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Chapter 1

Introduction

With rapidly changing business scenarios, the role of warehouses is becoming increasingly

critical in the efficient management and success of supply chains. With respect to their

position in a supply chain, Frazelle (2001) classified the warehouses as

• Production warehouses

• Finished goods warehouses and fulfillment centers

• Distribution warehouses

• Contract warehouses

Production warehouses hold raw materials or work-in-process inventory for use by manu-

facturing facilities. Finished goods warehouses store finished products, typically in pallet

loads that serve as a buffer against uncertainties in customer demand. With the prolifera-

tion of e-commerce, fulfillment centers are shipping small quantities or individual items to

end customers directly. Distribution warehouses accumulate and consolidate products from

multiple manufacturing facilities for multiple customers. Contract warehouses are operated

by a third party organization for one or more customers.

Two major factors that have caused a change in the focus of warehousing systems are

the evolution of manufacturing concepts like Just-In-Time and the evolution of information

systems and technology. Mass customization and global competition are requiring supply

1



chain partners to be more flexible with respect to product demand and product mix. Fre-

quent delivery in low volumes for a wide range of products is the focus of current supply

chains, thus moving many small, but important value-added services closer to the customer.

With the renewed emphasis on customer satisfaction and integrated supply chain manage-

ment, warehouses are not the traditional storage locations they once used to be. Today’s

warehouses are responsive to customer demands by providing value-added services such as

last minute customization, small assembly, labeling, kitting, and special packaging. Hence,

warehouse operations are not only more productive but also more complicated than ever

before.

Modern information systems have enabled the traditional warehouses plan their oper-

ations more effectively. Concepts such as cross-docking have received more attention; the

results include the reduction of the time a product spends at a warehouse and the elimi-

nation of some storage and double-handling of products. With customer demand-patterns

evolving continuously, the drive to reduce cost and extreme competition have forced ware-

houses to devote a lot of effort to constantly improving their methods and systems. In such

a dynamic environment, modeling and analysis of the underlying warehouse systems and

continuous improvement of their operations becomes critical for their effective and efficient

design and control.

1.1 Warehousing Systems

Warehousing systems are one of the most researched components of a supply chain. Many

authors have provided excellent reviews of warehousing systems, see for example, Berg

(1999), Berg & Zijm (1999), Yoon & Sharp (1996), and Tompkins et al. (2003). Depending

on the position of the warehouse in the supply chain, the activities within the warehouse

and the form of material handled are determined. The typical activities in a warehouse are

summarized in Figure 1.1.

Receiving is the collection of all the activities related to the orderly receipt of goods,

inspection (for quantity and quality) and disbursing to storage or cross-docking for

immediate shipping.

2



Repackaging is the process of splitting the products that are ordered in bulk quantities

and repacking to customer specifications (single or carton/case), or assembling to form

kits with other parts of a customer shipment. Some part of the load might also be

held in storage for future shipment. This function is also called break-bulk operation.

Putaway is the process of placing the merchandise in either long-term storage (reserve) or

short-term storage (forward).

Order-picking is the process of retrieving items from the storage area to meet a specific

demand. Many classifications of warehousing systems exist based on the type of order

picking which is the most cost intensive process in the warehouse.

Sortation is the process of sorting the accumulated batch picks into individual orders.

Cross-docking is the process of staging the inbound goods directly to shipping without

sending it to storage.

Replenishment is the process of refilling the primary and secondary picking areas from

long-term storage.

Shipping includes all the activities related to checking the order for completeness and ap-

propriate packaging; determining shipping charges; accumulating orders by outbound

trailer; and loading the trailers.

1.2 Warehouse Activity Description

The basic functions common to all the warehouses are receiving, putaway or storage, picking,

and shipping. A typical warehouse with reserve and forward storage areas, together with

the material flow is shown in Figure 1.2. In this section, we will describe the configuration

of warehouses with particular attention to storage and retrieval operations.

A typical material flow in a warehouse starts with the incoming trucks arriving into the

yard. The trucks either deliver the trailers directly to the dock or wait in a queue till a dock

door is available. Once the trailer occupies a dock door, a worker crew (strippers) is assigned
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Figure 1.1: Functional areas and product flow in a typical warehouse

to unload the trailer. In this dissertation, we assume that trailers contain pallet loads. The

workers unload all the contents of the trailer and place the items in the receiving/staging

area for further processing (e.g. inspection). The dock door is then scheduled to unload the

next waiting trailer. The stripper or another employee verifies the contents of the trailer

for quality in the receiving/staging area.

The stripper may place the items for cross-docking or long-term storage. Discrete or

continuous material handling devices may be used to move the items from the receiving area.

The items meant for long-term storage usually do not alter their unit-load configuration.

Workers/fork lifts move the pallets into the reserve storage area. This process is automated

in some warehouses using Automated Guided Vehicles (AGVs). The reserve storage may be

as simple as a rack storage system or an Automated Storage and Retrieval System (AS/RS).

In the case of AS/RS, the storage into the racks and retrievals from the racks are performed

by Storage/Retrieval (S/R) machines.

A warehouse dealing with less-than-pallet-loads may have two different storage areas –

reserve or long term storage for pallets and forward or short term storage for cases. The

presence of forward and reserve areas necessitates an internal replenishment policy. There
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Figure 1.2: A typical warehouse with forward-reserve inventory

is a break bulk operation, i.e. pallets from the reserve storage are broken into individual

cases. Typically the order pickers picking from the forward area pick individual cases from

the replenished pallet loads.

Some warehouses may deal with individual items. In such scenarios, there is another

break bulk like operation called the split-case operation. The order pickers may pick in-

dividual items from the cases; sort and assemble an order before shipping. Each order is

defined by number of unique line items and related quantities.

Once an order is received for an item, orders are picked either from the forward or

reserve storage. Items are accumulated in a shipping/staging area to be loaded on to the

trailers. The orders are verified to ensure quality and items are loaded by a worker crew

(stackers). The items are assembled to form a tight packing and order integrity is preferred,

i.e., items in the same order are shipped together. Some of the factors that influence the

retrieval of items include:

• Order picking method – single, dual or multiple command

• Material handling equipment properties – capacity of the carts, fork lifts or pallet

jacks
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• Layout of the terminals – multiple cross aisles

• Storage assignment policies – random, dedicated, or class based

• Clustering of items in storage

• Order batching and hence, associated sortation process if necessary

• Presence of forward-reserve storage areas

In some warehouses, palletization may be an additional process to build unit load pallets

that could consist of similar items or a mixed load.

1.3 Performance Evaluation of Warehouses

Suri et al. (1993) defined performance evaluation (PE) as "a methodology (including tech-

niques and tools) for determining the performance measures that can be expected to result

from a given set of decisions."

Performance evaluation usually employs simulation models or analytical models. Simu-

lation models are dynamic in nature and model the evolution of the system over time. These

are detailed models and model development takes considerable effort. Analytical models,

also called as aggregate dynamic models, account for some uncertainties and interactions

in the system using mathematical or symbolic relationships. These models can be used

for rapid analysis of many design configurations albeit at an aggregate level. Analytical

models based on stochastic Petri nets, Markov chains, and queueing theory provide rapid

analysis capability and can provide insights into the behavior of the system. As with any

performance evaluation model, there is a trade-off between model detail and tractability.

Some of the performance measures of interest in a warehouse environment are through-

put, average response time, fill rate, and utilization of space, equipment, and human re-

sources, in addition to financial metrics. Schefczyk (1990) provides a comprehensive list of

performance measures related to warehouses.

Many authors have developed performance evaluation models for warehousing systems.

A detailed review is provided in the following chapter. To a great extent, these models
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focus on a particular system or class of systems within a bigger facility, for example End-of-

Aisle order picking systems (Bozer & White (1990)), AS/RS (Abdelkrim et al. (2003), and

Lee (1997)), and sortation systems (Bozer et al. (1988) and Johnson and Meller (2002)),

which are important sub-systems of a warehouse. Some of the models focus on limited and

well-defined isolated problems like routing and sequencing of order pickers or dwell point

determination, neglecting the interaction amongst system components.

1.4 Motivation for the Current Research

Warehouse system design is a complex process with numerous alternatives at all design levels

for the designer to consider and evaluate. For example, a warehouse might deal with more

than one product configuration (pallet, case, or item), choice of storage systems (AS/RS,

carousels, or bin shelves), and storage policies (random, class-based or dedicated). Ware-

house design decisions typically focus on three important aspects; the throughput capacity,

the size of the inventory to be stored and the material handling equipment requirements.

Enumerating all feasible solutions that satisfy the throughput and storage capacity require-

ments and finding an optimal solution is not practical. Until now, the decision-makers

have relied on experience and descriptive, systematic procedures to select a set of feasible

candidates of warehouse design.

The literature on integrated models focuses either on descriptive design methodologies

(e.g., Ashayeri & Goetschalckx (1988)) or sequential solution approaches. In addition, the

warehouse managers have limited ready-made tools to evaluate the warehouse performance

or resource requirement if a new operation is to be incorporated into the material flow, for

example, repackaging.

Simulation is the preferred tool for evaluating the designs. Building a warehouse sim-

ulation model takes considerable time and effort, though computing power is no longer

a constraint. Analytical models for performance evaluation, on the other hand may be

approximate but enable quick evaluation and offer insight into the system behavior. Ana-

lytical models can help in examining a larger set of alternatives initially, thereby reducing

the number of candidates for detailed simulation analysis. A useful tool in the design pro-
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cess or in the evaluation of current warehousing systems would be an integrated model

that can capture the interactions among material handling and storage processes that span

receiving, inspection, storage/putaway, picking, shipping and value-added services.

Isolated analysis of warehouse sub-systems, though valuable and important, is not suffi-

cient at the overall system design stage. Rouwenhorst et al. (2000) point out that the design

decisions at the strategic and tactical levels are interrelated. For example, a decision to have

separate forward and reserve areas (strategic) leads to an inventory replenishment policy

between the storage areas (tactical). Also, the inventory decisions (size of the warehouse)

are made independently from the individual sub-systems such as AS/RS. But the perfor-

mance of the sub-systems is affected by the storage size. Such interrelated decisions need

to be modeled jointly. To support decision making for the new generations of warehouses,

there is a need to include a larger set of issues such as inventory and capacity/congestion,

within a single analytical model, so that their impact on the total system performance can

be evaluated.

1.4.1 The Problem Statement

With the changing role of warehouses, the ability to model multiple decisions simultane-

ously, especially inventory and throughput decisions, will complement the warehouse design

process and aid in analyzing existing operations. Queues and queueing networks have been

applied in the performance evaluation of warehouses, but the focus has been more on isolated

systems like AS/RS and its related decisions like throughput and storage size estimation,

separately.

Production-inventory networks, i.e., queueing network models that address both capac-

ity/congestion and planned inventory issues have been successfully applied in manufacturing

and supply chain systems. But very limited literature is available on their application in the

warehouse domain. This dissertation is the first step towards addressing this gap. Hence,

the problem statement can be described as “developing analytical models of queueing-

inventory systems that address capacity/congestion and inventory issues simultaneously in

the context of a warehouse system.”

To this end, the dissertation first focuses on the development of performance evaluation
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models of sub-components that are representative of AS/RS type systems (e.g., a server that

stores and retrieves material from the same storage area) and order-picking systems where

unit-load configurations vary between two successive material movements. These models

address both material handling and material storage operations in a manner similar to the

production-inventory models. The dissertation also demonstrates the applicability of these

individual models in building comprehensive end-to-end warehouse performance evaluation

models.

1.5 Overview of the Document

In this chapter, we introduced warehousing systems in general, and commented on the cur-

rent status of performance evaluation of such systems. We described some of the character-

istics of warehousing systems and provided the motivation for the research effort. Chapter

2 gives an overview of the warehouse performance evaluation models and a review of the

literature on production-inventory networks. The research objectives, general assumptions

and research limitations are summarized in Chapter 3. In Chapter 4, we focus on the devel-

opment and analysis of the shared-server system, a key building block in the performance

evaluation of warehouses. We extend the shared-server model to the multi-server case in

Chapter 5. We then focus on the development and analysis of models that accommodate

changing unit-load configuration (single and multi-server cases) in Chapter 6. Chapter 7

illustrates the development of a proof-of-concept end-to-end model for warehouses. Finally,

we conclude the dissertation with a prospectus for future research with respect to warehouse

performance evaluation models.
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Chapter 2

Literature Review

In this chapter, we focus on the review of literature pertinent to warehouse performance

evaluation and production-inventory models. The analytical models in this review tend to

focus more on the application of queueing or queueing network models.

2.1 Review of Warehouse Performance Evaluation Models

The major sources of randomness in a warehouse are the demand for the items to be

retrieved from storage, the arrival of the items to be stored, the material handling times

and the inherent reliability of the servers (human and machine). Sophisticated simulation

models that address some of these sources of randomness have been developed and can

evaluate the performance of different configurations of warehouses (see for example, Linn

& Wysk (1984), Berg & Gademann (2000) among others).

The analytical performance evaluation models of warehouses can be classified as through-

put capacity models, storage capacity models, and warehouse design models (Cormier &

Gunn (1992)). Throughput capacity models are mostly tactical and operational models

that evaluate the throughput of the warehouse, where throughput is defined as the num-

ber of storage/retrieval operations per unit time. The storage capacity models, which are

usually strategic models, focus on the determination of the size of the warehouse to satisfy

a minimum service level commitment. The warehouse design models focus on the overall

design involving decisions related to space allocation among storage systems, cross-docking,
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and other value-added services.

2.1.1 Throughput Capacity Models

Throughput capacity issues have received considerable attention in the warehouse literature,

mainly because the order-picking costs constitute a major portion of the total operational

costs (Tompkins et al. (2003)). In this section, we will summarize the modeling approach

and the decisions considered in the throughput models for two important sub-systems,

namely Automated Storage and Retrieval Systems (AS/RS) and Order Accumulation and

Sortation Systems (OASS).

AS/RS performance evaluation models have focused on the development of travel-time

models for both unit-load AS/RS and miniload AS/RS. For a detailed literature survey on

stochastic modeling of AS/RS and travel time models, the reader is referred to Johnson and

Brandeau (1996) and Sarker & Babu (1995) respectively.

Lee (1997) presented the first stochastic analysis of a unit-load AS/RS by using a single-

server queueing model. He assumed aisle captive S/R machines and modeled each aisle as a

single server with two queues: a storage queue for incoming unit loads and a retrieval queue.

Both the queues have finite capacity. The storage and retrieval arrivals are lost when the

queues are full. The S/R machine always returned to the I/O point and the FIFO policy

was followed for the queues, except when both the queues had transactions waiting. In the

later case, a dual command cycle is performed. The proposed model could be viewed in

part as an assembly-like queue and in part as a polling queue. Lee (1997) further assumed

independent Poisson arrivals for storage and retrieval queues, and exponential service times

for single and dual command cycles. Using a Continuous Time Markov Chain (CTMC)

to represent the queue, Lee derived many useful performance measures including system

throughput, turn around time for the requests and S/R machine utilization. The limited

queue capacity and high variance assumption in the previous model underestimated the

throughput and the S/R machine utilization. Lee (1997) had also assumed equal arrival

rates for storage and retrieval.

Hur et al. (2004) relaxed some these assumptions and modeled the S/R machine as a

M/G/1 queuing system with separate queues for storage and retrieval requests. There was
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no capacity limit on the queues and the arrivals were independent with different arrival

rates. They assumed that the S/R machine could start and end the single command (SC)

and dual command (DC) cycles at the I/O point or at the rack. Because of this assumption,

they also assumed that the travel time for the SC and DC followed the same distribution

with a single service rate. They also proposed a state space for the S/R machine by defining

the state as (i, j) where i, j are the number of requests in the storage and retrieval queues,

respectively, after a service completion. The resulting CTMC was solved to derive system

performance measures. They compared their solution with that of Lee (1997) and found it

to outperform Lee’s in many instances.

Bozer & Cho (2005) assumed separate travel times for SC and DC cycles. They assumed

the dwell point as the last known storage location of the S/R machine. The S/R machine

always tried to perform a DC violating the FIFO policy for storage or retrieval request

arrivals. They still assumed independent Poisson arrivals. For random storage assignment

and different configurations of the rack, they derived closed form equations to determine

whether the AS/RS meets the required throughput. They compared the S/R machine

utilization for balanced and unbalanced systems (when storage requests exceeded retrieval

requests or vice versa, which is possible in a warehouse) with simulation. Their results are

also valid for other storage assignment policies and I/O point locations as long as the mean

interleaving time (time between drop-off and pick-up) in a DC cycle is smaller than mean

SC cycle time.

Hur & Nam (2006) extended the models of Hur et al. (2004) by considering separate

service times for single and dual command cycles for the S/R machine with Poisson arrivals

for service requests. They assumed finite queue capacity only for storage requests. The state

space of the system is defined as the number of requests in the queues at the completion

of a service request or the start of a busy period, similar to the earlier model. A Semi-

Markov Process (SMP) is generated from the Markov Chain to obtain the time-average

probabilities, which is later used to obtain the system performance measures, including the

probability that an arbitrary arrival is lost. All the above models for AS/RS performance

evaluation considered unit-load systems with equal sized storage spaces.

Lee et al. (1999) presented models for AS/RS with unequal sized cells, i.e. cells within
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Figure 2.1: End-of-Aisle System with (a) dedicated and (b) multiple aisles per picker

a zone have the same size but differ in size between zones. They derived travel time models

for SC and DC cycles, including interleaving time between different zones.

An example of end-of-aisle order picking systems is a miniload AS/RS. In such systems,

stored material is delivered by the S/R machine to the order picker located at the end of the

aisle. While the order picker picks from the storage container, the S/R machine returns the

previous container and retrieves the next order. These systems operate predominantly DC

cycles. There are at least two pick positions at the end of each aisle. Bozer & White (1990)

presented a design algorithm for such end-of-aisle order picking systems. They modeled each

aisle as a closed queueing network with two nodes, the S/R machine and the order picker,

as shown in Figure 2.1(a). The number of pick locations was the number of customers in

the system. They assumed random storage policy with dedicated pickers for each aisle.

They presented an iterative algorithm to find the minimum number of aisles necessary to

meet the storage and throughput requirements. The throughput constraints were based on

the picker utilization and the S/R machine utilization was only an additional measurement.

Using simulation, they obtained an approximation for the standard deviation of the DC

cycle travel time and approximated the DC cycle time with a uniform distribution. Their

model confirmed that as the rack became more non-square-in-time, the number of aisles

increased to meet the required throughput.

Bozer & White (1996) extended their work to model multiple pick positions per aisle.
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They relaxed their assumptions about aisle-restricted order-picker. The more general closed

queueing network model is shown in Figure 2.1(b). Using diffusion approximations, they

derived the expected utilization of the S/R machine and the order picker. They modified

their design algorithm to include the expressions for utilization. They further experimented

with sequencing of the retrieval requests. Only when the variance of pick time is low,

significant improvements to throughput were achieved.

Park (1999) used a similar closed queueing network model to study the impact of buffer

sizes (number of pick locations per aisle for storage and retrieval queues) on the through-

put of the system. They found that the maximum throughput obtainable by increasing

the queue capacity is less than or equal to twice the throughput with a single space for

storage and retrieval. They also analyzed the conditions under which the S/R machine can

be blocked (“production blocking”) because of limited queue capacity. The literature on

performance evaluation of AS/RS also considers operational details such as dwell point and

order batching, and operating characteristics such as acceleration and deceleration of the

S/R machines.

Order Accumulation and Sortation Systems (OASS) find applications in both manufac-

turing and warehousing systems. The basic components in an OASS are the input conveyors;

induction, spacing, and merge units; sortation mainline; and diverter modules. An example

OASS is given in Figure 2.2 with one induction point, a re-circulating conveyor, and mul-

tiple accumulation lanes (Johnson and Meller (2002)). In distribution centers, when orders

are picked at the case and item level, orders are dispatched to the conveyor that sorts the

items to different chutes assigned to a particular order or outbound truck.

Throughput of the OASS is an important performance measure and it depends on many

factors including the speed of the conveyors, induction process, sorting strategies, the up-

stream order picking process and downstream stacking/palletizing process amongst others.

For wave picking (each wave consists of many orders and each order consists of many line

items) and re-circulating sortation conveyors, Johnson (1998) developed analytical models

that study the impact of sorting strategies on the throughput of the system. He developed

expressions for the expected time to sort a wave with and without blocking at the accumu-

lation conveyors for Fixed Priority Rule (FPR) (smallest order first and largest order first)
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Figure 2.2: An example Order Accumulation and Sortation System (Johnson and Meller,
2002)

and Next Available Rules (NAR) for sorting. In the NAR, the orders are sorted based on

the order in which the boxes pass through the scanner that initiates the sorting process. El-

demir (2003) developed another strategy based on the earliest completion time of an order,

which reduced the wave sortation time.

Johnson and Meller (2002) developed analytical models of an OASS with multiple in-

duction points in the main conveyor. They assumed no recirculation of orders. When there

is no blocking at the accumulation conveyors and the number of orders is less than the num-

ber of accumulation conveyors, the OASS performance is dependent only on the induction

process. The authors analyze systems with side-by-side induction points and split induction

points. In the side-by-side induction systems, the inductors compete for the same scanner

thereby creating interference like phenomenon that tends to reduce the system throughput.

The authors also address the impact of presorting orders on the OASS system performance.

Eldemir (2003) proposed an open queueing network model for the design of OASS. The

network consists of three processes (induction, sortation, and shipping) with corresponding

queues (induction lane, main conveyor, and accumulation line). He derived expressions for

the blocking probability and the lengths of the main sortation and accumulation conveyors

by approximating each queue as an M/G/n/N queue. Russell & Meller (2003) developed

descriptive and prescriptive design models for order fulfillment systems that are integrated

order picking and order-sortation systems. They developed throughput simulation models
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to compare the different configurations of wave picking and manual and automated OASS

systems. Apart from these studies on OASS, there is a huge body of literature on conveyor

theory, see for example, Bastani (1988); Arantes et al. (1998) and Bozer & Hsieh (2005)

amongst others.

2.1.2 Storage Capacity Models

The purpose of storage capacity models is to determine the number of warehouses, the size

of each warehouse and any additional space that could be leased by minimizing the total

discounted costs and/or to achieve predetermined service level.

Cormier & Gunn (1992) categorized the models as static and dynamic models. In

static models, the demand is assumed stationary and a warehouse size is determined. In

dynamic models, the demand is assumed to be non-stationary and the warehouse is allowed

to expand and contract i.e. size of the warehouse at different periods is determined. The

authors also review models related to performance evaluation and maximization of space

utilization through unitization & block stacking methods.

Roll & Rosenblatt (1983) compared the effect of random and grouped storage policies

on the warehouse capacity. In general, the random storage policy offers higher space uti-

lization (assumption that the demand for each pallet is independent and all storage spaces

are equally likely to be occupied) compared to grouped storage policy. In addition, the

authors clearly noted that grouped storage policies offered operational and administrative

advantages over the random storage policy. The authors defined Nominal Capacity Re-

quirements (NCR) as the product of average throughput and the average storage time for

each pallet. It is the lower bound on the required warehouse capacity and is the average

size necessary subject to random throughput factors. Because of the stochastic nature of

the arrivals of order and number of items per order, the warehouse may not be able to store

the entire shipment and has to lease space outside. The effects of number of items and

their characteristics, and operational issues (travel distances, order-picking policies) were

not considered.

Rosenblatt & Roll (1988) later studied the factors that influence the storage capac-

ity of the warehouse; a) number of items stored, b) demand characteristics of the items
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(distribution of orders and items in an order) c) replenishment policy (order quantity and

order point) for the item. They performed simulation experiments assuming a (r, Q) re-

plenishment policy and random storage policy. They derived an approximate multiplicative

expression using regression analysis for the deviation from the NCR for 95% service level

as follows:

Y95 = 34 Q0.16D0.22
1

N0.62r0.06D0.02
2

(2.1)

where, Q is the order quantity, r is the reorder point, D1 is the average demand (or-

ders/day), D2 is the percentage deviation from D1, and N is the number of items. We can

see that reorder point and the variance of the demand have very little effect on capacity.

They tested the demand for different distributions (uniform, normal and exponential) and

found that the maximum deviation was around 10% of the NCR capacity. They assumed

the same inventory policy for all items and that the items have similar physical and eco-

nomical characteristics. They also claimed that changes in the above have little effect on

the storage capacity. Roll et al. (1989) found a suitable size of a warehouse container and

used simulation to find the optimal combination of warehouse capacity and container size.

Sung & Han (1992) extended the queuing model of Schwarz et al. (1978) to determine

the size of AS/RS for single and multiple item storage scenarios. In the case of single item

storage, the AS/RS is treated as an M/M/m/m or M/G/m/m model. For multiple item

storage, a single class closed queueing network model is developed to determine the storage

size. Both the models were extended to include blocking (when an arriving item does not

find a storage space in the rack) and batch arrivals. The important assumption is that the

items spend a known but random amount of time at the racks.

Cormier & Gunn (1992) formulated the warehouse sizing problem as a cost minimization

problem considering inventory policy costs, warehouse construction/operating costs and the

cost of leasing for constant product demand (static conditions) for a single period, assuming

a continuous review policy without the possibility of backorders.

Rao & Rao (1998) presented a modified formulation for warehouse sizing under static

and dynamic conditions. They provided three extensions to the static conditions involving
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varying cost over time, economies of scale in capital expenditure and/or operating cost and

stochastic version. The dynamic version of the problem with stochastic demand was shown

to be a network flow problem and its concave cost version could be solved efficiently using

dynamic programming methods.

Huang et al. (2003) simultaneously selected distribution centers and their capacities by

solving a 2-stage distribution network. They modeled the distribution center as an M/G/c

queue where each storage space represents a server. They consider the case of discrete

and continuous racks. They also studied the difference between a stepwise approach (site

selection and space determination) and the integrated approach.

2.1.3 Integrated Design Methods

The warehouse design procedure is a complex process because the number of available design

alternatives is large and hence, the choice of a particular design depends on the experience

of the designers. Ashayeri & Goetschalckx (1988) presented a systematic planning and

designing procedure for order-picking systems. Their stepwise design procedure consists

of nine steps starting with external strategic planning considering market information to

selecting operational policies for the order picking system.

Gray et al. (1992) proposed a multi-stage hierarchical decision approach. The approach

consists of three levels; facility design and technology selection, item allocation, and op-

erating policy decisions. Each level has a set of mathematical models that evaluates the

major trade-offs to obtain a set of feasible design alternatives. The authors suggest the use

of simulation to fine tune the design and operating policies. They applied the methodology

successfully to design a spare parts distribution center.

Yoon & Sharp (1995, 1996) present a cognitive design procedure for an order picking

system (OPS). They present a general framework for the OPS design and analysis that

consists of a general structure of the OPS and a conceptual design procedure. The general

structure illustrates all the functional areas and material flows (pallets, cases, and items) in

an OPS. The conceptual design procedure consists of input, selection and evaluation stages.

An alternative design methodology was proposed by McGinnis et al. (2000) based on a

functional flow network. The activities are represented as nodes and flows are represented
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Figure 2.3: A simple high-level queueing network model of a warehouse

as arcs. Once a flow network for a particular configuration of the warehouse is established,

the functions are assigned to spaces in the warehouse. Goetschalckx et al. (2002) applied

this methodology for a small parts warehousing system.

Bodner et al. (2002) developed a process model to assist in the development of compu-

tational tools for warehouse design.

Many researchers have used simulation to analyze tactical and operational decisions

simultaneously. Petersen & Aase (2004) compared picking, storage and routing policies on

warehouse throughput. Manzini et al. (2005) used simulation to develop an expert system

by performing a comprehensive set of designed experiments. Berg & Gademann (2000)

compared control policies like storage location assignment and sequencing together using

simulation.

Eldemir (2003) suggested two approaches for modeling an integrated system based on

queuing network and material flow diagrams. Material flow diagrams are graphical represen-

tations of the movement of materials used in a process. They are a useful aid in identifying

the source, stages and sink including the quantities and losses at each stage/process. Using a

set of standard procedures at the process and routing probabilities after the process, system

throughput, and subsystem throughput can be calculated. This approach cannot capture

the stochastic nature of the processes in the system. The second approach is modeling the

system as a network of queues. The author had modeled individual systems (palletizer,

AS/RS, and sortation) with buffer capacities. Eldemir (2003) suggested the use of Jack-

son network type models or Queueing Network Analyzer (QNA) based models proposed by

Whitt (1983). An example of such a system model is presented in Figure 2.3.
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Jackson network assumes exponential service times and Poisson arrivals. In addition,

the extensions for multiple classes assume that the service time is the same for all the

classes, which severely restricts the model use. QNA provides a more flexible framework

for modeling such a system.

Our approach is based on the parametric-decomposition approach presented by Whitt

(1983). In the queueing network approach suggested by Eldemir (2003), the storage rack

configuration is modeled implicitly in the service time of the S/R machines operating in

a single or dual command mode. Other authors who explicitly consider the rack and the

storage process, assume that each rack space/bay as a server (Huang et al. (2003)) or the

rack as a queue space. The disadvantage of the first approach is that the service time of

the racks is not known or can only be assumed. Some retail warehouses are very large with

thousands of bays effectively modifying the rack to be an infinite server. In the case where

rack is treated as a queue space, the potentially large queue space will tend to behave like

an infinite queue.

2.2 Review of Production-Inventory Models

General queueing network models are readily applicable for make-to-order systems, where

the only inventory is the work-in-process due to the parts waiting to be processed. In

make-to-stock systems, finished goods and intermediate items are produced and stored in

anticipation of customer demand. The demand is satisfied immediately reducing the over-

all waiting time of the customer. Such holding of both finished goods and intermediate

parts in anticipation of demand is called planned inventory. In addition to providing better

customer service, the planned inventories act as a buffer against uncertainties like machine

failure. Some of the relevant literature in production-inventory networks includes Buza-

cott & Shantikumar (1993), Lee and Zipkin (1992), Sivaramakrishnan & Kamath (1997),

Sivaramakrishnan (1998) and Zipkin (1995). A review of the relevant work is presented in

the following paragraphs.

Consider an M -stage production-inventory model as shown in Figure 2.4. Each stage

is represented by a queue-server-output store. Each stage operates under a base-stock

20



Figure 2.4: M-stage Production-Inventory model

policy. The base stock level is the maximum planned inventory at the output a stage. The

demand process, occurring at the M th stage is assumed to be a renewal process and for

one unit at any given time. If a finished item is available, the order is fulfilled immediately

and a replenishment order is placed at stage M − 1. Such a policy is called a one-for-one

replenishment policy. If the item is not available, the demand is backordered. The inventory

is replenished until the base stock level is reached.

The replenishment order at stage M − 1 looks at the output store of that stage. If a

part is available, it immediately moves to the processing queue of stageM and an upstream

replenishment order is placed else it is backordered. In the first stage, orders join the

processing queue immediately. Unlimited supply of raw material is assumed at stage 1.

In all the stages, a backorder is fulfilled first before the planned inventory is replenished.

In the one-for-one replenishment policy, the demand arrivals are reflected at all the stages

of the network. Hybrids of make-to-order and make-to-stock systems can be analyzed by

constraining some of the base-stock levels to be zero.

Lee and Zipkin (1992) modeled such a tandem production line with Poisson arrivals and

exponential service times. They modeled each stage as an M/M/1 queue and applied the

approximations of Svoronos & Zipkin (1991) for a multi-echelon inventory system. Zipkin

(1995) extended these results to tandem queues with feedback.

Single stage make-to-stock systems were studied extensively by Buzacott & Shantikumar

(1993). They modeled such systems using the Production-Authorization (PA) card concept.

When each item in the manufacturing facility is produced, a tag is associated with the item.

When the demand consumes an item in the output store, the tag is removed and is converted

into a Production-Authorization card. They vary the rules governing the transmission of

21



PA cards to authorize production. The variations are a) immediate transmittal of PA cards

into the facility as soon as it is generated, b) fixed batch of PA cards, say q, when at

least q PA cards are accumulated, and c) all the PA cards when at least q PA cards are

accumulated. These variations represent the one-for-one replenishment base stock policy,

reorder point/order quantity and reorder point/order up to inventory policies, respectively.

Buzacott & Shantikumar (1993) modeled single stage systems with unit demand, bulk

demand, and interruptible demand, backlogging and lost sales, yield loses and multiple

classes of customers.

Sivaramakrishnan & Kamath (1997) analyzed multi-stage tandem make-to-stock sys-

tems using a node decomposition approach. Each stage in the model had a delay node that

captured the effects of backorder delay. A processed item at each stage would satisfy any

backorders in that stage or replenish the inventory. The output store in each stage was

controlled by a base stock policy with one-for-one replenishment. Using the parametric-

decomposition approach (Whitt, 1983), Sivaramakrishnan (1998) extended the results to

include general arrivals and service times, multiple servers, batch service, limited raw ma-

terial supply, multiple classes, service interruptions and feedback. Feed forward networks

were also considered.

Liu et al. (2004) modeled a similar tandem network with a base-stock policy and one-

for-one replenishment. The difference with the Liu et al. (2004) is in modeling the departure

process from the output store of a stage. In each stage, the input buffer consists of two

queues; material queue (orders for which material was available at the output store of the

previous stage) and backorder queue (orders for which material was not available at the

output store). In general, some of the performance measures considered were expected

inventory levels at the finished goods stores, average work-in-process, fill rate and average

number of backorders.

Dong & Chen (2005) developed an approximate model for a (q, S) inventory policy for

a single stage system. They adopted the target level PA cards mechanism with fixed lot

size model in Buzacott & Shantikumar (1993). They used the GIX/G/1 model, where X

is the fixed batch size q. They transform the bulk arrival queue into an equivalent GI/G/1

queue by modifying the service time to obtain performance measures similar to Buzacott
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& Shantikumar (1993).

Srivathsan (2005) developed production-inventory models of supply chain networks. He

developed models for convergent (two suppliers, supplying a manufacturer) and divergent

(one manufacturer supplying two retailers) aspects of a supply chain. He modeled the lead

time/transit time using a delay node and analyzed a larger network with multiple suppliers,

manufacturers and retailers.

2.3 Summary

In this chapter, we have provided a detailed literature review of the status of performance

evaluation models for warehouses and general production-inventory systems. In this context,

we note that

• Majority of performance evaluation models for warehouses are specific and analyze

specific warehouse systems in isolation. A majority of the studies focused on aisle-

based automated warehouses, while literature on carousel systems and Autonomous

Vehicle Storage Retrieval Systems (AVS/RS) are emerging (Fukunari, 2003). One of

the main assumptions in the performance evaluation of these systems is that there

is always space available for the waiting storage requests and similarly, a customer

demand can always be satisfied. Hence, the performance measures and improvements

focus more on improving the material handling aspects of the storage and retrieval

systems.

• New approaches for systems design and evaluation have started emerging such as

those based on process modeling techniques but lack the analytical evaluation capa-

bility. The current systematic procedures for warehouse design are mostly descriptive

with some prescriptive steps where specific optimization models can be applied for

evaluating economic trade-offs.

• In the limited applications of queueing or queueing network models to warehouse

performance evaluation, only the congestion effects in the warehouse storage systems

have been analyzed. In addition, many models assume that the service provided by
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the storage system is known and can be approximated by the exponential distribution,

which in fact may not be realistic.

• In general, the models developed do not provide an analysis framework to include

value-added services in the warehouse.

In the next chapter, we will discuss the research goals and objectives and the contribution

made by this dissertation.
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Chapter 3

Statement of Research

The overall goal of this research was to develop analytical models for warehouse perfor-

mance evaluation that can simultaneously deal with inventory and capacity/congestion

issues. In a warehouse system, the primary storage function of the warehouse and the in-

bound/outbound configuration of the unit-loads give rise to two important configurations;

the shared-server system and the order-picking system. The first two objectives in this

dissertation can be thought of as focusing on queueing-inventory models of these two con-

figurations which are seen as key building blocks of a warehouse system. The final research

objective focuses on building a proof-of-concept end-to-end warehouse system model using

these building blocks.

3.1 Research Objectives

Research objectives 1 and 2 focus on the development of the shared-server and order-picking

system respectively while research objective 3 focuses on the development of end-to-end

models.

Objective 1: To develop and investigate the accuracy of an approximate analytical

model of the shared-server system i.e., an inventory store with a server performing both

storage and retrieval operations (hence the name, shared-server). The storage operation

increases the inventory level and the retrieval operation decreases the inventory level. The

analytical model explicitly considers the presence or absence of items in the inventory store
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Figure 3.1: A shared-server system

and its size.

In this objective, we study the system independent of the rest of the operations in the

warehouse and we make the following assumptions.

• We assume independent arrivals for the storage/retrieval requests.

• The configuration of the unit-load is maintained during storage/retrieval operation

and the system operates under FCFS discipline.

• The server operates in a single-command mode and the storage/retrieval operations

have identical service time distributions.

• The storage request or retrieval request is for a single item.

A typical configuration of such a system is illustrated in Figure 3.1.

Sub-objective 1.1 : The shared-server is studied under Markovian assumptions – Poisson

arrivals for storage/retrieval requests and exponential service times for the S/R machine.

Sub-objective 1.2 : The Markovian assumption is relaxed and the shared-server system

is modeled under general arrival and service time distributions.

Sub-objective 1.3 : This objective extends the general model to account for parallel aisles

in the storage system with dedicated S/R servers.

Warehouses that deal with different unit-load configurations (pallets and cases) will have

separate storage areas allocated to a particular configuration; reserve storage for pallets
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Figure 3.2: An order-picking system

and forward storage for cases, in general. Whenever the inventory in the forward area is

depleted because of order-picking, an internal replenishment occurs from the reserve area.

In objective 2, our focus is on this forward storage area, where the replenishment orders are

in pallet loads and order-picking is in case loads.

Objective 2: To develop and analyze an approximate analytical model for an order-

picking system; a single storage area with a server picking in less-than-unit-load quantities

(cases) and a separate server replenishing the inventory in unit-loads (pallets). A tandem

model representing such an order-picking operation is illustrated in Figure 3.2. We assume

unit order-picking quantity and unit replenishment–order quantity. We also assume that

the order-picker and replenishment server have unit capacity.

Sub-objective 2.1 : The order-picking system is studied under general arrivals and general

service time distributions for the single server case.

Sub-objective 2.2 : The model is extended to include multi-server cases.

Objective 3: To demonstrate the applicability of the models developed in objectives

1 and 2 as building blocks to develop comprehensive end-to-end models of the warehouse

system. The proof-of-concept system includes a reserve storage area, a forward storage

area and a downstream shipping operation. The reserve storage area is modeled using

the shared-server system and the forward storage area is modeled using the order-picking

system. Hence, this objective demonstrates the applicability of models developed in previous

objectives in building end-to-end warehouse models.
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3.2 Research Scope and Limitations

The scope of this research was limited by the following assumptions.

• The analytical models developed are for a single class of customers and the customer

demand for storage and retrieval are for unit order-quantity. Also, the servers are

assumed to be reliable.

• Design characteristics of the storage area such as warehouse layout, zoning (assigning

workers to particular sets of aisles), slotting (assigning products to individual bays),

and operational characteristics such as order scheduling and order sequencing are not

modeled. Orders are mostly satisfied on a FCFS basis. The storage rack is treated as

a single inventory location for modeling purposes.

• This framework does not model the inventory staggering decisions that have proven

to reduce the maximum inventory levels in the warehouse (Hariga & Jackson, 1996).

We assume that the capacity of the inventory store is given as the inventory sizing

decisions are now made during the design of distribution network itself, which is

outside the scope of this research.

• Travel time models for the storage systems are abundant and they consider the phys-

ical characteristics of the storage racks (square-in-time and non-square-in-time) and

storage assignment policies. We do not consider such decisions and policies explicitly

in this study.

In the next chapter, we focus on the development of the shared-server system in detail.
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Chapter 4

Shared-Server System

In this chapter, we focus on the development of an analytical model of a shared-server

system, a key building block for developing end-to-end performance evaluation models of a

warehouse. We described the activities and the material flow within a typical warehouse in

chapter 1. Here, we focus on the shared-server system, describe our modeling assumptions,

and develop an approximate analytical model of the shared-server. We perform a detailed

evaluation of the shared-server model by comparing its results with equivalent simulation

results. We conclude the chapter by discussing how the shared-server model can be part of

an end-to-end warehouse model.

4.1 Shared-Server System Development

A queueing-inventory model of a warehouse illustrating a subset of warehouse operations

with respect to a single storage area is illustrated in Figure 4.1. From the perspective of

process flow, the warehouse operations follow a sequential flow. But from a resource centric

view, the queueing-inventory model of the same is not necessarily tandem.

The distinction comes from the fact that resources are shared between activities/operations.

In a traditional production-inventory model of manufacturing system, such as the one shown

in Figure 4.2(a), each resource/processing unit has its own output store. When a demand

consumes an inventory at the output store of stage 2, it triggers a replenishment order

immediately. This order then looks for a part at the output store of stage 1, and if available
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(a) Process-centric view of warehouse operations

(b) Resource-centric view of warehouse operations

Figure 4.1: Process and resource centric views of warehouse operations

goes and waits for processing at stage 2. Parts after processing move to the output store.

This process is repeated at each stage. Hence, at each inventory store, parts are put into

the store by an upstream machine and parts are retrieved for processing by a downstream

machine.

In warehouses, material handling resources such as cranes and S/R machines that are

assigned to a particular storage area perform both storage and retrieval operations. Hence,

the pallets that need to be stored (similar to upstream operation) and the orders that

need to be retrieved (similar to downstream operation) share the same resources. We

call this resource/server that is shared between storage and retrieval operations as the

Shared-Server. This chapter of the dissertation focuses on the performance evaluation of

the shared-server system for the single server case and how it can be used as a building

block in a comprehensive end-to-end model of the warehouse.

4.1.1 Description of the Shared-Server System

A typical AS/RS consists of multiple parallel aisles, one or more S/R machines that can

travel simultaneously in horizontal and vertical directions, and an input/output station. The

S/R machine can operate in a single command mode (either storage or retrieval operation

in a single cycle) or in a dual command mode (a storage operation and a retrieval operation

in the same cycle). There is a buffer in front of the AS/RS where the requests wait in
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(a) PI model of a tandem manufacturing system

(b) PI model of a warehouse rack storage

Figure 4.2: Production-Inventory (PI) models of (a) manufacturing system (b) warehouse
rack storage

a queue to be serviced. It is a physical queue in case of storage requests and a (virtual)

information queue, in case of retrieval requests. A shared-server is representative of AS/RS

type of systems. The model consists of a server (S/R machine), separate queues for storage

and retrieval requests, and physical inventory store (rack). The following assumptions are

made about the shared-server system.

4.1.2 Assumptions

• Storage and retrieval requests arrive independently of each other and join separate

queues. The storage requests are say, pallets waiting to be stored and hence, the

storage queue has a physical limit because of limited warehouse space. The retrieval

requests are information, and hence, the maximum backlog is limited by design deci-

sions. In this dissertation, we assume that both the physical queue and the information

queue are finite and are equal in capacity. Similarly, the rack has a finite capacity.

Requests that arrive when the storage (request) queue is full will be lost.

• The shared server is assumed to operate in a single command mode and follow a first
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come first served service discipline as long as the request can be serviced. Because of

the limited capacity of the rack, the FCFS discipline may be violated. When a storage

request arrives before a retrieval request and there is no space in the rack, the request

is blocked (storage blocking). The blockage is resolved when the retrieval request is

serviced before the storage request. Similar blockage occurs when a retrieval request

arrives before a storage request, and there is no item to retrieve (retrieval blocking).

• Each request (storage or retrieval) is for a unit-load item only and the server can

handle only one unit-load at a time.

The following notation is used in this chapter.

λ−1
S , C2

S - mean and SCV of the inter-arrival times of storage requests

λ−1
R , C2

R - mean and SCV of the inter-arrival times of retreival requests

µ−1
SC , C

2
SC - mean and SCV of the service times

BS , BR - Queue capacities for storage and retrieval requests respectively

Z - Rack size

LQ(S), LQ(R) - mean queue length of storage and retrieval requests respectively

L(RACK) - average inventory level in the rack

λ−1
dR, C

2
dR - mean and SCV of the inter-departure times of retrieval requests

The squared coefficient of variation (SCV) of a random variable (rv) is defined as the

variance of the rv divided by the square of its mean.

We believe that this dissertation effort is the first analytical model of the shared server

system where the inventory store or the rack size is explicitly modeled. As is customary

with any new performance modeling research, we first model the shared-server system under

the Markovian assumption.

4.2 CTMC Model and Analysis

Modeling queues using Continuous Time Markov Chains (CTMC) is a widely used perfor-

mance evaluation technique because it provides us with an exact method of analysis under

exponential assumptions. Algorithms exists to solve the CTMC model and to compute
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performance measures that can be used to understand system behavior. In our case, we

also use the CTMC model to verify the simulation model that is used to evaluate the more

general model of the shared-server system which is the subject of section 4.3.

We assume that the single command service time follows an exponential distribution

with the service rate (µS = µR) for storage and retrieval requests. The arrivals of storage

and retrieval requests are independent of each other and are Poisson processes with mean

arrival rates of λS and λR, respectively. We also assume limits, namely, BS and BR on

the capacities of storage and retrieval request queues, respectively. Storage and retrieval

arrivals are lost when the queues are full.

The state of the system at time t is then defined as,

X(t) = {m, i, j, k}

where m represents the current mode of the server (0 idle, S serving a storage request,

R serving a retrieval request); i, j, k are non-negative integers representing the number of

storage requests waiting in queue, number of retrieval requests waiting in queue and the

inventory level in the rack, respectively; 0 ≤ i ≤ BS , 0 ≤ j ≤ BR and 0 ≤ k ≤ Z .

The server becomes idle when both the request queues are empty (i = 0, j = 0). The

server is blocked when i = 0, j > 0 and k = 0 (retrieval blocking) and when i > 0, j = 0

and k = Z (storage blocking). Figure 4.3 provides examples of system states together

with their transitions. In the CTMC model, when the server is capable of servicing either

request, as in Figure 4.3(c) we assumed that with a probability pS (= λS/(λS + λR)), the

server satisfies a storage request and with a probability pR (= 1− pS), the server satisfies a

retrieval request.

Using the memory-less property of the exponential distribution, the behavior of the

queueing model can be represented as a Continuous Time Markov Chain. The stationary

equations are presented in Appendix A.1. The stationary equations were solved numerically

using Xpress-MP (Heipcke, 2000) and compared against simulation estimates. The exper-

imental setup to verify the analytical model is presented in Table 4.1. The arrival rates

(λS = λR) were set at 1 / time unit and the service times are set such that the utilization

33



(a) state illustrating storage blocking

(b) state illustrating retrieval blocking

(c) state illustrating a storage operation

Figure 4.3: Example state-transitions for the CTMC model of the shared-server system
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Parameter Levels (values)
Service Times 1 (corresponding to 80% utilization level)
Rack Size (Z) 10 (1 - 10)

Buffer Size (BS = BR) BS = BR = Z and BS = BR > Z

Number of Servers 1

Table 4.1: Design of experiments for shared server system (Markovian case)

of the shared-server is 0.8. While our model can handle any limit on the queue capacity, in

our experiment we present two scenarios; one where the queue capacity is equal to the rack

size, and the other where the queue capacity is greater than the rack size.

Let Pm,i,j,k be the steady-state probability that CTMC will be in state (m, i, j, k) which

we can obtain by solving the balance equations given in Appendix A.1. With the solution

of Pm,i,j,k, we can derive some useful performance measures, such as:

1. Utilization of the server

P (S/R) = 1−
∑
k>=0

P0,0,0,k (4.1)

2. Probability of storage blocking

P (Storage Blocking) =
∑
i>0

P0,i,0,Z (4.2)

3. Probability of retrieval blocking

P (Retrieval Blocking) =
∑
j>0

P0,0,j,0 (4.3)

4. Effective throughput of the server (can be less than the total arrival rate because of

lost arrivals and blocking)

λeff = µSC

1−

∑
k≥0

P0,0,0,k +
∑
i>0

P0,i,0,Z +
∑
j>0

P0,0,j,0

 (4.4)

5. Expected number of retrieval requests waiting to be serviced

LQ(R) =
∑
j≥0

j.Pm,i,j,k (4.5)
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6. Expected number of storage requests waiting to be serviced

LQ(S) =
∑
i≥0

i.Pm,i,j,k (4.6)

4.2.1 Numerical Experiments

In order to verify the results of the CTMC model, we compare the output of the CTMC

model to the performance measure estimates obtained by simulating the shared-server. In

the case of utilization and queue length performance measures, the relative percentage

difference is defined as

Rel.Diff% = Analytical − Simulation
Simulation

∗ 100

We present the absolute difference when the quantities involved are small (typically less

than 1) (Whitt, 1983). Tables 4.2 and 4.3 summarize the results when the buffer size is equal

to the rack size and greater than the rack size, respectively. From the tables, we see that

the CTMC model tracks the simulation model closely. The maximum relative percentage

difference on the storage (retrieval) queue is 4.84% (4.97%) in the first scenario and 2.53%

(2.68%) in the second scenario. In the case of utilization and average inventory level in the

rack, the differences are very small, and only absolute differences are reported.

The difference between the analytical and simulation model can be explained by the

following assumption in the CTMC model. In the CTMC model, when the server is capable

of servicing either request, as in Figure 4.3(c) we have assumed that with a probability

pS (= λS/(λS + λR), the server satisfies a storage request and with a probability pR (=

1− pS), the server satisfies a retrieval request. But in the simulation model we enforce the

FCFS discipline strictly and the shared-server services the request that arrived first into

the system.

The results indicate that the utilization is an increasing function of the rack size and

it is less than the expected utilization level of 80%, because of 1) the blocking of requests

when the rack is full or empty and 2) the loss of requests, when the storage or retrieval

queues are full. The average number of items in the rack was maintained close to half of
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the rack size, since the arrival rates were same for the storage and retrieval requests. We

note that the average inventory level in the rack is the same in both cases, namely, “buffer

size = rack size” and “buffer size > rack size”.

The above analysis also provides confidence in the simulation model that will be used

for evaluation of the approximate analytical model developed in the next section. As the

rack size or the queue capacities increase, the CTMC state space grows rapidly and the

numerical solution to the balance equations becomes challenging. If both queues have no

capacity limits, then we also need to investigate the conditions under which the CTMC will

have a steady state.
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Utilization Storage Queue Retrieval Queue Rack
Rack Size

(Z)
Buffer Size
(BS = BR)

A S %Diff A S %Diff A S %Diff A S %Diff

1 1 0.500 0.500 0.000 0.374 0.374 0.000 0.374 0.374 0.000 0.500 0.500 0.000
2 2 0.614 0.615 0.001 0.731 0.737 0.006 0.731 0.738 0.007 1.000 1.000 0.000
3 3 0.670 0.671 0.001 1.070 1.093 2.10% 1.070 1.095 -2.28% 1.500 1.497 0.003
4 4 0.702 0.704 0.002 1.386 1.430 3.08% 1.386 1.432 3.21% 2.000 1.999 0.001
5 5 0.723 0.725 0.002 1.680 1.746 3.78% 1.680 1.750 4.00% 2.500 2.495 0.005
6 6 0.738 0.740 0.002 1.955 2.040 4.17% 1.955 2.046 4.45% 3.000 2.994 0.006
7 7 0.748 0.750 0.002 2.213 2.317 4.49% 2.213 2.320 4.61% 3.500 3.497 0.003
8 8 0.756 0.757 0.001 2.457 2.573 4.51% 2.457 2.580 4.77% 4.000 3.989 0.011
9 9 0.762 0.763 0.001 2.688 2.821 4.71% 2.688 2.828 4.95% 4.500 4.488 0.012
10 10 0.767 0.767 0.000 2.908 3.056 4.84% 2.908 3.060 4.97% 5.000 4.985 0.015

Table 4.2: Results for the shared-server CTMC model (BS = BR = Z) ρ = 0.8 and λS = λR = 1

Utilization Storage Queue Retrieval Queue Rack
Rack Size

(Z)
Buffer Size
(BS = BR)

A S %Diff A S %Diff A S %Diff A S %Diff

1 2 0.543 0.543 0.000 0.501 0.501 0.000 0.501 0.501 0.000 0.500 0.500 0.000
2 4 0.651 0.650 0.001 0.972 0.965 0.007 0.972 0.966 0.006 1.000 0.999 0.001
3 6 0.698 0.696 0.002 1.388 1.365 1.68% 1.388 1.367 1.54% 1.500 1.499 0.001
4 8 0.724 0.722 0.002 1.753 1.713 2.34% 1.753 1.715 2.22% 2.000 1.999 0.001
5 10 0.740 0.738 0.002 2.078 2.025 2.62% 2.078 2.029 2.41% 2.500 2.497 0.003
6 12 0.751 0.749 0.002 2.369 2.305 2.78% 2.369 2.308 2.64% 3.000 2.999 0.001
7 14 0.759 0.757 0.002 2.634 2.561 2.85% 2.634 2.561 2.85% 3.500 3.501 0.001
8 16 0.764 0.762 0.002 2.880 2.801 2.82% 2.880 2.800 2.86% 4.000 3.996 0.004
9 18 0.769 0.767 0.002 3.110 3.025 2.81% 3.110 3.026 2.78% 4.500 4.489 0.011
10 20 0.772 0.770 0.002 3.328 3.246 2.53% 3.328 3.241 2.68% 5.000 4.993 0.007

Table 4.3: Results for the shared-server CTMC model (BS = BR > Z) ρ = 0.8 and λS = λR = 1
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Figure 4.4: A single stage kanban system (Krishnamurthy, 2002)

4.3 Queueing Network Model of the Shared-Server

In this section, we present an approximate analytical model of the general shared-server sys-

tem. Our modeling and solution approach uses previous work on the parametric-decomposition

method (Whitt, 1983) and the modeling of synchronization operations (Krishnamurthy,

2002). The need for modeling synchronization operations can be explained by the observa-

tion that for a storage (retrieval) operation to begin a storage (retrieval) request must be

waiting and an empty space (item) must be present in the rack.

The analytical model presented here is based on the material control model developed for

a single stage kanban system by Krishnamurthy (2002). In a kanban controlled production

system, kanbans (cards) are used to control material flow and trigger production. In a

multi stage production system, each stage has a fixed number of kanbans. A part can be

processed at given stage i, if the corresponding stage i kanban is attached to the part. Upon

completion of the process, both the finished part and the kanban wait at the output buffer of

stage i. The part is transferred to the next stage, stage i+1, as soon as a kanban from stage

i+1 is available. The stage i kanban is then returned to the input buffer of stage i enabling

new parts to enter stage i. Such a kanban system can be represented as a queueing model

using fork/join synchronization stations and is shown in Figure 4.4. A similar material

control modeling approach is followed in the development of the approximate analytical

model of the shared-server system.
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Figure 4.5: Queueing network model of a shared server

Figure 4.5 represents a queueing network model of a single class, single shared-server

system. The shared-server is represented as two independent servers, serving the storage

and retrieval requests, at the storage processing (SP) and retrieval processing (RP) stations,

respectively. The synchronization stations JS and JR model the material control mechanism

at the processing stations. A closed loop system is formed by the sync stations JS and JR

and processing stations SP and RP as shown. Associated with this closed loop are Z

kanbans which represent the number of rack spaces in the system. Hence, this part of the

queueing network model can be viewed as a closed queueing network where the kanbans

act as customers, circulating in the network formed by queues EK, SP, RACK and RP.

The arrival processes of storage and retrieval requests are external processes that need to

be synchronized with the internal flow of the kanbans in the closed loop.

The sync station JS models the synchronization of the storage requests (that arrive

from the upstream or external processes) with that of kanbans that represent the empty

spaces in the rack. JS has two input queues, the storage request queue (BS) and the

empty space/kanban queue (EK). The sync station JR models the synchronization of the

retrieval requests (that arrive from downstream or external processes) with that of kanbans

that represent items in the rack. JR has two input queues, the retrieval request queue (BR)

and the rack queue (RACK).

The material control model works as follows. Unit-load items wait in the queue, RACK,
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to be retrieved and satisfy a retrieval request. These items in the RACK have a kanban

attached to it. As soon as a retrieval request arrives in queue BR, an item from the RACK

and the request is joined together and released from the sync station to join the retrieval

processing queue. Upon completion of the service (the item was successfully retrieved from

the rack), the kanban is returned to the queue EK, that represents the empty spaces in the

rack. The queue EK is a part of the storage synchronization station (JS). At this station,

when a storage request arrives at the queue BS , it is immediately joined with the kanban

in queue EK and sent to the storage processing station (SP) to be stored in the rack. As

we can see from the operating mechanism, the kanban cards are either in one of the four

queues or at the servers; EK representing empty spaces, SP representing unit-loads waiting

to be stored and in process, RACK representing unit-loads in the rack and RP representing

unit-loads waiting to be retrieved and in process. Hence, these four queues and the two

servers can have a maximum of Z kanbans/customers at any time.

The arrival processes at the synchronization stations and service processes at the pro-

cessing stations are assumed to be general and hence, the queueing network model is a non-

product form. Therefore, approximation techniques must be used for performance analysis.

The solution approach to solving the queueing network consists of four steps and is based

on the parametric-decomposition approach (Whitt (1983, 1994); Krishnamurthy (2002)).

The two main features of this approach are that the departure and arrival processes within

the network are approximated as renewal processes and such a renewal process is described

by its first two moments, mean and squared coefficient of variation. In reality, the succes-

sive departures or arrivals in the closed queueing network are not independent, and hence

not a renewal process. Earlier works on open and closed queueing network models (Kuehn

(1979); Whitt (1983); Kamath (1989); Krishnamurthy (2002)) have shown that such an

approximation is effective and yields reliable estimates of the desired performance measures

without much computational effort. In this solution approach, we extend the application

of this technique to solve the shared-server system model. The approach consists of four

steps: Decomposition, Characterization, Linkage, and Solution. An overview of these steps

is given below and illustrated in Figure 4.6.
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• Decomposition: The queueing network representation of the shared server system

is decomposed into individual components; storage and retrieval synchronization sta-

tions (JS and JR), and storage and retrieval processing stations (SP and RP).

• Characterization: Each component/station (JS , SP, JR and RP) obtained from the

decomposition step is analyzed in isolation. We assume that the arrival process and

the service process (if any) are known and are renewal processes. We also assume that

the renewal process is adequately quantified by two parameters; the mean and squared

coefficient of variation (SCV) of the inter-renewal times. In this queueing network,

we know the external arrival processes for storage and retrieval requests, and the

single command service process but we do not know the internal departure processes

from each of the components. By analyzing the components/stations independent

of the rest of the network, we obtain the mean and SCV of the departure process

and estimate the performance measures of each of the components. The details of

this characterization step, especially the storage and retrieval processing stations are

described in detail in the following sections.

• Linkage: In this step, the traffic equations from the individual stations are linked

together in the closed loop part of the queueing network. We make use of the expres-

sions derived in Krishnamurthy & Suri (2006) that link the traffic processes at the

stations (JS and SP, SP and JR, JR and RP, and RP and JS). The resulting sets

of non-linear equations are then solved numerically to obtain the parameters of the

internal traffic processes.

• Solution: The system of non-linear equations, linking the traffic processes of the in-

dividual components is iteratively solved to determine the internal traffic parameters.

Once those parameters are determined, the network performance measures as well as

the station performance measures can be obtained easily.

4.3.1 Characterization of the Synchronization Station

The decomposition step presents two synchronization stations, storage and retrieval syn-

chronization stations. The storage sync station (JS) consists of two input queues, one for
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Figure 4.7: Characterization of storage synchronization station (JS)

the storage requests that come from upstream stages (BS) and the other for kanbans rep-

resenting empty storage spaces (EK). The sub-network SN in Figure 4.7 represents the

downstream stages where the Z kanbans circulate. In the queue EK, kanbans representing

empty storage spaces wait for the storage requests. Each storage request is then attached

with the kanban and they proceed together to be processed, i.e., the storage request and the

kanban are routed together in the sub-network SN. Because the rack has a finite capacity

represented by the Z kanbans, the sum of kanbans in queue EK and sub-network SN will

always be equal to Z. Additionally, the arrival process to the queue BS will shut-off as soon

as its capacity is reached, which is set at BS .

In line with two moment approximations, we assume that the arrival processes to queues

EK and BS are renewal processes characterized by the mean and SCV of the inter-arrival

times; λ−1
S , C2

aS to the queue BS and λ−1
S,j−1, C

2
s,j−1 to the queue EK. There are only Z

kanbans circulating in the sub-network and queue EK, the arrivals to the queue EK shuts

off once all the kanbans are in the queue EK. Hence, we really assume that the traffic

process conditioned on the event that it is not shutdown is a renewal process. Thus, the

synchronization station JS is characterized by the 6-tuple (λ−1
S , C2

as, BS , λ
−1
s,j−1, C

2
s,j−1, Z).

The characterization of JS will be complete when the parameters for the departure process

are specified, which were derived by Krishnamurthy (2002). Let r = λS/λS,j−1|r ≤ 1 and

C2 = 0.5(C2
aS + C2

s,j−1).

The rate of the departure process is given by

44



λS,j =

 λS
[

1−rZ+BS
1−rZ+BS+1

] [
1− 0.5(C2 − 1)

(
(1−r)rZ+BS

1−r2(Z+BS)+1

)]
r < 1

λS
(

Z+BS
Z+BS+1

) (
1− 0.5(C2−1)

2(Z+BS)+1

)
r = 1

(4.7)

As we can see from the above expression, for finite values of Z and BS , the rate of the

departure process is always less than min(λS , λS,j−1). The SCV of the departure process

is given by (Krishnamurthy, 2002)

C2
S,j =

[(
λ5
S

λ5
S + λ5

S,j−1

)
C2
S,j−1 +

(
λ5
S,j−1

λ5
S + λ5

S,j−1

)
C2
aS

] [
1− 1

(Z +BS + 1) −
1

(Z +BS + 1)2

]
(4.8)

The expressions for queue length parameters are (Krishnamurthy, 2002)

LBS =

 λS
[

1−rZ+BS
1−rZ+BS+1

] [
1− 0.5(C2 − 1)

(
(1−r)rZ+BS

1−r2(Z+BS)+1

)]
r < 1(

BS
2

) (
BS+1

Z+BS+1

)
r = 1

(4.9)

LEK =

 λS
[

1−rZ+BS
1−rZ+BS+1

] [
1− 0.5(C2 − 1)

(
(1−r)rZ+BS

1−r2(Z+BS)+1

)]
r < 1(

Z
2

) (
Z+1

Z+BS+1

)
r = 1

(4.10)

The characterization of the retrieval synchronization station (JR) is very similar to that

of storage synchronization station. The station JR is characterized by two queues, the

retrieval request queue (BR) and the queue representing the items in storage (RACK).

4.3.2 Characterization of the Processing Station

Figure 4.8 shows the storage processing station obtained by the decomposition of the queue-

ing network. The processing station can be any configuration, and in this section we as-

sume a single server storage processing station operating under a FCFS discipline. The

sub-network SN represents the rest of the queueing network in which the Z kanbans circu-

late. The arrivals to the SP station are the storage requests with kanbans, i.e., each storage

request will have a space reserved for it when it joins the queue. Upon completion of the

storage processing operation, the kanbans are routed back to the sub-network SN where

they are subject to random delays. In the sub-network, the kanban stays in the RACK
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Figure 4.8: Characterization of the Storage Processing station (SP)

until it is matched to a retrieval request and the completion of the retrieval operation will

release the kanban to the queue EK. Matching a storage request with a kanban in queue

EK results in the kanban revisiting the storage processing station. The number of kanbans

at the SP station and sub-network will always be equal to Z and consequently, the arrival

process to the SP station shuts off when all the kanbans are in the SP station.

The arrival process to the SP station can be fairly complex. Hence, in line with the two-

moment approximations, we assume that the arrival process to the SP station is a renewal

process conditioned on the event that the arrival shuts off when all the customers are in

the station. The arrival process is characterized by the mean and SCV of the inter-arrival

times (λ−1
aS,j , C

2
aS,j). Together with the parameters describing the service process, the SP

station can be represented by the 5-tuple (λ−1
aS,j , C

2
aS,j , µ

−1
mSC , C

2
mSC , Z). The service times

are modified single command cycle times since the SP station and RP station are both

serviced by a single shared server. The details of the modification are presented in the next

subsection. Meanwhile, we assume that the service times are i.i.d with mean (µ−1
mSC) and

SCV (C2
mSC). The characterization of the SP station will be complete with the description

of the departure process and the performance measure of interest, namely the mean queue

length.

By flow conservation principle, the mean of the inter-departure time is given by

λ−1
ds = λ−1

aS,j (4.11)
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The estimation of the SCV of the inter-departure times is based on the approximation

by Whitt (1983) for a GI/G/1 queue. Let ρS = λS,j/µmSCbe the utilization of the shared

server to account for servicing the storage requests. Then, the SCV (C2
ds) is given by

C2
dS = (1− ρ2

S)C2
aS,j + ρ2

SC
2
mSC (4.12)

To obtain the expression for mean queue length of the SP station, we first obtain the

expression for mean waiting time (Wq,SP ). Following the approach by Kamath et al. (1988),

the approximate mean waiting time is given by Cf ∗Wq(GI/G/1), where Cf is a correction

factor and Wq(GI/G/1) is the waiting time in a GI/G/1 queue. Based on the work of

Kuehn (1979) and Whitt (1983), the mean waiting time in a GI/G/1 queue is given by

Wq = g(ρS , C2
aS,j , C

2
mSC)

(
C2
aS,j + C2

mSC

2

)(
ρS

1− ρS

)
µ−1
mSC (4.13)

The above equation assumes that the customers to the queue arrive from an infinite

population. The correction factor (Cf) accounts for the finite population of Z kanbans in

the closed loop part of the queueing network, and has been derived by Kamath et al. (1988)

as,

Cf =
(
Z − 1
Z

) 1
1 + Wq

Z µ−1
mSC

 (4.14)

Then, using Little’s law (Little, 1961), we obtain the mean queue length at the storage

processing station as

Lq,SP = λS,j ∗ Cf ∗Wq (4.15)

Modifying the Single Command Service Time

In the characterization of the SP station, we had mentioned that the single command service

time was modified. The reason behind this modification is to account for a single server that

is shared by the storage processing station (SP) and the retrieval processing station (RP).

We model this shared server as two independent servers and then account for the time spent

on each other’s activities. The service time spent by the shared-server in performing the
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storage activity accounts for the time it spends in performing any retrieval activity before

the next storage activity and vice versa. This is similar to the approach used by Segal &

Whitt (1989) to model the service interruptions within the QNA framework (Whitt, 1983).

To modify the service time for the storage processing station, we assume that the down

time is the time spent on performing retrieval operations between two storage operations.

Let λS and λR be arrival rates for storage and retrieval requests, and τSC(= 1/µSC) be the

mean single command service time for storage/retrieval requests. Let S′ be the random

variable representing the modified service time, which is given by

S′ = S +
∑
NR

R (4.16)

where S(R) is the random variable representing original storage (retrieval) time and

NR is the random variable representing the number of retrieval operations performed until

the next storage operation. The number of retrieval requests completed before servicing

another storage request is a modified geometric random variable, whose parameter is the

probability of that the next request is a storage request and is given by pS = λS/(λR +λS).∑
NR

R is a random sum of identical random variables R.

The mean of the modified single command storage service time is given by

E[S′] = E[S] + E[NR] ∗ E[R]

E[NR] = pS
1−pS

E[S] = E[R] = µ−1
SC = τSC

E[S′] = τmSC = τSC
1−pS

(4.17)

The variance of the modified single command storage service time is given by

V ar[S′] = V ar[S] + V ar[
∑
NR

R]

V ar[S′] = V ar[S] + V ar[NR] ∗ (E[R])2 + E[NR] ∗ V ar[R]

V ar[R] = C2
SC ∗ τ2

SC

V ar[NR] = pS
(1−pS)2

C2
mSC = V ar[S′]

τ2
mSC

(4.18)
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Since, we assume that the arrival rates for storage and retrieval requests are equal

(λS = λR), the expressions 4.17 and 4.18 will also apply for modifying the service time

for the retrieval requests. We also note that the two independent servers can be ‘active’

at the same time in the queueing network model. The specification of the traffic processes

for each of the components/stations and the performance measures of interest complete

the characterization step. In the following section, we link the traffic processes of the

decomposed components.

4.3.3 Linking the Stations

In the characterization step, the parameters describing the input processes to the processing

stations and the synchronization stations are assumed to be given, which in fact need to be

determined. In this section, we will determine the relationship between the inter-departure

times from a station and the inter-arrival times to a downstream station, thereby explicitly

incorporating the effects of shut downs in the arrival process in the closed part of the

queueing network. We need to determine the following four linkages (see Figure 4.6).

1. Linking the departure processes of the storage synchronization station (JS) at the

arrival process of the storage processing station (SP)

2. Linking the departure process of the storage processing station (SP) with the retrieval

synchronization station (JR)

3. Linking the departure processes of the retrieval synchronization station (JR) at the

arrival process of the retrieval processing station (RP)

4. Linking the departure process of the retrieval processing station (RP) with the storage

synchronization station (JS).

Linking the Departure Process from JS to Arrival Process at SP

We now describe the procedure to link the mean and SCV of the departure process of the

station JS (λ−1
S,j and C2

s,j) to the mean and SCV of the arrival process at the SP (λ−1
aS,j

and C2
as,j) (see Figure 4.9). We note that the parameters of the arrival process to queue
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Figure 4.9: Linking storage synchronization and storage processing stations

Figure 4.10: Linking storage processing and retrieval synchronization stations

BS correspond to external demand and hence, the λ−1
aS , C2

aS and BS are user inputs. The

parameters of the inter-arrival process at SP, mean (λ−1
aS,j) and SCV (C2

aS,j) can be equated

directly to the parameters of the inter-departure process from JS . In the characterization

step, the correction factor incorporates the finite population nature of the closed part of the

queueing network and hence, we do not have to modify the parameters of the inter-arrival

process at SP. Then, using flow conservation principle,

λaS,j = λS,j

C2
aS,j = C2

S,j

(4.19)

We can provide a similar argument to link the departure process from the retrieval

synchronization station (JR) to the arrival process to the retrieval processing station (RP).
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Linking the Departure Process from SP to Arrival Process at JR

We now describe the procedure to link the mean and SCV of the departure process of the

station SP (λ−1
ds and C2

ds) to the mean and SCV of the arrival process at the JR (λ−1
R,j−1

and C2
R,j−1) (see Figure 4.10). We note that the parameters of the arrival process to queue

BR could correspond to external retrieval request arrival process and hence, λ−1
aR, C2

aR and

BR are user inputs to this model. In the characterization step of the synchronization sta-

tion, the parameters of the arrival process to the queue RACK (λ−1
R,j−1 and C2

R,j−1) are not

conditioned on the event that the arrival process is shut-down when all the kanbans are in

RACK. Hence, we need to incorporate this fact when we link these two stations. Krishna-

murthy & Suri (2006) developed a procedure to develop the linkage equations analyzing the

arrival point process to the queue RACK. We will describe the procedure next. Let πRACK

denote the long run proportion of time that arrivals to RACK are shut down. Then,

λR,j−1 = λdS
1−πRACK

C2
R,j−1 = C2

dS
(1−πRACK)2 −

(
πRACK

(1−πRACK)2

) (
λdS
λaR

)( 2C2
aR

1+C2
aR

) (4.20)

By the principle of flow conservation, we have λ−1
R,j = λ−1

dS . Together, the three equations

provide the necessary stochastic transformation required to relate the traffic processes of

the stations SP and JR. We assume that parameters of the departure process from the

station SP (λ−1
dS , C

2
dS) are given and proceed to develop a numerical procedure to find the

arrival process to the station JR. We know that the arrival parameters and the size of the

queue BR (λ−1
aR, C

2
aR, BR) are the user inputs. The iterative numerical procedure, based on

the bisection search method is given in Algorithm 4.3.1.
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Algorithm 4.3.1: LinkProcToSync(λdS , C2
dS , Z, λaR, C

2
aR, BR)

comment: Links the storage processing station and retrieval synchronization station

Initialize: low = 0, high = 1, ε

while |δ| > ε

do



Step1: Set π
(k)
RACK = (low + high)/2

Step2: Compute λR,j−1 and C
2
R,j−1

Step3: Compute λR,j using synchronization characterization equations

Step4: Compute δ = λ
(k)
R,j − λdS

if δ < −ε

then low = π
(k)
RACK

else if δ > ε

then high = π
(k)
RACK

In the algorithm 4.3.1, π(k)
RACK represents the estimate for πRACK in the kth iteration.

In each iteration, we compute the difference between the estimated throughput (λR,j) and

the required throughput (λdS). If the estimated throughput is lower than the required

throughput, then we update the interval of the bisection search to increase the value of

πRACK in the next iteration, and vice-versa. The algorithm terminates when the estimate

of πRACK meets the required tolerance level (ε) in the throughput. Convergence property

of the algorithm is discussed in a later section. Using a similar argument, we can develop

a numerical procedure to solve the linkage equations connecting the retrieval processing

station (RP) and the storage synchronization station (JS).

4.3.4 Solution Approach

The solution step involves solving the set of non-linear equations linking the traffic process

of the individual stations in the closed part of the queueing network. We increase the user

input (Z) by one kanban to account for the fact that the two independent servers can be

active at the same time in the queueing network model.

We initialize the algorithm by first modifying the single command storage (retrieval)

processing time using equations 4.16 - 4.18. Then, we proceed with an initial estimate of
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parameters for the departure process of one of the four component stations, in our case it

is the storage processing station SP. The algorithm then iteratively estimates the internal

traffic process parameters, updating the initial estimates until they are consistent with the

user inputs. The solution procedure is described in Algorithm 4.3.2.

After computing the modified service time parameters for the processing stations, we

obtain initial estimates of λdS , and C2
dS in step 1 of loop1. As the initial estimates may be

inconsistent with each other, we update the value of C2
dS in loop2 for given value of λdS .

To update C2
dS , we make use of the characterization and linking equations derived in earlier

sections, and solve for the traffic parameters for each of the stations sequentially (steps 2.1

to 2.8). Upon solving the SP, we obtain a new value for C2
dS . We repeat this procedure

until the difference between the new and old estimates of C2
dS are within the set tolerance

limit (ε).

In step 3, algorithm verifies if these values of λdS and C2
dS are consistent with the user

input values for the number of kanbans. To do so, we calculate the difference between the

user input value (increased by one) and sum of the kanbans at each of the stations including

the servers.

We update λdS using a bisection search approach in step 4, until the difference between

current and previous estimates are within a predefined tolerance limit. If the sum of mean

queue lengths is more than the number of kanbans, then the current estimate of λds is too

high; the bisection search algorithm accordingly updates the interval for the next iteration.

At the end of loop1, we would have obtained λdS and C2
dS that are consistent with each

other, and consistent with user input & modified service times.

As a last step, we update the modified service time based on the effective internal arrival

process to the processing stations. We repeat the entire procedure starting with step 1, until

the difference between the current and previous estimate of the modified service times are

within the specified tolerance limits. Once, the algorithm converges, we can obtain the

performance measures of interest such as the throughput and mean queue lengths at the

various processing and synchronization stations.

The average inventory at the rack is the sum of the mean queue lengths of RACK,

and mean number of customers at the retrieval processing station. The average number of

53



storage requests waiting to be serviced is the sum of the mean queue length of BS and mean

queue length at the storage processing station. The average number of retrieval requests

waiting to be serviced is the sum of the mean queue length of BR and mean queue length

at the retrieval processing station.
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Algorithm 4.3.2: SuperSolve(λS , C2
aS , BS , λR, C

2
aR, BR, µSC , C

2
SC , Z)

Modify: No of kanbans Z ′ = Z + 1

Compute:Modified single command service time at SP and RP (µmSC , C2
mSC)

Initialize: Low = 0, High = min(λS , λR, µmSC)

while |δ1| > ε

do



Step1: Let λ
(k)
ds = (Low +High)/2, C2(k)

ds = 1.0(say)

while |δ2| > ε

do



Step2.1: Solve πRACK , λR,j−1, and C
2
R,j−1 using Algorithm 4.3.1

setting λdS = λ
(k)
dS and C2

dS = C
2(k)
dS

Step2.2: Calculate λR,j , C2
R,j and Lq,BR and Lq,RACK using

the characterization equations

Step2.3: Compute input parameters to the retrieval processing station

Step2.4: Calculate λdR, C2
dR and Lq,RP using

the RP characterization equations

Step2.5: Solve πEK , λS,j−1, and C
2
S,j−1 using Algorithm 4.3.1

Step2.6: Calculate λS,j , C2
S,j and Lq,BS and Lq,EK using

the characterization equations

Step2.7: Compute input parameters to the storage processing station

Step2.8: Calculate λdS , C2
dS and Lq,SP using

the SP characterization equations

Step2.9: Compute δ2 = |C2(k)
dS − C2

dS |;C
2(k)
dS = C2

dS

Step3: Compute δ1 = Lq,RACK + Lq,RP + ρR + Lq,EK + Lq,SP + ρS − Z ′

Step4: if δ1 < −ε

then Low = λ
(k)
dS

else if δ1 > ε

then High = λ
(k)
dS
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4.3.5 Computational Effort and Convergence

We note that the number of unknown parameters in this analysis is independent of the

number of customers in the closed part of the queueing network model. Both numerical

algorithms are based on the bisection search procedure, and it is assumed that the solution

lies within the specified intervals. In the Algorithm 4.3.1, bisection search is used to estimate

the probability of the shut downs, (πRACK) to the queue RACK and (πEK) to the queue

EK. Hence, the interval [0, 1] is sufficient to search for the probabilities.

In the case of Algorithm 4.3.2, the bisection search is used to obtain the throughput

of the storage processing station consistent with the user input values. We note that the

throughput of the system, then must lie within the interval [0,min(λaS , λaR, µmSC)] where

the µmSC is the modified single command service rate at the storage or retrieval processing

station. We cannot guarantee a unique solution within this interval or provide a bound on

the number of iterations necessary for the model to converge. In all our experiments, the

algorithm converged to a solution within a reasonable number of iterations (<20).

4.3.6 Performance Measures and Model Accuracy

The performance measures of interest for the shared server model are related to throughput,

inventory, and warehouse resources. The performance measures related to the throughput

are the throughputs for storage and retrieval requests. Throughput is defined as the number

of requests served per unit time.

Other measures of interest are the waiting time and average number of storage and

retrieval requests in the system. With respect to inventory, average number of items in

storage is a measure of interest. With respect to resources, utilization is the major perfor-

mance measure. In the following sections, we summarize the results for the throughput for

retrieval requests, utilization of the shared server, the mean queue length of the storage &

retrieval queues, and the average inventory level in the rack.

The accuracy of the models is tested by comparing the analytical results with simulation

estimates. The simulation models were developed for the shared-server component using the

Arena simulation software (Kelton et al., 2002). The steady state estimate of a performance
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measure was obtained by averaging over appropriate number of replications after accounting

for warm-up periods. The warm-up period was estimated using Welch’s method (Welch,

1983) and set at 400,000 entities. The statistics were collected for 600,000 entities (retreival

requests) and the performance measures were averaged for 10 replications.

The relative percentage error (RE), a common measure to test the accuracy of analyt-

ical models, was used in the case of throughput (λdR) and utilization (ρSC). When the

magnitude of the performance measures is small (typically less than 1), absolute error is

considered better than RE (Whitt, 1983).

RE(λdR) = 100 ∗ λ
(Analytical)
dR − λ(Simulation)

dR

λ
(Simulation)
dR

In the case of mean queue lengths and average inventory in the rack, normalized error

is measured rather than relative percentage error. The normalized error is measured as

the difference between the analytical and simulation model as a percentage of the rack size.

Since the shared server system is modeled as a queueing network, the normalized error (NE)

is measured as

NE(LQ(S)) = 100 ∗ LQ(S)(Analytical) − LQ(S)(Simulation)

Rack Size

NE(LQ(R)) = 100 ∗ LQ(R)(Analytical) − LQ(R)(Simulation)

Rack Size

NE(L(RACK)) = 100 ∗ L(RACK)(Analytical) − L(RACK)(Simulation)

Rack Size

The normalized error is used for measuring queue length accuracy in order to avoid the

small queue length effect. Robustness of the analytical models will be tested by varying the

parameters of the inter-arrival time distributions for storage/retrieval requests, service time

distribution, and rack size. The performance measures will be examined under low (SCV

= 0.5), medium (SCV = 1) and high variability (SCV = 2) conditions.

An experimental design is provided in Table 4.4 for the shared-server model. The arrival

rates for the storage and retrieval requests are fixed at one, and the mean service times are
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Parameter Levels (values)
Service Times 3 (corresponding to 70%, 80%

and 90% utilization levels)
SCV of service time distribution 3 (0.5, 1.0 and 2.0)

SCV of inter-arrival time distribution 3 (0.5, 1.0 and 2.0)
Rack Size 3 (5, 25 and 125)

Number of servers 1

Table 4.4: Design of experiments for shared-server system: single server case

set such that the expected utilization of the shared server is 70%, 80% and 90%.

4.3.7 Accuracy of the Shared-Server Model

The input parameters to the queueing model are the arrival parameters of the storage and

retrieval requests, the service parameters of the single command service time, the queue

capacities and the rack size. The output parameters, namely the performance measures of

interest are the mean queue lengths of the storage and retrieval requests, the throughput

(which is the departure rate of the retrieval requests) and average inventory in the rack. In

the case of the shared-server system, we are also interested in measuring the parameters

of the departure process of the retrieval requests as they will become the inputs to the

downstream stations in an end-to-end comprehensive model of the warehouse. In all our

experiments in this section, the shared-server is a single server operating under a FCFS dis-

cipline. We also study the shared-server system when the variability in the arrival processes

is the same (balanced case) and when the variability is different (unbalanced case).

Balanced Case

In the balanced case, the storage and retrieval processes have the same arrival rate and

variability. The estimates of mean queue length (storage and retrieval requests) and the av-

erage inventory level in the rack at 70%, 80% and 90% expected utilization for the balanced

case are given in Tables 4.5, 4.7, and 4.9 respectively. The estimates of throughput and uti-

lization of the shared-server are reported in Tables 4.6, 4.8, and 4.10 for the three expected

utilization levels. The results from Tables 4.5, 4.7, and 4.9 indicate that the maximum

absolute error for the mean queue length of storage (retrieval) request is 5.84% (5.83%).
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The maximum absolute error for the average inventory in the rack is 3.95%. We note that

the above errors are found at the 90% expected utilization levels. In the case of throughput

and actual utilization, the maximum absolute error is 13.84% for 90% utilization levels.

The observed error percentages are in the range of good to acceptable for queueing models

based on two moment approximations as noted in many previous studies (e.g. Whitt, 1983

and Suri et al., 1993). Next, we develop insights into the behavior of the shared-server

model for the balanced system.
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Storage Queue Retrieval Queue Average Inventory
C2
aS = C2

aR C2
SC Rack Size A S %E A S %E A S %E

0.5 0.5 5 0.526 0.387 2.79% 0.527 0.387 2.79% 2.416 2.499 -1.65%
0.5 0.5 25 1.220 0.781 1.76% 1.220 0.786 1.74% 12.317 12.474 -0.63%
0.5 0.5 125 2.438 2.296 0.11% 2.438 2.252 0.15% 62.300 62.915 -0.49%
0.5 1 5 0.595 0.471 2.48% 0.595 0.472 2.47% 2.423 2.499 -1.53%
0.5 1 25 1.414 0.928 1.95% 1.414 0.932 1.93% 12.318 12.481 -0.65%
0.5 1 125 2.682 2.451 0.18% 2.682 2.402 0.22% 62.293 62.894 -0.48%
0.5 2 5 0.713 0.581 2.64% 0.713 0.581 2.65% 2.434 2.499 -1.31%
0.5 2 25 1.786 1.217 2.28% 1.787 1.218 2.27% 12.321 12.497 -0.70%
0.5 2 125 3.166 2.717 0.36% 3.166 2.691 0.38% 62.298 62.870 -0.46%
1 0.5 5 0.547 0.475 1.45% 0.548 0.475 1.45% 2.424 2.497 -1.46%
1 0.5 25 1.340 1.030 1.24% 1.340 1.030 1.24% 12.319 12.472 -0.61%
1 0.5 125 2.600 2.606 0.00% 2.600 2.676 -0.06% 62.291 62.631 -0.27%
1 1 5 0.611 0.534 1.53% 0.611 0.535 1.52% 2.430 2.498 -1.36%
1 1 25 1.888 1.178 2.84% 1.888 1.178 2.84% 12.321 12.469 -0.59%
1 1 125 2.841 2.776 0.05% 2.841 2.833 0.01% 62.296 62.646 -0.28%
1 2 5 0.721 0.611 2.20% 0.721 0.612 2.18% 2.440 2.497 -1.14%
1 2 25 1.888 1.457 1.72% 1.888 1.457 1.72% 12.321 12.474 -0.61%
1 2 125 3.321 3.091 0.18% 3.321 3.137 0.15% 62.298 62.569 -0.22%
2 0.5 5 0.580 0.560 0.40% 0.580 0.560 0.41% 2.439 2.498 -1.18%
2 0.5 25 1.559 1.354 0.82% 1.560 1.357 0.81% 12.325 12.496 -0.68%
2 0.5 125 2.909 2.993 -0.07% 2.909 2.999 -0.07% 62.318 62.883 -0.45%
2 1 5 0.635 0.602 0.66% 0.635 0.603 0.65% 2.444 2.498 -1.08%
2 1 25 1.740 1.506 0.94% 1.740 1.508 0.93% 12.324 12.491 -0.67%
2 1 125 3.153 3.182 -0.02% 3.153 3.179 -0.02% 62.299 62.906 -0.49%
2 2 5 0.733 0.655 1.55% 0.733 0.654 1.57% 2.453 2.502 -0.99%
2 2 25 2.083 1.776 1.23% 2.083 1.761 1.29% 12.327 12.614 -1.15%
2 2 125 3.633 3.596 0.03% 3.633 3.481 0.12% 62.302 63.030 -0.58%

Table 4.5: Comparison of mean queue lengths (storage and retrieval requests) and average inventory level in the rack for λS = λR = 1
and 70% expected utilization (A: Analytical, S: Simulation)
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Utilization Throughput SCV
C2
aS = C2

aR C2
SC Rack Size A S %E A S %E A

0.5 0.5 5 0.584 0.647 -9.72% 0.835 0.924 -9.71% 0.452
0.5 0.5 25 0.683 0.689 -0.87% 0.976 0.985 -0.97% 0.543
0.5 0.5 125 0.697 0.697 0.06% 0.996 0.997 -0.07% 0.556
0.5 1 5 0.578 0.642 -10.00% 0.826 0.917 -10.02% 0.567
0.5 1 25 0.682 0.689 -1.03% 0.974 0.985 -1.13% 0.686
0.5 1 125 0.697 0.697 0.04% 0.996 0.997 -0.09% 0.704
0.5 2 5 0.567 0.629 -9.94% 0.890 0.899 -1.00% 0.793
0.5 2 25 0.680 0.689 -1.36% 0.971 0.984 -1.36% 0.971
0.5 2 125 0.697 0.698 -0.14% 0.996 0.997 -0.12% 1.007
1 0.5 5 0.576 0.602 -4.25% 0.823 0.860 -4.24% 0.544
1 0.5 25 0.681 0.679 0.28% 0.973 0.971 0.19% 0.654
1 0.5 125 0.697 0.695 0.29% 0.996 0.994 0.18% 0.667
1 1 5 0.571 0.597 -4.42% 0.815 0.853 -4.39% 0.656
1 1 25 0.678 0.679 -0.22% 0.968 0.971 -0.31% 1.080
1 1 125 0.697 0.695 0.27% 0.996 0.994 0.16% 0.815
1 2 5 0.560 0.585 -4.26% 0.800 0.838 -4.47% 0.878
1 2 25 0.678 0.678 -0.07% 0.968 0.969 -0.11% 1.080
1 2 125 0.697 0.696 0.10% 0.995 0.994 0.13% 1.111
2 0.5 5 0.562 0.541 3.79% 0.802 0.773 3.71% 0.739
2 0.5 25 0.677 0.662 2.22% 0.967 0.946 2.18% 0.884
2 0.5 125 0.696 0.692 0.64% 0.995 0.989 0.57% 0.890
2 1 5 0.557 0.536 3.82% 0.795 0.766 3.83% 0.847
2 1 25 0.676 0.661 2.19% 0.965 0.945 2.11% 1.024
2 1 125 0.696 0.692 0.61% 0.995 0.989 0.55% 1.038
2 2 5 0.547 0.526 4.05% 0.782 0.751 4.07% 1.060
2 2 25 0.673 0.658 2.33% 0.962 0.941 2.25% 1.307
2 2 125 0.696 0.692 0.58% 0.994 0.988 0.62% 1.334

Table 4.6: Comparison of utilization and throughput of the shared server for λS = λR = 1 and 70% expected utilization (A: Analytical,
S: Simulation)
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Storage Queue Retrieval Queue Average Inventory
C2
aS = C2

aR C2
SC Rack Size A S %E A S %E A S %E

0.5 0.5 5 0.688 0.550 2.76% 0.688 0.550 2.77% 2.354 2.499 -2.90%
0.5 0.5 25 1.907 1.122 3.14% 1.907 1.126 3.12% 12.223 12.474 -1.00%
0.5 0.5 125 3.373 2.683 0.55% 3.373 2.639 0.59% 62.190 62.921 -0.59%
0.5 1 5 0.775 0.655 2.41% 0.776 0.655 2.41% 2.363 2.499 -2.72%
0.5 1 25 2.247 1.399 3.39% 2.248 1.402 3.38% 12.228 12.475 -0.99%
0.5 1 125 3.859 2.974 0.71% 3.860 2.937 0.74% 62.213 62.815 -0.48%
0.5 2 5 0.918 0.764 3.08% 0.918 0.764 3.08% 2.379 2.498 -2.38%
0.5 2 25 2.870 1.932 3.75% 2.869 1.942 3.71% 12.228 12.442 -0.85%
0.5 2 125 4.817 3.535 1.03% 4.816 3.513 1.04% 62.206 62.694 -0.39%
1 0.5 5 0.708 0.622 1.72% 0.708 0.622 1.72% 2.362 2.498 -2.72%
1 0.5 25 2.095 1.504 2.37% 2.096 1.502 2.37% 12.226 12.483 -1.03%
1 0.5 125 3.670 3.210 0.37% 3.670 3.273 0.32% 62.195 62.644 -0.36%
1 1 5 0.789 0.690 1.97% 0.789 0.691 1.95% 2.370 2.498 -2.55%
1 1 25 2.419 1.760 2.64% 2.420 1.760 2.64% 12.230 12.489 -1.04%
1 1 125 4.151 3.528 0.50% 4.151 3.586 0.45% 62.214 62.617 -0.32%
1 2 5 0.922 0.767 3.11% 0.923 0.769 3.07% 2.385 2.498 -2.25%
1 2 25 3.015 2.234 3.12% 3.014 2.236 3.11% 12.230 12.494 -1.06%
1 2 125 5.098 4.145 0.76% 5.098 4.187 0.73% 62.206 62.608 -0.32%
2 0.5 5 0.739 0.698 0.82% 0.739 0.699 0.80% 2.377 2.498 -2.42%
2 0.5 25 2.433 2.004 1.72% 2.434 2.007 1.71% 12.233 12.494 -1.05%
2 0.5 125 4.242 3.949 0.23% 4.243 3.958 0.23% 62.217 62.928 -0.57%
2 1 5 0.809 0.741 1.36% 0.809 0.741 1.36% 2.384 2.500 -2.32%
2 1 25 2.732 2.232 2.00% 2.732 2.235 1.99% 12.233 12.498 -1.06%
2 1 125 4.723 4.283 0.35% 4.723 4.285 0.35% 62.206 62.943 -0.59%
2 2 5 0.929 0.790 2.77% 0.929 0.790 2.77% 2.397 2.501 -2.08%
2 2 25 3.287 2.603 2.73% 3.286 2.599 2.75% 12.237 12.506 -1.08%
2 2 125 5.661 5.067 0.48% 5.661 4.994 0.53% 62.207 63.208 -0.80%

Table 4.7: Comparison of mean queue lengths (storage and retrieval requests) and average inventory level in the rack for λS = λR = 1
and 80% expected utilization (A: Analytical, S: Simulation)
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Utilization Throughput SCV
C2
aS = C2

aR C2
SC Rack Size A S %E A S %E A

0.5 0.5 5 0.647 0.733 -11.80% 0.808 0.917 -11.91% 0.499
0.5 0.5 25 0.777 0.788 -1.40% 0.971 0.985 -1.42% 0.605
0.5 0.5 125 0.797 0.797 -0.03% 0.996 0.997 -0.10% 0.620
0.5 1 5 0.637 0.724 -11.99% 0.796 0.905 -12.00% 0.635
0.5 1 25 0.775 0.787 -1.55% 0.968 0.984 -1.61% 0.780
0.5 1 125 0.797 0.797 -0.05% 0.996 0.997 -0.12% 0.803
0.5 2 5 0.621 0.704 -11.78% 0.776 0.880 -11.80% 0.900
0.5 2 25 0.771 0.786 -1.97% 0.963 0.982 -1.96% 1.125
0.5 2 125 0.796 0.797 -0.10% 0.995 0.997 -0.17% 1.166
1 0.5 5 0.639 0.680 -6.10% 0.798 0.850 -6.06% 0.567
1 0.5 25 0.774 0.776 -0.22% 0.968 0.970 -0.22% 0.681
1 0.5 125 0.796 0.795 0.18% 0.996 0.994 0.15% 0.694
1 1 5 0.630 0.671 -6.13% 0.787 0.839 -6.14% 0.700
1 1 25 0.772 0.775 -0.37% 0.965 0.969 -0.40% 0.856
1 1 125 0.796 0.794 0.28% 0.995 0.994 0.13% 0.876
1 2 5 0.615 0.654 -5.96% 0.769 0.819 -6.14% 0.962
1 2 25 0.768 0.773 -0.65% 0.960 0.966 -0.64% 1.199
1 2 125 0.796 0.795 0.10% 0.995 0.993 0.18% 1.239
2 0.5 5 0.623 0.607 2.69% 0.779 0.759 2.61% 0.711
2 0.5 25 0.769 0.754 1.99% 0.961 0.943 1.89% 0.839
2 0.5 125 0.796 0.791 0.58% 0.995 0.989 0.54% 0.844
2 1 5 0.616 0.599 2.84% 0.770 0.749 2.80% 0.840
2 1 25 0.767 0.753 1.85% 0.959 0.942 1.81% 1.012
2 1 125 0.795 0.791 0.56% 0.994 0.989 0.52% 1.025
2 2 5 0.603 0.586 2.92% 0.754 0.733 2.91% 1.093
2 2 25 0.763 0.750 1.73% 0.954 0.936 1.86% 1.355
2 2 125 0.795 0.790 0.63% 0.994 0.987 0.67% 1.388

Table 4.8: Comparison of utilization and throughput of the shared server for λS = λR = 1 and 80% expected utilization (A: Analytical,
S: Simulation)
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Storage Queue Retrieval Queue Average Inventory
C2
aS = C2

aR C2
SC Rack Size A S %E A S %E A S %E

0.5 0.5 5 0.877 0.780 1.94% 0.877 0.781 1.92% 2.301 2.498 -3.95%
0.5 0.5 25 3.364 2.029 5.34% 3.366 2.035 5.33% 12.137 12.484 -1.39%
0.5 0.5 125 6.114 3.833 1.83% 6.116 3.812 1.84% 62.117 62.806 -0.55%
0.5 1 5 0.978 0.887 1.82% 0.978 0.887 1.83% 2.313 2.499 -3.71%
0.5 1 25 3.930 2.607 5.29% 3.931 2.610 5.28% 12.140 12.485 -1.38%
0.5 1 125 7.299 4.591 2.17% 7.300 4.588 2.17% 62.098 62.550 -0.36%
0.5 2 5 1.136 0.971 3.30% 1.136 0.972 3.29% 2.334 2.500 -3.32%
0.5 2 25 4.883 3.518 5.46% 4.882 3.517 5.46% 12.146 12.506 -1.44%
0.5 2 125 9.573 6.107 2.77% 9.572 6.131 2.75% 62.094 62.395 -0.24%
1 0.5 5 0.893 0.803 1.79% 0.893 0.804 1.78% 2.309 2.497 -3.77%
1 0.5 25 3.637 2.600 4.15% 3.638 2.601 4.15% 12.140 12.487 -1.39%
1 0.5 125 6.775 4.976 1.44% 6.776 5.022 1.40% 62.100 62.688 -0.47%
1 1 5 0.987 0.872 2.30% 0.987 0.872 2.30% 2.320 2.498 -3.56%
1 1 25 4.161 3.022 4.56% 4.161 3.022 4.56% 12.143 12.476 -1.33%
1 1 125 7.933 5.721 1.77% 7.934 5.765 1.73% 62.115 62.539 -0.34%
1 2 5 1.137 0.940 3.94% 1.137 0.941 3.91% 2.339 2.497 -3.16%
1 2 25 5.057 3.681 5.50% 5.055 3.684 5.48% 12.149 12.463 -1.26%
1 2 125 10.163 7.239 2.34% 10.162 7.272 2.31% 62.098 62.687 -0.47%
2 0.5 5 0.917 0.853 1.29% 0.918 0.853 1.29% 2.323 2.499 -3.52%
2 0.5 25 4.105 3.226 3.52% 4.106 3.228 3.51% 12.146 12.498 -1.41%
2 0.5 125 8.035 6.658 1.10% 8.036 6.683 1.08% 62.105 62.973 -0.69%
2 1 5 1.001 0.891 2.19% 1.001 0.891 2.19% 2.333 2.499 -3.32%
2 1 25 4.566 3.509 4.23% 4.566 3.514 4.21% 12.149 12.489 -1.36%
2 1 125 9.159 7.435 1.38% 9.159 7.445 1.37% 62.109 63.023 -0.73%
2 2 5 1.137 0.933 4.08% 1.137 0.934 4.06% 2.350 2.499 -2.99%
2 2 25 5.376 3.917 5.84% 5.376 3.918 5.83% 12.156 12.515 -1.43%
2 2 125 11.314 8.818 2.00% 11.312 8.745 2.05% 62.111 63.706 -1.28%

Table 4.9: Comparison of mean queue lengths (storage and retrieval requests) and average inventory level in the rack for λS = λR = 1
and 90% expected utilization (A: Analytical, S: Simulation)

64



Utilization Throughput SCV
C2
aS = C2

aR C2
SC Rack Size A S %E A S %E A

0.5 0.5 5 0.700 0.812 -13.85% 0.777 0.903 13.88% 0.541
0.5 0.5 25 0.865 0.885 -2.27% 0.961 0.983 2.27% 0.664
0.5 0.5 125 0.896 0.897 -0.13% 0.995 0.997 0.16% 0.684
0.5 1 5 0.687 0.796 -13.73% 0.763 0.885 13.79% 0.695
0.5 1 25 0.861 0.883 -2.55% 0.956 0.981 2.58% 0.866
0.5 1 125 0.896 0.897 -0.17% 0.995 0.997 0.21% 0.900
0.5 2 5 0.666 0.769 -13.39% 0.740 0.856 13.57% 0.992
0.5 2 25 0.852 0.878 -2.92% 0.947 0.976 2.92% 1.265
0.5 2 125 0.895 0.896 -0.15% 0.994 0.996 0.19% 1.330
1 0.5 5 0.692 0.750 -7.77% 0.769 0.834 7.84% 0.589
1 0.5 25 0.861 0.870 -1.00% 0.957 0.967 1.05% 0.707
1 0.5 125 0.895 0.894 0.15% 0.995 0.994 -0.08% 0.722
1 1 5 0.680 0.738 -7.86% 0.756 0.820 7.82% 0.741
1 1 25 0.857 0.867 -1.14% 0.952 0.964 1.24% 0.909
1 1 125 0.895 0.894 0.10% 0.994 0.993 -0.14% 0.937
1 2 5 0.661 0.716 -7.72% 0.734 0.796 7.80% 1.034
1 2 25 0.850 0.862 -1.45% 0.944 0.958 1.46% 1.308
1 2 125 0.894 0.894 0.01% 0.994 0.993 -0.05% 1.367
2 0.5 5 0.677 0.667 1.54% 0.753 0.741 -1.51% 0.691
2 0.5 25 0.855 0.843 1.39% 0.950 0.936 -1.42% 0.799
2 0.5 125 0.894 0.889 0.60% 0.994 0.988 -0.56% 0.797
2 1 5 0.667 0.657 1.57% 0.741 0.730 -1.57% 0.839
2 1 25 0.851 0.840 1.30% 0.946 0.933 -1.36% 1.001
2 1 125 0.894 0.889 0.55% 0.993 0.988 -0.51% 1.012
2 2 5 0.650 0.641 1.47% 0.723 0.712 -1.45% 1.128
2 2 25 0.844 0.832 1.44% 0.938 0.925 -1.37% 1.400
2 2 125 0.893 0.888 0.57% 0.992 0.986 -0.62% 1.442

Table 4.10: Comparison of utilization and throughput of the shared server for λS = λR = 1 and 90% expected utilization (A: Analytical,
S: Simulation)
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Insights from the Balanced Case

Tables 4.6, 4.8, and 4.10 indicate that the throughput of the shared-server system (defined

as the departure rate of the retrieval requests) is an increasing function of the rack size

and (trivially) limited by the arrival rate of storage and retrieval requests. As the rack size

increases, the number of “lost” requests decreases resulting in an increase in the throughput.

A key insight with respect to the throughput of the shared server model is that it is robust

to changes in the variability of either the arrival process or the service process for large

rack sizes. Figure 4.11 shows the system throughput for the nine variability settings for

balanced systems when the rack size is 5, 25 and 125 respectively. We also clearly see that

the analytical model tracks the simulation model accurately and that the gap between the

two reduces considerably for large rack sizes.

Another observation made is that throughput of the system is higher at lower utilization

i.e. system throughput is an increasing function of the service rate especially for small rack

sizes. Again this can be attributed to the decrease in percentage of lost requests. From

Figure 4.11, we can see that the system throughput at 70% expected utilization is higher

than the system throughput at 90% expected utilization for a rack size of 5. As the rack size

increases, the difference between the throughputs reduces and is then limited the arrival rate

of the storage and retrieval requests. With respect to actual utilization of the shared server,

we can draw similar conclusions from Table 4.6, 4.8, and 4.10. We note that the actual

utilization is an increasing function of the rack size (number of kanbans) in the system.

Figure 4.12 illustrates the actual utilization of the shared server at the three expected

utilization levels, 70%, 80% and 90% respectively. We can see that for large rack sizes, the

system reaches the expected utilization levels and becomes insensitive to changes in the

variability of either the arrival or service process.

With respect to the average inventory level in the rack, we find that it is maintained at

almost half the maximum storage size. This is because the arrival rates for the storage and

retrieval requests are equal. From tables 4.5, 4.7, and 4.9, we can see that the maximum

absolute percentage error for the average inventory in the rack is 3.95% and the average

error is 1.31%.
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 4.11: Retrieval throughput as a function of system variability in a balanced system
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(c) Rack Size = 125

Figure 4.11: Retrieval throughput as a function of system variability in a balanced system
(contd)

Tables 4.5, 4.7, and 4.9 also summarize the results of the mean queue length of the stor-

age and retrieval requests. We see that the mean queue length behavior is almost identical

for the queues because the rate and SCV of the arrival processes are same. Therefore, it

is sufficient to analyze one of them. Figure 4.13 illustrates the mean queue length (storage

requests) as a function of system variability for the rack sizes, 5, 25 and 125 respectively.

Similar to the system throughput, the mean queue length is an increasing function of the

rack size and utilization. The mean queue length is also quite robust to changes in the

variability of the service and arrival processes. We also note that the proportional increase

in mean queue length is less than the proportional increase in the rack size.

In the next section, we discuss the accuracy of the shared-server model for the unbal-

anced case and develop insights into its behavior.
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(a) Expected Utilization - 70 percent

(b) Expected Utilization - 80 percent

Figure 4.12: Utilization as a function of system variability in a balanced system
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(c) Expected Utilization - 90 percent

Figure 4.12: Utilization as a function of system variability in a balanced system (contd.)

Unbalanced Case

In the unbalanced case, the storage and retrieval requests have the same arrival rate (λS =

λR) but different variability (C2
aS 6= C2

aR). The estimates of mean queue length (storage and

retrieval requests) and the average inventory in the rack at 70%, 80% and 90% expected

utilization for the unbalanced case are given in Tables 4.11, 4.13, and 4.15 respectively. The

estimates of throughput and utilization of the shared-server are reported in Tables 4.12,

4.14, and 4.16 for the three expected utilization levels. The results from Tables 4.11, 4.13,

and 4.15 indicate that the maximum absolute error for the mean queue length of storage

(retrieval) request is 6.46% (6.47%). The maximum absolute error for the average inventory

in the rack is 8.06%. We note that the above maximum percentage errors are found at 90%

expected utilization levels similar to the balanced case. In the case of throughput and actual

utilization, the maximum absolute percentage error is 10.83% and 10.82% respectively at

90% utilization levels. As mentioned earlier, these errors are within acceptable ranges

for performance evaluation models based on queueing approximations. Next, we develop

insights into the behavior of the shared-server model for the unbalanced case.
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 4.13: Mean queue length (storage requests) as a function of system variability in a
balanced system
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(c) Rack Size = 125

Figure 4.13: Mean queue length (storage requests) as a function of system variability in a
balanced system (contd.)

Insights from the Unbalanced Case

Like the balanced case, Tables 4.12, 4.14, and 4.16 indicate that the throughput of the

shared server system is an increasing function of the rack size and is (trivially) limited by

the arrival rate of storage and retrieval requests. Tables 4.12, 4.14, and 4.16 indicate that

the retrieval throughput of the shared-server system is an increasing function of the rack

size but is limited by the arrival rate of storage and retrieval requests. We also note that the

throughput of the shared server model is robust to the changes in the variability of either

the arrival process or the service process for large rack sizes. Figure 4.14 illustrates the

retrieval throughput as a function of the rack size for the three expected utilization levels

for the case of the unbalanced system; the SCV of the service time is fixed at a high level

of 2. We note that the throughput is insensitive to the differences in the variability of the

storage or retrieval request arrival processes, and we can see similar effects to the changes

in variability of the service time.
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Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 5 0.580 0.624 -7.02% 0.829 0.891 -7.01% 0.525
0.5 2 0.5 5 0.572 0.590 -3.03% 0.817 0.843 -2.99% 0.683
1 0.5 0.5 5 0.580 0.624 -7.02% 0.829 0.891 -7.01% 0.472
1 2 0.5 5 0.569 0.570 -0.25% 0.812 0.814 -0.24% 0.700
2 0.5 0.5 5 0.572 0.590 -3.03% 0.817 0.843 -3.06% 0.518
2 1 0.5 5 0.569 0.570 -0.23% 0.812 0.814 -0.24% 0.588
0.5 1 1 5 0.574 0.619 -7.25% 0.820 0.884 -7.24% 0.638
0.5 2 1 5 0.567 0.584 -3.00% 0.809 0.835 -3.05% 0.791
1 0.5 1 5 0.574 0.619 -7.25% 0.820 0.884 -7.24% 0.587
1 2 1 5 0.563 0.564 -0.14% 0.805 0.807 -0.23% 0.808
2 0.5 1 5 0.567 0.584 -2.98% 0.809 0.835 -3.03% 0.632
2 1 1 5 0.563 0.565 -0.30% 0.805 0.807 -0.30% 0.700
0.5 1 2 5 0.563 0.607 -7.22% 0.805 0.867 -7.23% 0.860
0.5 2 2 5 0.556 0.573 -2.90% 0.795 0.819 -2.94% 1.005
1 0.5 2 5 0.563 0.607 -7.20% 0.805 0.867 -7.22% 0.812
1 2 2 5 0.554 0.553 0.09% 0.791 0.792 -0.13% 1.022
2 0.5 2 5 0.557 0.573 -2.88% 0.795 0.819 -2.93% 0.854
2 1 2 5 0.554 0.555 -0.27% 0.791 0.792 -0.21% 0.919

(a) Rack size = 5 and utilization = 70%

Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 25 0.682 0.684 -0.31% 0.974 0.979 -0.44% 0.637
0.5 2 0.5 25 0.680 0.675 0.71% 0.971 0.964 0.71% 0.830
1 0.5 0.5 25 0.682 0.684 -0.31% 0.974 0.979 -0.44% 0.560
1 2 0.5 25 0.679 0.670 1.31% 0.970 0.958 1.24% 0.847
2 0.5 0.5 25 0.680 0.675 0.71% 0.971 0.965 0.62% 0.597
2 1 0.5 25 0.679 0.671 1.16% 0.970 0.959 1.14% 0.691
0.5 1 1 25 0.681 0.684 -0.47% 0.973 0.978 -0.50% 0.780
0.5 2 1 25 0.679 0.674 0.70% 0.970 0.964 0.54% 0.972
1 0.5 1 25 0.681 0.684 -0.47% 0.973 0.978 -0.50% 0.703
1 2 1 25 0.678 0.670 1.15% 0.968 0.958 1.07% 0.989
2 0.5 1 25 0.679 0.675 0.55% 0.970 0.964 0.54% 0.740
2 1 1 25 0.678 0.670 1.15% 0.968 0.958 1.07% 0.833
0.5 1 2 25 0.679 0.683 -0.64% 0.969 0.977 -0.73% 1.064
0.5 2 2 25 0.676 0.674 0.36% 0.966 0.963 0.30% 1.255
1 0.5 2 25 0.679 0.684 -0.79% 0.969 0.977 -0.73% 0.988
1 2 2 25 0.675 0.669 0.96% 0.965 0.955 1.03% 1.271
2 0.5 2 25 0.676 0.674 0.36% 0.966 0.963 0.40% 1.024
2 1 2 25 0.675 0.668 1.11% 0.965 0.955 1.03% 1.117

(b) Rack size = 25 and utilization = 70%

Table 4.12: Comparison of actual utilization and retrieval throughput at 70% expected
utilization in an unbalanced system (A: Analytical, S: Simulation)
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Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 125 0.697 0.696 0.17% 0.996 0.995 0.10% 0.650
0.5 2 0.5 125 0.697 0.695 0.27% 0.996 0.993 0.25% 0.839
1 0.5 0.5 125 0.697 0.696 0.17% 0.996 0.995 0.10% 0.573
1 2 0.5 125 0.697 0.694 0.39% 0.995 0.991 0.43% 0.856
2 0.5 0.5 125 0.697 0.695 0.27% 0.996 0.993 0.25% 0.607
2 1 0.5 125 0.697 0.694 0.39% 0.995 0.992 0.33% 0.702
0.5 1 1 125 0.697 0.696 0.16% 0.996 0.995 0.09% 0.798
0.5 2 1 125 0.697 0.695 0.26% 0.995 0.993 0.24% 0.987
1 0.5 1 125 0.697 0.696 0.16% 0.996 0.995 0.09% 0.721
1 2 1 125 0.697 0.693 0.52% 0.995 0.991 0.41% 1.005
2 0.5 1 125 0.697 0.695 0.26% 0.995 0.993 0.24% 0.755
2 1 1 125 0.697 0.694 0.37% 0.995 0.992 0.31% 0.848
0.5 1 2 125 0.697 0.697 -0.01% 0.996 0.995 0.05% 1.095
0.5 2 2 125 0.697 0.696 0.07% 0.995 0.993 0.20% 1.283
1 0.5 2 125 0.697 0.696 0.13% 0.996 0.995 0.05% 1.017
1 2 2 125 0.696 0.694 0.35% 0.995 0.991 0.38% 1.299
2 0.5 2 125 0.697 0.695 0.22% 0.995 0.992 0.30% 1.052
2 1 2 125 0.696 0.694 0.35% 0.995 0.991 0.38% 1.146

(c) Rack size = 125 and utilization = 70%

Table 4.12: Comparison of actual utilization and retrieval throughput at 70% expected
utilization in an unbalanced system (contd.)
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Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 5 0.642 0.706 -9.01% 0.803 0.882 -8.94% 0.554
0.5 2 0.5 5 0.634 0.665 -4.65% 0.793 0.831 -4.65% 0.672
1 0.5 0.5 5 0.642 0.706 -9.01% 0.803 0.882 -8.94% 0.513
1 2 0.5 5 0.631 0.641 -1.64% 0.788 0.802 -1.71% 0.683
2 0.5 0.5 5 0.634 0.665 -4.65% 0.793 0.831 -4.65% 0.543
2 1 0.5 5 0.631 0.642 -1.78% 0.788 0.802 -1.71% 0.596
0.5 1 1 5 0.633 0.696 -8.99% 0.792 0.870 -9.02% 0.688
0.5 2 1 5 0.626 0.656 -4.59% 0.782 0.820 -4.56% 0.801
1 0.5 1 5 0.633 0.696 -8.99% 0.792 0.870 -9.02% 0.648
1 2 1 5 0.623 0.633 -1.64% 0.778 0.791 -1.62% 0.813
2 0.5 1 5 0.626 0.656 -4.59% 0.782 0.820 -4.63% 0.678
2 1 1 5 0.623 0.633 -1.64% 0.778 0.792 -1.70% 0.729
0.5 1 2 5 0.618 0.678 -8.85% 0.773 0.848 -8.92% 0.949
0.5 2 2 5 0.612 0.640 -4.44% 0.765 0.799 -4.36% 1.055
1 0.5 2 5 0.618 0.678 -8.85% 0.772 0.848 -8.93% 0.914
1 2 2 5 0.609 0.618 -1.49% 0.761 0.773 -1.60% 1.067
2 0.5 2 5 0.612 0.640 -4.44% 0.765 0.800 -4.44% 0.941
2 1 2 5 0.609 0.618 -1.49% 0.761 0.773 -1.60% 0.989

(a) Rack size = 5 and utilization = 80%

Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 25 0.776 0.782 -0.82% 0.970 0.978 -0.82% 0.672
0.5 2 0.5 25 0.773 0.771 0.25% 0.966 0.963 0.28% 0.810
1 0.5 0.5 25 0.776 0.782 -0.82% 0.970 0.978 -0.82% 0.614
1 2 0.5 25 0.772 0.765 0.86% 0.965 0.957 0.79% 0.820
2 0.5 0.5 25 0.773 0.771 0.25% 0.966 0.964 0.18% 0.634
2 1 0.5 25 0.772 0.765 0.86% 0.965 0.957 0.79% 0.701
0.5 1 1 25 0.773 0.781 -0.97% 0.967 0.977 -1.00% 0.847
0.5 2 1 25 0.771 0.769 0.22% 0.963 0.963 0.10% 0.984
1 0.5 1 25 0.773 0.781 -0.97% 0.967 0.977 -1.00% 0.789
1 2 1 25 0.770 0.764 0.72% 0.962 0.955 0.70% 0.993
2 0.5 1 25 0.771 0.770 0.09% 0.963 0.963 0.00% 0.807
2 1 1 25 0.770 0.764 0.72% 0.962 0.955 0.71% 0.874
0.5 1 2 25 0.769 0.780 -1.38% 0.962 0.974 -1.25% 1.191
0.5 2 2 25 0.767 0.767 -0.05% 0.958 0.959 -0.05% 1.327
1 0.5 2 25 0.769 0.779 -1.26% 0.962 0.974 -1.25% 1.133
1 2 2 25 0.765 0.761 0.58% 0.957 0.951 0.66% 1.336
2 0.5 2 25 0.767 0.768 -0.18% 0.958 0.960 -0.15% 1.152
2 1 2 25 0.765 0.760 0.71% 0.957 0.951 0.66% 1.219

(b) Rack size = 25 and utilization = 80%

Table 4.14: Comparison of actual utilization and retrieval throughput at 80% expected
utilization in an unbalanced system (A: Analytical, S: Simulation)
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Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 125 0.797 0.796 0.08% 0.996 0.995 0.08% 0.686
0.5 2 0.5 125 0.796 0.794 0.28% 0.995 0.993 0.23% 0.818
1 0.5 0.5 125 0.797 0.796 0.08% 0.996 0.995 0.08% 0.629
1 2 0.5 125 0.796 0.793 0.38% 0.995 0.991 0.40% 0.827
2 0.5 0.5 125 0.796 0.794 0.28% 0.995 0.993 0.23% 0.646
2 1 0.5 125 0.796 0.793 0.38% 0.995 0.992 0.30% 0.712
0.5 1 1 125 0.796 0.796 0.05% 0.996 0.995 0.05% 0.868
0.5 2 1 125 0.796 0.794 0.25% 0.995 0.993 0.20% 1.000
1 0.5 1 125 0.796 0.796 0.05% 0.996 0.995 0.05% 0.811
1 2 1 125 0.796 0.792 0.48% 0.995 0.991 0.38% 1.008
2 0.5 1 125 0.796 0.794 0.25% 0.995 0.993 0.20% 0.828
2 1 1 125 0.796 0.793 0.35% 0.995 0.992 0.28% 0.893
0.5 1 2 125 0.796 0.796 0.00% 0.995 0.995 0.00% 1.231
0.5 2 2 125 0.796 0.794 0.20% 0.995 0.992 0.25% 1.363
1 0.5 2 125 0.796 0.796 0.00% 0.995 0.995 0.00% 1.174
1 2 2 125 0.795 0.793 0.30% 0.994 0.991 0.32% 1.371
2 0.5 2 125 0.796 0.794 0.20% 0.995 0.992 0.25% 1.191
2 1 2 125 0.795 0.793 0.30% 0.994 0.991 0.32% 1.257

(c) Rack size = 125 and utilization = 80%

Table 4.14: Comparison of actual utilization and retrieval throughput at 80% expected
utilization in an unbalanced system (contd.)
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Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 5 0.696 0.780 -10.83% 0.773 0.867 -10.82% 0.581
0.5 2 0.5 5 0.688 0.732 -6.07% 0.764 0.814 -6.12% 0.666
1 0.5 0.5 5 0.696 0.780 -10.83% 0.773 0.867 -10.82% 0.550
1 2 0.5 5 0.684 0.706 -3.10% 0.760 0.785 -3.15% 0.673
2 0.5 0.5 5 0.688 0.733 -6.19% 0.764 0.814 -6.18% 0.569
2 1 0.5 5 0.684 0.707 -3.24% 0.760 0.785 -3.15% 0.608
0.5 1 1 5 0.683 0.766 -10.80% 0.759 0.851 -10.79% 0.732
0.5 2 1 5 0.676 0.719 -5.92% 0.752 0.799 -5.99% 0.814
1 0.5 1 5 0.683 0.765 -10.68% 0.759 0.850 -10.72% 0.703
1 2 1 5 0.673 0.695 -3.11% 0.748 0.772 -3.11% 0.821
2 0.5 1 5 0.676 0.720 -6.06% 0.752 0.800 -6.06% 0.722
2 1 1 5 0.673 0.695 -3.11% 0.748 0.772 -3.11% 0.759
0.5 1 2 5 0.663 0.742 -10.61% 0.737 0.824 -10.60% 1.027
0.5 2 2 5 0.658 0.698 -5.76% 0.731 0.777 -5.95% 1.102
1 0.5 2 5 0.663 0.742 -10.61% 0.737 0.824 -10.60% 0.999
1 2 2 5 0.655 0.677 -3.19% 0.728 0.752 -3.15% 1.109
2 0.5 2 5 0.658 0.699 -5.89% 0.731 0.777 -5.95% 1.018
2 1 2 5 0.655 0.676 -3.06% 0.728 0.752 -3.16% 1.053

(a) Rack size = 5 and utilization = 90%

Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 25 0.863 0.878 -1.70% 0.959 0.976 -1.70% 0.704
0.5 2 0.5 25 0.860 0.863 -0.41% 0.955 0.960 -0.49% 0.787
1 0.5 0.5 25 0.863 0.878 -1.70% 0.959 0.976 -1.70% 0.666
1 2 0.5 25 0.858 0.856 0.22% 0.953 0.952 0.18% 0.791
2 0.5 0.5 25 0.860 0.864 -0.52% 0.955 0.961 -0.58% 0.673
2 1 0.5 25 0.858 0.857 0.11% 0.953 0.952 0.09% 0.714
0.5 1 1 25 0.859 0.875 -1.85% 0.954 0.973 -1.91% 0.906
0.5 2 1 25 0.856 0.861 -0.64% 0.951 0.957 -0.67% 0.990
1 0.5 1 25 0.859 0.875 -1.85% 0.954 0.973 -1.91% 0.869
1 2 1 25 0.854 0.853 0.11% 0.949 0.949 0.00% 0.993
2 0.5 1 25 0.856 0.861 -0.64% 0.951 0.958 -0.77% 0.875
2 1 1 25 0.854 0.854 -0.01% 0.949 0.949 0.00% 0.916
0.5 1 2 25 0.851 0.870 -2.20% 0.946 0.966 -2.14% 1.305
0.5 2 2 25 0.848 0.855 -0.82% 0.942 0.950 -0.79% 1.389
1 0.5 2 25 0.851 0.870 -2.20% 0.946 0.966 -2.14% 1.267
1 2 2 25 0.847 0.847 -0.04% 0.941 0.941 0.00% 1.392
2 0.5 2 25 0.848 0.855 -0.82% 0.942 0.950 -0.79% 1.273
2 1 2 25 0.847 0.846 0.08% 0.941 0.941 0.00% 1.314

(b) Rack size = 25 and utilization = 90%

Table 4.16: Comparison of actual utilization and retrieval throughput at 90% expected
utilization in an unbalanced system (A: Analytical, S: Simulation)
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Utilization Throughput SCV
C2
aS C2

aR C2
SC Rack Size A S %E A S %E A

0.5 1 0.5 125 0.896 0.895 0.07% 0.995 0.995 0.01% 0.719
0.5 2 0.5 125 0.895 0.893 0.24% 0.995 0.993 0.15% 0.790
1 0.5 0.5 125 0.896 0.895 0.07% 0.995 0.995 0.01% 0.687
1 2 0.5 125 0.895 0.891 0.43% 0.994 0.991 0.31% 0.792
2 0.5 0.5 125 0.895 0.893 0.24% 0.995 0.993 0.15% 0.691
2 1 0.5 125 0.895 0.892 0.31% 0.994 0.991 0.31% 0.726
0.5 1 1 125 0.895 0.895 0.02% 0.995 0.995 -0.03% 0.935
0.5 2 1 125 0.895 0.893 0.19% 0.994 0.992 0.21% 1.005
1 0.5 1 125 0.895 0.895 0.02% 0.995 0.995 -0.03% 0.902
1 2 1 125 0.894 0.891 0.38% 0.994 0.991 0.27% 1.007
2 0.5 1 125 0.895 0.893 0.19% 0.994 0.993 0.11% 0.907
2 1 1 125 0.894 0.892 0.27% 0.994 0.991 0.27% 0.942
0.5 1 2 125 0.894 0.895 -0.07% 0.994 0.995 -0.12% 1.364
0.5 2 2 125 0.894 0.893 0.10% 0.993 0.992 0.11% 1.435
1 0.5 2 125 0.894 0.895 -0.07% 0.994 0.995 -0.12% 1.332
1 2 2 125 0.894 0.890 0.40% 0.993 0.990 0.28% 1.437
2 0.5 2 125 0.894 0.893 0.10% 0.993 0.992 0.11% 1.336
2 1 2 125 0.894 0.893 0.07% 0.993 0.991 0.18% 1.371

(c) Rack size = 125 and utilization = 90%

Table 4.16: Comparison of actual utilization and retrieval throughput at 90% expected
utilization in an unbalanced system (contd.)
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(a) Arrival SCV: Storage = 0.5, Retrieval = 1 (b) Arrival SCV: Storage = 0.5, Retrieval = 2

(c) Arrival SCV: Storage =1, Retrieval = 2 (d) Arrival SCV: Storage = 1, Retrieval = 0.5

(e) Arrival SCV: Storage = 2, Retrieval = 0.5 (f) Arrival SCV: Storage = 2, Retrieval = 1

Figure 4.14: Retrieval throughput from a unbalanced shared-server system at 90% expected
utilization
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Figures 4.15 and 4.16 illustrate the expected queue length of the storage requests and

retrieval requests respectively, at 90% expected utilization level for the three rack sizes.

The queue length is represented as a function of variability of the arrival processes for

various service time SCVs. We also include results of the balanced system, so that we can

understand the effect of difference in arrival SCVs of the storage and retrieval requests.

We note that for small rack sizes, the difference in variability seems to have less effect on

both the storage and retrieval queue lengths compared to large rack sizes. Also, the mean

queue length of the storage requests is greater than that of the retrieval requests when the

SCV of the storage request arrival process is greater than the SCV of the retrieval request

arrival process and vice-versa. This should be expected as mean queue length is usually an

increasing function of arrival process variability (Whitt, 1983).

Figure 4.17 illustrates the average number of items in the rack at 90% expected utiliza-

tion for the three rack sizes. As in the case of queue length analysis, we include the results

of the balanced system as well. We see that average number in the rack is robust to the

changes in arrival variability in a balanced system, but is not so in the unbalanced system.

When the arrival SCV of storage request is greater than the arrival SCV of the retrieval

request, the average number of items in the rack is less than when the arrival SCVs are

equal. In addition, as the difference between the SCVs increases, so does the difference in

average number of items in the racks. This difference is marked when the rack sizes are

large.

In the following section, we verify the accuracy of the SCV of the departure process of

the retrieval requests from the shared-server system.

4.3.8 Departure Process from the Retrieval Processing Station

In the previous sections, we developed two-moment approximations for the retrieval through-

put, and queue length performance measures of the shared-server. For the shared-server

to become a part of a larger network of warehouse operations, it is imperative that we

analyze and verify the departure process of the retrieval requests from the shared-server.

The retrieval requests departing from the Retrieval Processing (RP) station form the ar-

rival stream for subsequent replenishment operations. In this section, we will verify that
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 4.15: Mean queue length of storage requests in an unbalanced shared-server system
at 90% expected utilization
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(c) Rack Size = 125

Figure 4.15: Mean queue length of storage requests in an unbalanced shared-server system
at 90% expected utilization (contd.)

the parameters describing the departure process, especially the SCV, sufficiently represents

the arrival process at a downstream queue.

The retrieval requests leave the system after the completion of the retrieval operation at

the Retrieval Processing (RP) station . We model the processing station as a GI/G/1 queue

operating on a FCFS discipline. The arrival process to the RP come from the Retrieval

Synchronization Station (JR), and the service process at RP is suitably modified to represent

the single command cycles as described in the earlier section.

Using the principle of flow conservation, the departure rate from the RP is the effective

arrival rate into RP.

λdR = λaR,j (4.21)

The SCV of departure process of the retrieval requests from the processing station is

given by (Whitt, 1983),

C2
dR = ρ2

mSCC
2
aR,j + (1− ρ2

mSC)C2
mSC (4.22)

Where C2
aR,j is the SCV of the arrival process into the station, C2

mSC is the SCV of the
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 4.16: Mean queue length of retrieval requests in an unbalanced shared-server system
at 90% expected utilization
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(c) Rack Size = 125

Figure 4.16: Mean queue length of retrieval requests in an unbalanced shared-server system
at 90% expected utilization (contd.)

modified service process at the RP, and ρmSC is the shared-server utilization for the retrieval

operation. In this section, we would like to verify that the variability parameter (C2
dR)

characterizes the departure process well enough.

Typically, in determining the variability parameter, the departure process is approx-

imated by a renewal process comprised of a sequence of i.i.d inter-departure times such

that the variability of the departure process is the variability of the approximate renewal

process. Many times the departure process is not renewal and the inter-departure times

are not independent. Whitt (1982) described two approximate methods of determining the

variability of the departure process from a queue; asymptotic method and stationary inter-

val method. The stationary interval method ignores the dependency between the successive

inter-departure times and assumes that the departure process variability is the SCV of the

inter-departure times.

In the asymptotic method, the departure process variability is defined as the limit of

the normalized variance of partial sums, given by

C2
dR = lim V ar(SN )

N(E[X]2) (4.23)
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 4.17: Average inventory in rack in an unbalanced shared-server system at 90% ex-
pected utilization
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(c) Rack Size = 125

Figure 4.17: Average inventory in rack in an unbalanced shared-server system at 90% ex-
pected utilization (contd.)

Where SN =
∑
Xi and X1, X2, . . . , XN are successive inter-departure times in a simulation

with run length N. The variance term includes the covariance term, and hence both the

methods agree when the departure process is assumed to be renewal.

In this study, we verify the accuracy of the variability parameter by studying the accu-

racy of the performance measures of a downstream operation, such as a loading operation

as shown in Figure 4.18. Table 4.17 summarizes the results for utilization and mean queue

length at the loading station with a single server. The expected utilization for the shared-

server and the loading server is set at 90%. The simulation statistics were collected for

500,000 entities and averaged for 10 replications. The experiments were conducted for the

balanced case; the SCV of the service time distribution at the loading station was set equal

to that of the shared-server.

As before, we use relative percentage error in the case of utilization and normalized

percentage error in the case of queue length. From Table 4.17, we see that average (max-

imum) absolute percentage error in utilization of the loading operator is 3.24% (13.97%)

and that in queue length is 3.65% (24.92%). We notice that the maximum percentage error

occurs when the rack sizes are small (5). Numerical results for the shared-server model had
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Figure 4.18: Shared-server model with a downstream loading operation

indicated that when the rack size is small the errors in the throughput rates are generally

higher. This implies that the errors in the utilization and queue length for the downstream

loading operation can be attributed to the error in departure rate (throughput) from the

upstream shared-server model, rather than on the variability parameter of the departure

process.

4.4 Summary

In this chapter, we presented a detailed description of the shared-server system and two solu-

tion approaches to derive the performance measures of the shared-server. The CTMC model

can be used for reasonably sized systems under Markovian assumptions. The CQN model

relaxes the Markovian assumptions to model general arrivals and general service times.

Extensive experimentation confirms that the solution approach based on the parametric-

decomposition method works well under a broad range of conditions. We also verified the

accuracy of the departure process from the shared-server system, so that it can be used as

building block to develop end-to-end performance models of the warehouse.
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Chapter 5

Shared-Server System:

Multi-server case

In this chapter we extend the shared-server system to the multi-server case. Each of the

m parallel servers represents an S/R machine operating in an aisle (Figure 5.1). The

development and analysis of the shared-server system with multiple servers follows the steps

developed for the single shared-server system in Chapter 4. We develop a similar closed

queueing network model with the processing stations now characterized as multi-server

stations. We assume that all the servers are identical. We make use of the approximations

developed for GI/G/m queues by Whitt (1993). In the following sections, we describe the

modifications made to the service times at the storage and retrieval processing stations, the

modifications made to developing the linkage equations connecting the processing stations

and synchronization stations, and the overall numerical procedure to solve the queueing

network. We conclude the chapter by summarizing the results of the numerical experiments

that verify the accuracy of the analytical model for the multi-server case.

5.1 Modifications to the Service Time

The shared-server system is represented by an equivalent queueing network model, and the

storage and retrieval processing stations are represented by multi-server nodes. In the single

server model, the service time at the storage processing station is modified to account for
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Figure 5.1: Multiple aisles (S/R machines) in the warehouse and shared-server system with
multiple servers

the time spent on the retrieval operations and vice-versa. The modification was independent

of the number of servers in the system, and is based on the storage/retrieval request arrival

rates to the server. The service time modification described for single shared-server system

(4.16 - 4.18) can be used in the case of the multi-server system as the total workload will

be shared equally by the m servers.

The mean and the variance of the modified storage service time is reproduced here for

convenience,

E[S′] = E[S] + E[NR] ∗ E[R]

E[NR] = pS
1−pS

E[S] = E[R] = µ−1
SC = τSC

E[S′] = τmSC = τSC
1−pS

(5.1)

V ar[S′] = V ar[S] + V ar[
∑
NR

R]

V ar[S′] = V ar[S] + V ar[NR] ∗ (E[R])2 + E[NR] ∗ V ar[R]

V ar[R] = C2
SC ∗ τ2

SC

V ar[NR] = pS
(1−pS)2

C2
mSC = V ar[S′]

τ2
mSC

(5.2)

The number of customers in the closed loop part of the queueing network is the sum

of the number of rack spaces/kanbans plus the number of servers in the system, since we

assume that each of the servers can be active independently at the storage and retrieval

processing stations at the same time.
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Figure 5.2: The multi-server storage processing station

5.2 Characterization of the Storage Processing Station

In line with the two moment approximation method, we assume that the arrival process

(λaS,j , C2
aS,j) to the multi-server node is a renewal process conditioned on the event that

the arrival process shuts off when all the customers are at the processing station. Together

with the parameters describing the service process, the storage processing station can be

described by the 6-tuple (λaS,j , C2
aS,j , µmSC , C

2
mSC ,m,Z). The parameters describing the

service times are the modified single command service times, described in the previous

section. The characterization step will be complete with the description of the departure

process parameters and performance measures of interest.

By flow conservation principle, the mean of the inter-departure times of the storage

requests is given by,

λ−1
dS,j = λ−1

aS,j (5.3)

The SCV of the departure process of the storage requests is based on an approximation

for a GI/G/m queue (Whitt, 1993). Let ρS = λaS,j∗τmSC/m be the utilization of the server

at the storage processing station. The SCV of the departure process from the processing

station (C2
dS) is then given as,

C2
dS = 1 + ρ2

S(C2
aS,j − 1) + ρ2

S√
m

(C2
mSC − 1) (5.4)

To obtain the queue length at the SP station, we first obtain the waiting time in queue
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(Wq,SP ). The approximations proposed by Whitt (1993) can be used to obtain the waiting

time at the processing station.

When C2
aS,j = C2

mSC ≥ 1

Wq(ρS , C2
aS,j , C

2
mSC ,m) =

(
C2
aS,j + C2

mSC

2

)
Wq(M/M/m) (5.5)

When C2
aS,j 6= C2

mSC

Wq(ρS , C2
aS,j , C

2
mSC ,m) = φq(ρ, C2

aS,j , C
2
mSC ,m)

(
C2
aS,j + C2

mSC

2

)
Wq(M/M/m) (5.6)

where

φ(ρ, C2
a , C

2
S ,m) =


(

4(C2
a−C2

S)
4C2

a−3C2
S

)
φ1(m, ρ) +

(
C2
S

4C2
a−3C2

S

)
ψ((C2

a+C2
S)/2,m, ρ) C2

a ≥ C2
S(

C2
a−C2

S)
2C2

a+2C2
S

)
φ3(m, ρ) +

(
C2
S+3C2

a

2C2
a+2C2

S

)
ψ((C2

a+C2
S)/2,m, ρ) C2

a ≤ C2
S

(5.7)

ψ(m, ρ,C2) =


1 C2 ≥ 1

φ4(m, ρ)2(1−C2) 0 ≤ C2 < 1
(5.8)

γ(m, p) = min

{
0.24, (1− ρ)(m− 1)

(√
4 + 5m− 2

16mρ

)}
(5.9)

φ1(m, ρ) = 1 + γ(m, ρ)

φ2(m, ρ) = 1− 4γ(m, ρ)

φ3(m, ρ) = φ2(m, ρ)e
(−2(1−ρ)

3ρ

)
φ4(m, ρ) = min

{
1,
(
φ1(m,ρ)+φ2(m,ρ)

2

)}
(5.10)

Then, using Little’s law, the number of kanbans in queue at the storage processing

station is given by

Lq,SP = λaS,j ∗Wq,SP (5.11)

The reader should note that there are other approximations available for the waiting
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Parameter Levels (values)
Service Times 2 (corresponding to 80% and 90% utilization levels)

SCV of service time distribution 3 (0.5, 1 and 2)
SCV of inter-arrival time distribution 3 (0.5, 1 and 2) and (C2

S = C2
R)

Rack size 3 (5, 25, and 125)
Number of servers 1 (3)

Table 5.1: Experimental design for the shared-server system: multi server case

time in system for the GI/G/m queue such as the KLB approximation and also, correction

factors to account for the multi-server in a closed system (Suri & Sahu, 2007). In this

research, we found that a combination of the approximations developed by Whitt (1993)

and Kamath et al. (1988) worked well for most of the test cases.

Algorithms 3.1 and 3.2 are modified to incorporate these changes and then used to

solve the queueing network model. The accuracy of the model is tested by comparing the

analytical results with the simulation estimates for the performance measures of interest.

The models are tested for the configurations shown in Table 5.1.

The performance measures computed are the average number in queue for the storage

and retrieval requests, average inventory in the rack, server utilization and the throughput

of the retrieval requests from the system. The relative percentage error (RE) is used in the

case of utilization and throughput, as before and normalized error (NE) is used to compare

the results in the case of number in queue and inventory.

5.3 Accuracy of the Multi-Server Model

The input parameters to the multi-server model are the arrival parameters of the storage

and retrieval requests, the rack size, the parameters of the single-command service time, and

the number of servers. We study the sensitivity of the multi-server system to the variability

in arrivals and service processes. We study the system only under balanced conditions

i.e., the arrival rate and variability of the storage requests are the same as that of the

retrieval requests. The estimates of the mean queue length (storage and retrieval requests)

and average inventory in the rack at 80% and 90% expected utilization are given in Tables

5.2 and 5.4 respectively. The estimates of the throughput and utilization are reported in
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Tables 5.3 and 5.5 for the two expected utilization levels. The results from Tables 5.2

and 5.4 indicate that the maximum absolute percentage error for the mean queue length

of storage (retrieval) requests is 6.52% ( 6.52%). The maximum absolute percentage error

for the average inventory in the rack is 10.01%. We note that the above errors are found

at the 90% expected utilization levels. In the case of throughput and actual utilization,

the maximum absolute percentage error is 18.42% and 18.37% at 90% utilization levels,

respectively. While the accuracy of the analytical model for the multi-server case is not as

good as the single-server case, the error percentages are still within the acceptable error

range for a large number of cases examined.

5.4 Summary

In this chapter, we developed a multi server model of the shared-server system representing

storage areas with multiple S/R machines or operators. We described the modifications

made to the queueing network model of the single shared-server system and the solution

procedure to solve the multi server case . Experiments conducted for the balanced config-

uration indicate that the solution approach works well in most of the cases. In the next

chapter, we focus on the development of a queueing-inventory model of the order-picking

system.
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 5.3: Retrieval throughput as a function of system variability in a balanced shared-
server system with multiple servers
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(c) Rack Size = 125

Figure 5.3: Retrieval throughput as a function of system variability in a balanced shared-
server system with multiple servers (contd.)
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(a) Rack Size = 5

(b) Rack Size = 25

Figure 5.4: Mean queue length (storage requests) as a function of system variability in a
balanced shared-server system with multiple servers
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(c) Rack Size = 125

Figure 5.4: Mean queue length (storage requests) as a function of system variability in a
balanced shared-server system with multiple servers (contd.)
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Chapter 6

Order-Picking System

Unit-load is one that can be stored or moved as a single entity at one time, such as a

pallet, container or tote, regardless of the number of individual items that make up the

load (Tompkins et al., 2003). The unit load can range from a single part to a carton, to

pallet of cases, to a container consisting of pallets moved by rails and ships. In the simplest

form of a warehouse, the configuration of unit-load remains the same (pallet-in/pallet-out).

Not all warehouses can be that simple, and picking in different composition is essential.

Order-picking is the process of removing the items from storage to meet a specific customer

demand and represents a basic function of the warehouse. Order-picking typically happens

at the forward storage area in a warehouse.

The configuration of the unit-load is maintained between two moves/shipment points

serviced by a material handling/movement device, but can differ between consecutive moves

in and out of inventory as illustrated in the Figure 6.1 because of order-picking. In this

chapter, we focus on the development of a queueing-inventory model that can handle such

changes in the configuration of the unit-load.

Figure 6.1: Changing unit-load configuration
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6.1 Description of the Order-Picking Model

In this research, we assume that configuration of the items that is stored is larger than

that is retrieved from the store. Let us assume that pallet loads are moved into the storage

and that customer orders are retrieved in case units. Upon receiving a customer order,

individual cases are picked from the forward store. When all the items from a particular

pallet are picked, the pallet is replaced with another from the upstream reserve storage area.

A queueing-inventory (QI) model of such a system is shown in Figure 6.2.

Figure 6.2: A queueing-inventory model that illustrates changing unit-load configuration

In a queueing-inventory model, a stage consists of a processing station and an output

store. An arriving customer demand is satisfied from the inventory in the output store if

available; else it is backordered. The customer demand immediately triggers an order to

replenish the inventory. The replenishment order picks up a part from the output store of

the previous stage if available and joins the queue to be processed. Each customer demand

triggers a replenishment order at each stage of a multi-stage queueing-inventory model. The

maximum planned inventory at each stage is called the base stock level.

The QI model for the order-picking system consists of two such stages in tandem with

the following modifications. The stage 1 has a batching station in addition to the regular

processing station, and the output store of stage 2 has a base stock level of zero. The output

store of stage 1 represents the planned inventory at the rack which is the forward store and

the processing stations represent the material movement in and out of the forward store.

The functioning of the unit-load system is as follows. The customer orders (in case

quantities) are received at the dummy store of stage 2. The order picks up the required

quantity from the forward store and immediately joins the processing queue, i.e., ready to
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be retrieved from the store. If the items are not available, then the order is backordered

at the stage 2. The customer order triggers a replenishment order at the forward store.

The orders wait at the batching station to form pallet quantities. Once such orders are

formed, the orders pickup pallets from the upstream stages and join the processing queue

to be moved to the rack. In this study, the unit-load system operates under a stationary

demand-pull or base stock policy with one-for-one replenishment policy.

We make the following assumptions about the order-picking system. We assume that

there is an ample supply of pallet loads at stage 1. Both the stages are characterized by single

servers with unit capacity, handling a single class of items. We note that the replenishment

order for pallet loads at stage 1 consists of replenishment orders and backorders of cases.

We assume that the demand arrival process and the service times at either of the processing

stations follow a general distribution. Since the base stock level is set to zero, stage 2 can

be analyzed as a simple GI/G/1 queue, with a modified arrival process from stage 2 that

accounts for orders that find items at the forward store immediately and backorders. In

section 6.2, we develop a model for stage 1: a single stage system with batch processing

with unlimited supply of pallet loads.

6.2 Single Stage QI model with Batch Processing

Figure 6.3: Single stage QI model with batch processing

In this section, we model the upstream stage of the order-picking model where the
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replenishment orders for case loads are batched and processed as pallet orders (see Figure

6.3). Let each pallet load consist of r cases. The customer demand consumes an item/case

from the material store and triggers a replenishment order or places a back-order if a case

is not available. The order proceeds to the batching station where it waits until a batch of

size of r is formed. Once a pallet load is formed, the pallet immediately joins the queue at

the processing station to be processed, i.e. a pallet from the reserve store is ready to be

retrieved. The pallets after being processed/retrieved are immediately split into individual

items/cases at the forward store.

The following notation is used in this chapter.

λ−1, C2
a - mean and SCV of the demand arrival process

τB, C
2
SB - mean and SCV of the batch/pallet service process

S - size of the inventory store (in cases)

r - pallet size (in cases)

ρ - utilization of the server at the processing station

N - Number of orders in the system (in cases)

NB - Number of pallets at the processing station

NO - Number of orders at the batching station (in cases)

IF - Inventory level at the forward store

BF - Backorder level at the forward store

The input to the model is represented by a 6-tuple; the parameters describing the

demand arrival process (λ−1, C2
a), the store size (S), the pallet size (r), the parameters

describing the batch/pallet service (τB, C2
SB). The performance measures of interest are

the average inventory level at the rack (E[IF ]), and the average number of backorders in

the system (E[BF ]). The distribution of number of orders in system can be computed using

equations 6.1 - 6.3 from which the distribution of backorder and inventory level can be

determined.

To obtain the distribution of number of orders in the system (N) , we need to know the

number of orders at the batching station (NO) and the number of batches/pallets at the

processing station (NB) .
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P (N = n) =


P (NO = n) ∗ P (NB = 0) n < r

P (NO = n− bn/rc ∗ r) ∗ P (NB = bn/rc) n ≥ r
(6.1)

The distribution of number of orders at the batching station can be obtained as follows.

Let us assume that the external arrival process is a renewal process; then the arrival at the

batching station is also a renewal process with a rate (λ) and SCV (C2
a). The maximum

number of orders that can wait in the batching station is (r − 1) and the orders have an

equal probability of 1
r (Segal & Whitt, 1989), which is exact for Poisson arrivals.

P (NO = n) =


1
r 0 ≤ n < r

0 otherwise

(6.2)

6.2.1 Single-Server Processing Station

The processing station can be modeled either as a single-server station or a multi-server

station. In this section, we model the processing station as a GI/G/1 queue where each

customer (pallets) is a batch of r orders (cases).

The procedure to obtain the number of batches/pallets at the processing station is

as follows. Let E[NB] be the average number of batches at the processing station. The

arrival rate and SCV of the inter-arrival time of the batches into the processing station

is λ/r and C2
a/r, respectively (Bitran & Tirupati, 1989). E[NB] can be calculated using

Kramer-Langenbach-Beltz approximation (Kramer & Langenbach-Belz, 1976). Then, the

distribution of number of batches is given by Buzacott & Shantikumar (1993).

P (NB = n) =


1− ρ n = 0

ρ(1− σ)σn−1 n > 0
(6.3)

where

σ = E[NB]− ρ
E[NB]

From P (N = n), the distribution of backorders and inventory can be easily derived for

a single stage system as shown in Buzacott & Shantikumar (1993). The inventory level is
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given by

P (IF = k) =


P (N = S − k) k = 1, 2, ..S

P (N ≥ S) k = 0
(6.4)

Then the average inventory level at the rack is given by

E[IF ] =
S∑
k=1

kP (IF = k) (6.5)

The average number of backorders in the system is given by

E[BF ] = E[N ] + E[IF ]− S (6.6)

The accuracy of the models is tested by comparing the analytical results with simulation

estimates. The steady state estimate of a performance measure is obtained by averaging

over appropriate number of replications. The warm-up period is estimated using Welch’s

method (Welch, 1983) and is set at 50,000 entities. The statistics were collected for 200,000

entities and the performance measures were averaged over 10 replications.

Relative percentage error (RE) is used to measure the accuracy of the analytical model.

When the magnitude of the performance measure is itself small, absolute error is considered

better than RE. Robustness of the analytical model will be tested by varying the parameters

of the inter-arrival time distribution for the replenishment orders, service time distribution

and planned inventory levels at the rack. The performance measures will be examined

under low (SCV=0.5), medium (SCV=1.0) and high (SCV=2.0) variability of inter-arrival

and service times. An experimental design is provided in Table 6.1 for the single stage QI

system with batching. The arrival rate for the customer order is fixed at one and utilization

is set at 80% and 90% levels.

Accuracy of the Single-Server QI Model

The estimates of average inventory and average backorders at the rack at 80% and 90%

utilization for the unit-load system are given in Tables 6.2, 6.3, 6.4, and 6.5. We report the
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Parameters Levels
Batch Size 2 and 4

Arrival Rate, Arrival SCV 1, {0.5, 1, 2}
Service SCV {0.5, 1, 2}

Utilization (Batch processing) 80% and 90%
Forward Store Capacity 5, 10, and 15

Table 6.1: Experimental setup for single stage QI system with batching

Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

1 5 1.498 1.473 -1.71% 3.139 3.191 1.64%
1 10 4.836 4.801 -0.74% 1.477 1.519 2.76%
1 15 9.053 9.006 -0.52% 0.694 0.724 0.030
0.5 5 1.880 1.805 -4.14% 1.011 1.013 0.17%
0.5 10 6.107 6.018 -1.47% 0.238 0.226 -0.012
0.5 15 10.924 10.843 -0.75% 0.054 0.051 -0.003
2 5 1.235 1.282 3.69% 7.935 7.821 -1.45%
2 10 3.698 3.866 4.35% 5.398 5.405 0.13%
2 15 6.971 7.202 3.21% 3.671 3.741 1.87%

Table 6.2: Average inventory and average backorder at 80% utilization and batch size of 2
(single-server processing station)

absolute error in cases where the performance measures are themselves small. The results

indicate that the maximum absolute percentage error for the average inventory is 8.52%

and for the average backorder is 2.92% for a batch size of 4. When the batch size is 2, the

maximum absolute percentage errors are 7.21% and 4.61% for the average inventory and

average backorder respectively. We note that these errors occur at 90% utilization. Figures

6.4 and 6.5 graphically compare the analytical and simulation estimates for some of the

configurations.
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Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

1 5 0.798 0.776 -0.0221 9.952 10.159 2.04%
1 10 2.836 2.797 -1.39% 6.990 7.18 2.65%
1 15 5.755 5.694 -1.06% 4.908 5.077 3.32%
0.5 5 1.077 1.009 -0.0678 4.018 4.103 2.07%
0.5 10 4.071 3.954 -2.95% 2.012 2.048 1.76%
0.5 15 8.065 7.931 -1.69% 1.006 1.026 1.94%
2 5 0.634 0.673 0.0389 22.234 21.333 -4.22%
2 10 1.997 2.152 7.21% 18.597 17.811 -4.41%
2 15 3.9542 4.209 6.05% 15.554 14.869 -4.61%

Table 6.3: Average inventory and average backorder at 90% utilization and batch size of 2
(single-server processing station)

Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

1 5 0.761 0.674 -0.0873 7.700 7.679 -0.27%
1 10 2.931 2.865 -2.31% 4.870 4.87 0.00%
1 15 6.142 6.079 -1.04% 3.081 3.085 0.14%
0.5 5 0.801 0.668 -0.1325 3.668 3.683 0.40%
0.5 10 3.659 3.482 -5.09% 1.527 1.498 -1.92%
0.5 15 7.769 7.586 -2.41% 0.636 0.601 -0.035
2 5 0.734 0.677 -0.0573 15.910 15.73 -1.14%
2 10 2.402 2.508 4.23% 12.578 12.562 -0.12%
2 15 4.768 5.032 5.24% 9.944 10.086 1.41%

Table 6.4: Average inventory and average backorder at 80% utilization and batch size of 4
(single-server processing station)

Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

1 5 0.385 0.334 -0.0513 19.8550 19.963 0.54%
1 10 1.574 1.518 -3.69% 16.044 16.147 0.64%
1 15 3.495 3.427 -1.98% 12.964 13.055 0.69%
0.5 5 0.414 0.334 -0.0796 9.641 9.803 1.65%
0.5 10 2.133 1.965 -8.52% 6.360 6.434 1.15%
0.5 15 4.699 4.74 0.87% 4.196 4.21 0.32%
2 5 0.369 0.332 -0.0366 40.362 41.147 1.91%
2 10 1.236 1.286 3.86% 36.230 37.1 2.34%
2 15 2.527 2.681 5.74% 32.521 33.496 2.91%

Table 6.5: Average inventory and average backorder at 90% utilization and batch size of 4
(single-server processing station)
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(a) Average inventory when batch size = 2

(b) Average backorder when batch size = 2

Figure 6.4: Average inventory level and average backorders at the rack at 80% utilization
(single-server processing station)
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(a) Average inventory when batch size = 2

(b) Average backorder when batch size = 2

Figure 6.5: Average inventory level and average backorders at the rack at 90% utilization
(single-server processing station)
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In all our experiments, the SCV of the inter-arrival times of the external demand is

same as the variability of batch/pallet service times. Tables 6.2 - 6.5 indicate that average

inventory at the rack decreases whereas the average number of backorders increases as the

variability in the system increases. We note that the average inventory level decreases as the

batch size increases for the same base stock level, because the replenishment orders spend

more time in batching and processing than at the forward store. These conclusions hold

independent of the utilization level of the server. We also note that the analytical model

tracks the simulation model quite well and that the percentage errors are within acceptable

limits. The errors are much lower than the errors reported by Sivaramakrishnan (1998) for

a similar configuration of the single stage QI model with batch processing.

6.2.2 Multi-Server Processing Station

In this section, we model the processing station as a GI/G/m queue where there are m

independent and identical servers. The analysis of the system with a multiple server station

follows the general procedure described in section 6.2.1. We use the procedure developed

in Whitt (1993) to find the distribution of number in system in a multi-server queue. The

distribution of number of batches/pallets at the processing station is then given by

P (NB = k) =


P (Q = k −m) | P (Q > 0) k ≥ m+ 1

p(k) | P (Q = 0) 0 ≤ k ≤ m
(6.7)

where Q is the queue length random variable. p(k) is a truncated Poisson distribution

with intensity α, which is found by matching the exact value of expected number of busy

servers. The steps to find the distribution of number in system are described in detail

in Whitt (1993) and the steps to find the average inventory level and average number of

back-orders at the forward storage remains the same as before. For numerical verification,

we set the number of servers at three and follow the experimental design presented in 6.1.
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Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

0.5 5 0.599 0.539 0.060 2.555 2.435 4.95%
0.5 10 3.805 3.680 3.41% 0.762 0.576 0.186
0.5 15 8.345 8.233 1.36% 0.302 0.129 0.173
1 5 0.646 0.604 0.042 4.504 4.512 -0.17%
1 10 3.283 3.239 1.37% 2.142 2.147 -0.24%
1 15 7.199 7.116 1.17% 1.058 1.024 3.29%
2 5 0.681 0.664 0.017 8.450 8.226 2.72%
2 10 2.925 2.957 -1.09% 5.694 5.520 3.15%
2 15 6.082 6.205 -1.99% 3.851 3.767 2.23%

Table 6.6: Average inventory and average backorder at 80% utilization and batch size of 2
(multi-server processing station)

Accuracy of the Multi-Server QI Model

The estimates of average inventory and average backorders at the rack at 80% and 90%

utilization for the unit load system are given in Tables 6.6, 6.7, 6.8, and 6.9. We report

the absolute error in cases where the performance measures are small ( typically less than

1). The results from Tables 6.6 - 6.9 indicate that the maximum absolute percentage error

for the average inventory is 10.30% and for the average backorder is 10.62% at a batch size

of 4. When the batch size is 2, the maximum absolute percentage errors are 4.93% and

19.68% on the average inventory and average backorder respectively. We note that these

errors occur at 90% utilization. Figures 6.6 and 6.7 graphically compare the analytical and

simulation estimates for some of the configurations.
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Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

0.5 5 0.142 0.062 0.080 8.924 8.627 3.44%
0.5 10 1.027 0.865 0.162 4.808 4.429 8.56%
0.5 15 3.521 3.359 4.83% 2.303 1.924 19.68%
1 5 0.185 0.115 0.070 11.930 11.765 1.41%
1 10 1.120 0.998 0.122 7.865 7.648 2.84%
1 15 3.283 3.202 2.53% 5.028 4.853 3.61%
2 5 0.098 0.071 0.027 41.334 44.179 -6.44%
2 10 0.571 0.51 0.061 36.834 39.618 -7.03%
2 15 1.618 1.542 4.93% 32.908 35.65 -7.69%

Table 6.7: Average inventory and average backorder at 90% utilization and batch size of 2
(multi-server processing station)

Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

0.5 5 0.288 0.249 0.039 6.310 6.274 0.57%
0.5 10 2.214 2.142 3.35% 3.236 3.168 2.14%
0.5 15 5.730 5.558 3.10% 1.752 1.584 10.62%
1 5 0.312 0.286 0.026 11.798 11.999 -1.68%
1 10 1.803 1.764 2.22% 8.289 8.477 -2.22%
1 15 4.363 4.280 1.94% 5.849 5.993 -2.40%
2 5 0.329 0.314 0.015 22.835 22.994 -0.69%
2 10 1.577 1.540 2.42% 19.084 19.219 -0.70%
2 15 3.463 3.445 0.53% 15.971 16.125 -0.96%

Table 6.8: Average inventory and average backorder at 80% utilization and batch size of 4
(multi-server processing station)

Average Inventory Average Backorder
Service SCV BaseStock A S %E A S %E

0.5 5 0.059 0.023 0.036 15.802 15.542 1.67%
0.5 10 0.484 0.388 0.096 11.227 10.907 2.94%
0.5 15 1.857 1.757 5.68% 7.600 7.275 4.46%
1 5 0.081 0.048 0.033 24.621 24.595 0.11%
1 10 0.535 0.464 0.071 20.076 20.011 0.32%
1 15 1.700 1.636 3.91% 16.242 16.183 0.36%
2 5 0.225 0.162 0.063 18.340 18.385 -0.24%
2 10 1.197 1.085 10.30% 14.312 14.308 0.03%
2 15 3.139 3.074 2.10% 11.254 11.296 -0.37%

Table 6.9: Average inventory and average backorder at 90% utilization and batch size of 4
(multi-server processing station)
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(a) Average inventory when batch size = 2

(b) Average backorder when batch size = 2

Figure 6.6: Average inventory level and average backorders at the rack at 80% utilization
(multi-server processing station)
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(a) Average inventory when batch size = 2

(b) Average backorder when batch size = 2

Figure 6.7: Average inventory level and average backorders at the rack at 90% utilization
(multi-server processing station)
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6.3 Summary

In this chapter, we discussed the order-picking system from the perspective of changing unit-

load configuration. We developed a queueing-inventory model of a single stage system with

a batching station, with unlimited supply of raw materials with both single and multi server

processing nodes. In the next chapter, we develop an integrated model of the warehouse

operations using the shared-server system and order-picking system as building blocks.
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Chapter 7

Integrated Warehouse Model

In this chapter, we develop a comprehensive model of the warehouse, applying the models

developed in the earlier chapters, namely, the shared-server system and the order-picking

system. We briefly describe the warehouse system that is modeled, the representative

queueing-inventory model and its assumptions, and describe the solution procedure. The

results from the analytical model are then compared with the estimates from simulation

experiments.

7.1 Warehouse Description

Figure 7.1: Iconic model of the warehouse

Let us assume that pallet loads are received into the warehouse and are staged at the

I/O point of the reserve storage area. The S/R machines or operators transfer the pallet
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load from the I/O point to the empty slots (if available) for storage. Customer demand

is received into the warehouse in less-than-pallet-load quantities. The customer orders are

picked from the forward storage area and shipped immediately. When orders consume an

equivalent of a pallet load at the forward storage area, a replenishment pallet is transferred

from the reserve storage. The pallet load is removed from the rack by the S/R machines

or operators and staged at the I/O point of the reserve storage, which are then moved into

the forward storage area. We assume that the workers/resources that replenish the forward

storage are independent of either the order-pickers or those at the reserve storage. We also

assume that the customer orders are satisfied as soon as they are loaded onto the truck/ or

ready to be shipped at the outbound staging area. A representation of such a warehouse is

shown in the Figure 7.1

7.2 Queueing-Network Description

A queueing-inventory network model of the warehouse system is shown in Figure 7.2. Stage 1

represents the shared-server system representing the material movement to/from the reserve

store, stage 2 represents the internal replenishment of forward store from the reserve store,

and stage 3 represents the picking operation from the forward store to meet the customer

demand.

Figure 7.2: Queueing - Inventory model of the warehouse

We assume that the system operates under a stationary-demand pull system or a base-
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stock policy. The base stock policy is represented by non-negative integers Si ≥ 0, i = 1, 2, 3.

The quantity Si represents the maximum planned inventory at each stage. We assume non-

zero planned inventory at reserve store (S1) and forward store (S2) only. S1 is specified

in pallet loads and S2 is specified in case loads. Customer demand occurs at the picking

stage and it is for one case unit at a time. The customer order is received at the dummy

output store (S3 = 0) and it immediately signals a replenishment order at the output store

of the upstream stage, the forward store. If an item is available at the forward store, it

immediately joins the queue to be picked else it is backordered at stage 2.

At the internal replenishment stage, the consumption of an item/order at the forward

store triggers a replenishment order to the reserve storage. The orders are batched at the

batching station to make equivalent pallet load orders before placing the replenishment

orders at the reserve storage. These orders are then treated as the retrieval requests for

the shared-server system. It is important to note that the arrivals into the forward store

are pallet loads and departures are in case loads. We assume that pallet loads are received

into the warehouse independently of the customer demand and directly at the I/O station

of the shared-server system. These pallet arrivals are then treated as the storage requests

for the shared-server system.

Initially, we model the integrated system with single server stations and then extend to

include multi-server stations. We assume general arrival times for the customer demand

& pallets for storage, and general service times at all the processing/material movement

stages. The inputs to the integrated model, the performance measures of interest and the

solution procedure to analyze the integrated model are presented in the next section.

7.3 Analysis of the Integrated Model

The input parameters to the model are

λC , C
2
C = Arrival rate and SCV of the inter-arrival times of customer demand for cases

λS , C
2
S = Arrival rate and SCV of the inter-arrival times for the pallets to be stored

τi, C
2
i = the mean and SCV of processing time at stage i, i = 1, 2, 3

S1, S2 = Planned inventory level at reserve and forward stores respectively
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Figure 7.3: Input to and output from the Shared-server stage

r = Pallet size (number of cases per pallet)

mi = Number of servers at stage i, i = 1, 2, 3

The performance measures of interest are the average inventory levels at the reserve and

forward stores (E[I1] and E[I2] ), the average back-order level at the forward store (E[B2]),

and the average number of orders in the order-picking stage (E[N3]).

We decompose the integrated model into individual stages and obtain the steady state

performance measures using the solution methods developed in the earlier chapters.

7.3.1 Integrated Model : Single-Server Case

In the following analysis, we assume single server at all the stages.

Shared-server system: The inputs to the shared-server system are the parameters of

the arrival process of the storage and retrieval requests, the capacities of the respective

queues, the parameters of the single-command processing times and the size of the reserve

storage area. The arrivals occur in pallet loads at the shared-server system. The arrival

parameters for the retrieval requests are converted to equivalent pallet load quantities, since

the customer demand occurs in case quantities. We set the arrival rate of storage requests

equal to that of retrieval requests. Also, we set the capacities of the queues equal to that of

the reserve storage area. The inputs and outputs of the shared-server system are illustrated

in the Figure 7.3.

The departure process of the retrieval requests from the shared-server system is the

arrival process into the Internal-Replenishment stage. The parameters of the departure

process of the retrieval requests and the average inventory at the reserve storage (E[I1]) (in
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Figure 7.4: Input to and output from Internal-Replenishment stage

pallets) are obtained as explained in chapter 4.

Arrivals to the Internal-Replenishment stage: We note that in the shared-server system,

we have assumed finite buffer capacities for the storage and retrieval requests to wait.

Hence there is a possibility of loss of the requests, resulting in the departure rate from

the shared-server system that is not the same as the equivalent pallet arrival rate. For

modeling purposes, we artificially increase arrival rate of the storage and retrieval requests

in the shared-server system such that the departure rate of the retrieval requests is same

as the customer demand rate (in equivalent pallet quantities). Then, the departure rate of

the retrieval requests is the arrival rate at the internal-replenishment stage. The SCV of

the inter-departure times of the retrieval requests is the SCV of the inter-arrival times at

the Internal-Replenishment stage.

λa2 = λdR

C2
a2 = C2

dR

(7.1)

Analysis of the Internal-Replenishment stage: The pallets are immediately split into

individual cases at the forward store. Once, the parameters of the internal arrival process

are known, the performance measures (E[I2] and E[B2]) can be obtained using the solution

procedure given in equations (6.1 - 6.5) in cases. The parameters of the departure process

is given by
λd2 = λa2

C2
d2 = (1− ρ2

2)C2
a2 + ρ2

2C
2
S2

(7.2)

The inputs and output parameters of the internal-replenishment stage is illustrated in

Figure 7.4.
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Figure 7.5: Superposition of upstream and downstream arrivals to the order-picking queue

Arrivals to the Order-Picking stage: The arrival process to the order-picking queue

is the superposition of two processes; the orders that find an item in the forward store

immediately and proceed directly to the picking queue and the upstream orders that satisfy

the backorder at the forward store as illustrated in Figure 7.5.

The arrival rate to the order-picking queue is given by

λa3 = λC(= r ∗ λd2) (7.3)

The SCV of the arrival process is calculated using the following equation.

C2
C,1 = (1− p2)C2

C + p2

C2
d2,1 = p2(r ∗ C2

d2) + (1− p2)

C2
a,3 = (1− p2)C2

C,1 + p2C
2
d2,1

(7.4)

where p2 is the probability of backorder at stage 2 (there is no item at the forward store

when a customer demand arrives), is calculated using the following equation.
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p2 = 1−
S2∑
k=1

P (N2 = S2 − k) (7.5)

where S2 is the basestock level at the forward store and N2 is the number of cases/orders

in stage 2.

The departure process from the internal-replenishment stage is modified by the pallet

size (r) because the pallets are converted into cases before added to the forward store.

Analysis of the Order-Picking stage: Now, we know all the parameters characterizing

the arrival and service processes at the order-picking stage as illustrated in Figure 7.6. The

performance measure (E[N3] ) can be obtained using the equations 7.6.

Figure 7.6: Input to and output from Order-Picking stage

Wq3 = g(ρ3, C
2
a3, C

2
3 )
(
C2
a3+C2

3
2

) (
ρ3

1−ρ3

)
τ3

g(ρ3, C
2
a3, C

2
3 ) =


exp

(−2(1−ρ3)(1−C2
a3)2

3ρ3(C2
a3+C2

3 )

)
C2
a < 1

exp
(−(1−ρ3)(C2

a3−1)
ρ3+4C2

3

)
C2
a ≥ 1

E[N3] = Wq3 ∗ λa3

(7.6)

This completes the solution procedure to solve the integrated model and compute the

performance measures. The solution procedure is illustrated in algorithm 7.3.1.
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Algorithm 7.3.1: SolveIntegratedModel()

comment: Solution Procedure to Solve the Integrated Model

Inputs:

Arrival parameters of storage requests (pallets) (λS , C2
S) and

customer demand parameters (cases) (λC , C2
C)

Size of reserve and forward storage areas, and pallet size (S1, S2, r)

Service parameters at the shared-server, internal-replenishment server

and order-picking servers (τi, C2
i )

Number of servers at each stage (mi, in the multi-server case)

comment:We set λS = λC
r in the shared-server model.

Step1: Solve the shared-server system using Algorithm 4.3.2.

Step2: Compute the departure process parameters from the shared-server system

(λdR and C2
dR) and adjust for loss.

while |λdR − λc/r| < ε

Increase λS (= λc/r)

Solve the shared-server system with the new input parameters

end while

Step3: Set λa2 = λdR and C2
a2 = C2

dR, and solve the internal-replenishment stage.

Step4: Compute the parameters of the departure process from the

internal-replenishment stage (λd2, C
2
d2).

Step5: Split the pallet loads into cases before adding to the forward store.

Step6: Obtain the parameters of the combined arrival process to the

order-picking stage (λa3, C
2
a3) and solve the order-picking stage.

The experimental design used in the evaluation of our analytical procedure to solve the

integrated model is summarized in Table 7.1. In all the cases, we assume the same parameter

for the SCV of all arrival and service processes. Table 7.2 describes all the experiments in
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Parameter Levels / Parameters
Customer demand rate 1

Pallet Size and Pallet arrival rate 2 (0.5), 4 (0.25)
Utilization 0.8, 0.9

SCV of the demand IAT 0.5, 1, 2
SCV of the service times 0.5, 1, 2

Reserve Store Size 5, 25
Forward Store Size 10, 50 and 20, 100 for pallet size 2 and 4 resp.

Table 7.1: Experimental design to evaluate the integrated model

Shared-Server Internal-
Replenishment

Order-picking
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C1 5 5 5 0.5 0.8 1.6 10 0.8 2 1 0.5, 1, 2
C2 5 5 5 0.5 0.9 1.8 10 0.9 2 1 0.5, 1, 2
C3 25 25 25 0.5 0.8 1.6 50 0.8 2 1 0.5, 1, 2
C4 25 25 25 0.5 0.9 1.8 50 0.9 2 1 0.5, 1, 2
C5 5 5 5 0.25 1.6 3.2 20 0.8 4 1 0.5, 1, 2
C6 5 5 5 0.25 1.8 3.6 20 0.9 4 1 0.5, 1, 2
C7 25 25 25 0.25 1.6 3.2 100 0.8 4 1 0.5, 1, 2
C8 25 25 25 0.25 1.8 3.6 100 0.9 4 1 0.5, 1, 2

Table 7.2: Complete set of experiments to evaluate the integrated model (single server case)
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detail.

Accuracy of the Integrated Model: Single Server Case

The inputs to the integrated model are the arrival parameters of the customer demand

and storage requests, service parameters for the shared-server, internal-replenishment and

picking operations, inventory size at the reserve storage and forward storage area, and pallet

size. The performance measures are the average inventory levels at the reserve and forward

store, the average backorder level at the forward store, and the average number of customer

orders in the order-picking stage. We also provide the queue length performance measures at

the shared-server system. As mentioned in chapter 4 and 5, normalized percentage error is

is calculated for the queue length and inventory performance measures at the shared-server.

Relative percentage error is calculated for all other performance measures.

Tables 7.3 - 7.11 summarize the results of the analytical model and compare them against

the simulation estimates. Not including the case C6, in the case of shared-server system, the

maximum absolute error on the mean queue length of storage (retrieval) request is 15.50%

(13.14%) and on the average inventory at the reserve store is 4.90%. In the internal-

replenishment stage, the maximum absolute error in inventory level at the forward store

is 12.32%, and average absolute error in backorder is 12.32%. In the order-picking stage,

the average absolute error in mean number of orders is 2.34% and a maximum absolute

error at 22.26%. We note that all these errors occur either at high utilization levels of

90% or when the storage size is large. One of the reasons for the high error percentages

in the internal-replenishment and order-picking stages is that the shared-server system is

an unbalanced system. Any error in the estimation of parameters of the departure process

from the shared-server system will be amplified in the downstream stages. Also, we do

additional modifications to account for the losses of storage and retrieval requests, which

could be another source of inaccuracy.
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Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 0.730 2.166 2.161 2.242 0.790 5.577 0.597 0.800 2.610
C2 0.790 2.811 2.800 2.184 0.887 3.660 3.295 0.900 5.894
C3 0.795 4.802 4.825 12.061 0.795 44.661 0.000 0.800 2.335
C4 0.891 7.980 7.917 11.920 0.891 39.400 0.088 0.900 4.916
C5 0.731 2.156 2.148 2.227 0.792 10.728 1.246 0.800 2.610
C6 0.791 2.804 2.787 2.170 0.889 6.904 7.026 0.900 6.835
C7 0.795 4.749 4.783 11.988 0.796 88.940 0.000 0.800 2.335
C8 0.891 7.900 7.804 11.823 0.892 78.350 0.175 0.900 4.916

Table 7.3: Analytical estimates of the performance measures when C2
S = C2

C = C2
i = 0.5

(single-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 0.779 1.513 1.527 2.471 0.800 6.021 0.228 0.799 2.288
C2 0.871 2.036 2.143 2.413 0.900 3.981 2.001 0.900 4.821
C3 0.796 5.253 4.553 13.194 0.800 45.793 0.000 0.799 2.288
C4 0.896 6.243 5.606 13.144 0.900 41.985 0.006 0.900 4.821
C5 0.782 1.433 1.508 2.408 0.800 12.236 0.244 0.799 2.292
C6 0.875 1.934 2.164 2.307 0.899 8.372 2.654 0.900 4.827
C7 0.797 4.450 5.187 11.778 0.800 91.992 0.000 0.799 2.292
C8 0.896 5.396 6.123 11.789 0.899 85.718 0.000 0.900 4.827

Table 7.4: Simulation estimates of the performance measures when C2
S = C2

C = C2
i = 0.5

(single-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 6.29% -13.06% -12.68% 4.58% 1.25% 7.37% -0.369 -0.13% -14.07%
C2 9.30% -15.50% -13.14% 4.58% 1.44% 8.06% -64.67% 0.00% -22.26%
C3 0.13% 1.80% -1.09% 4.53% 0.63% 2.47% 0.0000 -0.13% -2.05%
C4 0.56% -6.95% -9.24% 4.90% 1.00% 6.16% -0.082 0.00% -1.97%
C5 6.52% -14.46% -12.80% 3.62% 1.00% 12.32% -1.002 -0.13% -13.87%
C6 9.60% -17.40% -12.46% 2.74% 1.11% 17.53% -164.73% 0.00% -41.60%
C7 0.25% -1.20% 1.62% -0.84% 0.50% 3.32% 0.000 -0.13% -1.88%
C8 0.56% -10.02% -6.72% -0.14% 0.78% 8.60% -0.1750 0.00% -1.84%

Table 7.5: Error estimates of the performance measures when C2
S = C2

C = C2
i = 0.5 (single-

server)
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Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 0.716 2.418 2.420 2.237 0.791 4.678 1.873 0.800 4.076
C2 0.772 3.082 3.076 2.188 0.883 2.938 7.040 0.900 9.862
C3 0.794 5.651 5.701 11.948 0.794 42.438 0.013 0.800 4.000
C4 0.887 9.667 9.588 11.786 0.887 35.180 0.662 0.900 9.016
C5 0.717 2.403 2.405 2.211 0.781 9.386 3.252 0.800 4.196
C6 0.773 3.071 3.062 2.165 0.872 6.102 11.889 0.900 11.223
C7 0.794 5.552 5.629 11.811 0.795 84.574 0.024 0.800 4.000
C8 0.887 9.532 9.409 11.615 0.889 69.689 1.312 0.900 9.031

Table 7.6: Analytical estimates of the performance measures when C2
S = C2

C = C2
i = 1

(single-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 0.753 1.874 1.988 2.394 0.800 4.824 1.483 0.799 3.997
C2 0.835 2.389 2.585 2.336 0.899 2.835 6.997 0.900 9.054
C3 0.792 5.871 5.500 12.812 0.800 43.344 0.002 0.799 3.997
C4 0.890 7.548 7.430 12.624 0.899 36.238 0.399 0.900 9.054
C5 0.761 1.771 1.982 2.300 0.800 9.985 1.912 0.799 3.995
C6 0.844 2.299 2.673 2.184 0.900 6.003 10.334 0.899 8.914
C7 0.794 5.222 5.757 11.974 0.800 88.074 0.001 0.799 3.995
C8 0.892 6.900 7.557 11.881 0.900 75.978 0.308 0.899 8.914

Table 7.7: Simulation estimates of the performance measures when C2
S = C2

C = C2
i = 1

(single-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 4.91% -10.88% -8.64% 3.14% 1.13% 3.03% -26.30% -0.13% -1.98%
C2 7.54% -13.86% -9.82% 2.96% 1.78% -3.63% -0.61% 0.00% -8.92%
C3 -0.25% 0.88% -0.80% 3.46% 0.75% 2.09% -0.011 -0.13% -0.08%
C4 0.34% -8.48% -8.63% 3.35% 1.33% 2.92% -0.263 0.00% 0.42%
C5 5.78% -12.64% -8.46% 1.78% 2.38% 6.00% -1.34 -0.13% -5.03%
C6 8.41% -15.44% -7.78% 0.38% 3.11% -1.65% -15.05% -0.11% -25.90%
C7 0.00% -1.32% 0.51% 0.65% 0.63% 3.97% -0.023 -0.13% -0.13%
C8 0.56% -10.53% -7.41% 1.06% 1.22% 8.28% -1.004 -0.11% -1.31%

Table 7.8: Error estimates of the performance measures when C2
S = C2

C = C2
i = 1 (single-

server)
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Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 0.693 2.759 2.791 2.234 0.797 3.712 5.440 0.800 6.569
C2 0.745 3.426 3.448 2.200 0.884 2.232 15.850 0.900 17.597
C3 0.790 7.185 7.303 11.762 0.791 38.542 0.261 0.800 7.005
C4 0.879 12.337 12.304 11.610 0.899 26.705 5.599 0.900 15.962
C5 0.696 2.739 2.785 2.194 0.789 7.422 9.895 0.800 7.214
C6 0.747 3.414 3.445 2.169 0.875 4.620 26.782 0.900 22.167
C7 0.791 7.007 7.193 11.524 0.792 76.802 0.491 0.800 7.010
C8 0.880 12.130 12.065 11.342 0.883 58.008 5.613 0.900 16.361

Table 7.9: Analytical estimates of the performance measures when C2
S = C2

C = C2
i = 2

(single-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 0.704 2.239 2.391 2.366 0.799 3.906 5.400 0.799 7.222
C2 0.774 2.653 2.879 2.324 0.900 2.141 18.367 0.901 17.259
C3 0.782 6.988 6.974 12.417 0.798 38.861 0.266 0.800 7.214
C4 0.877 9.425 9.954 11.939 0.900 28.101 4.662 0.900 16.989
C5 0.718 2.135 2.418 2.257 0.799 8.135 7.929 0.800 7.170
C6 0.789 2.589 2.978 2.190 0.901 4.516 29.175 0.901 17.375
C7 0.786 6.593 6.804 12.225 0.798 80.352 0.268 0.799 7.188
C8 0.881 9.185 9.876 11.717 0.900 60.488 6.111 0.901 17.750

Table 7.10: Simulation estimates of the performance measures when C2
S = C2

C = C2
i = 2

(single-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
C1 1.56% -10.40% -8.00% 2.64% 0.25% 4.97% -0.74% -0.13% 9.04%
C2 3.75% -15.46% -11.38% 2.48% 1.78% -4.25% 13.70% 0.11% -1.96%
C3 -1.02% -0.79% -1.32% 2.62% 0.88% 0.82% 0.0050 0.00% 2.90%
C4 -0.23% -11.65% -9.40% 1.32% 0.11% 4.97% -20.10% 0.00% 6.05%
C5 3.06% -12.08% -7.34% 1.26% 1.25% 8.76% -24.80% 0.00% -0.61%
C6 5.32% -16.50% -9.34% 0.42% 2.89% -2.30% 8.20% 0.11% -27.58%
C7 -0.64% -1.66% -1.56% 2.80% 0.75% 4.42% -0.2230 -0.13% 2.48%
C8 0.11% -11.78% -8.76% 1.50% 1.89% 4.10% 8.15% 0.11% 7.83%

Table 7.11: Error estimates of the performance measures when C2
S = C2

C = C2
i = 2 (single-

server)
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M1 5 5 5 0.5 2.4 4.8 10 2.4 2 1 0.5, 1, 2
M2 5 5 5 0.5 2.7 5.4 10 2.7 2 1 0.5, 1, 2
M3 25 25 25 0.5 2.4 4.8 50 2.4 2 1 0.5, 1, 2
M4 25 25 25 0.5 2.7 5.4 50 2.7 2 1 0.5, 1, 2
M5 5 5 5 0.25 4.8 9.6 20 4.8 4 1 0.5, 1, 2
M6 5 5 5 0.25 5.4 10.8 20 5.4 4 1 0.5, 1, 2
M7 25 25 25 0.25 4.8 9.6 100 4.8 4 1 0.5, 1, 2
M8 25 25 25 0.25 5.4 10.8 100 5.4 4 1 0.5, 1, 2

Table 7.12: Complete set of experiment to evaluate the integrated model (multi server)

7.3.2 Integrated Model : Multi-Server Case

In this section, we assume multiple servers at all the stages. In addition, we assume the same

number of servers at all stages (shared-server, internal-replenishment, and order-picking)

mi = 3.

We decompose the integrated model into individual stages with multi servers. We ana-

lyze each stage using the multi-server models developed in the earlier chapters (chapter 5 for

shared-server system and chapter 6 for the order-picking system) appropriately modifying

the arrival process to each of the stages.

The complete set of experiments is illustrated in the Table 7.12. The service times at

the processing stations are appropriately modified to set the utilization levels at 0.8 and

0.9.

Accuracy of the Integrated Model: Multi Server Case

In addition to the inputs of the single server model, the number of servers at each of the

stage is specified which is set at three in all the stages.

Tables 7.13 - 7.21 summarize the results of the analytical model and compare them
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against the simulation estimates. In the case of shared-server system, the maximum absolute

error for the mean queue length of storage (retrieval) request is 23.42% (17.26%) and average

inventory at the reserve store is 13.12%. In the internal-replenishment stage, the maximum

absolute error in inventory level at the forward store is 16.82% and average absolute error in

backorder is 23.46% with a maximum of 67.56%. In the order-picking stage, the maximum

error in backorder is 17.58%. We note that all these errors occur either at high utilization

levels of 90% or when the pallet size is large or both.

7.4 Summary

In this chapter, we demonstrated the applicability of the single and multi server models of

shared-server and order-picking system as building blocks in the development of comprehen-

sive model of warehouses. The results from the large number of experiments indicate that

the accuracy of the solution procedure is acceptable in most scenarios though warranting

further refinement in cases with high utilization and/or large pallet size. The queueing-

inventory model of the warehouse thus provides a framework to analyze both capacity and

congestion issues simultaneously in the context of warehouse performance evaluation. In

the next chapter, we summarize the results and contribution of this research effort.
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Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 0.698 2.192 2.185 1.885 0.790 3.579 1.247 0.800 3.912
M2 0.749 2.815 2.801 1.731 0.886 2.103 4.808 0.900 7.296
M3 0.793 4.973 5.001 11.474 0.794 41.983 0.006 0.800 3.558
M4 0.887 8.601 8.500 11.142 0.888 36.549 0.193 0.900 6.269
M5 0.699 2.184 2.174 1.871 0.771 7.310 2.029 0.800 3.878
M6 0.750 2.809 2.788 1.718 0.873 4.390 8.001 0.900 7.290
M7 0.794 4.923 4.967 11.399 0.794 83.584 0.012 0.800 3.558
M8 0.888 8.528 8.377 11.042 0.888 72.614 0.383 0.900 6.269

Table 7.13: Analytical estimates of the performance measures when C2
S = C2

C = C2
i = 0.5

(multi-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 0.779 1.311 1.349 2.467 0.8 3.692 0.573 0.8 3.559
M2 0.872 1.829 1.957 2.387 0.9 2.156 3.123 0.9 6.205
M3 0.796 4.931 4.672 12.848 0.8 43.119 0 0.8 3.559
M4 0.895 5.924 5.63 12.873 0.9 39.047 0.014 0.9 6.205
M5 0.784 1.255 1.311 2.448 0.8 7.251 0.784 0.8 3.559
M6 0.878 1.746 1.95 2.322 0.899 4.304 4.775 0.9 6.205
M7 0.798 4.923 4.367 13.212 0.8 86.466 0 0.8 3.559
M8 0.897 5.739 5.321 13.037 0.899 79.532 0.003 0.9 6.205

Table 7.14: Simulation estimates of the performance measures when C2
S = C2

C = C2
i = 0.5

(multi-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 10.40% -17.62% -16.72% 11.64% 1.25% 3.06% -0.67 0.00% -9.92%
M2 14.11% -19.72% -16.88% 13.12% 1.56% 2.46% -53.95% 0.00% -17.58%
M3 0.38% -0.17% -1.32% 5.50% 0.75% 2.63% -0.0060 0.00% 0.03%
M4 0.89% -10.71% -11.48% 6.92% 1.33% 6.40% -0.18 0.00% -1.03%
M5 10.84% -18.58% -17.26% 11.54% 3.63% -0.81% -1.25 0.00% -8.96%
M6 14.58% -21.26% -16.76% 12.08% 2.89% -2.00% -67.56% 0.00% -17.49%
M7 0.50% 0.00% -2.40% 7.25% 0.75% 3.33% -0.0120 0.00% 0.03%
M8 1.00% -11.16% -12.22% 7.98% 1.22% 8.70% -0.38 0.00% -1.03%

Table 7.15: Error estimates of the performance measures when C2
S = C2

C = C2
i = 0.5

(multi-server)
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Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 0.688 2.418 2.403 1.895 0.787 3.342 2.288 0.800 4.964
M2 0.735 3.086 3.062 1.758 0.885 1.934 8.226 0.900 9.967
M3 0.792 5.773 5.804 11.342 0.793 40.560 0.021 0.800 4.987
M4 0.883 10.459 10.250 10.991 0.884 33.580 0.658 0.900 10.046
M5 0.689 2.404 2.382 1.870 0.776 6.662 4.044 0.800 4.964
M6 0.736 3.076 3.040 1.735 0.874 4.007 13.989 0.900 9.962
M7 0.792 5.669 5.723 11.196 0.793 80.826 0.041 0.800 4.987
M8 0.884 10.327 10.015 10.805 0.886 66.603 1.288 0.900 10.046

Table 7.16: Analytical estimates of the performance measures when C2
S = C2

C = C2
i = 1

(multi-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 0.756 1.626 1.741 2.399 0.8 3.265 2.077 0.8 4.958
M2 0.84 2.143 2.351 2.326 0.901 1.777 8.353 0.9 10.079
M3 0.792 5.465 5.363 12.522 0.8 41.194 0.006 0.8 4.958
M4 0.891 7.178 7.11 12.554 0.901 33.93 0.506 0.9 10.079
M5 0.765 1.548 1.732 2.324 0.8 6.454 3.02 0.8 5.002
M6 0.85 2.078 2.43 2.194 0.9 3.564 12.939 0.901 10.095
M7 0.794 5.58 5.047 13.17 0.8 83.435 0.001 0.8 5.002
M8 0.894 7.125 6.897 12.829 0.9 71.016 0.391 0.901 10.095

Table 7.17: Simulation estimates of the performance measures when C2
S = C2

C = C2
i = 1

(multi-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 8.99% -15.84% -13.24% 10.08% 1.63% -2.36% -10.16% 0.00% -0.12%
M2 12.50% -18.86% -14.22% 11.36% 1.78% -8.84% 1.52% 0.00% 1.11%
M3 0.00% -1.23% -1.76% 4.72% 0.88% 1.54% -0.0150 0.00% -0.58%
M4 0.90% -13.12% -12.56% 6.25% 1.89% 1.03% -0.15 0.00% 0.33%
M5 9.93% -17.12% -13.00% 9.08% 3.00% -3.22% -33.91% 0.00% 0.76%
M6 13.41% -19.96% -12.20% 9.18% 2.89% -12.43% -8.12% 0.11% 1.32%
M7 0.25% -0.36% -2.70% 7.90% 0.88% 3.13% -0.0400 0.00% 0.30%
M8 1.12% -12.81% -12.47% 8.10% 1.56% 6.21% -0.90 0.11% 0.49%

Table 7.18: Error estimates of the performance measures when C2
S = C2

C = C2
i = 1 (multi-

server)
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Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 0.669 2.787 2.780 1.927 0.788 3.084 4.879 0.800 6.753
M2 0.711 3.483 3.470 1.817 0.886 1.777 15.631 0.900 15.278
M3 0.788 7.303 7.394 11.136 0.790 37.953 0.205 0.800 7.525
M4 0.874 13.644 13.318 10.824 0.886 28.611 3.469 0.900 16.452
M5 0.672 2.771 2.758 1.887 0.773 6.278 8.203 0.800 6.773
M6 0.713 3.474 3.452 1.784 0.877 3.641 26.541 0.900 15.207
M7 0.789 7.115 7.255 10.872 0.791 75.647 0.380 0.800 7.528
M8 0.876 13.443 12.944 10.527 0.879 58.786 4.670 0.900 16.561

Table 7.19: Analytical estimates of the performance measures when C2
S = C2

C = C2
i = 2

(multi-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 0.713 1.934 2.098 2.367 0.8 2.943 5.568 0.8 7.72
M2 0.785 2.379 2.615 2.326 0.902 1.537 19.285 0.9 17.68
M3 0.782 6.361 6.814 11.961 0.802 37.539 0.333 0.8 7.756
M4 0.878 9.074 9.462 12.082 0.9 27.142 4.905 0.9 17.547
M5 0.726 1.839 2.1 2.284 0.801 5.879 8.79 0.8 7.647
M6 0.799 2.303 2.707 2.192 0.901 3.117 31.218 0.899 17.408
M7 0.786 6.034 6.291 12.263 0.801 77.41 0.307 0.8 7.694
M8 0.882 8.647 9.387 11.797 0.903 57.438 6.143 0.9 17.689

Table 7.20: Simulation estimates of the performance measures when C2
S = C2

C = C2
i = 2

(multi-server)

Shared-Server Internal-Replenishment Order-picking
Case UTIL STQ RTQ INV UTIL INV BO UTIL ORDERS
M1 6.17% -17.06% -13.64% 8.80% 1.50% -4.79% 12.37% 0.00% 12.53%
M2 9.43% -22.08% -17.10% 10.18% 1.77% -15.61% 18.95% 0.00% 13.59%
M3 -0.77% -3.77% -2.32% 3.30% 1.50% -1.10% 0.1280 0.00% 2.98%
M4 0.46% -18.28% -15.42% 5.03% 1.56% -5.41% 29.28% 0.00% 6.24%
M5 7.44% -18.64% -13.16% 7.94% 3.50% -6.79% 6.68% 0.00% 11.43%
M6 10.76% -23.42% -14.90% 8.16% 2.66% -16.81% 14.98% -0.11% 12.64%
M7 -0.38% -4.32% -3.86% 5.56% 1.25% 2.28% -0.0730 0.00% 2.16%
M8 0.68% -19.18% -14.23% 5.08% 2.66% -2.35% 23.98% 0.00% 6.38%

Table 7.21: Error estimates of the performance measures when C2
S = C2

C = C2
i = 2 (multi-

server)
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Chapter 8

Summary, Conclusions and Future

Research

In this chapter, we summarize the research conducted in this dissertation effort, followed

by the contributions made to the areas of queueing-inventory models and warehouse perfor-

mance evaluation. The final section of this chapter summarizes some directions for future

research.

8.1 Research Summary

The main research goal for this dissertation was the development of analytical performance

evaluation models for warehouses that can address queueing and inventory issues simulta-

neously. To this end, two important configurations commonly found in warehouses were

studied in this research; a shared-server system and an order-picking system. These two

building blocks were then used in the development of an end-to-end warehouse model.

In chapter 4, we developed analytical models of the shared-server system for the single

server case. Initially we developed a CTMC based model of the shared-server under Marko-

vian assumptions. To address general arrival processes and general storage/retrieval times,

an approximate queueing network model of the shared-server was developed. The approx-

imate analytical model was developed for a shared-server operating in a single command

mode. In chapter 5, the shared-server system was extended to model the multi-server case
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to better represent multiple S/R machines serving the storage area. Several configurations

were tested by comparing results of the analytical model with simulation estimates and the

results indicated that the approximation method performs well for a wide range of param-

eter values. The SCV of the departure process of the retrieval requests was analyzed, since

this becomes the input process to the downstream operations in the warehouse.

In the single server case, 90% of analytical results had less than 5% absolute relative

percentage error and 96% were within 10% error. In the multi-server case for the shared-

server, 82% of analytical results had less than 5% error and 91% less than 10% error. These

results indicate that the approximate model of the shared-server system using the queueing

network approach performs very well. On close observation, we note that higher percentage

errors occur in the estimation of the throughput and utilization measures.

In chapter 6, we developed a queueing-inventory model of an order-picking system and

developed an analytical solution procedure to solve a single-stage queueing-inventory model

with a batching station that forms a key component of the order-picking system. The single

server model is then extended to include multiple servers. The models developed address

general arrival times and service times for retrieval requests. Several configurations were

tested for both single and multi server cases and the results indicated that the approximation

method performs very well in a majority of the cases examined. All performance measures

(average inventory and average backorders) had absolute relative percentage errors less than

10% in the single server case. In the multi server case, 94% of the analytical results had

absolute percentage error less than 10%.

In chapter 7, a warehouse configuration is defined that includes a receiving process into

storage and retrieval from the reserve storage area, replenishment from the reserve to the

forward storage area and order-picking from the forward storage area. The shared-server

system and order-picking system were then used to develop a queueing-inventory model

of the warehouse. Numerical experiments showed that the analytical model performed

reasonably well in both single and multi server cases. In the integrated model, 80% of the

analytical results had less than 10% relative percentage error in the single server case and

61% of the results in the multi server case. One of the reasons for higher errors is that any

error in the estimation of throughput and SCV of a departure process in an upstream stage
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will affect the accuracy of performance prediction of the downstream stages. We also note

that these errors were more pronounced in backorder measures than in inventory related

measures.

8.2 Research Contributions

The primary contribution of this dissertation is the development of analytical performance

evaluation models that model the impact of inventory decisions (planned inventory levels

at the forward and reserve store) together with material handling capacity issues in a single

queueing based framework for warehouse systems. Doing so, provides us with a means to

study the combined effect of inventory decisions and material handling capacity decisions

in a warehouse. The various contributions are summarized below.

• The shared-server system is the most important component of a warehouse system.

Modeling the shared-server is key to the development of analytical models of a com-

plete warehouse system. Though other researchers such as Lee (1997) and Bozer &

Cho (2005) have developed analytical models of AS/RS, our approach explicitly mod-

els the inventory store size within the same framework and is a first. We modeled

the shared-server using a CTMC, which gives us an exact method for solving the

shared-server system under Markovian assumptions. Perhaps, the most significant

contribution is the development of the queueing network model of the general shared-

server system. By comprehensively analyzing the shared-server model under balanced

and unbalanced conditions, we were able to develop insights into the behavior of the

system.

• Extending the single shared-server to include multiple servers enhanced the applicabil-

ity of the analytical models to realistic situations such as storage areas with multiple

S/R machines or operators.

• This research effort also addressed the changing nature of the product configuration

between storage operations in a warehouse. By modeling the order-picking operation

as a queueing-inventory model with a batching station, we developed a valuable ex-
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tension to the class of such models that allows for changing product configuration in

and out of inventory stores.

• We demonstrated the applicability of these models as key building blocks in the de-

velopment of integrated end-to-end warehouse models, thereby enabling the study of

two important decisions in the warehouse, namely, resource capacity and storage size

simultaneously.

8.3 Future Directions

Significant part of the research effort was focused on the development of the shared-server

system. Though the approximate model worked well in most of the test cases, further

investigation is warranted. The shared-server system is a first model of its kind and the

following provides some ideas for future research.

8.3.1 Research related to the shared-server system

One of the major issues with modeling of the shared-server is the stability issue. Detailed

investigation of the stability issues in the shared-server system could be a subject of future

research. See Appendix (A.2) for more information about steady state behavior of the

shared-server system.

The CTMC model of the shared-server under single-command service operation was

numerically solved to obtain the performance measures. A closed form solution to the

CTMC model could be a subject of future research.

The accuracy of the analytical model for the shared-server for general arrival and service

time distributions greatly depends on the accuracy of the synchronization station model.

Any improvement in the accuracy of the performance estimates of the synchronization

station will improve the accuracy of the shared-server system; and hence, this could be a

subject of future research.

The analytical model of the shared-server system is based on a closed-network model

with number of kanbans representing the size of the reserve storage area. In addition, the

synchronization stations have a capacity limit on the number of requests waiting for the
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kanbans. Because of these fixed queue capacities, some of the service requests are lost.

Though this may not be significant in a standalone system, it could lead to inaccuracies in

modeling the downstream operations when the shared-server is used as a part of a larger

model. Modeling the “lost” arrivals aspect of the shared-server system could be a topic for

future research.

The shared-server system was modeled under single-command cycle assumptions. It will

be interesting and useful to study the shared-server in a dual-command mode.

8.3.2 Research related to warehouse system

In this dissertation, we did not model multiple classes of customers. Extending these models

to such configurations could be a subject for further investigation. We have assumed unit

order quantity for customer demand in this research. Developing models that can handle

bulk demand could be a subject of future research.

Rapid performance evaluation tools based on queueing network models are available

for manufacturing systems analysis. Development of such a rapid performance evaluation

tool for warehouse analysis and design is now a real possibility as the models that we have

developed are able to explicitly capture the size of inventory stores - a key decision in

warehouse designs.
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Appendix A

Appendix

A.1 Stationary Equations - Shared-Server System

The stationary equations are defined for the shared-server system for the single server case.

The queue capacity is set independent of the rack size. Both the storage and retrieval

buffers can reach the maximum at the same time. Arrivals to the queue are lost when the

queues are full. Also, the arriving requests do not have information about the mode of the

server.

When m = 0, i = 0, j = 0, 0 ≤ k ≤ Z

µSCPR,0,0,k+1 = (λS + λR)P0,0,0,k k = 0
µSCPR,0,0,k+1 + µSCPS,0,0,k−1 = (λS + λR)P0,0,0,k 0 < k < Z

µSCPS,0,0,k−1 = (λS + λR)P0,0,0,k k = Z

When m = 0, 0 < i < BS , j = 0, k = Z

µSCPS,i,0,k−1 + λSP0,i−1,0,Z = (λS + λR)P0,i,0,k (A.1)

When m = 0, i = BS , j = 0, k = Z

µSCPS,i,0,k−1 + λSP0,i−1,0,Z = λRP0,i,0,k (A.2)

when there is an item to be retrieved from the rack, server mode can not be “0”.
When m = 0, i = 0, 0 < j < BR, k = 0

µSCPR,0,j,k+1 + λRP0,0,j−1,0 = (λS + λR)P0,0,j,k (A.3)
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When m = 0, i = 0, j = BR, k = 0

µSCPR,0,j,k+1 + λRP0,0,j−1,0 = λSP0,0,j,k (A.4)

When there is a space to put an item in the rack or there is an item that can be retrieved,
the server mode can not be “0”.

When m = S, i = 0, j = 0, 0 ≤ k < Z

µSCPR,i+1,j,k+1 + λSP0,i,j,k = (λS + λR + µSC)Pm,i,j,k (A.5)

When m = S, i = 0, 0 < j < BR, k = 0

µSCPR,i+1,j,k+1 + λSP0,i,j,k + λRPS,i,j−1,k = (λS + λR + µSC)Pm,i,j,k (A.6)

When m = S, i = 0, 0 < j < BR, 0 < k < Z

psµSCPR,i+1,j,k+1 + psµSCPS,i+1,j,k+1 + λRPS,i,j−1,k = (λS + λR + µSC)Pm,i,j,k (A.7)

When m = S, i = 0, j = BR, k = 0

µSC1PR,i+1,j,k+1 + λSP0,i,j,k + λRPS,i,j−1,k = (λS + µSC)Pm,i,j,k (A.8)

When m = S, i = 0, j = BR, 0 < k < Z

psµSCPR,i+1,j,k+1 + psµSCPS,i+1,j,k+1 + λRPS,i,j−1,k = (λS + µSC)Pm,i,j,k (A.9)

When m = S, 0 < i < BS , j = 0, 0 ≤ k < Z

µSCPR,i+1,j,k+1 + psµSCPS,i+1,j,k+1 + λSPS,i−1,j,k = (λS + λR + µSC)Pm,i,j,k (A.10)

When m = S, 0 < i < BS , 0 < j < BR, k = 0

µSCPR,i+1,j,k+1 + λSPS,i−1,j,k + λRPS,i,j−1,k = (λS + λR + µSC)Pm,i,j,k (A.11)

When m = S, 0 < i < BS , 0 < j < BR, 0 < k < Z

µSCPR,i+1,j,k+1 + µSCPS,i+1,j,k−1 + λSPS,i−1,j,k + λRPS,i,j−1,k = (λS + λR + µSC)Pm,i,j,k
(A.12)

When m = S, 0 < i < BS , j = BR, k = 0

µSCPR,i+1,j,k+1 + λSPS,i−1,j,k + λRPS,i,j−1,k = (λS + µSC)Pm,i,j,k (A.13)
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When m = S, 0 < i < BS , j = BR, 0 < k < Z

µSCPR,i+1,j,k+1 +µSCPS,i+1,j,k−1 + λSPS,i−1,j,k + λRPS,i,j−1,k = (λS +µSC)Pm,i,j,k (A.14)

When m = S, i = BS , j = 0, 0 ≤ k < Z

λSPS,i−1,j,k = (λR + µSC)Pm,i,j,k (A.15)

When m = S, i = BS , 0 < j < BR, 0 ≤ k < Z

λSPS,i−1,j,k + λRPS,i,j−1,k = (λR + µSC)Pm,i,j,k (A.16)

When m = S, i = BS , j = BR, 0 ≤ k < Z

λSPS,i−1,j,k + λRPS,i,j−1,k = (µSC)Pm,i,j,k (A.17)

When m = R, i = 0, j = 0, 0 < k < Z

(λS + λR + µSC)Pm,i,j,k = λRP0,i,j,k + PrµSCPS,i,j+1,k−1 + PrµSCPR,i,j+1,k+1 (A.18)

When m = R, i = 0, j = 0, k = Z

(λS + λR + µSC)Pm,i,j,k = λRP0,i,j,k + µSCPS,i,j+1,k−1 (A.19)

When m = R, i = 0, 0 < j < BR, 0 < k < Z

(λS + λR + µSC)Pm,i,j,k = λRPR,i,j−1,k + PrµSCPS,i,j+1,k−1 + PrµSCPR,i,j+1,k+1 (A.20)

When m = R, i = 0, 0 < j < BR, k = Z

(λS + λR + µSC)Pm,i,j,k = λRPR,i,j−1,k + µSCPS,i,j+1,k−1 (A.21)

When m = R, i = 0, j = BR, 0 < k ≤ Z

(λS + µSC)Pm,i,j,k = λRPR,i,j−1,k (A.22)

When m = R, 0 < i < BS , j = 0, 0 < k < Z

(λS + λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + prµSCPS,i,j+1,k−1 + prµSCPR,i,j+1,k+1 (A.23)
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When m = R, 0 < i < BS , j = 0, k = Z

(λS + λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + λRP0,i,j,k + prµSCPS,i,j+1,k−1 (A.24)

When m = R, 0 < i < BS , 0 < j < BR, 0 < k < Z

(λS+λR+µSC)Pm,i,j,k = λSPR,i−1,j,k+λRPR,i,j−1,k+PrµSCPS,i,j+1,k−1 +PrµSCPR,i,j+1,k+1
(A.25)

When m = R, 0 < i < BS , 0 < j < BR, k = Z

(λS + λR + µSC)Pm,i,j,k = λSPR,i−1,j,Z + λRPR,i,j−1,Z + PrµSCPS,i,j+1,Z−1 (A.26)

When m = R, 0 < i < BS , j = BR, 0 < k ≤ Z

(λS + λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + λRPR,i−1,j,k (A.27)

When m = R, i = BS , j = 0, 0 < k < Z

(λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + PrµSCPS,i,j+1,k−1 + PrµSCPR,i,j+1,k+1 (A.28)

When m = R, i = BS , j = 0, k = Z

(λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + λRP0,i,j,k + µSCPS,i,j+1,k−1 (A.29)

When m = R, i = BS , 0 < j < BR, 0 < k < Z

(λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + λRPR,i,j−1,k + PrµSCPS,i,j+1,k−1 + PrµSCPR,i,j+1,k+1
(A.30)

When m = R, i = BS , 0 < j < BR, k = Z

(λR + µSC)Pm,i,j,k = λSPR,i−1,j,k + λRPR,i,j−1,k + µSCPS,i,j+1,k−1 (A.31)

When m = R, i = BS , j = BR, 0 < k ≤ Z

(µSC)Pm,i,j,k = λSPR,i−1,j,k + λRPR,i,j−1,k (A.32)

159



A.2 Simulation Study of the Shared-Server System

In this dissertation, the accuracy of the analytical results was determined by comparing

them with simulation estimates. The performance measures obtained from the analytical

models were steady state values. Hence, the simulation estimates must also represent steady

state values. While performing steady state simulation experiments, a warm-up period has

to be determined to remove any initialization bias, and a sufficient run-length has to be

provided so that rare events occur a reasonable number of times.

In the shared-server system, the factors that affect the warm-up period and run length

were the parameters of the arrival (storage and retrieval requests) and service processes.

Since, we cannot estimate the warm-up period and run length for every test configuration,

we chose a system that has high variability in the arrival and service processes. In general,

higher the variability longer will be the time to reach steady state, and longer would be the

run length to get good estimates. Hence, we chose a system with high variability for the

arrival and service parameters; hyper-exponential distribution (SCV = 2) for inter-arrival

times and service times and a high utilization level of 90%, to set the warm-up and run

length for all our experiments. Another important parameter in the shared-server system

is the size of the inventory store. We set the rack size at 5 in the first case and 100 in the

second case. We initialize the model with 50% of the maximum planned inventory level and

used Welch’s method Welch (1983) to determine the warm-up period.

The shared-server system posed significant difficulty in modeling because of the under-

lying issues with stability. The capacity limits on the rack, and the limits on the storage and

retrieval request queues provide the necessary control on the operation of the shared-server.

In addition, we assumed equal arrival rates for the storage and retrieval requests in this

research. Figure A.1 illustrates the batch means for 10 replications of the time in system

for the retrieval requests, when the size of the inventory store is 5. We see that the system

exhibits steady state after the completion of few retrieval requests.

Figure A.2 illustrate the batch means for 10 replications of the time in system for the

retrieval requests when the rack size is 100. A moving average window of 10,000 was used.

The simulation statistics were collected for 1,000,000 entities.
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(a) Window length for moving average = 1000
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(b) Window length for moving average = 5000

Figure A.1: Plot of batch means of time in system for retrieval requests
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(a) Plot of batch means for the requests 1 - 50000
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(b) Plot of batch means for the requests 50001 - 100000

Figure A.2: Plot of batch means of time in system for retrieval requests
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(c) Plot of batch means for the requests 100001 - 150000
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(d) Plot of batch means for the requests 150001 - 200000

Figure A.2: Plot of batch means of time in system for retrieval requests (contd.)
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(e) Plot of batch means for the requests 450001 - 500000
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(f) Plot of batch means for the requests 550001 - 600000

Figure A.2: Plot of batch means of time in system for retrieval requests (contd.)
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(g) Plot of batch means for the requests 600001 - 650000

Figure A.2: Plot of batch means of time in system for retrieval requests (contd.)
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We notice that the simulation estimates for the time in system starts to exhibit steady

state behaviour after a very long time. Upon further testing, we estimated the warm-up

period at 400,000 time units, and collected statistics for 600,000 entities.

Another decision that was required to conduct the simulation experiments was the ran-

dom number seeds. Our preliminary experiements showed that the random number seed

had a significant impact on the steady state behavior of the shared-server system. Arena

simulation software provides 10 random number streams. Each of the arrival processes and

service process were tested with different combinations of random streams before deciding

on the warm-up period, run length and replications.
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