

INVESTIGATION OF A NEURAL NETWORK

 METHODOLOGY TO PREDICT

TRANSIENT PERFORMANCE

 IN FMS

By

AUGUSTINE JONGIK KWON

Bachelor of Science
University of Missouri-Rolla

 Rolla, Missouri
1989

Master of Science

University of Missouri-Rolla
 Rolla, Missouri

1991

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
 the degree of

DOCTOR OF PHILOSOPHY
May 2005

INVESTIGATION OF A NEURAL NETWORK

 METHODOLOGY TO PREDICT

TRANSIENT PERFORMANCE

 IN FMS

BY AUGUSTINE JONGIK KWON

 Thesis Approved:

Dr. David B. Pratt
 __
 Thesis Advisor

Dr. Michael Branson

Dr. Martin Hagan
 __

Dr. Manjunath Kamath
 __

Dr. Gordon Emslie
 __
 Dean of the Graduate College

 ii

ACKNOWLEGEMENTS

I wish to express my sincere appreciation to my major advisor, Dr. David Pratt for

his intelligent supervision, guidance, suggestions, and encouragement. My sincere

appreciation extends to my other committee members, Dr. Michael Branson, Dr.

Manjunath Kamath, and Dr. Martin Hagan, for their helpful comments, suggestions, and

understanding during the course of this study. I also would like to thank Dr. John

Nazemetz and the Industrial Engineering and Management Graduate Program for

providing me with a research assistantship and their generous financial support during my

stay in the program.

I would like to express my deepest gratitude to my wife, Cindy, for her support,

love, and understanding throughout the whole process. I thank my children, Katie and

Megan, for their unconditional love and understanding despite being absent many times

during last five years. Special thanks to my dear parents, God, and blessed Mary for the

privilege and honor of obtaining the doctoral degree with the help of their unconditional

love, encouragement, and inspiration.

Finally, I would like to thank my boss, Sam Nusinow at Knowledge Base

Engineering, Inc. and the School of Industrial Engineering and Management for

supporting me to successfully complete this study.

 iii

TABLE OF CONTENTS

1. Introduction ……...……..…...……………………………………………………… 1

1.1 Motivation of the Research……………………………………………...………...1

1.1.1 Growing Usage of FMS……………………………………………...……...3

1.1.2 Known Integration and Performance Modeling Issues with FMS ….....…....5

1.1.3 Importance of Performance Predictor in On-line Controller………………..7

1.1.4 Simulation Modeling versus Metamodeling………………………………..9

 1.1.5 Artificial Neural Network Based Metamodeling vs. Regression Based

 Metamodeling Approach……………………………………..……............11

1.2 Problem Statement…………………………………………………...…………..14

1.3 Scope of the Research……………...…………………………………………….16

1.4 Anticipated Contributions………...……………………………………………...18

1.5 Overview of the Dissertation……………………………………………………..20

2. Literature Review……...…………..……………………………………..…………22

2.1 Queueing Network Approaches…...……………………………………………..23

2.1.1 Summary of Major Developments……………...………………………….23

2.1.2 Conclusion………………………………………………………………….34

2.2 Markov Chain Models……………………………………………………………39

2.2.1 Summary of Major developments………………………………………….39

 iv

2.2.2 Conclusion………………………………………………………………….47

2.3 Simulation Modeling……………………………………………………………..49

2.3.1 Summary of Major Developments………………………………………...49

2.3.2 Conclusion………………………………………………………………...61

2.4 Stochastic Petri Nets……………………………………………………………...63

2.4.1 Summary of Major Developments………………………………………...63

2.4.2 Conclusion………………………………………………………………...73

2.5 Summary…………………………………………………………………………75

3. Problem Settings and Systems Description………………………………………..79

3.1 FMS………………………………………………………………………………79

3.1.1 System Description………………………………………………………..79

3.1.2 Parts………………………………………………………………………..82

3.2 Time Series Analysis………………………………………………………..…….90

3.3 Artificial Neural Networks………………………………………………………121

3.3.1 Background………………………………………………………………121

3.3.2 Multilayer Neural Network Architecture and Training Methods………..130

3.3.3 Proposed Neural Network based metamodeling framework……..…….144

4. Statement of Research…………………………….……………………………….148

4.1 Research Goal………………………………………………………………….148

4.2 Research Objectives……………………………………………………………148

4.3 Assumptions and limitations…………………………………………………...153

 v

4.4 Summary……………………………………………………………………….154

5. Research Methodology………..…………………………………………………...156

5.1 Research Tasks…………………………………………………………………156

5.2 Simulation Based Disruption Scenarios………………………………………..161

5.3 Summary……………………………………………………………………….167

6. Problem Development – Pilot Experiments…………………………………...….168

6.1 Development of a Computer Simulation Model……………………………….168

6.2 Initial Experiments and Findings………………………………………………171

6.3 Initial Simulation Experiment Sets and Data Processing Procedures………….181

6.4 Post Disruption Behavior Pattern Classification……………………………….187

6.5 Identification of Input and Output Vectors…………………………………….199

6.6 Summary……………………………………………………………………….214

7. Experimental Results………………….………………………………..…..……..215

 7.1 Construction and training of Individual ANNs………………………………....215

 7.2 Expansion of the Initial Experiment Size……………………………………....225

 7.3 Performance Evaluation of Proposed Modeling Scheme……………………....228

 7.4 Summary………………………………………………………………………..249

8. Summary and Conclusions ..250

 8.1 Overview of Research Objectives and Accomplishments250

 vi

 8.2 The major contributions of this research..253

 8.3 The Strength and Weakness of the Proposed Modeling Approach......................257

 8.4 Future Research Directions and Opportunities ..259

 8.5 Summary ..260

Bibliography……………………………………………………………………..….…262

Appendix A…………………………………………………………………………….275

Extended Design of Experiments………………………………………………...….276

Appendix B………………………..…………………………………………………..287

B.1 MATLAB Source Code for Training Individual ANNs………………………288

B.2 Transient Behavior Prediction User Interface in MATLAB…………………..301

Appendix C……………………………………………………………………………306

C.1 Input Vectors for Post-disruption Type 1 ANNs, Net_2_1_1, Net_2_1_2, and

Net_2_1_3, from the second level ……….…………………………………….307

C.2 Input Vectors for Post-disruption Type 2 ANNs, Net_2_2_1, Net_2_2_2, and

Net_2_2_3, from the second level ……………………………………………..332

C.3 Input Vectors for Post-disruption Type 3 ANNs, Net_2_3_1 and Net_2_3_2,

 from the second level………..…………………………………………………345

C.4 Output Vectors for Net_1_1…………………………………………………….406

C.5 Output Vectors for Net_2_1_1………………………………………………….421

 vii

C.6 Output Vectors for Net_2_1_2………………………………………………….426

C.7 Output Vectors for Net_2_1_3………………………………………………….429

C.8 Output Vectors for Net_2_2_1…………………………………………………430

C.9 Output Vectors for Net_2_2_2…………………………………………………437

C.10 Output Vectors for Net_2_2_3………………………………………………..440

C.11 Output Vectors for Net_2_3_1………………………………………………..443

C.12 Output Vectors for Net_2_3_2………………………………………………..454

Appendix D……………………………………………………………………………467

Appendix E…………………………………………………………………………….477

Appendix F…………………………………………………………………………….487

 viii

LIST OF FIGURES

Figure Page

1 Scenario for Interfacing Simulation with Physical System for Real-time

Control……………………………………………………………. 57

2 Physical layout of the FMS under study………………………………. 81

3 A stationary time series showing short-term correlation with its

correlogram……………………………………………………………… 104

4 A non-stationary time series together with its correlograms……………. 105

5 A time series contains a periodic component ………………………….. 112

6 A spectrum with the corresponding normalized spectral distribution

function…………………………………………………………………. 116

7 Anatomical illustration of biological neurons…………………………... 122

8 Single-Input Neuron…………………………………………………….. 123

9 Typical Transfer functions……………………………………………… 131

10 Three-layer network…………………………………………………….. 133

11 Proposed ANN based Metamodeling scheme…………………………... 146

12 Graphical Representation of Stable and Unstable Equilibrium…………. 165

13 Set Part Type Attribute Block ………………………………………….. 169

14 Part Routing and AGV Control Logic ………………………………….. 170

15 Single Resource Failure Scheduling and Control………….……………. 171

16 Row TIS Observations during First 500 Parts under the First Steady

State Scenario with No Disruption……………………………………… 174

17 Moving Average Filtered TIS Observations under the First Steady State

Scenario with No Disruption……………………………………………. 179

18 Moving Average Filtered TIS Observations under the First Steady State

Scenario with Machine M6 Failure Took Place at 10000 ……………… 180

19 Pre-process Steps……………………………………………………….. 188

 ix

Figure Page

20 Type 0 (no change) Transient Behavior Pattern Class………………….. 190

21 Type 1 (an infinite linear growth) Transient Behavior Pattern Class…… 191

22 Type 2 (an infinite non-linear growth) Transient Behavior Pattern

Class……………………………………………………………………. 192

23 Type 3 (a finite growth to a new steady state) Transient Behavior

Pattern Class…………………………………………………………… 193

24 Individual Moving Average Filtered TIS plots under Scenario No.19... 195

25 Moving Average Filtered Mean TIS Plots under Scenario No.19…….. 197

26 A Close-up View of Moving Average Filtered Mean TIS Plots under

Scenario No.19………………………………………………………… 198

27 Proposed Two-Level Deep Taxonomically Organized ANN Based

Transient Performance Model…………………………………………. 211

28 Network Diagram of Net_1_1 in the Top Level………………………. 216

29 Individual Network Diagram of Type One Transient Behavior

Approximation sub-ANNs in the Second Level………………………. 217

30 Individual Network Diagram of Type Two Transient Behavior

Approximation Sub-ANNs in the Second Level………………………. 219

31 Individual Network Diagram of Type Three Transient Behavior

Approximation sub-ANNs in the Second Level………………………. 221

32 Performance Plots of the Top Level ANN Net_1_1 during Its Initial

training with 90 Input and Output …………………………………….. 223

33 Comparative Performance plots of sub- ANNs, Net_1_1 and

Net_2_3_2, under Old and New Training, Test, and Validation Vector

Sets…………………………………………………………………….. 227

34 RAW TIS and Moving Average Filtered (MA) TIS Plots of Exp No.

438 (Post-disruption Type 1 Behavior)………………………………... 232

35 Moving Average Filtered (MA) TIS vs. Approximations by a Quadratic

Model for TISs during First 400 Post-disruption

Observations…………………………………………………………… 233

 x

Figure Page

36 Moving Average Filtered (MA) TIS vs. Approximations by a Linear

Regression Model for TISs from 4753rd to 8653rd Observation……... 234

37 Moving Average Filtered (MA) TIS vs. Approximations by the final

Composite Regression Model for TISs from 4353rd to 8653rd

Observation……………………………………………………………. 235

38 Trend Plot of Standard Deviation of Moving Average (w=500) Filtered

TIS observations before and after the disruption and Comparative Plots

of Standard Deviation Regression Models………... 236

39 Comparative Plots of Mean TIS Approximations by Various Regression

Based Models for Exp438 (Type1)………………………. 238

40 Comparative Plots of Sigma Approximations by Various Regression

Based Models for Exp438 (Type1)…………………………………… 239

41 Descriptive Statistics and Normality Test on RAW TIS data from Pre-

disruption Period of Exp438………………………………………….. 243

42 Descriptive Statistics and Normality Test on MA TIS data from Pre-

disruption Period of Exp438…………………………………………... 244

43 Open Queueing Network………………………………………………. 489

44 Example of graphical representation of a Petri net…………………….. 496

45 Reachability tree of the model in Figure 44………………………….. 499

46 GSPN model of Figure 44 with given exponential and immediate

transition times………………………………………………………… 502

47 Finding an equivalent CTMC for GSPN model given in Figure 5 503

48 A conversion from an ordinary PN of the FCFS queueing discipline

with two job classes to an equivalent CPN…………………………… 506

 xi

LIST OF TABLES

Table Page

1 Major Developments in FMS Performance Study Using QN

Analysis…………………………………………………………………. 35

2 Sample orders with four part types under a production plan……………. 82

3 Inter-arrival Time and Machining Process Requirements for Different

Part Types……………………………………………………………….. 83

4 Pre-sort Conveyor Belts and Possible Part Types………………………. 84

5 Relative Part Size for Different Part Types……………………………... 85

6 Part Groups and Machine Process Capability………………………… 87

7 Service Time Distributions for Individual Part Types……….…………. 88

8 Part Types and Possible Part Mix Change Scenarios…………………… 162

9 Possible Single Machine Failure Scenarios……………………………... 163

10 Possible Single AGV Failure Scenarios………………………………… 163

11 Possible Single Resource Failure Scenarios……………………………. 166

12 Four Steady State Scenarios and Their Warm-up Periods……………… 173

13 Individual System Resource Utilization Rates under Four Steady State

Scenarios………………………………………………………………… 177

14 Four Steady State Scenarios and Their Control Limits…………………. 178

15 Initial Experiment Set…………………………………………………… 182

16 Makeup for Four Transient Pattern Types………………………………. 194

17 Semantics of Common Input Vector p….……………….….…………. 201

18 Semantics of First Output Vector a1 from the Top Level

ANN…………………………………………………………………….. 202

19 Semantics of Output Vector a2,1 from First Three ANNs in the Second

Level ANNs to Approximate Transient Behavior Pattern Type

No.1…………………………………………………………..………… 204

 xii

Table Page
20 Semantics of Output Vector a2,2 from Second Group of Three ANNs

in the Second Level ANNs to Approximate Transient Behavior Pattern

Type No. 2………………………………………………………………. 207

21 Semantics of Output Vector a2,3 from Third Group of Two ANNs in the

Second Level ANNs to Approximate Transient Behavior Pattern Type

No. 3…………………………………………………………………….. 210

22 Training and Testing Performance Indexes from Individual Neural

Networks with 90 training and 45 Testing Input and Output Vectors

(original experiment set)………………………………………………… 224

23 Training, Test, and Validation Performances from Individual Sub-

ANNs under New Extended Training, Test and Validation Vector Sets

vs. Those under Old Training, Test, and Validation Vector Sets……….. 226

24 Major Event Start Times on MA TIS Observations from 18 Selected

Experiment RAW Data………………………………………………….. 230

25 Major Event Start Times on Approximated TIS Observations Rendered

by Regression Models Based on MA Scenario Average TIS

Observations from 18 Selected Experiments…………………………… 230

26 Major Event Start Times on Approximated TIS Observations Rendered

by ANN Generated Regression Models for 18 Selected Experiments….. 231

27 TIS Transient Behavior Prediction Performance Table for Selected

Experiments under Three Post-disruption Behavior Types……………... 247

 xiii

 1

1. Introduction

1.1 Motivation of the Research

 In most scientific domains, it is a common practice to build physical or

mathematical models to study a system of interest. These models are frequently defined

to be a collection of entities (components). These entities act and interact together

toward the accomplishment of some logical end [Schmidt and Taylor 1970]. Often, these

physical or mathematical models are simplified forms (abstractions) of real systems

because it is only necessary to consider those aspects of the system that affect the system

behavior under investigation [Banks et al. 1996]. Studying a system model normally

provides an opportunity to better understand the relationships among its components or to

predict how the system will operate under new policies or new operational conditions

[Law and Kelton 1991].

 In practice, for many real world systems, building a physical model is often too

costly and impractical due to complexity and lengthy development time. Especially

when models for the system require a full-scale level of detail, the cost can be prohibitive

based on the nature of the system. For this reason, mathematical models are often

preferred in many fields to study characteristics or behaviors of the system under given

conditions.

 2

System models can be classified into two broad categories based on their use.

The first type is an evaluative model. An evaluative model can be used to study a

particular system behavior(s) under a set of given configurations and operational

parameters. The second type is a generative model. Generative models are built to find a

set of optimal decision parameters that can satisfy operational or design objective(s) for

the system under given constraints. Evaluative models are designed to provide

performance predictions that are essential during the design and operational stages of a

system. On the other hand, generative models are extensively used for performance

optimization in various operations research (OR) type studies.

Reliable performance prediction for manufacturing systems has been the focus of

many industrial and academic research communities. Reliable but easy-to-develop and

easy-to-use evaluative models for both design and operation are crucial for operational

success. Most evaluative models have focused on long-term steady-state system

behaviors rather than short-term transitory behaviors. For this reason, it is not ideal to

use them to forecast often volatile transitional short-term behaviors following events that

cause disruptions of the steady-state behavior of a system performance indicator.

Examples of unexpected events that can cause system disruptions are machine failures,

rush orders, and changes in product mix due to part or material shortages.

With the advent of more powerful computer and information technologies,

interest in industrial application of on-line decision-making has intensified in recent

years. In the area of highly automated production and process controls, on-line decision-

 3

making and its associated issues have become prominent research topics. Especially in

the area of flexible manufacturing system control, conveying a realistic view of

upcoming short-term behavior of the system is vital to building effective control policies

to minimize unwanted performance deviation following an unexpected system

disruption(s).

1.1.1 Growing Usage of FMS

The most common challenge faced by manufacturers around the world today is to

adapt themselves to a rapidly changing operational environment. The demand for highly

customized products is on the rise and today’s fierce competition in low-cost precision

manufacturing is unprecedented. Among many strategies available to deal with these

challenges, one approach is to adopt and implement various forms of flexible

manufacturing systems (FMSs) as a part of a strategic plan.

There are many definitions of FMS available. Even though they may have some

difference in details, all seem to agree on common basic design fundamentals that can be

found in the definition given by Groover [1987]. According to Groover [1987], an FMS

is a fully automated system consisting of functionally similar or dissimilar automated

workstations interconnected by means of an automated material handling system and

storage system, and controlled by an integrated computer system. The workstations are

considered automated cells of computer numerical control (CNC) machines. A similar

term, flexible manufacturing cell (FMC), often used in place of FMS, can be defined as

follows: a typical FMC comprises a few numerically control (NC) machines, tool

 4

magazines, and one or more material handling robots [Narahari and Viswanadham 1989].

According to Groover [1987], a distinction between FMS and FMC can be made based

on the number of NC or CNC machines comprised within. Therefore, an FMS can also

be formed as a collection of several FMCs. FMSs have various documented and

publicized merits such as high adaptability to changes, flexibility in configurations and

operations, improved product quality, short lead-time, and high utilization with a

relatively low WIP [Groover 1987], [Vollmann et al. 1997].

From a systems perspectives, finding an effective modeling tool for FMSs will

likely make contributions to modeling other Discrete Event Dynamic Systems (DEDS)

because the system dynamics observed in various FMSs are analogous to those that can

be found in many DEDS. In general, DEDS are large scale interconnected systems,

driven by the occurrence of discrete events, where their dynamic behavior involves state

changes only at discrete points in time [Ho et al.1984].

Complex interactions are often present in the system behaviors of DEDS.

Synchronization, concurrency, randomness, and contention for limited resources are

common aspects of these interactions [Narahari and Viswanadham 1989]. DEDS can be

found almost everywhere in today’s modern technological infrastructure. According to

Ho et al. [1984], examples of such systems encountered today are communication

networks, computer systems, production/assembly lines, traffic systems, and

transportation networks. Therefore, an effective modeling methodology for FMS

transient behaviors may be applicable to these systems with some modifications.

 5

1.1.2 Known Integration and Performance Modeling Issues with FMS

Despite many publicized FMS merits, there are four well-documented limitations

[Huang and Chen 1986] that keep FMSs from being more widely applied in industry.

These limitations are:

1. high initial costs,

2. long implementation lead time,

3. uncertainty of a successful FMS interface with the current production system,

and

4. control software customization issues based on uniqueness of each installation

site.

All of the above limitations except the third, uncertainty of a successful FMS integration,

can be naturally resolved as time progresses with little commitment from those who

actually operate FMSs on a day-to-day basis. For example, the continuous market growth

in FMS installation and ongoing technological innovation will lower the high cost of

precision machine tool manufacturing. Thus, FMSs will eventually become an affordable

form of automation even to manufacturers without great financial strength. To overcome

the uncertainty of successful FMS interface with the current production system,

tremendous effort is required from both FMS designers and operators no matter how

advanced the supporting technology becomes in the future. Without these efforts, the full

potential of FMS may not be realized.

 6

The concept of FMSs can be used within the context of manufacturing cells.

Individual cells consist of several workcenters that can carry out similar or dissimilar

manufacturing functions. Lin and Chiu [1993] stress that understanding and being able to

predict dynamic behavior as well as long term manufacturing cell performance is

necessary to better coordinate production among cells. Therefore, knowledge of transient

performance behavior as well as steady-state behavior of individual cells can be vital to

overcoming the third limitation in adopting FMS. Another research effort points out that

the studies done on interactions among FMS resources and impacts brought by random

changes in operations are still insufficient [Basnet and Mize 1994]. Random changes

during operation, such as resource breakdowns and rush orders, are normally responsible

for unanticipated system interruptions.

Traditional performance modeling approaches, such as analytical and simulation

modeling, constantly rely on human intelligence and modeling skills to create and

maintain effective evaluative power. On a busy shop floor, especially for a highly

utilized FMS, the ability to make instantaneous decision to effectively handle a wide

range of critical disruptions using an effective short-term evaluative model can be highly

beneficial. For example, evaluative models based on steady-state performance can help

an operator select a proper operational strategy in order to reach an optimal production

level based on a long term production schedule. On the other hand, an effective short-

term look head capability can help an operator choose a proper short term remedy to

handle the day-to-day operational problems without compromising the long-term

 7

performance goal. However, due to its dependency on human intelligence and expertise,

occasional off-line maintenance is required when there are significant changes to the

system configurations and operation rules. For example, adding new part type, AGV or

machine center to the existing system requires redefining its state space in a Markov

chain model. Lacking self-maintainable modeling capability in a highly dynamic

operational environment can sometimes result in a costly impact to the rest of production

line.

Utilizing transient analysis to measure impacts on a performance indicator

following one or more disruptions will provide an FMS operator the opportunity to assess

the situation and help him/her make the best operational choice so that the impact to the

other parts of the production line can be minimized. The proper balancing between short-

term and long-term performance look-ahead capability through efficient evaluative

models is one crucial key for seamless integration between FMSs and traditional

production systems since the return on investment on an FMS is initially much lower than

other forms of automation. This is necessary to avoid creating another costly “automated

island”. As applications of FMSs continue to grow, successfully integrating FMSs with

other types of production systems become more critical.

1.1.3 Importance of Performance Predictor in On-line Controller

The continuous improvement and new development of on-line as well as off-line

production flow optimization schemes under different planning time horizons for a

 8

dynamic system has been a primary focus for many FMS researchers. These schemes are

developed using various operations research, mathematical programming, and artificial

intelligence (AI) techniques with a well-constructed evaluative model.

There are important distinctions between off-line flow and on-line production

flow optimization schemes in typical shop floor control environments. Off-line schemes

are typically used to perform planning, scheduling and routing functions through periodic

interactions with a human supervisor. On the other hand, on-line schemes are used by

automatic control devices such as PLCs to continuously optimize hardware performance

and to perform schedule and route changes due to resource failures, rush orders, and

major deviations in the original production plans. If the predetermined schedule is

carried out as planned, on-line controllers are required only for the actual implementation

of control procedures, such as downloading of CNC programs. In such cases, off-line

schemes are used at predetermined time intervals and the resulting schedules are

implemented.

However, a perfect adherence to predefined schedules is almost never realized in

practice due to exceptions known as disruptions or unexpected events that cause

deviations of the shop floor behavior from the manager’s expectation [Katz and

Manivannan 1993]. Katz and Manivannan [1993] acknowledge a great need for

architecture to analyze complex patterns of on-line events caused by possible production

disruptions. On-line simulation is proposed as one way to obtain information about

foreseeable detailed behavior of the manufacturing system within a specified length of

 9

time in which a control decision has to be made (also known as the control horizon).

For on-line FMS control, devising fast and reliable evaluation models in a

disruption handling architecture is crucial because most decision-making regarding

unexpected on-line events takes place within a matter of seconds or minutes. Lin and

Cochran [1990] state, “For shop floor control in real time, not only long term steady-state

performance is important, short-term dynamic performance of the production line is of

even greater interest, since many unexpected events can be vital.”

The majority of analytical model developments for FMS operations are based on

long-term system behaviors using steady-state analysis. However, in reality most of

these systems never reach steady state because of their highly dynamic operational nature

[Buzacott and Yao 1986]. For people who operate FMSs on shop floors as a means to

meet daily production goals, a comprehensive system model to depict realistic transient

behaviors accompanied by possible, but unscheduled, disruptions is more meaningful to

make control decision within a small time horizon.

1.1.4 Simulation Modeling versus Metamodeling

Simulation modeling is an evaluative technique to study a system of interest.

Simulation is normally conducted by a digital computer numerically exercising a model

for the inputs in question to see how they affect the output measures of performance

[Law and Kelton 1991]. Often, a well-built simulation model provides realistic views of

 10

system behaviors of interest. Thus, one can extensively study behaviors of a real world

system without modifying an actual system for different baseline characteristics.

Although most simulation models are simpler than the real world system they model, it is

still a complex way to study systems behaviors because building a valid simulation model

takes a considerable amount of expertise, effort, and time.

The time and effort to build and validate such models, especially under time

pressure, often leads users to switch to other forms of evaluative models, such as

analytical models, or to choose a hybrid model that combines analytical and simulation

models to avoid lengthy computation time. Metamodeling is a supplementary way to map

target system input to corresponding output in simpler manner using simulation

experimental design and mathematical techniques like regression analysis or time series

analysis. Well-built metamodels often provide the speed of analytical models with the

fidelity of a carefully executed simulation study. The usefulness of regression-based

metamodels has been investigated in several studies [Friedman 1989], [Friedman and

Pressman 1988], [Kleijnen 1979].

Typical metamodels are approximation formulas that map different combinations

of input values to associated output values normally obtained through a full execution of

a simulation experimental design. In most cases, non-terminating simulation is used for

each run in the experimental design. A terminating simulation is one for that runs for

some duration of time , where ET E is a particular event (or set of events) which stops the

simulation. On the contrary, non-terminating simulation is one for which there is no

 11

particular event E to specify the length of a run. Typically, a performance measure for

such a simulation is said to be a steady-state parameter if the output stochastic process of

interest exhibits a steady-state (or near steady-state) distribution. L,, 21 YY

Relying on the traditional terminating simulation method to investigate

transitional behaviors of a manufacturing system can be expensive and often impractical

for real time production control [Lin and Cochran 1990], [Lin and Cochran 1990], [Lin

and Chiu 1993], [Lin et al. 1998]. Thus, constructing metamodels using stochastic

discrete event simulation and mathematical formulation as an evaluative modeling tool to

forecast possible transient behaviors of a complex-manufacturing system under various

scenarios has been shown to be a highly effective and practical approach [Lin and Chiu

1993].

1.1.5 Artificial Neural Network Based Metamodeling vs. Regression Based
Metamodeling Approach

Artificial neural networks are widely used in many fields as a prominent artificial

intelligent tool when rapid computation, adaptability, and robustness are required

[Padgett and Roppel 1992]. Typically, neural network applications require fewer

assumptions and less accurate data to model unknown functions. Using artificial neural

networks as a non-parametric approximation methodology has been shown to be highly

effective in the area of metamodeling compared to traditional regression type approaches

[Kilmer 1994]. This is especially true, when the system contains a significant amount of

the “noise” which is often present in many stochastically transitional systems [Kilmer

 12

1994]. The number of different types of artificial neural networks is almost unlimited

based on different design architectures and their application areas. Alternative design

architectures are discussed more fully in Chapter 3.

Regression analysis is the part of statistics that deals with investigation of the

relationship between two or more variables related in a nondeterministic fashion.

Regression models can be grouped into linear and non-linear regression models. Non-

linear regression functions can have many different forms. A polynomial regression

function is one common possible form. If there is more than one independent variable

related to dependent variables, the model is called a multiple regression model.

In general, neural networks appear to perform better than ordinary regression

techniques in statistical approximation of unknown functions [Kilmer 1994]. The

implementation of most regression techniques depends on two critical statistical

assumptions about the model errors. These assumptions are:

1. errors must be independent, and

2. errors must be normally distributed with a zero mean and a constant variance

[Miller et al. 1990].

Nam and Schaefer [1995] identify three reasons to move away from a traditional

regression approach in practical forecasting. First, even though the accuracy of regression

models is not significantly compromised when there are small departures from these

assumptions, the performance of the model can deteriorate when the assumptions are

violated. Such deviations from the assumptions can generally only be detected after the

 13

construction of the model. Second, past observations regarding the unknown function

often contain complex patterns. Third, there is no way of being certain that the choice of

a given regression technique provides the best result.

 Alternatively, neural networks can learn from experience, move to new

generalizations from previous ones, and abstract essential characteristics from somewhat

noisy and incomplete inputs [Wasserman 1989]. In addition, neural networks do not

require the same assumptions about the underlying distribution, as do many regression

techniques. Therefore, artificial neural networks can be an effective alternative to most

regression type approaches.

Lin and Cochran [1990] utilize time series regression analysis and stochastic

simulation in their metamodels to predict transient behaviors of a flow shop system.

Since their modeling scheme relies on the modeler’s ability to classify and synthesize

various functional elements to make a proper time series model for a given unknown

performance function, it is difficult to transform the scheme into an effective automated

modeling framework. Based on the pattern of the transitional behavior following a

disruption(s), building a prediction model through ad hoc combinations of time series

analysis and a linear equation with a particular part arrival or departure rate can be

cumbersome. Compared to the traditional regression method, properly configured

artificial neural networks can learn and capture any unknown functions with almost no

human intervention. It has also been shown that artificial neural networks can effectively

approximate behaviors of many non-linear dynamic systems with a relatively small error

 14

[Narendra and Parthasarathy 1990].

Since the development of reliable and easy-to-use performance prediction tools

for a control mechanism is essential for wide acceptance of FMS in industry, constructing

metamodels using an efficient artificial neural network design will be a stepping stone to

building a truly practical disruption handler in future FMS control environments.

1.2 Problem Statement

Thorough understanding of possible dynamic transient behaviors of a typical FMS

under pre-selected disruption scenarios utilizing an artificial neural networks (ANN)

based metamodeling framework is the motivation behind this research. The need for this

research is based on a proposition made by Buzacott and Yao [1986] who argue that in

reality, most FMSs never reach steady state because of their highly dynamic nature. Most

rapid analytical evaluative models for FMSs are based on their steady-state performance.

This argument supports a need to develop robust, easy to construct, and transportable

transient-performance evaluative models for FMSs. Thus, building hybrid type evaluative

models (metamodels) using artificial neural networks and stochastic simulations, which

can capture realistic but general transient behaviors of an FMS under a set of typical

operational scenarios, will help shop floor managers to successfully manage day-to-day

FMS operations in a tightly integrated manner.

The primary objective of this research is to define an artificial neural network

 15

(ANN) based metamodeling methodology for FMS transient behavior prediction. The

proposed ANN based meta-modeling scheme consists of a hierarchical taxonomy of

clustered ANNs. Each cluster of ANNs collectively represents a different system

knowledge domain. This taxonomically structured arrangement of ANNs overcomes

shortcomings often found in single ANN based meta-modeling schemes. These

shortcomings are generally related to the limited knowledge acquisition capability of

these schemes.

The advantage of neural network based prediction models lies in their capability

to capture not only time based one-to-one expected performance but also an overall

dynamic behavioral pattern of a particular performance index during a transition caused

by a disruption. The proposed ANN based transient performance model is designed to

provide better knowledge for an automated disruption handler or FMS operator to

discriminatorily react to controllable performance deteriorations. The captured dynamic

behavioral pattern of interest may show gradual or sudden shifting of the average

performance value over a given time horizon, as well as an expected duration of such

behavior. This feature will provide a decision-maker with the capability of conducting

intelligent disruption diagnosis for a discriminatory remedial control action(s) based on

unique post-disruption system behavior. This capability will enhance the adaptability of

FMSs in a highly dynamic manufacturing environment with a minimal performance

disruption by providing shop production control a “look-ahead” capability in order to

make event-dependent and timely control decisions.

 16

Defining an effective modeling framework to intelligently activate corresponding

metamodels based on the nature of the disruption event and characteristics of behavioral

patterns will be another contribution that makes this study practical in terms of real world

application. Identifying and selecting significant operational factors as system input as

well as performance indicators as meaningful system output, is done before the actual

model construction process starts.

Modeling an FMS with a common configuration and testing it under realistic

operational scenarios are important tasks. In return, these well-designed simulation

experiments should closely capture common dynamic characteristics for the majority of

FMSs that this research intends to represent. This will assure that pursuing an ANN

based transient metamodeling approach is a viable alternative to devise a short-term

performance forecasting feature in on-line disruption handlers for many industries that

operate similar types of FMSs in volatile day-to-day production environments. Needless

to say, designing and conducting verifiable simulation experiments and proper post

simulation analysis are essential for the success of this research effort.

1.3 Scope of the Research

 The goal of this research is to demonstrate that ANN based metamodel consisting

of a hierarchical taxonomy of ANNs can be an effective modeling alternative to

regression based metamodels to forecast FMS transient behaviors following a random

 17

disruption event(s). This research is proposed under the partially verified hypothesis that

artificial neural network based metamodels of stochastic simulations generally appear to

perform better than regression based counterparts [Kilmer 1994]. In Kilmer’s study

[Kilmer 1994], ANN based metamodels are built to approximate an unknown response

surface given by a set of alternative input parameters. The procedure, often called

response surface methods (RMS) [Box and Wilson 1951], is used to find the levels of the

experimental factors that yield the best value of the response (or output) of a system.

Such ANN based metamodels deal only with steady-state performance parameters of

stochastic discrete event simulations. However, for this research, ANN based

metamodels deal with transient performances depicted by non-terminating simulations

with imposed resource failures because the focus is on transitional behaviors (deviations

from steady state) after the disruption(s).

Even though the ultimate use of these ANN based models is for on-line disruption

control, FMS control is not the focus of this research. Therefore, any technical issues

regarding the actual FMS control are beyond the scope of this study. This study is

intended to develop a new methodology for forecasting short-term transient performance

in a timely manner.

In contrast to typical ANN applications in time series modeling trained with

actual data points, individual ANNs from the proposed modeling framework will be

trained with selected time average resource utilizations and coefficients from selected

polynomial regression models found on a limited number of data points generated from

 18

various simulation experiments. These non-terminating stochastic simulations will be

carefully designed and chosen to represent various unique post-disruption behavior

patterns. Therefore, independent experimental factors for FMS transient behaviors are

carefully identified, screened, and structured for a valid design of experiments. Then a

manageable subset is selected for experimentation. Although this study extensively uses

simulation, it is not an intention of this study to extensively review traditional issues

associated with simulation modeling, validation, verification, and post-statistical analysis

processes.

Finding justifiable reasons to choose particular artificial neural network design

architecture over others is another crucial objective of this research. The choice of

possible variations within a particular architecture and training method, for example, the

number of nodes, the number of hidden layers, the type of transfer function, selection of

training data set, training methods, and the length of training period etc., must be

identified. Finally, a taxonomical arrangement of individual neural networks that are

designed to capture and approximate various parts of the desired system knowledge

domain is to be presented and examined.

1.4 Anticipated Contributions

 The primary contribution of this research is the conceptualization of a system

modeling framework that can provide self-organizing and pattern based transient

 19

behavior forecasting. The proposed system modeling framework maps various short-term

transient behavior patterns over the chosen performance indexes by utilizing

taxonomically structured ANN based metamodeling. The transient behavior forecasting is

based on both the initial reaction path following a disruption and a unique relationship to

a corresponding disruption scenario.

The majority of ANN based time series modeling approaches presented to date in

the literature have focused on a single function realization. However, this study intends

to provide a means to store more than one post-disruption system behavior function under

various disruption scenarios and make them retrievable by providing a nonparametric

relationship between a functional domain and a range of unknown post-disruption system

behavior prediction functions. Because the proposed framework will be designed to

capture unknown transient behavior prediction functions in a simple form using

independent variables, spline modeling, using such techniques as polynomial regression

analysis can be useful to extract the unique characteristics of many non-linear transient

behaviors.

Secondly, since the proposed approach is aimed toward online application, the

practicality of a proposed modeling approach as an on-line modeling scheme can be

partially verified through limited controlled tests. Thirdly, the simulation study of a

given FMS model will provide a better understanding of how other tightly coupled

systems would react to a disruption under similar circumstances. This will also help to

verify if there are signs of any overreactions or under-reaction from recovery actions

 20

taken by the control system, if not, how closely these reactions will follow a monotonic

behavior patterns discussed in some studies [Suri 1985], [Shanthikumar and Yao 1987].

Furthermore, this study provides a chance to closely examine methods and issues

involved in quantification of non-monotonic system behaviors compared to typical

monotonic transition behaviors.

 If there exist any non-monotonic transient behaviors following a disruption, this

study will provide a better knowledge of when these behaviors can be triggered and under

which system conditions. Finally, the study will examine the overall effectiveness of the

proposed system-modeling framework as a “look ahead” tool. In other words, the study

will examine if an automated system modeling approach such as the one in this study is

practical and reliable enough to provide an effective look-ahead function for a fully

automated production control environment.

1.5 Overview of the Dissertation

 The remainder of this dissertation is presented in seven chapters plus five

appendices and a bibliography. Chapter Two reviews the literature in several major

evaluative modeling methods commonly used in both steady-state and transient FMS

performance analysis. Topics such as artificial neural networks and time series analysis

are discussed extensively in Chapter Three since they are closely related to the proposed

 21

modeling methodology. Chapter Three presents the FMS under study and proposed

modeling approach. This includes detailed descriptions of the hardware configuration,

operational rules, operational scenarios, and system parameters relevant to the

hypothetical FMS under study. The rest of Chapter Three is allocated to elaboration of

the proposed modeling framework. Chapter Four presents the research goal, objectives,

assumptions, and limitations. Chapter Five outlines the research tasks, research

methodology, and execution plan. Chapter Six discusses the design of simulation

experiments, results analysis, classification of primary transient behavior patterns,

configuration of input and target vectors, and configuration of the proposed

taxonomically organized ANN modeling scheme for this study. Chapter Seven covers

the training and construction of individual ANNs and evaluates the performance of the

proposed ANN based metamodeling approach. Chapter Eight summarizes findings,

draws conclusions, presents concerning issues, and discusses future research directions

and opportunities.

 22

2. Literature Review

The primary objective of this research is to explore artificial neural networks as a

non-parametric and non-regression based technique to build metamodels for time series

so that the model can effectively predict short-term transient behavior of an FMS after a

disruption(s). The literature review focuses on several major FMS evaluative modeling

methods that are useful for transient performance analysis. These techniques have

evolved from major steady-state based evaluative modeling approaches. Therefore, there

is a need to briefly review what has been done in the area of FMS performance modeling.

This literature review covers not only specific transient performance models but

also the steady-state performance models on which these transient performance models

are based. Major evaluative modeling approaches in FMS are queuing networks, Markov

chain, metamodels, stochastic Petri nets, and simulation. Basic theoretical foundations of

these modeling approaches used for both FMSs transient performance analysis and

steady-state analysis are briefly discussed. Common modeling assumptions for both

steady and transient performance analyses using a particular modeling approach are

identified and discussed. Typical of these modeling assumptions are that a model’s

theoretical foundation is based on a steady-state Markovian stochastic process, a common

underlining probabilistic distribution for arrival and service processes, no resource

failure, no blocking, and deterministic part routings.

 23

Significant breakthroughs in each modeling approach are reviewed. If there are

several variations in a particular modeling approach, they are identified and their merits,

compared to the original modeling approaches, are briefly discussed. Finally, the

potential for adapting the particular approach for transient analysis is discussed. If there

are already established ways to conduct transient analysis through the particular modeling

approach, the literature review introduces the concepts and addresses their usefulness and

concerning issues. A brief review of major developments in artificial neural networks is

provided in Chapter 3 in addition to the proposed design architecture for this research.

2.1 Queueing Network Approaches

2.1.1 Summary of Major Developments

Queueing networks (QNs) are the most frequently used analytical form among

various FMS evaluative modeling approaches. In general, queueing networks can be

formed to study aggregate system behaviors of clustered interactive queues, often “a

machine shop” consisting of several departments [Jackson 1957]. Each department is

considered a multi-server or single-server queueing system (or a node within a queueing

network) with an exponential service time distribution(s) and a single waiting line.

 24

There are two major types of queueing networks based upon whether or not the

total number of parts or pallets circulating in the network remains the same at any point

in time during a normal operating cycle. The first type is open queueing networks

(OQNs), also called Jackson networks [Jackson 1957], do not maintain a fixed number of

parts in the network at any given time. The second type of queueing networks, called

closed queueing networks (CQNs) [Gorden and Newell 1967], always maintain a

constant number of parts. Despite the fact that the majority of analytical evaluative

models for FMSs are based on CQN [Buzacott and Yao 1986], both the CQN and the

OQN approaches are equally perceived as an effective way to model steady-state

performance for various FMSs. For example, Buzacott and Shanthikumar [1980] model

an FMS as an OQN where the scope of the model is expanded to include the jobs waiting

for release to the FMS in a dispatching area. This study demonstrates the benefits of

balanced workload, diversity in job routings with adequate control of job release to the

system, and the superiority of common storage over local storage at each machine. Yao

and Buzacott [1985] develop an OQN model to evaluate the performance of an FMS with

general service times and limited local buffers. The model demonstrates that the arrival

process can be formulated in terms of blocking probability on each station using renewal

approximation by Whitt [1982].

Since most FMSs with limited local buffers tend to maintain a fixed number of

pallets or parts in the system in order to avoid blocking, CQNs were initially perceived as

an ideal type of queueing network model to depict behaviors of such FMSs. Formation

of a CQN analytic model can result in either a product form solution with a normalization

 25

constant or non-product form solution for the equilibrium joint distribution of pallets or

parts. If the FMS CQN has a small number of nodes (workstations), the product form

final solution of the equilibrium joint distribution can be easily estimated through an

algebraic approach to finding the normalization constant. Several basic assumptions have

to be made in order to have a product form solution.

1. The balance equations of part arrival rate are based on steady-state behaviors

of the system.

2. The system consists of interconnected stages of service. The number of

parts (or pallets) remains constant throughout the entire operational life

cycle.

m

n

3. The service time distributions on each server are exponentially distributed.

4. The routing can be determined according to a discrete time Markov chain.

The advantage of the closed queueing network approach is the ability to approximate the

joint probability distribution of parts (or pallets) in the system using a separation of

variables technique.

When the number of nodes (workstations or cells) in the network (FMS) gets

large, finding the normalizing constant, which is essential for finding the equilibrium

joint probability of pallets in the system, becomes computationally challenging due to its

permutable nature. The technique has been further improved by a computational

algorithm to calculate the normalizing constant in a recursive manner [Buzen 1973]. This

enables analytic CQN analysis to be a practical approach for a real production

environment, especially for complex systems that require prompt decision-making.

 26

The first successful adaptation of product form CQN in FMS was with a

convolution technique, which is called CAN-Q [Solberg 1977]. This model was initially

developed to handle only single-part-type FMSs with a central server (typically a material

handling system) that every part must pass through. Later, CAN-Q was extended by

Stecke [1981] to handle multiple part type FMSs. The performance of this analytical

model depends on the assumption that the processing times at each first-come-first-serve

(FCFS) station are independent of the part type. If the assumption is satisfied, the

convolution algorithm can deliver the exact solution. Otherwise, only an approximation

can be made.

Additional study done on a similar model suggested that the model would not

perform satisfactorily if all the servers use an FCFS queue discipline and non-exponential

service time distributions [Chandy and Sauer 1978]. Dallery [1986] has also shown that

the product form FMS CQN model with a single part type is not well suited for

performance prediction of multiple-part-type FMSs with universal pallets and prescribed

production ratios. Despite its known limitations, CQNs have been widely used for

preliminary design and studying some operational issues in production planning for

FMSs because of the speed and accuracy with which they can be evaluated once a model

is correctly built. In the area of FMS production planning the CAN-Q model is

extensively used to study the effect of various operational strategies on system

throughput.

 27

The class of product form CQNs was substantially extended and presented in a

unified fashion [Baskett et al. 1975]. This triggered a rapid growth of applying CQN

analysis in various FMS analytic models so that CQN analysis grew to handle problems

that were initially thought to be unsolvable due to their deviations from the original

assumptions. Assumptions such as a single part type and exponential service time

distributions are commonly used in Gordon and Newell type network analysis. To

overcome limitations of one of these assumptions, CQN with non-exponential service

times, an “exponentialization” approach was introduced. This allows a CQN with

general service times to be solvable, substituting general service times with equivalent

exponential times so that the final product form can be still maintained [Yao and

Buzacott 1986].

In practice, QNs with exponential arrival and service time distributions are not

robust enough to capture realistic behaviors of various forms of FMSs in which the

machine times are often known quite accurately [Pratt 1992]. Most workstations in an

FMS, except for those that are failure prone, behave almost in a deterministic manner

with very small variance especially when the system is fed with pre-selected part types,

tightly integrated, and controlled by a computer. In some cases, time duration for

individual part movements on predetermined part routes as well as processing in

individual workstations is highly consistent and has much smaller variation than those

with exponential probability distributions. Similarly, modeling failure-prone FMSs using

QNs with an exponential time assumption, which usually have larger variance than those

of exponential systems, can also be misleading. Thus, modeling such FMSs using QN

 28

with G/G/c/N queues is a more realistic approach. Yao and Buzacott [1985] model a

workstation of an FMS using diffusion approximation (a recursive algorithm) in which

the queueing process is formulated as a G/G/c/N queue. They found that a C2/C2/c/N

queue and Coxian phases are appropriate for modeling queueing processes that represent

workstations of an FMS with inter-arrival service time distributions having squared

coefficients of variation of less than 0.05.

Kamath [1989] found that most behaviors of asynchronous automated assembly

systems (AASs) do not satisfy the assumption of exponential processing times made by

closed form QN analysis and often the analysis can be misleading by such an assumption.

These asynchronous automated assembly systems are also known as flexible assembly

systems and represent a large and important subset of FMSs. Thus, it is necessary to use

a method that can handle general service time distributions at each server for such AAMs

[Kamath 1989].

Whitt [1993] studies a deterministic multiclass single-server OQN and has shown

that feedback with class-dependent service times, and FIFO discipline can dramatically

increase a chance for sudden large fluctuations on the sample paths of the queue-waiting

processes with some initial conditions, which is highly conceivable in some FMS models.

Suri [1985] has shown that a homogeneous service time (HST) CQN with exponentially

distributed service times exhibits monotonicity throughout their performance measures

depending only on the number of jobs present in the system. A HST workstation implies

that the service time distribution at the workstation remains consistent across different

 29

numbers of jobs present in the system. However, the monotonicity property cannot be

satisfied unless all service times are exponentially distributed. Therefore, it is less likely

for any CQN or OQN with non-exponential service times to exhibit monotonic behavior

after a sudden disruption.

Yao and Buzacott [1986] use product form CQNs to study the performance of

FMSs with unlimited local buffers compared to FMSs with limited local buffers under

three possible operational scenarios. Three possible operational scenarios to deal with any

blocking are fixed routing, fixed loading, and dynamic routing. They conclude that

dynamic routing has clear advantage in increasing throughputs when local buffers have

limited capacities. Other studies [Kimemia and Gershwin 1985], [Shalev-Oren et al.

1985] used non-product form CQNs as an evaluative tool to test their new operational

policies such as loading/routing and scheduling schemes. Several researchers used a non-

product form CQN framework to study common behaviors of FMSs under a different set

of system constraints or variables such as workstation breakdowns and limited buffers on

each node so even blocking can be considered.

Other studies extended the scope of QN modeling for FMSs even to those that are

traditionally considered FMS supporting systems such as maintenance float networks and

control systems. Lin et al.[1994] used CQNs with Buzen’s recursive algorithm to model

a maintenance float network problem for FMSs.

 30

Based on the approach taken to solve the product form of the equilibrium

probability distribution, CQN can be further broken down into several subclasses.

According to Seidmann et al. [1987], there are three subclasses for CQN analytic models.

These are mean value analysis (MVA), the convolution technique (an extension of

Buzen’s [Buzen 1973] recursive algorithm), and approximate mean value analysis

(PMVA). CAN-Q uses the convolution technique. But, most other models are solved by

either MVA or approximate MVA depending on whether or not the model will have a

final product form as its equilibrium probability distribution of parts or pallets over the

network. If the analytic CQN model results in a non-product form, the approximate MVA

is applied. On the contrary, if a product form solution is found, either the convolution

technique or mean value analysis can be applied.

Mean value analysis (MVA) is a simplified technique to solve a CQN for a

limited set of quantities, such as mean queue sizes, mean waiting times, utilizations, and

throughputs, in a recursive manner without calculating normalization constants and

product form joint distributions. MVA reduces a significant amount of the computational

burden associated with complex CQN problems.

In reality, the joint equilibrium distribution often contains far more detail than is

needed for practical analysis. As matters of fact, the computational burden of calculating

the normalization constants can easily outpace the efficiency of CQN analysis as the

system gets more complex. Thus, a simplified way to get the most common performance

measures was needed for larger scale product form CQN problems without going through

 31

the somewhat tedious computational steps in traditional CQN analysis [Reiser and

Lavenberg 1980].

MVA is based on a relationship between the mean waiting time and the mean

queue size of a system with one less job. This relationship is also called the arrival

theorem. The distribution of the network state seen by a job arriving at any node in the

network is the same as the distribution of the network state a random observer would see

with () parts circulating in the network. 1−n

Several assumptions must be initially made in order to apply MVA to analyze

CQN type FMSs. Some of these assumptions are: (a) the processing time of a part at

each workstation has an exponential distribution, (b) the routing of parts to the next

machine is chosen probabilistically, and (c) all workstations choose their next part

according to the FCFS queue discipline. In reality, these assumptions have to be relaxed

somewhat because there are many different classes of FMSs in existence based on their

configuration and operational characteristics. Three major classes of FMSs are identified

based on their modeling constraints such as pallet type, queue discipline, and prescribed

production ratios [Dallery 1986]. These classes are monoclass models, multiclass models

with fixed queueing disciplines, and multiclass models with prescribed relative

throughputs.

Viswanadham and Narahari [1992] identify nine common characteristics of

automated manufacturing systems that could lead an FMS CQN model to a non-product

 32

form. These are: (1) non-exponential service time distributions, (2) scheduling discipline

other than FCFS, (3) different processing priorities among multiple part types, (4) new

production control policies such as a pull system, (5) assembly operations (joining of

parts), (6) breakdowns, (7) dynamic routing such as shortest queue routing (SQR), (8)

blocking, and (9) multiple resource holding such as a part seizing a fixture, a pallet, a

machine, and a set of tools in order to be processed. For example, a non-product form

solution would result from an FMS where the routing is predetermined and the

processing times at some workstations are not exponentially distributed. Another non-

product form characteristic that is quite common is for each workstation to have a queue

discipline other than FCFS. For this reason, Cavaille and Dubois [1982] proposed a

heuristic based on MVA, called the approximate MVA method, to model an FMS with

near deterministic service times using MVA with an additional approximation term. The

FMS model used in the Cavaille and Dubois’s study has FCFS servers where the various

part types may require distinct service time and routing requirements. Approximate MVA

methods have been extended to handle FMSs with priority scheduling disciplines

[Shalev-Oren et al. 1985].

The first successful computerized MVA application in overall production

planning and control problems includes two different decision categories [Hildebrant

1980]. The first category deals with resource decisions and the second category deals

with temporal decisions. Resource decisions are concerned with choices among different

resources and temporal decisions deal with job sequencing and scheduling issues. This

 33

model was subsequently further improved to demonstrate its accuracy and robustness

even on larger scale models [Suri and Hildebrant 1984].

Zhuang and Hindi [1990] developed an extended MVA approach that can handle

multiple class queueing networks with limited queue capacities to model an FMS with a

central material handling system (MHS) and exponential service time distributions

including one by the MHS. Zhuang and Hindi also develop an approximate MVA to

evaluate an FMS with a single cart MHS, the assumption of exponential service time

distribution, and limited local buffers which leads to block and wait mechanisms.

Tetzalff [1996] utilizes approximate MVA to evaluate the performance of a tool

management system in an FMS. The part transportation system is modeled as a product

form CQN and the tool delivery system is model as a non-product form CQN.

As an indirect way to study transient behavior of FMSs using QN, Chance [1993]

studies the relationships among various conjectured upper bounds on transient mean total

waiting times in OQNs with some assumptions such as Poisson arrival process,

exponential service time distribution, and multi-server queue nodes within the network.

He concludes that after some small initial period, transient mean total waiting times in the

Jackson network are bounded above by the weighted sum of expected waiting times in

queues. The expected network waiting time can be found from simulation and the

expected waiting times for queue can be estimated through the program described in

Kelton and Law [1985]. These conjectured upper bounds provide the lower bounds on

the time required for the transient mean to approach its steady-state value. However, this

 34

method can be applied only to OQNs with exponential service times. Also there is a

significant drawback that the author acknowledges. The gap between the conjectured

upper bound and actual transient mean on total waiting time grows wider as the network

gets larger, which implies that the method is not robust enough to be applied on large

scale networks.

The study done by Suri [1985] supports the position that any OQNs with

exponential service time distribution and some specified initial conditions are most likely

to behave in a monotonic way during their transient period. Conversely, this implies that

there may be a chance for either a CQN or an OQN with non-exponential service time

distribution to exhibit non-monotonic behavior during the transient period after a

disruption on its sample paths. Thus, a transient analysis approach by asymptotically

connecting individual steady-state values approximated for the particular number of jobs

that can be present in the system during the transition period may not always provide a

realistic view of true system behavior during a short time window. This issue leaves an

open question for further research investigation.

2.1.2 Conclusion

Table 1 summarizes the previously discussed major developments in QN analysis

of FMSs. Most works are focused on steady-state behavior of the system.

 35

Table 1. Major Developments in FMS Performance Study Using QN Analysis
Title of

Method/

Study

Author(s)

Year

Type of QN

(Approx.

Method)

Limits

/Restrictions

Type of

Analysis

Focus of Study/

Findings

CAN-Q Solberg
1977 CQN

-Single part
with a central servers
-Necessary
assumptions for a
product form solution

Steady-State
Analysis

To study effects of
various operational
strategies
(production
planning) on system
throughput

Models
for
understand
ing FMSs

Buzacott,
Shanthikumar
1980

OQN -Basic OQN
assumptions

Steady-State
Analysis

To evaluate FMS
with jobs waiting for
release in the
dispatching area

MVA
(earlier
version of
MVAQ)

Hildebrant
1980

CQN
(MVA)

-Exponential
processing times
-Probabilistic
routings
-FCFS queue
discipline

Steady-State
Analysis

To study production
planning and control
issues related to
failure prone FMSs

CAN-Q
(extended)

Stecke
1981 CQN

-Multiple part type
-Processing times at
each FCFS station are
independent of Part
Type

Steady-State
Analysis

Effect of various
operational
strategies on system
throughput of FMS
with multiple part
type

Heuristic
methods
based on
MVA

Cavaille
Dubois
1982

CQN
(Approximat

e MVA)

-FCFS servers
various part types
require distinct
service time and
routing requirements

Steady-State
Analysis

To study the
performance of
FMS with
predetermined part
routings and non-
exponential service
times

MVAQ
Suri,
Hildebrant
1984

CQN
(MVA)

-Exponential Service
times
-Probabilistic
routings
-Multiple part type
modeled
-Proven robustness
on larger scale
models

Steady-State
Analysis

To use MVA for
practical planning
and control of an
FMS

The
method of
Coaxian
Phases

Yao,
Buzacott,
1985

OQN
-General service
times
-Limited local buffers

Steady-State
Analysis

To evaluate the
performance of an
FMS with general
service times and
limited local buffers

 36

Table 1 (continued). Major Developments in FMS Performance Study Using QN
Analysis
Title of

Method/

Study

Author(s)

Year

Type of QN

(Approx.

Method)

Limits

/Restrictions

Type of

Analysis

Focus of Study/

Findings

Diffusion
approxima
tion

Yao
Buzacott
1985

CQN

-Coefficients of
variation of inter-
arrival and service
time distributions is
less than 0.05

Steady-state
Analysis

To approximate the
behavior of FMS
with non-
exponential
workstations

Approxim
ate MVA
(extended)

Shalev-Oren,
Seidmann,
Schweitzer
1985

CQN
(Approximat

e MVA)

-Similar to Cavaille
and Dubois’s
approximate MVA
assumptions

Steady-state
Analysis

To study impact of
priority scheduling
discipline

Heuristic
based
approxima
tion of
MVA

Kimemia,
Gershwin
1985

CQN
(Approximat

e MVA)

-Similar to Cavaille
and Dubois’s
approximate MVA
assumptions

Steady-state
Analysis

To optimize the
flow of the
operation

Exponenti
alization

Yao,
Buzacott
1986

CQN

-Necessary
assumptions for a
product form solution
except general
service times

Steady-state
Analysis

To evaluate the
performance of
FMS with general
service times using
a product form CQN
analysis

ON
modeling
FMSs
using
CQNs

Dallery
1986

CQN(MVA)
CQN(Appro

ximate
MVA)

-Necessary
assumptions for
product form CQN
analysis, MVA, and
approximate MVA

Steady-state
Analysis

Identified three
major classes of QN
based FMS models

Models of
FMSs
(with
various
configurati
ons) with
limited
local
buffers

Yao,
Buzacott
1986

CQN

-Various non-
exponential service
time vs. exponential
service time
distributions
-Dynamic routing vs.
fixed one
-Unlimited vs.
limited local buffers

Steady-state
Analysis

FMS with small
local buffers are
robust to various
non-exponential
processing time
distributions

MVA
(extended)

Zhuang,
Hindi
1990

CQN
(MVA)

-Limited queue
capacity
-exponential service
times
-A central server
(material handling
system)
-multiple part types

Steady-state
Analysis

To extended MVA
approach to multiple
part type FMS with
finite queue capacity

Approxim
ate MVA

Zhuang,
Hindi
1991

CQN
(approximat

e MVA)

-Exponential service
times
-limited local buffers
-A single cart MHS
(block and wait
mechanisms)

Steady-state
Analysis

To study behavior
FMS with a single
cart MHS

 37

Table 1 (continued). Major Developments in FMS Performance Study Using QN
Analysis
Title of

Method/

Study

Author(s)

Year

Type of QN

(Approx.

Method)

Limits

/Restrictions

Type of

Analysis

Focus of Study/

Findings

Conjecture
d upper
bounds on
transient
mean total
waiting
times in
QNs

Chance
1993 OQN

-Poisson arrival
process
-Exponential service
time multi server
queues
-Size of the network

Transient
Analysis

To find conjectured
upper bound on the
mean total waiting
time in Jackson
Networks
(applicable to some
FMS)

A
maintenan
ce float
network
problem

Lin,
Madu,
Kuei
1994

CQN

Necessary
assumptions for
product form CQN
analysis

Steady-state
Analysis

To find the optimal
capacity of
redundant system
for a failure prone
FMS

A QN
model for
FMSs
with tool
manageme
nt

Tetzalff
1996

CQN
(approximat

e MVA)

-Product form CQN
requirements for
MHS
-Non product form
CQN for the tool
delivery system

Steady-state
Analysis

To study the
performance of a
tool management
system in an FMS

 The QN approach is generally not an effective way to study detailed behavior of

the system within a short time horizon. Instead it provides an idealistic picture of long-

term behavior if the system reaches steady state. The most critical role of transient study

in an on-line decision making environment is not only to detect any possible disturbances

in steady-state performance but also to investigate the detailed nature of the system

reactions brought by such disturbances. The detailed nature of such system behavior

consists of the duration of a transient state, the magnitude of any reaction, under or over

reaction if any, and the value of the new steady-state mean. Using this knowledge the

decision-maker can proactively engage in any remedial action to minimize or prevent the

negative impact caused by such a disturbance in steady-state sample paths.

 38

Since queueing networks are an aggregated form to represent interactive

neighboring queueing systems as a whole, the equilibrium conditions for the entire

network must be satisfied in order to directly or indirectly estimate the network

performance. Even transient analysis on OQNs such as the one proposed by Chance

[1993] to conjecture the upper bounds for the sample paths of total mean waiting time of

the network during a transient period, has many limitations as a robust means to facilitate

on-line transient analysis. Therefore, we can conclude that instantaneous transient

analysis through ordinary QN analysis is practically infeasible because any exact or

approximated behaviors of an individual or aggregated queue(s) using QN analysis can

be derived only under the steady-state assumption.

However, QN’s speed, reliability, and intuitive details are appealing to many

researchers and industry users who are primarily interested in steady-state performance of

FMSs. The QN approach can be extensively used during planning and designing stages of

an FMS. However, it appears ill suited for online based transient analysis.

 39

2.2 Markov Chain Models

2.2.1 Summary of Major developments

Markov chain modeling provides fundamental foundations to many analytical

evaluative models. Markov models are based on a stochastic process called a Markov

process that has a unique mathematical property in which any future state of the system

depends on the past state of the system only through the present state. Markov chains can

be effectively used to capture stochastic dynamics of many discrete event systems with a

finite state space such as manufacturing systems. Despite their well-known drawbacks as

an analytical evaluative modeling tool, such as exponential growth in modeling

complexity as the size of the state space (a collection of all possible system states) gets

larger, Markov chain analysis can be an appropriate way to study many special cases of

FMS operations.

Each state in a Markov chain model usually represents a possible discrete state of

the stochastic process during its life cycle. Markov chains can be grouped into either

discrete time or continuous time processes. Between the two types of Markov chains,

Continuous Time Markov chains (CTMC) have been extensively used to analyze

dynamic behaviors of many automated manufacturing systems [Viswanadham and

Narahari 1992]. For example, studying the overall impact of a certain control mechanism

over the entire system and a machine repair system with a redundant resource backup

 40

system are popular areas to apply CTMC analysis. CTMCs also provide theoretical

grounds for birth and death processes and time reversible Markov chains. Time

reversibility is a necessary condition for product form QN analysis.

Several foreseeable computational issues in CTMC modeling as the complexity of

the problem grows can be identified. These issues are size, ill conditioning, and stiffness.

The size issue arises when there is an exponential growth in the size of the state space as

the number of available resources increases in the given system. In other words, the

computational burden to calculate the coefficient matrix will rise rapidly as the state

space gains more possible states. The second issue, ill conditioning, is based on the fact

that small changes in the coefficient matrix can lead to large changes in the solution

vector. Stiffness is a consequence of having transition rates of significantly different

orders of magnitude among states. For example, for a certain CTMC, for particular states

the transition rates among them can be significantly higher than the rest of transition rates

among other states, which implies faster transitions between those particular states

compared to other states. This can create stiffness during the computation.

There are two ways, namely uniformization and numerical ordinary differential

equation (ODE) solution, to solve these types of differential equations. Reibman and

Trivedi [1988] conducted a survey of three numerical methods for transient analysis,

uniformization, RKF45, and TR-BDF2. They found that two numerical approaches, ODE

RKF45 and TR-BDF2, work well only for certain types of problems. On the other hand,

uniformization works well for typical problems with more accuracy and efficiency.

 41

Gross and Miller [1984] extend the randomization technique to Markov processes

with infinite state spaces. The randomization technique was originally proposed by

Grassmann [1977] and is a general non-numerical method based technique to compute

transient probabilities of Markov processes with finite state spaces through a probabilistic

interpretation. Gross and Miller [1984] present an approach called SERT utilizing a

generalized randomization procedure in an algorithmic way to model a continuous

parameter Markov processes. SERT stands for state space (S), event set (E), rate vectors

(R), and target vectors (T) that can collectively describe a general class of Markov

processes. Upon successful completion of the randomization, closed form formulas for

expected time averages, first passage time distribution, and expected number of events of

a certain type occurring for a time interval can be constructed. This approach promises

substantial relief from the computational burden associated with traditional transient

Markov processes whose state spaces are quite large.

The part selection policy for a flexible manufacturing cell is studied to minimize

the expected shortage penalty per unit time using a semi-Markovian process [Seidmann

and Schweitzer 1984]. For an FMS with block and recirculate, the workstations with

finite buffers are modeled as a Markov chain model and solved even though one with a

central buffer becomes substantially complicated to model [Viswanadham and Narahari

1992].

 42

Another major achievement in the study of FMS transient behavior by a Markov

chain based analytical modeling approach is performability analysis. The notion of

performability was first used by Meyer [1980] in the study of a degradable computing

system performance. Performability analysis is a combined form of performance and

reliability analysis. Performability modeling is used to study the overall impact brought

by constituent subsystem failures on a particular system performance index over a finite

time horizon.

Performability analysis was originally designed to investigate performance-

related reliability for fault-tolerant computing systems. Later the same technique was

applied to automated manufacturing systems (AMSs). Even though the majority of

performability studies use continuous time Markov chains with the deterministic reward

structure consisting of a number of transient states and a single absorbing state, discrete

time Markov chains with random rewards were later introduced [Mallubhatla and

Pattipati 1994]. The notion of a Markov reward often implies the cost or reward incurred

from being in a particular state at a given time.

The first application of performability modeling in manufacturing systems

appears in a work by Viswanadham et al. [1991]. This modeling was focused on AMSs

producing a single part type. A subsequent study [Viswanadham et al. 1993] was done

on AMSs producing multiple part types using continuous time Markov reward models.

 43

Most automated manufacturing systems consist of numerous constituent

subsystems. In reality, even the most reliable and well-designed AMSs are subject to

unscheduled and unexpected subsystem failures due to many complex mechanical

interactions and functional dependencies. Especially for an FMS, a proper functioning of

individual resources within the system is highly critical to its operational success because

the role of each resource is often uniquely defined and tightly integrated with others to

complete any planned operations. Even if the frequency of these failures is very low,

most of these AMSs are built with a certain degree of redundancy so that highly

expensive systems like FMSs will not be sitting idle in case of any unscheduled

subsystem failures. We call these types of manufacturing systems fault-tolerant systems.

They are built with a certain degree of flexibility in both operation and capacity to handle

limited multiple resource failures simultaneously.

Due to natural time scale differences in frequencies of failure, repairs, and

reconfigurations and of the part processing events, a performability model is often

hierarchically devised: a higher level (longer-time scale) dependability model and a set of

lower level (shorter-time scale) performance models. The study done by Viswanandham

et al. [1995] shows that the accumulated reward over a given time interval is a solution of

a set of forward or adjoint multidimensional linear hyperbolic partial differential

equations. They also proposed efficient numerical methods for computing the

distribution of the cumulative operational time, and the mean and variance of the

cumulative production over a given time interval. One of the common difficulties in this

 44

approach lies in efficient numerical methods to solve the partial differential equations in

order to find the distribution of accumulated production over .] ,0[t

After occurrences of these resource failures, the system often goes through a

series of possible intermediate transient states during the recovery process. The complex

dynamics of the state transitions can be captured via the structure state process (SSP).

The SSP is to describe the system evolution as influenced only by failures, repairs, and

reconfigurations. In each structure state, the system can be associated with a different

performance measure such as lead time, throughput, and work in process.

The formal definitions of a structure state process and performability can be given

as follows.

Definition: Let be the structure state of the manufacturing system at time

. Then the family of random variables

)(uZ

0≥u { }0),(≥uuZ having state space

is called the structure state process. { mS ,,2,1,0 K= }

If we let be rewards in the individual structure states and be a

random variable over an observed period

mfff ,,, 10 K)(sYt

[]t,0 with initial structure state given as Ss∈ ,

the performability can be given as

i

m

i
it fsY τ∑

=

=
0

)(

where iτ is the total sojourn time of the SSP during []t,0 in state i .

 45

The SSP can be modeled using CTMC, queueing networks, or stochastic Petri

Nets. Viswanadham and Ram [1994] use both CTMC and Pertri nets to model

performability of a flexible manufacturing cell (FMC) and suggest techniques for

computing statistical moments of certain cumulative performance measures. Three

measures: performability distribution, steady-state performability, and interval

performability, are focuses of interest in performability analysis.

The structure state of the SSP is a vector whose components describe the status of

its constituent subsystems. The SSP is a collection of all possible structure states in which

the sequence of transitions among all-possible states can be logically captured to reflect

the evolution of the system during a given time horizon. Any failure prone AMS can go

through a series of individual structure states within a given length of time following a

resource failure. This combines both the performance and the reliability aspects of the

system. Typically a part of the vector representation of the components in each state

contains the total number of available machines at any point during a given time period.

The current structure state changes due to failures and repairs as time progresses. A well-

illustrated SSP model for a degradable (non-repairable) fault-tolerant FMS with a central

server and identical machines is provided by Viswanadham and Narahari [1992]. m

Gershwin’s study [Gershwin 1992] argues that the estimation of variability of

production is an important measure of interest to the manufacturer. Furthermore, his

study shows that the coefficient of variation of production in an actual AMS can exceed

0.1, which is considered unacceptable since high variability can cause over and under

 46

production by creating either unnecessary inventory or material shortage. Therefore,

finding higher statistical moments for the performability distribution is highly critical.

The performability distribution is a cumulative distribution function of the

performability , i.e.,)(sYt { }xsYP t ≤)(for Rx∈ . The performability distribution and its

statistical moments are used to quantify the performance and reliability of the system. A

closed form expression for the performability distribution and its moments and recursive

formulas to compute the moments for an n -process system are found using a sum of

simple exponential terms and double Laplace-Stieltjes transformations by Donatiello and

Iyer [1987].

Typically when a system with non-homogeneous components (e.g., different

types of machines) is modeled using a Markov process, the number of states in the

system is the product of the number of different type components. Hence the total

number of structure states can be very large. Finding statistical moments for the

performability distribution is a useful way to approximate the distribution especially

when the time complexity for computing the coefficients of the distribution becomes too

expensive as the number of structure states grows. The same framework to find an

analytical solution for the distribution of performability can be applicable to non-

repairable systems as long as the transitions between states are modeled by an acyclic

Markov chain.

n

 47

A similar but improved modeling approach was proposed by Rupe and Kuo

[2003] in order to lessen the complexity of the traditional performability model by

separately modeling independent failure and repair processes of each system and

combining the results at the conclusion. This approach is designed to provide an efficient

general architecture to be applied to a wide variety of FMS configurations including

spare part inventory to repair down machines. Despite their promising findings, the

complexity of the model can still grow significantly if each machine type has different

failure and repair processes.

2.2.2 Conclusion

Markov chain models are based on either Markov or semi-Markov processes that

are the two most important subclasses of stochastic processes. Markov processes provide

underlying theoretical foundations for many queueing theory based analytical modeling

approaches. Significant contributions in FMS transient analysis are made by

Viswanadham et al. [1991], Viswanadham [1992], Viswanadham and Ram [1994], Gross

and Miller [1984].

 In general, Markov chain models are intuitive and easy to understand. However,

there are a few major drawbacks as Narahari and Viswanadham [1989] point out. These

drawbacks are: (1) when the size of the physical system grows, the number of states in

the Markov chain grows exponentially and this makes Markov analysis computationally

 48

expensive; (2) as the number and complexity of interactions increases, visualizing the

Markov chain states and the transitions among states becomes difficult; (3) the existence

of two or more time scales can cause tremendous computational difficulties.

 Solving Chapman-Kolmogorov equations that correspond to first order linear

differential equations with constant coefficients, provides closed form solutions to

approximate individual transition probabilities or the state probabilities as functions of

time. There are basically two ways to find the solution for these first order differential

equations. The first method is a numerical method based technique and the second one is

non-numerical method based technique. With either technique, finding closed form

solutions can become problematic as the size of the state space grows. Also, building a

Markov chain model using a predefined state space, which often focuses on one aspect of

the system performance, still requires intuitive and creative modeling efforts.

Shifting focus from one to the other or changing configuration of the system often

requires redefining of the state space which can result in rebuilding the entire model.

This process requires a significant amount of human modeler’s analytical skills and

modeling expertise. Hence, this cannot be easily transportable to a fully automated

system with a non-interactive modeling environment. Unless the system configuration

never changes, in other words, the state space (dynamics of the model) remain unchanged

and only the associated transition probabilities (performance parameters) change,

reconfiguration of model on the fly will be challenging for on-line transient analysis.

Therefore, it can be concluded that constructing Markov chains is not a practical

 49

approach to building a rapidly re-configurable online evaluative model focusing on

transient behavior of a dynamic system.

2.3 Simulation Modeling

2.3.1 Summary of Major Developments

During the past several decades, computer simulation has been an indispensable

tool for many system engineers to numerically study the behavior of complex discrete

and non-discrete (continuous) event systems. Since many improvements have been made

in simulation technology, such as improved usability, modeling power, and speed,

simulation analysis has received greater attention as an effective modeling tool. Despite

the availability of many effective system modeling methods, simulation modeling

frequently becomes a favorable choice over other evaluative tools because it gives

invaluable understanding of how the system operates as opposed to how everybody

thinks it does [Pegden et al.1990].

In general, simulation should be used whenever detailed results are needed such

as in a transient behavior study. The price to be paid for being detailed is that simulation

takes a relatively longer time to develop, usually requires more input data than other

analytical evaluative modeling approaches and often requires a great deal of computation

time [Suri and Hildebrant 1984]. In addition, a steady-state analysis of a system by the

 50

simulation modeling approach requires a statistically valid output analysis to find true

steady-state means if there exists a significant initial bias on its outputs due to the

model’s startup conditions, often called a warm-up period.

Because of this time consuming modeling process and cumbersome output

analysis, the simulation modeling approach has shown only limited application in on-line

decision making schemes such as online production control systems. Nevertheless, a

great deal of research and efforts have been put into the area of on-line simulation as a

viable approach to predict the short-term system behavior for untested operational

scenarios in typical manufacturing control environments. Especially with the current

pace of progress in parallel and distributed computation, processing speed of inexpensive

CPUs, and various model simplification techniques, simulation modeling to study

detailed behavior of a system within a given time window has a promising future as a

practical online based system modeling approach.

Traditionally, simulation modeling has been extensively used in design, planning,

scheduling, and control of FMSs. These studies typically seek the optimal configuration

for a hypothetical system or the best operational policy for an existing system. The

modeling oriented languages, such as GPSS/H, SLAM II, SIMAN, SIMSCRIPT, and

ARENA, etc., have been favored over general programming languages by many

simulation practitioners. Most of these modeling oriented languages possess realistic

abstraction capability for individual behavior and interactions among various modeling

entities, automatic statistic collection features, extensive run-time error detection, many

 51

built-in sophisticated event handling mechanisms, and powerful add-in animation

features. However, there is some modeling inefficiency associated with these general

purpose simulation languages to model complex manufacturing systems like FMSs

because they are designed to model a wide variety of discrete event systems as well as

manufacturing systems using generic building blocks.

As Rolston [1985] points out, modeling FMSs with a general purpose simulation

language often requires highly trained programming skills to conceptualize the entire

system in terms of entities, queues, servers, and resources. For this reason, dedicated

simulation languages for various manufacturing systems were developed, such as MAP/1

[Rolston 1985], GPSS/H [Schriber 1985], XCELL+ [Conway et al. 1987], WITNESS

[Gilman and Billingham 1989], and MAST [Lenz 1989]. Fixtures, conditional part

routing, and conveyers often require special modeling elements to capture their unique

behaviors. For example, a conveyor belt is a material handing system but often acts as a

finite storage buffer. Also, based on the way of the conveyer belt is used in the system,

securing consecutive spaces on the conveyor belt is crucial for undisrupted traffic of a

particular group of parts. MAP/1 is a simulation language that has been developed to

capture such unique behaviors of FMSs [Rolston 1985].

Similarly, a GPSS/H model is proposed to represent a hypothetical FMS using a

modular design approach to explore the concept of a universally applicable simulation

model with minimal modifications possible for various FMSs [Schriber 1985]. For the

GPSS/H model, some simplifying assumptions have to be made. These assumptions are

 52

no machine breakdowns, negligible part travel time between any two points in the

system, and no traffic congestion.

Because of the complexity of most simulation models, a formal scheme to convey

the underlying logic of the system using common words is needed. An activity cycle

diagram is a graphical presentation to describe the underlying logic of a discrete event

system that can be easily understood by non-experts. Despite this effective formalism to

depict the dynamics of a complex manufacturing system such as an FMS, the influence of

a particular simulation language used to construct the models based on the activity cycle

diagram can be found. Hlupic and Paul [1994] build a conceptual FMS simulation model

using activity cycles diagrams to conduct a comparative study to show the apparent

influence of the simulation package used for the model construction.

There are two ways for simulation to be used in production control and planning

environment: the first is on-line based simulation analysis and the second is off-line

based. Most simulation modeling efforts in FMS operation management have

concentrated on off-line steady-state analysis. Simulation modeling has been extensively

used as an evaluation tool to test whether a suggested dispatching rule or schedule really

works better than other alternatives. The schedule or dispatching rule in an FMS

normally determines which parts are introduced into the system at what time and which

part to load next into a particular machine. Comprehensive literature reviews on FMS

scheduling using off-line simulation as an evaluative tool can be found in [Gupta et al.

1989; Hutchison 1991; Basnet and Mize 1994].

 53

The other prominent application area for off-line based simulation study is FMS

design. Abdin and Mohamed [1986] conduct a simulation study to examine FMS design

issues regarding the maximum number of pallets for each part type and the optimal

conveyor speed under two distinctive job sequencing rules, namely the LPT and PROB

rules. LPT gives the job with longest processing time the highest priority while the

PROB rule orders work pieces according to their highest content in the work-in-process.

The study concludes that for that particular cell configuration LPT is favorable over

PROB and allocating four pallets of each part type can ensure a smooth production

against various changes.

A significant number of recent research efforts using simulation applications in

FMS production planning and control have shifted their focuses to on-line and real-time

applications. M. Kim and Y. Kim [1994] propose simulation-based real-time scheduling

for an FMS. In this study, they argue that the dynamic and uncertain nature of system

states may make off-line scheduling impractical for most FMSs. In general, FMSs are

more sensitive to system disruptions than conventional manufacturing systems because of

their tighter synchronization, system integration, and interdependencies among many

automated system components. Hence, FMSs require an immediate response to changes

in their system states, and this can be achieved through implementing on-line scheduling

and control.

 54

 Harmonosky [1993] addresses two key issues, the simulation run length issue and

look-ahead horizon assumptions, for using simulation for real-time production control.

In this study, Harmonosky identifies the types of manufacturing systems suited to

pursuing simulation as a real-time control aid: systems with longer average processing

time, WIP performance measures, and high flow shop characteristics are believed to take

smaller CPU time and fall into this category. The biggest obstacle for simulation to

become a practical on-line evaluative tool in real-time decision making environments has

been its lengthy execution time. In addition to a rapid improvement in the speed of

inexpensive CPUs, there have been many ongoing research efforts to make simulation

experimentation a more practical methodology for on-line use. In order to shorten the

lengthy execution time of simulation without compromising statistical precision, the

majority of on-line steady-state simulation analysis schemes have adopted a form of

execution-time reduction techniques, such as concurrent simulation, distributed

simulation, model simplification, and the reverse simulation method. Each of these are

discussed more fully below.

A concurrent simulation means that a separate, independent processor is dedicated

to running a simulation under each set of input parameters. Concurrent simulation is

proposed as a primary analysis tool to evaluate candidate schedules in on-line production

control environment. It utilizes parallel computing techniques to mathematically

decomposing a scheduling problem into a parallel hierarchy [Davis and Jones 1988]. The

success of this conceptual scheduling algorithm lies in the integration and development of

key technologies, such as compromise analysis, conflict resolution, and efficiency of

 55

concurrent simulation techniques. Also, the authors acknowledge that the optimality of

the found schedule cannot be guaranteed and the probability of exact implementation of

the suggested schedule is close to zero due to the tradeoff between a guarantee of

feasibility and operational efficiency.

Different from concurrent simulation, distributed simulation uses a technique to

partition a single simulation run into several independently executable small components

(routines) using parallel computation techniques. Distributed simulation focuses more on

a distributed simulation algorithm (software) using parallel computation techniques rather

than employing multiple processors (hardware) to host multiple simulation runs. In other

words, a sound simulation model of concurrency is more important than the multi-

processor hardware itself. Traditional discrete event simulation is designed to be

executed by a single processor sequentially following an event calendar as the single

stepping clock advances. On the contrary, for distributed simulation each simulation

component is run concurrently and brought together to collectively present the overall

behavior of the system. A distributed simulation system must explicitly coordinate the

advance of time in order to maintain temporal consistency among its components. There

are two distinct tasks to maintain time among distributed simulation components: the

movement of time and the coordination of time movement. Based on methods to

coordinate time advances between concurrent simulation components, distributed

simulation algorithms can be classified into two classes.

 56

The first class is Chandy-Misra (CM) simulation, also called pessimistic

simulation [Peacock et al. 1979; Chandy and Misra 1981]. The mechanism holds back

processing because it assumes that components will communicate out of sequence. The

CM algorithm does not prevent simulation-induced deadlock. Thus, CM works best in

tightly coupled simulations where objects are highly synchronous. The second class is

Time Warp (TW) simulation, sometimes referred to as optimistic simulation [Jefferson

1985; Jefferson and Sowizral 1985]. It relies on the ability of an object to rollback its

present state to that of some previous time. Time Warp is good for loosely coupled,

highly asynchronous systems but is inefficient when models have mixed time scales or

diverse interaction behaviors.

McAffer [1990] proposes the Unified Distributed Simulation (USD) algorithm as

a compromising approach. This approach is loosely based on the Time Warp algorithm.

By explicitly defining risk and aggressiveness parameters for each model, simulation

models with different behaviors can be mixed within one simulation. Prassad and Deo

[1991] propose a parallel algorithm for discrete event simulation on exclusive-read

exclusive-write parallel random-access machines (EREW PRAM). The proposed

algorithm uses a parallel data structure as an event queue, called a parallel heap, which

allows simultaneous insertions and deletions of messages maintaining priorities among

messages in a reasonably small amount of time using multiple processors.

Another way to use simulation for real time scheduling, control, and monitoring

was proposed by Harmonosky [1990]. Instead of adopting a concurrent simulation

 57

approach, she suggests interfacing simulation with the physical system to run two

separate modes. Figure 1 depicts the structure for such an approach. The first mode is a

monitoring mode. It is used when the model is directly linked to the physical system,

continuously receiving status information from various system elements. The second

mode is a decision-making mode and is used when the model evaluates different control

decision options through traditional off-line runs. The issues regarding this approach are

how to balance the tradeoff between a long enough time horizon to obtain statistically

valid results and a shorter response time required to make prompt decisions.

A similar approach interfacing a SIMAN based simulation model to a real-time

control database is proposed to evaluate work order release sequences based on measure

of performance by Muller et al. [1990]. Unlike most simulation studies, the evaluation is

based on the transient behavior of the system and not steady-state performance. The

control system looks at the time window in which the work order is predicted to be

completed in order to determine if a particular work order sequence meets due date

requirements set in advance by the MRP system. Ten replications are made to construct

the confidence intervals (CI) on the completion time for a work order in order to be

compared with actual data. Surprisingly, results indicate that only 43.6% of actual

completion times occur within these estimated CI. The authors attribute the occurrences

of work orders outside the confidence interval mainly to the uncertainty at the finishing

cell.

 58

System Control Computer

System Status

Decision
Needed?

Update simulation w/
Current System Status

Specify Options

Simulate Options

Analyze & Select
Option

Yes

No
Option 1 Option 2 Option n...

Option 1 Option 2 ... Option n

Selected Option

Ev

applicatio

short-term

provide a

desirable

model so

faster rate

method to

technique

Figure 1. Scenario for Interfacing Simulation with Physical System
for Real-time Control [Harmonosky 1990]
en though the study done by Sims [1997] does not directly discuss the

n of real-time simulation, he argues that, for any scheduling problem with a

 goal, running simplified simulation models with deterministic values would

 realistic view and a faster response. Reverse simulation is used when the

range of values of the performance measure are known and used as inputs to the

that the steady-state mean for the performance measure can be reached at a

 with fewer samplings. Lee et al. [1997] propose a single run optimization

 take advantage of the reduced execution time using the reverse simulation

 and chaos theory.

 59

As discussed in Chapter 1, simulation can be classified into two categories:

terminating and non-terminating. Non-terminating simulations are sometimes called

steady-state simulations. Terminating simulations are run only until some stopping

criterion is met. The stopping criterion is normally set as a system event that is designed

to end the simulation run based on the nature of system or the purpose of analysis. On the

contrary, non-terminating simulations can conceptually run indefinitely after they reach a

steady-state or stationary pattern of behavior. With use of a proper warm-up period

deletion technique, most non-terminating simulations can be stopped at the point where

there are sufficient observations for statistical accuracy and the least significant amount

of influence from the truncated initial bias, often called the warm up condition.

 Most simulation languages have some form of built-in statistical output

analyzers. These built-in statistical output analyzers are often inaccurate and misleading

because they tend to ignore common startup problems and autocorrelation among

observations [Seila 1990]. A simulation experiment without a valid statistical output

analysis is meaningless. There are clearly two different classes of output analysis that

can be applied to find statistical means based on whether the simulation is terminating or

non-terminating. Different types of output analysis are covered in detail in several works

[Seila 1990; Law and Kelton 1991; Banks et al. 1996].

Typically, a steady-state simulation with particular input parameters can be

carried out by a single but reasonably lengthy replication with an output analysis using a

technique like the batch means method. These techniques find statistically valid steady-

 60

state means from a stochastic process that represents a particular performance measure.

On the other hand, the run length in a terminating simulation is dictated by the

terminating event or condition and this event or condition often limits the number of

observations that can be collected from a single replication for the statistical output

analysis. For a statistically valid output analysis one cannot depend on a highly

autocorrelated sequence of a limited number of observations from a single run.

Therefore, repeating a single run a total of R times is required for terminating simulation

to have observations in each replication rn r so that it can have statistically independent

and identically distributed R sample means.

Terminating simulation can be effectively used as a look-ahead performance

evaluator in an on-line production control environment. The chronologically captured

behavior of a particular performance measure from a terminating simulation during the

transition period following an unexpected disruption may provide realistic and

meaningful information to on-line based decision making for automated disruption

handling. Such attempts can be accomplished by adopting a hybrid modeling approach,

often called metamodeling. Metamodeling maps simulation output to a corresponding

mathematical model using techniques such as regression or time series analysis. Lin and

Cochran [Lin and Cochran 1990; Lin and Cochran 1990; Lin et al. 1998] proposed a

metamodeling approach using terminating simulation. They argue that relying on the

traditional terminating simulation method to investigate transitional behaviors of a

manufacturing system can be expensive and impractical for real time production control.

 61

2.3.2 Conclusion

Many researchers and systems engineers studying the detailed behavior of

complex systems such as FMSs have favored discrete event simulation as their preferred

modeling tool. However, its limitations as an evaluative modeling tool, such as lengthy

model development time, detailed input data requirement, lengthy simulation execution

time, and necessary but cumbersome statistical output analysis procedures have kept

simulation from becoming a practical analysis tool for on-line decision making. Recent

improvements in simulation usability, modeling power, and speed have started receiving

increased attention from both the research community and industry. In addition to these

improvements, there have been considerable on-going research efforts to make a

simulation run faster and shorter using techniques such as distributed simulation,

concurrent simulation, model simplification, and reverse simulation. There are clear

differences between terminating simulation and non-terminating (steady state) simulation

analyses. Non-terminating simulation is often useful to predict short-term effects of

disruption(s) on a particular system behavior. The majority of simulation modeling

approaches proposed and explored so far within a framework of online decision-making,

including online production control systems, have focused only on steady-state

simulation. Even for a dynamic production environment, such attempts tend to focus

only on the newly shifted steady-state mean after the disruption rather than intermediate

transitional behaviors.

 62

Using terminating simulation in a traditional way is very costly and impractical as

a part of an on-line production control system such as a disruption handler. Applying a

hybrid method such as metamodeling proposed by Lin [1990] combining terminating

simulation and mathematical modeling is one way to effectively apply terminating

simulation in such an on-line decision making support system.

The drawback of such approach is the difficulty encountered as an online based

non-interactive model constructor to choose the right time series model to represent

dynamic characteristics and the complexity of the system’s possible volatile behavior

following the disruption. This can become a critical issue especially when a composite

model, a linear combination of several mathematical models, has to be built. Thus, in

order to effectively use Lin’s approach for the fully automated and self-contained FMS

online controller there is a need to adopt a non-parametric method to build the model,

such as applying effective neural network architecture.

 63

2.4 Stochastic Petri Nets

2.4.1 Summary of Major Developments

This study presents a brief history of Petri net based approaches in systems

modeling and focuses on their applications in FMS transient and steady-state

performance analysis. First, we need to look at some elementary definitions in classical

Petri nets and other subclasses such as Stochastic Petri nets (SPNs) before discussing

major developments in this area.

Petri nets (PNs), also known as place-transition nets (PTNs), were proposed to

graphically model discrete event dynamic systems by Carl Adam Petri [1962]. Petri nets

were designed to model systems with deterministic behaviors. Classical Petri nets are

useful for investigating qualitative or logical properties of concurrent systems, such as

mutual exclusion and presence or absence of deadlocks. Recently, PNs have emerged as

a powerful performance modeling tool by incorporating stochastic time functions for

analyzing asynchronous concurrent systems that exhibit non-deterministic behaviors. As

Kamath and Viswanadham [1986] point out, Petri nets have some noticeable advantages

over other system modeling approaches. These advantages are: (1) easy visualization of

complex systems using a powerful graphical presentation scheme, (2) modeling

capability for hierarchical decompositions, (3) relatively well-developed analysis

techniques, (4) well-formulated schemes for system design and synthesis, and (5) dual

 64

analysis capability for both quantitative (performance evaluation) and qualitative

(deadlock detection) characteristics using timed Petri nets.

Formally, a Petri net is a bipartie graph (a graph with two types of nodes) and can

be presented by three types of objects, namely places, transitions, and directed arcs

connecting places to transitions and transitions to places. Pictorially, places are depicted

as circles, transitions are depicted as boxes or bars. A place is an input place if there

exists a directed arc connecting the place to a transition. A place is an output place if

there exists a directed arc connecting a transition to the place. Typically, places represent

preconditions or postconditions and transitions represent events. The presence of a token

(a black dot) inside a place often indicates that the condition is satisfied. For example,

input places may represent the availability of particular resources, transitions represent

their use, output places represent release of the resources.

Over the years Petri nets have been enhanced to improve their somewhat limited

initial modeling capability. For example, to overcome shortcoming of being

unmanageably large and complex in modeling of a concurrent system using a place-

transition net (PTN), colored Petri nets (CPNs) are introduced to maintain a manageable

size of the net [Jensen 1981]. Representation of an equivalent model of a traditionally

large and complex system using CPN is simpler and more concise in comparison to using

a traditional PTN. In addition, CPNs are capable of capturing complex functional

dependencies between the color of transition firing and colors of required tokens.

 65

By changing the placement of tokens on possible subsets of places, which may

reflect the occurrence of events or execution of operations, one can capture and

investigate dynamic behavior of the modeled system. The flow of tokens is governed by

both enabling rules and firing rules.

There are several key structural properties that can be exhibited by a certain class

of Petri nets. These structural properties for Petri nets are: pure, boundedness, safe, live,

dead, deadlock, mutual exclusion, reversibility, home state, concurrency, conflict,

asynchronous, nondeterminism, instantaneous, and union of Petri nets. The detailed

definitions for such properties can be found in various articles [Peterson 1977; Agerwala

1979; Kamath and Viswanadham 1986; Zurawski and Zhou 1994]. Among these

properties, pureness, boundness, and liveness are necessary properties to capture

important qualitative characteristic such as presence of deadlock in a Petri net model of

any asynchronous concurrent system.

 To conduct quantitative performance evaluation for a system during time

evolution, the concept of time has been added to the definition of Petri nets. There are

two ways to introduce the time elements to a Petri net: the first one is to attach time to

transitions [Ramchandani 1973; Ramamoorthy and Ho 1980; Zuberek 1980; Molloy

1982]; second one is to associate time with places [Sifakis 1977; Bruno and Biglia 1985].

The choice of associating time with transitions is more popular in the literature than

associating time with places [Viswanadham and Narahari 1992]. Petri nets with time

functions are called timed Petri nets. There are two types of timed Petri nets based on the

 66

nature of the time function: one is deterministic timed Petri nets; and the other is

stochastic timed Petri nets. Early work related to timed Petri nets is mostly confined to

deterministic timed Petri nets [Ramchandani 1973; Sifakis 1977]. Later, the concept has

been expanded to include random time duration [Natkin 1980; Molloy 1981]. We call

Petri nets with random time delay for their transitions Stochastic Petri nets (SPNs).

When random variables representing time delay are of general distribution rather

than exponential, the resulting net model can not be solved analytically as we have seen

in similar queueing network models with non-exponential service times. Thus,

simulation or approximation methods are required to analyze the model. However, when

the time delay for each transition is assumed to be stochastic and exponential, the

resulting net can be analytically solved. These Petri nets are called exponential timed

Petri nets (ETPNs) [Viswanadham and Narahari 1992]. When ETPN models allow for

immediate (zero time delay) transitions, we call these SPNs generalized SPNs (GSPNs).

Studies individually done by Natkin [1980] and Molloy [1981] have shown that the

marking process of an exponential (or geometric) timed Petri net is a continuous time

Markov chain (CTMC). Thus, both ETPN and GSPN models, including extensions such

as priority transitions, inhibitor arcs, and probabilistic arcs can be directly converted into

their equivalent continuous time Markov chain (CTMC) models, and analyzed using a

Markovian analysis method.

As we discussed earlier in Section 2.2 Makov Chain Models, the CTMC modeling

approach has its own inherent shortcomings as an effective online-based transient

 67

performance analysis tool in addition to drawbacks typically associated with Markov

chain models. These shortcomings are associated with solving Kolmogorov backward or

forward differential equations in the form of first order linear differential equations to

find a closed form solution to approximate individual transition probabilities or state

probabilities as a function of time.

As Molloy mentions [Molloy 1985], for quantitative analysis of system

performance, stochastic Petri nets do not provide more modeling power than Markov

chains, but they provide a better human interface. By using a GSPN representation on

appropriate discrete event dynamic systems, Markov chains may be generated and solved

automatically. The clear advantage of using GSPN over Markov chains lies in enabling

the system designer to specify the system operation in a concise form that can be verified

during the generation of the reachable tree. In comparison to product form queueing

networks, GSPNs are more powerful because they can represent non-product form

features [Narahari and Viswanadham 1989].

Despite its continuous expansion and enhancement in modeling capability and

flexibility, the abstraction power of ordinary Petri nets is not sufficient to capture many

complex industrial systems, such as manufacturing and communication systems which

require the flow of different resources or messages within the system.

One way to model such systems is to construct a model in such a way that the

flow of each resource or message is confined within a dedicated subnet. In large-scale

 68

systems, a number of resources or messages often share the same system that can be

modeled as a single subnet. When this subnet is duplicated to model the entire system for

different resources and messages, the overall model that may contain multiple

replications of the same subnet may result in unmanageable graphical complexity. To

resolve this issue, several methods for tokens to have distinct identity are proposed and

they are often referred to as high-level Petri nets. In high-level Petri nets, a token can be a

compound object carrying data in forms of integers, reals, text strings, records, lists and

tuples. High-level Petri nets typically include predicate-transition nets [Genrich and

Lautenbach 1991], colored nets [Jensen 1981], object-oriented nets, and nets with

individual tokens [Reisig 1983].

Colored Petri nets (CPNs) were introduced to represent a complex system in a

compact and manageable manner by maintaining distinct token identity through

associating different colors [Jensen 1981]. In CPNs, a set of colors is associated with

each place and each transition. The set of colors associated with a place indicates the

color of tokens that can be placed at the place. Similarly a transition can fire based on

each of its assigned colors. When a transition is fired, corresponding colored tokens are

removed and added at its appropriate input and output places respectively according to

the functional dependency specified between the color of the transition firing and the

colors of the involved tokens.

Petri nets have gained popularity as a versatile modeling and analysis tool for

addressing design issues related to FMSs [Silva and Valette 1990; Zhou 1995].

 69

Typically, most ordinary PTN models have been used in the area of control system

design, validation, and implementation. However, as Kamath and Viswanadham [1986]

point out, the number of related studies in FMS performance modeling using Petri nets

has been somewhat limited due to the limited availability of proper performance

evaluation techniques for various PTN classes.

A predominant number of FMS performance modeling attempts using Petri nets

are based on Stochastic Petri nets with Markov chain analysis. Since -bounded SPN

models with exponentially distributed transition rates are isomorphic to Markov process

models with a state space consisting of possible markings, a direct conversion to an

equivalent Markov model can be easily achieved if the model is not too complex.

Moreover, analytically evaluating equivalent Markov chain models is not a

computationally difficult task as long as the level of complexity is kept minimal. As

previously discussed, studying transient behavior of the given Markov chain requires

finding equilibrium distributions in terms of time . To find these distributions, solving

Chapman-Kolmogorov equations in the form of first order differential equations either in

a backward or forward form is necessary. The complexity of solving these equations can

vary based on the different types of mathematical techniques that are applied.

k

t

A simple SPN can also be easily converted to a simulation model as a non-

analytical form of performance evaluation. A transition state analysis by simulation is a

more feasible approach to understand quantitative behaviors of the net than Markov chain

analysis especially when the complexity of the given net is no longer considered

 70

moderate. For FMS performance modeling using PTNs, converting PTNs to valid

simulation models is a better approach for on-line production control. However,

technical difficulties in conducting a reliable and fast online simulation study can still be

problematic as discussed in the previous section.

The majority of PTN modeling in FMS performance evaluation is based on the

steady-state behavior of the given FMS. An initial investigation of applications of timed

PTNs in FMS real-time control and performance evaluation can be found in the work by

Dubois and Stecke [1983]. The study has concluded that timed PTN is a useful means to

assess the steady-state performance as well as to detect any sequence of events which can

result in deadlock in FMS real-time control.

However, in reality ordinary SPN models for FMSs can become highly complex

due to the fact that most control logic or operational sequences in many FMSs consists of

resources that have a high degree of interaction. This type of systems is viewed as a

system composed of many replications of a few basic common components. In most

cases, these common components behave in a similar manner.

Different arrangements of these basic components can represent various system

conditions (status) and subsequent events for the given FMS. Utilizing Colored Petri nets

in conjunction with SPNs is proposed as a powerful tool to verify the control logic

through investigating the presence of deadlock in an FMS [Kamath and Viswanadham

1986]. Kamath and Viswanadham [1986] have shown the feasibility of direct

 71

transformation of CPNs to effective simulation models. Aside from the traditional linear

algebraic methods, the fast and efficient way to compute invariants of a PTN model for

an FMS is found by taking the union of invariants of smaller and simpler underlying

PTNs [Narahari and Viswanadham 1984].

Another study [Micovsky et al. 1990] has demonstrated that a CPN approach to

validate a deadlock free design for an FMS control system utilizing a dedicated object-

oriented programming tool with an incorporated simulation method is a highly effective

way to prototype a new control system. A similar study [Venkatesh and Ilyas 1995] is

done for modeling, controlling, and evaluating local area networks in FMSs using real-

time timed PNs (RTPNs). In an RTPN, the standard TPN is augmented with two extra

tuples, namely input signal vector and output signal vector, to read inputs from the

system and send outputs to the system in real time. Venkatesh, Zhou, and Kaighobadi et

al. [1996] find that TPNs are effective tools to study optimal operational parameters for a

flexible factory automated system (FFAS) under both ‘push’ and ‘pull’ paradigms.

FFASs typically comprise a strategic arrangement of flexible manufacturing systems

(FMSs) and flexible assembly systems (FASs) to meet dynamically changing orders. The

study shows that the configuration can result in the minimum buffer sizes and maximum

system utilization when output rate is considered as the optimal solution under each

paradigm. The study also concludes that the “push” paradigm performs better than the

“pull” one for the steady-state performance of the given FFAS.

 72

Despite a powerful formalism of CPNs, converting a complex large-scale

stochastic Petri net not only to a valid but also to a computationally efficient simulation

model is a challenging task. Gaeta [1996] proposes three approaches to improve

simulation efficiency: first, use of an efficient algorithm for the computation of the

occurrence of a transition in a given marking; second, reduction of the amount of work

needed to schedule or preempt the occurrence of a transition as a consequence of a

marking change; third, reduction of the average length of the event list in the case of

symmetric models where the symbolic simulation techniques applies. The symbolic

simulation technique is to collapse all the equivalent events of the set FIRING (a set of

firable color instances) into a single symbolic event.

Yim and Barta [1994] propose a system architecture for a Petri net based on-line

simulator that can be utilized in both design and operating phases for FMSs. This

architecture separates a simulation model into hardware and control systems to achieve a

more realistic and easier modeling process. The hardware components, including low-

level control functions, are modeled by Petri nets objects such as places and tokens. Cell

control functions such as part dispatching, routing, real-time scheduling, and part

monitoring are modeled separately as subnets and integrated into a Petri net model. For

operating an FMS using this architecture, the current state of a system should be mapped

to the Petri net model by assigning initial tokens accordingly and an integrated decision

maker issues a proper operational decision based on the automatically collected Petri net

simulation results. Since a simulation study is used as a means to quantitatively analyze

 73

the performance of the given net, the Petri net model utilizing simulation can provide a

framework for a realistic transient performance analysis for the given FMS.

Hastono et al. [1991] propose an online-based performance modeling method

using SPNs to schedule FMSs. This method uses both continuous time and discrete time

stochastic Petri nets with hierarchical structure to model an FMS under uncertainty, such

as machine tool failures and variations of processing time. Simulations on SPNs are

conducted to evaluate the performance of the given rule base. The whole model is

partitioned into two parts: the transporting level model represented by discrete-time SPNs

and the processing level model represented by continuous-time SPNs. The biggest

advantage of this approach is that the final simulation model generated from the given

SPN can be simple since the overall model is built considering the processing level

models as the submodels of the transporting level models.

2.4.2 Conclusion

Traditionally, Pertri nets have been effective graphical modeling tools in studying

qualitative aspects of system behaviors such as presence or absence of deadlocks.

However, after the emergence of new classes, such as stochastic and colored Petri nets,

and new performance evaluation techniques in Petri nets, Petri nets are now considered

powerful system performance evaluation tools to investigate quantitative aspects of many

 74

concurrent systems. Since FMSs are tightly coupled concurrent asynchronous systems

that typically have complex interactions among their sub-components, Petri net modeling

is an ideal way to conduct control system design, validation, and implementation in

FMSs.

There are typically two ways to conduct performance evaluation on a given Petri

net: the first one is converting a given net to an equivalent Markov chain model by

making a set of all possible markings as a state space of the Markov chain and conducting

a conventional algebraic Markov chain analysis for the steady-state performance of the

given net; the second one is to build a simulation model directly out of a given Petri net

model if the net maintains its moderate complexity. Despite a powerful formalism of

CPN, a direct conversion of a complex stochastic net to a computationally efficient

simulation model is a challenging task. Use of efficient algorithms for the computation

of the occurrence of a transition in a given marking, model simplification, and utilizing

symbolic simulation techniques are proposed to improve simulation efficiency.

For the Markov chain model directly converted from a given Petri net model,

conducting a transient performance analysis on the net requires solving Chapman-

Kolmogorov equations, first order differential equations, to find equilibrium distributions

in terms of time t. This can become problematic based on the degree of complexity of the

equation and types of mathematical techniques to be applied. On the other hand, running

a simulation model that is directly derived from the given SPN is relatively easier and

realistic enough to be used as a framework to evaluate the transient performance of the

 75

given net. However, building an efficient simulation model when the net becomes highly

complex is still a difficult task. Furthermore, for modeling a system that changes its

configuration during its lifecycle, an automatic adjustment or modification of the given

SPN model based on the new system configuration requirements is still a challenging

task. Yet there are continuous efforts and interests in the research community to

incorporate SPNs as the backbone performance evaluation tool to handle both steady and

transient performance, a part of online decision-making mechanism in FMS controls.

This is mainly due to the unique capability of Petri net modeling, such as simultaneous

quantitative and qualitative assessment capability.

2.5 Summary

Four major evaluative modeling approaches are commonly used to study FMS

behavior. These approaches are: queueing networks, Markov chains, simulation, and Petri

nets. The majority of studies done in FMS performance modeling used Queueing

Networks analysis. However, they tend to focus on the steady-state system performance

under a specific operational strategy rather than transient behaviors followed by a

disruption. The QN approach is generally not an effective way to study detailed behavior

of the system within a short-term time interval.

 76

Markov chain models are based on either Markov or semi-Markov processes that

are the two most important subclasses of stochastic processes. Markov processes provide

the underlying theoretical foundations for many queueing theory-based analytical

modeling approaches. Markov chain modeling approach is more suitable for off-line

decision making process. Reconfiguration of the model on the fly can be problematic if

the system configuration changes during the course of operation.

The most promising analytical model based transient performance analysis

method is performability modeling using either continuous or discrete time Markov

reward processes. Performability analysis combines both performance and reliability

aspects of a system. Furthermore, this provides a critical insight into higher moments of

the performability distribution. Useful expected values such as the expected

instantaneous reward (selected performance measures) vector at time t as well as

cumulative reward over for a given part type can be found through this approach.

Despite its promising effectiveness as a transient performance analysis tool, the technique

still heavily relies on the assumption of exponential processing times. This can be a

problem for many asynchronous systems like FMSs with non-exponential service time

distributions. Aside from this biggest drawback, the method also relies on human

analytical skills and modeling expertise, which can become a hindrance to be a fully

automated modeling scheme with no or less human interventions during the model’s life

cycle.

] ,0[t

 77

Many studies show that simulation is the most widely used as an off-line based

evaluative modeling tool to study the impact of a new control policy or scheduling

algorithm/heuristic. However, its limitations as an evaluative modeling tool, such as

lengthy model development time, detailed input data requirement, lengthy simulation

execution time, and necessary but cumbersome statistical output analysis procedures have

kept discrete event simulation from becoming a practical analysis tool for on-line

decision making. However, there have been considerable on-going research efforts in

recent years to make a simulation run faster and shorter using techniques such as

distributed simulation, concurrent simulation, model simplification, and reverse

simulation. The majority of simulation modeling approaches proposed for online

decision making relies on steady-state performance analysis.

Using terminating simulation in a traditional way can be costly and impractical

especially for real time disruption detection and diagnosis under on-line production

control. Applying a hybrid method such as the meta-modeling, which combines

terminating simulation and mathematical modeling, is one way to effectively apply

terminating simulation in an on-line decision making support system.

After the emergence of new Petri net classes, such as stochastic and colored Petri

nets, as well as new performance evaluation techniques using Petri nets, Petri nets are

now considered a powerful system performance evaluation tool to investigate quantitative

aspects of many concurrent systems. There are many efforts in the research community

to incorporate Stochastic Petri-nets as the backbone performance evaluation tool to

 78

handle both steady and transient performance. This is mainly due to several unique

capabilities of Petri net modeling, such as simultaneous quantitative and qualitative

assessment capability.

 79

3. Problem Settings and Systems Description

In this chapter the FMS chosen for this study is presented. Since using a time

series model can easily render predictions on quantified system performance of an FMS,

a basic review of conventional approaches, regression based time series modeling, is

provided. As a means to capture various system behavior patterns under the new

transient performance-modeling framework proposed in this study, ANN based time

series modeling is closely investigated as an alternative to its regression based

counterpart.

3.1 FMS

3.1.1 System Description

The flexible manufacturing system (FMS) used in this study is an ideal system

that is realistic enough to represent many currently deployed real-world systems but also

can be analyzed within a reasonable amount of time and effort. The focus of the

experiments to be conducted is to explore the possibility of artificial neural networks as

an effective baseline technique to capture realistic transient behaviors of an FMS. The

neural network based transient performance model should provide better knowledge for

 80

both an operator and automated disruption handler to selectively react to controllable

performance deteriorations. Typically, transient behaviors in the form of overreaction

can bring a negative impact on the overall system performance. Over-reactive transient

behaviors often result in system nervousness.

System nervousness can be defined as a system phenomenon that can be

characterized by hypersensitiveness to changes caused by unexpected event(s). System

nervousness can be worsened by overbearing corrective or preventive measures. This

phenomenon is commonly found in tightly coupled automated manufacturing systems

with self-guided system performance monitoring and control system such as FMSs [Kim

and Kim 1994]. Thus, the system studied in this research should exhibit similar

behaviors during its transient states following unexpected disruptions of its steady-state.

The proposed FMS model is based on a real world FMS, the Caterpillar system,

which can be found in a simulation study by Stecke and Solberg [1981]. Some system

configuration and operational rules used with the original model are modified here to

create the desired system conditions and level of complexity needed for this research.

The FMS consists of eight machining stations with an automatic tool changer, one

loading station, one unloading station, and three automated guided cart systems as shown

in Figure 2. Each machining station has a limited capacity tool magazine that holds

machining tools required by various operations assigned to the machine. Thus, each

machine stations can perform more than one type of similar machining operation. The

 81

eight machining stations can be grouped into four machine groups based on the similarity

in their primary machining operations. Machine grouping is for functional redundancy

and even machine loading. There are three automated guided carts that run on a straight

track connecting all machining stations in tandem, carrying a loaded part fixture among

machining stations and loading/unloading stations. There are ten universal part fixtures.

Each part fixture is designed to hold a mixture of different part types that share similar

machining requirements.

Machine 1

Machine 2

Machine 3
Machine 5

Machine 6

Machine 7

Machine 9Machine 12

1 Loading/Unloading Stations

Automated Guided Cart 1 Automated Guided Cart 2

11

Automated Guided Cart 3

Figure 2. Physical layout of the FMS under study

 82

3.1.2 Parts

The FMS under study is a subsystem of a make-to-order part production system.

There are maximum of 12 different part types that can be handled by the FMS. In a

normal operation mode, continuous inflow of similar part orders from the main

production plan is assumed. Each production plan requires multiple orders of four to

five unique part types. Table 2 illustrates how individual orders may look like under a

single production plan. For this study, five is the maximum number of different part

types to be allowed in a single order. Equal proportion of selected part types will be fed

into the system during the course of a given production plan. An unplanned shift from

four part types to five part type or vice versa can be considered as a form of disruption

scenarios to be studied in this experiment.

Table 2. Sample orders with four part types under a production plan
Part Type (% of the given order) Order

No.

No. of
Parts per

each order 1 2 3 4 5 6 7 8 9 10 11 12

1 1324 25 25 25 25

2 1056 25 25 25 25

3 999 25 25 25 25

4 1320 25 25 25 25

5 1406 25 25 25 25

6 1320 25 25 25 25

The chance to detect upcoming changes in demand for a particular product type

that requires a particular combination of various part types is presumed to be small due to

its volatile nature. Each part type has the same inter-arrival time that is sampled from an

exponential distribution with either mean of 2.3 or 2.4 minutes.

 83

Steps to pick these two numbers are explained in Chapter 6. A group of similar

part types require a set of similar machine operations that can be provided by one or more

machining groups. The following table provides exemplary part types with

corresponding arrival times and required machining sequences.

Table 3. Inter-arrival Time and Machining Process Requirements for Different
Part Types

Part Type Machining Process Requirement in
the sequence of 1st ->2nd->3rd

 1st 2nd 3rd
Part Type 1 P1 P4 P9

Part Type 2 P2 P3 P9

Part Type 3 P1 P5 P10

Part Type 4 P1 p3 P9

Part Type 5 P2 P7 P9

Part Type 6 P1 P6 P10

Part Type 7 P1 P8 P9

Part Type 8 P2 P7 P9

Part Type 9 P3 P7 P9

Part Type 10 P4 P6 P10

Part Type 11 P5 P7 P9

Part Type 12 P3 P8 P9

Incoming parts are fed into one of three conveyor belt systems based on similar

machining process requirements before they actually enter the system. These conveyor

belts provide a presorting capability as well as three separate waiting areas.

Consequently, certain part types share the same conveyor belt due to similar machining

requirements (refer to Table 4).

 84

Table 4. Pre-sort Conveyor Belts and Possible Part Types

Admissible Part Types Pre-sort Conveyor
Belt (prior to fixture

loading)
1st 2nd 3rd 4th

Belt 1 Part Type 1 Part Type 2 Part Type 3 Part Type 4

Belt 2 Part Type 5 Part Type 6 Part Type 7 Part Type 8

Belt 3 Part Type 9 Part Type 10 Part Type 11 Part Type 12

The loading station continuously monitors individual queue length of the three

conveyor belts and services the conveyor belt with the longest queue buildup. Then parts

from the selected conveyor belt are loaded into the first available universal part fixture

one by one in the order of their arrivals until the fixture becomes full. Then the current

loading stops until a next fixture becomes available in the loading/unloading area.

Each part type comes in different sizes and shapes and they are to be equally well

distributed in the incoming part flow. Consequently, the total number of incoming parts

to be loaded onto a particular fixture cannot be known until the fixture is actually loaded.

The number of parts to be loaded into a next available fixture can be determined by the

sum of individual part sizes taken from parts waiting on the selected conveyor belt.

The loaded fixture is delivered to a machine center by an automated guided

vehicle if a machine center from the desired machine group is available. Each machine

group provides a unique set of machining operations. Otherwise the loaded fixture waits

in the loading/unloading area until a machine station from the desired machine group

becomes available. If there are multiple fixtures from the same part group competing for

one available machine group, the fixture with the shortest processing time will take the

 85

first available machine from the group by the rule of STP (Shortest Processing Time

First).

Table 5. Relative Part Size for Different Part Types

Part Type

Relative
Part Size
when the

fixture size
= 15

Part Type 1 3

Part Type 2 5

Part Type 3 2

Part Type 4 4

Part Type 5 3

Part Type 6 5

Part Type 7 2

Part Type 8 4

Part Type 9 3

Part Type 10 5

Part Type 11 2

Part Type 12 4

Howev

competing for

divided by the

loading/unload

shortest proces

will guarantee

done by Stecke

ex) a possible fixture load, 3 x part type 1 and 3 x part type 3
= 3*3 +3*2= 9 + 6 = 15 <= 15 (maximum fixture capacity)
er, when there are two or more fixtures from different part groups

the same machine group, the fixture with the shorted processing time

 total estimated processing time of the particular part groups waiting in the

ing area will take the first available machine. The rule of STP/TOT, the

sing time for the operation divided by the total processing time for the job,

 the best production rate under most circumstances according to the study

 and Solberg [1981].

 86

When two or more machines from the same machine group become available, the

machine with the longer idle time will process the next available fixture. A machine

group can provide more than one unique machining operation. Some of machine centers

within a group can actually perform identical machining operations even though their

average processing time against the same part type may not be the same.

An operational sequence to process each part type is predefined but the actual

machine assignment is not made until the fixture containing the particular part types is

ready to be dispatched. The number of different operations that can be performed by a

particular machining center from a given machine group is often restricted by the tools

currently available to the machining center. Table 6 summarizes four machine groups

and their capable machining operations.

The system is designed with some degree of functional redundancy within each

machine group to allow alternative routings in case of any machine failures. Many argue

that FMSs deployed today behave more in a deterministic manner due to their rigid

computer control. But there is still a room for stochastic behaviors that could result from

interactions with their neighboring production systems that exhibit stochastic natures.

Moreover, one of intentions for this study is to extend the applicability of ANN based

transient performance modeling methodology to other asynchronous concurrent systems.

Therefore, the suggested FMS should represent broader system characteristics of many

asynchronous concurrent systems. In order to achieve this objective, stochastic elements

 87

are introduced in the proposed system, which may distance itself from the realistic

modeling perspective of most real-world FMSs.

Table 6. Part Groups and Machine Process Capability
Individual Machines in a

Group Machine Group
1st 2nd

Group 1 M1 M6
Group 2 M2 M5
Group 3 M3 M7
Group 4 M9 M12

Machine
Process

Capable
Machine
Group

P1 Group1
P2 Group1
P3 Group2
P4 Group2
P5 Group2
P6 Group3
P7 Group3
P8 Group3
P9 Group4

P10 Group4

Setup times between different part types for machining stations are considered

significant and are counted toward to the average processing time for each part type. The

order for processing individual parts within a given fixture is to start from the part type

with the shorted processing time (SPT) and then move onto parts with the next shortest

processing time. Naturally, if different part types loaded into a given fixture came from

only one or two type, the average processing time to process the entire fixture will have

 88

small variances. On the contrary, if the number of different part types from incoming

fixtures is high, the average processing time to process individual fixtures will have a

relatively larger variance. Estimated processing time distributions by each machining

stations for various part types are summarized in Table 7.

 Actual machine assignments are not made until the parts actually enter the

system. The controller determines proper machine loading assignments based on the

current workload of individual machine centers within a group. This loading policy is

based on the pooling strategy in which machines from the same machine group can

perform similar machining processes even though there is a slight difference in terms of

speed. This would also guarantee the best performance in terms of balanced loadings

among machines according to the Stecke and Solberg’s [1981] study.

Table 7. Service Time Distributions for Individual Part Types
Machining Time Distribution Part

Type M1 M6 M2 M5 M3 M7 M9 M12
Part Type 1 triang (1.7,

3.6, 2.5)
triang (2.3,

5.5, 3.2)
triang (2.2,

4.4, 3)
triang (2, 5.5,

3.5)
N/A N/A triang (2.2, 5,

3.4)
triang (1.7,

3.2, 2.5)
Part Type 2 triang (1.3,

3.7, 2.3)
triang (2, 5,

3.5)
triang (2, 4,

3.2)
triang (2.5,

5.5, 3.9)
N/A N/A triang (2.2,

4.5, 3)
triang (1.5,

3.5, 2)
Part Type 3 triang (1.5,

3, 2.2)
triang (2.3, 5,

3.3)
triang (2, 5,

3.7)
triang (1.7,

3.5, 2.3)
N/A N/A triang (1.2,

3.5, 2.3)
triang (3, 5,

3.6)
Part Type 4 triang (2, 5,

3.2)
triang (3, 5,

4.2)
triang (2.7,

4.3, 3.5)
triang (2.5,

4.5, 3)
N/A N/A triang (2, 4.5,

3.1)
triang (3, 5,

3.6)
Part Type 5 triang (2, 5,

3.2)
triang (2, 5.5,

3.3)
N/A N/A triang (1.8,

3.8, 2.4)
triang (2.5,

5.5, 3)
triang (1, 3,

2)
triang (2, 5,

3)
Part Type 6 triang (2.5,

4, 3)
triang (2, 4.3,

3.5)
N/A N/A triang (1.9,

3.4, 2)
triang (4, 6,

5)
triang (1, 3,

2)
triang (2, 3.5,

2.5)
Part Type 7 triang (1.7,

2.6, 2.1)
triang (1.7,

4.3, 3.5)
N/A N/A triang (2, 5,

3.5)
triang (3, 6,

4)
triang (1, 3,

2)
triang (1, 3,

2)
Part Type 8 triang (2.2,

4.8, 3)
triang (3, 5,

4.5)
N/A N/A triang (4, 7,

5.5)
triang (5, 8,

6)
triang (1, 3,

2)
triang (3, 5,

4)
Part Type 9 N/A N/A triang (1.5,

4.5, 3)
triang (2, 5,

4)
triang (2, 5,

3.5)
triang (3, 6,

4)
triang (2.5,

5.5, 3.5)
triang (1, 3,

2)
Part Type 10 N/A N/A triang (0.5,

4.5, 3)
triang (2.3,

5.3, 4.3)
triang (1.5,

5.5, 3)
triang (2.5,

5.5, 3.8)
triang (2.5,

5.5, 3.5)
triang (3, 5,

4)
Part Type 11 N/A N/A triang (2, 5,

3.5)
triang (2.5,

5.5, 4.5)
triang (2.5,

5.5, 4)
triang (3.5,

6.5, 4.5)
triang (3, 6,

4)
triang (1.5,
3.5, 2.5))

Part Type 12 N/A N/A triang (2.5,
5.5, 4)

triang (3, 6,
5)

triang (3, 6,
4.5)

triang (4, 7,
5)

triang (3.5,
6.5, 4.5)

triang (2, 4,
3)

 89

A rough order of magnitude estimate of an overall efficiency of the proposed

FMS system in a steady-state condition is necessary to verify the simulation model later.

In this case, a simple queueing approximation can be used to estimate the average

utilization. The whole system needs to be simplified and some fundamental operational

rules have to be modified to use the queueing approximation. One such example is

machine processing time distribution. They need to be presumed as exponential rather

than the original triangular distributions. A second assumption is no competition among

loaded fixtures over AGVs and machining stations due to the fact that only two fixtures

are allowed to circulate in the system to undergo various machining operations at any

given time.

 Individual parts have to be loaded onto a single fixture in order to undergo

designated machining operations based on common machining requirements. Thus,

mean arrival time of individual parts to the system can be actually viewed as mean time

between fixture loading completions. On average about six parts are loaded into a single

fixture, which can be approximated by six times the mean arrival times of 2.3 or 2.4

minutes. Then, the whole system can be viewed as a single M/M/2 system where a

service consists of three distinctive operations provided by four machine groups and each

machine group consists of two machines that can perform identical operations. Two

AGVs can be also viewed as an additional operation. This over-simplistic picture makes

the queueing approximation possible for the model. Otherwise the modeling using

 90

traditional queueing approximation can be highly challenging. The approximation result

can be later used as a verification measure for the simulation model.

 Since the average utilization of M/M/c can be found using a relationship of

µ
λρ
c

= where c = number of servers that can provide the identical service, λ = mean

arrival time, and µ =mean service time. The relationship of ρ becomes =ρ

ation transportaverage plus operations machine wighted threeof timeservicemean total 2
machinefirst the tofixture of timearrivalmean

×

Finally, approximated 0.603939
424.11*2
6*3.2

=≅ρ where 6 is the estimated average

number of incoming parts that can fit into a single fixture and 11.424 is the weighted

average of total machine processing (three operations) and transportation time based on

different part mix.

3.2 Time Series Analysis

Forecasting through a regression based time series modeling is closely examined

in this chapter to devise it as a benchmark for the new transient modeling approach . The

term, forecasting, is extensively used in many scientific disciplines, referring to a

systematic approach to predict the future outcome of either a known or unknown process

through analyzing its past behaviors or attributes. Forecasting in time series analysis

 91

typically means an accurate prediction of the short-term evolution of a given time series

process [Weigend and Gershenfeld 1992].

Even though there is no universally applicable forecasting procedure, many types

of forecasting procedures can be classified into three broad categories: 1) forecasting

procedures are considered subjective if predictions are made on a subjective basis using

judgment, intuition, commercial knowledge and any other relevant information; 2)

forecasting procedures are considered univariate if predictions are made based entirely on

past observations in a given time series, by fitting a model to the data and extrapolating;

3) forecasting procedures are called multivariate if predictions are made by taking

observations on other variables into account as well as utilizing their past observations. A

common form of univariate models is a regression model. These are frequently used as

econometric models.

 For long-term forecasting, a univariate forecasting procedure such as

extrapolation of trend curves is useful to fit a curve to historic yearly totals and

extrapolate. Harrison and Pearce [1972] indicate that the forecasting lead time should not

exceed half the number of past years. The method is simple, fairly crude, but robust and

economical for long-term forecasting where complicated models can seldom be fitted to

past data. One drawback is that there is no logical basis for choosing among different

curves except by goodness of fit.

 92

In 1958, C. C. Holt suggested exponential smoothing, another univariate

forecasting procedure using weighted sum of past observations. Exponential smoothing

can be applied to any stationary series that does not contain a trend or seasonal pattern.

The procedure that generalized exponential smoothing to deal with time series containing

trend and seasonal variation is called Holt-Winters procedure [Winters 1960]. Holt-

Winters procedure introduces trend and seasonal terms that can be updated by the

exponential smoothing.

 Box and Jenkins [1968] create the most popular univariate forecasting procedure,

the Box and Jenkins procedure. This procedure is based on fitting an autoregressive

integrated moving average (ARIMA) model to a given set of data and taking conditional

expectations. The procedure starts with model identification, examining the data to see

which member of the ARIMA process classes is the most appropriate model. Then the

procedure requires estimation of parameters of the chosen model by minimizing the sum

of least squares. As a next step the procedure examines the residuals from the fitted

model. As a last step in the procedure, continuous considerations of alternative models

are necessary until the chosen model appears to be adequate.

One of major drawbacks of Box and Jenkins procedure is the difficulty to fully

automate the entire procedure. Granger and Newbold [1977] propose a procedure called

step-wise autoregression that can be considered a subset of the Box-Jenkins procedure.

Since autoregressive (AR) models are much easier to fit than moving average (MA) or

mixed autoregressive-moving average (ARMA) models, the step-wise autoregression has

 93

the advantage of being fully automatic in contrast with the Box-Jenkins procedure.

However, the step-wise autoregression requires additional parameters to closely fit given

data.

The majority of quantitative techniques used to build a mathematical model for a

series of values collected at different points in time utilize statistical means. This section

reviews some of fundamentals of the set of techniques classified as time series analysis.

A time series is a collection of quantitative observations made sequentially in time

[Chatfield 1984]. If a time series can be predicted exactly, it is said to be deterministic.

However, most time series are stochastic. This means the future can be only partially

determined by past values. For stochastic series, exact predictions are difficult to make

and must be estimated based on the fact that future values have a probability distribution.

Mathematically, a stochastic process may be defined as a collection of random

variables where T denotes the set of time-points at which the process is

defined. One common way to describe a stochastic process is to find the statistical

moments of the underlying probability distributions for the process, particularly the first

and second moments (which are called the mean and variance) and autocovariance

functions. Mathematical notation for the first and second moments for a stochastic

process with discrete time observations follows.

},),({ TttX ∈

The first moment, the mean function, of the underlying probability distribution at time t ,

),(tµ is defined by

)()(tXEt =µ .

 94

The second moment, the variance function at time t , , is defined by)(2 tσ

)]([)()(2 tXEXVart tt µσ −== .

The autocovariance function between time t and kt + of the underlying probability

distributions is defined by

)]}()][({[),()(ktXtXEXXCOVk ttktt +−−== + µµγ

where . K,2,10 ±±=k

In most statistical problems, estimating the properties of a population from a

sample is of primary interest. In time series analysis, however, it is often impossible to

make more than one observation at a given time. Thus, only one observation on the

random variable can be obtained at a time. Nevertheless we may regard the observed

time series as just one sample of the infinite set of time series that we might have

observed. This infinite set of time series is called the ensemble. Every member of the

ensemble is a possible realization of the stochastic process. The observed time series can

be regarded as one particular realization, and will be denoted by for if

observations are continuous and by for

)(tx)0(Tt ≤≤

tx =t ,,,1 NK if observations are discrete.

One unique feature of stochastic time series, which distinguishes time series from

common statistical data, is the correlation among the observed values of the series at

different time instants. If we let be a random variable from either a multivariate or a

univariate stochastic process at different discrete times

tX

,3, 2, ,1 ,0 nt K= then the random

variable will be correlated with the random variables and tX ,,,, 321 K−−− ttt XXX

 95

K,,, 321 −−− ttt XXX . The covariance between successive observations is called

autocovariance. The autocorrelation coefficient between observations a distance apart,

is given by

k

∑

∑

=

−

=
+

−

−−
= N

t
t

kN

t
ktt

k

xx

xxxx
r

1

2

1

)(

))((

where x is the sample mean for . tx

Typically autocorrelation coefficients are calculated by computing the series of

autocovariance coefficients, }))((1{
1
∑
−

=
+ −−=

kN

t
kttkk xxxx

N
cc , which can be obtained

from the usual covariance formula [Chatfield 1984]. Then the autocorrelation coefficient

at lag can be calculated by finding k
0c

c
r k

k = , which is the ratio between autocovariance

coefficient at lag and at lag 0. k

A time series is said to be strictly stationary (also called first-order stationary) if

the joint distribution of is the same as the joint distribution of

 for all . This implies that shifting the time origin

by an amount has no effect on the joint distribution at different times but rather the

joint distribution depends only on the intervals between . Furthermore, when

, the above definition implies that the distribution of must be the same for all

 so that

)(,),(1 ntXtX K

)(,),(1 ktXktX n ++ K kttt n , , , , 21 K

k

nttt , , , 21 K

1=n)(tX

t)(tXµ and are both constants which do not depend on the value of . 2
)(tXσ t

 96

When or higher, the joint distribution of two random variables at different time

instances depends only on the difference between two time instances and the difference is

called the lag.

2=n

A time series is said to be weakly stationary (also called second-order stationary) if

its mean is constant and its autocovariance function depends only on the lag, so that

µ=)]([tXE

and

).()](),([τγτ =+tXtXCOV

This weaker definition of stationarity is more commonly used than the first-order

definition since many of the properties of stationary processes depend only on the

structure of the process as specified by its first and second moments [Bartlett 1966].

There are four main types of univariate probability models for a time series, namely AR,

MA, ARMA, and ARIMA.

Suppose that is a discrete random process. A discrete random process is

called a purely random process if the random variables are a sequence of mutually

independent, identically distributed variables. This implies that the process has constant

mean and variance such that

}{ tZ }{ tZ

}{ tZ

0),()(== +ktt ZZCOVkγ for K,2,1 ±±=k .

Since the mean and autocovariance function do not depend on time, the process is first-

order stationary as well as second-order stationary. The autocorrelation function is given

by

 97

⎩
⎨
⎧

±±=
=

=
K,2,10

01
)(

k
k

kρ

Suppose that is a purely random process with mean zero and variance . Then a

process is called a moving average process of order and also abbreviated to

MA if

}{ tZ 2
zσ

}{ tZ q

)(q

 qtqtt ZZZX −+++= βββ K10 (3.2.1)

where }{ iβ are constants. For a given MA, we can verify that 0)(=tXE and

. ∑
=

=
q

i
it Z

XVar
0

22)(βσ

The autocorrelation function of the MA() is given by q

0

,,1
0

)(
0

/

1

)(0 0

2

<
>
=
=

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−

=
∑ ∑
−

= =
+

k
qk

qk
k

k

k

kq

i

q

i
ikii K

ρ

βββ
ρ

Although no restrictions on the }{ iβ are required for a MA process to be

stationary, Box and Jenkins [1970] propose restrictions on the }{ iβ to ensure

‘invertability’. This property ensures that there is a unique MA process for a given

autocorrelation function. The invertability condition for the general order MA process

can be expressed by using the backward shift operator, denoted by B , which is defined

by

jtt
j XXB −= for all . j

 98

Then equation (3.2.1) can be written as

 tt
q

qt ZBZBBX)()(10 θβββ =+++= K

where)(Bθ is a polynomial of order in An MA process of order is invertible if

the roots of the polynomial

q .B q

0)(10 =+++= q
q BBB βββθ K

all lie outside the unit circle [Box 1970].

 Suppose that }{ is a purely random process with mean zero and variance .

Then a process is said to be an autoregressive process of order if

tZ 2
Zσ

}{ tX p

 tptptt ZXXX +++= −− αα K11 . (3.2.2)

This is similar to a multiple regression model, but is regressed not on independent

variables but on past ’s. The autoregressive model in (3.2.2) is called an

autoregressive process of order and also denoted by AR(). For example, when

, it is called a first order AR process such that

tX

tX

p p

1=p

ttt ZXX += −1α . (3.2.3)

By successive substitution of in (3.2.3) 1−tX

 tttt ZZXX ++= −−)(12αα

 tttt ZZZX +++= −−−))((123αα

and eventually can be expressed as an infinite-order MA process in the form tX

 where K+++= −− 2
2

1 tttt ZZZX αα .11 +<<− α

 99

This property is called duality between AR and MA processes. If we use the backward

shift operator B rather than successive substitution of , then equation (3.2.3) can be

written

1−tX

 tt ZXB =−)1(α

so that

)1/(BZX tt α−=

 tZBB)1(22 K+++= αα

 = . K+++ −− 2
2

1 ttt ZZZ αα

The mean and variance for process are }{ tX

 0)(=tXE

and

 .)1()(422 K+++= αασ ZtXVar

When 1<α , converges and can be replaced with so that)1(42 K+++ αα)1/(1 2α−

 .)1/()(222 ασσ −== ZXtXVar

The autocovariance function is given by

][)(ktt XXEk +=γ

 { }∑ ∑ −+−=]][[1 jkt
j

t
i ZZE αα

 (for ∑
∞

=

+=
0

2

i

iki
Z αασ)0≥k

which converges for 1|| <α to

)1/()(22 ασαγ −= Z
kk

 100

 2
X

kσα=

The autocorrelation function is given by

 k

X

X
kkk α
σα
σα

γ
γρ === 20

2

)0(
)()((=k 0, 1, 2, K)

which can be rewritten for all integer lag k

 kk αρ =)((=k 0, ,1± ,2± K)

For the general order case where , by using the backward shift operator, equation

(3.2.2) can be written as

1>q

 tt
p

p ZXBB =−−−)1(1 αα K

which can also be written as

 1
1)1/(−−−−= p

ptt BBZX αα K

 tZBf)(=

where 1
1)1()(−−−−= p

p BBBf αα K

)1(2
21 K+++= BB ββ

The autocovariance function is given by

 (where ∑
∞

=
+=

0

2)(
i

kiiZk ββσγ 10 =β)

A sufficient condition for this to converge is that ∑ iβ converges, so it satisfies

stationarity for the process. However, finding the{ }iβ is algebraically hard. The

alternative way to determine if the process is stationary is to multiply (3.2.2) by ,

take expectations, and divide by assuming that the variance of is finite. Then we

can find

ktX −

2
Xσ tX

 101

)()1()(1 pkkk p −++−= ραραρ K for all .0>k

In order for AR to meet the stationary condition the roots of the equation)(p

01)(1 =−−−= p
p BBB ααφ K

must lie outside the unit circle.

For those processes with non-zero mean, equation (3.2.2) can be rewritten in the

form

.)()(11 tptptt ZXXX +−++−=− −− µαµαµ K

Combining MA and AR processes can form a useful class of time series models.

This class is called a mixed autoregressive-moving average process containing AR

terms and MA terms, abbreviated to an ARMA (, which can be expressed as

p

q), qp

qtqttptptt ZZZXXX −−−− ++++++= ββαα KK 1111 (3.2.4)

Using the backward shift operator equation (3.2.4) can be written in the form ,B

 tt ZBXB)()(θφ =

where),(Bφ)(Bθ are polynomials of order and respectively, such that p q

 p
p BBB ααφ −−−= K11)(

and

 . q
q BBB ββθ +++= K11)(

Any stationary ARMA process must have values of }{ iα which are the roots of

0)(=Bφ and lie outside the unit circle. When values of }{ iβ are the roots of

0)(=Bθ which lie outside of the unit circle, the process is invertible. The importance of

 102

ARMA processes is that describing a stationary time series by an ARMA model requires

fewer parameters than one described by an MA or AR process [Chatfield 1984]. Even

though finding an autocorrelation function of an ARMA process is fairly straightforward,

it is algebraically tedious.

 In practice most time series are non-stationary. In order to fit a stationary model,

such as AR, MA, or ARMA, it is necessary to remove sources of variation. If the

observed time series is non-stationary in the mean then we can still model the process

using a stationary model by differencing the series. Differencing is a special type of

filtering technique. It is particularly useful for removing a trend. It is based on applying a

differencing operator repeatedly until the time series becomes stationary. For example,

second order differencing of can be expressed by 2+tX

 tttttt XXXXXX +−=∇−∇=∇ +++++ 12122
2 2

where

 1−−=∇ ttt XXX

By replacing with (order differencing of) in equation (3.2.4) we have a

model capable of describing certain types of non-stationary series. Such a model is

called an autoregressive integrated moving average process (also abbreviated ARIMA)

tX t
d X∇ thd tX

and can be written

qtqtptptt ZZWWW −−− +++++= βαα KK11 (3.2.5)

where

 (difference of). t
d

t XW ∇= thd tX

 103

To this point, mathematical models that are available to describe various time

series have been discussed. These models are classified as a general class of linear

models. Linear time series models have two distinct advantages over their non-linear

counterparts: they can be understood in great detail and they are easy to implement

[Weigend and Gershenfeld 1992]. Linear time series also have one major drawback. They

are inappropriate to represent even moderately complicated systems. Identifying an

appropriate model for a given time series is challenging because it requires more

subjective judgment and practical experience than a clear-cut heuristic method.

Typically plotting an accurate correlogram, a graph in which is plotted against

the lag , based on the time series is the right start for time series analysis. Figures 9

and 10 illustrate how correlograms may be different under stationary and non-stationary

time series. The correlogram of the stationary process from Figure 3 clearly shows

how quickly the autocorrelation function decays compared to that of the non-stationary

process shown in Figure 4 despite its seasonal short-term fluctuations. On the other hand

the correlogram in Figure 4 indicates that the values of will not come down to zero

except for large values of the lag. In fact various trend removal techniques, such as curve

fitting, filtering, or differencing, are necessary to remove the underlying trend before

calculating . One popular filtering technique is the moving average method that is

discussed in detail in [Kendall 1976] and [Law and Kelton 1991].

kr

k

kr

}{ kr

 104

Time

Lag (k)4 8 12

+1

-1

rk

0
0

xt

Figure 3. A stationary time series showing short-term correlation with its
correlogram

 105

Time

Lag (k)4 8 12

+1

-1

rk

0
0

xt

Figure 4. A non-stationary time series together with its correlograms

 106

The correlogram is helpful in identifying which type of ARIMA model gives the

best representation of an observed time series. A correlogram like that in Figure 4, where

the values of do not come down to zero quickly, indicates that the series is non-

stationary and needs to be differenced so that an ARIMA model can be constructed. For

stationary series, the correlogram of the observed series is compared to the theoretical

of different ARMA processes in order to choose the most appropriate model.

kr

}{ kr

The autocorrelation function, , of a MA() process is relatively easier to

recognize since it drops to zero and flattens out at lag whereas the autocorrelation

function of an AR() approaches zero more slowly. This is due to the fact that it is a

mixture of dampened exponentials and sinusoids. The autocorrelation function of mixed

ARMA model also dies out gradually rather than having a sudden drop.

kr q

q

p

If of an observed time series is significantly different from zero but the

subsequent values of are all close to zero then an moving average model of order 1,

MA(1), is indicated. Alternatively, if , , , K appear to be decreasing

exponentially then an AR(1) model may be appropriate.

1r

kr

1r 2r 3r

 The interpretation of correlograms is one of the hardest aspects of time-series

analysis and this is where practical experience must come to play [Chatfield 1984].

 107

After identifying the type of ARIMA model that gives the best presentation of the

observed time series, the detail of the selected model such as the order and parameters of

the process must be found. For an AR process of order with mean p µ , the series can

be expressed by

tptptt ZXXX +−++−=− −−)()(11 µαµαµ K

If we let , for given observations, , then the parameters Np <≤1 N Nxx ,,1 K µ ,

pαα ,,1 K , can be estimated by minimizing the least square equation

 (3.2.6) 2

1
11)]()([µαµαµ −−−−−−= −

+=
−∑ ptp

N

pt
tt xxxS K

with respect to µ , pαα ,,1 K . If the process is normal, then the least squares are in

fact maximum likelihood estimates [Jenkins and Watts 1968].

tZ

In the first order case, with 1=p , minimizing (3.2.6) results in

1

)1(1)2(

ˆ1
ˆ

ˆ
α
α

µ
−

−
=

xx
 (3.2.7)

and

∑

∑
−

=

−

=
+

−

−−
= 1

1

2

1

1
1

1

)ˆ(

)ˆ)(ˆ(
ˆ

N

t
t

N

t
tt

x

xx

µ

µµ
α (3.2.8)

where)2()1(, xx are the means of the first and last (1−N) observations. Since x

is the unbiased estimator for µ̂ and

xxx ≅≅)2()1(,

µ̂ can be replaced by x .

 108

Now equation (3.2.8) becomes

∑

∑
−

=

−

=
+

−

−−
= 1

1

2

1

1
1

1

)(

))((
ˆ

N

t
t

N

t
tt

xx

xxxx
α , (3.2.9)

which is approximately equivalent to an autocorrelation function at lag 1. Thus, equation

(3.2.9) becomes

 1
0

1
1ˆ r

c
c

=≅α .

Similarly, for a second-order AR process (2=p) minimizing (3.2.6) gives

x≅µ̂

)1(
)1(ˆ

2
1

21
1 r

rr
−
−

≅α

)1(
)(ˆ

2
1

2
12

2 r
rr

−
−

≅α .

 For higher order AR processes two alternative approximate methods are

commonly used. The first method fits data to equation (3.2.6), treating it as if it is an

ordinary regression model. The second method is to substitute ρ ’s with the sample

autocorrelation coefficients in the first p Yule and Walker equations, which are denoted

by

)()1()(1 pkkk p −++−= ραραρ K for all , 0>k

and solve for)ˆ , ,ˆ(1 pαα K . In order to solve for)ˆ , ,ˆ(1 pαα K , Yule and Walker equations

can be expressed in matrix form

 rαR =ˆ

 109

where

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−−

−

−

−

1

1
1

1

321

312

211

121

K

MOMMM

K

K

K

ppp

p

p

p

rrr

rrr
rrr
rrr

R

)ˆ , ,ˆ(ˆ 1 p
T αα K=α

and

). , ,(1 p
T rr K=r

 For reasonably large , both methods will give close approximated values to the

least squares estimates for which

N

µ̂ is close to but not necessarily equal to x [Chatfield

1984].

It is difficult to determine the order of an AR process from the sample

autocorrelation function alone. For example, the theoretical autocorrelation function for

a first-order process decreases exponentially and the sample function should exhibit a

similar pattern. On the other hand, most theoretical autocorrelation functions for higher

order processes have a mixture pattern of damped exponential or sinusoidal functions and

they are difficult to identify. One approach is to fit AR processes of progressively higher

order, calculating the residual sum of squares for each value of and plotting this against

 [Chatfield 1984]. Then it is possible to find the proper value of where the curve of

the residual sum of squares against each value of

p

p p

p levels off. Typically, the addition of

extra parameters gives little improvement in fit. There are several other approaches,

such as one approach by Box and Jenkins [1970] using the partial autocorrelation

 110

function, and two alternative methods each based on the inverse autocorrelation function

[Chatfield 1979] and Akaike’s information criterion [Akaike 1978]. One drawback of

these heuristics is that they rely heavily on the linearity of the model and on assumptions

about the distribution from which the errors drawn [Weigend and Gershenfeld 1992].

Estimating the parameters of an MA process is more difficult than an AR process

because efficient explicit estimators cannot be found. Suppose we have an AR process of

order of 1, with mean µ , given by

11 −++= ttt ZZX βµ (3.2.10)

where 1 , βµ are constants and denotes a purely random process. If we write the

residual sum of squares, , solely in terms of ’s and the parameters

tZ

∑ 2
tZ x ,µ and 1β ,

and differentiate with respect to µ and 1β , as we did for the AR process in order to find

the least-squares estimates, the residual sum of squares is not a quadratic function of the

parameters. Thus, explicit least-squares estimates cannot be found.

 Box and Jenkins [1970] propose one way to calculate the corresponding residual

sum of squares using a recursive form of (3.2.10)

 11 −−−= ttt ZXZ βµ (3.2.11)

First, select suitable starting values for µ and 1β such as x=µ and 1β , which would

satisfy the theoretical first-order autocorrelation coefficients

)ˆ1(

ˆ
2

1

1
1 β

β
+

=r where 1ˆ
1 <β .

 111

Then, ’s for K where tZ ,1=t ,2 , N 00 =z

become

 ,11 µ−= xz 1122 zxz βµ −−= , K , 11 −−−= NNN zxz βµ .

Finally, the residual sum of squares, , can be calculated. These steps can be

repeated for other values of

∑
=

N

t
tZ

1

2

µ and 1β to find corresponding sum of squares. Then the

computed can be plotted against the (∑
=

N

t
tZ

1

2 ,µ 1β) plane. Finally, find the least square

estimates in terms of µ and 1β , which minimize . These are maximum likelihood

estimates. For higher order processes a similar type of iterative procedure can be applied.

∑
=

N

t
tZ

1

2

Estimating the appropriate order of the process can be done through looking for a ‘cut

off‘ point, lag , beyond which the values of the sample autocorrelation function remain

close to zero.

q

 So far we have focused on the sample autocorrelation function as the primary

diagnostic tool to gain insight into the probability model of an unknown time series

process. Inference based on this function is often called an analysis in the time domain.

There is another useful tool, called the spectral density function, to investigate the

frequency properties of a time series. Inference regarding this function is called an

analysis in the frequency domain. The frequency domain is the counter part of the time

domain. Thus, from a practical stand point, the spectral density function is considered

complementary to the sample autocorrelation function. However, both functions contain

the same information regarding a stationary stochastic process but express it in different

 112

ways. In order to understand the spectral density function, we must first look into a

function called the spectral distribution function.

 The formal representation of the spectral distribution function can be given

tt ZtRX ++=)cos(θω (3.2.12)

where ω is called frequency of the periodic variation (also called the angular frequency),

R is called the amplitude of the variation, θ is called the phase, and denotes a

stationary random series. A graphical example of (3.2.12) is shown in Figure 5.

tZ

 Time

xt

Figure 5. A time series contains a periodic component

 . The frequency of the periodic variation, ω , is the number of radians per unit time.

However, by some authors [Jenkins and Watts 1968], the frequency is often referred as

the number of cycles per unit time and expressed by

 113

π
ω
2

=f

Then the period of a sinusoidal cycle, called λ the wavelength, can be denoted by

ω
πλ 21

==
f

.

 A time series model expressed in (3.2.12) is simple but not realistic in practice.

Since it is highly likely for a given time series to have variation at several different

frequencies, a generalized form of the model can be found

 (3.2.13) t

k

j
jjjt ZtRX ++= ∑

=

)cos(
1

θω

Since θωθωθω sinsincoscos)cos(ttt −=+ , model (3.2.13) can be rewritten as a sum of

sine and cosine terms in the form

 (3.2.14) ∑
=

++=
k

j
tjjjjt ZtbtaX

1

)sincos(ωω

where jjj Ra θcos=

and jjj Rb θsin−= .

If we let , the work of Wiener and others has shown that any discrete stationary

process measured at unit intervals can be represented in the form

∞→k

∫∫ +=
ππ

ωωωω

0

0
)(sin)(cos dvtdutX t (3.2.15)

where)(ωu and)(ωv are uncorrelated continuous processes with orthogonal increments

for all w in the range),0(π . For a continuous process, the upper limits would be , but ∞

 114

for a discrete process measured at unit intervals of time there is no loss of generality in

restricting frequencyω to the range (0,)π since

⎩
⎨
⎧

−
=+

t
tkt

)cos(
cos

)cos(
ωπ

ω
πω

odd with integers ,
even with integers ,

ktk
ktk

The sinusoidal model (3.2.15) is called the spectral representation of the process. In

practice, processes)(ωu and)(ωv hold no direct significance in terms of

characterization of a given time series. Instead, a function,)(ωF which is called the

power spectral distribution function, can be used. The spectral distribution function arises

from the Wiener-Khintchine theorem (see Section 6.1 of [Bartlett 1966]) and is related to

)(ωu and)(ωv . The theorem says that for any stationary stochastic process with

autocovariance function)(kγ , there exists a monotonically increasing function,)(ωF ,

such that

∫=
π

ωωγ

0
)(cos)(dFkk (3.2.16)

Equation (3.2.16) is called the spectral representation of the autocovariance function. A

normalized form of the spectral distribution function, symbolically , can be found

by

)(* ωF

 2
*)()(

X

FF
σ
ωω = (3.2.17)

which is the proportion of variance accounted for by frequencies in the range) ,0(π .

Since and is monotonically increasing in the range 1)(* =πF)(* ωF) ,0(π ,

behaves almost as a cumulative distribution function.)(* ωF

 115

 For a purely stochastic discrete stationary process, the spectral distribution

function)(ωF is continuous in),0(π and therefore, it can be differentiated with respect

to ω in),0(ω . Thus, the derivative of the spectral distribution function,)(ωf , can be

denoted by

ω
ωω

d
)(d)(Ff =

and called the power spectral density function or simply the spectrum.

When)(ωf exists for a stationary stochastic process, autocovariance equation (3.2.16)

for the process can be expressed in the form

 (3.2.18) ωωωγ
π

d)(cos)(

0
fkk ∫=

When , then equation (3.2.18) becomes 0=k

 (3.2.19))(d)()0(

0

2 πωωσγ
π

FfX === ∫

The relationship between the spectral distribution function and the spectral density

function is somewhat similar to that of between the probability density function and the

corresponding continuous probability function [Chatfield 1984]. An example of a

spectrum with the corresponding normalized spectral distribution function is shown in

Figure 6. A peak in the spectrum indicates an important contribution to variance at given

frequencies. The spectrum that is concentrated at low frequency and reaches 0 relatively

faster is often the result of a smooth stationary time series.

In some situations a time-domain approach based on the autocovariance function

is more useful while in other situations a frequency-domain approach is preferable. For

 116

example, spectral analysis, which is the general term given to methods estimating the

spectral density function or spectrum, is at its most useful to access often hidden

frequency components from stationary non-deterministic time series with no obvious

trend or seasonal variation. On the other hand, the autocovariance function can be

applied to either stationary or non-stationary processes. Equation (3.2.18) is expressed in

an inverse form in terms of)(kγ :

∑
∞

−∞=

−=
k

kiekf ωγ
π

ω)(1)((3.2.20)

Since)(kγ is a symmetric function, equation (3.2.20) is often written in the equivalent

form

 ⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∞

=1
cos)(2)0(1)(

k
kkf ωγγ

π
ω (3.2.21)

Using (3.2.21), we can verify that the spectrum is the Fourier transformation of the

autocovariance function.

)(ωf)(* ωF

ωω0 0π π

1

Figure 6. A spectrum with the corresponding normalized spectral

distribution function

 117

Thus far, we have only focused on analyzing a single time series. In some cases

observations must be made on two or more time series to find the relationship among

them. We call these multivariate processes. When observations are made on two time

series, we call it a bivariate process. Jenkins and Watts [1968] distinguish two types of

bivariate situation. The first one is designed for a time series on equal time intervals and

the correlation between them is the primary concern. The second one is to deal with a set

of time series in which the series are casually related. For the second type one series is

regarded as the input to a linear system, while other is considered the output to the other.

For a bivariate process, a new function, called the cross-covariance function, is

introduced in addition to the statistical moments up to second order, namely the mean and

autocovariance functions of each of the two series. The cross-covariance function can be

denoted by

),Cov(),(ττγ += ttxy YXt .

The cross-covariance function differs from the autocovariance function in a way that it is

not an even function unlike autocovariance, since

)()(τγτγ −= yxxy .

The cross-correlation function,),(τρ xy can also be defined by

[])0()0(/)()(yyxxxyxy γγτγτρ = .

The cross-spectrum of a discrete bivariate process measured over the range) ,0(π can be

expressed in the form

 ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

−∞=

−

k

ki
xyxy ekf ωγ

π
ω)(1)((3.2.22)

 118

Again, cross-spectrum (3.2.22) can be written in the form

 ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

−∞=

−

k

ki
xyxy ekf ωγ

π
ω)(

2
1)((3.2.23)

over the range) ,(ππ− , which is preferred by most authors. Equation (3.2.23) has a

simple inverse relationship to)(kxyγ such that

 . ∫−=
π

π

ω ωωγ d)()(xy
ki

xy fek

There are several functions that can be derived from various forms denoting the same

cross-spectrum function. These functions are used to describe unique relationships

between two series in the frequency domain. For example, (3.2.22) can be expressed in

the form of a complex function

)()()(ωωω iqcf xy −= (3.2.24)

where

)(ωc is the real part of the such that xyf

 ⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

−∞=k
xy kkc ωγ

π
ω cos)(1)((3.2.25)

 []
⎭
⎬
⎫

⎩
⎨
⎧

++= ∑
∞

=1
cos)()()0(1

k
yxxyxy kkk ωγγγ

π

 and)(ωq is the complex part of the such that xyf

⎥
⎦

⎤
⎢
⎣

⎡
= ∑

∞

−∞=k
xy kkq ωγ

π
ω sin)(1)((3.2.26)

 []
⎭
⎬
⎫

⎩
⎨
⎧

−= ∑
∞

=1
sin)()(1

k
yxxy kkk ωγγ

π

 119

Equation (3.2.25) is called the co-spectrum and equation (3.2.26) is called the quadrature

spectrum. The third way of expressing cross-spectrum function (3.2.22) is to use the

form

 (3.2.27))()()(ωφωαω xyi
xyxy ef =

where =)(ωα xy cross-amplitude spectrum

 [])()(22 ωω qc += (3.2.28)

and =xyφ phase spectrum

 (3.2.29))](/)([tan 1 ωω cq−= −

Another useful function derived from the cross-spectrum is the squared coherency

which is found by

[] [])()(/)()()(22 ωωωωω yx ffqcC += (3.2.30)

)()(/)(2 ωωωα yxxy ff=

where)(ωxf ,)(ωyf are the power spectra of the individual stochastic processes,

and . It can be shown that

tX

tY .1)(0 ≤≤ ωC The squared coherency measures the linear

correlation between the two components of the bivariate process at frequency ω . The

closer)(ωC is to one, more closely the processes are related at frequency ω . Lastly a

function called the gain spectrum is given by

 [])(/)()()(ωωωω xyxy fCfG =

)(/)(ωωα xxy f= (3.2.31)

 120

Equation (3.2.31) is in fact the regression coefficient of the process on the process

at frequency

tY tX

ω . Interpreting a cross-spectrum is a challenging task compared to

interpreting an autospectrum [Chatfield 1984]. Usually three functions out of above six

functions have to be plotted against frequency to describe the relationship between two

series. For example, the coherency, phase, and cross-amplitude are suitable for certain

bivaritate processes, while the co-quadrature and coherency spectra are most suitable for

different bivariate processes. Granger and Hughes [1964] have carried out a simulation

study on some short series with cross-spectral estimators.

Most theories available for time series analysis can be applied only if the process

is stable. However, many time series in real life do change with time even though they

change slowly. We previously discussed some ways of transforming data to achieve

stationarity, such as differencing, so that the theories can be applied and a stationary

model can be fit. However, it is often more important to describe the non-stationary

features of the series, such as trends and seasonality, rather than the properties of the

stationary residuals. One way to capture slowly-changing series is to fit a time-dependent

spectrum called an evolutionary spectrum, where the frequency properties are examined

for overlapping segments [Priestley 1981].

 121

3.3 Artificial Neural Networks

This section presents artificial neural networks as a general non-parametric

transient performance prediction tool. Before introducing the ANN model to be used in

this research, fundamentals and a brief history of ANNs are reviewed. A well-known

ANN architecture, a multilayer ANN and its training algorithms are also discussed to

help readers who are new to ANNs.

3.3.1 Background

Artificial neural networks (ANNs), also known as parallel processing elements or

connectionist networks, are computational paradigms that mimic simplified models of

their biological counterparts, biological neural networks. Biological neural networks are

the local assemblies of neurons and their dendritic connections that form a human brain.

As shown in Figure 7 [Hagan et al. 1996], most biological neurons consist of a cell body

plus one axon and many dendrites. The axon is a protuberance that delivers the neuron’s

output to connections with other neurons. Dendrites are protuberances that provide a

wide surface area, facilitating connection with the axons of neighboring neurons. A

neuron does nothing unless the collective influence of all its inputs reaches a threshold

level. Whenever that threshold is reached, a neuron produces a full-strength output in the

form of narrow pulse that transmits from the cell body, down the axon, and into the

 122

axon’s branches. When this happens, the neuron is said to fire. Since a neuron either

fires or does nothing, it is said to be an all-or-none device [Winston 1992].

Cell BodyDendrites

Synapses

AxonNucleus

Cell BodyDendrites

Synapses

AxonNucleus

Figure 7. Anatomical illustration of biological neurons
[Hagan et al. 1996]

Axons influence dendrites over narrow gaps called synapses. Stimulation at some

synapses encourages neurons to fire. At the same time stimulation at others discourages

neurons from firing. It is widely believed that learning takes place in the vicinity of

 123

synapses and has something to do with the intensity level to which synapses translate the

pulse traveling down one neuron’s axon into excitation or inhibition of the next neuron.

Artificial neural networks typically consist of simulated neurons like the one

shown in Figure 8. The simulated neuron is viewed as a node connected to other nodes

via links that correspond to axon-synapse-dendrite connections.

Σp

Inputs General Neuron

)(bwpfa +=

w n a

a

1

f

Σ - summation

f - transfer function – a linear or a nonlinear function of n

 , ,, , , wpnba - scalars

Σp

Inputs General Neuron

)(bwpfa +=

w n a

a

1

f

Σ - summation

f - transfer function – a linear or a nonlinear function of n

 , ,, , , wpnba - scalars

Figure 8. Single-Input Neuron

 124

A weight is associated with each link. Like a synapse, the weight for a given node

determines the strength of the node’s influence on another. More specifically, one node’s

influence on another is the product of the influencing neuron’s output value times the

connecting link’s weight. For example, a large positive weight corresponds to a strong

excitation, or a small negative weight corresponds to weak inhibition.

The work of McCulloch and Pitts [1943] introduces the first mathematical model

of a neuron, in which a weighted sum of input signals is compared to a threshold value to

determine whether or not to fire the neuron. Their work is acknowledged as the origin of

the modern view of neural networks and demonstrates that networks of artificial neurons

are capable of handling a broad range of arithmetic or logical functions. In 1949, Hebb

[1949] proposed one of the first learning rules of biological neurons, which explained a

mechanism for learning at the cellular level.

The first practical application of ANNs appeared in the late 1950s and for the first

time, neural networks demonstrated their pattern recognition capability. This was

enabled by the invention of the perceptron network and associated learning rule by

Rosenblatt [1958]. Despite its limited capability, the success of the perceptron created a

great deal of enthusiasm among many neural network researchers. In 1960 Widrow and

Hoff [1960] introduced a perceptron-like network with an adaptive learning capability.

They assumed that the system has inputs and a desired output classification for each

input, and that the system can calculate the error between the actual and target output. By

using a gradient descent method, the weights are adjusted in order to minimize the mean

 125

square error. The learning algorithm is also known as Least Mean Square (LMS)

algorithm.

 Minsky and Parpert [1969] publicized the first comprehensive analysis of

perceptron networks. In this book they point out the inherent limitations of perceptrons.

One of the limitations is that a given perception-learning rule is not guaranteed to

converge to a solution in a finite number of steps, unless the given input space (or vector)

is linearly separable. This rather pessimistic view discouraged many potential new

developments in the area and put most of the neural network research community into

silence for the following ten years.

Even during this period of silence, some notable works were published. For

example, Kohonen [1972] proposed a correlation model for associative memory. The

model was trained, using the outer product rule, also known as the Hebb rule [Hebb

1949], to learn an association between input and output vectors. Almost at the same time

Anderson [1972] independently proposed a “linear associator” model for associative

memory. The model was trained in a similar manner as a generalized approach to the

Hebb rule so that it learned an association between input and output vectors.

During the 1980s many of earlier limitations in the field, such as absence of

powerful computers and fresh insights into the problems, dissipated. Research in neural

networks rapidly expanded during this period. The introduction of desktop personal

computers and powerful workstations fueled this phenomenon. Two notable concepts

 126

were introduced during this period. The first was the work done by Hopfield [1982] to

explain the operation of a certain class of recurrent networks, using statistical mechanics

as an associative memory. The second one was the introduction of the back propagation

algorithm, which was discovered by several independent researchers including Rumelhart

and McClelland [1986] for training multi-layer perceptron networks.

 During the 1990’s there was a rapid growth of public interest, more widespread

industrial applications, and an explosion of research publications in the area of artificial

neural networks. As Hagan et al. [1996] point out, these renewed interests in ANNs have

much to do with new concepts, such as innovative architectures and training rules. But

these phenomena have also resulted from an improvement in the average computer

processor speed and a growing public interest in information technology in general.

Further breakthroughs in the field are likely as progress is made in our understanding of

biological neural networks.

ANNs are typically used in pattern recognition, where a collection of numerically

translated features such as an image is presented to the networks, and the task is to let the

networks get familiar with the translated features through a course of training so that it

can categorize the input feature pattern to one or more distinguishable classes. Another

principal use for ANNs is nonlinear regression, where the task is to find a smooth

interpolation between points. In both cases, all the relevant information is presented to

the network simultaneously. In contrast, time series prediction using neural networks

involves processing of patterns that evolves over time to predict future observations,

 127

which implies continuous feeding of its predicted observations (outputs) as a part of past

observations (inputs).

 The simplest way to teach a network about the past is to provide time-delayed

samples to its input layer. The network predicts the future not only based on the present

but also on the past. Mozer [1992] argues that conventional neural network architectures

are not suited for patterns that vary over time. He identifies two necessary architectural

elements, short-term memory and a generic predictor, in temporal sequence processing

using neural networks. Furthermore, three dimensions along which neural net temporal

memory models vary are identified: memory form (delay line, exponential trace, gamma

trace), content (input, transformed input, transformed input and state, output, transformed

output, and transformed output and state), and adaptability (static, adaptive).

The simplest form of memory is a buffer containing the n most recent inputs.

Such a memory is often called a tapped delay-line model because the buffer can be

formed by a series of delay lines. It provides the basis for traditional statistical

autoregressive (AR) models. Tapped delay models are more common in neural network

architectures than other forms of short-term memory such as exponential trace or gamma

memory. Unlike the delay-line memory, the exponential trace memory does not sharply

drop off at a fixed point in time; rather the strength of an input decays exponentially.

This implies that more recent inputs will always have greater strength than distant inputs.

 128

de Vries and Principe [1991] use two dimensions, depth and resolution, to

characterize the tapped delay-line and exponential trace memories. In general, the term,

“depth” in memory, refers to how far into the past the memory stores information in

relation to the memory size. A high-depth memory easily holds information distant in the

past, whereas a low-depth memory only holds recent information. The second term,

“resolution”, refers to the degree to which information concerning the individual

elements of the input sequence is preserved. A high-resolution memory can reconstruct

the actual elements of the input sequence; low-resolution memory holds distorted

information about the sequence. Memory models that generalize across delay lines and

exponential traces are gamma memories. Gamma memories allow a continuum of

memory forms covering all levels of depth and resolution combinations. Gamma

memories use the gamma density function as the corresponding kernel for discrete-time

memories.

Elman and Zisper [1988] propose a neural net architecture consisting of input as

its memory content and delay line as its memory form, often called I-delay memory. The

I-delay memory is the simplest class and corresponds to a feedforward network with a

delay space embedded in the input sequence. A similar architecture is also found in other

papers [Lapedes and Farber 1987], [Zhang and Hutchinson 1992]. The TI-delay

architecture, a combination of transformed input and tapped delay line, has been

extensively used in physical science oriented neural net application [Kleinfeld 1986],

[Sompolinksy and Kanter 1986]. In this architecture, each hidden unit, which is a

 129

nonlinear transformation of the input, maintains a history of its n most recent values, and

all these hidden values are available to the next layer.

TI-delay memories are the basis of the time-delay neural networks (TDNN)

[Waibel et al. 1989] and finite impulse responses (FIR) neural network [Wan 1992].

Herz [1991] proposes a TIS-delay memory, a combination of transformed input and state

as its memory content and delay line as its memory form. TIS-delay memories are

designed for networks whose dynamics are governed by a Lyapunov function under

certain symmetry conditions on the time delayed weights. Connor et al. [1992] studied a

nonlinear neural network based ARMA model, whose MA component is constructed

from outputs. Their study shows that nonlinear MA() models can be constructed using

O-delay memories, a combination of output as its memory content and delay line as its

memory form.

q

Among all possible architectures using Mozer’s three dimensions, those that

utilize non-delay line type memory forms which are widely studied in other literature are:

TI-exponential (transformed input as memory content and exponential trace as its

memory form) [Elman and Zipser 1988], [Lapedes and Farber 1987], [Zhang and

Hutchinson 1992], TIS-exponential memory (transformed input and state as its memory

content and exponential trace memory as its memory form) [Mozer 1992], O-exponential

(output as its memory content and exponential trace memory as its memory form) [Jordan

1987], and I-gamma memory (input as its memory content and gamma trace memory as

its memory form) [de Vries and Principe 1991]. Mozer [1992] uses a TIS-exponential

 130

memory to create a multiscale integration model. His work is to design recurrent hidden

units that have different time constants of integration. In Mozer’s model, the slow

integrators form a coarse but global sequence memory and the fast integrators form a

fine-gained but local memory. Jordan [1987] uses an O-exponential memory to create a

sequence production network.

3.3.2 Multilayer Neural Network Architecture and Training Methods

This section presents a brief review of the most common form of neural networks,

multilayer neural networks, and its training algorithms. According to Hagan, Demuth,

and Beale [1996], despite ANN’s fast growing popularity and applications in many

diverse fields, there has been a lack of cohesion in standard mathematical notation and

architectural representations of ANNs. To make the matter simpler, through the rest of

this section, scalar inputs are represented in small italic letters such as a, b, and c. On the

other hand, vector inputs are expressed in small bold nonitalic letters such as a, b, and c.

Weights on connections between input(s) and neuron(s) are often expressed in a matrix

form and these matrices are expressed in capital bold nonitalic letters such as A, B, and

C. The output of a single simulated neuron as shown in Figure 8 (Page 123) is the result

of a transfer function of the summation output n. A transfer function may be a linear or

nonlinear function of n (a sum of weighted inputs Wp or wp where W is a weight matrix,

p is a input vector, and w and p are scalar parameters).

 131

There are three primary types of transfer functions – hard limit transfer function,

linear transfer function, and log-sigmoid transfer function. The hard limit transfer

function, shown in the top of Figure 9, sets the output of the neuron to 0 if the function

argument is less than 0, or 1 if its argument is greater than or equal to 0.

a

n

+1

0

-1
a = hardlim(n)

a = 0 when n < 0
0 ≥na = 1 when⎩

⎨
⎧

a

n

+1

0

-1

a = purelin(n)

a = n for all n

a

n

+1

0

-1

a = logsig(n)

ne
a -1

1
+

= for all n

Figure 9. Typical Transfer functions

 132

This function is commonly used to create neurons that classify inputs into two distinct

categories. Whereas, the linear transfer function, shown in the middle of Figure 9, sets

the output of the neuron to the same value as the input. The log-sigmoid transfer

function, shown in the bottom of Figure 9, converts the input into the output that ranges

from 0 to 1.

Neurons are the smallest building block of a neural network. More than one

neuron can be used to construct a layer of a neural network. Furthermore, a network can

be constructed with more than one layer of multiple neurons. These are called multi-

layer networks. Each layer has its own weight matrix W , its own bias vector , a net

input vector and an output vector . In addition, superscript numbers are appended to

each of these variables to distinguish a particular variable for a given layer. For example,

the weight matrix for the first layer is written as , and the one for the second layer is

written as . Using this notation, a three-layer network can be illustrated as in Figure

10.

b

n a

1W

2W

As shown in Figure 10, for the first layer, the input vector has dimension p R

and there are summation nodes, the weight matrix becomes a matrix.

Consequently, the output vector for the first layer has the dimensions of . The

output for first layer is the input for the second layer. Similarly, the second layer output

is the third layer input. Therefore, the weight matrix and have the dimension of

and respectively. These dimensional parameters can be found in the

1S 1W RS ×1

1a 1S

2W 3W

12 SS × 23 SS ×

 133

shorthand notation where the number of inputs is followed by the number of neurons in

each layer. This notation is used to identify the structure of a multilayer network. Such a

shorthand notation for the three-layer network in Figure 10 is . 321 SSSR −−−

∑

∑

∑

1f

1f

1f

1p

2p

3p

MM
Rp

1,1
1w

RSw ,
1 1

1
1n

1
1n

11
Sn

1
1b

1

1

1

2
1b

11
Sb

M M

1
1a

2
1a

11
Sa

∑

∑

∑

1
2n

2
2n

22
Sn

1
2b1

1

1

2
2b

22
Sb

M M

1
2a

2
2a

22
Sa

∑

∑

∑

1
3n

2
3n

33
Sn

1
3b

1

1

1

2
3b

33
Sb

M M

1
3a

2
3a

33
Sa

1,1
2w

12 ,
2

SSw

2f

2f

2f

1,1
3w

23 ,
3

SSw

3f

3f

3f

Inputs First Layer Second Layer Third Layer

)(1111 bpWfa +=)(21222 baWfa +=)(32333 baWfa +=
 where R S ×11 W an is matrix. where S S 12 × W2 an is matrix. where S S 23 ×3 W an is matrix.

)))(3211122333 bbbp(Wf(WfWfa +++=

Figure 10. Three-layer network

The transfer functions for a multi layer network can be chosen based on the

primary use of the net. If the net is for pattern classification, transfer functions such as

Hard Limit (refer to Figure 9) are typical. If the net is for function approximation, a

combination of Log-sigmoid and Linear transfer function is useful. Determination of the

proper number of nodes in hidden layers is more critical in the case of function

approximation. The number of nodes in hidden layers such as first and second layers in

 134

Figure 10, has to be large enough to capture a realistic view of the unknown target

function but also small enough to result in a reasonable training length and ease of

training. The number of hidden layers is also critical to reliable performance of the net.

For a network to be able to generalize, the network should have fewer parameters to train

than the number of data points in the training set. Hornik et al. [1989] have shown that

two-layer feedforward networks, with sigmoid transfer functions in the hidden layer and

linear transfer functions in the output layer, can approximate virtually any integrable

function of interest to any degree of accuracy.

The most popular algorithms to train multilayer networks are backpropagation

algorithms. The concept of “backpropagation” first appeared in the thesis of Werbos

[1974] and was independently rediscovered and revived during the mid 1980s by several

researchers [Le Cun 1985; Parker 1985; Rumelhart and McClelland 1986]. Today, the

word “backpropagation algorithm” refers to any supervised learning (see [Hagan et al.

1996]) algorithm in which derivatives of transfer functions are recursively calculated

from the last layer to the first layer of the network and used to update weights and bias in

order to train the network to perform a given task. Existing backpropagation algorithms

differ based on the way in which the resulting derivatives are used.

The backpropagation algorithm uses the same performance index as the LMS

(least mean square algorithm). The algorithm is provided with Q pairs of input and

output vectors consisting of training points:

 , , K , (3.3.1) },{ 11 t p },{ 22 t p },{ QQ t p

 135

where is a input vector to the network, and is the corresponding target output

vector. These vectors comprise a subset of the true functional domain and range. The

training procedure starts with a feed forward process first. As a single input vector p is

applied to the network and propagated to the last layer, the final network output vector a

is compared to the corresponding target vector t . Then the algorithm adjusts the network

parameters such as weights and biases using a backpropagation process in order to

minimize the mean square error:

qp thq qt

] (3.3.2))[()()(22 atEeEF −==x

where is the vector of network weights and biases. Since both and a are vectors, the

equation (3.3.2) can be generalized to

x t

 . (3.3.3))]()[(][)(a-ta-teex TT EEF ==

As with the LMS algorithm, (3.3.3) can be approximated by

 . (3.3.4))()())()(())()(()(ˆ kkkkkkF TT eeatatx =−−=

Now, the steepest descent algorithm (see [Hagan et al. 1996]) for is used to update

the weights and biases at each iteration . The steepest descent algorithm for the

approximate mean square error is

)(ˆ xF

k

 m
ji

m
ji

m
ji w

Fkwkw
,

,,

ˆ
)()1(

∂
∂

−=+ α , (3.3.5)

m
i

m
i

m
i b

Fkbkb
∂
∂

−=+
ˆ

)()1(α , (3.3.6)

where α is a fixed learning rate. A stable learning rateα should be between 0 and

max/2 λ where maxλ is the maximum eigenvalue of the Hessian matrix. The next step of

the algorithm is to calculate the partial derivatives. For a multilayer network calculating

 136

the partial derivatives is not trivial, since the function (3.3.4) is not an explicit function of

the weights and biases in the hidden layers. Thus, the partial derivatives in (3.3.5) and

(3.3.6) should be solved using the chain rule:

 m
ji

m
i

m
i

m
ji w

n
n
F

w
F

,,

ˆˆ

∂
∂

×
∂
∂

=
∂
∂ , (3.3.7)

m
i

m
i

m
i

m
i b

n
n
F

b
F

∂
∂

×
∂
∂

=
∂
∂ ˆˆ

. (3.3.8)

Since

 , (3.3.9) ∑
−

=

− +=
1

1

1
,

mS

j

m
i

m
j

m
ji

m
i bawn

the second term in each of equation (3.3.7) and (3.3.8) can be calculated as

 ,1

,

−=
∂
∂ m

jm
ji

m
i a

w
n

 1=
∂
∂

m
i

m
i

b
n

. (3.3.10)

If we let m
im

i

s
n
F

=
∂
∂ ˆ

, where is the sensitivity of to changes in the th element of the

net input at layer m , equation (3.3.7) and (3.3.8) can be simplified to

m
is F̂ i

 1

,

ˆ
−=

∂
∂ m

j
m
im

ji

as
w
F , (3.3.11)

 m
im

i

s
b
F

=
∂
∂ ˆ

. (3.3.12)

Now, the equation (3.3.5) and (3.3.6) can be expressed as

 , (3.3.13) 1
,,)()1(−−=+ m

j
m
i

m
ji

m
ji askwkw α

 . (3.3.14) m
i

m
i

m
i skbkb α−=+)()1(

 137

This can be generalized in matrix form:

 , (3.3.15) Tmmm kk)()()1(1-masWW α−=+

 , (3.3.16) mmm kk sbb α−=+)()1(

where

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂
∂
∂

=
∂
∂

≡

m
s

m

m

m
m

mn
F

n
F
n
F

F

ˆ

ˆ

ˆ

ˆ
2

1

M
n

s . (3.3.17)

The sensitivities can be calculated using a chain rule. By using the Jacobian matrix ms

m

m

n
n
∂
∂ +1

, the equation (3.3.17) can be written

1mnn

n
n

s
+

+

= ∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

=
FF

T

m

m
m

ˆˆ 1

. (3.3.18)

Since

 m
j

s

l

m
i

m
l

mm
li

m
j

s

l

m
i

m
l

m
li

m
j

m
i

n

bnfw

n

baw

n
n

mm

∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∂

=
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+∂

=
∂
∂

∑∑
=

++

=

++

+
1

11
,

1

11
,1

)(
 (3.3.19)

),(
)(1

,
1

,
m
j

mm
jim

j

m
j

m
m

ji nfw
n

nf
w &++ =

∂

∂
=

the Jacobian matrix can be written

),(1
1

mnFW
n

n mm
m

m
&+

+

=
∂
∂ (3.3.20)

 138

where

 (3.3.21)

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

)(00

0)(0
00)(

)(2

1

m
s

m

mm

mm

mm

mnf

nf
nf

&L

MOMM

L&
L&

& nF

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂
∂

∂
∂

=

m
s

m
s

m

m

mm

m

mm

m

m

n

nf

n
nf

n
nf

)(
00

0
)(

0

00
)(

2

2

1

1

L

MOMM

L

L

.

The equation (3.3.18) can be rewritten using equation (3.3.20)

1
1

1 ˆ
))((

ˆˆ
+

+
+

+

= ∂
∂

=
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=
∂
∂

= m
Tmmm

T

m

m
m FFF

n
WnF

nn
n

n
s 1m

& (3.3.22)

 11))((++= mTmmm sWnF &

The recursive relationship in which the sensitivity at layer is computed from the

sensitivity at layer leads to the term backpropagation. The equation (3.3.22) can be

used to calculate sensitivities for the first layer and all hidden layers. However, a different

equation is required to calculate the sensitivity for the last layer . Since

 and

m

1+m

Ms

)()(ˆ a-ta-t TF = M
i

i

n
a

∂
∂

 can be calculated using a similar Jacobian matrix as seen in

(3.3.21), the sensitivity for the final layer can be expressed as Ms

).)((2
ˆ

a-tnF
n

s MM
M

M F &−=
∂
∂

= (3.3.23)

 139

A summary of the backpropagation algorithm for an M layer network can be given as

follows.

1. Propagate the input forward (from the first layer to the last layer) through the

network:

pa =0 , (3.3.24)

) for (1111 ++++ += mmmmm baWfa 1,,2,0 −= Mm K , (3.3.25)

Maa = . (3.3.26)

2. Propagate the sensitivities backward (from the last layer to the first layer) through

the network:

))((2 atnFs −−= MMM & for the last layer, (3.3.27)

11))((++= mTmmmm sWnFs & for 1,2,,1 K−= Mm . (3.3.28)

3. Finally, update the weights and biases at each iteration using the approximate

steepest descent rule:

Tmmmm kk)()()1(1−−=+ asWW α , (3.3.29)

mmm kk sbb α−=+)()1(. (3.3.30)

 One of the major drawbacks in the basic backpropagation algorithm using the

steepest descent algorithm is the long training time. There are two types of variations on

backpropagation to improve the performance of the algorithm: heuristic modifications

and standard numerical optimization techniques. The first method, heuristic

modifications, is the use of momentum [Vogl et al. 1988]. This method is based on the

fact that convergence to a global minimum might be improved if the oscillations in the

 140

trajectory are reduced. It is a common phenomenon in neural network training that

increasing the learning rate will make the algorithm unstable when the algorithm reaches

steeper portions of the performance surface . A momentum filter can be added to the

parameter changes in order to reduce the side effect of using a higher learning rate. If we

let

F̂

)()()1(kkk mmm WWW ∆=−+ and

 ,)()()1(kkk mmm bbb ∆=−+

then equations (3.3.29) and (3.3.30) become

 , (3.3.31))()(1 Tmmm k −−=∆ asW α

 . (3.3.32))(mm k sb α−=∆

The modified parameter update equations for the backpropagation algorithm can be

expressed using a recursive relationship and introducing a momentum coefficient γ :

 , (3.3.33) Tmmmm kk)()1()1()(1−−−−∆=∆ asWW αγγ

 , (3.3.34) mmm kk sbb αγγ)1()1()(−−−∆=∆

In a modified backpropagation algorithm using momentum, the parameters and

are updated only after the entire training set has been presented. By using momentum,

we can use a larger learning rate and accelerate convergence without making the

algorithm unstable when the trajectory is moving in a consistent direction. The modified

backpropagation algorithm using momentum, sometimes called MOBP, is simple to

implement and significantly faster than the steepest descent backpropagation (SDBP). It

can also be used either in batch mode or incremental mode.

mW mb

 141

The second method in heuristic modifications of the basic backpropagation

algorithm is to use a variable learning rate. We can speed up convergence if we increase

the learning rate on flat surfaces of the performance surface and decrease the learning rate

on the non-flat surfaces. There are many variations on this variable learning rate

backpropagation (VLBP) algorithm. Vogl et al. [1988] propose a batching procedure,

where the learning rate is varied according to the performance (the squared error) of the

algorithm. For example, when the square error exceeds more than some set percentage

ζ after a weight update, the weight update should be discarded and a lower learning rate

should be applied, multiplying the learning rate by some factor 10 << ρ and setting the

momentum coefficient γ to zero. On the contrary when the square error decreases after a

weight update, the update is accepted and an increased learning rate should be applied,

multiplying the learning rate by some factor 1>η and setting the momentum coefficient

γ to its original value.

However, when the squared error increases by less than ζ , the weight update is

accepted and the current learning rate and momentum should be used for the next

iteration. Jacobs [1988] proposed the delta-bar-delta learning rule, in which each

network weight or bias has its own learning rate. The algorithm increases the learning

rate for a network weight or bias if the weight or bias change has been in the same

direction for several iterations. If the weight or bias change has not been in the same

direction, then the learning rate is reduced.

 142

In general, the algorithm using a variable learning rate is faster than the

backpropagation using momentum and also reasonably robust [Hagan et al. 1996]. But, it

must be used in batch mode; therefore it takes more intermediate computation storage. It

also has a limit of selecting a total of five parameters, and the choice of the parameters

can affect the convergence speed.

There are two methods based on numerical optimization techniques that can be

used as an enhancement for the backpropagation algorithm. They are conjugate gradient

and Newton’s method. The steepest descent algorithm is the simplest algorithm, but it is

often slow in converging to a global minimum. On the contrary, Newton’s method is

much faster in converging, but it requires the Hessian matrix (a second derivative) and its

calculated inverse.

The conjugate gradient algorithm comes as a compromise of the steepest descent

algorithm and Newton’s method. The conjugate algorithm does not require the

calculation of second derivative, and yet it has the quadratic convergence property. For

quadratic performance functions the algorithm will converge to the minimum in at most

 iterations where is equal to the number of parameters being optimized [Scales

1985]. However, for multilayer networks the conjugate algorithm would not converge in

 iterations because the mean squared error performance index for multilayer networks

is not quadratic. To overcome this problem, modifications have to be made to continue

the search for the global minimum. There have been a few methods suggested, but the

simplest way is to reset the search direction to the steepest descent direction after

n n

n

n

 143

iterations [Scales 1985]. In addition, a method called the Golden Section Search is added

to the conjugate gradient backpropagation algorithm (see [Scales 1985] or [Hagan et al.

1996] for details) for the smaller linear search size at each iteration. Conjugate gradient

back propagation (CGBP) is a batch mode algorithm and generally faster than VLBP.

But its memory requirement is no greater than VLBP.

 The second numerical optimization technique to improve the backpropagation

algorithm is the Levenberg-Marquardt algorithm. The Levenberg-Marquardt algorithm

(see [Scales 1985]) is a variation of Newton’s method that is a simple technique to obtain

faster convergence to the minimizing points for sums of squares of nonlinear functions.

The Levenberg-Marquardt backpropagation (LMBP) alogrithm uses the Gauss-Newton

method that does not require calculation of the second derivatives. The algorithm uses

the assumption to converge when the norm of the gradient is less than some

predetermined value or when the sum of squares has been reduced below the target error.

The LMBP is the fastest algorithm for training multilayer networks of moderate size

according to [Hagan et al. 1996]. The major drawback is its heavy memory burden for a

matrix inversion at each iteration. When the size of a network becomes large (more than

a few thousand parameters to train), the algorithm can become impractical because of this

computational burden.

 144

3.3.3 Proposed Neural Network based metamodeling framework

A preliminary study and experiment were conducted to decide on a final form of

ANN based meta-modeling framework for this research. The study concluded that most

existing ANN based metamodeling frameworks utilize a single ANN to be trained on a

single functional domain of interest. As previously discussed, the idea to use multiple

ANNs is not new. It was inspired by the way the human brain works. Collective

neurons can store a single knowledge domain represented by a complex pattern. An

array of multiple neurons form a group to collectively store and retrieve information

through a repetitive neurological stimulation process called learning. The effective use of

well organized multiple ANNs can be as powerful as human neurons.

The modeling framework for multiple ANNs is to increase modeling economy

and flexibility so that it can collectively store more than one functional domain, such as

time average machine utilizations and time series models for time-in-system (TIS) under

distinctive disruption patterns. It is also intended for improved accuracy of individual

ANNs, future expandability, and potential automation. Therefore, several methods to

effectively integrate multiple ANNs were examined. One such framework is to store

individually trained ANNs in a single database. But the preliminary study concluded that

using a database along with ANNs can be problematic due to the complexity of

maintenance and future expandability issues. The study found that, based on modeling

efficiency, the logical branching to taxonomically interconnect individual ANNs trained

 145

on more than one modeling domain is a highly economical approach for the proposed

system.

The proposed ANN based meta-modeling scheme consists of a hierarchical

taxonomy of multi-layer ANNs that can individually adapt to different systems modeling

domains. As shown in Figure 11, the top level multi-layer ANN is designed to detect and

classify distinctive post-disruption system behaviors upon 44 x 1 input vector utilizing

pattern matching. A 44 x 1 input vector is designed to feed the ANNs with a snapshot of

the system’s key operational conditions as well as disruption itself. For instance, time

averaged utilization of each machine stations prior to a particular disruption event are a

part of input elements in such vector. The output of the top level ANN can be either 3 x

1 or 2 x 1 vector that is designed to represent various distinctive transient behavior

pattern types. Most post-disruption system behaviors can be classified into several

distinctive transient behavior pattern types. Each transient behavior pattern type can be

coded into either a three-digit or two-digit binary number. The length of binary number

can be determined by the number of distinctive system behavior pattern types that can be

produced under current system configurations and operational conditions. For example,

the output vector 100, represents the pattern type class number four.

The second (or low) level multi-layer ANNs are designed to capture significant

variations within a selected transient behavior pattern type. Even though second level

ANNs share the same input vector that is fed to the first level, output vectors used by

second level ANNs are different from one network to another network based on one’s

 146

need to capture unique mathematical properties of each transient behavior pattern under

focus. For example, for post-disruption system behaviors that exhibit a common curve

pattern and can also be generalized by a similar parametric time series model,

approximated coefficients for a pre-selected high degree polynomial regression model

can be a part of elements in expected output vectors from a trained second level ANN.

The Figure 11 illustrates how the taxonomically structured ANN based Meta-modeling

scheme can deliver a post-disruption performance prediction upon feeding pre-disruption

system conditions.

1 No Type Pattern

2 No Type Pattern

3 No Type Pattern

4 No Type Pattern

ANNs Level Second

ANNs Level Top

[]010
[]Tppp 4421 K

[]T19.116.212.0 K

Conditions Systemdisruption-pre
containing - Vector Input

Figure 11. Proposed ANN based Metamodeling scheme

 147

To construct a parametric time series model, various time series approximation

methods such as regression methods, moving average methods, or exponential smoothing

methods, can be used to mathematically capture the unknown transient performance

function. In addition to underlying time series models, some quantitative aspects of the

transient behavior, such as the estimated time from the occurrence of a disruptive event to

the emergence of the first sign of performance deterioration and variance changes during

a transient state, can be predicted in output vectors.

Prior to a full investigation of various transient behavior patterns of the FMS

under study using computer simulation, we could scientifically guess the basic behavior

patterns of the target system performance index such as time in system based on a study

of most common types of any time series. According to Chatfield [1984], there are three

basic types of time series characteristics: constant process, linear and quadratic trends,

and cyclic or periodic variation. Thus, it is theoretically possible to have a time series in

combined forms of these three basic patterns.

 148

4. Statement of Research

4.1 Research Goal

The primary goal of this research is to demonstrate that a hierarchically organized

ANN based metamodeling framework is a viable means to provide an effective

“lookahead” performance modeling capability to a non-human controller as well as

human operator in case there is an unanticipated performance disruption. The proposed

ANN based metamodeling framework is a pattern based knowledge system that consists

of independently trained multiple ANNs in a taxonomical arrangement. These individual

ANNs are designed to work together to cover different areas in the functional range of an

unknown transient system performance prediction function. This is a feasibility study of

such a performance-modeling framework. The research comprises six major objectives:

(1) a simulation study on a hypothetical FMS model with limited operational

characteristics and scenarios to identify a unique set of possible transient system behavior

patterns under pre-selected disruption scenarios, (2) identification of the input space and

output space of an unknown transient performance prediction function, (3) identification

of a proper logical taxonomy that can logically connect multiple ANNs, making them

work collectively to capture various transient behaviors, (4) identification of design

architecture for individual ANNs and their proper training methods, (5) validation and

performance assessment of the final model through comparisons with simulation results,

 149

(6) recommendations for further improvements of the proposed modeling framework in

future research.

4.2 Research Objectives

To achieve the research goal, six research objectives have been identified and

need to be pursued:

Objective 1- Construct a simulation model and identify an appropriate

experimental design to study various transient system behaviors of the proposed FMS.

A discrete event simulation model is built using Extend [1987-2001] to study various

transient behaviors of the proposed FMS. The model is built and studied according to the

steps in a simulation study suggested in Banks et al. (p13 –p18) [1996]. The simulation

model is constructed in such way that a single resource failure can be scheduled at a

precise moment during a single run. Key performance indexes such as time averaged

utilization of each machine stations and AGV are recorded prior and after a scheduled

disruption. Limited pilot runs of the model with selected ranges for system operational

parameters of interest are used to finalize the experimental design. The main focus of

these pilot runs is to test which set of operational parameters could provide better samples

for distinctive post-disruption transient behaviors. Individual workstation process time

distributions under each part type are also selected to meet desired average system

utilization throughout the system. A valid experimental design is identified based on the

results from these pilot runs. Experimental factors, the number of levels of each

 150

experimental factor, and the total number of different experiment is described in depth in

Section 4.3

Objective 2 - identify a domain (input space) and range (output space) of an

unknown transient performance prediction function to be modeled by the proposed ANN

based meta-modeling framework.

Major system performance indexes prior to an operational disruption such as time

averaged utilization for each machine stations and the AGVs can be a part of the

functional domain. These selected indexes can help an unknown transient performance

prediction function to map and distinguish various post-disruption system behaviors

based on their unique input space value pattern after the mapping is finished. Among

various system performance indexes, those that exhibit clear changes after a given

disruption can be considered as candidate elements for the functional domain as well as

functional range. The other significant part of functional range is aimed to capture an

unknown time series function of key performance index of primary interest to depict the

detail transient behavior such as time-in-system of individual incoming parts.

Objective 3 - identify proper taxonomical logic structure to loosely connect

multiple ANNs to predict an unknown transient performance prediction function.

A branch logic structure where each branch uses individually trained ANNs and predicts

a mutually exclusive area of the functional range of the unknown transient performance

prediction function is to be identified. Questions such as what part of the functional

range to capture by the top level ANN and how many levels of branch logic are needed in

 151

order to predict the entire functional range are investigated. A pictorial presentation of a

proposed modeling scheme can be found in Figure 17 (page 156) from the previous

chapter. Major design principles of the proposed taxonomical logic structure are:

• Top level branch logic is to map an appropriate set of subsequent ANNs so that

they can collectively predict a detail transient behavior after the top level ANN

distinguishes its overall transient behavior pattern class.

• The depth of levels in the taxonomical structure can be adjusted based on the

number of unique transient system behavior patterns and the number of key

indexes and parameters to be modeled.

• The structure of taxonomical branch logic should be designed in such way to

comprehensively cover all possible transient system behaviors of the proposed

FMS under given disruption scenarios and future expansion of the model can be

accommodated.

Objective 4 - identify appropriate ANN architecture and training strategy for

individual ANNs to be used in overall meta-modeling framework.

First, an appropriate artificial neural network design architecture to cover different parts

of a functional range of the unknown transient performance prediction function needs to

be selected. Second, a choice of possible network configurations and a training method

for individual ANNs need to be made. For example, the number of nodes, the number of

hidden layers, the type of transfer function, selection of training data set, training

methods, and the length of training period need to be identified.

 152

Objective 5 - Validate the proposed ANN based metamodeling framework using

the simulation model developed in Objective and selected disruption scenarios.

The overall effectiveness of the proposed modeling framework can be judged through a

controlled simulation study. A portion of experimental design from Objective 1 can be

used to evaluate the effectiveness of the model. The effectiveness test consists of three

major parts. The first part is to evaluate the fidelity of the distinctive transient system

behavior pattern classification by the trained top-level ANNs. The second part is to

assess the accuracy of individual key performance index predictions such as time

averaged resource utilizations. The third part is to assess the accuracy of the

approximated coefficients of an unknown time series function of key performance

indexes of primary interest.

Objective 6 – Make recommendations for the future research based on outcomes

of this study.

Based on the outcome of the study, three courses of action can be taken. The first course

of action is that the anticipated performance is fully met and no other improvement is

necessary. In this case, the automation of the proposed FMS transient performance-

modeling scheme can be suggested as a possible topic for the future research. Also, a

generalization of the proposed methodology can be made so that it can be applied to other

similar asynchronous concurrent system control environments. The second case is that

the anticipated performance is partially met and some improvement is necessary. In such

case, possible candidates for further improvement can be identified and a possible

remedy can be suggested for the future research. The third case is that the outcome has

 153

completely failed to meet the anticipated performance. Therefore, possible causes for

failure have to be identified. If there is evidence that theoretically incorrect assumptions

were made or inappropriate concepts were used for either the study or methodology itself,

they need to be identified and discussed.

4.3 Assumptions and limitations

The performance prediction scheme using ANNs is to provide a lower level FMS

controller its most needed “lookahead” capability. The performance index of primary

interest is the average time in the system for individual parts. The maximum

performance forecasting time horizon for “lookahead” feature in this hypothetical control

system has no need to exceed 15 working days. However, the minimum performance

forecasting time horizon should be at least five working days. Each working day has 14

hours of operational time for the proposed FMS.

The mean and variance of the unknown distribution of the average time in the

system need to be measured during the experiment. Machining time distributions are

assumed to be triangular distributions. Despite the almost deterministic operational

nature of most FMSs, non-deterministic service times are chosen for this study mainly

due to setup time variability caused by the random sequence of part types in a loaded

fixture. Inter-arrival times for individual part types can be adjusted during pilot runs to

achieve the desired overall system utilization level. Since this research is intended to

 154

validate a new metamodeling framework, the simulation study only focuses on a small set

of single event disruption scenarios to keep the experiment size manageable. Single

discrete events such as part mix changes, introduction of new product, machine center

breakdown, and AGV breakdown are assumed to be the only source of disruptions under

study.

No more than one machine or AGV breakdown is allowed to take place at any

given time. Even though actual machine center breakdown and AGV failure are random

in nature, for the purpose of this study, a single disruption event is scheduled to take

place at a particular point during a single non-terminating simulation run. During pilot

runs, the event trigger time for both machine center breakdown and AGV failure needs to

be carefully selected so that a resource failure can only happen after a particular

performance index has passed its initial warm-up period and reached its steady-state.

4.4 Summary

The primary goal of this research is to demonstrate that a group of taxonomically

organized ANNs can collectively provide a post-disruption “lookahead” capability on a

selected performance index. The proposed ANN based metamodeling approach is a

pattern based performance modeling system utilizing both regression and simulation data.

The six major research objectives are: (1) a simulation study on a hypothetical FMS

model with a limited capability of fault tolerance, (2) identification of the functional

 155

domain and range of an unknown transient performance prediction function, (3)

identification of a proper taxonomical framework that logically combines individual

ANNs, (4) identification of proper design architecture of individual ANNs and their

training methods, (5) validation and performance assessment of the final metamodel, (6)

identification of future improvements and opportunities regarding the proposed

metamodeling approach. Assumptions and limitations regarding the hypothetical FMS

were also identified.

 156

5. Research Methodology

This chapter outlines major research tasks, their execution plans, and necessary

methodology to achieve the goal and objectives defined in Chapter 4.

5.1 Research Tasks

 There are ten major tasks identified. Task 1 is to construct a valid simulation

model based on the proposed FMS that can facilitate a single scheduled resource failure

during its run time. Task 2 is to finalize appropriate values for key system parameters

such as interarrival mean time for incoming parts and mean service times for each part

type at particular machine centers to obtain a desired level of system wide utilization

through pilot runs. Task 3 is to finalize key performance indexes and experimental

factors to create limited disruption scenarios that can be used for development and

validation of an ANN based transient performance metamodeling framework. Task 3

must provide two separate scenarios, one for the steady state performance analysis and

the other for the transient state performance analysis using a single resource failure.

Task 4 conducts a simulation experiment using the two separate scenarios defined

in Task 3 to find values for various elements in both the functional domain and range of

 157

an unknown transient performance prediction function. Collecting steady state as well as

transient performance values for chosen key performance indexes and constructing

individual time series approximation models to capture detail transient behaviors of the

primary performance index such as time-in-system are key steps under this task.

Task 5 is to prepare data generated from simulation experiments for the ANN

application. Appropriate structures for both input and output vectors are identified during

this process. Individually constructed time series approximation functions for the

primary performance index under a given disruption scenario need to be carefully

converted to a group of elements in a single output (target) column vector so that they can

be fed into a corresponding ANN during its training. During input and output data

preparation for ANN training, a data conditioning method such as moving average

method is employed to minimize unwanted noise and help to capture only essential trend

information in time series performance data. This makes the individual network training

easier and faster and also improve its overall prediction accuracy. Task 6 identifies and

constructs appropriate neural networks for various parts of the proposed ANN based

metamodeling scheme based on their input space and output space vector configurations.

A proper configuration for each neural network is identified through both theoretical and

empirical approaches. Task 7 trains and validates neural networks using mutually

exclusive subsets of data collected from Task 4. The entire neural network training and

simulation are done using MATLAB [1984-2000].

 158

Task 8 is to construct proper branch logic to taxonomically organize various

ANNs to map selected members of the functional domain to a proper part of the

functional range. Conceptualization and design of the overall logical framework is

started as early as when Task 3 starts. The entire logic and input and output interfaces

are written in MATLAB language. Task 9 is to assess the effectiveness of the proposed

ANN based metamodeling framework under selected sets of simulated shop-floor

disruption scenarios found in Task 3. Task 10 does continuous write-up as the research

progresses. Task 11 summarizes the findings and makes recommendations based on the

outcomes from Task 9.

Task 1: constructs a valid simulation model based on the proposed FMS in Chapter 3. A

discrete event simulation model is constructed using Extend to run non-terminating

simulations with a single-resource failure to generate time series performance data for a

primary key performance index such as mean time-in-system. The model consists of

three major functional elements. The first element is a part type and attribute allocation

module where a part type is probabilistically generated from an empirical discrete

distribution and necessary parameters for individual machining time distributions are

automatically assigned to an incoming part as its attributes. The second element is a part

routing and AGV handling logic that controls the bypass and pass-through track at each

machine stations based on the current machine status and machine operation

requirements by the incoming loaded fixture. The third element is a resource failure

trigger mechanism that allows a user to selectively pick the resource to fail, the failure

start time, and the duration of failure. System configuration parameters such as mean

 159

part inter-arrival time and relative part sizes for individual part types can be selected

during pilot runs. The model validation needs to be done to see if the model closely

follows the system descriptions given in Chapter 3.

Task 2: executes ten pilot runs (10 independent reps) with two sets of part mixes to

finalize key system parameters. Part mix one consists of part type 1 (25%), part type 5

(25%), part type 8 (25%), and part type 11 (25%). Part mix two consists of part type 1

(20%), part type 4 (20%), part type 5 (20%), part type 11 (20%), and part type 12 (20%).

Pilot runs are also to finalize key system parameters, such as inter-arrival mean time for

different part types and mean service time by a particular machine center for a specific

part type. Furthermore, Identifies ranges for the mean service time by each AGV should

be determined to obtain a desired average system utilization level.

Task 3: finalizes experimental factors to create initial disruption scenarios. Refer to

Section 5.2 for more details.

Task 4: conducts simulation experiments using two separate scenarios to find both steady

state performance values and transient state patterns for the chosen performance index.

Also Task 4 identifies the following system parameters:

• common warm up period for all steady state scenarios under study,

• least amount of time duration required to observe any transient impact following a

particular disruption over the target performance index,

 160

• maximum deviation of the target performance index at a given time from its

steady state value prior to a particular disruption,

• maximum duration of any transient behavior under each scenario.

Task 5: identifies a proper input and output vector space to represent both functional

domain and range of an unknown transient system performance function. Properly

configured input and output column vectors can be fed to a loosely connected group of

individually trained ANNs in a taxonomical manner in order to predict the transient

system behavior following a single performance disruption.

Task 6: identifies, constructs and trains individual ANNs comprising the proposed ANN

based metamodeling scheme for both steady state and transient state performance

predictions. A proper training method for individual ANN shall be selected. Refer to

Section 3.3.2 and 3.3.3 for ANN based methodology.

Task 7: trains and validates individual ANNs in the proposed ANN based metamodeling

scheme using input and output vectors constructed from the performance data collected

from Task 4.

Task 8: constructs proper branch logic that is to loosely connect individual ANNs in

taxonomical manner to map various parts of the functional domain to the intended

functional response of an unknown transient performance function. This needs to be all

done using MATLAB.

 161

Task 9: assesses the overall effectiveness of the proposed ANN based metamodeling

framework under a selected set of disruption scenarios found in Task 3.

Task 10: does continuous write-up as the research progresses.

Task 11: summarizes findings based on outcomes from Task9 and makes final

recommendations for possible future research.

5.2 Simulation Based Disruption Scenarios

Single discrete events such as part mix changes, introduction of new product,

machine center breakdown, and AGV breakdown are considered experimental factors of

this study. Even though we consider part mix change a single discrete event, in reality,

there are more than single part percentages affected by a part mix change. A new part

introduction to the current production flow is an inclusive form of part mix change. There

can be many different combinations to form a part mix change. For this research, only

one set of part mix changes is studied.

Factor 1: A part mix change can be characterized by changes in the percentage

combination of individual part types across presently available part types under the

 162

current production order. Unexpected change in the current production plan can result in

a part mix change. In addition, introduction of a new product can result in a shift in part

mix. The table below illustrates three possible part mix scenarios that are used in this

experiment. A disruption can be caused by a sudden shift from one part mix to the other.

As result there can be three possible disruption scenarios, namely Part Mix 1 → Part Mix

2 and Part Mix 2 Part Mix 1, which can be caused by changes in part mix. →

Table 8. Part Types and Possible Part Mix Change Scenarios
 Part

Type 1
Part

Type 4
Part

Type 5
Part

Type 8
Part

Type 11
Part
Type

12
Part Mix1 25% 25% 25% 25%

Part Mix2 20% 20% 20% 20% 20%

 Part Mix Change

Case 1 None
Case 2 Part Mix1 Part Mix2 →
Case 3 Part Mix2 Part Mix1 →

Factor 2: A single machine center breakdown or recovery can be characterized by adding

or removing a specific machine center to a particular machine group. Since performance

of each machine center differs even among the same machine group, which machine to

breaks down can be critical to substantiate the impact. The following Table 9 contains

seven distinctive machine breakdown scenarios that are used for this experiment.

 163

Table 9. Possible Single Machine Failure Scenarios
 Failed

Machine
from

Machine
Group 1

Failed
Machine

from
Machine
Group 2

Failed
Machine

from
Machine
Group 3

Case 1 None None None
Case 2 M1
Case 3 M6
Case 4 M2
Case 5 M5
Case 6 M3
Case 7 M7

Factor 3: Single AGV failure can be characterized in the same way as the machine center

breakdown.

Table 10. Possible Single AGV Failure Scenarios
 Failed

AGV
Case 1 None
Case 2 AGV1 or

AGV2

Thus, the total number of levels in the experimental design is

levels of number totalNchNfNf NNc PMmachineAGVrep indPAPM =+++×××)1(

 164

180)1611(54 =+++××

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧
×

adjuster) factor (double 1-change mix part of Number
failure machine singlea of Number

Nch
Nf

failutre AGV singlea of NumberNf
disruption No

nsreplicatio tindependen of NumberN
nscombinatio time arrival part and mix part

by factors blocking different of Number
Nc

where

PM

machine

AGV

rep ind

PAPM

1 .

 Each level in this experimental design represents various single source disruption

scenarios derived from four steady states pre-disruption conditions (see Table 11). Total

eight single source disruptions are identified for this experiment. These single source

disruptions are designed to create various transient performance behaviors from a steady

state condition. Through early pilot runs, two distinctive types of pre-disruption steady

state condition are identified. Because of their behavioral similarity to the physical

equilibrium, the notion of “equilibrium” in physics is used throughout the study to

describe these two types of pre-disruption steady state conditions.

 In physics, there are two types of equilibrium, stable and unstable. As shown in

Figure 12, a stable equilibrium can be considered the lowest point in a valley where a ball

can remain still unless some external force acts on it. Even after applying some force on

the ball, the ball tends to roll back to the same lowest point after a period of pendulum

movements. An unstable equilibrium can be considered the highest point on a peak

where the ball can slide off in either direction after applying a little external force.

 A pre-disruption steady state followed by no or very little change after the disruption can

be considered to be in a state of stable equilibrium. Whereas, a pre-disruption steady

 165

state followed by a significant change after the disruption can be considered to be in a

state of unstable equilibrium.

 Stable Equilibrium Unstable EquilibriumStable Equilibrium Unstable Equilibrium

 Figure 12. Graphical Representation of Stable and

Unstable Equilibrium

 The purpose of this simulation experiment is to investigate transient behaviors of

the target performance index after a single disruptive event occurs during its simulation

time. Thus, four different steady state system settings formed by unique combinations

between a particular part mix and a specific part arrival time can be followed by a single

disruptive event to simulate each single disruption scenarios. The following table

illustrates how these nine single event based disruption scenarios can be formed. For

example, the first disruption scenario is based on a part mix change during a production

 166

cycle from a part mix consisted of part type 1, 5, 8, and 11 to a part mix consisted of part

type 1, 4, 5, 11, and 12.

Table 11. Possible Single Resource Failure Scenarios

Disruption
Scenario

No

Part
Type 1

Part
Type 4

Part
Type 5

Part
Type 8

Part
Type

11

Part
Type

12

Failed
Machine

from
Machine
Group 1

Failed
Machine

from
Machine
Group 2

Failed
Machine

from
Machine
Group 3

Failed
AGV

25% 25% 25% 25%
1

20% 20% 20% 20% 20%

20% 20% 20% 20% 20%
2

25% 25% 25% 25%

3 M1

4 M6

5 M2

6 M5

7 M3

8 M7

9 1

Thus, nine independent single even disruption scenarios plus one steady state scenario

with 20 independent replications (except for part mix changes) per scenario can create

180 independent simulation runs. The total size of experiments can be increased as

necessary by adding more independent replications under each scenario.

 167

5.3 Summary

 This chapter identifies ten major research tasks. A simulation tool, Extend, was

selected to conduct a simulation study on the proposed FMS. MATLAB and MATLAB

Neural Network Toolbox are used to construct ANNs components and the metamodel

execution framework. It also identifies types of performance disruption events that can

take place under the current operational environment by the hypothetical FMS. Only

limited part mix, a single machine, or AGV failure is allowed to be a factor for disruption

event scenarios. Based on these limited sources for performance disruption, an initial

design of experiments was identified.

 168

6. Problem Development – Pilot Experiments

The proposed modeling framework requires a carefully planned data collection of

the selected performance index by the system. The successful construction of a good

evaluative model lies on realistic data the model is derived from. We assume that such

raw data can be acquired through an effective simulation model that can replicate realistic

behaviors of the intended system. Structures and compositions of input and output

vectors need for ANN training are identified. Data processing activities required to

construct such input and target vector sets for the proposed taxonomically organized

ANN are discussed in detail. This chapter closely examines modeling issues involved

with creating a realistic simulation model. The configuration and training of individual

ANNs and hierarchical modeling relationships among ANNs is also discussed.

6.1 Development of a Computer Simulation Model

 The simulation model of the proposed FMS is written in Extend. Extend is a

block diagram based simulation tool that allows a user to easily model a complex

discrete/non-discrete event system in a relatively short amount of time compared to many

conventional simulation modeling tools. It also provides unlimited hierarchical

decompositions of a model, which helps the readability of a complex model. In addition,

 169

it provides simple animation and run-time block statistics monitoring capability that are

useful for verification purposes.

 The simulation model consists of three major functional components. The first

functional component is to assign individual part attributes such as processing time

(Table 7 on page 88) and relative part size (Table 5 on page 85). As shown in Figure

13, this functionality is built with a collection of modeling components such as Set

Attributes, Get Attributes, and DE Outputs in a hierarchical structure. The second

component is the part routing and AGV handling logic that control and regulate the

movement of a loaded/unloaded fixture based on its common part process requirements

and target machine center conditions.

Figure 13. Set Part Type Attribute Block

 170

As shown in Figure 14, the logic consists of various modeling components such

as Select DE Output, Get Attributes, Decision, Logical OR, Logical AND, and Batch.

The third component is the resource failure trigger mechanism that allows the user to

select a single resource to fail and adjust timing and duration of the failure. As shown in

Figure 15, this component consists of various modeling components such as Decision,

Logical AND, and Logical OR.

Figure 14. Part Routing and AGV Control Logic

 171

 Figure 15. Single Resource Failure Scheduling and Control

6.2 Initial Experiments and Findings

To study the system wide best average utilization under selected steady state

performance scenarios and develop control limits to detect the post-disruption impact,

five independent non-terminating simulation runs will be executed for 70,000 minutes

under four distinctive steady state operational settings. Because the simulation models

starts from an empty and idle state, the presence of substantial warm-up periods in

 172

simulation results was examined under four different steady state operational scenarios.

Welch’s graphical method [Welch 1981; Law et al. 1991] was chosen to detect and

remove the warm-up period from simulation results.

Results from the five replications of four individual no-disruption scenarios were

averaged at individual observations to create four averaged time-in-system processes. It

was difficult to find any visible signs of a warm up period from both raw and averaged

time-in-system observation processes without applying a moving average filtration due to

the high content of random noise among individual observations. Numerous moving

average filtrations with various widths were applied to find a proper moving average

width (or interval) that can minimize unwanted high frequency random noises without

compromising the resolution for the low-frequency oscillations (long-run trend of

interest). A moving average width of 50 observations was found to be good enough to

detect a warm-up period on a limited initial data set from individual averaged time-in-

system processes under four steady state scenarios. Even after applying moving average

filtration with a width of 50 observations, four averaged TIS processes still exhibit a

considerable amount of high-frequency noises. The length of the individual warm-up

period from four moving average filtered mean TIS processes varies slightly.

As shown in Table 12, no warm-up period is greater than 130 observations. Later

the study found a need for a greater moving average width to be applied on entire

observations (about 30000 consecutive observations) from each averaged time-in-system

processes. Therefore, the size of warm up period, 130 observations or less is found to be

 173

rather insignificant even compared to a newer moving average width of 500 observations.

As result, the warm-up period from each pre-disruption data is to be ignored during this

study.

Table 12. Four Steady State Scenarios and Their Warm-up Periods

Warm-up Period Ends Steady State
Performance
Scenario No

Part
Mix
Type

Mean
Part

Interarri
val Time

Exp NO.
(indepen
dent run

#)

Observation Count
(from 1st

observation)

Simulation Time in
Minutes (from 0)

1
2
3
4

1 PM1 2.2

5

70 171.1136

91
92
93
94

2 PM1 2.3

95

100 240.5254

96
97
98
99

3 PM2 2.2

100

80 186.1029

101
102
103
104

4 PM2 2.3

105

65 153.117

Throughout the study a common single disruption event trigger time was chosen

at 10,000 minutes because it is well beyond any potential influence by relatively small

warm-up periods under four steady state scenarios. To approximate steady state means in

TIS observations, the replication and deletion method has been used [Law and Kelton

1991]. Since the presence of a warm-up period was decided to be ignored, five

independent replications of each steady state scenarios are averaged to approximate a

corresponding steady state mean of TIS observations of parts in chronological order.

 174

As shown in Figure 16, row TIS observations from a single realization contain a

significant amount of high frequency noise due to unanticipated travels of parts within

the model. In this time series (TIS observations), we are interested in detecting any low

frequency oscillations or long-term trend rather than high frequency oscillations or noises

in consecutive observations.

Figure 16. Row TIS Observations during First 500 Parts under the First

Steady State Scenario with No Disruption

 175

To smooth out these high-frequency oscillations in TIS observations, the moving

average filtering technique has been used to treat raw TIS observations [Law and Kelton

1991]. A width (or interval) of moving average, 500=w , was selected through a trial

and error method. The term width is used in place of the interval throughout the study.

The criteria to select a proper width for the moving average filtering depends on a

balancing act where a chosen moving average width will not oversimplify the long-term

trend but smooth out high frequency noises.

A series of simulation experiments were performed to find two proper mean inter-

arrival times. Initial pilot runs show that mean arrival times ranging between 1.8 and 2.5

show similar overall average utilization and performance without creating a infinite

queue in front of the proposed system during the normal run without a disruption. Then

an interval reduction technique was used to selectively screen potential mean arrival

times so that a small set of essential mean arrival times between 1.8 and 2.5 can be tested

in order to rule out any mean arrival time that can result in a post-disruption condition

where every runs show either no changes or infinite growth of its queue length under all

single disruptions. As result, mean part inter-arrival time 2.2 and 2.3 minutes were

selected for steady state scenarios in order to facilitate an unknown optimal response

surface area that exhibits both stable and unstable equilibrium characteristics in the event

of a single performance disruption. Since each part type group has its own unique

process requirements involving three different machine groups and no waiting queues are

available in between the machining stations, the proposed FMS simulation model exhibits

 176

unique characteristics somewhat different than those that exist in typical closed queuing

network models. Based on these unique operational characteristics and results from early

test runs, an upper bound for the presumed optimal system wide utilization level is found

to be lower than expected in theoretical queuing network models. Results from 20

independent pilot runs under four different steady state (no-disruption) scenarios in Table

13 show that the mean utilization over all eight machining stations averaged

approximately 60% under four different steady state scenarios, which matches the result

of queuing approximation estimate from the preliminary analysis in Chapter 3 page 89

thru 90. Results also show that two AGVs were utilized on average around 30% under

steady state scenarios. Since two AGVs serve as necessary transporters as well as

buffers among machining stations, it is not fair to judge the overall utilization solely

based on individual machining stations. As result, the actual system utilization may be

even higher than 60% on average.

In order to capture a diverse transient behavior population, an ideal system wide

utilization level for this experiment must contain a substantial portion of “tipping points”

that can lead to both unstable and stable state in the event of a single disruption. The

control limits are used in this experiment to determine the approximate starting point of

suspected post disruption behavior that is usually characterized as an obvious deviation

from the pre-disruption steady state mean. Using three-sigma control limits is one way to

detect that such deviation took place or is possibly underway in the current process.

 177

X control limits can be constructed based on the assumption that X and R are

unbiased estimators for µ and σ of the steady state process. The lower and upper

control limits for X can be found using where 2A
nd

A
2

2
3

= and is the size of

subgroups.

n

Table 13. Individual System Resource Utilization Rates under Four Steady State
Scenarios

Time Average Resource Utilization Scenario
No.

Exp
No. M1 M6 M2 M5 M3 M7 M9 M12 Mean AGV Fixture
1 0.67 0.50 0.49 0.31 0.78 0.72 0.75 0.66 0.61 0.41 0.62
2 0.66 0.48 0.50 0.31 0.78 0.70 0.72 0.62 0.60 0.36 0.59
3 0.68 0.49 0.51 0.29 0.78 0.72 0.74 0.66 0.61 0.41 0.62
4 0.66 0.48 0.49 0.30 0.78 0.71 0.75 0.63 0.60 0.39 0.60
5 0.65 0.49 0.49 0.32 0.77 0.70 0.72 0.63 0.60 0.35 0.59

1

Mean 0.66 0.49 0.50 0.31 0.78 0.71 0.74 0.64 0.60 0.38 0.60
91 0.63 0.46 0.48 0.29 0.76 0.68 0.72 0.60 0.58 0.33 0.57
92 0.65 0.47 0.47 0.29 0.77 0.70 0.73 0.63 0.59 0.36 0.58
93 0.65 0.47 0.48 0.30 0.76 0.67 0.72 0.61 0.58 0.34 0.57
94 0.65 0.46 0.48 0.29 0.76 0.68 0.72 0.62 0.58 0.34 0.57
95 0.64 0.47 0.49 0.29 0.77 0.70 0.74 0.62 0.59 0.35 0.58

2

Mean 0.64 0.47 0.48 0.29 0.76 0.69 0.72 0.62 0.58 0.34 0.57
96 0.57 0.34 0.72 0.64 0.66 0.47 0.81 0.71 0.62 0.44 0.64
97 0.58 0.32 0.72 0.63 0.65 0.45 0.80 0.69 0.60 0.41 0.62
98 0.57 0.33 0.72 0.63 0.66 0.46 0.82 0.70 0.61 0.45 0.64
99 0.57 0.32 0.72 0.64 0.66 0.46 0.81 0.69 0.61 0.42 0.63
100 0.57 0.32 0.71 0.64 0.66 0.45 0.80 0.69 0.61 0.42 0.62

3

Mean 0.57 0.32 0.72 0.64 0.66 0.46 0.81 0.70 0.61 0.43 0.63
101 0.56 0.31 0.69 0.60 0.64 0.42 0.78 0.66 0.58 0.36 0.58
102 0.55 0.31 0.70 0.59 0.64 0.42 0.79 0.65 0.58 0.36 0.58
103 0.55 0.30 0.70 0.60 0.65 0.43 0.79 0.66 0.58 0.36 0.58
104 0.56 0.31 0.69 0.61 0.64 0.41 0.78 0.66 0.58 0.36 0.58
105 0.57 0.30 0.70 0.60 0.63 0.42 0.80 0.67 0.59 0.36 0.58

4

Mean 0.56 0.31 0.70 0.60 0.64 0.42 0.79 0.66 0.58 0.36 0.58

A value for can be found in any statistical process control book. In this

experiment, since the subgroup size is 5, the value 2.326 can be found for from

Table C of App.3. in Grant’s book [Grant et al. 1988]. Thus, upper control limit (UCL)

2d

n 2d

 178

and lower control limit (LCL) for four steady state scenarios can be calculated as in Table

14. Table 14 summarizes the results of 20 pilot runs where unique combinations of mean

inter-arrival time and type of part mix were tested with five independent runs.

Table 14. Four Steady State Scenarios and Their Control Limits

Steady State
Performance
Scenario No

Part
Mix
Type

Mean
Part

Interarri
val Time

Exp NO.
(indepen
dent run

#)

Mean
TIS

UCI
(95%)

LCI
(95%) UCL LCL

1
2
3
4

1 PM1 2.2

5

163.4984 164.3 162.6968 171.6962 155.3006

91
92
93
94

2 PM1 2.3

95

161.6357 162.2448 161.0266 166.8541 156.4173

96
97
98
99

3 PM2 2.2

100

149.9076 152.0061 147.809 159.2466 140.5685

101
102
103
104

4 PM2 2.3

105

147.2282 147.6567 146.7996 153.6755 140.7808

To find lower and upper bound values within the range of inter-arrival times, time

between individual part arrivals were also tested during the pilot run. Figure 17

graphically shows results of five independent replications of the steady state scenarios

number one

 179

Figure 17. Moving Average Filtered TIS Observations under the First
Steady State Scenario with No Disruption

The pilot results indicate that mean inter-arrival time 2.2 and 2.3 minutes are ideal

values in order to exhibit both stable and unstable equilibrium transient behaviors under

selected part mix Type 1 and 2. After finding UCL and LCL for each steady state

scenario as criteria to decide the presence of any disruption impacts in their post-

disruption behaviors, five independent replications of each disruption scenarios found in

 180

Table 11 (see page 166 in Chapter 5) were conducted under four steady state scenarios as

its pre-disruption condition.

Figure 18. Moving Average Filtered TIS Observations under the First
Steady State Scenario with Machine M6 Failure Took Place at 10000

 181

For example, Figure 18 on the previous page shows five independent replications

of the disruption scenario number four under the steady state scenario number one as its

pre-disruption scenario. A point where the disruption behavior becomes apparent on

each graph differs slightly since a number of parts processed at the end of 10,000 minutes

vary from run to run due to the randomness of stochastic process.

6.3 Initial Simulation Experiment Sets and Data Processing Procedures

 The final set of initial experiments is shown in Table 15. A total of 180

independent runs were conducted. Each run is marked with a unique experiment number

that was assigned arbitrarily. After each run, key statistical indexes such as time-average

utilizations of each resource before and after a scheduled disruption were recorded and

TIS for each part accompanied by its entry time and departure time were generated and

saved as a text file. The order in which values of individual TIS observations were saved

was based on their departure time from the system.

There are two parts of data processing required in this study to construct an ANN

based metamodel. The first part of data processing is called the pre-processing and is

designed to prepare raw TIS observation data in a proper form to detect the presence of

any transient behavior after the disruption and classify its behavior pattern. The second

part is called the post-processing and is designed to extract essential mathematical

properties from a formatted TIS observation data, such as variance changes, and to find

coefficients of a designated parametric mathematical model, such as a polynomial.

 182

Table 15. Initial Experiment Set
Single Event Disruption Scenario

(Triggered at 10000 minutes)
Steady State Scenario

(pre-disruption)
Scenario

Index Part Mix
Change

Machine
Breakdown

AGV
Breakdown

Mean
Interarrival
Time
(minutes)

Part Mix
Exp. No.

PM1 PM2 → 2.2 PM1 11
PM1 PM2 → 2.2 PM1 12
PM1 PM2 → 2.2 PM1 13
PM1 PM2 → 2.2 PM1 14

1

PM1 PM2 → 2.2 PM1 15
PM1 PM2 → 2.3 PM1 111
PM1 PM2 → 2.3 PM1 112
PM1 PM2 → 2.3 PM1 113
PM1 PM2 → 2.3 PM1 114

2

PM1 PM2 → 2.3 PM1 115
PM2 PM1 → 2.2 PM2 56
PM2 PM1 → 2.2 PM2 57
PM2 PM1 → 2.2 PM2 58
PM2 PM1 → 2.2 PM2 59

3

PM2 PM1 → 2.2 PM2 60
PM2 PM1 → 2.3 PM2 116
PM2 PM1 → 2.3 PM2 117
PM2 PM1 → 2.3 PM2 118
PM2 PM1 → 2.3 PM2 119

4

PM2 PM1 → 2.3 PM2 120
 3 2 → 2.2 PM1 66
 3 2 → 2.2 PM1 67
 3 2 → 2.2 PM1 68
 3 2 → 2.2 PM1 69

5

 3 2 → 2.2 PM1 70
 3 2 → 2.3 PM1 121
 3 2 → 2.3 PM1 122
 3 2 → 2.3 PM1 123
 3 2 → 2.3 PM1 124

6

 3 2 → 2.3 PM1 125
 3 2 → 2.2 PM2 61
 3 2 → 2.2 PM2 62
 3 2 → 2.2 PM2 63
 3 2 → 2.2 PM2 64

7

 3 2 → 2.2 PM2 65
 3 2 → 2.3 PM2 126
 3 2 → 2.3 PM2 127
 3 2 → 2.3 PM2 128
 3 2 → 2.3 PM2 129

8

 3 2 → 2.3 PM2 130

 183

Table 15 (continued). Initial Experiment Set
Single Event Disruption Scenario

(Triggered at 10000 minutes)
Steady State Scenario

(pre-disruption)
Scenario

Index Part Mix
Change

Machine
Breakdown

AGV
Breakdown

Mean
Interarrival
Time
(minutes)

Part Mix
Exp. No.

 M1 2.2 PM1 16
 M1 2.2 PM1 17
 M1 2.2 PM1 18
 M1 2.2 PM1 19

9

 M1 2.2 PM1 20
 M1 2.3 PM1 131
 M1 2.3 PM1 132
 M1 2.3 PM1 133
 M1 2.3 PM1 134

10

 M1 2.3 PM1 135
 M1 2.2 PM2 21
 M1 2.2 PM2 22
 M1 2.2 PM2 23
 M1 2.2 PM2 24

11

 M1 2.2 PM2 25
 M1 2.3 PM2 136
 M1 2.3 PM2 137
 M1 2.3 PM2 138
 M1 2.3 PM2 139

12

 M1 2.3 PM2 140
 M6 2.2 PM1 6
 M6 2.2 PM1 7
 M6 2.2 PM1 8
 M6 2.2 PM1 9

13

 M6 2.2 PM1 10
 M6 2.3 PM1 141
 M6 2.3 PM1 142
 M6 2.3 PM1 143
 M6 2.3 PM1 144

14

 M6 2.3 PM1 145
 M6 2.2 PM2 71
 M6 2.2 PM2 72
 M6 2.2 PM2 73
 M6 2.2 PM2 74

15

 M6 2.2 PM2 75
 M6 2.3 PM2 106
 M6 2.3 PM2 107
 M6 2.3 PM2 108
 M6 2.3 PM2 109

16

 M6 2.3 PM2 110
 M2 2.2 PM1 46
 M2 2.2 PM1 47
 M2 2.2 PM1 48
 M2 2.2 PM1 49

17

 M2 2.2 PM1 50

 184

Table 15 (continued). Initial Experiment Set
Single Event Disruption Scenario

(Triggered at 10000 minutes)
Steady State Scenario

(pre-disruption)
Scenario

Index Part Mix
Change

Machine
Breakdown

AGV
Breakdown

Mean
Interarrival
Time
(minutes)

Part Mix
Exp. No.

 M2 2.3 PM1 146
 M2 2.3 PM1 147
 M2 2.3 PM1 148
 M2 2.3 PM1 149

18

 M2 2.3 PM1 150
 M2 2.2 PM2 26
 M2 2.2 PM2 27
 M2 2.2 PM2 28
 M2 2.2 PM2 29

19

 M2 2.2 PM2 30
 M2 2.3 PM2 151
 M2 2.3 PM2 152
 M2 2.3 PM2 153
 M2 2.3 PM2 154

20

 M2 2.3 PM2 155
 M5 2.2 PM1 51
 M5 2.2 PM1 52
 M5 2.2 PM1 53
 M5 2.2 PM1 54

21

 M5 2.2 PM1 55
 M5 2.3 PM1 156
 M5 2.3 PM1 157
 M5 2.3 PM1 158
 M5 2.3 PM1 159

22

 M5 2.3 PM1 160
 M5 2.2 PM2 31
 M5 2.2 PM2 32
 M5 2.2 PM2 33
 M5 2.2 PM2 34

23

 M5 2.2 PM2 35
 M5 2.3 PM2 161
 M5 2.3 PM2 162
 M5 2.3 PM2 163
 M5 2.3 PM2 164

24

 M5 2.3 PM2 165
 M3 2.2 PM1 76
 M3 2.2 PM1 77
 M3 2.2 PM1 78
 M3 2.2 PM1 79

25

 M3 2.2 PM1 80
 M3 2.3 PM1 166
 M3 2.3 PM1 167
 M3 2.3 PM1 168
 M3 2.3 PM1 169

26

 M3 2.3 PM1 170

 185

Table 15 (continued). Initial Experiment Set
Single Event Disruption Scenario

(Triggered at 10000 minutes)
Steady State Scenario

(pre-disruption)
Scenario

Index Part Mix
Change

Machine
Breakdown

AGV
Breakdown

Mean
Interarrival
Time
(minutes)

Part Mix
Exp. No.

 M3 2.2 PM2 36
 M3 2.2 PM2 37
 M3 2.2 PM2 38
 M3 2.2 PM2 39

27

 M3 2.2 PM2 40
 M3 2.3 PM2 171
 M3 2.3 PM2 172
 M3 2.3 PM2 173
 M3 2.3 PM2 174

28

 M3 2.3 PM2 175
 M7 2.2 PM1 81
 M7 2.2 PM1 82
 M7 2.2 PM1 83
 M7 2.2 PM1 84

29

 M7 2.2 PM1 85
 M7 2.3 PM1 86
 M7 2.3 PM1 87
 M7 2.3 PM1 88
 M7 2.3 PM1 89

30

 M7 2.3 PM1 90
 M7 2.2 PM2 41
 M7 2.2 PM2 42
 M7 2.2 PM2 43
 M7 2.2 PM2 44

31

 M7 2.2 PM2 45
 M7 2.3 PM2 176
 M7 2.3 PM2 177
 M7 2.3 PM2 178
 M7 2.3 PM2 179

32

 M7 2.3 PM2 180
 2.2 PM1 1
 2.2 PM1 2
 2.2 PM1 3
 2.2 PM1 4

33

 2.2 PM1 5
 2.3 PM1 91
 2.3 PM1 92
 2.3 PM1 93
 2.3 PM1 94

34

 2.3 PM1 95
 2.2 PM2 96
 2.2 PM2 97
 2.2 PM2 98
 2.2 PM2 99

35

 2.2 PM2 100

 186

Table 15 (continued). Initial Experiment Set
Single Event Disruption Scenario

(Triggered at 10000 minutes)
Steady State Scenario

(pre-disruption)
Scenario

Index Part Mix
Change

Machine
Breakdown

AGV
Breakdown

Mean
Interarrival
Time
(minutes)

Part Mix
Exp. No.

 2.3 PM2 101
 2.3 PM2 102
 2.3 PM2 103
 2.3 PM2 104

36

 2.3 PM2 105

During the pre-processing process, individual TIS values from a single simulation

run were sorted again based on a part’s arrival time rather than their departure time.

Then TIS observation time series from five independent replications under the same

disruption scenario are averaged to get a stochastic process of jY for observations

where

mK1

n
Y

Y ij
j = for independent replications and ni K1= jYij = th observation of TIS in

the th independent replication. This procedure is similar to one from Welch’s graphical

procedure to detect and eliminate a warm up period from a stochastic process. A moving

average filtering is also applied to smooth out any noise found in the time series of mean

TIS observations at observation t from five independent simulation replications under a

single disruption scenario.

i

To avoid oversimplification of any major low frequency trends that may exist in

the mean TIS time series, plots of unfiltered TIS time series and corresponding MA

filtered TIS time series with a width of 500 observations were compared. This process

helps the modeler to visually verify the overall resemblance of any major trends existing

 187

in filtered and unfiltered observation processes, which also verifies a proper width for the

moving average filtering.

If the comparison shows no sign of over-filtering, then corresponding control

limits are applied to detect that a transient behavior exists in the moving average filtered

mean TIS data. Such plots can be shown as in Figure 18 (see page 180) for both moving

average filtered mean TIS data and control limits found from the corresponding steady

state scenario. A presumed starting point for the probable transient behavior can be

identified using these three plots. Figure 19 summarizes the sequence of pre-processing

steps designed for stochastic mean TIS data from independent simulation replications

under individual disruption scenarios throughout the rest of this study. The post-

processing will be discussed in the following section.

6.4 Post Disruption Behavior Pattern Classification

After conducting 180 independent simulation runs (36 disruption scenarios × five

independent replications of each scenario) and necessary pre-processing on stochastic

mean TIS data, individual plots for moving average filtered mean TIS time series are

carefully studied to identify common transient behavior patterns among them after a

single event disruption.

 188

TIS t ime series from
departing parts

in indiv idual runs

Resort TIS t ime series
based on

part’s arrival time

Find averaged TIS
process from

m

 independent
replicat ions
(time series)

Apply moving average
filtering (w=500)

Find standard
deviation time series
for the averaged TIS

process from
m independent

replicat ions
(time series)

Apply moving average
filtering (w=500)

Plot it with
UCL and LCL from the

orresponding
steady-state

scenario

Grouping various post disruption transient behaviors into several distinctive

pattern classes is necessary to construct a proper ANN based metamodel. By doing so, it

helps identify both a functional domain and functional range of an unknown transient

c

Various Statistical
Data

(i.e. time averaged
resource

utilizat ions)

Record the utilization of
mach ines, AGV, and

fixtu res
before and after

the disruption

Plot it with
UCL and LCL of
standard deviation

from the
corresponding

steady-state scenario

Execute the simulation
model with a proper

disruption schedule and
operational parameters

Determine its transient
behavior pattern

class compared to others
and find the starting

point

Determine its transient
behavior starting

Point and calculate mean
standard deviation before

and after disruption

TIS t ime series from
departing parts

in indiv idual runs

Resort TIS t ime series
based on

part’s arrival time

Find averaged TIS
process from
 independent
replicat ions
(time series)

m

Apply moving average
filtering (w=500)

Find standard
deviation time series
for the averaged TIS

process from
m independent

replicat ions
(time series)

Apply moving average
filtering (w=500)

Plot it with
UCL and LCL from the

orresponding
steady-state

scenario

c

Various Statistical
Data

(i.e. time averaged
resource

utilizat ions)

Record the utilization of
mach ines, AGV, and

fixtu res
before and after

the disruption

Plot it with
UCL and LCL of
standard deviation

from the
corresponding

steady-state scenario

Execute the simulation
model with a proper

disruption schedule and
operational parameters

Determine its transient
behavior pattern

class compared to others
and find the starting

point

Determine its transient
behavior starting

Point and calculate mean
standard deviation before

and after disruption

Figure 19. Pre-process Steps

 189

behavior prediction function, which is a crucial step in constructing a training set for the

ANN based modeling. In addition, key mathematical properties such as the highest order

of a proper polynomial can be identified and factored into the construction of proper

baseline parametric models.

During the post-process, each filtered mean TIS time series is used to

approximate a selected mathematical parametric function for the selected pattern class.

Selected mathematical parametric functions can be polynomial, exponential, or

logarithmic. Approximated coefficients of the selected parametric function can be used

to construct a corresponding target output vector for the designated ANN based

metamodel.

Initial findings indicate that there are four different major types of post-disruption

transient behavior that exist among the 180 independent TIS observation time series. For

this study, the number of post-disruption transient behavior patterns was not solely

determined by its graphical distinctiveness but rather driven by their mathematical

modeling needs and efficiency. For example, even though there may be more than one

type of transient behavior pattern that exists under a pattern class based on their graphical

distinctiveness, the need for using the same order of univariate polynomial regression

model forces them to be under the same transient behavior pattern class.

Type 0 pattern class as shown in Figure 20 is a collection of transient patterns

where there is no visible sign of change in their post-disruption mean TIS stochastic

 190

patterns. In other words, there is no shift in the trend of the process (average TIS). For

this type of post-disruption transient behaviors, the system may have operated near the

stable equilibrium system condition during the pre-disruption period. The unique

combination of each resource conditions (idle or not idle) followed by a sequence of

system events before and after the time of scheduled resource failure can characterize

these pre-disruption system conditions such as unstable/stable equilibrium.

Post-disruption
Pre-d isruption i th observation

Mean TIS
trend

Disruption

Post-disruption
Pre-d isruption i th observation

Mean TIS
trend

Disruption

Figure 20. Type 0 (no change) Transient Behavior Pattern Class

Type 1 pattern class as shown in Figure 21 is a collection of transient patterns

where there is a clear indication of an infinite linear growth by the target performance

 191

index during a post-disruption period. This type of post-disruption behavior may result

from the near-unstable equilibrium system condition during the pre-disruption period.

Post-disruption
Pre-d isruption i th observation

Mean TIS
trend

Disruption

Post-disruption
Pre-d isruption i th observation

Mean TIS
trend

Disruption

Figure 21. Type 1 (an infinite linear growth) Transient Behavior
Pattern Class

Type 2 pattern class, as shown in Figure 22, is a collection of transient patterns

where there is a clear indication of an infinite non-linear growth by the target

performance index in post-disruption behavior. This type of post-disruption behavior

may result from the near-unstable equilibrium system condition during the pre-disruption

period.

 192

Post-disruption
Pre-disruption i th observation

Mean TIS
trend

i th observation

Disruption

Figure 22. Type 2 (an infinite non-linear growth) Transient Behavior

Pattern Class

Type 3 pattern class as shown in Figure 23 is a collection of transient patterns

where there is a clear indication of a temporary finite non-linear growth followed by

stabilization to a new steady state during its post-disruption period. This type of post-

disruption behavior can be resulted by the near-stable equilibrium during the pre-

disruption period.

 193

 Me

an TIS

Post-disruption
Pre-d isruption i th observation

trend

Disruption

Me

an TIS

Post-disruption
Pre-d isruption i th observation

trend

Disruption

Figure 23. Type 3 (a finite growth to a new steady state) Transient Behavior
Pattern Class

After 180 individual runs, the makeup of four transient behavior patterns among

resulting MA filtered mean TIS time series was found and is shown in Table 16. As can

be seen from the table, every post-disruption transient behavior accompanies a form of

deviation from their pre-disruption TIS means. Scenario 33, 34, 35 and 36 are steady

state scenarios without a disruption.

 194

Table 16. Makeup for Four Transient Pattern Types

Transient Pattern Type

% Makeup from 36

scenarios (total 180

independent runs)

Scenarios Index No

Type 0 – “no change” 11% 33, 34, 35, 36

Type 1 – “an infinite
linear growth”

22% 19, 20, 25, 26, 27, 28,
29, 30

Type 2 – “an infinite
non-linear growth”

11% 7, 15, 31, 32

Type 3 – “a finite
growth to a new steady

state”

56% 1, 2, 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 16,
17, 18, 21, 22, 23, 24

The structure for both input (functional domain) and output (functional range)

vector spaces for each transient behavior pattern type had to be individually identified in

order to map input and output spaces of an unknown transient performance prediction

function. As one of the assumptions for this study states, the primary index of interest is

average time-in-system (TIS) of departing parts. Thus, the majority of vector elements in

the output vectors are used to capture functional characteristics of an unknown transient

TIS time series during the 10,000 minutes time horizon after a single disruption.

We can closely examine the process of determining the transient behavior pattern

type for scenario No.19 consisting of independent experiments 26, 27, 28, 29, and 30 as

an example. The five moving average (w = 500) filtered TIS data plots of the independent

simulation replications, Exp.26, 27, 28, 29, and 30 under scenarios No.19 in Figure 24

clearly show a distinctive infinite linear growth in four out of five plots. Only Exp.30

shows a different pattern, a finite growth to a new steady state.

 195

Figure 24. Individual Moving Average Filtered TIS plots under
Scenario No.19

Using the entire data points collected during the first 10,000 minutes after a

disruption event is a computationally inefficient way to construct a regression model.

Especially when neighboring data points from a substantially smaller time window than

 196

10,000 minutes contains no significant seasonal patterns but rather they are noisy and

redundant. Fewer data points can replace the entire set of data to construct a relatively

realistic regression based model without causing a computational burden.

A proper width of sampling interval was carefully selected through several

different disruption scenarios so that a resulting regression model with fewer data points

would not inhibit any major frequency trends in a given time series. Throughout this

study, a width of 100 data points has been selected as a sampling interval for data

reduction. Every 100th point of the moving average filtered mean TIS values from the

point of disruption to 10,000 minutes is collected to estimate an unknown polynomial

function of relative time index X ,

=X }|{ 1 n0i and constant a is x wherexxxx iii K=∆∆+= − .

In Figure 25, the plot of a moving average (w=500) filtered time series of mean

TIS from the five independent replications clearly shows an infinite linear growth. Thus,

the overall transient pattern type for Scenario No.19 is considered an infinite linear

growth type.

 197

Figure 25. Moving Average Filtered Mean TIS Plots under Scenario
No.19

A close-up view of the plot of every 100th MA filtered mean TIS observations

after the point of disruption in Figure 26 shows a sign of slight non-linear trend during

first 300 observations after which the disruption follows a linear trend. This phenomenon

was found in all Type 1 behaviors. After a certain number of initial observations, the

trend maintains its linearity throughout remaining observations. Therefore, the post-

transient behavior for Type 1 can be modeled with a two-phase function that consists of

two regression-based functions covering two different observation periods.

The first one is a second-order polynomial (quadratic) during a given number of

initial observations and the second one is a linear function for the remaining observations.

 198

These two regression-based functions can be mathematically found using a regression of

(time-in-system) on Y X (number of observations since 1≡∆x).

 Figure 26. A Close-up View of Moving Average Filtered Mean
TIS Plots under Scenario No.19

For higher order polynomial regressions, computational simplicity and a balanced

growth of polynomial coefficients during the approximation are two key factors to

determine the proper size of of x∆ X . By selecting the proper size of , we can avoid

a large variations among individual coefficients of unknown high order polynomial

during approximation, which in turn will result in a better training performance for the

ANN based metamodeling approach.

x∆

For a relatively simple implementation and future automation purpose, the

polynomial regression was selected to approximate all three post-disruption transient

 199

behaviors. A single n th order polynomial or combination of more than one polynomial

functions in a multiphased functional form was used to capture each post-disruption

transient behavior.

6.5 Identification of Input and Output Vectors

The input and output vectors for the unknown ANN based transient performance

function need to be identified. As the proposed ANN based meta-modeling scheme was

briefly discussed in 3.3.3, it consists of several multilayer ANNs that logically comprise a

hierarchical modeling taxonomy. Each ANN has its own location in the hierarchy to

independently or dependently map a different part of the functional domain to a group of

corresponding target values.

As shown in Figure 11 (see page 146 in Chapter 3), the top level multilayer ANN

is designed to detect and classify major post-disruption patterns existing in TIS of

departing parts. A series of ANNs position in the second level is to provide an actual

performance model of interest. The final design layout of the proposed hierarchically

organized ANN based transient system performance modeling framework is detailed in

later in this chapter (refer to Figure 27 on page 211).

A single configuration for input vectors is used in this experiment. The design

goal of input vector is to differentiate various pre-disruption system conditions that result

in the same post-disruption system behavior pattern. Input vector, p , consists of 44

 200

elements that are designed to feed the ANNs in both top and second levels with a

snapshot of the pre-disruption system condition such as time average machine utilizations

as well as the type of disruption itself. The configuration of the 44×1 input vector is

illustrated as follows:

A common input vector p is such that

 where K are as shown in Table 16.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44

2

1

p

p
p

M
p ,1p ,2p 44p

Exemplary vector elements used in Table 17 indicate that a single event

disruption was triggered by a machine center M1 failure. It also shows that the current

disruption scenario is based on a steady state with the mean part arrival time of 2.2

minutes and part mix Type 2. Even though the main configuration of output vector

carries the same vector space organization, the length and location of individual vector

elements may differ based on the characteristics of a selected approximation function for

the given transient behavior pattern type.

 201

Table 17. Semantics of Common Input Vector p

Vector
Element Description Example

1p Mean Arrival Time of Parts (2.2 or 2.3 minutes) 2.2

2p M1 Time Average Utilization prior to a disruptive event (1/100%) 0.5589

3p M6 Time Average Utilization prior to a disruptive event (1/100%) 0.3312

4p M2 Time Average Utilization prior to a disruptive event (1/100%) 0.7297

5p M5 Time Average Utilization prior to a disruptive event (1/100%) 0.6565

6p M3 Time Average Utilization prior to a disruptive event (1/100%) 0.6649

7p M7 Time Average Utilization prior to a disruptive event (1/100%) 0.4577

8p M9 Time Average Utilization prior to a disruptive event (1/100%) 0.813

9p M12 Time Average Utilization prior to a disruptive event (1/100%) 0.6984

10p AGV Time Average Utilization prior to a disruptive event (1/100%) 0.4527

11p Fixture Time Average Utilization prior to a disruptive event (1/100%) 0.6411

12p Start% Makeup of Part Type1 (1/100%) 0.2

13p Start% Makeup of Part Type2 (1/100%) 0

14p Start% Makeup of Part Type3 (1/100%) 0

15p Start% Makeup of Part Type4 (1/100%) 0.2

16p Start% Makeup of Part Type5 (1/100%) 0.2

17p Start% Makeup of Part Type6 (1/100%) 0

18p Start% Makeup of Part Type7 (1/100%) 0

19p Start% Makeup of Part Type8 (1/100%) 0

20p Start% Makeup of Part Type9 (1/100%) 0

21p Start% Makeup of Part Type10 (1/100%) 0

22p Start% Makeup of Part Type11 (1/100%) 0.2

23p Start% Makeup of Part Type12 (1/100%) 0.2

24p % Change in Part Type1 (1/100%) 0

25p % Change in Part Type2 (1/100%) 0

26p % Change in Part Type3 (1/100%) 0

27p % Change in Part Type4 (1/100%) 0

28p % Change in Part Type5 (1/100%) 0

29p % Change in Part Type6 (1/100%) 0

30p % Change in Part Type7 (1/100%) 0

31p % Change in Part Type8 (1/100%) 0

 202

Table 17 (continued). Semantics of Common Input Vector p

32p % Change in Part Type9 (1/100%) 0

33p % Change in Part Type10 (1/100%) 0

34p % Change in Part Type11 (1/100%) 0

35p % Change in Part Type12 (1/100%) 0

36p Status of M1 Failure (0 = false; 1 = true) 1

37p Status of M6 Failure (0 = false; 1 = true) 0

38p Status of M2 Failure (0 = false; 1 = true) 0

39p Status of M5 Failure (0 = false; 1 = true) 0

40p Status of M3 Failure (0 = false; 1 = true) 0

41p Status of M7 Failure (0 = false; 1 = true) 0

42p Status of M9 Failure (0 = false; 1 = true) 0

43p Status of M12 Failure (0 = false; 1 = true) 0

44p Status of Single AGV Failure (0 = false; 1 = true) 0

Since there are only four major transient behavior pattern classes identified in this

study, output vector for the top level ANN is designed to capture class numbers in two

digit binary numbers such as , , , and . Output vector is such that

1a

200 201 210 211 1a

⎥
⎦

⎤
⎢
⎣

⎡
= 1

2

1
11

a
a

a where individual elements, and , can be summarized in Table 18. 1
1a 1

2a

Table 18. Semantics of First Output Vector from the Top Level ANN 1a
Vector

Element Description Example
1
1a Coefficient of two digit binary number

to represent a post-disruption transient behavior pattern type
0c 0

0
1

1)2(01 22 ×+×= cccc

1

1
2a Coefficient of two digit binary number

to represent a post-disruption transient behavior pattern type
1c 0

0
1

1)2(01 22 ×+×= cccc

1

 203

In order to satisfy Research Object No. 2 identified in Chapter 3, the following

output vectors for the three different transient behavior pattern types were carefully

designed. Output vectors for the second level ANNs were designed to capture detail

functional information about the primary performance index as well as performance

changes in other indexes of choice such as time-average utilization of various resources.

Semantics for individual vector elements in output vector are described in

Table 18. The first ten elements, from to , were designed to capture individual

time average utilizations of ten resources in the system since t = 0. A function that

depicts mean TIS behavior after the disruption consists of a two-phase function of index

numbers for a TIS observation process. A period of disruption impact delay is

followed by the first phase of an unknown transient function of the disruption impact on

mean TIS characterized by a second order polynomial. The quadratic function consists of

, , and such that where is the approximated mean

TIS at observation index t and

1,2a

1,2
1a 1,2

10a

1,2
11a

1,2
12a 1,2

13a 1,2
14a 1,2

12
1,2

13
21,2

14 atatay ++= y

2990K=t is the t th TIS observation upon departing

parts after the delay of a observations. After 300 TIS observations denoted by , the

second phase of transient function, a linear infinite growth represented by two vector

elements, and such that where is the approximated mean TIS

at observation index t and (in reality

1,2
11

1,2
15a

1,2
16a 1,2

17a 1,2
16

1,2
17 atay += y

nt K,1,0 = =t 301,302….300+) is the th

observation on departing parts after first 300 parts after disruption until the elapse of

10,000 minutes. The remaining elements from to cover the trend of standard

n t

1,2
18a 1,2

27a

 204

deviations of moving average (w=500) mean TIS during 10,000 minutes after the

disruption, which was captured in a eighth order polynomial.

In Figure 27 (see page 211), the output vector for first three multilayer ANNs in

the second level, namely , , and , collectively

representing the transient behavior pattern Type 1, is symbolically denoted as:

1_1_2_net 2_1_2_net 3_1_2_net

 where individual elements, , can be summarized in Table

19.

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1,2
27

1,2
2

1,2
1

1,2

a

a
a

M
a 1,2

27
1,2

2
1,2

1 ,, aaa K

Table 19. Semantics of Output Vector from First Three ANNs in the Second
Level ANNs to Approximate Transient Behavior Pattern Type No. 1

1,2a

Vector
Element Description Example

1,2
1a M1 Utilization after the disruptive event 0.5451

1,2
2a M6 Utilization after the disruptive event 0.265

1,2
3a M2 Utilization after the disruptive event 0.1194

1,2
4a M5 Utilization after the disruptive event 0.8425

1,2
5a M3 Utilization after the disruptive event 0.6858

1,2
6a M7 Utilization after the disruptive event 0.6708

1,2
7a M9 Utilization after the disruptive event 0.75

1,2
8a M12 Utilization after the disruptive event 0.6111

1,2
9a AGV Utilization after the disruptive event 0.8784

1,2
10a Fixture Utilization after the disruptive event 0.931

1,2
11a Disruption Impact Delay (estimated lag to the first part of transient) 192

1,2
12a A0 (first coefficient approx. for the quadratic trend in TIS) 158.55

1,2
13a A1 (second coefficient approx. for the quadratic trend in TIS) 0.069713

 205

Table 19 (continued). Semantics of Output Vector from First Three ANNs in
the Second Level ANNs to Approximate Transient Behavior Pattern Type No. 1

1,2a

Vector
Element Description Example

1,2
14a A2 (third coefficient approx. for the quadratic trend in TIS) 0.000284

1,2
15a Starting point of the linear trend (second part) of TIS 300

1,2
16a A0 (first coefficient approx. for the linear trend in TIS) 207.56

1,2
17a A1 (second coefficient approx. for the linear trend in TIS) 0.22251

1,2
18a Mean Sigma of TIS during pre-disruption (assuming stationary condition) 37.31739

1,2
19a A0 (first coefficient of the eighth order polynomial trend in σ of moving

average TIS during post-disruption period) 46.912
1,2

20a A1 (second coefficient of the eighth order polynomial trend in σ of
moving average TIS during post-disruption period) 102.28

1,2
21a A2 (third coefficient of the eighth order polynomial trend in σ of moving

average TIS during post-disruption period) 1943.5
1,2

22a A3 (forth coefficient of the eighth order polynomial trend in σ of moving
average TIS during post-disruption period) -7734.3

1,2
23a A4 (fifth coefficient of the eighth order polynomial trend in σ of moving

average TIS during post-disruption period) 13632
1,2

24a A5 (sixth coefficient of the eighth order polynomial trend in σ of moving
average TIS during post-disruption period) -12717

1,2
25a A6 (seventh coefficient of the eighth order polynomial trend in σ of

moving average TIS during post-disruption period) 6516.9
1,2

26a A7 (eighth coefficient of the eighth order polynomial trend in σ of
moving average TIS during post-disruption period) -1733.1

1,2
27a A8 (ninth coefficient of the eighth order polynomial trend in σ of

moving average TIS during post-disruption period) 186.97

A period of disruption impact delay is followed by a cubic transient function

of the disruption impact on mean TIS. The reason to pick a third order polynomial is to

capture the overall steepness, as well as, the contour of the non-linear growth in a

relatively simple way without sacrificing its mathematical credibility. Also, the training

burden of the ANN, often followed by an erratic behavior and large error of ANN due to

its relatively smaller training set, can be lessened using smaller target vectors. A cubic

function consists of four polynomial coefficients, such that

2,2
11a

2,2
15

2,2
14

2,2
13

2,2
12 and ,,, aaaa

 206

2,2
12

2,2
13

22,2
14

32,2
15 atatatay +++= where is the approximated mean TIS at observation

index and is the th TIS observation upon departing parts after the delay

of observations. The actual increment of t used for the third order polynomial is

0.0005 rather than one for the evenly scaled growth of its coefficients during the

polynomial regression. Thus, the actual values of t are

y

t nt K ,2,1,0= t

2,2
11a

nt K ,0010.0,0005.0,0= .

The remaining elements from to cover the trend of standard deviations

of moving average (w=500) filtered mean TIS before and after the disruption. The mean

standard deviation prior to the disruption was captured by a single value, . The post-

disruption mean standard deviation was captured by a cubic function with coefficients,

such that where

2,2
16a 2,2

20a

2,2
16a

2,2
20

2,2
19

2,2
18

2,2
17 and ,, aaaa 2,2

17
2,2

18
22,2

19
32,2

20 atatatay +++= y is the

approximated standard deviation of moving average (w=500) mean TIS at observation

index and is the th TIS observation upon departing parts after the

disruption. Again the actual increment of t is 0.0005 rather than one so values for t are

.

t nt K ,2,1,0= t

nt K ,0010.0,0005.0,0=

As shown in Figure 27 on page 211, the output vector for the second group of

three multilayer ANNs in the second level, namely , , and

, collectively representing the transient behavior pattern Type 2, is

symbolically denoted as:

1_2_2_net 2_2_2_net

3_2_2_net

 207

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2,2
20

2,2
2

2,2
1

2,2

a

a
a

M
a where individual elements, , can be summarized in Table

20.

2,2
20

2,2
2

2,2
1 , , aaa K

Table 20. Semantics of Output Vector from Second Group of Three ANNs in
the Second Level ANNs to Approximate Transient Behavior Pattern Type No. 2

2,2a

Vector
Element Description Example

2,2
1a M1 Utilization after the disruptive event 0.56526

2,2
2a M6 Utilization after the disruptive event 0.29298

2,2
3a M2 Utilization after the disruptive event 0.69212

2,2
4a M5 Utilization after the disruptive event 0.59026

2,2
5a M3 Utilization after the disruptive event 0.80704

2,2
6a M7 Utilization after the disruptive event 0.0701

2,2
7a M9 Utilization after the disruptive event 0.767

2,2
8a M12 Utilization after the disruptive event 0.6572

2,2
9a AGV Utilization after the disruptive event 0.88234

2,2
10a Fixture Utilization after the disruptive event 0.94158

2,2
11a Disruption Impact Delay (estimated lag to transient) 112

2,2
12a A0 (first coefficient approx. for the eighth order polynomial trend in TIS) 158.32

2,2
13a A1 (second coefficient approx. for the eighth order polynomial trend in

TIS) 87.177
2,2

14a A2 (third coefficient approx. for the eighth order polynomial trend in TIS) 2080.3
2,2

15a A3 (forth coefficient approx. for the eighth order polynomial trend in TIS) -5572.9
2,2

16a Mean Sigma of TIS during pre-disruption (assuming stationary condition) 36.36818
2,2

17a A0 (first coefficient of the eighth order polynomial trend in σ of moving
average TIS during post-disruption period) 45.496

2,2
18a A1 (second coefficient of the eighth order polynomial trend in σ of

moving average TIS during post-disruption period) 355.31
2,2

19a A2 (third coefficient of the eighth order polynomial trend in σ of moving
average TIS during post-disruption period) -194.23

2,2
20a A3 (forth coefficient of the eighth order polynomial trend in σ of moving

average TIS during post-disruption period) 495.38

 208

Semantics for individual vector elements in output vector are described in

Table 20 on page 207. Similar to the two previous transient behavior pattern types, the

first ten elements, from to , were designed to capture individual time average

utilizations of ten resources in the system since t = 0. A function that depicts mean TIS

behavior after the disruption consists of a single eighth order polynomial based on TIS

observation index after a disruption.

3,2a

3,2
1a 3,2

10a

Different from the second transient pattern type, a period of disruption impact

delay is followed by an eighth order polynomial transient function of the disruption

impact on mean TIS. The reason to pick eighth order polynomial was based on its

modeling efficiency and easiness of ANN training. The eighth order polynomial consists

of nine polynomial coefficients, such that

 where

3,2
11a

,,,,, 3,2
16

3,2
15

3,2
14

3,2
13

3,2
12 aaaaa 3,2

20
3,2

19
3,2

18
3,2

17 and ,, aaaa

3,2
12

3,2
13

23,2
14

33,2
15

43,2
16

53,2
17

63,2
18

73,2
19

83,2
20 atatatatatatatatay ++++++++= y is the

approximated mean TIS at observation index t and nt K ,2,1,0= is the t th TIS

observation upon departing parts after the delay of observations. The actual

increment of used for the eighth order polynomial is 0.0005 rather than one due to a

large uneven growth-scale disparity among nine coefficients of during the polynomial

regression.

3,2
11a

t

t

In other words, since the variation tends to remain consistent, there is no increase

or decrease in the variance of TIS; three constant values can cover the

trend of standard deviations of moving average (w=500) mean TIS before and after the

3,2
23

3,2
22

3,2
21 and ,, aaa

 209

disruption. The mean standard deviation prior to the disruption was captured by first

single value . Second single vector element, , captured the mean standard

deviation during transient. The post-transient mean standard deviation was captured by

third single element . As shown in Figure 27 on page 211, the output vector for third

group of two multilayer ANNs in the second level, namely and

, collectively representing the transient behavior pattern Type 3, is denoted

as:

3,2
21a 3,2

22a

3,2
23a

1_3_2_net

2_3_2_net

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3,2
23

3,2
2

3,2
1

3,2

a

a
a

M
a where individual elements, , can be summarized in Table

21.

3,2
23

3,2
2

3,2
1 , , aaa K

A logical framework ties various trained ANNs into a single meta-modeling

scheme. The principal design objective for this logical framework is to organize

individual ANNs in such way that these ANNs can collectively map functional range of

an unknown transient performance functions. Different areas of an unknown functional

range can be captured via training designated ANNs under the transient behavior pattern

it belongs to. The captured transient function can be realized via simulating the same set

of ANNs under a particular transient behavior pattern.

The basic control flow of the proposed branch logic structure is illustrated in

Figure 27. The detail logical structure for a MATLAB based program can be found in

 210

Appendix B. Detail views of individual ANNs are provided later in Figure 28, Figure 29,

Figure 30, and Figure 31 in Chapter 7.

Table 21. Semantics of Output Vector from Third Group of Two ANNs in the
Second Level ANNs to Approximate Transient Behavior Pattern Type No. 3

3,2a

Vector
Element Description Example

3,2
1a M1 Utilization after the disruptive event 0.092444

3,2
2a M6 Utilization after the disruptive event 0.717588

3,2
3a M2 Utilization after the disruptive event 0.565373

3,2
4a M5 Utilization after the disruptive event 0.674801

3,2
5a M3 Utilization after the disruptive event 0.75937

3,2
6a M7 Utilization after the disruptive event 0.684116

3,2
7a M9 Utilization after the disruptive event 0.714482

3,2
8a M12 Utilization after the disruptive event 0.612693

3,2
9a AGV Utilization after the disruptive event 0.475533

3,2
10a Fixture Utilization after the disruptive event 0.720063

3,2
11a Disruption Impact Delay (estimated lag to transient) 222

3,2
12a A0 (first coefficient approx. for the eighth order polynomial trend in TIS) 166.22

3,2
13a A1 (second coefficient approx. for the eighth order polynomial trend in

TIS) 138.95
3,2

14a A2 (third coefficient approx. for the eighth order polynomial trend in TIS) -587.97
3,2

15a A3 (forth coefficient approx. for the eighth order polynomial trend in TIS) 1341.1
3,2

16a A4 (fifth coefficient approx. for the eighth order polynomial trend in TIS) -1786.8
3,2

17a A5 (sixth coefficient approx. for the eighth order polynomial trend in TIS) 1411.7
3,2

18a A6 (seventh coefficient approx. for the eighth order polynomial trend in
TIS) -644.23

3,2
19a A7 (eighth coefficient approx. for the eighth order polynomial trend in

TIS) 155.63
3,2

20a A8 (ninth coefficient approx. for the eighth order polynomial trend in TIS) -15.302
3,2

21a Mean σ of TIS during pre-disruption (assuming stationary condition) 54.23641
3,2

22a Mean σ of TIS during transient (average) 53.60903
3,2

23a Meanσ of TIS during post-transient (assuming stationary condition) 53.75352

 211

0
N

o.
Type

Pattern
AN

N
s

Level

Second

AN
N

Level

Top

[
] T

p
p

p
44

2
1

K
=

p

Type 0
[00]?

2
2

2
−

−

N
othing

D

o

Type 1
[01]?

[
]

01
= 1

a

1
N

o.
Type

Pattern

10
4
−

7
4
−

10
10

4
−

−

13
8

4
−

−

Type 2
[10]?

 2
N

o.
Type

Pattern

Type 3
[11]?

 3
N

o.
Type

Pattern

10
4
−

N
et_2_1_1

N
et_2_1_2

N
et_2_1_3

N
et_2_2_1

N
et_2_2_2

N
et_2_2_3

N
et_2_3_1

N
et_2_3_2

N
et_1_1

10
2
−

p p

pp

p

p

p

p

[
]

00
= 1

a

p

p

ppp

[
]

10
= 1

a

[
]

11
= 1

a

5
2
−

[
] T

a
a

a
1,

210
1,

22
1,

21
,

K
=

−1
1

2
a

[
] T

a
a

a
1,

217
1,

212
1,

211
,

K
=

−2
1

2
a

[
] T

a
a

a
1,

227
1,

219
1,

218
3

,
K

=
−1

2
a

[
] T

a
a

a
2,

210
2,

22
2,

21
,

K
=

−1
2

2
a

[
] T

a
a

a
2,

215
2,

212
2,

211
,

K
=

−2
2

2
a

[
] T

a
a

a
2,

220
2,

222
2,

216
3

,
K

=
−2

2
a

[
] T

a
a

a
3,

210
3,

22
3,

21
,

K
=

−1
3

2
a

[
] T

a
a

a
3,

223
3,

212
3,

211
3,

K
=

−2
2

a

5
2
−

 Figure 27. Proposed Two-Level Deep Taxonomically Organized ANN
Based Transient Performance Model

 212

As shown in Figure 27, the top level multilayer ANN is designed to classify

distinctive post-disruption transient behavior patterns that can be encoded into a two digit

binary number. Upon predicting a particular post-disruption transient pattern, the same

system input vector is fed into a group of multilayer ANNs in the second level

predestined by the proposed branch logic.

As we can see from Figure 27, Type 1 input vectors are simultaneously fed into

three multilayer networks in the second level, namely Net_2_1_1, Net_2_1_2, and

Net_2_1_3. Breaking output vectors under a particular transient type into smaller ones

using two or three ANNs rather than a single large one is mainly due to the ease of

training and better performance of smaller networks.

 Especially when the dimension (or size) of an output vector from a particular

transient behavior pattern type is large in relation to its total number of training output

vectors, breaking an output vector into several smaller ones based on their similar scale

of individual vector elements and letting those smaller ANNs collectively approximate an

unknown function is a more efficient way to handle a large dimension output

approximation without increasing the number of actual training vectors. Otherwise,

training such an ANN with a large size outer layer can be quite difficult. Even if one can

manage to train such a large network, the reliability and performance of the ANN will be

very poor due to its significantly large number of weights and biases.

 213

 As shown in Figure 27, the first type transient behavior output vector in the

second level, , is broken into , , and based on similarity in individual

vector element scales and their positions in the final output vector. The first sub-output

vector, , contains the first element, , thru the tenth element, , from the

original output vector, . The second sub-output vector, , contains the 11th

element, , thru the 17th element, , from the original output vector. The third sub-

output vector, , contains the 18th element, , thru the 27th element, , from the

original output vector, .

1,2a 11,2 −a 21,2 −a 31,2 −a

11,2 −a 1,2
1a 1,2

10a

1,2a 21,2 −a

1,2
11a 1,2

17a

31,2 −a 1,2
18a 1,2

18a

1,2a

Similarly, the second type transient behavior output vector in the second level,

, is broken into three sub-output vectors, namely , , and . The first

sub-output, , contains the first thru tenth elements from . The second sub-

output, , contains the 11th thru 20th elements from . The third sub-output,

, contains the 21st thru 30th elements from .

2,2a 12,2 −a 22,2 −a 32,2 −a

12,2 −a 2,2a

22,2 −a 2,2a

32,2 −a 2,2a

The third type transient behavior output vector in the second level, , is broken

into two sub-output vectors, and . The first sub-output, , contains the

first thru tenth elements from . The second sub-output, , contains the 11th thru

23rd elements from .

3,2a

13,2 −a 13,2 −a 13,2 −a

3,2a 23,2 −a

3,2a

 214

6.6 Summary

 This chapter provides an overview of simulation modeling using Extend,

expansion of initial design of experiments, post-simulation data processing, and

construction of input and target vectors for the proposed ANN based metamodeling

approach. The simulation model was designed to reflect various aspects of asynchronous

and tightly coupled FMS behaviors with a built-in resource failure scheduler. The study

concluded that the initial experiment set was not large enough to produce an acceptable

ANN training performance; therefore, increasing the number of total experiments was

necessary. Results from simulation experiments and analysis show that there are four

major transient behavior pattern types based on graphical similarity and modeling

requirements by the polynomial regression. The study found that about half of

experiments fell under Type 3 post-disruption behavior, namely a finite growth to a new

steady state. Data processing activities are divided into two phases, pre and post. The

pre-process is to prepare raw TIS data to detect the presence of transient behaviors and

classify them accordingly. The post-process involves extracting various mathematical

properties from the underlying TIS observation time series process to construct necessary

target vectors.

 215

7. Experimental Results

 The performance of the proposed ANN based meta model is discussed in this

chapter. Steps for training and validation of individual ANNs are also presented.

Performances of prediction results by both individual regression models and the proposed

ANN based model on selected disruption scenarios are compared to actual observations

from simulation experiments to evaluate the overall effectiveness of the proposed

modeling scheme.

7.1 Construction and training of Individual ANNs

Upon completing construction of input and output vectors from all 180 initial

experiments, individual ANNs comprising the proposed taxonomically-organized ANN

based meta model can be constructed. Various output vector sizes for both first and

second level ANNs help us to determine right configurations of individual ANNs.

Since output vectors for three transient performance functions were broken into

eight smaller sub-output vectors, the configuration of outer layer of individual ANN in

the second level can be determined accordingly. The first ANN, Net_1_1, in the top

level has 44 dimension input and two dimension output vectors and its final configuration

 216

of the network was decided as an 222 ×× network after several trials. The diagram of

this ANN is illustrated in Figure 28. The transfer function for both the first and second

layer is Hyperbolic Tangent Sigmoid. The transfer function for the last (outer) layer is

Linear. Justifications to choose these two types of transfer function are given in an

earlier chapter (refer to section 3.3.2 in Chapter 3).

Figure 28. Network Diagram of Net_1_1 in the Top Level

One hundred eighty input and corresponding output vectors were equally divided

into four mutually exclusive subsets. The training vector set including both input and

matching output vectors consists of two groups. The first group is made of every forth

vector starting from the first one such as 1, 5, 9, and 13 … 177. Since actual sequences

of both input and output vectors are identical to the sequence of actual experiment

numbers listed in Table 15 in Chapter 6, the actual sequence of equivalent experiment

numbers from the table is 11, 15, 114, and 58, …102. The second group consists of

every forth vector starting from the third one such as 3, 7, 11, and 15 … 179. The actual

sequence of equivalent experiment numbers from the table is 13, 112, 56, and 60 …104.

The remaining two vector sets were used for validation and testing.

 217

For a collective approximation of Type one post-disruption behavior, three sub-

ANNs from the second level, Net_2_1_1, Net_2_1_2, and Net_2_1_3, share 44

dimension input vectors. They respectively use ten, seven, and ten dimension output

vectors. The final configurations of these networks were decided as 104× , , and

network after several trials. Diagrams of these ANNs are illustrated in Figure 29.

The transfer function for the first layer is Hyperbolic Tangent Sigmoid. The transfer

function for last (outer) layer is Linear.

74×

104×

Net_2_1_3

Net_2_1_2

Net_2_1_1

 Figure 29. Individual Network Diagram of Type One Transient
Behavior Approximation sub-ANNs in the Second Level

 218

Forty input and corresponding separate output vectors for each sub-ANN were

equally divided into four mutually exclusive subsets. These input and output vectors are

from scenarios that may result in Type 1 post-disruption behavior patterns. Numbers for

these scenarios are 19, 20, 25, 26, 27, 28, 29, and 30 as shown in Table 15 in Chapter 6.

As seen in the configuration of the training vector set for the fist ANN, the

training vector set including both input and matching output vectors is made of two

groups. The first group is made of every forth vector such as 1, 5, 9, 13, …, and 37.

Since the first experiment in the first group starts with 26, the actual sequence of

experiment numbers is 26, 30, 154, …, and 87. Likewise, the second group is made of

every forth vector starting from experiment number 28. The actual sequence of

experiment numbers in the final training set is made of these two groups in a sequential

manner, such as 26, 30, 154, …, 87, 28, 152, 76, …, 89. The remaining vectors was

used for validation and testing.

For a collective approximation of type two post-disruption behavior, three sub-

ANNs from the second level, Net_2_2_1 covering output vector elements from thru

, Net_2_2_2 covering output vector elements from thru , and Net_2_2_3

covering output vector elements from thru , share 44 dimension input vectors.

The final configurations of these networks were decided as

2,2
1a

2,2
10a 2,2

11a 2,2
15a

2,2
16a 2,2

20a

102× , 52× , and

network after several trials. The diagrams of these ANNs can be illustrated in

Figure 30. The transfer function for the first layers is Hyperbolic Tangent Sigmoid.

The transfer function for the last (outer) layers is Linear.

52×

 219

Twenty input and corresponding twenty output vectors were equally divided into

four mutually exclusive subsets for training, validation and testing. Each individual input

vectors are constructed from experiment scenarios that may result in type two post-

disruption behavior patterns. Numbers of these scenarios are 7, 15, 31, and 32 as shown

in Table 15 in Chapter 6. Each scenario consists of five independent experiments.

Net_2_2_1

Net_2_2_2

Net_2_2_3

Figure 30. Individual Network Diagram of Type Two Transient
Behavior Approximation Sub-ANNs in the Second Level

 220

Similar to the configuration of training vector sets for the previous set of ANNs,

the training vector set for each sub-ANN including common input and matching output

vectors can be divided into two groups. The first group is made of every forth vector

starting from experiment number 61, such as 61, 65, 179, 63, 72. The second group is

made of every forth vector starting from experiment number 63 such as 63, 177, 61, 65,

74. The final training vector set can be put together, combining the first and second

group back to back such that the final sequence of input vectors can be 61, 65, 179, 63,

72, 63, 177, 61, 65, and 74. The rest of remaining vectors was used for validation and

testing purposes.

For a collective approximation of type three post-disruption behavior, sub-ANNs,

Net_2_3_1 and Net_2_3_2 in the second level share 44 dimension input and each uses

ten and thirteen dimension output vectors. The final configurations of these networks

were decided as and 10104 ×× 1384 ×× network after several trials. The diagrams of

these ANNs can be illustrated in Figure 31. The transfer function for the first and second

layers is Hyperbolic Tangent Sigmoid. The transfer function for the last (outer) layers is

Linear.

One hundred input and corresponding output vectors for two sub-ANNs were

equally divided into four mutually exclusive subsets. These input and output vectors are

from scenarios that result in type two post-disruption behavior patterns. Numbers for

these scenarios are 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 23, and 24 as

 221

shown in Table 15 in Chapter 6.

Net_2_3_2

Net_2_3_1

Figure 31. Individual Network Diagram of Type Three Transient
Behavior Approximation sub-ANNs in the Second Level

As seen in configuration of training vector sets for previous ANNs, the training

vector set for each sub-ANN including common input and matching output vectors can

be divided into two groups. The first group is made of every forth vector starting from

experiment number 11. The second group is made of every forth vector starting from

experiment number 13. The remaining vectors were prepared for validation and testing.

The type of backpropagation training algorithm used throughout this study is

Bayesian regularization based on the Bayesian framework of Mackay [1992]. This

 222

function can be callable through the MATLAB neural network toolbox. Regularization is

a method used to improve the generalization of feedforward neural networks such as

those in this study by modifying its performance function. The typical performance

function used for training feedforward neural networks can be expressed as the mean sum

of squares of the network errors:

 2

11

2)(1)(1
i

N

i
i

N

i
i at

N
e

N
mseF −=== ∑∑

==

Regularization can be achieved by adding a term that consists of the mean of the sum of

squares of the network weights and biases

mswmsemsereg)1(γγ −+=

where γ is the performance ratio, and

 ∑
=

=
n

j
jw

n
msw

1

21

Minimizing this performance function will help the network to maintain smaller weights

and biases during its training, which in return will force the network response to be

smoother and less likely to overfit. Bayesian regularization updates the weights and

biases according to Levenberg-Marquardt optimization (see Section 3.3.2 for details).

 Training of individual neural networks was set to stop when it reaches maximum

100 epochs, an error goal of 0.01, or any other stopping conditions imposed by Bayesian

regularization. It is also set to display their sum of squared errors on test, validation, and

training at every fifth epoch during the training.

 223

100

102

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed
Training SSE = 2.95821 Test SSE = 15.4287 Validation SSE = 20.8427

100

102

S
S

W

Squared Weights = 139.573

0 0.5 1
0

0.5

1

1.5

T

A

Best Linear Fit: A = (0.83) T + (0.118)

R = 0.928 Data Points
Best Linear Fit
A = T

Figure 32. Performance Plots of the Top Level ANN Net_1_1

during Its Initial training with 90 Input and Output

The results of initial training of the top level ANN with 90 input and output

vectors exhibits a performance of SSE = 2.95821 as shown in Figure 32. However, a test

performances index, test SEE, climbed to 15.4287. The training was prematurely

terminated at the 43rd epoch by reaching the point where the sum of squared errors

cannot be further reduced by moving into neighboring points on a descending terrain of

the performance surface, or perhaps it might have stuck in a plateau of the performance

surface. Other trainings of sub-neural networks such as Net_2_1_1, Net_2_1_2,

Net_2_1_3, Net_2_2_2, Net_2_2_2 and Net_2_3_1 were successful since both their test

 224

and validation SSE were below one as shown in Table 22.

Table 22. Training and Testing Performance Indexes from
Individual Neural Networks with 90 training and 45 Testing Input
and Output Vectors (original experiment set)

Sub-network Training SSE Test SSE Validation SSE
Net_1_1 2.95821 15.4287 20.8427

Net_2_1_1 0.0773568 0.0362079 0.0553606
Net_2_1_2 0.386327 0.280162 0.268072
Net_2_1_3 0.398952 0.188614 0.199922
Net_2_2_1 1.15518 1.0123 0.570032
Net_2_2_2 0.616456 0.481829 0.313887
Net_2_2_3 0.186616 0.257429 0.40057
Net_2_3_1 0.00673646 0.0102034 0.0117372
Net_2_3_2 2.71756 4.09792 9.8713

The rest of sub-neural networks (those marked with the gray color in Table),

net_2_2_1, net_2_3_2, and net_1_1 exhibit relatively poor test performance despite

multiple attempts of training. In each training attempt, a slightly different training and

test performance were observed because the starting condition of the same neural

network may change per each training cycle by automatically selecting different initial

values for weights and biases unless they are given. In other words, if you compare the

training process of an ANN to a 3D terrain navigation of the performance surface to find

a point that typically minimizes the overall training error represented by the training SSE,

a different starting point of the performance surface in each training cycle may result in a

slightly different performance result. Individual training and testing plots for each sub-

ANN can be found in Appendix D.

 225

7.2 Expansion of the Initial Experiment Size

After careful review of configurations of individual ANNs and possibility of

using different training methods, increasing the number of input and output data points

become an effective choice to improve the poor performance of three sub-ANNs net_1_1,

net_2_2_1, and net_2_3_2, in both training and testing as well as boost the overall

performance of the collective framework. The number of entire input and output vectors

was to be tripled by adding ten more independent replications under each disruption

scenarios.

The new extended experiment set similar to Table 14 on page 178 can be found in

Appendix A. Since values for individual output vectors were derived from the average

values of all experiments under a particular scenario, recalculations were necessary for

all 36 scenarios after 360 additional simulation runs (ten additional runs for 36 scenarios).

Individual values for input and output vectors for the first level and second level

ANNs can be found in Appendix C. Results from training ANNs with an extended vector

set (total 540 vectors) are summarized in Table 23.

 226

Table 23. Training, Test, and Validation Performances from Individual Sub-ANNs
under New Extended Training, Test and Validation Vector Sets vs. Those under Old
Training, Test, and Validation Vector Sets

Training SSE Test SSE Validation SSE

Sub-network

Under 180
Original
Exp Set

Under 540
New Exp

Set

Under 180
Original
Exp Set

Under 540
New Exp

Set

Under 180
Original
Exp Set

Under 540
New Exp

Set
Net_1_1 2.95821 0.219501 15.4287 0.114293 20.8427 0.148303

Net_2_1_1 0.0773568 0.238701 0.0362079 0.114738 0.0553606 0.127628
Net_2_1_2 0.386327 1.32545 0.280162 0.683936 0.268072 0.73432
Net_2_1_3 0.398952 0.563311 0.188614 0.294714 0.199922 0.304855
Net_2_2_1 1.15518 3.6151 1.0123 1.93986 0.570032 1.80218
Net_2_2_2 0.616456 1.75279 0.481829 0.968875 0.313887 0.931073
Net_2_2_3 0.186616 0.606394 0.257429 0.322154 0.40057 0.334161
Net_2_3_1 0.00673646 0.0932927 0.0102034 0.0511311 0.0117372 0.0466751
Net_2_3_2 2.71756 1.19486 4.09792 0.608019 9.8713 0.606891

 Contrary to the prior expectation, using the extended experiment set did not

improve the performance of every sub-ANNs. In fact, for some sub-ANNs, the

performance in all three training, test, and validation, has shown a slight degradation.

But, these performance degradations are acceptable because the overall improvement

made by other sub-ANNs is greater.

On the other hand, the testing and validation performances by both Net_1_1 and

Net_2_3_2 showed significant improvements under the new extended training, test, and

validation vector sets against the old ones. As seen in Figure 33, improvements made by

these two sub-ANNs under the new extended training and validation vector sets are

significant enough to justify the additional 360 experiments to the original experiment

set.

 227

100

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 0.219501 Tes t S S E = 0.114293 Validation S S E = 0.148303

100

102

104

S
S

W

S quared Weights = 5028.52

0 0.5 1
-1

0

1

2

T

A

Bes t Linear Fit: A = (1) T + (0.000187)

R = 1 Data P oints
Bes t Linear Fit
A = T

10
0

10

 The remaining individual plots show the chronological progression of the sum of

squared errors (SSE), squared weights of each neurons and the effective number of

parameters against the number of epochs for each sub-ANN under both experiment sets

can be found in Appendix D.

2

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 2.95821 Tes t S S E = 15.4287 Validation S S E = 20.8427

10
0

10
2

S
S

W

S quared Weights = 139.573

0 0.5 1
0

0.5

1

1.5

T

A

Bes t Linear Fit: A = (0.83) T + (0.118)

R = 0.928 Data P oints
Bes t Linear Fit
A = T

10
0

10
2

10
4

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 2.71756 Tes t S S E = 4.09792 Validation S S E = 9.8713

10
0

10
2

S
S

W

S quared Weights = 74.5016

0 1000 2000
0

500

1000

1500

T

A

Bes t Linear Fit: A = (0.588) T + (119)

R = 0.844 Data P oints
Bes t Linear Fit
A = T

100

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 1.19486 Tes t S S E = 0.608019 Validation S S E = 0.606891

100

102

S
S

W

S quared Weights = 267.366

0 1000 2000
0

500

1000

1500

T

A

Bes t Linear Fit: A = (0.998) T + (0.468)

R = 0.999 Data P oints
Bes t Linear Fit
A = T

Net_1_1

Net_2_3_2

Under Old Experiment Set

Under Old Experiment Set Under New Experiment Set

Under New Experiment Set

100

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 0.219501 Tes t S S E = 0.114293 Validation S S E = 0.148303

100

102

104

S
S

W

S quared Weights = 5028.52

0 0.5 1
-1

0

1

2

T

A

Bes t Linear Fit: A = (1) T + (0.000187)

R = 1 Data P oints
Bes t Linear Fit
A = T

10
0

10
2

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 2.95821 Tes t S S E = 15.4287 Validation S S E = 20.8427

10
0

10
2

S
S

W

S quared Weights = 139.573

0 0.5 1
0

0.5

1

1.5

T

A

Bes t Linear Fit: A = (0.83) T + (0.118)

R = 0.928 Data P oints
Bes t Linear Fit
A = T

10
0

10
2

10
4

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 2.71756 Tes t S S E = 4.09792 Validation S S E = 9.8713

10
0

10
2

S
S

W

S quared Weights = 74.5016

0 1000 2000
0

500

1000

1500

T

A

Bes t Linear Fit: A = (0.588) T + (119)

R = 0.844 Data P oints
Bes t Linear Fit
A = T

100

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 1.19486 Tes t S S E = 0.608019 Validation S S E = 0.606891

100

102

S
S

W

S quared Weights = 267.366

0 1000 2000
0

500

1000

1500

T

A

Bes t Linear Fit: A = (0.998) T + (0.468)

R = 0.999 Data P oints
Bes t Linear Fit
A = T

Net_1_1

Net_2_3_2

Under Old Experiment Set

Under Old Experiment Set Under New Experiment Set

Under New Experiment Set

Figure 33. Comparative Performance plots of sub- ANNs, Net_1_1 and
Net_2_3_2, under Old and New Training, Test, and Validation Vector Sets

 228

7.3 Performance Evaluation of Proposed Modeling Scheme

For this study, the standard error of estimate was chosen to measure the

performance of the proposed ANN based meta model on selected input vectors

(experiments) due to its computational simplicity and closeness to the scale of actual

RAW time-in-system data. If we let be an unbiased estimator for (time-in-system

for i th part), the standard error of estimate can be stated as

iŷ iy

∑
=

−
+−

=
n

i
iie yy

kn
S

1

2)ˆ(
)1(

1 where is ’s unbiased estimator in k th degree

polynomial.

iŷ iy

For simplicity and economic reasons, a total 18 out of 540 experiments were

selected to benchmark their standard error of estimate by the proposed ANN based meta

model against those estimated by corresponding univariate regression models based on its

MA TIS (moving average filtered time-in-system) and MA scenario average TIS (out of

fifteen independent runs). Six experiments from each post-disruption behavior types

were carefully selected. Selection criteria were based on the size of the sum of squared

errors (SSE) between the approximation made by an univariate regression model based

on moving average filtered TIS (MA TIS) time series and the approximation made by the

proposed ANN based meta model.

 229

Among six experiments under each post-disruption behavior type, first one third

(two) comprises two best cases in terms of its least size of sum of squared errors (SSE).

The second one-third represents two average cases in its sum of squared errors. The

remaining one-third represents the two worst cases in its sum of squared errors. Even

though two post-disruption behavior types, Type 1 and Type 2, are not covariance

stationary stochastic processes, we assume that actual performance of the proposed ANN

based meta model on a individual input vector basis can be judged by finding the

standard error of TIS estimates by the ANN based meta model against actual (RAW)

time-in-system (TIS) values and moving averaged (MA) TIS values. These standard

error of estimates by the ANN based meta model are then compared to similar standard

error of estimates made by the univariate regression model based on MA TIS and by the

univariate regression model based on moving average filtered scenario average TIS.

For example, Exp 438 was picked as the best case under Type 1 post-transient

behavior based on its smallest deviation between approximations by the regression model

based on MA scenario average TIS and approximations by the proposed ANN based

meta model. On actual RAW TIS data, the post-disruption event took place somewhere

around 4297th part observation/entry that marks simulation time 10,000 minutes.

Therefore, we can assume the same part observation/entry number for the disruption

event time on approximated MA TIS points by both the regression model based on MA

scenario average TIS and ANN generated regression model.

 230

Since Type 1 post-disruption behavior exhibits a short duration of non-linear

behavior at the beginning followed by a steady linear behavior, two different starting

times for both non-linear and linear behavior, 4353 and 4753 for experiment no. 438,

need to be specified in terms of relative part observation/entry count. Following are

three tables summarizing different start times in the form of absolute observation count

for 18 selected experiments on MA TIS observations from RAW data, approximated MA

TIS observations by the regression model based on moving average filtered (MA)

scenario average TIS, and approximated MA TIS observations by the ANN generated

regression model. As shown, Table 24, Table 25, and Table 26 share the same disruption

event time.

Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation)

Linear
Behavior Start

Time (n th
observation) Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation) Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation)

438 4297 4353 4753 73 4379 4474 275 4299 4515
436 4324 4356 4856 71 4464 4747 356 4332 4979

85 4536 4654 5054 62 4600 5191 349 4430 4694
470 4567 4595 4995 487 4541 4689 346 4620 4938
453 4319 4389 4789 500 4406 4606 213 4270 4521
175 4408 4477 4877 498 4420 4662 211 4344 4410Worst

Type 1 Post-disruption Behavior Type 2 Post-disruption Behavior Type 3 Post-disruption Behavior

Best

Average

Table 24. Major Event Start Times on MA TIS Observations from 18
Selected Experiment RAW Data

Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation)

Linear
Behavior Start

Time (n th
observation) Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation) Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation)

438 4297 4339 4639 73 4379 4557 275 4299 4521
436 4324 4366 4666 71 4464 4642 356 4332 4623
85 4536 4554 4954 62 4600 4977 349 4430 4710

470 4567 4580 4980 487 4541 4653 346 4620 4900
453 4319 4387 4787 500 4406 4619 213 4270 4497
175 4408 4476 4876 498 4420 4633 211 4344 4571

Type 1 Post-disruption Behavior Type 2 Post-disruption Behavior Type 3 Post-disruption Behavior

Best

Average

Worst

Table 25. Major Event Start Times on Approximated TIS Observations
Rendered by Regression Models Based on MA Scenario Average TIS
Observations from 18 Selected Experiments

 231

Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation)

Linear
Behavior Start

Time (n th
observation) Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation) Exp No.

Disruption
Event Time

(n th
observation)

Non-linear
Behavior Start

Time (n th
observation)

438 4297 4334 4631 73 4379 4559 275 4299 4512
436 4324 4361 4658 71 4464 4643 356 4332 4637

85 4536 4562 4965 62 4600 4979 349 4430 4707
470 4567 4588 4990 487 4541 4658 346 4620 4897
453 4319 4379 4777 500 4406 4614 213 4270 4508
175 4408 4469 4867 498 4420 4627 211 4344 4582

Type 3 Post-disruption Behavior

Best

Average

Worst

Type 1 Post-disruption Behavior Type 2 Post-disruption Behavior

Table 26. Major Event Start Times on Approximated TIS Observations
Rendered by ANN Generated Regression Models for 18 Selected
Experiments

Figure 34 illustrates how closely the plot of MA (w= 500) TIS observations

resembles the actual RAW TIS plot. It is obvious that variances among observations

(covariance) prior to the disruption event have increased after the disruption. A close up

view of the early post-disruption observations marked by a square box within the plot

figure also help us to confirm the existence of a short lasting non-linear behavior trend

during the early post-disruption stage that is followed by a dominant steady linear trend.

The duration of these initial non-linear trends varies but usually lasts about 300 to 400

observations depending on each disruption scenarios. Only under Type 1 post-disruption

behavior, these initial non-linear behavior trends are modeled as a part of the metamodel

because they are followed by long lasting linear-trends.

 232

Figure 34. RAW TIS and Moving Average Filtered (MA) TIS Plots of

Exp No. 438 (Post-disruption Type 1 Behavior)

First, the MA TIS based metamodel using univariate regression was constructed.

The first observation of TIS that can be considered the starting point of post-disruption

impact was found on 4353rd TIS observation. As discussed in the previous chapter, the

detection of the starting point of the non-steady state process utilizes both Welch’s

graphic method and control limit theorem.

The post-disruption TIS trend for Type 1 behavior was modeled to generate

elements for a proper target vector using a composite function combining two separate

univariate polynomial models. We are to use a similar modeling approach against MA

TIS from individual experiments to benchmark the approximation performance by

corresponding ANN generated regression models. The first phase of the model is a

 233

nonlinear univariate regression model using a quadratic function and then the second

phase of the model is a linear regression model.

 The same least square fit method and fixed-interval data sampling technique used

to render both quadratic and linear regression models for MA TIS are also used to

construct baseline regression models for the ANN training target vector construction. As

seen in Figure 35, MA TIS from Exp No. 438 exhibits nonlinear trend during its first 400

TIS observations from index 4353 to index 4752. The resulting univariate quadratic

model to represent the first phase of post-disruption behavior is

 where is t th TIS observation

index such that .

31.169)4353(31045.0)4353(001605.0 2 +−+−= tty t

47524353K=t

 Figure 35. Moving Average Filtered (MA) TIS vs. Approximations by a

Quadratic Model for TISs during First 400 Post-disruption Observations

 234

The second univariate regression model was constructed using a linear model on

sampled TISs at every 100th observation from 4753rd to 8653rd, which is to cover the

remainder of first 10,000 minutes from the point of the disruption event hit.

The resulting univariate regression model to represent the second phase of post-

disruption behavior is 508.2)4753(8951.1 +−= ty where is t th TIS observation index

such that .

t

86534753K=t

 Thus, the final form of a composite univariate regression model based on actual

MA TIS is:

⎩
⎨
⎧

<≤+−
<≤+−+−

=
86544753 if508.2)4753(8951.1
47534353 if31.169)4353(31045.0)4353(001605.0

)(
2

TISMA tt
ttt

tf x

(7.3.1)

Figure 36. Moving Average Filtered (MA) TIS vs. Approximations by a
Linear Regression Model for TISs from 4753rd to 8653rd Observation

 235

Figure 37 summarizes the overall accuracy of the two-phase regression model to

actual MA(w=500) TIS. Figure 38 shows the trend of standard deviation among five

hundreds adjacent TIS points, which is a meaningful measure to see any change in

dispersion of 500 moving consecutive individual TIS observations (equal to the width of

the moving average filter) before and after the disruption hit.

As we can verify from Figure 38, there was a big jump in the standard deviation

of moving average filtration with a width of 500 observations around the observation

index 4297. This clearly indicates that there is an obvious shift in the variance among

500 moving consecutive TIS observations after the disruption hit the system.

Figure 37: Moving Average Filtered (MA) TIS vs.

Approximations by the final Composite Regression Model for
TISs from 4353rd to 8653rd Observation

 236

 The post-disruption behavior of standard deviation of moving average filtration

oscillates around 400 minutes but maintains its overall steady trend for the remainder,

which also confirms a predominantly steady linear growth of TIS after the disruption

under Type 1 post-disruption behavior.

Since experiment no. 438 belongs to disruption scenario number 26, the proposed

ANN based metamodel is supposed to generate a similar composite polynomial based

regression model constructed with the moving average filtered (MA) scenario average

TIS data. Thus, it is necessary to compare the accuracy of stochastic process of MA TIS

approximated by the composite regression model generated from the ANN based meta-

model to ones by the composite regression model (7.3.1) based on actual MA TIS and

ones by the composite regression model (7.3.2) found on MA scenario average TIS data.

Figure 38. Trend Plot of Standard Deviation of Moving Average
(w=500) Filtered TIS observations before and after the disruption
and Comparative Plots of Standard Deviation Regression Models

 237

The two-phase regression model found on MA scenario average TIS data can be

stated as follows:

⎩
⎨
⎧

<≤+−
<≤+−+−

=
86544639 if94.373)4639(8306.1
46394339 if48.181)4339(23289.0)4339(0016802.0

)(
2

AVE scenario tt
ttt

tf x

(7.3.2)

The equivalent two-phase regression model rendered from the proposed ANN

based meta-model to find a point estimate of MA TIS (w=500) value at observation ,

namely

t

tf x ˆ ⋅µ , can be stated as follows:

⎩
⎨
⎧

<≤+−
<≤+−+−

=
86544631 if94.373)4631(8306.1
46314334 if21.180)4334(23319.0)4334(0016197.0

)(
2

ANN tt
ttt

tf x

(7.3.3)

Other target vectors and corresponding ANN approximations to construct the rest of

univariate polynomial regression models can be found in Appendix C.

Figure 39 shows a slight disparity between two regression models, (7.3.2) and

(7.3.3) as well as disparity with both actual TIS and MA(w=500) TIS plots during the

10,000-minute forecasting horizon. As shown on Figure 43, the closeness to actual

(RAW) TIS and MA TIS from above three approximation plots, (7.3.1), (7.3.2), and

(7.3.3), are difficult to visually assess.

 238

Figure 39. Comparative Plots of Mean TIS Approximations by
Various Regression Based Models for Exp438 (Type1)

Thus, an accuracy measure such as a standard error of estimate

(∑
=

−
+−

=
n

i
iie yy

kn
S

1

2)ˆ(
)1(

1 where is ’s unbiased estimator in th degree

polynomial) can be used to estimate individual average proximity to both RAW TIS and

MA (w=500) TIS processes from approximated MA TIS stochastic processes by two

composite polynomial models and one ANN generated composite polynomial model.

iŷ iy k

Since metamodeling is a deterministic modeling technique, the trade-offs involve

imprecision and simplification can be compensated in some degree by introducing

surrogate stochastic elements such as a confidence interval. As discussed in a previous

chapter, a point estimator of standard deviation for the moving average filtration

 239

consisting of consecutive 500 TIS observations was modeled as a part of the target vector

to provide an estimated standard deviation of estimated TIS at observation t .

Figure 40. Comparative Plots of Sigma Approximations by Various

Regression Based Models for Exp438 (Type1)

Since estimated coefficients for the regression model was based on MA filtered TIS

points sampled from fixed intervals of 100 observations rather than entire RAW TIS, a

traditional unbiased estimator for the standard deviation of a point estimate of MA TIS at

observation t , tf x ˆ ⋅µ can grossly underestimate the true standard deviation of a point

estimate of tfˆ
x ⋅µ approximated by ANN. Thus, a point estimate of standard deviation

from consecutive 500 TIS observations up to t th observation using a univariate

polynomial regression model constructed with ANN estimated coefficients is used as the

estimated standard deviation of point in conjunction with the standard deviation of all t

 240

t s to construct a confidence interval for tf x ˆ ⋅µ . Figure 40 illustrates the proximity among

various standard deviation approximation functions of t using a polynomial regression

model.

The first eighth-order polynomial was derived from the actual standard deviation

stochastic process of MA (w=500) TIS process to predict chronological behavior of

standard deviation after the disruption. A formal notation of this polynomial can be

presented as follows: if we assume TIS MA)ˆ(tE σ to be an unbiased estimator of standard

deviation of moving average TIS at observation t where all and let 0.0005 be a

scaling factor for to avoid a large disparity among eight coefficients during the

regression analysis prior to the ANN training,

4353≥t

t

87

65

43

2
TIS MA

]0005.0)4353[(48.
19102
46433[(t

0005

5450.0005]4353)-5012[(
]0005.0)4353[(]0005.0)4353[(39070

0.0005]4353)--]0005.0)4353[(32604

]0005.0)4353[(13298].0)4353[(2.3027641.66)()(

×−−×+

×−−×−+

××−+

×−−×−+==

tt
tt

t

tttfE t σσ

 (7.3.4)

The second eighth-order polynomial was found on standard deviations of MA scenario

average TIS to approximate standard deviations of the MA scenario average TIS at

observation t where all : 4339≥t

87

65

43

2
AVE scenario

]0005.0)4339[(17.1600.0005]4339)-([7.3351
]0005.0)4339[(7.4595]0005.0)4339[(6.8348

0.0005]4339)-8258.9[(]0005.0)4339[(1.3627

]0005.0)4339[(92.484]0005.0)4339[(7.103598.76)()(

×−+×−

×−+×−−

×+×−−

×−−×−+==

tt
tt
tt

tttfE t σσ

 (7.3.5)

 241

The third eighth-order polynomial was found on regression coefficients estimated by the

ANN to approximate the standard deviation of MA TIS at every observation where all

:

t

4334≥t

87

65

43

2
ANN

]0005.0)4334[(61.1750.0005]4334)-35[(t51
]0005.0)4334[(7.5383]0005.0)4334[(8.9567

0.0005]4334)-(t[4.7398]0005.0)4334[(1.3139

]0005.0)4334[(57.833]0005.0)4334[(9.101779.84)()(

×−+×−

×−+×−−

×+×−−

×−−×−+==

t
tt

t

tttfE t σσ

 (7.3.6)

 Since the standard deviation of ANN’s MA TIS approximation at observation t

can be estimated by using (7.3.6) and standard error of estimate by the regression

model can be calculated, the 95% confidence interval for MA TIS at observation t by the

ANN generated regression model,

eS

tf x ⋅µ , can be stated:

{ } { } 2/122
)1(,025.0

2/122
)1(,025.0)()()()(tfsttftfsttf eknxtfeknx x σσ µ ++<<+− +−⋅+− (7.3.7)

where = th order polynomial and = total number of estimates. k k n

The accuracy of this confidence interval for MA TIS at observation will hold as along

as distributions from both actual and approximated MA TIS points hold normality. For

instance an estimated 95% prediction interval for MA TIS when t = 5428 can be stated

as:

t

 { 2/12
)1(,025.0)5428()5428(σfstf eknx +± +− } . (7.3.8)

Since 48.1811)5428(=xf , , = 1.96, and

= 100558.75, the interval (7.3.8) becomes: (756.83, 2866.11).

However, following normality tests, Figure 41 and Figure 42 on both RAW and MA TIS

12.19006196.435 22 ==es 8153,025.0t

22 11.317)5428(=σf

 242

data prior to the point of disruption event shows both populations do not hold

characteristics of a normal distribution. Both distributions are positively skewed.

Therefore, the accuracy of the prediction interval may not be as accurate as it was

intended but still provides a good ballpark estimate of the range where the predicted MA

TIS may lie.

Comparative performance plots of MA TIS for the remaining 17 experiments can

be found in Appendix E. As we can see from these plots, the proposed ANN based

transient modeling technique for various disruption scenarios, especially under post-

disruption behavior pattern Type 1 and 3, provides relatively close approximations even

compared to its individual regression based counter parts. On the other hand,

approximations rendered by the ANN for disruption scenarios classified under post-

disruption behavior pattern Type 2 exhibit relatively large discrepancies from their

counter parts as well as RAW TIS and MA TIS observations.

 Two main causes for such discrepancies were identified. The first cause was a

relatively large variation among individual experiments under a single post-disruption

behavior scenario from Type 2 compared to those from Type 1 and 3. The second cause

was an insufficient modeling capability of a cubic function as the baseline regression

modeling technique to capture the non-linear functional TIS trend and construct target

vectors for ANN based approximations.

 243

41036031026021016011060

95% Confidence Interval for Mu

165160155150145140

95% Confidence Interval for Median

Variable: RAW TIS

141.718

 53.988

159.620

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

144.855

 56.474

163.136

410.376
190.751
143.247
120.933
 79.431

3791
1.05630
1.20331
3047.34
 55.203

161.378

 0.000
135.800

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

Figure 41. Descriptive Statistics and Normality Test on RAW TIS
data from Pre-disruption Period of Exp438

Another finding was that the trend of standard deviations on MA TIS time series

under the post-disruption behavior pattern Type 1 is still noisy but stable as shown in

Figure 40 on page 239. However, it is visible that there was a significant shift in the

overall mean standard deviation after the disruption hit. Unfortunately, this shift in a

mean standard deviation plot is not always obvious in some experiments from post-

disruption behavior pattern Type 2 and 3 such as Exp62 (Type2), Exp275, Exp356,

Exp349, and Exp346.

 244

173.5171.0168.5166.0163.5161.0158.5156.0153.5

95% Confidence Interval for Mu

161.5161.0160.5

95% Confidence Interval for Median

Variable: MA TIS

160.577

 4.234

161.328

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

160.864

 4.429

161.604

173.846
163.236
160.739
158.708
152.906

3791
0.973075
0.961622

18.7396
 4.329

161.466

 0.000
80.119

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

Figure 42. Descriptive Statistics and Normality Test on MA TIS data from
Pre-disruption Period of Exp438

The study found that there are more signs of pattern discrepancy and high

variation in post-disruption behavior of MA sigma estimates compared to MA scenarios

average TIS estimates on individual experiments under Type 2 and 3. As a result, current

baseline regression models, a cubic function for Type 2 and constant value function for

Type 3, are found to be not robust enough to produce a desired level of prediction

accuracy. The study found a higher polynomial model such as the eighth order

 245

polynomial used for type 1-disruption scenarios is suitable to approximate individual

sigma of MA TIS for all three post-disruption behavior types.

Table 23 summarizes standard errors of MA TIS estimates from all 18 selected

experiments. Approximations made by the regression model based on MA TIS

outperforms approximations by regression models based on both MA scenarios average

TIS and ANN in most selected experiments except Exp436 and Exp85 in comparison to

RAW TIS. We can statistically test to see if there is a significant difference between

by

eS

ANN)(tf x and by eS TISMA)(tf x against both RAW TIS and MA TIS and also see if

there is a significant difference between by eS AVE scenario)(tf x and by eS ANN)(tf x

against both RAW TIS and MA TIS on each experiment using a hypothesis test

concerning two variances with a F-test.

The null hypothesis if 2
2

2
10 : σσ =H),(212

2

2
1 νναF

s
sF >= where 1ν = degrees of

freedom from and 2
1s 1ν = degrees of freedom from will be rejected in favor of the

alternative hypothesis . Since

2
1s

2
2

2
1: σσ >aH 1)100,100(2105.0 ≅>> ννF , for any and

 that satisfy

2
1s

2
2s 12

2

2
1 >=

s
sF equality must exist. 2

2
2
1 σσ >

This hypothesis test can be done visually by comparing two standard errors of

estimate against both MA TIS and RAW TIS. For example, the mean proximity to both

RAW TIS and MA (w=500) TIS processes approximated by ANN)(tf x did not outperform

 246

those approximated by TISMA)(tf x , since by eS ANN)(tf x against RAW TIS is 435.96

minutes which is larger than 403.89 minutes by TISMA)(tf x against RAW TIS and by eS

ANN)(tf x against MA TIS is 65.50 minutes which is larger than 36.43 minutes by

TISMA)(tf x against MA TIS. However, approximations by ANN)(tf x outperformed

approximations by AVE scenario)(tf x against both RAW TIS and actual MA TIS as by eS

ANN)(tf x against both RAW TIS and MA TIS are slightly smaller than by eS

AVE scenario)(tf x against both RAW TIS and MA TIS (by eS AVE scenario)(tf x against both

RAW TIS = 458.98 minutes and by eS AVE scenario)(tf x against both MA TIS = 84.55

minutes).

As shown in Figure 26, approximations by ANN generated regression models

against RAW TIS outperforms approximations by regression models based on MA

scenario average TIS in nine out of 18 experiments, 50%, in terms of smaller standard

error of estimate. Even in Exp436 and Exp85, approximations by ANN outperformed

those by the regression models directly driven from their MA TIS. However, in

approximations against MA TIS, only eight out of 18 experiments by ANN

approximations outperform approximations done by regression models based on MA

scenario average TIS, which accounts for only 44%.

 247

Table 27. TIS Transient Behavior Prediction Performance Table for
Selected Experiments under Three Post-disruption Behavior Types

Ap
pr

ox
im

at
io

n
by

 th
e

re
gr

es
si

on

m
od

el
 b

as
ed

on

 M
A

TI
S

Ap
pr

ox
im

at
io

n
by

th

e
re

gr
es

si
on

m

od
el

 b
as

ed
 o

n
M

A
sc

en
ar

io

av
er

ag
e

TI
S

Ap
pr

ox
im

at
io

n
by

AN

N
 g

en
er

at
ed

re

gr
es

si
on

 m
od

el

Ap
pr

ox
im

at
io

n
by

th

e
re

gr
es

si
on

m

od
el

 b
as

ed
 o

n
M

A
TI

S

Ap
pr

ox
im

at
io

n
by

th

e
re

gr
es

si
on

m

od
el

 b
as

ed
 o

n
M

A
sc

en
ar

io

av
er

ag
e

TI
S

Ap
pr

ox
im

at
io

n
by

 A
N

N

ge
ne

ra
te

d
re

gr
es

si
on

m

od
el

43
8

40
3.

89
45

8.
98

43
5.

96
36

.4
3

84
.5

5
65

.5
0

43
6

38
2.

15
30

9.
05

28
9.

77
33

.7
0

12
1.

41
14

2.
10

85
28

8.
93

21
2.

06
18

5.
25

32
.7

5
12

8.
82

17
3.

30
47

0
31

8.
19

38
3.

67
34

1.
32

20
.4

4
87

.6
4

36
.2

6
45

3
20

0.
46

20
2.

81
22

8.
94

34
.7

2
12

2.
60

66
.5

0
17

5
21

5.
02

31
2.

46
30

8.
29

21
.2

5
13

0.
29

12
5.

98
73

59
.8

7
68

.7
6

68
.1

1
12

.2
7

33
.3

5
31

.5
0

71
55

.3
1

63
.1

4
58

.9
2

10
.1

1
26

.2
1

18
.0

1
62

59
.2

1
83

.3
3

92
.2

5
28

.2
9

58
.9

2
70

.0
1

48
7

11
0.

73
13

5.
22

13
8.

41
17

.9
6

61
.6

5
54

.5
1

50
0

11
1.

58
15

7.
00

18
1.

28
24

.9
0

13
6.

87
16

7.
98

49
8

12
2.

61
13

5.
14

13
7.

20
30

.1
7

63
.7

1
79

.8
5

27
5

54
.9

0
55

.1
1

55
.1

1
2.

97
6.

36
6.

59
35

6
60

.9
5

61
.0

3
61

.1
8

5.
30

7.
38

8.
10

34
9

71
.5

3
87

.5
8

86
.0

0
16

.4
9

56
.5

0
53

.8
6

34
6

60
.2

4
61

.2
3

61
.9

8
4.

61
12

.4
7

15
.6

5
21

3
45

.8
0

45
.8

8
46

.8
2

4.
18

4.
96

10
.7

3
21

1
45

.7
6

45
.8

2
46

.5
7

2.
45

3.
11

8.
32

Ty
pe

 3

B
es

t

Av
er

ag
e

W
or

st

Ty
pe

 2

B
es

t

Av
er

ag
e

W
or

st

W
or

st

Ty
pe

 1

St
d

Er
ro

r o
f E

st
im

at
e

(m
in

ut
es

)

Ag
ai

ns
t A

ct
ua

l (
R

AW
) T

IS
Ag

ai
ns

t M
A

TI
S

Ex
p

N
o.

Po
st

-d
is

ru
pt

io
n

Be
ha

vi
or

 T
yp

e

Pe
rfo

rm
an

ce
 R

an
k

ba
se

d
on

 p
ol

yn
om

ia
l

co
ef

fic
ie

nt
s

ap
pr

ox
im

at
io

n
fo

r t
he

un

kn
ow

n
di

sr
up

tio
n

fu
nc

tio
n

by
 A

N
N

B
es

t

Av
er

ag
e

 248

Despite this study’s limited performance analysis over 18 selected experiments

and the proposed modeling scheme’s disappointing approximation accuracy as those by

traditional regression models based on MA scenario average TIS, the study concludes

that this modeling method is still worth investigating and developing in order to

materialize its full potential as an automated post-disruption system behavior modeling

technique. The biggest modeling advantage of this proposed modeling scheme is its

ability to approximate functional targets that were associated with data points never

trained with or regressed on.

 Appendix B contains sample screen shots of the actual user interface displaying

prediction results for Exp438 (see Section B.2). The user interface for the proposed

transient behavior prediction system consists of two parts. The first part is to let a user

enter actual pre-disruption system conditions and a disruption event itself. It was

designed to walk a user through a series of questions asking pre-disruption conditions,

various operational parameters, and the nature of disruption. The logic checks behind the

user interface keep the user from entering invalid values or out of range values in order to

prevent the system from predicting an area that it was never trained to handle. The

second part is to present prediction results in English using mathematical notations. It

was also designed to display predicted results as an original column vector.

 249

7.4 Summary

 This chapter covers results and findings from the experiments designed to test the

prediction performance of the proposed ANN based metamodel. Since the current

MATLAB based application does not have a fully automated model construction feature

and plotting function for point estimates, a comparative plotting of point estimates and

actual values can be cost prohibitive for all 540 independent experiments. Therefore, a

smaller test set of 18 experiments, two best, two average, and two worst-case TIS

observation processes, were selected and evaluated against RAW TIS and MA TIS

processes under three post-disruption behavior pattern types. The measure of accuracy

used is the standard error of estimates.

The study found that the accuracy of predictions by ANN driven regression

models in collective-form predictions using more than one output vector elements, such

as coefficients of unknown TIS polynomial approximation function at time t after the

disruption, is 50% better than its counter part, regression models based on MA scenarios

average TIS. However, in its single-element predictions, such as individual machine

utilizations at time t after the disruption, the proposed modeling approach has

demonstrated its strength. The study also concludes that despite its somewhat mixed

prediction performance results by the proposed modeling approach; the proposed

metamodeling methodology is worth further research due to its modeling economy,

flexibility, and automation potentials.

 250

8. Summary and Conclusions

Based on findings from the experimental results, weakness and strength of the

proposed ANN based performance modeling approach are identified and discussed. The

future research directions and opportunities are also presented and discussed for the

possible enhancement of the proposed methodology.

8.1 Overview of Research Objectives and Accomplishments

The research identified six major objectives: (1) a simulation study on a

hypothetical FMS model with limited operational characteristics and scenarios to identify

a unique set of possible transient system behavior patterns under pre-selected disruption

scenarios, (2) identification of the input space and output space of an unknown transient

performance prediction function, (3) identification of a proper logical taxonomy that can

logically connect multiple ANNs, making them work collectively to capture various

transient behaviors, (4) identification of design architecture for individual ANNs and

their proper training methods, (5) validation and performance assessment of the final

model through comparisons with simulation results, (6) recommendations for further

improvements of the proposed modeling framework in future research.

 251

In order to satisfy Objective 1, a discrete event simulation model was built using

Extend [1987-2001] to study various transient behaviors of the proposed FMS. The

model was built and studied. The model was constructed in such way that a single

resource failure could be scheduled at a precise moment during a single run. Key

performance indexes such as time averaged utilization of each machine stations and AGV

are recorded prior and after a scheduled disruption. Limited pilot runs of the model with

selected ranges for system operational parameters of interest are used to finalize the

experimental design. Individual workstation process time distributions under each part

type were also selected to meet desired average system utilization throughout the system.

Finally, a valid experimental design was identified and expanded for the analysis.

In order to satisfy Objective 2, major system performance indexes such as time

averaged utilization for each machine stations and the AGVs and average TIS for parts

were identified through sensitive analysis and used for a part of input space vector.

These selected indexes can help an unknown transient performance prediction function to

map and distinguish various post-disruption system behaviors based on their unique input

space value pattern after the mapping is finished. The other significant part of output

space was allocated to capture an unknown time series function of key performance index

such as time-in-system of departing parts.

In order to satisfy Objective 3, a branch logic structure was identified based on a

number of sub-ANNs and their functional roles. The branch logic helps to taxonomically

connect individually trained ANNs so that they can collectively predicts a mutually

 252

exclusive area of the functional range of the unknown transient performance prediction

function.

In order to satisfy Objective 4, total nine multi-layer ANNs were identified.

Based on their primary functional role, a different number of inner layers and number of

neurons on the outer layer were identified. Bayesian regularization was chosen as a

backpropagation training algorithm. Regularization is a method used to improve the

generalization of feedforward neural networks.

In order to satisfy Objective 5, the overall effectiveness of the proposed modeling

framework was judged through a combined simulation study and regression analysis.

The fidelity of the distinctive transient system behavior pattern classification by the

trained top-level ANNs was tested. The accuracy of individual key performance index

predictions such as time averaged resource utilizations was tested by comparing

prediction data to the target data collected from the regression model. The approximated

coefficients of an unknown time series function of TIS (time-in-system) were also

compared to actual coefficients from the underlying regression model.

In order to satisfy Objective 6, the study drew a conclusion that the accuracy of

predictions by ANN driven regression models is not significantly better than its counter

part, regression models based on MA scenarios average TIS. However, the proposed

metamodeling methodology has its merits such as modeling economy and automation

 253

potentials. Therefore, a further research was recommended to improve its accuracy and

expand it applicability.

8.2 The major contributions of this research

Despite the somewhat disappointing performance of the proposed ANN based

metamodeling approach, in terms of its accuracy compared to its traditional regression

based approach, this study still holds merit as a first attempt to develop a transient system

behavior based evaluative performance model utilizing artificial neural networks, discrete

event simulation model, and regression analysis. Upon identification of the overall post-

disruption behavior pattern, a group of trained ANNs is to collectively construct a

univariate regression based prediction model for a selected performance index and

predict a series of post-disruption average resource utilizations. Thus far the majority of

ANN based performance prediction models have been focused on a single function

realization. Under the proposed ANN based metamodeling approach, multiple function

realization is possible without storing individual math models in any form of file or

database for later use.

Upon analyzing performance disruption scenarios of a known system, a proper

degree of polynomial regression model can be determined based on a limited number of

trials and the magnitude of error by its point estimates. This also helps to determine the

dimension of target vectors that can be used to train individual ANNs. An input vector

 254

for the unknown transient performance function is a function of pre-disruption individual

resource utilizations and disruption events represented by a single column vector

consisting of binary, integer and real numbers. Half of the target vector elements were

used to capture the essence of the underlying changes of the target performance index

over time by observing a few select data in a fixed interval.

Processing an entire RAW TIS observation data could have been computationally

problematic under a data rich environment such as a stochastic process of TIS

observation in this study. Individual realizations of unknown TIS point estimation

function are possible through learning the changes on each coefficients of a selected

polynomial regression model rather than directly approximating an unknown TIS

stochastic series.

Utilizing hierarchical inter-relationships and interactions among individual ANNs

within the proposed metamodeling framework are another contribution to show how

individual ANN can work together to collectively approximate a complex function in a

nonparametric way. The top-level ANN is to identify a primary transient behavior

pattern exhibited by the suspected process under a given disruption scenario and to

invoke only necessary ANNs from the second level to construct corresponding

polynomial regression models for both mean TIS and its sigma, as well as, post-

disruption time average resource utilization factors. Since the proposed metamodeling

scheme does not approximate the point estimate of unknown TIS process at observation

directly, rather it generates an approximation function in the form of a polynomial

t

 255

regression model, the structure of target vectors can be easily customized for future

needs. As long as deviations among different sets of coefficients representing

independent TIS processes under a specific post-disruption behavior pattern type are kept

minimal, the overall accuracy of the proposed metamodeling approach can stay relatively

high.

The study found that there are four key factors to determine the final performance

of the proposed metamodeling framework. The first factor is whether there are enough

independent target performance index observations such as TIS under a specific transient

behavior type to train hierarchically organized ANNs within the framework. The second

is the proximity of independent target performance index observation processes under a

disruption scenario in terms of a small sum of deviations in their estimates and

resemblance of their individual functional trend patterns. The third is the robustness of a

chosen polynomial regression model to represent various unique trends of each scenario

is average performance index observation processes under a particular transient behavior

pattern type. Finally, the forth is the modeling effectiveness of individual ANNs and

their training method.

The devised metamodeling framework can easily work with an unmanned online

controller providing a short-term look-ahead capability. Especially if there is a high

chance for any resource failure during the production cycle, this look-ahead capability

will become a vital part of intelligent production management techniques. After

 256

reasonable coverage of the unknown functional domain and matching range areas, the

proposed metamodel can sustain itself with very little human intervention.

The current user interface can be replaced with several branch logics and I/O

modules to let the system directly feed its system status and nature of the disruption to the

model itself without going through any manual input. Similarly, the current output

screen can be replaced with several modules that can directly pass the expected point

estimates of TIS at observation t and other performance estimates to the main operation

controller to quickly respond with a post-disruption remedial action. The remedial

action is designed to reduce any unwanted negative effects caused by the disruption on

the selected performance index. When the controller sees the current value of a selected

performance index sustainable within a tolerable range, then a remedial action can be

dispatched. If the current value of the target performance index is not sustainable within

a tolerable range, an urgent warning message can be issued to the operator so that quick

intervention can minimize any potential negative impact.

The study provides an opportunity to investigate complex behavior of FMS

especially after a single event disruption. The FMS in this study was designed with some

level of functional redundancy to cope with a limited resource failure and contention so

that re-routing parts is possible when necessary. Even with such functional redundancy,

the system remained fault tolerant 55.56% of time. The study verified a presence of two

different regions in near equilibrium operation, namely stable equilibrium and unstable

equilibrium. Based on current level of individual resource utilizations and nature of

 257

disruption event, categorized as unstable equilibrium or stable equilibrium, a different

post-disruption state can be reached when a single event disruption hits. This study

identified three major patterns of post-disruption system behavior based on modeling

efficiency and effectiveness, namely infinite linear growth, infinite non-linear growth,

and finite growth to a new steady-state. The study found that 54% of independent TIS

observation processes exhibit characteristics of finite growth to a new steady-state.

8.3 The Strength and Weakness of the Proposed Modeling Approach

The study found several strengths of the proposed ANN based metamodeling

approach for transient behavior predictions compared to a traditional regression based

modeling approach. Under a data rich environment such as the TIS observation process

from a suggested FMS, training a group of dedicated ANNs with polynomial regression

coefficients from individual performance index observation processes is an economical

way to model various time series with a similar overall pattern. By using hierarchical

organization and firing of only relevant ANNs under a primary pattern classification,

training difficulties and accuracy issues, often faced by a similar functional

approximation using single ANN can be resolved. Traditionally more than one time

series with a slight difference in individual patterns may require dedicated ANNs or time

series models for each in order to maintain a certain level of modeling accuracy. Under

the proposed approach, more than one time series such as TIS process can be modeled

under a single dedicated ANN.

 258

The proposed metamodeling approach focuses on a transient process such as the

post-disruption system behavior on a particular performance aspect. As one of the well-

known benefits of neural network application in point estimation of unknown function, it

has the capability of predicting points never trained on. In other words, with a

comprehensive training of similar transient behavior patterns expressed by a series of

coefficients from a carefully selected polynomial regression model, many post-disruption

processes with similar system conditions can be predicted. Since the proposed

metamodeling approach uses input and target vectors consisting of a series of predefined

numerical elements and not all vector elements are mathematically dependent on each

other, an expansion of the input and output vectors by adding additional elements is

relatively easy.

The followings are some of weaknesses the study found. First, a comprehensive

set of possible transient behavior pattern types must be studied. In order to do that,

constructing a faithful simulation model or collecting comprehensive data is necessary,

which can represent various disruption scenarios under a specific post-disruption

behavior pattern. A successful training of various ANNs within the framework relies on

effective input and target vectors. Therefore, a well-designed experiment is needed to

construct effect training input and target vectors.

A successful classification of different primary behavior patterns for the ANN in

the first level relies on the modeler’s intuition and experiences. Each primary pattern

 259

should be defined in such way where all individual observation processes of a target

performance index can have the least amount of deviation from each other when they are

expressed with a series of coefficients from a polynomial regression model. The smaller

the deviation among individual observation processes, the better it is for modeling

accuracy and better prediction performance. Accuracy in the final model may suffer

when the training size is too small, the order of the selected polynomial regression model

is inappropriate, or deviations among individual post-disruption behaviors are relatively

big. The accuracy of estimated confidence interval of mean value for the selected

performance index at observation can also suffer when distributions of standard error of

point estimate fails to hold the normality.

t

8.4 Future Research Directions and Opportunities

The primary focus of any future research is to improve the accuracy of the

proposed modeling approach using different baseline mathematical models to construct

more efficient target vectors so that a better training result can be achieved. Also,

enhancing the current input and output data format in such way that a machine

interpretation of prediction outcomes will be feasible. Third, find a method to automate

both target vector constructions and individual ANN trainings so that the entire

methodology truly will become an automated modeling process. Forth, expand the

application beyond the boundary of manufacturing systems. For example, other discrete

event dynamic systems such as communication/computer network, computer systems,

 260

and transformation networks can be good candidate areas to test the effectiveness of the

proposed methodology when unscheduled system performance disruptions are a daily

phenomenon.

8.5 Summary

As stated in Chapter 1, most FMSs never reach their steady state in reality

because of their highly dynamic nature and operational environment, conventional

evaluative model approaches utilizing steady-state analysis often provide their controller

very little help to assess a short-term performance after an unscheduled disruption. Such

situations often require direct human intervention to adjust various control parameters

including some low-level operational rules of individual resources, which can cause a

momentary shut down of the entire system. The capability to provide a short-term look

ahead may reduce costly downtime of an expensive FMS. Furthermore, it may help run

the overall production system more efficiently.

The proposed ANN based metamodeling approach using multiple ANNs, in a

taxonomically organized modeling structure, is an efficient way to capture multiple target

performance index observation processes with a similar overall post-disruption behavior

pattern. Despite its mixed performance results, this methodology was proven especially

effective when it had to deal with noisy time series such as TIS at observation under a

data rich environment. The study was done to prove that the proposed methodology

could be a viable means to model transient system behaviors especially where the self-

t

 261

maintainability and modeling economy are the key focus. As long as individual

observation processes of the selected performance index can keep their variances smaller

among themselves, the accuracy of the overall model would be acceptable. This non-

parametric performance modeling technique using hierarchically organized multiple

ANNs, is worth further investigation.

 262

Bibliography

Abdin, M. F. and N. S. Mohamed (1986). “The role of simulation in design of FMSs.”

Computers & Industrial Engineering 11(1-4): 372-376.

Agerwala, T. (1979). “Putting Petri Nets to work.” Computer(December): 85-94.

Akaike, H. (1978). Time series analysis and control through parametric models. New

York, Academic Press.

Anderson, J. A. (1972). “A simple neural network generating an interactive memory.”

Mathematical Biosciences 14: 197-220.

Banks, J., J. S. Carson, II and B. L. Nelson (1996). Discrete-event system simulation.

Upper Saddle River, NJ, Prentice Hall.

Bartlett, M. S. (1966). Stochastic processes, Cambridge University Press.

Baskett, F., K. M. Chandy, R. R. Muntz, et al. (1975). “Open, closed, and mixed

networks of queues with different classes of customers.” Journal of ACM 22(2):
248-260.

Basnet, C. and J. H. Mize (1994). “Scheduling and control of flexible manufacturing

systems: a critical review.” International Journal of Computer Integrated
Manufacturing 7(6): 340-355.

Box, G. and K. Wilson (1951). “On the experimental attainment of optimum conditions.”

Journal of the Royal Statistics Society 13(B): 1-45.

Box, G. E. P. and G. M. Jenkins (1968). “Some recent advances in forecasting and

control. Part I.” Appl. Statist. 17: 91-109.

Box, G. E. P. a. J., G. M. (1970). Time series analysis, forecasting and control. San

Francisco, Holden-Day.

Bruno, G. and P. Biglia (1985). Performance evaluation and validation of tool handling in

flexible manufacturing system using Petri nets. Proceedings of the International
Workshop on Timed Petri Nets, Torino, Italy, IEEE Computer Society Press, 64-
71.

Buzacott, J. A. and J. G. Shanthikumar (1980). “Models for understanding flexible

manufacturing systems.” AIIE Transactions 12: 339-350.

 263

Buzacott, J. A. and D. D. Yao (1986). “Flexible manufacturing systems: a review of

analytical models.” Management Science 32(7): 890-905.

Buzen, J. P. (1973). “Computational algorithms for closed queueing networks with

exponential servers.” Communications of the ACM 16(9): 527-531.

Cavaille, J. B. and D. Dubois (1982). Heuristic methods based on mean value analysis for

flexible manufacturing systems performance evaluation. 21st IEEE conference,
Decision and Control, Orlando, FL.

Chance, F. D. (1993). Conjectured upper bounds on transient mean total waiting times in

queueing networks. 93 Winter Simulation Conference, IEEE, 414-421.

Chandy, K. M. and J. Misra (1981). “Asynchronous distributed simulation via sequence

of parallel computations.” Communications of the ACM 24(4): 198-205.

Chandy, K. M. and C. H. Sauer (1978). “Approximate methods for analyzing queueing

network models of computer systems.” Computer Survey 10: 281-317.

Chatfield (1979). “Inverse autocorrelations.” J. Roy Statist. Soc. A. 142: 363-377.

Chatfield, C. (1984). The analysis of time series: an introduction. New York, NY,

Chapman and Hall.

Conner, J., L. E. Atlas and D. R. Martin (1992). Recurrent networks and NARMA

modeling. Advances in Neural Information Processing Systems. San Mateo, CA,
Morgan Kaufmann. IV: 301-308.

Conway, R., W. L. Maxwell, J. O. McClain, et al. (1987). User's guide to XCELL+

factory modeling system. Redwood City, CA, The Scientific Press.

Dallery, Y. (1986). “On modeling flexible manufacturing systems using closed queueing

networks.” Large Scale Systems 11: 109-119.

Davis, W. J. and A. T. Jones (1988). “A real-time production scheduler for a stochastic

manufacturing environment.” International Journal of Computer Integrated
Manufacturing 1(2): 101-112.

de Vries, d. and J. C. Principe (1991). A theory for neural networks with time delays.

Advances in Neural Information Processing Systems 3. R. P. Lippmannn, J.
Moody and T. D. S. San Mateo, CA, Morgan Kaufmann.

Donatiello, L. and B. R. Iyer (1987). “Analysis of a composite performance reliability

measure for fault-tolerant systems.” Journal of the Association for Computing
Machinery 34(1): 179-199.

 264

Dubois, D. and K. E. Stecke (1983). Using Petri nets to present production processes.

Proceedings of 22nd IEEE Conference on Decision and Control, 1062-1067.

(1987-2001). Extend v5 + Manufacturing. San Jose, California, Imagine That, Inc.

Elman, J. L. and D. Zipser (1988). “Discovering the hidden structure of speech.” Journal

of Acoustics Society of America 83(1615-1625).

Friedman, L. W. (1989). “The multivariate metamodel in queueing system simulation.”

Computers and Industrial Engineering 16(2): 329-337.

Friedman, L. W. and H. H. Pressman (1988). “The metamodel in simulation analysis:

Can it be trusted?” Journal of the Operational Research Society 39(10): 939-948.

Gaeta, R. (1996). “Efficient discrete-event simulation of colored petri nets.” IEEE

Transactions on Software Engineering 22(9): 629-639.

Genrich, H. J. and K. Lautenbach (1991). “System modeling with high-level Petri nets.”

Theoretical Computer Science 13: 109-136.

Gershwin, S. B. (1992). Variance of Output of a Tandem Production Systems.

Department of Mechanical Engineering. Cambridge MA, Massachusetts Institute
of Technology.

Gilman, A. R. and C. Billingham (1989). A tutorial on SEE-WHY and WITNESS.

Proceedings of the 1989 Winter Simulation Conference, IEEE, 192-200.

Gorden, W. J. and G. F. Newell (1967). “Closed queueing networks with exponential

servers.” Operations Research 15: 252-267.

Granger, C. W. J. and M. Hatanaka (1964). Spectral Analysis of Economic Time Series.

Princeton, Princeton Univ. Press.

Granger, C. W. J. and P. Newbold (1977). Forecasting economic time series. New York,

Academic Press.

Grant, E. L. and R. S. Leavenworth (1988). Statistical Quality Control. New York, NY,

McGraw-Hill.

Grassmann, W. (1977). “Transient solutions in Markovian Queue.” European Journal of

Operational Research 1: 396-402.

Groover, M. P. (1987). Automation, Production Systems, and Computer-Integrated

Manufacturing. Englewood Cliffs, NJ, Prentice-Hall.

 265

Gross, D. and D. R. Miller (1984). “The randomization technique as a modeling tool and
solution procedure for transient Markov processes.” Operations Research 32(2):
343-361.

Gupta, Y. P., M. C. Gupta and C. R. Bector (1989). “A review of scheduling rules in

flexible manufacturing systems.” International Journal of Computer Integrated
Manufacturing 2(6): 356-377.

Hagan, M. T., H. B. Demuth and M. Beale (1996). Neural Network Design. Boston, MA,

PWS Publishing Co.

Harmonosky, C. M. (1990). Implementation issues using simulation for real-time

scheduling, control, and monitoring. Proceedings of the 1990 Winter Simulation
Conference, IEEE, 595-598.

Harmonosky, C. M. (1993). Analysis of two key issues for using simulation for real-time

production control. 2nd Industrial Engineering Research Conference Proceedings,
IIE, 41-45.

Harrison, P. J. and S. F. Pearce (1972). “The use of trend curves as an aid to market

forecasting.” Industrial Marketing Management 2: 149-170.

Hatono, I., K. Yamagata and H. Tamura (1991). “Modeling and On-line scheduling of

flexible manufacturing systems using stochastic Petri nets.” IEEE Transactions on
Software Engineering 17(2): 126-132.

Hebb, D. O. (1949). The organization of behavior. New York, NY, Wiley.

Herz, A. V. M. (1991). “Global analysis of parallel analog networks with retarded

feedback.” Phys. Rev. A 44: 1415-1418.

Hildebrant, R. R. (1980). Scheduling of flexible machining systems when machines are

prone to failure. Dept. of Aeronautics and Astronautics. Cambridge, MA,
Massachusetts Institute of Technology.

Hlupic, V. and R. J. Paul (1994). “Simulation modeling of flexible manufacturing

systems using activity cycle diagrams.” Journal of Operational Research Society
45(9): 1011-1023.

Ho, Y. C., R. Suri, X. R. Cao, et al. (1984). “Optimization of large multiclass (non-

product-form) queueing networks using perturbation analysis.” Large Scale
Systems 7: 165-180.

Hopfield, J. J. (1982). “Neural networks and physical systems with emergent collective

computational abilities.” Proceedings of the National Academy of Sciences 79:
2554-2558.

 266

Hornik, K. M., M. Stinchcombe and H. White (1989). “Multilayer feedforward networks

are universal approximators.” Neural Networks 2(5): 359-366.

Huang, P. Y. and C.-S. Chen (1986). “Flexible Manufacturing Systems: An Overview

and Bibliography.” Production and Inventory Management Journal 27(3): 80-90.

Hutchison, J. (1991). “Current and future issues concerning FMS scheduling.” Omega

19(6): 529-537.

Jackson, J. R. (1957). “Networks of waiting lines.” Operations Research 5(4): 518-521.

Jacobs, R. A. (1988). “Increased rates of convergence through learning rate adaptation.”

Neural Networks 1(4): 295-308.

Jefferson, D. R. (1985). “Virtual time.” ACM Transactions on Programming Languages

and Systems 7(3): 405-425.

Jefferson, D. R. and H. Sowizral (1985). Fast concurrent simulation using the time warp

mechanism. Proceedings of Distributed Simulation 1985, San Diego, 63-69.

Jenkins, G. M. and D. G. Watts (1968). Spectral analysis and its applications. San

Francisco, Holden-Day.

Jensen, K. (1981). “Colored Petri nets and the invariant method.” Theoretical Computer

Science 14: 317-336.

Jordan, M. I. (1987). Attractor dynamics and parallelism in a connectionist sequential

machine. the Eighth Annual Conference of the Cognitive Science Society.
Hillsdale, NJ, Erlbaum: 531-546.

Kamath, M. (1989). Analytical performance models for automatic assembly systems.

Madison, Wisconsin, University of Wisconsin-Madison.

Kamath, M. and N. Viswanadham (1986). Applications of Petri Net based models in the

modeling and analysis of flexible manufacturing systems. Proceedings of the
1986 IEEE International Conference on Robotics and Automation, 262-267.

Katz, D. and S. Manivannan (1993). Exception management on a shop floor using online

simulation. The 1993 Winter Simulation Conference, 888 - 896.

Kelton, W. D. and A. M. Law (1985). “The transient behavior of the M/M/s queue, with

implications for steady-state simulation.” Operations Research 33: 378-396.

Kendall, M. G. (1976). Time Series. London, Griffin.

 267

Kilmer, R. A. (1994). Artificial neural network metamodels of stochastic computer
simulations. Department of Industrial Engineering. Pittsburgh, PA, University of
Pittsburgh.

Kim, M. H. and Y. Kim (1994). “Simulation -based real-time scheduling in a flexible

manufacturing system.” Journal of Manufacturing Systems 13(2): 85-93.

Kimemia, J. G. and S. B. Gershwin (1985). “Flow optimization in Flexible

Manufacturing Systems.” International Journal of Production Research 23: 81-96.

Kleijnen, J. P. C. (1979). “Regression metamodels for generalizing simulation results.”

IEEE Transactions on Systems, Man, and Cybernetics SMC-9(2): 93-96.

Kleinfeld, D. (1986). Sequential state generation by model neural networks. Proceedings

of National Academy of Science, 9469-9473.

Kohonen, T. (1972). “Correlation matrix memories.” IEEE Transactions on Computers

21: 353-359.

Lapedes, A. and R. Farber (1987). Nonlinear Signal Processing Using Neural Networks.

Los Alamos, NM, Los Alamos National Laboratory.

Law, A. M. and W. D. Kelton (1991). Simulation modeling & Analysis. New York, NY,

McGraw-Hill.

Le Cun, Y. (1985). “Une procedure d'apprentissage pour reseau a seuil assymetrique.”

Cognitiva 85: 599-604.

Lee, Y. H., K. J. Park and Y. B. Kim (1997). Single run optimization using the reverse

simulation method. Proceedings of the 1997 Winter Simulation Conference, 177-
180.

Lenz, J. (1989). The MAST simulation environment. Proceedings of the 1989 Winter

Simulation Conference, IEEE, 243-248.

Lin, C., C. N. Madu and C.-h. Kuei (1994). “A closed queueing maintenance network for

a flexible manufacturing system.” Microelectron Reliability 34(11): 1733-1744.

Lin, L. and F. Chiu (1993). “Manufacturing cell characteristics.” European Journal of

Operational Research 69(3): 424-437.

Lin, L. and J. K. Cochran (1990). “Estimating simulation metamodel parameters for

unexpected shop floor real time events.” Computers & Industrial Engineering
19(1-4): 62-66.

 268

Lin, L. and J. K. Cochran (1990). “Metamodels of production line transient behavior for
sudden machine breakdowns.” International Journal of Production Research
28(10): 1791-1806.

Lin, L., J. K. Cochran and J. Sarkis (1998). “A metamodel-based decision support system

for shop floor production control.” Computers in Industry 18(2): 155-168.

(1984-2000). MATLAB 6 with Neural Network Toolbox, The MathWorks, Inc.

MacKay, D. J. C. (1992). “A practical bayesian framework for backpropagation

networks.” Neural Computation 4: 448-472.

Mallubhatla, R. and R. K. Pattipati (1994). "Discrete-time Markov-reward models:

random rewards." IEEE Transactions on Robotics and Automation 16(5): 553-
566.

McAffer, J. (1990). A unified distributed simulation system. Proceedings of the 1990

Winter Simulation Conference, IEEE, 415-421.

McCulloch, W. and W. Pitts (1943). “A logical calculus of the ideas immanent in nervous

activity.” Bulletin of Mathematical Biophysics 5: 115-133.

Meyer, J. F. (1980). “On evaluating the performability of degradable computing

systems.” IEEE Transactions on Computers 29(8): 720-731.

Micovsky, A., L. u. Sesera, M. Veishab, et al. (1990). “TORA: A Petri Net based tool for

rapid prototyping of FMS control systems and its application to assembly.”
Computers in Industry 15(4): 279-292.

Miller, I., J. E. Freund and R. A. Johnson (1990). Probability and Statistics for Engineers.

Englwood Cliffs, NJ, Prentice-Hall, Inc.

Minsky, M. and S. Papert (1969). Perceptrons. Cambridge, MA, MIT Press.

Molloy, M. K. (1981). On the integration of delay and throughput measures in distributed

processing systems. Los Angeles, California, University of California.

Molloy, M. K. (1982). “Performance analysis using stochastic Petri nets.” IEEE

Transactions on Computers C-31(9): 913-917.

Molloy, M. K. (1985). “Discrete time stochastic Petri nets.” IEEE Transactions on

Software Engineering SE-11(4): 417-423.

Mozer, M. C. (1992). The induction of multiscale temporal structure. Advances in Neural

Information Processing Systems 3. J. E. Moody, S. J. Hanson and R. P. Lippman.
San Mateo, CA, Morgan Kaufmann: 275-282.

 269

Mozer, M. C. (1992). Neural Net Architectures for Temporal Sequence Processing. Time

Series Prediction: Forecasting the Future and Understanding the Past. A. S.
Weigend and N. A. Gershenfeld. Sante Fe, New Mexico, Sante Fe Institute
Studies in the Science of Complexity. 15: 195-217.

Muller, D. J., J. K. Jackman and C. Fitzwater (1990). A simulation-based work order

release mechanism for a flexible manufacturing system. In Proceedings of the
1990 Winter Simulation Conference, IEEE, 599-602.

Nam, K. and T. Schaefer (1995). “Forecasting international airline passenger traffic using

neural networks.” Logistics and Transportation Review 31(3): 239-.

Narahari, Y. and N. Viswanadham (1984). Analysis and synthesis of flexible

manufacturing systems using Petri nets. Proceedings of First ORSA/TIMS
Conference on Flexible Manufacturing Systems, University of Michigan, Ann
Arbor, 346-358.

Narahari, Y. and N. Viswanadham (1989). “Performance modeling of flexible

manufacturing systems.” Journal of the Institution of Electronics and
Telecommunication Engineers 35(4): 221-236.

Narendra, K. S. and K. Parthasarathy (1990). “Identification and control of dynamic

systems using neural networks.” IEEE Transactions on Neural Networks 1(1): 4-
27.

Natkin, S. (1980). Les reseaux de Petri stochastiques et leur application a l'evaluation des

systems informatiques. Paris, CNAM.

Padgett, M. and T. A. Roppel (1992). “Neural networks and simulation: modeling for

applications.” Simulation 58(5): 295-305.

Parker, D. B. (1985). Learning-logic: casting the cortex of the human brain in silicon.

Cambridge, MA, Center for Computational Research in Economics and
Management Science, MIT.

Peacock, J. K., J. W. Wong and E. G. Manning (1979). “Distributed simulation using a

network of processors.” Computer Networks 3: 44-56.

Pegden, C. D., R. E. Shannon and R. P. Sadowski (1990). Introduction to simulation

using SIMAN. Hightstown, McGraw-Hill.

Peterson, J. L. (1977). “Petri Nets.” ACM Computing Surveys 9(3): 223-252.

Petri, C. A. (1962). Kommunikation mit automaten. Bonn, Germany, Shriften des

Institutes fur Instrumentelle Mathematik.

 270

Prassad, S. and N. Deo (1991). An efficient and scalable parallel algorithm for discrete-

event simulation. Proceedings of the 1991 Winter Simulation Conference, IEEE,
652-658.

Pratt, D. B. (1992). Development of a Methodology for Hybrid Metamodeling of

Hierarchical Manufacturing Systems within a Simulation Framework. School of
Industrial Engineering and Management. Stillwater Oklahoma, Oklahoma State
University.

Priestley, M. B. (1981). Spectral analysis and time series. London, Academic Press.

Ramamoorthy, C. V. and G. S. Ho (1980). “Performance evaluation of asynchronous

concurrent systems using Petri nets.” IEEE Transactions on Software Engineering
SE-6(5): 440-449.

Ramchandani, C. (1973). Analysis of asynchronous concurrent systems by timed petri

nets. Cambridge, Massachusetts, Massachusetts Institute of Technology.

Reibman, A. and K. S. Trivedi (1988). “Numerical Transient Analysis of Markov

Models.” Computers and Operations Research 15(1): 19-36.

Reiser, M. and S. S. Lavenberg (1980). “Mean-value analysis of closed multichain

queueing networks.” Journal of the Association for Computing Machinery 27(2):
313-322.

Reisig, W. (1983). “Petri nets with individual tokens.” Informatik Fachberichte 66(21):

229-249.

Rolston, L. J. (1985). “Modeling flexible manufacturing systems with MAP/1.” Annals of

Operations Research 3: 189-204.

Rosenblatt, F. (1958). “The perceptron:a probabilistic model for information storage and

organization in the brain.” Psychological Review 65: 386-408.

Rumelhart, D. E. and J. L. McClelland (1986). Parallel Distributed

Processing:Explorations in the Microstructure of Cognition. Cambridge, MA,
MIT Press.

Rupe, J. and W. Kuo (2003). "An assessment framework for optimal FMS effectiveness."

International Journal of Flexible Manufacturing Systems 15(2): 151-165.

Scales, L. E. (1985). Introduction to Non-Linear Optimization. New York, Springer-

Verlag.

 271

Schmidt, J. W. and R. E. Taylor (1970). Simulation and analysis of industrial systems.
Homewood, IL, Irwin.

Schriber, T. J. (1985). “A GPSS/H model for a hypothetical flexible manufacturing

system.” Annals of Operations Research 3: 171-188.

Seidmann, A. and P. J. Schweitzer (1984). “Part selection policy for a flexible

manufacturing cell feeding several production lines.” IIE Transactions 16(4): 355-
362.

Seidmann, S., P. J. Schweitzer and S. Shalev-oren (1987). “Computerized closed

queueing network models of flexible manufacturing systems: a comparative
evaluation.” Large Scale Systems 12: 91-107.

Seila, A. F. (1990). Output analysis for simulation. Proceedings of the 1990 Winter

Simulation Conference, IEEE, 49-53.

Shalev-Oren, S., A. Seidmann and P. J. Schweitzer (1985). “Analysis of flexible

manufacturing systems with priority scheduling: PMVA.” Annals of Operations
Research 3: 115-139.

Shanthikumar, J. G. and D. D. Yao (1987). “Stochastic monotonicity of the queue lengths

in closed queueing networks.” Operations Research 35(4): 583-588.

Sifakis, J. (1977). Petri nets for performance evaluation. Proceeding of Third

International symposium in Measuring, Modeling, and Evaluating Computer
Systems, North-Holland, Amsterdam, 75-93.

Silva, M. and R. Valette (1990). Petri nets and flexible manufacturing. Advances in Petri-

nets, Lecture Notes in Computer Science. Heidelberg, Springer-Verlag: 374-417.

Sims, M. J. (1997). An introduction to planning and scheduling with simulation.

Proceedings of the 1997 Winter Simulation Conference, IEEE, 67-69.

Solberg, J. J. (1977). A mathematical model of computerized manufacturing systems. 4th

International Conference on Production Research, Tokyo, Japan.

Sompolinksy, H. and I. Kanter (1986). “Temporal association in asymmetric neural

networks.” Physical Review Letter 57: 2861-2864.

Stecke, K. E. (1981). Production planning problems for flexible manufacturing systems.

School of Industrial Engineering. W. Lafayette, Indiana, Purdue University.

Stecke, K. E. and J. J. Solberg (1981). “Loading and control policies for a flexible

manufacturing system.” International Journal of Production Research 19(5): 481-
490.

 272

Suri, R. (1985). “A concept of monotonicity and its characterization for closed queueing

networks.” Operations Research 33(3): 606-623.

Suri, R. and R. R. Hildebrant (1984). “Modeling flexible manufacturing systems using

mean-value analysis.” Journal of Manufacturing Systems 3(1): 27-38.

Tetzlaff, U. A. W. (1996). “A queueing network model for flexible manufacturing

systems with tool management.” IIE Transactions 28: 309-317.

Venkatesh, K. and M. Ilyas (1995). “Real-time Petri nets for modeling, controlling , and

simulation of local area networks in flexible manufacturing systems.” Computers
& Industrial Engineering 28(1): 147-162.

Venkatesh, K., M.-C. Zhou, M. Kaighobadi, et al. (1996). “A petri net approach to

investigating push and pull paradigms in flexible factory automated systems.”
International Journal of Production Research 34(3): 595-620.

Viswanadham, N. and Y. Narahari (1992). Performance modeling of automated

manufacturing systems. Englewood Cliffs, New Jersey, Prentice-Hall.

Viswanadham, N., Y. Narahari and R. Ram (1991). Performability of Automated

Manufacturing Systems. Advances in Manufacturing and Automation Systems.
47.

Viswanadham, N., R. K. Pattipati and V. Gopalakrishna (1993). Composite performance-

dependability analysis of manufacturing systems producing multiple part types
using Markov reward models. Proceedings of the IEEE International Conference
on Robotics and Automation, IEEE 3: 89-94.

Viswanadham, N., R. K. Pattipati and V. Gopalakrishna (1995). "Performability studies

of automated manufacturing systems with multiple part types." IEEE Transactions
on Robotics and Automation 11(5): 692-709.

Viswanadham, N. and R. Ram (1994). “Composite performance-dependability analysis

of cellular manufacturing systems.” IEEE Transactions on Robotics and
Automation 10(2): 245-258.

Vogl, T. P., J. K. Mangis, A. K. Zigler, et al. (1988). “Accelerating the convergence of

the backpropagation method.” Biological Cybernetics 59: 256-264.

Vollmann, T. E., W. L. Berry and D. C. Whybark (1997). Manufacturing Planning and

Control Systems. New York, NY, Irwin.

 273

Waibel, A., T. Hanazawa, G. Hinton, et al. (1989). “Phoneme recognition using time-
delay neural networks.” IEEE Transaction Acoustics, Speech, & Signal
Processing 37(3): 328-339.

Wan, E. A. (1992). Time series prediction by using a connectionist network with internal

delay lines. Time Series Prediction: Forecasting the Future and Understanding the
Past. A. S. Weigend and N. A. Gershenfeld. Sante Fe, New Mexico, Sante Fe
Institute Studies in the Science of Complexity. 15: 195-217.

Wasserman, P. D. (1989). Neural computing : theory and practice. New York, Van

Nostrand Reinhold.

Weigend, A. S. and N. A. Gershenfeld (1992). The future of time series: learning and

understanding. TIme series prediction: forecasting the future and understanding
the past. A. S. Weigend and N. A. Gershenfeld. Santa Fe, New Mexico, Addison-
Wesley. 15: 1-70.

 Welch, P. D. (1981). On the Problem of the Initial Transient in Steady-State Simulation.

Yorktown Hights, N.Y., IBM Watson Research Center.

Werbos, P. J. (1974). Beyond regression: new tools for prediction and analysis in the

behavioral sciences. Cambridge, MA, Harvard University.

Whitt, W. (1982). “Approximating a Point Process by a Renewal Process, I: Two Basic

Methods.” Operations Research 30: 125-147.

Whitt, W. (1993). “Large fluctuations in a deterministic multiclass network of queues.”

Management Science 39(8): 1020-1028.

Widrow, B. and M. E. Hoff (1960). Adaptive switching circuits. IRE WESCON

Convention Record, New York, IRE, 96-104.

Winston, P. H. (1992). Artificial Intelligence. New York, NY, Addison-Wesley.

Winters, P. R. (1960). “Forecasting sales by exponentially weighted moving averages.”

Management Science 6: 324-342.

Yao, D. D. and J. A. Buzacott (1985). “Modeling the performance of FMSs.”

International Journal of Production Research 23: 945-960.

Yao, D. D. and J. A. Buzacott (1985). “Queueing models for a flexible machine station -

part I: the diffusion approximation.” European Journal of Operational Research
19(2): 233-240.

 274

Yao, D. D. and J. A. Buzacott (1986). “The exponentialization approach to flexible
manufacturing system models with general processing times.” European Journal
of Operational Research 24: 410-416.

Yao, D. D. and J. A. Buzacott (1986). “Models of flexible manufacturing systems with

limited local buffers.” International Journal of Production Research 24(1): 107-
118.

Yim, D.-S. and T. A. Barta (1994). “A petri net-based simulation tool for the design and

analysis of flexible manufacturing systems.” Journal of Manufacturing Systems
13(4): 251-261.

Zhang, X. and J. Hutchinson (1992). Simple architectures on fast machines: practical

issues in nonlinear time series prediction. Time Series Prediction: Forecasting the
Future and Understanding the Past. A. S. Weigend and N. A. Gershenfeld. Sante
Fe, New Mexico, Sante Fe Institute Studies in the Science of Complexity. 15:
195-217.

Zhou, M. C., Ed. (1995). Petri Nets in Flexible and Agile Automation. Boston, MA,

Kluwer Academic Publishers.

Zhuang, L. and K. S. Hindi (1990). “Mean Value analysis for multiclass closed queueing

network models of flexible manufacturing systems with limited buffers.”
European Journal of Operational Research 46: 366-379.

Zuberek, W. M. (1980). Timed Petri nets and preliminary performance evaluation.

Proceedings of Seventh Annual Symposium on Computer Architecture, 88-96.

Zurawski, R. and M. Zhou (1994). “Petri nets and industrial applications: a tutorial.”

IEEE Transactions on Industrial Electronics 41(6): 567-583.

 275

Appendix A

 276

Extended Design of Experiments

Single Event Disruption Scenario
(Triggered at 10000 minutes)

Steady State Scenario
(pre-disruption)

Scenario
Index Part Mix

Change
Machine

Breakdown
AGV

Breakdown

Mean
Interarrival
Time
(minutes)

Part Mix
Exp. No.

PM1 PM2 → 2.2 PM1 11
PM1 PM2 → 2.2 PM1 12
PM1 PM2 → 2.2 PM1 13
PM1 PM2 → 2.2 PM1 14
PM1 PM2 → 2.2 PM1 15
PM1 PM2 → 2.2 PM1 181
PM1 PM2 → 2.2 PM1 182
PM1 PM2 → 2.2 PM1 183
PM1 PM2 → 2.2 PM1 184
PM1 PM2 → 2.2 PM1 185
PM1 PM2 → 2.2 PM1 186
PM1 PM2 → 2.2 PM1 187
PM1 PM2 → 2.2 PM1 188
PM1 PM2 → 2.2 PM1 189

1

PM1 PM2 → 2.2 PM1 190
PM1 PM2 → 2.3 PM1 111
PM1 PM2 → 2.3 PM1 112
PM1 PM2 → 2.3 PM1 113
PM1 PM2 → 2.3 PM1 114
PM1 PM2 → 2.3 PM1 115
PM1 PM2 → 2.3 PM1 191
PM1 PM2 → 2.3 PM1 192
PM1 PM2 → 2.3 PM1 193
PM1 PM2 → 2.3 PM1 194
PM1 PM2 → 2.3 PM1 195
PM1 PM2 → 2.3 PM1 196
PM1 PM2 → 2.3 PM1 197
PM1 PM2 → 2.3 PM1 198
PM1 PM2 → 2.3 PM1 199

2

PM1 PM2 → 2.3 PM1 200
PM2 PM1 → 2.2 PM2 56
PM2 PM1 → 2.2 PM2 57
PM2 PM1 → 2.2 PM2 58
PM2 PM1 → 2.2 PM2 59
PM2 PM1 → 2.2 PM2 60
PM2 PM1 → 2.2 PM2 201
PM2 PM1 → 2.2 PM2 202
PM2 PM1 → 2.2 PM2 203
PM2 PM1 → 2.2 PM2 204
PM2 PM1 → 2.2 PM2 205

3

PM2 PM1 → 2.2 PM2 206

 277

PM2 PM1 → 2.2 PM2 207
PM2 PM1 → 2.2 PM2 208
PM2 PM1 → 2.2 PM2 209

PM2 PM1 → 2.2 PM2 210
PM2 PM1 → 2.3 PM2 116
PM2 PM1 → 2.3 PM2 117
PM2 PM1 → 2.3 PM2 118
PM2 PM1 → 2.3 PM2 119
PM2 PM1 → 2.3 PM2 120
PM2 PM1 → 2.3 PM2 211
PM2 PM1 → 2.3 PM2 212
PM2 PM1 → 2.3 PM2 213
PM2 PM1 → 2.3 PM2 214
PM2 PM1 → 2.3 PM2 215
PM2 PM1 → 2.3 PM2 216
PM2 PM1 → 2.3 PM2 217
PM2 PM1 → 2.3 PM2 218
PM2 PM1 → 2.3 PM2 219

4

PM2 PM1 → 2.3 PM2 220
 3 2 → 2.2 PM1 66
 3 2 → 2.2 PM1 67
 3 2 → 2.2 PM1 68
 3 2 → 2.2 PM1 69
 3 2 → 2.2 PM1 70
 3 2 → 2.2 PM1 221
 3 2 → 2.2 PM1 222
 3 2 → 2.2 PM1 223
 3 2 → 2.2 PM1 224
 3 2 → 2.2 PM1 225
 3 2 → 2.2 PM1 226
 3 2 → 2.2 PM1 227
 3 2 → 2.2 PM1 228
 3 2 → 2.2 PM1 229

5

 3 2 → 2.2 PM1 230
 3 2 → 2.3 PM1 121
 3 2 → 2.3 PM1 122
 3 2 → 2.3 PM1 123
 3 2 → 2.3 PM1 124
 3 2 → 2.3 PM1 125
 3 2 → 2.3 PM1 231
 3 2 → 2.3 PM1 232
 3 2 → 2.3 PM1 233
 3 2 → 2.3 PM1 234
 3 2 → 2.3 PM1 235
 3 2 → 2.3 PM1 236
 3 2 → 2.3 PM1 237
 3 2 → 2.3 PM1 238
 3 2 → 2.3 PM1 239

6

 3 2 → 2.3 PM1 240
7 3 2 → 2.2 PM2 61

 278

 3 2 → 2.2 PM2 62
 3 2 → 2.2 PM2 63
 3 2 → 2.2 PM2 64
 3 2 → 2.2 PM2 65
 3 2 → 2.2 PM2 241
 3 2 → 2.2 PM2 242
 3 2 → 2.2 PM2 243
 3 2 → 2.2 PM2 244
 3 2 → 2.2 PM2 245
 3 2 → 2.2 PM2 246
 3 2 → 2.2 PM2 247
 3 2 → 2.2 PM2 248
 3 2 → 2.2 PM2 249

 3 2 → 2.2 PM2 250
 3 2 → 2.3 PM2 126
 3 2 → 2.3 PM2 127
 3 2 → 2.3 PM2 128
 3 2 → 2.3 PM2 129
 3 2 → 2.3 PM2 130
 3 2 → 2.3 PM2 251
 3 2 → 2.3 PM2 252
 3 2 → 2.3 PM2 253
 3 2 → 2.3 PM2 254
 3 2 → 2.3 PM2 255
 3 2 → 2.3 PM2 256
 3 2 → 2.3 PM2 257
 3 2 → 2.3 PM2 258
 3 2 → 2.3 PM2 259

8

 3 2 → 2.3 PM2 260
 M1 2.2 PM1 16
 M1 2.2 PM1 17
 M1 2.2 PM1 18
 M1 2.2 PM1 19
 M1 2.2 PM1 20
 M1 2.2 PM1 261
 M1 2.2 PM1 262
 M1 2.2 PM1 263
 M1 2.2 PM1 264
 M1 2.2 PM1 265
 M1 2.2 PM1 266
 M1 2.2 PM1 267
 M1 2.2 PM1 268
 M1 2.2 PM1 269

9

 M1 2.2 PM1 270
 M1 2.3 PM1 131
 M1 2.3 PM1 132
 M1 2.3 PM1 133
 M1 2.3 PM1 134
 M1 2.3 PM1 135
 M1 2.3 PM1 271

10

 M1 2.3 PM1 272

 279

 M1 2.3 PM1 273
 M1 2.3 PM1 274
 M1 2.3 PM1 275
 M1 2.3 PM1 276
 M1 2.3 PM1 277
 M1 2.3 PM1 278
 M1 2.3 PM1 279

 M1 2.3 PM1 280
 M1 2.2 PM2 21
 M1 2.2 PM2 22
 M1 2.2 PM2 23
 M1 2.2 PM2 24
 M1 2.2 PM2 25
 M1 2.2 PM2 281
 M1 2.2 PM2 282
 M1 2.2 PM2 283
 M1 2.2 PM2 284
 M1 2.2 PM2 285
 M1 2.2 PM2 286
 M1 2.2 PM2 287
 M1 2.2 PM2 288
 M1 2.2 PM2 289

11

 M1 2.2 PM2 290
 M1 2.3 PM2 136
 M1 2.3 PM2 137
 M1 2.3 PM2 138
 M1 2.3 PM2 139
 M1 2.3 PM2 140
 M1 2.3 PM2 291
 M1 2.3 PM2 292
 M1 2.3 PM2 293
 M1 2.3 PM2 294
 M1 2.3 PM2 295
 M1 2.3 PM2 296
 M1 2.3 PM2 297
 M1 2.3 PM2 298
 M1 2.3 PM2 299

12

 M1 2.3 PM2 300
 M6 2.2 PM1 6
 M6 2.2 PM1 7
 M6 2.2 PM1 8
 M6 2.2 PM1 9
 M6 2.2 PM1 10
 M6 2.2 PM1 301
 M6 2.2 PM1 302
 M6 2.2 PM1 303
 M6 2.2 PM1 304
 M6 2.2 PM1 305
 M6 2.2 PM1 306
 M6 2.2 PM1 307
 M6 2.2 PM1 308
 M6 2.2 PM1 309

13

 M6 2.2 PM1 310

 280

 M6 2.3 PM1 141
 M6 2.3 PM1 142
 M6 2.3 PM1 143
 M6 2.3 PM1 144
 M6 2.3 PM1 145
 M6 2.3 PM1 311
 M6 2.3 PM1 312
 M6 2.3 PM1 313
 M6 2.3 PM1 314
 M6 2.3 PM1 315
 M6 2.3 PM1 316
 M6 2.3 PM1 317
 M6 2.3 PM1 318
 M6 2.3 PM1 319

14

 M6 2.3 PM1 320
 M6 2.2 PM2 71
 M6 2.2 PM2 72
 M6 2.2 PM2 73
 M6 2.2 PM2 74
 M6 2.2 PM2 75
 M6 2.2 PM2 321
 M6 2.2 PM2 322
 M6 2.2 PM2 323
 M6 2.2 PM2 324
 M6 2.2 PM2 325
 M6 2.2 PM2 326
 M6 2.2 PM2 327
 M6 2.2 PM2 328
 M6 2.2 PM2 329

15

 M6 2.2 PM2 330
 M6 2.3 PM2 106
 M6 2.3 PM2 107
 M6 2.3 PM2 108
 M6 2.3 PM2 109
 M6 2.3 PM2 110
 M6 2.3 PM2 331
 M6 2.3 PM2 332
 M6 2.3 PM2 333
 M6 2.3 PM2 334
 M6 2.3 PM2 335
 M6 2.3 PM2 336
 M6 2.3 PM2 337
 M6 2.3 PM2 338
 M6 2.3 PM2 339

16

 M6 2.3 PM2 340
 M2 2.2 PM1 46
 M2 2.2 PM1 47
 M2 2.2 PM1 48
 M2 2.2 PM1 49
 M2 2.2 PM1 50
 M2 2.2 PM1 341
 M2 2.2 PM1 342

17

 M2 2.2 PM1 343

 281

 M2 2.2 PM1 344
 M2 2.2 PM1 345
 M2 2.2 PM1 346
 M2 2.2 PM1 347
 M2 2.2 PM1 348
 M2 2.2 PM1 349

 M2 2.2 PM1 350
 M2 2.3 PM1 146
 M2 2.3 PM1 147
 M2 2.3 PM1 148
 M2 2.3 PM1 149
 M2 2.3 PM1 150
 M2 2.3 PM1 351
 M2 2.3 PM1 352
 M2 2.3 PM1 353
 M2 2.3 PM1 354
 M2 2.3 PM1 355
 M2 2.3 PM1 356
 M2 2.3 PM1 357
 M2 2.3 PM1 358
 M2 2.3 PM1 359

18

 M2 2.3 PM1 360
 M2 2.2 PM2 26
 M2 2.2 PM2 27
 M2 2.2 PM2 28
 M2 2.2 PM2 29
 M2 2.2 PM2 30
 M2 2.2 PM2 361
 M2 2.2 PM2 362
 M2 2.2 PM2 363
 M2 2.2 PM2 364
 M2 2.2 PM2 365
 M2 2.2 PM2 366
 M2 2.2 PM2 367
 M2 2.2 PM2 368
 M2 2.2 PM2 369

19

 M2 2.2 PM2 370
 M2 2.3 PM2 151
 M2 2.3 PM2 152
 M2 2.3 PM2 153
 M2 2.3 PM2 154
 M2 2.3 PM2 155
 M2 2.3 PM2 371
 M2 2.3 PM2 372
 M2 2.3 PM2 373
 M2 2.3 PM2 374
 M2 2.3 PM2 375
 M2 2.3 PM2 376
 M2 2.3 PM2 377
 M2 2.3 PM2 378
 M2 2.3 PM2 379

20

 M2 2.3 PM2 380
21 M5 2.2 PM1 51

 282

 M5 2.2 PM1 52
 M5 2.2 PM1 53
 M5 2.2 PM1 54
 M5 2.2 PM1 55
 M5 2.2 PM1 381
 M5 2.2 PM1 382
 M5 2.2 PM1 383
 M5 2.2 PM1 384
 M5 2.2 PM1 385
 M5 2.2 PM1 386
 M5 2.2 PM1 387
 M5 2.2 PM1 388
 M5 2.2 PM1 389

 M5 2.2 PM1 390
 M5 2.3 PM1 156
 M5 2.3 PM1 157
 M5 2.3 PM1 158
 M5 2.3 PM1 159
 M5 2.3 PM1 160
 M5 2.3 PM1 391
 M5 2.3 PM1 392
 M5 2.3 PM1 393
 M5 2.3 PM1 394
 M5 2.3 PM1 395
 M5 2.3 PM1 396
 M5 2.3 PM1 397
 M5 2.3 PM1 398
 M5 2.3 PM1 399

22

 M5 2.3 PM1 400
 M5 2.2 PM2 31
 M5 2.2 PM2 32
 M5 2.2 PM2 33
 M5 2.2 PM2 34
 M5 2.2 PM2 35
 M5 2.2 PM2 401
 M5 2.2 PM2 402
 M5 2.2 PM2 403
 M5 2.2 PM2 404
 M5 2.2 PM2 405
 M5 2.2 PM2 406
 M5 2.2 PM2 407
 M5 2.2 PM2 408
 M5 2.2 PM2 409

23

 M5 2.2 PM2 410
 M5 2.3 PM2 161
 M5 2.3 PM2 162
 M5 2.3 PM2 163
 M5 2.3 PM2 164
 M5 2.3 PM2 165
 M5 2.3 PM2 411
 M5 2.3 PM2 412
 M5 2.3 PM2 413

24

 M5 2.3 PM2 414

 283

 M5 2.3 PM2 415
 M5 2.3 PM2 416
 M5 2.3 PM2 417
 M5 2.3 PM2 418
 M5 2.3 PM2 419

 M5 2.3 PM2 420
 M3 2.2 PM1 76
 M3 2.2 PM1 77
 M3 2.2 PM1 78
 M3 2.2 PM1 79
 M3 2.2 PM1 80
 M3 2.2 PM1 421
 M3 2.2 PM1 422
 M3 2.2 PM1 423
 M3 2.2 PM1 424
 M3 2.2 PM1 425
 M3 2.2 PM1 426
 M3 2.2 PM1 427
 M3 2.2 PM1 428
 M3 2.2 PM1 429

25

 M3 2.2 PM1 430
 M3 2.3 PM1 166
 M3 2.3 PM1 167
 M3 2.3 PM1 168
 M3 2.3 PM1 169
 M3 2.3 PM1 170
 M3 2.3 PM1 431
 M3 2.3 PM1 432
 M3 2.3 PM1 433
 M3 2.3 PM1 434
 M3 2.3 PM1 435
 M3 2.3 PM1 436
 M3 2.3 PM1 437
 M3 2.3 PM1 438
 M3 2.3 PM1 439

26

 M3 2.3 PM1 440
 M3 2.2 PM2 36
 M3 2.2 PM2 37
 M3 2.2 PM2 38
 M3 2.2 PM2 39
 M3 2.2 PM2 40
 M3 2.2 PM2 441
 M3 2.2 PM2 442
 M3 2.2 PM2 443
 M3 2.2 PM2 444
 M3 2.2 PM2 445
 M3 2.2 PM2 446
 M3 2.2 PM2 447
 M3 2.2 PM2 448
 M3 2.2 PM2 449

27

 M3 2.2 PM2 450
 M3 2.3 PM2 171 28
 M3 2.3 PM2 172

 284

 M3 2.3 PM2 173
 M3 2.3 PM2 174
 M3 2.3 PM2 175
 M3 2.3 PM2 451
 M3 2.3 PM2 452
 M3 2.3 PM2 453
 M3 2.3 PM2 454
 M3 2.3 PM2 455
 M3 2.3 PM2 456
 M3 2.3 PM2 457
 M3 2.3 PM2 458
 M3 2.3 PM2 459

 M3 2.3 PM2 460
 M7 2.2 PM1 81
 M7 2.2 PM1 82
 M7 2.2 PM1 83
 M7 2.2 PM1 84
 M7 2.2 PM1 85
 M7 2.2 PM1 461
 M7 2.2 PM1 462
 M7 2.2 PM1 463
 M7 2.2 PM1 464
 M7 2.2 PM1 465
 M7 2.2 PM1 466
 M7 2.2 PM1 467
 M7 2.2 PM1 468
 M7 2.2 PM1 469

29

 M7 2.2 PM1 470
 M7 2.3 PM1 86
 M7 2.3 PM1 87
 M7 2.3 PM1 88
 M7 2.3 PM1 89
 M7 2.3 PM1 90
 M7 2.3 PM1 471
 M7 2.3 PM1 472
 M7 2.3 PM1 473
 M7 2.3 PM1 474
 M7 2.3 PM1 475
 M7 2.3 PM1 476
 M7 2.3 PM1 477
 M7 2.3 PM1 478
 M7 2.3 PM1 479

30

 M7 2.3 PM1 480
 M7 2.2 PM2 41
 M7 2.2 PM2 42
 M7 2.2 PM2 43
 M7 2.2 PM2 44
 M7 2.2 PM2 45
 M7 2.2 PM2 481
 M7 2.2 PM2 482
 M7 2.2 PM2 483
 M7 2.2 PM2 484

31

 M7 2.2 PM2 485

 285

 M7 2.2 PM2 486
 M7 2.2 PM2 487
 M7 2.2 PM2 488
 M7 2.2 PM2 489

 M7 2.2 PM2 490
 M7 2.3 PM2 176
 M7 2.3 PM2 177
 M7 2.3 PM2 178
 M7 2.3 PM2 179
 M7 2.3 PM2 180
 M7 2.3 PM2 491
 M7 2.3 PM2 492
 M7 2.3 PM2 493
 M7 2.3 PM2 494
 M7 2.3 PM2 495
 M7 2.3 PM2 496
 M7 2.3 PM2 497
 M7 2.3 PM2 498
 M7 2.3 PM2 499

32

 M7 2.3 PM2 500
 2.2 PM1 1
 2.2 PM1 2
 2.2 PM1 3
 2.2 PM1 4
 2.2 PM1 5
 2.2 PM1 501
 2.2 PM1 502
 2.2 PM1 503
 2.2 PM1 504
 2.2 PM1 505
 2.2 PM1 506
 2.2 PM1 507
 2.2 PM1 508
 2.2 PM1 509

33

 2.2 PM1 510
 2.3 PM1 91
 2.3 PM1 92
 2.3 PM1 93
 2.3 PM1 94
 2.3 PM1 95
 2.3 PM1 511
 2.3 PM1 512
 2.3 PM1 513
 2.3 PM1 514
 2.3 PM1 515
 2.3 PM1 516
 2.3 PM1 517
 2.3 PM1 518
 2.3 PM1 519

34

 2.3 PM1 520
 2.2 PM2 96
 2.2 PM2 97

35

 2.2 PM2 98

 286

 2.2 PM2 99
 2.2 PM2 100
 2.2 PM2 521
 2.2 PM2 522
 2.2 PM2 523
 2.2 PM2 524
 2.2 PM2 525
 2.2 PM2 526
 2.2 PM2 527
 2.2 PM2 528
 2.2 PM2 529

 2.2 PM2 530
 2.3 PM2 101
 2.3 PM2 102
 2.3 PM2 103
 2.3 PM2 104
 2.3 PM2 105
 2.3 PM2 531
 2.3 PM2 532
 2.3 PM2 533
 2.3 PM2 534
 2.3 PM2 535
 2.3 PM2 536
 2.3 PM2 537
 2.3 PM2 538
 2.3 PM2 539

36

 2.3 PM2 540

 287

Appendix B

 288

B.1 MATLAB Source Code for Training Individual ANNs

%ANN based FMS Transient Performance Model Training Session

%
figure(gcf)
clf;
echo on
clc

% ==
% ANN based FMS Transient Performance Model Training Session
% ==

% PRESTD - Normalize data for zero mean and unity standard deviation.
% PREPCA - Principal components analysis.
% NEWFF - Inititializes feed-forward networks.
% TRAIN - Trains a network.
% SIM - Simulates networks.
% POSTSTD - Inverts PRESTD to convert network outputs to original units.
% POSTREG - Linear regression between targets and trained network outputs.

% NONLINEAR REGRESSION:

% Using the above functions a feed-forward network is trained
% to perform a nonlinear regression between predisruption system conditions
% and postdiruption system conditions. The final network is analyzed to
% investigate overall performance.

pause % Strike any key to continue...
clc

% DEFINING THE PROBLEM
% ====================

% The .mat file FMStransientModel contains matrices
% P and T. The P matrix contains the network inputs,
% which are 15 independent measured spectral components of 36 different system disruption scenarios.
% The T matrix contains the corresponding targets, which are
% individual machine utilization levels after a disruption and estimated regression paramenters for the
unknown transient function.

% Load in the data file
%load choles_all
load training_data_1_1;
p=inputs_1_1;
t=outputs_1_1;

% Normalize the inputs and targets so that they have
% zero mean and unity variance.
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t);

% Perform a principal component analysis and remove those
% components which account for less than 0.1% of the variation.
%[ptrans,transMat] = prepca(pn,0.001);
ptrans=pn;
pause % Strike any key to divide the data...
clc

 289

% Divide the data up into training, validation and test sets.
% The testing set will start with the second point and take
% every fourth point. The validation set will start with the
% fourth point and take every fourth point. The training set
% will take the remaining points.
[R,Q] = size(ptrans);
iitst = 2:4:Q;
iival = 4:4:Q;
iitr = [1:4:Q 3:4:Q];
validation.P = ptrans(:,iival);
validation.T = tn(:,iival);
testing.P = ptrans(:,iitst);
testing.T = tn(:,iitst);
ptr = ptrans(:,iitr);
ttr = tn(:,iitr);

pause % Strike any key to define the network...
clc
% DEFINING THE NETWORK
% ====================

% Create a feedforward network with 4 hidden neurons, 2 output
% neurons, TANSIG hidden neurons and linear output neurons. Here
% we assign the Bayesian Regulation training function - TRAINBR. You
% can replace TRAINBR with any training function you desire. The NEWFF
% command will also initialize the weights in the network.
net = newff(minmax(ptr),[2 2 2],{'tansig' 'tansig' 'purelin'},'trainbr');

pause % Strike any key to train the network...
clc

% TRAINING THE NETWORK
% ====================

% Before training the network you may want to change some of the training
% parameters from their default values. Here we change only the
% show parameter.
net.trainParam.show = 5; % Show intermediate results every five iterations.
%net.trainParam.epochs = 150;
% Training begins...please wait...

% Train the network. We use early stopping, so we are passing the
% validation data. We also want the errors computed on a test
% set, so we are passing the testing data.
[net,tr]=train(net,ptr,ttr,[],[],validation,testing);

pause % Strike any key to test the networks...
clc
% TESTING THE NETWORK
% ====================

% Plot the training, validation and test errors.
plot(tr.epoch,tr.perf,'r',tr.epoch,tr.vperf,':g',tr.epoch,tr.tperf,'-.b')
legend('Training','Validation','Test',-1);
ylabel('Squared Error')

% Simulate the trained network.
an = sim(net,ptrans);

% Convert the output of the network back into the original units
% of the targets. Since the targets were transformed using PRESTD so

 290

% that the mean was 0 and the standard deviation was 1, we need to
% use POSTSTD (the inverse of PRESTD) and the original mean and standard
% deviation to transform the network outputs back into the original units.
a = postmnmx(an,mint,maxt);

pause % Strike any key to display the regression analysis...
clc
% DISPLAY RESULTS
% ===============

% We will now display plots showing regression analyses between the
% network outputs and the corresponding targets (in original units).

for i=1:1

 pause % Strike any key to display the next output...
 clc
 [m(i),b(i),r(i)] = postreg(a(i,:),t(i,:));

end

echo off

disp('End of ANN based FMS Transient model training')

 291

MATLAB Source Code for Simulating A Taxonomically Organized
ANN based Transient Behavior Prediction Model

%ANN based FMS Transient Performance Model Training Session

%
%echo on
%clc

load trained_transient_SM;
disp ('what is a mean part arrival time to the system? ')
n = input ('Enter 1 for 2.2min or 2 for 2.3min: ');
while (n ~= 1) & (n ~= 2)
disp ('warning: digits 1 and 2 are only acceptable.');
n = input ('Enter 1 for 2.2min or 2 for 2.3min: ');
end
if n == 1
 mparrv = 2.2;
else
 mparrv = 2.3;
end
disp ('Following time averaged utilizations of each machine stations prior to')
disp ('a disruptive event are needed as a part of the input vector. ')
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#1 prior to a disruptive event? ')
disp ('A desirable value should be between 0.4382 and 0.68303. ')
u1 = input ('Enter M1 Utilization prior to a disruption:');
while (u1 < 0.4) | (u1> 0.75)
 if (u1 < 0.4)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.4382 and 0.68303. ')
 u1 = input ('Enter M1 Utilization prior to a disruption:');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.4382 and 0.68303. ')
 u1 = input ('Enter M1 Utilization prior to a disruption:');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#6 prior to a disruptive event? ')
disp ('A desirable value should be between 0.2649 and 0.80999. ')
u6 = input ('Enter M6 Utilization prior to a disruption:');
while (u6 < 0.2) | (u6 > 0.85)
 if (u6 < 0.2)
 disp ('warning: the value is too low to generate a valid prediction. ');
 disp ('A desirable value should be between 0.2649 and 0.80999. ')
 u6 = input ('Enter M6 Utilization prior to a disruption:');
 else
 disp ('warning: the value is too high to generate a valid prediction. ');
 disp ('A desirable value should be between 0.2649 and 0.80999. ')
 u6 = input ('Enter M6 Utilization prior to a disruption:');
 end
end
disp (' ')
disp (' ')

 292

disp ('What is time averaged utilization of Machine#2 prior to a disruptive event? ')
disp ('A desirable value should be between 0.44374 and 0.74975. ')
u2 = input ('Enter M2 Utilization prior to a disruption:');
while (u2 < 0.4) | (u2 > 0.80)
 if (u2 < 0.4)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.44374 and 0.74975. ')
 u2 = input ('Enter M2 Utilization prior to a disruption:');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.44374 and 0.74975. ')
 u2 = input ('Enter M2 Utilization prior to a disruption:');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#5 prior to a disruptive event? ')
disp ('A desirable value should be between 0.23492 and 0.67018. ')
u5 = input ('Enter M5 Utilization prior to a disruption: ');
while (u5 < 0.2) | (u5 > 0.7)
 if (u5 < 0.2)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.23492 and 0.67018. ')
 u5 = input ('Enter M5 Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.23492 and 0.67018. ')
 u5 = input ('Enter M5 Utilization prior to a disruption: ');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#3 prior to a disruptive event? ')
disp ('A desirable value should be between 0.357 and 0.8041. ')
u3 = input ('Enter M3 Utilization prior to a disruption: ');
while (u3 < 0.3) | (u3 > 0.83)
 if (u3 < 0.3)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.357 and 0.8041. ')
 u3 = input ('Enter M3 Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.357 and 0.8041. ')
 u3 = input ('Enter M3 Utilization prior to a disruption: ');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#7 prior to a disruptive event? ')
disp ('A desirable value should be between 0.36168 and 0.7649. ')
u7 = input ('Enter M7 Utilization prior to a disruption: ');
while (u7 < 0.3) | (u7 > 0.8)
 if (u7 < 0.3)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.36168 and 0.7649. ')
 u7 = input ('Enter M7 Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.36168 and 0.7649. ')
 u7 = input ('Enter M7 Utilization prior to a disruption: ');
 end
end

 293

disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#9 prior to a disruptive event? ')
disp ('A desirable value should be between 0.28211 and 0.8268. ')
u9 = input ('Enter M9 Utilization prior to a disruption: ');
while (u9 < 0.2) | (u9 > 0.85)
 if (u9 < 0.2)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.28211 and 0.8268. ')
 u9 = input ('Enter M9 Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.28211 and 0.8268. ')
 u9 = input ('Enter M9 Utilization prior to a disruption: ');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Machine#12 prior to a disruptive event? ')
disp ('A desirable value should be between 0.54538 and 0.72847. ')
u12 = input ('Enter M12 Utilization prior to a disruption: ');
while (u12 < 0.5) | (u12 > 0.75)
 if (u12 < 0.5)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.54538 and 0.72847. ')
 u12 = input ('Enter M12 Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.54538 and 0.72847. ')
 u12 = input ('Enter M12 Utilization prior to a disruption: ');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of AGV prior to a disruptive event? ')
disp ('A desirable value should be between 0.27854 and 0.60651. ')
uav = input ('Enter AGV Utilization prior to a disruption: ');
while (uav < 0.2) | (uav > 0.65)
 if (uav < 0.2)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.27854 and 0.60651. ')
 uav = input ('Enter AGV Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.27854 and 0.60651. ')
 uav = input ('Enter AGV Utilization prior to a disruption: ');
 end
end
disp (' ')
disp (' ')
disp ('What is time averaged utilization of Fixture prior to a disruptive event? ')
disp ('A desirable value should be between 0.52744 and 0.676. ')
ufx = input ('Enter Fixture Utilization prior to a disruption: ');
while (ufx < 0.5) | (ufx > 0.7)
 if (ufx < 0.5)
 disp ('warning: the value is too low to generate a valid prediction. ')
 disp ('A desirable value should be between 0.52744 and 0.676. ')
 ufx = input ('Enter Fixture Utilization prior to a disruption: ');
 else
 disp ('warning: the value is too high to generate a valid prediction. ')
 disp ('A desirable value should be between 0.52744 and 0.676. ')
 ufx = input ('Enter Fixture Utilization prior to a disruption: ');

 294

 end
end
putil = [mparrv u1 u6 u2 u5 u3 u7 u9 u12 uav ufx];
disp (' ')
disp (' ')
disp ('Possible operational disruption scenarios are based on only two types of single disruption event.')
disp ('A part mix change and single resource failure are two preselected types of single disruption event.')
disp ('What type of disruptive event took place? If it was a part mix change, enter 1. ')
disp ('if it was a resource failure, enter 2.')
dstype = input ('Enter 1 or 2 for a part mix change or a resource failure: ');
while (dstype ~= 1) & (dstype ~= 2)
 disp ('warning: invalid value. A number 1 or 2 is only allowed.')
 dstype = input ('Enter 1 or 2 for a part mix change or a resource failure: ');
end
disp (' ')
disp (' ')
if (dstype == 1)
 disp ('Select an appropriate part mix change from the below.')
 disp ('Part Mix Type 1: P1=25% P5=25% P8=25% P11=25%')
 disp ('Part Mix Type 2: P1=20% P4=20% P5=25% P11=20% P12=20%')
 disp ('Enter 1 if a disruption is resulted by Part Mix Type 1 => Part Mix Type 2 ')
 disp ('Otherwise enter 2 for the disruption is resulted by Part Mix Type 2 => Part Mix Type 1 ')
 pmdstype = input('Enter only 1 or 2 for a part mix change PM1 => PM2 or PM2 => PM1: ');
 while (pmdstype ~= 1) & (pmdstype ~= 2)
 disp ('warning: invalid value. A number 1 or 2 is only allowed.')
 pmdstype = input ('Enter only 1 or 2 for a part mix change PM1 => PM2 or PM2 => PM1: ');
 end
 if pmdstype == 1
 pmxtype = 1;
 pdisevnt = [0.25 0 0 0 0.25 0 0 0.25 0 0 0.25 0 -0.05 0 0 0.2 -0.05 0 0 -0.25 0 0 -0.05 0.2 0 0 0 0 0 0 0 0
0];
 else
 pmxtype = 2;
 pdisevnt = [0.2 0 0 0.2 0.2 0 0 0 0 0 0.2 0.2 0.05 0 0 -0.2 0.05 0 0 0.25 0 0 0.05 -0.2 0 0 0 0 0 0 0 0 0];
 end
 pnew = [putil pdisevnt]'
else
 disp ('What is the current part mix type for the system?');
 disp ('Part Mix Type 1: P1=25% P5=25% P8=25% P11=25%')
 disp ('Part Mix Type 2: P1=20% P4=20% P5=20% P11=20% P12=20%')
 pmxtype = input('Enter only 1 or 2 for Part Mix Type 1 or Part Mix Type 2: ');
 while (pmxtype ~= 1) & (pmxtype ~= 2)
 disp ('warning: invalid value. A number 1 or 2 is only allowed.')
 pmxtype = input ('Enter only 1 or 2 for Part Mix Type 1 or Part Mix Type 2: ');
 end
 if pmxtype == 1
 pmx = [0.25 0 0 0 0.25 0 0 0.25 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0];
 else
 pmx = [0.2 0 0 0.2 0.2 0 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0];
 end
 disp (' ')
 disp (' ')
 disp ('Select a single resource that failed and caused a disruption during the operation.')
 disp ('Enter 1 for machine 1 breakdown, 6 for machine 6 breakdown, 2 for machine 2 breakdown, ')
 disp ('5 for machine 5 breakdown, 3 for machine 3 breakdown, 7 for machine 7 breakdown, ')
 disp ('or 99 for a single AGV failure.')
 psrftype = input ('Enter only 1, 6, 2, 5, 3, 7, or 99 for a single resource failure: ');
 while (psrftype ~= 1) & (psrftype ~= 6) & (psrftype ~= 2) & (psrftype ~= 5) & (psrftype ~= 3) & (psrftype ~=
7) & (psrftype ~= 99)
 disp ('warning: invalide number. A number should be either 1, 6, 2, 5, 3, 7, or 99. ')
 psrftype = input ('Enter only 1, 6, 2, 5, 3, 7, or 99 for a single resource failure: ');
 end

 295

 if (psrftype == 1)
 psrf = [1 0 0 0 0 0 0 0 0];
 elseif (psrftype == 6)
 psrf = [0 1 0 0 0 0 0 0 0];
 elseif (psrftype == 2)
 psrf = [0 0 1 0 0 0 0 0 0];
 elseif (psrftype == 5)
 psrf = [0 0 0 1 0 0 0 0 0];
 elseif (psrftype == 3)
 psrf = [0 0 0 0 1 0 0 0 0];
 elseif (psrftype == 7)
 psrf = [0 0 0 0 0 1 0 0 0];
 elseif (psrftype == 99)
 psrf = [0 0 0 0 0 0 0 0 1];
 end
 pnew = [putil pmx psrf]'
end
pnewn1 = tramnmx(pnew,minp_1_1,maxp_1_1);
anewn1 = sim(net_1_1,pnewn1);
anew1 = postmnmx(anewn1,mint_1_1,maxt_1_1);
ptype = round(anew1(1)^2+anew1(2)^2*2);
if ptype == 1
 pnewn2_1=tramnmx(pnew,minp_2_1_1,maxp_2_1_1);
 anewn2_1_1 =sim(net_2_1_1,pnewn2_1);
 anew2_1_1 = postmnmx(anewn2_1_1,mint_2_1_1,maxt_2_1_1);
 anewn2_1_2 =sim(net_2_1_2,pnewn2_1);
 anew2_1_2 = postmnmx(anewn2_1_2,mint_2_1_2,maxt_2_1_2);
 anewn2_1_3 =sim(net_2_1_3,pnewn2_1);
 anew2_1_3 = postmnmx(anewn2_1_3,mint_2_1_3,maxt_2_1_3);
 anew = [anew2_1_1' anew2_1_2' anew2_1_3']';
elseif ptype == 2
 pnewn2_2=tramnmx(pnew,minp_2_2_1,maxp_2_2_1);
 anewn2_2_1 =sim(net_2_2_1,pnewn2_2);
 anew2_2_1 = postmnmx(anewn2_2_1,mint_2_2_1,maxt_2_2_1);
 anewn2_2_2 =sim(net_2_2_2,pnewn2_2);
 anew2_2_2 = postmnmx(anewn2_2_2,mint_2_2_2,maxt_2_2_2);
 anewn2_2_3 =sim(net_2_2_3,pnewn2_2);
 anew2_2_3 = postmnmx(anewn2_2_3,mint_2_2_3,maxt_2_2_3);
 anew = [anew2_2_1' anew2_2_2' anew2_2_3']';
elseif ptype == 3
 pnewn2_3=tramnmx(pnew,minp_2_3_1,maxp_2_3_1);
 anewn2_3_1 =sim(net_2_3_1,pnewn2_3);
 anew2_3_1 = postmnmx(anewn2_3_1,mint_2_3_1,maxt_2_3_1);
 anewn2_3_2 =sim(net_2_3_2,pnewn2_3);
 anew2_3_2 = postmnmx(anewn2_3_2,mint_2_3_2,maxt_2_3_2);
 anew = [anew2_3_1' anew2_3_2']';
end
disp (' ')
disp (' ')
disp ('Predicted transient system behavior pattern type is: ')
disp (ptype)
disp (' ')
if ptype == 0
 disp ('There is no sign of a significant change in the system behavior.')
else
 disp ('Approximated post disruption system behavior vector is ')
 disp (anew)
 disp (' ')
 disp ('*********** Post-Disruption System Behavior Prediction Report *************')
 disp ('***')
 disp (' ')
 disp (' ')

 296

 disp ('Following time averaged utilizations of each machine stations are')
 disp ('approximated as a part of post-disruption system behavior. ')
 disp (' ')
end
if ptype == 1
 tanew = anew';
 psutil = tanew(1:10);
 psdely = tanew(11);
 psnlmean = tanew(12:14);
 pslstp = tanew(15);
 pslmean = tanew(16:17);
 pssgmpre = tanew(18);
 pssgmpst = tanew(19:27);
 disp (['**The expected final time averaged utilization for Machine#1 is ' num2str(psutil(1))])
 disp (['**The expected final time averaged utilization for Machine#6 is ' num2str(psutil(2))])
 disp (['**The expected final time averaged utilization for Machine#2 is ' num2str(psutil(3))])
 disp (['**The expected final time averaged utilization for Machine#5 is ' num2str(psutil(4))])
 disp (['**The expected final time averaged utilization for Machine#3 is ' num2str(psutil(5))])
 disp (['**The expected final time averaged utilization for Machine#7 is ' num2str(psutil(6))])
 disp (['**The expected final time averaged utilization for Machine#9 is ' num2str(psutil(7))])
 disp (['**The expected final time averaged utilization for Machine#12 is ' num2str(psutil(8))])
 disp (['**The expected final time averaged utilization for AGV is ' num2str(psutil(9))])
 disp (['**The expected final time averaged utilization for Fixture is ' num2str(psutil(10))])
 disp (['**The expected disruption impact delay in terms of # of parts/independent TIS observations is '
num2str(ceil(psdely))])
 disp (' parts/observations from the moment of disruption hit. ')
 disp ('**Only one TIS observation on each departing part is allowed.')
 disp (' ')
 disp (' ')
 if (mparrv == 2.2) & (pmxtype == 1)
 disp ('If there was no performance disruption, ')
 disp ('the approximated steady-state mean time-in-system would be 163.4984 minutes ')
 stsmean = 163.4984;
 disp ('with the approximated upper control limit of 171.6962 minutes and ')
 stsucl = 171.6962;
 disp ('with the approximated lower control limit of 155.3006 minutes.')
 stslcl = 155.3006;
 elseif (mparrv == 2.2) & (pmxtype == 2)
 disp ('If there was no performance disruption, ')
 disp ('the approximated steady-state mean time-in-system would be 149.9076 minutes ')
 stsmean = 149.9076;
 disp ('with the approximated upper control limit of 159.2466 minutes and ')
 stsucl = 159.2466;
 disp ('with the approximated lower control limit of 140.5685 minutes.')
 stslcl = 140.5685;
 elseif (mparrv == 2.3) & (pmxtype == 1)
 disp ('If there was no performance disruption, ')
 disp ('the approximated steady-state mean time-in-system would be 161.6357 minutes ')
 stsmean = 161.6357;
 disp ('with the approximated upper control limit of 166.8541 minutes and ')
 stsucl = 166.8541;
 disp ('with the approximated lower control limit of 156.4173 minutes.')
 stslcl = 156.4173;
 elseif (mparrv == 2.3) & (pmxtype == 2)
 disp ('If there was no performance disruption, ')
 disp ('the approximated steady-state mean time-in-system would be 147.2282 minutes ')
 stsmean = 147.2282;
 disp ('with the approximated upper control limit of 153.6755 minutes and ')
 stsucl = 153.6755;
 disp ('with the approximated lower control limit of 140.7808 minutes.')
 stslcl = 140.7808;
 end

 297

 disp (' ')
 disp (' ')
 disp ('Following 2nd order polynomial regression model is to forecast ')
 disp (['the behavior of moving averaged (w=500) mean TIS (time-in-system) for first ' num2str(ceil(pslstp))
' parts'])
 disp (['after the disruption delay of ' num2str(ceil(psdely)) ' parts. '])
 disp ('An independent variable t is t-th part entering the system after the disruption impact delay. ')
 disp ('An dependent variable y1 is an estimated mean total minutes spent in the system by t-th part after ')
 disp ('a period of impact delay elapses.')
 disp (['Values for t are 0, 1, 2,...' num2str(ceil(pslstp)) 'th part entering the system after the disruption
impact delay.'])
 disp (' ')
 disp (['y1 = ' num2str(psnlmean(1)) ' + ' num2str(psnlmean(2)) 't + ' num2str(psnlmean(3)) 't^2 '])
 disp (' ')
 disp (' ')
 disp ('Following linear model is to forecast')
 disp ('the behavior of moving averaged (w=500) mean TIS (time-in-system) of parts ')
 disp (['entering the system after first ' num2str(ceil(psdely)+ceil(pslstp)) ' parts from the moment of
disruption hit'])
 disp (' but no later than 10000 minutes after the disruption hit. ')
 disp (['An independent variable t is t-th part entering the system after the first '
num2str(ceil(psdely)+ceil(pslstp)) ' parts'])
 disp (' from the moment of disruption hit.')
 disp ('An dependent variable y2 is an estimated mean total minutes spent in the system by t-th part after ')
 disp ('a period of impact delay and non-linear trend. ')
 disp (['Values for t are 0, 1, 2,...n th part entering the system after first ' num2str(ceil(psdely)+ceil(pslstp)) '
parts'])
 disp ('following the disruption but their arrival time should less than 10,000 minutes ')
 disp ('from the moment of disruption hit. ')
 disp (' ')
 disp (['y2 = ' num2str(pslmean(1)) ' + ' num2str(pslmean(2)) 't '])
 disp (' ')
 disp (' ')
 disp (['The mean sigma of TIS during the pre-disruption period is ' num2str(pssgmpre) ' minutes'])
 disp ('Following 8th order polynomial regression model is to')
 disp ('forecast the behavior of sigma of moving averaged (w=500) mean TIS of parts entering the system
during ')
 disp ('10000 minutes from the moment of the disruption hit. ')
 disp (['An independent variable t is t-th part entering the system after the impact delay of '
num2str(ceil(psdely)) ' parts.'])
 disp ('An dependent variable y_sigma is an estimated mean sigma of TIS by t-th part after ')
 disp ('a period of impact delay elapses. ')
 disp ('Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ')
 disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial ')
 disp ('during the regression analysis.')
 disp (['(t=0 is the first departing part after the disruption impact delay of ' num2str(ceil(psdely)) ' parts)'])
 disp (' ')
 disp (['y_sigma = ' num2str(pssgmpst(1)) ' + ' num2str(pssgmpst(2)) 't + ' num2str(pssgmpst(3)) 't^2 + '
num2str(pssgmpst(4)) 't^3 + ' num2str(pssgmpst(5)) 't^4 + ' num2str(pssgmpst(6)) 't^5 + '
num2str(pssgmpst(7)) 't^6 + ' num2str(pssgmpst(8)) 't^7 + ' num2str(pssgmpst(9)) 't^8'])
 disp (' ')
 disp (' ')
elseif ptype == 2
 tanew = anew';
 psutil = tanew(1:10);
 psdely = tanew(11);
 psmean = tanew(12:15);
 pssgmpre = tanew(16);
 pssgmpst = tanew(17:20);
 disp (['**The expected final time averaged utilization for Machine#1 is ' num2str(psutil(1))])
 disp (['**The expected final time averaged utilization for Machine#6 is ' num2str(psutil(2))])
 disp (['**The expected final time averaged utilization for Machine#2 is ' num2str(psutil(3))])

 298

 disp (['**The expected final time averaged utilization for Machine#5 is ' num2str(psutil(4))])
 disp (['**The expected final time averaged utilization for Machine#3 is ' num2str(psutil(5))])
 disp (['**The expected final time averaged utilization for Machine#7 is ' num2str(psutil(6))])
 disp (['**The expected final time averaged utilization for Machine#9 is ' num2str(psutil(7))])
 disp (['**The expected final time averaged utilization for Machine#12 is ' num2str(psutil(8))])
 disp (['**The expected final time averaged utilization for AGV is ' num2str(psutil(9))])
 disp (['**The expected final time averaged utilization for Fixture is ' num2str(psutil(10))])
 disp (['**The expected disruption impact delay in terms of # of parts/independent TIS observations is '
num2str(ceil(psdely))])
 disp (' parts/observations from the moment of disruption hit. ')
 disp ('**Only one TIS observation on each departing part is allowed.')
 disp (' ')
 disp (' ')
 if (mparrv == 2.2) & (pmxtype == 1)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 163.4984 minutes ')
 stsmean = 163.4984;
 disp ('with the approximated upper control limit of 171.6962 minutes and ')
 stsucl = 171.6962;
 disp ('with the approximated lower control limit of 155.3006 minutes.')
 stslcl = 155.3006;
 elseif (mparrv == 2.2) & (pmxtype == 2)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 149.9076 minutes ')
 stsmean = 149.9076;
 disp ('with the approximated upper control limit of 159.2466 minutes and ')
 stsucl = 159.2466;
 disp ('with the approximated lower control limit of 140.5685 minutes.')
 stslcl = 140.5685;
 elseif (mparrv == 2.3) & (pmxtype == 1)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 161.6357 minutes ')
 stsmean = 161.6357;
 disp ('with the approximated upper control limit of 166.8541 minutes and ')
 stsucl = 166.8541;
 disp ('with the approximated lower control limit of 156.4173 minutes.')
 stslcl = 156.4173;
 elseif (mparrv == 2.3) & (pmxtype == 2)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 147.2282 minutes ')
 stsmean = 147.2282;
 disp ('with the approximated upper control limit of 153.6755 minutes and ')
 stsucl = 153.6755;
 disp ('with the approximated lower control limit of 140.7808 minutes.')
 stslcl = 140.7808;
 end
 disp (' ')
 disp (' ')
 disp ('Following 8th order polynomial regression model is to forecast')
 disp ('the behavior of moving averaged (w=500) mean TIS (time-in-system)on parts entering the system ')
 disp ('during 10000 minutes from the moment of disruption hit. ')
 disp (['An independent variable t is t-th part entering the system after the impact delay of'
num2str(ceil(psdely)) ' parts.'])
 disp ('An dependent variable y is an estimated mean total minutes spent in the system by t-th part after ')
 disp (['the impact delay of ' num2str(ceil(psdely)) ' parts.'])
 disp ('Values for t = 0, 1, 2,...n are to be substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ')
 disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial during the
regression analysis.')
 disp (['(t=0 is the first TIS observation after ' num2str(ceil(psdely)) ' parts from the moment of disruption
event hit)'])
 disp (' ')

 299

 disp (['y = ' num2str(psmean(1)) ' + ' num2str(psmean(2)) 't + ' num2str(psmean(3)) 't^2 + '
num2str(psmean(4)) 't^3 '])
 disp (' ')
 disp (' ')
 disp (['The average sigma of TIS during the pre-disruption period is ' num2str(pssgmpre) ' parts.'])
 disp ('Following 8th order polynomial regression model is to forecast')
 disp ('the behavior of moving averaged (w=500) mean sigma of TIS of parts entering the system ')
 disp ('during 10000 minutes from the moment of disruption hit. ')
 disp (['An independent variable t is t-th part entering the system after the impact delay of '
num2str(ceil(psdely)) ' parts.'])
 disp ('An dependent variable y is an estimated mean sigma of TIS by t-th part after ')
 disp (['the impact delay of ' num2str(ceil(psdely)) ' parts.'])
 disp ('Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ')
 disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial during the
regression analysis.')
 disp (['(t=0 is the first sigma observation after ' num2str(ceil(psdely)) ' parts from the moment of disruption
event hit)'])
 disp (' ')
 disp (['y = ' num2str(pssgmpst(1)) ' + ' num2str(pssgmpst(2)) 't + ' num2str(pssgmpst(3)) 't^2 + '
num2str(pssgmpst(4)) 't^3 '])
 disp (' ')
 disp (' ')
elseif ptype == 3
 tanew = anew';
 psutil = tanew(1:10);
 psdely = tanew(11);
 psmean = tanew(12:20);
 pssgmpre = tanew(21);
 pssgmtsn = tanew(22);
 pssgmpst = tanew(23);
 disp (['**The expected final time averaged utilization for Machine#1 is ' num2str(psutil(1))])
 disp (['**The expected final time averaged utilization for Machine#6 is ' num2str(psutil(2))])
 disp (['**The expected final time averaged utilization for Machine#2 is ' num2str(psutil(3))])
 disp (['**The expected final time averaged utilization for Machine#5 is ' num2str(psutil(4))])
 disp (['**The expected final time averaged utilization for Machine#3 is ' num2str(psutil(5))])
 disp (['**The expected final time averaged utilization for Machine#7 is ' num2str(psutil(6))])
 disp (['**The expected final time averaged utilization for Machine#9 is ' num2str(psutil(7))])
 disp (['**The expected final time averaged utilization for Machine#12 is ' num2str(psutil(8))])
 disp (['**The expected final time averaged utilization for AGV is ' num2str(psutil(9))])
 disp (['**The expected final time averaged utilization for Fixture is ' num2str(psutil(10))])
 disp (['**The expected disruption impact delay in terms of # of parts/independent TIS observations is '
num2str(ceil(psdely))])
 disp (' parts/observations from the moment of disruption hit. ')
 disp ('**Only one TIS observation on each departing part is allowed.')
 disp (' ')
 disp (' ')
 if (mparrv == 2.2) & (pmxtype == 1)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 163.4984 minutes ')
 stsmean = 163.4984;
 disp ('with the approximated upper control limit of 171.6962 minutes and ')
 stsucl = 171.6962;
 disp ('with the approximated lower control limit of 155.3006 minutes.')
 stslcl = 155.3006;
 elseif (mparrv == 2.2) & (pmxtype == 2)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 149.9076 minutes ')
 stsmean = 149.9076;
 disp ('with the approximated upper control limit of 159.2466 minutes and ')
 stsucl = 159.2466;
 disp ('with the approximated lower control limit of 140.5685 minutes.')
 stslcl = 140.5685;

 300

 elseif (mparrv == 2.3) & (pmxtype == 1)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 161.6357 minutes ')
 stsmean = 161.6357;
 disp ('with the approximated upper control limit of 166.8541 minutes and ')
 stsucl = 166.8541;
 disp ('with the approximated lower control limit of 156.4173 minutes.')
 stslcl = 156.4173;
 elseif (mparrv == 2.3) & (pmxtype == 2)
 disp ('If there were no performance disruptions, ')
 disp ('the approximated steady-state mean time-in-system would be 147.2282 minutes ')
 stsmean = 147.2282;
 disp ('with the approximated upper control limit of 153.6755 minutes and ')
 stsucl = 153.6755;
 disp ('with the approximated lower control limit of 140.7808 minutes.')
 stslcl = 140.7808;
 end
 disp (' ')
 disp (' ')
 disp ('Following 8th order polynomial regression model is to forecast')
 disp ('the behavior of moving averaged (w=500) mean TIS (time-in-system)on parts entering the system ')
 disp ('during 10000 minutes from the moment of disruption hit. ')
 disp (['An independent variable t is t-th part entering the system after the impact delay of'
num2str(ceil(psdely)) ' parts.'])
 disp ('An dependent variable y is an estimated mean total minutes spent in the system by t-th part after ')
 disp (['the impact delay of ' num2str(ceil(psdely)) ' parts.'])
 disp ('Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ')
 disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial during the
regression analysis.')
 disp (['(t=0 is the first observation after ' num2str(ceil(psdely)) ' parts from the moment of disruption event
hit)'])
 disp (' ')
 disp (['y = ' num2str(psmean(1)) ' + ' num2str(psmean(2)) 't + ' num2str(psmean(3)) 't^2 + '
num2str(psmean(4)) 't^3 + ' num2str(psmean(5)) 't^4 + ' num2str(psmean(6)) 't^5 + ' num2str(psmean(7))
't^6 + ' num2str(psmean(8)) 't^7 + ' num2str(psmean(9)) 't^8'])
 disp (' ')
 disp (' ')
 disp (['The average sigma of TIS during the pre-disruption period is ' num2str(pssgmpre)])
 disp (['The average sigma of TIS during the transient period is ' num2str(pssgmtsn)])
 disp (['The average sigma of TIS after the transient period is ' num2str(pssgmpst)])
end

%echo off

 301

B.2 Transient Behavior Prediction User Interface in MATLAB

The user interface for the proposed transient behavior prediction system consists of two
parts. The first part is to let a user to enter actual pre-disruption system conditions and a
disruption event itself. It was designed to walk through a user a series of questions
asking pre-disruption conditions, various operational parameters, and the nature of
disruption. The logic checks behind the user interface keep the user from entering invalid
values or out of range values in order to prevent the system to predict the area that was
never trained to handle. The second part is to present prediction results in English using
mathematical notations. It was also designed to display predicted results as an original
column vector.

>> what is a mean part arrival time to the system?
Enter 1 for 2.2min or 2 for 2.3min: 2
Following time averaged utilizations of each machine stations prior to
a disruptive event are needed as a part of the input vector.

What is time averaged utilization of Machine#1 prior to a disruptive event?
A desirable value should be between 0.4382 and 0.68303.
Enter M1 Utilization prior to a disruption:0.626092724

What is time averaged utilization of Machine#6 prior to a disruptive event?
A desirable value should be between 0.2649 and 0.80999.
Enter M6 Utilization prior to a disruption:0.451223542

What is time averaged utilization of Machine#2 prior to a disruptive event?
A desirable value should be between 0.44374 and 0.74975.
Enter M2 Utilization prior to a disruption:0.476030228

What is time averaged utilization of Machine#5 prior to a disruptive event?
A desirable value should be between 0.23492 and 0.67018.
Enter M5 Utilization prior to a disruption: 0.294553065

What is time averaged utilization of Machine#3 prior to a disruptive event?
A desirable value should be between 0.357 and 0.8041.
Enter M3 Utilization prior to a disruption: 0.753000501

What is time averaged utilization of Machine#7 prior to a disruptive event?
A desirable value should be between 0.36168 and 0.7649.
Enter M7 Utilization prior to a disruption: 0.654717144

 302

What is time averaged utilization of Machine#9 prior to a disruptive event?
A desirable value should be between 0.28211 and 0.8268.
Enter M9 Utilization prior to a disruption: 0.685214836

What is time averaged utilization of Machine#12 prior to a disruptive event?
A desirable value should be between 0.54538 and 0.72847.
Enter M12 Utilization prior to a disruption: 0.598174323

What is time averaged utilization of AGV prior to a disruptive event?
A desirable value should be between 0.27854 and 0.60651.
Enter AGV Utilization prior to a disruption: 0.330983599

What is time averaged utilization of Fixture prior to a disruptive event?
A desirable value should be between 0.52744 and 0.676.
Enter Fixture Utilization prior to a disruption: 0.558691709

Possible operational disruption scenarios are based on only two types of single disruption event.
A part mix change and single resource failure are two pre-selected types of single disruption
event.
What type of disruptive event took place? If it was a part mix change, enter 1.
if it was a resource failure, enter 2.
Enter 1 or 2 for a part mix change or a resource failure: 2

What is the current part mix type for the system?
Part Mix Type 1: P1=25% P5=25% P8=25% P11=25%
Part Mix Type 2: P1=20% P4=20% P5=20% P11=20% P12=20%
Enter only 1 or 2 for Part Mix Type 1 or Part Mix Type 2: 1

Select a single resource that failed and caused a disruption during the operation.
Enter 1 for machine 1 breakdown, 6 for machine 6 breakdown, 2 for machine 2 breakdown,
5 for machine 5 breakdown, 3 for machine 3 breakdown, 7 for machine 7 breakdown,
or 99 for a single AGV failure.
Enter only 1, 6, 2, 5, 3, 7, or 99 for a single resource failure: 3

pnew =

 2.3
 0.62609
 0.45122
 0.47603
 0.29455
 0.753
 0.65472
 0.68521
 0.59817
 0.33098
 0.55869
 0.25
 0
 0

 303

 0
 0.25
 0
 0
 0.25
 0
 0
 0.25
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 0
 0
 0

Warning: Some maximums and minimums are equal. Those inputs won't be transformed.
> In C:\MATLAB6p5\toolbox\nnet\nnet\tramnmx.m at line 65
 In C:\MATLAB6p5\work\FMS_transient_model\simulating_ANN_FMS_final.m at line 257
Warning: Some maximums and minimums are equal. Those inputs won't be transformed.
> In C:\MATLAB6p5\toolbox\nnet\nnet\tramnmx.m at line 65
 In C:\MATLAB6p5\work\FMS_transient_model\simulating_ANN_FMS_final.m at line 262

Predicted transient system behavior pattern type is:
 1

Approximated post disruption system behavior vector is
 0.44885
 0.22148
 0.35227
 0.10633
 0.10795
 0.86862
 0.54445
 0.24624
 0.89735
 0.93568
 36.508
 180.21

 304

 0.23319
 0.0016197
 296.22
 347.23
 1.8372
 56.32
 84.79
 1017.9
 -833.57
 -3139.1
 8739.4
 -9567.8
 5383.7
 -1535
 175.61

*********** Post-Disruption System Behavior Prediction Report *************

Following time averaged utilizations of each machine stations are
approximated as a part of post-disruption system behavior.

**The expected final time averaged utilization for Machine#1 is 0.44885
**The expected final time averaged utilization for Machine#6 is 0.22148
**The expected final time averaged utilization for Machine#2 is 0.35227
**The expected final time averaged utilization for Machine#5 is 0.10633
**The expected final time averaged utilization for Machine#3 is 0.10795
**The expected final time averaged utilization for Machine#7 is 0.86862
**The expected final time averaged utilization for Machine#9 is 0.54445
**The expected final time averaged utilization for Machine#12 is 0.24624
**The expected final time averaged utilization for AGV is 0.89735
**The expected final time averaged utilization for Fixture is 0.93568
**The expected disruption impact delay in terms of # of parts/independent TIS observations is 37
 parts/observations from the moment of disruption hit.
**Only one TIS observation on each departing part is allowed.

If there was no performance disruption,
the approximated steady-state mean time-in-system would be 161.6357 minutes
with the approximated upper control limit of 166.8541 minutes and
with the approximated lower control limit of 156.4173 minutes.

Following 2nd order polynomial regression model is to forecast
the behavior of moving averaged (w=500) mean TIS (time-in-system) for first 297 parts
after the disruption delay of 37 parts.
An independent variable t is t-th part entering the system after the disruption impact delay.
An dependent variable y1 is an estimated mean total minutes spent in the system by t-th part
after
a period of impact delay elapses.
Values for t are 0, 1, 2,...297th part entering the system after the disruption impact delay.

y1 = 180.2144 + 0.23319t + 0.0016197t^2

 305

Following linear model is to forecast
the behavior of moving averaged (w=500) mean TIS (time-in-system) of parts
entering the system after first 334 parts from the moment of disruption hit
 but no later than 10000 minutes after the disruption hit.
An independent variable t is t-th part entering the system after the first 334 parts
 from the moment of disruption hit.
An dependent variable y2 is an estimated mean total minutes spent in the system by t-th part
after
a period of impact delay and non-linear trend.
Values for t are 0, 1, 2,...n th part entering the system after first 334 parts
following the disruption but their arrival time should less than 10,000 minutes
from the moment of disruption hit.
y2 = 347.2306 + 1.8372t

The mean sigma of TIS during the pre-disruption period is 56.3196 minutes
Following eighth order polynomial regression model is to
forecast the behavior of sigma of moving averaged (w=500) mean TIS of parts entering the
system during
10000 minutes from the moment of the disruption hit.
An independent variable t is t-th part entering the system after the impact delay of 37 parts.
An dependent variable y_sigma is an estimated mean sigma of TIS by t-th part after
a period of impact delay elapses.
Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n
in order to avoid a large scale magnitude disparity among coefficients in a polynomial
during the regression analysis.
(t=0 is the first departing part after the disruption impact delay of 37 parts)

y_sigma = 84.7898 + 1017.8832t + -833.567t^2 + -3139.0915t^3 + 8739.393t^4 + -9567.8327t^5
+ 5383.7241t^6 + -1534.9745t^7 + 175.6123t^8

>>

 306

Appendix C

 307

C.1 Input Vectors for Post-disruption Type 1 ANNs,
Net_2_1_1, Net_2_1_2, and Net_2_1_3, from the second

level

 308 308

 309 309

 310 310

 311 311

 312 312

 313 313

 314 314

 315 315

 316 316

 317 317

 318 318

 319 319

 320 320

 321 321

 322 322

 323 323

 324 324

 325 325

 326 326

 327 327

 328 328

 329 329

 330 330

 331

 332

C.2 Input Vectors for Post-disruption Type 2 ANNs,
Net_2_2_1, Net_2_2_2, and Net_2_2_3, from the second

level

 333 333

 334 334

 335 335

 336 336

 337 337

 338 338

 339 339

 340 340

 341 341

 342 342

 343 343

 344

 345

C.3 Input Vectors for Post-disruption Type 3 ANNs,
Net_2_3_1 and Net_2_3_2, from the second level

 346 346

 347 347

 348 348

 349 349

 350 350

 351 351

 352 352

 353 353

 354 354

 355 355

 356 356

 357 357

 358 358

 359 359

 360 360

 361 361

 362 362

 363 363

 364 364

 365 365

 366 366

 367 367

 368 368

 369 369

 370 370

 371 371

 372 372

 373 373

 374 374

 375 375

 376 376

 377 377

 378 378

 379 379

 380 380

 381 381

 382 382

 383 383

 384 384

 385 385

 386 386

 387

 388 388

 389 389

 390 390

 391 391

 392 392

 393 393

 394 394

 395 395

 396 396

 397 397

 398 398

 399 399

 400 400

 401 401

 402 402

 403 403

 404 404

 405

 406

C.4 Output Vectors for Net_1_1

 407

 408

 409

 410

 411

 412

 413

 414

 415

 416

 417

 418

 419

 420

 421

C.5 Output Vectors for Net_2_1_1

 422

 423

 424

 425

 426

C.6 Output Vectors for Net_2_1_2

 427

 428

 429

C.7 Output Vectors for Net_2_1_3

 430

 431

 432

 433

 434

C.8 Output Vectors for Net_2_2_1

 435

 436

 437

C.9 Output Vectors for Net_2_2_2

 438

 439

 440

C.10 Output Vectors for Net_2_2_3

 441

 442

 443

C.11 Output Vectors for Net_2_3_1

 444

 445

 446

 447

 448

 449

 450

 451

 452

 453

 454

C.12 Output Vectors for Net_2_3_2

 455

 456

 457

 458

 459

 460

 461

 462

 463

 464

 465

 466

 467

Appendix D

 468

Training, Testing & Validation Plots for ANN_1_1

10
0

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 0.219501 Tes t S S E = 0.114293 Validation S S E = 0.148303

10
0

10
2

10
4

S
S

W

S quared Weights = 5028.52

0 10 20 30 40 50 60 70 80 90 100

20
40
60
80

100

100 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 49.8387

Approximations of First Element in Output Vectors

 469

 Training, Testing & Validation Plots for ANN_2_1_1

10
0

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 0.238745 Tes t S S E = 0.114877 Validation S S E = 0.127744

10
0

10
1

10
2

S
S

W

S quared Weights = 12.6073

0 5 10 15 20 25 30 35

50

100

150

200

39 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 97.855

Approximations of First Element in Output Vectors

 470

Training, Testing & Validation Plots for ANN_2_1_2

10
0

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 1.32317 Tes t S S E = 0.670347 Validation S S E = 0.71562

10
0

10
1

10
2

S
S

W

S quared Weights = 32.5658

0 5 10 15 20 25 30 35 40

50

100

150

200

41 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 83.1021

Approximations of First Element in Output Vectors

 471

Training, Testing & Validation Plots for ANN_2_1_3

10
0

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 0.487682 Tes t S S E = 0.246372 Validation S S E = 0.265489

10
0

10
1

10
2

S
S

W

S quared Weights = 46.568

0 10 20 30 40 50 60 70 80 90 100
50

100

150

200

100 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 97.764

Approximations of First Element in Output Vectors

 472

 Training, Testing & Validation Plots for ANN_2_2_1

100

102

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Tra ining S S E = 3.61495 Tes t S S E = 1.93988 Validation S S E = 1.80113

100

102

S
S

W

S quared Weights = 12.1543

0 2 4 6 8 10 12 14 16
20
40
60
80

100
120

17 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 48.5305

Approximations of First Element in Output Vectors

 473

Training, Testing & Validation Plots for ANN_2_2_2

100

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 1.75279 Tes t S S E = 0.968875 Validation S S E = 0.931073

10
0

10
1

102

S
S

W

S quared Weights = 14.9561

0 5 10 15 20 25
20
40
60
80

100
120

25 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 49.9121

Approximations of First Element in Output Vectors

 474

 Training, Testing & Validation Plots for ANN_2_2_3

10
0

10
2

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 12.6639 Tes t S S E = 7.21036 Validation S S E = 7.18153

10
0

10
1

10
2

S
S

W

S quared Weights = 12.3447

0 10 20 30 40 50 60 70
20
40
60
80

100
120

74 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 46.3215

 Approximations of First Element in Output Vectors

 475

Training, Testing & Validation Plots for ANN_2_3_1

10
0

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 0.0245369 Tes t S S E = 0.0129975 Validation S S E = 0.012858

10
0

10
2

S
S

W

S quared Weights = 142.446

0 10 20 30 40 50 60 70 80 90 100

100

200

300

100 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 227.509

Approximations of First Element in Output Vectors

 476

 Training, Testing & Validation Plots for ANN_2_3_2

10
0

Tr
-B

lu
e

 V
al

-G
re

en
 T

st
-R

ed

Training S S E = 1.2514 Tes t S S E = 0.64311 Validation S S E = 0.637873

10
0

10
2

S
S

W

S quared Weights = 260.684

0 10 20 30 40 50 60 70 80 90 100

100

200

300

100 Epochs

P

ar
am

et
er

s

Effective Number of P arameters = 220.841

Approximations of First Element in Output Vectors

 477

Appendix E

 478

 479

 480

 481

 482

 483

 484

 485

 486

 487

Appendix F

 488

Additional definitions and descriptions of evaluative models

Queueing Network:

In general, queueing networks can be formed to study aggregate system behaviors

of clustered interactive queues, often “a machine shop” consisting of several departments

[Jackson 1957]. Each department is considered a multi-server or single-server queueing

system (or a node within a queueing network) with an exponential service time

distribution(s) and a single waiting line. Typically, each department is connected to other

departments in a way in which finished jobs can be sent out either to designated

department(s) based on the given set of routing probabilities or outside the shop.

Similarly, new jobs can arrive either from outside the shop or from other department(s)

within the shop according to the probability associated with the particular incoming route

to the department. A simplified QN to illustrate possible paths for a part within a

network is shown in Figure 43.

The total arrival rate to any given department can be calculated by summing its

external (from outside the QN) and internal (from other departments within the QN) job

arrival rates. If we let be the total arrival rate of parts (customers) at Department

for 1, 2, 3, …,

mΓ m

=m M (=M the total number of departments in the network), then the

traffic equation for node m is given by

kkmkmm P Γ+=Γ ∑λ .

 489

Where

:mλ external arrival rate to Department and m

:kmP routing probability from Department k to Department . m

1λ

1

12P

2λ 2

3

21P
23P

13P

3λ

i

iλ

ijP

M/M/1 or M/M/c queue
node i

external arrival rate at the
queue node i

routing probability from
node i to node j

split/merge junction point

Figure 43. Open Queueing Network

The steady-state performance indices, such as mean waiting time in the queue and

average number in the system, for each queue can be individually determined using the

total arrival rate. The final product form probability distribution, called the equilibrium

joint probability distribution, for the QN can be found as follows using steady-state

probabilities of individual queues with a specific number of parts or pallets.

M
kkkM M

PPPkkkP LK
21

21 21
),,,(=

 490

where

⎩
⎨
⎧

Γ
Γ

=
− mnk

mm
k

mm
m

k
mm

m
m

k nnP
kPP

)(!)(
,!)(

0

0

µ
µ

),,(
),,1,0(

1 L

L

+=
=

mm

m

nnk
nk

 and

m
kP : steady-state probability of having exactly k number of parts (or customers) at the

queue node m .

The final steady state joint probability can be expressed as

∏
=

=
m

i

k
im

i

nC
kkk

0
10)(

1),...,,(ρπ number of parts (pallets) at th node :ik i

where

 =iρ ;
i

i

µ
υ

 mi ,...,1,0=

 total number of nodes :m

 :iυ average number of visits to i th node

 :iµ mean service rate at th node i

 :iρ utilization of th node i

 and the normalization constant is given by)(nC

 where ∑∏
=

=
nall

m

i

k
i

inC
 0

)(ρ =n all the feasible states.

 491

Markov Chain:

Discrete time Markov chains (DTMCs): for a given discrete time stochastic

process (DTSP) , there exists a countable state space that can be

expressed as where represents a possible state of a discrete system at

discrete time . If a stochastic process satisfies the following condition, often called the

Markov Property:

},1,0,{ K=nX n

},,,,,{ 110 jiiii n−K nX

n

for all and all states , 0≥n jiiii n ,,,,, 110 −K

}/{},,,,/{ 11111001 iXjXPiXiXiXiXjXP nnnnnn ======== +−−+ K

where can be considered the present state and n

 can be considered the future state, 1+n

then it is called a discrete time Markov chain (DTMC).

Continuous time Markov chains (CTMCs): for a given continuous time stochastic

process (CTSP), there exists a state space similar to those of DTSP, which can be

expressed as where represents a possible state of a discrete system at

continuous time . A stochastic process is then called a continuous time Markov

chain (CTMC) if it satisfies the following condition, often called the memoryless

property:

}0),({ ≥ttX)(tX

0≥t

for all , , , and 0≥s 0≥u 0≥t Suxji ∈)(,, ,

)()(,)(/)({ uxuXisXjstXP ===+ for })(/)({}0 isXjstXPsu ==+=≤≤ .

 492

If we let be the transition probability from state i to state , the time

reversibility of the CTMC can be expressed as

ijp j

jijiji qq ππ = where iπ is the stationary

probability of state , i
i

ij
ij m

p
q = for all states i and . Also note that is the mean

sojourn time of state i and so (will be the rate at which the CTMC leaves state i .

j im

)im/1

The most important underlying theoretical grounds for queueing models are birth

and death processes that are based on CTMCs. The state space for such CTMCs consists

of a number of customers in the system and transitions between states are limited only to

immediate neighboring states based on time independent arrival and service rates.

According to Viswanadham and Narahari [1992], if a finite and irreducible birth and

death process always satisfies the following two conditions,

(1) ∑ ∞=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

j j

j
j

1

1

10

µµ
λλ

λ
K

K
 and (2) ∞<∑ −

j j

j

µµ
λλ

K

K

1

10 ,

then it is positive recurrent. Hence a unique steady-state probability distribution is

guaranteed. Therefore, we can confirm that queueing theory captures steady-state

behaviors of CTMCs.

The bases for CTMC analysis are the Chapman-Kolmogorov equations and the

Kolmogorov differential equations. If we let and s t be time parameters for all and 0≥s

 493

t 0≥ , the stationary (homogeneous CTMC) transition probability from state i to state

in time can be written as j st +

 ,)()()(
0

sptpstp kj
k

ikij ∑
∞

=

=+)()()(sptpstp =+ ;

Ip =)0(,

which are called Chapman-Kolmogorov equations. The Kolmogorov differential

equations consist of forward and backward equations. The Kolmogorov backward

equations can be written as:

);()(tQH
dt

tdH
= IH =)0(

where is a transition probability matrix such that)(tH

[])()(tptH ij= ,

Q is the rate or intensity matrix. The above equation can be rewritten in terms of

individual elements of transition probability matrix as:)(tH

)()(
)(

tpqtpq
dt

tdp
kj

ik
ikijii

ij ∑
≠

+=

where the transition probability from state i to state in time can be expressed as j t

})0()({)(iXjtXPtpij === .

The Kolmogorov forward equations can be given as:

;)()(QtH
dt

tdH
= . IH =)0(

Similarly these equations can be written in terms of individual elements of as:)(tH

)()(
)(

tpqtpq
dt

tdp

jk
ikkjijjj

ij ∑
≠

+= .

 494

Solving either the Kolmogorov backward or forward differential equations, first

order linear differential equations with constant coefficients, provides a closed form

solution

)exp()(QttH =

or

)exp()0()(Qtt ∏=∏

where

[])()()()()(210 tptptptpt NL=∏

{ }jtXPtp j ==)()(

to approximate individual transition probabilities or the state probabilities as a function of

time [Viswanadham and Narahari 1992].

Unbiased Estimators of the Sample Mean:

An unbiased estimator of the sample mean θ over a simulation time interval : []ET,0

If we let be a sample mean for each replication rθ̂ r

where ∑
=

=
rn

i
ri

r
r Y

n 1

1θ̂ , Rr ,,1K= ,

:R the total number of simulation run ,

:rn the sample size per each replication r ,

 495

then R sample means become statistically independent and identically

distributed and an unbiased estimators of the sample mean

Rθθ ˆ,,1̂ K

θ over a simulation time

interval [such that]ET,0

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

i
iY

n
E

1

1θ where

terminating simulation results in observations ni YYY ,,1 K= .

Petri Nets:

A pictorial example of a Petri net is shown in Figure 44. The net in Figure 44

consists of five places (circles), four transitions (horizontal bars), one token (black dot)

and ten directed arcs (arrows) connecting places and transitions. In this net, is an

input place of transition . A black dot inside indicates that the precondition is

satisfied at present state. Places and are output places of transition . At the

same time place is also an input place of transition and place is also an input

place of transition . In a similar manner, all places in this net are input places as well

as output places to their corresponding transitions that are directly connected by either

incoming or outgoing arcs. Later, for the modeling convenience, the connecting rule

between a place and a transition has been extended to permit a place to use more than one

arc directed from it or toward it so that it can contribute or receive more than one token

from the firing of a transition. These types of PTNs are often called generalized Petri

1p

1t 1p 1p

2p 3p 1t

2p 2t 3p

3t

 496

nets (GPNs). To incorporate the priority rule among enabled transitions, inhibitor arcs

are introduced [Peterson 1977].

p1

p3p 2

p 4 p5

t4

t1

t3t 2

Figure 44. Example of graphical representation of a Petri net

[Zurawski and Zhou 1994].

Formal definitions in classical Petri nets are given as follows [Zurawski and Zhou

1994]:

Definition: If we let N be a set of nonnegative integers, a Petri net is a five-tuple

(P, T, I, O, M0) where

 497

1. is a finite set of places, },,,,{ 321 mppppP K=

2. is a finite set of transitions, },,,,{ 321 nttttT K=

 φ≠TP U , and φ=TP I ,

3. I : (TP ×) N is an input function that defines directed arcs from places

to transitions,

→

4. O : () → N is an output function that defines directed arcs from

transitions to places, and

TP ×

5. M0 : → N is the initial marking. P

A unique distribution of tokens among places or on a given place can be

expressed as a marking M . The initial marking, , denotes the initial placement of

tokens upon all places at time 0.

0M

Enabling Rule: A transition is said to be enabled in a marking jt M if each input

place of contains at least the number of tokens equal to the weight (multiplicity

factor permitting k arcs to exist between a place and a transition) of the directed arc

connecting to , which can be symbolically expressed as

ip jt

ip jt

),()(jii tpIpM ≥ where)(ji tIPp ∈∀

:{)(PptIP ij ∈= }0),(≠ji tpI (is the set of input places of).)(jtIP jt

Firing Rule: A firing of an enabled transition in a marking jt M removes the

number of tokens equal to the weight of the directed arc connecting to from each ip jt

 498

input place . At the same time, a firing deposits in each output place the number of

tokens equal to the weight of the directed are connecting to , which implies that a

new marking

ip ip

jt ip

M ′ has been reached. This can be symbolically represented as

),(),()()(jijiii tpItpOpMpM −+=′ Ppi ∈∀ where

)(ipM =
⎩
⎨
⎧
0
1

 for),(in tokensofnumber theif
for),(in tokensofnumber theif

1

1

TttpIp
TttpIp

jjii

jjii

∈∀≠
∈∀=

∑
∑ .

and such that TT ⊂1 }.0),(,every for |{ 11 ≠∈= jijj tpITttT

If the above expression is true, then we can say that a new marking M ′ is

reachable from the present marking M and write . MM jt ′⎯→⎯

The transitive closure of the reachability relation, which comprises all markings

reachable from the initial marking by firing one or more transitions, is called the

reachability set of a Petri net within initial marking . This can be expressed as

. An example of a reachability set for a given Petri net with initial marking is

illustrated in Figure 45.

0M

0M

)(0MR 0M

A PTN is said to be pure or self-loop free if no place is an output place and an

input place for the same transition. A pure net can be completely defined by its

incidence matrix. An incident matrix is defined by an mn× matrix, , whose th

element, is equal to 0 if no arc exists between place and transition ; is equal to

if an input arc with multiplicity factor k exists between place and transition ; is

equal to if an output arc with multiplicity factor exists between place and

C ij

ijc ip jt

k− ip jt

k+ k ip

 499

transition . For example, an appropriate jt)45(× incident matrix, , for the PTN from

Figure 44 can be given by

C

 4321 tttt

5

4

3

2

1

p
p
p
p
p

C

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

=

1100
1010

0101
0011
1001

Through this given incident matrix we can verify the net given in Figure 44 to be pure.

M0=[10000]T

M1=[01100]T

M2=[00110]T M3=[01001]T

M4=[00011]T

t1

t2 t3

t3 t2

t4

T
ni pMpMpMM)](,),(),([21 K=

where i is the number of unique marking
takes on value 0, 1,…, m when m is the total
number of unique markings and n is the total
number of places.

e.g.)
TM]10000[0 =

 Figure 45. Reachability tree of the model in Figure 44

 500

A place in a marked Petri net is said to be bounded if and only if there exists a

positive integer such that the place never simultaneously contains more than tokens

throughout all markings contained in the nets reachability set. If

k

k k

1=k for a single place,

that particular place can be said to be safe but if it is true for all the places then the PTN

itself is said to be safe. Boundedness refers to a finite requirement of resources and infers

absence of overflows in buffers. Boundedness also implies a finite reachability set. This

is an important requirement for conducting performance analysis using PN models.

Place Invariants of a Petri Net:

Finding a valid incident matrix is an essential part of P-invariant analysis that is

helpful for establishing net properties, such as boundness, liveness, and conservativeness.

Place invariants, often called P-Invariants, can be defined as follows:

Definition : If we let G be a pure Petri net, C the incident matrix of and the

number of places, a row-vector is said to be a place invariant (P-invariant) of G

if and only if

G n

)1(n× x

φ=⋅Cx where zero =φ row-vector.

If is a P-invariant for all reachable markings with the weights given by the

place invariant, the weighted sum of tokens within the places is a constant such that

x

∑
=

=
n

i
ii kpMx

1
)(

 501

where is a constant, , and k],,[21 nxxx K=x =n the total number of places in Petri net

. G

Conservativeness of a Petri Net:

A conservative PTN means that the number of tokens in the net is conserved.

This implies that each transition in a conservative net is conservative so that the number

of inputs of each enabled transition is equal to the number of outputs of that transition.

To prove a Petri net to be conservative, finding a P-invariant all of whose

entries are equal to unity can be used such that

),,,(OITPG ≡

 for all ∑
=

=
n

j
j kpM

1

)(][0MRM ∈

where constant. Also finding P-invariants can be useful to verify if a given Petri net

 is bounded. If there exists a place invariant where all of its n entries

are strictly positive then Petri net G can be said to be bounded.

=k

),,,(OITPG ≡ x

Liveness of a Petri Net:

A formal definition for liveness of a Petri net as well as its transitions can be

given as follows [Viswanadham and Narahari 1992]:

Definition: A transition of a marked Petri net is said to be live under a marking

 if, for all markings there exists a sequence of transition firings which

jt

0M],[0MRM ∈

 502

results in a marking that enables . A Petri net is said to be live if all its transactions are

live.

jt

 If a Petri net is live, it indicates that the entire net is free of deadlock. On the

contrary, if there is at least one transition that is not live, it implies that there might be a

chance for a possible deadlock for the system going through a corresponding sequence of

transition firings.

p1

p3p2

p4 p5

t4

t1

t3t2

Immediate Transition

Exponential Transition

Figure 46. GSPN model of Figure 44 with given exponential

and immediate transition times

 503

Figure 47 shows an equivalent CTMC model for the GSPN model given in Figure

46 which has an identical PN model to that of Figure 44 with the addition of arbitrary

exponentially distributed time delays.

M1=[01100]T

M2=[00110]T

10

1

µµ
µ
+10

0

µµ
µ
+

M3=[01001]T

1 1

M0=[10000]T

M1=[01100]T

M2=[00110]T M3=[01001]T

M4=[00011]T

t1

t2 t3

t3 t2

t4

M2=[00110]T M3=[01001]TM3=[01001]T

M1=[01100]T

Reduced Embedded Markov chain for the GSPN model of Figure 5

Reachability Tree with initial marking (10000) containing
Embedded Markov chain of Figure 5

Given Firing Rates
 t2:
 t3:

0µ
1µ

Figure 47. Finding an equivalent CTMC for GSPN model given in Figure 46

 504

Stochastic Petri Net:

According to Viswanadham [1992], the formal definition of SPN can be given as

follows:

Definition: An SPN is a sex-tuple () in which (is a Petri

net and is a function with domain (

FMOITP ,,,,, 0),,,, 0MOITP

F)][0 TMR × , which associates with each transition

in each reachable marking, a random variable. The function is the firing function and

the random variable for

F

),(tMF][0MRM ∈ and Tt∈ is the firing time of transition t

in the marking M . Hence the firing time of a transition in an SPN is in general marking

dependent. In an SPN, when is enabled in M, the tokens remain in the input places of

, , during the time of . At the end of the time , tokens are

removed from the input places of t , and deposited in the output places of ,

t

t)(tIP),(tMF),(tMF

)(tIP t).(tOP

Colored Petri Net:

The formal definition of CPNs can be given as follows:

Definition: if we let N and Z be nonempty sets and and be the sets of

colors attached to

)(pC)(tC

p and respectively, A colored Petri net is a 5-tuple

CPN , where

t

),,,,(0mWCTP=

 505

1. is a finite set of places, },,,,{ 321 mppppP K=

2. is a finite set of transitions, },,,,{ 321 nttttT K=

3. ,φ=∩TP φ≠∪TP ,

4. is the color-function defined from into nonempty sets, C TP ∪

5. is the incident-function defined on W TP × such that

 for all

∈),(tpW

]])([)([fpCtC Z→→ ,),(TPtp ×∈

6. , the initial marking, is a function defined on , such that

 for all

0m P

fpCpm])([)(N→∈ .Pp∈

The definitions of liveness, boundness, P-invariants and other properties in CPNs

are similar to that in PTNs. However, invariant computation is somewhat complicated

since the elements of the incident matrix are functions rather than integers. The clear

advantage of using CPN over PTN is its compactness of the model as we can see from a

comparative pictorial, Figure 48.

 506

P1

t2 t3t1

P2

TAIL

PUT

EMPTY FREE

MOVE ID

HEAD

GET

J J

S

E

Equivalent CPN model of the FCFS
queueing Discipline within multiple Job

classes [Kamath and Viswanadham, 1986]

An ordinary PN model of the
FCFS Queueing Discipline with

two job classes

p3

p2

p1

p4

t1 t2 t3

t4

t6 t7 t8

t5

The Given CPN Model

Places: P1 : buffer places free; P2 : buffer places full;
Transitions: t1 : add a job to the buffer; t2 : move a job
one place ahead in the queue and free the place which
was occupied by it; t3 : remove a job from the buffer
Color sets: E : {ek | k=1,2,..., n}; a token of color e k
indicates that the kth place in the buffer is empty
J : {j i | i=1, 2,, p}; a set of job classes
Q : {<j i, ek> | i=1, 2,, p; k=2,, n}; a token of color
<ji, ek> represents a situation in which a job belonging to
class ji is occupying the kth place in the buffer
S : Q U {<j i, ek> | i= 1, 2, ..., p}; similar to the set Q; in
addition to the elements of the set Q, the set S also
contains the details of the job occupying the first place in
the buffer
Color Functions :

HEAD(ji)=e1; TAIL(j i)=en;
PUT(j i)=<ji, en>; GET(j i)=<ji, e1>;
ID(<j i, ek>)=k; FREE(<j i, ek>)=ek;
EMPTY(<j i, ek>)=ek-1; MOVE(<j i, ek>)=<ji, ek-1>

For a given ordinary PN

Places : P1: buffer places free for a type 1 job
 P2: buffer places full by a type 1 job
 P3: buffer places free for a type 2 job
 P4: buffer places free by a type 2 job

Transitions : t1: add a type 1 job to the buffer
 t2: move a type 1 job one place

 ahead in the queue and free the
 place which was occupied by it

 t3: remove a type 1 job from the
 buffer

 t4: Enter a type 1 job as a next job
 t5: Enter a type 2 job as a next job
 t6: add a type 2 job to the buffer
 t7: move a type 2 job one place

 ahead in the queue and free the
 place which was occupied by it

 t8: remove a type 2 job from the
 buffer

Figure 48. A conversion from an ordinary PN of the FCFS queueing discipline

with two job classes to an equivalent CPN

VITA

Augustine Jongik Kwon

Candidate for the Degree of

Doctor of Philosophy

Thesis: INVESTIGATION OF A NEURAL NETWORK METHODOLOGY TO
PREDICT TRANSIENT PERFORMANCE IN FMS

Major Field: Industrial Engineering

Biographical:

Education: Graduated from Hansung High School, Seoul, Korea in March 1984;
received Bachelor of Science degree in Computer Science from University
of Missouri-Rolla, Rolla, Missouri in December 1989; received Master of
Science degree in Engineering Management from University of Missouri-
Rolla, Rolla, Missouri in December 1991. Completed the requirements for
the Doctor of Philosophy degree with a major in Industrial Engineering at
Oklahoma State University in May 2005.

Experience: Employed by Oklahoma State University, School of Industrial

Engineering and Management as a graduate research assistant from 1995 to
1999. Employed by Small Business Innovation Research Engineering
(SBIRE), Inc in Drumright, Oklahoma as an Internal Research and
Development Unit Manager from 1999 to 2002. Employed by Knowledge
Base Engineering, Inc. in Dayton, Ohio as a senior systems engineer, 2002
to present.

Professional Membership: Alpha Pi Mu (Industrial Engineering Honor Society)

	Title/Cover Page
	THESIS APPROVAL
	ACKNOWLEGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. Introduction
	1.1 Motivation of the Research
	1.1.1 Growing Usage of FMS
	1.1.2 Known Integration and Performance Modeling Issues with
	1.1.3 Importance of Performance Predictor in On-line Control
	1.1.4 Simulation Modeling versus Metamodeling
	1.1.5 Artificial Neural Network Based Metamodeling vs. Regre

	1.2 Problem Statement
	1.3 Scope of the Research
	1.4 Anticipated Contributions
	1.5 Overview of the Dissertation

	2. Literature Review
	2.1 Queueing Network Approaches
	2.1.1 Summary of Major Developments
	2.1.2 Conclusion

	2.2 Markov Chain Models
	2.2.1 Summary of Major developments
	2.2.2 Conclusion

	2.3 Simulation Modeling
	2.3.1 Summary of Major Developments
	2.3.2 Conclusion

	2.4 Stochastic Petri Nets
	2.4.1 Summary of Major Developments
	2.4.2 Conclusion

	2.5 Summary

	3. Problem Settings and Systems Description
	3.1 FMS
	3.1.1 System Description
	3.1.2 Parts

	3.2 Time Series Analysis
	3.3 Artificial Neural Networks
	3.3.1 Background
	3.3.2 Multilayer Neural Network Architecture and Training Methods
	3.3.3 Proposed Neural Network based metamodeling framework

	4. Statement of Research
	4.1 Research Goal
	4.2 Research Objectives
	4.3 Assumptions and limitations
	4.4 Summary

	5. Research Methodology
	5.1 Research Tasks
	5.2 Simulation Based Disruption Scenarios
	5.3 Summary

	6. Problem Development – Pilot Experiments
	6.1 Development of a Computer Simulation Model
	6.2 Initial Experiments and Findings
	6.3 Initial Simulation Experiment Sets and Data Processing P
	6.4 Post Disruption Behavior Pattern Classification
	6.5 Identification of Input and Output Vectors
	Description
	Example
	Description
	Example
	Description
	Example
	Description
	Example
	Description
	Example
	Description
	Example

	6.6 Summary

	7. Experimental Results
	7.1 Construction and training of Individual ANNs
	7.2 Expansion of the Initial Experiment Size
	7.3 Performance Evaluation of Proposed Modeling Scheme
	7.4 Summary

	8. Summary and Conclusions
	8.1 Overview of Research Objectives and Accomplishments
	8.2 The major contributions of this research
	8.3 The Strength and Weakness of the Proposed Modeling Appro
	8.4 Future Research Directions and Opportunities
	8.5 Summary

	Bibliography
	Appendix A
	Extended Design of Experiments

	Appendix B
	B.1 MATLAB Source Code for Training Individual ANNs
	B.2 Transient Behavior Prediction User Interface in MATLAB

	Appendix C
	C.1 Input Vectors for Post-disruption Type 1 ANNs, Net_2_1_
	C.2 Input Vectors for Post-disruption Type 2 ANNs, Net_2_2_
	C.3 Input Vectors for Post-disruption Type 3 ANNs, Net_2_3_
	C.4 Output Vectors for Net_1_1
	C.5 Output Vectors for Net_2_1_1
	C.6 Output Vectors for Net_2_1_2
	C.7 Output Vectors for Net_2_1_3
	C.8 Output Vectors for Net_2_2_1
	C.9 Output Vectors for Net_2_2_2
	C.10 Output Vectors for Net_2_2_3
	C.11 Output Vectors for Net_2_3_1
	C.12 Output Vectors for Net_2_3_2

	Appendix D
	Appendix E
	Appendix F
	VITA

