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EFFECT OF TREATING FIELD SPATIAL VARIABILITY IN WINTER WHEAT  
(Triticum aestivum L.) AT DIFFERENT RESOLUTIONS 

 

ABSTRACT 

 

Variable rate application is one of the emerging technologies for improved nitrogen use 

efficiency (NUE) of grain crops. This study was conducted to determine the scale at which spatial 

variability should be treated using an in-season nitrogen fertilization optimization algorithm 

(NFOA). The treatments included variable N rate applications at three resolutions (0.84, 13.37 

and 26.76 m2), a fixed N rate at 90 kg ha-1 applied preplant and midseason, and a check plot (0-

N). Treatments were arranged in a completely randomized design (CRD) with three replications 

established at two locations for three years (Chickasha 2004-2006, Tipton 2004-2005, and Lake 

Carl Blackwell 2006). Plots treated variably were sensed at winter wheat growth stages Feekes 5 

using the GreenSeekerTM hand held sensor prior to midseason fertilization.  The N rate for each 

subplot was calculated using predicted yield potential (YP0), response index (RI) and coefficient 

of variation (CV), all derived from Normalized Difference Vegetation Index (NDVI) readings. On 

average, the NFOA-based N rates achieved a higher NUE of 41% compared with the 90 kg ha-1 

fixed rate applied midseason of only 33%.  The highest NUE among the NFOA-based N rate 

treatments was 56% at 13.4 m2 resolution. Four out of six site years resulted in higher net return 

when the NFOA approach was used. Savings on cost of N fertilizer ranged from $ 5 to 101, and $ 

32 to 101 per hectare when compared with the fixed rate of 90 kg ha-1 applied midseason and/or 

preplant, respectively. These benefits were attributed to a large reduction in NFOA-based N rate 

recommendations. Treating spatial variability at 0.84 m2 had a positive impact on net return and 

NUE only when the average CV (estimate of crop stand) was greater than 20%, and when the 

price of N fertilizer was at least $ 0.60 kg N-1 provided that the price of wheat grain was 

1



2

$ 0.08 kg-1. When NFOA was used to determine midseason N rate requirements, treating spatial 

variability at 13.4 m2 resulted in increased NUE and net return. 
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INTRODUCTION 

 

Liberal applications of nitrogen (N) fertilizer in crop production has led to reduction of 

farmers’ revenues and increased human health and environmental risk. Current worldwide N use 

efficiency (NUE; increased grain N uptake per unit of N applied) in cereal grains averages only 

33% and the unaccounted 67% of applied N is lost via g aseous plant emission, soil 

denitrification, surface runoff, volatilization and leaching (Raun and Johnson, 1999). Conventional 

N fertilization based on soil testing of representative samples from large farm areas is at fixed 

rates and usually applied before crop establishment. Due to spatial variability in the field, single 

rates may estimate N requirement far from the actual values needed to achieve a target yield 

goal, resulting in excess N application at certain locations in the field. Moreover, N in soils 

changes with time as environmental conditions highly influence mineralization and immobilization, 

the predominance of one process over the other determines the level of available N for plant use. 

To meet the demand of the projected 7.5 billion world population in 2020 (FAO data, 

2004), wheat production needs to increase beyond the current yield level of 556 million tons (FAO 

data, 2003) by 40% (Rosegrant et al., 1997). Since the potential of the Green Revolution has 

been exhausted and there is a continuous decline in arable land, future gains in wheat production 

and revenues will have to come from increased productivity at reduced input costs. 

Farmers often apply N fertilizer in excess to avoid deficiency and to ensure that the N 

requirements of the crop for the whole cycle are met. According to FAO (2005), the present total 

consumption of nitrogenous fertilizer in the world is estimated to be 85.1 Mt N yr-1. For the past 34 

years, agricultural food production was doubled due to a 6.87-fold increase in N fertilization 

(Tilman, 1999). Improper N fertilizer management has resulted in greater use of energy 

resources, increased production costs and increased environmental and human risk (Sharpe et 
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al., 1988).  Rabalais et al. (2001) reported that excessive fertilizer N application has exacerbated 

hypoxia within the Gulf of Mexico. Moreover, high N rates may result in poor N uptake and thus 

decreased N use efficiency (Sowers et al., 1994). The benefit of increasing N use efficiency 

includes increased profit by reducing N fertilizer inputs and reduction of environmental and 

human health risks associated with nitrate contamination (Huggins and Pan, 1993).  

Several studies were conducted to develop management systems that would increase N 

use efficiency. Proper timing of application and adequate N rates are all important considerations 

in providing what the plant needs and can therefore improve N use efficiency. Wheat farmers in 

the Great Plains typically apply fertilizer N either one-time before planting, or split in small 

amounts before planting followed by a late-winter or early spring topdressing (Kelley, 1995). 

Similarly, Cassman et al. (1992) showed that pre-plant and in-season N fertilizer management 

improved both yield and protein content of wheat. Split applications maximize crop utilization of 

applied fertilizer N throughout the growing season (Mascagni and Sabbe, 1991; Boman et al., 

1995).  Late-season applied N allows the farmers to adjust N rates according to crop growth and 

may also reduce potential N losses from leaching and denitrification over the winter. Further, 

many researchers have found that one-time large pre-plant applications of N fertilizer may lead to 

decreased N use efficiency due to losses or immobilization before plant uptake (Welch et al., 

1996; and Olson and Swallow, 1984; Lutcher and Mahler, 1988; Fowler and Brydon, 1989; Wuest 

and Cassman, 1992). While multiple, late-season N application is an effective way of increasing 

NUE, the common method of using soil surface soil testing for adjusting N rate before planting is 

not suited for detecting late-season deficiency.  In addition, environmental factors such as soil 

temperature and moisture affect N cycling, transformation and movement which complicate the 

present N status monitoring of the crop.  

Remote sensing could provide an inexpensive, non-destructive and rapid assessment of 

crop N status in the field (Filella et al., 1995). Several studies used remotely sensed spectral 

measurements to evaluate plant biomass (Wallburg et al., 1982; Kleman and Fagerlund, 1987; 

Wanjura and Hatfield, 1987; Casanova et al., 1998; Felton et al., 2002; Bronson et al., 2003) and 

plant N content (Blackmer et al., 1997; Stone et al., 1996a; Bronson et al., 2003). Some 
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researchers used spectral data to estimate crop yields using simple regression equations (Moran 

et al., 1997; Raun et al., 2001). Normalized Difference Vegetation Index (NDVI; Rouse et al., 

1973) is one of the spectral vegetation indices used to assess plant health status and is 

determined by dividing the difference in reflectance in the red (670 nm) and near infrared (NIR; 

780 nm) by the sum of reflectance at these two wavebands (Tucker, 1979). The NDVI was found 

to be a useful index to estimate crop yield of wheat (Colwell et al., 1977; Tucker et al., 1980; 

Pinter et al., 1981), millet, and sorghum (Bartholome, 1988). Stone et al. (1996a) and Solie et al. 

(1996) reported that NDVI can reliably predict both biomass and N uptake in winter wheat when 

measurements were done between Feekes physiological growth stages 4 and 5. Similarly, Lukina 

et al. (1999) were able to show high correlations between percentage of soil coverage by wheat 

and NDVI at these growth stages. At Feekes growth stage 5, Reeves at al., (1993) used direct in-

season measurements of total N uptake in winter wheat.  

Raun et al. (2002) utilized NDVI-derived in-season estimated yield (INSEY), biomass 

produced per day, to project mid-season N rate requirement in wheat. Compared with the mid-

season flat rate of 45 kg ha-1, wheat NUE was increased by >15% when mid-season N 

fertilization was based on INSEY. In 2005, Raun et al. proposed the use of a nitrogen fertilization 

optimization algorithm (NFOA) consisting of the following components: 1) INSEY, NDVI 

measured at Feekes growth stage 5 divided by the number of positive growing degree days or 

GDD = 







°−







 +
C4.4

2
TT minmax , 2) responsiveness of the wheat crop to N fertilizer that can be 

estimated by the ratio of NDVI readings in non-limiting N strips and the NDVI readings in the 

farmer practice, and 3) spatial variability  using the coefficient of variations (CV) from NDVI 

readings. The addition of CV in the algorithm is important especially in areas where spatial 

variability becomes significant enough to make an impact on crop yield. Arnall et al. (2006) 

reported that when CVs from NDVI readings were greater than 20%, plant stands were likely 

<100 plants m-2 and as such considered poor. Further, Morris et al. (2005) noted that maximum 

yields could be achieved, even when N fertilization was delayed until mid-season. This was 

achieved when plot CVs were less than 18%. 
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The relationship established between NDVI measurements and biomass production was 

used to develop the technology that employs real-time optical sensing to predict yield potential of 

a crop and to variably apply N fertilizer based on the predicted yield (Stone et al., 1995 and 

1996b). The optical sensor-based variable rate technology developed at Oklahoma State 

University can sense submeter-variability on-the-go and at the same time, variably apply N 

fertilizer based on plant needs. Various research programs have noted that spatially variable N 

fertilizer applications may reduce adverse environmental impacts and increase economic returns 

(Fiez et al., 1995). To effectively use this technology, sensing and treatment applications should 

be done at the finest resolution at which variation occurs, such that if management practices are 

employed at this resolution, positive impact on production and profit will be achieved. Some 

studies suggest that significant differences in soil and plant variables occur within a sampling 

distance as short as 0.3 m (Raun et al., 1998) and less than 1.96 m2 (Solie et al., 1996).  La Ruffa 

et al. (2001) demonstrated that in a high yielding environment of >2300 kg ha-1 grain, treating the 

variation at finer resolutions tended to increase NUE. Recent work by Raun et al. (2002) has 

shown that the present NUE was increased by 15% when N fertilization was based on optically 

sensed INSEY and a response index. 

 

HYPOTHESIS AND OBJECTIVES 

 

The hypothesis of this study was: 1) treating spatial variability at the finest resolution at 

which variation occurs will increase wheat grain yield and NUE. This study was conducted to 

determine at which scale spatial variability should be treated using the current in-season nitrogen 

fertilization optimization algorithm (NFOA), and to determine the benefits of treating variability at 

different resolutions. 
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MATERIALS AND METHODS 

 

Field experiments were established on a Dale silt loam (fine-silty, mixed, superactive, 

thermic Pachic Haplustoll) in Chickasha and on a Tillman-Hollister clay loam (fine, mixed, thermic 

Pachic Arguistolls) in Tipton, Oklahoma in September and October 2003, respectively. In the 

2005-06 cropping season, no trial was conducted at Tipton but an additional site was established 

at the Lake Carl Blackwell (LCB) Irrigated Research Station. The LCB site, west of Stillwater, OK, 

has a soil type classified as Pulaski fine sandy loam (coarse-loamy, mixed, superactive, nonacf, 

thermic Typic Ustifluvent).  Before treatment application, composite soil samples were taken from 

the entire site at 0-15 cm depth, air-dried, processed and analyzed for pH, NH4-N, NO3-N, 

Mehlich-III extractable phosphorus (P) and exchangeable potassium (K). Results of the analyses 

are presented in Table 1. 

Variable N rates were applied at three resolutions (0.84, 13.4 and 26.8 m2), and two N 

application methods (preplant and midseason) at a fixed rate of 90 kg N ha-1, and a check plot 

were laid-out in a completely randomized design (CRD) with three replications (Table 2). Field 

activities from 2003 to 2006 are detailed in Table 3. Each of the plots, measuring 3.7 m x 7.3 m, 

were divided into subplots using the resolutions mentioned (Figure 1).  The resolutions were 

made by creating subplots with dimensions of 0.91 x 0.91 m, 3.7 x 3.7 m, and 3.7 x 7.3 m for 

0.84, 13.4 and 26.8 m2 whole plots, respectively.   

 Prior to midseason N applications for plots using different resolutions, NDVI readings and 

CVs from the NDVI readings were collected. Dates of sensing and midseason N application are 

summarized in Table 3. The GreenSeekerTM hand held optical sensor (NTech Industries, Inc.) 

was used to measure canopy reflectance and to collect NDVI readings based on a unit view of 

0.6 x 0.01 m area held at a distance of 0.6 to 1.0 m from the crop canopy. The sensor measures 
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red (671±10 nm) and near-infrared (NIR, 780±10nm) reflectance and calculates NDVI using the 

equation: 

 
dNIR

dNIRNDVI
Re

Re

ρ+ρ
ρ−ρ

=

where:  NIRρ = fraction of emitted NIR radiation returned from the sensed area 

 REDρ = fraction of emitted red radiation returned from the sensed area  

The optical sensor was also used to obtain non-destructive measurement of CV from the NDVI 

readings for each subplot sensed.  

The index INSEY was calculated by dividing NDVI by the number of days from planting to 

sensing where GDD>0. The NDVI-derived-INSEY is an index that predicts biomass produced on 

a daily basis and can be used to predict yield potential (YP0) using the current algorithm for wheat 

(Raun et al., 2002). Yield potential when N is applied (YPN) was determined by multiplying YP0

with the response index (RINDVI). The RINDVI was determined by dividing the average NDVI from 

plots with the highest N applied by the NDVI average of check plots (0 N rate). The collected CV 

was used to adjust N rate recommendations. The N rate required to achieve YPN for each subplot 

of resolutions tested was computed using the equation (Raun et al., 2005): 

 










−

−
−

ε
=

)(
)(

)1(0

CriticalCap

PlotCap

n

g
n CVCV

CVCV
RI

NYP
R

where: 

nR = N application rate, kg ha-1 

gN = N content in grain, 0.0239 kg N kg-1 

nε = Expected N use efficiency 

RI  = Adjusted RI, 7.069.1 −







×−

Farmer

RichN

NDVI
NDVI

 

CapCV  = Coefficient of variation ceiling  

 CriticalCV  = Critical coefficient of variation value 

 PlotCV  = Coefficient of variation from the plot’s NDVI readings 
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Table 4 presents the YP0 equations and values of CV incorporated in the functional algorithm for 

midseason N rates determined for each cropping year. Nitrogen fertilizer was applied as urea 

ammonium nitrate solution (UAN, 28-0-0) on designated subplots of 0.84 m2-resolution using a 

pulse modulated sprayer. For areas of lower resolutions (13.4 and 26.8 m2), a backpack sprayer 

was used to apply midseason N.  

 The entire plot area was harvested with a self-propelled Massey Ferguson 8XP combine. 

Grain yield and percent moisture content were collected using a Harvest Master yield monitoring 

computer. Moisture content of the final grain yield data was adjusted to 12%. Grain subsamples 

were collected, oven dried at 70°C for 72 hours and processed to pass through a 106 um screen 

(140 mesh screen) for total N analysis using a Carlo Erba NA 1500 dry combustion analyzer 

(Schepers et al., 1989). Total N uptake was determined by multiplying percent grain N by grain 

yield. Nitrogen use efficiency was calculated by dividing the increase in grain N uptake due to N 

fertilization (N UptakeFERILIZED – N UptakeCHECK) by the amount of N applied. Net return to N 

fertilizer was computed by subtracting the cost of total N applied from gross income (price of grain 

kg-1 multiplied by grain yield). Table 5 provides the prices of N fertilizer and wheat grain from 

2004-2006 used in net return determination.  Statistical analysis was performed using SAS for 

Windows (SAS, 2002). Analysis of variance (ANOVA), a procedure use to partition sources of 

variation, was conducted using SAS General Linear Model (GLM) Procedure to determine if there 

were differences in mean grain yield, grain N uptake, NUE and net return to N fertilizer due to 

treatment.  



10

RESULTS 
 

Total Nitrogen Applied 
 

Table 6 summarizes the average total N fertilizer applied for each treatment across sites 

and years.  The average NDVI and CV by site year are also reported. The midseason NFOA-

based N fertilizer rates were consistently lower than the fixed rate (90 kg ha-1) which averaged 

only 57, 45 and 60 kg N ha-1 for Chickasha, Tipton and LCB sites, respectively. The N 

requirements projected by the algorithm tended to be higher when average NDVI readings were 

higher as exemplified at Chickasha in 2005.  At this site, the NFOA-projected N rates of 80, 82 

and 90 kg N ha-1, almost equaled the 90 kg N ha-1 fixed rate applied. The Tipton site in 2004 had 

similar average NDVI readings at 0.702, but the algorithm prescribed an average of only 35 kg N 

ha-1. This was attributed to a higher average CV and wider CV range collected in this particular 

site and year. The difference in crop stand expressed by the higher CVs was explained by the 

higher seeding rate at Chickasha in 2005 (134 kg ha-1) compared with Tipton’s 80 kg ha-1 for 

2004 and 2005 (Table 3).  

 The NFOA at the highest resolution (0.84 m2) consistently prescribed the lowest N rates 

except at Chickasha in 2005 where the average CV reading was only 5.2%, the lowest value 

collected. The difference among NFOA-based N rates of the three resolutions was more 

pronounced in cropping seasons where the average CV was high. This observation was 

exemplified at Tipton in 2005 where the spatial variability treated at 0.84m2 using the NFOA had 

the lowest N applied at only 39 kg ha-1 compared with the lower resolutions’ (13.4 and 26.8 m2) at 

62 and 61 kg ha-1.



11

Grain Yield 
 

Grain yield means, RINDVI and RIHARVEST are presented by treatment, site and year in 

Table 7.  Also, the standard error of the difference (SED) between two means is reported by year 

for every site. There were significant differences in mean grain yield at all sites and years except 

Chickasha in 2006.  The highest yield was 4237 kg ha-1 obtained at Tipton in 2004, the same site 

year where a high average NDVI reading of 0.702 was reported (Table 6).  

Winter wheat planted at Tipton in 2005 was the most responsive to N fertilizer 

applications. This was reflected in the RINDVI (2.11) and RIHARVEST (2.06) values recorded. In 2004 

at Chickasha, a high RINDVI of 1.95 was found but the corresponding RIHARVEST was only 1.46. The 

two lowest yielding site years attained only 1629 and 2030 kg of grain ha-1 (Table 7). Average 

NDVI readings presented in Table 6 were also the lowest at these two sites. The average NDVI 

reading at Chickasha was only 0.283 while at Tipton in 2005 it was 0.373.  

The highest grain yields were obtained from plots with a fixed N rate at 90 kg N ha-1 

midseason excluding LCB and Chickasha in 2006 where even the check plot produced higher 

grain yields. When fixed rates were preplant applied, increases in yields were lower compared to 

when N was applied midseason. In some site years, plots that were applied with NFOA-based N 

rates produced higher grain yields.  On average at Chickasha, NFOA-based N rate treatments 

achieved 100 kg ha-1 more grain yield than 90 kg N ha-1 preplant, and >300 kg ha-1 at LCB. These 

yield differences were small but plots employing NFOA-based N rate treatments received 40% 

less N when compared to the 90 kg N ha-1 fixed rate. One-time, large preplant N fertilizer 

applications are not beneficial to crops since at the early growth stage the demand for N is very 

low.  Doerge et al. (1991) documented that N flux (kg N ha-1 day-1) increases to a maximum 

during the jointing stage. The start of stem elongation, Feekes growth stage 6 (Large, 1954) or 

Zadoks 31 (Zadoks et al., 1974), is identified to be the start of the rapid N uptake by the wheat 

crop. The amount of N that is taken up by the crop during the early stages of growth can 

potentially be lost even before the crop reaches the maximum vegetation production where the 
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demand for N peaks. Only modest amounts of N applied preplant or at planting are important for 

early crop establishment.  

The increase in grain yields of plots with NFOA-based N rates at different resolutions 

varied. There were site years where the NFOA-based N rates exceeded the grain produced by 

plots that received the 90 kg N ha-1 fixed N rate. In 2006 at Chickasha, grain yield of the NFOA-

based N rate of 45 kg N ha-1 was higher than the 90 kg ha-1 fixed rate (both preplant and 

midseason applied). However, this yield difference (3886 versus 3834 kg ha-1) was not significant 

(SED = 184). In 2006 at LCB, grain yield differences between fixed and NFOA-based N rates 

treated plots was significant (SED = 173) and from plots treated at the highest resolution of 0.84 

m2. While there were site years that the NFOA-based N rates did not achieve grain yields as high 

as the fixed rate treated plots, it is important to take note that these variable rates never 

exceeded the 90 kg N ha-1 fixed rate. Moreover, on average, the NFOA-based N rates prescribed 

almost half (40% less) of the fixed rate. 

 

Grain Nitrogen Uptake 
 

Table 8 presents grain N uptake by treatment, site and year.  There were significant 

differences in mean grain N uptake across sites and years excluding 2006 at Chickasha 

(Pr<0.05).  For the check plot’s grain N uptake, the lowest value of 19 kg ha-1 was obtained in 

2005 at Tipton. This was followed by 26 kg N ha-1 at Chickasha in 2004. These two lowest grain 

N uptake values represented the same site years where the two highest RINDVI values were 

obtained (Table 7). Winter wheat in these two site years was very responsive to N fertilizer 

application. However, on average, these two site years were also reported to have the lowest 

grain yield (Table 7) and N uptake (Table 8). The highest grain N uptake among treatments was 

achieved in plots where N was applied midseason at a 90 kg ha-1 fixed rate across sites and 

years excluding 2006 at Chickasha. The difference in N uptake between NFOA- and fixed rate 

treatments was not proportionate to the difference in the N rates applied. While the NFOA-based 

N rate recommendations were 40% less than the 90 kg N ha-1 fixed rate, grain N uptake 
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differences at Chickasha, Tipton and LCB were 8, 23 and 12%, respectively, and less than the 

fixed rates’.  

On average, midseason NFOA-based N rate treatments achieved only about 85% of the 

grain N uptake of the 90 kg N ha-1 fixed rate treatment applied midseason. No pronounced trend 

was observed when comparing the NFOA-based N rate treatments at different resolutions. On 

average at Chickasha, grain N uptake values were very similar. At 0.84, 13.4 and 26.8 m2

resolutions, average grain N uptake values were 66, 69 and 67 kg ha-1, respectively.  The low-

resolution 26.8 m2 achieved the highest grain N uptake of 54 and 91 kg ha-1 for Tipton and LCB 

sites, respectively. This was the optimum resolution identified at which the NFOA-based N rates 

applied resulted in maximum N uptake by the crop.  

 

Nitrogen Use Efficiency 

 

Nitrogen use efficiency was computed by taking the difference in N uptake between the N 

fertilized plot and the check, and dividing by the rate of N applied. Table 9 summarizes NUE 

results by treatment, site and year. The ANOVA analysis showed that while there were 

differences in NUE among treatments, these were not significant (Pr<0.05). This outcome was 

consistent across sites and years. It is noteworthy that one-time preplant application of 90 kg N 

ha-1 resulted in the lowest NUE among treatments which also occurred consistently across sites 

and years. Note that this is similar to the observation in grain yield response that was reported 

earlier. The lowest NUE was 14% at Chickasha in 2006 coming from the plot that received 90 kg 

N ha-1 preplant. The highest was 56% obtained in 2004 at Tipton from plots treated with variable 

N rates prescribed by NFOA at 13.4 m2 resolution.  

On average by site, midseason NFOA-based N rate recommendations resulted in higher 

NUE when compared with the fixed N rate applications. At Chickasha, the fixed rate plots 

averaged only 26% while the NFOA-based plots was 35%. At Tipton, the fixed N plot recorded 

only 32% compared to 41% for NFOA-based treatment. The 90 kg N ha-1 fixed rate treatment 

achieved 40% NUE while the NFOA-based treatments were 46% at LCB. On average, the NFOA 
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approach resulted in 41% NUE compared with 33% of the 90 kg N ha-1 fixed rate applied 

midseason. The highest NUE values achieved among the midseason NFOA-base plots were 39 

and 44% for Chickasha and Tipton sites, respectively both treated at 13.4 m2 resolutions. At LCB, 

plots treated at the lowest resolution of 26.8 m2 obtained the highest NUE value of 54%.  

 

Net Return to Nitrogen Fertilizer 

 

Net return was computed by subtracting the cost of N fertilizer used from the price of 

grain produced. Table 10 summarizes the net return of wheat production in response to N 

fertilizer applied at fixed and NFOA-based N rates by treatment, site and year. Analysis of 

variance showed that mean net returns were significantly different (Pr<0.05) at Chickasha in 

2005, at Tipton for both years (2004 and 2005) and at LCB. At Chickasha, the highest net return 

among treatments was consistently achieved by at least one of the NFOA-based N rate 

treatments. The highest return was $ 460 ha-1 from plots with midseason NFOA-based N rates 

treated at 13.4 m2 resolution. Similarly, at LCB, $ 642 ha-1 net return was achieved from mid-

season-NFOA-based N rate recommendation at the 26.8 m2 resolution. However, at Tipton, there 

was no economic benefit obtained when midseason NFOA-based rate recommendations were 

used. On average at Tipton, midseason NFOA-based N rate recommendations’ net return were 

comparable with the 90 kg N ha-1 fixed rate’s applied preplant. However, this was not the case 

when compared with fixed rates applied midseason. Midseason application of 90 kg N ha-1 

resulted in significantly higher net returns of $ 524 and 256 ha-1 in 2004 and 2005, respectively. 

Savings from reduced fertilizer use when using the NFOA-based approach calculated by 

subtracting the net return of 90 kg N ha-1 fixed rate treatment applied midseason or preplant from 

the highest net return of the NFOA-based N rate treatments. Excluding Tipton site, savings on 

cost of N fertilizer used ranged from $ 5-101 ha-1 when compared with 90 kg N ha-1 rate applied 

midseason. This can be attributed to the large reduction in the amounts of N applied reported in 

Table 6. When the NFOA approach was compared to fixed rates preplant, with the exception of 

Tipton site, savings obtained ranged from $ 32-101 ha-1.



15

When comparing net returns of the NFOA-based N rate treatments at different 

resolutions, treating spatial variability at 13.4 m2 resolution had the highest net return. Using 

NFOA in prescribing N rates at the finest resolution of 0.84 m2 did not exhibit any economic 

benefit (Table 10). Trends of net returns for different resolutions and prices of N fertilizer at $ 0.08 

and 0.18 kg-1 of wheat grain are presented in Figure 2 and 3, respectively. Figure 2 shows that at 

$ 0.08 kg-1 of wheat grain, the lowest wheat grain price reported in the past 10 years (USDA 

NASS, 2007), treating spatial variability at 0.84 m2 exceeded net returns of the lower resolutions 

(13.4 and 26.8 m2) only when the price of N fertilizer was at least $ 0.60 kg N -1. However, when 

wheat grain price was $ 0.18 kg-1, highest reported in the past 10 years (USDA NASS, 2007), 

there was a consistent decreasing trend of net returns with increasing resolution for the three 

prices ($ 0.40, 0.60 and 0.80 kg N-1) of N fertilizer evaluated. 
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DISCUSSION 

 

The components of the NFOA which include prediction of yield potential, response index 

and coefficient of variation can be determined in-season. This approach makes N rate 

recommendations tailored for the current crop and are not based on historical information. Each 

of these components provide an important function so that the algorithm can precisely estimate N 

application based on N demand at the projected yield potential while taking into account field 

spatial variability and the seasonally dependent crop responsiveness to applied N. The NDVI 

normalized by GDD is used to predict yield potential using the equation presented in Table 4 and 

that is annually updated. The coefficient values from recent years’ YP0 equations have been 

relatively stable. The recent YP0 equation for 2007 is YP0 = 590*exp(INSEY*258.2) 

(http://www.nue.okstate.edu/Yield_Potential.htm). The strength of this YP0 equation is limited by 

significant changes in growth conditions that occur after sensing which can either adversely or 

favorably influence crop yield potential. Otherwise, the YP0 equation can be used to obtain 

reasonable estimates of actual grain yield. The closest projection was at Tipton in 2005 where 

predicted yield potential was 1616 kg ha-1and the actual yield obtained at harvest was 1250 kg 

ha-1 (Table 7). However at Chickasha in 2006, the predicted yield potential was 1501 kg ha-1 

which was only 58% of the actual yield.   

 The NFOA projected N fertilizer rates did not exceed the 90 kg N ha-1 fixed rate used in 

any of the trials (Table 2). The only time that NFOA-based N rates equalled the fixed rate was in 

2005 at Chickasha. This was also the site year where one of the NFOA’s N rate 

recommendations recorded the highest yield among treatments. As shown in Table 6, this site 

year recorded the highest average NDVI reading (0.705), the lowest average CV (5.2%) and a 

narrow CV range (12.9%).  The N rate recommendations prescribed at Tipton in 2004 were 
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remarkably lower even though the average NDVI reading (0.702) was equally high as at 

Chickasha in 2005. The relatively lower RINDVI compared with Chickasha’s caused a reduction of 

the N rate recommendations prescribed by NFOA. Moreover, this site year recorded a relatively 

higher average CV of 16.7% and a number of subplots obtaining CV values as high as 37.9%. 

The higher CVs likely caused further reduction of the final N rate recommendations. This is the 

advantage of the present algorithm such that when variation in the field becomes pronounced 

(high CVs), N rate recommendations decline. The integration of CV, an estimate of variation in 

plant-stand densities, will assist in identifying areas in the field where N application should be 

reduced. This makes the current N-fertilization algorithm (Raun et al., 2005) vastly different to the 

algorithm used by Raun et al. (2002). The capability of the algorithm to project what the crop 

needs has resulted in increased NUE and net return. The large savings in the amount of N 

fertilizer prescribed by NFOA outweighed the large increases in grain yield and N uptake incurred 

by applying 90 kg N ha-1 midseason when computing NUE and net return. On average by site, at 

least two of the NFOA-based treatments consistently obtained higher NUE compared with the 

fixed rate (Table 9). Statistically, the increase in NUE was not significant (Pr<0.05), however, 

considering economic and environmental perspectives, it can make a difference. A 1% increase 

in NUE worldwide would save $ 234,658,462 in fertilizer cost and would mean 489,892 metric 

tons of N fertilizer saved and that would not adversely contaminate our environment (Raun and 

Johnson, 1999).  

 The economic analysis of this trial was highlighted by presenting the net returns and 

savings incurred when the NFOA approach was used to determine N rate requirement using the 

90 kg N ha-1 fixed rate treatment applied midseason as a reference. Four out of six site years had 

at least one of the NFOA treatments that exceeded the net returns of the fixed rates. The net 

returns of as much as $ 40 and $ 27 ha-1 were saved at Chickasha and LCB sites, respectively. 

As presented earlier, grain yield of NFOA-based N rate plots were relatively lower than that of the 

fixed rate applied midseason which in turn resulted in relatively lower net return. However, the 

significant reduction in the amount of fertilizer applied lowered the cost of N fertilizer input 

resulting in a higher net return.  In addition to considerable reduction in the cost of N fertilizer 
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used, grain yield of the NFOA-based approach in some site years exceeded the grain yield of the 

preplant 90 kg N ha-1 fixed rate. This demonstrates that the NFOA approach is very promising in 

terms of improving producer’s income. 

 The results presented above and the previous study by Raun et al. (2002) demonstrated 

that higher NUE and net return can be achieved when N rate recommendations were based on N 

demand encumbered within predicted yield potential.  However, the optimum resolution to treat 

spatial variability needs to be determined to maximize the benefit when using NFOA to project 

crop N rate requirements. This is particularly important for variable rate technology where wheat 

fields are sensed on-the-go while concurrently treating the crop based on needs. When spatial 

variability was treated at the highest resolution, the only benefit obtained was a marginal increase 

in NUE, 36% compared with the 31 and 34% of the 13.4 and 26.8 m2 resolutions, respectively. 

This was only true in one site year (Tipton, 2005) where the average CV of the plots exceeded 

the critical CV (20%) used in the algorithm. On average by site, treating spatial variability using 

the NFOA at 13.4 m2 resulted in the highest NUE values among the treatments, reported at 56 

and 44% for Chickasha and Tipton sites, respectively. Further, the net returns (Table 10) for this 

resolution for both sites were recorded to be the highest among the three resolutions tested. At 

LCB, the optimum resolution where the highest NUE and net return could be achieved was 

identified to be at 26.8 m2. Net returns for different prices of N fertilizer at fixed grain price of $ 

0.18 kg-1 consistently decreased with increasing resolution (Figure 3). However, when price of 

grain was at the lower end ($ 0.08 kg-1) and the price of N fertilizer was at the higher end (at least 

$ 0.60 kg N-1), treating spatial variability at 0.84 m2 exceeded the net returns of the lower 

resolutions (Figure 2). These results also suggest that when crop stand has a CV value more 

than the 20% critical CV in the algorithm (exhibited in one site year only), treating the spatial 

variability at 0.84 m2 (finest resolution in this trial) would result in a higher NUE. However, this 

requires further verification as there existed only a marginal difference (2%) when compared with 

the NUE achieved at 26.8 m2 resolution.  
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CONCLUSION 

 

Based on the results reported, when an NFOA approach was used to determine 

midseason N rate requirements, treating spatial variability at least at 13.4 m2 resulted in 

increased NUE and net return. Treating spatial variability at 0.84 m2 resulted in a positive impact 

on net return and NUE only: a) when the average CV, an estimate of crop stand, was greater 

than 20%, and b) when the price of N fertilizer was at least $ 0.60 kg N-1 provided that the price of 

wheat grain was $ 0.08 kg-1. Further research should be conducted to verify these results as 

there existed only a marginal difference in NUE when compared with the lower resolutions. 

Mathematical adjustment has to be made to refine the current algorithm in order to affect an 

increase in NUE and net return.  
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Table 1. Soil chemical properties determined prior to experiment from initial soil samples (0-15 
cm) at three locations, Oklahoma. 

mg kg-1 Site pH 
NH4-N NO3-N P K

Chickasha 6.3 7.2 30 46 230
Tipton 7.0 7.7 1 12 21
LCB 6.4 9.6 13 15 150

pH – 1:1 soil:water; K and P – Mehlich III; NH4-N and NO3-N – 2 M KCl. 
 

Table 2. Treatment structure and description for resolution trials at three sites in Oklahoma, 2004-
2006. 

No. Treatment Code N Rate, kg ha-1 Method Resolution, m2

1 Check 0 check - 
2 Preplant-90 90 preplant - 
3 Mid-90 90 topdress - 
4 Mid-NFOA-0.84m2 ¶ midseason NFOA 0.84 
5 Mid-NFOA-13.4m2 ¶ midseason NFOA 13.4 
6 Mid-NFOA-26.8m2 ¶ midseason NFOA 26.8 

 

¶ Rates were determined based on Nitrogen Fertilization Optimization Algorithm (NFOA). 
 

Table 3. Field activities for all sites and years, 2003-2006. 
Date‡

Site Cropping 
Season Variety 

Seeding 
Rate 

kg ha-1 Planting Sensing¶ Topdress†

Application                                                                                                                            Harvest 

Chickasha 2003-04 OK102 90 09-30-03 03-17-04 03-17-04 06-03-04 
 2004-05 2174 134 10-05-04 03-07-05 03-07-05 06-21-05 
 2005-06 Endurance 90 10-05-05 03-27-06 03-27-06 06-09-06 
Tipton 2003-04 2158 80 11-07-03 03-11-04 03-16-04 05-27-04 
 2004-05 Cutter 80 09-30-04 02-28-05 03-03-05 06-14-05 
LCB§ 2005-06 Fannin 97 10-13-05 03-13-06 03-14-06 06-15-06 
 

§ Lake Carl Blackwell 
‡ Date in month-day-year. 
† Topdress application date for treatments 3, 4, 5 and 6. 
¶ Sensing accomplished at Feekes growth stage 5. 
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Table 4. Yield potential equations, critical and maximum values of coefficient of variation, and the 
number of days from planting to sensing that were used to compute midseason nitrogen rates at 
three locations in Oklahoma, 2004-2006. 

Coefficients of Variation, % Number of Days‡Year YP0 Equation 
Critical Maximum  Chickasha Tipton LCB†

2004 YP0 = 359*exp(INSEY*324.4) 25 100 111 127 - 
2005 YP0 = 522*exp(INSEY*274.7) 20 60 112 119 - 
2006 YP0 = 532*exp(INSEY*270.1) 20 60 120 - 106 
 

YP0 = yield potential equation 
INSEY = in-season estimated yield computed by dividing NDVI readings at Feekes growth stage 

5 by the number of positive growing degree days 







°−

+
= C4.4

2
TT

GDD minmax  from planting 

to sensing 
‡ Number of days from planting to sensing where GDD>0. 
† Lake Carl Blackwell 
 

Table 5. Prices of nitrogen fertilizer and wheat grain used for net return computation, 2004-2006. 
Year Grain Price† Price N Fertilizer‡

$ kg-1 $ kg N-1 
2004 0.12 0.59 
2005 0.12 0.71 
2006 0.18 0.75 
 

† All winter wheat grain, Source: USDA, NASS. 
‡ Estimated U.S. Farm level fertilizer prices, Source: US Department of Energy. 
 

Table 6. Total nitrogen fertilizer applied at fixed and midseason NFOA-based rates at different 
resolutions at three locations in Oklahoma, 2004-2006. 

Chickasha Tipton LCB Treatment Code¶

2004 2005 2006 Avg. 2004 2005 Avg. 2006 

--------------------------------Total N Applied, kg ha-1---------------------------------- 
Check 0 0 0 0 0 0 0 0
Preplant-90 90 90 90 90 90 90 90 90
Mid-90 90 90 90 90 90 90 90 90
Mid-NFOA-0.84m2 41 90 36 56 34 39 36 53
Mid-NFOA-13.4m2 50 80 43 58 37 62 50 62
Mid-NFOA-26.8m2 47 82 45 58 35 61 48 66

Average NDVI§ 0.283 0.705 0.458 - 0.702 0.373 - 0.539
Average CV 12.9 5.2 13.0 - 16.7 23.6 - 13.1
Maximum CV 20.9 14.9 28.4 - 37.9 37.9 - 26.8
Minimum CV 7.1 2.0 4.2 - 8.9 11.0 - 3.7

¶ Refer to Table 2 for treatments’ full description. 
§ Average NDVI of midseason NFOA-based N treated plots. 
CV = Coefficient of variation, %, from NDVI readings of midseason NFOA-based N treated plots 



26

Table 7.  Wheat grain yield response to applied nitrogen at fixed and midseason NFOA-based 
rates at three locations in Oklahoma, 2004-2006.  

Chickasha Tipton LCB Treatment Code¶

2004 2005 2006 Avg. 2004 2005 Avg. 2006 

------------------------------------- Grain Yield, kg ha-1----------------------------------- 
Check 1216 2999 2583 2266 3393 1250 2322 2435
Preplant-90 1697 3628 3705 3010 4689 2081 3385 2308
Mid-90 1781 4186 3834 3267 4726 2578 3652 2308
Mid-NFOA-0.84m2 1628 4179 3330 3046 4253 1945 3099 2637
Mid-NFOA-13.4m2 1708 4169 3453 3110 4267 2130 3198 2676
Mid-NFOA-26.8m2 1746 3813 3886 3148 4092 2194 3143 2692

Pr>F 0.0384 0.0005 0.4719 - 0.0002 0.0001 - 0.0029
Adj. RINDVI

§ 1.95 1.42 1.36 - 1.24 2.11 - 1.38
RIHARVEST

† 1.46 1.40 1.48 - 1.39 2.06 - 1.0
Yield Avg.‡ 1629 3829 3465 - 4237 2030 - 2509
YP0 818 2676 1501 - 1994 1316 - 2130
SED 133 144 184 - 135 77 - 173

¶ Refer to Table 2 for treatments’ full description. 
§ Adjusted in-season response index, determined by dividing average Normalized Difference 

Vegetation Index (NDVI) at Feekes growth stage 5 from Preplant-90 by the Check. Adjustment 
made using the equation (RINDVIx1.69) - 0.7. 

† Response index at harvest, determined by dividing the grain yield of highest N fertilized plots by 
the yield of the Check plot. 

‡ Average yield of all treatments by site year in kg ha-1.
YP0 = predicted yield potential of the check plot in kg ha-1 
SED = Standard error of the difference between two equally replicated means 
 

Table 8. Grain nitrogen uptake response to applied nitrogen at fixed and midseason NFOA-based 
rates at different resolutions at three locations in Oklahoma, 2004-2006. 

Chickasha Tipton LCB Treatment Code¶

2004 2005 2006 Avg. 2004 2005 Avg. 2006 

----------------------------- Grain N Uptake‡, kg ha-1----------------------------------- 
Check 26 58 55 46 51 19 35 54
Preplant-90 45 83 64 64 84 35 59 86
Mid-90 50 99 70 73 87 48 68 94
Mid-NFOA-0.84m2 36 94 67 66 65 33 49 76
Mid-NFOA-13.4m2 41 95 72 69 70 39 54 82
Mid-NFOA-26.8m2 40 88 72 67 68 40 54 91

Pr>F 0.0008 0.0001 0.0621 - 0.0002 0.0001 - 0.0087
SED 2.6 3.9 3.9 - 3.8 1.6 - 6.0

¶ Refer to Table 2 for treatments’ full description. 
‡ Grain yield multiplied by the percent N in grain. 
SED = Standard error of the difference between two equally replicated means 
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Table 9. Nitrogen use efficiency in response to applied nitrogen at fixed and midseason NFOA-
based rates at different resolutions at three locations in Oklahoma, 2004-2006. 

Chickasha Tipton LCB Treatment Code¶

2004 2005 2006 Avg. 2004 2005 Avg. 2006 

---------------------------Nitrogen Use Efficiency†, % --------------------------------- 
Check - - - - - - - -
Preplant-90 21 28 14 21 37 17 27 35
Mid-90 27 45 17 30 41 32 36 44
Mid-NFOA-0.84m2 26 40 32 32 43 36 39 40
Mid-NFOA-13.4m2 30 47 39 39 56 31 44 44
Mid-NFOA-26.8m2 31 37 38 35 49 34 41 54

Pr>F 0.5784 0.4819 0.2585 - 0.8675 0.0696 - 0.4818
Average NUE‡ 27 39 28 - 45 30 - 43
SED 4.5 7.9 9.2 - 13.6 4.0 - 6.6

¶ Refer to Table 2 for treatments’ full description. 
† Estimated by subtracting the grain N uptake of the check plot from the fertilized plot, divided by 

the N rate applied. 
‡ Average nitrogen use efficiency of all the treatments by site year. 
SED = Standard error of the difference between two equally replicated means 
 

Table 10. Net return to nitrogen fertilizer for resolution trials at three locations in Oklahoma, 2004-
2006. 

Chickasha Tipton LCB Treatment Code¶

2004 2005 2006 Avg. 2004 2005 Avg. 2006 

------------------------------- Net return§, $ ha-1 --------------------------------------- 
Check 148 372 433 318 414 155 285 460
Preplant-90 154 386 344 295 519 194 357 592
Mid-90 164 455 344 321 524 256 390 615
Mid-NFOA-0.84m2 175 454 443 357 499 213 356 553
Mid-NFOA-13.4m2 179 460 444 361 499 220 359 568
Mid-NFOA-26.8m2 186 415 445 348 479 229 354 642

Pr>F 0.4096 0.0144 0.1004 - 0.0055 0.0002 - 0.0136
SED 13.75 17.99 32.78 - 16.48 9.58 - 27.46

¶ Refer to Table 2 for treatments’ full description. 
SED = Standard error of the difference between two equally replicated means 
§ Grain price kg-1 multiplied by yield and then subtracted by cost of total N  
 applied. Prices of fertilizer and wheat grain are reported in Table 5. 
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Plot size: 3.7 m x 7.3 m 
Alley: 3.0 m 
Subplot size: Treatment 4 (0.84 m2) – 0.9 m x 0.9 m 
 Treatment 5 (13.4 m2) – 3.7 m x 3.7 m 
 Treatment 6 (26.8 m2) – 3.7 m x 3.7 m 
 
Figure 1. A plot plan sample for resolution trials, Oklahoma, 2004-2006. 
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Figure 2. Net returns for different resolutions and prices of nitrogen fertilizer at a fixed wheat grain 
price of $ 0.08 kg-1.
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Figure 3. Net returns for different resolutions and prices of nitrogen fertilizer at a fixed wheat grain 
price of $ 0.18 kg-1.
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ADJUSTING MIDSEASON NITROGEN RATE USING A SENSOR-BASED  
OPTIMIZATION ALGORITHM TO INCREASE USE 

 EFFICIENCY IN CORN (Zea mays L.) 
 

ABSTRACT 

 

Successful use of sensor based nitrogen (N) rate recommendations has resulted in an 

increase in N use efficiency (NUE) in winter wheat production. Due to increasing N fertilizer costs, 

development of a functional algorithm to optimize N fertilization in corn production is also 

essential. This study was conducted to formulate an in-season N fertilization optimization 

algorithm (NFOA) to estimate midseason N rates that maximize corn growth and minimize inputs.  

In addition, the optimum resolution to treat spatial variability for NFOA-based sidedress N rates 

was determined. Midseason N rate recommendations were computed using predicted yield 

potential (YP0), crop N response estimated by the response index (RI), and coefficient of variation 

(CV), all derived from the Normalized Difference Vegetation Index (NDVI) readings. The 

experiment was established at three locations in 2004 near Stillwater, Oklahoma consisting of 13 

treatments arranged in a randomized complete block design (RCBD) with three replications.  

Treatments included: a check plot; a 134 kg N ha-1 fixed rate applied in split, preplant- and 

sidedress-only; a 67 kg N ha-1 fixed rate applied preplant- and sidedress-only; three NFOA-based 

midseason N rates (RICV-NFOA, RI-NFOA, flat RICV-NFOA) with (67 kg N ha-1) and without 

preplant N; and two resolutions (0.34 and 2.32 m2) tested for RICV-NFOA only. The flat RICV-

NFOA-based midseason N rates were determined using the variable rate average from the RICV-

NFOA. With 67 kg N ha-1 preplant application, midseason-RI-NFOA-based N rates improved NUE 

to 64% compared with 56% of the 134 kg N ha-1 fixed rate split applied. The RI-NFOA was better 

than RICV-NFOA in improving grain yield, NUE and net return in high yielding site years but not 

in low yielding site years. Without preplant N in low yielding site years, the RICV-NFOA had 

higher NUE value (59% versus 43%) and net return ($ 475 versus $ 401 ha-1) compared with RI-
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NFOA’s. There was no benefit on NUE and net returns when spatial variability was treated at 

0.34 m2 using RICV-NFOA. In general, the use of midseason sensor-based predictions of YP0

and RINDVI provided accurate N rate recommendations when compared to flat rates.  



32

INTRODUCTION 

 

Traditional Nitrogen Management in Corn Production 

 

Corn is grown throughout the world and is one of the most important cereal crops for 

human consumption. In 2003, the United States grew 38% or 257 million metric tons of the 

world’s corn production (US Grain Council, 2003). Traditionally, farmers treat each field uniformly 

and base their N management decisions on yield goals which can be determined from a recent 5-

year crop yield average plus an increase of 10-30% to assure non-limiting supply of N (Johnson, 

1991; Dahnke et al., 1988). Johnson et al. (1997) used both yield goal and soil nitrate (NO3-N) 

levels as basis for N rate recommendations.  They came up with a recommendation guideline for 

wheat (Triticum aestivum L.): 33 kg N ha-1 should be applied for every 1 Mg of yield goal. For 

corn, Schmitt et al. (1998) reported that 20 kg N ha-1 is required for every 1 Mg of yield goal. The 

soil NO3-N level present in the soil should be subtracted when using these recommendation 

guidelines. Since N fertilizer requirement is temporally dependent (Baethgen and Alley, 1989) and 

may vary among and within fields (Ferguson et al., 2002), uniform application of N fertilizer is not 

an efficient practice (Mulla and Bhatti, 1997; Khosla and Alley, 1999; Khosla et al., 2002; Hornung 

et al., 2003; Koch et al., 2004).  

One-time large application of N fertilizer preplant leads to losses or immobilization before 

plant uptake, significantly affecting NUE (Welch et al., 1996; Olson and Shallow, 1984; Lutcher 

and Mahler, 1988; Fowler and Brydon, 1989; Wuest and Cassman, 1992).  Nitrogen fertilizer can 

be lost from the soil-plant system through denitrification (Burford and Bremner, 1975; Olson et al., 

1979, Burkart and James, 1999), runoff (Gascho et al., 1998; Burkart and James, 1999), leaching 

(Goss and Goorahoo, 1995) and gaseous plant N loss, predominantly as NH3 (Francis et al., 

1993).  
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Traditional N management systems may result in reduced economic returns, poor NUE, 

and increased environmental and health risks (Huggins and Pan, 1993; Raun et al., 2002). The 

presence of excess N fertilizer in the soil-plant system has been reported to be the main source 

of NO3-N accumulation in the soil (Vyn et al., 1999). Spruill et al. (1996) reported that N 

fertilization in agricultural areas has been cited as the cause of high NO3-N concentration in 

perched groundwater. Within the Midwest Corn Belt, NO3-N concentrations in surface waters are 

often >10 mg L-1, the U.S. Environmental Protection Agency's maximum contaminant level (MCL) 

for drinking water (Jaynes et al., 1999; Mitchell et al., 2000). As a result, cost of water treatment 

in some cities has increased due to installation of denitrification systems to remove NO3-N from 

drinking water (Dinnes et al., 2002). The Mississippi River watershed serves as drainage of NO3-

N-contaminated surface water that was leached and/or washed from corn-soybean production 

areas in the Midwest (David et al., 1997; Goolsby et al., 1999; Jaynes et al., 1999). This in turn 

was identified as the primary source of NO3-N in the Gulf (Goolsby et al., 1999) and as a leading 

cause of hypoxia in the northern Gulf of Mexico (Rabalais et al., 1996). 

 

Management Practices to Improve Nitrogen Use Efficiency 

 

Practices employed to improve NUE include proper timing of N applications, avoiding 

excess application of N fertilizer (Kanampiu et al., 1997) and multiple inputs of N in small 

amounts, all of these reducing the potential loss of unused N in the soil system. Fageria and 

Baligar (2005) reported that besides using appropriate N forms, placement, and timing, the use of 

diagnostic tools and models that can estimate plant N requirement on a need basis can improve 

N management decision. Split N fertilizer application is important to maximize crop utilization of 

applied N throughout the growing season (Boman et al., 1995). Cassman et al. (1992) showed 

that yield and protein content of wheat was improved when multiple application of N before 

planting and during the growing season was adopted. Late-season N deficiency detection could 

allow farmers the option of adjusting N rates according to crop growth, and that could reduce 

potential N losses due to leaching and denitrification. However, the environmental factors 
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influencing N cycling complicate the present N status monitoring of crops (Westerman et al., 

1994). Below et al. (1992) noted that the lack of a relationship between responsiveness to 

fertilizer N and late-spring soil NO3-N tests was partly due to a variable proportion of the soil N as 

NH4-N. Traditionally, corn N requirements have been based on soil testing (Magdoff, 1991), 

tissue N concentration (Tyner and Webb, 1946), and chlorophyll concentration or leaf greenness 

(Varvel et al., 1997). Blackmer and Schepers (1996) reported that these methods can be 

expensive, time consuming, require multiple samples and may produce inaccurate crop N rate 

requirement estimates. 

 

Nitrogen Rate Determination Based on Spectral Derived Index 

 

Remotely sensed crop spectral properties have been used to assess multiple crop 

parameters such as photosynthetic capacity, productivity and potential yield (Penuelas et al., 

1994; Aparicio et al., 2000; Thenkabail et al., 2000; Ma et al., 2001; Raun et al., 2001; Baez-

Gonzales et al., 2002; Teal et al., 2006a). These crop biophysical traits have been utilized in 

various ways to determine optimum crop N requirements. Stone et al. (1996) correlated plant N 

spectral index and total N uptake to determine N requirement in winter wheat. Other studies 

correlated spectral measurements to plant biomass (Wallburg et al., 1982; Kleman and 

Fagerlund, 1987; Wanjura and Hatfield, 1987; Casanova et al., 1988; Felton et al., 2002; Bronson 

et al., 2003) and plant N content (Blackmer et al., 1997; Bronson et al., 2003), parameters that 

can be used to estimate crop N requirements.  

Spectral measurements have also been utilized by many researchers to determine yield 

potential using simple regression equations (Moran et al., 1997; Raun et al., 2001; Teal et al., 

2006a). Yield potential is simply a function of all conditions of the growing environment (Johnson, 

1991) and an integral component of the fertilizer N management decision. Raun et al. (2001) 

reported that yield potential can be predicted in-season using optical sensors. They used 

Normalized Difference Vegetation Index (NDVI; Rouse et al., 1973), the most widely used 

spectral vegetation index, to determine in-season estimated yield (INSEY). The index-INSEY, a 
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measure of biomass produced per day, is the NDVI reading (Feekes growth stages 4 to 6; Large, 

1954) divided by the number of growing degree days 
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equation of the line that best described the relationship between INSEY and actual grain yield 

was used to estimate yield potential (YP0). Raun et al. (2002) developed a functional algorithm 

(nitrogen fertilization optimization algorithm or NFOA) that can precisely estimate midseason N 

requirements of winter wheat. The projected midseason N requirement is based on N demand of 

the predicted YP0 while taking into account seasonally dependent crop responsiveness to applied 

N. Their work has shown that N use efficiency (NUE) of winter wheat was improved by more than 

15% when this approach was employed compared with conventional N rate recommendations. 

Arnall et al. (2006) used the coefficient of variation (CV) from NDVI readings to evaluate plant-

stand densities in winter wheat. Using a linear plateau model, they reported that a <100 plants m-

2 population having a CV value of 20% was considered a poor stand. Raun et al. (2005) used this 

information to further refine the algorithm. The mathematical adjustment in the algorithm using CV 

is important in areas with pronounced spatial variability. In the algorithm, when the CVs of the 

sensed area become higher than the 20 % critical CV, the N rate recommendation decreases, 

and vice versa when the CV is low. The successful use of sensor-based N rate recommendations 

in winter wheat prompted the development of a functional algorithm for equally important crops 

like corn.  

 

HYPOTHESIS AND OBJECTIVES 

 

The hypothesis of this study was that estimating N rate requirements based on N 

demand for a given projected corn yield potential would result in improved grain yield, NUE, and 

net return. The objectives of this study were to determine the nitrogen fertilization optimization 

algorithm (NFOA) that could be used to estimate midseason N rates for optimum corn growth and 

to determine the optimum resolution to treat spatial variability in corn.
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MATERIALS AND METHODS 

 

Field trials were established on a Easpur loam soil (fine-loamy, mixed, superactive, 

thermic Fluventic Haplustolls) located at the Stillwater (EFAW) Research Station, on a Pulaski 

fine sandy loam soil (coarse-loamy, mixed, superactive, nonacid, thermic Udic Ustifluvents) at 

Lake Carl Blackwell Research (LCB) Station and on a Teller sandy loam soil (fine-loamy, mixed, 

active, thermic Udic Argiustolls) at the Perkins Research Station, Oklahoma. Before crop 

establishment, comprehensive soil samples at 0-15 cm were collected, air-dried and processed to 

pass 2 mm sieve for Mehlich III-extractable phosphorus (P), exchangeable potassium (K), NH4-N 

and NO3-N determination (Table 1). The experiments consisted of 13 treatments arranged in 

randomized complete block design or RCBD (Table 2). Treatments included: a check plot;  a 134 

kg N ha-1 fixed rate applied in split, preplant- and sidedress-only; a 67 kg N ha-1 fixed rate applied 

preplant- and sidedress-only; three NFOA-based midseason N rates (RICV-NFOA, RI-NFOA, flat-

RICV-NFOA) with (67 kg N ha-1) and without preplant N; and two resolutions (0.34 and 2.32 m2)

tested for RICV-NFOA only. The flat-RICV-NFOA-based midseason N rates were determined 

from the average of the variable rates determined by the RICV-NFOA.  

Table 3 provides information on field activities, corn varieties and planting rates for each 

site for 3 cropping years. Plots with corresponding preplant N were treated either before or at 

planting. The NDVI readings and CVs were collected before sidedress application. The 

GreenSeekerTM hand held optical sensor (NTech Industries, Inc.) was used to measure NDVI at a 

distance of 0.6 to 1.0 m from the corn canopy. The GreenSeeker sensor calculates NDVI using 

the equation: 

dReNIR

dReNIRNDVI
ρ+ρ
ρ−ρ

=

where: 
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NIRρ = fraction of emitted near-infrared (NIR) radiation (780±10 nm) returned from the 

sensed area 

REDρ = fraction of emitted red radiation (671±10 nm) returned from the sensed area 

 The NDVI readings when divided by the number of days from planting to sensing will give 

INSEY which is an index of biomass produced on a daily basis and can be used to predict YP0

using the algorithm for corn (Teal et al., 2006a). Yield potential when N is applied (YPN) was 

determined by multiplying YP0 by the response index (RINDVI: NDVI in the 134 kg N ha-1 preplant 

treated plot divided by NDVI in check plot collected at V8). The N rate required to achieve the 

YPN for each plot was computed using the equation: 
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where: 

nR = N application rate, kg ha-1

gN = N content in grain, 0.0125 kg N kg-1  

nε = Expected NUE 

 RI  = Adjusted RI, 528.064.1 −
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CapCV  = Maximum coefficient of variation  

 CriticalCV  = Critical coefficient of variation value 

 PlotCV  = Coefficient of variation from the plot’s NDVI readings 

Table 4 presents the YP0 equations, critical and maximum CVs, and the number of days from 

planting (DFP) to sensing for each site year. In 2005, the critical CV was determined based on 

plant population using the linear equation: y = (-0.0003 x plant population) + 36.315 

(www.nue.okstate.edu). Flat and varied amounts of N were applied as urea ammonium nitrate 

(UAN, 28-0-0) at the base of the plants of designated subplots using syringes (± 0.1 mL).  

 Two middle rows of the plots were harvested with a Massey Ferguson 8XP combine. 

Grain yield and percent moisture content were collected using a Harvest Master yield monitoring  
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computer. Moisture content of the final grain yield was adjusted to 15.5%. Grain subsamples 

were collected, oven-dried at 70°C until no further loss in weight was observed and processed to 

pass 106 um (140 mesh screen) for total N analysis using a Carlo Erba Na 1500 dry combustion 

analyzer (Schepers et al., 1989). Total N uptake was determined by multiplying percent N in grain 

with grain yield. NUE was determined by dividing the difference in grain N uptake of fertilized and 

check plots by the N rate applied. Net return to N fertilizer was computed by subtracting the cost 

of total N applied from gross income (price of grain in kg multiplied by grain yield). Table 5 

provides the prices of N fertilizer and wheat grain from 2004-2006 used in net return 

determination.  Statistical analysis was performed using SAS for Windows (SAS, 2002). Analysis 

of variance (ANOVA) was conducted to determine if there were significant differences among 

treatment means of the variables measured: yield, grain N uptake, NUE and net return. SAS 

Mixed Model Procedure was used to partition sources of variation.
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RESULTS  

 

Components of the Nitrogen Fertilization Optimization Algorithm 
 

Estimates of Yield Potential 
 

Teal et al. (2006a) reported that NDVI and its derived indices can be used to estimate 

corn YP0 when sensing is accomplished between V7-V9 leaf growth stages. They reported that 

NDVI measured at V8 was highly correlated with actual grain yield (R2 = 0.77). Table 6 reports 

the average NDVI readings of the check plot. The actual grain yields increased with increasing 

NDVI readings. The highest NDVI reading (0.83) collected at LCB in 2005 obtained an actual 

yield of 9947 kg ha-1, the highest check plot’s yield recorded in the trial. Teal et al. (2006a) also 

found that a strong relationship existed between NDVI normalized by the number of days from 

planting to sensing (DFP INSEY) and actual grain yield (r2 = 0.74). In this trial, the equation 

derived from the relationship between NDVI-derived-index DFP INSEY and actual yield was used 

to estimate corn grain yield potential. In general, estimated yield potential was close to measured 

grain yield (Table 6). At Perkins, the method for estimating yield potential (YP0 = 5256 kg ha-1)

was close to actual grain yield (5343 kg ha-1). However, as has been reported, yield potential can 

be overestimated using this approach (Raun et al., 2005). Obtaining accurate estimates of yield 

potential relies on fitting a model not adversely affected by changes in growth conditions 

otherwise, YP0 can be over- or underestimated. This was exemplified at LCB in 2005 and at 

Perkins in 2006. The discrepancy obtained at Perkins was attributed to the moisture stress that 

occurred between sensing and harvest that adversely affected YP0. As a result, the estimated 

YP0 at 4617 kg ha-1 was higher than the actual yield (1935 kg ha-1). At LCB, canopy closure at V8 

leaf growth stage resulted in very high NDVI readings averaging 0.82 (Table 7). At this NDVI
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value, the sensor was exclusively measuring plant material. Since the DFP INSEY was used, the 

NDVI readings were normalized by DFP which was reported to be the lowest number (49 days) 

obtained in all site years (Table 6). The projected biomass produced per day was large because 

of the high NDVI reading and relatively low DFP. The equation projected what would be the final 

yield potential with the biomass produced per day. Thus, YP0 was large for this specific site year, 

and the amount of N in the check plot could have become limiting as plant growth continued. As a 

result, crop growth rate slowed down within the period from sensing towards harvest that caused 

a reduction in the final grain yield. This resulted in a large discrepancy of YP0 (21,806 kg ha-1)

and actual grain yield (9947 kg ha-1) of the check plot. The LCB Research Station has been under 

irrigation since the spring of 2005. The non-limiting moisture at this site resulted in a lower 

number of days to reach V8 leaf growth stage (faster growth rate) compared with the rainfed 

system at Efaw and Perkins (Table 6). Perkins has a sandy loam soil known to have poor water 

holding capacity. As a result of a less favorable growing conditions at this site, average grain 

yields were lower than at Efaw and LCB (Table 6).   

 

Response Index  
 

Response index at harvest (RIHARVEST) was determined by computing the ratio of grain 

yield of the highest N fertilized plot and grain yield of the check plot (Table 6). Corn N response 

varied by year and location. The RINDVI was adjusted by using a previously established 

relationship between vegetative response (RINDVI) and grain yield response (RIHARVEST) to N 

fertilization. The adjusted RINDVI values [(RINDVI x 1.64) – 0.528] generally provided good estimates 

of actual crop response to fertilizer N (Table 6). In some site years however, the response of corn 

to N fertilization was underestimated as shown in 2006 at Efaw, where a difference of 0.74 

existed between predicted (RINDVI = 1.34) and observed response (RIHARVEST = 2.08) to N. Mullen 

et al. (2003) explained that after sensing, enhancing and limiting factors affecting crop yield 

potential may occur that lead to underestimation or overestimation of RIHARVEST by RINDVI. Further, 

they explained that favorable conditions that occurred (such as timely rainfall) after sensing can 
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increase crop N response resulting in a higher RIHARVEST value than RINDVI. At Perkins in 2006, 

this was the only site year where RIHARVEST (1.28) was underestimated by RINDVI (1.52). This 

exemplifies growth conditions that adversely affect crop N response between sensing to harvest. 

In 2005, a state-of-the-art irrigation system was installed at LCB. With this system, moisture 

stress can be avoided and thus, crop growth conditions were near ideal. Since 2005, RINDVI 

provided accurate estimates of crop response to N. The RINDVI and RIHARVEST for 2005 at LCB 

were 1.42 and 1.44, respectively. Similarly, close RI values are reported between estimated 

(RINDVI = 1.94) and observed (RIHARVEST = 1.92) in 2006 at LCB (Table 6). The absence of drastic 

changes in growth conditions resulted in little or no change in crop response to N from sensing to 

harvest at this particular site. 

 

Coefficient of Variation 
 

Initially, critical CV used in the algorithm was 20% (Arnall et al., 2006) and a maximum 

CV value to cap mathematical adjustment by the CV component (Table 4). Recent studies 

conducted showed that critical and cap CV should be adjusted for the corn algorithm. Teal et al. 

(2006b) obtained a maximum 55 % CV from the NDVI readings when the plant population was 

about 20,000 plant ha-1. The highest CV from NDVI readings obtained by Martin et al. (2006) was 

65% and thus, the cap CV used in the algorithms was adjusted from 100% to 65% in 2006. 

Further, Martin et al. (2006) reported that a strong correlation existed between corn plant density 

and CVs from NDVI readings measured between V7-V9 leaf growth stages. This implied that 

critical CV may change depending on the plant population and thus, an equation was established 

that allowed the adjustment of critical CV based on plant population. Table 8 presents the critical 

CV used in the RICV-NFOA treatments. The minimum, maximum and average CVs collected 

from treatments 7, 8 and 11 are also reported by site and year. With the given trend of critical 

CVs estimated by plant population, there were site years utilizing the 20%-critical CV that should 

have used only 13% (Efaw and LCB in 2004) (Table 8). A higher critical CV in these site years 

resulted in a higher N rate recommendations by RICV-NFOA. 
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Nitrogen Fertilizer Recommendations 
 

Fixed and Midseason NFOA-Based N Rates  
 

The total N applied for each treatment is summarized by site and year in Table 9. The 

highest fixed rate applied was 134 kg N ha-1 while the NFOA-based N rate applied was 199 kg N 

ha-1 at Efaw in 2005. Table 7 presents the sidedress N rate applications for each treatment by 

site and year. Amounts of N fertilizer applied in treatments 7 to 13 had wide variation across site 

years. The lowest sidedress N rate recorded was only 1 kg N ha-1 at LCB and the highest (132 kg 

N ha-1) was at Efaw, both in 2005. These varying levels of N demonstrated the ability of the 

algorithms to adjust N based on YP0, crop responsiveness and plant-stand/density, all derived 

from NDVI readings of the current crop. 

 

Midseason NFOA-Based N Rates With and Without Preplant 
 

To determine midseason NFOA-based N rate requirements, YPN needs to be determined 

first. In 2004 and 2005 for all sites, the RINDVI was determined by dividing the NDVI readings of 

treatment 6 (134 kg N ha-1 fixed rate applied preplant) by the check plot. This RINDVI was used 

regardless of whether the NFOA-based N rates received preplant N. Generally, the resulting 

recommendations for NFOA-treatments with 67 kg N ha-1 preplant tended to be higher than 

NFOA-treatments without preplant (Table 7). The 67 kg N ha-1 fixed rate applied preplant 

provided modest amounts of N for early corn establishment. This resulted in healthier corn plants 

and higher NDVI readings than corn plants without preplant N. To account for the amount of N 

that was applied preplant, in 2006, the RINDVI for NFOA-treatments with preplant N was 

determined by dividing the NDVI readings of treatment 6 by treatment 5 (67 kg N ha-1 fixed rate 

applied preplant). This made sense since for corn with preplant N, higher NDVI readings obtained 

at V8 leaf growth stage would not only mean higher YP0 but also more vigor enhanced by extra N 

from preplant application available from the early stages of growth until V8 (sensing time). With 
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this alteration, midseason N rate requirements prescribed by NFOA with preplant N were lower 

than NFOA without preplant which should be expected since a portion of the total N requirements 

was already applied early in the season. 

 

RICV- and RI-NFOA-Based N Rates 
 

The integration of CVs in the NFOA was proposed by Raun et al. (2005). Further 

refinement of the algorithm was required for fields of wheat where variation in crop stand was so 

pronounced that it masked the average NDVI readings. When plot CVs exceeded the critical CV 

set in the algorithm, the final midseason N rate recommendations were less. It was presented that 

critical CV in earlier years was set at 20%, based from the results reported by Arnall et al. (2006). 

Table 7 provides actual critical CVs when determined based on plant population. The actual 

critical CVs in 2004 and 2005 were overestimated. At Efaw in 2004 and 2005, midseason RICV-

NFOA recommended N rates that ranged from 100 to 127 kg N ha-1 (Table 10). On the other 

hand, the midseason N rate recommendations using RI-NFOA ranged only from 31 to 66 kg N ha-

1. The RICV-NFOA resulted in higher recommendations for these site years because CVs from 

NDVI readings were lower than the critical CV set at 20%.  Predicted YPN starts to decline only 

when CV from NDVI readings exceeds the critical CV. Using an average of 8% CV (Table 8) 

collected at Efaw in 2004, the adjustment made by the CV component 
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YPN using a critical CV of 20% was 1.26. However, when using the actual critical CV of 13% that 

was derived from plant population (Table 8), the adjustment made by the CV component would 

have only been 1.10 to obtain the YPN.

Table 10 shows the midseason N rate recommendations made by NFOA by site and 

year. The algorithm that utilized CVs had a wider range of midseason N rate recommendations. 

The highest range of midseason N rates was observed at Perkins in 2005. We recorded a 

minimum of 0 and a maximum of 201 kg N ha-1 taking note that this site year also obtained the 

highest average CV of 27% (Table 8). The RI-NFOA generally resulted in the lowest amounts of 
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midseason N by site year, and ranged from 8 to 67 kg N ha-1. In 2006, it is important to note that 

while there were large differences in minimum and maximum midseason N rates of the RI- and 

RICV-NFOA, the average midseason N rates of the two algorithms did not deviate as much. The 

CV component helped to recognize that N fertilization would be unnecessary in subplots with 

poor stands and N fertilization at rates higher than what RI-NFOA recommended in subplots with 

homogenous stand. 

Excluding Efaw in 2006, RICV-NFOA projection at 2.32 m2 resolution had smaller 

disparity in the minimum and maximum midseason N rates applied (Table 10). Further, the 

average midseason N rates at this resolution were also lower than what RICV-NFOA projected at 

0.34 m2 resolution. A similar trend was observed when minimum, maximum and average CVs 

collected from these application resolutions were compared (Table 8).  

 

Responses of Measured Variables to Fixed and NFOA-Based N Rates 
 

Grain Yield 
 

Grain yields and the response to N fertilizer applied at fixed and variable rates are 

presented in Table 6. The standard error of the difference between two equally replicated means 

(SED) is also reported. Grain yield means were significantly different (Pr>0.05) among treatments 

for all site years excluding Perkins in 2006. Soil moisture in this site year became limiting 

compounded by poor water holding capacity of the soil that masked the effect of N application at 

different rates on grain yield. On the other hand, on average by site, Efaw’s and LCB’s treatment 

13 (RI-NFOA with 67 kg N ha-1 preplant) obtained the highest grain yields at 12763 and 10760 kg 

ha-1, respectively. At Efaw, this treatment received only a total of 108 kg N ha-1 compared with the 

fixed rate at 134 kg N ha-1 split applied (Table 7). At LCB, total N applied to this treatment 

equalled treatment 4.  

At Perkins, treatment 4 (134 kg N ha-1 split applied) produced the highest grain yield at 

5758 kg ha-1. Whether fixed or NFOA-based, plots consistently produced higher grain yields 
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when modest amounts of preplant N were applied (67 kg ha-1). One-time 134 kg N ha-1 

application (treatment 3) benefited corn grain planted at Efaw and LCB when compared with plots 

that did not receive preplant N. However, this was not the case at Perkins. The drier conditions at 

Perkins because of this soil’s poor moisture holding capacity may have resulted in N lost via 

volatilization early on.  

 Within the NFOA-treatments with preplant N, the maximum grain yield difference attained 

was 1197 kg ha-1 at LCB.  Grain yields ranged from 11610 to 12763 kg ha-1 at Efaw, 9568 to 

10760 kg ha-1 at LCB, and 5133 to 5332 kg ha-1 at Perkins. Treating the plots at 0.34 m2

resolution resulted in a higher grain yield at Efaw. On average, using RICV-NFOA at 0.34 m2

obtained 12308 kg ha-1 while at 2.32 m2, grain yield was only 11610 kg ha-1. There was no 

pronounced benefit when plots were treated at 0.34 m2 resolution at LCB and Perkins. Flat-RICV-

midseason N rates were determined by using average N estimates by RICV-NFOA. Unlike RICV-

NFOA, flat-RICV-NFOA distributed N fertilizer in the entire corn row. Grain yields between RICV- 

and flat-RICV-NFOA had minimal differences. In some site years, flat-RICV’s grain yield tended 

to be higher and lower in others.  

 

Grain N Uptake 
 

The total grain N uptake in response to N fertilizer application is presented in Table 11 by 

treatment, site and year. The SED values by site and year are also reported. Excluding Efaw in 

2004, mean grain N uptake was significantly different (Pr>0.05) among treatments across site 

years. Applying 134 kg N ha-1 either preplant or sidedress (treatment 3 and 6) at Perkins resulted 

in lower grain N uptake compared when N was split (treatment 4). Grain N uptake was only 76 kg 

N ha-1 for both treatment 3 and 6 compared with 93 kg N ha-1 for treatment 4. Perkins is 

considered as a low yielding environment for corn thus the absence of N (treatment 3) at early 

growth stages affected crop yield potential, even if large amounts of N were applied at later 

stages, the crop failed to catch up. Similarly, excess N as a result of large applications at early 

growth stages under dry and hot conditions at Perkins enhanced the process of N loss via 
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volatilization. At LCB, marginal differences among N uptake of these treatments were obtained. 

Grain N uptake values were 168, 165 and 160 kg N ha-1 for treatment 3, 4 and 6, respectively. At 

Efaw, both N uptake of treatment 4 (170 kg N ha-1) and 6 (176 kg N ha-1) were comparable but 

not for treatment 3 (152 kg N ha-1). 

 On average by site, the highest N uptake obtained was 200 kg N ha-1 at Efaw (treatment 

13). A 30 kg N ha-1 difference was recorded when treatment 13 was compared with treatment 4. 

At Efaw, the NFOA-treatments with 67 kg N ha-1 preplant had higher N uptake compared with the 

treatments that received 134 kg N ha-1 (split, preplant- or sidedress-only). However, this was not 

observed at LCB and Perkins. While treatment 4 recorded the highest grain N uptake for these 

two sites, the difference it made compared with treatment 13 was minimal. At Perkins, treatment 

4 had 93 kg N ha-1 while treatment 13 had 86 kg N ha-1. Treatment 4 at LCB obtained 165 kg N 

ha-1 while a very close value of 162 kg N ha-1 was obtained by treatment 13.    

 The use of RI-NFOA (treatment 13) resulted in higher grain N uptake when compared 

with RICV-NFOA (treatment 8) at Efaw and LCB but not at Perkins. Treatment 8 had grain N 

uptake values of 181, 138 and 87 kg N ha-1 while treatment 13 had 200, 162 and 162 kg N ha-1 at 

Efaw, LCB and Perkins, respectively. Treating plots at different resolutions using RICV-NFOA did 

not result in large N uptake differences. Similarly, utilizing the average of RICV-NFOA for uniform 

N rate application resulted in minimal differences in grain N uptake.  

 

Nitrogen Use Efficiency 
 

Nitrogen use efficiency of each treatment is presented by site and year in Table 12. On 

average by site, split applications of N resulted in minimal differences in NUE when compared 

with preplant or sidedress only at LCB. At 134 kg N ha-1 fixed rate, NUE values were 68, 69 and 

63 for sidedress, split and preplant application, respectively. At Perkins, when N was split applied, 

a higher NUE difference (13%) was obtained when compared with preplant- and sidedress-only. 

Preplant N application (58%) had a minimal advantage in NUE when compared with split at Efaw 

(54%). Efaw is a high yielding site (Table 11) compared with Perkins thus, preplant N was 
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required for early growth establishment because of a relatively high yield potential at this site. 

Late application of 134 kg N ha-1 at V8 did not help the corn plant to catch up which resulted in 

lower grain yield (10251 kg ha-1) and lower N uptake (152 kg N ha-1) when compared with split 

application (11094 kg ha-1 grain yield and 170 kg ha-1 N uptake). 

 On average, the NFOA treatments with preplant N obtained higher NUE values 

compared with 134 kg N ha-1 split applied. The highest was obtained by treatment 13 (83%) at 

Efaw, treatment 13 (69%) at LCB, and treatment 11 (43%) at Perkins. Without preplant N, RI-

NFOA obtained the highest NUE of 83% at LCB while the RICV-NFOA at Perkins had the highest 

NUE at 59%. Treating plots at 0.34 m2 application resolution resulted in improved NUE only in 

low yielding environments and when spatial variability was pronounced (Perkins). The flat-RICV’s 

NUE values were consistently lower than the RICV-NFOA’s, however minimal differences were 

recorded at 2, 2 and 4% at Efaw, LCB and Perkins, respectively.  

 At Perkins, RICV-NFOA with preplant obtained the highest NUE value because of 

lowest total N input. At LCB, the high NUE value of the RI-NFOA was attributed to a large 

reduction in total N applied but as well the grain yield it produced was within the upper end 

among the treatments. The use of RI-NFOA (with preplant N) resulted in the highest NUE among 

treatments. The benefit of using RI-NFOA in improving NUE was attributed to increased grain 

yield, N uptake and reduced fertilizer N input.  

 

Net Return to Nitrogen Fertilizer 
 

Net return, computed by subtracting the cost of fertilizer from gross income (grain yield 

x grain price kg-1), is presented in Table 13 by treatment, site and year. Differences in net return 

were significant (Pr>0.05) among treatment means excluding LCB in 2005 and Perkins in 2006. 

At Perkins, the response to N was masked by the more limiting effect of moisture stress, as a 

result, no significant differences (Pr>0.05) in grain yields among treatments were obtained as 

reported in Table 6. This caused treatments to obtain comparable gross incomes. Further, the 

savings on the cost of fertilizer in some of the treatments did not compensate for the slight 
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reduction in grain yield in response to reduced N applied resulting in no significant differences 

in net returns. 

 On average, both fixed and NFOA-based N rates with preplant obtained consistently 

higher net returns than treatments without preplant N. The highest net return obtained was $1344 

ha-1 at EFAW, achieved when midseason N rates were based on RI-NFOA. The RICV-NFOA net 

return was second highest with $ 1254 ha-1. At LCB, a fixed rate of 134 kg N ha-1 split applied 

obtained the highest net return at $ 1112 ha-1. The RI-NFOA’s net return of $ 1089 ha-1 was 

within the upper end but not the RICV-NFOA which achieved only $ 903 without preplant and $ 

968 with preplant N. At Perkins, 134 kg N ha-1 applied in split obtained the highest net return of $ 

528 ha-1 followed by the 67 kg N ha-1 rate preplant applied ($ 517 ha-1). Both RI- and RICV-NFOA 

with preplant achieved net returns that were within the upper end group amounting to $ 477 and $ 

480 ha-1, respectively.  

With preplant N, treating plots at 0.34 m2 resulted in higher net return at Efaw, ($ 1254 

versus $ 1171) than when using 2.32 m2- resolution. However at LCB and at Perkins, net return 

obtained was slightly higher at 2.32 m2- than at 0.34 m2- resolution. The flat-RICV’s net return did 

not record consistent trends across site years. The highest deviation from the RICV-NFOA’s net 

income was $ 53 ha-1.

Efaw was the only site that obtained the highest net return using the algorithm (RI-NFOA) 

to determine midseason N rates. This was attributed to increased grain yield and reduced N 

fertilizer input. At LCB, the net returns achieved by RI-NFOA were still within the upper end 

group. This can be attributed to relatively higher midseason N rates projected by the algorithm 

that almost equalled the 134 kg N ha-1 fixed rate. At Perkins, both RI- and RICV-NFOA 

treatments had net returns within the upper end group. 
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DISCUSSION 

 
The concept of using the demand for N of the projected YP0 to estimate crop N 

requirements is a better option than applying fixed N rates every cropping season. Based on our 

results, unless significant changes in growth conditions occurred after sensing, the YP0 equation 

obtained reasonable estimates of actual grain yield. This implies that INSEY, an estimate of 

biomass produced per day, works but needs to be more robust i.e., should be accompanied by 

more risk averse prediction models. Crop response to N application as estimated by the RI was 

adjusted using the equation of the linear relationship between RINDVI and RIHARVEST. The 

adjustment made on RI resulted in good estimates of corn response to N fertilization for most site 

years especially at LCB, an irrigated site, where growth conditions were near ideal. The RINDVI 

overestimated crop response to N when adverse growth condition occurred after sensing that 

masked the effect of N to crop growth as exemplified at Perkins.  

Total N applied to treatments that utilized the NFOA approach were highly varied ranging 

from 31 to 168 kg N ha-1. It is important to take note that extremely low N rates projected by the 

NFOA did not result in a drastic reduction of grain yields. While the NFOA in some site years had 

lower yield compared with the flat rates, the large reduction in N fertilizer applied resulted in a 

higher NUE. Further, the large reduction in cost of N fertilizer outweighed the benefit of increased 

grain yield of plots applied with the 134 kg N ha-1 fixed rate. In addition to a considerable 

reduction in the cost of N fertilizer used, grain yield of the NFOA-based approach with preplant N 

(67 kg N ha-1) in some site years exceeded the grain yield of the 134 kg ha-1 fixed rate split 

applied. This demonstrates that the NFOA approach is very promising in terms of improving 

producers’ income. 

The inclusion of a CV component made the RICV-NFOA different from the RI-NFOA. The 

CV component allows the algorithm to take into account field spatial variability and helps 

determine if there is a need to adjust N rates depending on crop stand/density, such that a 
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good homogenous stand would receive more N fertilizer than a poor plant stand.  While this trend 

was demonstrated based on the total N applied in the RICV- and RI-NFOA plots, the expected 

benefits in grain yield, NUE and net return was not exhibited by RICV-NFOA at high yielding site 

years. Likewise, while the RI-NFOA approach excelled at high yielding site years, it was limited 

by adverse growth conditions whereas RICV-NFOA performed better in terms of increasing NUE. 

These observations imply that a) the use YP0 and adjusted RINDVI as components of algorithm 

can improve NUE and net returns attributed either to increased grain yield or large savings due to 

lower N rates applied provided that the crop is under near ideal growing conditions, b) CV 

components will play an important role in improving the algorithm especially when pronounced 

spatial variability brought about by unfavorable growth conditions, and c) CV components require 

improved mathematical adjustment to work in well established, homogenous crop stand. 

 There was no pronounced trend between the two resolutions (0.34 and 2.32 m2) tested 

when comparing grain yields, NUE and net returns. Moreover, the flat-RICV-NFOA showed 

comparable grain yields, NUE and net returns with RICV-NFOA’s. These results suggest that the 

RICV-NFOA recommendation from a good representative area of a farmer’s field thus far can be 

used to make uniform recommendation for an entire field. While the algorithm recommend 

uniform rates, this approach still encumbers the N demand based on predicted YP0, field spatial 

variability, and the seasonally dependent crop responsiveness to applied N. This is very important 

in fields where variable rate application is not feasible. 

 

CONCLUSION 
 

While the algorithms used to estimate midseason N rates have required several 

adjustments on RINDVI and CV components, they have consistently led to increases in the 

variables measured. The refinement made along the course of the trial by adjusting CVs and 

RINDVI  resulted in relatively higher midseason N rate estimates and yet maintained the ability of 

the NFOA to obtain improved grain yield, NUE, and net return. This study also demonstrated the 
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benefit of applying N fertilizer on a need-basis over uniform applications of N based on historical 

crop information.   

On average, with modest amounts of preplant N, midseason RI-NFOA-based N 

recommendation improved NUE to 64% compared with 56% of the 134 kg N ha-1 fixed rate split 

applied. The use of the RI-NFOA also improved grain yields in four of six high yielding site years 

and net returns in three of six high yielding site years. At Perkins (low yielding site), the 134 kg N 

ha-1 fixed rate split applied obtained the highest grain yield and net return while the RI-NFOA’s 

were comparable. The RICV-NFOA without preplant N showed an advantage over RI-NFOA in 

improving NUE when field variation became pronounced as a result of unfavorable growth 

conditions. Without preplant N in low yielding site years, the RICV-NFOA had a higher NUE (59% 

versus 43%) and net return ($ 475 versus $ 401 ha-1) compared with the RI-NFOA’s. With 

preplant N on the other hand, NUE and net returns of RICV- and RI-NFOA were comparable. The 

increase in NUE can be attributed to reductions in N fertilizer input recommended by the RICV-

NFOA. There was no improvement in NUE and net returns when spatial variability was treated at 

0.34 m2 using the RICV-NFOA. Using an average of midseason N rates prescribed by RICV-

NFOA for uniform application of N fertilizer (flat-RICV-NFOA) may result in minimal differences in 

grain yield, NUE and net return. In general, the use of midseason sensor-based predictions of 

YP0 and RINDVI provided accurate rate recommendations when compared with flat rates. 
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Table 1. Soil chemical properties determined from initial soil samples (0-15 cm) at three locations, 
Oklahoma. 

g kg-1 mg kg-1 Site pH 
Total N Total C NH4-N NO3-N P K

EFAW 5.9 0.65 10.24 13.9 3.7 20 90
LCB 5.6 0.76 9.87 28.4 4.4 45 144
Perkins 6.2 0.44 6.4 9.2 8.1 14 118

pH – 1:1 soil:water; K and P – Mehlich III; NH4-N and NO3-N – 2 M KCl, Total N and Organic C – 
dry combustion. 
 

Table 2. Treatment structure and description used for the trials conducted at Efaw, Lake Carl 
Blackwell and Perkins, 2004-2006. 

Treatment Preplant N  
kg ha-1 

MidSeason N  
kg ha-1 

Resolution 
m2

1 0 0 -
2 0 67 - 
3 0 134 - 
4 67 67 - 
5 67 0 - 
6 134 0 - 
7 0 RICV-NFOA 0.34 
8 67 RICV-NFOA 0.34 
9 0 Flat-RICV-NFOA - 
10 67 Flat-RICV-NFOA - 
11 67 RICV-NFOA 2.32 
12 0 RI-NFOA 0.34 
13 67 RI-NFOA 0.34 

 

NFOA = Nitrogen Fertilization Optimization Algorithm  
RICV-NFOA = algorithm for adjusting mid-season N rate recommendation for the predicted yield 

potential using response index and coefficient of variation as the components  
Flat-RICV-NFOA = utilized the average of N rates determined by RICV-NFOA 
RI-NFOA = algorithm for adjusting midseason N rate recommendation for the predicted yield 

potential using response index 
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Table 3. Field activities for all sites and years, 2004-2006. 
Date±

Site Year Variety 
Planting 

Rate 
plants ha-1 Planting Sensing¶ Sidedress 

Application Harvest 

EFAW 2004 113 BT 66,000 04-07-04 06-01-04 06-02-04 09-03-04 
 2005 38B51 59,000 03-30-05 05-25-05 05-25-05 08-27-05 
 2006 38B51 54,000 03-30-06 05-24-06 05-24-06 09-01-06 
LCB§ 2004 108 BT 66,000 04-03-04 06-11-04 06-12-04 08-27-04 
 2005 38B51 74,000 04-12-05 05-31-05 05-31-05 09-07-05 
 2006 38B51 79,000 03-31-06 05-22-06 05-23-06 08-18-06 
Perkins 2004 108 BT 59,000 04-02-04 06-03-04 06-07-04 09-01-04 
 2005 8454Y61 49,000 03-28-06 06-06-05 06-06-05 08-31-05 
 2006 OKC5020 49,000 03-30-06 05-30-06 05-30-06 08-14-06 
 

± Date in month-day-year 
§ Lake Carl Blackwell 
¶ Sensing dates done between V8-V9 leaf growth stages. 
 

Table 4. Yield potential equations, coefficients of variation and days from planting to sensing that 
were used to compute midseason nitrogen rate requirements, 2004-2006. 

Coefficient of Variation, % DFP Year YP0 Equations 
Critical Cap Efaw LCB Perkins 

-------------CV, %------------- ---------No. of Days------- 
2004 YP0 = 1333*exp(INSEY*122.46) 20 100 50 65 61 
2005 YP0 = 1565*exp(INSEY*154.7) 20 100 56 49 68 
2006 YP0 = 1202*exp(INSEY*169.6) § 65 56 53 62 
 

CV = coefficient of variation 
YP0 = yield potential 
INSEY = in-season estimated yield computed by dividing NDVI readings at V8 leaf growth stage 

divided by the number of days from planting to sensing 
§ Determination of critical CV was based from plant population. 
DFP = number of days from planting to sensing 
Cap = set maximum CV value 
 

Table 5. Prices of nitrogen fertilizer and corn grain used for net return computation, 2004-2006. 
Year Grain Price† Price N Fertilizer‡

$ kg-1 $ kg N-1 

2004 0.104 0.59 
2005 0.098 0.71 
2006 0.133 0.75 
 

† Source: USDA, NASS. 
‡ Estimated U.S. farm level fertilizer prices, Source: US Department of Energy. 
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Table 6. Corn grain yield response to nitrogen fertilizer at Efaw, Lake Carl Blackwell and Perkins, 2004-2006.
N Applied Efaw Lake Carl Blackwell Perkins

Preplant Midseason¥ 2004 2005 2006 Avg. 2004 2005 2006 Avg. 2004 2005 2006 Avg.

---------kg N ha-1--------- -------------------------------------------------Grain yield, kg ha-1-----------------------------------------------------------

0 0 9518 6206 5458 7061 4167 9947 4724 6279 5343 1860 1935 3046
0 67 13122 9928 9395 10815 7559 12590 7853 9334 6841 4120 2282 4414
0 134 11798 10146 8808 10251 7154 13896 10664 10571 7149 3803 2857 4603
67 67 13405 10288 9590 11094 8845 14297 9712 10951 8749 5262 3264 5758
67 0 12391 9184 8195 9923 7876 12886 5808 8857 7612 4935 3118 5222
134 0 13286 11245 11337 11956 7852 14273 9116 10414 7998 4269 2485 4918
0 RICV-NFOA 11186 8555 6912 8884 6172 11992 7592 8585 7063 4111 3180 4785
67 RICV-NFOA 13890 11971 11062 12308 7802 13036 7866 9568 7905 5083 3007 5332
0 Flat-RICV-NFOA 13476 9367 9118 10654 6618 11142 7616 8459 7036 3330 2388 4251
67 Flat-RICV-NFOA 13341 11482 10259 11694 8662 12996 8356 10004 8089 4960 2351 5133
67 RICV-NFOA 13336 11375 10118 11610 8580 13524 6821 9641 8469 4856 2464 5263
0 RI-NFOA 12862 10079 9241 10727 6818 13861 9459 10046 6698 3418 2236 4117
67 RI-NFOA 13997 12373 11920 12763 8380 14550 9349 10760 8423 4858 2649 5310

Pr>F 0.0068 0.0006 0.4503 - 0.0001 0.0045 0.0001 - 0.0001 0.0001 0.5985 -
Adj. RINDVI

† 1.10 1.26 1.34 - 1.40 1.42 1.94 - 1.26 1.62 1.52 -
RIHARVEST

¶ 1.39 1.81 2.08 - 1.88 1.44 1.92 - 1.50 2.30 1.28 -
NDVICHECK

§ 0.77 0.64 0.67 - 0.70 0.83 0.47 - 0.68 0.41 0.49 -
YP0

‡ 8869 9000 9220 - 5021 21806 5335 - 5256 3979 4617 -
SED 705 829 131 - 574 763 636 - 351 333 450 -

† Adjusted in-season response index, determined by dividing average normalized difference vegetation index (NDVI) between V8-V9 leaf growth
stage of treatment 6 (134 kg ha-1 preplant) by the Check. Adjustment was made using the equation (RINDVIx1.64) - 0.528.

¶ Response index at harvest, determined by dividing the grain yield of the highest preplant N fertilized plots by Check plot.
§ Average NDVI of the check plot.
‡ Predicted yield potential of the check plot in kg ha-1.
¥ Full description is presented in Table 2.
SED = standard error of the difference between two equally replicated means

59 

53 
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Table 7. Sidedress nitrogen fertilizer applied at fixed and midseason NFOA-based rates at Efaw, Lake Carl Blackwell and Perkins, 2004-2006.
N Applied Efaw Lake Carl Blackwell Perkins

Preplant Midseason¥ 2004 2005 2006 Avg. 2004 2005 2006 Avg. 2004 2005 2006 Avg.

---------kg N ha-1--------- -----------------------------------Sidedress N Applied, kg ha-1----------------------------------------------

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 67 67 67 67 67 67 67 67 67 67 67 67 67
0 134 134 134 134 134 134 134 134 134 134 134 134 134
67 67 67 67 67 67 67 67 67 67 67 67 67 67
67 0 0 0 0 0 0 0 0 0 0 0 0 0
134 0 0 0 0 0 0 0 0 0 0 0 0 0
0 RICV-NFOA 108 100 58 89 80 38 58 59 80 43 77 67
67 RICV-NFOA 101 127 52 93 85 23 36 48 101 80 47 76
0 Flat-RICV-NFOA 108 100 58 89 80 38 58 59 80 43 77 67
67 Flat-RICV-NFOA 101 127 52 93 85 23 36 48 101 80 47 76
67 RICV-NFOA 99 132 58 96 87 1 19 36 109 35 31 58
0 RI-NFOA 31 66 48 48 48 98 87 78 66 64 56 62
67 RI-NFOA 32 66 24 41 50 107 43 67 83 85 23 64

Avg. NDVI 0.78 0.71 0.63 - 0.65 0.82 0.57 - 0.71 0.49 0.54 -
Avg. CV 8 14 14 - 12 10 17 - 15 26 16 -
Min CV 1 2 1 - 0 1 2 - 2 4 1 -
Max CV 31 54 52 - 98 44 57 - 66 55 54 -
CV Range 30 52 51 - 98 43 55 - 64 51 53 -

NDVI = normalized difference vegetation index
CV = coefficient of variation
NDVI and CV data were collected from midseason NFOA-based N rate treatments.
¥ Full description is presented in Table 2.

60 
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Table 8. Average, minimum and maximum coefficient of variation for three treatments employing the RICV-nitrogen fertilization optimization
algorithm at the three locations, 2004-2006.

Critical CV, % TRT 7
(0 - NFOA - 0.34)§

TRT 8
(67 - NFOA - 0.34) §

TRT 11
(67 - NFOA - 2.32) §

Year Site

Used Actual¶ Min Max Avg Min Max Avg Min Max Avg

------------------------------------Coefficient of Variation, %-----------------------------------------------

2004 Efaw 20 13 1 20 7 2 31 8 5 17 8
LCB 20 13 1 50 12 2 36 11 5 16 11
Perkins 20 16 3 53 18 2 66 14 6 23 12

2005 Efaw 20 16 2 54 17 2 44 11 5 31 12
LCB 20 10 1 44 13 1 33 7 2 11 4
Perkins 19 19 8 54 27 4 55 23 18 31 48

2006 Efaw 18 18 4 44 15 1 52 14 4 30 12
LCB 9 9 4 45 19 4 45 19 8 24 17
Perkins 19 19 1 54 16 1 54 16 9 24 18

§ preplant – midseason N rates prescribed by NFOA – resolution.
¶ Determined from the equation: critical CV = (-0.0003*plant population) + 36.315.

61 
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Table 9. Total nitrogen fertilizer applied at fixed and midseason NFOA-based rates at Efaw, Lake Carl Blackwell and Perkins,
2004-2006.

N Applied Efaw Lake Carl Blackwell Perkins
Preplant Midseason¥ 2004 2005 2006 Avg. 2004 2005 2006 Avg. 2004 2005 2006 Avg.

---------kg N ha-1--------- -------------------------------------Total N Applied, kg ha-1----------------------------------------------

0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 67 67 67 67 67 67 67 67 67 67 67 67 67
0 134 134 134 134 134 134 134 134 134 134 134 134 134
67 67 134 134 134 134 134 134 134 134 134 134 134 134
67 0 67 67 67 67 67 67 67 67 67 67 67 67
134 0 134 134 134 134 134 134 134 134 134 134 134 134
0 RICV-NFOA 108 100 58 89 80 38 58 59 80 43 58 67
67 RICV-NFOA 168 194 119 160 152 90 103 115 168 147 119 143
0 Flat-RICV-NFOA 108 100 58 89 80 38 48 55 80 43 58 67
67 Flat-RICV-NFOA 168 194 119 160 152 90 106 116 168 147 119 143
67 RICV-NFOA 166 199 125 163 154 68 86 103 176 102 125 126
0 RI-NFOA 31 66 48 48 48 98 87 78 66 64 48 62
67 RI-NFOA 99 133 91 108 117 174 110 134 150 152 91 131

¥ Full description is presented in Table 2.
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Table 10. Average, minimum and maximum midseason nitrogen rates for five treatments employing the nitrogen fertilization optimization
algorithms at three locations, 2004-2006.

Efaw Lake Carl Blackwell PerkinsTRT
No

Preplant
kg ha-1

NFOA Resolution
m2 Min Max Avg. Min Max Avg. Min Max Avg.

----------------------- Sidedress N Rate, kg ha-1---------------------------
2004

7 0 RICV 0.34 30 119 86 0 116 71 0 157 81
8 67 RICV 0.34 0 115 76 2 127 76 0 165 101
11 67 RICV 2.32 40 108 93 60 102 78 57 150 110
12 0 RI 0.34 17 46 32 22 56 43 39 88 66
13 67 RI 0.34 28 42 35 20 55 44 40 92 80

2005
7 0 RICV 0.34 0 157 90 0 125 34 0 93 38
8 67 RICV 0.34 0 163 113 0 110 20 0 201 71
11 67 RICV 2.32 21 151 118 0 4 0 0 76 31
12 0 RI 0.34 20 80 58 0 108 88 39 89 58
13 67 RI 0.34 23 78 59 67 110 95 44 105 76

2006
7 0 RICV 0.34 0 136 52 0 177 52 0 189 69
8 67 RICV 0.34 0 45 46 0 99 32 0 126 42
11 67 RICV 2.32 0 104 52 0 11 40 6 62 28
12 0 RI 0.34 20 70 43 33 127 78 23 102 50
13 67 RI 0.34 10 31 21 11 58 38 8 40 20

NFOA = nitrogen fertilization optimization algorithm
RICV = NFOA refined by response index and coefficient of variation as components
RI = NFOA refined by response index
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Table 11. Total nitrogen uptake in response to fixed and midseason NFOA-based N rates at Efaw, Lake Carl Blackwell and Perkins, 2004-2006.
N Applied Efaw Lake Carl Blackwell Perkins

Preplant Midseason¥ 2004 2005 2006 Avg. 2004 2005 2006 Avg. 2004 2005 2006 Avg.

---------kg N ha-1--------- ------------------------------------------Total N Uptake, kg ha-1--------------------------------------------------------

0 0 126 88 81 98 49 131 38 73 65 22 16 34
0 67 173 139 137 149 106 177 98 127 90 62 36 63
0 134 172 147 137 152 119 202 181 168 112 68 48 76
67 67 190 164 157 170 135 209 150 165 135 87 57 93
67 0 186 131 126 148 109 175 54 113 100 70 49 73
134 0 165 173 190 176 126 216 138 160 116 72 41 76
0 RICV-NFOA 160 133 108 134 97 158 93 116 101 63 51 72
67 RICV-NFOA 177 187 178 181 131 184 99 138 127 83 53 87
0 Flat-RICV-NFOA 179 135 142 152 101 150 93 115 105 43 39 62
67 Flat-RICV-NFOA 185 180 169 178 140 177 113 143 131 75 41 83
67 RICV-NFOA 185 176 172 178 140 187 78 135 139 77 41 86
0 RI-NFOA 167 145 124 145 101 187 143 144 93 57 36 62
67 RI-NFOA 222 186 193 200 128 218 139 162 130 85 44 86

Pr>F 0.1124 0.0008 0.0052 - 0.0001 0.0205 0.0001 - 0.0001 0.0001 0.0308 -
SED 16 16.3 24 - 7.6 15.8 15.2 - 5.8 6.2 6.8 -

SED = Standard error of the difference between two equally replicated means
¥ Full description is presented in Table 2.
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Table 12. Nitrogen use efficiency in response to fixed and midseason NFOA-based N rates at Efaw, Lake Carl Blackwell and Perkins, 2004-2006.
N Applied Efaw Lake Carl Blackwell Perkins

Preplant Midseason¥ 2004 2005 2006 Avg. 2004 2005 2006 Avg. 2004 2005 2006 Avg.

---------kg N ha-1--------- -------------------------------------Nitrogen Use Efficiency§, %--------------------------------------------------

0 0 - - - - - - - - - - - -
0 67 71 69 67 69 86 52 88 75 38 60 30 43
0 134 35 44 43 41 53 53 98 68 35 34 24 31
67 67 48 57 57 54 65 57 84 69 52 49 30 44
67 0 64 52 58 58 89 65 26 60 52 71 50 58
134 0 30 63 81 58 57 63 70 63 38 38 18 31
0 RICV-NFOA 32 50 58 47 60 33 84 59 45 86 46 59
67 RICV-NFOA 31 52 73 52 55 58 63 59 37 42 32 37
0 Flat-RICV-NFOA 50 51 68 56 67 33 86 62 51 49 32 44
67 Flat-RICV-NFOA 35 49 66 50 60 40 69 57 39 37 22 33
67 RICV-NFOA 35 46 72 51 59 76 47 60 42 56 25 41
0 RI-NFOA 79 73 79 77 96 57 98 83 40 53 35 43
67 RI-NFOA 77 74 98 83 68 50 88 69 43 42 31 39

Pr>F 0.0351 0.7280 0.6010 - 0.0002 0.5992 0.0556 - 0.6900 0.0032 0.2895 -
SED 12 17 20 - 6 21 16.2 - 12 8 8.6 -

§ Estimated by subtracting the grain N uptake of the check plot from the fertilized plot, divided by the N rate applied.
SED = Standard error of the difference between two equally replicated means
¥ Full description is presented in Table 2.
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Table 13. Net return to nitrogen fertilizer at Efaw, Lake Carl Blackwell and Perkins, 2004-2006.
N Applied Efaw Lake Carl Blackwell Perkins

Preplant Midseason¥ 2004 2005 2006 Avg. 2004 2005 2006 Avg. 2004 2005 2006 Avg.

---------kg N ha-1--------- -----------------------------------------Net Return‡, $ ha-1---------------------------------------------------------

0 0 990 608 726 775 433 975 628 679 556 182 257 332
0 67 1325 925 1199 1150 747 1186 994 976 672 356 253 427
0 134 1148 899 1071 1039 665 1266 1318 1083 664 277 279 407
67 67 1315 913 1175 1134 841 1306 1191 1112 831 420 333 528
67 0 1249 852 1040 1047 780 1215 722 906 752 436 364 517
134 0 1303 1007 1407 1239 738 1303 1112 1051 753 323 230 435
0 RICV-NFOA 1100 767 876 914 595 1148 966 903 687 372 365 475
67 RICV-NFOA 1346 1035 1382 1254 721 1214 969 968 723 394 314 477
0 Flat-RICV-NFOA 1338 847 1169 1118 641 1065 977 894 684 296 260 413
67 Flat-RICV-NFOA 1289 987 1275 1184 811 1210 1032 1018 742 382 227 450
67 RICV-NFOA 1289 974 1252 1171 801 1277 842 974 777 404 254 478
0 RI-NFOA 1319 941 1193 1151 681 1289 1193 1054 657 289 255 401
67 RI-NFOA 1397 1118 1517 1344 803 1302 1161 1089 787 368 285 480

Pr>F 0.0245 0.0127 0.0443 - 0.0001 0.0618 0.0002 - 0.0013 0.0003 0.8147 -
SED 73 82 171 - 60 73 83 - 37 31 60 -

‡ Determined by subtracting the cost of fertilizer from the gross income (grain yield x price per unit grain). Prices of grain and fertilizer are reported
in Table 5.

¥ Full description is presented in Table 2.
SED = Standard error of the difference between two equally replicated means
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scale at which spatial variability in winter wheat should be treated using an in-season nitrogen 
fertilization optimization algorithm (NFOA). The treatments included variable N rate applications 
at three resolutions (0.84, 13.37, and 26.76 m2), a fixed N rate at 90 kg ha-1 applied preplant and 
midseason, and a check plot arranged in a completely randomized design with three replications. 
For chapter two, experiments were conducted to formulate an in-season NFOA to estimate 
midseason N rates that maximize corn growth and minimize inputs, and to determine the 
optimum resolution to treat spatial variability in corn. The experiment consisted of 13 treatments 
arranged in a randomized block design with three replications. Treatments included: a 134 kg N 
ha-1 fixed rate applied in split, preplant- and sidedress-only; a 67 kg N ha-1 fixed rate applied 
preplant- and sidedress-only; three NFOA-based midseason N rates (RICV-, RI- and flat-RICV-
NFOA) with (67 kg N ha-1) and without preplant N; and two resolutions (0.34 and 2.32 m2) tested 
for RICV-NFOA only. 
 
Findings and Conclusions: For chapter one, the NFOA-based N rates achieved a higher N use 
efficiency (NUE) value of 41% compared with 33% of the 90 kg N ha-1 fixed rate applied 
midseason. Treating spatial variability using NFOA at 13.4 m2 achieved the highest NUE value of 
56%. Four out of six site years resulted in a higher net return ($ 5 to 101 ha-1) when an NFOA 
approach was used. Treating spatial variability at 13.4 m2 using the NFOA resulted in increased 
NUE and net return. For chapter two, with 67 kg N ha-1 preplant application, midseason RI-
NFOA-based N rates improved NUE to 64% when compared with 56% of the134 kg N ha-1 fixed 
rate split applied. The RI-NFOA midseason N rates resulted in higher grain yield and net return in 
three of six high yielding site years. In general, the use of midseason N rate recommendations 
based on N demand of predicted yield potential resulted in improved NUE and net return 
compared with fixed N fertilizer application at 134 kg N ha-1.
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