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CHAPTER I 
 

INTRODUCTION 

 

THE RESEARCH PROBLEM 

 

Switchgrass (Panicum virgatum L.) is in the Paniceae tribe in the subfamily 

Panicoideae of the Poaceae (Gramineae) family. Switchgrass was widespread 

throughout the United States east of the Rocky Mountains before European 

settlement (Hitchcock, 1935). Switchgrass is a C4 grass with characteristics similar 

to other C4 grasses (Waller and Lewis, 1979). Ecologically it is linked to the grass 

eating mammals of the Great Plains of the United States and was initially bred for 

forage (Anderson, 2000; Coppedge et al., 1998). 

But recently, switchgrass has become popular as a biofuel crop. The U.S. 

Department of Energy Herbaceous Energy Crops Program was funding research 

in 1985 on non-woody species in search of potential biofuel feedstocks. More 

than 30 herbaceous crop species were screened and, a decision was made in 

1991 to focus the future Bioenergy Feedstock Development Program on 

switchgrass (Parrish and Fike, 2005). It was selected as a model herbaceous 

species for several reasons including: its perennial growth habit, high yielding
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 potential on marginal lands, wide adaptation, excellent conservation attributes, 

and compatibility with conventional farming practices (McLaughlin et al., 1999).  

As a long-lived perennial (Hitchcock and Chase, 1950) switchgrass is favored by 

the Conservation Reserve Program (CRP), because perennials will reduce 

management, energy, and chemicals used for establishment and production. It 

is beneficial to wildlife for shelter and it reduces plowing and thus reduces soil 

erosion (Dunn et al., 1993; Wright, 1994; Vogel, 2004). It is also beneficial by 

sequestering carbon in the soil (Andress, 2002), and switchgrass has good 

biomass yield stability across different environments (Taliaferrro, 2002). 

Switchgrass has shown potential for breeding improvement because it has a 

broad genetic base (Eberhart and Newell, 1959, Tobias et al., 2005).   

  When converted to ethanol, Schmer et al. (2008) found that switchgrass 

produced 540% more renewable energy than the non renewable energy used 

to grow and process the grass while maize’s net energy return was about 60-70%. 

As a biofuel it is either converted to ethanol or co-fired with coal (McLaughlin 

and Kszos, 2005).  Switchgrasses’ total carbohydrate (based on weight) is higher 

than alfalfa, but carbohydrate recovery is dependent on maturity and lignin 

content (Dien et al., 2006). The yield of cellulose, hemicelluloses and lignin 

(lignocellulosic yield) parallels dry weight, and increasing dry weight should be 

included in breeding goals (Cassida et al., 2005).  

To fill the demand for cellulose in biofuel refineries new high yielding 

cultivars are being developed by traditional plant breeding methods. Traditional 

plant breeding has been effective in increasing maize yield (Crow, 1998); 
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however, progress can be slow and requires many years of selection. However 

research can facilitate this process. Knowledge of the genetic diversity of 

switchgrass will aid in superior plant selections for more rapid improvement. 

Traditionally, this has been accomplished by phenotypic markers, but these 

markers are unreliable because they are affected by the environment. 

Molecular markers are not affected by the environment and are more reliable 

(Collard and Mackill, 2008). For this reason amplified fragment length 

polymorphisms will be performed on 56 tetraploid germplasm accessions to 

understand more accurately their genetic diversity.   

Understanding heritability is another way to accelerate the breeding 

process. Heritability is the amount of phenotypic variation due to genotypic 

variation. Knowledge of heritability will increase breeding efficiency by aiding in 

planning for each cycle of selection because if heritability is low and 

environmental variation high, then more testing in multiple environments is 

required. Most previous biomass heritability studies used spaced plants, but 

spaced plant yield may not accurately predicted sward yield in some forage 

crops (Waldron et al., 2008). Sward heritability could be a more accurate 

method and increase progress. To study heritability for biomass in switchgrass, 

sward progeny plots of two populations (SL93 cycle 2 and NL94 cycle 2) were 

planted in a randomized complete block design and evaluated for biomass 

yield to calculate the variance components for heritability. A clone replicate 

plot of their parents was planted in another environment to perform a parent 

offspring regression. The trait investigated in this study was biomass yield because 

it is the most important factor for biofuel production and should be the primary 
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trait for switchgrass improvement (McLaughlin and Kszos, 2005). Inbreeding and 

hybridization could greatly increase yields. Vogel and Mitchell (2008) found that 

yields could be increased by 38% though panmictic hybridization. If the crop is 

inbred, then possibly greater increases in yield are possible. Switchgrass is an out-

crossing species that will set some seed if bagged, but the inbreeding bagging 

methods have not been studied and selfing not confirmed. To study bagging 

methods and inbreeding in switchgrass an S2 population of switchgrass was 

evaluated for seed yield over three years with three bag types (paper, microfiber 

and cotton muslin bags) and the inbreeding confirmed by SSR markers.     

LITERATURE REVIEW 

AFLP 

Past molecular marker studies on genetic diversity analysis in switchgrass include 

random amplified polymorphic DNA (RAPD) (Gunter et al., 1996; Casler et al., 

2007), restriction fragment length polymorphism (RFLP) (Missaoui et al., 2006), and 

simple sequence repeats (SSRs) (Narasimhamoorthy et al., 2008; Cortese et al., 

2010; Zalapa et al., 2010). Gunter et al. (1996) performed RAPDs to assess the 

genetic diversity among and within 14 populations of switchgrass and to find 

markers that are useful for population identification.  Casler et al. (2007) 

performed RAPD on forty-six remnant populations and eleven cultivars to 

discover if there was population differentiation and to evaluate possible 

correlations between genotypes, ecotypes, and geographic forms.  They found 

little differentiation correlated with geography but a small amount was 

associated with hardiness zones and ecotypes. Casler et al. (2007) also reported 
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plants from the same region could be highly unrelated to each other.  They 

further indicated the markers could not distinguish between cultivars and 

remnant wild populations.  Missaoui et al. (2006) performed RFLP to assess the 

genetic variation between 21 switchgrass genotypes that were randomly 

selected from three synthetic cultivars (‘Alamo’, ‘Kanlow’ and ‘Summer’), and 

found that there was higher diversity between upland and lowland accessions 

compared to genotypes within each of the cultivars.  Missaoui et al. (2006) also 

found a polymorphism within the trnL (UAA) chloroplastic marker associated with 

upland and lowland ecotypes.  The trnL UAA intron region is in the chloroplasts of 

all plants (Pirie et al., 2007).  It is part of the chloroplast DNA and transferred 

through the maternal parent (Martinez-Reyna et al., 2001).  Missaoui et al. (2006) 

found that this marker has a 49 nucleotide segment of DNA deletion in the 

lowland germplasm when aligned with upland germplasm.  Narasimhamoorthy 

et al. (2008) studied the diversity of the USDA Germplasm Resources Information 

Network (GRIN) germplasm bank, and found that there was higher variation 

within populations than among populations.  Cortese et al. (2010) combined 

marker and morphological data among 12 populations of switchgrass and could 

distinguish between upland populations based on geography. Their results also 

indicated that morphological and adaptive traits could be identified by 

molecular markers. Zalapa et al. (2010) used 55 SSR markers and six chloroplast 

markers to study diversity within and between 18 switchgrass cultivars (7 lowland 

and 11 upland). The SSR markers could discriminate ecotype correctly, but 

chloroplast markers alone (like the trnL marker) could not always distinguish 

ecotype (Zalapa et al., 2010).  
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Heritability 

There have been several papers studying switchgrass heritability. Newell and 

Eberhart (1961) studied heritability in several populations endemic to Nebraska 

and they used their own terminology to describe switchgrass types including 

‘small blue green’, ‘medium-tall blue green’, ‘large green’. The narrow sense 

heritability estimates calculated from analysis of variance showed 0.72 

unadjusted and 0.57 adjusted heritability for ‘small blue green’ and 0.74 

unadjusted and 0.40 adjusted for ‘medium-tall blue green’ types. The adjustment 

removed the clone×year interactions. Heritability estimates for total yield 

calculated from twice the regression of offspring on parents was 0.18±0.06 for 

‘small blue-green’ and 0.52±0.22 for ‘medium tall blue-green’ and 0.05±0.36 for 

‘tall green’. The realized heritability for ‘small blue-green’ was 0.4 and 0.91 for 

‘medium-tall blue-green’. The heritability on a single plant basis was 0.23 for 

‘small blue-green’ types and 0.19 for ‘medium tall blue-green’. The heritability on 

a clone mean basis was 0.42 for ‘small blue-green’ types and 0.45 for ‘medium 

tall blue-green’ (Newell and Eberhart, 1961). The expected percent progeny 

gains were 9% and the observed gain in ‘small blue green’ was 8% and 11%  in 

‘medium tall blue green’ (Newell and Eberhart, 1961). Talbert et al. (1983) 

measured heritability for dry mass weight and in vitro dry matter digestibility 

(IVDMD) in 11 lowland populations and found the narrow sense heritability for dry 

weight was 0.25 on an individual basis and 0.59 on a family basis (Talbert et al., 

1983). Godshalk et al. (1986) studied variance components and heritability of 

IVDMD and dry mass yield in lowland switchgrass in initial and regrowth using a 

modified head and row procedure. These heritabilities were based on one 
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environment, so they could be biased by family×location and 

family×location×year interactions. The dry mass narrow sense heritability among 

half-sib families was 0.52±0.26 and the narrow sense heritability within half sib 

families was 0.20±0.10 (Godshalk et al., 1986). Hopkins et al. (1993) studied the 

effectiveness of recurrent restricted phenotypic selection (RRPS) in improving 

forage yield and IVDMD in upland populations planted in sward rows. The 

predicted and realized gains for IVDMD and yield were measured. Hopkins did 

not create a parent offspring regression heritability estimate for forage yield, 

because yield data were not collected from parent clones. The forage yield 

heritability based on family variance components was negative for open 

pollinated progenies and was 0.22 ± 0.001 for closed pollinated progeny. 

Missaoui et al. (2005) studied 30 genotypes of ‘Alamo’ to study heritability of P 

concentration, P uptake and biomass production.  The heritability for biomass of 

individual plants was 0.6, 0.69 for family means, and 0.76 for parent offspring 

regression in the same environment, and 0.45 in different environments. Genetic 

gains from selection on an individual plant basis were 0.51, for half sib family 

selection 0.27, and for half sib progeny test it was 0.55 (Missaoui et al., 2005).  

Rose (2005) and Rose et al. (2007, 2008) studied the heritability of spaced 

plants in two lowland populations ‘Southern Lowland 93’ (SL-93) and ‘Northern 

Lowland 94’ (NL-94). The original SL-93 population was synthesized in 1993 from 

‘Alamo’ and ‘PMT-279’. From this material two cycles of Restricted Recurrent 

Phenotypic Selection (RRPS) for increased biomass were performed. The NL-94 

population was the result of two cycles of RRPS for biomass yield within ‘Kanlow’ 

(Rose 2005). Rose (2005) collected data to estimate the genetic parameters of 
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switchgrass such as the genetic variances, narrow sense heritability (h2
n), and 

predicted genetic gain from selection (∆G) for biomass yield. Rose et al. (2007) 

studied the variance component heritabilities of NL-94 grown in two 

environments, a high yielding environment with fertilizer and irrigation and a low 

yielding environment that received no inputs. The combined narrow sense 

heritability for both high and low yielding environments of both C0 protocols was 

low (0.09), but the heritability was much higher when looking at the environments 

separately (0.73 for high yielding environment and 0.65 for low yielding 

environments) (Rose et al., 2007). Rose et al. (2008) studied the heritability of 

three populations, one lowland, Southern Lowland ’93 (SL-93) and two upland 

populations, Southern Northern Upland Early Maturing and Southern Northern 

Upland Late Maturing (SNU-EM and SNU-LM). SNU-EM per family mean heritability 

was 0.45. SNU-EM individual plant heritability was 0.44. SNU-LM per family mean 

was 0.46 and the SNU-LM individual plant heritability was 0.47 (Rose et al., 2008).  

For SL-93 the h2
n estimates based on individual plant and phenotypic family 

mean from parent offspring regression were 0.13 and 0.12, respectively (Rose et 

al., 2008).  Bhandari et al. (2010) evaluated 37 half sib families from 2007 to 2009 

to measure variation components and heritabilities for dry mass and 

morphological traits in switchgrass. The dry mass heritability based on variance 

components per plant from 2007 and 2008 was 0.13 with a standard error of 0.07, 

and a mean parent offspring regression heritability of 0.29 with a standard error 

of 0.14.  Boe and Lee (2007) found heritabilities among family means for two 

upland cultivars Summer (0.62) and Sunburst 0.60 when harvested over four 

years. 
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Inbreeding 

Since switchgrass is a self incompatible cross-pollinated species, it has been 

improved by traditional methods for forage and biofuel. The first switchgrass 

cultivars were bred using the ecotype selection method which uses among 

accession variability (Vogel and Gabrielson, 1986). The recurrent selection 

method created by Burton (1974) was used by Vogel et al. (1991) to develop the 

cultivar ‘Trailblazer’. Recurrent restricted phenotypic selection (RRPS) did not 

improve forage yield in the upland populations that Hopkins et al. (1993) 

developed because there was not enough variation in his population (Hopkins et 

al., 1993). Taliaferro (2002) tried fast track restricted recurrent phenotypic 

selection which failed to produce substantial results because establishment year 

performance is not predictive of subsequent year performance and the 

breeding value of an individual plant cannot be judged by its phenotypic yield 

performance. But, genotypic recurrent selection using half sib performance did 

produce results; for example, the biomass yield of the synthetic SL 93-3 averaged 

in all regional tests 9% higher than the biomass yield of ‘Alamo’ over a three year 

period (Taliaferro, 2002; Taliaferro and Hopkins, 1996). Recurrent Selection for 

General Combining Ability (RSGCA), the current method being employed at 

Oklahoma State University evaluates the yield of half sib progeny over years, and 

then selects the parents of the best performing plants to create a new 

population. These half sib plants were created using parents in a randomized 

complete randomized block design (RCBD) (Taliaferro, 2002; Rose et al., 2008).  
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Population breeding systems like RRPS or GRS improve plants utilizing their 

additive genetic variability. To utilize non additive genes, hybridization is required 

(Martinz-Reyna, 1998). Hybridization of two distinct lines often results in heterosis, 

which is the increased vigor of the F1 over the mean of the parents (Hays, 1952). 

Lamkey and Edwards (1999) defined heterosis as the positive difference of the 

hybrid to the mean of its parents. This definition is also referred to as mid parent 

heterosis. High parent heterosis is the positive difference between the mean of 

the hybrid and the mean of the best parent (Lamkey and Edwards, 1999). 

Population heterosis, also called panmictic heterosis, happens when two 

randomly mated populations are mated and the mean of the F1 is higher than 

the mean of the two parent populations (midparent) or best parent (high-

parent). Heterosis tends to occur and increase with the genetic distance of the 

parents (Moll et al., 1965).  

Heterosis could greatly increase biomass yield of switchgrass. Taliaferro 

(2002) created hybrids of three populations NU 94, NU 93, and SL 93 and 

estimated the heterosis for three years and found mid parent and high parent 

heterosis values of 56% and 39%, respectively. Martinz-Reyna et al. (2008) 

performed crosses between upland and lowland populations of switchgrass, and 

found that the lowland tetraploids represented by the cultivar ‘Kanlow’ and the 

upland tetraploids represented by the cultivar ‘Summer’ were in two different 

heterotic groups. In swards, the hybrids of these groups had 30 to 38% heterosis 

(Vogel and Mitchell, 2008).  
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Inbreeding can greatly increase heterosis (Shull, 1908; Shull, 1909), but 

inbreeding allogamous crops can affect fitness in forage yield and severely 

lower seed production (Gallais A, 1984; Brummer, 1999). Hybrid maize 

development which started in the early portion of the twentieth century has 

increased yields by 500% by 1998 compared to pre-hybridization yields (Crow 

1998). Swichgrass is a cross-pollinated plant that has a self incompatibility system 

similar to the gametophitic S and Z incompatibility found in other Poaceae 

(Martinez-Reyna and Vogel, 2002), but switchgrass will set some seed if selfed 

(Newell, 1936). Taliaferro and Hopkins, (1996) observed a selfing rate of about 1-

2%. Taliaferro (2002) planted three first generation selfed families from Blackwell, 

Caddo, Cave-in-Rock, Kanlow, and Alamo in 2000. From each of the 15 S1 

families, three plants were selected based on visual assessment and were selfed 

and bagged in 2001. Only 13 of the 45 selfed S1 plants produced 20 or more 

seeds. Seven S1 plants had more than 100 S2 seeds. If inbreeding research is 

continued to determine the extent to which switchgrass can be inbred, the 

research carries the risk of an inbreeding depression (Taliaferro, 2002). This may 

happen before the plants are fully homozygous. Inbreeding depression has 

hampered the development of hybrids in other out-crossing forage crops (Jones 

and Bingham, 1995). Utz and Oettler (1978) reported a 49% yield reduction in 

Lolium perenne L. for the S1 compared to S0. Inbred plants like maize had lower 

vigor and smaller seeds with reduced seed and dry matter yields. Inbreeding 

depression also severely affected other forage crops such as big blue stem 

(Andropogon furcatus Muhl.) which had a 40% reduction in the S1 and 29% in the 

S2, and smooth bromegrass (Bromus inermis Leyss.) which had a 62.6% reduction 
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of the S1 to open pollinated progenies (McDonald et al., 1952; Law and 

Anderson, 1940; Jones and Bingham, 1995).  

In a diploid population homozygosity increases 50% each self, but 

tetrasomic tetraploids homozygosity increases 17-21% depending on the 

segregation pattern (Husband and Schemske, 1997). Disomic inheritance occurs 

in allotetraploids and autotetraploids with bivalent chromosome pairing at 

meiosis, and is tetrasomic in autotetraploids without bivalent pairing (Husband et 

al., 2008). This study will assume disomic inheritance, because the results from the 

molecular map of Okada et al. (2010) indicated that switchgrass has disomic 

inheritance.  
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CHAPTER II 
 

 

GENETIC DIVERSITY IN TETRAPLOID SWITCHGRASS REVEALED BY AFLP MARKER 

POLYMORPHISMS  

ABSTRACT 

Switchgrass (Panicum virgatum L.) is a perennial warm-season grass native to 

North America, which has been identified as a dedicated cellulosic biofuel 

feedstock. To increase biomass yield traditional breeding methods are being 

used to increase its biomass yield.  Long term breeding progress requires high 

germplasm genetic diversity for breeding programs.  The objectives of this study 

were to measure genetic diversity within the Oklahoma State University tetraploid 

switchgrass germplasm collection, and to characterize genetic relatedness 

among the collections from distinct regions.  Fifty six tetraploid accessions 

including seven upland and 49 lowland genotypes from throughout the US were 

used in the investigation.   Genomic DNA samples were isolated for each clonal 

accession using Zymo Research Plant/Seed KitTM. DNA profiling patterns were 

generated by fluorescence-labeled amplified fragment length polymorphism 

(AFLP) procedure.  Amplified fragments were visualized using a Li-Cor 4300 DNA 

Analyzer and scored visually.  Sixteen selective AFLP primer combinations were 
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used to amplify 452 polymorphic bands.  The accessions’ genetic similarity 

coefficients, UPGMA (unweighted pair-group method with arithmetic averaging) 

cluster analysis, and principle coordinate analysis were performed using NTSYS-

pc (ver. 2.02i) (Numerical Taxonomy System) software.  The upland and lowland 

accessions clustered according to ecotypes, with one exception (TN104).  

Genetic similarity coefficients among the accessions ranged from 0.73 to 0.95.  

An analysis of molecular variance (AMOVA) was performed using GenAlEx (ver. 

6.3) resulting in a significant difference (α<0.5) between the upland and lowland 

genotypes.  The trnL marker confirmed that TN104 was a lowland genotype, but 

the trnL marker identification of upland and lowland genotypes was not 

consistent with the AFLP in two germplasms (Miami and AR4). 

INTRODUCTION 

Genetic diversity and relationships are better evaluated using DNA markers than 

morphological traits because markers are unaffected by environmental factors 

(Singh et al., 1999). The first DNA-based markers were restriction fragment length 

polymorphisms (RFLPs). These are highly specific, but require high amounts of 

high quality DNA and the ability to use radioactivity. Randomly amplified 

polymorphic DNAs (RAPDs) is a polymerase chain reaction technique that does 

not require radioactivity and can use low quality DNA but lacks reproducibility 

and specificity. RAPD is highly sensitive to variations in concentrations of DNA, 

Mg2+ ions, Taq enzyme, and thermocycler used (Davin-Regli et al., 1995; Singh et 

al., 1999).  Amplified fragment length polymorphism (AFLP) overcomes the 

problems of other techniques. It does not require radiation and is highly 
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reproducible (Singh et al., 1999). The AFLP method has been used to analyze the 

diversity of many crops including rice (Zhu et al., 1998) barley (Russell et al., 1997) 

and Neem (Singh et al., 1999). The AFLP marker system can detect more point 

mutations per hundred nucleotides than RFLP, because, unlike RFLP, AFLP 

includes nucleotidesoutside of the restriction site (Becker et al., 1995; Singh et al., 

1999). Amplified Fragment Length Polymorphism (AFLP) can be used in 

applications such as shallow phylogenetics, population genetics, linkage 

mapping and many other purposes (Meudt and Clarke, 2006). 

Switchgrass breeding and genetic research has been performed at OSU 

since 1992 (McLaughlin and Kszos, 2005). A large switchgrass germplasm 

collection has been assembled as a result of this research.  Objectives of the 

study were to characterize genetic diversity in the tetraploid switchgrass 

germplasm assembled at OSU from around the US, to analyze the genetic 

relatedness among the switchgrass germplasm and to clarify upland and 

lowland germplasm using the trnL marker. 

MATERIALS AND METHODS 

A total of 56 respective tetraploid switchgrass plants maintained in an OSU 

switchgrass germplasm nursery were used in this study (Table 2.1) (Hopkins et al., 

1996).  Of the germplasm, 7 were classified as upland and 49 as lowland by 

previous morphological marker phenotyping (Taliaferro, 2006, personal 

communication).  DNA extraction was performed using the Zymo ZR Plant/Seed 

Kit TM (Zymo Research Corperation, CA) according to the manufacturer’s 

instructions.  DNA quality of each sample was checked by 1% agarose gel 
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electrophoresis.  The concentration was measured using a NanodropTM 1000 

spectrophotometer (Nanodrop Products, DE). 

The AFLP procedure was performed according to Vos et al. (1995) with 

modifications made according to Wu et al. (2005). The DNA was digested using 

EcoRI and MseI enzymes, and AFLP adapters were ligated to these DNA 

fragments.  Fragments were pre-amplified by PCR using primer combinations 

based on the AFLP adaptors.  Sixteen AFLP fluorescently labeled selective 

amplification primer combinations were used to characterize genetic diversity 

(Table 2.2).  The quantity of primer combinations was selected because it was 

necessary to generate >400 polymorphic bands (loci), which were considered 

appropriate to estimate the diversity of a crop like switchgrass. All the PCR 

reactions were conducted using an Applied Biosystems 2720 thermocycler 

(Applied Biosystems Inc., IL).  Banding patterns were visualized on a 0.25 mm 

thick 6.5% polyacrylamide gel with a 64 tooth comb in a Li-COR 4300 DNA 

Analyzer (Li-Cor Inc., NE, USA) and run at 1500 Volts with a scan speed 2 for 2.5 

hours.  A DNA size marker (50-700bp) was also loaded to determine the size of 

the fragments. 

Polymorphic bands in each AFLP gel were scored visually as ‘1’ for 

presence and ‘0’ for absence for each of the 56 switchgrass accessions, while ‘9’ 

was assigned to an ambiguous band. The bands were counted between ~75 bp 

and 204 bp. The collected data were analyzed using NTSYSpc version 2.02i 

program for calculating simple matching similarity coefficients, performing a 

cluster analysis, and principles coordinate analysis (Rohlf, 1993). An AMOVA was 
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performed using GenAlex 6 (Peakall and Smouse, 2006), which partitioned the 

data between upland and lowland including and excluding TN104. Genetic 

diversity of switchgrass was calculated by Shannon’s information index (Brown 

and Weir, 1983) and expected heterozygosity  (He) (Lynch and Milligan 1994)  

and unbiased expected heterozygosity (UHe) (Hartl and Clark, 1997) using 

Genalex (Peakall and Smouse, 2006).    

To clarify upland and lowland identities of the germplasm, especially 

TN104, the DNA used in the AFLP procedure of all the germplasms was used with  

primers ‘c’ and ‘d’ as described by Taberlet et al. (1991) to amplify the trnL UAA 

intron region. ‘Summer’ and PI 421999 were used as controls because they were 

sequenced and confirmed as upland and lowland, respectively by Missaoui et 

al. (2006). The purified DNA was sequenced at OSU Recombinant DNA/Protein 

Resource Facility in both directions using primers from the PCR reactions and 

aligned using clustalw in the Mega (ver. 4.0) (Kumar et al., 2008) program to 

determine the presence or absence of 49 nucleotides that are deleted in 

lowland switchgrass (Missaoui et al., 2006). 

RESULTS AND DISCUSSION 

The 16 AFLP selective primer combinations generated a total of 658 markers.  

There were 452 polymorphic bands counted resulting in a polymorphism 

percentage of 68.7%.  The similarity coefficients ranged from to 0.73 (between 

pairs PI315727 and SWG005, PI76293 and SWG005, MO100 and SWG039) to 0.95 

(between SWG031 and SWG024) with an average of 0.83. According to the 

UPGMA cluster tree (Figure 2.1) two major Clusters (I and II) had a similarity of 
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78%.  All the lowland germplasm were in Cluster I and all upland germplasm 

were in Cluster II with the exception of TN104, which was previously classified as 

upland according to morphology.  Cluster I was divided into two sub-clusters A 

and B with a similarity of 79.6%.  Sub-cluster A had the most genotypes and could 

be divided into sections i and ii at 81.2% similarity. In the principle coordinate 

map (Figure 2.2) most of the lowland genotypes were clustered tightly together 

to the left, but the rest, including all the upland types were scattered across the 

field toward the right.  The Principal Coordinate Analysis was mostly consistent 

with the Cluster Analysis (Figure 2.1).  The clustering separation of upland and 

lowland plants supported the conclusion that lowland-tetraploid and upland-

tetraploid switchgrasses represent different heterotic groups (Martinez-Reyna 

and Vogel, 2008). 

 There was cluster division among germplasm according to region, but 

there were some exceptions. Cluster IB contained germplasm from the east 

coast of the United States and TN104 from TN. Cluster IAi contained germplasm 

from Florida and Mississippi while Cluster IAii contained mostly germplasm from 

the central United States, but also a few from Mississippi and Florida. These 

differences were most likely caused by adaptation to geographic regions. Other 

studies Casler et al. (2007) and Narsimhamoorthy et al. (2008) found that most of 

the germplasm subclustered according to adaptive regions.  The upland group 

of II and the lowland groups of IAi and IAii and IB were all possible sources of 

variation for breeding.  To ensure adequate diversity, plants from each of the 

groups mentioned could be selected as germplasm when developing cultivars.  

Crosses between members of these groups could be made to test for heterosis in 



27 

 

field-based studies.  These groups could be kept separate and improved and 

then crossed for heterosis in synthetics, hybrids or semi-hybrids (Brummer, 1999).   

  The upland and lowland germplasm mostly clustered separately, which is 

consistent with the result of Narasimhamoorthy et al. (2008), but TN104, an 

upland tetraploid segregated with the lowland types.  It was interesting to note 

that TN103 and TN104 originated close together geographically, but were 

genetically distinct. The range of diversity of this study was less than some past 

studies; for example, Gunter et al. (1996) whose similarity coefficients ranged 

from 0.53 to 0.78 and Narasimhamoorthy et al. (2008) whose similarity coefficients 

ranged from 0.45-0.81 but were much lower in the study by Cortese et al. (2010) 

(0.03 to 0.24). The lower diversity in this study could be because it is limited to one 

plant per accession and switchgrass has higher within accession diversity 

(Narasimhamoorthy et al., 2008).  This is an expected difference between this 

paper and others because the primary purpose of this study was to measure the 

diversity between different accessions and not within accessions.  The difference 

could also be due to distinct germplasm materials, and indicates that the 

inclusion of some of the switchgrass germplasm from the National Plant 

Germplasm System into the working collection of the OSU breeding program will 

increase genetic diversity.  Marker systems and marker numbers used in the 

above investigations could be important factors for genetic diversity 

investigation. Polymorphic dominant markers produced and used in this study 

were 452 while 91 were used by Gunter et al. (1996), 63 EST and genomic SSR loci 

by Narasimhamoorthy et al. (2008) and 16 EST SSR loci by Cortese et al. (2010). 

Mohammadi and Prasanna (2003) recommended a high degree of sampling 
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error could be related to rare alleles, which had 5% or lower in frequency and 

the percentage of polymorphic markers became reliable only when a large 

number of loci were generated. However, they did not indicate specific marker 

number for this kind of work. In this study > 400 polymorphic markers were used to 

make a good estimate of genetic diversity. 

The Shannon's information index, expected heterozygosity (gene diversity) 

and unbiased expected heterozygosity and their respective standard errors can 

be found in Table 2.3. The expected heterozygosity, percent polymorphic bands 

and Shannon’s index was higher in the lowland genotypes compared to the 

upland genotypes. This is not surprising because of the higher number of lowland 

samples, but it indicates that the germplasm used is diverse. The addition or 

subtraction of TN104 only slightly affects expected heterozygosity and Shannon’s 

index, but it affects percent polymorphic bands more particularly in uplands. The 

total Shannon’s index was higher but similar to that found in populations of big 

bluestem in Ohio that ranged from 0.22 to 0.27 created from RAPDs (Selbo and 

Snow, 2005).  The total Shannon’s index and expected heterozygosity were much 

higher in switchgrass (I=0.317, He=0.208) than in an AFLP study in Carpetgrass 

(I=0.24, He=0.16) from samples collected in the United States (Wang et al., 2010). 

AMOVA 

The results of the AMOVA were similar with TN104 included in either the upland or 

lowland ecotypes.  There was more diversity within ecotypes than among them 

in both analyses, but the analysis with TN104 (21% among 79% within) as a 

lowland had a higher among ecotype variation than the analysis with TN104 
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(18% among 82% within) as an upland and a higher PhiPT score (0.18 and 0.21 

respectively).  The AMOVA PhiPT p value (0.01) (Table 2.4) was significant with 

and without TN104 and was significantly different between upland and lowland 

at (95%) but not at (99%) significance level.  The AMOVA revealed that the 

amount of diversity within ecotypes was high (79%) and among ecotypes low 

(21%).  High within ecotype diversity allows for breeding and selection within 

each ecotype.   

TrnL marker 

The trnL PCR for the entire germplasm was performed and the gel analysis 

showed lowland germplasm including TN104 (~560.5 bp) and AR4 (~563.5 bp) 

migrated with the shorter lowland DNA of PI 421999 (~564.3 bp).  Moreover, the 

upland accessions including the lowland accession Miami (~620 bp) migrated 

with the longer DNA of Summer (~612.5 bp). Once sequenced TN104 and AR4 

lacked the 49 nucleotide segment that Summer and Miami possess (Figure 4).  

The Miami and AR4 trnL sequences were opposite of what was expected from 

the AFLP.  Miami, which was considered lowland germplasm had the 49 nt and 

AR4 lacked this segment like the lowlands. The Miami results are similar to those 

found by Gunter  et al. (1996) where the cpDNA type of Miami were of the 

upland type and the RAPD results were lowland. It was interesting to note that 

the trnL marker sequenced by Missaoui et al. (2006) from Panicum amarum, to 

which Miami was phenotypically similar, when aligned also had the 49 nt trnL 

sequence typical of uplands.  Native hybrids of P. amarum var. amarulum and P. 

virgatum have been found (Palmer, 1975). It could be that Miami has chloroplast 
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DNA from Panicum amarum from a past interspecific cross. AR4 having the 

lowland marker was unexpected because it clustered with the uplands, which 

could be caused by gene flow between uplands and lowlands. The trnL marker 

was in the chloroplasts, so if there was hybridization between upland and 

lowland genotypes it will measure the contribution of the maternal parent 

(Martinez-Reyna et al., 2001). Chloroplast capture, the transfer of chloroplast 

from one population to another has been documented in other studies and was 

possible at the infraspecific level (Wolfe and Elisens, 1995). The trnL analysis 

confirmed the AFLP analysis that TN104 was a lowland cultivar, but the presence 

of the lowland trnL marker in AR4 and an upland marker in Miami when the AFLP 

clearly indicated otherwise demonstates that the marker may not always 

correlate with upland and lowland genotype or phenotype. Zalapa et al. (2010) 

found similar results when screening switchgrass cultivars with chloroplast 

markers. This marker probably is associated with ecotype, but gene flow may 

occur when upland and lowland ecotypes hybridize in hybrid zones 

(Modliszewski, 2006).  The incongruence between the phenotypic markers, AFLP 

markers and the trnL marker indicated the possibility of gene flow between 

upland and lowland genotypes in some germplasm.  
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Table 2.1. Oklahoma State University switchgrass tetraploid germplasm collection 
used in the AFLP analysis. 

 

 

 

 

ID Ecotype Origin/reference ID Eco-

type 

Origin/reference 

MIAMI LOW L. Miami, FL SWG043 LOW L. Bristow, 

Oklahoma 

MS4 LOW L. Yalobusha 

County, MS 

SWG044 LOW L. Bristow, 

Oklahoma 

MS6 LOW L. Mississippi SWG045 LOW L. Bristow, 

Oklahoma 

PANGBURN LOW L. Arkansas SWG046 LOW L. Bristow, 

Oklahoma 

PI 422016 LOW L. Florida SWG047 LOW L. Bristow, 

Oklahoma 

PMT 279 LOW L. From Matt 

Sanderson 

SWG048 LOW L. Bristow, 

Oklahoma 

STUART LOW L. Stuart, FL SWG049 LOW L. Bristow, 

Oklahoma 

SWG002 LOW L. A Pangburn 

selection 

SWG051 LOW L. Shawnee, 

Oklahoma 
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Table 2.1 Continued. 

 

 

 

 

 

 

ID Ecotype Origin/reference ID Eco-

type 

Origin/reference 

SWG003 LOW L. Union County, AR TX1 LOW L. Texas 

SWG004 LOW L. Yalobusha 

County, MS 

WABASSO LOW L. Wabasso, 

Florida 

SWG005 LOW L. Coffeyville, MS AR4 UP L. Arkansas 

SWG020 LOW L. Labled as 

Pathfinder from 

NB AES 

MO100 UP L. Butler Hollow 

Glades, MO 

SWG021 LOW L. Stillwater, OK MO101 UP L. Hercules 

Glades, Missouri 

SWG022 LOW L. Stillwater, OK NC1 UP L. Fort Bragg, 

North Carolina 

SWG024 LOW L. Bristow, OK SUMMER UP L. Nebraska 

SWG029 LOW L. McAlester, OK TN103 UP L. Shelby County, 

Tennesse 

SWG030 LOW L. McAlester, OK TN104 UP L. Tennessee 
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Table 2.1 Continued. 

 

 

 

 

 

 

 

 

 

 

 

ID Ecotype Origin/reference ID Ecotype Origin/reference 

SWG031 LOW L. McAlester, OK PI 315723 LOW L. North Carolina 

SWG032 LOW L. Bristow, OK PI 315727 LOW L. North Carolina 

SWG033 LOW L. Bristow, OK PI 315728 LOW L. Maryland 

SWG034 LOW L. Slick, OK PI 414065 LOW L. Arkansas 

SWG035 LOW L. Slick, OK PI 414070 LOW L. Kansas 

SWG036 LOW L. Bristow, OK PI 421999 LOW L. Arkansas 

SWG037 LOW L. Bristow, OK PI 476291 LOW L. Maryland 

SWG038 LOW L. Drumright, OK PI 476293 LOW L. New Jersey 

SWG039 LOW L. Drumright, OK PI 607837 LOW L. Texas 

SWG040 LOW L. Bristow, OK PI 607838 LOW L. Texas 

SWG042 LOW L. Drumright, OK PI 636468 LOW L. Texas 
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Table 2.2. Selective AFLP primer combinations used to amplify PCR bands on 56 
switchgrass accessions.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

†TNB, Total number of bands. 
‡NPB, No. of polymorphic bands. 

§PPB, percentage polymorphic bands. 
 

 

 

 

 

 

 

 

 

Primer 
Combinations 

TNB† NPB‡ PPB§ 

M-CAC/E-ACC 36 25 69.4 
M-CAC/E-ACT 36 25 69.4 
M-CTG/E-ACA  55 32 58.2 
M-CTG/E-ACT  39 29 74.4 
M-CTG/E-ACC  42 27 64.3 
M-CTG/E-AGC  41 25 61.0 
M-CTA/E-AAG 52 34 65.4 
M-CTA/E-AGC 43 29 67.4 
M-CTC/E-AAC 47 33 70.2 
M-CTC/E-ACG 41 29 70.7 
M-CAT/E-ACC 44 37 84.1 
M-CAT/E-ACG 43 28 65.1 
M-CAA/E-AAG 46 31 67.4 
M-CAA/E-AGG 39 29 74.4 
M-CAG/E-ACA 27 21 77.8 
M-CAG/E-ACG 27 18 66.7 

Total 658 452 - 

Mean 41.1 28.2 68.7 
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Table 2.3. Band frequencies, Shannon’ information index and biased and 
unbiased estimated heterozygosity for binary AFLP data for the total number of 
samples and upland and lowland ecotypes with or without TN104.  

 Upland Upland - 
TN104 

Lowland Lowland + 
TN104 

Total 

 Mean SE Mean SE Mean SE Mean SE Mean SE 
Ne† 1.25 0.014 1.221 0.013 1.327 0.014 1.33 0.014 1.347 0.014 

I‡ 0.223 0.011 0.195 0.01 0.295 0.011 0.298 0.011 0.317 0.011 
He§ 0.147 0.007 0.129 0.007 0.194 0.008 0.196 0.008 0.208 0.007 

UHe¶ 0.159 0.008 0.141 0.008 0.196 0.008 0.198 0.008 0.21 0.008 

%PPB#  45.1 38.0 63.5 64.1 68.7 
†Ne, No. of Effective Alleles. 

 ‡I, Shannon's Information Index. 

 §He, Expected Heterozygosity. 

 ¶UHe, Unbiased Expected Heterozygosity. 

 # PPB, Percentage of Polymorphic Loci.                 
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Table 2.4. Analysis of molecular variance (AMOVA) from upland and lowland 
ecotypes of 56 switchgrass accessions based on 16 AFLP primer combinations 
generating 452 polymorphic markers and TN104 treated as lowland germplasm. 

 

 

 

 

 

 

 

 

†SS, Sum of Squares.  

‡MS, Mean Square. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source df SS† MS‡ Est. var. % 

Among ecotypes 1 255.02 255.02 17.57 21% 

Within ecotypes 54 3602.99 66.72 66.72 79% 

Total 55 3858.02  84.30 100% 

Statistic Value P(rand >= data) 

ФPT 0.208 0.010   
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Figure 2.1. UPGMA phenogram of genetic diversity based on simple match 
similarity coefficients derived from switchgrass AFLP markers. Roman numerals I 
and II represented the major groupings. A and B were subdivisions of I and the 
lower case Roman numerals i. and ii. were subdivisions of A.  
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Figure 2.2. Principle coordinate map based on switchgrass AFLP polymorphic 
markers. The numerals and letters were derived from the UPGMA phenogram. 
Roman numerals I and II represented the major groupings. The letters A and B 
were subdivisions of I and the lower case Roman numerals i and ii were 
subdivisions of A. 
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Figure 2.3. Example of 1% agarose gel analysis of PCR amplified switchgrass trnL 
(UAA) intron. Lowland germplasm DNA migrated farther than upland. The 
controls were Summer (upland) and PI421999 (lowland). TN104 showed a 
lowland band while it is considered upland germplasm on the basis of 
morphology. 
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Figure 2.4.  Segment of aligned trnL switchgrass sequences showing the 49 nt 
deletion in lowland genotypes visualized using Mega (v. 4). The controls were 
‘Summer’ (upland) and PI421999 (Lowland). The AR4 and TN104 germplasm were 
considered upland but lacks the 49 nt segment and Miami was considered 
lowland and contains the segment.  
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CHAPTER III 
 

HERITABILITY OF SWITCHGRASS BIOMASS YIELD IN SWARDS 

ABSTRACT 

Switchgrass (Panicum virgatum L.) is a perennial warm-season grass native to 

North America, which has been identified as a dedicated cellulosic biofuel 

feedstock. Traditional breeding methods are being employed to increase 

switchgrass yield. Heritability is important in plant breeding for planning the 

number of years and locations suitable to make adequate selections. Heritability 

measures the amount of phenotypic variability that is due to genotype 

variability. Information on heritability and projected gains will aid planning, 

increase the efficiency of breeding, and assist in decisions of selection type and 

intensity. Most switchgrass heritability studies used spaced plants, which are not 

necessarily reliable predictors of sward yields. Sward rows have a different 

number of plants and different environmental effects than spaced plants, so the 

heritability estimates could be different. To measure the heritability of switchgrass 

a parent offspring regression was made with the offspring in one environment 

(Cimarron Research Station, Perkins OK) and a replicate parent plot in another 

environment (Agronomy Research Station, Stillwater OK).  Both were planted in a 

randomized complete block design parents with three replications and progeny 

with four. The variance component method was also utilized to calculate 
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heritability for offspring data. Heritability by parent offspring regression and 

variance components was estimated by the REML method using the GLIMMIX 

procedure in the SAS software package. The drought of 2011 affected the 

heritability estimates.  The variance component estimates per sward plot for 

2008-2011 for NL-94 and SL-93 were 0.08 and 0.08, respectively, compared to 

2008-2010 which were 0.16 and 0.07, respectively. The per family mean estimates 

for 2008-2011 for NL-94 and SL-93 were 0.58 and 0.59, respectively, compared to 

2008-2010 estimates which were 0.70 and 0.46 respectively.  The parent offspring 

regression for 2010-2011 for NL-94 and SL-93 were 0.10 and 0.31 respectively. The 

differences in estimates could be caused by drought, removing error or 

genotype×environment interactions.  

INTRODUCTION 

Heritability is the amount of phenotypic variation due to genotypic variation. It 

can be measured in two ways, broad sense which includes all genetic effects or 

narrow sense heritability which measures the amount of additive genetic effects. 

The narrow sense is the most practical because additive effects can be selected 

for improvement of the next generation. Heritability is important to plant 

breeders because information on heritability and projected gains will aid 

planning and increase the efficiency of breeding.   

Different agronomical practices affect selection and heritability estimates 

(Rose et al., 2008). These estimates could help determine which practices, such 

as planting techniques, optimize heritability and selection. Two common 
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methods for planting switchgrass are spaced plants and seeded swards. The 

spaced plant method involves germinating and growing plants in the 

greenhouse and then planting them equally spaced in the field. The seeded 

sward row method involves digging a shallow trench and planting seed in it. The 

spaced plant method is favored by researchers and sward plantings are favored 

by producers (Casler and Brummer, 2008). 

Sward yields are not used as often for research as spaced plants (Casler 

and Brummer, 2008), but sward plantings have advantages including a more 

accurate measurement of forage yield than spaced plants (Casler and 

Brummer, 2008). Commercial plantings are in swards (Missaoui et al., 2005). The 

genetic composition of sward rows may be different than spaced plants 

because of selection pressure caused by competition and mortality in the sward 

row (Casler and Brummer, 2008). Spaced plant yield may not accurately 

predicted sward yield in some forage crops, and evaluation of spaced plants 

was ineffective for sward row improvement in fescue (Waldron et al., 2008). 

Spaced plants do not always correlate with sward yields (Wilkins and Humphreys, 

2003; Casler and Brummer, 2008). The spaced plants yields and sward plot yield 

can be consistent or inconsistent according to species or population. 

Environmental selection pressures select for different genotypes than spaced 

plants. Selection within sward populations increases selection intensity due to 

competition and mortality. Plants that survive in long-term pasture swards are 

more prostrate, head later, have increased number of tillers and smaller tillers 

(Casler et al., 1996; Falkner and Casler, 2000; Casler and Brummer, 2008). This 

may affect yield because Redfearn et al. (1997) found that yield was primarily 



51 

 

affected by tiller growth and development. Vogel and Mitchell (2008) found 

higher heterosis expressed in the competitive sward environment (Vogel and 

Mitchell, 2008). In hybrids planted by Vogel and Mitchell (2008) the same plant 

grown under spaced conditions exhibited less heterosis than the ones planted in 

sward conditions. This indicates that sward conditions affect the expression of 

non additive genes. Sward rows affect important developmental modifications 

including leaf blades, leaf sheaths and stems.  The survivorship in sward plots is a 

component of ground cover because the ability to survive in a sward relates to 

the ability to cover the ground and fill in gaps in the sward (Casler and Brummer, 

2008). If swards have a different heritability than spaced plants heritability, then 

the information will be important for accurate planning, which could increase 

breeding progress. If heritability and ∆G estimates are higher in swards than 

spaced plants then sward selection would be more efficient.   

Researchers use spaced plants because spaced plants have several 

advantages over swards. Using recurrent selection for general combining ability 

(RSGCA) would require a lot of additional seed, if swards and not spaced plants 

are used (Hopkins 2005; Rose et al., 2008). Traits can be assayed quicker using 

spaced plants in RSGCA (Poehlman and Sleper, 1995; Rose et al., 2008). Spaced 

planted nurseries allow for the calculation of total genetic, including additive 

and phenotypic variation, within a population (Humphreys 1989; Rose et al., 

2008). The performance of spaced and sward rows can be similar depending on 

the plant, because Humphreys (1989) found similar performance of seeded 

sward and spaced planted arrangements (Humphreys, 1989; Rose et al., 2008). 

Burton (1974, 1982) found that selection in spaced plants improved Pensacola 
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bahiagrass (Paspalum notatum var. saure Parodi) for sward growth. Missaoui et 

al., (2005) found that the yield of switchgrass selected from spaced plants was 

greater than sward selected plants, but noted that progeny selection from 

swards would select for plants with tolerance to high densities. Lowland type 

switchgrass was used in this study because it has a higher biomass yield than 

upland types in the southern US (Fuentes and Taliaferro, 2002; Bhandari et al. 

2010).  

There have been several studies on switchgrass heritability. Newell and 

Eberhart (1961) studied heritability in several populations endemic to Nebraska. 

The narrow sense adjusted heritabilies estimates calculated from analysis of 

variance was 0.57 and 0.40 for two populations of switchgrass. Heritability 

estimates for total yield calculated by parent offspring regession was 0.18±0.06, 

0.52±0.22 and 0.05±0.36 for three populations of switchgrass. The heritability on a 

clone mean basis was 0.42 and 0.45 (Newell and Eberhart, 1961). 

Talbert et al. (1983) measured heritability for dry mass weight in 11 lowland 

populations and found the narrow sense heritability for dry weight was 0.25 on an 

individual basis and 0.59 on a family basis (Talbert et al., 1983).  

Godshalk et al. (1986) studied variance components and heritability for 

dry mass yield in lowland switchgrass for initial and re-growth.  The dry mass 

narrow sense heritability among half-sib families was 0.52±0.26 and the narrow 

sense heritability within half sib families was 0.20±0.10 (Godshalk et al., 1986). 
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Hopkins et al. (1993) studied the effectiveness of recurrent restricted phenotypic 

selection (RRPS) in improving forage yield and in vitro dry matter digestibility 

(IVDMD) in upland populations planted in sward rows. The forage yield heritability 

based on family variance components was negative for open pollinated 

progenies and was 0.22 for closed pollinated progeny. 

Missaoui et al. (2005) studied 30 genotypes of ‘Alamo’ for heritability. The 

heritability was 0.6 for biomass of individual plants, 0.69 for family means, 0.76 for 

parent offspring regression in same environment and 0.45 in different 

environments. Genetic gains from selection on an individual plant basis were 

0.51, for half sib family selection it was 0.27, and for half sib progeny test it was 

0.55 (Missaoui et al., 2005).  

Rose (2005) and Rose et al. (2007, 2008) studied the heritability of spaced 

plants in two lowland populations ‘Southern Lowland 93’ (SL-93) and ‘Northern 

Lowland 94’ (NL-94). The original SL-93 population was synthesized in 1993 from 

‘Alamo’ and ‘PMT-279’. From this material two cycles of Restricted Recurrent 

Phenotypic Selection (RRPS) for increased biomass were performed. The NL-94 

population was the result of two cycles of RRPS for biomass yield within ‘Kanlow’ 

(Rose 2005). Rose et al. (2007) studied the variance component heritabilities of 

NL-94 grown in two environments; a high yielding environment with fertilizer and 

irrigation and a low yielding environment that received no inputs. The combined 

narrow sense heritability for both high and low yielding environments of both C0 

protocols was low (0.09), but the heritability was much higher when looking at 

the environments separately (0.73 for high yielding environment and 0.65 for low 
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yielding environments) (Rose et al., 2007). Rose et al. (2008) studied the 

heritability of three populations, one lowland (Southern Lowland ’93 (SL-93)) and 

two upland populations (Southern Northern Upland Early Maturing and Southern 

Northern Upland Late Maturing (SNU-EM and SNU-LM)). SNU-EM heritability per 

family mean was 0.45. SNU-EM individual plant heritability was 0.44. SNU-LM per 

family mean heritability was 0.46 and the SNU-LM individual plant heritability was 

0.47 (Rose et al., 2008).  For SL-93 the h2
n estimates based on individual plant and 

phenotypic family mean from parent offspring regression were 0.13 and 0.12, 

respectively (Rose et al., 2008).  

 Bhandari et al. (2010) evaluated 37 half sib families from 2007 to 2009 to 

measure variation components and heritabilities for dry mass and morphological 

traits in switchgrass. The dry mass heritability based on variance components per 

plant from 2007 and 2008 was 0.13 with a standard error of 0.07, and a mean 

parent offspring regression heritability of 0.29 with a standard error of 0.14.  

Boe and Lee (2007) found heritabilities among family means for two 

upland cultivars, Summer (0.62) and Sunburst 0.60 when harvested over four 

years. 

This study will be similar to Rose et al. (2007-2008) in several ways. It will 

utilize the same environments (Agronomy Research Station and Perkins Research 

Station) and similar populations. Rose et al. (2007-2008) used NL-94 and SL-93 C1 

and this study uses the C2 form of these populations.  Rose used spaced plants 

for his studies, but in this study the heritability of half sib offspring in swards will be 
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estimated. If the heritability is much greater in swards then the sward method 

would be the preferable method to be used for breeding and selection. 

 

MATERIALS AND METHODS 

 

 From SL-93 and NL-94 populations the C2 parents were selected and put in 30 by 

34 crossing blocks. The half-sib progeny families were selected phenotypically by 

each row. There were 110 half sib families from SL-93 and 132 half sib families 

from NL-94 selected.  The 1.0668 m × 3.6576 m seeded swards with ~1 g of seed 

each plot for NL-94 and SL-93 offspring were planted at Perkins Research Station 

(35.57○N, 97.01○W) in an RCBD design with four replications. The Perkins soil was 

Teller loam (fine, loamy, mixed, active, thermic Udic Argiustolls) (Rose et al. 2008).  

To create unbiased estimates of h2
n, a replicated trial of clonal parents was 

transplanted into a field at Agronomy Research Station in an RCBD with three 

replications to remove bias in the calculation of narrow sense heritability (Casler, 

1982). At the Agronomy Farm the soil is a Kirkland Silt Loam (fine, mixed, 

superactive, thermic Udertic Paleustolls)(Rose et al. 2008). Before fertilization, the 

soil was tested and found to have 6.7 Kg/ha N, 49.3 Kg/ha P, and 406.6 Kg/ha K. 

To achieve a goal of about 134 Kg of N per hectare and greater than 73 kg of P 

per hectare, we added 112 kg per hectare of 18-46-0 (Diammonium Phosphate) 

before planting and 224 Kg per hectare of 46-0-0 (urea) once the plants were 

established. The half-sib populations were evaluated for four years and the 

parent clones for two years. The 2008 year replicated trials of the parents were 

not planted. The parent clonal replicates were planted in 2009 but harvested in 
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2010 and 2011. Samples from each plot were taken and weighed then dried to 

measure % dry mass, so the per plot dry weight could be estimated for each 

replication. For the sward plots, the dry mass % was estimated from 2 replications 

from 2008-2010 but from only one plot in 2011. Each sward was harvested as one 

plot per replication so there was not a plant to plant within plot variance and the 

heritability per individual plant could not be estimated (Holland et al.  2003).  

In June 2011 (6-15-2011, 6-16-2011) parent plants were evaluated for smut 

by the number of heads produced. A scale was made from 0-10 based off of the 

rough visible plant coverage of seed heads with 0 being no heads and 1 being 

1-10% and 2 being 20% and so on.  

Analysis 

The yield data were analyzed over years using pseudo-likelihood in the PROC 

GLIMMIX (SAS Institute, 2008) to calculate the standard error of the variance 

components with the 95% confidence bounds calculated using estimated 

likelihood with the estimated likelihood option in covtest (SAS Institute, 2008). The 

data were calculated using the random effects model. The offspring data were 

collected from years 2008-2011.  

The progeny analysis variance component heritability method was 

performed using pseudo-likelihood according to following model: 

Yijk = µ + αr + βj + τy + βτjk + e  

where µ indicates overall mean of biomass yield;  
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αr, random effect of replication r;  

where r = 1, 2, 3, 4; 

βj, random effect of plant family (genotype) j;  

where for NL-94 j =1, 2, 3…….132 and for SL-93 j = 1, 2, 3,……..110; 

τy, random effect of year y; 

where y = 1, 2, 3, 4; 

 βτry, random interaction effect of plant family j and year y 

and e, experimental error, with mean 0, variance σ e
 2

 

(Rose et al. 2007); 

The variance component data were log transformed. Two SL-93 numbers 

(Perkins 2008 rep 1, 15X21; Perkins 2008 rep 1, 15X5) were zero and converted to 

missing numbers by the SAS log function. These numbers were allowed to be 

replaced instead of adding 1 for the sake of consistency because adding 1 

caused a poor fit in NL-94 offspring plants.  

The variance components were calculated using a SAS program derived from 

Holland et al. (2003) and using formulas from Rose et al. (2007). 

Narrow sense heritability via the variance component method was calculated 

using the following formula: 

�� �  ��
�

��
� � ���

� � �	�
 



58 

 

Where 

σF
2 =Family variance component 

σFY
2 = Family by year variance component 

σe
2 = Experimental error variance 

 

The narrow-sense heritability on a phenotypic mean basis averaged over 

replications and years were estimated 

�
��
� �  �


�

�

���
��

� ����
��

 
  

where  

σF
2 =Family variance component 

σFY
2 = Family by year variance component 

σε
2 = The residual variance 

y = year 

r = replication 

The formula for predicted gains from the variance component method per 

family mean was: 

∆� � ���
��
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Where ��
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� � �
�
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��  

Where c= 2 

and k=0.736  for a 30% selection(Falconer, 1989) 

 The c= 2 because the plants were selected according to half-sib progeny 

selection and to make a new population. The best parents were selected on the 
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basis of the mean yield performance of their offspring and intermated in isolation 

(Nguyen and Sleper, 1983). 

To calculate the ∆G in terms of percent dry mass, ∆G was divided by the 

offspring mean (Vogel et al. 1981) from each respective time frame then 

multiplied times 100.  

The parent offspring regression model is the same as the model above with the 

addition of parent as a covariate where r = 1, 2, 3 and y = 1, 2. 

To create a better fit the parent offspring regression data were 

transformed by exponent transformation plus 1.  

The parent offspring regression was calculated using pseudo-likelihood 

using a program derived from Saxton (2004), and formulas from Rose et al. 

(2007). 

The parent offspring regression was performed with plants from the same 

year and the regression was performed with parent and offspring data from 

different years (inverse years) to reduce upward bias caused by 

genotype×environment interactions (Casler, 1982).  

The regression single locus covariance formula:  

 

�����
 � � !"#$%
,�'
()�%
' * �  

+
��,

�� +-�,,
�

�.
� �  /

�  �/
�   

(Holland et al., 2003) 

The estimates of h2
n

 were calculated by the following formula: 

�0� � 2 2 3/ 
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Where β1 = the slope of the parent offspring regression 

(Rose et al. 2008). 

The predicted gains ∆G were calculated by using the formula from Nguyen and 

Sleper (1983) for the parent offspring regression. 

∆� � ���0��
 � ��2 �.4
�.

�   

Where c= 2 

and k=0.736  for a 30% selection(Falconer, 1989) 

The parent offspring ∆G was divided by the offspring means of the 

appropriate time period without rep 4, and then each was multiplied times 100. 

Proc Univariate (SAS Institute, 2008) was used to calculate the total 

variance of the parent to calculate ∆G. 

Yield means were calculated using PROC means in SAS (SAS Institute, 2008). 

RESULTS 

The mean yield in kg for each year at Stillwater and Perkins is in Table 3.1. The 

heritability estimates with their standard errors and genetic gain (∆G) calculated 

by variance components for each year and combined for NL-94 and SL-93 are in 

tables 3.2 and 3.3, respectively. The heritability estimates with their standard 

errors, t and genetic gain (∆G) values calculated by the parent offspring 

regression method for 2010 and 2011 individually and combined for NL-94 and 

SL-93 are in Table 3.4. The variance components and their standard errors and 

95% estimated likelihood significance bounds are in Tables 3.5-3.28.  
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Temperature and precipitation were analyzed to search for patterns that 

affect switchgrass growth. Table 3.30 contains a list of the monthly average 

temperatures (○C) for Stillwater (2011-2010) and table 3.31 has a list of monthly 

temperatures (○C) for Perkins (2008-2011). The average min and max 

temperatures for the growing season of 2008 at Perkins were15.65 ○C and 28.24 

○C, respectively. In 2009 the min and max were 16.39 ○C to 28.52 ○C and 2010 the 

min and max 18.15 ○C to 29.91 ○C. The temperatures in 2011 were higher, and the 

min and max temperatures were 18.15○C and 32.41○C, respectively. The 

precipitation was also similar. It was 62.69 cm. in 2008, 60.38 cm. in 2009, and 

60.53 cm. in 2010.  The precipitation in 2011 was different and was only 25.09 cm. 

The min and max temperatures in Stillwater in 2010 were 18.06 and 29.72 and the 

min and max were 17.69 and 32.32 in 2011. The precipitation in Stillwater was also 

lower in 2011 (19.03 cm.) compared to in 2010 (65.81 cm.).   

DISCUSSION 

The heritability calculated by the variance component method was only 

measured in one environment, so it could be influenced by family×location and 

family×location×environment interactions (Godshalk et al., 1986). Location is an 

important source of variation (Redfearn et al., 1997; Bhandari et al., 2010) and 

several other studies found that year, location and their interaction are highly 

significant (Newell and Eberhart, 1961; Redfearn et al., 1997; Fuentes and 

Taliaferro, 2002; Boe and Lee, 2007; Bhandari et al., 2010). Multiple year analysis 

removes bias caused by family×year interactions from the heritability estimate 

and is important because this interaction was highly significant in switchgrass in 
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several studies (Newell and Eberhart, 1961; Redfearn et al., 1997; Fuentes and 

Taliaferro, 2002; Boe and Lee, 2007; Bhandari et al., 2010). 

  There are other (than swards) differences between this study and Rose et 

al. (2007 and 2008). Rose et al. (2007) harvested for three years for his variance 

component analysis and this study used four years. Rose et al. (2008) used C1 

plants for his analysis (Rose, 2005) and this study C2. Rose provided regression 

estimates based off inverse year and in this study none of the inverse year 

regression estimates were significant.  The year conditions were also different. 

There is a difference between our method of this paper and that of Rose’s. We 

measured plants on a per plot basis and Rose’s estimate was based on 

individual plants, but both measured heritability based on a family mean basis. 

The regression inverse year analysis for NL-94 was positive and sometimes more 

than the same year estimates (Tables 3.4), but none of inverse year estimates 

were significant (α=0.05). The SL-93 regression with inverse years estimates were 

negative and not significant (α=0.05). The difference between the same year 

and inverse year estimates could be due to large differences in yield due to 

drought conditions. 

In June 2011 Smut (Tilletia maclaganii) was noticed on the parent plot on 

the Agronomy farm. Smut infects the switchgrass plants and causes them to 

flower early, so the seeds will be replaced by fungal sori (Thomsen et al., 2008). 

Thomsen et al. (2008) recorded a negative relationship between infection and 

biomass yield. This probably affected yield of the parent in 2011. This increases 
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the environmental variation due to environment between the parent and 

progeny plots, but did not affect the variance component methods. 

There were drought conditions in 2011. The min and max growing season 

(April-September) temperatures for the years of 2008, 2009 and 2010 were similar, 

but temperatures in 2011 were higher. The precipitation was much lower in 2011 

also. Biomass yield was lower in 2011 compared to the other years (Table 3.1). 

The climatic conditions and their soil interactions could affect dry mass yield 

(Bhandari et al. 2010). Bhandari et al. (2010) hypothesized that strong soil and 

precipitation differences could have a greater effect on year×family and 

year×location interactions (Bhandari et al., 2010). Rose et al. (2008) noted that 

weather differences among years can change the yield ranks of the Half-sib 

families. Within each switchgrass population in this study there is only one 

year×family variance component for NL-94 in 2010-2011 in the parent offspring 

regression. This indicates that year×family interactions in NL-94 were caused by 

drought conditions or smut. The drought conditions did affect the heritability 

estimates though. With the addition of the 2011 data the sward heritability of NL-

94 was dramatically lower; almost half of what it was without the 2011 data. The 

NL-94 estimates from variance components indicated that the NL-94 had a 

higher heritability before 2011 than SL-93.  The variance component heritability of 

2011 alone was not calculable because the family variance component was 

zero. The heritability of NL-94 variance component heritability in 2011 was zero, 

but just the opposite occurred in SL-93 the heritability was almost double. This 

indicates that drought decreases heritability in NL-94 and increases it in SL93 

using the variance component methods. This could be caused by the removal of 
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some family×location bias by the drought environment in 2011.  It is interesting to 

note that the SL-93 variance heritabilities from 2008 and 2009 had higher 

standard errors than heritability estimates, and therefore these estimates alone 

are not reliable. 

The different reactions between the SL-93 and NL-94 to the drought 

conditions in 2011 could be due to genotype by environment interactions 

between SL-93 and NL-94 populations and these differences might be worth 

investigating in the future. 

The parent offspring regression was different. The heritability of NL-94 did increase 

in 2011, which could be because it did not have the bias that the variance 

component method had or it could be because of the influence of year×family 

interactions caused by the smut or drought. The average smut infection for SL-93 

was higher (4.64) than NL-94 (2.36) and this difference was significant at α<.0001. 

There was a year×family variance component in the 2010-2011 NL-94 regression 

calculation. The SL-93 2010-2011did not have the year×family variance 

component, but the heritability of SL-93 in 2011 was lower. The parent offspring 

regression heritability was only significant for NL-94 in 2011 (α=0.1), but not for NL-

94 in 2010 or the combined 2010-2011analysis. SL-93 was not significant in 2011, 

but significant in 2010 (α=0.1) alone or the combined 2010-2011 analysis (α=0.01) 

(Table 3.3), but the family variance component for the SL-93 2010-2011 analysis 

had a standard error larger than the estimate (Table 3.19). This was also true for 

the NL-94 2010-2011 family covariance estimate (Table 3.7) and the NL-94 2011 

family covariance estimate (Table 3.6). 
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The heritability estimates for SL-93 from the parent offspring regression 

(0.31) was larger than all the per plot variance components estimates, but less 

than the variance component per family mean estimates. The estimates for NL-

94 for the per plot variance method and the parent offspring regression were 

similar.  Only the 2011 estimate (0.1619) was significant and was similar to the per 

plot 2008-2010 estimates, but not in 2011. The family mean estimates were 

greater than the parent offspring regression estimates.  Since the 2011 regression 

estimate was only tested in one year it could be biased by genotype by 

environment interactions.   

The parent offspring regression estimates for heritability of NL-94 were similar 

(0.1012) to the parent offspring regression results for SL-93 (0.13) for individual 

plants from Rose et al. 2007, but the SL-93 result in this study was twice as large 

(0.31).  

The family mean variance components heritability for southern lowland 

and northern lowland across years (Tables 3.2, 3.3) are similar to family variance 

component heritability in Rose et al.  (2007) in one environment (0.62-0.76), which 

makes sense because both studies are in one environment. This indicates that 

sward row heritability is not that much different from spaced plant heritability for 

NL-94 in one environment, but Rose et al. (2007) per family mean estimates from 

combined environments was much less (0.09) than the combined NL-94 2008-

2011 result (0.58).  

The individual plant heritability estimates of Rose et al. (2007 and 2008) 

from parent offspring regression and variance component method was based 
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on single plants, but the estimates in this study are based on per plot harvested. 

Individual plant analysis was not possible due to the nature of sward rows.  

The per plot variance component heritability estimates of this study were 

less than Talbert et al. (1983) (0.5) and Godshalk et al. (1986)(0.52) who also 

created per plot heritability estimates like this study. Godshalk et al. (1986) and 

Talbert et al. (1983) evaluated the plants for two years. The family mean estimate 

for NL-94 2008-2010 (0.58) and SL-93 2008-2010 (0.59) were similar to per family 

mean heritability estimates (0.60, 0.62) in upland cultivars by Boe and Lee (2007). 

Hopkins et al. (1993) made a family mean heritability estimate (0.22) based off of 

sward forage yield and three years data. It was less than both the 2008-2011 year 

family mean estimates in this study (0.58, 0.59).  

The parent offspring regression result for SL-93 (2010-2011)(0.31) is similar to 

parent offspring regression of Bandari et al.  2010 (0.29) in another lowland 

population. 

The SL-93 and NL-94 family variance components, which represent the 

additive portion of the variance, from the parent offspring regression and 

variance component method fell within the 95% confidence bounds and were 

significant with the exception of NL-94 2010-2011 parent offspring regression 

estimate. This estimate (0.000396) with a standard error (0.00133) includes 

negative figures and the estimate also has a lower bound of 0 which is not 

significantly different than 0 (Chisq p = 0.6712). This throws the accuracy of this 

heritability estimate into question. Predicted gains based off of parent offspring 

regression are considered less reliable than those base on variance components 
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if the heritability estimates of the parent offspring regression are not significantly 

different from zero (Rose, 2005 ).  

The year*family variance from NL-94 2010- 2011 fell between the upper 

and lower bounds for 95% confidence even though the lower bound (0) is off a 

little (chisq p=0.0511). This interaction could be caused by the smut that was in 

the parent population but not in the offspring.  

There are morphological differences between spaced and sward 

plantings (Casler and Brummer, 2008), and these morphological traits could 

cause differences between heritability of swards and spaced plants (Redfearn et 

al., 1997). Bhandari et al. (2010) demonstrated that the biomass yield was 

positively correlated with tillering ability, and these traits are affected by the 

sward environment (Casler and Brummer, 2008). 

It is difficult to discern if the differences in heritability are caused by the 

sward environment, different years, or genetic differences (C1 vs. C2).  Even 

though most of the heritability estimates are higher than Rose’s,  it is difficult to 

discern if the sward environment has distinct advantage for heritability selection, 

because some of the estimates are similar to Rose’s and  most of the heritability 

estimates are similar to those of other space planted studies (Bandari et al. 2010). 
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Table 3.1.  Mean SL-93 and NL-94 switchgrass dry mass yield in kg for each year 

(2008-2011). 

 2008 2009 2010 2011 2008-2011 2008-2010 
Prog. µ† SD‡ µ† SD‡ µ† SD‡ µ† SD‡ µ† SD‡ µ† SD‡ 

SL-93 0.91 
 

0.27 1.48 
 

0.36 1.92 
 

0.43 0.82 0.27 1.28 0.56 1.43 0.55 

NL-94 1.05 
 

0.24 1.92 
 

0.57 2.49 
 

0.58 1.12 0.35 1.64 0.75 1.82 0.77 

Prog.         2010-2011   
SL-93         1.37 0.66   
NL-94         1.80 0.84   
Parent 
SL-93 

- - - - 0.96 
 

0.45 0.65 0.30 0.80 0.41   

Parent 
NL-94 

- - - - 0.90 
 

0.42 0.66 0.30 0.78 0.38   

†Mean 

‡Standard deviation 
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Table 3.2. Variance component narrow sense heritability estimates of NL-94 

Switchgrass planted in swards with standard errors and predicted gain 

estimates. 

Year Per Plot SE† Family mean SE† ∆GPFM % gain 

2008 0.07 0.04 0.24 0.11 0.04 3.97 
2009 0.13 0.04 0.38 0.09 0.06 3.28 
2010 0.19 0.05 0.49 0.07 0.09 3.78 
2011 0 0 0 0 0 0 

2008-2010 0.16 0.02 0.70 0.04 0.10 5.63 
2008-2011 0.08 0.02 0.58 0.05 0.07 4.43 

†Standard error 
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Table 3.3. Variance component narrow sense heritability estimates of SL-93 

Switchgrass planted in swards with standard errors and predicted gain 

estimates. 

Year Per Plot SE† Family mean SE† ∆GPFM % Gain 

2008 0.03 0.04 0.12 0.14 0.03 2.79 
2009 0.03 0.04 0.11 0.14 0.02 1.39 
2010 0.07 0.04 0.23 0.12 0.04 2.02 
2011 0.14 0.05 0.40 0.09 0.11 13.42 

2008-2010 0.07 0.02 0.46 0.08 0.06 4.49 

2008-2011 0.08 0.02 0.59 0.06 0.09 6.71 

 
†Standard error 
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Table 3.4. Parent offspring regression narrow sense heritability estimates for 

SL-93 and NL-94 Switchgrass planted in swards with standard errors and 

predicted gain estimates. 

Year Heritability SE† t‡ P>t§ ∆G¶ % Gain#  

NL-94       

2010 0.03 0.08 0.40 0.69 0.01 0.57 

2011 0.16 0.09 1.81 0.07 0.05 4.49 

2010-2011 0.10 0.06 1.59 0.11 0.04 2.15 

Parent 2010 
Prog. 2011 

0.180 0.40 0.44 0.66 0.07 6.66 

Parent 2011 
Prog. 2010 

0.02 0.53 0.04 0.97 0.01 0.29 

Inverse years 0.06 0.33 0.18 0.86 0.02 1.27 

SL-93       

2010 0.24 0.14 1.70 0.09 0.10 18.49 

2011 0.07 0.18 0.37 0.71 0.02 11.98 

2010-2011 0.31 0.10 3.17 0.002 0.12 32.95 

Parent 2010 
Prog. 2011 

-0.03 0.44 -0.07 0.95 -0.01 -1.54 

Parent 2011 
Prog. 2010 

-0.02 0.65 -0.04 0.97 -0.01 -0.35 

Inverse years -0.03 0.37 -0.08 0.94 -0.01 -0.85 

†Standard error 

‡t score for t distribution 

§p-score for significance of t 

¶Predicted gains estimate 

# Percent predicted gain 
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Table 3.5. NL-94 switchgrass 2010 parent offspring regression variance 

components with 95% confidence bounds. 

  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.000041 0.000351 0 0.8986 0.005831 0.05 

Family 0.006308 0.002712 0.002202 0.05 0.01199 0.05 

Residual 0.04028 0.003522 0.03463 0.05 0.04713 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.6. NL-94 switchgrass 2011 parent offspring regression variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.01004 0.01028 0.002091 0.05 0.18 0.05 

Family 0.000447 0.001572 0 0.7238 0.003474 0.05 

Residual 0.0302 0.002641 0.02628 0.05 0.03492 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.7. NL-94 switchgrass 2010-2011 parent offspring regression variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate 

Standard 
Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.213 0.3014 0.03145 0.05 26.7822 0.05 

Rep 0.002538 0.002694 0.000455 0.05 0.04706 0.05 

Family 0.000396 0.00133 0 0.6712 0.002638 0.05 

Y*Family 0.002323 0.001988 0 0.0511 0.005256 0.05 

Residual 0.03748 0.002312 0.0338 0.05 0.04167 0.05 
†Covariance parameter 

‡Tests boundary = 0 
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Table 3.8.  NL-94 switchgrass 2010 parent on to 2011 progeny parent offspring 

regression variance components with 95% confidence bounds.  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.01117 0.01143 0.002335 0.05 0.2 0.05 

Family 0.0004 0.001555 0 0.7497 0.00339 0.05 

Residual 0.02999 0.002621 0.0261 0.05 0.03467 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.9.  NL-94 switchgrass 2011 parent on to 2010 progeny parent offspring 

regression variance components with 95% confidence bounds.  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.000031 0.00035 0 0.9255 0.005818 0.05 

Family 0.006277 0.002711 0.002173 0.05 0.01195 0.05 

Residual 0.04032 0.003525 0.03467 0.05 0.04718 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.10.  NL-94 switchgrass inverse year 2010 and 2011combined parent 

offspring regression variance components with 95% confidence bounds.  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.2125 0.2894 0.03262 0.05 27.8013 0.05 

Rep 0.00236 0.002517 0.000415 0.05 0.04395 0.05 

Family 0.000455 0.001325 0 0.6236 0.002698 0.05 

Y*Family 0.002142 0.001975 0 0.0731 0.005064 0.05 

Residual 0.03767 0.002323 0.03399 0.05 0.04188 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.11. NL-94 switchgrass 2008 offspring heritability variance components with 

95% confidence bounds. 

  Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 0.0001 1 

Family 0.003319 0.001845 0.000478 0.05 0.007247 0.05 

Rep 0.001862 0.001777 0.0003 0.05 0.01867 0.05 

Y*Family 0 . 0 1 0.003927 0.05 

Residual 0.04145 0.002957 0.03655 0.05 0.04723 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.12. NL-94 switchgrass 2009 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 . . 

Family 0.004803 0.001659 0.002178 0.05 0.008432 0.05 

Rep 0.01746 0.01445 0.004754 0.05 0.1541 0.05 

Y*Family 0 . 0 1 0.003629 0.05 

Residual 0.03135 0.002237 0.02755 0.05 0.03585 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.13. NL-94 switchgrass 2010 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 . . 

Family 0.008418 0.002236 0.004816 0.05 0.0134 0.05 

Rep 0.004429 0.003837 0.001055 0.05 0.04072 0.05 

Y*Family 0 . 0 1 0.004979 0.05 

Residual 0.03571 0.002548 0.03131 0.05 0.04094 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.14. NL-94 switchgrass 2011 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 . . 

Family 0 . 0 1 0.005023 0.05 

Rep 0.01372 0.01166 0.003466 0.05 0.124 0.05 

Y*Family 0 . 0 1 0.005023 0.05 

Residual 0.07424 0.004587 0.06593 0.05 0.08401 0.05 
†Covariance parameter 

‡Tests boundary = 0 
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Table 3.15. NL-94 switchgrass 2008-2011 offspring heritability variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.1787 0.146 0.05031 0.05 1.559 0.05 

Family 0.004233 0.000908 0.002716 0.05 0.00633 0.05 

Rep 0.004655 0.003877 0.001246 0.05 0.04132 0.05 

Y*Family 0 . 0 1 0.000872 0.05 

Residual 0.04913 0.001564 0.04621 0.05 0.05231 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.16. NL-94 switchgrass 2008-2010 offspring heritability variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.1933 0.1934 0.04386 0.0500 3.3886 0.05 

Family 0.006959 0.001239 0.004885 0.05 0.009825 0.05 

Rep 0.005808 0.004817 0.001572 0.05 0.05135 0.05 

Y*Family 0 . 0 1 0.000513 0.05 

Residual 0.03632 0.00135 0.03381 0.05 0.03909 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.17. SL-93 switchgrass 2010 parent offspring regression variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.009135 0.009838 0.001532 0.05 0.1717 0.05 

Family 0.07688 0.01301 0.05551 0.05 0.1074 0.05 

Residual 0.05432 0.005234 0.04529 0.05 0.06586 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.18. SL-93 switchgrass 2011 parent offspring regression variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.000758 0.001249 0 0.2686 0.0214 0.05 

Family 0.06902 0.01181 0.04964 0.05 0.09666 0.05 

Residual 0.05115 0.004918 0.04268 0.05 0.06198 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.19. SL-93 switchgrass 2010-2011 parent offspring regression variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.000138 0.000496 0 0.6982 0.04366 0.05 

Rep 0.003547 0.003837 0.000591 0.05 0.06673 0.05 

Family 0.074 0.01124 0.0554 0.05 0.1005 0.05 

Y*Family 0 . 0 1 0.004052 0.05 

Residual 0.05252 0.003186 0.04675 0.05 0.05928 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.20.  SL-93 switchgrass 2010 parent on to 2011 progeny parent offspring 

regression variance components with 95% confidence bounds.  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 
0.00141

9 0.001703 0.000102 0.05 0.02957 0.05 

Family 0 . 0 1 0.002995 0.05 

Residual 0.02326 0.002115 0.01957 0.05 0.02795 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.21.  SL-93 switchgrass 2011 parent on to 2010 progeny parent offspring 

regression variance components with 95% confidence bounds.  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Rep 0.001119 0.001556 0 0.1075 0.02682 0.05 

Family 0.000528 0.002426 0 0.7855 0.0054 0.05 

Residual 0.036 0.004026 0.03021 0.05 0.04333 0.05 

†Covariance parameter 

‡Tests boundary = 0 
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Table 3.22.  SL-93 switchgrass inverse year 2010 and 2011combined parent 

offspring regression variance components with 95% confidence bounds.  

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.1807 0.2499 0.02727 0.05 23.2621 0.05 

Rep 0.001304 0.001486 0.000156 0.05 0.0258 0.05 

Family 0.000257 0.001393 0 0.8193 0.002858 0.05 

Y*Family 6.24E-23 . 6.24E-23 1 0.002593 0.05 

Residual 0.02957 0.002333 0.02612 0.05 0.03364 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.23. SL-93 switchgrass 2008 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 7.08E+10 . 

Family 0.002564 0.003406 0 0.3591 0.009731 0.05 

Rep 0.02001 0.01693 0.005127 0.05 0.1801 0.05 

Y*Family 0.000041 . 0 0.9893 0.007208 0.05 

Residual 0.07858 0.006179 0.06869 0.05 0.0904 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.24. SL-93 switchgrass 2009 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 . . 

Family 0.001738 0.002348 0 0.3681 0.006676 0.05 

Rep 0.00348 0.003248 0.000624 0.05 0.03419 0.05 

Y*Family 0 . 0 1 0.004939 0.05 

Residual 0.05476 0.004283 0.04791 0.05 0.06294 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.25. SL-93 switchgrass 2010 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 . . 

Family 0.00303 0.001975 0.00004 0.05 0.007294 0.05 

Rep 0.001495 0.001527 0.000153 0.05 0.01593 0.05 

Y*Family 0 . 0 1 0.004264 0.05 

Residual 0.04115 0.003218 0.03587 0.05 0.04746 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.26. SL-93 switchgrass 2011 offspring heritability variance components with 

95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0 . 0 1 7.31E+10 . 

Family 0.01375 0.004885 0.006099 0.05 0.02466 0.05 

Rep 0.004374 0.004175 0.000703 0.05 0.04386 0.05 

Y*Family 0.000023 . 0 0.996 0.01093 0.05 

Residual 0.08117 0.006353 0.07041 0.05 0.09411 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.27. SL-93 switchgrass 2008-2011 offspring heritability variance components 

with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.1721 0.1407 0.04840 0.0500 1.5029 0.05 

Family 0.005803 0.001285 0.003624 0.05 0.008665 0.05 

Rep 0.003996 0.003385 0.001019 0.05 0.03601 0.05 

Y*Family 0 . 0 1 0.001473 0.05 

Residual 0.06558 0.002335 0.06127 0.05 0.07031 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.28.  SL-93 switchgrass 2008-2010 offspring heritability variance 

components with 95% confidence bounds. 

Lower Upper 

Cov 
Parm† Estimate Error Bound Chisq Pr >‡ Bound Chisq Pr >‡ 

Year 0.1514 0.1516 0.03426 0.05 2.6564 0.05 

Family 0.004166 0.001321 0.001968 0.05 0.007032 0.05 

Rep 0.004948 0.004186 0.001267 0.05 0.04454 0.05 

Y*Family 0 . 0 1 0.001154 0.05 

Residual 0.05885 0.002485 0.05438 0.05 0.0638 0.05 

† Covariance parameter 

‡Tests boundary = 0 
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Table 3.29. Stillwater average monthly temperatures ◦C for 2010 and 2011. 

2010 2011 

Month min max min max 

April 11.11 22.78 8.89 25.00 

May 13.33 25.56 13.89 26.11 

June 22.22 31.67 21.67 35.56 

July 22.78 33.33 25.00 39.44 

August 21.67 35.00 23.33 38.89 

September 17.22 30.00 13.33 28.89 

Average 18.06 29.72 17.69 32.31 
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Table 3.30. Perkins average monthly temperatures ◦C for 2008-2011. 

 2008 2009 2010 2011 

Month min max min max min max min max 
April 7.78 21.11 7.78 21.11 10.56 22.22 10.00 25.00 
May 14.44 27.22 13.33 24.44 13.89 26.11 14.44 26.11 
June 20.00 31.11 20.56 33.33 21.67 32.22 21.67 36.11 
July 21.67 33.89 20.56 33.89 22.78 33.33 25.00 40.00 

August 21.11 32.78 20.00 31.67 22.22 35.56 23.89 38.33 
September 8.89 23.33 16.11 26.67 17.78 30.00 13.89 28.89 

Average 15.65 28.24 16.39 28.52 18.15 29.91 18.15 32.41 

 



104 

 

CHAPTER IV 
 

SWITCHGRASS SELFING CONFIRMED BY SSR MARKERS 

ABSTRACT 

Switchgrass is an allogamous, self-incompatible species currently being bred for 

biomass as a biofuel feedstock. Genotypic recurrent restricted selection for 

general combining ability has been used to improve switchgrass yield. This 

method capitalizes on additive gene effects but neglects non-additive genes.  

Inbreeding and hybridization have greatly improved the yield of major crops, 

such as maize (Zea mays), sorghum (Sorghum bicolor) and rice (Oryza sativa). 

 Hybridizing inbreds may have the potential to improve yield in switchgrass. The 

objective of this study was to investigate seed yield of selfing lowland switchgrass 

plants by bagging, and confirm selfed progeny by SSR markers. In 2008, 33 S1 

Alamo and 33 S1 Kanlow switchgrass plants were bagged using two bag types: 

paper Lawson bags, and microfiber bags. In 2009 the same plants were bagged 

with larger cotton muslin bags. In 2010 the plants were bagged with all three bag 

types. Seeds were collected and counted. In the 2008 harvest, a total of 304 

Alamo seeds were collected from which 100 progenies were grown and a total 

of 321 Kanlow seeds collected from which 91 progenies were grown. From the 

2009 plants a total of 498 Alamo seeds were harvested from which 123 progenies 
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were grown, and a total of 1231 Kanlow seeds from which 267 progenies were 

grown. In 2010 a total of 301 Alamo seeds were harvested from which 26 

progenies were grown and 263 Kanlow seeds were collected from which 17 

progenies were grown. Bag by cultivar interaction was significant in 2008 

(α=0.05) and bag type was significant in 2010 (α=0.1). DNA was extracted from 

the respective parents and the progeny of every year. Six SSR primer pairs were 

used to confirm selfed progeny identity by determining if all progeny alleles 

matched its maternal parent. Of the 2008 Kanlow offspring 23 were inbreds 

(25.3%) and of Alamo 33, were inbreds (33%). Of the 2009 Alamo plants, 

24 (23.07%) were inbred and 133 (82.1%) Kanlow plants were inbred. Of the 2010 

Alamo plants 10 were inbred (38.56%), and of the 2010 Kanlow plants, 5 plants 

were inbred (31.25%) 

 
INTRODUCTION 

Switchgrass is a self incompatible cross-pollinated species (Martinez-Reyna 

and Vogel, 2002), but switchgrass will set some seed if selfed (Newell, 1936) and 

Taliaferro and Hopkins (1996) observed a selfing rate of about 1-2%. To determine 

switchgrasses’ selfing potential Taliaferro (2002) planted the first generation 

selfed families from Blackwell, Caddo, Cave-in-Rock, Kanlow, and Alamo in 2000. 

Three plants from each of the 15 S1 families were selected based on visual 

assessment and were selfed and bagged in 2001. Of these, 13 S1 plants 

produced 20 or more seeds and 7 S1 plants had more than 100 S1 seeds. This high 

number of seed indicates high inbreeding potential of the S1 (Taliaferro, 2002). 

These inbreeding studies did not confirm results using molecular markers. To 
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understand the effects of bagging and confirm selfing the inbreeding research 

will be continued by enforcing selfing using different bag types. Switchgrass has 

been improved by traditional methods for forage and biofuel including ecotype 

selection, recurrent restricted selection (RRPS) and recurrent selection for general 

combining ability (Vogel and Gabrielson, 1986; Burton, 1974; Vogel et al., 1991; 

Taliaferro, 2002). With the exception of recurrent selection for general combining 

ability these methods had limited success because environmental effects 

affected selection ability (Taliaferro, 2002), and all these methods select for 

additive genes. But hybridization can employ non additive genes which could 

speed up improvement (Martinz-Reyna, 1998); for instance, Vogel and Mitchell 

(2008) had 30-38% heterosis from sward hybrids of ‘Summer’ and ‘Kanlow’.  

Okada et al. (2010) indicated that switchgrass has near disomic 

inheritance, so for each inbred generation switchgrass’s homozogosity will 

increase 50% (Husband and Schemske, 1997). For switchgrass to reach 98.44% 

homozygous would require 6 generations (Husband and Schemske, 1997). 

Microsatellite markers also called Simple Sequence Repeats (SSRs) are 

good for homozygosity measurements because they are highly abundant, highly 

polymorphic, somatically stable, and inherited in a co-dominant manner 

(Morgante and Olivieri, 1993). In each selfed generation the SSR banding pattern 

will be compared to the maternal parent. The offspring should have fewer 

heterozygous bands than the parent. Null alleles could bias the data because 

heterozygotes could be mislabeled as homozygotes if there are null alleles in the 
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switchgrass population. A ‘null’ allele is found in the parents but not inherited in 

their offspring (Callen et al., 1993).  

Objectives 

To quantify the production of S2 progeny from two switchgrass S1 

populations, Alamo and Kanlow, using different bagging methods and confirm 

progeny selfing by comparing the progeny alleles to their maternal parent using 

SSR markers.  

MATERIALS AND METHODS 

In 2008, 33 of the ‘Alamo’ and 33 of the ‘Kanlow’ S1 populations planted in 2001 

were selfed by bagging in August using a combination of microfiber and paper 

bags (Lawson 17.1 cm ×15.9 cm ×12.1 cm × 39.4 cm No. GB504) attached to 

poles with 2-3 heads per bag. The microfiber bags were inherited from another 

study and records about their dimensions, manufacturer and pore size etc. were 

lost, but the bags were measured to be 22 cm wide and 45 cm long. In 2009 the 

same S1 populations were bagged using chicken wire covered with a pillow 

case (~2 heads per bag) attached to two t-posts.  In 2010 the same S1 genotype 

plants were bagged with pillowcase chicken wire cages, paper bags and fabric 

bags (1 head per bag) and one per plant (except microfiber which had fewer 

bags) to compare how bag type affects seed yield in the same year.  
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Bag methods 

The paper bag was attached to the pole by sticking a wire through the bottom 

near both of the two corners at the opening of the bag. The bag is placed over 

the head with the wire portion of the bag away from the stem (toward the pole) 

and the ends of the wire which pierce the bag are coming out away from the 

pole but then pulled back and tied around the pole. Then the bag internal 

space was enlarged by pulling the bag to inflate it. The top of the bag was tied 

to the pole for support during rain or wind. This can be accomplished by running 

a wire though the top flap in the paper but not below the paper seam which 

would allow air and water into the bag. The microfiber bags were attached by 

placing a wire around part of the bag that does not crush the switchgrass stem. 

Switchgrass cage creation involved wrapping a segment of chicken wire into a 

cylinder with a diameter of 69.85 cm, a length of 111.76 cm and a 

circumference of 219.44 cm. Then a pillowcase was placed over the cage. 

About 2-3 heads were placed in the cage. Wire pierced the pillowcase on both 

sides and attached it on either side to two poles or one side if only one pole or t-

post was used. A wire secured the bag at the bottom. 

The seed was removed from the panicle by rubbing and cleaned utilizing 

a South Dakota Seed Blower.  The 2008 seeds were collected and counted for 

each plant. The seeds were placed on blotters soaked one time with 0.2% KNO3 

and benomyl solution (9.67g of 50% benomyl per 3.78 L of water) and placed in 

a Stults Scientific Engineering Corporation germination chamber set at a 

temperature control program composed of 8 hours of light at 30 ○C and 16 hours 
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of dark at 15 ○C (AOSA, 2007). The seeds from 2009 and 2010 were placed in a 

Perceval growth chamber. In 2008, germination was counted after 14 days, and 

the 2008 seedlings were transplanted into conetainers in Oklahoma State 

University’s Controlled Environment Research Lab (CERL) and watered by 

floating the conetainers in water for a few minutes as needed. After two months 

in the CERL the plants were transplanted to 4’’ pots and placed into a 

greenhouse at the OSU Agronomy Research Station. In 2009-2010 the 

germination was counted after 7 and 14 days. After germination of the 2009 

seed, the seedlings were transplanted into flats and kept in the Percival growth 

chamber, then transferred to 4” pots in the greenhouse.  The 2010 plants after 

germination were transplanted into conetainers and kept in a bright room for 

about a week for acclimation. Then the plants were maintained in the 

greenhouse.  

SSR Homozygosity test 

A total of 6 primer combinations were performed because if the bag is 

compromised and there is contamination the probability of misidentification is 

50%. The formula for calculating SSR misidentification of selfing is (1/2)n where n is 

the number of SSR primers scored assuming high heterozygosity of polymorphisms 

within the population. Dje et al. (2004) used six SSR primers to estimate 

outcrossing and inbreeding in Sorghum. 

DNA was extracted from putative S2 plants and their parents using the CTAB 

method according to Doyle and Doyle (1990). Fluorescently labeled M13 SSR 

procedure was performed according to Tan et al., (2010). At least 6 primers were 
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used to confirm selfing in each sample and sometimes more primers were used 

when no reaction occurred.  In 2008 the following primers (PVAAG -2861-2862, 

PVAAG-3017-3018, PVCAG-2167-2168, PVAAG -2895-2896, PVAAG-3365-3366, 

PVCAG-2209-2210, PVGA-1983-1984, PVGA-1703-1704, PVGA-1733-1734) were 

performed on all samples and PVCA-615-616 and PVCA-535-536 were performed 

on 68 samples. The extra primers were used to fill in spaces where the reaction 

was void. In 2009 the following primers were used (PVCA-615-616, PVCAG-2167-

2168, PVAAG-3017-3018, PVCAG-2209-2210, PVGA-1703-1704, and PVAAG -2895-

2896). In 2010 the same primers were used with the addition of PVCA-535-536 on 

all samples and PVGA-1733-1734, and PVCAG-2167-2168 on four samples.  The 

SSR markers were performed using primers created by Wang et al. (2011) and 

one unpublished primer pair PVAAG-2895 (TTTGACCGTTCCAGTTTCGA), 2896 

(CGTCGTCTCCTCTGGGTAAT) which is redundant to the PVAAG-3297-3298 

primer that was published by (Wang et al., 2011). Inbreeding was determined by 

matching the alleles of the progeny plants with those of their maternal parent. 

Primers and their linkage group are listed in Table 4.1 from the linkage information 

of Liu et al. 2012 (in Press). The banding patterns were visualized on a 0.25 mm 

thick 6.5% polyacrylamide gel with a 64 tooth comb in a Li-COR 4300 DNA 

Analyzer (Li-Cor Inc., NE, USA) and run at 1500 Volts with a scan speed 2 for 1 

hour 45 min.  A DNA size marker (50-350 bp) was also loaded to determine the 

size of the fragments. Bands were visually scored.  An example of a gel is in 

Figure 4.1. 

 



111 

 

Seed Data Analysis 

 The seed data were count data and had many zeros and therefore non-normal, 

so a negative binomial regression (µ + k µ2) (Lawless, 1987; SAS Institute, 2008) 

was performed with seed as dependent variable and cultivar as the 

independent variable using PROC GLIMMIX in SAS (SAS Institute, 2008). Family 

was used as a random variable for 2008 and 2010 but not in 2009 because it 

prevented the algorithm from converging. It was not possible to compare 

families to one another because there were no family replications. For the 

cultivar variable, each maternal plant or family was a replication. Each year was 

considered a random effect, so analysis was conducted separately. Within the 

years of 2008 and 2010 bag type was used as an independent variable. Head 

number was assumed random in all analyses.  

RESULTS 

From 33 bagged Alamo plants, 27 plants produced 318 seeds and from 33 

bagged Kanlow plants, 22 Kanlow plants produced 322 seeds in 2008 and the 

seed yield per parent ranged from 0 to 155.  In 2009 of the 33 bagged Alamo 

plants, 32 produced 498 seed and of the 33 bagged Kanlow plants, 28 

produced 1231 seeds and the seed yield per parent ranged from 0 to 461. In 

2010 from 33 bagged plants, 29 Alamo Plants produced 303 seeds and from 33 

Kanlow bagged plants, 20 plants produced 261 seeds and the seed yield per 

parent ranged from 0 to 100. From each year the seed count statistics were 

calculated.  Cultivar was not significant in 2009, 2008 and 2010. In 2008 bag type 

was not significant but the cultivar×bag interaction was significant (α=0.05). Bag 
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type was highly significant in 2010 (α=0.01) and the bag×cultivar interaction was 

not significant. If the microfiber bag data were not included in 2010, then bag is 

not significant. The least square mean analysis for 2008 bag type and cultivar 

combinations are in Table 4.2. The number of seeds for each bag type, 

germinated seed and surviving progeny for 2010 are listed in Table 4.3.   

 For the 2008 Alamo seed count, 235 germinated normally, 6 were abnormal, 33 

were moldy, 17 were lost or dead and 14 did not germinate. From the Kanlow 

plants 275 germinated normally, 26 were moldy, 20 were lost or dead, 0 were 

abnormal and 12 did not germinate. The average germination was good; it was 

72.9% for Alamo and 71% for Kanlow. Most of the loss was due to fungus, and not 

un-germinated seed. There was trash in the seed that molded and increased 

mold on seeds on the plate. Because of the mold it was difficult to distinguish 

between immature and mature seed.  In 2009 on the 14th day of germination 

from a total of 504 Alamo seeds, 106 germinated normally, 3 were abnormal, 3 

did not germinate, 41 died or were lost, and 353 were moldy. Of the 1213 Kanlow 

seeds 209 germinated normally, 140 did not germinate, 14 were loss or died, 850 

were moldy.  The germination totals for 2009 seeds were lower, 29.8% for Alamo, 

and 10.26% for Kanlow. In 2010 the number of Kanlow that germinated normally 

was 99. The number of un-germinated seed was 8. The number that was lost or 

dead was 2 and the number that was moldy was 252. Mold was also a problem 

for the 2010 germination. Of the 2010 Alamo seeds after 14 days of germination 

160 germinated normally. The number of un-germinated seed was 16. The 

number of abnormal seedlings was 1 and the number of seed lost or dead was 6. 

The number of moldy Alamo was 105. The germination rates were 47.31% for 
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Alamo and 50.25% for Kanlow.  The percent dormancy was on average very low 

3.90% for Kanlow and 7.56% for Alamo in 2010, but mold affected the 

germination, so the low germination percentages were mostly due to moldy 

seeds. Table 4.4 contains germination data for each year. 

There was high mortality after germination each year; for instance, after 

germination of the 2008 seeds some seedlings died when transplanted into 

conetainers in the CERL. There were 247 Alamo plants total and 97 died which 

left 150 live plants. There were 290 Kanlow total and 98 died, leaving 192 alive. 

More plants died when transplanted into the greenhouse, and later there was a 

nutrient deficiency in the greenhouse and after fertilization more plants perished. 

A total of 304 Alamo seeds were collected from which 100 progenies were 

grown and a total of 321 Kanlow seeds from which 91 progenies were grown 

from 2008 samples. Other years had similar mortality. There were more survivors in 

the 2009 generation than were recorded as germinated and 139 plants survived 

in addition to the seedlings counted as germinated. This could be due to some 

moldy seedlings surviving and or some seed germinating after the 14 day 

germination count. This led to a total survivability score of 100 which is not 

technically correct. The 2009 family average survivability and mortality were 

calculated with only the number of germinated seedlings and the number of 

surviving plants ignoring unexpected additional plants. There was some mortality 

in 2009 progeny mostly due to weak plants and fungus gnats in the growth 

chamber. From the 2009 plants a total of 498 Alamo seeds were harvested from 

which 123 progenies were grown and a total of 1231 Kanlow seeds from which 

267 progenies were grown. 2010 had the highest mortality most of which 
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happened when the seedlings were transferred into conetainers. It could have 

been caused by lack of light because the seedlings were sheltered indoors to 

protect them from the heat, or it could have been due to higher inbreeding 

depression because a higher percentage of inbreds in 2010. The number of 

seeds, germinated seedlings and surviving plants for each family are in Table 4.5. 

The percentage survivability and mortality from total plants or averaged across 

family are in Table 4.6. Survivability was variable and ranged from 62.8% in 2009 

to 15.3% in 2010.  

SSRs Identification of Selfed Progeny 

Most of the SSR procedure was performed before the development of the 

linkage map by (Liu et al. 2012), so possible linkage was unknown between the 

SSR primers. The strongest linkage occurs between primers PVAAG-2895-2896 and 

PVAAG-3365-3366 both found at position 118.0 cM on chromosome 5b. The 

PVAAG-3365-3366 was only used on 2008 samples and additional primers were 

used in addition to PVAAG-3365-3366 so 6 primers were used on the samples 

even if PVAAG-3365-3366 or PVAAG-2895-2896 were thrown out. Other closely 

linked markers are PVGA-1703-1704 at 62.7 cM on 3b and PVCA-535-536 at 62.1 

cM on 3b. The primer PVCA-535-536 was used in 2008 and 2010 in a few cases to 

clarify ambiguous bands. Other primers linked in 3b are PVGA-1983-1984 which 

was mapped at 107.5 cM, and PVGA-1733-1734 which was 92.6 cM. The primers 

PVCAG-2209-2210 and PVCA-615-616 are also part of the same linkage group 

with PVCAG-2209-2210 at 32.0 cM on 4a,b and PVCA-615-616 at  49.2 cM on 
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4a,b. This linkage is not a big concern as long as the linked markers are highly 

polymorphic. 

In the 2008 plants, there were 267 Kanlow progenies and 23 were inbreds 

(25.3%) and of the 123 Alamo progenies, 33 were inbreds (33%) with a combined 

total of 56 inbreds (29.3%). Of the 2009 plants 330 survived and were transplanted 

into the field and from these plants DNA was extracted from 269 plants. Of the 

269 plants, 104 were Alamo and 162 were Kanlow; 3 were mislabeled and 

excluded from the analysis to form at total of 266. These plants were derived 

from 21 Alamo parents and 15 Kanlow parents. From the 2009 plants 24 of the 

104 Alamo plants were inbred (23.07%) and 133 of the 162 Kanlow plants were 

inbred (82.1%), for a total of 59.02% inbred. In 2010 there were 564 seeds total, 

263 Kanlow from which 16 progeny were grown and 301 Alamo from which 26 

progeny were grown. Of the 16 Kanlow progeny 5 were inbred (31.25%) and of 

the 26 Alamo 10 were inbred (38.56%). The number of progeny for each year 

and the percent inbred are in Table 4.7.  The number of 2010 inbred and out-

crossed progeny is listed in table 4.8.   

DISCUSSION 

The paper bags are too small for most switchgrass seed heads. The average 

length of a switchgrass panicle is 46.32 cm and the width is 25.28 cm (Porter, 

1966) while the bag has a length of 39.4 cm and width of 17.1 cm. If the bag is 

removed the head looks misshapen. The biggest problems with paper bags are 

the possibility that the switchgrass head will slip out and the bag falling over if not 

supported. The fabric bags go over the head but do not allow free movement of 

the head. The head also slips out of the bag easily if not attached tightly. If 
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attached tightly then sometimes the head will snap inside the bag. The bag can 

also slip out of the wire and fly away making it more difficult to find.  The biggest 

problem with cotton muslin cage method is the cage can shift in the wind if not 

secured and heads can grow taller than the bag if not placed correctly. The 

pillow case starts to tear badly at the end of season. Heads can also slip out and 

should be marked with tape.  

Contamination is difficult to control in all bag types under field conditions. 

Wind and heat are destructive to all bag types and water is damaging to paper. 

In a more controlled environment selfed seed yield would probably be increased 

and outcrossing yield minimized.  

With the exception of one parental genotype in 2009, the number of 

inbred seeds is less than the average outcrossing switchgrass seed number per 

head for Alamo (476) and Kanlow, (587) (Das and Taliaferro, 2009). This is 

consistent with other inbreeding experiments which reported low seed yield in 

other allogamous grasses including Andropogon gayanus and smooth Brome 

grass (Bromus inermis Leyss.) (Casler et al. 2005; Foster 1962). 

The cause of the unusually high seed number in 2009 is unknown. The bag 

used could have affected the yield; the same bag was used in 2010 but with 

only one head instead of multiple heads of 2009. The location and year 

environmental effects could have affected its seed yield; for instance, Das and 

Taliaferro (2009) found population×location interactions with seed yield per plant 

and various seed yield components including, panicle number per plant, seed 

number per panicle (Das and Taiaferro, 2009).  
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The 2008 cultivar×bag interaction could be caused by unequal numbers 

of microfiber bags. There were only 8 microfiber bags on Kanlow and 11 

microfiber bags on Alamo. The least square means for seed yield in 2010 

indicated that microfiber bags have a higher yield than the other bag types 

despite being less in number than the other bag types. According to the least 

square means the significance in bag in 2010 is due to the microfiber bags. If 

microfiber bags are ignored then there is not a significant difference between 

the paper bags and pillowcases bags. The difference in microfiber bags could 

also be caused by bag failure. The microfiber bags were inherited from another 

experiment and were older than the other bag types. Unnoticed holes could 

have increased seed number.  

Mold affected seed germination. The germination rates from 2008 were 

66.8% for Alamo and 70.8% for Kanlow were similar to those found by Aiken and 

Springer (1995) after 14 days, which were 69.2% for Alamo and 72.7% for Kanlow, 

but the rates found in 2009 and 2010 were much lower (Table 4.4). This could be 

due to environmental factors which affected the size of the seed since seed size 

affects germination (Aiken and Springer, 1995). The lower germination totals for 

2009 seeds were probably due to the fact seeds were examined carefully for 

mold contamination and more seeds were excluded from the germination 

count. Since the seed yield varied according to year, environment played an 

important part in determining seed yield. Different year moisture levels could 

have affected seed yield. Das and Taliaferro (2009) found significant variation 

(p<0.01) between populations among and over locations for seed weight. There 
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could be variability within each of the cultivars that cannot be determined 

because there are not plant replicates within each cultivar.  

The bag type with the highest number of inbreds in 2010 was paper 

(61.5%) and microfiber was the lowest (20%) (Table 4.8). The significance of these 

percentages could be affected by the size of the sample. The low percentage 

inbred in the microfiber bags is probably due to bag age. It is difficult to tell if 

bag type affected inbreds seed numbers since the inbreeding test is not done 

until adulthood and some inbred seed could have perished. Assuming that 

inbreds are more likely to die than outbreds due to inbreeding depression, it may 

be useful to look at mortality according to bag type in 2010. Microfiber had the 

lowest mortality (75%). The mortality for paper (85.4%) and pillowcase cages 

(86.4%) were similar. This could indicate that there were more inbred plants in 

paper and cages that died than in the microfiber bags. 

The outcrossing rate as determined by a program such as MLTR (Ritland 

2002) requires a progeny sample size of at least 200 (Ribeiro et al. 2004). Only one 

parent (K241) had close to that number (199) and only 109 survived to extract 

DNA. 

The seedling mortality was high and varied across years (Table 4.6). This 

could be due to the number of inbreds, and the different seedling growth 

treatments. Different seedling growth treatments are the most likely reason for 

mortality differences because 2009 had higher survivability despite having more 

inbreds than 2008. High mortality was recorded in other species; Wu and Jain 

(1980) reported 47% seedling mortality in Anthoxanthum odoratum L. compared 
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to 7% in controls. Mortality was probably due to a combination of environmental 

factors (fungus, insects, too much water, soil level etc.) and inbreeding 

depression which is affected by the homozygosity of the populations studied.  

Even if different growth treatments affected mortality, inbreeding 

depression was still likely a major factor of seedling mortality. If inbreeding 

depression is a problem, one method to reach full homozygosity is that the plants 

should be selfed until seed can no longer be produced or it is homozygous. If the 

plant no longer produces seed by selfing, but can produce seed by outcrossing 

then it can be used to make a hybrid, and also be crossed with a full sibling to 

increase homozygosity of the next inbred generation. This generation may be 

able to be selfed. If the plant is so depressed that it no longer produces seed 

from crosses or is too weak to live, then that generation is discarded and its 

parents are further inbred by full sib mating. If this process is repeated 

homozygosity should eventually be achieved. The perennial nature of 

switchgrass is beneficial for hybridization because inbred material can be 

preserved for several years. The inbred plants can be used for semi hybrids 

before complete homozygosity (Brummer, 1999). Since heterosis can be 

observed in crosses between individuals and populations, inbreds are not 

required for the expression of panmictic heterosis (Brummer, 1999) which could 

be improved by partial inbreeding.  

This set of SSR primers could be less useful in future generations for 

determining inbreeding as the population becomes more homozygous and 

therefore different and more primers should be used. With the creation of a 
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molecular map SSRs could be selected from each chromosome or linkage 

group.  
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Table 4.1. SSR primer pairs used to confirm inbreeding in S2 families of Switchgrass 

created by Wang et al. 2011 and linkage information from Liu et al. 2012 (in 

press). 

cm† LG‡ Primers SSR 
pattern 

Primer pairs Ex. 
size  
bp 

Meltin
g 
points 

47.0 5a PVAAG 
2861,2862 

(GT)36-
(TA)5 

F: GCCAATCAGCCATAGAACAA 223 58.723 
  R: TCTCAATGCAACACTCCCTT 58.287 

58.8 6b PVAAG 
3017,3018 

(AAG)11 F: ATTTTCCGGTCGATCGTTAG     142 59.043 
  R: AGCGAGGATGCTGTTGAAG 59.128 

0.0 7b PVCAG 
2167,2168 

(GAAGG)
5-(AGC)6 

F: GGCCGATGCACATTACATAC 312 58.874 
  R: ACGCCTTCAAGAGACTCCTC    58.619 

118.0 5b PVAAG 
2895,2896

§ 

(GAA)10 F:TTTGACCGTTCCAGTTTCGA 335 59.162 

  R:CGTCGTCTCCTCTGGGTAAT 

118.0 5b PVAAG 
3365,3366 

(GAA)10 F: AATGCATGCTCAGGAGTCAA     329 59.399 
  R: CGGAATGATTGTCGTTCATC   58.926 

32.0 4a,b PVCAG 
2209,2210 

(GC)8-
(AC)6 

F: GTAGCACTGCAACCGTTGAT 263 58.804 
  R: TGCTCAGGTTTGCTGATTTC   59.002 

107.5 3b PVGA 
1983,1984 

(AG)14 F: AGTTCATCCAACTGCACGAG    188 58.882 
  R: TTACGTATGGGCCACATTTC    58.361 

62.7 3b PVGA 
1703,1704 

(AG)36 F: CTCTCCCCTCTCCCTCTCTT   293 58.98 
  R: TGTGAAGGAAGGCCAAAGTA   58.352 

92.6 3b PVGA 
1733,1734 

(GA)16 F: CGCTACATAGCACCTTGCAT   267 58.97 
  R: TATGGCATATTCTCCCCCTC   58.81 

49.2 4a,b PVCA 
615,616 

(AC)11 
 

F: 
GACGAATTACAGAGACTGTTGG   

219 56.483 

  R: ATATAGTCCTGCGGAGGGTG     59.031 
62.1 3b PVCA 

535,536 
(TG)11 

 
F: TGCTGCCACTGCAGATAGAT 273  59.577 

  R: AAGAGAAGGGGGTTCCAACT  59.042 
†Centimorgans from end of chromosome. 

‡Linkage group. 

§Redundant to 3297-3298 (Wang et al., 2011). 
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Table 4.2.  Least square mean comparisons of the means with their standard 

errors for the bag×cultivar combinations in 2008 switchgrass seed yield. 

 Alamo Paper 
Alamo 

Microfiber 
Kanlow 
Paper 

Kanlow 
Microfiber 

Alamo Paper 0.84±0.30 NS NS NS 
Alamo 

Microfiber 
S 1.29±0.34 S * 

Kanlow Paper NS NS 0.79±0.30 NS 
Kanlow 

Microfiber 
NS * NS 0.23± 0.43 

 

S significant at 0.1 level. 

* significant at 0.05. 

NS not significant. 
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Table 4.3.  Switchgrass number of seeds, germinated plants, and surviving 

progeny for each bag type harvested in 2010. 

Bag Type Alamo Kanlow Total 
 Seed Germ. Prog. Seed Germ. Prog. Seed Germ. Prog. 

Microfiber 78 37 12 107 23 3 185 60 15 
Paper 122 58 7 56 31 6 179 89 13 
Cotton 
Muslin 

102 65 7 100 45 8 201 110 15 

Total 302 160 26 263 99 17 565 259 43 
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Table 4.4. Bagged switchgrass seed germination rates measured after the 7th and 

14th day for 2008-2010. 

Year 2008  2009  2010 

Day Day 14 Day 7 Day 14 Day 7 Day 14 

Alamo 66.8% 33.17%  
 

29.8% 61.50% 
 

47.31% 

Kanlow 70.8% 8.53% 
 

12.15% 41.94% 
 

50.25% 
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Table 4.5.  The seed yield, germination and number of adult progeny of inbreed 

switchgrass for each family.  

Family 2008 2009 2010 Total 
S† G‡ P§ S† G‡ P§ S† G‡ P§ S† P§ 

A111 0 0 0 2 0 1 4 3 0 6 1 
A114 8 8 7 4 3 1 22 10 9 34 17 
A116 24 15 11 21 2 4 40 20 1 85 16 
A122 0 10 6 5 2 0 23 14 1 28 7 
A123 103 84 37 56 10 12 28 15 7 187 56 
A125 5 5 4 11 2 0 3 2 0 19 4 
A126 1 0 0 4 0 2 3 2 1 8 3 
A131 1 1 0 6 3 0 3 1 0 10 0 
A135 36 31 11 3 2 0 1 0 1 40 12 
A136 3 0 0 3 0 0 9 6 1 15 1 
A143 3 3 3 1 0 1 6 4 0 10 4 
A145 5 2 2 19 0 3 26 4 0 50 5 
A146 2 1 0 6 3 2 11 7 0 19 2 
A151 4 4 2 63 19 8 5 11 1 72 11 
A152 0 0 0 161 30 60 10 0 0 171 60 
A154 13 8 5 5 3 2 11 5 0 29 7 
A216 3 1 0 0 0 0 2 1 0 5 0 
A221 4 2 1 2 1 0 0 0 0 6 1 
A225 19 14 2 13 5 2 28 13 1 60 5 
A234 1 1 0 3 1 0 3 1 0 7 0 
A241 14 12 3 3 0 0 3 1 0 20 3 
A243 0 0 0 4 1 2 1 0 0 5 2 
A246 10 7 4 17 5 6 4 2 0 31 10 
A251 2 2 1 20 1 6 0 0 0 22 7 
A255 15 10 6 10 1 2 7 5 1 32 9 
A256 3 2 0 2 1 0 19 12 1 24 1 
A311 8 1 1 9 4 3 1 0 0 18 4 
A313 4 1 0 21 0 2 2 0 0 27 2 
A316 5 4 0 5 2 2 19 16 0 29 2 
A321 2 1 0 8 2 0 1 1 0 11 0 
A331 0 0 0 6 0 1 0 0 0 6 1 
A352 6 5 0 4 2 1 0 0 0 10 1 
A356 0 0 0 1 1 0 8 4 1 9 1 
Total 304 235 106 498 106 123 303 160 26 1105 255 

† S, Seeds; ‡G, Germinated seed. §P, Progeny  
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Table 4.5 Continued. 

Family 2008 2009 2010 Total 
S† G‡ P§ S† G‡ P§ S† G‡ P§ S† P§ 

K115 11 8 6 1 0 0 0 0 0 12 6 
K116 23 17 12 2 0 1 15 11 2 40 15 
K121 11 10 8 2 0 1 0 0 0 13 9 
K123 14 12 7 1 0 0 2 1 1 17 8 
K126 1 1 0 0 0 0 26 7 0 27 0 
K131 0 0 0 1 1 1 0 0 0 1 1 
K132 0 0 0 1 0 1 0 0 0 1 1 
K133 1 1 1 7 1 1 4 2 0 12 2 
K134 4 3 3 1 0 0 20 18 2 25 6 
K135 3 3 2 0 0 0 1 0 1 4 2 
K141 5 3 2 0 0 0 12 10 3 17 6 
K146 29 22 2 126 27 8 100 31 0 255 10 
K152 1 0 0 10 0 4 1 1 0 12 4 
K153 12 11 0 23 3 0 1 1 0 36 0 
K154 22 14 7 2 0 0 31 4 0 55 7 
K155 0 0 0 0 0 0 16 3 2 16 2 
K156 0 0 0 4 1 1 0 0 0 4 1 
K216 2 1 1 111 2 2 2 0 0 115 3 
K221 1 1 0 95 1 11 0 0 0 96 11 
K223 2 1 1 35 1 2 2 0 0 39 3 
K226 0 16 8 7 0 1 3 1 0 10 9 
K235 0 0 0 85 0 0 0 0 0 85 0 
K236 2 1 0 31 5 1 0 0 0 33 1 
K241 0 0 0 461 155 199 4 1 0 465 199 
K243 0 0 0 1 0 0 1 1 0 2 0 
K256 155 132 28 11 0 4 2 1 0 168 32 
K311 1 0 0 1 0 0 0 0 0 2 0 
K312 0 0 0 0 0 0 0 0 0 0 0 
K315 0 0 0 161 5 21 0 0 0 161 21 
K321 0 0 0 11 0 2 0 0 0 11 2 
K336 8 8 6 22 3 5 11 6 5 41 16 
K345 6 6 4 8 1 1 7 0 0 21 5 
K354 7 4 1 10 0 0 0 0 0 17 1 

Total 321 275 99 1231 206 267 261 99 16 1813 383 
All 

Total 
625 510 205 1729 312 390 564 259 42 2918 638 

†S, Seeds; ‡G, Germinated seed. §P, Progeny; 
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Table 4.6. The survivability and mortality percentages of switchgrass plants 

calculated from total number seedlings divided by the total germinated and 

mortality and survivability calculated within each family and averaged across 

families. The 2009 plants had plants that were not counted as germinated that 

survived, increasing the total seedling survivability.  

 2008 2009 2010 
 Survive Mort. Survive Mort. Survive Mort. 

Total 
Seed 

40.20 59.80 100† None 16.60 83.40 

Average 
Family‡ 

46.03 53.97 62.79§ 37.21§ 15.26 84.74 

†based on the total progeny that survived not including plants in addition to 

germination total  

‡the survivability or mortality for each family calculated and then averaged 

across families 

§includes only the plants that were counted as germinated 
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Table 4.7. Seed yield, progeny number, and progeny percentage inbred for an 

S2 population of switchgrass. 

Family 2008 2009 2010 

Seeds Prog. % 
inbred 

Seeds Prog. % 
inbred 

Seeds Prog. % 
inbred 

Alamo 302 100 33.0% 498 104 23.1% 301 26 38.6% 

Kanlow 321 91 25.3% 1231 162 82.1% 263 16 31.3% 

Total 623 191 29.3% 1729 266 59.0% 564 42 35.7% 
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Table 4.8. Number of inbred switchgrass plants in 2010 confirmed selfed 

according to bagging type: Paper (Lawson paper bags), Cage (chicken wire 

cylindrical frames covered with cotton pillowcase), and Microfiber (Microfiber 

bags). 

Bag type Inbreds Out-crossed %Inbred 

Paper 8 5 61.5% 
Cage 6 8 42.9% 

Microfiber 3 12 20.0% 
Total 17 25 40.5% 
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Figure 4.1. Example of a SSR PCR polyacrylamide gel using primer PVAAG-2895-
2896 used to compare parent and progeny of Switchgrass plant using 2010 
samples. 
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