80 177.40 196.40

Time

DC/CO 2.61 48.14 299.68 3608.07 3403.16 1664.25 777.07

DC/KC 0.96 2.24 42.41 4884.64 4377.61 5603.51 116.33

BE/CO 2.68 48.07 300.83 3604.49 3411.23 1747.34 813.20

BE/KC 1.03 2.67 44.07 4878.12 4395.17 5606.31 151.69

Gap

DC/CO 0.00 0.00 0.00 29.77 8.00 0.06 0.00

DC/KC 0.00 0.00 0.00 80.45 36.90 10.35 0.00

BE/CO 0.00 0.00 0.00 29.34 6.05 0.06 0.00

BE/KC 0.00 0.00 0.00 80.45 35.60 10.25 0.00

47

Table 4.6: Average size of the best 3-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 200-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 13.60 25.40 89.70 200.00 200.00 200.00 200.00

DC/KC 13.60 20.70 89.70 200.00 200.00 200.00 200.00

BE/CO 13.60 25.40 94.50 200.00 200.00 200.00 200.00

BE/KC 13.60 23.40 94.50 200.00 200.00 200.00 200.00

Time

DC/CO 87.90 442.32 3616.94 0.00 0.00 0.00 0.00

DC/KC 17.24 3684.29 4108.80 0.00 0.00 0.00 0.00

BE/CO 88.28 431.66 3619.46 0.00 0.00 0.00 0.00

BE/KC 17.98 3702.84 4160.96 0.00 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 31.64 0.00 0.00 0.00 0.00

DC/KC 0.00 89.30 55.15 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 28.13 0.00 0.00 0.00 0.00

BE/KC 0.00 87.92 52.75 0.00 0.00 0.00 0.00

Max

Best Obj

DC/CO 14.80 31.90 119.10 199.70 200.00 200.00 200.00

DC/KC 14.80 24.90 118.70 199.70 200.00 200.00 200.00

BE/CO 14.80 31.90 122.50 199.70 200.00 200.00 200.00

BE/KC 14.80 29.40 122.30 199.70 200.00 200.00 200.00

Time

DC/CO 91.39 477.40 3275.85 262.39 0.00 0.00 0.00

DC/KC 63.03 3760.07 4523.58 32.50 0.00 0.00 0.00

BE/CO 91.75 464.38 3304.12 268.81 0.00 0.00 0.00

BE/KC 62.81 3757.28 4526.92 38.81 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 12.29 0.00 0.00 0.00 0.00

DC/KC 0.00 87.39 40.65 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 9.64 0.00 0.00 0.00 0.00

BE/KC 0.00 85.11 38.85 0.00 0.00 0.00 0.00

48

It can be observed that for a given k, the challenging densities are the same for

both minimum and maximum VDV instances, and decrease as n increases. Table 4.7

identifies these challenging densities for all BB algorithms.

Table 4.7: Challenging densities (among the ones considered) where all four BB

algorithms took the maximum time across all densities

n = 50 n = 100 n = 150 n = 200

k = 2 0.2, 0.25 0.15, 0.2 0.15, 0.2 0.1, 0.15, 0.2

k = 3 0.1 0.05 0.05 0.05

For a given k, n, VDV and for densities that are not challenging, the quality

of the solution found by all algorithms are nearly identical. Considering average

running time for these non-challenging densities, DC/KC almost always performs

better than the other algorithms. This observation is attributable to the fact that on

these densities, BE does not significantly improve the quality of the initial solution.

Furthermore, it appears that solving the maximum k-clique problem which returns

potentially tighter upper-bounds is not as hard on these densities. Likewise for these

non-challenging densities, all the algorithms return a zero optimality gap on nearly

all the instances.

However, for challenging densities, BE/CO outperforms all the other algorithms

in terms of solution quality. This observation can be explained by the fact that on

these densities, BE often returns a larger initial solution in a reasonable amount of

time. Furthermore, solving the maximum k-clique problem to optimality on these

densities is relatively harder than finding a feasible distance k-coloring, requiring

longer times to compute the upper-bound at each node. This results in fewer BB

nodes being enumerated in a specified time limit, affecting the incumbent solution

quality adversely. Due to similar reasons, both DC/CO and BE/CO perform better

than the other two algorithms in terms of average running time metric. In terms

49

of optimality gap, DC/CO and BE/CO outperform the other two algorithms while

BE/CO is slightly better than DC/CO.

50

CHAPTER 5

THE 2-CLUB POLYTOPE

In this chapter, we study the 2-club polytope of a graph and identify a new family

of facet inducing inequalities for this polytope. This family of facets strictly contains

all known nontrivial facets of the 2-club polytope and introduces new facets of this

polytope to the literature. The separation complexity of the newly discovered facet

inducing inequalities is studied in this chapter and it is shown that these facets along

with the nonnegativity constraints completely describe the 2-club polytope of trees.

It is important to note that nonhereditary property of k-clubs also poses inter-

esting challenges to polyhedral approaches. For instance, given a graph G = (V, E)

and a nonempty set S ⊂ V , some facet inducing inequalities for the k-club polytope

of G[S] will not necessarily be valid for the k-club polytope of G. This observation

is interesting because of the fact that for the models with hereditary property like

k-cliques, facet inducing inequalities for the k-clique polytope of G[S] will remain

valid for the k-clique polytope of G. While dealing with k-clubs, lifting some facets

of the k-club polytope of G[S] is necessary in order to generate valid inequalities for

the k-club polytope of G. For example, consider the graph G shown in Figure 5.1

and let S = {1, 2, 3, 4, 5}. The inequality x1 + x2 + x3 + x4 + x5 ≤ 1 induces a facet

of the 2-club polytope of G[S] while it is not valid for the 2-club polytope of G as it

cuts off the incidence vector of set {1, 2, 3, 4, 5, 6} which is a 2-club in G. Lifting x6

will yield inequality x1 + x2 + x3 + x4 + x5 − 4x6 ≤ 1 which induces a facet of the

2-club polytope of G.

Before presenting the main results obtained for the 2-club polytope of a graph, let

51

Figure 5.1: A graph in which
∑

i∈S xi ≤ 1 is not valid for the 2-club polytope while

it induces a facet of the 2-club polytope of G[S], where S = {1, 2, 3, 4, 5}

us introduce some notations and definitions which are used in this chapter. Given a

set S ⊆ V , let Γ(S) denote the set that contains all maximal 2-independent sets in

G[V \ N2
G[S]]. Given a graph G = (V, E), let Ω(G) denote the set of all independent

2-dominating sets in G. Note that any maximal 2-independent set in G is also an

independent 2-dominating set so Ω(G) contains all maximal 2-independent sets in G.

Finally, for i ∈ V , we denote by ei the vector in R
n with all components equal to 0,

except for the i-th component which is 1.

5.1 Independent 2-dominating set inequalities

Theorem 7 characterizes the family of independent 2-dominating set (I2DS) facets

for the 2-club polytope of a graph. In order to present Theorem 7, we first provide

Lemma 5.1 and Theorem 6 which are used in proof of Theorem 7.

Lemma 5.1 Let G = (A, B, E) be a bipartite graph such that:

1. |A| ≥ 2, |B| ≥ 1.

2. For all v ∈ B, N(v) ∩ A 6= ∅.

3. For all pairs s, t ∈ A, N(s) ∩ N(t) 6= ∅.

Then, G is connected.

52

Proof. By definition, there exists a path between u, v ∈ A. For a pair u, v ∈ B,

suppose there does not exist a path. Then, they belong to two different components

and hence, there exists a S ⊆ A∪B such that u ∈ S, v 6∈ S and {(i, j) ∈ E : i ∈ S, j 6∈

S} = ∅. By Condition 2, there exists a1 ∈ N(u) and a2 ∈ N(v) such that a1 ∈ S and

a2 6∈ S. But N(a1) ∩ N(a2) = ∅, contracting Condition 3. Now consider, u ∈ A and

v ∈ B such that there does not exist a u, v-path in G. Then, there exists S ⊆ A ∪ B

such that u ∈ S, v 6∈ S and {(i, j) ∈ E : i ∈ S, j 6∈ S} = ∅. By Condition 2, there

exists w ∈ N(v) such that w 6∈ S. Then N(u) ∩ N(w) = ∅, contracting Condition 3.

Hence, G is connected.

Theorem 6 Given a graph G = (V, E) and an independent set C ⊆ V , the following

inequality is valid for the 2-club polytope of G.

∑

i∈C

xi −
∑

i∈V \C

(|N(i) ∩ C| − 1)+xi ≤ 1 (5.1)

Proof. Consider a 2-club D in G. The inequality is trivially valid for a 2-club D such

that |D ∩ C| ≤ 1. So we assume that |D ∩ C| ≥ 2. Under this assumption, we must

have some u ∈ D \ C such that |N(u) ∩ D ∩ C| ≥ 2. Let,

J = {i ∈ D \ C : |N(i) ∩ C| ≥ 2} 6= ∅.

Then, the inequality reduces to showing that

|D ∩ C| −
∑

i∈J

(|N(i) ∩ C| − 1) ≤ 1

or equivalently,

|D ∩ C| + |J | − 1 ≤
∑

i∈J

|N(i) ∩ C|.

Let,

H = {i ∈ J : N(i) ∩ D ∩ C 6= ∅} 6= ∅.

Consider the subgraph induced by vertices in D∩C and H . Ignoring edges with both

endpoints in H , we obtain a bipartite graph with partitions D ∩ C and H . We have

53

|D ∩ C| ≥ 2, |H| ≥ 1, for any v ∈ H , N(v) ∩ D ∩ C 6= ∅. Since D is a 2-club and

C is independent, for any u, v ∈ D ∩ C, N(u) ∩ N(v) ∩ H 6= ∅. By Lemma 5.1, this

bipartite graph is connected. Hence, the number of edges in this graph is at least

|D ∩ C| + |H| − 1. That is,

|D ∩ C| + |H| − 1 ≤
∑

i∈H

|N(i) ∩ D ∩ C|.

So,

|D ∩ C| + |H| − 1 ≤
∑

i∈H

|N(i) ∩ C|.

Now, for each v ∈ J \ H , |N(i) ∩ C| ≥ 2. Thus,

|D ∩ C| + |H| + |J \ H| − 1 ≤
∑

i∈H

|N(i) ∩ C| +
∑

i∈J\H

|N(i) ∩ C|

or equivalently,

|D ∩ C| + |J | − 1 ≤
∑

i∈J

|N(i) ∩ C|.

Theorem 7 [I2DS facet] Given a graph G = (V, E) and an independent 2-dominating

set C ⊆ V , the following inequality defines a facet for the 2-club polytope of G.

∑

i∈C

xi −
∑

i∈V \C

(|N(i) ∩ C| − 1)+xi ≤ 1 (5.2)

Proof. Inequality 5.2 is valid for the 2-club polytope of G by Theorem 6. Now,

partition V into C, C1 and C2 where C1 = ∪v∈CN(v) \ C and C2 = V \ (C ∪ C1).

For any i ∈ C2, there exists j ∈ C and t ∈ C1 such that t ∈ N(i) ∩ N(j) as C

is 2-dominating. In the following, we construct 2-clubs S1, . . . , Sn, whose incidence

vectors satisfy Inequality 5.2 as equality and are linearly independent. For all i ∈ C,

Si = {i}, for all i ∈ C1, Si = {i}∪ (N(i)∩C), and for all i ∈ C2, Si = {i}∪Sj where

(i, j) ∈ E for some j ∈ C1. This completes the proof of Theorem 7.

54

The family of I2DS facets strictly includes all previously known nontrivial facets

for the 2-club polytope described in Theorems 1c, 1d, 2 and 3 of Section 2.2. Note that

nonnegativity facets presented in Theorem 1b are trivial facets for the 2-club polytope.

It can be easily verified that sets {i} in Theorem 1c, I in Theorem 1d, I ∪ {a, b} in

Theorem 2 and I ∪ {a, b, c} in Theorem 3 are all independent 2-dominating sets and

their corresponding inequalities are special cases of inequality 5.2. It should be noted

that the family of I2DS facets also introduces new facets of the 2-club polytope which

were previously unknown. For example, in the graph shown in Figure 5.2, inequality

x1 + x3 + x4 + x7 + x8 − 2x2 − x5 − x6 ≤ 1 is an I2DS facet for the 2-club polytope

of this graph which was previously unknown.

Figure 5.2: A graph in which x1 + x3 + x4 + x7 + x8 − 2x2 − x5 − x6 ≤ 1 is an I2DS

facet for the 2-club polytope which was previously unknown

5.2 Independent 2-dominating set inequalities separation complexity

The computational complexity of I2DS facet separation problem plays an important

role in developing branch-and-cut algorithms for solving the maximum 2-club prob-

lem.

The 2-club polytope of a graph is contained in the polyhedron obtained by the

linear programming relaxation of the maximum 2-club problem formulation provided

55

in Section 2.2. Let,

Q = {x ∈ [0, 1]n : xi + xj −
∑

k∈N(i)∩N(j)

xk ≤ 1 ∀(i, j) 6∈ E, i < j, and i, j ∈ V }.

In this section, we are concerned with the complexity of identifying I2DS inequalities

violated by a fractional point in Q (if any exists). An instance of the I2DS inequalities

separation problem is given by a simple undirected graph G = (V, E) and a feasible

fractional point x∗ ∈ Q, and we ask if there exist a set C ∈ Ω(G) such that
∑

i∈C x∗
i −

∑
i∈V \C(|N(i) ∩ C| − 1)+x∗

i > 1. The following theorem establishes that the I2DS

inequalities separation problem is NP-complete.

Theorem 8 Given a graph G = (V, E) and a fractional point x∗ ∈ Q, deciding

whether there exists a violated I2DS inequality is NP-complete.

Proof. A polynomial time reduction from 3-SAT [23] is used to prove this theorem.

We assume that in the 3-SAT instances, there is no clause that contains a literal and

its negation and there are at least 3 clauses in the 3-SAT formula. Note that the 3-

SAT problem is still NP-complete under these restrictions. Denote the 3-SAT instance

with n boolean variables, m clauses with 3m literals as B =
∧m

i=1(pi1 ∨ pi2 ∨ pi3). For

any such 3-SAT instance < B >, the following steps construct in polynomial time,

an instance < G, x∗ > for I2DS inequalities separation problem such that the 3-SAT

instance is satisfiable if and only if there exists a set C ∈ Ω(G) such that,

∑

k∈C

x∗
k −

∑

k∈V \C

(|N(k) ∩ C| − 1)+x∗
k > 1.

1. For each clause i ∈ {1, . . . , m} in B, four vertices are created in G, three of

which correspond to the three literals in clause i. We call these vertices, the

literal vertices of clause i. The fourth vertex is called the base vertex of clause i.

Additionally, for each literal pair pij and puv such that pij = puv (by assumption

i 6= u), a vertex is added to G. These vertices are called median vertices. The

56

union of the literal, base and median vertex sets across all clauses in B will

form the vertex set V of graph G. So we have |V | = 4m+ r where r is the total

number of literal pairs that are negations of each other.

2. For each clause i ∈ {1, . . . , m} in B, each literal vertex in clause i is connected

to this clause’s base vertex. If literal pij is the negation of literal puv then their

literal vertices are connected to the corresponding median vertex in G. Finally,

the set of all base and median vertices form a clique in G. The union of these

edge sets will form the edge set E of graph G.

3. Now arbitrarily assign an index k from 1 to |V | to the elements of V . For each

clause i ∈ {1, . . . , m}, let L(i) denote the set containing the indices of the three

literal vertices in i and b(i) refer to this clause’s base vertex index. Furthermore,

the index set of all median vertices in G is denoted by M . Let x∗
k = 2

2m−1
for

all k ∈ V . Since m ≥ 3, it is easy to verify that x∗ ∈ Q.

If the 3-SAT instance is satisfiable then consider a particular satisfying assignment

and let set C contain the indices of all literal vertices for which the corresponding

literal is equal to one. Set C is independent in G and since there exist at least one

literal with value one in each clause, the set C is also a 2-dominating set. So set C is

an independent 2-dominating set. We have,

∑

k∈C

x∗
k −

∑

k∈V \C

(|N(k) ∩ C| − 1)+x∗
k =

m∑

i=1

(
∑

k∈L(i)∩C

x∗
k −

∑

k∈L(i)\C

(|N(k) ∩ C| − 1)+x∗
k

−(|N(b(i)) ∩ C| − 1)+x∗
b(i)) −

∑

k∈M

(|N(k) ∩ C| − 1)+x∗
k.

Considering each clause i ∈ {1, . . . , m}, we have −(|N(b(i)) ∩ C| − 1)+ = −(ti − 1)

where ti is the number of literals with value one in clause i and for each k ∈ L(i) \C,

−(|N(k) ∩ C| − 1)+ = 0. For each k ∈ M , −(|N(k) ∩ C| − 1)+ = 0 because exactly

one of the literal vertices in the corresponding negating pair is inside C. So,

∑

k∈C

x∗
k −

∑

k∈V \C

(|N(k) ∩ C| − 1)+x∗
k =

m∑

i=1

(ti ∗ (
2

2m − 1
) − (ti − 1) ∗ (

2

2m − 1
)) =

57

m∑

i=1

2

2m − 1
=

2m

2m − 1
> 1.

Now suppose there exists a set C ∈ Ω(G) such that
∑

k∈C x∗
k −

∑
k∈V \C(|N(k) ∩

C| − 1)+x∗
k > 1. Given a clause i ∈ {1, . . . , m}, let ti denote the number of literal

vertices corresponding to clause i which belong to C.

Set C does not contain any base or median vertex. To show this, suppose C

contains a base vertex which corresponds to a clause u ∈ {1, . . . , m}. Since all the

base and median vertices form a clique in G, C cannot contain any other base or

median vertex. So we have −(|N(k)∩C|−1)+ = 0 for all k ∈ L(u). Furthermore, for

a clause i ∈ {1, . . . , m} \ {u}, we have −(|N(b(i))∩C|−1)+ = −((ti +1)−1)+ = −ti

and for each k ∈ L(i) \ C, −(|N(k) ∩ C| − 1)+ = 0. So,

∑

k∈C

x∗
k−

∑

k∈V \C

(|N(k)∩C|−1)+x∗
k =

2

2m − 1
+

∑

i∈{1,...,m}\{u}

(ti∗(
2

2m − 1
)−ti∗(

2

2m − 1
))−

∑

k∈M

(|N(k) ∩ C| − 1)+(
2

2m − 1
) ≤

2

2m − 1
< 1

which is a contradiction.

Now suppose set C contains a median vertex l ∈ M (which is adjacent to two

negating literals pst and puv). Again, since all the base and median vertices in G form

a clique, C does not include any other base or median vertex. Additionally, for a

clause i ∈ {1, . . . , m}, we have −(|N(b(i)) ∩ C| − 1)+ = −((ti + 1) − 1)+ = −ti and

for each k ∈ L(i) \ C, −(|N(k) ∩ C| − 1)+ = 0. So,

∑

k∈C

x∗
k −

∑

k∈V \C

(|N(k) ∩ C| − 1)+x∗
k =

2

2m − 1
−

∑

k∈M\{l}

(|N(k) ∩ C| − 1)+(
2

2m − 1
)+

∑

i∈{1,...,m}

(ti ∗ (
2

2m − 1
) − ti ∗ (

2

2m − 1
)) ≤

2

2m − 1
< 1

which is again a contradiction.

Since there is no base or median vertex in C, this implies,

∀k ∈ (∪m
i=1L(i)) \ C, − (|N(k) ∩ C| − 1)+ = 0.

58

Set C should contain at least one literal vertex from each clause i ∈ {1, . . . , m}. To

show this, suppose C does not contain any literal vertex of a clause u ∈ {1, . . . , m}.

This means −(|N(b(u)) ∩ C| − 1)+ = 0. So we have,

∑

k∈C

x∗
k −

∑

k∈V \C

(|N(k)∩C|−1)+x∗
k ≤

∑

i∈{1,...,m}\{u}

(ti ∗ (
2

2m − 1
)− (ti −1)+ ∗ (

2

2m − 1
))

≤
2(m − 1)

2m − 1
< 1

which is again a contradiction.

It can also be shown that set C does not contain two literal vertices for which the

corresponding literals are negation of each other. To prove this, suppose there exist

literal vertices x and y in C such that correspond to a negating pair. Suppose x and

y belong to clauses u and w, respectively where u ∈ {1, . . . , m}, w ∈ {1, . . . , m} and

u 6= w and let z denote the median vertex connected to these literal nodes. We know

−(|N(z) ∩ C| − 1)+ = −1. So,

∑

k∈C

x∗
k −

∑

k∈V \C

(|N(k)∩C| − 1)+x∗
k ≤

∑

i∈{1,...,m}

(ti ∗ (
2

2m − 1
)− (ti − 1)+ ∗ (

2

2m − 1
))−

2

2m − 1
−

∑

k∈M\{z}

(|N(k) ∩ C| − 1)+(
2

2m − 1
) ≤

2m

2m − 1
−

2

2m − 1
< 1

which is again a contradiction. So by setting the value of the boolean variables

corresponding to literal vertices in C to 1 and the rest of them to zero, we will have

a satisfying assignment for B.

This establishes that I2DS inequalities separation problem is NP-hard. It is easy

to see that this problem is in class NP. This completes the proof of Theorem 8.

5.3 The 2-club polytope of trees

In this section, we derive the complete description of the 2-club polytope of trees using

the collection of I2DS and nonnegativity inequalities. Given a graph G = (V, E), let

59

PG denote the polyhedron obtained by the set of I2DS and nonnegativity inequalities

in graph G described as follows.

PG = {x ∈ R
|V|
+ :

∑

k∈C

xk −
∑

k∈V \C

(|N(k) ∩ C| − 1)+xk ≤ 1, ∀C ∈ Ω(G)} (5.3)

Considering any j ∈ V , we know there exists a maximal 2-independent set in G

that contains j, say Ij. According to the description of PG, we have
∑

i∈Ij xi ≤ 1 and

xi ≥ 0 for all i ∈ V , so xj ≤ 1. Hence, ∅ 6= PG ⊆ [0, 1]|V |.

Theorems 9 and 10 show some useful results concerning polyhedron PG, its extreme

points and integral members.

Theorem 9 The incidence vector of any 2-club in G is an extreme point of PG.

Proof. This result follows from Q2(G) ⊆ PG ⊆ [0, 1]|V |. We supply an alternate direct

proof here. Let x̂ be the incidence vector of a 2-club D in G. By Theorem 7, we

know x̂ ∈ PG. So it suffices to show that x̂ is a basic solution in PG. We now

demonstrate |V | linearly independent inequalities in description of PG that are active

at x̂. Consider the nonnegativity inequalities xi ≥ 0 for all i ∈ V \ D and consider a

maximal 2-independent set inequality based on I i ∈ Ω(G) for each i ∈ D such that

i ∈ I i. Note that D∩I i = {i}. These |V | inequalities can be easily verified as linearly

independent and are active at the incidence vector x̂ of D.

Remark. The purpose of this direct proof is to highlight the potential for degen-

eracy at the integral extreme points of PG that correspond to 2-clubs in G. This

argument also extends to Q2(G) since every one of its extreme points can be deter-

mined by maximal 2-independent set inequalities of the type used in the proof and

nonnegativity, all of which are known to be facet inducing and hence, part of any

description of Q2(G). Hence, I2DS facets and other facets increase the number of

60

active facets at an extreme point of Q2(G) beyond |V |, in general. Note that if G2

is perfect and the 2-club polytope of G is indeed completely described by maximal

2-independent set inequalities and nonnegativity, the 2-club polytope of G and the

2-clique polytope of G coincide [66].

Theorem 10 If x̂ ∈ PG is an integral vector, then it is an incidence vector of a

2-club in G.

Proof. Let S = {i ∈ V : x̂i = 1}. Now suppose S is not a 2-club in G. So there

exist j, k ∈ S such that dG[S](j, k) > 2. If dG(j, k) > 2 then there exists a maximal

2-independent set inequality in PG violated by x̂. So we have dG(j, k) ≤ 2. For any

set D ∈ Γ({j, k}), set C = {j, k} ∪ D is an independent 2-dominating set in G and

∑
i∈C x̂i −

∑
i∈V \C(|N(i) ∩ C| − 1)+x̂i = 2 + |D ∩ S| −

∑
i∈S\C(|N(i) ∩ C| − 1)+.

Since dG[S](j, k) > 2, so for all i ∈ S \ C, |N(i) ∩ C| ≤ 1 and we have
∑

i∈C x̂i −
∑

i∈V \C(|N(i) ∩ C| − 1)+x̂i > 1 which is a contradiction with x̂ ∈ PG. So x̂ is an

incidence vector of a 2-club in G.

Theorem 11 characterizes complete description of the 2-club polytope of trees

using the collection of I2DS and nonnegativity inequalities.

Theorem 11 If G = (V, E) is a tree, then PG = Q2(G).

Proof. By Theorems 7 and 10, it suffices to show that PG is integral. Suppose PG is

not integral. Then, it has an extreme point x̄ which is not integral. Without loss of

generality, suppose I2DS inequalities and nonnegativity constraints in description of

PG are indexed from 1 to |Ω(G)| and from |Ω(G)|+1 to |Ω(G)|+|V | respectively. Since

x̄ is an extreme point, there are |V | constraints with linearly independent coefficient

vectors in the description of PG that are active at this point. Let S denote the set

that contains the indices of such constraints. Also suppose S1 ⊆ S is the set that

contains all elements of S for which the corresponding constraint is an I2DS inequality

61

and let S2 = S \ S1. We know |S| = |S1| + |S2| = |V | and |S1| ≥ 1 since x̄ is not

integral. Let A1 be a |S1| × |V | matrix in which each row is the coefficient vector of

the corresponding constraint of each element in S1. Similarly define A2 which is a

|S2|×|V | matrix considering coefficient vectors of the elements of S2 as its rows. Since

the rows of A1 and A2 form |V | linearly independent vectors, the following system

has a unique solution which is x̄.

A1x = 1 and A2x = 0 (5.4)

The following Claims 4 - 10 are used to complete the proof. The proof of these

claims can be found in Appendix C.

Claim 4 For any j ∈ V , we have

x̄j ≤
∑

k∈NG(j)

x̄k (5.5)

Now define set V ′ = {i ∈ V : x̄i > 0} and let G′ = G[V ′]. Since V ′ 6= ∅, G′

has at least one connected component (say Ḡ) that is a tree. Let τ(S1) denote the

set that contains all independent 2-dominating sets in G for which the index of the

corresponding I2DS constraint belongs to S1.

Case (I), diam(Ḡ) = 0. Then, Ḡ is an isolated vertex (say a) and each C ∈ τ(S1)

contains vertex a. Otherwise, for any set D ∈ Γ((C∪{a})\NG(a)), set C ′ = (C∪{a}∪

D) \NG(a) is an independent 2-dominating set in G and
∑

i∈C′ x̄i −
∑

i∈V \C′(|N(i)∩

C ′| − 1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩C| − 1)+x̄i + x̄a > 1 which contradicts with

x̄ ∈ PG. So ea will be a solution for system 5.4 which is a contradiction with x̄ being

the unique solution of this system.

Case (II), diam(Ḡ) = 1. Then, it contains two vertices (say a and b) that are

connected with an edge. If x̄a 6= x̄b (without loss of generality suppose x̄a > x̄b) then

again each C ∈ τ(S1) contains a. Otherwise, for any set D ∈ Γ((C ∪ {a}) \ NG(a)),

set C ′ = (C ∪ {a} ∪ D) \ NG(a) is an independent 2-dominating set in G for which

62

∑
i∈C′ x̄i −

∑
i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥

∑
i∈C x̄i −

∑
i∈V \C(|N(i) ∩ C| − 1)+x̄i +

x̄a − x̄b > 1. This again contradicts with x̄ ∈ PG. So ea will solve system 5.4 and x̄

is not the unique solution for this system which is a contradiction.

Now if x̄a = x̄b then every C ∈ τ(S1) contains exactly one vertex from set {a, b}.

Because set C can not contain both a and b since it is an independent set and if it does

not contain any of them, then again for any set D ∈ Γ((C∪{a})\(NG(a)∪NG(b))), set

C ′ = (C∪{a}∪D)\(NG(a)∪NG(b)) is an independent 2-dominating set in G for which

∑
i∈C′ x̄i−

∑
i∈V \C′(|N(i)∩C ′|−1)+x̄i ≥

∑
i∈C x̄i−

∑
i∈V \C(|N(i)∩C|−1)+x̄i+x̄a > 1.

This again is a contradiction with x̄ ∈ PG. So the vector ê = ea + eb will solve

system 5.4 which contradicts with uniqueness of x̄.

Case (III), diam(Ḡ) ≥ 2. Let p denote the longest path in Ḡ. By considering an

arbitrary direction for p, let a, b and c be the first, second and third vertex on path

p while moving along this direction respectively. Since the length of p is at least two,

vertices a, b and c exist. Clearly each vertex i ∈ (NG(b)∩V ′)\{c} is a leaf vertex of Ḡ

because otherwise p is not the longest path in this graph. Considering the connected

component Ḡ, the following results can be derived.

Claim 5 Any set C ∈ τ(S1) contains at least one element from set NG[b] ∩ V ′.

Claim 6 Consider a leaf vertex of Ḡ say vertex a. For any set C ∈ τ(S1), the

coefficient of xa in the I2DS constraint corresponding to set C is either zero or one.

Claim 7 Given a set C ∈ τ(S1), for any j ∈ (NG(b) ∩ C), we have x̄j > 0.

Claim 8 There exists at least one set C ∈ τ(S1) for which the coefficient of xc in the

corresponding I2DS constraint is negative.

Claim 9 There exists at least one set C ∈ τ(S1) for which the coefficient of xc in the

corresponding I2DS constraint is one.

63

Case (IIIA), diam(Ḡ) = 2. So NG(c) ∩ V ′ = {b}. Thus c is a leaf vertex of Ḡ

and by Claim 6, for any set C ∈ τ(S1), the coefficient of xc in the I2DS constraint

corresponding to set C is either zero or one. This contradicts with the result of

Claim 8.

Case (IIIB), diam(Ḡ) ≥ 3. Let vertex d be the forth vertex on path p moving

along the aforementioned direction.

Claim 10 For all j ∈ (NG(c) ∩ V ′) \ {d}, we have x̄j ≤ x̄c.

Since diam(Ḡ) ≥ 3 so |NG(c)∩V ′| ≥ 2. If |NG(c)∩V ′| = 2 then for all C ∈ τ(S1),

the coefficient of xc in the I2DS constraint corresponding to set C is either zero or

one. To show this, suppose there exists a set C ∈ τ(S1) for which this coefficient is

negative. If b 6∈ C then there exists a vertex m ∈ (C∩NG(c)) such that x̄m = 0. Given

any set D ∈ Γ(C \ {m}), set C ′ = (C \ {m})∪D is an independent 2-dominating set

in G for which
∑

i∈C′ x̄i −
∑

i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩

C|−1)+x̄i + x̄c > 1. This is a contradiction with x̄ ∈ PG. On the other hand, if b ∈ C

then for any set D ∈ Γ((C ∪ {a}) \ NG(a)), set C ′ = (C ∪ {a} ∪ D) \ NG(a) is an

independent 2-dominating set in G for which
∑

i∈C′ x̄i−
∑

i∈V \C′(|N(i)∩C ′|−1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩C| − 1)+x̄i − x̄b + x̄c + x̄a > 1 using Claim 10. This again

contradicts with x̄ ∈ PG. So by Claim 8, we have |NG(c) ∩ V ′| ≥ 3.

Now if there exists at least one vertex j ∈ (NG(c) ∩ V ′) \ {b, d} for which x̄j = x̄c

then for all C ∈ τ(S1), c 6∈ C. To show this, suppose there exists a set C ∈ τ(S1)

which contains c. If the coefficient of xb in the I2DS constraint corresponding to

set C is negative then let set W = NG(j) ∪ (∪i∈NG(j)\{c}NG(i)). For any set D ∈

Γ((C \ W) ∪ {j}), set C ′ = (C \ W) ∪ {j} ∪ D is an independent 2-dominating set

in G for which
∑

i∈C′ x̄i −
∑

i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩

C| − 1)+x̄i + x̄b > 1 (Note that (NG(j) ∩ V ′) \ {c} are all leaf vertices of Ḡ because

otherwise p is not the longest path in this graph). This contradicts with x̄ ∈ PG. If

64

the coefficient of xb in the I2DS constraint corresponding to set C is zero, then define

set W = NG(a) ∪ NG(j) ∪ (∪i∈NG(j)\{c}NG(i)). For any set D ∈ Γ((C \ W) ∪ {a, j}),

set C ′ = (C \ W) ∪ {a, j} ∪ D is an independent 2-dominating set in G for which

∑
i∈C′ x̄i−

∑
i∈V \C′(|N(i)∩C ′|−1)+x̄i ≥

∑
i∈C x̄i−

∑
i∈V \C(|N(i)∩C|−1)+x̄i+x̄a > 1.

Again this is a contradiction with x̄ ∈ PG. So by Claim 9, we have x̄j < x̄c for all

j ∈ (NG(c) ∩ V ′) \ {b, d}.

Now having x̄j < x̄c for all j ∈ (NG(c)∩V ′)\{b, d} and x̄b ≤ x̄c (By Claim 10), we

claim that for any C ∈ τ(S1), the coefficient of xc in the I2DS constraint corresponding

to set C is nonnegative. To show this, suppose there exists a set C ∈ τ(S1) for which

this coefficient is negative. If b ∈ C then for any set D ∈ Γ((C \ NG(a)) ∪ {a}),

set C ′ = (C \ NG(a)) ∪ {a} ∪ D is an independent 2-dominating set in G for which

∑
i∈C′ x̄i −

∑
i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥

∑
i∈C x̄i −

∑
i∈V \C(|N(i) ∩ C| − 1)+x̄i +

x̄a − x̄b + x̄c > 1. This contradicts with x̄ ∈ PG. If b 6∈ C then there exists at

least one vertex m ∈ (C ∩ NG(c)) with x̄m < x̄c. Given a set D ∈ Γ(C \ {m}), set

C ′ = (C∪D)\{m} will be an independent 2-dominating set in G for which
∑

i∈C′ x̄i−
∑

i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩C| − 1)+x̄i − x̄m + x̄c > 1.

This is again a contradiction with x̄ ∈ PG. So by Claim 8, we have V ′ = ∅ which is a

contradiction. This completes the proof of Theorem 11.

5.4 Odd-mod-3 cycles

Naturally, there are classes of graphs for which the collection of I2DS facets and non-

negativity constraints are not sufficient to completely describe their 2-club polytope.

Theorem 12 describes a facet inducing inequality for the 2-club polytope of odd-mod-3

cycles that is distinct from I2DS facets.

Theorem 12 If G=(V,E) is a cycle of size n where n ≥ 7 and n 6≡ 0(mod 3) then

the following inequality induces a facet of the 2-club polytope of G.

65

∑

i∈V

xi ≤ 3 (5.6)

Proof. Without loss of generality, suppose elements of set V are numbered from 1

to n. It is easy to verify that the largest 2-club size in G is 3 and Inequality 5.6

is valid for the 2-club polytope of this graph. For each i ∈ V , define a 0-1 vector

X̂ i = {x̂i
1, x̂

i
2, · · · , x̂i

n} in which x̂i
k = 1 for all k ∈ {i} ∪ NG(i) and x̂i

k = 0 otherwise.

Since n 6≡ 0(mod 3), it can be verified that X̂1, X̂2, · · · , X̂n are linearly independent

incidence vectors of 2-clubs in G for which Inequality 5.6 holds as equality.

66

CHAPTER 6

MAXIMUM 2-CLUBS UNDER UNCERTAINTY

This chapter focuses on the maximum 2-club problem under uncertainty. Specifically,

given a graph subject to probabilistic edge failures, we are interested in finding large

“risk-averse” 2-clubs in this graph. Here, risk aversion is achieved by modeling the

loss in 2-club property under probabilistic edge failures as a random loss function of

the decision and uncertainty, and utilizing Conditional Value-at-Risk (CVaR) as a

quantitative measure of risk. The well-known Benders’ decomposition scheme [67] is

utilized to develop a new decomposition algorithm for solving the CVaR constrained

maximum 2-club problem. A preliminary numerical experiment is also used to com-

pare the computational performance of the developed algorithm with our extension

of an existing algorithm recently introduced in literature.

6.1 Background on Conditional Value-at-Risk (CVaR)

Conditional Value-at-Risk (CVaR) is a quantitative measure of risk in a system where

random losses exceed a threshold ([68] and [69]). A loss function L(x, Y) quantifies

losses as a function of a decision vector x and uncertainty, represented by a random

vector Y . Then, for α ∈ (0, 1), α-Value-at-Risk (VaR) is the α-quantile of the loss

distribution Ψ(x, `), that is,

α-VaR[L(x, Y)] = α-VaR(x) = inf{` : Ψ(x, `) ≥ α}.

The α-CVaR is the conditional expectation of losses exceeding α-VaR. That is,

67

α-CVaR[L(x, Y)] = α-CVaR(x) = EY [L(x, Y)|L(x, Y) ≥ α-VaR(x)].

Figure 6.1 shows an illustration of the CVaR concept.

Figure 6.1: Illustration of the CVaR concept

The available literature on handling CVaR in optimization problems can be di-

vided into two main categories which are, (1) the research work focused on finding

a feasible decision that minimizes CVaR (CVaR minimization) and (2) the literature

on finding the best (minimum cost) solution for which CVaR is bounded above by a

user specified factor (CVaR constrained optimization).

6.1.1 CVaR minimization

Rockafellar and Uryasev [68, 69] pioneered the use of CVaR in optimization through

a new approach to optimizing a portfolio of financial instruments. The focus of

this work is on minimizing CVaR rather than minimizing VaR. A new technique

for simultaneous calculation of VaR and optimization of CVaR for a broad class of

problems is proposed in [70].

A method for credit risk optimization based on CVaR is introduced in [71]. The

proposed model can simultaneously adjust all positions in a portfolio of financial

68

instruments in order to minimize CVaR subject to trading and return constraints. The

credit risk distribution is generated by Monte Carlo simulations and the optimization

problem is solved effectively by utilizing LP techniques.

The Benders’ decomposition method is modified in [72] by using concepts from

the Reformulation-Linearization Technique (RLT) and lift-and-project cuts in order

to develop an approach for solving discrete optimization problems that yield integral

subproblems. The authors demonstrated how cutting planes could be generated to

derive a partial description of the convex hull representation as needed, in order to

devise a finitely convergent solution procedure.

The non-convex minimization problem of the VaR that arises from financial risk

analysis is considered in [73]. By considering this problem as a special linear program,

the authors developed upper- and lower-bounds for the minimum VaR.

Optimization problems for minimizing CVaR from a computational point of view,

with an emphasis on financial applications are considered in [74]. The authors re-

formulated these CVaR optimization problems as two-stage stochastic programming

problems with recourse. Specializing the L-shaped method leads to a new algorithm

for minimizing CVaR which the authors call CVaRMin. Minimizing CVaR as a mean-

risk function is shown to be computationally tractable in [75]. A generic cutting plane

algorithm for solving CVaR minimization problems with convex loss functions is also

presented in [75]. An LP formulation of the minimization of CVaR measure defined

with two different loss functions and the optimal solution for this particular problem

are presented in [76].

A portfolio selection model in which the methodologies of robust optimization

are used for minimization of CVaR of a portfolio of shares is investigated in [77]. An

important feature of this approach is the use of robust optimization techniques to deal

with uncertainty, in place of stochastic programming as proposed by [68]. Different

approaches for the generation of input data, with special attention to the estimation

69

of expected returns are also suggested in this work.

The minimization of CVaR of the end-of-horizon yield as a two-stage model is

presented in [78] and a decomposition technique for solving this problem is proposed

in this work. The master problem in this decomposition is solved by an inexact

version of the level method [79]. A two-phase approach that is suitable for solving

CVaR minimization problems in portfolio optimization with a large number of price

scenarios is proposed in [80]. In the first phase, conventional differentiable optimiza-

tion techniques are used while circumventing non-differentiable points. In the second

phase, a theoretically convergent, variable target value, non-differentiable optimiza-

tion technique is employed.

6.1.2 CVaR constrained optimization

The portfolio optimization approach proposed by [68] is extended in [81] to address

optimization problems with CVaR constraints. This approach is based on an op-

timization scheme for calculating VaR and optimizing CVaR simultaneously. This

extended approach can be used to maximize the expected returns under CVaR con-

straints. The Conditional Tail Expectation (CTE) is investigated in [82]. The authors

showed that CTE is a robust, convenient, practical, and coherent measure for quanti-

fying financial risk exposure. The authors also considered some statistical properties

of the methods that are commonly used to estimate the CTE and developed a simple

formula for the variance of the CTE estimator that is valid in the large sample limit.

A two-step process that can handle portfolio optimization problems with variance

terms in the objective function and a large number of CVaR constraints is introduced

in [78]. In the first step, an approximation of the efficient frontier is constructed in

order to help the decision maker in setting the upper-bounds on CVaR constraints.

To this aim, the dual problem is decomposed and solved by the technique introduced

in [78]. After finding appropriate parameters, in the second step, the dual optimal

70

solution is used in order to find an optimal solution of the primal problem. The

CVaR constrained minimization is formulated as a two-stage stochastic programming

problem with relatively complete recourse in [78]. The first stage problem is solved

by the inexact level method [79] and a sharp-constrained version of the constrained

level method [83] is used to find the solution of the second-stage problem.

An algorithm called “Iterative Estimation Maximization (IEM)” is presented

in [84] to solve stochastic linear and convex programs with CVaR constraints. IEM it-

eratively constructs compact-sized, linear or convex optimization problems and solves

them sequentially to find the optimal solution. The authors proved that IEM con-

verges to the true optimal solution and gives a lower-bound on the number of samples

required to probabilistically satisfy a CVaR constraint.

A decomposition algorithm for single-stage, stochastic linear programs with mul-

tiple CVaR constraints is provided in [85]. The proposed decomposition algorithm is

based on a large polyhedral representation of the problem’s feasible region followed

by a column generation routine in the dual space of the proposed representation. In

case of CVaR minimization, the proposed technique results in the aforementioned

CVaRMin algorithm [74]. Furthermore, a scheme which utilizes the proposed decom-

position algorithm is developed to address mixed-integer LP problems with multiple

CVaR constraints.

6.2 The CVaR constrained maximum 2-club problem

The focus of this section is on the CVaR constrained maximum 2-club problem under

probabilistic edge failures. Here, the support graph G = (V, E) is subject to proba-

bilistic edge failures meaning an edge (i, j) ∈ E has a probability pij > 0 of survival.

Define set P as follows.

P =
{
x ∈ {0, 1}n : xi + xj −

∑

k∈N(i)∩N(j)

xk ≤ 1 ∀(i, j) 6∈ E
}
,

71

is the set containing the incidence vectors of all 2-clubs in the support graph G.

A random vector Y ∈ {0, 1}|E| represents the edge set under uncertainty in which

Pr{Yij = 1} = pij > 0 for all (i, j) ∈ E. We assume for a given 2-club S in the support

graph G with incidence vector x0 ∈ P , we incur a loss denoted by L(x0, Y) which is a

random variable equal to the total number of pairs of nodes in S with distance more

than two in G[S] after the realization of uncertainty. For a given x0 ∈ P , this loss

function L(x0, Y) is given by,

L(x0, Y) =
n∑

i=1

n∑

j=i+1

(φ(x0, Y, i, j))+

where

φ(x0, Y, i, j) = x0
i + x0

j − 1 − yij −
∑

l∈N(i)∩N(j)

yilyjlx
0
l , if (i, j) ∈ E,

and

φ(x0, Y, i, j) = x0
i + x0

j − 1 −
∑

l∈N(i)∩N(j)

yilyjlx
0
l if (i, j) 6∈ E.

For a given realization of the random vector Y (say y0), L(x, y0) is a piecewise

linear convex function of x. Given an incidence vector of a 2-club (say x0), let the

set S(x0, y0) = {(i, j) : i ∈ {1, . . . , n}, j ∈ {i + 1, . . . , n} and φ(x0, y0, i, j) > 0}. A

supporting hyperplane of L(x, y0) at the point x0, can be described as follows.

h(x0,y0)(x) =
∑

(i,j)∈S(x0,y0)

φ(x, y0, i, j)

Formulation (6.1)-(6.3) describes the CVaR constrained maximum 2-club problem

which is to find the incidence vector of a largest 2-club in G (say x∗) for which

α-CVaR[L(x∗, Y)] is bounded above by a user specified parameter d.

72

min f = -1T x (6.1)

Subject to

α-CVaR[L(x, Y)] ≤ d, (6.2)

x ∈ P (6.3)

According to [68, 69], α-CVaR[.] can be reformulated as follows.

α-CVaR[L(x, Y)] = minζ{ζ +
1

1 − α
E[(L(x, Y) − ζ)+]}

If the distribution of the random variable Y is approximated by a set of N samples

with πk, k ∈ {1, . . . , N} as their normalized sample probabilities [68, 69], α-CVaR[.]

reformulation can be approximated as follows.

α-CVaR[L(x, Y)] ' minζ{ζ +
1

1 − α

N∑

k=1

πk(L(x, yk) − ζ)+}

Accordingly, (6.1)-(6.3) can be reformulated as,

min f = -1T x (6.4)

Subject to

minζ{ζ +
1

1 − α

N∑

k=1

πk (L(x, yk) − ζ)+} ≤ d, (6.5)

x ∈ P (6.6)

Based on a result from [81], the CVaR constraint in Formulation (6.4)-(6.6) can

be replaced with the equivalent Inequality 6.8 resulting in the following formulation.

73

min f = -1T x (6.7)

Subject to

ζ +
1

1 − α

N∑

k=1

πk (L(x, yk) − ζ)+ ≤ d, (6.8)

x ∈ P (6.9)

6.3 A decomposition algorithm

This section contains the details of our proposed decomposition technique for solving

CVaR constrained integer programming (IP) problems with loss functions that are

piecewise linear and convex with respect to the decision (x) for a given realization of

uncertainty (y0). The CVaR constrained IP problem of interest in this dissertation is

the CVaR constrained maximum 2-club problem modeled as formulation (6.7)-(6.9).

In order to present Algorithm 1, first we reformulate (6.7)-(6.9) as follows.

min f = -1T x (6.10)

Subject to

ζ +
1

1 − α

N∑

k=1

zk ≤ d, (6.11)

zk ≥ πk(L(x, yk)−ζ) ∀k ∈ {1, . . . , N} (6.12)

zk ≥ 0 ∀k ∈ {1, . . . , N} (6.13)

x ∈ P (6.14)

Now, we use the technique introduced by Benders [67] to decompose and solve

problem (6.10)-(6.14). Consider the following reformulation.

74

min f = -1T x + G(x) (6.15)

Subject to

x ∈ P (6.16)

where G(x) is a large-scale linear programming problem defined as follows.

G(x) = min 0 (6.17)

Subject to

ζ +
1

1 − α

N∑

k=1

zk ≤ d, (6.18)

πkζ + zk ≥ πkL(x, yk) ∀k ∈ {1, . . . , N} (6.19)

zk ≥ 0 ∀k ∈ {1, . . . , N} (6.20)

Formulation (6.21)-(6.25) is the dual of the LP formulation (6.17)-(6.20).

G′(x) = max dw +

N∑

k=1

πkL(x, yk)pk (6.21)

Subject to

w +
N∑

k=1

πkpk = 0, (6.22)

1

1 − α
w + pk ≤ 0 ∀k ∈ {1, . . . , N} (6.23)

w ≤ 0 (6.24)

pk ≥ 0 ∀k ∈ {1, . . . , N} (6.25)

which is equivalent to,

75

G′(x) = max
N∑

k=1

πk(L(x, yk)−d)pk (6.26)

Subject to

−
N∑

k=1

πkpk + (1 − α)pk ≤ 0 ∀k ∈ {1, . . . , N} (6.27)

pk ≥ 0 ∀k ∈ {1, . . . , N} (6.28)

For any given x ∈ P , the feasible region of problem (6.26)-(6.28) is a polyhedral

cone with one extreme point which is the origin (the problem is always feasible). In

case an optimal solution exists, then G′∗(x) = 0, and if the problem is unbounded

then there does not exist z ∈ R
N
+ and ζ ∈ R such that (x, z, ζ) is a feasible solution

to problem (6.10)-(6.14). So we are interested in x ∈ P for which the problem (6.26)-

(6.28) has an optimal solution (zero). So problem (6.10)-(6.14) can be reformulated

as the following convex nonlinear integer programming problem,

min f = -1T x (6.29)

Subject to

x ∈ P (6.30)
N∑

k=1

πk(L(x, yk)−d)r
(j)
k ≤ 0 ∀j ∈ ER (6.31)

where ER is the index set of all extreme rays (denoted by (r
(j)
1 , . . . , r

(j)
N)) of the

polyhedral cone in problem (6.26)-(6.28). Since the number of extreme rays might be

large, solving (6.29)-(6.31) will be a challenging task.

Algorithm 1 for solving problem (6.29)-(6.31) is described as follows. Let us refer

to problem (6.26)-(6.28) as the subproblem. Given a x ∈ P , the subproblem is

a LP problem with a large number of variables and constraints. Algorithm 1 is a

row generation based algorithm. This algorithm starts by solving a relaxation of

problem (6.29)-(6.31) which does not include the constraints (6.31). Let us refer

76

to this problem as the relaxed integer programming (RIP) problem. If the solution

found for RIP problem is feasible to original problem (6.29)-(6.31) then the algorithm

terminates; otherwise, the subproblem will be solved in order to find a violated valid

inequality. Then, the RIP problem will be updated by adding the cutting plane

identified and this procedure will be repeated. If during an iteration of this algorithm,

the RIP problem becomes infeasible then problem (6.29)-(6.31) is infeasible and the

algorithm terminates.

Algorithm 1 Decomposition algorithm for solving problem (6.29)-(6.31)

1: procedure RowGen(G, (π1, . . . , πN), (y1, . . . , yN), d, α)

2: Construct RIP problem by removing all constraints (6.31) from problem

(6.29)-(6.31) and let t = 1.

3: Solve RIP problem by a IP solver. If the problem is infeasible then return

by infeasibility. Otherwise suppose x∗(t) is the obtained optimal solution.

4: Solve the subproblem G′(x∗(t)) by a LP solver. If the subproblem has an

optimal solution then return by x∗(t) as the optimal solution to problem (6.29)-

(6.31). Otherwise let j̄ ∈ ER be the extreme ray found by the LP solver.

5: Update RIP problem by adding constraint
∑N

k=1 πk(h(x∗(t),yk)(x) − d)r
(j̄)
k ≤ 0.

Let t = t + 1 and go to step 3.

6: end procedure

The computational performance of Algorithm 1 is compared with that of an ex-

isting algorithm recently introduced in the literature for solving CVaR constrained

IP problems [85]. The algorithm introduced in [85] is also a decomposition algorithm

based on a large polyhedral representation of the problem’s feasible region followed

by a column generation routine in the dual space of the proposed representation.

This algorithm is developed in order to solve CVaR constrained IP problems with

loss functions that are linear with respect to x for a given y0.

The loss function used to model the CVaR constrained maximum 2-club problem

77

in this chapter, is a piecewise linear convex function of x. Therefore, the algorithm

proposed in [85] is slightly modified in this dissertation in order to handle IP problems

with convex piecewise linear loss functions with respect to the decision vector for a

given realization of uncertainty. This algorithm is described next.

According to [85], constraint (6.8) can be reformulated as the following inequality.

(1 − α)ζ +

N∑

k=1

max[πk(L(x, yk) − ζ), 0] ≤ d(1 − α) (6.32)

An equivalent representation of constraint (6.32) is the following,

(1 − α)ζ + max
A∈ 2N

∑

k∈A

πk(L(x, yk) − ζ) ≤ d(1 − α) (6.33)

ζ ≤ d (6.34)

where 2N is the power set of N = {1, . . . , N}, which is the index set of the discrete

sampling approximation. Now, constraint (6.33) can be reformulated as the following

large constraint set.

(1 − α)ζ +
∑

k∈A

πk(L(x, yk) − ζ) ≤ d(1 − α) ∀A ∈ 2N (6.35)

Finally, problem (6.7)-(6.9) can be reformulated as follows.

min f = -1T x (6.36)

Subject to

(1 − α)ζ +
∑

k∈A

πk(L(x, yk) − ζ) ≤ d(1 − α) ∀A ∈ 2N (6.37)

ζ ≤ d (6.38)

x ∈ P (6.39)

Let LPR denote the linear programming relaxation of formulation (6.36)-(6.39).

Let us also denote by RIP2, a relaxation of IP problem (6.36)-(6.39) in which all

78

constraints (6.37) have been removed. Algorithm 2 shows the modified version of the

decomposition technique introduced in [85] for solving CVaR constrained IP problems

with piecewise linear convex loss functions.

Algorithm 2 Decomposition algorithm for solving problem (6.36)-(6.39)

1: procedure RowGen(G, (π1, . . . , πN), (y1, . . . , yN), d, α)

2: Construct a relaxation of LPR (denoted by RLPR), by removing all con-

straints (6.37) from LPR and let t = 1.

3: Solve RLPR using a standard LP solver. If the problem is infeasible, terminate

and declare infeasibility. Else, let the optimal solution be (x∗(t), ζ∗(t)). Compute

the subset A∗ = {k ∈ N | L(x∗(t), yk) − ζ∗(t) > 0}.

4: If
∑

k∈A∗ πk(L(x∗(t), yk)− ζ∗(t)) + (ζ∗(t) − d)(1−α) ≤ 0 then (x∗(t), ζ∗(t)) is the

optimal solution to LPR and go to Step (6). Else, go to Step (5).

5: Add constraint (1 − α)ζ +
∑

k∈A∗ πk(h(x∗(t),yk)(x) − ζ) ≤ d(1 − α) to RLPR.

Set t = t + 1, and go to Step (3).

6: Let µt denote the collection of all t − 1 constraints added to RLPR in step

(5). Add all constraints in µt to RIP2 and re-initialize t = 1.

7: For all t ≥ 1, solve RIP2 using a standard IP solver. If the problem is infeasible,

terminate and declare infeasibility. Else, let the optimal solution be (x∗(t), ζ∗(t)).

Compute the subset A∗ = {k ∈ N | L(x∗(t), yk) − ζ∗(t) > 0}.

8: If
∑

k∈A∗ πk(L(x∗(t), yk)− ζ∗(t)) + (ζ∗(t) − d)(1−α) ≤ 0 then (x∗(t), ζ∗(t)) is the

optimal solution to problem (6.36)-(6.39) and terminate. Else, go to Step (9).

9: Add constraint (1−α)ζ +
∑

k∈A∗ πk(h(x∗(t),yk)(x)− ζ) ≤ d(1−α) to RIP2. Set

t = t + 1, and go to Step (7).

10: end procedure

79

6.4 A brief numerical study

This section presents preliminary numerical results obtained by solving the CVaR

constrained maximum 2-club problem, modeled as formulation (6.7)-(6.9), by Algo-

rithms 1 and 2 on a randomly generated sample. Computational performance of

Algorithm 1 is then compared to that of Algorithm 2 in terms of running time and

number of iterations.

Both algorithms were implemented in C++ and all numerical experiments were

conducted on an HP Z400 workstation with Intelr Xeonr W3520 @ 2.67 GHz proces-

sor and 3.00 GB RAM. The commercial solver IBM ILOG CPLEX Optimizer 11.2r

was used to solve the associated IP and LP formulations. The selected instance is a

graph of order n = 50 randomly generated by the algorithm used in [43]. As men-

tioned in Section 4.3, the edge density of the graphs produced by this algorithm is

controlled by two parameters a and b. The expected edge density d is (a + b)/2 and

vertex degree variance (VDV) increases with b−a. For our experiment in this section,

we considered density d = 0.15 with a = b = 0.15.

The probability of survival of an arc was generated by using a uniform random dis-

tribution between 0 and 1. In our experiment, we considered α ∈ {0.7, 0.8, 0.9, 0.99}

and d ∈ {5, 10, 15, 25} resulting in a total of 16 combinations. We generated 100 ran-

dom scenarios in order to model our problem and used the same set of scenarios with

all 16 combinations of α and d. The time limit for each iteration of both algorithms

was set to be 1800 seconds and the running time limit of each main decomposition

algorithm was 10800 seconds. Upon reaching the time limit, either for one iteration or

for the main decomposition algorithm, the main algorithm terminates and an upper-

bound on the optimal solution will be reported. Table 6.1 shows the computational

results obtained by solving the CVaR constrained maximum 2-club problem using

Algorithms 1 and 2 on the selected test instance.

Before discussing the results, we emphasize the fact that this experiment is on a

80

single numerical instance of the problem (one graph on 50 vertices with 100 scenarios)

and hence, no general deductions should be drawn. It was conducted with the intent

of testing the codes developed for the algorithms discussed here, and to verify if some

basic characteristics evident from the design of these algorithms are observed with an

actual implementation, especially the sensitivity of the 2-club solutions to the choice

of α and d. Note that we get more risk-averse as α increases or as d, decreases. The

problem may be infeasible if d is sufficiently small and the CVaR constraint may

be redundant if d is sufficiently large. A comprehensive experimental study will be

reported in a forthcoming paper [86].

According to Table 6.1, with respect to the running time, Algorithm 1 outperforms

Algorithm 2 in 12 problem instances out of 16. In the other 4 problem instances,

Algorithm 2 performs better. In terms of number of iterations, in 6 problem instances

out of 16, Algorithm 1 performs better than Algorithm 2, in 2 problem instances their

performance is identical and in the other 8 problem instances, Algorithm 2 has smaller

number of iterations.

It seems that Algorithm 2 finds the optimal solution in smaller number of iterations

compared to Algorithm 1 while it takes more time to terminate. We suspect that

Algorithm 2 spends more time in each iteration which might be the result of the

computational effort needed to find a violated inequality.

The problem instances with higher α and lower d seem to be more challenging in

terms of running time and number of iterations for both algorithms. For the most

challenging problem instance (α = 0.99 and d = 5), Algorithm 1 is 1.5 times faster

than Algorithm 2 in terms of running time.

Figure 6.2 shows the solutions found for all 16 combinations of α and d by Algo-

rithm 1. The arcs shown by darker color have higher survival probabilities and the

color of arcs with smaller probabilities of survival are lighter. As shown in Table 6.1

and by Figure 6.2, for a given d, as α increases, the size of the optimal solution

81

Table 6.1: Computational results obtained by solving CVaR constrained maximum

2-club problem using Algorithms 1 and 2 on the selected test instance

Setting Iterations Solution Size Running Time (Sec)

ALG 1 ALG 2 ALG 1 ALG 2 ALG 1 ALG 2

(α=0.99, d=5) 1211 1466 5 5 6381.08 9988.94

(α=0.9, d=5) 824 834 6 6 3540.75 3982.47

(α=0.8, d=5) 785 618 6 6 3178.73 2727.19

(α=0.7, d=5) 630 555 6 6 2426.61 2476.97

(α=0.99, d=10) 1223 1187 7 7 6195.95 6499.78

(α=0.9, d=10) 634 664 7 7 2043.05 2627.05

(α=0.8, d=10) 744 568 7 7 2801.49 2191.09

(α=0.7, d=10) 623 592 7 7 1975.14 2533.11

(α=0.99, d=15) 775 464 8 8 2597.94 1339.56

(α=0.9, d=15) 405 557 8 8 915.485 2353.56

(α=0.8, d=15) 448 622 8 8 1061.27 3694.53

(α=0.7, d=15) 388 386 8 8 899.11 1645.02

(α=0.99, d=25) 474 324 9 9 730.593 423.844

(α=0.9, d=25) 89 232 10 10 52.922 452.625

(α=0.8, d=25) 69 69 10 10 53.422 78.5

(α=0.7, d=25) 60 60 10 10 36.735 51.19

82

decreases. On the other hand, for a given α, as d increases, the size of the optimal

solution increases. This behavior of the size of the optimal solution as a function of α

and d is intuitively acceptable since decreasing α or increasing d relaxes constraint 6.2

which may result in a larger feasible region with larger 2-clubs.

Figure 6.2: Solutions found for all 16 combinations of α and d by Algorithm 1

83

Figure 6.3 illustrates the solution found by Algorithm 1 for problem instance with

α = 0.7 and d = 10, where the edges with both endpoints in the 2-club found have

higher survival probability (darker color).

Figure 6.3: Solution found by Algorithm 1 for problem instance with α = 0.7 and

d = 10

84

CHAPTER 7

CONTRIBUTIONS AND FUTURE WORK

The k-clubs can be used to effectively model low-diameter clusters in graph-based data

mining applications in biology, internet analytics and social sciences. This chapter

summarizes our contributions in developing theory and algorithms for the optimiza-

tion problems related to k-clubs in graph models of data, and provides some directions

for future research in this area.

7.1 Contributions

In this dissertation, we settled a long remaining open problem and proved that k-

club maximality testing is NP-complete for k ≥ 2. Intractability of k-club maximality

testing is due to their nonhereditary nature which imposes significant challenges in

developing theory and algorithms for k-clubs. The nonhereditary property of k-

clubs and its implications is discussed in great detail in this document. A class

of graphs with polynomially verifiable maximal k-clubs has also been identified. A

dual coloring based upper-bounding technique and a bounded enumeration based

lower-bounding strategy for the k-club number of a graph have been proposed. A

new combinatorial branch-and-bound framework for solving the maximum k-club

problem is then developed and the computational performance of this algorithm with

four different combinations of lower- and upper-bounding schemes is studied. It is

shown that the branch-and-bound algorithm which utilizes the proposed bounding

techniques, outperforms the other algorithms on challenging test instances.

The 2-club polytope of a graph is studied in this dissertation and a new family

85

of facet inducing inequalities for this polytope (I2DS inequalities) is presented. This

family of facets unifies all known nontrivial facets of the 2-club polytope, and also

introduces distinct new facets of this polytope to the literature. The separation

complexity of the I2DS inequalities is proved to be NP-complete and it is shown

that these facets, along with the nonnegativity constraints completely describe the

2-club polytope of trees. A facet distinct from the I2DS facets is demonstrated for

odd-mod-3 cycles.

The maximum 2-club problem under uncertainty is also studied in this disserta-

tion. Given a graph subject to probabilistic edge failures, the goal here is to find large

“risk-averse” 2-clubs. To achieve risk aversion, the loss has been modeled as a ran-

dom variable which is a function of the decision variables and uncertain parameters.

Conditional Value-at-Risk (CVaR) of losses is then utilized as a quantitative measure

of risk. A new decomposition algorithm for solving the CVaR constrained maximum

2-club problem is developed by utilizing Benders’ decomposition scheme [67]. The

computational performance of the developed algorithm is compared with the one for

an existing algorithm [85] in literature in a brief numerical study that also demon-

strates the sensitivity of the size of the optimal 2-clubs to parameters in the model

that control risk aversion.

7.2 Future work

It will be beneficial to develop a branch-and-cut algorithm for solving the maximum

2-club problem using the I2DS facet inducing inequalities. Identifying graph classes

on which maximum and maximal k-clubs can be found in polynomial-time is an

interesting challenge.

Studying the 2-club polytope in order to discover more facet inducing inequalities

would also be another research direction. Identifying graph classes (other than trees)

for which the 2-club polytope can be completely described by the I2DS inequalities

86

and nonnegativity constraints, is another direction for future research.

It is also valuable to develop metaheuristic approaches for detecting k-clubs in

large-scale real-life graphs, especially power-law graphs from bioinformatics applica-

tions. Validating the biological significance of the detected k-clubs in such biological

networks is also another interesting direction for future work.

Investigations into other variations of the k-club model (edge-weighted, directed,

r-robust k-club [55]) would enrich the literature in this area. Developing theory and

algorithms for partitioning, covering and enumerative extensions of k-clubs is another

interesting research direction.

An immediate direction for future research is to study the performance of the de-

veloped decomposition algorithm for solving the CVaR constrained maximum 2-club

problem on a larger test-bed of instances using high performance parallel computing.

87

BIBLIOGRAPHY

[1] P.-N. Tan, M. Steingach, and V. Kumar, Introdiction to Data Mining. Addison-

Wesley, 2006.

[2] D. J. Cook and L. B. Holder, “Graph-based data mining,” IEEE Intelligent

Systems, vol. 15, no. 2, pp. 32–41, 2000.

[3] T. Washio and H. Motoda, “State of the art of graph-based data mining,”

SIGKDD Explor. Newsl., vol. 5, no. 1, pp. 59–68, 2003.

[4] L. M. Camarinha-matos and H. Afsarmanesh, “Collaborative networks: a new

scientific discipline,” Journal of Intelligent Manufacturing, vol. 16, pp. 439–452,

2005.

[5] J. Grossman, P. Ion, and R. D. Castro, “The Erdös Number Project,” 1995.

Online: http://www.oakland.edu/enp/. Accessed June 2012.

[6] S. Hill, F. Provost, and C. Volinsky, “Network-based marketing: Identifying

likely adopters via consumer networks,” Statistical Science, vol. 22, pp. 256–275,

2006.

[7] D. Iacobucci and N. Hopkins, “Modelling dyadic interactions and networks in

marketing,” Journal of Marketing Research, vol. 24, pp. 5–17, 1992.

[8] T. Smieszek, L. Fiebig, and R. Scholz, “Models of epidemics: when contact

repetition and clustering should be included,” Theoretical Biology and Medical

Modelling, vol. 6, no. 1, p. 11, 2009.

88

[9] A. Broido and K. C. Claffy, “Internet topology: connectivity of ip graphs,” in

Scalability and Traffic Control in IP Networks (S. Fahmy and K. Park, eds.),

(Bellingham, WA), pp. 172–187, SPIE Publications, 2001.

[10] L. Terveen, W. Hill, and B. Amento, “Constructing, organizing, and visualizing

collections of topically related, web resources,” ACM Transactions on Computer-

Human Interaction, vol. 6, pp. 67–94, 1999.

[11] J. Abello, P. M. Pardalos, and M. G. C. Resende, “On maximum clique problems

in very large graphs,” in External memory algorithms and visualization (J. Abello

and J. Vitter, eds.), vol. 50 of DIMACS Series on Discrete Mathematics and

Theoretical Computer Science, pp. 119–130, American Mathematical Society,

1999.

[12] V. Boginski, S. Butenko, and P. M. Pardalos, “On structural properties of the

market graph,” in Innovation in Financial and Economic Networks (A. Nagur-

ney, ed.), (London), Edward Elgar Publishers, 2003.

[13] V. Boginski, S. Butenko, and P. Pardalos, “Statistical analysis of financial net-

works,” Computational Statistics & Data Analysis, vol. 48, pp. 431–443, 2005.

[14] V. Boginski, S. Butenko, and P. Pardalos, “Mining market data: a network

approach,” Computers & Operations Research, vol. 33, pp. 3171–3184, 2006.

[15] T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori, and Y. Sakaki, “A compre-

hensive two-hybrid analysis to explore the yeast protein interactome,” Proceed-

ings of the National Academy of Sciences of the USA, vol. 98, no. 8, pp. 4569–

4574, 2001.

[16] J. Gagneur, R. Krause, T. Bouwmeester, and G. Casari, “Modular decompo-

sition of protein-protein interaction networks,” Genome Biology, vol. 5, no. 8,

pp. R57.1–R57.12, 2004.

89

[17] V. Spirin and L. A. Mirny, “Protein complexes and functional modules in molecu-

lar networks,” Proceedings of the National Academy of Sciences, vol. 100, no. 21,

pp. 12123–12128, 2003.

[18] X. Peng, M. A. Langston, A. M. Saxton, N. E. Baldwin, and J. R. Snoddy,

“Detecting network motifs in gene co-expression networks through integration of

protein domain information,” in Methods of Microarray Data Analysis V (P. Mc-

Connell, S. M. Lin, and P. Hurban, eds.), pp. 89–102, New York: Springer, 2007.

[19] H. Jeong, B. Tombor, R. Albert, Z. Oltvai, and A.-L. Barabási, “The large-scale

organization of metabolic networks,” Nature, vol. 407, pp. 651–654, 2000.

[20] S. Wasserman and K. Faust, Social Network Analysis. New York: Cambridge

University Press, 1994.

[21] R. Diestel, Graph Theory. Berlin: Springer-Verlag, 1997.

[22] D. West, Introduction to Graph Theory. Upper Saddle River, NJ: Prentice-Hall,

2001.

[23] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-completeness. New York: W.H. Freeman and Company, 1979.

[24] J. H̊astad, “Clique is hard to approximate within n1−ε,” Acta Mathematica,

vol. 182, pp. 105–142, 1999.

[25] R. D. Alba, “A graph-theoretic definition of a sociometric clique,” Journal of

Mathematical Sociology, vol. 3, no. 1, pp. 113–126, 1973.

[26] G. J. Chang and G. L. Nemhauser, “The k-domination and k-stability problems

on sun-free chordal graphs,” SIAM Journal on Algebraic and Discrete Methods,

vol. 5, pp. 332–345, 1984.

90

[27] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Sci-

ence, vol. 286, no. 5439, pp. 509–512, 1999.

[28] A.-L. Barabási, R. Albert, H. Jeong, and G. Bianconi, “Power-law distribution

of the World Wide Web,” Science, vol. 287, no. 5461, p. 2115a, 2000.

[29] A.-L. Barabási, R. Albert, and H. Jeong, “Scale-free characteristics of random

networks: The topology of the World Wide Web,” Physica A, vol. 281, no. 1-4,

pp. 69–77, 2000.

[30] P. Erdös and A. Rényi, “On random graphs,” Publicationes Mathematicae, vol. 6,

pp. 290–297, 1959.

[31] P. Erdös and A. Rényi, “On the evolution of random graphs,” Publ. Math. Inst.

Hungar. Acad. Sci., vol. 5, pp. 17–61, 1960.

[32] F. Chung and L. Lu, Complex Graphs and Networks. CBMS Lecture Series,

Providence, RI: American Mathematical Society, 2006.

[33] D. Watts, Small Worlds: The Dynamics of Networks Between Order and Ran-

domness. Princeton, NJ: Princeton University Press, 1999.

[34] D. Watts and S. Strogatz, “Collective dynamics of “small-world” networks,”

Nature, vol. 393, pp. 440–442, 1998.

[35] S. Milgram, “The small world problem,” Psychology Today, vol. 1, pp. 61–67,

1967.

[36] J. Miao and D. Berleant, “From paragraph networks to document networks,” in

Proceedings of the International Conference on Information Technology: Coding

and Computing, 2004 (ITCC 2004), vol. 1, pp. 295–302, april 2004.

91

[37] B. Balasundaram, S. Butenko, and S. Trukhanov, “Novel approaches for analyz-

ing biological networks,” Journal of Combinatorial Optimization, vol. 10, no. 1,

pp. 23–39, 2005.

[38] S. Pasupuleti, “Detection of protein complexes in protein interaction networks

using n-clubs,” in In EvoBIO 2008: Proceedings of the 6th European Conference

on Evolutionary Computation, Machine Learning and Data Mining in Bioinfor-

matics, pp. 153–164, Springer, 2008. volume 4973 of Lecture Notes in Computer

Science.

[39] J. S. Bader, A. Chaudhuri, J. M. Rothberg, and J. Chant, “Gaining confidence

in high-throughput protein interaction networks,” Nature Biotechnology, vol. 22,

no. 1, pp. 78–85, 2004.

[40] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,”

Psychometrika, vol. 14, no. 2, pp. 95–116, 1949.

[41] R. D. Luce, “Connectivity and generalized cliques in sociometric group struc-

ture,” Psychometrika, vol. 15, no. 2, pp. 169–190, 1950.

[42] R. J. Mokken, “Cliques, clubs and clans,” Quality and Quantity, vol. 13, no. 2,

pp. 161–173, 1979.

[43] J.-M. Bourjolly, G. Laporte, and G. Pesant, “An exact algorithm for the maxi-

mum k-club problem in an undirected graph,” European Journal Of Operational

Research, vol. 138, pp. 21–28, 2002.

[44] S. Butenko and O. Prokopyev, “On k-club and k-clique numbers in graphs,”

tech. rep., Texas A&M University, 2007.

[45] J. Marincek and B. Mohar, “On approximating the maximum diameter ratio of

graphs,” Discrete Mathematics, vol. 244, no. 1–3, pp. 323–330, 2002.

92

[46] Y. Asahiro, E. Miyano, and K. Samizo, “Approximating maximum diameter-

bounded subgraphs,” in LATIN 2010: Theoretical Informatics (A. Lpez-Ortiz,

ed.), vol. 6034 of Lecture Notes in Computer Science, pp. 615–626, Springer

Berlin / Heidelberg, 2010.

[47] R. G. Downey and M. R. Fellows, “Fixed-parameter tractability and complete-

ness II: on completeness for W[1],” Theoretical Computer Science, vol. 141, no. 1-

2, pp. 109–131, 1995.

[48] A. Schäfer, “Exact algorithms for s-club finding and related problems,” Master’s

thesis, Diplomarbeit, Institut für Informatik, Friedrich-Schiller-Universität Jena,

2009.

[49] A. Schäfer, C. Komusiewicz, H. Moser, and R. Niedermeier, “Parameterized

computational complexity of finding small-diameter subgraphs,” Optimization

Letters, pp. 1–9, 2011. DOI: 10.1007/s11590-011-0311-5.

[50] F. D. Carvalho and M. T. Almeida, “Upper bounds and heuristics for the 2-club

problem,” European Journal of Operational Research, vol. 210, no. 3, pp. 489–

494, 2011.

[51] B. Balasundaram, Graph Theoretic Generalizations Of Clique: Optimization and

Extensions. PhD thesis, Texas A&M University, College Station, Texas, USA,

2007.

[52] M. W. Padberg, “On the facial structure of set packing polyhedra,” Mathematical

Programming, vol. 5, no. 1, pp. 199–215, 1973.

[53] M. T. Almeida and F. D. Carvalho, “The k-club problem: new results for k = 3,”

Tech. Rep. CIO Working Paper 3/2008, CIO-Centro de Investigação Operacional,

2008.

93

[54] M. T. Almeida and F. D. Carvalho, “Integer models and upper bounds for the

3-club problem,” Networks, 2012. DOI: 10.1002/net.21455.

[55] A. Veremyev and V. Boginski, “Identifying large robust network clusters via

new compact formulations of maximum k-club problems,” European Journal of

Operational Research, vol. 218, no. 2, pp. 316–326, 2012.

[56] J.-M. Bourjolly, G. Laporte, and G. Pesant, “Heuristics for finding k-clubs in

an undirected graph,” Computers & Operations Research, vol. 27, pp. 559–569,

2000.

[57] J. Edachery, A. Sen, and F. J. Brandenburg, “Graph clustering using distance-k

cliques,” Lecture Notes in Computer Science, vol. 1731, pp. 98–106, 1999.

[58] S. Shahinpour and S. Butenko, “Algorithms for the maximum k-club problem

in graphs,” Journal of Combinatorial Optimization, 2012. DOI: 10.1007/s10878-

012-9473-z.

[59] M. Yannakakis, “Node-and edge-deletion NP-complete problems,” in STOC ’78:

Proceedings of the 10th Annual ACM Symposium on Theory of Computing,

pp. 253–264, New York, NY: ACM Press, 1978.

[60] J. G. Oxley, Matroid Theory. Oxford, UK: Oxford University Press, 1992.

[61] R. Euler, M. Jünger, and G. Reinelt, “Generalizations of cliques, odd cycles and

anticycles and their relation to independence system polyhedra,” Mathematics

of Operations Research, vol. 12, pp. 451–462, 1987.

[62] R. Carraghan and P. Pardalos, “An exact algorithm for the maximum clique

problem,” Operations Research Letters, vol. 9, pp. 375–382, 1990.

[63] P. R. J. Österg̊ard, “A fast algorithm for the maximum clique problem,” Discrete

Applied Mathematics, vol. 120, pp. 197–207, 2002.

94

[64] S. T. McCormick, “Optimal approximation of sparse hessians and its equivalence

to a graph coloring problem,” Mathematical Programming, vol. 26, pp. 153–171,

1983.

[65] D. Brélaz, “New methods to color the vertices of a graph,” Communications of

the ACM, vol. 22, no. 4, pp. 251–256, 1979.

[66] G. Cornuéjols, Combinatorial Optimization: Packing and Covering. CBMS-NSF

Regional Conference Series in Applied Mathematics, Philadelphia: SIAM, 2001.

[67] J. F. Benders, “Partitioning procedures for solving mixed-variables programming

problems,” Numerische Mathematik, vol. 4, pp. 238–252, 1962.

[68] R. Rockafellar and S. Uryasev, “Optimization of conditional value-at-risk,” The

Journal of Risk, vol. 2, no. 3, pp. 21–41, 2000.

[69] R. Rockafellar and S. Uryasev, “Conditional value-at-risk for general loss distri-

butions,” Journal of Banking & Finance, vol. 26, no. 7, pp. 1443–1471, 2002.

[70] S. Uryasev, “Conditional value-at-risk: optimization algorithms and applica-

tions,” Proceedings of the IEEE/IAFE/INFORMS Conference on Computational

Intelligence for Financial Engineering, 2000. (CIFEr), pp. 49–57, 2000.

[71] F. Andersson, H. Mausser, D. Rosen, and S. Uryasev, “Credit risk optimization

with conditional value-at-risk criterion,” Math. Program., vol. 89, pp. 273–291,

2001.

[72] H. D. Sherali and B. M. P. Fraticelli, “A modification of benders decomposition

algorithm for discrete subproblems: An approach for stochastic programs with

integer recourse,” Journal of Global Optimization, vol. 22, pp. 319–342, 2002.

[73] J. Pang and S. Leyffer, “On the global mininmization of the value-at-risk,” Op-

timization Methods and Software, vol. 19, pp. 611–631, 2004.

95

[74] A. Künzi-Bay and J. Mayer, “Computational aspects of minimizing conditional

value-at-risk,” Computational Management Science, vol. 3, pp. 3–27, 2006.

[75] S. Ahmed, “Convexity and decomposition of mean-risk stochastic programs,”

Mathematical Programming: Series A and B, vol. 106(3), pp. 433–446, 2006.

[76] J. Gotoh and Y. Takano, “Newsvendor solutions via conditional value-at-risk

minimization,” European Journal of Operation Research, vol. 179, pp. 80–96,

2007.

[77] A. G. Quaranta and A. Zaffaroni, “Robust optimization of conditional value at

risk and portfolio selection,” Journal of Banking and Finance, vol. 32, pp. 2046–

2056, 2008.

[78] C. I. Fábián, “Handling cvar objectives and constraints in two-stage stochastic

models,” European Journal of Operational Research, vol. 191, no. 3, pp. 888–911,

2008.

[79] C. I. Fábián, “Bundle-type methods for inexact data,” Central European Journal

of Operations Research, vol. 8, pp. 35–55, 2000.

[80] C. Lim, H. D. Sherali, and S. Uryasev, “Portfolio optimization by minimiz-

ing conditional value-at-risk via nondifferentiable optimization,” Comput Optim

Appl, vol. 46, pp. 391–415, 2010.

[81] P. Krokhmal, J. Palmquist, and S. Uryasev, “Portfolio optimization with con-

ditional value-at-risk objective and constraints,” The Journal of Risk, vol. 4(2),

pp. 11–27, 2002.

[82] B. J. Manistre and G. H. Hancock, “Variance of the CTE estimators,” North

American Actuarial Journal, vol. 9, pp. 1–28, 2003.

96

[83] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov, “New variants of bundle meth-

ods,” Mathematical Programming, vol. 69, pp. 111–147, 1995.

[84] P. Huang and D. Subramanian, “Interative estimation maximization for stochas-

tic linear and convex programs with conditional value-at-risk constraints,” Math-

matics, pp. 1–18, 2008.

[85] D. Subramanian and P. Huang, “An efficient decomposition algorithm for static,

stochastic, linear and mixed-integer linear programs with conditional-value-at-

risk constraints,” Tech. Rep. RC24752, IBM Research Report, Feb 2009.

[86] F. M. Pajouh, E. Moradi, and B. Balasundaram, “Robust low-diameter cluster

detection under probabilistic edge failures using conditional-value-at-risk,” In

preparation.

[87] B. Balasundaram and S. Butenko, “Network clustering,” in Analysis of Biological

Networks (B. H. Junker and F. Schreiber, eds.), pp. 113–138, New York: Wiley,

2008.

[88] S. Butenko and W. Wilhelm, “Clique-detection models in computational bio-

chemistry and genomics,” European Journal of Operational Research, vol. 173,

pp. 1–17, 2006.

97

APPENDIX A

PROOF OF CLAIMS 1-3 IN SECTION 3.2

Proof. of Claim 1

Consider any two nodes v1 and v2 from D, there are four possibilities: (1) both belong

to the same q-pendant; (2) v1 belongs to connector pendant p1 and v2 belongs to a

different connector pendant p2; (3) v1 belongs to connector pendant p1 and v2 belongs

to an opposing pendant p2; (4) v1 belongs to opposing pendant p1 and v2 belongs to

a different opposing pendant p2.

Suppose k is even. In the first case, dG[D](v1, v2) ≤ q < k. For any of the remaining

three cases, there exists a connector pendant, say p3, with its tail node adjacent to

the tail nodes of p1 and p2. Now considering the path p1[v1, tail(p1)] − tail(p3) −

p2[tail(p2), v2], we have dG[D](v1, v2) ≤ 2q + 2 = k.

Suppose k is odd. As before in the first case, dG[D](v1, v2) ≤ q < k. In the second

case, since the penultimate node of p1 is adjacent to the tail of p2 we have the path

p1[v1, penultimate(p1)]− p2[tail(p2), v2], and dG[D](v1, v2) ≤ 2q = k− 1. For the third

case, there exists an opposing pendant p3 whose tail is adjacent to the penultimate

node of p1 and the tail of p2. Considering the path p1[v1, penultimate(p1)]−tail(p3)−

p2[tail(p2), v2], we have dG[D](v1, v2) ≤ 2q + 1 = k. In case (4), since the tail of all

opposing pendants form a clique, we have the path p1[v1, tail(p1)] − p2[tail(p2), v2]

and dG[D](v1, v2) ≤ 2q + 1 = k.

Proof. of Claim 2

98

a. Suppose k is even. In the graph G[D ∪ {v1}], by construction, every path from

v1 to v2 contains v1’s opposing pendant (of which v2 is the head) and at least

one of the q-pendants connected to v1. The q-pendant connected to v1 used

on a shortest path could be v1’s connector pendant or some opposing pendant.

Since the tail nodes of two opposing pendants are not adjacent, and the tail

nodes of connector and opposing pendants of v1 are not adjacent, the shortest

path is through the tail node of some other connector pendant. The length of

this shortest path is q + 1 + 2 + q = 2q + 3 = k + 1.

Suppose k is odd. In the graph G[D ∪ {v1}], by construction, every path from

v1 to v2 contains v1’s opposing pendant (of which v2 is the head) and, it must

contain the path from v1 to the penultimate node of v1’s connector pendant or

contain some opposing pendant connected to v1 from head to tail. The shortest

paths through v1’s connector which uses the tail node of some other opposing

pendant to reach the tail of v1’s opposing pendant are of length 1+(q−1)+2+q =

2q + 2 = k + 1. The shortest path through some opposing pendant connected

to v1 is of length 1 + q + 1 + q = 2q + 2 = k + 1. Recall that the tails of all

opposing pendants form a clique when k is odd.

b. This claim is easily verified from the construction.

c. To prove necessity, suppose for a set S ⊆ U , dG[D∪S∪{v1}](v1, v2) ≤ k and this

set doesn’t contain any supporter of v1. According to Claim 2a, we know

dG[D∪{v1}](v1, v2) > k so the shortest path between v1 and v2 with length less

than or equal to k must contain at least one element from S \ {v1}. Sup-

pose v3 ∈ S \ {v1} is an internal node on some shortest path from v1 to v2 in

dG[D∪S∪{v1}](v1, v2) and let p3 denote v3’s connector pendant. Let p1 denote v1’s

opposing pendant. Since v3 is not adjacent to v2 (as it is not v1’s supporter),

the shortest path between v3 and v2 for even k is v3 − p3 − p1[tail(p1), v2] with

99

length 2q + 2 = k. For an odd k, this shortest path is v3 − p3[head(p3) −

penultimate(p3)]− p1[tail(p1), v2] of length 2q + 1 = k. Since the shortest path

length between v3 and v2 is k, the shortest path between v1 and v2 that uses v3

as internal node is at least k + 1 which contradicts dG[D∪S∪{v1}](v1, v2) ≤ k. So

S should contain at least one supporter of v1.

To establish sufficiency of this statement, let v3 ∈ S be a supporter of v1. So v3

is adjacent to v1 and v2. So dG[D∪S∪{v1}](v1, v2) ≤ 2 ≤ k.

Proof. of Claim 3

To show necessity, suppose there exist literal nodes v1, v2 ∈ U such that dG[D∪U](v1, v2) >

k but v1 6= v2. v1 and v2 cannot belong to the same clause as they would form a clique

in this case. Hence, v1 and v2 form a dcnn-pair, and by construction are connected

by a k-chain contradicting dG(v1, v2) > k. Thus, v1 = v2.

To prove sufficiency, suppose there exist literal nodes v1, v2 ∈ U such that v1 = v2.

So v1 and v2 belong to different clauses and there is no direct k-chain linking them.

Suppose k is even. A shortest path from v1 to v2 traversing respective connector

pendants as their tails are adjacent is of length 2q + 3 = k + 1. The other type of

shortest path partially traverses two k-chains from v1 and v2 to some v3 and v4 that

respectively form dcnn-pairs up to their midpoints (which form a clique). In this case

again the length is 2(k
2
) + 1. Now suppose k is odd, then one type of shortest path

traverses v1’s connector pendant up to its penultimate node which is adjacent to the

tail of v2’s connector pendant, again of length q + 1 + q + 1 = k + 1. The other type

of shortest path traverses two k-chains from v1 and v2 up to the first midpoint which

are all adjacent to the nucleus. These are also of length, 2 (k−1)
2

+ 2 = k + 1.

100

APPENDIX B

DETAILED NUMERICAL RESULTS OF THE COMPUTATIONAL

EXPERIMENTS DESCRIBED IN SECTION 4.3

Table B.1: Average size of the best 2-club found by DC compared to BE, and their

average running time (in seconds) on minimum VDV instances

n Metric LB
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

50

Best Obj
DC 3.70 4.90 6.70 11.00 15.20 21.40 31.60

BE 3.70 4.90 6.70 11.00 15.30 22.10 32.40

Time
DC 0.05 0.04 0.05 0.14 0.30 0.46 0.52

BE 0.06 0.05 0.07 0.23 0.50 0.93 1.28

100

Best Obj
DC 6.10 8.80 11.60 18.90 26.10 63.70 95.00

BE 6.10 8.80 11.60 18.90 26.60 66.20 95.00

Time
DC 0.15 0.18 0.43 1.57 3.75 5.09 1.59

BE 0.17 0.22 0.60 2.34 6.18 15.29 6.49

150

Best Obj
DC 6.90 11.00 16.80 26.80 37.70 133.10 149.40

BE 6.90 11.00 16.80 26.80 39.70 133.60 149.40

Time
DC 0.31 0.54 1.77 7.63 18.60 11.41 0.80

BE 0.36 0.67 2.36 10.81 34.10 46.43 3.57

200

Best Obj
DC 8.20 12.70 20.70 33.60 58.50 195.20 200.00

BE 8.20 12.70 20.70 33.60 68.70 195.20 200.00

Time
DC 0.56 1.35 5.05 24.03 59.61 9.60 0.00

BE 0.68 1.74 6.54 33.38 278.06 42.79 0.00

101

Table B.2: Average size of the best 2-club found by DC compared to BE, and their

average running time (in seconds) on maximum VDV instances

n Metric LB
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

50

Best Obj
DC 4.30 5.20 7.40 11.60 15.80 22.90 33.70

BE 4.30 5.20 7.40 11.60 16.30 23.00 34.20

Time
DC 0.04 0.03 0.05 0.15 0.26 0.38 0.42

BE 0.05 0.05 0.07 0.23 0.48 0.83 1.17

100

Best Obj
DC 5.90 10.10 12.70 22.00 34.50 70.00 87.90

BE 5.90 10.10 12.70 22.00 36.00 70.50 87.90

Time
DC 0.14 0.18 0.46 1.78 3.84 4.39 2.87

BE 0.16 0.23 0.61 2.65 7.97 12.58 9.46

150

Best Obj
DC 8.30 11.80 19.50 31.70 75.10 122.40 143.70

BE 8.30 11.80 19.50 31.70 77.00 122.70 143.70

Time
DC 0.31 0.55 1.90 7.96 17.39 14.40 6.15

BE 0.36 0.73 2.57 11.20 44.64 51.32 26.70

200

Best Obj
DC 9.20 14.30 23.40 39.10 126.20 177.20 196.40

BE 9.20 14.30 23.40 39.10 128.80 177.40 196.40

Time
DC 0.60 1.42 5.42 24.58 47.45 31.35 9.80

BE 0.71 1.83 7.07 33.50 146.27 125.72 45.07

102

Table B.3: Average size of the best 3-club found by DC compared to BE, and their

average running time (in seconds) on minimum VDV instances

n Metric LB
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

50

Best Obj
DC 4.60 6.60 10.90 28.90 47.30 50.00 50.00

BE 4.60 6.60 10.90 29.10 47.30 50.00 50.00

Time
DC 0.05 0.04 0.15 0.88 0.37 0.00 0.00

BE 0.06 0.06 0.21 1.58 0.90 0.00 0.00

100

Best Obj
DC 8.40 13.60 22.80 93.90 100.00 100.00 100.00

BE 8.40 13.80 25.50 93.90 100.00 100.00 100.00

Time
DC 0.18 0.67 4.92 5.00 0.00 0.00 0.00

BE 0.22 0.83 7.36 12.10 0.00 0.00 0.00

150

Best Obj
DC 11.30 18.50 41.30 149.90 150.00 150.00 150.00

BE 11.30 19.60 44.30 149.90 150.00 150.00 150.00

Time
DC 0.58 4.19 39.67 0.55 0.00 0.00 0.00

BE 0.69 4.88 64.91 1.43 0.00 0.00 0.00

200

Best Obj
DC 13.50 20.70 89.70 200.00 200.00 200.00 200.00

BE 13.50 23.40 94.50 200.00 200.00 200.00 200.00

Time
DC 1.82 19.09 167.13 0.00 0.00 0.00 0.00

BE 2.11 22.83 327.05 0.00 0.00 0.00 0.00

103

Table B.4: Average size of the best 3-club found by DC compared to BE, and their

average running time (in seconds) on maximum VDV instances

n Metric LB
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

50
Best Obj

DC 4.40 7.80 11.20 31.50 43.60 48.30 50.00

BE 4.40 7.80 11.20 32.00 43.60 48.30 50.00

Time
DC 0.04 0.05 0.15 0.72 0.50 0.35 0.00

BE 0.05 0.08 0.21 1.39 1.15 0.93 0.00

100
Best Obj

DC 7.90 15.80 27.40 93.00 99.70 100.00 100.00

BE 7.90 15.80 29.80 93.10 99.70 100.00 100.00

Time
DC 0.17 0.81 5.44 5.51 0.45 0.00 0.00

BE 0.20 1.02 8.19 13.16 1.44 0.00 0.00

150
Best Obj

DC 12.00 20.20 59.20 148.20 150.00 150.00 150.00

BE 12.00 20.80 61.70 148.20 150.00 150.00 150.00

Time
DC 0.61 5.09 41.83 5.89 0.00 0.00 0.00

BE 0.70 5.83 71.83 16.68 0.00 0.00 0.00

200
Best Obj

DC 14.30 24.90 118.70 199.70 200.00 200.00 200.00

BE 14.30 29.40 122.30 199.70 200.00 200.00 200.00

Time
DC 1.98 22.18 140.47 3.27 0.00 0.00 0.00

BE 2.30 26.85 284.01 9.64 0.00 0.00 0.00

104

Table B.5: Average size of the best 2-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 50-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 3.70 4.90 6.70 11.00 15.50 23.50 34.60

DC/KC 3.70 4.90 6.70 11.00 15.50 23.50 34.60

BE/CO 3.70 4.90 6.70 11.00 15.50 23.50 34.60

BE/KC 3.70 4.90 6.70 11.00 15.50 23.50 34.60

Time

DC/CO 0.08 0.09 0.59 2.43 6.57 12.60 16.14

DC/KC 0.06 0.05 0.08 0.98 16.62 61.96 63.63

BE/CO 0.10 0.10 0.61 2.52 6.59 12.45 16.39

BE/KC 0.06 0.07 0.11 1.05 16.14 60.99 60.82

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max

Best Obj

DC/CO 4.30 5.20 7.40 11.60 16.30 24.10 34.60

DC/KC 4.30 5.20 7.40 11.60 16.30 24.10 34.60

BE/CO 4.30 5.20 7.40 11.60 16.30 24.10 34.60

BE/KC 4.30 5.20 7.40 11.60 16.30 24.10 34.60

Time

DC/CO 0.07 0.10 0.17 2.98 6.06 9.18 6.87

DC/KC 0.05 0.06 0.08 1.60 12.42 20.34 12.82

BE/CO 0.08 0.11 0.19 3.12 6.10 9.41 7.33

BE/KC 0.06 0.07 0.10 1.75 12.15 20.39 12.88

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

105

Table B.6: Average size of the best 2-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 100-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 6.10 8.80 11.60 18.90 29.30 71.20 95.90

DC/KC 6.10 8.80 11.60 18.90 26.10 63.70 95.90

BE/CO 6.10 8.80 11.60 18.90 29.30 71.20 95.90

BE/KC 6.10 8.80 11.60 18.90 26.60 66.20 95.90

Time

DC/CO 0.33 0.77 14.64 57.21 2005.57 1083.22 67.34

DC/KC 0.20 0.27 0.78 1302.60 4622.95 4763.65 42.90

BE/CO 0.35 0.83 14.64 59.09 1969.87 1083.24 72.05

BE/KC 0.22 0.38 0.94 1290.13 4608.93 4746.29 47.53

Gap

DC/CO 0.00 0.00 0.00 0.00 1.67 0.00 0.00

DC/KC 0.00 0.00 0.00 1.67 73.90 35.09 0.00

BE/CO 0.00 0.00 0.00 0.00 1.67 0.00 0.00

BE/KC 0.00 0.00 0.00 7.65 73.40 32.50 0.00

Max

Best Obj

DC/CO 5.90 10.10 12.70 22.10 40.70 72.50 88.20

DC/KC 5.90 10.10 12.70 22.00 34.50 70.10 88.20

BE/CO 5.90 10.10 12.70 22.10 40.70 72.50 88.20

BE/KC 5.90 10.10 12.70 22.00 36.00 70.60 88.20

Time

DC/CO 0.31 0.85 14.30 69.06 746.99 213.78 85.88

DC/KC 0.19 0.29 0.81 2327.69 3706.72 4073.51 491.32

BE/CO 0.34 0.88 14.43 71.30 736.52 217.26 92.13

BE/KC 0.20 0.37 0.96 2303.39 3723.32 4056.79 472.59

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 0.00 15.99 64.69 25.04 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 0.00 22.58 62.95 22.73 0.00

106

Table B.7: Average size of the best 2-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 150-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 6.90 11.00 16.80 26.80 37.70 136.70 149.40

DC/KC 6.90 11.00 16.80 26.80 37.70 133.70 149.40

BE/CO 6.90 11.00 16.80 26.80 39.70 136.70 149.40

BE/KC 6.90 11.00 16.80 26.80 39.70 134.20 149.40

Time

DC/CO 0.97 6.70 89.72 1231.60 3604.96 866.54 82.49

DC/KC 0.48 0.86 4.06 4159.46 4661.69 7493.11 10.49

BE/CO 1.00 6.84 90.44 1248.68 3606.13 894.55 85.42

BE/KC 0.51 0.99 4.64 4167.56 4620.92 7464.31 13.27

Gap

DC/CO 0.00 0.00 0.00 0.00 49.01 0.08 0.00

DC/KC 0.00 0.00 0.00 82.13 74.87 9.10 0.00

BE/CO 0.00 0.00 0.00 0.00 46.46 0.08 0.00

BE/KC 0.00 0.00 0.00 82.13 73.53 8.76 0.00

Max

Best Obj

DC/CO 8.30 11.80 19.50 31.70 75.40 123.60 143.80

DC/KC 8.30 11.80 19.50 31.70 75.10 122.40 143.80

BE/CO 8.30 11.80 19.50 31.70 77.30 123.60 143.80

BE/KC 8.30 11.80 19.50 31.70 77.00 122.70 143.80

Time

DC/CO 0.97 8.91 80.94 1358.68 3335.84 567.21 281.31

DC/KC 0.48 0.90 4.26 4494.86 4284.58 6847.17 647.13

BE/CO 1.00 9.20 80.71 1370.06 3341.99 589.15 302.28

BE/KC 0.50 1.06 4.94 4486.42 4250.77 6841.50 668.37

Gap

DC/CO 0.00 0.00 0.00 0.00 10.40 0.00 0.00

DC/KC 0.00 0.00 0.00 78.87 49.93 18.34 0.80

BE/CO 0.00 0.00 0.00 0.00 8.29 0.00 0.00

BE/KC 0.00 0.00 0.00 78.87 48.67 18.14 0.80

107

Table B.8: Average size of the best 2-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 200-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 8.20 12.70 20.70 33.60 58.50 195.50 200.00

DC/KC 8.20 12.70 20.70 33.60 58.50 195.50 200.00

BE/CO 8.20 12.70 20.70 33.60 68.70 195.50 200.00

BE/KC 8.20 12.70 20.70 33.60 68.70 195.50 200.00

Time

DC/CO 2.54 71.62 298.98 3604.30 3613.16 880.00 0.00

DC/KC 0.95 2.12 16.71 4554.49 5276.76 331.06 0.00

BE/CO 2.65 71.93 300.04 3605.00 3618.83 913.00 0.00

BE/KC 1.01 2.53 18.18 4548.06 4542.85 361.98 0.00

Gap

DC/CO 0.00 0.00 0.00 37.78 56.14 0.00 0.00

DC/KC 0.00 0.00 0.00 83.20 70.75 0.00 0.00

BE/CO 0.00 0.00 0.00 37.66 48.78 0.00 0.00

BE/KC 0.00 0.00 0.00 83.20 65.65 0.00 0.00

Max

Best Obj

DC/CO 9.20 14.30 23.40 39.10 126.20 178.20 196.40

DC/KC 9.20 14.30 23.40 39.10 126.20 177.20 196.40

BE/CO 9.20 14.30 23.40 39.10 128.80 178.20 196.40

BE/KC 9.20 14.30 23.40 39.10 128.80 177.40 196.40

Time

DC/CO 2.61 48.14 299.68 3608.07 3403.16 1664.25 777.07

DC/KC 0.96 2.24 42.41 4884.64 4377.61 5603.51 116.33

BE/CO 2.68 48.07 300.83 3604.49 3411.23 1747.34 813.20

BE/KC 1.03 2.67 44.07 4878.12 4395.17 5606.31 151.69

Gap

DC/CO 0.00 0.00 0.00 29.77 8.00 0.06 0.00

DC/KC 0.00 0.00 0.00 80.45 36.90 10.35 0.00

BE/CO 0.00 0.00 0.00 29.34 6.05 0.06 0.00

BE/KC 0.00 0.00 0.00 80.45 35.60 10.25 0.00

108

Table B.9: Average size of the best 3-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 50-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 4.60 6.60 11.10 30.20 47.40 50.00 50.00

DC/KC 4.60 6.60 11.10 30.20 47.40 50.00 50.00

BE/CO 4.60 6.60 11.10 30.20 47.40 50.00 50.00

BE/KC 4.60 6.60 11.10 30.20 47.40 50.00 50.00

Time

DC/CO 0.08 0.11 1.69 7.80 3.71 0.00 0.00

DC/KC 0.06 0.07 1.77 15.79 1.50 0.00 0.00

BE/CO 0.09 0.13 1.75 8.42 4.18 0.00 0.00

BE/KC 0.07 0.09 1.82 16.46 2.00 0.00 0.00

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Max

Best Obj

DC/CO 4.40 7.80 12.00 32.00 43.60 48.30 50.00

DC/KC 4.40 7.80 12.00 32.00 43.60 48.30 50.00

BE/CO 4.40 7.80 12.00 32.00 43.60 48.30 50.00

BE/KC 4.40 7.80 12.00 32.00 43.60 48.30 50.00

Time

DC/CO 0.08 0.15 1.39 6.20 3.39 3.94 0.00

DC/KC 0.05 0.08 1.26 6.34 1.18 1.28 0.00

BE/CO 0.09 0.18 1.46 5.72 4.13 4.56 0.00

BE/KC 0.06 0.11 1.30 4.66 1.84 1.84 0.00

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 0.00 0.00 0.00 0.00 0.00

109

Table B.10: Average size of the best 3-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 100-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 8.40 14.60 28.00 94.00 100.00 100.00 100.00

DC/KC 8.40 14.60 25.00 94.00 100.00 100.00 100.00

BE/CO 8.40 14.60 28.00 94.00 100.00 100.00 100.00

BE/KC 8.40 14.60 26.50 94.00 100.00 100.00 100.00

Time

DC/CO 0.48 15.45 107.91 70.40 0.00 0.00 0.00

DC/KC 0.27 11.52 2800.19 59.08 0.00 0.00 0.00

BE/CO 0.52 13.58 109.81 77.18 0.00 0.00 0.00

BE/KC 0.31 7.23 2787.81 65.86 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 43.39 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 41.69 0.00 0.00 0.00 0.00

Max

Best Obj

DC/CO 7.90 15.80 31.30 93.20 99.70 100.00 100.00

DC/KC 7.90 15.80 28.60 93.20 99.70 100.00 100.00

BE/CO 7.90 15.80 31.30 93.20 99.70 100.00 100.00

BE/KC 7.90 15.80 30.40 93.20 99.70 100.00 100.00

Time

DC/CO 0.43 14.13 119.51 69.16 17.80 0.00 0.00

DC/KC 0.25 9.19 3712.98 43.31 3.37 0.00 0.00

BE/CO 0.48 14.06 118.65 76.62 18.72 0.00 0.00

BE/KC 0.29 9.36 3689.42 50.63 4.40 0.00 0.00

Gap

DC/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 43.08 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 0.00 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 41.19 0.00 0.00 0.00 0.00

110

Table B.11: Average size of the best 3-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 150-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 11.70 20.50 41.30 149.90 150.00 150.00 150.00

DC/KC 11.70 20.50 41.30 149.90 150.00 150.00 150.00

BE/CO 11.70 20.50 44.30 149.90 150.00 150.00 150.00

BE/KC 11.70 20.50 44.30 149.90 150.00 150.00 150.00

Time

DC/CO 7.02 110.76 3603.82 28.23 0.00 0.00 0.00

DC/KC 4.66 416.51 4901.93 4.01 0.00 0.00 0.00

BE/CO 7.16 108.82 3602.51 29.15 0.00 0.00 0.00

BE/KC 4.82 248.94 4851.43 4.95 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 30.20 0.00 0.00 0.00 0.00

DC/KC 0.00 0.00 72.47 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 25.28 0.00 0.00 0.00 0.00

BE/KC 0.00 0.00 70.47 0.00 0.00 0.00 0.00

Max

Best Obj

DC/CO 12.00 22.90 61.60 148.20 150.00 150.00 150.00

DC/KC 12.00 21.70 59.20 148.20 150.00 150.00 150.00

BE/CO 12.00 22.90 63.50 148.20 150.00 150.00 150.00

BE/KC 12.00 21.90 61.70 148.20 150.00 150.00 150.00

Time

DC/CO 8.55 117.32 3119.97 254.46 0.00 0.00 0.00

DC/KC 0.90 1450.18 4619.79 36.90 0.00 0.00 0.00

BE/CO 8.30 116.16 3129.74 266.00 0.00 0.00 0.00

BE/KC 1.02 1368.11 4555.77 47.56 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 12.97 0.00 0.00 0.00 0.00

DC/KC 0.00 7.39 60.53 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 10.15 0.00 0.00 0.00 0.00

BE/KC 0.00 25.16 58.87 0.00 0.00 0.00 0.00

111

Table B.12: Average size of the best 3-club found, average running time (in seconds),

and percentage optimality gap for each BB algorithm on 200-vertex instances

VDV Metric Algorithm
Edge Density

0.0125 0.025 0.05 0.1 0.15 0.2 0.25

Min

Best Obj

DC/CO 13.60 25.40 89.70 200.00 200.00 200.00 200.00

DC/KC 13.60 20.70 89.70 200.00 200.00 200.00 200.00

BE/CO 13.60 25.40 94.50 200.00 200.00 200.00 200.00

BE/KC 13.60 23.40 94.50 200.00 200.00 200.00 200.00

Time

DC/CO 87.90 442.32 3616.94 0.00 0.00 0.00 0.00

DC/KC 17.24 3684.29 4108.80 0.00 0.00 0.00 0.00

BE/CO 88.28 431.66 3619.46 0.00 0.00 0.00 0.00

BE/KC 17.98 3702.84 4160.96 0.00 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 31.64 0.00 0.00 0.00 0.00

DC/KC 0.00 89.30 55.15 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 28.13 0.00 0.00 0.00 0.00

BE/KC 0.00 87.92 52.75 0.00 0.00 0.00 0.00

Max

Best Obj

DC/CO 14.80 31.90 119.10 199.70 200.00 200.00 200.00

DC/KC 14.80 24.90 118.70 199.70 200.00 200.00 200.00

BE/CO 14.80 31.90 122.50 199.70 200.00 200.00 200.00

BE/KC 14.80 29.40 122.30 199.70 200.00 200.00 200.00

Time

DC/CO 91.39 477.40 3275.85 262.39 0.00 0.00 0.00

DC/KC 63.03 3760.07 4523.58 32.50 0.00 0.00 0.00

BE/CO 91.75 464.38 3304.12 268.81 0.00 0.00 0.00

BE/KC 62.81 3757.28 4526.92 38.81 0.00 0.00 0.00

Gap

DC/CO 0.00 0.00 12.29 0.00 0.00 0.00 0.00

DC/KC 0.00 87.39 40.65 0.00 0.00 0.00 0.00

BE/CO 0.00 0.00 9.64 0.00 0.00 0.00 0.00

BE/KC 0.00 85.11 38.85 0.00 0.00 0.00 0.00

112

APPENDIX C

PROOF OF CLAIMS 4-10 IN SECTION 5.3

Proof. of Claim 4

Suppose there exists j ∈ V such that x̄j >
∑

k∈NG(j) x̄k. We claim all the elements

in the jth column of A1 and A2 are equal to 1 and 0 respectively. Since x̄j > 0, all

elements in the jth column of A2 are equal to 0. Now suppose there exists a row in A1

in which the element in the jth column is not 1 and let C be the corresponding I2DS

for this row. For any set D ∈ Γ((C ∪{j}) \NG(j)), set C ′ = (C ∪{j}∪D) \NG(j) is

an I2DS for which
∑

i∈C′ x̄i−
∑

i∈V \C′(|N(i)∩C ′|−1)+x̄i ≥
∑

i∈C x̄i−
∑

i∈V \C(|N(i)∩

C| − 1)+x̄i + x̄j −
∑

k∈NG(j) x̄k > 1 which contradicts with x̄ ∈ PG. This proves the

validity of our claim. According to this observation, the vector ej is a solution for

system 5.4 which contradicts with x̄ being the unique solution of this system.

Proof. of Claim 5

Otherwise for a set D ∈ Γ((C \ (NG(a) ∪ NG(b))) ∪ {a}), set C ′ = (C \ (NG(a) ∪

NG(b)))∪{a}∪D is an I2DS in G for which
∑

i∈C′ x̄i−
∑

i∈V \C′(|N(i)∩C ′|−1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩ C| − 1)+x̄i + x̄a > 1. This contradicts with x̄ ∈ PG.

Proof. of Claim 6

Suppose there exists C ∈ τ(S1) for which the coefficient of xa in the I2DS constraint

corresponding to set C is negative. Then, there exists a vertex m ∈ (C ∩NG(a)) such

that x̄m = 0. For any set D ∈ Γ(C \ {m}), set C ′ = (C \ {m}) ∪ D is an I2DS in G

for which
∑

i∈C′ x̄i −
∑

i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩ C| −

1)+x̄i + x̄a > 1. This contradicts with x̄ ∈ PG.

113

Proof. of Claim 7

Suppose for a set C ∈ τ(S1), there exists a vertex m ∈ (NG(b)∩C) such that x̄m = 0.

So b 6∈ C and by Claim 5, the coefficient of xb in the I2DS constraint corresponding

to set C is negative. For any set D ∈ Γ(C \ {m}), set C ′ = (C \ {m})∪D is an I2DS

in G for which
∑

i∈C′ x̄i −
∑

i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥
∑

i∈C x̄i −
∑

i∈V \C(|N(i) ∩

C| − 1)+x̄i + x̄b > 1. This contradicts with x̄ ∈ PG.

Proof. of Claim 8

Suppose for any C ∈ τ(S1), the coefficient of xc in the I2DS constraint corresponding

to set C is nonnegative. Then by Claims 5, 6 and 7, the vector ê =
∑

i∈({b}∪NG(b))∩V ′ ei

will solve system 5.4 which is a contradiction with the uniqueness of x̄.

Proof. of Claim 9

If for all C ∈ τ(S1), we have c 6∈ C then by Claims 5, 6 and 7, the vector ê =

∑
i∈(({b}∪NG(b))\{c})∩V ′ ei is a solution for system 5.4 which contradicts with x̄ being

the unique solution of this system.

Proof. of Claim 10

Consider a vertex m ∈ (NG(c) ∩ V ′) \ {d}. If m is a leaf vertex of Ḡ then by

Inequality 5.5, we have x̄m ≤ x̄c. If not, then all vertices in (NG(m) ∩ V ′) \ {c}

are the leaf vertices of Ḡ because otherwise p is not the longest path in this graph.

Suppose x̄m > x̄c, then for all C ∈ τ(S1), we have c 6∈ C. Otherwise, consider a

C ∈ τ(S1) which contains c. Define set W = NG(m) ∪ (∪i∈NG(m)\{c}NG(i)). For any

set D ∈ Γ((C \ W) ∪ {m}), set C ′ = (C \ W) ∪ {m} ∪ D is an I2DS in G for which

∑
i∈C′ x̄i −

∑
i∈V \C′(|N(i) ∩ C ′| − 1)+x̄i ≥

∑
i∈C x̄i −

∑
i∈V \C(|N(i) ∩ C| − 1)+x̄i −

x̄c + x̄m > 1. This contradicts with x̄ ∈ PG. So by Claim 9, we have x̄m ≤ x̄c.

114

VITA

Foad Mahdavi Pajouh

Candidate for the Degree of

Doctor of Philosophy

Dissertation: POLYHEDRAL COMBINATORICS, COMPLEXITY & ALGO-
RITHMS FOR k-CLUBS IN GRAPHS

Major Field: Industrial Engineering and Management

Biographical:

Personal Data: Born in Hamedan, Iran on July 24, 1981.

Education:
Received the B.S. degree from Sharif University of Technology, Tehran,
Iran, 2004, in Industrial Engineering
Received the M.S. degree from Tarbiat Modares University, Tehran, Iran,
2006, in Industrial Engineering
Completed the requirements for the degree of Doctor of Philosophy with
a major in Industrial Engineering and Management at Oklahoma State
University in August, 2012.

Experience:
Mr. Mahdavi Pajouh has research interests in theoretical, computational
and applied optimization. He has research experience in theoretical and
computational optimization, applied optimization and stochastic modeling.
He has worked as a graduate research assistant in the School of Industrial
Engineering and Management at Oklahoma State University (OSU). He
has teaching experience as an instructor and has taught two courses for
the School of Industrial Engineering and Management during Fall 2011 and
Spring 2012 semesters. He worked as an industrial engineering expert at
Iran Khodro Company (IKCO) which is a large automobile manufacturer
in the middle east. He also collaborated with Hamedan management and
planning organization as a system analyst. He will join the department of
Industrial and Systems Engineering at University of Florida as an adjunct
assistant professor in August 2012.

Name: Foad Mahdavi Pajouh Date of Degree: July, 2012

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: POLYHEDRAL COMBINATORICS, COMPLEXITY & ALGO-
RITHMS FOR k-CLUBS IN GRAPHS

Pages in Study: 114 Candidate for the Degree of Doctor of Philosophy

Major Field: Industrial Engineering and Management

A k-club is a distance-based graph-theoretic generalization of clique, originally intro-
duced to model cohesive subgroups in social network analysis. The k-clubs represent
low diameter clusters in graphs and are suitable for various graph-based data min-
ing applications. Unlike cliques, the k-club model is nonhereditary, meaning every
subset of a k-club is not necessarily a k-club. This imposes significant challenges in
developing theory and algorithms for optimization problems associated with k-clubs.

We settle an open problem establishing the intractability of testing inclusion-wise
maximality of k-clubs for fixed k ≥ 2. This result is in contrast to polynomial-time
verifiability of maximal cliques, and is a direct consequence of k-clubs’ nonheredi-
tary nature. A class of graphs for which this problem is polynomial-time solvable
is also identified. We propose a distance coloring based upper-bounding scheme and
a bounded enumeration based lower-bounding routine and employ them in a combi-
natorial branch-and-bound algorithm for finding a maximum k-club. Computational
results on graphs with up to 200 vertices are also provided.

The 2-club polytope of a graph is studied and a new family of facet inducing in-
equalities for this polytope is discovered. This family of facets strictly contains all
known nontrivial facets of the 2-club polytope as special cases, and identifies pre-
viously unknown facets of this polytope. The separation complexity of these newly
discovered facets is proved to be NP-complete and it is shown that the 2-club poly-
tope of trees can be completely described by the collection of these facets along with
the nonnegativity constraints.

We also studied the maximum 2-club problem under uncertainty. Given a random
graph subject to probabilistic edge failures, we are interested in finding a large “risk-
averse” 2-club. Here, risk-aversion is achieved via modeling the loss in 2-club property
due to edge failures, as random loss, which is a function of the decision variables and
uncertain parameters. Conditional Value-at-Risk (CVaR) is used as a quantitative
measure of risk that is constrained in the model. Benders’ decomposition scheme is
utilized to develop a new decomposition algorithm for solving the CVaR constrained
maximum 2-club problem. A preliminary experiment is also conducted to compare
the computational performance of the developed algorithm with our extension of an
existing algorithm from the literature.

ADVISOR’S APPROVAL: Dr. Balabhaskar Balasundaram

