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1. Introduction 
 
 
 

1.1 Motivation of the Research 
 
 
 
 In most scientific domains, it is a common practice to build physical or 

mathematical models to study a system of interest.  These models are frequently defined 

to be a collection of entities (components).  These entities act and interact together 

toward the accomplishment of some logical end [Schmidt and Taylor 1970].  Often, these 

physical or mathematical models are simplified forms (abstractions) of real systems 

because it is only necessary to consider those aspects of the system that affect the system 

behavior under investigation [Banks et al. 1996].  Studying a system model normally 

provides an opportunity to better understand the relationships among its components or to 

predict how the system will operate under new policies or new operational conditions 

[Law and Kelton 1991]. 

 

 In practice, for many real world systems, building a physical model is often too 

costly and impractical due to complexity and lengthy development time.  Especially 

when models for the system require a full-scale level of detail, the cost can be prohibitive 

based on the nature of the system.  For this reason, mathematical models are often 

preferred in many fields to study characteristics or behaviors of the system under given 

conditions. 
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System models can be classified into two broad categories based on their use.  

The first type is an evaluative model.  An evaluative model can be used to study a 

particular system behavior(s) under a set of given configurations and operational 

parameters. The second type is a generative model. Generative models are built to find a 

set of optimal decision parameters that can satisfy operational or design objective(s) for 

the system under given constraints.  Evaluative models are designed to provide 

performance predictions that are essential during the design and operational stages of a 

system.  On the other hand, generative models are extensively used for performance 

optimization in various operations research (OR) type studies.  

 

Reliable performance prediction for manufacturing systems has been the focus of 

many industrial and academic research communities. Reliable but easy-to-develop and 

easy-to-use evaluative models for both design and operation are crucial for operational 

success. Most evaluative models have focused on long-term steady-state system 

behaviors rather than short-term transitory behaviors.  For this reason, it is not ideal to 

use them to forecast often volatile transitional short-term behaviors following events that 

cause disruptions of the steady-state behavior of a system performance indicator.  

Examples of unexpected events that can cause system disruptions are machine failures, 

rush orders, and changes in product mix due to part or material shortages. 

 

With the advent of more powerful computer and information technologies, 

interest in industrial application of on-line decision-making has intensified in recent 

years.  In the area of highly automated production and process controls, on-line decision-
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making and its associated issues have become prominent research topics.  Especially in 

the area of flexible manufacturing system control, conveying a realistic view of 

upcoming short-term behavior of the system is vital to building effective control policies 

to minimize unwanted performance deviation following an unexpected system 

disruption(s). 

 
 

1.1.1 Growing Usage of FMS  
 

 
The most common challenge faced by manufacturers around the world today is to 

adapt themselves to a rapidly changing operational environment.  The demand for highly 

customized products is on the rise and today’s fierce competition in low-cost precision 

manufacturing is unprecedented. Among many strategies available to deal with these 

challenges, one approach is to adopt and implement various forms of flexible 

manufacturing systems (FMSs) as a part of a strategic plan.   

 

There are many definitions of FMS available.  Even though they may have some 

difference in details, all seem to agree on common basic design fundamentals that can be 

found in the definition given by Groover [1987].   According to Groover [1987], an FMS 

is a fully automated system consisting of functionally similar or dissimilar automated 

workstations interconnected by means of an automated material handling system and 

storage system, and controlled by an integrated computer system.  The workstations are 

considered automated cells of computer numerical control (CNC) machines.  A similar 

term, flexible manufacturing cell (FMC), often used in place of FMS, can be defined as 

follows: a typical FMC comprises a few numerically control (NC) machines, tool 
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magazines, and one or more material handling robots [Narahari and Viswanadham 1989].  

According to Groover [1987], a distinction between FMS and FMC can be made based 

on the number of NC or CNC machines comprised within.  Therefore, an FMS can also 

be formed as a collection of several FMCs.  FMSs have various documented and 

publicized merits such as high adaptability to changes, flexibility in configurations and 

operations, improved product quality, short lead-time, and high utilization with a 

relatively low WIP [Groover 1987], [Vollmann et al. 1997].    

 

From a systems perspectives, finding an effective modeling tool for FMSs will 

likely make contributions to modeling other Discrete Event Dynamic Systems (DEDS) 

because the system dynamics observed in various FMSs are analogous to those that can 

be found in many DEDS.  In general, DEDS are large scale interconnected systems, 

driven by the occurrence of discrete events, where their dynamic behavior involves state 

changes only at discrete points in time [Ho et al.1984].   

 

Complex interactions are often present in the system behaviors of DEDS. 

Synchronization, concurrency, randomness, and contention for limited resources are 

common aspects of these interactions [Narahari and Viswanadham 1989].  DEDS can be 

found almost everywhere in today’s modern technological infrastructure.  According to 

Ho et al. [1984], examples of such systems encountered today are communication 

networks, computer systems, production/assembly lines, traffic systems, and 

transportation networks. Therefore, an effective modeling methodology for FMS 

transient behaviors may be applicable to these systems with some modifications. 
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1.1.2 Known Integration and Performance Modeling Issues with FMS 
 

Despite many publicized FMS merits, there are four well-documented limitations 

[Huang and Chen 1986] that keep FMSs from being more widely applied in industry.  

These limitations are: 

1. high initial costs, 

2. long implementation lead time, 

3. uncertainty of a successful FMS interface with the current production system,  

and 

4. control software customization issues based on uniqueness of each installation  

site. 

All of the above limitations except the third, uncertainty of a successful FMS integration, 

can be naturally resolved as time progresses with little commitment from those who 

actually operate FMSs on a day-to-day basis. For example, the continuous market growth 

in FMS installation and ongoing technological innovation will lower the high cost of 

precision machine tool manufacturing.  Thus, FMSs will eventually become an affordable 

form of automation even to manufacturers without great financial strength.  To overcome 

the uncertainty of successful FMS interface with the current production system, 

tremendous effort is required from both FMS designers and operators no matter how 

advanced the supporting technology becomes in the future. Without these efforts, the full 

potential of FMS may not be realized. 
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The concept of FMSs can be used within the context of manufacturing cells.  

Individual cells consist of several workcenters that can carry out similar or dissimilar 

manufacturing functions.  Lin and Chiu [1993] stress that understanding and being able to 

predict dynamic behavior as well as long term manufacturing cell performance is 

necessary to better coordinate production among cells.  Therefore, knowledge of transient 

performance behavior as well as steady-state behavior of individual cells can be vital to 

overcoming the third limitation in adopting FMS.  Another research effort points out that 

the studies done on interactions among FMS resources and impacts brought by random 

changes in operations are still insufficient [Basnet and Mize 1994].  Random changes 

during operation, such as resource breakdowns and rush orders, are normally responsible 

for unanticipated system interruptions.  

 

Traditional performance modeling approaches, such as analytical and simulation 

modeling, constantly rely on human intelligence and modeling skills to create and 

maintain effective evaluative power.  On a busy shop floor, especially for a highly 

utilized FMS, the ability to make instantaneous decision to effectively handle a wide 

range of critical disruptions using an effective short-term evaluative model can be highly 

beneficial.  For example, evaluative models based on steady-state performance can help 

an operator select a proper operational strategy in order to reach an optimal production 

level based on a long term production schedule.  On the other hand, an effective short-

term look head capability can help an operator choose a proper short term remedy to 

handle the day-to-day operational problems without compromising the long-term 
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performance goal.  However, due to its dependency on human intelligence and expertise, 

occasional off-line maintenance is required when there are significant changes to the 

system configurations and operation rules.  For example, adding new part type, AGV or 

machine center to the existing system requires redefining its state space in a Markov 

chain model.  Lacking self-maintainable modeling capability in a highly dynamic 

operational environment can sometimes result in a costly impact to the rest of production 

line. 

 

Utilizing transient analysis to measure impacts on a performance indicator 

following one or more disruptions will provide an FMS operator the opportunity to assess 

the situation and help him/her make the best operational choice so that the impact to the 

other parts of the production line can be minimized. The proper balancing between short-

term and long-term performance look-ahead capability through efficient evaluative 

models is one crucial key for seamless integration between FMSs and traditional 

production systems since the return on investment on an FMS is initially much lower than 

other forms of automation.  This is necessary to avoid creating another costly “automated 

island”.  As applications of FMSs continue to grow, successfully integrating FMSs with 

other types of production systems become more critical.  

 

1.1.3 Importance of Performance Predictor in On-line Controller 
 

The continuous improvement and new development of on-line as well as off-line 

production flow optimization schemes under different planning time horizons for a 
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dynamic system has been a primary focus for many FMS researchers. These schemes are 

developed using various operations research, mathematical programming, and artificial 

intelligence (AI) techniques with a well-constructed evaluative model.  

 

There are important distinctions between off-line flow and on-line production 

flow optimization schemes in typical shop floor control environments. Off-line schemes 

are typically used to perform planning, scheduling and routing functions through periodic 

interactions with a human supervisor.  On the other hand, on-line schemes are used by 

automatic control devices such as PLCs to continuously optimize hardware performance 

and to perform schedule and route changes due to resource failures, rush orders, and 

major deviations in the original production plans.  If the predetermined schedule is 

carried out as planned, on-line controllers are required only for the actual implementation 

of control procedures, such as downloading of CNC programs. In such cases, off-line 

schemes are used at predetermined time intervals and the resulting schedules are 

implemented.  

 

However, a perfect adherence to predefined schedules is almost never realized in 

practice due to exceptions known as disruptions or unexpected events that cause 

deviations of the shop floor behavior from the manager’s expectation [Katz and 

Manivannan 1993].  Katz and Manivannan [1993] acknowledge a great need for 

architecture to analyze complex patterns of on-line events caused by possible production 

disruptions. On-line simulation is proposed as one way to obtain information about 

foreseeable detailed behavior of the manufacturing system within a specified length of 
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time in which a control decision has to be made (also known as the control horizon).  

 

For on-line FMS control, devising fast and reliable evaluation models in a 

disruption handling architecture is crucial because most decision-making regarding 

unexpected on-line events takes place within a matter of seconds or minutes. Lin and 

Cochran [1990] state, “For shop floor control in real time, not only long term steady-state 

performance is important, short-term dynamic performance of the production line is of 

even greater interest, since many unexpected events can be vital.” 

 

The majority of analytical model developments for FMS operations are based on 

long-term system behaviors using steady-state analysis.  However, in reality most of 

these systems never reach steady state because of their highly dynamic operational nature 

[Buzacott and Yao 1986].  For people who operate FMSs on shop floors as a means to 

meet daily production goals, a comprehensive system model to depict realistic transient 

behaviors accompanied by possible, but unscheduled, disruptions is more meaningful to 

make control decision within a small time horizon.   

 

1.1.4 Simulation Modeling versus Metamodeling 
 

Simulation modeling is an evaluative technique to study a system of interest.  

Simulation is normally conducted by a digital computer numerically exercising a model 

for the inputs in question to see how they affect the output measures of performance 

[Law and Kelton 1991]. Often, a well-built simulation model provides realistic views of 
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system behaviors of interest. Thus, one can extensively study behaviors of a real world 

system without modifying an actual system for different baseline characteristics.  

Although most simulation models are simpler than the real world system they model, it is 

still a complex way to study systems behaviors because building a valid simulation model 

takes a considerable amount of expertise, effort, and time.  

 

The time and effort to build and validate such models, especially under time 

pressure, often leads users to switch to other forms of evaluative models, such as 

analytical models, or to choose a hybrid model that combines analytical and simulation 

models to avoid lengthy computation time. Metamodeling is a supplementary way to map 

target system input to corresponding output in simpler manner using simulation 

experimental design and mathematical techniques like regression analysis or time series 

analysis.  Well-built metamodels often provide the speed of analytical models with the 

fidelity of a carefully executed simulation study.  The usefulness of regression-based 

metamodels has been investigated in several studies [Friedman 1989], [Friedman and 

Pressman 1988], [Kleijnen 1979]. 

 

Typical metamodels are approximation formulas that map different combinations 

of input values to associated output values normally obtained through a full execution of 

a simulation experimental design. In most cases, non-terminating simulation is used for 

each run in the experimental design. A terminating simulation is one for that runs for 

some duration of time , where ET E  is a particular event (or set of events) which stops the 

simulation. On the contrary, non-terminating simulation is one for which there is no 
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particular event E  to specify the length of a run.  Typically, a performance measure for 

such a simulation is said to be a steady-state parameter if the output stochastic process of 

interest exhibits a steady-state (or near steady-state) distribution.   L,, 21 YY

 

Relying on the traditional terminating simulation method to investigate 

transitional behaviors of a manufacturing system can be expensive and often impractical 

for real time production control [Lin and Cochran 1990], [Lin and Cochran 1990], [Lin 

and Chiu 1993], [Lin et al. 1998].  Thus, constructing metamodels using stochastic 

discrete event simulation and mathematical formulation as an evaluative modeling tool to 

forecast possible transient behaviors of a complex-manufacturing system under various 

scenarios has been shown to be a highly effective and practical approach [Lin and Chiu 

1993]. 

 

1.1.5 Artificial Neural Network Based Metamodeling vs. Regression Based 
Metamodeling Approach 

 

Artificial neural networks are widely used in many fields as a prominent artificial 

intelligent tool when rapid computation, adaptability, and robustness are required 

[Padgett and Roppel 1992].  Typically, neural network applications require fewer 

assumptions and less accurate data to model unknown functions.  Using artificial neural 

networks as a non-parametric approximation methodology has been shown to be highly 

effective in the area of metamodeling compared to traditional regression type approaches 

[Kilmer 1994]. This is especially true, when the system contains a significant amount of 

the “noise” which is often present in many stochastically transitional systems [Kilmer 

 



  12 

1994].  The number of different types of artificial neural networks is almost unlimited 

based on different design architectures and their application areas.  Alternative design 

architectures are discussed more fully in Chapter 3. 

 

Regression analysis is the part of statistics that deals with investigation of the 

relationship between two or more variables related in a nondeterministic fashion.  

Regression models can be grouped into linear and non-linear regression models.  Non-

linear regression functions can have many different forms. A polynomial regression 

function is one common possible form.  If there is more than one independent variable 

related to dependent variables, the model is called a multiple regression model.   

 

In general, neural networks appear to perform better than ordinary regression 

techniques in statistical approximation of unknown functions [Kilmer 1994].  The 

implementation of most regression techniques depends on two critical statistical 

assumptions about the model errors. These assumptions are: 

1. errors must be independent, and 

2. errors must be normally distributed with a zero mean and a constant variance 

[Miller et al. 1990]. 

Nam and Schaefer [1995] identify three reasons to move away from a traditional 

regression approach in practical forecasting. First, even though the accuracy of regression 

models is not significantly compromised when there are small departures from these 

assumptions, the performance of the model can deteriorate when the assumptions are 

violated.  Such deviations from the assumptions can generally only be detected after the 
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construction of the model.  Second, past observations regarding the unknown function 

often contain complex patterns.  Third, there is no way of being certain that the choice of 

a given regression technique provides the best result. 

 

 Alternatively, neural networks can learn from experience, move to new 

generalizations from previous ones, and abstract essential characteristics from somewhat 

noisy and incomplete inputs [Wasserman 1989]. In addition, neural networks do not 

require the same assumptions about the underlying distribution, as do many regression 

techniques. Therefore, artificial neural networks can be an effective alternative to most 

regression type approaches. 

 

Lin and Cochran [1990] utilize time series regression analysis and stochastic 

simulation in their metamodels to predict transient behaviors of a flow shop system.  

Since their modeling scheme relies on the modeler’s ability to classify and synthesize 

various functional elements to make a proper time series model for a given unknown 

performance function, it is difficult to transform the scheme into an effective automated 

modeling framework.  Based on the pattern of the transitional behavior following a 

disruption(s), building a prediction model through ad hoc combinations of time series 

analysis and a linear equation with a particular part arrival or departure rate can be 

cumbersome. Compared to the traditional regression method, properly configured 

artificial neural networks can learn and capture any unknown functions with almost no 

human intervention. It has also been shown that artificial neural networks can effectively 

approximate behaviors of many non-linear dynamic systems with a relatively small error 
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[Narendra and Parthasarathy 1990]. 

 

Since the development of reliable and easy-to-use performance prediction tools 

for a control mechanism is essential for wide acceptance of FMS in industry, constructing 

metamodels using an efficient artificial neural network design will be a stepping stone to 

building a truly practical disruption handler in future FMS control environments.  

 
 

 
1.2 Problem Statement 

 
 

 
Thorough understanding of possible dynamic transient behaviors of a typical FMS 

under pre-selected disruption scenarios utilizing an artificial neural networks (ANN) 

based metamodeling framework is the motivation behind this research.  The need for this 

research is based on a proposition made by Buzacott and Yao [1986] who argue that in 

reality, most FMSs never reach steady state because of their highly dynamic nature. Most 

rapid analytical evaluative models for FMSs are based on their steady-state performance.  

This argument supports a need to develop robust, easy to construct, and transportable 

transient-performance evaluative models for FMSs. Thus, building hybrid type evaluative 

models (metamodels) using artificial neural networks and stochastic simulations, which 

can capture realistic but general transient behaviors of an FMS under a set of typical 

operational scenarios, will help shop floor managers to successfully manage day-to-day 

FMS operations in a tightly integrated manner.  

 

The primary objective of this research is to define an artificial neural network 
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(ANN) based metamodeling methodology for FMS transient behavior prediction.  The 

proposed ANN based meta-modeling scheme consists of a hierarchical taxonomy of 

clustered ANNs. Each cluster of ANNs collectively represents a different system 

knowledge domain.  This taxonomically structured arrangement of ANNs overcomes 

shortcomings often found in single ANN based meta-modeling schemes.  These 

shortcomings are generally related to the limited knowledge acquisition capability of 

these schemes.   

 

The advantage of neural network based prediction models lies in their capability 

to capture not only time based one-to-one expected performance but also an overall 

dynamic behavioral pattern of a particular performance index during a transition caused 

by a disruption.  The proposed ANN based transient performance model is designed to 

provide better knowledge for an automated disruption handler or FMS operator to 

discriminatorily react to controllable performance deteriorations.   The captured dynamic 

behavioral pattern of interest may show gradual or sudden shifting of the average 

performance value over a given time horizon, as well as an expected duration of such 

behavior.  This feature will provide a decision-maker with the capability of conducting 

intelligent disruption diagnosis for a discriminatory remedial control action(s) based on 

unique post-disruption system behavior.  This capability will enhance the adaptability of 

FMSs in a highly dynamic manufacturing environment with a minimal performance 

disruption by providing shop production control a “look-ahead” capability in order to 

make event-dependent and timely control decisions.  
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Defining an effective modeling framework to intelligently activate corresponding 

metamodels based on the nature of the disruption event and characteristics of behavioral 

patterns will be another contribution that makes this study practical in terms of real world 

application. Identifying and selecting significant operational factors as system input as 

well as performance indicators as meaningful system output, is done before the actual 

model construction process starts.  

 

Modeling an FMS with a common configuration and testing it under realistic 

operational scenarios are important tasks.  In return, these well-designed simulation 

experiments should closely capture common dynamic characteristics for the majority of 

FMSs that this research intends to represent.  This will assure that pursuing an ANN 

based transient metamodeling approach is a viable alternative to devise a short-term 

performance forecasting feature in on-line disruption handlers for many industries that 

operate similar types of FMSs in volatile day-to-day production environments. Needless 

to say, designing and conducting verifiable simulation experiments and proper post 

simulation analysis are essential for the success of this research effort. 

 
 
 
 

1.3 Scope of the Research 
 
 
 
 The goal of this research is to demonstrate that ANN based metamodel consisting 

of a hierarchical taxonomy of ANNs can be an effective modeling alternative to 

regression based metamodels to forecast FMS transient behaviors following a random 
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disruption event(s).  This research is proposed under the partially verified hypothesis that 

artificial neural network based metamodels of stochastic simulations generally appear to 

perform better than regression based counterparts [Kilmer 1994].  In Kilmer’s study 

[Kilmer 1994], ANN based metamodels are built to approximate an unknown response 

surface given by a set of alternative input parameters.  The procedure, often called 

response surface methods (RMS) [Box and Wilson 1951], is used to find the levels of the 

experimental factors that yield the best value of the response (or output) of a system.  

Such ANN based metamodels deal only with steady-state performance parameters of 

stochastic discrete event simulations.  However, for this research, ANN based 

metamodels deal with transient performances depicted by non-terminating simulations 

with imposed resource failures because the focus is on transitional behaviors (deviations 

from steady state) after the disruption(s).   

 

Even though the ultimate use of these ANN based models is for on-line disruption 

control, FMS control is not the focus of this research. Therefore, any technical issues 

regarding the actual FMS control are beyond the scope of this study.  This study is 

intended to develop a new methodology for forecasting short-term transient performance 

in a timely manner.   

 

In contrast to typical ANN applications in time series modeling trained with 

actual data points, individual ANNs from the proposed modeling framework will be 

trained with selected time average resource utilizations and coefficients from selected 

polynomial regression models found on a limited number of data points generated from 
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various simulation experiments.  These non-terminating stochastic simulations will be 

carefully designed and chosen to represent various unique post-disruption behavior 

patterns.  Therefore, independent experimental factors for FMS transient behaviors are 

carefully identified, screened, and structured for a valid design of experiments. Then a 

manageable subset is selected for experimentation.  Although this study extensively uses 

simulation, it is not an intention of this study to extensively review traditional issues 

associated with simulation modeling, validation, verification, and post-statistical analysis 

processes.   

 

Finding justifiable reasons to choose particular artificial neural network design 

architecture over others is another crucial objective of this research.  The choice of 

possible variations within a particular architecture and training method, for example, the 

number of nodes, the number of hidden layers, the type of transfer function, selection of 

training data set, training methods, and the length of training period etc., must be 

identified.  Finally, a taxonomical arrangement of individual neural networks that are 

designed to capture and approximate various parts of the desired system knowledge 

domain is to be presented and examined. 

 

 

1.4 Anticipated Contributions 
 
 
 
 
 The primary contribution of this research is the conceptualization of a system 

modeling framework that can provide self-organizing and pattern based transient 
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behavior forecasting. The proposed system modeling framework maps various short-term 

transient behavior patterns over the chosen performance indexes by utilizing 

taxonomically structured ANN based metamodeling. The transient behavior forecasting is 

based on both the initial reaction path following a disruption and a unique relationship to 

a corresponding disruption scenario.   

 

The majority of ANN based time series modeling approaches presented to date in 

the literature have focused on a single function realization.  However, this study intends 

to provide a means to store more than one post-disruption system behavior function under 

various disruption scenarios and make them retrievable by providing a nonparametric 

relationship between a functional domain and a range of unknown post-disruption system 

behavior prediction functions.  Because the proposed framework will be designed to 

capture unknown transient behavior prediction functions in a simple form using 

independent variables, spline modeling, using such techniques as polynomial regression 

analysis can be useful to extract the unique characteristics of many non-linear transient 

behaviors. 

 

Secondly, since the proposed approach is aimed toward online application, the 

practicality of a proposed modeling approach as an on-line modeling scheme can be 

partially verified through limited controlled tests.  Thirdly, the simulation study of a 

given FMS model will provide a better understanding of how other tightly coupled 

systems would react to a disruption under similar circumstances.  This will also help to 

verify if there are signs of any overreactions or under-reaction from recovery actions 
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taken by the control system, if not, how closely these reactions will follow a monotonic 

behavior patterns discussed in some studies [Suri 1985], [Shanthikumar and Yao 1987].  

Furthermore, this study provides a chance to closely examine methods and issues 

involved in quantification of non-monotonic system behaviors compared to typical 

monotonic transition behaviors.  

 

 If there exist any non-monotonic transient behaviors following a disruption, this 

study will provide a better knowledge of when these behaviors can be triggered and under 

which system conditions.  Finally, the study will examine the overall effectiveness of the 

proposed system-modeling framework as a “look ahead” tool.  In other words, the study 

will examine if an automated system modeling approach such as the one in this study is 

practical and reliable enough to provide an effective look-ahead function for a fully 

automated production control environment. 

 
 
  
   

1.5 Overview of the Dissertation 
 
 
 
  
 The remainder of this dissertation is presented in seven chapters plus five 

appendices and a bibliography.   Chapter Two reviews the literature in several major 

evaluative modeling methods commonly used in both steady-state and transient FMS 

performance analysis.  Topics such as artificial neural networks and time series analysis 

are discussed extensively in Chapter Three since they are closely related to the proposed 
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modeling methodology.  Chapter Three presents the FMS under study and proposed 

modeling approach. This includes detailed descriptions of the hardware configuration, 

operational rules, operational scenarios, and system parameters relevant to the 

hypothetical FMS under study.  The rest of Chapter Three is allocated to elaboration of 

the proposed modeling framework.  Chapter Four presents the research goal, objectives, 

assumptions, and limitations. Chapter Five outlines the research tasks, research 

methodology, and execution plan.   Chapter Six discusses the design of simulation 

experiments, results analysis, classification of primary transient behavior patterns, 

configuration of input and target vectors, and configuration of the proposed 

taxonomically organized ANN modeling scheme for this study.  Chapter Seven covers 

the training and construction of individual ANNs and evaluates the performance of the 

proposed ANN based metamodeling approach.  Chapter Eight summarizes findings, 

draws conclusions, presents concerning issues, and discusses future research directions 

and opportunities. 
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2. Literature Review 
 
 
 
 

The primary objective of this research is to explore artificial neural networks as a 

non-parametric and non-regression based technique to build metamodels for time series 

so that the model can effectively predict short-term transient behavior of an FMS after a 

disruption(s). The literature review focuses on several major FMS evaluative modeling 

methods that are useful for transient performance analysis.  These techniques have 

evolved from major steady-state based evaluative modeling approaches. Therefore, there 

is a need to briefly review what has been done in the area of FMS performance modeling.  

 

This literature review covers not only specific transient performance models but 

also the steady-state performance models on which these transient performance models 

are based.  Major evaluative modeling approaches in FMS are queuing networks, Markov 

chain, metamodels, stochastic Petri nets, and simulation.  Basic theoretical foundations of 

these modeling approaches used for both FMSs transient performance analysis and 

steady-state analysis are briefly discussed.  Common modeling assumptions for both 

steady and transient performance analyses using a particular modeling approach are 

identified and discussed.  Typical of these modeling assumptions are that a model’s 

theoretical foundation is based on a steady-state Markovian stochastic process, a common 

underlining probabilistic distribution for arrival and service processes, no resource 

failure, no blocking, and deterministic part routings. 
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Significant breakthroughs in each modeling approach are reviewed.  If there are 

several variations in a particular modeling approach, they are identified and their merits, 

compared to the original modeling approaches, are briefly discussed.  Finally, the 

potential for adapting the particular approach for transient analysis is discussed. If there 

are already established ways to conduct transient analysis through the particular modeling 

approach, the literature review introduces the concepts and addresses their usefulness and 

concerning issues.  A brief review of major developments in artificial neural networks is 

provided in Chapter 3 in addition to the proposed design architecture for this research. 

 

 

2.1 Queueing Network Approaches 
 
 
 

2.1.1 Summary of Major Developments 
 

Queueing networks (QNs) are the most frequently used analytical form among 

various FMS evaluative modeling approaches.   In general, queueing networks can be 

formed to study aggregate system behaviors of clustered interactive queues, often “a 

machine shop” consisting of several departments [Jackson 1957].  Each department is 

considered a multi-server or single-server queueing system (or a node within a queueing 

network) with an exponential service time distribution(s) and a single waiting line.  
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There are two major types of queueing networks based upon whether or not the 

total number of parts or pallets circulating in the network remains the same at any point 

in time during a normal operating cycle. The first type is open queueing networks 

(OQNs), also called Jackson networks [Jackson 1957], do not maintain a fixed number of 

parts in the network at any given time. The second type of queueing networks, called 

closed queueing networks (CQNs) [Gorden and Newell 1967], always maintain a 

constant number of parts. Despite the fact that the majority of analytical evaluative 

models for FMSs are based on CQN [Buzacott and Yao 1986], both the CQN and the 

OQN approaches are equally perceived as an effective way to model steady-state 

performance for various FMSs.  For example, Buzacott and Shanthikumar [1980] model 

an FMS as an OQN where the scope of the model is expanded to include the jobs waiting 

for release to the FMS in a dispatching area.  This study demonstrates the benefits of 

balanced workload, diversity in job routings with adequate control of job release to the 

system, and the superiority of common storage over local storage at each machine.  Yao 

and Buzacott [1985] develop an OQN model to evaluate the performance of an FMS with 

general service times and limited local buffers.  The model demonstrates that the arrival 

process can be formulated in terms of blocking probability on each station using renewal 

approximation by Whitt [1982]. 

 

Since most FMSs with limited local buffers tend to maintain a fixed number of 

pallets or parts in the system in order to avoid blocking, CQNs were initially perceived as 

an ideal type of queueing network model to depict behaviors of such FMSs.  Formation 

of a CQN analytic model can result in either a product form solution with a normalization 
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constant or non-product form solution for the equilibrium joint distribution of pallets or 

parts.  If the FMS CQN has a small number of nodes (workstations), the product form 

final solution of the equilibrium joint distribution can be easily estimated through an 

algebraic approach to finding the normalization constant.  Several basic assumptions have 

to be made in order to have a product form solution. 

1. The balance equations of part arrival rate are based on steady-state behaviors 

of the system. 

2. The system consists of  interconnected stages of service. The number of 

parts (or pallets)  remains constant throughout the entire operational life 

cycle.  

m

n

3. The service time distributions on each server are exponentially distributed.  

4. The routing can be determined according to a discrete time Markov chain.   

The advantage of the closed queueing network approach is the ability to approximate the 

joint probability distribution of parts (or pallets) in the system using a separation of 

variables technique.   

 

When the number of nodes (workstations or cells) in the network (FMS) gets 

large, finding the normalizing constant, which is essential for finding the equilibrium 

joint probability of pallets in the system, becomes computationally challenging due to its 

permutable nature. The technique has been further improved by a computational 

algorithm to calculate the normalizing constant in a recursive manner [Buzen 1973].  This 

enables analytic CQN analysis to be a practical approach for a real production 

environment, especially for complex systems that require prompt decision-making.  
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The first successful adaptation of product form CQN in FMS was with a 

convolution technique, which is called CAN-Q [Solberg 1977].  This model was initially 

developed to handle only single-part-type FMSs with a central server (typically a material 

handling system) that every part must pass through.  Later, CAN-Q was extended by 

Stecke [1981] to handle multiple part type FMSs. The performance of this analytical 

model depends on the assumption that the processing times at each first-come-first-serve  

(FCFS) station are independent of the part type. If the assumption is satisfied, the 

convolution algorithm can deliver the exact solution. Otherwise, only an approximation 

can be made.   

 

Additional study done on a similar model suggested that the model would not 

perform satisfactorily if all the servers use an FCFS queue discipline and non-exponential 

service time distributions [Chandy and Sauer 1978].  Dallery [1986] has also shown that 

the product form FMS CQN model with a single part type is not well suited for 

performance prediction of multiple-part-type FMSs with universal pallets and prescribed 

production ratios.  Despite its known limitations, CQNs have been widely used for 

preliminary design and studying some operational issues in production planning for 

FMSs because of the speed and accuracy with which they can be evaluated once a model 

is correctly built.  In the area of FMS production planning the CAN-Q model is 

extensively used to study the effect of various operational strategies on system 

throughput.  
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The class of product form CQNs was substantially extended and presented in a 

unified fashion [Baskett et al. 1975].  This triggered a rapid growth of applying CQN 

analysis in various FMS analytic models so that CQN analysis grew to handle problems 

that were initially thought to be unsolvable due to their deviations from the original 

assumptions. Assumptions such as a single part type and exponential service time 

distributions are commonly used in Gordon and Newell type network analysis.  To 

overcome limitations of one of these assumptions, CQN with non-exponential service 

times, an “exponentialization” approach was introduced.  This allows a CQN with 

general service times to be solvable, substituting general service times with equivalent 

exponential times so that the final product form can be still maintained [Yao and 

Buzacott 1986].   

 

In practice, QNs with exponential arrival and service time distributions are not 

robust enough to capture realistic behaviors of various forms of FMSs in which the 

machine times are often known quite accurately [Pratt 1992].  Most workstations in an 

FMS, except for those that are failure prone, behave almost in a deterministic manner 

with very small variance especially when the system is fed with pre-selected part types, 

tightly integrated, and controlled by a computer. In some cases, time duration for 

individual part movements on predetermined part routes as well as processing in 

individual workstations is highly consistent and has much smaller variation than those 

with exponential probability distributions.  Similarly, modeling failure-prone FMSs using 

QNs with an exponential time assumption, which usually have larger variance than those 

of exponential systems, can also be misleading.  Thus, modeling such FMSs using QN 
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with G/G/c/N queues is a more realistic approach. Yao and Buzacott [1985] model a 

workstation of an FMS using diffusion approximation (a recursive algorithm) in which 

the queueing process is formulated as a G/G/c/N queue. They found that a C2/C2/c/N 

queue and Coxian phases are appropriate for modeling queueing processes that represent 

workstations of an FMS with inter-arrival service time distributions having squared 

coefficients of variation of less than 0.05. 

 

Kamath [1989] found that most behaviors of asynchronous automated assembly 

systems (AASs) do not satisfy the assumption of exponential processing times made by 

closed form QN analysis and often the analysis can be misleading by such an assumption. 

These asynchronous automated assembly systems are also known as flexible assembly 

systems and represent a large and important subset of FMSs.  Thus, it is necessary to use 

a method that can handle general service time distributions at each server for such AAMs 

[Kamath 1989].  

 

Whitt [1993] studies a deterministic multiclass single-server OQN and has shown 

that feedback with class-dependent service times, and FIFO discipline can dramatically 

increase a chance for sudden large fluctuations on the sample paths of the queue-waiting 

processes with some initial conditions, which is highly conceivable in some FMS models.  

Suri [1985] has shown that a homogeneous service time (HST) CQN with exponentially 

distributed service times exhibits monotonicity throughout their performance measures 

depending only on the number of jobs present in the system. A HST workstation implies 

that the service time distribution at the workstation remains consistent across different 
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numbers of jobs present in the system.  However, the monotonicity property cannot be 

satisfied unless all service times are exponentially distributed. Therefore, it is less likely 

for any CQN or OQN with non-exponential service times to exhibit monotonic behavior 

after a sudden disruption. 

 

Yao and Buzacott [1986] use product form CQNs to study the performance of 

FMSs with unlimited local buffers compared to FMSs with limited local buffers under 

three possible operational scenarios. Three possible operational scenarios to deal with any 

blocking are fixed routing, fixed loading, and dynamic routing.  They conclude that 

dynamic routing has clear advantage in increasing throughputs when local buffers have 

limited capacities.  Other studies [Kimemia and Gershwin 1985], [Shalev-Oren et al. 

1985] used non-product form CQNs as an evaluative tool to test their new operational 

policies such as loading/routing and scheduling schemes.  Several researchers used a non-

product form CQN framework to study common behaviors of FMSs under a different set 

of system constraints or variables such as workstation breakdowns and limited buffers on 

each node so even blocking can be considered.  

 

Other studies extended the scope of QN modeling for FMSs even to those that are 

traditionally considered FMS supporting systems such as maintenance float networks and 

control systems.  Lin et al.[1994] used CQNs with Buzen’s recursive algorithm to model 

a maintenance float network problem for FMSs.  
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Based on the approach taken to solve the product form of the equilibrium 

probability distribution, CQN can be further broken down into several subclasses.  

According to Seidmann et al. [1987], there are three subclasses for CQN analytic models. 

These are mean value analysis (MVA), the convolution technique (an extension of 

Buzen’s [Buzen 1973] recursive algorithm), and approximate mean value analysis 

(PMVA).  CAN-Q uses the convolution technique. But, most other models are solved by 

either MVA or approximate MVA depending on whether or not the model will have a 

final product form as its equilibrium probability distribution of parts or pallets over the 

network. If the analytic CQN model results in a non-product form, the approximate MVA 

is applied.  On the contrary, if a product form solution is found, either the convolution 

technique or mean value analysis can be applied. 

 
 

Mean value analysis (MVA) is a simplified technique to solve a CQN for a 

limited set of quantities, such as mean queue sizes, mean waiting times, utilizations, and 

throughputs, in a recursive manner without calculating normalization constants and 

product form joint distributions.  MVA reduces a significant amount of the computational 

burden associated with complex CQN problems.  

 

In reality, the joint equilibrium distribution often contains far more detail than is 

needed for practical analysis. As matters of fact, the computational burden of calculating 

the normalization constants can easily outpace the efficiency of CQN analysis as the 

system gets more complex. Thus, a simplified way to get the most common performance 

measures was needed for larger scale product form CQN problems without going through 
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the somewhat tedious computational steps in traditional CQN analysis [Reiser and 

Lavenberg 1980].  

 

MVA is based on a relationship between the mean waiting time and the mean 

queue size of a system with one less job.  This relationship is also called the arrival 

theorem. The distribution of the network state seen by a job arriving at any node in the 

network is the same as the distribution of the network state a random observer would see 

with ( ) parts circulating in the network. 1−n

 

Several assumptions must be initially made in order to apply MVA to analyze 

CQN type FMSs.  Some of these assumptions are: (a) the processing time of a part at 

each workstation has an exponential distribution, (b) the routing of parts to the next 

machine is chosen probabilistically, and (c) all workstations choose their next part 

according to the FCFS queue discipline.  In reality, these assumptions have to be relaxed 

somewhat because there are many different classes of FMSs in existence based on their 

configuration and operational characteristics. Three major classes of FMSs are identified 

based on their modeling constraints such as pallet type, queue discipline, and prescribed 

production ratios [Dallery 1986].  These classes are monoclass models, multiclass models 

with fixed queueing disciplines, and multiclass models with prescribed relative 

throughputs.  

 

Viswanadham and Narahari [1992] identify nine common characteristics of 

automated manufacturing systems that could lead an FMS CQN model to a non-product 
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form.  These are: (1) non-exponential service time distributions, (2) scheduling discipline 

other than FCFS, (3) different processing priorities among multiple part types, (4) new 

production control policies such as a pull system, (5) assembly operations (joining of 

parts), (6) breakdowns, (7) dynamic routing such as shortest queue routing (SQR), (8) 

blocking, and (9) multiple resource holding such as a part seizing a fixture, a pallet, a 

machine, and a set of tools in order to be processed.  For example, a non-product form 

solution would result from an FMS where the routing is predetermined and the 

processing times at some workstations are not exponentially distributed.  Another non-

product form characteristic that is quite common is for each workstation to have a queue 

discipline other than FCFS.  For this reason, Cavaille and Dubois [1982] proposed a 

heuristic based on MVA, called the approximate MVA method, to model an FMS with 

near deterministic service times using MVA with an additional approximation term.  The 

FMS model used in the Cavaille and Dubois’s study has FCFS servers where the various 

part types may require distinct service time and routing requirements. Approximate MVA 

methods have been extended to handle FMSs with priority scheduling disciplines 

[Shalev-Oren et al. 1985].  

 

The first successful computerized MVA application in overall production 

planning and control problems includes two different decision categories [Hildebrant 

1980].  The first category deals with resource decisions and the second category deals 

with temporal decisions.  Resource decisions are concerned with choices among different 

resources and temporal decisions deal with job sequencing and scheduling issues.  This 
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model was subsequently further improved to demonstrate its accuracy and robustness 

even on larger scale models [Suri and Hildebrant 1984]. 

 

Zhuang and Hindi [1990] developed an extended MVA approach that can handle 

multiple class queueing networks with limited queue capacities to model an FMS with a 

central material handling system (MHS) and exponential service time distributions 

including one by the MHS.  Zhuang and Hindi also develop an approximate MVA to 

evaluate an FMS with a single cart MHS, the assumption of exponential service time 

distribution, and limited local buffers which leads to block and wait mechanisms.  

Tetzalff [1996] utilizes approximate MVA to evaluate the performance of a tool 

management system in an FMS. The part transportation system is modeled as a product 

form CQN and the tool delivery system is model as a non-product form CQN.  

 

As an indirect way to study transient behavior of FMSs using QN, Chance [1993] 

studies the relationships among various conjectured upper bounds on transient mean total 

waiting times in OQNs with some assumptions such as Poisson arrival process, 

exponential service time distribution, and multi-server queue nodes within the network. 

He concludes that after some small initial period, transient mean total waiting times in the 

Jackson network are bounded above by the weighted sum of expected waiting times in 

queues.  The expected network waiting time can be found from simulation and the 

expected waiting times for queue can be estimated through the program described in 

Kelton and Law [1985].  These conjectured upper bounds provide the lower bounds on 

the time required for the transient mean to approach its steady-state value. However, this 
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method can be applied only to OQNs with exponential service times. Also there is a 

significant drawback that the author acknowledges. The gap between the conjectured 

upper bound and actual transient mean on total waiting time grows wider as the network 

gets larger, which implies that the method is not robust enough to be applied on large 

scale networks. 

 

The study done by Suri [1985] supports the position that any OQNs with 

exponential service time distribution and some specified initial conditions are most likely 

to behave in a monotonic way during their transient period.  Conversely, this implies that 

there may be a chance for either a CQN or an OQN with non-exponential service time 

distribution to exhibit non-monotonic behavior during the transient period after a 

disruption on its sample paths.  Thus, a transient analysis approach by asymptotically 

connecting individual steady-state values approximated for the particular number of jobs 

that can be present in the system during the transition period may not always provide a 

realistic view of true system behavior during a short time window.  This issue leaves an 

open question for further research investigation. 

 

2.1.2 Conclusion 
 
 

Table 1 summarizes the previously discussed major developments in QN analysis 

of FMSs. Most works are focused on steady-state behavior of the system.  
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Table 1.  Major Developments in FMS Performance Study Using QN Analysis 
Title of 

Method/ 

Study 

Author(s) 

Year 

Type of QN 

(Approx. 

Method) 

Limits 

/Restrictions 

Type of 

Analysis 

Focus of Study/ 

Findings 

CAN-Q Solberg 
1977 CQN 

-Single part 
with a central servers 
-Necessary 
assumptions for a 
product form solution 

Steady-State 
Analysis 

To study effects of 
various operational 
strategies 
(production 
planning) on system 
throughput 

Models 
for 
understand
ing FMSs 

Buzacott, 
Shanthikumar 
1980 

OQN -Basic OQN 
assumptions 

Steady-State 
Analysis 

To evaluate FMS 
with jobs waiting for 
release in the 
dispatching area 

MVA 
(earlier 
version of 
MVAQ) 

Hildebrant 
1980 

CQN 
(MVA) 

-Exponential 
processing times 
-Probabilistic 
routings  
-FCFS queue 
discipline 

Steady-State 
Analysis 

To study production 
planning and control 
issues related to 
failure prone FMSs 

CAN-Q 
(extended) 

Stecke 
1981 CQN 

-Multiple part type 
-Processing times at 
each FCFS station are 
independent of Part 
Type 

Steady-State 
Analysis 

Effect of various 
operational 
strategies on system 
throughput of FMS 
with multiple part 
type 

Heuristic 
methods 
based on 
MVA 

Cavaille 
Dubois 
1982 

CQN 
(Approximat

e MVA) 

-FCFS servers 
various part types 
require distinct 
service time and 
routing requirements 

Steady-State 
Analysis 

To study the 
performance of 
FMS with 
predetermined part 
routings and non-
exponential service 
times 

MVAQ 
Suri, 
Hildebrant 
1984 

CQN 
(MVA) 

-Exponential Service 
times 
-Probabilistic 
routings 
-Multiple part type 
modeled 
-Proven robustness 
on larger scale 
models 

Steady-State 
Analysis 

To use MVA for 
practical planning 
and control of an 
FMS 

The 
method of 
Coaxian 
Phases 

Yao, 
Buzacott, 
1985 

OQN 
-General service 
times 
-Limited local buffers 

Steady-State 
Analysis 

To evaluate the 
performance of an 
FMS with general 
service times and 
limited local buffers 
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Table 1 (continued).  Major Developments in FMS Performance Study Using QN 
Analysis 
Title of 

Method/ 

Study 

Author(s) 

Year 

Type of QN 

(Approx. 

Method) 

Limits 

/Restrictions 

Type of 

Analysis 

Focus of Study/ 

Findings 

Diffusion 
approxima
tion  

Yao 
Buzacott 
1985 

CQN 

-Coefficients of 
variation of inter-
arrival and service 
time distributions is 
less than 0.05 

Steady-state 
Analysis 

To approximate the 
behavior of FMS 
with non-
exponential 
workstations 

Approxim
ate MVA 
(extended) 

Shalev-Oren, 
Seidmann, 
Schweitzer 
1985 

CQN 
(Approximat

e MVA) 

-Similar to Cavaille 
and Dubois’s 
approximate MVA 
assumptions 

Steady-state 
Analysis 

To study impact of 
priority scheduling 
discipline  

Heuristic 
based 
approxima
tion of 
MVA 

Kimemia, 
Gershwin 
1985 

CQN 
(Approximat

e MVA) 

-Similar to Cavaille 
and Dubois’s 
approximate MVA 
assumptions 

Steady-state 
Analysis 

To optimize the 
flow of the 
operation 

Exponenti
alization 

Yao, 
Buzacott 
1986 

CQN 

-Necessary 
assumptions for a 
product form solution 
except general 
service times 

Steady-state 
Analysis 

To evaluate the 
performance of 
FMS with general 
service times using  
a product form CQN 
analysis 

ON 
modeling 
FMSs 
using 
CQNs 

Dallery 
1986 

CQN(MVA) 
CQN(Appro

ximate 
MVA) 

-Necessary 
assumptions for 
product form CQN 
analysis, MVA, and 
approximate MVA 

Steady-state 
Analysis 

Identified three 
major classes of QN 
based FMS models 

Models of 
FMSs 
(with 
various 
configurati
ons) with 
limited 
local 
buffers 

Yao, 
Buzacott 
1986 

CQN  

-Various non-
exponential service 
time vs. exponential 
service time 
distributions 
-Dynamic routing vs. 
fixed one 
-Unlimited vs. 
limited local buffers 

Steady-state 
Analysis 

FMS with small 
local buffers are 
robust to various 
non-exponential 
processing time 
distributions 

MVA 
(extended) 

Zhuang, 
Hindi 
1990 

CQN 
(MVA) 

-Limited queue 
capacity 
-exponential service 
times 
-A central server 
(material handling 
system) 
-multiple part types 

Steady-state 
Analysis 

To extended MVA 
approach to multiple 
part type FMS with 
finite queue capacity 

Approxim
ate MVA 

Zhuang, 
Hindi 
1991 

CQN 
(approximat

e MVA) 

-Exponential service 
times 
-limited local buffers 
-A single cart MHS 
(block and wait 
mechanisms) 

Steady-state 
Analysis 

To study behavior 
FMS with a single 
cart MHS 
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Table 1 (continued).  Major Developments in FMS Performance Study Using QN 
Analysis 
Title of 

Method/ 

Study 

Author(s) 

Year 

Type of QN 

(Approx. 

Method) 

Limits 

/Restrictions 

Type of 

Analysis 

Focus of Study/ 

Findings 

Conjecture
d upper 
bounds on 
transient 
mean total 
waiting 
times in 
QNs 

Chance  
1993 OQN 

-Poisson arrival 
process 
-Exponential service 
time multi server 
queues 
-Size of the network 

Transient 
Analysis 

To find conjectured 
upper bound on the 
mean total waiting 
time in Jackson 
Networks 
(applicable to some 
FMS) 

A 
maintenan
ce float 
network 
problem 

Lin, 
Madu, 
Kuei 
1994 

CQN 

Necessary 
assumptions for 
product form CQN 
analysis 

Steady-state 
Analysis 

To find the optimal 
capacity of 
redundant system 
for a failure prone 
FMS 

A QN 
model for 
FMSs 
with tool 
manageme
nt 

Tetzalff 
1996 

CQN 
(approximat

e MVA) 

-Product form CQN 
requirements for 
MHS 
-Non product form 
CQN for the tool 
delivery system 

Steady-state 
Analysis 

To study the 
performance of a 
tool management 
system in an FMS 

 

 

 The QN approach is generally not an effective way to study detailed behavior of 

the system within a short time horizon.  Instead it provides an idealistic picture of long-

term behavior if the system reaches steady state.  The most critical role of transient study 

in an on-line decision making environment is not only to detect any possible disturbances 

in steady-state performance but also to investigate the detailed nature of the system 

reactions brought by such disturbances.  The detailed nature of such system behavior 

consists of the duration of a transient state, the magnitude of any reaction, under or over 

reaction if any, and the value of the new steady-state mean.  Using this knowledge the 

decision-maker can proactively engage in any remedial action to minimize or prevent the 

negative impact caused by such a disturbance in steady-state sample paths.  
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Since queueing networks are an aggregated form to represent interactive 

neighboring queueing systems as a whole, the equilibrium conditions for the entire 

network must be satisfied in order to directly or indirectly estimate the network 

performance.  Even transient analysis on OQNs such as the one proposed by Chance 

[1993] to conjecture the upper bounds for the sample paths of total mean waiting time of 

the network during a transient period, has many limitations as a robust means to facilitate 

on-line transient analysis.  Therefore, we can conclude that instantaneous transient 

analysis through ordinary QN analysis is practically infeasible because any exact or 

approximated behaviors of an individual or aggregated queue(s) using QN analysis can 

be derived only under the steady-state assumption.   

 

However, QN’s speed, reliability, and intuitive details are appealing to many 

researchers and industry users who are primarily interested in steady-state performance of 

FMSs. The QN approach can be extensively used during planning and designing stages of 

an FMS.  However, it appears ill suited for online based transient analysis. 
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2.2 Markov Chain Models 
 
 
 

2.2.1 Summary of Major developments 
 

 

Markov chain modeling provides fundamental foundations to many analytical 

evaluative models. Markov models are based on a stochastic process called a Markov 

process that has a unique mathematical property in which any future state of the system 

depends on the past state of the system only through the present state. Markov chains can 

be effectively used to capture stochastic dynamics of many discrete event systems with a 

finite state space such as manufacturing systems.  Despite their well-known drawbacks as 

an analytical evaluative modeling tool, such as exponential growth in modeling 

complexity as the size of the state space (a collection of all possible system states) gets 

larger, Markov chain analysis can be an appropriate way to study many special cases of 

FMS operations.  

 

Each state in a Markov chain model usually represents a possible discrete state of 

the stochastic process during its life cycle.  Markov chains can be grouped into either 

discrete time or continuous time processes.  Between the two types of Markov chains, 

Continuous Time Markov chains (CTMC) have been extensively used to analyze 

dynamic behaviors of many automated manufacturing systems [Viswanadham and 

Narahari 1992].  For example, studying the overall impact of a certain control mechanism 

over the entire system and a machine repair system with a redundant resource backup 
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system are popular areas to apply CTMC analysis.  CTMCs also provide theoretical 

grounds for birth and death processes and time reversible Markov chains.  Time 

reversibility is a necessary condition for product form QN analysis.   

 

Several foreseeable computational issues in CTMC modeling as the complexity of 

the problem grows can be identified.  These issues are size, ill conditioning, and stiffness. 

The size issue arises when there is an exponential growth in the size of the state space as 

the number of available resources increases in the given system. In other words, the 

computational burden to calculate the coefficient matrix will rise rapidly as the state 

space gains more possible states.  The second issue, ill conditioning, is based on the fact 

that small changes in the coefficient matrix can lead to large changes in the solution 

vector. Stiffness is a consequence of having transition rates of significantly different 

orders of magnitude among states. For example, for a certain CTMC, for particular states 

the transition rates among them can be significantly higher than the rest of transition rates 

among other states, which implies faster transitions between those particular states 

compared to other states. This can create stiffness during the computation. 

 

There are two ways, namely uniformization and numerical ordinary differential 

equation (ODE) solution, to solve these types of differential equations. Reibman and 

Trivedi [1988] conducted a survey of three numerical methods for transient analysis, 

uniformization, RKF45, and TR-BDF2. They found that two numerical approaches, ODE 

RKF45 and TR-BDF2, work well only for certain types of problems.  On the other hand, 

uniformization works well for typical problems with more accuracy and efficiency. 
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Gross and Miller [1984] extend the randomization technique to Markov processes 

with infinite state spaces. The randomization technique was originally proposed by 

Grassmann [1977] and is a general non-numerical method based technique to compute 

transient probabilities of Markov processes with finite state spaces through a probabilistic 

interpretation.  Gross and Miller [1984] present an approach called SERT utilizing a 

generalized randomization procedure in an algorithmic way to model a continuous 

parameter Markov processes.  SERT stands for state space (S), event set (E), rate vectors 

(R), and target vectors (T) that can collectively describe a general class of Markov 

processes.  Upon successful completion of the randomization, closed form formulas for 

expected time averages, first passage time distribution, and expected number of events of 

a certain type occurring for a time interval can be constructed.  This approach promises 

substantial relief from the computational burden associated with traditional transient 

Markov processes whose state spaces are quite large.  

 

The part selection policy for a flexible manufacturing cell is studied to minimize 

the expected shortage penalty per unit time using a semi-Markovian process [Seidmann 

and Schweitzer 1984].  For an FMS with block and recirculate, the workstations with 

finite buffers are modeled as a Markov chain model and solved even though one with a 

central buffer becomes substantially complicated to model [Viswanadham and Narahari 

1992]. 
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Another major achievement in the study of FMS transient behavior by a Markov 

chain based analytical modeling approach is performability analysis.  The notion of 

performability was first used by Meyer [1980] in the study of a degradable computing 

system performance.  Performability analysis is a combined form of performance and 

reliability analysis. Performability modeling is used to study the overall impact brought 

by constituent subsystem failures on a particular system performance index over a finite 

time horizon.   

 

Performability analysis was originally designed to investigate performance-

related reliability for fault-tolerant computing systems. Later the same technique was 

applied to automated manufacturing systems (AMSs).  Even though the majority of 

performability studies use continuous time Markov chains with the deterministic reward 

structure consisting of a number of transient states and a single absorbing state, discrete 

time Markov chains with random rewards were later introduced [Mallubhatla and 

Pattipati 1994].  The notion of a Markov reward often implies the cost or reward incurred 

from being in a particular state at a given time.   

 

The first application of performability modeling in manufacturing systems 

appears in a work by Viswanadham et al. [1991].   This modeling was focused on AMSs 

producing a single part type.  A subsequent study [Viswanadham et al. 1993] was done 

on AMSs producing multiple part types using continuous time Markov reward models.   
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Most automated manufacturing systems consist of numerous constituent 

subsystems. In reality, even the most reliable and well-designed AMSs are subject to 

unscheduled and unexpected subsystem failures due to many complex mechanical 

interactions and functional dependencies.  Especially for an FMS, a proper functioning of 

individual resources within the system is highly critical to its operational success because 

the role of each resource is often uniquely defined and tightly integrated with others to 

complete any planned operations.  Even if the frequency of these failures is very low, 

most of these AMSs are built with a certain degree of redundancy so that highly 

expensive systems like FMSs will not be sitting idle in case of any unscheduled 

subsystem failures. We call these types of manufacturing systems fault-tolerant systems.  

They are built with a certain degree of flexibility in both operation and capacity to handle 

limited multiple resource failures simultaneously.    

 

Due to natural time scale differences in frequencies of failure, repairs, and 

reconfigurations and of the part processing events, a performability model is often 

hierarchically devised: a higher level (longer-time scale) dependability model and a set of 

lower level (shorter-time scale) performance models.  The study done by Viswanandham 

et al. [1995] shows that the accumulated reward over a given time interval is a solution of 

a set of forward or adjoint multidimensional linear hyperbolic partial differential 

equations.  They also proposed efficient numerical methods for computing the 

distribution of the cumulative operational time, and the mean and variance of the 

cumulative production over a given time interval.  One of the common difficulties in this 
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approach lies in efficient numerical methods to solve the partial differential equations in 

order to find the distribution of accumulated production over . ] ,0[ t

 

After occurrences of these resource failures, the system often goes through a 

series of possible intermediate transient states during the recovery process. The complex 

dynamics of the state transitions can be captured via the structure state process (SSP).  

The SSP is to describe the system evolution as influenced only by failures, repairs, and 

reconfigurations.  In each structure state, the system can be associated with a different 

performance measure such as lead time, throughput, and work in process. 

 

The formal definitions of a structure state process and performability can be given 

as follows.  

Definition: Let be the structure state of the manufacturing system at time 

.  Then the family of random variables 

)(uZ

0≥u { }0),( ≥uuZ  having state space 

is called the structure state process. { mS ,,2,1,0 K= }

If we let be rewards in the individual structure states and  be a 

random variable over an observed period 

mfff ,,, 10 K )(sYt

[ ]t,0  with initial structure state given as Ss∈ , 

the performability can be given as  

i

m

i
it fsY τ∑

=

=
0
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where iτ is the total sojourn time of the SSP during [ ]t,0  in state i . 
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The SSP can be modeled using CTMC, queueing networks, or stochastic Petri 

Nets. Viswanadham and Ram [1994] use both CTMC and Pertri nets to model 

performability of a flexible manufacturing cell (FMC) and suggest techniques for 

computing statistical moments of certain cumulative performance measures. Three 

measures: performability distribution, steady-state performability, and interval 

performability, are focuses of interest in performability analysis.   

 

The structure state of the SSP is a vector whose components describe the status of 

its constituent subsystems. The SSP is a collection of all possible structure states in which 

the sequence of transitions among all-possible states can be logically captured to reflect 

the evolution of the system during a given time horizon. Any failure prone AMS can go 

through a series of individual structure states within a given length of time following a 

resource failure.  This combines both the performance and the reliability aspects of the 

system. Typically a part of the vector representation of the components in each state 

contains the total number of available machines at any point during a given time period.  

The current structure state changes due to failures and repairs as time progresses.  A well-

illustrated SSP model for a degradable (non-repairable) fault-tolerant FMS with a central 

server and  identical machines is provided by Viswanadham and Narahari [1992].  m

 

Gershwin’s study [Gershwin 1992] argues that the estimation of variability of 

production is an important measure of interest to the manufacturer.  Furthermore, his 

study shows that the coefficient of variation of production in an actual AMS can exceed 

0.1, which is considered unacceptable since high variability can cause over and under 
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production by creating either unnecessary inventory or material shortage.   Therefore, 

finding higher statistical moments for the performability distribution is highly critical.   

 

The performability distribution is a cumulative distribution function of the 

performability , i.e., )(sYt { }xsYP t ≤)(  for Rx∈ .  The performability distribution and its 

statistical moments are used to quantify the performance and reliability of the system.  A 

closed form expression for the performability distribution and its moments and recursive 

formulas to compute the moments for an n -process system are found using a sum of 

simple exponential terms and double Laplace-Stieltjes transformations by Donatiello and 

Iyer [1987].    

 

Typically when a system with non-homogeneous components (e.g., different 

types of machines) is modeled using a Markov process, the number of states in the 

system is the product of the number of different type components. Hence the total 

number of structure states  can be very large.  Finding statistical moments for the 

performability distribution is a useful way to approximate the distribution especially 

when the time complexity for computing the coefficients of the distribution becomes too 

expensive as the number of structure states grows. The same framework to find an 

analytical solution for the distribution of performability can be applicable to non-

repairable systems as long as the transitions between states are modeled by an acyclic 

Markov chain.   

n
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A similar but improved modeling approach was proposed by Rupe and Kuo 

[2003] in order to lessen the complexity of the traditional performability model by 

separately modeling independent failure and repair processes of each system and 

combining the results at the conclusion.  This approach is designed to provide an efficient 

general architecture to be applied to a wide variety of FMS configurations including 

spare part inventory to repair down machines.  Despite their promising findings, the 

complexity of the model can still grow significantly if each machine type has different 

failure and repair processes.  

 

 

2.2.2 Conclusion 
 
 

Markov chain models are based on either Markov or semi-Markov processes that 

are the two most important subclasses of stochastic processes. Markov processes provide 

underlying theoretical foundations for many queueing theory based analytical modeling 

approaches.  Significant contributions in FMS transient analysis are made by 

Viswanadham et al. [1991], Viswanadham [1992], Viswanadham and Ram [1994], Gross 

and Miller [1984].   

 

 In general, Markov chain models are intuitive and easy to understand.  However, 

there are a few major drawbacks as Narahari and Viswanadham [1989] point out.  These 

drawbacks are:  (1) when the size of the physical system grows, the number of states in 

the Markov chain grows exponentially and this makes Markov analysis computationally 
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expensive; (2) as the number and complexity of interactions increases, visualizing the 

Markov chain states and the transitions among states becomes difficult; (3) the existence 

of two or more time scales can cause tremendous computational difficulties.  

 

 Solving Chapman-Kolmogorov equations that correspond to first order linear 

differential equations with constant coefficients, provides closed form solutions to 

approximate individual transition probabilities or the state probabilities as functions of 

time.  There are basically two ways to find the solution for these first order differential 

equations. The first method is a numerical method based technique and the second one is 

non-numerical method based technique.  With either technique, finding closed form 

solutions can become problematic as the size of the state space grows. Also, building a 

Markov chain model using a predefined state space, which often focuses on one aspect of 

the system performance, still requires intuitive and creative modeling efforts.   

 

Shifting focus from one to the other or changing configuration of the system often 

requires redefining of the state space which can result in rebuilding the entire model.  

This process requires a significant amount of human modeler’s analytical skills and 

modeling expertise.  Hence, this cannot be easily transportable to a fully automated 

system with a non-interactive modeling environment. Unless the system configuration 

never changes, in other words, the state space (dynamics of the model) remain unchanged 

and only the associated transition probabilities (performance parameters) change, 

reconfiguration of model on the fly will be challenging for on-line transient analysis. 

Therefore, it can be concluded that constructing Markov chains is not a practical 
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approach to building a rapidly re-configurable online evaluative model focusing on 

transient behavior of a dynamic system. 

 

 

2.3 Simulation Modeling 
 
 
 

2.3.1 Summary of Major Developments 
 
 
 

During the past several decades, computer simulation has been an indispensable 

tool for many system engineers to numerically study the behavior of complex discrete 

and non-discrete (continuous) event systems.  Since many improvements have been made 

in simulation technology, such as improved usability, modeling power, and speed, 

simulation analysis has received greater attention as an effective modeling tool.  Despite 

the availability of many effective system modeling methods, simulation modeling 

frequently becomes a favorable choice over other evaluative tools because it gives 

invaluable understanding of how the system operates as opposed to how everybody 

thinks it does [Pegden et al.1990].   

 

In general, simulation should be used whenever detailed results are needed such 

as in a transient behavior study.  The price to be paid for being detailed is that simulation 

takes a relatively longer time to develop, usually requires more input data than other 

analytical evaluative modeling approaches and often requires a great deal of computation 

time [Suri and Hildebrant 1984].  In addition, a steady-state analysis of a system by the 
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simulation modeling approach requires a statistically valid output analysis to find true 

steady-state means if there exists a significant initial bias on its outputs due to the 

model’s startup conditions, often called a warm-up period.  

 

Because of this time consuming modeling process and cumbersome output 

analysis, the simulation modeling approach has shown only limited application in on-line 

decision making schemes such as online production control systems.  Nevertheless, a 

great deal of research and efforts have been put into the area of on-line simulation as a 

viable approach to predict the short-term system behavior for untested operational 

scenarios in typical manufacturing control environments.  Especially with the current 

pace of progress in parallel and distributed computation, processing speed of inexpensive 

CPUs, and various model simplification techniques, simulation modeling to study 

detailed behavior of a system within a given time window has a promising future as a 

practical online based system modeling approach. 

 

Traditionally, simulation modeling has been extensively used in design, planning, 

scheduling, and control of FMSs.  These studies typically seek the optimal configuration 

for a hypothetical system or the best operational policy for an existing system. The 

modeling oriented languages, such as GPSS/H, SLAM II, SIMAN, SIMSCRIPT, and 

ARENA, etc., have been favored over general programming languages by many 

simulation practitioners.  Most of these modeling oriented languages possess realistic 

abstraction capability for individual behavior and interactions among various modeling 

entities, automatic statistic collection features, extensive run-time error detection, many 
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built-in sophisticated event handling mechanisms, and powerful add-in animation 

features.  However, there is some modeling inefficiency associated with these general 

purpose simulation languages to model complex manufacturing systems like FMSs 

because they are designed to model a wide variety of discrete event systems as well as 

manufacturing systems using generic building blocks.  

 

As Rolston [1985] points out, modeling FMSs with a general purpose simulation 

language often requires highly trained programming skills to conceptualize the entire 

system in terms of entities, queues, servers, and resources.  For this reason, dedicated 

simulation languages for various manufacturing systems were developed, such as MAP/1 

[Rolston 1985], GPSS/H [Schriber 1985], XCELL+ [Conway et al. 1987], WITNESS 

[Gilman and Billingham 1989], and MAST [Lenz 1989].  Fixtures, conditional part 

routing, and conveyers often require special modeling elements to capture their unique 

behaviors.  For example, a conveyor belt is a material handing system but often acts as a 

finite storage buffer. Also, based on the way of the conveyer belt is used in the system, 

securing consecutive spaces on the conveyor belt is crucial for undisrupted traffic of a 

particular group of parts. MAP/1 is a simulation language that has been developed to 

capture such unique behaviors of FMSs [Rolston 1985].   

 

Similarly, a GPSS/H model is proposed to represent a hypothetical FMS using a 

modular design approach to explore the concept of a universally applicable simulation 

model with minimal modifications possible for various FMSs [Schriber 1985].  For the 

GPSS/H model, some simplifying assumptions have to be made.  These assumptions are 
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no machine breakdowns, negligible part travel time between any two points in the 

system, and no traffic congestion. 

 

Because of the complexity of most simulation models, a formal scheme to convey 

the underlying logic of the system using common words is needed.  An activity cycle 

diagram is a graphical presentation to describe the underlying logic of a discrete event 

system that can be easily understood by non-experts.  Despite this effective formalism to 

depict the dynamics of a complex manufacturing system such as an FMS, the influence of 

a particular simulation language used to construct the models based on the activity cycle 

diagram can be found. Hlupic and Paul [1994] build a conceptual FMS simulation model 

using activity cycles diagrams to conduct a comparative study to show the apparent 

influence of the simulation package used for the model construction. 

 

There are two ways for simulation to be used in production control and planning 

environment: the first is on-line based simulation analysis and the second is off-line 

based.  Most simulation modeling efforts in FMS operation management have 

concentrated on off-line steady-state analysis. Simulation modeling has been extensively 

used as an evaluation tool to test whether a suggested dispatching rule or schedule really 

works better than other alternatives.  The schedule or dispatching rule in an FMS 

normally determines which parts are introduced into the system at what time and which 

part to load next into a particular machine.  Comprehensive literature reviews on FMS 

scheduling using off-line simulation as an evaluative tool can be found in [Gupta et al. 

1989; Hutchison 1991; Basnet and Mize 1994].   
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The other prominent application area for off-line based simulation study is FMS 

design.  Abdin and Mohamed [1986] conduct a simulation study to examine FMS design 

issues regarding the maximum number of pallets for each part type and the optimal 

conveyor speed under two distinctive job sequencing rules, namely the LPT and PROB 

rules.  LPT gives the job with longest processing time the highest priority while the 

PROB rule orders work pieces according to their highest content in the work-in-process.  

The study concludes that for that particular cell configuration LPT is favorable over 

PROB and allocating four pallets of each part type can ensure a smooth production 

against various changes. 

 

A significant number of recent research efforts using simulation applications in 

FMS production planning and control have shifted their focuses to on-line and real-time 

applications. M. Kim and Y. Kim [1994] propose simulation-based real-time scheduling 

for an FMS.  In this study, they argue that the dynamic and uncertain nature of system 

states may make off-line scheduling impractical for most FMSs.  In general, FMSs are 

more sensitive to system disruptions than conventional manufacturing systems because of 

their tighter synchronization, system integration, and interdependencies among many 

automated system components.  Hence, FMSs require an immediate response to changes 

in their system states, and this can be achieved through implementing on-line scheduling 

and control. 
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 Harmonosky [1993] addresses two key issues, the simulation run length issue and 

look-ahead horizon assumptions, for using simulation for real-time production control.  

In this study, Harmonosky identifies the types of manufacturing systems suited to 

pursuing simulation as a real-time control aid: systems with longer average processing 

time, WIP performance measures, and high flow shop characteristics are believed to take 

smaller CPU time and fall into this category.  The biggest obstacle for simulation to 

become a practical on-line evaluative tool in real-time decision making environments has 

been its lengthy execution time. In addition to a rapid improvement in the speed of 

inexpensive CPUs, there have been many ongoing research efforts to make simulation 

experimentation a more practical methodology for on-line use. In order to shorten the 

lengthy execution time of simulation without compromising statistical precision, the 

majority of on-line steady-state simulation analysis schemes have adopted a form of 

execution-time reduction techniques, such as concurrent simulation, distributed 

simulation, model simplification, and the reverse simulation method.  Each of these are 

discussed more fully below. 

 

A concurrent simulation means that a separate, independent processor is dedicated 

to running a simulation under each set of input parameters.  Concurrent simulation is 

proposed as a primary analysis tool to evaluate candidate schedules in on-line production 

control environment. It utilizes parallel computing techniques to mathematically 

decomposing a scheduling problem into a parallel hierarchy [Davis and Jones 1988].  The 

success of this conceptual scheduling algorithm lies in the integration and development of 

key technologies, such as compromise analysis, conflict resolution, and efficiency of 
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concurrent simulation techniques.  Also, the authors acknowledge that the optimality of 

the found schedule cannot be guaranteed and the probability of exact implementation of 

the suggested schedule is close to zero due to the tradeoff between a guarantee of 

feasibility and operational efficiency.  

 

Different from concurrent simulation, distributed simulation uses a technique to 

partition a single simulation run into several independently executable small components 

(routines) using parallel computation techniques. Distributed simulation focuses more on 

a distributed simulation algorithm (software) using parallel computation techniques rather 

than employing multiple processors (hardware) to host multiple simulation runs.  In other 

words, a sound simulation model of concurrency is more important than the multi-

processor hardware itself.  Traditional discrete event simulation is designed to be 

executed by a single processor sequentially following an event calendar as the single 

stepping clock advances. On the contrary, for distributed simulation each simulation 

component is run concurrently and brought together to collectively present the overall 

behavior of the system. A distributed simulation system must explicitly coordinate the 

advance of time in order to maintain temporal consistency among its components. There 

are two distinct tasks to maintain time among distributed simulation components: the 

movement of time and the coordination of time movement.  Based on methods to 

coordinate time advances between concurrent simulation components, distributed 

simulation algorithms can be classified into two classes.  
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The first class is Chandy-Misra (CM) simulation, also called pessimistic 

simulation [Peacock et al. 1979; Chandy and Misra 1981].  The mechanism holds back 

processing because it assumes that components will communicate out of sequence. The 

CM algorithm does not prevent simulation-induced deadlock. Thus, CM works best in 

tightly coupled simulations where objects are highly synchronous. The second class is 

Time Warp (TW) simulation, sometimes referred to as optimistic simulation [Jefferson 

1985; Jefferson and Sowizral 1985].  It relies on the ability of an object to rollback its 

present state to that of some previous time.  Time Warp is good for loosely coupled, 

highly asynchronous systems but is inefficient when models have mixed time scales or 

diverse interaction behaviors.   

 

McAffer [1990] proposes the Unified Distributed Simulation (USD) algorithm as 

a compromising approach.  This approach is loosely based on the Time Warp algorithm. 

By explicitly defining risk and aggressiveness parameters for each model, simulation 

models with different behaviors can be mixed within one simulation.  Prassad and Deo 

[1991] propose a parallel algorithm for discrete event simulation on exclusive-read 

exclusive-write parallel random-access machines (EREW PRAM).  The proposed 

algorithm uses a parallel data structure as an event queue, called a parallel heap, which 

allows simultaneous insertions and deletions of messages maintaining priorities among 

messages in a reasonably small amount of time using multiple processors. 

 

Another way to use simulation for real time scheduling, control, and monitoring 

was proposed by Harmonosky [1990].  Instead of adopting a concurrent simulation 
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approach, she suggests interfacing simulation with the physical system to run two 

separate modes.  Figure 1 depicts the structure for such an approach.  The first mode is a 

monitoring mode.  It is used when the model is directly linked to the physical system, 

continuously receiving status information from various system elements. The second 

mode is a decision-making mode and is used when the model evaluates different control 

decision options through traditional off-line runs.  The issues regarding this approach are 

how to balance the tradeoff between a long enough time horizon to obtain statistically 

valid results and a shorter response time required to make prompt decisions. 

 

A similar approach interfacing a SIMAN based simulation model to a real-time 

control database is proposed to evaluate work order release sequences based on measure 

of performance by Muller et al. [1990].  Unlike most simulation studies, the evaluation is 

based on the transient behavior of the system and not steady-state performance.  The 

control system looks at the time window in which the work order is predicted to be 

completed in order to determine if a particular work order sequence meets due date 

requirements set in advance by the MRP system.  Ten replications are made to construct 

the confidence intervals (CI) on the completion time for a work order in order to be 

compared with actual data.  Surprisingly, results indicate that only 43.6% of actual 

completion times occur within these estimated CI.  The authors attribute the occurrences 

of work orders outside the confidence interval mainly to the uncertainty at the finishing 

cell.  
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Figure 1. Scenario for Interfacing Simulation with Physical System
for Real-time Control [Harmonosky 1990] 
en though the study done by Sims [1997] does not directly discuss the 

n of real-time simulation, he argues that, for any scheduling problem with a 

 goal, running simplified simulation models with deterministic values would 

 realistic view and a faster response.  Reverse simulation is used when the 

range of values of the performance measure are known and used as inputs to the 

that the steady-state mean for the performance measure can be reached at a 

 with fewer samplings.  Lee et al. [1997] propose a single run optimization 

 take advantage of the reduced execution time using the reverse simulation 

 and chaos theory.   
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As discussed in Chapter 1, simulation can be classified into two categories: 

terminating and non-terminating.  Non-terminating simulations are sometimes called 

steady-state simulations. Terminating simulations are run only until some stopping 

criterion is met. The stopping criterion is normally set as a system event that is designed 

to end the simulation run based on the nature of system or the purpose of analysis. On the 

contrary, non-terminating simulations can conceptually run indefinitely after they reach a 

steady-state or stationary pattern of behavior.  With use of a proper warm-up period 

deletion technique, most non-terminating simulations can be stopped at the point where 

there are sufficient observations for statistical accuracy and the least significant amount 

of influence from the truncated initial bias, often called the warm up condition.  

 

 Most simulation languages have some form of built-in statistical output 

analyzers.  These built-in statistical output analyzers are often inaccurate and misleading 

because they tend to ignore common startup problems and autocorrelation among 

observations [Seila 1990].  A simulation experiment without a valid statistical output 

analysis is meaningless.  There are clearly two different classes of output analysis that 

can be applied to find statistical means based on whether the simulation is terminating or 

non-terminating. Different types of output analysis are covered in detail in several works 

[Seila 1990; Law and Kelton 1991; Banks et al. 1996].   

 

Typically, a steady-state simulation with particular input parameters can be 

carried out by a single but reasonably lengthy replication with an output analysis using a 

technique like the batch means method.  These techniques find statistically valid steady-
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state means from a stochastic process that represents a particular performance measure.  

On the other hand, the run length in a terminating simulation is dictated by the 

terminating event or condition and this event or condition often limits the number of 

observations that can be collected from a single replication for the statistical output 

analysis.  For a statistically valid output analysis one cannot depend on a highly 

autocorrelated sequence of a limited number of observations from a single run.  

Therefore, repeating a single run a total of R times is required for terminating simulation 

to have  observations in each replication rn r  so that it can have statistically independent 

and identically distributed R sample means.    

 

Terminating simulation can be effectively used as a look-ahead performance 

evaluator in an on-line production control environment.  The chronologically captured 

behavior of a particular performance measure from a terminating simulation during the 

transition period following an unexpected disruption may provide realistic and 

meaningful information to on-line based decision making for automated disruption 

handling.  Such attempts can be accomplished by adopting a hybrid modeling approach, 

often called metamodeling.   Metamodeling maps simulation output to a corresponding 

mathematical model using techniques such as regression or time series analysis. Lin and 

Cochran [Lin and Cochran 1990; Lin and Cochran 1990; Lin et al. 1998] proposed a 

metamodeling approach using terminating simulation.  They argue that relying on the 

traditional terminating simulation method to investigate transitional behaviors of a 

manufacturing system can be expensive and impractical for real time production control.   
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2.3.2 Conclusion 
 
 

Many researchers and systems engineers studying the detailed behavior of 

complex systems such as FMSs have favored discrete event simulation as their preferred 

modeling tool. However, its limitations as an evaluative modeling tool, such as lengthy 

model development time, detailed input data requirement, lengthy simulation execution 

time, and necessary but cumbersome statistical output analysis procedures have kept 

simulation from becoming a practical analysis tool for on-line decision making.  Recent 

improvements in simulation usability, modeling power, and speed have started receiving 

increased attention from both the research community and industry.  In addition to these 

improvements, there have been considerable on-going research efforts to make a 

simulation run faster and shorter using techniques such as distributed simulation, 

concurrent simulation, model simplification, and reverse simulation.  There are clear 

differences between terminating simulation and non-terminating (steady state) simulation 

analyses.  Non-terminating simulation is often useful to predict short-term effects of 

disruption(s) on a particular system behavior.  The majority of simulation modeling 

approaches proposed and explored so far within a framework of online decision-making, 

including online production control systems, have focused only on steady-state 

simulation.  Even for a dynamic production environment, such attempts tend to focus 

only on the newly shifted steady-state mean after the disruption rather than intermediate 

transitional behaviors.   
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Using terminating simulation in a traditional way is very costly and impractical as 

a part of an on-line production control system such as a disruption handler. Applying a 

hybrid method such as metamodeling proposed by Lin [1990] combining terminating 

simulation and mathematical modeling is one way to effectively apply terminating 

simulation in such an on-line decision making support system.   

 

The drawback of such approach is the difficulty encountered as an online based 

non-interactive model constructor to choose the right time series model to represent 

dynamic characteristics and the complexity of the system’s possible volatile behavior 

following the disruption.  This can become a critical issue especially when a composite 

model, a linear combination of several mathematical models, has to be built.  Thus, in 

order to effectively use Lin’s approach for the fully automated and self-contained FMS 

online controller there is a need to adopt a non-parametric method to build the model, 

such as applying effective neural network architecture.  
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2.4 Stochastic Petri Nets 
 
 
 

2.4.1 Summary of Major Developments 
 
 

This study presents a brief history of Petri net based approaches in systems 

modeling and focuses on their applications in FMS transient and steady-state 

performance analysis. First, we need to look at some elementary definitions in classical 

Petri nets and other subclasses such as Stochastic Petri nets (SPNs) before discussing 

major developments in this area. 

 

Petri nets (PNs), also known as place-transition nets (PTNs), were proposed to 

graphically model discrete event dynamic systems by Carl Adam Petri [1962].  Petri nets 

were designed to model systems with deterministic behaviors.  Classical Petri nets are 

useful for investigating qualitative or logical properties of concurrent systems, such as 

mutual exclusion and presence or absence of deadlocks.  Recently, PNs have emerged as 

a powerful performance modeling tool by incorporating stochastic time functions for 

analyzing asynchronous concurrent systems that exhibit non-deterministic behaviors.  As 

Kamath and Viswanadham [1986] point out, Petri nets have some noticeable advantages 

over other system modeling approaches. These advantages are: (1) easy visualization of 

complex systems using a powerful graphical presentation scheme, (2) modeling 

capability for hierarchical decompositions, (3) relatively well-developed analysis 

techniques, (4) well-formulated schemes for system design and synthesis, and (5) dual 
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analysis capability for both quantitative (performance evaluation) and qualitative 

(deadlock detection) characteristics using timed Petri nets.   

 

Formally, a Petri net is a bipartie graph (a graph with two types of nodes) and can 

be presented by three types of objects, namely places, transitions, and directed arcs 

connecting places to transitions and transitions to places. Pictorially, places are depicted 

as circles, transitions are depicted as boxes or bars.  A place is an input place if there 

exists a directed arc connecting the place to a transition.  A place is an output place if 

there exists a directed arc connecting a transition to the place.  Typically, places represent 

preconditions or postconditions and transitions represent events.  The presence of a token 

(a black dot) inside a place often indicates that the condition is satisfied.  For example, 

input places may represent the availability of particular resources, transitions represent 

their use, output places represent release of the resources.   

 

Over the years Petri nets have been enhanced to improve their somewhat limited 

initial modeling capability.  For example, to overcome shortcoming of being 

unmanageably large and complex in modeling of a concurrent system using a place-

transition net (PTN), colored Petri nets (CPNs) are introduced to maintain a manageable 

size of the net [Jensen 1981].  Representation of an equivalent model of a traditionally 

large and complex system using CPN is simpler and more concise in comparison to using 

a traditional PTN.  In addition, CPNs are capable of capturing complex functional 

dependencies between the color of transition firing and colors of required tokens.   
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By changing the placement of tokens on possible subsets of places, which may 

reflect the occurrence of events or execution of operations, one can capture and 

investigate dynamic behavior of the modeled system.  The flow of tokens is governed by 

both enabling rules and firing rules.   

 

There are several key structural properties that can be exhibited by a certain class 

of Petri nets.  These structural properties for Petri nets are: pure, boundedness, safe, live, 

dead, deadlock, mutual exclusion, reversibility, home state, concurrency, conflict, 

asynchronous, nondeterminism, instantaneous, and union of Petri nets.  The detailed 

definitions for such properties can be found in various articles [Peterson 1977; Agerwala 

1979; Kamath and Viswanadham 1986; Zurawski and Zhou 1994].  Among these 

properties, pureness, boundness, and liveness are necessary properties to capture 

important qualitative characteristic such as presence of deadlock in a Petri net model of 

any asynchronous concurrent system.   

 

 To conduct quantitative performance evaluation for a system during time 

evolution, the concept of time has been added to the definition of Petri nets.  There are 

two ways to introduce the time elements to a Petri net: the first one is to attach time to 

transitions [Ramchandani 1973; Ramamoorthy and Ho 1980; Zuberek 1980; Molloy 

1982]; second one is to associate time with places [Sifakis 1977; Bruno and Biglia 1985].  

The choice of associating time with transitions is more popular in the literature than 

associating time with places [Viswanadham and Narahari 1992]. Petri nets with time 

functions are called timed Petri nets.  There are two types of timed Petri nets based on the 
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nature of the time function: one is deterministic timed Petri nets; and the other is 

stochastic timed Petri nets.  Early work related to timed Petri nets is mostly confined to 

deterministic timed Petri nets [Ramchandani 1973; Sifakis 1977].  Later, the concept has 

been expanded to include random time duration [Natkin 1980; Molloy 1981].  We call 

Petri nets with random time delay for their transitions Stochastic Petri nets (SPNs).   

 

When random variables representing time delay are of general distribution rather 

than exponential, the resulting net model can not be solved analytically as we have seen 

in similar queueing network models with non-exponential service times.  Thus, 

simulation or approximation methods are required to analyze the model.  However, when 

the time delay for each transition is assumed to be stochastic and exponential, the 

resulting net can be analytically solved. These Petri nets are called exponential timed 

Petri nets (ETPNs) [Viswanadham and Narahari 1992].  When ETPN models allow for 

immediate (zero time delay) transitions, we call these SPNs generalized SPNs (GSPNs).   

Studies individually done by Natkin [1980] and Molloy [1981] have shown that the 

marking process of an exponential (or geometric) timed Petri net is a continuous time 

Markov chain (CTMC).  Thus, both ETPN and GSPN models, including extensions such 

as priority transitions, inhibitor arcs, and probabilistic arcs can be directly converted into 

their equivalent continuous time Markov chain (CTMC) models, and analyzed using a 

Markovian analysis method.   

 

As we discussed earlier in Section 2.2 Makov Chain Models, the CTMC modeling 

approach has its own inherent shortcomings as an effective online-based transient 
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performance analysis tool in addition to drawbacks typically associated with Markov 

chain models.  These shortcomings are associated with solving Kolmogorov backward or 

forward differential equations in the form of first order linear differential equations to 

find a closed form solution to approximate individual transition probabilities or state 

probabilities as a function of time. 

 

As Molloy mentions [Molloy 1985], for quantitative analysis of system 

performance, stochastic Petri nets do not provide more modeling power than Markov 

chains, but they provide a better human interface. By using a GSPN representation on 

appropriate discrete event dynamic systems, Markov chains may be generated and solved 

automatically.  The clear advantage of using GSPN over Markov chains lies in enabling 

the system designer to specify the system operation in a concise form that can be verified 

during the generation of the reachable tree.  In comparison to product form queueing 

networks, GSPNs are more powerful because they can represent non-product form 

features [Narahari and Viswanadham 1989]. 

 

Despite its continuous expansion and enhancement in modeling capability and 

flexibility, the abstraction power of ordinary Petri nets is not sufficient to capture many 

complex industrial systems, such as manufacturing and communication systems which 

require the flow of different resources or messages within the system.   

 

One way to model such systems is to construct a model in such a way that the 

flow of each resource or message is confined within a dedicated subnet.  In large-scale 
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systems, a number of resources or messages often share the same system that can be 

modeled as a single subnet.  When this subnet is duplicated to model the entire system for 

different resources and messages, the overall model that may contain multiple 

replications of the same subnet may result in unmanageable graphical complexity.  To 

resolve this issue, several methods for tokens to have distinct identity are proposed and 

they are often referred to as high-level Petri nets. In high-level Petri nets, a token can be a 

compound object carrying data in forms of integers, reals, text strings, records, lists and 

tuples.  High-level Petri nets typically include predicate-transition nets [Genrich and 

Lautenbach 1991], colored nets [Jensen 1981], object-oriented nets, and nets with 

individual tokens [Reisig 1983].  

 

Colored Petri nets (CPNs) were introduced to represent a complex system in a 

compact and manageable manner by maintaining distinct token identity through 

associating different colors [Jensen 1981].  In CPNs, a set of colors is associated with 

each place and each transition. The set of colors associated with a place indicates the 

color of tokens that can be placed at the place.  Similarly a transition can fire based on 

each of its assigned colors.  When a transition is fired, corresponding colored tokens are 

removed and added at its appropriate input and output places respectively according to 

the functional dependency specified between the color of the transition firing and the 

colors of the involved tokens.  

 

Petri nets have gained popularity as a versatile modeling and analysis tool for 

addressing design issues related to FMSs [Silva and Valette 1990; Zhou 1995].  
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Typically, most ordinary PTN models have been used in the area of control system 

design, validation, and implementation.  However, as Kamath and Viswanadham [1986] 

point out, the number of related studies in FMS performance modeling using Petri nets 

has been somewhat limited due to the limited availability of proper performance 

evaluation techniques for various PTN classes.   

 

A predominant number of FMS performance modeling attempts using Petri nets 

are based on Stochastic Petri nets with Markov chain analysis. Since -bounded SPN 

models with exponentially distributed transition rates are isomorphic to Markov process 

models with a state space consisting of possible markings, a direct conversion to an 

equivalent Markov model can be easily achieved if the model is not too complex.  

Moreover, analytically evaluating equivalent Markov chain models is not a 

computationally difficult task as long as the level of complexity is kept minimal.  As 

previously discussed, studying transient behavior of the given Markov chain requires 

finding equilibrium distributions in terms of time .  To find these distributions, solving 

Chapman-Kolmogorov equations in the form of first order differential equations either in 

a backward or forward form is necessary.  The complexity of solving these equations can 

vary based on the different types of mathematical techniques that are applied.   

k

t

 

A simple SPN can also be easily converted to a simulation model as a non-

analytical form of performance evaluation.  A transition state analysis by simulation is a 

more feasible approach to understand quantitative behaviors of the net than Markov chain 

analysis especially when the complexity of the given net is no longer considered 
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moderate.  For FMS performance modeling using PTNs, converting PTNs to valid 

simulation models is a better approach for on-line production control.  However, 

technical difficulties in conducting a reliable and fast online simulation study can still be 

problematic as discussed in the previous section.   

 

The majority of PTN modeling in FMS performance evaluation is based on the 

steady-state behavior of the given FMS.  An initial investigation of applications of timed 

PTNs in FMS real-time control and performance evaluation can be found in the work by 

Dubois and Stecke [1983].  The study has concluded that timed PTN is a useful means to 

assess the steady-state performance as well as to detect any sequence of events which can 

result in deadlock in FMS real-time control. 

 

However, in reality ordinary SPN models for FMSs can become highly complex 

due to the fact that most control logic or operational sequences in many FMSs consists of 

resources that have a high degree of interaction.  This type of systems is viewed as a 

system composed of many replications of a few basic common components. In most 

cases, these common components behave in a similar manner.   

 

Different arrangements of these basic components can represent various system 

conditions (status) and subsequent events for the given FMS.  Utilizing Colored Petri nets 

in conjunction with SPNs is proposed as a powerful tool to verify the control logic 

through investigating the presence of deadlock in an FMS [Kamath and Viswanadham 

1986].  Kamath and Viswanadham [1986] have shown the feasibility of direct 
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transformation of CPNs to effective simulation models. Aside from the traditional linear 

algebraic methods, the fast and efficient way to compute invariants of a PTN model for 

an FMS is found by taking the union of invariants of smaller and simpler underlying 

PTNs [Narahari and Viswanadham 1984].   

 

Another study [Micovsky et al. 1990] has demonstrated that a CPN approach to 

validate a deadlock free design for an FMS control system utilizing a dedicated object-

oriented programming tool with an incorporated simulation method is a highly effective 

way to prototype a new control system.   A similar study [Venkatesh and Ilyas 1995] is 

done for modeling, controlling, and evaluating local area networks in FMSs using real-

time timed PNs (RTPNs).  In an RTPN, the standard TPN is augmented with two extra 

tuples, namely input signal vector and output signal vector, to read inputs from the 

system and send outputs to the system in real time.  Venkatesh, Zhou, and Kaighobadi et 

al. [1996] find that TPNs are effective tools to study optimal operational parameters for a 

flexible factory automated system (FFAS) under both ‘push’ and ‘pull’ paradigms.  

FFASs typically comprise a strategic arrangement of flexible manufacturing systems 

(FMSs) and flexible assembly systems (FASs) to meet dynamically changing orders.  The 

study shows that the configuration can result in the minimum buffer sizes and maximum 

system utilization when output rate is considered as the optimal solution under each 

paradigm.  The study also concludes that the “push” paradigm performs better than the 

“pull” one for the steady-state performance of the given FFAS. 
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Despite a powerful formalism of CPNs, converting a complex large-scale 

stochastic Petri net not only to a valid but also to a computationally efficient simulation 

model is a challenging task.  Gaeta [1996] proposes three approaches to improve 

simulation efficiency: first, use of an efficient algorithm for the computation of the 

occurrence of a transition in a given marking; second, reduction of the amount of work 

needed to schedule or preempt the occurrence of a transition as a consequence of a 

marking change; third, reduction of the average length of the event list in the case of 

symmetric models where the symbolic simulation techniques applies.  The symbolic 

simulation technique is to collapse all the equivalent events of the set FIRING (a set of 

firable color instances) into a single symbolic event.    

 

Yim and Barta [1994] propose a system architecture for a Petri net based on-line 

simulator that can be utilized in both design and operating phases for FMSs.  This 

architecture separates a simulation model into hardware and control systems to achieve a 

more realistic and easier modeling process.  The hardware components, including low-

level control functions, are modeled by Petri nets objects such as places and tokens.  Cell 

control functions such as part dispatching, routing, real-time scheduling, and part 

monitoring are modeled separately as subnets and integrated into a Petri net model.  For 

operating an FMS using this architecture, the current state of a system should be mapped 

to the Petri net model by assigning initial tokens accordingly and an integrated decision 

maker issues a proper operational decision based on the automatically collected Petri net 

simulation results.  Since a simulation study is used as a means to quantitatively analyze 
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the performance of the given net, the Petri net model utilizing simulation can provide a 

framework for a realistic transient performance analysis for the given FMS.  

 

Hastono et al. [1991] propose an online-based performance modeling method 

using SPNs to schedule FMSs.  This method uses both continuous time and discrete time 

stochastic Petri nets with hierarchical structure to model an FMS under uncertainty, such 

as machine tool failures and variations of processing time.  Simulations on SPNs are 

conducted to evaluate the performance of the given rule base.  The whole model is 

partitioned into two parts: the transporting level model represented by discrete-time SPNs 

and the processing level model represented by continuous-time SPNs.  The biggest 

advantage of this approach is that the final simulation model generated from the given 

SPN can be simple since the overall model is built considering the processing level 

models as the submodels of the transporting level models. 

  

 

 

2.4.2 Conclusion 
 
 

Traditionally, Pertri nets have been effective graphical modeling tools in studying 

qualitative aspects of system behaviors such as presence or absence of deadlocks. 

However, after the emergence of new classes, such as stochastic and colored Petri nets, 

and new performance evaluation techniques in Petri nets, Petri nets are now considered 

powerful system performance evaluation tools to investigate quantitative aspects of many 

 



  74 

concurrent systems.  Since FMSs are tightly coupled concurrent asynchronous systems 

that typically have complex interactions among their sub-components, Petri net modeling 

is an ideal way to conduct control system design, validation, and implementation in 

FMSs.  

 

There are typically two ways to conduct performance evaluation on a given Petri 

net: the first one is converting a given net to an equivalent Markov chain model by 

making a set of all possible markings as a state space of the Markov chain and conducting 

a conventional algebraic Markov chain analysis for the steady-state performance of the 

given net; the second one is to build a simulation model directly out of a given Petri net 

model if the net maintains its moderate complexity.  Despite a powerful formalism of 

CPN, a direct conversion of a complex stochastic net to a computationally efficient 

simulation model is a challenging task.  Use of efficient algorithms for the computation 

of the occurrence of a transition in a given marking, model simplification, and utilizing 

symbolic simulation techniques are proposed to improve simulation efficiency. 

 

For the Markov chain model directly converted from a given Petri net model, 

conducting a transient performance analysis on the net requires solving Chapman-

Kolmogorov equations, first order differential equations, to find equilibrium distributions 

in terms of time t.  This can become problematic based on the degree of complexity of the 

equation and types of mathematical techniques to be applied.  On the other hand, running 

a simulation model that is directly derived from the given SPN is relatively easier and 

realistic enough to be used as a framework to evaluate the transient performance of the 
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given net.  However, building an efficient simulation model when the net becomes highly 

complex is still a difficult task. Furthermore, for modeling a system that changes its 

configuration during its lifecycle, an automatic adjustment or modification of the given 

SPN model based on the new system configuration requirements is still a challenging 

task. Yet there are continuous efforts and interests in the research community to 

incorporate SPNs as the backbone performance evaluation tool to handle both steady and 

transient performance, a part of online decision-making mechanism in FMS controls. 

This is mainly due to the unique capability of Petri net modeling, such as simultaneous 

quantitative and qualitative assessment capability. 

 

 

 

2.5 Summary 
  

 

Four major evaluative modeling approaches are commonly used to study FMS 

behavior. These approaches are: queueing networks, Markov chains, simulation, and Petri 

nets. The majority of studies done in FMS performance modeling used Queueing 

Networks analysis. However, they tend to focus on the steady-state system performance 

under a specific operational strategy rather than transient behaviors followed by a 

disruption. The QN approach is generally not an effective way to study detailed behavior 

of the system within a short-term time interval.   
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Markov chain models are based on either Markov or semi-Markov processes that 

are the two most important subclasses of stochastic processes. Markov processes provide 

the underlying theoretical foundations for many queueing theory-based analytical 

modeling approaches.  Markov chain modeling approach is more suitable for off-line 

decision making process.  Reconfiguration of the model on the fly can be problematic if 

the system configuration changes during the course of operation.   

 

The most promising analytical model based transient performance analysis 

method is performability modeling using either continuous or discrete time Markov 

reward processes.  Performability analysis combines both performance and reliability 

aspects of a system.   Furthermore, this provides a critical insight into higher moments of 

the performability distribution.  Useful expected values such as the expected 

instantaneous reward (selected performance measures) vector at time t  as well as 

cumulative reward over  for a given part type can be found through this approach.  

Despite its promising effectiveness as a transient performance analysis tool, the technique 

still heavily relies on the assumption of exponential processing times.  This can be a 

problem for many asynchronous systems like FMSs with non-exponential service time 

distributions.  Aside from this biggest drawback, the method also relies on human 

analytical skills and modeling expertise, which can become a hindrance to be a fully 

automated modeling scheme with no or less human interventions during the model’s life 

cycle.   

] ,0[ t
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Many studies show that simulation is the most widely used as an off-line based 

evaluative modeling tool to study the impact of a new control policy or scheduling 

algorithm/heuristic. However, its limitations as an evaluative modeling tool, such as 

lengthy model development time, detailed input data requirement, lengthy simulation 

execution time, and necessary but cumbersome statistical output analysis procedures have 

kept discrete event simulation from becoming a practical analysis tool for on-line 

decision making.  However, there have been considerable on-going research efforts in 

recent years to make a simulation run faster and shorter using techniques such as 

distributed simulation, concurrent simulation, model simplification, and reverse 

simulation.  The majority of simulation modeling approaches proposed for online 

decision making relies on steady-state performance analysis.   

 

Using terminating simulation in a traditional way can be costly and impractical 

especially for real time disruption detection and diagnosis under on-line production 

control. Applying a hybrid method such as the meta-modeling, which combines 

terminating simulation and mathematical modeling, is one way to effectively apply 

terminating simulation in an on-line decision making support system.   

 

After the emergence of new Petri net classes, such as stochastic and colored Petri 

nets, as well as new performance evaluation techniques using Petri nets, Petri nets are 

now considered a powerful system performance evaluation tool to investigate quantitative 

aspects of many concurrent systems.  There are many efforts in the research community 

to incorporate Stochastic Petri-nets as the backbone performance evaluation tool to 
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handle both steady and transient performance. This is mainly due to several unique 

capabilities of Petri net modeling, such as simultaneous quantitative and qualitative 

assessment capability. 
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3. Problem Settings and Systems Description 
 

 
In this chapter the FMS chosen for this study is presented.  Since using a time 

series model can easily render predictions on quantified system performance of an FMS, 

a basic review of conventional approaches, regression based time series modeling, is 

provided.   As a means to capture various system behavior patterns under the new 

transient performance-modeling framework proposed in this study, ANN based time 

series modeling is closely investigated as an alternative to its regression based 

counterpart.  

 

 
3.1 FMS 

 
 

3.1.1 System Description 
 
 

The flexible manufacturing system (FMS) used in this study is an ideal system 

that is realistic enough to represent many currently deployed real-world systems but also 

can be analyzed within a reasonable amount of time and effort. The focus of the 

experiments to be conducted is to explore the possibility of artificial neural networks as 

an effective baseline technique to capture realistic transient behaviors of an FMS.  The 

neural network based transient performance model should provide better knowledge for 
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both an operator and automated disruption handler to selectively react to controllable 

performance deteriorations.  Typically, transient behaviors in the form of overreaction 

can bring a negative impact on the overall system performance.   Over-reactive transient 

behaviors often result in system nervousness.    

 

System nervousness can be defined as a system phenomenon that can be 

characterized by hypersensitiveness to changes caused by unexpected event(s). System 

nervousness can be worsened by overbearing corrective or preventive measures.   This 

phenomenon is commonly found in tightly coupled automated manufacturing systems 

with self-guided system performance monitoring and control system such as FMSs [Kim 

and Kim 1994].  Thus, the system studied in this research should exhibit similar 

behaviors during its transient states following unexpected disruptions of its steady-state. 

 

The proposed FMS model is based on a real world FMS, the Caterpillar system, 

which can be found in a simulation study by Stecke and Solberg [1981].  Some system 

configuration and operational rules used with the original model are modified here to 

create the desired system conditions and level of complexity needed for this research.  

  

The FMS consists of eight machining stations with an automatic tool changer, one 

loading station, one unloading station, and three automated guided cart systems as shown 

in Figure 2.  Each machining station has a limited capacity tool magazine that holds 

machining tools required by various operations assigned to the machine.  Thus, each 

machine stations can perform more than one type of similar machining operation. The 
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eight machining stations can be grouped into four machine groups based on the similarity 

in their primary machining operations.  Machine grouping is for functional redundancy 

and even machine loading.  There are three automated guided carts that run on a straight 

track connecting all machining stations in tandem, carrying a loaded part fixture among 

machining stations and loading/unloading stations. There are ten universal part fixtures.  

Each part fixture is designed to hold a mixture of different part types that share similar 

machining requirements. 

 

Machine  1

Machine  2

Machine  3
Machine  5

Machine  6

Machine  7

Machine  9Machine  12

1  Loading/Unloading Stations

Automated Guided Cart  1 Automated Guided Cart  2

11

Automated Guided Cart  3

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  Physical layout of the FMS under study  
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3.1.2 Parts 
 
 

The FMS under study is a subsystem of a make-to-order part production system.  

There are maximum of 12 different part types that can be handled by the FMS.    In a 

normal operation mode, continuous inflow of similar part orders from the main 

production plan is assumed.   Each production plan requires multiple orders of four to 

five unique part types.  Table 2 illustrates how individual orders may look like under a 

single production plan.  For this study, five is the maximum number of different part 

types to be allowed in a single order.  Equal proportion of selected part types will be fed 

into the system during the course of a given production plan.  An unplanned shift from 

four part types to five part type or vice versa can be considered as a form of disruption 

scenarios to be studied in this experiment. 

Table 2.  Sample orders with four part types under a production plan 
Part Type (% of the given order) Order 

No. 

No. of 
Parts per 

each order 1 2 3 4 5 6 7 8 9 10 11 12 

1 1324 25    25  25    25  

2 1056 25    25  25    25  

3 999 25    25  25    25  

4 1320 25    25  25    25  

5 1406 25    25  25    25  

6 1320 25    25  25    25  

 

 

The chance to detect upcoming changes in demand for a particular product type 

that requires a particular combination of various part types is presumed to be small due to 

its volatile nature.  Each part type has the same inter-arrival time that is sampled from an 

exponential distribution with either mean of 2.3 or 2.4 minutes. 
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Steps to pick these two numbers are explained in Chapter 6.  A group of similar 

part types require a set of similar machine operations that can be provided by one or more 

machining groups.  The following table provides exemplary part types with 

corresponding arrival times and required machining sequences.  

 

Table 3.  Inter-arrival Time and Machining Process Requirements for Different 
Part Types 

Part Type Machining Process Requirement in 
the sequence of 1st ->2nd->3rd 

 1st 2nd 3rd 
Part Type 1 P1 P4 P9 

Part Type 2 P2 P3 P9 

Part Type 3 P1 P5 P10 

Part Type 4 P1 p3 P9 

Part Type 5 P2 P7 P9 

Part Type 6 P1 P6 P10 

Part Type 7 P1 P8 P9 

Part Type 8 P2 P7 P9 

Part Type 9 P3 P7 P9 

Part Type 10 P4 P6 P10 

Part Type 11 P5 P7 P9 

Part Type 12 P3 P8 P9  

 

 

Incoming parts are fed into one of three conveyor belt systems based on similar 

machining process requirements before they actually enter the system. These conveyor 

belts provide a presorting capability as well as three separate waiting areas.  

Consequently, certain part types share the same conveyor belt due to similar machining 

requirements (refer to Table 4).  
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Table 4.  Pre-sort Conveyor Belts and Possible Part Types 

Admissible Part Types Pre-sort Conveyor 
Belt (prior to fixture 

loading) 
1st 2nd 3rd 4th 

Belt 1 Part Type 1 Part Type 2 Part Type 3 Part Type 4 

Belt 2 Part Type 5 Part Type 6 Part Type 7 Part Type 8 

Belt 3 Part Type 9 Part Type 10 Part Type 11 Part Type 12 

 

The loading station continuously monitors individual queue length of the three 

conveyor belts and services the conveyor belt with the longest queue buildup.  Then parts 

from the selected conveyor belt are loaded into the first available universal part fixture 

one by one in the order of their arrivals until the fixture becomes full.  Then the current 

loading stops until a next fixture becomes available in the loading/unloading area.   

Each part type comes in different sizes and shapes and they are to be equally well 

distributed in the incoming part flow. Consequently, the total number of incoming parts 

to be loaded onto a particular fixture cannot be known until the fixture is actually loaded.  

The number of parts to be loaded into a next available fixture can be determined by the 

sum of individual part sizes taken from parts waiting on the selected conveyor belt.  

 

The loaded fixture is delivered to a machine center by an automated guided 

vehicle if a machine center from the desired machine group is available. Each machine 

group provides a unique set of machining operations.  Otherwise the loaded fixture waits 

in the loading/unloading area until a machine station from the desired machine group 

becomes available.  If there are multiple fixtures from the same part group competing for 

one available machine group, the fixture with the shortest processing time will take the 
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first available machine from the group by the rule of STP (Shortest Processing Time 

First).   

 

Table 5.  Relative Part Size for Different Part Types 

Part Type 

Relative 
Part Size 
when the 

fixture size 
= 15 

Part Type 1 3 

Part Type 2 5 

Part Type 3 2 

Part Type 4 4 

Part Type 5 3 

Part Type 6 5 

Part Type 7 2 

Part Type 8 4 

Part Type 9 3 

Part Type 10 5 

Part Type 11 2 

Part Type 12 4 

 
 

 

 

 

 

Howev

competing for 

divided by the

loading/unload

shortest proces

will guarantee

done by Stecke

 

ex)  a possible fixture load, 3 x part type 1 and 3 x part type 3
= 3*3 +3*2= 9 + 6 = 15 <= 15 (maximum fixture capacity) 
er, when there are two or more fixtures from different part groups 

the same machine group, the fixture with the shorted processing time 

 total estimated processing time of the particular part groups waiting in the 

ing area will take the first available machine.  The rule of STP/TOT, the 

sing time for the operation divided by the total processing time for the job, 

 the best production rate under most circumstances according to the study 

 and Solberg [1981].   
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When two or more machines from the same machine group become available, the 

machine with the longer idle time will process the next available fixture.  A machine 

group can provide more than one unique machining operation.  Some of machine centers 

within a group can actually perform identical machining operations even though their 

average processing time against the same part type may not be the same.   

 

An operational sequence to process each part type is predefined but the actual 

machine assignment is not made until the fixture containing the particular part types is 

ready to be dispatched.  The number of different operations that can be performed by a 

particular machining center from a given machine group is often restricted by the tools 

currently available to the machining center.   Table 6 summarizes four machine groups 

and their capable machining operations.  

 

The system is designed with some degree of functional redundancy within each 

machine group to allow alternative routings in case of any machine failures. Many argue 

that FMSs deployed today behave more in a deterministic manner due to their rigid 

computer control. But there is still a room for stochastic behaviors that could result from 

interactions with their neighboring production systems that exhibit stochastic natures.   

Moreover, one of intentions for this study is to extend the applicability of ANN based 

transient performance modeling methodology to other asynchronous concurrent systems. 

Therefore, the suggested FMS should represent broader system characteristics of many 

asynchronous concurrent systems.  In order to achieve this objective, stochastic elements 
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are introduced in the proposed system, which may distance itself from the realistic 

modeling perspective of most real-world FMSs.    

  

 

Table 6. Part Groups and Machine Process Capability 
Individual Machines in a 

Group Machine Group 
1st 2nd 

Group 1 M1 M6 
Group 2 M2 M5 
Group 3 M3 M7 
Group 4 M9 M12 

 

Machine 
Process

Capable 
Machine 
Group 

P1 Group1 
P2 Group1 
P3 Group2 
P4 Group2 
P5 Group2 
P6 Group3 
P7 Group3 
P8 Group3 
P9 Group4 

P10 Group4 

 

 

Setup times between different part types for machining stations are considered 

significant and are counted toward to the average processing time for each part type.  The 

order for processing individual parts within a given fixture is to start from the part type 

with the shorted processing time (SPT) and then move onto parts with the next shortest 

processing time. Naturally, if different part types loaded into a given fixture came from 

only one or two type, the average processing time to process the entire fixture will have 
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small variances.  On the contrary, if the number of different part types from incoming 

fixtures is high, the average processing time to process individual fixtures will have a 

relatively larger variance.   Estimated processing time distributions by each machining 

stations for various part types are summarized in Table 7. 

 

  Actual machine assignments are not made until the parts actually enter the 

system. The controller determines proper machine loading assignments based on the 

current workload of individual machine centers within a group. This loading policy is 

based on the pooling strategy in which machines from the same machine group can 

perform similar machining processes even though there is a slight difference in terms of 

speed.  This would also guarantee the best performance in terms of balanced loadings 

among machines according to the Stecke and Solberg’s [1981] study. 

 

Table 7.  Service Time Distributions for Individual Part Types 
Machining Time Distribution Part 

Type M1 M6 M2 M5 M3 M7 M9 M12 
Part Type 1 triang (1.7, 

3.6, 2.5) 
triang (2.3, 

5.5, 3.2) 
triang (2.2, 

4.4, 3) 
triang (2, 5.5, 

3.5) 
N/A N/A triang (2.2, 5, 

3.4) 
triang (1.7, 

3.2, 2.5) 
Part Type 2 triang (1.3, 

3.7, 2.3) 
triang (2, 5, 

3.5) 
triang (2, 4, 

3.2) 
triang (2.5, 

5.5, 3.9) 
N/A N/A triang (2.2, 

4.5, 3) 
triang (1.5, 

3.5, 2) 
Part Type 3 triang (1.5, 

3, 2.2) 
triang (2.3, 5, 

3.3) 
triang (2, 5, 

3.7) 
triang (1.7, 

3.5, 2.3) 
N/A N/A triang (1.2, 

3.5, 2.3) 
triang (3, 5, 

3.6) 
Part Type 4 triang (2, 5, 

3.2) 
triang (3, 5, 

4.2) 
triang (2.7, 

4.3, 3.5) 
triang (2.5, 

4.5, 3) 
N/A N/A triang (2, 4.5, 

3.1) 
triang (3, 5, 

3.6) 
Part Type 5 triang (2, 5, 

3.2) 
triang (2, 5.5, 

3.3) 
N/A N/A triang (1.8, 

3.8, 2.4) 
triang (2.5, 

5.5, 3) 
triang (1, 3, 

2) 
triang (2, 5, 

3) 
Part Type 6 triang (2.5, 

4, 3) 
triang (2, 4.3, 

3.5) 
N/A N/A triang (1.9, 

3.4, 2) 
triang (4, 6, 

5) 
triang (1, 3, 

2) 
triang (2, 3.5, 

2.5) 
Part Type 7 triang (1.7, 

2.6, 2.1) 
triang (1.7, 

4.3, 3.5) 
N/A N/A triang (2, 5, 

3.5) 
triang (3, 6, 

4) 
triang (1, 3, 

2) 
triang (1, 3, 

2) 
Part Type 8 triang (2.2, 

4.8, 3) 
triang (3, 5, 

4.5) 
N/A N/A triang (4, 7, 

5.5) 
triang (5, 8, 

6) 
triang (1, 3, 

2) 
triang (3, 5, 

4) 
Part Type 9 N/A N/A triang (1.5, 

4.5, 3) 
triang (2, 5, 

4) 
triang (2, 5, 

3.5) 
triang (3, 6, 

4) 
triang (2.5, 

5.5, 3.5) 
triang (1, 3, 

2) 
Part Type 10 N/A N/A triang (0.5, 

4.5, 3) 
triang (2.3, 

5.3, 4.3) 
triang (1.5, 

5.5, 3) 
triang (2.5, 

5.5, 3.8) 
triang (2.5, 

5.5, 3.5) 
triang (3, 5, 

4) 
Part Type 11 N/A N/A triang (2, 5, 

3.5) 
triang (2.5, 

5.5, 4.5) 
triang (2.5, 

5.5, 4) 
triang (3.5, 

6.5, 4.5) 
triang (3, 6, 

4) 
triang (1.5, 
3.5, 2.5)) 

Part Type 12 N/A N/A triang (2.5, 
5.5, 4) 

triang (3, 6, 
5) 

triang (3, 6, 
4.5) 

triang (4, 7, 
5) 

triang (3.5, 
6.5, 4.5) 

triang (2, 4, 
3) 
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A rough order of magnitude estimate of an overall efficiency of the proposed 

FMS system in a steady-state condition is necessary to verify the simulation model later.  

In this case, a simple queueing approximation can be used to estimate the average 

utilization.  The whole system needs to be simplified and some fundamental operational 

rules have to be modified to use the queueing approximation.  One such example is 

machine processing time distribution.  They need to be presumed as exponential rather 

than the original triangular distributions.  A second assumption is no competition among 

loaded fixtures over AGVs and machining stations due to the fact that only two fixtures 

are allowed to circulate in the system to undergo various machining operations at any 

given time.  

 

 Individual parts have to be loaded onto a single fixture in order to undergo 

designated machining operations based on common machining requirements.  Thus, 

mean arrival time of individual parts to the system can be actually viewed as mean time 

between fixture loading completions.  On average about six parts are loaded into a single 

fixture, which can be approximated by six times the mean arrival times of 2.3 or 2.4 

minutes.   Then, the whole system can be viewed as a single M/M/2 system where a 

service consists of three distinctive operations provided by four machine groups and each 

machine group consists of two machines that can perform identical operations.  Two 

AGVs can be also viewed as an additional operation.  This over-simplistic picture makes 

the queueing approximation possible for the model.   Otherwise the modeling using 
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traditional queueing approximation can be highly challenging.  The approximation result 

can be later used as a verification measure for the simulation model.  

 

 Since the average utilization of M/M/c can be found using a relationship of  

µ
λρ
c

=  where c = number of servers that can provide the identical service, λ = mean 

arrival time, and µ =mean service time.   The relationship of ρ  becomes   =ρ  

ation transportaverage plus operations machine  wighted threeof  timeservicemean  total 2
machinefirst   the tofixture of  timearrivalmean 

×
 

Finally, approximated 0.603939
424.11*2
6*3.2

=≅ρ  where 6 is the estimated average 

number of incoming parts that can fit into a single fixture and 11.424 is the weighted 

average of total machine processing (three operations) and transportation time based on 

different part mix. 

 

 

3.2 Time Series Analysis 
 
 

Forecasting through a regression based time series modeling is closely examined 

in this chapter to devise it as a benchmark for the new transient modeling approach . The 

term, forecasting, is extensively used in many scientific disciplines, referring to a 

systematic approach to predict the future outcome of either a known or unknown process 

through analyzing its past behaviors or attributes.  Forecasting in time series analysis 
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typically means an accurate prediction of the short-term evolution of a given time series 

process [Weigend and Gershenfeld 1992].    

 

Even though there is no universally applicable forecasting procedure, many types 

of forecasting procedures can be classified into three broad categories: 1) forecasting 

procedures are considered subjective if predictions are made on a subjective basis using 

judgment, intuition, commercial knowledge and any other relevant information; 2) 

forecasting procedures are considered univariate if predictions are made based entirely on 

past observations in a given time series, by fitting a model to the data and extrapolating; 

3) forecasting procedures are called multivariate if predictions are made by taking 

observations on other variables into account as well as utilizing their past observations. A 

common form of univariate models is a regression model.  These are frequently used as 

econometric models.   

 

 For long-term forecasting, a univariate forecasting procedure such as 

extrapolation of trend curves is useful to fit a curve to historic yearly totals and 

extrapolate.  Harrison and Pearce [1972] indicate that the forecasting lead time should not 

exceed half the number of past years.  The method is simple, fairly crude, but robust and 

economical for long-term forecasting where complicated models can seldom be fitted to 

past data. One drawback is that there is no logical basis for choosing among different 

curves except by goodness of fit.    
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In  1958, C. C. Holt suggested exponential smoothing, another univariate 

forecasting procedure using weighted sum of past observations.  Exponential smoothing 

can be applied to any stationary series that does not contain a trend or seasonal pattern.  

The procedure that generalized exponential smoothing to deal with time series containing 

trend and seasonal variation is called Holt-Winters procedure [Winters 1960].  Holt-

Winters procedure introduces trend and seasonal terms that can be updated by the 

exponential smoothing. 

 

 Box and Jenkins [1968] create the most popular univariate forecasting procedure, 

the Box and Jenkins procedure. This procedure is based on fitting an autoregressive 

integrated moving average (ARIMA) model to a given set of data and taking conditional 

expectations.  The procedure starts with model identification, examining the data to see 

which member of the ARIMA process classes is the most appropriate model.  Then the 

procedure requires estimation of parameters of the chosen model by minimizing the sum 

of least squares.  As a next step the procedure examines the residuals from the fitted 

model. As a last step in the procedure, continuous considerations of alternative models 

are necessary until the chosen model appears to be adequate. 

   

One of major drawbacks of Box and Jenkins procedure is the difficulty to fully 

automate the entire procedure.  Granger and Newbold [1977] propose a procedure called 

step-wise autoregression that can be considered a subset of the Box-Jenkins procedure.  

Since autoregressive (AR) models are much easier to fit than moving average (MA) or 

mixed autoregressive-moving average (ARMA) models, the step-wise autoregression has 

 



  93 

the advantage of being fully automatic in contrast with the Box-Jenkins procedure. 

However, the step-wise autoregression requires additional parameters to closely fit given 

data.   

 

The majority of quantitative techniques used to build a mathematical model for a 

series of values collected at different points in time utilize statistical means.  This section 

reviews some of fundamentals of the set of techniques classified as time series analysis.   

A time series is a collection of quantitative observations made sequentially in time 

[Chatfield 1984].  If a time series can be predicted exactly, it is said to be deterministic. 

However, most time series are stochastic. This means the future can be only partially 

determined by past values. For stochastic series, exact predictions are difficult to make 

and must be estimated based on the fact that future values have a probability distribution. 

   

Mathematically, a stochastic process may be defined as a collection of random 

variables  where T denotes the set of time-points at which the process is 

defined.  One common way to describe a stochastic process is to find the statistical 

moments of the underlying probability distributions for the process, particularly the first 

and second moments (which are called the mean and variance) and autocovariance 

functions.  Mathematical notation for the first and second moments for a stochastic 

process with discrete time observations follows. 

},),({ TttX ∈

The first moment, the mean function, of the underlying probability distribution at time t , 

),(tµ is defined by  

)()( tXEt =µ . 
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The second moment, the variance function at time t , , is defined by )(2 tσ

)]([)()(2 tXEXVart tt µσ −== .  

The autocovariance function between time t  and  kt +  of the underlying probability 

distributions is defined by  

)]}()][({[),()( ktXtXEXXCOVk ttktt +−−== + µµγ   

where . K,2,10 ±±=k

 

In most statistical problems, estimating the properties of a population from a 

sample is of primary interest.  In time series analysis, however, it is often impossible to 

make more than one observation at a given time. Thus, only one observation on the 

random variable can be obtained at a time.  Nevertheless we may regard the observed 

time series as just one sample of the infinite set of time series that we might have 

observed.  This infinite set of time series is called the ensemble.  Every member of the 

ensemble is a possible realization of the stochastic process.  The observed time series can 

be regarded as one particular realization, and will be denoted by  for  if 

observations are continuous and by  for 

)(tx )0( Tt ≤≤

tx =t ,,,1 NK  if observations are discrete. 

 

One unique feature of stochastic time series, which distinguishes time series from 

common statistical data, is the correlation among the observed values of the series at 

different time instants.  If we let  be a random variable from either a multivariate or a 

univariate stochastic process at different discrete times 

tX

,3, 2, ,1 ,0 nt K= then the random 

variable  will be correlated with the random variables  and tX ,,,, 321 K−−− ttt XXX
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K,,, 321 −−− ttt XXX .   The covariance between successive observations is called 

autocovariance. The autocorrelation coefficient between observations a distance  apart, 

is given by 

k

∑

∑

=

−

=
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−
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where x is the sample mean for . tx

 

Typically autocorrelation coefficients are calculated by computing the series of 

autocovariance coefficients, }))((1{
1
∑
−

=
+ −−=

kN

t
kttkk xxxx

N
cc , which can be obtained 

from the usual covariance formula [Chatfield 1984].  Then the autocorrelation coefficient 

at lag  can be calculated by finding k
0c

c
r k

k = , which is the ratio between autocovariance 

coefficient at lag and at lag 0.  k

 

A time series is said to be strictly stationary (also called first-order stationary) if 

the joint distribution of is the same as the joint distribution of 

 for all . This implies that shifting the time origin 

by an amount has no effect on the joint distribution at different times but rather the 

joint distribution depends only on the intervals between .  Furthermore, when 

, the above definition implies that the distribution of  must be the same for all 

 so that 

)(,),( 1 ntXtX K

)(,),( 1 ktXktX n ++ K kttt n  , , , , 21 K

k

nttt  , , , 21 K

1=n )(tX

t )(tXµ  and  are both constants which do not depend on the value of .  2
)(tXσ t
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When  or higher, the joint distribution of two random variables at different time 

instances depends only on the difference between two time instances and the difference is 

called the lag.   

2=n

 

A time series is said to be weakly stationary (also called second-order stationary) if 

its mean is constant and its autocovariance function depends only on the lag, so that  

µ=)]([ tXE  

and 

 ).()](),([ τγτ =+tXtXCOV  

This weaker definition of stationarity is more commonly used than the first-order 

definition since many of the properties of stationary processes depend only on the 

structure of the process as specified by its first and second moments [Bartlett 1966].  

There are four main types of univariate probability models for a time series, namely AR, 

MA, ARMA, and ARIMA. 

 

Suppose that is a discrete random process. A discrete random process  is 

called a purely random process if the random variables  are a sequence of mutually 

independent, identically distributed variables.  This implies that the process has constant 

mean and variance such that 

}{ tZ }{ tZ

}{ tZ

0),()( == +ktt ZZCOVkγ  for K,2,1 ±±=k  . 

Since the mean and autocovariance function do not depend on time, the process is first-

order stationary as well as second-order stationary.  The autocorrelation function is given 

by 
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Suppose that is a purely random process with mean zero and variance . Then a 

process is called a moving average process of order and also abbreviated to 

MA  if  

}{ tZ 2
zσ

}{ tZ q

)(q

 qtqtt ZZZX −+++= βββ K10      (3.2.1) 

where }{ iβ are constants.  For a given MA, we can verify that 0)( =tXE  and 

.   ∑
=

=
q

i
it Z

XVar
0

22)( βσ

The autocorrelation function of the MA( ) is given by q

0

,,1
0

)(
0
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)( 0 0
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=
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Although no restrictions on the }{ iβ are required for a MA process to be 

stationary, Box and Jenkins [1970] propose restrictions on the }{ iβ to ensure 

‘invertability’. This property ensures that there is a unique MA process for a given 

autocorrelation function.  The invertability condition for the general order MA process 

can be expressed by using the backward shift operator, denoted by B , which is defined 

by  

jtt
j XXB −=       for all . j
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Then equation (3.2.1) can be written as 

  tt
q

qt ZBZBBX )()( 10 θβββ =+++= K

where )(Bθ is a polynomial of order in   An MA process of order is invertible if 

the roots of the polynomial  

q .B q

0)( 10 =+++= q
q BBB βββθ K   

all lie outside the unit circle [Box 1970].   

 Suppose that }{ is a purely random process with mean zero and variance . 

Then a process  is said to be an autoregressive process of order if  

tZ 2
Zσ

}{ tX p

 tptptt ZXXX +++= −− αα K11 .     (3.2.2) 

This is similar to a multiple regression model, but  is regressed not on independent 

variables but on past ’s.  The autoregressive model in (3.2.2) is called an 

autoregressive process of order and also denoted by AR( ).  For example, when 

, it is called a first order AR process such that  

tX

tX

p p

1=p

ttt ZXX += −1α .       (3.2.3) 

By successive substitution of  in (3.2.3) 1−tX

 tttt ZZXX ++= −− )( 12αα  

       tttt ZZZX +++= −−− ))(( 123αα  

and eventually  can be expressed as an infinite-order MA process in the form  tX

  where K+++= −− 2
2

1 tttt ZZZX αα .11 +<<− α  
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This property is called duality between AR and MA processes.  If we use the backward 

shift operator B  rather than successive substitution of , then equation (3.2.3) can be 

written 

1−tX

 tt ZXB =− )1( α  

so that 

 )1/( BZX tt α−=  

        tZBB )1( 22 K+++= αα

       = . K+++ −− 2
2

1 ttt ZZZ αα

The mean and variance for process  are }{ tX

  0)( =tXE

and  

  . )1()( 422 K+++= αασ ZtXVar

When 1<α ,  converges and can be replaced with  so that )1( 42 K+++ αα )1/(1 2α−

         . )1/()( 222 ασσ −== ZXtXVar

The autocovariance function is given by 

  ][)( ktt XXEk +=γ  

         { }∑ ∑ −+−= ]][[ 1 jkt
j

t
i ZZE αα  

               (for  ∑
∞

=

+=
0

2

i

iki
Z αασ )0≥k

which converges for 1|| <α  to 

  )1/()( 22 ασαγ −= Z
kk
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          2
X

kσα=

The autocorrelation function is given by 

 k

X

X
kkk α
σα
σα

γ
γρ === 20

2

)0(
)()(    ( =k 0, 1, 2, K ) 

which can be rewritten for all integer lag   k

 kk αρ =)(    ( =k 0, ,1±  ,2±  K ) 

For the general order case where , by using the backward shift operator, equation 

(3.2.2) can be written as 

1>q

  tt
p

p ZXBB =−−− )1( 1 αα K

which can also be written as  

  1
1 )1/( −−−−= p

ptt BBZX αα K

        tZBf )(=

where  1
1 )1()( −−−−= p

p BBBf αα K

           )1( 2
21 K+++= BB ββ

The autocovariance function is given by 

   (where ∑
∞

=
+=

0

2)(
i

kiiZk ββσγ 10 =β ) 

A sufficient condition for this to converge is that ∑ iβ  converges, so it satisfies 

stationarity for the process.  However, finding the{ }iβ is algebraically hard.  The 

alternative way to determine if the process is stationary is to multiply (3.2.2) by , 

take expectations, and divide by  assuming that the variance of  is finite.   Then we 

can find  

ktX −

2
Xσ tX
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)()1()( 1 pkkk p −++−= ραραρ K  for all  .0>k

In order for AR to meet the stationary condition the roots of the equation )( p

01)( 1 =−−−= p
p BBB ααφ K  

must lie outside the unit circle. 

 

For those processes with non-zero mean, equation (3.2.2) can be rewritten in the 

form  

.)()( 11 tptptt ZXXX +−++−=− −− µαµαµ K  

Combining MA and AR processes can form a useful class of time series models. 

This class is called a mixed autoregressive-moving average process containing AR 

terms and MA terms, abbreviated to an ARMA ( , which can be expressed as 

p

q ), qp

qtqttptptt ZZZXXX −−−− ++++++= ββαα KK 1111  (3.2.4)  

Using the backward shift operator  equation (3.2.4) can be written in the form  ,B

 tt ZBXB )()( θφ =  

where ),(Bφ  )(Bθ  are polynomials of order and  respectively, such that p q

  p
p BBB ααφ −−−= K11)(

and 

 . q
q BBB ββθ +++= K11)(

Any stationary ARMA process must have values of }{ iα which are the roots of  

0)( =Bφ  and lie outside the unit circle.  When values of }{ iβ are the roots of 

0)( =Bθ which lie outside of the unit circle, the process is invertible.  The importance of 
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ARMA processes is that describing a stationary time series by an ARMA model requires 

fewer parameters than one described by an MA or AR process [Chatfield 1984].  Even 

though finding an autocorrelation function of an ARMA process is fairly straightforward, 

it is algebraically tedious. 

 

 In practice most time series are non-stationary.  In order to fit a stationary model, 

such as AR, MA, or ARMA, it is necessary to remove sources of variation.  If the 

observed time series is non-stationary in the mean then we can still model the process 

using a stationary model by differencing the series.  Differencing is a special type of 

filtering technique.  It is particularly useful for removing a trend. It is based on applying a 

differencing operator repeatedly until the time series becomes stationary.  For example, 

second order differencing of  can be expressed by 2+tX

  tttttt XXXXXX +−=∇−∇=∇ +++++ 12122
2 2

where 

  1−−=∇ ttt XXX

By replacing  with  ( order differencing of ) in equation (3.2.4) we have a 

model capable of describing certain types of non-stationary series.  Such a model is 

called an autoregressive integrated moving average process (also abbreviated ARIMA)  

tX t
d X∇ thd tX

and can be written 

qtqtptptt ZZWWW −−− +++++= βαα KK11     (3.2.5) 

where  

  ( difference of ). t
d

t XW ∇= thd tX
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To this point, mathematical models that are available to describe various time 

series have been discussed.  These models are classified as a general class of linear 

models.  Linear time series models have two distinct advantages over their non-linear 

counterparts: they can be understood in great detail and they are easy to implement 

[Weigend and Gershenfeld 1992]. Linear time series also have one major drawback. They 

are inappropriate to represent even moderately complicated systems.  Identifying an 

appropriate model for a given time series is challenging because it requires more 

subjective judgment and practical experience than a clear-cut heuristic method.   

 

Typically plotting an accurate correlogram, a graph in which  is plotted against 

the lag , based on the time series is the right start for time series analysis.   Figures 9 

and 10 illustrate how correlograms may be different under stationary and non-stationary 

time series.  The correlogram of the stationary process from Figure 3 clearly shows 

how quickly the autocorrelation function decays compared to that of the non-stationary 

process shown in Figure 4 despite its seasonal short-term fluctuations.  On the other hand 

the correlogram in Figure 4 indicates that the values of  will not come down to zero 

except for large values of the lag.  In fact various trend removal techniques, such as curve 

fitting, filtering, or differencing, are necessary to remove the underlying trend before 

calculating .  One popular filtering technique is the moving average method that is 

discussed in detail in [Kendall 1976] and [Law and Kelton 1991].   

kr

k

kr

}{ kr

 

 

 



  104 

 

Time

Lag (k)4 8 12

+1

-1

rk

0
0

xt

Figure 3.  A stationary time series showing short-term correlation with its 
correlogram 
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Figure 4.  A non-stationary time series together with its correlograms 
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The correlogram is helpful in identifying which type of ARIMA model gives the 

best representation of an observed time series. A correlogram like that in Figure 4, where 

the values of  do not come down to zero quickly, indicates that the series is non-

stationary and needs to be differenced so that an ARIMA model can be constructed.  For 

stationary series, the correlogram of the observed series is compared to the theoretical 

of different ARMA processes in order to choose the most appropriate model.   

kr

}{ kr

 

The autocorrelation function, , of a MA( ) process is relatively easier to 

recognize since it drops to zero and flattens out at lag  whereas the autocorrelation 

function of an AR( ) approaches zero more slowly.  This is due to the fact that it is a 

mixture of dampened exponentials and sinusoids.   The autocorrelation function of mixed 

ARMA model also dies out gradually rather than having a sudden drop. 

kr q

q

p

 

If of an observed time series is significantly different from zero but the 

subsequent values of  are all close to zero then an moving average model of order 1, 

MA(1), is indicated.  Alternatively, if , , , K  appear to be decreasing  

exponentially then an AR(1) model may be appropriate. 

1r

kr

1r 2r 3r

 

  The interpretation of correlograms is one of the hardest aspects of time-series 

analysis and this is where practical experience must come to play [Chatfield 1984]. 

 



  107 

After identifying the type of ARIMA model that gives the best presentation of the 

observed time series, the detail of the selected model such as the order and parameters of 

the process must be found.   For an AR process of order with mean p µ , the series can 

be expressed by  

tptptt ZXXX +−++−=− −− )()( 11 µαµαµ K  

If we let , for given observations, , then the parameters Np <≤1 N Nxx ,,1 K µ , 

pαα ,,1 K , can be estimated by minimizing the least square equation 

     (3.2.6) 2

1
11 )]()([ µαµαµ −−−−−−= −

+=
−∑ ptp

N

pt
tt xxxS K

with respect to µ , pαα ,,1 K .  If the  process is normal, then the least squares are in 

fact maximum likelihood estimates [Jenkins and Watts 1968]. 

tZ

 

In the first order case, with 1=p , minimizing (3.2.6) results in 

1

)1(1)2(

ˆ1
ˆ

ˆ
α
α

µ
−

−
=

xx
      (3.2.7) 

and 

 
∑

∑
−

=

−

=
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−

−−
= 1

1
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1

1
1

1

)ˆ(

)ˆ)(ˆ(
ˆ

N

t
t

N

t
tt

x

xx

µ

µµ
α      (3.2.8) 

where )2()1( , xx  are the means of the first and last ( 1−N ) observations.  Since x  

is the unbiased estimator for µ̂  and 

xxx ≅≅ )2()1( ,  

µ̂  can be replaced by x . 
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Now equation (3.2.8) becomes  

 
∑

∑
−

=

−

=
+

−

−−
= 1

1

2

1

1
1

1

)(

))((
ˆ

N

t
t

N

t
tt

xx

xxxx
α ,      (3.2.9) 

which is approximately equivalent to an autocorrelation function at lag 1.  Thus, equation 

(3.2.9) becomes 

 1
0

1
1ˆ r

c
c

=≅α . 

Similarly, for a second-order AR process ( 2=p ) minimizing (3.2.6) gives 

x≅µ̂   

)1(
)1(ˆ

2
1

21
1 r

rr
−
−

≅α  

)1(
)(ˆ

2
1

2
12

2 r
rr

−
−

≅α . 

 For higher order AR processes two alternative approximate methods are 

commonly used. The first method fits data to equation (3.2.6), treating it as if it is an 

ordinary regression model.  The second method is to substitute ρ ’s  with the sample 

autocorrelation coefficients in the first p Yule and Walker equations, which are denoted 

by 

 )()1()( 1 pkkk p −++−= ραραρ K   for all , 0>k

and solve for )ˆ , ,ˆ( 1 pαα K .  In order to solve for )ˆ , ,ˆ( 1 pαα K , Yule and Walker equations 

can be expressed in matrix form 

  rαR =ˆ
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where  

  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−−

−

−

−

1

1
1

1

321

312

211

121

K

MOMMM

K

K

K

ppp

p

p

p

rrr

rrr
rrr
rrr

R

  )ˆ , ,ˆ(ˆ 1 p
T αα K=α

and  

  ). , ,( 1 p
T rr K=r

 For reasonably large , both methods will give close approximated values to the 

least squares estimates for which 

N

µ̂  is close to but not necessarily equal to x  [Chatfield 

1984]. 

 

It is difficult to determine the order of an AR process from the sample 

autocorrelation function alone.  For example, the theoretical autocorrelation function for 

a first-order process decreases exponentially and the sample function should exhibit a 

similar pattern. On the other hand, most theoretical autocorrelation functions for higher 

order processes have a mixture pattern of damped exponential or sinusoidal functions and 

they are difficult to identify.  One approach is to fit AR processes of progressively higher 

order, calculating the residual sum of squares for each value of and plotting this against 

 [Chatfield 1984].  Then it is possible to find the proper value of where the curve of 

the residual sum of squares against each value of 

p

p p

p levels off.  Typically, the addition of 

extra parameters gives  little improvement in fit.  There are several other approaches, 

such as one approach by Box and Jenkins [1970] using the partial autocorrelation 

 



  110 

function, and two alternative methods each based on the inverse autocorrelation function 

[Chatfield 1979] and Akaike’s information criterion [Akaike 1978].  One drawback of 

these heuristics is that they rely heavily on the linearity of the model and on assumptions 

about the distribution from which the errors drawn [Weigend and Gershenfeld 1992]. 

 

Estimating the parameters of an MA process is more difficult than an AR process 

because efficient explicit estimators cannot be found.  Suppose we have an AR process of 

order of 1, with mean µ , given by 

11 −++= ttt ZZX βµ       (3.2.10) 

where 1 , βµ  are constants and  denotes a purely random process.  If we write the 

residual sum of squares, , solely in terms of ’s and the parameters 

tZ

∑ 2
tZ x ,µ  and 1β , 

and differentiate with respect to µ  and 1β , as we did for the AR process in order to find 

the least-squares estimates, the residual sum of squares is not a quadratic function of the 

parameters.  Thus, explicit least-squares estimates cannot be found. 

 

 Box and Jenkins [1970] propose one way to calculate the corresponding residual 

sum of squares using a recursive form of (3.2.10) 

 11 −−−= ttt ZXZ βµ       (3.2.11) 

First, select suitable starting values for µ  and 1β  such as x=µ  and 1β , which would 

satisfy the theoretical first-order autocorrelation coefficients  

)ˆ1(

ˆ
2

1

1
1 β

β
+

=r  where 1ˆ
1 <β . 
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Then, ’s for   K  where tZ ,1=t ,2 , N 00 =z  

become 

 ,11 µ−= xz  1122 zxz βµ −−= , K , 11 −−−= NNN zxz βµ .   

Finally, the residual sum of squares, , can be calculated.  These steps can be 

repeated for other values of 

∑
=

N

t
tZ

1

2

µ  and 1β  to find corresponding sum of squares. Then the 

computed  can be plotted against the (∑
=

N

t
tZ

1

2 ,µ  1β ) plane.   Finally, find the least square 

estimates in terms of µ and 1β , which minimize .  These are maximum likelihood 

estimates.  For higher order processes a similar type of iterative procedure can be applied. 

∑
=

N

t
tZ

1

2

Estimating the appropriate order of the process can be done through looking for a ‘cut 

off‘ point, lag , beyond which the values of the sample autocorrelation function remain 

close to zero. 

q

 

 So far we have focused on the sample autocorrelation function as the primary 

diagnostic tool to gain insight into the probability model of an unknown time series 

process.  Inference based on this function is often called an analysis in the time domain.  

There is another useful tool, called the spectral density function, to investigate the 

frequency properties of a time series. Inference regarding this function is called an 

analysis in the frequency domain. The frequency domain is the counter part of the time 

domain.  Thus, from a practical stand point, the spectral density function is considered 

complementary to the sample autocorrelation function.  However, both functions contain 

the same information regarding a stationary stochastic process but express it in different 
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ways.  In order to understand the spectral density function, we must first look into a 

function called the spectral distribution function.  

 

 The formal representation of the spectral distribution function can be given 

tt ZtRX ++= )cos( θω      (3.2.12) 

where ω is called frequency of the periodic variation (also called the angular frequency), 

R is called the amplitude of the variation, θ  is called the phase, and  denotes a 

stationary random series.  A graphical example of (3.2.12) is shown in Figure 5. 

tZ
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xt

Figure 5.  A time series contains a periodic component   

 

 

 .  The frequency of the periodic variation, ω , is the number of radians per unit time.  

However, by some authors [Jenkins and Watts 1968], the frequency is often referred as 

the number of cycles per unit time and expressed by 
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π
ω
2

=f   

Then the period of a sinusoidal cycle, called λ  the wavelength, can be denoted by 

ω
πλ 21

==
f

. 

 

 A time series model expressed in (3.2.12) is simple but not realistic in practice. 

Since it is highly likely for a given time series to have variation at several different 

frequencies, a generalized form of the model can be found 

     (3.2.13) t

k

j
jjjt ZtRX ++= ∑

=

)cos(
1

θω

Since θωθωθω sinsincoscos)cos( ttt −=+ , model (3.2.13) can be rewritten as a sum of 

sine and cosine terms in the form 

    (3.2.14) ∑
=

++=
k

j
tjjjjt ZtbtaX

1

)sincos( ωω

where jjj Ra θcos=  

and jjj Rb θsin−= . 

If we let , the work of Wiener and others has shown that any discrete stationary 

process measured at unit intervals can be represented in the form  

∞→k

∫∫ +=
ππ

ωωωω
 

0 

 

0 
)( sin)( cos dvtdutX t    (3.2.15) 

where )(ωu  and )(ωv are uncorrelated continuous processes with orthogonal increments 

for all w  in the range ),0( π .  For a continuous process, the upper limits would be , but ∞
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for a discrete process measured at unit intervals of time there is no loss of generality in 

restricting frequencyω  to the range (0, )π  since 

⎩
⎨
⎧

−
=+

t
tkt

)cos(
cos

)cos(
ωπ

ω
πω    

odd  with integers   ,
even  with integers   ,

ktk
ktk

The sinusoidal model (3.2.15) is called the spectral representation of the process.  In 

practice, processes )(ωu  and )(ωv  hold no direct significance in terms of 

characterization of a given time series.  Instead, a function, )(ωF which is called the 

power spectral distribution function, can be used. The spectral distribution function arises 

from the Wiener-Khintchine theorem (see Section 6.1 of [Bartlett 1966]) and is related to 

)(ωu  and )(ωv .   The theorem says that for any stationary stochastic process with 

autocovariance function )(kγ , there exists a monotonically increasing function, )(ωF , 

such that  

∫=
π

ωωγ
 

0 
)( cos)( dFkk     (3.2.16) 

Equation (3.2.16) is called the spectral representation of the autocovariance function.  A 

normalized form of the spectral distribution function, symbolically , can be found 

by 

)(* ωF

 2
* )()(

X

FF
σ
ωω =      (3.2.17) 

which is the proportion of variance accounted for by frequencies in the range ) ,0( π .  

Since  and is monotonically increasing in the range 1)(* =πF )(* ωF ) ,0( π , 

behaves almost as a cumulative distribution function.   )(* ωF
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 For a purely stochastic discrete stationary process, the spectral distribution 

function )(ωF  is continuous in ),0( π and therefore, it can be differentiated with respect 

to ω  in ),0( ω .  Thus, the derivative of the spectral distribution function, )(ωf , can be 

denoted by 

 
ω
ωω

d
)(d)( Ff =   

and called the power spectral density function or simply the spectrum. 

 

When )(ωf  exists for a stationary stochastic process, autocovariance equation (3.2.16) 

for the process can be expressed in the form 

      (3.2.18) ωωωγ
π

d)( cos)(
 

0 
fkk ∫=

When , then equation (3.2.18) becomes 0=k

     (3.2.19) )(d)()0(
 

0 

2 πωωσγ
π

FfX === ∫

The relationship between the spectral distribution function and the spectral density 

function is somewhat similar to that of between the probability density function and the 

corresponding continuous probability function [Chatfield 1984].  An example of a 

spectrum with the corresponding normalized spectral distribution function is shown in 

Figure 6.  A peak in the spectrum indicates an important contribution to variance at given 

frequencies.  The spectrum that is concentrated at low frequency and reaches 0 relatively 

faster is often the result of a smooth stationary time series. 

 

In some situations a time-domain approach based on the autocovariance function 

is more useful while in other situations a frequency-domain approach is preferable.  For 
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example, spectral analysis, which is the general term given to methods estimating the 

spectral density function or spectrum, is at its most useful to access often hidden 

frequency components from stationary non-deterministic time series with no obvious 

trend or seasonal variation.  On the other hand, the autocovariance function can be 

applied to either stationary or non-stationary processes.  Equation (3.2.18) is expressed in 

an inverse form in terms of )(kγ : 

∑
∞

−∞=

−=
k

kiekf ωγ
π

ω )(1)(      (3.2.20) 

Since )(kγ  is a symmetric function, equation (3.2.20) is often written in the equivalent 

form  

 ⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∞

=1
cos)(2)0(1)(

k
kkf ωγγ

π
ω     (3.2.21) 

Using (3.2.21), we can verify that the spectrum is the Fourier transformation of the 

autocovariance function. 
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Figure 6.  A spectrum with the corresponding normalized spectral 

distribution function 
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Thus far, we have only focused on analyzing a single time series.  In some cases 

observations must be made on two or more time series to find the relationship among 

them.  We call these multivariate processes. When observations are made on two time 

series, we call it a bivariate process.  Jenkins and Watts [1968] distinguish two types of 

bivariate situation.  The first one is designed for a time series on equal time intervals and 

the correlation between them is the primary concern. The second one is to deal with a set 

of time series in which the series are casually related.  For the second type one series is 

regarded as the input to a linear system, while other is considered the output to the other.  

For a bivariate process, a new function, called the cross-covariance function, is 

introduced in addition to the statistical moments up to second order, namely the mean and 

autocovariance functions of each of the two series. The cross-covariance function can be 

denoted by 

),Cov(),( ττγ += ttxy YXt . 

The cross-covariance function differs from the autocovariance function in a way that it is 

not an even function unlike autocovariance, since  

 )()( τγτγ −= yxxy . 

The cross-correlation function, ),(τρ xy  can also be defined by 

[ ])0()0(/)()( yyxxxyxy γγτγτρ = . 

The cross-spectrum of a discrete bivariate process measured over the range ) ,0( π  can be 

expressed in the form  

 ⎥
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Again, cross-spectrum (3.2.22) can be written in the form 
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⎢
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⎡
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∞
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ki
xyxy ekf ωγ

π
ω )(

2
1)(     (3.2.23) 

over the range ) ,( ππ− , which is preferred by most authors.  Equation (3.2.23) has a 

simple inverse relationship to )(kxyγ  such that 

 . ∫−=
π

π

ω ωωγ d)()( xy
ki

xy fek

 

There are several functions that can be derived from various forms denoting the same 

cross-spectrum function. These functions are used to describe unique relationships 

between two series in the frequency domain.  For example, (3.2.22) can be expressed in 

the form of a complex function 

 )()()( ωωω iqcf xy −=      (3.2.24) 

where  

 )(ωc is the real part of the  such that xyf
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 and )(ωq  is the complex part of the  such that xyf
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Equation (3.2.25) is called the co-spectrum and equation (3.2.26) is called the quadrature 

spectrum.  The third way of expressing cross-spectrum function (3.2.22) is to use the 

form 

      (3.2.27) )()()( ωφωαω xyi
xyxy ef =

where =)(ωα xy cross-amplitude spectrum 

           [ ])()( 22 ωω qc +=      (3.2.28) 

and =xyφ  phase spectrum 

       (3.2.29) )](/)([tan 1 ωω cq−= −

 

Another useful function derived from the cross-spectrum is the squared coherency 

which is found by 

[ ] [ ])()(/)()()( 22 ωωωωω yx ffqcC +=    (3.2.30) 

          )()(/)(2 ωωωα yxxy ff=

where )(ωxf , )(ωyf  are the power spectra of the individual stochastic processes,  

and .  It can be shown that 

tX

tY .1)(0 ≤≤ ωC  The squared coherency measures the linear 

correlation between the two components of the bivariate process at frequency ω .  The 

closer )(ωC is to one, more closely the processes are related at frequency ω .  Lastly a 

function called the gain spectrum is given by 

 [ ])(/)()()( ωωωω xyxy fCfG =  

   )(/)( ωωα xxy f=      (3.2.31) 
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Equation (3.2.31) is in fact the regression coefficient of the process  on the process  

at frequency 

tY tX

ω .  Interpreting a cross-spectrum is a challenging task compared to 

interpreting an autospectrum [Chatfield 1984]. Usually three functions out of above six 

functions have to be plotted against frequency to describe the relationship between two 

series. For example, the coherency, phase, and cross-amplitude are suitable for certain 

bivaritate processes, while the co-quadrature and coherency spectra are most suitable for 

different bivariate processes.  Granger and Hughes [1964] have carried out a simulation 

study on some short series with cross-spectral estimators.  

 

Most theories available for time series analysis can be applied only if the process 

is stable. However, many time series in real life do change with time even though they 

change slowly.  We previously discussed some ways of transforming data to achieve 

stationarity, such as differencing, so that the theories can be applied and a stationary 

model can be fit.  However, it is often more important to describe the non-stationary 

features of the series, such as trends and seasonality, rather than the properties of the 

stationary residuals.  One way to capture slowly-changing series is to fit a time-dependent 

spectrum called an evolutionary spectrum, where the frequency properties are examined 

for overlapping segments [Priestley 1981]. 
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3.3 Artificial Neural Networks 
 
 
 

This section presents artificial neural networks as a general non-parametric 

transient performance prediction tool.  Before introducing the ANN model to be used in 

this research, fundamentals and a brief history of ANNs are reviewed.   A well-known 

ANN architecture, a multilayer ANN and its training algorithms are also discussed to 

help readers who are new to ANNs.  

 

3.3.1 Background 
 

Artificial neural networks (ANNs), also known as parallel processing elements or 

connectionist networks, are computational paradigms that mimic simplified models of 

their biological counterparts, biological neural networks.  Biological neural networks are 

the local assemblies of neurons and their dendritic connections that form a human brain.   

As shown in Figure 7 [Hagan et al. 1996], most biological neurons consist of a cell body 

plus one axon and many dendrites.  The axon is a protuberance that delivers the neuron’s 

output to connections with other neurons.  Dendrites are protuberances that provide a 

wide surface area, facilitating connection with the axons of neighboring neurons.  A 

neuron does nothing unless the collective influence of all its inputs reaches a threshold 

level. Whenever that threshold is reached, a neuron produces a full-strength output in the 

form of narrow pulse that transmits from the cell body, down the axon, and into the 
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axon’s branches.  When this happens, the neuron is said to fire.  Since a neuron either 

fires or does nothing, it is said to be an all-or-none device [Winston 1992].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cell BodyDendrites

Synapses

AxonNucleus

Cell BodyDendrites

Synapses

AxonNucleus

Figure 7.  Anatomical illustration of biological neurons 
[Hagan et al. 1996] 

Axons influence dendrites over narrow gaps called synapses.  Stimulation at some  

synapses encourages neurons to fire.  At the same time stimulation at others discourages 

neurons from firing.  It is widely believed that learning takes place in the vicinity of 
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synapses and has something to do with the intensity level to which synapses translate the 

pulse traveling down one neuron’s axon into excitation or inhibition of the next neuron.  

 

Artificial neural networks typically consist of simulated neurons like the one 

shown in Figure 8. The simulated neuron is viewed as a node connected to other nodes 

via links that correspond to axon-synapse-dendrite connections.   

 

 

 

Σp

Inputs General Neuron

)( bwpfa +=

w n a

a

1

f

Σ - summation

f - transfer function – a linear or a nonlinear function of n

 , ,, , , wpnba - scalars

Σp

Inputs General Neuron

)( bwpfa +=

w n a

a

1

f

Σ - summation

f - transfer function – a linear or a nonlinear function of n

 , ,, , , wpnba - scalars

Figure 8.  Single-Input Neuron 
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A weight is associated with each link.  Like a synapse, the weight for a given node 

determines the strength of the node’s influence on another.  More specifically, one node’s 

influence on another is the product of the influencing neuron’s output value times the 

connecting link’s weight.  For example, a large positive weight corresponds to a strong 

excitation, or a small negative weight corresponds to weak inhibition. 

 

The work of McCulloch and Pitts [1943] introduces the first mathematical model 

of a neuron, in which a weighted sum of input signals is compared to a threshold value to 

determine whether or not to fire the neuron. Their work is acknowledged as the origin of 

the modern view of neural networks and demonstrates that networks of artificial neurons 

are capable of handling a broad range of arithmetic or logical functions.  In 1949, Hebb 

[1949] proposed one of the first learning rules of biological neurons, which explained a 

mechanism for learning at the cellular level. 

 

The first practical application of ANNs appeared in the late 1950s and for the first 

time, neural networks demonstrated their pattern recognition capability.  This was 

enabled by the invention of the perceptron network and associated learning rule by 

Rosenblatt [1958].  Despite its limited capability, the success of the perceptron created a 

great deal of enthusiasm among many neural network researchers.   In 1960 Widrow and 

Hoff [1960] introduced a perceptron-like network with an adaptive learning capability.  

They assumed that the system has inputs and a desired output classification for each 

input, and that the system can calculate the error between the actual and target output.  By 

using a gradient descent method, the weights are adjusted in order to minimize the mean 
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square error.  The learning algorithm is also known as Least Mean Square (LMS) 

algorithm. 

   

 Minsky and Parpert [1969] publicized the first comprehensive analysis of 

perceptron networks. In this book they point out the inherent limitations of perceptrons. 

One of the limitations is that a given perception-learning rule is not guaranteed to 

converge to a solution in a finite number of steps, unless the given input space (or vector) 

is linearly separable.  This rather pessimistic view discouraged many potential new 

developments in the area and put most of the neural network research community into 

silence for the following ten years. 

   

Even during this period of silence, some notable works were published.  For 

example, Kohonen [1972] proposed a correlation model for associative memory.  The 

model was trained, using the outer product rule, also known as the Hebb rule [Hebb 

1949], to learn an association between input and output vectors.  Almost at the same time 

Anderson [1972] independently proposed a “linear associator” model for associative 

memory.  The model was trained in a similar manner as a generalized approach to the 

Hebb rule so that it learned an association between input and output vectors. 

 

During the 1980s many of earlier limitations in the field, such as absence of 

powerful computers and fresh insights into the problems, dissipated.  Research in neural 

networks rapidly expanded during this period.  The introduction of desktop personal 

computers and powerful workstations fueled this phenomenon.  Two notable concepts 
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were introduced during this period.  The first was the work done by Hopfield [1982] to 

explain the operation of a certain class of recurrent networks, using statistical mechanics 

as an associative memory.  The second one was the introduction of the back propagation 

algorithm, which was discovered by several independent researchers including Rumelhart 

and McClelland [1986] for training multi-layer perceptron networks. 

    

 During the 1990’s there was a rapid growth of public interest, more widespread 

industrial applications, and an explosion of research publications in the area of artificial 

neural networks.  As Hagan et al. [1996] point out, these renewed interests in ANNs have 

much to do with new concepts, such as innovative architectures and training rules.  But 

these phenomena have also resulted from an improvement in the average computer 

processor speed and a growing public interest in information technology in general.  

Further breakthroughs in the field are likely as progress is made in our understanding of 

biological neural networks. 

   

ANNs are typically used in pattern recognition, where a collection of numerically 

translated features such as an image is presented to the networks, and the task is to let the 

networks get familiar with the translated features through a course of training so that it 

can categorize the input feature pattern to one or more distinguishable classes.  Another 

principal use for ANNs is nonlinear regression, where the task is to find a smooth 

interpolation between points.  In both cases, all the relevant information is presented to 

the network simultaneously.  In contrast, time series prediction using neural networks 

involves processing of patterns that evolves over time to predict future observations, 
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which implies continuous feeding of its predicted observations (outputs) as a part of past 

observations (inputs). 

 

  The simplest way to teach a network about the past is to provide time-delayed 

samples to its input layer.  The network predicts the future not only based on the present 

but also on the past.  Mozer [1992] argues that conventional neural network architectures 

are not suited for patterns that vary over time.  He identifies two necessary architectural 

elements, short-term memory and a generic predictor, in temporal sequence processing 

using neural networks.  Furthermore, three dimensions along which neural net temporal 

memory models vary are identified:  memory form (delay line, exponential trace, gamma 

trace), content (input, transformed input, transformed input and state, output, transformed 

output, and transformed output and state), and adaptability (static, adaptive). 

   

The simplest form of memory is a buffer containing the n  most recent inputs.  

Such a memory is often called a tapped delay-line model because the buffer can be 

formed by a series of delay lines. It provides the basis for traditional statistical 

autoregressive (AR) models. Tapped delay models are more common in neural network 

architectures than other forms of short-term memory such as exponential trace or gamma 

memory. Unlike the delay-line memory, the exponential trace memory does not sharply 

drop off at a fixed point in time; rather the strength of an input decays exponentially.  

This implies that more recent inputs will always have greater strength than distant inputs. 
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de Vries and Principe [1991] use two dimensions, depth and resolution, to 

characterize the tapped delay-line and exponential trace memories.  In general, the term, 

“depth” in memory, refers to how far into the past the memory stores information in 

relation to the memory size. A high-depth memory easily holds information distant in the 

past, whereas a low-depth memory only holds recent information. The second term, 

“resolution”, refers to the degree to which information concerning the individual 

elements of the input sequence is preserved. A high-resolution memory can reconstruct 

the actual elements of the input sequence; low-resolution memory holds distorted 

information about the sequence.  Memory models that generalize across delay lines and 

exponential traces are gamma memories.  Gamma memories allow a continuum of 

memory forms covering all levels of depth and resolution combinations. Gamma 

memories use the gamma density function as the corresponding kernel for discrete-time 

memories.     

 

Elman and Zisper [1988] propose a neural net architecture consisting of input as 

its memory content and delay line as its memory form, often called I-delay memory.  The 

I-delay memory is the simplest class and corresponds to a feedforward network with a 

delay space embedded in the input sequence.  A similar architecture is also found in other 

papers [Lapedes and Farber 1987], [Zhang and Hutchinson 1992].  The TI-delay 

architecture, a combination of transformed input and tapped delay line, has been 

extensively used in physical science oriented neural net application [Kleinfeld 1986], 

[Sompolinksy and Kanter 1986].  In this architecture, each hidden unit, which is a 
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nonlinear transformation of the input, maintains a history of its n most recent values, and 

all these hidden values are available to the next layer.   

 

TI-delay memories are the basis of the time-delay neural networks (TDNN) 

[Waibel et al. 1989] and finite impulse responses (FIR) neural network [Wan 1992].  

Herz [1991] proposes a TIS-delay memory, a combination of transformed input and state 

as its memory content and delay line as its memory form.  TIS-delay memories are 

designed for networks whose dynamics are governed by a Lyapunov function under 

certain symmetry conditions on the time delayed weights. Connor et al. [1992] studied a 

nonlinear neural network based ARMA model, whose MA component is constructed 

from outputs. Their study shows that nonlinear MA( ) models can be constructed using 

O-delay memories, a combination of output as its memory content and delay line as its 

memory form. 

q

 

Among all possible architectures using Mozer’s three dimensions, those that 

utilize non-delay line type memory forms which are widely studied in other literature are: 

TI-exponential (transformed input as memory content and exponential trace as its 

memory form) [Elman and Zipser 1988], [Lapedes and Farber 1987], [Zhang and 

Hutchinson 1992], TIS-exponential memory (transformed input and state as its memory 

content and exponential trace memory as its memory form) [Mozer 1992], O-exponential 

(output as its memory content and exponential trace memory as its memory form) [Jordan 

1987], and I-gamma memory (input as its memory content and gamma trace memory as 

its memory form) [de Vries and Principe 1991].  Mozer [1992] uses a TIS-exponential 
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memory to create a multiscale integration model.  His work is to design recurrent hidden 

units that have different time constants of integration.  In Mozer’s model, the slow 

integrators form a coarse but global sequence memory and the fast integrators form a 

fine-gained but local memory.  Jordan [1987] uses an O-exponential memory to create a 

sequence production network. 

 

3.3.2 Multilayer Neural Network Architecture and Training Methods 
 

This section presents a brief review of the most common form of neural networks, 

multilayer neural networks, and its training algorithms. According to Hagan, Demuth, 

and Beale [1996], despite ANN’s fast growing popularity and applications in many 

diverse fields, there has been a lack of cohesion in standard mathematical notation and 

architectural representations of ANNs.  To make the matter simpler, through the rest of 

this section, scalar inputs are represented in small italic letters such as a, b, and c.  On the 

other hand, vector inputs are expressed in small bold nonitalic letters such as a, b, and c.  

Weights on connections between input(s) and neuron(s) are often expressed in a matrix 

form and these matrices are expressed in capital bold nonitalic letters such as A, B, and 

C.   The output of a single simulated neuron as shown in Figure 8 (Page 123) is the result 

of a transfer function of the summation output n.  A transfer function may be a linear or 

nonlinear function of n (a sum of weighted inputs Wp or wp where W is a weight matrix, 

p is a input vector, and w and p are scalar parameters).   
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There are three primary types of transfer functions – hard limit transfer function, 

linear transfer function, and log-sigmoid transfer function.  The hard limit transfer 

function, shown in the top of Figure 9, sets the output of the neuron to 0 if the function 

argument is less than 0, or 1 if its argument is greater than or equal to 0.   
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Figure 9. Typical Transfer functions 
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This function is commonly used to create neurons that classify inputs into two distinct 

categories.  Whereas, the linear transfer function, shown in the middle of Figure 9, sets 

the output of the neuron to the same value as the input.  The log-sigmoid transfer 

function, shown in the bottom of Figure 9, converts the input into the output that ranges 

from 0 to 1. 

 

Neurons are the smallest building block of a neural network.  More than one 

neuron can be used to construct a layer of a neural network.  Furthermore, a network can 

be constructed with more than one layer of multiple neurons.  These are called multi-

layer networks. Each layer has its own weight matrix W , its own bias vector , a net 

input vector  and an output vector .  In addition, superscript numbers are appended to 

each of these variables to distinguish a particular variable for a given layer.  For example, 

the weight matrix for the first layer is written as , and the one for the second layer is 

written as .  Using this notation, a three-layer network can be illustrated as in Figure 

10. 

b

n a

1W

2W

 

As shown in Figure 10, for the first layer, the input vector  has dimension p R  

and there are summation nodes, the weight matrix  becomes a  matrix.  

Consequently, the output vector  for the first layer has the dimensions of .    The 

output for first layer is the input for the second layer.   Similarly, the second layer output 

is the third layer input.  Therefore, the weight matrix  and have the dimension of 

and  respectively.   These dimensional parameters can be found in the 

1S 1W RS ×1

1a 1S

2W 3W

12 SS × 23 SS ×
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shorthand notation where the number of inputs is followed by the number of neurons in 

each layer. This notation is used to identify the structure of a multilayer network.  Such a 

shorthand notation for the three-layer network in Figure 10 is .   321 SSSR −−−
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Figure 10. Three-layer network 

 

The transfer functions for a multi layer network can be chosen based on the 

primary use of the net.  If the net is for pattern classification, transfer functions such as 

Hard Limit (refer to Figure 9) are typical.  If the net is for function approximation, a 

combination of Log-sigmoid and Linear transfer function is useful.  Determination of the 

proper number of nodes in hidden layers is more critical in the case of function 

approximation. The number of nodes in hidden layers such as first and second layers in 
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Figure 10, has to be large enough to capture a realistic view of the unknown target 

function but also small enough to result in a reasonable training length and ease of 

training.   The number of hidden layers is also critical to reliable performance of the net. 

For a network to be able to generalize, the network should have fewer parameters to train 

than the number of data points in the training set.   Hornik et al. [1989] have shown that 

two-layer feedforward networks, with sigmoid transfer functions in the hidden layer and 

linear transfer functions in the output layer, can approximate virtually any integrable 

function of interest to any degree of accuracy.    

 

The most popular algorithms to train multilayer networks are backpropagation 

algorithms.   The concept of “backpropagation” first appeared in the thesis of Werbos 

[1974] and was independently rediscovered and revived during the mid 1980s by several 

researchers [Le Cun 1985; Parker 1985; Rumelhart and McClelland 1986].  Today, the 

word  “backpropagation algorithm” refers to any supervised learning (see [Hagan et al. 

1996]) algorithm in which derivatives of transfer functions are recursively calculated 

from the last layer to the first layer of the network and used to update weights and bias in 

order to train the network to perform a given task. Existing backpropagation algorithms 

differ based on the way in which the resulting derivatives are used. 

 

The backpropagation algorithm uses the same performance index as the LMS 

(least mean square algorithm).  The algorithm is provided with Q  pairs of input and 

output vectors consisting of training points: 

 , , K ,      (3.3.1) },{ 11 t p },{ 22 t p },{ QQ t p
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where is a  input vector to the network, and is the corresponding target output 

vector.   These vectors comprise a subset of the true functional domain and range.  The 

training procedure starts with a feed forward process first. As a single input vector p  is 

applied to the network and propagated to the last layer, the final network output vector a  

is compared to the corresponding target vector t .  Then the algorithm adjusts the network 

parameters such as weights and biases using a backpropagation process in order to 

minimize the mean square error: 

qp thq qt

 ]       (3.3.2) )[()()( 22 atEeEF −==x

where is the vector of network weights and biases.   Since both  and a  are vectors, the 

equation (3.3.2) can be generalized to   

x t

 .     (3.3.3) )]()[(][)( a-ta-teex TT EEF ==

As with the LMS algorithm, (3.3.3) can be approximated by 

 .   (3.3.4) )()())()(())()(()(ˆ kkkkkkF TT eeatatx =−−=

Now, the steepest descent algorithm (see [Hagan et al. 1996]) for is used to update 

the weights and biases at each iteration . The steepest descent algorithm for the 

approximate mean square error is  
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where α  is a fixed learning rate.  A stable learning rateα  should be between 0 and 

max/2 λ  where maxλ  is the maximum eigenvalue of the Hessian matrix.  The next step of 

the algorithm is to calculate the partial derivatives.  For a multilayer network calculating 
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the partial derivatives is not trivial, since the function (3.3.4) is not an explicit function of 

the weights and biases in the hidden layers.  Thus, the partial derivatives in (3.3.5) and 

(3.3.6) should be solved using the chain rule: 
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Now, the equation (3.3.5) and (3.3.6) can be expressed as 
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This can be generalized in matrix form: 
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The sensitivities  can be calculated using a chain rule.  By using the Jacobian matrix ms
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where  

    (3.3.21) 
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The equation (3.3.18) can be rewritten using equation (3.3.20) 
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The recursive relationship in which the sensitivity at layer  is computed from the 

sensitivity at layer  leads to the term backpropagation.  The equation (3.3.22) can be 

used to calculate sensitivities for the first layer and all hidden layers. However, a different 

equation is required to calculate the sensitivity for the last layer .  Since 
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(3.3.21), the sensitivity for the final layer  can be expressed as Ms
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A summary of the backpropagation algorithm for an M layer network can be given as 

follows. 

1. Propagate the input forward (from the first layer to the last layer) through the 

network: 

pa =0 ,        (3.3.24) 

 )  for ( 1111 ++++ += mmmmm baWfa 1,,2,0 −= Mm    K ,   (3.3.25) 

Maa = .        (3.3.26) 

2. Propagate the sensitivities backward (from the last layer to the first layer) through 

the network: 

))((2 atnFs −−= MMM &  for the last layer,    (3.3.27) 

11))(( ++= mTmmmm sWnFs & for 1,2,,1    K−= Mm .   (3.3.28) 

3. Finally, update the weights and biases at each iteration using the approximate 

steepest descent rule: 

Tmmmm kk )()()1( 1−−=+ asWW α ,     (3.3.29) 

mmm kk sbb α−=+ )()1( .      (3.3.30) 

 

 One of the major drawbacks in the basic backpropagation algorithm using the 

steepest descent algorithm is the long training time. There are two types of variations on 

backpropagation to improve the performance of the algorithm: heuristic modifications 

and standard numerical optimization techniques.   The first method, heuristic 

modifications, is the use of momentum [Vogl et al. 1988].  This method is based on the 

fact that convergence to a global minimum might be improved if the oscillations in the 
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trajectory are reduced.  It is a common phenomenon in neural network training that 

increasing the learning rate will make the algorithm unstable when the algorithm reaches 

steeper portions of the performance surface .  A momentum filter can be added to the 

parameter changes in order to reduce the side effect of using a higher learning rate. If we 

let  

F̂

)()()1( kkk mmm WWW ∆=−+  and  

  ,  )()()1( kkk mmm bbb ∆=−+

then equations (3.3.29) and (3.3.30) become 

 ,       (3.3.31) )()( 1 Tmmm k −−=∆ asW α

 .        (3.3.32) )( mm k sb α−=∆

The modified parameter update equations for the backpropagation algorithm can be 

expressed using a recursive relationship and introducing a momentum coefficient γ : 

 ,   (3.3.33) Tmmmm kk )()1()1()( 1−−−−∆=∆ asWW αγγ

 ,     (3.3.34) mmm kk sbb αγγ )1()1()( −−−∆=∆

In a modified backpropagation algorithm using momentum, the parameters  and  

are updated only after the entire training set has been presented.  By using momentum, 

we can use a larger learning rate and accelerate convergence without making the 

algorithm unstable when the trajectory is moving in a consistent direction.  The modified 

backpropagation algorithm using momentum, sometimes called MOBP, is simple to 

implement and significantly faster than the steepest descent backpropagation (SDBP).  It 

can also be used either in batch mode or incremental mode. 

mW mb
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The second method in heuristic modifications of the basic backpropagation 

algorithm is to use a variable learning rate.  We can speed up convergence if we increase 

the learning rate on flat surfaces of the performance surface and decrease the learning rate 

on the non-flat surfaces.  There are many variations on this variable learning rate 

backpropagation (VLBP) algorithm.  Vogl et al. [1988] propose a batching procedure, 

where the learning rate is varied according to the performance (the squared error) of the 

algorithm.  For example, when the square error exceeds more than some set percentage 

ζ  after a weight update, the weight update should be discarded and a lower learning rate 

should be applied, multiplying the learning rate by some factor 10 << ρ  and setting the 

momentum coefficient γ  to zero.  On the contrary when the square error decreases after a 

weight update, the update is accepted and an increased learning rate should be applied, 

multiplying the learning rate by some factor 1>η  and setting the momentum coefficient 

γ  to its original value. 

   

However, when the squared error increases by less than ζ , the weight update is 

accepted and the current learning rate and momentum should be used for the next 

iteration.  Jacobs [1988] proposed the delta-bar-delta learning rule, in which each 

network weight or bias has its own learning rate. The algorithm increases the learning 

rate for a network weight or bias if the weight or bias change has been in the same 

direction for several iterations. If the weight or bias change has not been in the same 

direction, then the learning rate is reduced.  
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In general, the algorithm using a variable learning rate is faster than the 

backpropagation using momentum and also reasonably robust [Hagan et al. 1996]. But, it 

must be used in batch mode; therefore it takes more intermediate computation storage.  It 

also has a limit of selecting a total of five parameters, and the choice of the parameters 

can affect the convergence speed. 

 

There are two methods based on numerical optimization techniques that can be 

used as an enhancement for the backpropagation algorithm. They are conjugate gradient 

and Newton’s method.  The steepest descent algorithm is the simplest algorithm, but it is 

often slow in converging to a global minimum.  On the contrary, Newton’s method is 

much faster in converging, but it requires the Hessian matrix (a second derivative) and its 

calculated inverse. 

  

The conjugate gradient algorithm comes as a compromise of the steepest descent 

algorithm and Newton’s method.  The conjugate algorithm does not require the 

calculation of second derivative, and yet it has the quadratic convergence property.  For 

quadratic performance functions the algorithm will converge to the minimum in at most 

 iterations where  is equal to the number of parameters being optimized [Scales 

1985].  However, for multilayer networks the conjugate algorithm would not converge in 

 iterations because the mean squared error performance index for multilayer networks 

is not quadratic.  To overcome this problem, modifications have to be made to continue 

the search for the global minimum. There have been a few methods suggested, but the 

simplest way is to reset the search direction to the steepest descent direction after  

n n

n

n
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iterations [Scales 1985].  In addition, a method called the Golden Section Search is added 

to the conjugate gradient backpropagation algorithm (see [Scales 1985] or [Hagan et al. 

1996] for details) for the smaller linear search size at each iteration.  Conjugate gradient 

back propagation (CGBP) is a batch mode algorithm and generally faster than VLBP.  

But its memory requirement is no greater than VLBP. 

  

 The second numerical optimization technique to improve the backpropagation 

algorithm is the Levenberg-Marquardt algorithm.  The Levenberg-Marquardt algorithm 

(see [Scales 1985]) is a variation of Newton’s method that is a simple technique to obtain 

faster convergence to the minimizing points for sums of squares of nonlinear functions.  

The Levenberg-Marquardt backpropagation (LMBP) alogrithm uses the Gauss-Newton 

method that does not require calculation of the second derivatives.  The algorithm uses 

the assumption to converge when the norm of the gradient is less than some 

predetermined value or when the sum of squares has been reduced below the target error.   

The LMBP is the fastest algorithm for training multilayer networks of moderate size 

according to [Hagan et al. 1996].  The major drawback is its heavy memory burden for a 

matrix inversion at each iteration.  When the size of a network becomes large (more than 

a few thousand parameters to train), the algorithm can become impractical because of this 

computational burden. 
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3.3.3 Proposed Neural Network based metamodeling framework 
 
 
 

A preliminary study and experiment were conducted to decide on a final form of 

ANN based meta-modeling framework for this research.  The study concluded that most 

existing ANN based metamodeling frameworks utilize a single ANN to be trained on a 

single functional domain of interest.  As previously discussed, the idea to use multiple 

ANNs is not new.   It was inspired by the way the human brain works.  Collective 

neurons can store a single knowledge domain represented by a complex pattern.  An 

array of multiple neurons form a group to collectively store and retrieve information 

through a repetitive neurological stimulation process called learning.  The effective use of 

well organized multiple ANNs can be as powerful as human neurons.   

 

The modeling framework for multiple ANNs is to increase modeling economy 

and flexibility so that it can collectively store more than one functional domain, such as 

time average machine utilizations and time series models for time-in-system (TIS) under 

distinctive disruption patterns.  It is also intended for improved accuracy of individual 

ANNs, future expandability, and potential automation.  Therefore, several methods to 

effectively integrate multiple ANNs were examined.  One such framework is to store 

individually trained ANNs in a single database.  But the preliminary study concluded that 

using a database along with ANNs can be problematic due to the complexity of 

maintenance and future expandability issues.  The study found that, based on modeling 

efficiency, the logical branching to taxonomically interconnect individual ANNs trained 
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on more than one modeling domain is a highly economical approach for the proposed 

system.  

 

The proposed ANN based meta-modeling scheme consists of a hierarchical 

taxonomy of multi-layer ANNs that can individually adapt to different systems modeling 

domains.  As shown in Figure 11, the top level multi-layer ANN is designed to detect and 

classify distinctive post-disruption system behaviors upon 44 x 1 input vector utilizing 

pattern matching.  A 44 x 1 input vector is designed to feed the ANNs with a snapshot of 

the system’s key operational conditions as well as disruption itself.   For instance, time 

averaged utilization of each machine stations prior to a particular disruption event are a 

part of input elements in such vector.  The output of the top level ANN can be either 3 x 

1 or 2 x 1 vector that is designed to represent various distinctive transient behavior 

pattern types.  Most post-disruption system behaviors can be classified into several 

distinctive transient behavior pattern types.  Each transient behavior pattern type can be 

coded into either a three-digit or two-digit binary number.   The length of binary number 

can be determined by the number of distinctive system behavior pattern types that can be 

produced under current system configurations and operational conditions.  For example, 

the output vector 100, represents the pattern type class number four.  

 

The second (or low) level multi-layer ANNs are designed to capture significant 

variations within a selected transient behavior pattern type.  Even though second level 

ANNs share the same input vector that is fed to the first level, output vectors used by 

second level ANNs are different from one network to another network based on one’s 
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need to capture unique mathematical properties of each transient behavior pattern under 

focus.   For example, for post-disruption system behaviors that exhibit a common curve 

pattern and can also be generalized by a similar parametric time series model, 

approximated coefficients for a pre-selected high degree polynomial regression model 

can be a part of elements in expected output vectors from a trained second level ANN.  

The Figure 11 illustrates how the taxonomically structured ANN based Meta-modeling 

scheme can deliver a post-disruption performance prediction upon feeding pre-disruption 

system conditions. 
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Figure 11.  Proposed ANN based Metamodeling scheme 
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To construct a parametric time series model, various time series approximation 

methods such as regression methods, moving average methods, or exponential smoothing 

methods, can be used to mathematically capture the unknown transient performance 

function.  In addition to underlying time series models, some quantitative aspects of the 

transient behavior, such as the estimated time from the occurrence of a disruptive event to 

the emergence of the first sign of performance deterioration and variance changes during 

a transient state, can be predicted in output vectors.    

 

Prior to a full investigation of various transient behavior patterns of the FMS 

under study using computer simulation, we could scientifically guess the basic behavior 

patterns of the target system performance index such as time in system based on a study 

of most common types of any time series.   According to Chatfield [1984], there are three 

basic types of time series characteristics: constant process, linear and quadratic trends, 

and cyclic or periodic variation.   Thus, it is theoretically possible to have a time series in 

combined forms of these three basic patterns. 
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4. Statement of Research 
 
 
 
 

4.1 Research Goal 
 
 
 
 

The primary goal of this research is to demonstrate that a hierarchically organized 

ANN based metamodeling framework is a viable means to provide an effective 

“lookahead” performance modeling capability to a non-human controller as well as 

human operator in case there is an unanticipated performance disruption. The proposed 

ANN based metamodeling framework is a pattern based knowledge system that consists 

of independently trained multiple ANNs in a taxonomical arrangement.  These individual 

ANNs are designed to work together to cover different areas in the functional range of an 

unknown transient system performance prediction function.  This is a feasibility study of 

such a performance-modeling framework. The research comprises six major objectives: 

(1) a simulation study on a hypothetical FMS model with limited operational 

characteristics and scenarios to identify a unique set of possible transient system behavior 

patterns under pre-selected disruption scenarios, (2) identification of the input space and 

output space of an unknown transient performance prediction function, (3) identification 

of a proper logical taxonomy that can logically connect multiple ANNs, making them 

work collectively to capture various transient behaviors, (4) identification of design 

architecture for individual ANNs  and their proper training methods, (5) validation and 

performance assessment of the final model through comparisons with simulation results,  
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(6) recommendations for further improvements of the proposed modeling framework in 

future research. 

 

 
4.2 Research Objectives 

 

To achieve the research goal, six research objectives have been identified and 

need to be pursued: 

 

Objective 1- Construct a simulation model and identify an appropriate 

experimental design to study various transient system behaviors of the proposed FMS. 

A discrete event simulation model is built using Extend [1987-2001] to study various 

transient behaviors of the proposed FMS.  The model is built and studied according to the 

steps in a simulation study suggested in Banks et al. (p13 –p18) [1996].  The simulation 

model is constructed in such way that a single resource failure can be scheduled at a 

precise moment during a single run.  Key performance indexes such as time averaged 

utilization of each machine stations and AGV are recorded prior and after a scheduled 

disruption.   Limited pilot runs of the model with selected ranges for system operational 

parameters of interest are used to finalize the experimental design.  The main focus of 

these pilot runs is to test which set of operational parameters could provide better samples 

for distinctive post-disruption transient behaviors.  Individual workstation process time 

distributions under each part type are also selected to meet desired average system 

utilization throughout the system.  A valid experimental design is identified based on the 

results from these pilot runs.  Experimental factors, the number of levels of each 
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experimental factor, and the total number of different experiment is described in depth in 

Section 4.3  

 

Objective 2 - identify a domain (input space) and range (output space) of an 

unknown transient performance prediction function to be modeled by the proposed ANN 

based meta-modeling framework. 

Major system performance indexes prior to an operational disruption such as time 

averaged utilization for each machine stations and the AGVs can be a part of the 

functional domain.   These selected indexes can help an unknown transient performance 

prediction function to map and distinguish various post-disruption system behaviors 

based on their unique input space value pattern after the mapping is finished.  Among 

various system performance indexes, those that exhibit clear changes after a given 

disruption can be considered as candidate elements for the functional domain as well as 

functional range.   The other significant part of functional range is aimed to capture an 

unknown time series function of key performance index of primary interest to depict the 

detail transient behavior such as time-in-system of individual incoming parts. 

 

Objective 3 - identify proper taxonomical logic structure to loosely connect 

multiple ANNs to predict an unknown transient performance prediction function. 

A branch logic structure where each branch uses individually trained ANNs and predicts 

a mutually exclusive area of the functional range of the unknown transient performance 

prediction function is to be identified.    Questions such as what part of the functional 

range to capture by the top level ANN and how many levels of branch logic are needed in 
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order to predict the entire functional range are investigated.  A pictorial presentation of a 

proposed modeling scheme can be found in Figure 17 (page 156) from the previous 

chapter.  Major design principles of the proposed taxonomical logic structure are: 

• Top level branch logic is to map an appropriate set of subsequent ANNs so that 

they can collectively predict a detail transient behavior after the top level ANN 

distinguishes its overall transient behavior pattern class. 

• The depth of levels in the taxonomical structure can be adjusted based on the 

number of unique transient system behavior patterns and the number of key 

indexes and parameters to be modeled. 

• The structure of taxonomical branch logic should be designed in such way to 

comprehensively cover all possible transient system behaviors of the proposed 

FMS under given disruption scenarios and future expansion of the model can be 

accommodated. 

 

Objective 4 - identify appropriate ANN architecture and training strategy for 

individual ANNs to be used in overall meta-modeling framework. 

First, an appropriate artificial neural network design architecture to cover different parts 

of a functional range of the unknown transient performance prediction function needs to 

be selected.  Second, a choice of possible network configurations and a training method 

for individual ANNs need to be made.  For example, the number of nodes, the number of 

hidden layers, the type of transfer function, selection of training data set, training 

methods, and the length of training period need to be identified.   
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Objective 5 - Validate the proposed ANN based metamodeling framework using 

the simulation model developed in Objective and selected disruption scenarios.   

The overall effectiveness of the proposed modeling framework can be judged through a 

controlled simulation study.   A portion of experimental design from Objective 1 can be 

used to evaluate the effectiveness of the model.  The effectiveness test consists of three 

major parts.   The first part is to evaluate the fidelity of the distinctive transient system 

behavior pattern classification by the trained top-level ANNs.  The second part is to 

assess the accuracy of individual key performance index predictions such as time 

averaged resource utilizations. The third part is to assess the accuracy of the 

approximated coefficients of an unknown time series function of key performance 

indexes of primary interest.    

 
 

Objective 6 – Make recommendations for the future research based on outcomes 

of this study. 

Based on the outcome of the study, three courses of action can be taken.   The first course 

of action is that the anticipated performance is fully met and no other improvement is 

necessary.  In this case, the automation of the proposed FMS transient performance-

modeling scheme can be suggested as a possible topic for the future research.  Also, a 

generalization of the proposed methodology can be made so that it can be applied to other 

similar asynchronous concurrent system control environments.  The second case is that 

the anticipated performance is partially met and some improvement is necessary.  In such 

case, possible candidates for further improvement can be identified and a possible 

remedy can be suggested for the future research.  The third case is that the outcome has 
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completely failed to meet the anticipated performance.  Therefore, possible causes for 

failure have to be identified.  If there is evidence that theoretically incorrect assumptions 

were made or inappropriate concepts were used for either the study or methodology itself, 

they need to be identified and discussed.  

 

 

4.3 Assumptions and limitations 
 
 
 

The performance prediction scheme using ANNs is to provide a lower level FMS 

controller its most needed “lookahead” capability. The performance index of primary 

interest is the average time in the system for individual parts.  The maximum 

performance forecasting time horizon for “lookahead” feature in this hypothetical control 

system has no need to exceed 15 working days.  However, the minimum performance 

forecasting time horizon should be at least five working days.  Each working day has 14 

hours of operational time for the proposed FMS. 

 

The mean and variance of the unknown distribution of the average time in the 

system need to be measured during the experiment.  Machining time distributions are 

assumed to be triangular distributions.   Despite the almost deterministic operational 

nature of most FMSs, non-deterministic service times are chosen for this study mainly 

due to setup time variability caused by the random sequence of part types in a loaded 

fixture.  Inter-arrival times for individual part types can be adjusted during pilot runs to 

achieve the desired overall system utilization level.  Since this research is intended to 
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validate a new metamodeling framework, the simulation study only focuses on a small set 

of single event disruption scenarios to keep the experiment size manageable. Single 

discrete events such as part mix changes, introduction of new product, machine center 

breakdown, and AGV breakdown are assumed to be the only source of disruptions under 

study. 

 

No more than one machine or AGV breakdown is allowed to take place at any 

given time.  Even though actual machine center breakdown and AGV failure are random 

in nature, for the purpose of this study, a single disruption event is scheduled to take 

place at a particular point during a single non-terminating simulation run.  During pilot 

runs, the event trigger time for both machine center breakdown and AGV failure needs to 

be carefully selected so that a resource failure can only happen after a particular 

performance index has passed its initial warm-up period and reached its steady-state. 

 

 

4.4 Summary 
 
 
 

The primary goal of this research is to demonstrate that a group of taxonomically 

organized ANNs can collectively provide a post-disruption “lookahead” capability on a 

selected performance index.   The proposed ANN based metamodeling approach is a 

pattern based performance modeling system utilizing both regression and simulation data. 

The six major research objectives are: (1) a simulation study on a hypothetical FMS 

model with a limited capability of fault tolerance, (2) identification of the functional 
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domain and range of an unknown transient performance prediction function, (3) 

identification of a proper taxonomical framework that logically combines individual 

ANNs, (4) identification of proper design architecture of individual ANNs and their 

training methods, (5) validation and performance assessment of the final metamodel, (6) 

identification of future improvements and opportunities regarding the proposed 

metamodeling approach.   Assumptions and limitations regarding the hypothetical FMS 

were also identified. 
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5. Research Methodology 
 
 
 
 

This chapter outlines major research tasks, their execution plans, and necessary 

methodology to achieve the goal and objectives defined in Chapter 4.   

 

 
5.1 Research Tasks 

 
 
 
 There are ten major tasks identified.  Task 1 is to construct a valid simulation 

model based on the proposed FMS that can facilitate a single scheduled resource failure 

during its run time.  Task 2 is to finalize appropriate values for key system parameters 

such as interarrival mean time for incoming parts and mean service times for each part 

type at particular machine centers to obtain a desired level of system wide utilization 

through pilot runs.  Task 3 is to finalize key performance indexes and experimental 

factors to create limited disruption scenarios that can be used for development and 

validation of an ANN based transient performance metamodeling framework.  Task 3 

must provide two separate scenarios, one for the steady state performance analysis and 

the other for the transient state performance analysis using a single resource failure.  

 

Task 4 conducts a simulation experiment using the two separate scenarios defined 

in Task 3 to find values for various elements in both the functional domain and range of 
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an unknown transient performance prediction function.  Collecting steady state as well as 

transient performance values for chosen key performance indexes and constructing 

individual time series approximation models to capture detail transient behaviors of the 

primary performance index such as time-in-system are key steps under this task.  

 

Task 5 is to prepare data generated from simulation experiments for the ANN 

application. Appropriate structures for both input and output vectors are identified during 

this process.  Individually constructed time series approximation functions for the 

primary performance index under a given disruption scenario need to be carefully 

converted to a group of elements in a single output (target) column vector so that they can 

be fed into a corresponding ANN during its training.  During input and output data 

preparation for ANN training, a data conditioning method such as moving average 

method is employed to minimize unwanted noise and help to capture only essential trend 

information in time series performance data.  This makes the individual network training 

easier and faster and also improve its overall prediction accuracy.  Task 6 identifies and 

constructs appropriate neural networks for various parts of the proposed ANN based 

metamodeling scheme based on their input space and output space vector configurations.  

A proper configuration for each neural network is identified through both theoretical and 

empirical approaches.  Task 7 trains and validates neural networks using mutually 

exclusive subsets of data collected from Task 4.  The entire neural network training and 

simulation are done using MATLAB [1984-2000]. 
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Task 8 is to construct proper branch logic to taxonomically organize various 

ANNs to map selected members of the functional domain to a proper part of the 

functional range.  Conceptualization and design of the overall logical framework is 

started as early as when Task 3 starts.   The entire logic and input and output interfaces 

are written in MATLAB language. Task 9 is to assess the effectiveness of the proposed 

ANN based metamodeling framework under selected sets of simulated shop-floor 

disruption scenarios found in Task 3.  Task 10 does continuous write-up as the research 

progresses. Task 11 summarizes the findings and makes recommendations based on the 

outcomes from Task 9. 

 

Task 1: constructs a valid simulation model based on the proposed FMS in Chapter 3.  A 

discrete event simulation model is constructed using Extend to run non-terminating 

simulations with a single-resource failure to generate time series performance data for a 

primary key performance index such as mean time-in-system.  The model consists of 

three major functional elements.  The first element is a part type and attribute allocation 

module where a part type is probabilistically generated from an empirical discrete 

distribution and necessary parameters for individual machining time distributions are 

automatically assigned to an incoming part as its attributes.   The second element is a part 

routing and AGV handling logic that controls the bypass and pass-through track at each 

machine stations based on the current machine status and machine operation 

requirements by the incoming loaded fixture.  The third element is a resource failure 

trigger mechanism that allows a user to selectively pick the resource to fail, the failure 

start time, and the duration of failure.    System configuration parameters such as mean 
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part inter-arrival time and relative part sizes for individual part types can be selected 

during pilot runs.  The model validation needs to be done to see if the model closely 

follows the system descriptions given in Chapter 3.  

 

Task 2: executes ten pilot runs (10 independent reps) with two sets of part mixes to 

finalize key system parameters.  Part mix one consists of part type 1 (25%), part type 5 

(25%), part type 8 (25%), and part type 11 (25%).  Part mix two consists of part type 1 

(20%), part type 4 (20%), part type 5 (20%), part type 11 (20%), and part type 12 (20%). 

Pilot runs are also to finalize key system parameters, such as inter-arrival mean time for 

different part types and mean service time by a particular machine center for a specific 

part type.  Furthermore, Identifies ranges for the mean service time by each AGV should 

be determined to obtain a desired average system utilization level.   

 

Task 3: finalizes experimental factors to create initial disruption scenarios.  Refer to 

Section 5.2 for more details. 

 

Task 4: conducts simulation experiments using two separate scenarios to find both steady 

state performance values and transient state patterns for the chosen performance index. 

Also Task 4 identifies the following system parameters: 

• common warm up period for all steady state scenarios under study, 

• least amount of time duration required to observe any transient impact following a 

particular disruption over the target performance index, 
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• maximum deviation of the target performance index at a given time from its 

steady state value prior to a particular disruption, 

• maximum duration of any transient behavior under each scenario. 

 

Task 5: identifies a proper input and output vector space to represent both functional 

domain and range of an unknown transient system performance function.  Properly 

configured input and output column vectors can be fed to a loosely connected group of 

individually trained ANNs in a taxonomical manner in order to predict the transient 

system behavior following a single performance disruption. 

 

Task 6: identifies, constructs and trains individual ANNs comprising the proposed ANN 

based metamodeling scheme for both steady state and transient state performance 

predictions.   A proper training method for individual ANN shall be selected.   Refer to 

Section 3.3.2 and 3.3.3 for ANN based methodology. 

 

Task 7: trains and validates individual ANNs in the proposed ANN based metamodeling 

scheme using input and output vectors constructed from the performance data collected 

from Task 4.   

 

Task 8: constructs proper branch logic that is to loosely connect individual ANNs in 

taxonomical manner to map various parts of the functional domain to the intended 

functional response of an unknown transient performance function.  This needs to be all 

done using MATLAB. 
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Task 9: assesses the overall effectiveness of the proposed ANN based metamodeling 

framework under a selected set of disruption scenarios found in Task 3.  

 

Task 10: does continuous write-up as the research progresses. 

 

Task 11: summarizes findings based on outcomes from Task9 and makes final 

recommendations for possible future research. 

 

 

 

5.2 Simulation Based Disruption Scenarios 
 

 

Single discrete events such as part mix changes, introduction of new product, 

machine center breakdown, and AGV breakdown are considered experimental factors of 

this study.  Even though we consider part mix change a single discrete event, in reality, 

there are more than single part percentages affected by a part mix change.  A new part 

introduction to the current production flow is an inclusive form of part mix change. There 

can be many different combinations to form a part mix change.  For this research, only 

one set of part mix changes is studied.  

 

Factor 1: A part mix change can be characterized by changes in the percentage 

combination of individual part types across presently available part types under the 



  162 

current production order.  Unexpected change in the current production plan can result in 

a part mix change. In addition, introduction of a new product can result in a shift in part 

mix. The table below illustrates three possible part mix scenarios that are used in this 

experiment.   A disruption can be caused by a sudden shift from one part mix to the other.   

As result there can be three possible disruption scenarios, namely Part Mix 1 →  Part Mix 

2 and Part Mix 2  Part Mix 1, which can be caused by changes in part mix.  →

 

Table 8.  Part Types and Possible Part Mix Change Scenarios 
 Part 

Type 1 
Part 

Type 4 
Part 

Type 5 
Part 

Type 8 
Part 

Type 11 
Part 
Type 

12 
Part Mix1 25%  25% 25% 25%  

Part Mix2 20% 20% 20%  20% 20% 
 

 Part Mix Change 

Case 1 None 
Case 2 Part Mix1  Part Mix2 →
Case 3 Part Mix2  Part Mix1 →

 

 

Factor 2: A single machine center breakdown or recovery can be characterized by adding 

or removing a specific machine center to a particular machine group.  Since performance 

of each machine center differs even among the same machine group, which machine to 

breaks down can be critical to substantiate the impact. The following Table 9 contains 

seven distinctive machine breakdown scenarios that are used for this experiment. 
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Table 9.  Possible Single Machine Failure Scenarios 
 Failed 

Machine 
from 

Machine 
Group 1 

Failed 
Machine 

from 
Machine 
Group 2

Failed 
Machine 

from 
Machine 
Group 3

Case 1 None None None 
Case 2 M1   
Case 3 M6   
Case 4  M2  
Case 5  M5  
Case 6   M3 
Case 7   M7 

 
 
 
 
 

Factor 3: Single AGV failure can be characterized in the same way as the machine center 

breakdown.   

 

Table 10.  Possible Single AGV Failure Scenarios 
 Failed 

AGV 
Case 1 None 
Case 2 AGV1 or 

AGV2 
 

 

Thus, the total number of levels in the experimental design is  

levels of number totalNchNfNf NNc PMmachineAGVrep indPAPM =+++××× )1(  
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 Each level in this experimental design represents various single source disruption 

scenarios derived from four steady states pre-disruption conditions (see Table 11). Total 

eight single source disruptions are identified for this experiment. These single source 

disruptions are designed to create various transient performance behaviors from a steady 

state condition.  Through early pilot runs, two distinctive types of pre-disruption steady 

state condition are identified.  Because of their behavioral similarity to the physical 

equilibrium, the notion of  “equilibrium” in physics is used throughout the study to 

describe these two types of pre-disruption steady state conditions.   

 

 In physics, there are two types of equilibrium, stable and unstable.  As shown in 

Figure 12, a stable equilibrium can be considered the lowest point in a valley where a ball 

can remain still unless some external force acts on it.  Even after applying some force on 

the ball, the ball tends to roll back to the same lowest point after a period of pendulum 

movements.  An unstable equilibrium can be considered the highest point on a peak 

where the ball can slide off in either direction after applying a little external force.  

 A pre-disruption steady state followed by no or very little change after the disruption can 

be considered to be in a state of stable equilibrium.  Whereas, a pre-disruption steady 
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state followed by a significant change after the disruption can be considered to be in a 

state of unstable equilibrium.    

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Stable Equilibrium Unstable EquilibriumStable Equilibrium Unstable Equilibrium
 
 
 
 Figure 12.  Graphical Representation of Stable and 

Unstable Equilibrium   
 
 
 
 
 
 
 The purpose of this simulation experiment is to investigate transient behaviors of 

the target performance index after a single disruptive event occurs during its simulation 

time.  Thus, four different steady state system settings formed by unique combinations 

between a particular part mix and a specific part arrival time can be followed by a single 

disruptive event to simulate each single disruption scenarios.  The following table 

illustrates how these nine single event based disruption scenarios can be formed.  For 

example, the first disruption scenario is based on a part mix change during a production 
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cycle from a part mix consisted of part type 1, 5, 8, and 11 to a part mix consisted of part 

type 1, 4, 5, 11, and 12.   

 

Table 11.  Possible Single Resource Failure Scenarios 

Disruption 
Scenario 

No 

Part 
Type 1 

Part 
Type 4 

Part 
Type 5

Part 
Type 8

Part 
Type 

11 

Part 
Type 

12 

Failed 
Machine 

from 
Machine 
Group 1

Failed 
Machine 

from 
Machine 
Group 2 

Failed 
Machine 

from 
Machine 
Group 3 

Failed 
AGV 

25%  25% 25% 25%    
1 

20% 20% 20%  20% 20%     

20% 20% 20%  20% 20%     
2 

25%  25% 25% 25%      

3       M1    

4       M6    

5        M2   

6        M5   

7         M3  

8         M7  

9          1 
 

 

Thus, nine independent single even disruption scenarios plus one steady state scenario 

with 20 independent replications (except for part mix changes) per scenario can create 

180 independent simulation runs.  The total size of experiments can be increased as 

necessary by adding more independent replications under each scenario. 
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5.3 Summary 

 

 This chapter identifies ten major research tasks.  A simulation tool, Extend, was 

selected to conduct a simulation study on the proposed FMS.  MATLAB and MATLAB 

Neural Network Toolbox are used to construct ANNs components and the metamodel 

execution framework.  It also identifies types of performance disruption events that can 

take place under the current operational environment by the hypothetical FMS.   Only 

limited part mix, a single machine, or AGV failure is allowed to be a factor for disruption 

event scenarios.  Based on these limited sources for performance disruption, an initial 

design of experiments was identified. 
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6. Problem Development – Pilot Experiments 
 
 
 
 

The proposed modeling framework requires a carefully planned data collection of 

the selected performance index by the system.  The successful construction of a good 

evaluative model lies on realistic data the model is derived from.  We assume that such 

raw data can be acquired through an effective simulation model that can replicate realistic 

behaviors of the intended system.   Structures and compositions of input and output 

vectors need for ANN training are identified.  Data processing activities required to 

construct such input and target vector sets for the proposed taxonomically organized 

ANN are discussed in detail.    This chapter closely examines modeling issues involved 

with creating a realistic simulation model.  The configuration and training of individual 

ANNs and hierarchical modeling relationships among ANNs is also discussed. 

 
 
 

6.1 Development of a Computer Simulation Model 
 
 
 The simulation model of the proposed FMS is written in Extend.  Extend is a 

block diagram based simulation tool that allows a user to easily model a complex 

discrete/non-discrete event system in a relatively short amount of time compared to many 

conventional simulation modeling tools.  It also provides unlimited hierarchical 

decompositions of a model, which helps the readability of a complex model.   In addition, 
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it provides simple animation and run-time block statistics monitoring capability that are 

useful for verification purposes. 

 

 The simulation model consists of three major functional components.  The first 

functional component is to assign individual part attributes such as processing time 

(Table 7 on page 88) and relative part size (Table 5 on page 85).    As shown in Figure 

13, this functionality is built with a collection of modeling components such as Set 

Attributes, Get Attributes, and DE Outputs in a hierarchical structure.   The second 

component is the part routing and AGV handling logic that control and regulate the 

movement of a loaded/unloaded fixture based on its common part process requirements 

and target machine center conditions.   

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13.  Set Part Type Attribute Block  
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As shown in Figure 14, the logic consists of various modeling components such 

as Select DE Output, Get Attributes, Decision, Logical OR, Logical AND, and Batch.  

The third component is the resource failure trigger mechanism that allows the user to 

select a single resource to fail and adjust timing and duration of the failure.  As shown in 

Figure 15, this component consists of various modeling components such as Decision, 

Logical AND, and Logical OR.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14.  Part Routing and AGV Control Logic  
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 Figure 15.  Single Resource Failure Scheduling and Control  

 

 

 

6.2 Initial Experiments and Findings  
 

To study the system wide best average utilization under selected steady state 

performance scenarios and develop control limits to detect the post-disruption impact, 

five independent non-terminating simulation runs will be executed for 70,000 minutes 

under four distinctive steady state operational settings.   Because the simulation models 

starts from an empty and idle state, the presence of substantial warm-up periods in 
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simulation results was examined under four different steady state operational scenarios.  

Welch’s graphical method [Welch 1981; Law et al. 1991] was chosen to detect and 

remove the warm-up period from simulation results.   

 

Results from the five replications of four individual no-disruption scenarios were 

averaged at individual observations to create four averaged time-in-system processes.  It 

was difficult to find any visible signs of a warm up period from both raw and averaged 

time-in-system observation processes without applying a moving average filtration due to 

the high content of random noise among individual observations. Numerous moving 

average filtrations with various widths were applied to find a proper moving average 

width (or interval) that can minimize unwanted high frequency random noises without 

compromising the resolution for the low-frequency oscillations (long-run trend of 

interest).  A moving average width of 50 observations was found to be good enough to 

detect a warm-up period on a limited initial data set from individual averaged time-in-

system processes under four steady state scenarios.  Even after applying moving average 

filtration with a width of 50 observations, four averaged TIS processes still exhibit a 

considerable amount of high-frequency noises. The length of the individual warm-up 

period from four moving average filtered mean TIS processes varies slightly.  

 

As shown in Table 12, no warm-up period is greater than 130 observations.  Later 

the study found a need for a greater moving average width to be applied on entire 

observations (about 30000 consecutive observations) from each averaged time-in-system 

processes.  Therefore, the size of warm up period, 130 observations or less is found to be 
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rather insignificant even compared to a newer moving average width of 500 observations.  

As result, the warm-up period from each pre-disruption data is to be ignored during this 

study.   

 

Table 12.  Four Steady State Scenarios and Their Warm-up Periods 

Warm-up Period Ends Steady State 
Performance 
Scenario No 

Part 
Mix 
Type 

Mean 
Part 

Interarri
val Time 

Exp NO. 
(indepen
dent run 

#) 

Observation Count 
(from 1st 

observation) 

Simulation Time in 
Minutes (from 0) 

1 
2 
3 
4 

1 PM1 2.2 

5 

70 171.1136 

91 
92 
93 
94 

2 PM1 2.3 

95 

100 240.5254 

96 
97 
98 
99 

3 PM2 2.2 

100 

80 186.1029 

101 
102 
103 
104 

4 PM2 2.3 

105 

65 153.117 

 

  

Throughout the study a common single disruption event trigger time was chosen 

at 10,000 minutes because it is well beyond any potential influence by relatively small 

warm-up periods under four steady state scenarios.  To approximate steady state means in 

TIS observations, the replication and deletion method has been used [Law and Kelton 

1991].   Since the presence of a warm-up period was decided to be ignored, five 

independent replications of each steady state scenarios are averaged to approximate a 

corresponding steady state mean of TIS observations of parts in chronological order. 
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As shown in Figure 16, row TIS observations from a single realization contain a 

significant amount of high frequency noise due to unanticipated travels of parts within 

the model.  In this time series (TIS observations), we are interested in detecting any low 

frequency oscillations or long-term trend rather than high frequency oscillations or noises 

in consecutive observations.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 16.  Row TIS Observations during First 500 Parts under the First 

Steady State Scenario with No Disruption 
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To smooth out these high-frequency oscillations in TIS observations, the moving 

average filtering technique has been used to treat raw TIS observations [Law and Kelton 

1991].   A width (or interval) of moving average, 500=w , was selected through a trial 

and error method.   The term width is used in place of the interval throughout the study.  

The criteria to select a proper width for the moving average filtering depends on a 

balancing act where a chosen moving average width will not oversimplify the long-term 

trend but smooth out high frequency noises. 

 

A series of simulation experiments were performed to find two proper mean inter-

arrival times.  Initial pilot runs show that mean arrival times ranging between 1.8 and 2.5 

show similar overall average utilization and performance without creating a infinite 

queue in front of the proposed system during the normal run without a disruption.  Then 

an interval reduction technique was used to selectively screen potential mean arrival 

times so that a small set of essential mean arrival times between 1.8 and 2.5 can be tested 

in order to rule out any mean arrival time that can result in a post-disruption condition 

where every runs show either no changes or infinite growth of its queue length under all 

single disruptions.  As result, mean part inter-arrival time 2.2 and 2.3 minutes were 

selected for steady state scenarios in order to facilitate an unknown optimal response 

surface area that exhibits both stable and unstable equilibrium characteristics in the event 

of a single performance disruption.  Since each part type group has its own unique 

process requirements involving three different machine groups and no waiting queues are 

available in between the machining stations, the proposed FMS simulation model exhibits 
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unique characteristics somewhat different than those that exist in typical closed queuing 

network models.  Based on these unique operational characteristics and results from early 

test runs, an upper bound for the presumed optimal system wide utilization level is found 

to be lower than expected in theoretical queuing network models.  Results from 20 

independent pilot runs under four different steady state (no-disruption) scenarios in Table 

13 show that the mean utilization over all eight machining stations averaged 

approximately 60% under four different steady state scenarios, which matches the result 

of queuing approximation estimate from the preliminary analysis in Chapter 3 page 89 

thru 90.   Results also show that two AGVs were utilized on average around 30% under 

steady state scenarios.   Since two AGVs serve as necessary transporters as well as 

buffers among machining stations, it is not fair to judge the overall utilization solely 

based on individual machining stations.   As result, the actual system utilization may be 

even higher than 60% on average. 

 

In order to capture a diverse transient behavior population, an ideal system wide 

utilization level for this experiment must contain a substantial portion of “tipping points” 

that can lead to both unstable and stable state in the event of a single disruption.  The 

control limits are used in this experiment to determine the approximate starting point of 

suspected post disruption behavior that is usually characterized as an obvious deviation 

from the pre-disruption steady state mean.  Using three-sigma control limits is one way to 

detect that such deviation took place or is possibly underway in the current process.   
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X  control limits can be constructed based on the assumption that X  and R  are 

unbiased estimators for µ  and σ  of the steady state process.  The lower and upper 

control limits for X  can be found using  where 2A
nd

A
2

2
3

=  and  is the size of 

subgroups.  

n

 

Table 13.  Individual System Resource Utilization Rates under Four Steady State 
Scenarios 

Time Average Resource Utilization Scenario 
No. 

Exp 
No. M1 M6 M2 M5 M3 M7 M9 M12 Mean AGV Fixture 
1 0.67 0.50 0.49 0.31 0.78 0.72 0.75 0.66 0.61 0.41 0.62 
2 0.66 0.48 0.50 0.31 0.78 0.70 0.72 0.62 0.60 0.36 0.59 
3 0.68 0.49 0.51 0.29 0.78 0.72 0.74 0.66 0.61 0.41 0.62 
4 0.66 0.48 0.49 0.30 0.78 0.71 0.75 0.63 0.60 0.39 0.60 
5 0.65 0.49 0.49 0.32 0.77 0.70 0.72 0.63 0.60 0.35 0.59 

1 

Mean 0.66 0.49 0.50 0.31 0.78 0.71 0.74 0.64 0.60 0.38 0.60 
91 0.63 0.46 0.48 0.29 0.76 0.68 0.72 0.60 0.58 0.33 0.57 
92 0.65 0.47 0.47 0.29 0.77 0.70 0.73 0.63 0.59 0.36 0.58 
93 0.65 0.47 0.48 0.30 0.76 0.67 0.72 0.61 0.58 0.34 0.57 
94 0.65 0.46 0.48 0.29 0.76 0.68 0.72 0.62 0.58 0.34 0.57 
95 0.64 0.47 0.49 0.29 0.77 0.70 0.74 0.62 0.59 0.35 0.58 

2 

Mean 0.64 0.47 0.48 0.29 0.76 0.69 0.72 0.62 0.58 0.34 0.57 
96 0.57 0.34 0.72 0.64 0.66 0.47 0.81 0.71 0.62 0.44 0.64 
97 0.58 0.32 0.72 0.63 0.65 0.45 0.80 0.69 0.60 0.41 0.62 
98 0.57 0.33 0.72 0.63 0.66 0.46 0.82 0.70 0.61 0.45 0.64 
99 0.57 0.32 0.72 0.64 0.66 0.46 0.81 0.69 0.61 0.42 0.63 
100 0.57 0.32 0.71 0.64 0.66 0.45 0.80 0.69 0.61 0.42 0.62 

3 

Mean 0.57 0.32 0.72 0.64 0.66 0.46 0.81 0.70 0.61 0.43 0.63 
101 0.56 0.31 0.69 0.60 0.64 0.42 0.78 0.66 0.58 0.36 0.58 
102 0.55 0.31 0.70 0.59 0.64 0.42 0.79 0.65 0.58 0.36 0.58 
103 0.55 0.30 0.70 0.60 0.65 0.43 0.79 0.66 0.58 0.36 0.58 
104 0.56 0.31 0.69 0.61 0.64 0.41 0.78 0.66 0.58 0.36 0.58 
105 0.57 0.30 0.70 0.60 0.63 0.42 0.80 0.67 0.59 0.36 0.58 

4 

Mean 0.56 0.31 0.70 0.60 0.64 0.42 0.79 0.66 0.58 0.36 0.58 
 
 
 

A value for  can be found in any statistical process control book.  In this 

experiment, since the subgroup size  is 5, the value 2.326 can be found for  from 

Table C of App.3. in Grant’s book [Grant et al. 1988].    Thus, upper control limit (UCL) 

2d

n 2d
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and lower control limit (LCL) for four steady state scenarios can be calculated as in Table 

14.  Table 14 summarizes the results of 20 pilot runs where unique combinations of mean 

inter-arrival time and type of part mix were tested with five independent runs. 

 

Table 14.  Four Steady State Scenarios and Their Control Limits 

Steady State 
Performance 
Scenario No 

Part 
Mix 
Type 

Mean 
Part 

Interarri
val Time 

Exp NO. 
(indepen
dent run 

#) 

Mean 
TIS 

UCI 
(95%) 

LCI 
(95%) UCL  LCL  

1 
2 
3 
4 

1 PM1 2.2 

5 

163.4984 164.3 162.6968 171.6962 155.3006 

91 
92 
93 
94 

2 PM1 2.3 

95 

161.6357 162.2448 161.0266 166.8541 156.4173 

96 
97 
98 
99 

3 PM2 2.2 

100 

149.9076 152.0061 147.809 159.2466 140.5685 

101 
102 
103 
104 

4 PM2 2.3 

105 

147.2282 147.6567 146.7996 153.6755 140.7808 

 
 

To find lower and upper bound values within the range of inter-arrival times, time 

between individual part arrivals were also tested during the pilot run.  Figure 17 

graphically shows results of five independent replications of the steady state scenarios 

number one 
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Figure 17.  Moving Average Filtered TIS Observations under the First 
Steady State Scenario with No Disruption 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The pilot results indicate that mean inter-arrival time 2.2 and 2.3 minutes are ideal 

values in order to exhibit both stable and unstable equilibrium transient behaviors under 

selected part mix Type 1 and 2.  After finding UCL and LCL for each steady state 

scenario as criteria to decide the presence of any disruption impacts in their post-

disruption behaviors, five independent replications of each disruption scenarios found in 
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Table 11 (see page 166 in Chapter 5) were conducted under four steady state scenarios as 

its pre-disruption condition.   

 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18.  Moving Average Filtered TIS Observations under the First 
Steady State Scenario with Machine M6 Failure Took Place at 10000 
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For example, Figure 18 on the previous page shows five independent replications 

of the disruption scenario number four under the steady state scenario number one as its 

pre-disruption scenario.   A point where the disruption behavior becomes apparent on 

each graph differs slightly since a number of parts processed at the end of 10,000 minutes 

vary from run to run due to the randomness of stochastic process. 

 

 

6.3 Initial Simulation Experiment Sets and Data Processing Procedures 
 

 The final set of initial experiments is shown in Table 15.  A total of 180 

independent runs were conducted.   Each run is marked with a unique experiment number 

that was assigned arbitrarily.  After each run, key statistical indexes such as time-average 

utilizations of each resource before and after a scheduled disruption were recorded and 

TIS for each part accompanied by its entry time and departure time were generated and 

saved as a text file.   The order in which values of individual TIS observations were saved 

was based on their departure time from the system. 

 

There are two parts of data processing required in this study to construct an ANN 

based metamodel.  The first part of data processing is called the pre-processing and is 

designed to prepare raw TIS observation data in a proper form to detect the presence of 

any transient behavior after the disruption and classify its behavior pattern.  The second 

part is called the post-processing and is designed to extract essential mathematical 

properties from a formatted TIS observation data, such as variance changes, and to find 

coefficients of a designated parametric mathematical model, such as a polynomial.   
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Table 15.  Initial Experiment Set 
Single Event Disruption Scenario 

(Triggered at 10000 minutes) 
Steady State Scenario 

(pre-disruption) 
Scenario 

Index Part Mix 
Change 

Machine 
Breakdown 

AGV 
Breakdown 

Mean 
Interarrival 
Time  
(minutes) 

Part Mix 
Exp. No. 

PM1 PM2 →   2.2 PM1 11 
PM1 PM2 →   2.2 PM1 12 
PM1 PM2 →   2.2 PM1 13 
PM1 PM2 →   2.2 PM1 14 

1 

PM1 PM2 →   2.2 PM1 15 
PM1 PM2 →   2.3 PM1 111 
PM1 PM2 →   2.3 PM1 112 
PM1 PM2 →   2.3 PM1 113 
PM1 PM2 →   2.3 PM1 114 

2 

PM1 PM2 →   2.3 PM1 115 
PM2 PM1 →   2.2 PM2 56 
PM2 PM1 →   2.2 PM2 57 
PM2 PM1 →   2.2 PM2 58 
PM2 PM1 →   2.2 PM2 59 

3 

PM2 PM1 →   2.2 PM2 60 
PM2 PM1 →   2.3 PM2 116 
PM2 PM1 →   2.3 PM2 117 
PM2 PM1 →   2.3 PM2 118 
PM2 PM1 →   2.3 PM2 119 

4 

PM2 PM1 →   2.3 PM2 120 
  3 2 → 2.2 PM1 66 
  3 2 → 2.2 PM1 67 
  3 2 → 2.2 PM1 68 
  3 2 → 2.2 PM1 69 

5 

  3 2 → 2.2 PM1 70 
  3 2 → 2.3 PM1 121 
  3 2 → 2.3 PM1 122 
  3 2 → 2.3 PM1 123 
  3 2 → 2.3 PM1 124 

6 

  3 2 → 2.3 PM1 125 
  3 2 → 2.2 PM2 61 
  3 2 → 2.2 PM2 62 
  3 2 → 2.2 PM2 63 
  3 2 → 2.2 PM2 64 

7 

  3 2 → 2.2 PM2 65 
  3 2 → 2.3 PM2 126 
  3 2 → 2.3 PM2 127 
  3 2 → 2.3 PM2 128 
  3 2 → 2.3 PM2 129 

8 

  3 2 → 2.3 PM2 130 
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Table 15 (continued).  Initial Experiment Set 
Single Event Disruption Scenario 

(Triggered at 10000 minutes) 
Steady State Scenario 

(pre-disruption) 
Scenario 

Index Part Mix 
Change 

Machine 
Breakdown 

AGV 
Breakdown 

Mean 
Interarrival 
Time  
(minutes) 

Part Mix 
Exp. No. 

 M1  2.2 PM1 16 
 M1  2.2 PM1 17 
 M1  2.2 PM1 18 
 M1  2.2 PM1 19 

9 

 M1  2.2 PM1 20 
 M1  2.3 PM1 131 
 M1  2.3 PM1 132 
 M1  2.3 PM1 133 
 M1  2.3 PM1 134 

10 

 M1  2.3 PM1 135 
 M1  2.2 PM2 21 
 M1  2.2 PM2 22 
 M1  2.2 PM2 23 
 M1  2.2 PM2 24 

11 

 M1  2.2 PM2 25 
 M1  2.3 PM2 136 
 M1  2.3 PM2 137 
 M1  2.3 PM2 138 
 M1  2.3 PM2 139 

12 

 M1  2.3 PM2 140 
 M6  2.2 PM1 6 
 M6  2.2 PM1 7 
 M6  2.2 PM1 8 
 M6  2.2 PM1 9 

13 

 M6  2.2 PM1 10 
 M6  2.3 PM1 141 
 M6  2.3 PM1 142 
 M6  2.3 PM1 143 
 M6  2.3 PM1 144 

14 

 M6  2.3 PM1 145 
 M6  2.2 PM2 71 
 M6  2.2 PM2 72 
 M6  2.2 PM2 73 
 M6  2.2 PM2 74 

15 

 M6  2.2 PM2 75 
 M6  2.3 PM2 106 
 M6  2.3 PM2 107 
 M6  2.3 PM2 108 
 M6  2.3 PM2 109 

16 

 M6  2.3 PM2 110 
 M2  2.2 PM1 46 
 M2  2.2 PM1 47 
 M2  2.2 PM1 48 
 M2  2.2 PM1 49 

17 

 M2  2.2 PM1 50 
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Table 15 (continued).  Initial Experiment Set 
Single Event Disruption Scenario 

(Triggered at 10000 minutes) 
Steady State Scenario 

(pre-disruption) 
Scenario 

Index Part Mix 
Change 

Machine 
Breakdown 

AGV 
Breakdown 

Mean 
Interarrival 
Time  
(minutes) 

Part Mix 
Exp. No. 

 M2  2.3 PM1 146 
 M2  2.3 PM1 147 
 M2  2.3 PM1 148 
 M2  2.3 PM1 149 

18 

 M2  2.3 PM1 150 
 M2  2.2 PM2 26 
 M2  2.2 PM2 27 
 M2  2.2 PM2 28 
 M2  2.2 PM2 29 

19 

 M2  2.2 PM2 30 
 M2  2.3 PM2 151 
 M2  2.3 PM2 152 
 M2  2.3 PM2 153 
 M2  2.3 PM2 154 

20 

 M2  2.3 PM2 155 
 M5  2.2 PM1 51 
 M5  2.2 PM1 52 
 M5  2.2 PM1 53 
 M5  2.2 PM1 54 

21 

 M5  2.2 PM1 55 
 M5  2.3 PM1 156 
 M5  2.3 PM1 157 
 M5  2.3 PM1 158 
 M5  2.3 PM1 159 

22 

 M5  2.3 PM1 160 
 M5  2.2 PM2 31 
 M5  2.2 PM2 32 
 M5  2.2 PM2 33 
 M5  2.2 PM2 34 

23 

 M5  2.2 PM2 35 
 M5  2.3 PM2 161 
 M5  2.3 PM2 162 
 M5  2.3 PM2 163 
 M5  2.3 PM2 164 

24 

 M5  2.3 PM2 165 
 M3  2.2 PM1 76 
 M3  2.2 PM1 77 
 M3  2.2 PM1 78 
 M3  2.2 PM1 79 

25 

 M3  2.2 PM1 80 
 M3  2.3 PM1 166 
 M3  2.3 PM1 167 
 M3  2.3 PM1 168 
 M3  2.3 PM1 169 

26 

 M3  2.3 PM1 170 
 

 



  185 

Table 15 (continued).  Initial Experiment Set 
Single Event Disruption Scenario 

(Triggered at 10000 minutes) 
Steady State Scenario 

(pre-disruption) 
Scenario 

Index Part Mix 
Change 

Machine 
Breakdown 

AGV 
Breakdown 

Mean 
Interarrival 
Time  
(minutes) 

Part Mix 
Exp. No. 

 M3  2.2 PM2 36 
 M3  2.2 PM2 37 
 M3  2.2 PM2 38 
 M3  2.2 PM2 39 

27 

 M3  2.2 PM2 40 
 M3  2.3 PM2 171 
 M3  2.3 PM2 172 
 M3  2.3 PM2 173 
 M3  2.3 PM2 174 

28 

 M3  2.3 PM2 175 
 M7  2.2 PM1 81 
 M7  2.2 PM1 82 
 M7  2.2 PM1 83 
 M7  2.2 PM1 84 

29 

 M7  2.2 PM1 85 
 M7  2.3 PM1 86 
 M7  2.3 PM1 87 
 M7  2.3 PM1 88 
 M7  2.3 PM1 89 

30 

 M7  2.3 PM1 90 
 M7  2.2 PM2 41 
 M7  2.2 PM2 42 
 M7  2.2 PM2 43 
 M7  2.2 PM2 44 

31 

 M7  2.2 PM2 45 
 M7  2.3 PM2 176 
 M7  2.3 PM2 177 
 M7  2.3 PM2 178 
 M7  2.3 PM2 179 

32 

 M7  2.3 PM2 180 
   2.2 PM1 1 
   2.2 PM1 2 
   2.2 PM1 3 
   2.2 PM1 4 

33 

   2.2 PM1 5 
   2.3 PM1 91 
   2.3 PM1 92 
   2.3 PM1 93 
   2.3 PM1 94 

34 

   2.3 PM1 95 
   2.2 PM2 96 
   2.2 PM2 97 
   2.2 PM2 98 
   2.2 PM2 99 

35 

   2.2 PM2 100 
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Table 15 (continued).  Initial Experiment Set 
Single Event Disruption Scenario 

(Triggered at 10000 minutes) 
Steady State Scenario 

(pre-disruption) 
Scenario 

Index Part Mix 
Change 

Machine 
Breakdown 

AGV 
Breakdown 

Mean 
Interarrival 
Time  
(minutes) 

Part Mix 
Exp. No. 

   2.3 PM2 101 
   2.3 PM2 102 
   2.3 PM2 103 
   2.3 PM2 104 

36 

   2.3 PM2 105 
 
 

 

During the pre-processing process, individual TIS values from a single simulation 

run were sorted again based on a part’s arrival time rather than their departure time.  

Then TIS observation time series from five independent replications under the same 

disruption scenario are averaged to get a stochastic process of jY  for  observations 

where 

mK1

n
Y

Y ij
j =  for  independent replications and ni K1= jYij = th observation of TIS in 

the th independent replication. This procedure is similar to one from Welch’s graphical 

procedure to detect and eliminate a warm up period from a stochastic process.  A moving 

average filtering is also applied to smooth out any noise found in the time series of mean 

TIS observations at observation t  from five independent simulation replications under a 

single disruption scenario.   

i

 

To avoid oversimplification of any major low frequency trends that may exist in 

the mean TIS time series, plots of unfiltered TIS time series and corresponding MA 

filtered TIS time series with a width of 500 observations were compared.   This process 

helps the modeler to visually verify the overall resemblance of any major trends existing 
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in filtered and unfiltered observation processes, which also verifies a proper width for the 

moving average filtering. 

 

If the comparison shows no sign of over-filtering, then corresponding control 

limits are applied to detect that a transient behavior exists in the moving average filtered 

mean TIS data.   Such plots can be shown as in Figure 18 (see page 180) for both moving 

average filtered mean TIS data and control limits found from the corresponding steady 

state scenario.  A presumed starting point for the probable transient behavior can be 

identified using these three plots.  Figure 19 summarizes the sequence of pre-processing 

steps designed for stochastic mean TIS data from independent simulation replications 

under individual disruption scenarios throughout the rest of this study.  The post-

processing will be discussed in the following section. 

 

 

6.4 Post Disruption Behavior Pattern Classification 
 
 
 

After conducting 180 independent simulation runs (36 disruption scenarios ×  five 

independent replications of each scenario) and necessary pre-processing on stochastic 

mean TIS data, individual plots for moving average filtered mean TIS time series are 

carefully studied to identify common transient behavior patterns among them after a 

single event disruption.    
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Grouping various post disruption transient behaviors into several distinctive 

pattern classes is necessary to construct a proper ANN based metamodel.  By doing so, it 

helps identify both a functional domain and functional range of an unknown transient 
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Figure 19.  Pre-process Steps 
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behavior prediction function, which is a crucial step in constructing a training set for the 

ANN based modeling.  In addition, key mathematical properties such as the highest order 

of a proper polynomial can be identified and factored into the construction of proper 

baseline parametric models.   

 

During the post-process, each filtered mean TIS time series is used to 

approximate a selected mathematical parametric function for the selected pattern class.  

Selected mathematical parametric functions can be polynomial, exponential, or 

logarithmic.  Approximated coefficients of the selected parametric function can be used 

to construct a corresponding target output vector for the designated ANN based 

metamodel.   

 

Initial findings indicate that there are four different major types of post-disruption 

transient behavior that exist among the 180 independent TIS observation time series.  For 

this study, the number of post-disruption transient behavior patterns was not solely 

determined by its graphical distinctiveness but rather driven by their mathematical 

modeling needs and efficiency.   For example, even though there may be more than one 

type of transient behavior pattern that exists under a pattern class based on their graphical 

distinctiveness, the need for using the same order of univariate polynomial regression 

model forces them to be under the same transient behavior pattern class.   

 

Type 0 pattern class as shown in Figure 20 is a collection of transient patterns 

where there is no visible sign of change in their post-disruption mean TIS stochastic 
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patterns.  In other words, there is no shift in the trend of the process (average TIS).  For 

this type of post-disruption transient behaviors, the system may have operated near the 

stable equilibrium system condition during the pre-disruption period.  The unique 

combination of each resource conditions (idle or not idle) followed by a sequence of 

system events before and after the time of scheduled resource failure can characterize 

these pre-disruption system conditions such as unstable/stable equilibrium.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Post-disruption
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Mean TIS
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Disruption

Post-disruption
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Mean TIS
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Figure 20.  Type 0 (no change) Transient Behavior Pattern Class 

 

 

Type 1 pattern class as shown in Figure 21 is a collection of transient patterns 

where there is a clear indication of an infinite linear growth by the target performance 
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index during a post-disruption period.  This type of post-disruption behavior may result 

from the near-unstable equilibrium system condition during the pre-disruption period. 
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Figure 21.  Type 1 (an infinite linear growth) Transient Behavior 
Pattern Class 

 
Type 2 pattern class, as shown in Figure 22, is a collection of transient patterns 

where there is a clear indication of an infinite non-linear growth by the target 

performance index in post-disruption behavior.  This type of post-disruption behavior 

may result from the near-unstable equilibrium system condition during the pre-disruption 

period. 
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Figure 22.  Type 2 (an infinite non-linear growth) Transient Behavior 

Pattern Class  

 

 

Type 3 pattern class as shown in Figure 23 is a collection of transient patterns 

where there is a clear indication of a temporary finite non-linear growth followed by 

stabilization to a new steady state during its post-disruption period.  This type of post-

disruption behavior can be resulted by the near-stable equilibrium during the pre-

disruption period. 

 

 

 

 



  193 

 

 

 

 Me

 

 

 

 

 

 

 

an TIS

Post-disruption
Pre-d isruption i th observation

trend

Disruption

Me

 

 

 

an TIS

Post-disruption
Pre-d isruption i th observation

trend

Disruption

Figure 23.  Type 3 (a finite growth to a new steady state) Transient Behavior 
Pattern Class 

 

 

After 180 individual runs, the makeup of four transient behavior patterns among 

resulting MA filtered mean TIS time series was found and is shown in Table 16.  As can 

be seen from the table, every post-disruption transient behavior accompanies a form of 

deviation from their pre-disruption TIS means.  Scenario 33, 34, 35 and 36 are steady 

state scenarios without a disruption.    
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Table 16.  Makeup for Four Transient Pattern Types 

Transient Pattern Type 

% Makeup from 36 

scenarios  (total 180 

independent runs)  

Scenarios Index No 

Type 0 – “no change” 11% 33, 34, 35, 36 

Type 1 – “an infinite 
linear growth” 

22% 19, 20, 25, 26, 27, 28, 
29, 30 

Type 2 – “an infinite 
non-linear growth” 

11% 7, 15, 31, 32 

Type 3 – “a finite 
growth to a new steady 

state” 

56% 1, 2, 3, 4, 5, 6, 8, 9, 
10, 11, 12, 13, 14, 16, 
17, 18, 21, 22, 23, 24 

 

 

The structure for both input (functional domain) and output (functional range) 

vector spaces for each transient behavior pattern type had to be individually identified in 

order to map input and output spaces of an unknown transient performance prediction 

function.  As one of the assumptions for this study states, the primary index of interest is 

average time-in-system (TIS) of departing parts.  Thus, the majority of vector elements in 

the output vectors are used to capture functional characteristics of an unknown transient 

TIS time series during the 10,000 minutes time horizon after a single disruption.   

 

We can closely examine the process of determining the transient behavior pattern 

type for scenario No.19 consisting of independent experiments 26, 27, 28, 29, and 30 as 

an example. The five moving average (w = 500) filtered TIS data plots of the independent 

simulation replications, Exp.26, 27, 28, 29, and 30 under scenarios No.19 in Figure 24 

clearly show a distinctive infinite linear growth in four out of five plots.  Only Exp.30 

shows a different pattern, a finite growth to a new steady state.   
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Figure 24.   Individual Moving Average Filtered TIS plots under 
Scenario No.19 

 

Using the entire data points collected during the first 10,000 minutes after a 

disruption event is a computationally inefficient way to construct a regression model.  

Especially when neighboring data points from a substantially smaller time window than 
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10,000 minutes contains no significant seasonal patterns but rather they are noisy and 

redundant.  Fewer data points can replace the entire set of data to construct a relatively 

realistic regression based model without causing a computational burden.   

 

A proper width of sampling interval was carefully selected through several 

different disruption scenarios so that a resulting regression model with fewer data points 

would not inhibit any major frequency trends in a given time series.  Throughout this 

study, a width of 100 data points has been selected as a sampling interval for data 

reduction.  Every 100th point of the moving average filtered mean TIS values from the 

point of disruption to 10,000 minutes is collected to estimate an unknown polynomial 

function of relative time index X , 

=X }|{ 1 n0i and constant a is x  wherexxxx iii K=∆∆+= − . 

 

In Figure 25, the plot of a moving average (w=500) filtered time series of mean 

TIS from the five independent replications clearly shows an infinite linear growth. Thus, 

the overall transient pattern type for Scenario No.19 is considered an infinite linear 

growth type.   
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Figure 25.  Moving Average Filtered Mean TIS Plots under Scenario 
No.19 

 

 

A close-up view of the plot of every 100th MA filtered mean TIS observations 

after the point of disruption in Figure 26 shows a sign of slight non-linear trend during 

first 300 observations after which the disruption follows a linear trend.  This phenomenon 

was found in all Type 1 behaviors.  After a certain number of initial observations, the 

trend maintains its linearity throughout remaining observations.  Therefore, the post-

transient behavior for Type 1 can be modeled with a two-phase function that consists of 

two regression-based functions covering two different observation periods.  

 

The first one is a second-order polynomial (quadratic) during a given number of 

initial observations and the second one is a linear function for the remaining observations.  
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These two regression-based functions can be mathematically found using a regression of 

(time-in-system) on Y X (number of observations since 1≡∆x ).  

 

 

 

 

 

 

 

 

 

 

 Figure 26.  A Close-up View of Moving Average Filtered Mean 
TIS Plots under Scenario No.19 

 

 
For higher order polynomial regressions, computational simplicity and a balanced 

growth of polynomial coefficients during the approximation are two key factors to 

determine the proper size of of x∆ X .  By selecting the proper size of , we can avoid 

a large variations among individual coefficients of unknown high order polynomial 

during approximation, which in turn will result in a better training performance for the 

ANN based metamodeling approach.  

x∆

 

For a relatively simple implementation and future automation purpose, the 

polynomial regression was selected to approximate all three post-disruption transient 
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behaviors.   A single n th order polynomial or combination of more than one polynomial 

functions in a multiphased functional form was used to capture each post-disruption 

transient behavior. 

 
 
 

6.5 Identification of Input and Output Vectors 
 
 
 

The input and output vectors for the unknown ANN based transient performance 

function need to be identified.  As the proposed ANN based meta-modeling scheme was 

briefly discussed in 3.3.3, it consists of several multilayer ANNs that logically comprise a 

hierarchical modeling taxonomy.  Each ANN has its own location in the hierarchy to 

independently or dependently map a different part of the functional domain to a group of 

corresponding target values.     

 

As shown in Figure 11 (see page 146 in Chapter 3), the top level multilayer ANN 

is designed to detect and classify major post-disruption patterns existing in TIS of 

departing parts.  A series of ANNs position in the second level is to provide an actual 

performance model of interest.   The final design layout of the proposed hierarchically 

organized ANN based transient system performance modeling framework is detailed in 

later in this chapter (refer to Figure 27 on page 211).   

 

A single configuration for input vectors is used in this experiment.  The design 

goal of input vector is to differentiate various pre-disruption system conditions that result 

in the same post-disruption system behavior pattern. Input vector, p , consists of 44 
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elements that are designed to feed the ANNs in both top and second levels with a 

snapshot of the pre-disruption system condition such as time average machine utilizations 

as well as the type of disruption itself.   The configuration of the 44×1 input vector is 

illustrated as follows: 

A common input vector p  is such that 

  where   K   are as shown in Table 16. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

44

2

1

p

p
p

M
p ,1p ,2p 44p

 

 

Exemplary vector elements used in Table 17 indicate that a single event 

disruption was triggered by a machine center M1 failure.  It also shows that the current 

disruption scenario is based on a steady state with the mean part arrival time of 2.2 

minutes and part mix Type 2.  Even though the main configuration of output vector 

carries the same vector space organization, the length and location of individual vector 

elements may differ based on the characteristics of a selected approximation function for 

the given transient behavior pattern type. 
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Table 17.   Semantics of Common Input Vector  p

Vector 
Element Description Example 

1p  Mean Arrival Time of Parts (2.2 or 2.3 minutes) 2.2 

2p  M1 Time Average Utilization prior to a disruptive event (1/100%) 0.5589 

3p  M6 Time Average Utilization prior to a disruptive event (1/100%) 0.3312 

4p  M2 Time Average Utilization prior to a disruptive event (1/100%) 0.7297 

5p  M5 Time Average Utilization prior to a disruptive event (1/100%) 0.6565 

6p  M3 Time Average Utilization prior to a disruptive event (1/100%) 0.6649 

7p  M7 Time Average Utilization prior to a disruptive event (1/100%) 0.4577 

8p  M9 Time Average Utilization prior to a disruptive event (1/100%) 0.813 

9p  M12 Time Average Utilization prior to a disruptive event (1/100%) 0.6984 

10p  AGV Time Average Utilization prior to a disruptive event (1/100%) 0.4527 

11p  Fixture Time Average Utilization prior to a disruptive event (1/100%) 0.6411 

12p   Start% Makeup of Part Type1 (1/100%) 0.2 

13p  Start% Makeup of Part Type2 (1/100%) 0 

14p  Start% Makeup of Part Type3 (1/100%) 0 

15p  Start% Makeup of Part Type4 (1/100%) 0.2 

16p  Start% Makeup of Part Type5 (1/100%) 0.2 

17p  Start% Makeup of Part Type6 (1/100%) 0 

18p  Start% Makeup of Part Type7 (1/100%) 0 

19p  Start% Makeup of Part Type8 (1/100%) 0 

20p  Start% Makeup of Part Type9 (1/100%) 0 

21p  Start% Makeup of Part Type10 (1/100%) 0 

22p  Start% Makeup of Part Type11 (1/100%) 0.2 

23p  Start% Makeup of Part Type12 (1/100%) 0.2 

24p  % Change in Part Type1 (1/100%) 0 

25p  % Change in Part Type2 (1/100%) 0 

26p  % Change in Part Type3 (1/100%) 0 

27p  % Change in Part Type4 (1/100%) 0 

28p  % Change in Part Type5 (1/100%) 0 

29p  % Change in Part Type6 (1/100%) 0 

30p  % Change in Part Type7 (1/100%) 0 

31p  % Change in Part Type8 (1/100%) 0 
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Table 17 (continued).   Semantics of Common Input Vector  p

32p  % Change in Part Type9 (1/100%) 0 

33p  % Change in Part Type10 (1/100%) 0 

34p  % Change in Part Type11 (1/100%) 0 

35p  % Change in Part Type12 (1/100%) 0 

36p  Status of M1 Failure (0 = false; 1 = true) 1 

37p  Status of M6 Failure (0 = false; 1 = true) 0 

38p  Status of M2 Failure (0 = false; 1 = true) 0 

39p  Status of M5 Failure (0 = false; 1 = true) 0 

40p  Status of M3 Failure (0 = false; 1 = true) 0 

41p  Status of M7 Failure (0 = false; 1 = true) 0 

42p  Status of M9 Failure (0 = false; 1 = true) 0 

43p  Status of M12 Failure (0 = false; 1 = true) 0 

44p  Status of Single AGV Failure (0 = false; 1 = true) 0 
 

 

Since there are only four major transient behavior pattern classes identified in this 

study, output vector  for the top level ANN is designed to capture class numbers in two 

digit binary numbers such as , , , and .  Output vector  is such that 

1a

200 201 210 211 1a

⎥
⎦

⎤
⎢
⎣

⎡
= 1

2

1
11

a
a

a  where individual elements,  and , can be summarized in Table 18. 1
1a 1

2a

 

Table 18.  Semantics of First Output Vector  from the Top Level ANN 1a
Vector 

Element Description Example 
1
1a   Coefficient  of two digit binary number  

to represent a post-disruption transient behavior pattern type 
0c 0

0
1

1)2(01 22 ×+×= cccc

 

1 

1
2a  Coefficient  of two digit binary number  

to represent a post-disruption transient behavior pattern type 
1c 0

0
1

1)2(01 22 ×+×= cccc

 
1 
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In order to satisfy Research Object No. 2 identified in Chapter 3, the following 

output vectors for the three different transient behavior pattern types were carefully 

designed.  Output vectors for the second level ANNs were designed to capture detail 

functional information about the primary performance index as well as performance 

changes in other indexes of choice such as time-average utilization of various resources.   

 

Semantics for individual vector elements in output vector  are described in 

Table 18.  The first ten elements, from  to , were designed to capture individual 

time average utilizations of ten resources in the system since t = 0.  A function that 

depicts mean TIS behavior after the disruption consists of a two-phase function of index 

numbers for a TIS observation process.  A period of disruption impact delay  is 

followed by the first phase of an unknown transient function of the disruption impact on 

mean TIS characterized by a second order polynomial.  The quadratic function consists of 

, , and  such that  where is the approximated mean 

TIS at observation index t  and 

1,2a

1,2
1a 1,2

10a

1,2
11a

1,2
12a 1,2

13a 1,2
14a 1,2

12
1,2

13
21,2

14 atatay ++= y

2990K=t  is the t th TIS observation upon departing 

parts after the delay of a  observations.  After 300 TIS observations denoted by , the 

second phase of transient function, a linear infinite growth represented by two vector 

elements,  and  such that  where is the approximated mean TIS 

at observation index t  and (in reality  

1,2
11

1,2
15a

1,2
16a 1,2

17a 1,2
16

1,2
17 atay += y

nt K,1,0  = =t  301,302….300+ ) is the th 

observation on departing parts after first 300 parts after disruption until the elapse of 

10,000 minutes.  The remaining elements from  to  cover the trend of standard 

n t

1,2
18a 1,2

27a
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deviations of moving average (w=500) mean TIS during 10,000 minutes after the 

disruption, which was captured in a eighth order polynomial.    

           

In Figure 27 (see page 211), the output vector for first three multilayer ANNs in 

the second level, namely , , and , collectively 

representing the transient behavior pattern Type 1, is symbolically denoted as: 

1_1_2_net 2_1_2_net 3_1_2_net

  where individual elements, , can be summarized in Table 

19. 
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Table 19.  Semantics of Output Vector  from First Three ANNs in the Second 
Level ANNs to Approximate Transient Behavior Pattern Type No. 1 

1,2a

Vector 
Element Description Example 

1,2
1a  M1 Utilization after the disruptive event 0.5451 

1,2
2a  M6 Utilization after the disruptive event 0.265 

1,2
3a  M2 Utilization after the disruptive event 0.1194 

1,2
4a  M5 Utilization after the disruptive event 0.8425 

1,2
5a  M3 Utilization after the disruptive event 0.6858 

1,2
6a  M7 Utilization after the disruptive event 0.6708 

1,2
7a  M9 Utilization after the disruptive event 0.75 

1,2
8a  M12 Utilization after the disruptive event 0.6111 

1,2
9a  AGV Utilization after the disruptive event 0.8784 

1,2
10a  Fixture Utilization after the disruptive event 0.931 

1,2
11a  Disruption Impact Delay (estimated lag to the first part of transient) 192 

1,2
12a  A0 (first coefficient approx. for the quadratic trend in TIS) 158.55 

1,2
13a  A1 (second coefficient approx. for the quadratic trend in TIS) 0.069713 

 



  205 

Table 19 (continued).  Semantics of Output Vector  from First Three ANNs in 
the Second Level ANNs to Approximate Transient Behavior Pattern Type No. 1 

1,2a

Vector 
Element Description Example 

1,2
14a  A2 (third coefficient approx. for the quadratic trend in TIS) 0.000284 

1,2
15a  Starting point of the linear trend (second part) of TIS 300 

1,2
16a  A0 (first coefficient approx. for the linear trend in TIS) 207.56 

1,2
17a  A1 (second coefficient approx. for the linear trend in TIS) 0.22251 

1,2
18a  Mean Sigma of TIS during pre-disruption (assuming stationary condition) 37.31739 

1,2
19a  A0 (first coefficient of the eighth order polynomial trend in σ  of moving 

average TIS during post-disruption period) 46.912 
1,2

20a  A1 (second coefficient of the eighth order polynomial trend in σ  of 
moving average TIS during post-disruption period) 102.28 

1,2
21a  A2 (third coefficient of the eighth order polynomial trend in σ  of moving 

average TIS during post-disruption period) 1943.5 
1,2

22a  A3 (forth coefficient of the eighth order polynomial trend in σ  of moving 
average TIS during post-disruption period) -7734.3 

1,2
23a  A4 (fifth coefficient of the eighth order polynomial trend in σ  of moving 

average TIS during post-disruption period) 13632 
1,2

24a  A5 (sixth coefficient of the eighth order polynomial trend in σ  of moving 
average TIS during post-disruption period) -12717 

1,2
25a  A6 (seventh coefficient of the eighth order polynomial trend in σ  of 

moving average TIS during post-disruption period) 6516.9 
1,2

26a  A7 (eighth coefficient of the eighth order polynomial trend in σ  of 
moving average TIS during post-disruption period) -1733.1 

1,2
27a  A8 (ninth coefficient of the eighth order polynomial trend in σ  of 

moving average TIS during post-disruption period) 186.97 
 

 

A period of disruption impact delay  is followed by a cubic transient function 

of the disruption impact on mean TIS.  The reason to pick a third order polynomial is to 

capture the overall steepness, as well as, the contour of the non-linear growth in a 

relatively simple way without sacrificing its mathematical credibility.  Also, the training 

burden of the ANN, often followed by an erratic behavior and large error of ANN due to 

its relatively smaller training set, can be lessened using smaller target vectors.   A cubic 

function consists of four polynomial coefficients,  such that 

2,2
11a

2,2
15

2,2
14

2,2
13

2,2
12  and ,,, aaaa
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2,2
12

2,2
13

22,2
14

32,2
15 atatatay +++=  where is the approximated mean TIS at observation 

index  and  is the th TIS observation upon departing parts after the delay 

of  observations.  The actual increment of t  used for the third order polynomial is 

0.0005 rather than one for the evenly scaled growth of its coefficients during the 

polynomial regression.  Thus, the actual values of t are 

y

t nt K ,2,1,0= t

2,2
11a

nt K   ,0010.0,0005.0,0= . 

 

The remaining elements from  to  cover the trend of standard deviations 

of moving average (w=500) filtered mean TIS before and after the disruption.  The mean 

standard deviation prior to the disruption was captured by a single value, .  The post-

disruption mean standard deviation was captured by a cubic function with coefficients, 

such that  where 

2,2
16a 2,2

20a

2,2
16a

2,2
20

2,2
19

2,2
18

2,2
17  and ,, aaaa 2,2

17
2,2

18
22,2

19
32,2

20 atatatay +++= y is the 

approximated standard deviation of moving average (w=500) mean TIS at observation 

index  and  is the th TIS observation upon departing parts after the 

disruption.  Again the actual increment of t  is 0.0005 rather than one so values for t are 

. 

t nt K ,2,1,0= t

nt K   ,0010.0,0005.0,0=

 

As shown in Figure 27 on page 211, the output vector for the second group of 

three multilayer ANNs in the second level, namely , , and 

, collectively representing the transient behavior pattern Type 2, is 

symbolically denoted as: 

1_2_2_net 2_2_2_net

3_2_2_net
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2,2
20

2,2
2

2,2
1

2,2

a

a
a

M
a  where individual elements, , can be summarized in Table 

20. 

2,2
20

2,2
2

2,2
1  , , aaa K

 

Table 20.  Semantics of Output Vector  from Second Group of Three ANNs in 
the Second Level ANNs to Approximate Transient Behavior Pattern Type No. 2 

2,2a

Vector 
Element Description Example 

2,2
1a  M1 Utilization after the disruptive event 0.56526 

2,2
2a  M6 Utilization after the disruptive event 0.29298 

2,2
3a  M2 Utilization after the disruptive event 0.69212 

2,2
4a  M5 Utilization after the disruptive event 0.59026 

2,2
5a  M3 Utilization after the disruptive event 0.80704 

2,2
6a  M7 Utilization after the disruptive event 0.0701 

2,2
7a  M9 Utilization after the disruptive event 0.767 

2,2
8a  M12 Utilization after the disruptive event 0.6572 

2,2
9a  AGV Utilization after the disruptive event 0.88234 

2,2
10a  Fixture Utilization after the disruptive event 0.94158 

2,2
11a  Disruption Impact Delay (estimated lag to transient) 112 

2,2
12a  A0 (first coefficient approx. for the eighth order polynomial trend in TIS) 158.32 

2,2
13a  A1 (second coefficient approx. for the eighth order polynomial trend in 

TIS) 87.177 
2,2

14a  A2 (third coefficient approx. for the eighth order polynomial trend in TIS) 2080.3 
2,2

15a  A3 (forth coefficient approx. for the eighth order polynomial trend in TIS) -5572.9 
2,2

16a  Mean Sigma of TIS during pre-disruption (assuming stationary condition) 36.36818 
2,2

17a  A0 (first coefficient of the eighth order polynomial trend in σ  of moving 
average TIS during post-disruption period) 45.496 

2,2
18a  A1 (second coefficient of the eighth order polynomial trend in σ  of 

moving average TIS during post-disruption period) 355.31 
2,2

19a  A2 (third coefficient of the eighth order polynomial trend in σ  of moving 
average TIS during post-disruption period) -194.23 

2,2
20a  A3 (forth coefficient of the eighth order polynomial trend in σ  of moving 

average TIS during post-disruption period) 495.38 
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Semantics for individual vector elements in output vector  are described in 

Table 20 on page 207.  Similar to the two previous transient behavior pattern types, the 

first ten elements, from  to , were designed to capture individual time average 

utilizations of ten resources in the system since t = 0.  A function that depicts mean TIS 

behavior after the disruption consists of a single eighth order polynomial based on TIS 

observation index after a disruption.   

3,2a

3,2
1a 3,2

10a

 

Different from the second transient pattern type, a period of disruption impact 

delay  is followed by an eighth order polynomial transient function of the disruption 

impact on mean TIS.  The reason to pick eighth order polynomial was based on its 

modeling efficiency and easiness of ANN training. The eighth order polynomial consists 

of nine polynomial coefficients,   such that 

 where 

3,2
11a

,,,,, 3,2
16

3,2
15

3,2
14

3,2
13

3,2
12 aaaaa 3,2

20
3,2

19
3,2

18
3,2

17  and ,, aaaa

3,2
12

3,2
13

23,2
14

33,2
15

43,2
16

53,2
17

63,2
18

73,2
19

83,2
20 atatatatatatatatay ++++++++= y is the 

approximated mean TIS at observation index t  and nt K ,2,1,0=  is the t th TIS 

observation upon departing parts after the delay of  observations.  The actual 

increment of  used for the eighth order polynomial is 0.0005 rather than one due to a 

large uneven growth-scale disparity among nine coefficients of  during the polynomial 

regression.   

3,2
11a

t

t

 

In other words, since the variation tends to remain consistent, there is no increase 

or decrease in the variance of TIS; three constant values  can cover the 

trend of standard deviations of moving average (w=500) mean TIS before and after the 

3,2
23

3,2
22

3,2
21  and ,, aaa
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disruption.  The mean standard deviation prior to the disruption was captured by first 

single value .  Second single vector element, , captured the mean standard 

deviation during transient.  The post-transient mean standard deviation was captured by 

third single element .  As shown in Figure 27 on page 211, the output vector for third 

group of two multilayer ANNs in the second level, namely  and 

, collectively representing the transient behavior pattern Type 3, is denoted 

as: 

3,2
21a 3,2

22a

3,2
23a

1_3_2_net

2_3_2_net

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

3,2
23

3,2
2

3,2
1

3,2

a

a
a

M
a  where individual elements, , can be summarized in Table 

21. 

3,2
23

3,2
2

3,2
1  , , aaa K

 

A logical framework ties various trained ANNs into a single meta-modeling 

scheme.  The principal design objective for this logical framework is to organize 

individual ANNs in such way that these ANNs can collectively map functional range of 

an unknown transient performance functions.  Different areas of an unknown functional 

range can be captured via training designated ANNs under the transient behavior pattern 

it belongs to.  The captured transient function can be realized via simulating the same set 

of ANNs under a particular transient behavior pattern. 

 

The basic control flow of the proposed branch logic structure is illustrated in 

Figure 27.   The detail logical structure for a MATLAB based program can be found in 
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Appendix B.  Detail views of individual ANNs are provided later in Figure 28, Figure 29, 

Figure 30, and Figure 31 in Chapter 7.    

 

Table 21.   Semantics of Output Vector  from Third Group of Two ANNs in the 
Second Level ANNs to Approximate Transient Behavior Pattern Type No. 3 

3,2a

Vector 
Element Description Example 

3,2
1a  M1 Utilization after the disruptive event 0.092444 

3,2
2a  M6 Utilization after the disruptive event 0.717588 

3,2
3a  M2 Utilization after the disruptive event 0.565373 

3,2
4a  M5 Utilization after the disruptive event 0.674801 

3,2
5a  M3 Utilization after the disruptive event 0.75937 

3,2
6a  M7 Utilization after the disruptive event 0.684116 

3,2
7a  M9 Utilization after the disruptive event 0.714482 

3,2
8a  M12 Utilization after the disruptive event 0.612693 

3,2
9a  AGV Utilization after the disruptive event 0.475533 

3,2
10a  Fixture Utilization after the disruptive event 0.720063 

3,2
11a  Disruption Impact Delay (estimated lag to transient) 222 

3,2
12a  A0 (first coefficient approx. for the eighth order polynomial trend in TIS) 166.22 

3,2
13a  A1 (second coefficient approx. for the eighth order polynomial trend in 

TIS) 138.95 
3,2

14a  A2 (third coefficient approx. for the eighth order polynomial trend in TIS) -587.97 
3,2

15a  A3 (forth coefficient approx. for the eighth order polynomial trend in TIS) 1341.1 
3,2

16a  A4 (fifth coefficient approx. for the eighth order polynomial trend in TIS) -1786.8 
3,2

17a  A5 (sixth coefficient approx. for the eighth order polynomial trend in TIS) 1411.7 
3,2

18a  A6 (seventh coefficient approx. for the eighth order polynomial trend in 
TIS) -644.23 

3,2
19a  A7 (eighth coefficient approx. for the eighth order polynomial trend in 

TIS) 155.63 
3,2

20a  A8 (ninth coefficient approx. for the eighth order polynomial trend in TIS) -15.302 
3,2

21a  Mean σ  of TIS during pre-disruption (assuming stationary condition) 54.23641 
3,2

22a  Mean σ  of TIS during transient (average) 53.60903 
3,2

23a  Meanσ  of TIS during post-transient (assuming stationary condition) 53.75352 
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   Figure 27.  Proposed Two-Level Deep Taxonomically Organized ANN 
Based Transient Performance Model 
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As shown in Figure 27, the top level multilayer ANN is designed to classify 

distinctive post-disruption transient behavior patterns that can be encoded into a two digit 

binary number.   Upon predicting a particular post-disruption transient pattern, the same 

system input vector is fed into a group of multilayer ANNs in the second level 

predestined by the proposed branch logic.    

 

As we can see from Figure 27, Type 1 input vectors are simultaneously fed into 

three multilayer networks in the second level, namely Net_2_1_1, Net_2_1_2, and 

Net_2_1_3.  Breaking output vectors under a particular transient type into smaller ones 

using two or three ANNs rather than a single large one is mainly due to the ease of 

training and better performance of smaller networks. 

 

 Especially when the dimension (or size) of an output vector from a particular 

transient behavior pattern type is large in relation to its total number of training output 

vectors, breaking an output vector into several smaller ones based on their similar scale 

of individual vector elements and letting those smaller ANNs collectively approximate an 

unknown function is a more efficient way to handle a large dimension output 

approximation without increasing the number of actual training vectors.  Otherwise, 

training such an ANN with a large size outer layer can be quite difficult.   Even if one can 

manage to train such a large network, the reliability and performance of the ANN will be 

very poor due to its significantly large number of weights and biases. 
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 As shown in Figure 27, the first type transient behavior output vector in the 

second level, , is broken into , , and  based on similarity in individual 

vector element scales and their positions in the final output vector.     The first sub-output 

vector, , contains the first element, , thru the tenth element, , from the 

original output vector, .   The second sub-output vector, , contains the 11th 

element, , thru the 17th element, , from the original output vector.   The third sub-

output vector, , contains the 18th element, , thru the 27th element, , from the 

original output vector, .   

1,2a 11,2 −a 21,2 −a 31,2 −a

11,2 −a 1,2
1a 1,2

10a

1,2a 21,2 −a

1,2
11a 1,2

17a

31,2 −a 1,2
18a 1,2

18a

1,2a

 

Similarly, the second type transient behavior output vector in the second level, 

, is broken into three sub-output vectors, namely , , and .   The first 

sub-output, , contains the first thru tenth elements from .   The second sub-

output, , contains the 11th thru 20th elements from .   The third sub-output, 

, contains the 21st thru 30th elements from . 

2,2a 12,2 −a 22,2 −a 32,2 −a

12,2 −a 2,2a

22,2 −a 2,2a

32,2 −a 2,2a

 

The third type transient behavior output vector in the second level, , is broken 

into two sub-output vectors, and .  The first sub-output, , contains the 

first thru tenth elements from .   The second sub-output, , contains the 11th thru 

23rd elements from .    

3,2a

13,2 −a 13,2 −a 13,2 −a

3,2a 23,2 −a

3,2a
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6.6 Summary 

 
 
 
 This chapter provides an overview of simulation modeling using Extend, 

expansion of initial design of experiments, post-simulation data processing, and 

construction of input and target vectors for the proposed ANN based metamodeling 

approach.  The simulation model was designed to reflect various aspects of asynchronous 

and tightly coupled FMS behaviors with a built-in resource failure scheduler.  The study 

concluded that the initial experiment set was not large enough to produce an acceptable 

ANN training performance; therefore, increasing the number of total experiments was 

necessary.   Results from simulation experiments and analysis show that there are four 

major transient behavior pattern types based on graphical similarity and modeling 

requirements by the polynomial regression.  The study found that about half of 

experiments fell under Type 3 post-disruption behavior, namely a finite growth to a new 

steady state.  Data processing activities are divided into two phases, pre and post.  The 

pre-process is to prepare raw TIS data to detect the presence of transient behaviors and 

classify them accordingly.  The post-process involves extracting various mathematical 

properties from the underlying TIS observation time series process to construct necessary 

target vectors.   
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7. Experimental Results 
 

 

 The performance of the proposed ANN based meta model is discussed in this 

chapter.   Steps for training and validation of individual ANNs are also presented.   

Performances of prediction results by both individual regression models and the proposed 

ANN based model on selected disruption scenarios are compared to actual observations 

from simulation experiments to evaluate the overall effectiveness of the proposed 

modeling scheme.    

 

 

7.1 Construction and training of Individual ANNs  
 

 

Upon completing construction of input and output vectors from all 180 initial 

experiments, individual ANNs comprising the proposed taxonomically-organized ANN 

based meta model can be constructed.  Various output vector sizes for both first and 

second level ANNs  help us to determine right configurations of individual ANNs. 

 

Since output vectors for three transient performance functions were broken into 

eight smaller sub-output vectors, the configuration of outer layer of individual ANN in 

the second level can be determined accordingly.   The first ANN,  Net_1_1, in the top 

level has 44 dimension input and two dimension output vectors and its final configuration 
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of the network was decided as an 222 ××  network after several trials.   The diagram of 

this ANN is illustrated in Figure 28.   The transfer function for both the first and second 

layer is Hyperbolic Tangent Sigmoid.  The transfer function for the last (outer) layer is 

Linear.  Justifications to choose these two types of transfer function are given in an 

earlier chapter (refer to section 3.3.2 in Chapter 3).     

 

 

 

 

 
Figure 28.  Network Diagram of Net_1_1 in the Top Level 

 

 

One hundred eighty input and corresponding output vectors were equally divided 

into four mutually exclusive subsets.  The training vector set including both input and 

matching output vectors consists of two groups.  The first group is made of every forth 

vector starting from the first one such as 1, 5, 9, and 13 … 177.  Since actual sequences 

of both input and output vectors are identical to the sequence of actual experiment 

numbers listed in Table 15 in Chapter 6, the actual sequence of equivalent experiment 

numbers from the table is 11, 15, 114, and 58, …102.  The second group consists of 

every forth vector starting from the third one such as 3, 7, 11, and 15 … 179.  The actual 

sequence of equivalent experiment numbers from the table is 13, 112, 56, and 60 …104.  

The remaining two vector sets were used for validation and testing.   
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For a collective approximation of Type one post-disruption behavior, three sub-

ANNs from the second level, Net_2_1_1, Net_2_1_2, and Net_2_1_3, share 44 

dimension input vectors.   They respectively use ten, seven, and ten dimension output 

vectors. The final configurations of these networks were decided as 104× , , and 

network after several trials.   Diagrams of these ANNs are illustrated in Figure 29.   

The transfer function for the first layer is Hyperbolic Tangent Sigmoid.   The transfer 

function for last (outer) layer is Linear.    

74×

104×

 

Net_2_1_3 

Net_2_1_2 

Net_2_1_1 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 29.  Individual Network Diagram of Type One Transient 
Behavior Approximation sub-ANNs in the Second Level 
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Forty input and corresponding separate output vectors for each sub-ANN were 

equally divided into four mutually exclusive subsets.  These input and output vectors are 

from scenarios that may result in Type 1 post-disruption behavior patterns.  Numbers for 

these scenarios are 19, 20, 25, 26, 27, 28, 29, and 30 as shown in Table 15 in Chapter 6. 

  

As seen in the configuration of the training vector set for the fist ANN, the 

training vector set including both input and matching output vectors is made of two 

groups.  The first group is made of every forth vector such as 1, 5, 9, 13, …, and 37.  

Since the first experiment in the first group starts with 26, the actual sequence of 

experiment numbers is 26, 30, 154, …, and 87.  Likewise, the second group is made of 

every forth vector starting from experiment number 28.  The actual sequence of 

experiment numbers in the final training set is made of these two groups in a sequential 

manner, such as  26, 30, 154, …, 87,  28, 152, 76, …, 89.  The remaining vectors was 

used for validation and testing. 

 

For a collective approximation of type two post-disruption behavior, three sub-

ANNs from the second level, Net_2_2_1 covering output vector elements from  thru 

, Net_2_2_2 covering output vector elements from  thru , and Net_2_2_3 

covering output vector elements from  thru , share 44 dimension input vectors.  

The final configurations of these networks were decided as 

2,2
1a

2,2
10a 2,2

11a 2,2
15a

2,2
16a 2,2

20a

102× , 52× , and 

network after several trials.   The diagrams of these ANNs can be illustrated in 

Figure 30.   The transfer function for the first layers is Hyperbolic Tangent Sigmoid.   

The transfer function for the last (outer) layers is Linear. 

52×
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Twenty input and corresponding twenty output vectors were equally divided into 

four mutually exclusive subsets for training, validation and testing.  Each individual input 

vectors are constructed from experiment scenarios that may result in type two post-

disruption behavior patterns.  Numbers of these scenarios are 7, 15, 31, and 32 as shown 

in Table 15 in Chapter 6.  Each scenario consists of five independent experiments. 

 

 

Net_2_2_1 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Net_2_2_2 

Net_2_2_3 

Figure 30.  Individual Network Diagram of Type Two Transient 
Behavior Approximation Sub-ANNs in the Second Level 
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Similar to the configuration of training vector sets for the previous set of ANNs, 

the training vector set for each sub-ANN including common input and matching output 

vectors can be divided into two groups.  The first group is made of every forth vector 

starting from experiment number 61, such as 61, 65, 179, 63, 72.  The second group is 

made of every forth vector starting from experiment number 63 such as 63, 177, 61, 65, 

74.  The final training vector set can be put together, combining the first and second 

group back to back such that the final sequence of input vectors can be 61, 65, 179, 63, 

72, 63, 177, 61, 65, and 74.  The rest of remaining vectors was used for validation and 

testing purposes. 

 

For a collective approximation of type three post-disruption behavior, sub-ANNs,  

Net_2_3_1 and  Net_2_3_2 in the second level share 44 dimension input and each uses 

ten and thirteen dimension output vectors.  The final configurations of these networks 

were decided as  and 10104 ×× 1384 ××  network after several trials. The diagrams of 

these ANNs can be illustrated in Figure 31.   The transfer function for the first and second 

layers is Hyperbolic Tangent Sigmoid.   The transfer function for the last (outer) layers is 

Linear. 

 

One hundred input and corresponding output vectors for two sub-ANNs were 

equally divided into four mutually exclusive subsets.  These input and output vectors are 

from scenarios that result in type two post-disruption behavior patterns.  Numbers for 

these scenarios are 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 21, 22, 23, and 24 as 
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shown in Table 15 in Chapter 6.  

 

 

 

 

 

 

 

 

 

 
Net_2_3_2 

Net_2_3_1 

 

 

 

Figure 31.  Individual Network Diagram of Type Three Transient 
Behavior Approximation sub-ANNs in the Second Level 

 

As seen in configuration of training vector sets for previous ANNs, the training 

vector set for each sub-ANN including common input and matching output vectors can 

be divided into two groups.  The first group is made of every forth vector starting from 

experiment number 11.  The second group is made of every forth vector starting from 

experiment number 13.  The remaining vectors were prepared for validation and testing. 

 

The type of backpropagation training algorithm used throughout this study is 

Bayesian regularization based on the Bayesian framework of Mackay [1992].  This 
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function can be callable through the MATLAB neural network toolbox.  Regularization is 

a method used to improve the generalization of feedforward neural networks such as 

those in this study by modifying its performance function.   The typical performance 

function used for training feedforward neural networks can be expressed as the mean sum 

of squares of the network errors: 

 2
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Regularization can be achieved by adding a term that consists of the mean of the sum of 

squares of the network weights and biases 

mswmsemsereg )1( γγ −+=  

where γ  is the performance ratio, and  
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Minimizing this performance function will help the network to maintain smaller weights 

and biases during its training, which in return will force the network response to be 

smoother and less likely to overfit.  Bayesian regularization updates the weights and 

biases according to Levenberg-Marquardt optimization (see Section 3.3.2 for details). 

 

 Training of individual neural networks was set to stop when it reaches maximum 

100 epochs, an error goal of 0.01, or any other stopping conditions imposed by Bayesian 

regularization.  It is also set to display their sum of squared errors on test, validation, and 

training at every fifth epoch during the training.    
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Figure 32.  Performance Plots of the Top Level ANN Net_1_1 

during Its Initial training with 90 Input and Output  

 

The results of initial training of the top level ANN with 90 input and output 

vectors exhibits a performance of SSE = 2.95821 as shown in Figure 32.  However, a test 

performances index, test SEE, climbed to 15.4287.  The training was prematurely 

terminated at the 43rd epoch by reaching the point where the sum of squared errors 

cannot be further reduced by moving into neighboring points on a descending terrain of 

the performance surface, or perhaps it might have stuck in a plateau of the performance 

surface.  Other trainings of sub-neural networks such as Net_2_1_1, Net_2_1_2, 

Net_2_1_3, Net_2_2_2, Net_2_2_2 and Net_2_3_1 were successful since both their test 
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and validation SSE were below one as shown in Table 22.   

 

Table 22.  Training and Testing Performance Indexes from 
Individual Neural Networks with 90 training and 45 Testing Input 
and Output Vectors (original experiment set) 

Sub-network Training SSE Test SSE Validation SSE 
Net_1_1 2.95821 15.4287 20.8427 

Net_2_1_1 0.0773568 0.0362079 0.0553606 
Net_2_1_2 0.386327 0.280162 0.268072 
Net_2_1_3 0.398952 0.188614 0.199922 
Net_2_2_1 1.15518 1.0123 0.570032 
Net_2_2_2 0.616456 0.481829 0.313887 
Net_2_2_3 0.186616 0.257429 0.40057 
Net_2_3_1 0.00673646 0.0102034 0.0117372 
Net_2_3_2 2.71756 4.09792 9.8713 
 

 

The rest of sub-neural networks (those marked with the gray color in Table), 

net_2_2_1, net_2_3_2, and net_1_1 exhibit relatively poor test performance despite 

multiple attempts of training.  In each training attempt, a slightly different training and 

test performance were observed because the starting condition of the same neural 

network may change per each training cycle by automatically selecting different initial 

values for weights and biases unless they are given.  In other words, if you compare the 

training process of an ANN to a 3D terrain navigation of the performance surface to find 

a point that typically minimizes the overall training error represented by the training SSE, 

a different starting point of the performance surface in each training cycle may result in a 

slightly different performance result.   Individual training and testing plots for each sub-

ANN can be found in Appendix D. 
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7.2 Expansion of the Initial Experiment Size 
 
 
 

After careful review of configurations of individual ANNs and possibility of 

using different training methods, increasing the number of input and output data points 

become an effective choice to improve the poor performance of three sub-ANNs net_1_1, 

net_2_2_1, and net_2_3_2, in both training and testing as well as boost the overall 

performance of the collective framework.  The number of entire input and output vectors 

was to be tripled by adding ten more independent replications under each disruption 

scenarios.    

 

The new extended experiment set similar to Table 14 on page 178 can be found in 

Appendix A.   Since values for individual output vectors were derived from the average 

values of all experiments under a particular scenario, recalculations  were necessary for 

all 36 scenarios after 360 additional simulation runs (ten additional runs for 36 scenarios). 

   

Individual values for input and output vectors for the first level and second level 

ANNs can be found in Appendix C.  Results from training ANNs with an extended vector 

set (total 540 vectors) are summarized in Table 23. 
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Table 23.  Training, Test, and Validation Performances from Individual Sub-ANNs 
under New Extended Training, Test and Validation Vector Sets vs. Those under Old 
Training, Test, and Validation Vector Sets 

Training SSE Test SSE Validation SSE 

Sub-network 

Under 180 
Original 
Exp Set 

Under 540 
New Exp 

Set 

Under 180 
Original 
Exp Set 

Under 540 
New Exp 

Set 

Under 180 
Original 
Exp Set 

Under 540 
New Exp 

Set 
Net_1_1 2.95821 0.219501 15.4287 0.114293 20.8427 0.148303 

Net_2_1_1 0.0773568 0.238701 0.0362079 0.114738 0.0553606 0.127628 
Net_2_1_2 0.386327 1.32545 0.280162 0.683936 0.268072 0.73432 
Net_2_1_3 0.398952 0.563311 0.188614 0.294714 0.199922 0.304855 
Net_2_2_1 1.15518 3.6151 1.0123 1.93986 0.570032 1.80218 
Net_2_2_2 0.616456 1.75279 0.481829 0.968875 0.313887 0.931073 
Net_2_2_3 0.186616 0.606394 0.257429 0.322154 0.40057 0.334161 
Net_2_3_1 0.00673646 0.0932927 0.0102034 0.0511311 0.0117372 0.0466751
Net_2_3_2 2.71756 1.19486 4.09792 0.608019 9.8713 0.606891 

 

 
 
 Contrary to the prior expectation, using the extended experiment set did not 

improve the performance of every sub-ANNs.  In fact, for some sub-ANNs, the 

performance in all three training, test, and validation, has shown a slight degradation.  

But, these performance degradations are acceptable because the overall improvement 

made by other sub-ANNs is greater.  

 

On the other hand, the testing and validation performances by both Net_1_1 and 

Net_2_3_2 showed significant improvements under the new extended training, test, and 

validation vector sets against the old ones.  As seen in Figure 33, improvements made by 

these two sub-ANNs under the new extended training and validation vector sets are 

significant enough to justify the additional 360 experiments to the original experiment 

set.   
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 The remaining individual plots show the chronological progression of the sum of 

squared errors (SSE), squared weights of each neurons and the effective number of 

parameters against the number of epochs for each sub-ANN under both experiment sets 

can be found in Appendix D.   
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Figure 33.  Comparative Performance plots of sub- ANNs, Net_1_1 and 
Net_2_3_2, under Old and New Training, Test, and Validation Vector Sets
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7.3 Performance Evaluation of Proposed Modeling Scheme 
 
 
 

For this study, the standard error of estimate was chosen to measure the 

performance of the proposed ANN based meta model on selected input vectors 

(experiments) due to its computational simplicity and closeness to the scale of actual 

RAW time-in-system data.  If we let  be an unbiased estimator for  (time-in-system 

for i th part), the standard error of estimate can be stated as 

iŷ iy

∑
=

−
+−

=
n

i
iie yy

kn
S

1

2)ˆ(
)1(

1  where  is ’s unbiased estimator in k th degree 

polynomial. 

iŷ iy

 

For simplicity and economic reasons, a total 18 out of 540 experiments were 

selected to benchmark their standard error of estimate by the proposed ANN based meta 

model against those estimated by corresponding univariate regression models based on its 

MA TIS (moving average filtered time-in-system) and MA scenario average TIS (out of 

fifteen independent runs).   Six experiments from each post-disruption behavior types 

were carefully selected.  Selection criteria were based on the size of the sum of squared 

errors (SSE) between the approximation made by an univariate regression model based 

on moving average filtered TIS (MA TIS) time series and the approximation made by the 

proposed ANN based meta model.   
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Among six experiments under each post-disruption behavior type, first one third 

(two) comprises two best cases in terms of its least size of sum of squared errors (SSE).  

The second one-third represents two average cases in its sum of squared errors.  The 

remaining one-third represents the two worst cases in its sum of squared errors.  Even 

though two post-disruption behavior types, Type 1 and Type 2, are not covariance 

stationary stochastic processes, we assume that actual performance of the proposed ANN 

based meta model on a individual input vector basis can be judged by finding the 

standard error of TIS estimates by the ANN based meta model against actual (RAW) 

time-in-system (TIS) values and moving averaged (MA) TIS values.   These standard 

error of estimates by the ANN based meta model are then compared to similar standard 

error of estimates made by the univariate regression model based on MA TIS and by the 

univariate regression model based on moving average filtered scenario average TIS.  

 

For example, Exp 438 was picked as the best case under Type 1 post-transient 

behavior based on its smallest deviation between approximations by the regression model 

based on MA scenario average TIS and approximations by the proposed ANN based 

meta model.  On actual RAW TIS data, the post-disruption event took place somewhere 

around 4297th part observation/entry that marks simulation time 10,000 minutes.    

Therefore, we can assume the same part observation/entry number for the disruption 

event time on approximated MA TIS points by both the regression model based on MA 

scenario average TIS and ANN generated regression model.   
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Since Type 1 post-disruption behavior exhibits a short duration of non-linear 

behavior at the beginning followed by a steady linear behavior, two different starting 

times for both non-linear and linear behavior, 4353 and 4753 for experiment no. 438, 

need to be specified in terms of relative part observation/entry count.   Following are 

three tables summarizing different start times in the form of absolute observation count 

for 18 selected experiments on MA TIS observations from RAW data, approximated MA 

TIS observations by the regression model based on moving average filtered (MA) 

scenario average TIS, and approximated MA TIS observations by the ANN generated 

regression model.  As shown, Table 24, Table 25, and Table 26 share the same disruption 

event time.    

  

 

    

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation)

Linear 
Behavior Start 

Time (n th 
observation) Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation) Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation)

438 4297 4353 4753 73 4379 4474 275 4299 4515
436 4324 4356 4856 71 4464 4747 356 4332 4979

85 4536 4654 5054 62 4600 5191 349 4430 4694
470 4567 4595 4995 487 4541 4689 346 4620 4938
453 4319 4389 4789 500 4406 4606 213 4270 4521
175 4408 4477 4877 498 4420 4662 211 4344 4410Worst

Type 1 Post-disruption Behavior Type 2 Post-disruption Behavior Type 3 Post-disruption Behavior

Best

Average

Table 24.  Major Event Start Times on MA TIS Observations from 18 
Selected Experiment RAW Data 

Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation)

Linear 
Behavior Start 

Time (n th 
observation) Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation) Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation)

438 4297 4339 4639 73 4379 4557 275 4299 4521
436 4324 4366 4666 71 4464 4642 356 4332 4623
85 4536 4554 4954 62 4600 4977 349 4430 4710

470 4567 4580 4980 487 4541 4653 346 4620 4900
453 4319 4387 4787 500 4406 4619 213 4270 4497
175 4408 4476 4876 498 4420 4633 211 4344 4571

Type 1 Post-disruption Behavior Type 2 Post-disruption Behavior Type 3 Post-disruption Behavior

Best

Average

Worst

Table 25.  Major Event Start Times on Approximated TIS Observations 
Rendered by Regression Models Based on MA Scenario Average TIS 
Observations from 18 Selected Experiments
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Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation)

Linear 
Behavior Start 

Time (n th 
observation) Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation) Exp No.

Disruption 
Event Time 

(n th 
observation)

Non-linear 
Behavior Start 

Time (n th 
observation)

438 4297 4334 4631 73 4379 4559 275 4299 4512
436 4324 4361 4658 71 4464 4643 356 4332 4637

85 4536 4562 4965 62 4600 4979 349 4430 4707
470 4567 4588 4990 487 4541 4658 346 4620 4897
453 4319 4379 4777 500 4406 4614 213 4270 4508
175 4408 4469 4867 498 4420 4627 211 4344 4582

Type 3 Post-disruption Behavior

Best

Average

Worst

Type 1 Post-disruption Behavior Type 2 Post-disruption Behavior

Table 26.  Major Event Start Times on Approximated TIS Observations 
Rendered by ANN Generated Regression Models for 18 Selected 
Experiments 

 
 
 
 

Figure 34 illustrates how closely the plot of MA (w= 500) TIS observations 

resembles the actual RAW TIS plot.   It is obvious that variances among observations 

(covariance) prior to the disruption event have increased after the disruption.   A close up 

view of the early post-disruption observations marked by a square box within the plot 

figure also help us to confirm the existence of a short lasting non-linear behavior trend 

during the early post-disruption stage that is followed by a dominant steady linear trend.   

The duration of these initial non-linear trends varies but usually lasts about 300 to 400 

observations depending on each disruption scenarios.  Only under Type 1 post-disruption 

behavior, these initial non-linear behavior trends are modeled as a part of the metamodel 

because they are followed by long lasting linear-trends.   
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Figure 34.  RAW TIS and Moving Average Filtered (MA) TIS Plots of 

Exp No. 438 (Post-disruption Type 1 Behavior) 

 

First, the MA TIS based metamodel using univariate regression was constructed.   

The first observation of TIS that can be considered the starting point of post-disruption 

impact was found on 4353rd TIS observation.   As discussed in the previous chapter, the 

detection of the starting point of the non-steady state process utilizes both Welch’s 

graphic method and control limit theorem.  

 

The post-disruption TIS trend for Type 1 behavior was modeled to generate 

elements for a proper target vector using a composite function combining two separate 

univariate polynomial models. We are to use a similar modeling approach against MA 

TIS from individual experiments to benchmark the approximation performance by 

corresponding ANN generated regression models.   The first phase of the model is a 
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nonlinear univariate regression model using a quadratic function and then the second 

phase of the model is a linear regression model.    

 
 
 The same least square fit method and fixed-interval data sampling technique used 

to render both quadratic and linear regression models for MA TIS are also used to 

construct baseline regression models for the ANN training target vector construction.  As 

seen in Figure 35, MA TIS from Exp No. 438 exhibits nonlinear trend during its first 400 

TIS observations from index 4353 to index 4752.   The resulting univariate quadratic 

model to represent the first phase of post-disruption behavior is 

 where  is t th TIS observation 

index such that . 

31.169)4353(31045.0)4353(001605.0 2 +−+−= tty t

47524353K=t

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 35.  Moving Average Filtered (MA) TIS vs. Approximations by a 

Quadratic Model for TISs during First 400 Post-disruption Observations 
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The second univariate regression model was constructed using a linear model on 

sampled TISs at every 100th observation from 4753rd to 8653rd, which is to cover the 

remainder of first 10,000 minutes from the point of the disruption event hit. 

The resulting univariate regression model to represent the second phase of post-

disruption behavior is 508.2)4753(8951.1 +−= ty  where  is t th TIS observation index 

such that . 

t

86534753K=t

 

 Thus, the final form of a composite univariate regression model based on actual 

MA TIS is: 

⎩
⎨
⎧

<≤+−
<≤+−+−

=
86544753 if508.2)4753(8951.1
47534353 if31.169)4353(31045.0)4353(001605.0

)(
2

TISMA tt
ttt

tf x   

(7.3.1) 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 36.  Moving Average Filtered (MA) TIS vs. Approximations by a 
Linear Regression Model for TISs from 4753rd to 8653rd Observation 
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Figure 37 summarizes the overall accuracy of the two-phase regression model to 

actual MA(w=500) TIS.  Figure 38 shows the trend of standard deviation among five 

hundreds adjacent TIS points, which is a meaningful measure to see any change in 

dispersion of 500 moving consecutive individual TIS observations (equal to the width of 

the moving average filter) before and after the disruption hit.  

 

As we can verify from Figure 38, there was a big jump in the standard deviation 

of moving average filtration with a width of 500 observations around the observation 

index 4297.  This clearly indicates that there is an obvious shift in the variance among 

500 moving consecutive TIS observations after the disruption hit the system.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 37: Moving Average Filtered (MA) TIS vs. 

Approximations by the final Composite Regression Model for 
TISs from 4353rd to 8653rd Observation 
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    The post-disruption behavior of standard deviation of moving average filtration 

oscillates around 400 minutes but maintains its overall steady trend for the remainder, 

which also confirms a predominantly steady linear growth of TIS after the disruption 

under Type 1 post-disruption behavior. 

 

Since experiment no. 438 belongs to disruption scenario number 26, the proposed 

ANN based metamodel is supposed to generate a similar composite polynomial based 

regression model constructed with the moving average filtered (MA) scenario average 

TIS data.   Thus, it is necessary to compare the accuracy of stochastic process of MA TIS 

approximated by the composite regression model generated from the ANN based meta-

model to ones by the composite regression model (7.3.1) based on actual MA TIS and 

ones by the composite regression model (7.3.2) found on MA scenario average TIS data. 

 

Figure 38. Trend Plot of Standard Deviation of Moving Average 
(w=500) Filtered TIS observations before and after the disruption 
and Comparative Plots of Standard Deviation Regression Models 
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The two-phase regression model found on MA scenario average TIS data can be 

stated as follows: 

⎩
⎨
⎧

<≤+−
<≤+−+−

=
86544639 if94.373)4639(8306.1
46394339 if48.181)4339(23289.0)4339(0016802.0

)(
2

AVE scenario tt
ttt

tf x  

(7.3.2) 

The equivalent two-phase regression model rendered from the proposed ANN 

based meta-model to find a point estimate of MA TIS (w=500) value at observation , 

namely 

t

tf x   ˆ ⋅µ , can be stated as follows: 

⎩
⎨
⎧

<≤+−
<≤+−+−

=
86544631 if94.373)4631(8306.1
46314334 if21.180)4334(23319.0)4334(0016197.0

)(
2

ANN tt
ttt

tf x   

(7.3.3) 

 
Other target vectors and corresponding ANN approximations to construct the rest of 

univariate polynomial regression models can be found in Appendix C.  

 

Figure 39 shows a slight disparity between two regression models, (7.3.2) and 

(7.3.3) as well as disparity with both actual TIS and MA(w=500) TIS plots during the 

10,000-minute forecasting horizon.  As shown on Figure 43, the closeness to actual 

(RAW) TIS and MA TIS from above three approximation plots, (7.3.1),  (7.3.2), and 

(7.3.3), are difficult to visually assess.      
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Figure 39.  Comparative Plots of Mean TIS Approximations by 
Various Regression Based Models for Exp438 (Type1) 

 

 

 

Thus, an accuracy measure such as a standard error of estimate 

( ∑
=

−
+−

=
n

i
iie yy

kn
S

1

2)ˆ(
)1(

1 where  is ’s unbiased estimator in th degree 

polynomial) can be used to estimate individual average proximity to both RAW TIS and 

MA (w=500) TIS processes from approximated MA TIS stochastic processes by two 

composite polynomial models and one ANN generated composite polynomial model.   

iŷ iy k

 

Since metamodeling is a deterministic modeling technique, the trade-offs involve 

imprecision and simplification can be compensated in some degree by introducing 

surrogate stochastic elements such as a confidence interval.  As discussed in a previous 

chapter, a point estimator of standard deviation for the moving average filtration 
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consisting of consecutive 500 TIS observations was modeled as a part of the target vector 

to provide an estimated standard deviation of estimated TIS at observation t .    

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 
Figure 40.  Comparative Plots of Sigma Approximations by Various 

Regression Based Models for Exp438 (Type1) 

 

 

Since estimated coefficients for the regression model was based on MA filtered TIS 

points sampled from fixed intervals of 100 observations rather than entire RAW TIS, a 

traditional unbiased estimator for the standard deviation of a point estimate of MA TIS at 

observation t , tf x   ˆ ⋅µ  can grossly underestimate the true standard deviation of a point 

estimate of tfˆ
x   ⋅µ  approximated by ANN.   Thus, a point estimate of standard deviation 

from consecutive 500 TIS observations up to t th observation using a univariate 

polynomial regression model constructed with ANN estimated coefficients is used as the 

estimated standard deviation of point  in conjunction with the standard deviation of all t
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t s to construct a confidence interval for tf x   ˆ ⋅µ .  Figure 40 illustrates the proximity among 

various standard deviation approximation functions of t  using a polynomial regression 

model.   

 

The first eighth-order polynomial was derived from the actual standard deviation 

stochastic process of MA (w=500) TIS process to predict chronological behavior of 

standard deviation after the disruption.   A formal notation of this polynomial can be 

presented as follows: if we assume TIS MA)ˆ( tE σ  to be an unbiased estimator of standard 

deviation of moving average TIS at observation t  where all  and let 0.0005 be a 

scaling factor for  to avoid a large disparity among eight coefficients during the 

regression analysis prior to the ANN training,   
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The second eighth-order polynomial was found on standard deviations of MA scenario 

average TIS to approximate standard deviations of the MA scenario average TIS at 

observation t  where all : 4339≥t
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The third eighth-order polynomial was found on regression coefficients estimated by the 

ANN to approximate the standard deviation of MA TIS at every observation  where all 

: 

t
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 Since the standard deviation of ANN’s MA TIS approximation at observation t  

can be estimated by using (7.3.6) and standard error of estimate  by the regression 

model can be calculated, the 95% confidence interval for MA TIS at observation t  by the 

ANN generated regression model,

eS

tf x   ⋅µ , can be stated: 

{ } { } 2/122
)1(,025.0  

2/122
)1(,025.0 )()()()( tfsttftfsttf eknxtfeknx x σσ µ ++<<+− +−⋅+−       (7.3.7) 

where   = th order polynomial and  = total number of estimates. k k n

The accuracy of this confidence interval for MA TIS at observation  will hold as along 

as distributions from both actual and approximated MA TIS points hold normality.   For 

instance an estimated 95% prediction interval for MA TIS when t  = 5428 can be stated 

as:  

t

      { 2/12
)1(,025.0 )5428()5428( σfstf eknx +± +− } .                                                       (7.3.8) 

Since 48.1811)5428( =xf , ,  = 1.96, and 

= 100558.75, the interval (7.3.8) becomes:  (756.83, 2866.11).  

However, following normality tests, Figure 41 and Figure 42 on both RAW and MA TIS 

12.19006196.435 22 ==es 8153,025.0t

22 11.317)5428( =σf
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data prior to the point of disruption event shows both populations do not hold 

characteristics of a normal distribution.  Both distributions are positively skewed.  

Therefore, the accuracy of the prediction interval may not be as accurate as it was 

intended but still provides a good ballpark estimate of the range where the predicted MA 

TIS may lie. 

 

Comparative performance plots of MA TIS for the remaining 17 experiments can 

be found in Appendix E.   As we can see from these plots, the proposed ANN based 

transient modeling technique for various disruption scenarios, especially under post-

disruption behavior pattern Type 1 and 3, provides relatively close approximations even 

compared to its individual regression based counter parts.   On the other hand, 

approximations rendered by the ANN for disruption scenarios classified under post-

disruption behavior pattern Type 2 exhibit relatively large discrepancies from their 

counter parts as well as RAW TIS and MA TIS observations. 

   

 Two main causes for such discrepancies were identified.  The first cause was a 

relatively large variation among individual experiments under a single post-disruption 

behavior scenario from Type 2 compared to those from Type 1 and 3.  The second cause 

was an insufficient modeling capability of a cubic function as the baseline regression 

modeling technique to capture the non-linear functional TIS trend and construct target 

vectors for ANN based approximations.    
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Figure 41.  Descriptive Statistics and Normality Test on RAW TIS 
data from Pre-disruption Period of Exp438 

 

 

Another finding was that the trend of standard deviations on MA TIS time series 

under the post-disruption behavior pattern Type 1 is still noisy but stable as shown in 

Figure 40 on page 239.  However, it is visible that there was a significant shift in the 

overall mean standard deviation after the disruption hit.  Unfortunately, this shift in a 

mean standard deviation plot is not always obvious in some experiments from post-

disruption behavior pattern Type 2 and 3 such as Exp62 (Type2), Exp275, Exp356, 

Exp349, and Exp346.   

 

 



  244 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

173.5171.0168.5166.0163.5161.0158.5156.0153.5

95% Confidence Interval for Mu

161.5161.0160.5

95% Confidence Interval for Median

Variable: MA TIS

160.577

  4.234

161.328

Maximum
3rd Quartile
Median
1st Quartile
Minimum

N
Kurtosis
Skewness
Variance
StDev
Mean

P-Value:
A-Squared:

160.864

  4.429

161.604

173.846
163.236
160.739
158.708
152.906

3791
0.973075
0.961622

18.7396
  4.329

161.466

 0.000
80.119

95% Confidence Interval for Median

95% Confidence Interval for Sigma

95% Confidence Interval for Mu

Anderson-Darling Normality Test

Descriptive Statistics

Figure 42.  Descriptive Statistics and Normality Test on MA TIS data from 
Pre-disruption Period of Exp438 

 

The study found that there are more signs of pattern discrepancy and high 

variation in post-disruption behavior of MA sigma estimates compared to MA scenarios 

average TIS estimates on individual experiments under Type 2 and 3.  As a result, current 

baseline regression models, a cubic function for Type 2 and constant value function for 

Type 3, are found to be not robust enough to produce a desired level of prediction 

accuracy.  The study found a higher polynomial model such as the eighth order 
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polynomial used for type 1-disruption scenarios is suitable to approximate individual 

sigma of MA TIS for all three post-disruption behavior types.   

 

Table 23 summarizes standard errors of MA TIS estimates from all 18 selected 

experiments.  Approximations made by the regression model based on MA TIS 

outperforms approximations by regression models based on both MA scenarios average 

TIS and ANN in most selected experiments except Exp436 and Exp85 in comparison to 

RAW TIS.  We can statistically test to see if there is a significant difference between  

by 

eS

ANN)(tf x  and  by eS TISMA)(tf x  against both RAW TIS and MA TIS and also see if 

there is a significant difference between  by eS AVE scenario)(tf x  and  by eS ANN)(tf x  

against both RAW TIS and MA TIS on each experiment using a hypothesis test 

concerning two variances with a F-test.    

 

The null hypothesis  if 2
2

2
10 : σσ =H ),( 212

2

2
1 νναF

s
sF >=  where 1ν  = degrees of 

freedom from  and 2
1s 1ν  = degrees of freedom from  will be rejected in favor of the 
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This hypothesis test can be done visually by comparing two standard errors of 

estimate against both MA TIS and RAW TIS.   For example, the mean proximity to both 

RAW TIS and MA (w=500) TIS processes approximated by ANN)(tf x did not outperform 
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those approximated by TISMA )(tf x , since  by eS ANN)(tf x  against RAW TIS is 435.96 

minutes which is larger than 403.89 minutes by TISMA )(tf x  against RAW TIS and  by eS

ANN)(tf x against MA TIS is 65.50 minutes which is larger than 36.43 minutes by 

TISMA )(tf x  against MA TIS.  However, approximations by ANN)(tf x outperformed 

approximations by AVE scenario)(tf x  against both RAW TIS and actual MA TIS as  by eS

ANN)(tf x against both RAW TIS and MA TIS are slightly smaller than  by eS

AVE scenario)(tf x  against both RAW TIS and MA TIS (  by eS AVE scenario)(tf x  against both 

RAW TIS = 458.98 minutes and  by eS AVE scenario)(tf x  against both MA TIS = 84.55 

minutes). 

 

As shown in Figure 26, approximations by ANN generated regression models 

against RAW TIS outperforms approximations by regression models based on MA 

scenario average TIS in nine out of 18 experiments, 50%, in terms of smaller standard 

error of estimate.  Even in Exp436 and Exp85, approximations by ANN outperformed 

those by the regression models directly driven from their MA TIS.  However, in 

approximations against MA TIS, only eight out of 18 experiments by ANN 

approximations outperform approximations done by regression models based on MA 

scenario average TIS, which accounts for only 44%.    
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Table 27.  TIS Transient Behavior Prediction Performance Table for 
Selected Experiments under Three Post-disruption Behavior Types  
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Despite this study’s limited performance analysis over 18 selected experiments 

and the proposed modeling scheme’s disappointing approximation accuracy as those by 

traditional regression models based on MA scenario average TIS, the study concludes 

that this modeling method is still worth investigating and developing in order to 

materialize its full potential as an automated post-disruption system behavior modeling 

technique.  The biggest modeling advantage of this proposed modeling scheme is its 

ability to approximate functional targets that were associated with data points never 

trained with or regressed on.     

 
 Appendix B contains sample screen shots of the actual user interface displaying 

prediction results for Exp438 (see Section B.2).  The user interface for the proposed 

transient behavior prediction system consists of two parts.  The first part is to let a user 

enter actual pre-disruption system conditions and a disruption event itself.  It was 

designed to walk a user through a series of questions asking pre-disruption conditions, 

various operational parameters, and the nature of disruption.  The logic checks behind the 

user interface keep the user from entering invalid values or out of range values in order to 

prevent the system from predicting an area that it was never trained to handle.  The 

second part is to present prediction results in English using mathematical notations.  It 

was also designed to display predicted results as an original column vector. 

 
 
 
 
 
 
 
 
 

 



  249 

 
 

7.4 Summary 
 

 This chapter covers results and findings from the experiments designed to test the 

prediction performance of the proposed ANN based metamodel.  Since the current 

MATLAB based application does not have a fully automated model construction feature 

and plotting function for point estimates, a comparative plotting of point estimates and 

actual values can be cost prohibitive for all 540 independent experiments.  Therefore, a 

smaller test set of 18 experiments, two best, two average, and two worst-case TIS 

observation processes, were selected and evaluated against RAW TIS and MA TIS 

processes under three post-disruption behavior pattern types.  The measure of accuracy 

used is the standard error of estimates.   

 

The study found that the accuracy of predictions  by ANN driven regression 

models in collective-form predictions using more than one output vector elements, such 

as coefficients of unknown TIS polynomial approximation function at time t  after the 

disruption,  is 50%  better than its counter part, regression models based on MA scenarios 

average TIS.  However, in its single-element predictions, such as individual machine 

utilizations at time t  after the disruption, the proposed modeling approach has 

demonstrated its strength.  The study also concludes that despite its somewhat mixed 

prediction performance results by the proposed modeling approach; the proposed 

metamodeling methodology is worth further research due to its modeling economy, 

flexibility, and automation potentials.  
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8. Summary and Conclusions 
 

 

Based on findings from the experimental results, weakness and strength of the 

proposed ANN based performance modeling approach are identified and discussed.  The 

future research directions and opportunities are also presented and discussed for the 

possible enhancement of the proposed methodology.  

 

8.1 Overview of Research Objectives and Accomplishments 
 
 

The research identified six major objectives: (1) a simulation study on a 

hypothetical FMS model with limited operational characteristics and scenarios to identify 

a unique set of possible transient system behavior patterns under pre-selected disruption 

scenarios, (2) identification of the input space and output space of an unknown transient 

performance prediction function, (3) identification of a proper logical taxonomy that can 

logically connect multiple ANNs, making them work collectively to capture various 

transient behaviors, (4) identification of design architecture for individual ANNs  and 

their proper training methods, (5) validation and performance assessment of the final 

model through comparisons with simulation results,  (6) recommendations for further 

improvements of the proposed modeling framework in future research. 
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In order to satisfy Objective 1, a discrete event simulation model was built using 

Extend [1987-2001] to study various transient behaviors of the proposed FMS.  The 

model was built and studied.  The model was constructed in such way that a single 

resource failure could be scheduled at a precise moment during a single run.  Key 

performance indexes such as time averaged utilization of each machine stations and AGV 

are recorded prior and after a scheduled disruption.   Limited pilot runs of the model with 

selected ranges for system operational parameters of interest are used to finalize the 

experimental design.  Individual workstation process time distributions under each part 

type were also selected to meet desired average system utilization throughout the system.  

Finally, a valid experimental design was identified and expanded for the analysis. 

 

In order to satisfy Objective 2, major system performance indexes such as time 

averaged utilization for each machine stations and the AGVs and average TIS for parts 

were identified through sensitive analysis and used for a part of input space vector.   

These selected indexes can help an unknown transient performance prediction function to 

map and distinguish various post-disruption system behaviors based on their unique input 

space value pattern after the mapping is finished.  The other significant part of output 

space was allocated to capture an unknown time series function of key performance index 

such as time-in-system of departing parts. 

 

In order to satisfy Objective 3, a branch logic structure was identified based on a 

number of sub-ANNs and their functional roles.  The branch logic helps to taxonomically 

connect individually trained ANNs so that they can collectively predicts a mutually 
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exclusive area of the functional range of the unknown transient performance prediction 

function.   

 

In order to satisfy Objective 4, total nine multi-layer ANNs were identified.  

Based on their primary functional role, a different number of inner layers and number of 

neurons on the outer layer were identified.   Bayesian regularization was chosen as a 

backpropagation training algorithm.  Regularization is a method used to improve the 

generalization of feedforward neural networks. 

 

In order to satisfy Objective 5, the overall effectiveness of the proposed modeling 

framework was judged through a combined simulation study and regression analysis.   

The fidelity of the distinctive transient system behavior pattern classification by the 

trained top-level ANNs was tested.  The accuracy of individual key performance index 

predictions such as time averaged resource utilizations was tested by comparing 

prediction data to the target data collected from the regression model. The approximated 

coefficients of an unknown time series function of TIS (time-in-system) were also 

compared to actual coefficients from the underlying regression model.    

 

In order to satisfy Objective 6, the study drew a conclusion that the accuracy of 

predictions by ANN driven regression models is not significantly better than its counter 

part, regression models based on MA scenarios average TIS.  However, the proposed 

metamodeling methodology has its merits such as modeling economy and automation 
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potentials.  Therefore, a further research was recommended to improve its accuracy and 

expand it applicability. 

 

 

8.2 The major contributions of this research 

 

Despite the somewhat disappointing performance of the proposed ANN based 

metamodeling approach, in terms of its accuracy compared to its traditional regression 

based approach, this study still holds merit as a first attempt to develop a transient system 

behavior based evaluative performance model utilizing artificial neural networks, discrete 

event simulation model, and regression analysis.  Upon identification of the overall post-

disruption behavior pattern, a group of trained ANNs is to collectively construct a 

univariate regression based prediction model for a selected performance index and 

predict a series of post-disruption average resource utilizations.  Thus far the majority of 

ANN based performance prediction models have been focused on a single function 

realization.  Under the proposed ANN based metamodeling approach, multiple function 

realization is possible without storing individual math models in any form of file or 

database for later use.    

 

Upon analyzing performance disruption scenarios of a known system, a proper 

degree of polynomial regression model can be determined based on a limited number of 

trials and the magnitude of error by its point estimates.   This also helps to determine the 

dimension of target vectors that can be used to train individual ANNs.  An input vector 
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for the unknown transient performance function is a function of pre-disruption individual 

resource utilizations and disruption events represented by a single column vector 

consisting of binary, integer and real numbers.  Half of the target vector elements were 

used to capture the essence of the underlying changes of the target performance index 

over time by observing a few select data in a fixed interval.   

 

Processing an entire RAW TIS observation data could have been computationally 

problematic under a data rich environment such as a stochastic process of TIS 

observation in this study.  Individual realizations of unknown TIS point estimation 

function are possible through learning the changes on each coefficients of a selected 

polynomial regression model rather than directly approximating an unknown TIS 

stochastic series. 

 

Utilizing hierarchical inter-relationships and interactions among individual ANNs 

within the proposed metamodeling framework are another contribution to show how 

individual ANN can work together to collectively approximate a complex function in a 

nonparametric way.   The top-level ANN is to identify a primary transient behavior 

pattern exhibited by the suspected process under a given disruption scenario and to 

invoke only necessary ANNs from the second level to construct corresponding 

polynomial regression models for both mean TIS and its sigma, as well as, post-

disruption time average resource utilization factors.  Since the proposed metamodeling 

scheme does not approximate the point estimate of unknown TIS process at observation  

directly, rather it generates an approximation function in the form of a polynomial 

t
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regression model, the structure of target vectors can be easily customized for future 

needs.  As long as deviations among different sets of coefficients representing 

independent TIS processes under a specific post-disruption behavior pattern type are kept 

minimal, the overall accuracy of the proposed metamodeling approach can stay relatively 

high. 

   

The study found that there are four key factors to determine the final performance 

of the proposed metamodeling framework.  The first factor is whether there are enough 

independent target performance index observations such as TIS under a specific transient 

behavior type to train hierarchically organized ANNs within the framework.  The second 

is the proximity of independent target performance index observation processes under a 

disruption scenario in terms of a small sum of deviations in their estimates and 

resemblance of their individual functional trend patterns.  The third is the robustness of a 

chosen polynomial regression model to represent various unique trends of each scenario 

is average performance index observation processes under a particular transient behavior 

pattern type.  Finally, the forth is the modeling effectiveness of individual ANNs and 

their training method.  

 

The devised metamodeling framework can easily work with an unmanned online 

controller providing a short-term look-ahead capability.   Especially if there is a high 

chance for any resource failure during the production cycle, this look-ahead capability 

will become a vital part of intelligent production management techniques.  After 
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reasonable coverage of the unknown functional domain and matching range areas, the 

proposed metamodel can sustain itself with very little human intervention.   

 

The current user interface can be replaced with several branch logics and I/O 

modules to let the system directly feed its system status and nature of the disruption to the 

model itself without going through any manual input.   Similarly, the current output 

screen can be replaced with several modules that can directly pass the expected point 

estimates of TIS at observation t  and other performance estimates to the main operation 

controller to quickly respond with a post-disruption remedial action.   The remedial 

action is designed to reduce any unwanted negative effects caused by the disruption on 

the selected performance index. When the controller sees the current value of a selected 

performance index sustainable within a tolerable range, then a remedial action can be 

dispatched.  If the current value of the target performance index is not sustainable within 

a tolerable range, an urgent warning message can be issued to the operator so that quick 

intervention can minimize any potential negative impact. 

 

The study provides an opportunity to investigate complex behavior of FMS 

especially after a single event disruption.  The FMS in this study was designed with some 

level of functional redundancy to cope with a limited resource failure and contention so 

that re-routing parts is possible when necessary.  Even with such functional redundancy, 

the system remained fault tolerant 55.56% of time.  The study verified a presence of two 

different regions in near equilibrium operation, namely stable equilibrium and unstable 

equilibrium.   Based on current level of individual resource utilizations and nature of 
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disruption event, categorized as unstable equilibrium or stable equilibrium, a different 

post-disruption state can be reached when a single event disruption hits.  This study 

identified three major patterns of post-disruption system behavior based on modeling 

efficiency and effectiveness, namely infinite linear growth, infinite non-linear growth, 

and finite growth to a new steady-state.  The study found that 54% of independent TIS 

observation processes exhibit characteristics of finite growth to a new steady-state.    

  

 

8.3 The Strength and Weakness of the Proposed Modeling Approach  
 
 
 

The study found several strengths of the proposed ANN based metamodeling 

approach for transient behavior predictions compared to a traditional regression based 

modeling approach.  Under a data rich environment such as the TIS observation process 

from a suggested FMS, training a group of dedicated ANNs with polynomial regression 

coefficients from individual performance index observation processes is an economical 

way to model various time series with a similar overall pattern.   By using hierarchical 

organization and firing of only relevant ANNs under a primary pattern classification, 

training difficulties and accuracy issues, often faced by a similar functional 

approximation using single ANN can be resolved.   Traditionally more than one time 

series with a slight difference in individual patterns may require dedicated ANNs or time 

series models for each in order to maintain a certain level of modeling accuracy.   Under 

the proposed approach, more than one time series such as TIS process can be modeled 

under a single dedicated ANN.  
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The proposed metamodeling approach focuses on a transient process such as the 

post-disruption system behavior on a particular performance aspect.  As one of the well-

known benefits of neural network application in point estimation of unknown function, it 

has the capability of predicting points never trained on.  In other words, with a 

comprehensive training of similar transient behavior patterns expressed by a series of 

coefficients from a carefully selected polynomial regression model, many post-disruption 

processes with similar system conditions can be predicted.  Since the proposed 

metamodeling approach uses input and target vectors consisting of a series of predefined 

numerical elements and not all vector elements are mathematically dependent on each 

other, an expansion of the input and output vectors by adding additional elements is 

relatively easy. 

  

The followings are some of weaknesses the study found.   First, a comprehensive 

set of possible transient behavior pattern types must be studied.   In order to do that, 

constructing a faithful simulation model or collecting comprehensive data is necessary, 

which can represent various disruption scenarios under a specific post-disruption 

behavior pattern.   A successful training of various ANNs within the framework relies on 

effective input and target vectors.  Therefore, a well-designed experiment is needed to 

construct effect training input and target vectors. 

   

A successful classification of different primary behavior patterns for the ANN in 

the first level relies on the modeler’s intuition and experiences.   Each primary pattern 
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should be defined in such way where all individual observation processes of a target 

performance index can have the least amount of deviation from each other when they are 

expressed with a series of coefficients from a polynomial regression model.  The smaller 

the deviation among individual observation processes, the better it is for modeling 

accuracy and better prediction performance.  Accuracy in the final model may suffer 

when the training size is too small, the order of the selected polynomial regression model 

is inappropriate, or deviations among individual post-disruption behaviors are relatively 

big.  The accuracy of estimated confidence interval of mean value for the selected 

performance index at observation  can also suffer when distributions of standard error of 

point estimate fails to hold the normality.    

t

 

 

8.4 Future Research Directions and Opportunities 
 
 
 

The primary focus of any future research is to improve the accuracy of the 

proposed modeling approach using different baseline mathematical models to construct 

more efficient target vectors so that a better training result can be achieved.  Also, 

enhancing the current input and output data format in such way that a machine 

interpretation of prediction outcomes will be feasible.  Third, find a method to automate 

both target vector constructions and individual ANN trainings so that the entire 

methodology truly will become an automated modeling process.  Forth, expand the 

application beyond the boundary of manufacturing systems.  For example, other discrete 

event dynamic systems such as communication/computer network, computer systems, 
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and transformation networks can be good candidate areas to test the effectiveness of the 

proposed methodology when unscheduled system performance disruptions are a daily 

phenomenon.   

 

8.5 Summary 
 
 
 

As stated in Chapter 1, most FMSs never reach their steady state in reality 

because of their highly dynamic nature and operational environment, conventional 

evaluative model approaches utilizing steady-state analysis often provide their controller 

very little help to assess a short-term performance after an unscheduled disruption.  Such 

situations often require direct human intervention to adjust various control parameters 

including some low-level operational rules of individual resources, which can cause a 

momentary shut down of the entire system.  The capability to provide a short-term look 

ahead may reduce costly downtime of an expensive FMS.  Furthermore, it may help run 

the overall production system more efficiently.   

 

The proposed ANN based metamodeling approach using multiple ANNs, in a 

taxonomically organized modeling structure, is an efficient way to capture multiple target 

performance index observation processes with a similar overall post-disruption behavior 

pattern.  Despite its mixed performance results, this methodology was proven especially 

effective when it had to deal with noisy time series such as TIS at observation  under a 

data rich environment.  The study was done to prove that the proposed methodology 

could be a viable means to model transient system behaviors especially where the self-

t
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maintainability and modeling economy are the key focus.  As long as individual 

observation processes of the selected performance index can keep their variances smaller 

among themselves, the accuracy of the overall model would be acceptable.   This non-

parametric performance modeling technique using hierarchically organized multiple 

ANNs, is worth further investigation. 
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Extended Design of Experiments 
 

Single Event Disruption Scenario 
(Triggered at 10000 minutes) 

Steady State Scenario 
(pre-disruption) 

Scenario 
Index Part Mix 

Change 
Machine 

Breakdown 
AGV 

Breakdown 

Mean 
Interarrival 
Time  
(minutes) 

Part Mix 
Exp. No. 

PM1 PM2 →   2.2 PM1 11 
PM1 PM2 →   2.2 PM1 12 
PM1 PM2 →   2.2 PM1 13 
PM1 PM2 →   2.2 PM1 14 
PM1 PM2 →   2.2 PM1 15 
PM1 PM2 →   2.2 PM1 181 
PM1 PM2 →   2.2 PM1 182 
PM1 PM2 →   2.2 PM1 183 
PM1 PM2 →   2.2 PM1 184 
PM1 PM2 →   2.2 PM1 185 
PM1 PM2 →   2.2 PM1 186 
PM1 PM2 →   2.2 PM1 187 
PM1 PM2 →   2.2 PM1 188 
PM1 PM2 →   2.2 PM1 189 

1 

PM1 PM2 →   2.2 PM1 190 
PM1 PM2 →   2.3 PM1 111 
PM1 PM2 →   2.3 PM1 112 
PM1 PM2 →   2.3 PM1 113 
PM1 PM2 →   2.3 PM1 114 
PM1 PM2 →   2.3 PM1 115 
PM1 PM2 →   2.3 PM1 191 
PM1 PM2 →   2.3 PM1 192 
PM1 PM2 →   2.3 PM1 193 
PM1 PM2 →   2.3 PM1 194 
PM1 PM2 →   2.3 PM1 195 
PM1 PM2 →   2.3 PM1 196 
PM1 PM2 →   2.3 PM1 197 
PM1 PM2 →   2.3 PM1 198 
PM1 PM2 →   2.3 PM1 199 

2 

PM1 PM2 →   2.3 PM1 200 
PM2 PM1 →   2.2 PM2 56 
PM2 PM1 →   2.2 PM2 57 
PM2 PM1 →   2.2 PM2 58 
PM2 PM1 →   2.2 PM2 59 
PM2 PM1 →   2.2 PM2 60 
PM2 PM1 →   2.2 PM2 201 
PM2 PM1 →   2.2 PM2 202 
PM2 PM1 →   2.2 PM2 203 
PM2 PM1 →   2.2 PM2 204 
PM2 PM1 →   2.2 PM2 205 

3 

PM2 PM1 →   2.2 PM2 206 
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PM2 PM1 →   2.2 PM2 207 
PM2 PM1 →   2.2 PM2 208 
PM2 PM1 →   2.2 PM2 209 

 

PM2 PM1 →   2.2 PM2 210 
PM2 PM1 →   2.3 PM2 116 
PM2 PM1 →   2.3 PM2 117 
PM2 PM1 →   2.3 PM2 118 
PM2 PM1 →   2.3 PM2 119 
PM2 PM1 →   2.3 PM2 120 
PM2 PM1 →   2.3 PM2 211 
PM2 PM1 →   2.3 PM2 212 
PM2 PM1 →   2.3 PM2 213 
PM2 PM1 →   2.3 PM2 214 
PM2 PM1 →   2.3 PM2 215 
PM2 PM1 →   2.3 PM2 216 
PM2 PM1 →   2.3 PM2 217 
PM2 PM1 →   2.3 PM2 218 
PM2 PM1 →   2.3 PM2 219 

4 

PM2 PM1 →   2.3 PM2 220 
  3 2 → 2.2 PM1 66 
  3 2 → 2.2 PM1 67 
  3 2 → 2.2 PM1 68 
  3 2 → 2.2 PM1 69 
  3 2 → 2.2 PM1 70 
  3 2 → 2.2 PM1 221 
  3 2 → 2.2 PM1 222 
  3 2 → 2.2 PM1 223 
  3 2 → 2.2 PM1 224 
  3 2 → 2.2 PM1 225 
  3 2 → 2.2 PM1 226 
  3 2 → 2.2 PM1 227 
  3 2 → 2.2 PM1 228 
  3 2 → 2.2 PM1 229 

5 

  3 2 → 2.2 PM1 230 
  3 2 → 2.3 PM1 121 
  3 2 → 2.3 PM1 122 
  3 2 → 2.3 PM1 123 
  3 2 → 2.3 PM1 124 
  3 2 → 2.3 PM1 125 
  3 2 → 2.3 PM1 231 
  3 2 → 2.3 PM1 232 
  3 2 → 2.3 PM1 233 
  3 2 → 2.3 PM1 234 
  3 2 → 2.3 PM1 235 
  3 2 → 2.3 PM1 236 
  3 2 → 2.3 PM1 237 
  3 2 → 2.3 PM1 238 
  3 2 → 2.3 PM1 239 

6 

  3 2 → 2.3 PM1 240 
7   3 2 → 2.2 PM2 61 
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  3 2 → 2.2 PM2 62 
  3 2 → 2.2 PM2 63 
  3 2 → 2.2 PM2 64 
  3 2 → 2.2 PM2 65 
  3 2 → 2.2 PM2 241 
  3 2 → 2.2 PM2 242 
  3 2 → 2.2 PM2 243 
  3 2 → 2.2 PM2 244 
  3 2 → 2.2 PM2 245 
  3 2 → 2.2 PM2 246 
  3 2 → 2.2 PM2 247 
  3 2 → 2.2 PM2 248 
  3 2 → 2.2 PM2 249 

 

  3 2 → 2.2 PM2 250 
  3 2 → 2.3 PM2 126 
  3 2 → 2.3 PM2 127 
  3 2 → 2.3 PM2 128 
  3 2 → 2.3 PM2 129 
  3 2 → 2.3 PM2 130 
  3 2 → 2.3 PM2 251 
  3 2 → 2.3 PM2 252 
  3 2 → 2.3 PM2 253 
  3 2 → 2.3 PM2 254 
  3 2 → 2.3 PM2 255 
  3 2 → 2.3 PM2 256 
  3 2 → 2.3 PM2 257 
  3 2 → 2.3 PM2 258 
  3 2 → 2.3 PM2 259 

8 

  3 2 → 2.3 PM2 260 
 M1  2.2 PM1 16 
 M1  2.2 PM1 17 
 M1  2.2 PM1 18 
 M1  2.2 PM1 19 
 M1  2.2 PM1 20 
 M1  2.2 PM1 261 
 M1  2.2 PM1 262 
 M1  2.2 PM1 263 
 M1  2.2 PM1 264 
 M1  2.2 PM1 265 
 M1  2.2 PM1 266 
 M1  2.2 PM1 267 
 M1  2.2 PM1 268 
 M1  2.2 PM1 269 

9 

 M1  2.2 PM1 270 
 M1  2.3 PM1 131 
 M1  2.3 PM1 132 
 M1  2.3 PM1 133 
 M1  2.3 PM1 134 
 M1  2.3 PM1 135 
 M1  2.3 PM1 271 

10 

 M1  2.3 PM1 272 
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 M1  2.3 PM1 273 
 M1  2.3 PM1 274 
 M1  2.3 PM1 275 
 M1  2.3 PM1 276 
 M1  2.3 PM1 277 
 M1  2.3 PM1 278 
 M1  2.3 PM1 279 

 

 M1  2.3 PM1 280 
 M1  2.2 PM2 21 
 M1  2.2 PM2 22 
 M1  2.2 PM2 23 
 M1  2.2 PM2 24 
 M1  2.2 PM2 25 
 M1  2.2 PM2 281 
 M1  2.2 PM2 282 
 M1  2.2 PM2 283 
 M1  2.2 PM2 284 
 M1  2.2 PM2 285 
 M1  2.2 PM2 286 
 M1  2.2 PM2 287 
 M1  2.2 PM2 288 
 M1  2.2 PM2 289 

11 

 M1  2.2 PM2 290 
 M1  2.3 PM2 136 
 M1  2.3 PM2 137 
 M1  2.3 PM2 138 
 M1  2.3 PM2 139 
 M1  2.3 PM2 140 
 M1  2.3 PM2 291 
 M1  2.3 PM2 292 
 M1  2.3 PM2 293 
 M1  2.3 PM2 294 
 M1  2.3 PM2 295 
 M1  2.3 PM2 296 
 M1  2.3 PM2 297 
 M1  2.3 PM2 298 
 M1  2.3 PM2 299 

12 

 M1  2.3 PM2 300 
 M6  2.2 PM1 6 
 M6  2.2 PM1 7 
 M6  2.2 PM1 8 
 M6  2.2 PM1 9 
 M6  2.2 PM1 10 
 M6  2.2 PM1 301 
 M6  2.2 PM1 302 
 M6  2.2 PM1 303 
 M6  2.2 PM1 304 
 M6  2.2 PM1 305 
 M6  2.2 PM1 306 
 M6  2.2 PM1 307 
 M6  2.2 PM1 308 
 M6  2.2 PM1 309 

13 

 M6  2.2 PM1 310 
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 M6  2.3 PM1 141 
 M6  2.3 PM1 142 
 M6  2.3 PM1 143 
 M6  2.3 PM1 144 
 M6  2.3 PM1 145 
 M6  2.3 PM1 311 
 M6  2.3 PM1 312 
 M6  2.3 PM1 313 
 M6  2.3 PM1 314 
 M6  2.3 PM1 315 
 M6  2.3 PM1 316 
 M6  2.3 PM1 317 
 M6  2.3 PM1 318 
 M6  2.3 PM1 319 

14 

 M6  2.3 PM1 320 
 M6  2.2 PM2 71 
 M6  2.2 PM2 72 
 M6  2.2 PM2 73 
 M6  2.2 PM2 74 
 M6  2.2 PM2 75 
 M6  2.2 PM2 321 
 M6  2.2 PM2 322 
 M6  2.2 PM2 323 
 M6  2.2 PM2 324 
 M6  2.2 PM2 325 
 M6  2.2 PM2 326 
 M6  2.2 PM2 327 
 M6  2.2 PM2 328 
 M6  2.2 PM2 329 

15 

 M6  2.2 PM2 330 
 M6  2.3 PM2 106 
 M6  2.3 PM2 107 
 M6  2.3 PM2 108 
 M6  2.3 PM2 109 
 M6  2.3 PM2 110 
 M6  2.3 PM2 331 
 M6  2.3 PM2 332 
 M6  2.3 PM2 333 
 M6  2.3 PM2 334 
 M6  2.3 PM2 335 
 M6  2.3 PM2 336 
 M6  2.3 PM2 337 
 M6  2.3 PM2 338 
 M6  2.3 PM2 339 

16 

 M6  2.3 PM2 340 
 M2  2.2 PM1 46 
 M2  2.2 PM1 47 
 M2  2.2 PM1 48 
 M2  2.2 PM1 49 
 M2  2.2 PM1 50 
 M2  2.2 PM1 341 
 M2  2.2 PM1 342 

17 

 M2  2.2 PM1 343 
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 M2  2.2 PM1 344 
 M2  2.2 PM1 345 
 M2  2.2 PM1 346 
 M2  2.2 PM1 347 
 M2  2.2 PM1 348 
 M2  2.2 PM1 349 

 

 M2  2.2 PM1 350 
 M2  2.3 PM1 146 
 M2  2.3 PM1 147 
 M2  2.3 PM1 148 
 M2  2.3 PM1 149 
 M2  2.3 PM1 150 
 M2  2.3 PM1 351 
 M2  2.3 PM1 352 
 M2  2.3 PM1 353 
 M2  2.3 PM1 354 
 M2  2.3 PM1 355 
 M2  2.3 PM1 356 
 M2  2.3 PM1 357 
 M2  2.3 PM1 358 
 M2  2.3 PM1 359 

18 

 M2  2.3 PM1 360 
 M2  2.2 PM2 26 
 M2  2.2 PM2 27 
 M2  2.2 PM2 28 
 M2  2.2 PM2 29 
 M2  2.2 PM2 30 
 M2  2.2 PM2 361 
 M2  2.2 PM2 362 
 M2  2.2 PM2 363 
 M2  2.2 PM2 364 
 M2  2.2 PM2 365 
 M2  2.2 PM2 366 
 M2  2.2 PM2 367 
 M2  2.2 PM2 368 
 M2  2.2 PM2 369 

19 

 M2  2.2 PM2 370 
 M2  2.3 PM2 151 
 M2  2.3 PM2 152 
 M2  2.3 PM2 153 
 M2  2.3 PM2 154 
 M2  2.3 PM2 155 
 M2  2.3 PM2 371 
 M2  2.3 PM2 372 
 M2  2.3 PM2 373 
 M2  2.3 PM2 374 
 M2  2.3 PM2 375 
 M2  2.3 PM2 376 
 M2  2.3 PM2 377 
 M2  2.3 PM2 378 
 M2  2.3 PM2 379 

20 

 M2  2.3 PM2 380 
21  M5  2.2 PM1 51 
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 M5  2.2 PM1 52 
 M5  2.2 PM1 53 
 M5  2.2 PM1 54 
 M5  2.2 PM1 55 
 M5  2.2 PM1 381 
 M5  2.2 PM1 382 
 M5  2.2 PM1 383 
 M5  2.2 PM1 384 
 M5  2.2 PM1 385 
 M5  2.2 PM1 386 
 M5  2.2 PM1 387 
 M5  2.2 PM1 388 
 M5  2.2 PM1 389 

 

 M5  2.2 PM1 390 
 M5  2.3 PM1 156 
 M5  2.3 PM1 157 
 M5  2.3 PM1 158 
 M5  2.3 PM1 159 
 M5  2.3 PM1 160 
 M5  2.3 PM1 391 
 M5  2.3 PM1 392 
 M5  2.3 PM1 393 
 M5  2.3 PM1 394 
 M5  2.3 PM1 395 
 M5  2.3 PM1 396 
 M5  2.3 PM1 397 
 M5  2.3 PM1 398 
 M5  2.3 PM1 399 

22 

 M5  2.3 PM1 400 
 M5  2.2 PM2 31 
 M5  2.2 PM2 32 
 M5  2.2 PM2 33 
 M5  2.2 PM2 34 
 M5  2.2 PM2 35 
 M5  2.2 PM2 401 
 M5  2.2 PM2 402 
 M5  2.2 PM2 403 
 M5  2.2 PM2 404 
 M5  2.2 PM2 405 
 M5  2.2 PM2 406 
 M5  2.2 PM2 407 
 M5  2.2 PM2 408 
 M5  2.2 PM2 409 

23 

 M5  2.2 PM2 410 
 M5  2.3 PM2 161 
 M5  2.3 PM2 162 
 M5  2.3 PM2 163 
 M5  2.3 PM2 164 
 M5  2.3 PM2 165 
 M5  2.3 PM2 411 
 M5  2.3 PM2 412 
 M5  2.3 PM2 413 

24 

 M5  2.3 PM2 414 
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 M5  2.3 PM2 415 
 M5  2.3 PM2 416 
 M5  2.3 PM2 417 
 M5  2.3 PM2 418 
 M5  2.3 PM2 419 

 

 M5  2.3 PM2 420 
 M3  2.2 PM1 76 
 M3  2.2 PM1 77 
 M3  2.2 PM1 78 
 M3  2.2 PM1 79 
 M3  2.2 PM1 80 
 M3  2.2 PM1 421 
 M3  2.2 PM1 422 
 M3  2.2 PM1 423 
 M3  2.2 PM1 424 
 M3  2.2 PM1 425 
 M3  2.2 PM1 426 
 M3  2.2 PM1 427 
 M3  2.2 PM1 428 
 M3  2.2 PM1 429 

25 

 M3  2.2 PM1 430 
 M3  2.3 PM1 166 
 M3  2.3 PM1 167 
 M3  2.3 PM1 168 
 M3  2.3 PM1 169 
 M3  2.3 PM1 170 
 M3  2.3 PM1 431 
 M3  2.3 PM1 432 
 M3  2.3 PM1 433 
 M3  2.3 PM1 434 
 M3  2.3 PM1 435 
 M3  2.3 PM1 436 
 M3  2.3 PM1 437 
 M3  2.3 PM1 438 
 M3  2.3 PM1 439 

26 

 M3  2.3 PM1 440 
 M3  2.2 PM2 36 
 M3  2.2 PM2 37 
 M3  2.2 PM2 38 
 M3  2.2 PM2 39 
 M3  2.2 PM2 40 
 M3  2.2 PM2 441 
 M3  2.2 PM2 442 
 M3  2.2 PM2 443 
 M3  2.2 PM2 444 
 M3  2.2 PM2 445 
 M3  2.2 PM2 446 
 M3  2.2 PM2 447 
 M3  2.2 PM2 448 
 M3  2.2 PM2 449 

27 

 M3  2.2 PM2 450 
 M3  2.3 PM2 171 28 
 M3  2.3 PM2 172 

 



  284 

 M3  2.3 PM2 173 
 M3  2.3 PM2 174 
 M3  2.3 PM2 175 
 M3  2.3 PM2 451 
 M3  2.3 PM2 452 
 M3  2.3 PM2 453 
 M3  2.3 PM2 454 
 M3  2.3 PM2 455 
 M3  2.3 PM2 456 
 M3  2.3 PM2 457 
 M3  2.3 PM2 458 
 M3  2.3 PM2 459 

 

 M3  2.3 PM2 460 
 M7  2.2 PM1 81 
 M7  2.2 PM1 82 
 M7  2.2 PM1 83 
 M7  2.2 PM1 84 
 M7  2.2 PM1 85 
 M7  2.2 PM1 461 
 M7  2.2 PM1 462 
 M7  2.2 PM1 463 
 M7  2.2 PM1 464 
 M7  2.2 PM1 465 
 M7  2.2 PM1 466 
 M7  2.2 PM1 467 
 M7  2.2 PM1 468 
 M7  2.2 PM1 469 

29 

 M7  2.2 PM1 470 
 M7  2.3 PM1 86 
 M7  2.3 PM1 87 
 M7  2.3 PM1 88 
 M7  2.3 PM1 89 
 M7  2.3 PM1 90 
 M7  2.3 PM1 471 
 M7  2.3 PM1 472 
 M7  2.3 PM1 473 
 M7  2.3 PM1 474 
 M7  2.3 PM1 475 
 M7  2.3 PM1 476 
 M7  2.3 PM1 477 
 M7  2.3 PM1 478 
 M7  2.3 PM1 479 

30 

 M7  2.3 PM1 480 
 M7  2.2 PM2 41 
 M7  2.2 PM2 42 
 M7  2.2 PM2 43 
 M7  2.2 PM2 44 
 M7  2.2 PM2 45 
 M7  2.2 PM2 481 
 M7  2.2 PM2 482 
 M7  2.2 PM2 483 
 M7  2.2 PM2 484 

31 

 M7  2.2 PM2 485 
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 M7  2.2 PM2 486 
 M7  2.2 PM2 487 
 M7  2.2 PM2 488 
 M7  2.2 PM2 489 

 

 M7  2.2 PM2 490 
 M7  2.3 PM2 176 
 M7  2.3 PM2 177 
 M7  2.3 PM2 178 
 M7  2.3 PM2 179 
 M7  2.3 PM2 180 
 M7  2.3 PM2 491 
 M7  2.3 PM2 492 
 M7  2.3 PM2 493 
 M7  2.3 PM2 494 
 M7  2.3 PM2 495 
 M7  2.3 PM2 496 
 M7  2.3 PM2 497 
 M7  2.3 PM2 498 
 M7  2.3 PM2 499 

32 

 M7  2.3 PM2 500 
   2.2 PM1 1 
   2.2 PM1 2 
   2.2 PM1 3 
   2.2 PM1 4 
   2.2 PM1 5 
   2.2 PM1 501 
   2.2 PM1 502 
   2.2 PM1 503 
   2.2 PM1 504 
   2.2 PM1 505 
   2.2 PM1 506 
   2.2 PM1 507 
   2.2 PM1 508 
   2.2 PM1 509 

33 

   2.2 PM1 510 
   2.3 PM1 91 
   2.3 PM1 92 
   2.3 PM1 93 
   2.3 PM1 94 
   2.3 PM1 95 
   2.3 PM1 511 
   2.3 PM1 512 
   2.3 PM1 513 
   2.3 PM1 514 
   2.3 PM1 515 
   2.3 PM1 516 
   2.3 PM1 517 
   2.3 PM1 518 
   2.3 PM1 519 

34 

   2.3 PM1 520 
   2.2 PM2 96 
   2.2 PM2 97 

35 

   2.2 PM2 98 
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   2.2 PM2 99 
   2.2 PM2 100 
   2.2 PM2 521 
   2.2 PM2 522 
   2.2 PM2 523 
   2.2 PM2 524 
   2.2 PM2 525 
   2.2 PM2 526 
   2.2 PM2 527 
   2.2 PM2 528 
   2.2 PM2 529 

 

   2.2 PM2 530 
   2.3 PM2 101 
   2.3 PM2 102 
   2.3 PM2 103 
   2.3 PM2 104 
   2.3 PM2 105 
   2.3 PM2 531 
   2.3 PM2 532 
   2.3 PM2 533 
   2.3 PM2 534 
   2.3 PM2 535 
   2.3 PM2 536 
   2.3 PM2 537 
   2.3 PM2 538 
   2.3 PM2 539 

36 

   2.3 PM2 540 
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B.1 MATLAB Source Code for Training Individual ANNs 
 
 
 
 
%ANN based FMS Transient Performance Model Training Session 
 
%   
figure(gcf) 
clf; 
echo on 
clc 
 
%    ========================================================== 
%    ANN based FMS Transient Performance Model Training Session 
%    ========================================================== 
 
%    PRESTD  - Normalize data for zero mean and unity standard deviation. 
%    PREPCA  - Principal components analysis. 
%    NEWFF   - Inititializes feed-forward networks. 
%    TRAIN   - Trains a network. 
%    SIM     - Simulates networks. 
%    POSTSTD - Inverts PRESTD to convert network outputs to original units. 
%    POSTREG - Linear regression between targets and trained network outputs. 
 
%    NONLINEAR REGRESSION: 
 
%    Using the above functions a feed-forward network is trained 
%    to perform a nonlinear regression between predisruption system conditions 
%    and postdiruption system conditions.  The final network is analyzed to 
%    investigate overall performance. 
 
pause % Strike any key to continue... 
clc 
 
%    DEFINING THE PROBLEM 
%    ==================== 
 
%    The .mat file FMStransientModel contains matrices 
%    P and T.  The P matrix contains the network inputs, 
%    which are 15 independent measured spectral components of 36 different system disruption scenarios. 
%    The T matrix contains the corresponding targets, which are 
%    individual machine utilization levels after a disruption and estimated regression paramenters for the 
unknown transient function. 
 
% Load in the data file 
%load choles_all 
load training_data_1_1; 
p=inputs_1_1; 
t=outputs_1_1; 
 
% Normalize the inputs and targets so that they have 
% zero mean and unity variance. 
[pn,minp,maxp,tn,mint,maxt] = premnmx(p,t); 
 
% Perform a principal component analysis and remove those 
% components which account for less than 0.1% of the variation. 
%[ptrans,transMat] = prepca(pn,0.001); 
ptrans=pn; 
pause % Strike any key to divide the data... 
clc 
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% Divide the data up into training, validation and test sets. 
% The testing set will start with the second point and take 
% every fourth point.  The validation set will start with the 
% fourth point and take every fourth point.  The training set 
% will take the remaining points. 
[R,Q] = size(ptrans); 
iitst = 2:4:Q; 
iival = 4:4:Q; 
iitr = [1:4:Q 3:4:Q]; 
validation.P = ptrans(:,iival); 
validation.T = tn(:,iival); 
testing.P = ptrans(:,iitst); 
testing.T = tn(:,iitst); 
ptr = ptrans(:,iitr); 
ttr = tn(:,iitr); 
 
pause % Strike any key to define the network... 
clc 
%    DEFINING THE NETWORK 
%    ==================== 
 
% Create a feedforward network with 4 hidden neurons, 2 output 
% neurons, TANSIG hidden neurons and linear output neurons.  Here 
% we assign the Bayesian Regulation training function - TRAINBR.  You 
% can replace TRAINBR with any training function you desire. The NEWFF 
% command will also initialize the weights in the network. 
net = newff(minmax(ptr),[2 2 2],{'tansig' 'tansig' 'purelin'},'trainbr'); 
 
pause % Strike any key to train the network... 
clc 
 
%    TRAINING THE NETWORK 
%    ==================== 
 
% Before training the network you may want to change some of the training 
% parameters from their default values.  Here we change only the 
% show parameter. 
net.trainParam.show = 5;    % Show intermediate results every five iterations. 
%net.trainParam.epochs = 150; 
%    Training begins...please wait... 
 
% Train the network.  We use early stopping, so we are passing the 
% validation data.  We also want the errors computed on a test 
% set, so we are passing the testing data. 
[net,tr]=train(net,ptr,ttr,[],[],validation,testing); 
 
pause % Strike any key to test the networks... 
clc 
%    TESTING THE NETWORK 
%    ==================== 
 
% Plot the training, validation and test errors. 
plot(tr.epoch,tr.perf,'r',tr.epoch,tr.vperf,':g',tr.epoch,tr.tperf,'-.b') 
legend('Training','Validation','Test',-1); 
ylabel('Squared Error') 
 
% Simulate the trained network. 
an = sim(net,ptrans); 
 
% Convert the output of the network back into the original units 
% of the targets.  Since the targets were transformed using PRESTD so 
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% that the mean was 0 and the standard deviation was 1, we need to 
% use POSTSTD (the inverse of PRESTD) and the original mean and standard 
% deviation to transform the network outputs back into the original units. 
a = postmnmx(an,mint,maxt); 
 
pause % Strike any key to display the regression analysis... 
clc 
%    DISPLAY RESULTS 
%    =============== 
 
%    We will now display plots showing regression analyses between the 
%    network outputs and the corresponding targets (in original units). 
 
 
for i=1:1 
 
    pause % Strike any key to display the next output... 
    clc 
 [m(i),b(i),r(i)] = postreg(a(i,:),t(i,:)); 
 
 
end 
 
echo off 

disp('End of ANN based FMS Transient model training') 
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MATLAB Source Code for Simulating A Taxonomically Organized 
ANN based Transient Behavior Prediction Model 

 
 
 
 
%ANN based FMS Transient Performance Model Training Session 
 
%   
%echo on 
%clc 
 
 
load trained_transient_SM; 
disp ('what is a mean part arrival time to the system? ') 
n = input ('Enter 1 for 2.2min or 2 for 2.3min: '); 
while (n ~= 1) & (n ~= 2) 
disp ('warning: digits 1 and 2 are only acceptable.'); 
n = input ('Enter 1 for 2.2min or 2 for 2.3min: '); 
end 
if n == 1 
   mparrv = 2.2; 
else 
   mparrv = 2.3; 
end 
disp ('Following time averaged utilizations of each machine stations prior to') 
disp ('a disruptive event are needed as a part of the input vector. ') 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#1 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.4382 and 0.68303. ') 
u1 = input ('Enter M1 Utilization prior to a disruption:'); 
while (u1 < 0.4) | (u1> 0.75) 
   if (u1 < 0.4) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.4382 and 0.68303. ') 
       u1 = input ('Enter M1 Utilization prior to a disruption:'); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.4382 and 0.68303. ') 
       u1 = input ('Enter M1 Utilization prior to a disruption:'); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#6 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.2649 and 0.80999. ') 
u6 = input ('Enter M6 Utilization prior to a disruption:'); 
while (u6 < 0.2) | (u6 > 0.85) 
   if (u6 < 0.2) 
       disp ('warning: the value is too low to generate a valid prediction. '); 
       disp ('A desirable value should be between 0.2649 and 0.80999. ') 
       u6 = input ('Enter M6 Utilization prior to a disruption:'); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. '); 
       disp ('A desirable value should be between 0.2649 and 0.80999. ') 
       u6 = input ('Enter M6 Utilization prior to a disruption:'); 
   end 
end 
disp (' ') 
disp (' ') 
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disp ('What is time averaged utilization of Machine#2 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.44374 and 0.74975. ') 
u2 = input ('Enter M2 Utilization prior to a disruption:'); 
while (u2 < 0.4) | (u2 > 0.80) 
   if (u2 < 0.4) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.44374 and 0.74975. ') 
       u2 = input ('Enter M2 Utilization prior to a disruption:'); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.44374 and 0.74975. ') 
       u2 = input ('Enter M2 Utilization prior to a disruption:'); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#5 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.23492 and 0.67018. ') 
u5 = input ('Enter M5 Utilization prior to a disruption: '); 
while (u5 < 0.2) | (u5 > 0.7) 
   if (u5 < 0.2) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.23492 and 0.67018. ') 
       u5 = input ('Enter M5 Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.23492 and 0.67018. ') 
       u5 = input ('Enter M5 Utilization prior to a disruption: '); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#3 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.357 and 0.8041. ') 
u3 = input ('Enter M3 Utilization prior to a disruption: '); 
while (u3 < 0.3) | (u3 > 0.83) 
   if (u3 < 0.3) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.357 and 0.8041. ') 
       u3 = input ('Enter M3 Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.357 and 0.8041. ') 
       u3 = input ('Enter M3 Utilization prior to a disruption: '); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#7 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.36168 and 0.7649. ') 
u7 = input ('Enter M7 Utilization prior to a disruption: '); 
while (u7 < 0.3) | (u7 > 0.8) 
   if (u7 < 0.3) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.36168 and 0.7649. ') 
       u7 = input ('Enter M7 Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.36168 and 0.7649. ') 
       u7 = input ('Enter M7 Utilization prior to a disruption: '); 
   end 
end 
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disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#9 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.28211 and 0.8268. ') 
u9 = input ('Enter M9 Utilization prior to a disruption: '); 
while (u9 < 0.2) | (u9 > 0.85) 
   if (u9 < 0.2) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.28211 and 0.8268. ') 
       u9 = input ('Enter M9 Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.28211 and 0.8268. ') 
       u9 = input ('Enter M9 Utilization prior to a disruption: '); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Machine#12 prior to a disruptive event? ') 
disp ('A desirable value should be between 0.54538 and 0.72847. ') 
u12 = input ('Enter M12 Utilization prior to a disruption: '); 
while (u12 < 0.5) | (u12 > 0.75) 
   if (u12 < 0.5) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.54538 and 0.72847. ') 
       u12 = input ('Enter M12 Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.54538 and 0.72847. ') 
       u12 = input ('Enter M12 Utilization prior to a disruption: '); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of AGV prior to a disruptive event? ') 
disp ('A desirable value should be between 0.27854 and 0.60651. ') 
uav = input ('Enter AGV Utilization prior to a disruption: '); 
while (uav < 0.2) | (uav > 0.65) 
   if (uav < 0.2) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.27854 and 0.60651. ') 
       uav = input ('Enter AGV Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.27854 and 0.60651. ') 
       uav = input ('Enter AGV Utilization prior to a disruption: '); 
   end 
end 
disp (' ') 
disp (' ') 
disp ('What is time averaged utilization of Fixture prior to a disruptive event? ') 
disp ('A desirable value should be between 0.52744 and 0.676. ') 
ufx = input ('Enter Fixture Utilization prior to a disruption: '); 
while (ufx < 0.5) | (ufx > 0.7) 
   if (ufx < 0.5) 
       disp ('warning: the value is too low to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.52744 and 0.676. ') 
       ufx = input ('Enter Fixture Utilization prior to a disruption: '); 
   else 
       disp ('warning: the value is too high to generate a valid prediction. ') 
       disp ('A desirable value should be between 0.52744 and 0.676. ') 
       ufx = input ('Enter Fixture Utilization prior to a disruption: '); 
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   end 
end 
putil = [mparrv u1 u6 u2 u5 u3 u7 u9 u12 uav ufx]; 
disp (' ') 
disp (' ') 
disp ('Possible operational disruption scenarios are based on only two types of single disruption event.') 
disp ('A part mix change and single resource failure are two preselected types of single disruption event.') 
disp ('What type of disruptive event took place? If it was a part mix change, enter 1. ') 
disp ('if it was a resource failure, enter 2.') 
dstype = input ('Enter 1 or 2 for a part mix change or a resource failure: '); 
while (dstype ~= 1) & (dstype ~= 2) 
       disp ('warning: invalid value. A number 1 or 2 is only allowed.') 
       dstype = input ('Enter 1 or 2 for a part mix change or a resource failure: '); 
end 
disp (' ') 
disp (' ') 
if (dstype == 1) 
    disp ('Select an appropriate part mix change from the below.') 
    disp ('Part Mix Type 1: P1=25% P5=25% P8=25% P11=25%') 
    disp ('Part Mix Type 2: P1=20% P4=20% P5=25% P11=20% P12=20%') 
    disp ('Enter 1 if a disruption is resulted by Part Mix Type 1 => Part Mix Type 2 ') 
    disp ('Otherwise enter 2 for the disruption is resulted by Part Mix Type 2 => Part Mix Type 1 ') 
    pmdstype = input('Enter only 1 or 2 for a part mix change PM1 => PM2 or PM2 => PM1:  '); 
    while (pmdstype ~= 1) & (pmdstype ~= 2) 
       disp ('warning: invalid value. A number 1 or 2 is only allowed.') 
       pmdstype = input ('Enter only 1 or 2 for a part mix change PM1 => PM2 or PM2 => PM1:  '); 
    end 
    if pmdstype == 1 
       pmxtype  = 1; 
       pdisevnt = [0.25 0 0 0 0.25 0 0 0.25 0 0 0.25 0 -0.05 0 0 0.2 -0.05 0 0 -0.25 0 0 -0.05 0.2 0 0 0 0 0 0 0 0 
0]; 
    else 
       pmxtype = 2; 
       pdisevnt = [0.2 0 0 0.2 0.2 0 0 0 0 0 0.2 0.2 0.05 0 0 -0.2 0.05 0 0 0.25 0 0 0.05 -0.2 0 0 0 0 0 0 0 0 0]; 
    end 
    pnew = [putil pdisevnt]'  
else 
    disp ('What is the current part mix type for the system?'); 
    disp ('Part Mix Type 1: P1=25% P5=25% P8=25% P11=25%') 
    disp ('Part Mix Type 2: P1=20% P4=20% P5=20% P11=20% P12=20%') 
    pmxtype = input('Enter only 1 or 2 for Part Mix Type 1 or Part Mix Type 2:  '); 
    while (pmxtype ~= 1) & (pmxtype ~= 2) 
       disp ('warning: invalid value. A number 1 or 2 is only allowed.') 
       pmxtype = input ('Enter only 1 or 2 for Part Mix Type 1 or Part Mix Type 2:  '); 
    end 
    if pmxtype == 1 
       pmx = [0.25 0 0 0 0.25 0 0 0.25 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0 0 0]; 
    else 
       pmx = [0.2 0 0 0.2 0.2 0 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0 0 0]; 
    end 
    disp (' ') 
    disp (' ') 
    disp ('Select a single resource that failed and caused a disruption during the operation.') 
    disp ('Enter 1 for machine 1 breakdown, 6 for machine 6 breakdown, 2 for machine 2 breakdown, ') 
    disp ('5 for machine 5 breakdown, 3 for machine 3 breakdown, 7 for machine 7 breakdown, ') 
    disp ('or 99 for a single AGV failure.') 
    psrftype = input ('Enter only 1, 6, 2, 5, 3, 7, or 99 for a single resource failure:  '); 
    while (psrftype ~= 1) & (psrftype ~= 6) & (psrftype ~= 2) & (psrftype ~= 5) & (psrftype ~= 3) & (psrftype ~= 
7) & (psrftype ~= 99) 
        disp ('warning: invalide number. A number should be either 1, 6, 2, 5, 3, 7, or 99. ') 
        psrftype = input ('Enter only 1, 6, 2, 5, 3, 7, or 99 for a single resource failure:  '); 
    end 
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    if (psrftype == 1) 
        psrf = [1 0 0 0 0 0 0 0 0 ]; 
    elseif (psrftype == 6) 
        psrf = [0 1 0 0 0 0 0 0 0 ]; 
    elseif (psrftype == 2) 
        psrf = [0 0 1 0 0 0 0 0 0 ]; 
    elseif (psrftype == 5) 
        psrf = [0 0 0 1 0 0 0 0 0 ]; 
    elseif (psrftype == 3) 
        psrf = [0 0 0 0 1 0 0 0 0]; 
    elseif (psrftype == 7) 
        psrf = [0 0 0 0 0 1 0 0 0]; 
    elseif (psrftype == 99) 
        psrf = [0 0 0 0 0 0 0 0 1]; 
    end 
    pnew = [putil pmx psrf]' 
end    
pnewn1 = tramnmx(pnew,minp_1_1,maxp_1_1); 
anewn1 = sim(net_1_1,pnewn1); 
anew1 = postmnmx(anewn1,mint_1_1,maxt_1_1); 
ptype = round(anew1(1)^2+anew1(2)^2*2); 
if ptype == 1 
    pnewn2_1=tramnmx(pnew,minp_2_1_1,maxp_2_1_1); 
    anewn2_1_1 =sim(net_2_1_1,pnewn2_1); 
    anew2_1_1 = postmnmx(anewn2_1_1,mint_2_1_1,maxt_2_1_1); 
    anewn2_1_2 =sim(net_2_1_2,pnewn2_1); 
    anew2_1_2 = postmnmx(anewn2_1_2,mint_2_1_2,maxt_2_1_2); 
    anewn2_1_3 =sim(net_2_1_3,pnewn2_1); 
    anew2_1_3 = postmnmx(anewn2_1_3,mint_2_1_3,maxt_2_1_3); 
    anew = [anew2_1_1' anew2_1_2' anew2_1_3']'; 
elseif ptype == 2 
    pnewn2_2=tramnmx(pnew,minp_2_2_1,maxp_2_2_1); 
    anewn2_2_1 =sim(net_2_2_1,pnewn2_2); 
    anew2_2_1 = postmnmx(anewn2_2_1,mint_2_2_1,maxt_2_2_1); 
    anewn2_2_2 =sim(net_2_2_2,pnewn2_2); 
    anew2_2_2 = postmnmx(anewn2_2_2,mint_2_2_2,maxt_2_2_2); 
    anewn2_2_3 =sim(net_2_2_3,pnewn2_2); 
    anew2_2_3 = postmnmx(anewn2_2_3,mint_2_2_3,maxt_2_2_3); 
    anew = [anew2_2_1' anew2_2_2' anew2_2_3']'; 
elseif ptype == 3 
    pnewn2_3=tramnmx(pnew,minp_2_3_1,maxp_2_3_1); 
    anewn2_3_1 =sim(net_2_3_1,pnewn2_3); 
    anew2_3_1 = postmnmx(anewn2_3_1,mint_2_3_1,maxt_2_3_1); 
    anewn2_3_2 =sim(net_2_3_2,pnewn2_3); 
    anew2_3_2 = postmnmx(anewn2_3_2,mint_2_3_2,maxt_2_3_2); 
    anew = [anew2_3_1' anew2_3_2']'; 
end     
disp (' ') 
disp (' ') 
disp ('Predicted transient system behavior pattern type is:      ') 
disp (ptype) 
disp (' ') 
if ptype == 0 
    disp ('There is no sign of a significant change in the system behavior.') 
else 
    disp ('Approximated post disruption system behavior vector is     ') 
    disp (anew) 
    disp (' ') 
    disp ('***********  Post-Disruption System Behavior Prediction Report *************' ) 
    disp ('*************************************************************************************' ) 
    disp (' ') 
    disp (' ') 
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    disp ('Following time averaged utilizations of each machine stations are') 
    disp ('approximated as a part of post-disruption system behavior. ') 
    disp (' ') 
end 
if ptype == 1 
    tanew = anew'; 
    psutil = tanew(1:10); 
    psdely = tanew(11); 
    psnlmean = tanew(12:14); 
    pslstp = tanew(15); 
    pslmean = tanew(16:17);  
    pssgmpre = tanew(18); 
    pssgmpst = tanew(19:27); 
    disp (['**The expected final time averaged utilization for Machine#1 is ' num2str(psutil(1))]) 
    disp (['**The expected final time averaged utilization for Machine#6 is ' num2str(psutil(2))]) 
    disp (['**The expected final time averaged utilization for Machine#2 is ' num2str(psutil(3))]) 
    disp (['**The expected final time averaged utilization for Machine#5 is ' num2str(psutil(4))]) 
    disp (['**The expected final time averaged utilization for Machine#3 is ' num2str(psutil(5))]) 
    disp (['**The expected final time averaged utilization for Machine#7 is ' num2str(psutil(6))]) 
    disp (['**The expected final time averaged utilization for Machine#9 is ' num2str(psutil(7))]) 
    disp (['**The expected final time averaged utilization for Machine#12 is ' num2str(psutil(8))]) 
    disp (['**The expected final time averaged utilization for AGV is ' num2str(psutil(9))]) 
    disp (['**The expected final time averaged utilization for Fixture is ' num2str(psutil(10))]) 
    disp (['**The expected disruption impact delay in terms of # of parts/independent TIS observations is ' 
num2str(ceil(psdely)) ]) 
    disp ('   parts/observations from the moment of disruption hit. ') 
    disp ('**Only one TIS observation on each departing part is allowed.') 
    disp (' ') 
    disp (' ') 
    if (mparrv == 2.2) & (pmxtype == 1) 
       disp ('If there was no performance disruption, ') 
       disp ('the approximated steady-state mean time-in-system would be 163.4984 minutes ') 
       stsmean = 163.4984; 
       disp ('with the approximated upper control limit of 171.6962 minutes and ') 
       stsucl = 171.6962; 
       disp ('with the approximated lower control limit of 155.3006 minutes.') 
       stslcl = 155.3006; 
    elseif (mparrv == 2.2) & (pmxtype == 2) 
       disp ('If there was no performance disruption, ') 
       disp ('the approximated steady-state mean time-in-system would be 149.9076 minutes ') 
       stsmean = 149.9076; 
       disp ('with the approximated upper control limit of 159.2466 minutes and ') 
       stsucl = 159.2466; 
       disp ('with the approximated lower control limit of 140.5685 minutes.') 
       stslcl = 140.5685; 
    elseif (mparrv == 2.3) & (pmxtype == 1) 
       disp ('If there was no performance disruption, ') 
       disp ('the approximated steady-state mean time-in-system would be 161.6357 minutes ') 
       stsmean = 161.6357; 
       disp ('with the approximated upper control limit of 166.8541 minutes and ') 
       stsucl = 166.8541; 
       disp ('with the approximated lower control limit of 156.4173 minutes.') 
       stslcl = 156.4173; 
    elseif (mparrv == 2.3) & (pmxtype == 2) 
       disp ('If there was no performance disruption, ') 
       disp ('the approximated steady-state mean time-in-system would be 147.2282 minutes ') 
       stsmean = 147.2282; 
       disp ('with the approximated upper control limit of 153.6755 minutes and ') 
       stsucl = 153.6755; 
       disp ('with the approximated lower control limit of 140.7808 minutes.')    
       stslcl = 140.7808; 
    end 
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    disp (' ') 
    disp (' ') 
    disp ('Following 2nd order polynomial regression model is to forecast ') 
    disp (['the behavior of moving averaged (w=500) mean TIS (time-in-system) for first ' num2str(ceil(pslstp)) 
' parts']) 
    disp (['after the disruption delay of ' num2str(ceil(psdely)) ' parts. ']) 
    disp ('An independent variable t is t-th part entering the system after the disruption impact delay. ') 
    disp ('An dependent variable y1 is an estimated mean total minutes spent in the system by t-th part after ') 
    disp ('a period of impact delay elapses.') 
    disp (['Values for t are 0, 1, 2,...' num2str(ceil(pslstp)) 'th part entering the system after the disruption 
impact delay.']) 
    disp (' ') 
    disp (['y1 = ' num2str(psnlmean(1)) ' + ' num2str(psnlmean(2)) 't + ' num2str(psnlmean(3)) 't^2 ']) 
    disp (' ') 
    disp (' ') 
    disp ('Following linear model is to forecast') 
    disp ('the behavior of moving averaged (w=500) mean TIS (time-in-system) of parts ')  
    disp (['entering the system after first ' num2str(ceil(psdely)+ceil(pslstp)) ' parts from the moment of 
disruption hit']) 
    disp (' but no later than 10000 minutes after the disruption hit. ') 
    disp (['An independent variable t is t-th part entering the system after the first ' 
num2str(ceil(psdely)+ceil(pslstp)) ' parts'])  
    disp (' from the moment of disruption hit.') 
    disp ('An dependent variable y2 is an estimated mean total minutes spent in the system by t-th part after ') 
    disp ('a period of impact delay and non-linear trend. ') 
    disp (['Values for t are 0, 1, 2,...n th part entering the system after first ' num2str(ceil(psdely)+ceil(pslstp)) ' 
parts']) 
    disp ('following the disruption but their arrival time should less than 10,000 minutes ') 
    disp ('from the moment of disruption hit. ') 
    disp (' ') 
    disp (['y2 = ' num2str(pslmean(1)) ' + ' num2str(pslmean(2)) 't ']) 
    disp (' ') 
    disp (' ') 
    disp (['The mean sigma of TIS during the pre-disruption period is ' num2str(pssgmpre) ' minutes']) 
    disp ('Following 8th order polynomial regression model is to') 
    disp ('forecast the behavior of sigma of moving averaged (w=500) mean TIS of parts entering the system 
during ') 
    disp ('10000 minutes from the moment of the disruption hit. ') 
    disp (['An independent variable t is t-th part entering the system after the impact delay of ' 
num2str(ceil(psdely)) ' parts.']) 
    disp ('An dependent variable y_sigma is an estimated mean sigma of TIS by t-th part after ') 
    disp ('a period of impact delay elapses. ') 
    disp ('Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ') 
    disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial ') 
    disp ('during the regression analysis.') 
    disp (['( t=0 is the first departing part after the disruption impact delay of ' num2str(ceil(psdely)) ' parts)']) 
    disp (' ') 
    disp (['y_sigma = ' num2str(pssgmpst(1)) ' + ' num2str(pssgmpst(2)) 't + ' num2str(pssgmpst(3)) 't^2 + ' 
num2str(pssgmpst(4)) 't^3 + ' num2str(pssgmpst(5)) 't^4 + ' num2str(pssgmpst(6)) 't^5 + ' 
num2str(pssgmpst(7)) 't^6 + ' num2str(pssgmpst(8)) 't^7 + ' num2str(pssgmpst(9)) 't^8']) 
    disp (' ') 
    disp (' ') 
elseif ptype == 2 
    tanew = anew'; 
    psutil = tanew(1:10); 
    psdely = tanew(11); 
    psmean = tanew(12:15); 
    pssgmpre = tanew(16); 
    pssgmpst = tanew(17:20); 
    disp (['**The expected final time averaged utilization for Machine#1 is ' num2str(psutil(1))]) 
    disp (['**The expected final time averaged utilization for Machine#6 is ' num2str(psutil(2))]) 
    disp (['**The expected final time averaged utilization for Machine#2 is ' num2str(psutil(3))]) 
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    disp (['**The expected final time averaged utilization for Machine#5 is ' num2str(psutil(4))]) 
    disp (['**The expected final time averaged utilization for Machine#3 is ' num2str(psutil(5))]) 
    disp (['**The expected final time averaged utilization for Machine#7 is ' num2str(psutil(6))]) 
    disp (['**The expected final time averaged utilization for Machine#9 is ' num2str(psutil(7))]) 
    disp (['**The expected final time averaged utilization for Machine#12 is ' num2str(psutil(8))]) 
    disp (['**The expected final time averaged utilization for AGV is ' num2str(psutil(9))]) 
    disp (['**The expected final time averaged utilization for Fixture is ' num2str(psutil(10))]) 
    disp (['**The expected disruption impact delay in terms of # of parts/independent TIS observations is ' 
num2str(ceil(psdely)) ]) 
    disp ('   parts/observations from the moment of disruption hit. ') 
    disp ('**Only one TIS observation on each departing part is allowed.') 
    disp (' ') 
    disp (' ') 
    if (mparrv == 2.2) & (pmxtype == 1) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 163.4984 minutes ') 
       stsmean = 163.4984; 
       disp ('with the approximated upper control limit of 171.6962 minutes and ') 
       stsucl = 171.6962; 
       disp ('with the approximated lower control limit of 155.3006 minutes.') 
       stslcl = 155.3006; 
    elseif (mparrv == 2.2) & (pmxtype == 2) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 149.9076 minutes ') 
       stsmean = 149.9076; 
       disp ('with the approximated upper control limit of 159.2466 minutes and ') 
       stsucl = 159.2466; 
       disp ('with the approximated lower control limit of 140.5685 minutes.') 
       stslcl = 140.5685; 
    elseif (mparrv == 2.3) & (pmxtype == 1) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 161.6357 minutes ') 
       stsmean = 161.6357; 
       disp ('with the approximated upper control limit of 166.8541 minutes and ') 
       stsucl = 166.8541; 
       disp ('with the approximated lower control limit of 156.4173 minutes.') 
       stslcl = 156.4173; 
    elseif (mparrv == 2.3) & (pmxtype == 2) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 147.2282 minutes ') 
       stsmean = 147.2282; 
       disp ('with the approximated upper control limit of 153.6755 minutes and ') 
       stsucl = 153.6755; 
       disp ('with the approximated lower control limit of 140.7808 minutes.')    
       stslcl = 140.7808; 
    end 
    disp (' ') 
    disp (' ') 
    disp ('Following 8th order polynomial regression model is to forecast') 
    disp ('the behavior of moving averaged (w=500) mean TIS (time-in-system)on parts entering the system ') 
    disp ('during 10000 minutes from the moment of disruption hit. ') 
    disp (['An independent variable t is t-th part entering the system after the impact delay of' 
num2str(ceil(psdely)) ' parts.']) 
    disp ('An dependent variable y is an estimated mean total minutes spent in the system by t-th part after ') 
    disp (['the impact delay of ' num2str(ceil(psdely)) ' parts.']) 
    disp ('Values for t = 0, 1, 2,...n are to be substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ') 
    disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial during the 
regression analysis.') 
    disp (['( t=0 is the first TIS observation after ' num2str(ceil(psdely)) ' parts from the moment of disruption 
event hit)']) 
    disp (' ') 
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    disp (['y = ' num2str(psmean(1)) ' + ' num2str(psmean(2)) 't + ' num2str(psmean(3)) 't^2 + ' 
num2str(psmean(4)) 't^3 ']) 
    disp (' ') 
    disp (' ') 
    disp (['The average sigma of TIS during the pre-disruption period is ' num2str(pssgmpre) ' parts.']) 
    disp ('Following 8th order polynomial regression model is to forecast') 
    disp ('the behavior of moving averaged (w=500) mean sigma of TIS of parts entering the system ') 
    disp ('during 10000 minutes from the moment of disruption hit. ') 
    disp (['An independent variable t is t-th part entering the system after the impact delay of ' 
num2str(ceil(psdely)) ' parts.']) 
    disp ('An dependent variable y is an estimated mean sigma of TIS by t-th part after ') 
    disp (['the impact delay of ' num2str(ceil(psdely)) ' parts.']) 
    disp ('Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ') 
    disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial during the 
regression analysis.') 
    disp (['( t=0 is the first sigma observation after ' num2str(ceil(psdely)) ' parts from the moment of disruption 
event hit)']) 
    disp (' ') 
    disp (['y = ' num2str(pssgmpst(1)) ' + ' num2str(pssgmpst(2)) 't + ' num2str(pssgmpst(3)) 't^2 + ' 
num2str(pssgmpst(4)) 't^3 ']) 
    disp (' ') 
    disp (' ') 
elseif ptype == 3 
    tanew = anew'; 
    psutil = tanew(1:10); 
    psdely = tanew(11); 
    psmean = tanew(12:20); 
    pssgmpre = tanew(21); 
    pssgmtsn = tanew(22); 
    pssgmpst = tanew(23); 
    disp (['**The expected final time averaged utilization for Machine#1 is ' num2str(psutil(1))]) 
    disp (['**The expected final time averaged utilization for Machine#6 is ' num2str(psutil(2))]) 
    disp (['**The expected final time averaged utilization for Machine#2 is ' num2str(psutil(3))]) 
    disp (['**The expected final time averaged utilization for Machine#5 is ' num2str(psutil(4))]) 
    disp (['**The expected final time averaged utilization for Machine#3 is ' num2str(psutil(5))]) 
    disp (['**The expected final time averaged utilization for Machine#7 is ' num2str(psutil(6))]) 
    disp (['**The expected final time averaged utilization for Machine#9 is ' num2str(psutil(7))]) 
    disp (['**The expected final time averaged utilization for Machine#12 is ' num2str(psutil(8))]) 
    disp (['**The expected final time averaged utilization for AGV is ' num2str(psutil(9))]) 
    disp (['**The expected final time averaged utilization for Fixture is ' num2str(psutil(10))]) 
    disp (['**The expected disruption impact delay in terms of # of parts/independent TIS observations is ' 
num2str(ceil(psdely)) ]) 
    disp ('   parts/observations from the moment of disruption hit. ') 
    disp ('**Only one TIS observation on each departing part is allowed.') 
    disp (' ') 
    disp (' ') 
    if (mparrv == 2.2) & (pmxtype == 1) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 163.4984 minutes ') 
       stsmean = 163.4984; 
       disp ('with the approximated upper control limit of 171.6962 minutes and ') 
       stsucl = 171.6962; 
       disp ('with the approximated lower control limit of 155.3006 minutes.') 
       stslcl = 155.3006; 
    elseif (mparrv == 2.2) & (pmxtype == 2) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 149.9076 minutes ') 
       stsmean = 149.9076; 
       disp ('with the approximated upper control limit of 159.2466 minutes and ') 
       stsucl = 159.2466; 
       disp ('with the approximated lower control limit of 140.5685 minutes.') 
       stslcl = 140.5685; 
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    elseif (mparrv == 2.3) & (pmxtype == 1) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 161.6357 minutes ') 
       stsmean = 161.6357; 
       disp ('with the approximated upper control limit of 166.8541 minutes and ') 
       stsucl = 166.8541; 
       disp ('with the approximated lower control limit of 156.4173 minutes.') 
       stslcl = 156.4173; 
    elseif (mparrv == 2.3) & (pmxtype == 2) 
       disp ('If there were no performance disruptions, ') 
       disp ('the approximated steady-state mean time-in-system would be 147.2282 minutes ') 
       stsmean = 147.2282; 
       disp ('with the approximated upper control limit of 153.6755 minutes and ') 
       stsucl = 153.6755; 
       disp ('with the approximated lower control limit of 140.7808 minutes.')    
       stslcl = 140.7808; 
    end 
    disp (' ') 
    disp (' ') 
    disp ('Following 8th order polynomial regression model is to forecast') 
    disp ('the behavior of moving averaged (w=500) mean TIS (time-in-system)on parts entering the system ') 
    disp ('during 10000 minutes from the moment of disruption hit. ') 
    disp (['An independent variable t is t-th part entering the system after the impact delay of' 
num2str(ceil(psdely)) ' parts.']) 
    disp ('An dependent variable y is an estimated mean total minutes spent in the system by t-th part after ') 
    disp (['the impact delay of ' num2str(ceil(psdely)) ' parts.']) 
    disp ('Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n ') 
    disp ('in order to avoid a large scale magnitude disparity among coefficients in a polynomial during the 
regression analysis.') 
    disp (['( t=0 is the first observation after ' num2str(ceil(psdely)) ' parts from the moment of disruption event 
hit)']) 
    disp (' ') 
    disp (['y = ' num2str(psmean(1)) ' + ' num2str(psmean(2)) 't + ' num2str(psmean(3)) 't^2 + ' 
num2str(psmean(4)) 't^3 + ' num2str(psmean(5)) 't^4 + ' num2str(psmean(6)) 't^5 + ' num2str(psmean(7)) 
't^6 + ' num2str(psmean(8)) 't^7 + ' num2str(psmean(9)) 't^8']) 
    disp (' ') 
    disp (' ') 
    disp (['The average sigma of TIS during the pre-disruption period is ' num2str(pssgmpre)]) 
    disp (['The average sigma of TIS during the transient period is ' num2str(pssgmtsn)]) 
    disp (['The average sigma of TIS after the transient period is ' num2str(pssgmpst)])     
end 
     
     
%echo off 
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B.2 Transient Behavior Prediction User Interface in MATLAB 
 
 
The user interface for the proposed transient behavior prediction system consists of two 
parts.  The first part is to let a user to enter actual pre-disruption system conditions and a 
disruption event itself.  It was designed to walk through a user a series of questions 
asking pre-disruption conditions, various operational parameters, and the nature of 
disruption.  The logic checks behind the user interface keep the user from entering invalid 
values or out of range values in order to prevent the system to predict the area that was 
never trained to handle.  The second part is to present prediction results in English using 
mathematical notations.  It was also designed to display predicted results as an original 
column vector. 
 
 
 
>> what is a mean part arrival time to the system?  
Enter 1 for 2.2min or 2 for 2.3min: 2 
Following time averaged utilizations of each machine stations prior to 
a disruptive event are needed as a part of the input vector.  
  
  
What is time averaged utilization of Machine#1 prior to a disruptive event?  
A desirable value should be between 0.4382 and 0.68303.  
Enter M1 Utilization prior to a disruption:0.626092724 
  
  
What is time averaged utilization of Machine#6 prior to a disruptive event?  
A desirable value should be between 0.2649 and 0.80999.  
Enter M6 Utilization prior to a disruption:0.451223542 
  
  
What is time averaged utilization of Machine#2 prior to a disruptive event?  
A desirable value should be between 0.44374 and 0.74975.  
Enter M2 Utilization prior to a disruption:0.476030228 
  
  
What is time averaged utilization of Machine#5 prior to a disruptive event?  
A desirable value should be between 0.23492 and 0.67018.  
Enter M5 Utilization prior to a disruption: 0.294553065 
  
  
What is time averaged utilization of Machine#3 prior to a disruptive event?  
A desirable value should be between 0.357 and 0.8041.  
Enter M3 Utilization prior to a disruption: 0.753000501 
  
  
What is time averaged utilization of Machine#7 prior to a disruptive event?  
A desirable value should be between 0.36168 and 0.7649.  
Enter M7 Utilization prior to a disruption: 0.654717144 
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What is time averaged utilization of Machine#9 prior to a disruptive event?  
A desirable value should be between 0.28211 and 0.8268.  
Enter M9 Utilization prior to a disruption: 0.685214836 
  
  
What is time averaged utilization of Machine#12 prior to a disruptive event?  
A desirable value should be between 0.54538 and 0.72847.  
Enter M12 Utilization prior to a disruption: 0.598174323 
  
  
What is time averaged utilization of AGV prior to a disruptive event?  
A desirable value should be between 0.27854 and 0.60651.  
Enter AGV Utilization prior to a disruption: 0.330983599 
  
  
What is time averaged utilization of Fixture prior to a disruptive event?  
A desirable value should be between 0.52744 and 0.676.  
Enter Fixture Utilization prior to a disruption: 0.558691709 
  
  
Possible operational disruption scenarios are based on only two types of single disruption event. 
A part mix change and single resource failure are two pre-selected types of single disruption 
event. 
What type of disruptive event took place? If it was a part mix change, enter 1.  
if it was a resource failure, enter 2. 
Enter 1 or 2 for a part mix change or a resource failure: 2 
  
  
What is the current part mix type for the system? 
Part Mix Type 1: P1=25% P5=25% P8=25% P11=25% 
Part Mix Type 2: P1=20% P4=20% P5=20% P11=20% P12=20% 
Enter only 1 or 2 for Part Mix Type 1 or Part Mix Type 2:  1 
  
  
Select a single resource that failed and caused a disruption during the operation. 
Enter 1 for machine 1 breakdown, 6 for machine 6 breakdown, 2 for machine 2 breakdown,  
5 for machine 5 breakdown, 3 for machine 3 breakdown, 7 for machine 7 breakdown,  
or 99 for a single AGV failure. 
Enter only 1, 6, 2, 5, 3, 7, or 99 for a single resource failure:  3 
 
pnew = 
 
          2.3 
      0.62609 
      0.45122 
      0.47603 
      0.29455 
        0.753 
      0.65472 
      0.68521 
      0.59817 
      0.33098 
      0.55869 
         0.25 
            0 
            0 
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            0 
         0.25 
            0 
            0 
         0.25 
            0 
            0 
         0.25 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            0 
            1 
            0 
            0 
            0 
            0 
 
Warning: Some maximums and minimums are equal. Those inputs won't be transformed. 
> In C:\MATLAB6p5\toolbox\nnet\nnet\tramnmx.m at line 65 
  In C:\MATLAB6p5\work\FMS_transient_model\simulating_ANN_FMS_final.m at line 257 
Warning: Some maximums and minimums are equal. Those inputs won't be transformed. 
> In C:\MATLAB6p5\toolbox\nnet\nnet\tramnmx.m at line 65 
  In C:\MATLAB6p5\work\FMS_transient_model\simulating_ANN_FMS_final.m at line 262 
  
  
Predicted transient system behavior pattern type is:       
     1 
 
  
Approximated post disruption system behavior vector is      
      0.44885 
      0.22148 
      0.35227 
      0.10633 
      0.10795 
      0.86862 
      0.54445 
      0.24624 
      0.89735 
      0.93568 
       36.508 
       180.21 
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      0.23319 
    0.0016197 
       296.22 
       347.23 
       1.8372 
        56.32 
        84.79 
       1017.9 
      -833.57 
      -3139.1 
       8739.4 
      -9567.8 
       5383.7 
        -1535 
       175.61 
 
***********  Post-Disruption System Behavior Prediction Report ************* 
************************************************************************************* 
  
  
Following time averaged utilizations of each machine stations are 
approximated as a part of post-disruption system behavior.  
  
**The expected final time averaged utilization for Machine#1 is 0.44885 
**The expected final time averaged utilization for Machine#6 is 0.22148 
**The expected final time averaged utilization for Machine#2 is 0.35227 
**The expected final time averaged utilization for Machine#5 is 0.10633 
**The expected final time averaged utilization for Machine#3 is 0.10795 
**The expected final time averaged utilization for Machine#7 is 0.86862 
**The expected final time averaged utilization for Machine#9 is 0.54445 
**The expected final time averaged utilization for Machine#12 is 0.24624 
**The expected final time averaged utilization for AGV is 0.89735 
**The expected final time averaged utilization for Fixture is 0.93568 
**The expected disruption impact delay in terms of # of parts/independent TIS observations is 37 
   parts/observations from the moment of disruption hit.  
**Only one TIS observation on each departing part is allowed. 
  
  
If there was no performance disruption,  
the approximated steady-state mean time-in-system would be 161.6357 minutes  
with the approximated upper control limit of 166.8541 minutes and  
with the approximated lower control limit of 156.4173 minutes. 
  
  
Following 2nd order polynomial regression model is to forecast  
the behavior of moving averaged (w=500) mean TIS (time-in-system) for first 297 parts 
after the disruption delay of 37 parts.  
An independent variable t is t-th part entering the system after the disruption impact delay.  
An dependent variable y1 is an estimated mean total minutes spent in the system by t-th part 
after  
a period of impact delay elapses. 
Values for t are 0, 1, 2,...297th part entering the system after the disruption impact delay. 
  
y1 = 180.2144 + 0.23319t + 0.0016197t^2  
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Following linear model is to forecast 
the behavior of moving averaged (w=500) mean TIS (time-in-system) of parts  
entering the system after first 334 parts from the moment of disruption hit 
 but no later than 10000 minutes after the disruption hit.  
An independent variable t is t-th part entering the system after the first 334 parts 
 from the moment of disruption hit. 
An dependent variable y2 is an estimated mean total minutes spent in the system by t-th part 
after  
a period of impact delay and non-linear trend.  
Values for t are 0, 1, 2,...n th part entering the system after first 334 parts 
following the disruption but their arrival time should less than 10,000 minutes  
from the moment of disruption hit.  
y2 = 347.2306 + 1.8372t  
  
  
The mean sigma of TIS during the pre-disruption period is 56.3196 minutes 
Following eighth order polynomial regression model is to 
forecast the behavior of sigma of moving averaged (w=500) mean TIS of parts entering the 
system during  
10000 minutes from the moment of the disruption hit.  
An independent variable t is t-th part entering the system after the impact delay of 37 parts. 
An dependent variable y_sigma is an estimated mean sigma of TIS by t-th part after  
a period of impact delay elapses.  
Values for t = 0, 1, 2,...n were substituted with t = 0, 0.0005, 0.0010, 0.0015,...n  
in order to avoid a large scale magnitude disparity among coefficients in a polynomial  
during the regression analysis. 
( t=0 is the first departing part after the disruption impact delay of 37 parts) 
  
y_sigma = 84.7898 + 1017.8832t + -833.567t^2 + -3139.0915t^3 + 8739.393t^4 + -9567.8327t^5 
+ 5383.7241t^6 + -1534.9745t^7 + 175.6123t^8 
  
  
>>  
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C.1  Input Vectors for Post-disruption Type 1 ANNs, 
Net_2_1_1, Net_2_1_2, and Net_2_1_3, from the second 

level 
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C.2  Input Vectors for Post-disruption Type 2 ANNs, 
Net_2_2_1, Net_2_2_2, and Net_2_2_3, from the second 

level 
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C.3  Input Vectors for Post-disruption Type 3 ANNs, 
Net_2_3_1 and Net_2_3_2, from the second level
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C.4  Output Vectors for Net_1_1 
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C.5  Output Vectors for Net_2_1_1 
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C.6  Output Vectors for Net_2_1_2 
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C.7  Output Vectors for Net_2_1_3 
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C.8  Output Vectors for Net_2_2_1 
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C.9  Output Vectors for Net_2_2_2 
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C.10  Output Vectors for Net_2_2_3 
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C.11  Output Vectors for Net_2_3_1 
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C.12  Output Vectors for Net_2_3_2 
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Training, Testing & Validation Plots for ANN_1_1  
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 Training, Testing & Validation Plots for ANN_2_1_1  
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Training, Testing & Validation Plots for ANN_2_1_2 
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Training, Testing & Validation Plots for ANN_2_1_3 
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 Training, Testing & Validation Plots for ANN_2_2_1 
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Training, Testing & Validation Plots for ANN_2_2_2 
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 Training, Testing & Validation Plots for ANN_2_2_3  
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Training, Testing & Validation Plots for ANN_2_3_1 
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 Training, Testing & Validation Plots for ANN_2_3_2
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Additional definitions and descriptions of evaluative models 

 
 

Queueing Network: 
 

In general, queueing networks can be formed to study aggregate system behaviors 

of clustered interactive queues, often “a machine shop” consisting of several departments 

[Jackson 1957].  Each department is considered a multi-server or single-server queueing 

system (or a node within a queueing network) with an exponential service time 

distribution(s) and a single waiting line.  Typically, each department is connected to other 

departments in a way in which finished jobs can be sent out either to designated 

department(s) based on the given set of routing probabilities or outside the shop.  

Similarly, new jobs can arrive either from outside the shop or from other department(s) 

within the shop according to the probability associated with the particular incoming route 

to the department.  A simplified QN to illustrate possible paths for a part within a 

network is shown in Figure 43. 

 

The total arrival rate to any given department can be calculated by summing its 

external (from outside the QN) and internal (from other departments within the QN) job 

arrival rates.  If we let  be the total arrival rate of parts (customers) at Department  

for 1, 2, 3,  …, 

mΓ m

=m M  ( =M the total number of departments in the network), then the 

traffic equation for node m is given by 

kkmkmm P Γ+=Γ ∑λ . 
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Where   

:mλ  external arrival rate to Department  and m

:kmP  routing probability from Department k  to Department . m

 

 

 

 

 

 

 

 

 

1λ

 

1

12P

2λ 2

3

21P
23P

13P

3λ

i

iλ

ijP

M/M/1 or M/M/c queue
node  i

external arrival rate at the
queue node i

routing probability from
node i to node j

split/merge junction point

Figure 43. Open Queueing Network 

 

 

The steady-state performance indices, such as mean waiting time in the queue and 

average number in the system, for each queue can be individually determined using the 

total arrival rate. The final product form probability distribution, called the equilibrium 

joint probability distribution, for the QN can be found as follows using steady-state 

probabilities of individual queues with a specific number of parts or pallets. 

M
kkkM M

PPPkkkP LK
21

21 21
),,,( =  
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where 
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⎧
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mm
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nnk
nk

     and 

m
kP :  steady-state probability of having exactly k number of parts (or customers) at the 

queue node m . 
 
 
 

The final steady state joint probability can be expressed as 

∏
=

=
m

i

k
im

i

nC
kkk

0
10 )(

1),...,,( ρπ           number of parts (pallets) at th node :ik i

where              

            =iρ ;
i

i

µ
υ

   mi ,...,1,0=

            total number of nodes  :m

 :iυ average number of visits to i th node 

 :iµ mean service rate at th node i

 :iρ utilization of th node i

 and the normalization constant is given by )(nC

   where ∑∏
=

=
nall

m

i

k
i

inC
 0

)( ρ =n all the feasible states. 
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Markov Chain: 

 

Discrete time Markov chains (DTMCs): for a given discrete time stochastic 

process (DTSP) , there exists a countable state space that can be 

expressed as where represents a possible state of a discrete system at 

discrete time . If a stochastic process satisfies the following condition, often called the 

Markov Property:  

},1,0,{ K=nX n

},,,,,{ 110 jiiii n−K nX

n

for all and all states , 0≥n jiiii n ,,,,, 110 −K

}/{},,,,/{ 11111001 iXjXPiXiXiXiXjXP nnnnnn ======== +−−+ K  

where can be considered the present state and  n

            can be considered the future state,  1+n

then it is called a discrete time Markov chain (DTMC). 

 

Continuous time Markov chains (CTMCs): for a given continuous time stochastic 

process (CTSP), there exists a state space similar to those of DTSP, which can be 

expressed as where represents a possible state of a discrete system at 

continuous time . A stochastic process is then called a continuous time Markov 

chain (CTMC) if it satisfies the following condition, often called the memoryless 

property: 

}0),({ ≥ttX )(tX

0≥t

for all , , , and 0≥s 0≥u 0≥t Suxji ∈)(,, , 

)()(,)(/)({ uxuXisXjstXP ===+  for })(/)({}0 isXjstXPsu ==+=≤≤ . 
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If we let  be the transition probability from state i to state , the time 

reversibility of the CTMC can be expressed as 

ijp j

jijiji qq ππ =  where iπ  is the stationary 

probability of state , i
i

ij
ij m

p
q =  for all states i and .  Also note that is the mean 

sojourn time of state i and so ( will be the rate at which the CTMC leaves state i .  

j im

)im/1

 

The most important underlying theoretical grounds for queueing models are birth 

and death processes that are based on CTMCs.   The state space for such CTMCs consists 

of a number of customers in the system and transitions between states are limited only to 

immediate neighboring states based on time independent arrival and service rates.  

According to Viswanadham and Narahari [1992], if a finite and irreducible birth and 

death process always satisfies the following two conditions,  

(1) ∑ ∞=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−

j j

j
j

1

1

10

µµ
λλ

λ
K

K
 and   (2) ∞<∑ −

j j

j

µµ
λλ

K

K

1

10 ,   

then it is positive recurrent. Hence a unique steady-state probability distribution is 

guaranteed.  Therefore, we can confirm that queueing theory captures steady-state 

behaviors of CTMCs. 

 

The bases for CTMC analysis are the Chapman-Kolmogorov equations and the 

Kolmogorov differential equations. If we let  and s t  be time parameters for all and 0≥s
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t 0≥ , the stationary (homogeneous CTMC) transition probability from state i to state 

in time can be written as j st +

 , )()()(
0

sptpstp kj
k

ikij ∑
∞

=

=+ )()()( sptpstp =+ ;  

Ip =)0( ,  

which are called Chapman-Kolmogorov equations.  The Kolmogorov differential 

equations consist of forward and backward equations.  The Kolmogorov backward 

equations can be written as: 

);()( tQH
dt

tdH
=          IH =)0(

where is a transition probability matrix such that  )(tH

[ ])()( tptH ij=  ,  

Q is the rate or intensity matrix.  The above equation can be rewritten in terms of 

individual elements of transition probability matrix as:  )(tH

)()(
)(

tpqtpq
dt

tdp
kj

ik
ikijii

ij ∑
≠

+=   

where the transition probability from state i to state in time  can be expressed as j t

})0()({)( iXjtXPtpij === .   

The Kolmogorov forward equations can be given as:  

;)()( QtH
dt

tdH
=  .         IH =)0(

Similarly these equations can be written in terms of individual elements of as: )(tH

)()(
)(

tpqtpq
dt

tdp

jk
ikkjijjj

ij ∑
≠

+= . 
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Solving either the Kolmogorov backward or forward differential equations, first 

order linear differential equations with constant coefficients, provides a closed form 

solution  

)exp()( QttH =   

or 

)exp()0()( Qtt ∏=∏     

where 

[ ])()()()()( 210 tptptptpt NL=∏  

{ }jtXPtp j == )()(  

to approximate individual transition probabilities or the state probabilities as a function of 

time [Viswanadham and Narahari 1992].   

 
 
 
 
Unbiased Estimators of the Sample Mean: 
 
 
An unbiased estimator of the sample mean θ  over a simulation time interval : [ ]ET,0
 

If we let  be a sample mean for each replication rθ̂ r   

where  ∑
=

=
rn

i
ri

r
r Y

n 1

1θ̂ ,  Rr ,,1K= , 

:R the total number of simulation run ,  

:rn the sample size per each replication r , 
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then R sample means become statistically independent and identically 

distributed and an unbiased estimators of the sample mean 

Rθθ ˆ,,1̂ K

θ  over a simulation time 

interval [  such that  ]ET,0

⎟
⎠

⎞
⎜
⎝

⎛
= ∑

=

n

i
iY

n
E

1

1θ  where 

terminating simulation results in observations ni YYY ,,1 K= . 
 
 
 
 
Petri Nets: 
 
 

A pictorial example of a Petri net is shown in Figure 44.  The net in Figure 44 

consists of five places (circles), four transitions (horizontal bars), one token (black dot) 

and ten directed arcs (arrows) connecting places and transitions.  In this net,  is an 

input place of transition .  A black dot inside  indicates that the precondition  is 

satisfied at present state.    Places  and  are output places of transition .  At the 

same time place  is also an input place of transition  and place  is also an input 

place of transition .  In a similar manner, all places in this net are input places as well 

as output places to their corresponding transitions that are directly connected by either 

incoming or outgoing arcs.  Later, for the modeling convenience, the connecting rule 

between a place and a transition has been extended to permit a place to use more than one 

arc directed from it or toward it so that it can contribute or receive more than one token 

from the firing of a transition.  These types of PTNs are often called generalized Petri 

1p

1t 1p 1p

2p 3p 1t

2p 2t 3p

3t
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nets (GPNs).  To incorporate the priority rule among enabled transitions, inhibitor arcs 

are introduced [Peterson 1977].   
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Figure 44. Example of graphical representation of a Petri net 

[Zurawski and Zhou 1994].  

 

 

Formal definitions in classical Petri nets are given as follows [Zurawski and Zhou 

1994]:  

Definition: If we let N be a set of nonnegative integers, a Petri net is a five-tuple 

(P, T, I, O, M0) where  
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1.  is a finite set of places, },,,,{ 321 mppppP K=

2.  is a finite set of transitions, },,,,{ 321 nttttT K=

 φ≠TP U , and φ=TP I , 

3. I  : ( TP × )  N is an input function that defines directed arcs from places 

to transitions,  

→

4. O : ( ) →    N is an output function that defines directed arcs from 

transitions to places, and  

TP ×

5. M0  :  →  N is the initial marking. P

 

A unique distribution of tokens among places or on a given place can be 

expressed as a marking M .  The initial marking, , denotes the initial placement of 

tokens upon all places at time 0.   

0M

 

Enabling Rule: A transition is said to be enabled in a marking jt M if each input 

place of contains at least the number of tokens equal to the weight (multiplicity 

factor permitting k  arcs to exist between a place and a transition) of the directed arc 

connecting to , which can be symbolically expressed as 

ip jt

ip jt

),()( jii tpIpM ≥   where )( ji tIPp ∈∀

:{)( PptIP ij ∈=   }0),( ≠ji tpI  (  is the set of input places of  ). )( jtIP jt

Firing Rule: A firing of an enabled transition  in a marking jt M  removes the 

number of tokens equal to the weight of the directed arc connecting to  from each ip jt
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input place . At the same time, a firing deposits in each output place the number of 

tokens equal to the weight of the directed are connecting  to , which implies that a 

new marking 

ip ip

jt ip

M ′  has been reached. This can be symbolically represented as 

),(),()()( jijiii tpItpOpMpM −+=′   Ppi ∈∀  where  

)( ipM  =
⎩
⎨
⎧
0
1

 for   ),(in   tokensofnumber   theif
for   ),(in   tokensofnumber   theif

1

1

TttpIp
TttpIp

jjii

jjii

∈∀≠
∈∀=

∑
∑ . 

and  such that TT ⊂1 }.0),( ,every for  |{ 11 ≠∈= jijj tpITttT  

If the above expression is true, then we can say that a new marking M ′  is 

reachable from the present marking M and write .   MM jt ′⎯→⎯

 

The transitive closure of the reachability relation, which comprises all markings 

reachable from the initial marking  by firing one or more transitions, is called the 

reachability set of a Petri net within initial marking .  This can be expressed as 

.   An example of a reachability set for a given Petri net with initial marking is 

illustrated in Figure 45. 

0M

0M

)( 0MR 0M

 

A PTN is said to be pure or self-loop free if no place is an output place and an 

input place for the same transition.   A pure net can be completely defined by its 

incidence matrix.  An incident matrix is defined by an mn× matrix, , whose th 

element, is equal to 0 if no arc exists between place  and transition ; is equal to 

if an input arc with multiplicity factor k exists between place  and transition ; is 

equal to  if an output arc with multiplicity factor exists between place  and 

C ij

ijc ip jt

k− ip jt

k+ k ip
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transition . For example, an appropriate jt )45( ×  incident matrix, , for the PTN from 

Figure 44 can be given by  

C

           4321 tttt

5

4

3

2

1

p
p
p
p
p

C

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

=

1100
1010

0101
0011
1001

  
  

Through this given incident matrix we can verify the net given in Figure 44 to be pure. 
 

 

 

M0=[10000]T

M1=[01100]T

M2=[00110]T M3=[01001]T

M4=[00011]T

t1

t2 t3

t3 t2

t4

T
ni pMpMpMM )](,),(),([ 21 K=

where i is the number of unique marking
takes on value 0, 1,…, m when m is the total
number of unique markings and n is the total
number of places.

e.g.)  
TM ]10000[0 =

 

 

 Figure 45. Reachability tree of the model in Figure 44 

 

 

 



  500 

  
A place in a marked Petri net is said to be  bounded if and only if there exists a 

positive integer  such that the place never simultaneously contains more than  tokens 

throughout all markings contained in the nets reachability set.  If 

k

k k

1=k for a single place, 

that particular place can be said to be safe but if it is true for all the places then the PTN 

itself is said to be safe.  Boundedness refers to a finite requirement of resources and infers 

absence of overflows in buffers.  Boundedness also implies a finite reachability set.  This 

is an important requirement for conducting performance analysis using PN models. 

 

 

 

Place Invariants of a Petri Net: 

 

Finding a valid incident matrix is an essential part of P-invariant analysis that is 

helpful for establishing net properties, such as boundness, liveness, and conservativeness.  

Place invariants, often called P-Invariants, can be defined as follows:  

Definition :  If we let G  be a pure Petri net, C  the incident matrix of  and the 

number of places, a  row-vector is said to be a place invariant (P-invariant) of G  

if and only if 

G n

)1( n× x

φ=⋅Cx  where zero  =φ row-vector. 

If   is a P-invariant for all reachable markings with the weights given by the 

place invariant, the weighted sum of tokens within the places is a constant such that  

x

∑
=

=
n

i
ii kpMx

1
)(   
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where  is a constant, , and k ],,[ 21 nxxx K=x =n the total number of places in Petri net 

.   G

 

Conservativeness of a Petri Net: 

 

A conservative PTN means that the number of tokens in the net is conserved.  

This implies that each transition in a conservative net is conservative so that the number 

of inputs of each enabled transition is equal to the number of outputs of that transition.  

To prove a Petri net  to be conservative, finding a P-invariant all of whose 

entries are equal to unity can be used such that  

),,,( OITPG ≡

  for all ∑
=

=
n

j
j kpM

1

)( ][ 0MRM ∈   

where  constant.  Also finding P-invariants can be useful to verify if a given Petri net 

 is bounded.  If there exists a place invariant  where all of its n  entries 

are strictly positive then Petri net G  can be said to be bounded. 

=k

),,,( OITPG ≡ x

 

 

Liveness of a Petri Net: 

 

A formal definition for liveness of a Petri net as well as its transitions can be 

given as follows [Viswanadham and Narahari 1992]: 

Definition: A transition  of a marked Petri net is said to be live under a marking 

 if, for all markings  there exists a sequence of transition firings which 

jt

0M ],[ 0MRM ∈
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results in a marking that enables .  A Petri net is said to be live if all its transactions are 

live. 

jt

 If a Petri net is live, it indicates that the entire net is free of deadlock.  On the 

contrary, if there is at least one transition that is not live, it implies that there might be a 

chance for a possible deadlock for the system going through a corresponding sequence of 

transition firings. 
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Figure 46.  GSPN model of Figure 44 with given exponential 

and immediate transition times 
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Figure 47 shows an equivalent CTMC model for the GSPN model given in Figure 

46 which has an identical PN model to that of Figure 44 with the addition of arbitrary 

exponentially distributed time delays.  
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Figure 47.  Finding an equivalent CTMC for GSPN model given in Figure 46 
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Stochastic Petri Net: 

 

According to Viswanadham [1992], the formal definition of SPN can be given as 

follows:  

Definition: An SPN is a sex-tuple ( ) in which (  is a Petri 

net and is a function with domain (

FMOITP ,,,,, 0 ),,,, 0MOITP

F )  ][ 0 TMR × , which associates with each transition 

in each reachable marking, a random variable.  The function  is the firing function and 

the random variable for 

F

),( tMF ][ 0MRM ∈  and Tt∈  is the firing time of transition t  

in the marking M .  Hence the firing time of a transition in an SPN is in general marking 

dependent.  In an SPN, when  is enabled in M, the tokens remain in the input places of 

, , during the time of . At the end of the time , tokens are 

removed from the input places of t ,  and deposited in the output places of ,  

t

t )(tIP ),( tMF ),( tMF

)(tIP t ).(tOP

  

 

Colored Petri Net: 

 

The formal definition of CPNs can be given as follows: 

Definition: if we let N  and Z  be nonempty sets and  and be the sets of 

colors attached to 

)( pC )(tC

p and  respectively, A colored Petri net is a 5-tuple 

CPN , where 

t

),,,,( 0mWCTP=
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1. is a finite set of places, },,,,{ 321 mppppP K=

2. is a finite set of transitions, },,,,{ 321 nttttT K=

3. ,φ=∩TP  φ≠∪TP , 

4.  is the color-function defined from  into nonempty sets, C TP ∪

5.  is the incident-function defined on W TP × such that  

 for all 

∈),( tpW

]])([)([ fpCtC Z→→ ,),( TPtp ×∈  

6. , the initial marking, is a function defined on , such that 

 for all 

0m P

fpCpm ])([)( N→∈ .Pp∈  

 

The definitions of liveness, boundness, P-invariants and other properties in CPNs 

are similar to that in PTNs. However, invariant computation is somewhat complicated 

since the elements of the incident matrix are functions rather than integers.  The clear 

advantage of using CPN over PTN is its compactness of the model as we can see from a 

comparative pictorial, Figure 48. 
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P1

t2 t3t1

P2

TAIL

PUT

EMPTY FREE

MOVE ID

HEAD

GET

J J

S

E

Equivalent CPN model of the FCFS
queueing Discipline within multiple Job

classes [Kamath and Viswanadham, 1986]

An ordinary PN model of the
FCFS Queueing Discipline with

two job classes

p3

p2

p1

p4

t1 t2 t3

t4

t6 t7 t8

t5

The Given CPN Model

Places:  P1 : buffer places free; P2 : buffer places full;
Transitions:  t1 : add a job to the buffer; t2 : move a job
one place ahead in the queue and free the place which
was occupied by it; t3 : remove a job from the buffer
Color sets: E : {ek | k=1,2,..., n}; a token of color e k
indicates that the kth place in the buffer is empty
J : {j i | i=1, 2, ...., p}; a set of job classes
Q : {<j i, ek> | i=1, 2, ...., p; k=2, ...., n}; a token of color
<ji, ek> represents a situation in which a job belonging to
class ji is occupying the kth place in the buffer
S : Q U {<j i, ek> | i= 1, 2, ..., p}; similar to the set Q; in
addition to the elements of the set Q, the set S also
contains the details of the job occupying the first place in
the buffer
Color Functions :

HEAD(ji)=e1; TAIL(j i)=en;
PUT(j i)=<ji, en>; GET(j i)=<ji, e1>;
ID(<j i, ek>)=k; FREE(<j i, ek>)=ek;
EMPTY(<j i, ek>)=ek-1; MOVE(<j i, ek>)=<ji, ek-1>

For a given ordinary PN

Places : P1: buffer places free for a type 1 job
   P2: buffer places full by a type 1 job
   P3: buffer places free for a type 2 job
   P4: buffer places free by a type 2 job

Transitions  : t1: add a type 1 job to the buffer
          t2: move a type 1 job one place

   ahead in the queue and free the
   place which was occupied by it

          t3: remove a type 1 job from the
   buffer

          t4: Enter a type 1 job as a next job
          t5: Enter a type 2 job as a next job
          t6: add a type 2 job to the buffer
          t7: move a type 2 job one place

   ahead in the queue and free the
   place which was occupied by it

          t8: remove a type 2 job from the
   buffer

 

 
Figure 48.  A conversion from an ordinary PN of the FCFS queueing discipline 

with two job classes to an equivalent CPN 
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