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CHAPTER I 
 

INTRODUCTION 
 

 
 

Project Research Objectives 
 

 

The rapidly growing field of phytolith research is multidisciplinary in nature,  

with major advances being made by ethnobotanists, geographers, geomorphologists, 

geologists, botanists, archeologists, and researchers studying the development of 

agriculture.   The direct input of soil scientists and chemists to the field has been 

relatively limited to date.  The current research project has been tailored to have 

maximum impact on phytolith research from this vantage point of a chemist and soil 

scientist.   

 

A career analytical chemist approaches laboratory tasks differently than those  

in a number of other disciplines.  A true quantitative approach is second nature to an 

analytical chemist as compared to the more commonly used qualitative and semi-

quantitative approaches frequently applied by practitioners in a number of other 

disciplines engaged in phytolith research.  Thus, the excellent existing phytolith 

laboratory protocols in the literature (Piperno 2006, Pearsall 2000, Lentfer and Boyd 

1998) will be slightly revamped to develop a quantitative phytolith recovery procedure 

(wt/wt % in soil).  Although the additional work and time involved in quantitative 
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recovery may not be necessary for some field inquiries, some researchers may find this 

option useful for certain applications.  Significantly, several potential weaknesses in the 

existing methodologies will be addressed, and other procedural options developed as 

alternatives.     

 

The appreciable variation in phytolith signature at similar Great Plains prairie 

sites was noted (Fredlund and Tieszen 1994:330; Fredlund and Tieszen 1997a:203), so an 

extensive study of the horizontal soil phytolith variation across a small portion of one 

modern virgin Tallgrass Prairie site was conducted.  The vertical phytolith distribution in 

the soil was also studied on this site and on alternate sites as well, and other components 

recovered in the biogenic silica fraction were also noted.  The phytolith morphologic 

form count data and the resulting interpretation can be no better than the original soil 

sample that was processed. Thus, reference surface soil sampling variability is another 

point that is specifically addressed in this study.  In addition to the overall soil phytolith 

signature, information was gleaned from the biogenic silica fraction record about soil 

development processes.   

 

Soil phytolith/biogenic silica data was evaluated to determine what climatic 

information was presented in the buried Holocene A horizon phytolith samples.  The 

climatic information in the phytolith data, based on the prior pioneering work of others 

studying the prairies of the Great Plains (Twiss, Suess, and Smith 1969; Fredlund and 

Tieszen (1994, 1997a)), will be presented.  Modern control phytoliths were isolated from 

the major prairie grasses present in this study region; because of their informative nature, 
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these reference specimens—used to identify the major short cell phytolith forms 

recovered from soils—are photo-documented in this report.  

 

The following three objectives are addressed in this dissertation research: 

 

1. develop an efficient protocol for quantitative phytolith recovery, on weight  

      basis, from soils improving on current established laboratory methodologies. 

 

    2.  determine the horizontal and vertical distribution of phytoliths in modern  

       prairie soil and buried A horizons, apply this information to soil sampling  

       techniques, and use this biogenic silica data to develop a better understanding  

         of pedogenesis. 

 

 3.  interpret the soil biogenic silica signature of buried Holocene A horizons to  

determine what information is revealed about environmental conditions and  

paleoenvironments. 

 

 

Silicon and Phytoliths 

 
 

Silicon, an element comprising 27.7% by mass of the earth’s crust, is ubiquitous 

in nature, second in frequency only to oxygen.  Together, the elements oxygen and 

silicon comprise nearly 75% of the earth’s crust (Tarbuck and Lutgens 1999:44).  Much 
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of the silicon is present as silicate minerals (Tarbuck and Lutgens 1999:48); quartz is one 

major crystalline silicate (silica, SiO2).  Weathering of all minerals—including silicates—

over geological time contributes to the mineral component of soils.  Developed soil in 

turn enables rooted plant growth which supports much of multi-cellular terrestrial life as 

we know it.  To complete the cycle, soil components may be gradually leached from the 

soil profile; soils are also exposed to erosional events, such as wind and water, which 

may entomb or remove them.  Thus over time, soils are ultimately buried on land or re-

deposited elsewhere, and the soil constituents are gradually assimilated into new 

geological formations.   

 

In addition to the essential nutrients provided by weathered minerals, plants also 

require water.  Water is the transport media that allows dissolved mineral nutrients to 

enter plants via uptake by the root system.  Although sparingly soluble, silicon dissolved 

in the soil water enters plants via their roots in the form of monosilicic acid, Si(OH)4 

(Jones and Handrek 1967).  Most researchers do not consider silicon to be an essential 

nutrient; silicon is, however, a beneficial nutrient (Matichenkov and Calvert 2002) and 

performs a number of important plant functions such as providing structural support, 

resistance to pathogenic fungi, and helping discourage herbivory (Piperno 2006:12-15).   

 

In the plant, silicon forms deposits of hydrated silicon dioxide (SiO2•ηH2O) which 

is variously referred to as opaline particles, opal-A, plant opal, and more recently 

phytoliths (Iler 1979:14; Piperno 1988:11; Drees, Wilding, Smeck, Senkayi 1989:957).  

The literal meaning of the term phytolith is “plant stone” (Piperno 1988:11).  This solid 
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amorphous material may be deposited in interstitial spaces, within the cell wall, or inside 

of the cell wall (Piperno 1988:17).  These later two forms often mirror plant cell shape.  

Although plants readily transport solubilized silicon in their vascular system, plants are 

unable to eliminate the resulting polymerized amorphous silicon solids (i.e., phytoliths) 

from their structures.   

 

When the plant’s organic material decomposes, either due to senescence or plant 

death, the relatively insoluble phytoliths are incorporated into the soil.  These inorganic 

phytoliths may remain present as a stable soil mineral component for tens of thousands of 

years.  Thus, soil phytoliths are trace microfossils representing the plants that initially 

formed them before depositing phytoliths from their aerial structures on the soil surface 

after which time they were incorporated into the soil (along with root phytoliths).  

 

The slow development of increased soil depth by gradual addition of organic 

material (i.e., plant litter) and inorganic materials (such as wind-blown dust) enables the 

extant vegetation to maintain a stable plant community on the actively developing soil 

surface.  This slow “developmental upbuilding” (Schaetzl and Anderson 2005:456) of the 

soil is commonly referred to as aggradation. 

 

During geologic weathering events, well-developed surface soils supporting 

established plant communities may become buried.  This may occur by a number of 

processes including being covered by extensive eolian (wind-borne) or by alluvial (water-

borne) deposits.  If an extensive deposit is superimposed suddenly enough, the extant soil 



  

 6   

(and plant community) is encapsulated under the deposit becoming a buried soil—this 

process is referred to as “retardant upbuilding” (Schaetzl and Anderson 2005:456).  

Pedogenesis of the buried soil ceases, and with time, new soil horizons develop relative 

to the new ground surface, and a new plant community becomes established.   

 

As different plants, plant communities, and plant associations thrive best under 

certain optimal climatic conditions (i.e., moisture and temperature), the newly established 

plant community that develops on the newly forming soil under new climatic conditions 

will not necessarily duplicate the previous plant community present on the now buried 

soil surface in the same location.  The diagnostic phytolith forms from earlier plants are 

representative of the former climate regime (moisture and temperature) at the time the 

plant community thrived on a given established soil surface 

 

In this study, the basic diagnostic phytolith morphologic signature present in soils 

under three different modern prairie types were studied as control samples:  Tallgrass 

Prairie, Mixedgrass Prairie, and Shortgrass Prairie.  The phytolith morphologic 

assemblages present in buried soils at three sites are determined and compared to the 

control prairie phytolith morphologic distributions, which serve as modern climate 

proxies.  The vertical variation in phytolith distribution in these various prairie soils is 

used to help better understand soil genesis.  Additionally, based on challenges 

encountered during this research, alternate laboratory procedures were developed that 

improve on the established methodology for phytolith recovery from soils resulting in a 

method optimized for efficient quantitative phytolith recovery. 
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Applications of Phytolith Analysis and Research 
 
 
 

Phytolith analysis has applications in many multidisciplinary fields, which is to 

say that phytolith data (recovery and identification, morphologic type frequency analysis, 

metrics, and/or concentration) can be used to address numerous research questions.  

Scarcely two decades ago—a century and a half after phytoliths were first observed and 

reported—Piperno (1988) authored the first phytolith book1.  As of this date, the number 

of separate volumes—including conference proceedings---has increased by fifteen2.  As 

the field has become more prominent and interdisciplinary applications developed, the 

number of researchers in many diverse fields utilizing and reporting phytolith data in 

journal articles has likewise increased during the same recent two-decade interval.   

 
 

Numerous fields of investigation benefit from incorporating phytolith analysis 

and interpretation in their research design.  For instance, studies related to botany, 

geology, paleontology, and the development of agriculture may utilize phytolith data.  

Important applications briefly discussed in Chapter 2 are agrostology, agronomy, forensic 

science, and health-related issues, as well as several pertinent climate-related topics.  

Several areas directly impacting this research project are addressed in more detail 

including prairies, soils, and paleoclimate.   

                                                 
1 The seminal volume edited by Rovner (1986a) preceded Piperno’s hardcover book, but was of limited 
distribution. 
 
2 Post-1988 phytolith volumes include Rapp and Mulholland (Eds.) 1992; Pearsall and Piperno (Eds.) 1993; 
Kondo, Childs, and Atkinson 1994; Pinilla, Juan-Tresserras, and Machado (Eds.) 1997; Bowdrey 1998; 
Piperno and Pearsall 1998a; Kealhofer and Piperno 1998; Runge 2000; Meunier and Colin (Eds.) 2001; 
Hart and Wallis (Eds.) 2003; Thorn 2004; Piperno 2006; Madella and Zurro (Eds.) 2007; Korstanje and 
Babot (Eds.) 2008; and Albert and Madella (Eds.) 2009.  There are also several other significant volumes 
that could be included in this list (the Origins of Agriculture book (Piperno and Pearsall 1998b)) and 
Pearsall’s paleoethnobotany volumes (1989 and 2000).   
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Phytolith data is used in the field of agrostology, which involves the taxonomic 

study of grasses and grasslands.  In agrostology, phytoliths have been helpful in 

understanding the taxonomic relationships of the Poaceae.   Although this current study is 

targeted at grasses and grasslands, the major agricultural grain crops are grasses, so the 

phytolith research field is intertwined with multiple research applications.   

 

The field of agronomy is the part of agriculture that is “concerned with the theory 

and practice of field-crop production and soil management” (Brady and Weil 2002:912).  

This field is indirectly addressed in the following discussion regarding the value of 

silicon to plants, of whether or not silicon is occasionally an essential (not just a 

beneficial) nutrient, and the fact that silicon appears to interact with the soil in a manner 

such as to make more soil phosphorous plant available thus increasing fertility (and also 

helping minimize manganese toxicity (see pages 20-21)).  As silicon can be a valuable 

nutrient, the discussions regarding silicon solubility and soil water silicon concentrations 

are also in the domain of agronomy, as are plant soil interactions and the concept of soil-

plant-atmosphere continuum.  Soil Science is a part of agronomy, but as many 

interdisciplinary fields, soil science is also branching out to encompass many more 

applications.  Soil science—including pedogenesis—is addressed in this review (pages 

54-58), and will be a major emphasis in this research.   

 

The potential application for phytolith analysis in the field of forensic science 

remains underutilized and essentially undeveloped.  Although phytolith analysis was 

initially proposed by Marumo and Yanai (1986) as a means of forensic soil analysis, this 
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application has languished.  Thus, phytolith analysis remains an untapped potential 

source of trace evidence for the forensic community.  To date, membership of 

professional soil scientists in the American Forensic Science community is extremely 

limited, with most of the soil work being performed by geologists, or others (Murray and 

Tedrow 1992; Murray and Solebello 2002; Murray 2004; Pye 2007; Morgan and Bull 

2007; Tibbet and Carter 2008).   As phytoliths often may make up 1% or more of the soil 

and include morphologically distinctive specimens, they are another form of trace 

evidence that could be utilized in criminal investigations.  However, even the current 

Forensic Botany text totally omits phytoliths (Coyle 2005).  The potential sample types 

involving soil are pretty much unlimited, but would include items such as 

• Soil on clothing, shoes, under fingernails, on carpets 

• Particulate in vehicle air filters (personal observation) 

• Identification of burned plant residue 

• Soil on tires, car bodies, wheel wells (Sudbury 2003; Schneck 2004:182) 

• Soil around stolen (transplanted) plants  

Phytolith analysis does not replace any other forensic techniques, but rather complements 

other trace analyses and can become a tool in the forensic arsenal. 

 

Medical issues related to phytoliths are also significant.  In animal feed, high 

phytolith concentration can be fatal in that silicon causes kidney stones; the preventive 

treatment (besides being aware of the feed source) is to provide salt so water 

consumption by livestock is increased (Iler 1979:70; 758).  A common ailment in many 

animals (sometimes called “fungal foot”) may be initiated by high silica concentrations in 
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dead grasses—particularly the culms--in autumn injuring footpads enabling fungal 

infections (personal observation).   

 

The first report of human health issues relating to biogenic silica was due to 

sponge spicules present in rich soil of dried ponds causing irritation and discomfort 

during corn cultivation (Virden 1886).  More recently, phytoliths have been associated 

with cancer; an apparent correlation was demonstrated between esophageal cancer and 

high silica content foods (apparently due to silicified hair cells).  The botanicals of 

interest in these studies were a food grain contaminant (Phalaris sp.) in northeast Iran 

(O’Neill et al. 1980; Newman and MacKay 1983; O’Neill, Jordan, Bhatt, and Newman 

1986a); Setaria italica Beauv. (Foxtail Millet) northern China (O’Neill et al. 1982, Parry 

and Hodson 1982), and Sonchus oleraceus L. (Common Sowthistle) and Bidens pilosa 

(Hairy Beggarticks) in South Africa (Parry, Hodson, and Sangster 1984; Parry, O’Neill, 

and Hodson 1986). 

 

Baker (1961) first reported the possible hazards of silica particle inhalation during 

wheat transfer at silos.  Asbestiform fibers of biogenic silica have been reported from 

Saccharum sp. leaves (Newman 1986a:365): 

Following reports of mesotheliomas and lung cancers in sugar-cane workers, an 
examination of residues from sugar cane leaf has shown the presence of acicular biogenic 
silica, 0.85 µm in dia. and 10–300 µm long, which is within the carcinogenic size range 
for asbestos fibre.  
  

Inhalation of silica is also known to cause silicosis (Iler 1979:754, 758, 769-783); 

although the form of silica is not always clearly stated in Iler’s discussions, avoidance of 

breathing amorphous silica dust and fine particulate is prudent. 
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Although inhalation of finely divided silica and ingestion of fibrous silica have 

adverse human health effects, silicon is actually beneficial to human health.  As 

amorphous silica is a relatively soluble form of silica, amorphous silica in the diet (i.e., 

phytoliths from botanical foodstuff) can actually be an important component of one’s 

diet.  Iler (1979:754) reports the blood concentration of silicon to be 8.3 ppm.  A research 

group in the UK has compiled of the silicon content of 207 common foods and beverages 

(Powell et al. 2005).  The apparent benefits of dietary silicon in bone and connective 

tissue development and cardiovascular health are also noted (Powell et al. 2005).  In a 

dietary survey, grains were noted to provide an average of 30% of daily silicon intake 

(McNaughton, Bolton-Smith, Mishra, Jugdaohsingh, and Powell 2005).  For the record, 

beer is referred to as a “saturated solution of silica” due to the silica in the grain (Iler 

1979:744).  The presence of silica in drinking water may serve to offset the effects of 

aluminum in potentially contributing to dementia (Rondeau et al. 2008); this is 

reminiscent of the protective benefit that plants appear to receive by the silica helping 

offset the effects of cation toxicity.  For additional comments about silicon in common 

foodstuffs, see Appendix A. 

  

 Global climate change is currently a very hot political, scientific, and social topic.  

As demonstrated in numerous articles as well as this dissertation, phytoliths can provide a 

snap shot of past climate at the time of stable environments that resulted in episodes of 

soil formation.   In addition to this interpretive function, phytoliths—which contain some 

carbon—have been proposed as an agent for stable carbon sequestration in soils (Parr and 

Sullivan 2005).  For any given plant species, the higher the phytolith concentration, 
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carbon storage capability, and biomass, the greater the potential carbon sequestration 

capability of the species.  Likewise, diatoms may also potentially provide a similar 

function. 

 

In another climate-related issue, while evaluating satellite data from 1981-2006, a 

correlation has been observed between atmospheric dust and hurricane activity (Evan, 

Dunion, Foley, Heidinger, and Velden 2006).  During periods of intense hurricane 

activity, it was noted that dust was relatively scarce in the atmosphere; conversely, in 

years when stronger dust storms occurred, fewer hurricanes swept through the Atlantic 

(Evan et al. 2006).  Although a clear cause and effect was not demonstrated, an apparent 

linkage in the two occurrences was indicated.  Along a similar vein, it is of interest that 

modeling studies about the 1930’s Dust Bowl on the Great Plains have been interpreted 

to indicate that ocean surface temperatures may have contributed to that drought 

(Schubert, Suarez, Peglon, Koster, and Bacmeister 2004).  The climatic effect of 

atmospheric dust is the subject of ongoing study (c.f. Thompson and Thompson 1981; 

Tegen 2003; Grousset and Biscaye 2005). 

 

The first phytoliths reported were recovered by Darwin in a dust sample collected 

from the sails of the Beagle off of the coast of Africa (Darwin 1846).  A representative 

NASA satellite image of a dust storm emanating from Africa is shown in Figure 1.  

Recalling that phytoliths are less dense than sand, as the particulate matter resulting from 

a dust storm settles out, phytoliths would tend to remain airborne longer than quartz-

based particulate.  This prolonged suspension time would be potentially exacerbated by 
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phytoliths non-spherical (i.e. tabular) shape.  Thus, there is a potential severe weather 

application for phytoliths to be pursued that is implied by the above correlation with 

hurricanes.  Similar dust storms are common in the study areas discussed in this 

dissertation; a NASA satellite image of a recent dust storm in Texas is in Figure 2.    

 

There are also a number of additional applications related to amorphous silica and 

potentially to phytolith research.  Amorphous silica is being used in nanotechnology  

 

 
 
Figure 1.  Dust storm off of the west coast of northern Africa.  
(http://plantandsoil.unl.edu/croptechnology2005/UserFiles/Image/siteImages/AfricDustSt
ormNASA-LG.jpg (1-20-10).) 

http://plantandsoil.unl.edu/croptechnology2005/UserFiles/Image/siteImages/AfricDustStormNASA-LG.jpg�
http://plantandsoil.unl.edu/croptechnology2005/UserFiles/Image/siteImages/AfricDustStormNASA-LG.jpg�
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Figure 2.  Dust storm (and small fires) in west Texas (NASA image taken February 24, 
2007)3. 

 

(Neethirajan, Gordon, and Wang 2009), and amorphous silica (a-Si) is used in thin film  

insulator and transistor production (Hiroshi and Masakiyo 1980; van Berkel 2003; 

Shringarpure et al. 2008).  Silicic acid is used in the production of silicon chips in the 

computer industry (Yeh and Lee 1999).  The addition of both silica fume and/or rice husk 

ash [i.e., rice phytoliths] to concrete has been proposed as a means of disposing 

of/recycling waste while improving concrete strength and conserving scarce resources 
                                                 
3  
3(http://images.google.com/imgres?imgurl=http://earthobservatory.nasa.gov/images/imagerecords/7000/74
43/texas_amo_2007055_lrg.jpg&imgrefurl=http://earthobservatory.nasa.gov/IOTD/view.php%3Fid%3D74
43&usg=__z6lxoNw8nbRtM8TZSlyoUdfWiC4=&h=2200&w=2800&sz=969&hl=en&start=17&sig2=XT
XMN70XC4s8DXde11CB9w&um=1&itbs=1&tbnid=veWhUGDZNchIpM:&tbnh=118&tbnw=150&prev
=/images%3Fq%3Dnasa%2Bdust%2Bstorm%2Btexas%26hl%3Den%26safe%3Doff%26rlz%3D1T4HPIA
_enUS349US349%26sa%3DG%26um%3D1&ei=iFVXS_uVFI6MNvr_mcsE (1-20-10)). 
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(Sakr 2006).  Solubility and migration of opal A was used in evaluating the suitability of 

Yucca Mountain for long-term storage of radioactive waste (Neymark, Amelin, and 

Paces 2000; Stirling, Lee, Christensen, and Halliday 2000; Paces, Newark, Wooden, and 

Persing 2004).  Beyond these brief highlights, numerous other fields are beginning to 

make use of phytolith data.  Based on this introductory overview, it is apparent that 

phytolith analysis and research is a relevant, multidisciplinary, very viable, and rapidly 

growing discipline. 
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CHAPTER II 
 

LITERATURE REVIEW 
 
 

 
Phytoliths and Biogenic Silica 

 
 

Phytoliths, meaning literally “plant stones,” are a form of amorphous silica that 

occurs in plants (Piperno 2006); in the past, they have been called other names including 

amorphous silica gel, plant opal, grass opal, biogenic opal, Opal-A, opal phytoliths, 

opaline silica, biogenic silica, and biogenic silicon opal (Smithson 1956; Smithson 1958; 

Geis and Jones 1973; Kaufman et al. 1981; Drees et al. 1989).  Biogenic silica means the 

form of silica that is produced by living organisms or biological processes, and that this 

silica is necessary for the maintenance of their life processes—such as frustules which are 

present as structural support in diatoms.  Phytoliths are one form of biogenic silica.   

 

In addition to phytoliths that occur in plants, three well-known groups of 

organisms that form biogenic silica for structural support are diatoms (frustules), 

radiolarians (scleracomas), and some sponge spicules (spicules of the glass sponges) 

(Jones 1956:21, 49, 85; Boardman et al. 1987; Clarke 2003).  The spicules of most 

sponge species are actually composed of calcium carbonate; however, carbonate spicules 

(and carbonate phytoliths) were not encountered during this investigation and thus are not 

discussed in this literature review.  Among the 180 species of freshwater sponges are a 
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number of species that make their structural framework of amorphous silica spicules, i.e., 

SiO2·ηH2O (Schwandes and Collins 1994; Rigby 2003:18; Rigby 2004) and are 

frequently found in soils (Smithson 1959; Jones, McKenzie, and Beavers 1964; Wilkins, 

Delcourt, Delcourt, Harrison, and Turner 1991; Schwandes and Collins 1994; Dröscher 

and Waringer 2007).  Spicules were reported as present in soil samples along with 

phytoliths and diatoms shortly after phytoliths were originally reported (Gregory 1855).  

The Chrysophyte cysts (stomatocysts or statospores of golden-brown algae), another 

sensitive paleoenvironmental indicator, are siliceous microfossils encountered in 

sediments of ponds, lakes, and coastal areas (Coleman 1969; Sandgren 1991a, 1991b; 

Duff, Zeeb, and Smol 1997; Lotter, Birks, Hofmann, and Marchetto 1997; Cohen 

2003:99-100; Betts-Piper, Zeeb, and Smol 2004; Pla and Anderson 2005; García-

Rodríguez 2006; Vanlandingham 2008).  These stomatocysts, previously referred to as 

“siliceous cysts of the class Chrysophyta” (Cornell 1969), appear to be the 

“Chrysostomatacea shells” referred to by others (Jones, McKenzie, and Beavers 

1964:421; Fredlund, Johnson, and Dort 1985:151; Drees et al. 1989:924) and are the 

statospores reported by Bozarth (1995:48).  Together, these categories all have in 

common the same chemical compound—amorphous polymerized silica SiO2•ηH2O that 

the organisms synthesize.  Although chemically identical, the final particle morphology 

of these biogenic silica sources is different so they are readily recognizable by category.   

 

Various trace elements are present in phytoliths; however the basic chemical 

composition is the same:  SiO2•ηH2O.  Variation in the amount of water incorporated in 

the amorphous silica matrix results in a very broad particle density range—for instance, 

mailto:sambrero@earthlink.net�
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the particle density of phytoliths varies from 1.50 – 2.30 g/cm3  with “model values from 

2.10 to 2.15” (Jones and Beavers 1963:378).  Several representative glass sponge spicule 

densities in the literature ((2.1 g /cm3 (Muller, Jochum, Stoll, Wang 2008) and 2.25 g/cm3 

(Levi, Barton, Guillemet, Le Bras, and Lehuede 1989)) indicate that spicule densities are 

also variable although apparently within the phytolith density range.  One study reports 

diatom density as 2.1 g/cm3 (Leng et al. 2009).  Various marine biogenic silica forms 

were reported as having a density ranging from 1.7 to 2.05 g/cm3 (Drees et al. 1989:929-

930).4  Radiolia have been reported from soils formed from loess (Jones, Hay, and 

Beavers 1963:1222).  Even though these biogenic forms all have the same chemical 

makeup, their density or specific gravity, varies according to the differences in 

framework, the amount of water present, lacunae, and occluded organic carbon (Drees et 

al. 1989:921, 926, 930).  Occluded carbon in phytoliths (Jones and Beavers 1963) has 

been successfully used to obtain radiocarbon dates from phytoliths recovered from soil A 

Horizons (Wilding 1967; Wilding, Brown, and Holowaychuk 1967; Mulholland and Prior 

1993).  More recently, the carbon in phytoliths has been used to obtained delta 13 values 

for grassland reconstructions (Smith and Anderson 2001; Smith and White 2004; see also 

Krull et al. 2003).  Nordt, von Fischer, and Tieszen (2007) developed a temperature 

correlation for the Great Plains during the Holocene based on delta 13 values obtained 

from buried soils.  All biogenic silicas potentially contain useful environmental data in 

their silicon isotope and oxygen isotope information (Lotter, Birks, Hofmann, and 

Marchetto 1997; De La Rocha 2003; Pla and Anderson 2005; Hodson, Parker, Leng, and 

Sloane 2008; Leng and Sloane 2008; Swann and Leng 2009; and Leng et al. 2009).   

                                                 
4 The density of the other various silica polymorphs is also given [opal-CT (2.20-2.38 g/cm3), cristobalite 
(2.32 g/cm3), and tridymite (2.26 g/cm3) (Drees et al. 1989: 915, 929)]. 
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Phytoliths 

 

Weathering gradually breaks down geological formations resulting in smaller 

particles and also dissolved constituents, one of which is silicon.  Dissolved in the soil 

water, silicon occurs chemically as water soluble monosilicic acid (Si(OH)4) (Jones and 

Handreck 1963).  It has been noted that  

Some properties of water and silica are so similar that the transition between hydrated 
silicic acids and the aqueous matrix is a gradual one…Gelation of a silicic acid sol 
produces a heterogeneous system in which both the three-dimensional silicic acid 
polymer and the aqueous solution of low polymers of silicic acid form continuous 
interconnected systems… (Weyl and Marboe 1967:1480-1481). 
 
 

  This dissolved silicon in the soil water enters plants through their roots via active 

and/or passive uptake (Piperno 2006:5-6, 9).  The relative importance and exact 

mechanism of these two pathways are the subjects of much debate, although both 

processes are known to occur (Piperno 2006:5-6, 9).  Although water uptake by plants is 

complex and the mechanism varies by species and even due to specific environmental 

conditions, the general observation has been made that rapidly transpiring plants tend to 

take up water more by passive transport whereas plants that have low transpiration rates 

tend to take up water by active transport (Kramer and Boyer 1995:167).  The concept of a 

soil-plant-atmosphere continuum (Slayter and Taylor 1960) regarding water balance and 

water movement through plants is one scenario by which to view plant water uptake via 

the roots and release to the atmosphere via transpiration from the leaves. 

 

Once inside the plant, the dissolved silicon (i.e., monosilicic acid) accompanies 

the water throughout the plant via the vascular system.  As water is transpired from the 
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leaves, additional water enters the leaf epidermal cells via the transport system.  As the 

water exits the cell via evaporating into the atmosphere, the remaining supersaturated 

monosilicic acid polymerizes in the plant cell to form amorphous silica (i.e., becoming a 

phytolith).  Thus, the resulting phytoliths that form in the plant cells may mirror the shape 

of the parent cells (Piperno 2006:24).  Other amorphous silica deposits in plants that 

become phytoliths are made within the cell wall or interstitially (Piperno 2006:5).  

However, these other two forms tend to be less diagnostic than the cell cast type.  The 

final concentration of silica in mature plants is highly variable depending on the species; 

the weight percent silica in the dry ash ranges from near zero in some species such as the 

0.01% reported for honeylocust (Gleditsia triacanthos L.) (Geis 1973) to as high as 15% 

in rice (Oryza sativa) (Marshner 1995), and 26.5%-34% in the fruit pericarp of black 

bogrush (Schoenus nigricans) (Ernst, Vis, and Piccoli 1995).   Even the silica content as 

percent of dry mass of different portions of a single plant varies widely; for instance, one 

research group reported silicon values for corn (Zea mays) including 0.9 % in the ear 

husk, 4.3% in the tassel, and 7.3% in the leaf blade—which was “about 2/3 of the ash” in 

the leaf (Lanning, Hopkins, and Loera 1980:550-551).  Of the prairie grasses reported in 

the phytolith-related literature (Piperno 1988; 2006), Little Bluestem (Schizachyrium 

scoparium (Michx.) Nash [formerly named Andropogan scoparius]) and Indiangrass 

(Sorghastrum nutans) both have leaf silica concentrations over 9% (Table 1).  

 

Silicon is not generally considered an essential element for plants—although in 

some cases silicon may actually be essential (Hagemeyer and Breckle 1996)5—but it is 

                                                 
5 Taiz and Zeigler (2002:73) note that some “members of the family Equiseaceae… require silicon to 
complete their life cycle.”  



  

 21   

universally agreed that silicon is a beneficial nutrient.  Silicon is beneficial because it 

displaces phosphorous bound to the soil thus making the phosphorous plant available and 

thereby increasing crop yields (Iler 199:746-747; Russell 1973:131-133, 635-639).  Also, 

aluminum influences silicon solubility and lowers the available silicon in soil solution 

(Jones and Handreck 1965:80).  In various grain crops, silicon content is important for 

seed set and helps the plant tolerate high manganese concentrations; the presence of 

phytoliths is important for cell strength, mechanical strength, and rigidity (Russell 

1973:637; Iler 1979:742; Vlamis and Williams 1967).  Reports indicate that rice plants 

are not nearly as productive when silicon is inadequate, and that the silicon deficient rice 

is more susceptible to fungal disease and insect predation (Okuda and Takahashi 1961; 

Lanning 1963; Iler 1979:750-751; Kaufman et al. 1981; Kirk 2004:208) as are other food 

crops.  Iler (1979:744) indicates that the high silica content imparts a weather resistance 

and helps prevent lodging.  Also, “silicon can ameliorate the toxicity of many heavy 

metals” (Taiz and Zeigler 2002:73).  Regarding what he considers questionable 

laboratory evaluations of plant growth, Epstein (1994:11) succinctly observed that  

omission of silicon from solution cultures may lead to distorted results in experiments on 
inorganic plant nutrition, growth and development, and responses to environmental stresses.  
 

 

  Higher silicon (i.e., phytolith) content has been cited as a protective mechanism 

discouraging herbivory by mammals (Gali-Muhtasib, Smith, and Higgins 1992; Teaford, 

Lucas, Ungar, and Glander 2006; Elger, Lemoine, Fenner, and Hanley 2009), insects 

(Djamin and Pathak 1967; Massey, Ennos, and Hartley 2006; Massey and Hartley 2009), 

and possibly even snails (Chevalier, Desbuquois, Le Lannic, and Charrier 2001).   

Minimizing tooth wear appears to cause herbivores to preferentially select lower silicon 
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content browse when available (Maiorana 1978; Sanson 2006).   In some cases, grazing 

induces an increase in silicon content in the target crop (McNaughton and Tarrants 1983; 

Brizuela, Detling, and Cid 1986; Myers and Bazely 1991).  A higher plant silicon 

concentration is reported to make plants more difficult for ruminants to digest (Brazle, 

Harbers, and Owensby 1979; Hargers and Thouvenelle 1980; Harbers, Raiten, and 

Paulsen 1981). 

 

When a plant dies, or the plant leaves fall due to senescence, the plant litter drops 

to the ground and decays.  However, being inorganic, phytoliths are generally resistant to 

decay (except in cases of high pH soils (Piperno 2006); due to this inherent stability, 

phytoliths are gradually incorporated into the soil mineral fraction.  Due to the physical 

size of the individual phytoliths, most of them become a part of the soil silt fraction (i.e., 

2-50 microns in size).  Once incorporated into the soil, phytoliths often remain as discrete 

identifiable particles for millennia.  

 

The soil phytolith concentration has been reported up to 2.11% in dry Illinois soils 

(upper A horizon concentration reported range from 0.28 – 2.11% (Jones and Beavers 

1964a), and 0.28-0.97% in a smaller A horizon sample set (Jones and Beavers 1964b)), 

with the concentration summarized as ranging up to 1-2% (Jones and Handreck 

1967:144).  A soil concentration of up to 3% was reported by Geis and Jones (1973).  

The soil phytolith concentrations reported by Yeck and Gray for four A and Ap horizons 

in Oklahoma ranged from 0.32-0.95 % (1972:641).  In contrast to prairies, the phytolith 

concentration in forest soils has been recorded as low as 0.1% (Evett et al. 2006). 
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Historically, there has been considerable confusion within the phytolith 

community regarding the definition of the silt fraction.  The basic published views are 

represented by Piperno (1988:121; 2006:91) who uses a silt fraction definition of 5-50 

microns, and Pearsall (1989:365; 2000:430) who defines the silt fraction as 2-50 micron 

particles.  As it turns out, both researchers are correct, albeit the situation remains 

confusing.  Piperno’s narrower silt size range is based on the engineering definition 

(AASHTO standards, American Association of State Highway and Transportation  

 
Table 1 

Silica Content in Grass (% Dry Wt) (Geis 1973; Lanning and Eleuterius 1987) 
 
Silica (wt %) Genus Species Common Name6 Leaf Culm Sample origin Refer-

ence 
      
Andropogon geradii Big Bluestem 2.89 0.29 Konza Prairie  A7 
Andropogon geradii Big Bluestem 6.79 0.64 Illinois  B8 
Andropogon scoparius9 Little Bluestem 9.25 1.05 Konza Prairie A 
Cenchrus longispinus Sandbur 3.38  Mississippi A 
Echinochloa crusgalli Barnyardgrass 3.65  Mississippi A 
Panicum virgatum Switchgrass 5.04 1.03 Konza Prairie A 
Panicum virgatum Switchgrass 5.00 0.96 Illinois B 
Paspalum urvillei Vasey’s Grass 4.84  Mississippi A 
Setaria geniculata Marsh Bristlegrass 3.96  Mississippi A 
Sorghastrum nutans Indiangrass 7.18 1.28 Konza Prairie A 
Sorghastrum nutans Indiangrass 9.44 1.79 Illinois B 
Stipa spartea Porcupine Grass 3.67 1.54 Konza Prairie A 
Stipa comata10 Needle and Thread 2.76 0.10 Colorado A 

 

                                                 
6 Common names from Tyrl, Bidwell, and Masters (2002) and http://www.plants usda.gov. 
 
7 Plant silica data from Lanning and Eleuterius (1987:364) 
 
8 Plant silica data taken from Geis (1978). 
 
9 Little Bluestem has since been renamed Schizachyrium scoparium (Michx.) Nash (Tyrl et al. 2002). 
 
10 Since renamed Hesperostipa comata (Trin. & Rupr.) Barkworth ssp. Comata 
(http://plants.usda.gov/java/profile?symbol=HECOC8). 
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Officials) applied to construction activities (Schoeneberger, Wysocki, Benham, and 

Broderson 2002:2-35), whereas the broader size range used by Pearsall represents that 

espoused by the soil science community (i.e., the USDA (Schoeneberger et al. 2002:2-

35)).   

 

Iler (1979:46) cites the solubility of hydrated amorphous silica as varying based 

on water content, from 18 ppm for SiO2·2.5H2O to 120 ppm for SiO2·0.5H2O in water.  

This solubility variation appears to suggest that individual phytolith particle density (i.e., 

specific gravity) affects relative dissolution rate in the soil profile; thus, selective 

phytolith dissolution occurs which may potentially skew distribution of recovered soil 

phytolith samples.  Interestingly, based on this data, the densest phytoliths with the 

highest specific gravity are the most soluble phytoliths.  Other phytolith preservation 

issues are noted by Piperno (2006:108-109).  The reported values for the solubility of 

quartz ranges from 6-11 ppm (Iler 1979:31-34), indicating that on average biogenic silica 

in soil is significantly more soluble than quartz.  The data cited by Weyl and Marboe 

(1962:1124) does indicate that quartz solubility varies several orders of magnitude based 

on particle size.  Jones and Handreck (1967:108-109) reported a measured monosilicic 

acid concentration of 30-40 ppm in soil solution (calculated as SiO2).  In well-drained 

temperate soils, “annual losses of 15 kg/ha of silicon are common” although the soil 

silicic acid concentration remains constant (Russell 1973:635).  Above pH 10.7, all 

amorphous silica dissolves (Iler 1979:47).  Significantly, silica solubility is enhanced by 

the presence of salt in the solution (Iler 1979:74-75). 
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Phytoliths have a reported mean refractive index of 1.458 from one set of study 

specimens (range 1.410-1.465) (Jones and Beavers 1963:378) while Piperno (2006:92) 

suggests using a value of 1.42 for selecting microscope slide mounting media.  These 

physical property values are important in the decisions that are made during laboratory 

processing of soils to isolate and visualize phytoliths.   

 

Some of the earliest phytoliths described were recovered from wind-borne dust 

samples collected from the sails of the Beagle in the Atlantic Ocean in 1833 (Darwin 

1846).  During 1963-1967, the incidence of phytoliths in atmospheric dust on the Great 

Plains was documented as ranging from 2-35%, consisting primarily of grass phytoliths, 

and being most commonplace in the spring and summer (Twiss 1987).  Botanists have 

long been aware of the presence and morphology of phytoliths in plants (e.g., Metcalfe 

1960).  As the number of scientific investigations and investigators studying phytoliths 

has grown during in the past half century, methods of recovering phytoliths from more 

complex matrices have been developed.  For isolation of phytoliths from soil, the various 

detailed techniques share a common theme in that the separation from the soil matrix is 

achieved by flotation based on particle density difference.  This basic laboratory 

technique was originally successfully applied in palynology (Frey 1955), and has seen 

numerous variations and refinements over the years.  The early density separations 

involved a mixture of bromoform and acetone (Frey 1955).  Subsequently, utilization of 

an aqueous zinc bromide solution with a density adjusted to 2.35 g/cm3 was widely 

employed in many laboratories (Piperno 1988), although some have since recommended 

using a solution of the more expensive sodium polytungstate as a safer alternative 



  

 26   

(Lentfer and Boyd 1997).  Parr compared heavy liquid flotation with microwave 

digestion and found the microwave treatment advantageous (Parr 2002) although a 

quantitative phytolith recovery was not the target of that investigation.11  

 

 

Burned Phytoliths 

 

Although most phytoliths are optically clear via polarized light microscopy, 

darkened phytoliths—which display evidence of fire exposure—do occur.  Initially, dark-

colored phytoliths were reported to correlate with a lower particle density and thus the 

coloration was attributed to organic staining from the soil matrix (Jones and Beavers 

1963:377).  Subsequently recognized as evidence of burning, darkened phytoliths have 

since been used as a means to evaluate the environmental occurrence of fire.  This 

concept was pioneered by Piperno who attributed phytoliths with carbon inclusions as 

being from burned plants, and thus one indicator of fire history (Piperno 1985a:17-18).  

Piperno later noted that “darker forms are related to higher quantities of organic carbon 

pigmentation occluded within or on the surface” (Piperno 1988:45), and that the 

incidence of burned phytoliths in soil samples was observed to increase with the initiation 

of agriculture (Piperno 1988:208).  Parr (2006) provides a detailed discussion regarding 

means by which to distinguish burned versus soil stained phytoliths in order to enable use 

of phytolith color and appearance as a fire proxy. 

 

                                                 
11 A microwave digestion apparatus was recently obtained, but too late for implementation in this current 
project. 
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In a forest environment, Kealhofer recognized three types of fire with increasing 

intensity:  litter, under story, and extreme burns (Kealhofer 1996:236).  Kealhofer 

counted burned specimens of all phytolith types in her soil samples, with a resulting 

burned specimen incidence ranging from 5-19 % (Kealhofer 1996:243).  Kealhofer 

concluded that the data suggested that the entire landscape burned rather than selected 

patches, also noting that the presence of a minimal number of burned tree phytoliths 

suggested that intense extreme burns were rare (Kealhofer 1996:243).  Although all taxa 

encountered were represented in the burned phytolith counts, relative phytolith 

morphological type frequency changes in different age soils suggested vegetative 

changes occurring on the landscape over time.  Later, Kealhofer (2002) noted burned 

phytoliths had carbon inclusions and may also “appear blackened and sometimes even 

slightly ‘melted’”, subsequently noting that phytoliths often “show [evidence of] burning 

(through blackening and melting)” (Kealhofer 2003:80).  Kealhofer and Penny (1998:90) 

note that burned phytoliths can provide information about the “seasonality… and 

intensity of the burn,… and indirectly, the role of anthropogenic agents”.  As of this date, 

the consensus seems to be that plant burning is indicated by “partial or total charring of 

the surface… [which may] serve as an index of the occurrence and intensity of prehistoric 

vegetation firing” (Piperno 2006:15). 

 

Boyd (2002:478), who chose to use the elongate phytolith form in his study 

regarding burned phytoliths, indicated that the baseline incidence of burned 

(“blackened”) phytoliths was about 8% in a modern control prairie soil sample with 

minimal major fire activity during the past century.  Boyd pursued his “BPI” (Burnt 
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Phytolith Index) with examples of darkened elongate form phytoliths in a series of buried 

A horizons in his study area, finding one charcoal dense occupation layer with a BPI 

value of 73%.  Although this large spike was documented, Boyd suggested using the 

change only as a relative fire indicator due to the many potential variables involved.12  

 

Boyd’s study was actually directed at determining the cause of prairie fires, using 

recovered charcoal and burned phytoliths as proxies.  Based on recent historical records 

covering the study area, Boyd reported that lightning was a minor cause of prairie fires 

(Boyd 2002).  Through historical ethnographic references, Boyd (2002) identified 

agriculture and helping control bison-herd movement as two reasons for anthropogenic 

generated fires.  He also noted that more intensive land resource use (i.e., increased 

population density) during prehistoric times may have contributed to the observed 

increase in fire occurrence, with perhaps agriculture being a direct cause in late 

prehistoric times (Boyd 2002).  Boyd also points out that although grasslands inherently 

imply relatively constant fire intensity, the variation in fuel load (i.e., total biomass, due 

to moisture changes) may vary the apparent change in proxy fire values even more so 

than climate change.  Vankat (1979:164) stated that most prairie fires occur during the 

dry fall season when biomass loads are greatest, and that soil surface temperature 

normally remains under 100ºC during a prairie fire.  The study of anthracology is actually 

a field unto itself (c.f. Teixeiraet al. 2002:819-830; Fiorentino and Magri 2008).   

                                                 
12 In the same study, Boyd assumed that the recovered diatoms were probably eolian, although that 
possible transmission mechanism was apparently not considered for phytoliths.  Jones, Hay and Beavers 
(1963:1223) reported sponge spicules up to 100 microns long were recovered from loess deposits.  Thus, an 
eolian origin is presumed to be a possibility for a portion of all biogenic silica forms present in soils 
including those with evidence of burning. 
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Field Sampling Protocol 

 

For analysis of soil phytoliths, two different sample types are required.  First, in 

order to properly interpret the total soil phytolith sample, specimens of representative 

local botanical specimens need to be collected, identified, and their phytolith composition 

studied and noted.  The standard method is to digest (via treatment with acid or hydrogen 

peroxide) or to thermally ash the identified plant specimens, and then slide mount and 

study the phytoliths remaining following treatment.  This effort can require a substantial 

amount of time and expertise, but modern control specimens are necessary to fully 

interpret the soil phytolith assemblage.  At least one researcher has indicated that the time 

and expense involved in this extensive portion of the procedure may be one reason that 

phytolith studies are not used more frequently.  Herbarium voucher specimens are an 

alternate method to obtain identified botanical species for phytolith recovery.   

 

For modern prairie control soil samples, multiple samples are normally collected 

from a typical or representative area and pooled resulting in a composite soil sample 

characteristic of the modern surface A horizon.  Individual researcher’s procedures to 

collect composite modern day surface soil samples are variable as indicated in the 

literature:  Pearsall (2000:407) recommends pinch sampling; in the example given, a 

composite surface soil sample is made from multiple small samples within a 10 x 10 

meter area.   Piperno (2006:87-88) also recommends the pinch sampling technique, with 

the further comment that 2 or 5 cm thick (i.e., deep) samples are appropriate; core and 

trowel sampling options are both mentioned; a transect collection variation is also noted.   
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Mulholland (1993:134-145) collected duplicate samples from each soil of interest as a 

check on variability.  The surface soil sampling protocol used by Fredlund and Tieszen 

(1994:327) involved compositing four core samples collected from the corners of a 1 

meter square at their study sites.  In another report four 0.4 m2 samples, each five cm 

thick, were pooled to obtain a surface prairie composite soil sample for analysis 

(Fernández Honaine, Osterrieth, and Zucol 2009:91).  Kerns, Moore, and Hart (2001:479-

480) created a composite soil sample from ten two centimeter deep core samples in a 40 

meter circle in a wooded study setting to represent the modern soil surface. 

 

 

Laboratory Methodology for Isolating Phytoliths: 

 

Many variations of the laboratory procedures for the isolation of phytoliths have 

been detailed and compared in the literature (Piperno 1988, 2006; Pearsall 1989, 2000).  

Subsequently, other researchers have performed additional procedural evaluations.  For 

the most part, all available procedures share the common thread of the separation of 1.50-

2.30 g/cm3 phytoliths from the slightly denser soil matrix (~2.65 g/cm3) via flotation with 

a heavy liquid of intermediate density (~2.35 g/cm3).  A brief overview of the basic 

methodology condensed from the two 1980s sources (Piperno 1988; Pearsall 1989) is 

discussed in the following paragraphs along with information about new techniques and 

alternate procedures that have been developed since that time.  Each step in the overall 

procedure has various options with benefits and proponents; however, the overall basic 

steps are common among most phytolith fraction isolation schemes evaluated.  This 
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published methodology used to as the starting point for this current research project was 

gleaned from the Piperno (1988) and Pearsall (1989) and distilled into a laboratory 

protocol (Sudbury 2000:48-53 [reproduced in Appendix C]).  The final laboratory 

procedure used at the conclusion of this project is presented in detail in the Materials and 

Methods Section. 

 

In evaluating clay removal techniques, one study showed that centrifuging was a 

more effective means of clay removal than sieving through a fine mesh sieve; this data 

also compared favorably to the standard settling technique for clay removal (Lentfer and 

Boyd 1999).  Clay removal is a critical step.  Some finished slides for counting, prepared 

by other laboratories, have been observed to have large masses of clay remaining on the 

slides (personal observation); this clumped material includes phytoliths which may 

potentially skew the resulting counts if larger phytoliths happen to be preferentially 

released by incomplete clay removal.   

 

The thermal option is good for quantitative recovery separations, but takes longer 

to process; ashing in a muffle furnace is not appropriate for quick and dirty preparations, 

or for separations where the particle dimensions will be measured.  Jenkins (2009)   

reported that dry ashing tends to break up articulated phytoliths more than wet ashing. 

Another organic matter removal method in the literature involves adding ethanol to the 

samples and igniting the ethanol (Powers and Gilbertson 1987); a comparison of this 

method with heavy liquid flotation using other organic removal treatments led to the 

conclusion that flotation methods were superior (Lentfer and Boyd 1998).  
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 Considerable effort has been devoted to searching for alternate procedures for 

organic material removal.  In particular, Parr (with others) has been involved in efforts to 

study and improve on a number of the established laboratory methods.  The use of 

pressurized microwave extraction was tested on sediments with good success—and 

included organic removal (Parr 2002; Parr, Dolic, Lancaster, and Boyd 2001).  This 

procedure was also noted to be more effective at recovering starch from sediments than 

some other protocols (Parr 2002).  Although much faster start to finish, the sample size 

via the microwave procedure is very limited (0.25 g), and the resulting slide mounted 

material is not as clean as material isolated via heavy liquid floatation.  Thus, as with any 

developments, there are trade offs if one opts to utilize the pressurized microwave 

procedure which can process multiple samples simultaneously.  The methods described in 

this and the preceding paragraphs are also appropriate for processing botanical reference 

specimens for use as phytolith standard materials (see Mulholland 1982 for other 

options). 

 

The next basic step is separation of the phytoliths from the denser quartz-based 

silt matrix by heavy liquid flotation.  Sulfuric acid was reported as ineffective when used 

to isolate pollen grains from a clay matrix (Faegri and Iverson 1950:61).  Bromoform was 

originally used to float various microfossils, followed by a mixture of bromoform and 

acetone (Knox 1942; Frey 1955); bromoform remained in use for some flotation 

applications for decades (Gibson and Walker 1967).  Sodium polytungstate has been in 

use for density separations since the 1980s; one effort was even made to speed up the 

separation by freezing different zones of the liquid (Morrow and Webster 1989).  About 
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the same time, specifically for the solution density required for phytolith isolation, 

mixtures of bromoform and nitrobenzene, tetrabromoethane and nitrobenzene, 

tetrabromoethane and ethanol were also in use along with two heavy metal options:  zinc 

bromide in water and Piperno’s preference which was a mixture of cadmium iodide and 

potassium iodide (Piperno 1988:122). 

 

As alternate heavy liquids have been implemented over the decades, some solvent 

choices have gone by the wayside as improved options become available.  Current 

researchers use one of several effective heavy density liquids—each having its own 

advantages and disadvantages (the decision is generally a trade-off between efficacy, 

safety, and cost).  One study compared four different heavy liquids on eight different test 

soils to aid in the selection of the optimal heavy liquid solvent system and ended up 

recommending zinc iodide or sodium polytungstate (Zhao and Pearsall 1998).  Zinc 

bromide was noted to give good results (Zhao and Pearsall 1998); the reaction observed 

while using zinc bromide during their study was probably due to the hydrochloric acid 

present in the reagent as was noted.  Sodium polytungstate, a safer heavy liquid alterative 

to the liquids containing heavy metals, has been demonstrated to be an effective flotation 

media (Madella, Powers-Jones, and Jones 1998; Lentfer and Boyd 1998), and has been 

adapted for use in a number of laboratories.   

 

In this study, the heavy liquid flotation procedure was employed using zinc 

bromide because zinc bromide produces excellent phytolith separations, zinc bromide is 

less expensive than sodium polytungstate, the use of zinc bromide in water rather than 
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hydrochloric acid eliminated the carbonate reactions, the fact that the analyst was familiar 

with handling zinc bromide, and because the reagent was on hand and available for use 

(personal observation).  As an aside, one of the phytolith laboratories that I visited had 

significant free iodine vapor present in their sample storage room.  Iodine is corrosive 

and strong oxidizer; thus, this potential problem is mentioned as a caution when using 

Zinc Iodide and/or Cadmium Iodide.  The analyst should make certain that the iodide 

reagent is totally removed from processed samples or neutralized prior to storage in order 

to minimize storage degradation (i.e., sample cartons, sacks, etc.) and more importantly 

the health risk to personnel.  If the completed samples are not iodine free, ventilated 

storage (fume hood or vented cabinet) is recommended. 

 

After flotation, the separated phytoliths and liquid are transferred to another 

container to which water is then added to lower the solution density so that the phytoliths 

sink (Piperno 2006).  The phytoliths are then repeatedly rinsed with water to completely 

remove the heavy portion of the flotation solvent (which is later recycled); the phytoliths 

are transferred to vials or other suitable containers for storage.  Some researchers store 

the phytoliths dry whereas others leave them in ethanol to minimize abrasion.  A recent 

analysis indicates that stirring the isolated (suspended) phytoliths and not sampling from 

the top of the material is critical to obtaining a representative sample for analysis; the 

recommendation is made that dry samples are preferable for slide mounting (Strömberg 

2007). 
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In the next step, after gently mixing, a small portion of the phytolith sample (~1-2 

mg) is mounted on a clean microscope slide.  The use of a variety of different mounting 

media in use have been reported in the phytolith literature including Canada Balsam 

(Andrejko 1982; Runge and Runge 1995), Benzyl Benzoate (Mulholland 1982, 1986a; 

Lentfer and Boyd 1998), silicon oil (Fredlund, Johnson, and Dort 1985 [Silicon oil 

mounting media was used in conjunction with phase contrast microscopy]), Permount 

(Mulholland 1982, 1986a), glycerin (Fredlund and Tieszen 1994), Dupex (Lentfer, Boyd 

and Gojak 1997), and water (Rovner 2004).  Mounted slides can be examined by light 

microscopy and particle forms tabulated during scans; polarized light microscopy was 

used in this research to enable mineralogical evaluation of the particles being observed.  

Others have effectively used simple light microscopy and phase contrast microscopy; 

scanning electron microscopy is also an option although the specimen mounting 

procedures are different (McKee and Brown 1977:833-837).  

 

 Recently a detailed study about effective phytolith particle count size was 

published Strömberg (2009a; see also Alexandre and Brémond (2009), and Strömberg 

(2009b)]).  As with many experimental variables, the appropriate count size is dependent 

on one’s research design, objectives, and site specifics.  However, for detailed studies, the 

target short cell count of 200 is recommended as an approximate good starting point 

although the number could be higher if conditions (i.e., if the relative frequency of 

particle forms of interest) warrant (Strömberg 2009a (also see Bodén 1991)).  When a 

sufficient sample is available, this researcher always counts a minimum of 200 short cell 
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phytoliths, along with other identifiable forms present in the same fields of view that are 

scanned during counting.   

 

In other analytical pursuits related to phytoliths, efforts to isolate plant DNA from 

soil phytoliths have been unsuccessful to date (Elbaum, Melamed-Bessudo, Tuross, Levy, 

and Weiner 2009).   Work is underway to standardize the nomenclature of the various 

phytolith morphologies (Pearsall and Dinan 1992; Bowdrey, Hart, Lentfer, and Wallis 

2001; Madella, Alexandre, and Ball 2005).   

 

Additionally, other matrices than soil and sediments are also analyzed, and have 

their own variations of prep methods.  These include grinding implements (Fullagar and 

Field 1997; Tassara and Osterrieth 2008; Zucol and Bonomo 2008), edged flint tools 

(Anderson 1980; Kealhofer, Torrence, and Fullagar 1999; Piperno and Holst 1998), bone 

tools (d’Errico, Giacobini, Hather, Powers-Jones, and Radmilli 1995), and teeth 

(Armitage 1975; Ciochon, Piperno, and Thompson 1990; Middleton 1990; Middleton and 

Rovner 1994; Cummings and Magennis 1997; Cordova and Agenbroad 2009). 

 

Based on particle size and density, other particle types are often included along 

with phytoliths in the isolated amorphous silica fraction which has a density  

1.50 g/cm3 < x < 2.30 g/cm3. 

In addition to phytoliths, other particle forms recovered from soil in the phytolith (i.e., 

biogenic silica) fraction may include glass sponge spicules (see Figure 104), diatoms,  
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chryophytes, radiolaria, charcoal fragments, calcium oxalate crystals from cacti and other 

plants (Figure 3), and volcanic glass shards (Figure 4). 

 
 
Figure 3.   Calcium oxalate rosettes isolated from a prickly pear cactus (Sudbury 2009a).  
Left: polarized light, Center: crossed polars, Right: crossed polars with ¼ wave plate. 
(Bar scales are 10 microns.) 
 
 

 

Figure 4.  Example of possible volcanic ash recovered in some phytolith extracts of soils 
(the larger clear shard in the center of this photograph of a phytolith isolate from Bull 
Creek-28 (200x)).  Although observed in various soil sample isolates, volcanic ash is not 
addressed in this dissertation.  
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Grasses and Prairies 
 

Grasses, more properly known as the botanical family Poaceae (formerly called 

Gramineae), include over 600 genera and 9000 species (Darke and Griffiths 1994:x) and 

are the third largest botanical family (Constable et al. 1985:19).   Perennial grasses make 

up about 95% of native grasslands, although annual grasses also occur (Constable et al. 

1985:33).  Grasses are much more than cosmetic; “of the fifteen major crops that stand 

between us and starvation, ten are grasses” (Brown 1979:1).   The grain crop data in 

Table 213 was obtained from the web site of FAOSTAT, the Statistics Division, Food and 

Agriculture Organization of the UN (FAOSTAT 2009).  In addition to these grain crops, 

there are other members of Poaceae that are very significant in the world economy; 

several other notables are sugar cane (Gould 1968:2), bamboo (Gould 1968:40-45; Darke 

and Griffiths 1994:xix), and giant reed grass (Constable et al. 1985:19).    

 

The data in Table 2 is a tabulation of the annual grain (cereal) yields for ten 

sequential years ending in 2007, and also includes representative crop yield data back to 

1961which was the first year that the UN tabulated crop records.   The information tallied 

is for the ten major grains and two pseudograins (buckwheat and quinoa).  The 

normalized relative percent column is based on the 12 specific crop yields listed for 2007.  

These world-wide production figures include grains for human consumption as well as 

for livestock feed.   

 

                                                 
13 Data copied and compiled August 14, 2009 from http://faostat.fao.org/site/567/default.aspx#ancor, 
FAOSTAT, Statistics Division, Food and Agriculture Organization of the UN, and reproduced herein by 
permission.    
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Three crops (maize, rice, and wheat) accounted for 87.84% of the worldwide 

produced grain tonnage in 2007, and world output for these three crops roughly tripled 

from 1961 to 2007.   These three crops have long accounted for more than 50% of all 

human calories consumed (Raven and Johnson 1995:28-12).  Some of the other crops 

show gradual increase over time; notably, the production of oats and rye has declined—

perhaps being replaced by other crops.  The significant increase in maize production in 

2007 is a response to government incentives to produce ethanol from corn which altered 

the established market system balance; world-wide food grain shortages and price 

increases resulted from this government intervention.  Although there is an abundance of 

available food in fertile productive America—enough to enable regular major grain 

exports—the data for other parts of the world is much more sobering.  In an excellent 

news article, Gebisa Ejeta stated that in 

1933, according to USDA ERS, Americans spent more than 25 percent of their 
income on food. By 1985, that had dropped to 11.7 percent and, in 2000, below 
10 percent for the first time in history….  In contrast, the poorest nations spend 
70 percent or more of their disposable income on feeding their families. (Laws 
2009) 

 

These important food grain crops have been the topic of considerable research 

interest to the phytolith community; indeed, the early pioneering work regarding 

development of maize agriculture in Ecuador (Pearsall 1978, 1979) marked the initiation 

of significant active growth in the modern phytolith research field.    

 

Prairies, which comprise nearly 25% of the land surface (Vankat 1979:158) or 

32% of the vegetated land mass (Constable et al. 1985:22), are dominated by grasses.  Of 

prairies, it has been stated that  
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natural grassland ecosystems are fundamentally organized by three interactive processes:  
carbon assimilation and allocation, nitrogen assimilation and allocation, and rainfall-
evapotranspiration. (McNaugton, Coughenour, and Wallace 1982:167) 
 

Similar biomes on other continents are called the steppes (Russia), the pampas (South 

America), and the veld (Africa) (Vankat 1979:158).  Prairies are also regulated by the 

“interrelated roles of fire, climate, and grazing animals” (Anderson 1982:297) with 

climate equating to temperature and moisture regime.   

 

The major grassland or prairie region in the United States, known as the 

Great Plains, developed primarily over Mollisols (Brady and Weil 2002:104).  

Indeed, the very fertile Mollisols are associated with most of the world’s major 

prairie ecosystems.  In addition to the soils, other significant contributors to 

developing and maintaining prairies and specific plant associations are tempera-

ture, precipitation, and fire.  Grasslands are semiarid (Brady and Weil 2002:844) 

with “a low precipitation-evaporation ratio” with most rainfall occurring during 

the growing season (Vankat 1979:159).  The growing season is roughly “120-200 

days” (Vankat 1979:159) and is limited by summer drought and winter 

temperatures.  Various grass species grow best in environmental/climatic 

conditions where they are most suited to thrive.  Grasses have deep well-

developed root systems that enable effective utilization of available water and 

help to minimize erosion.  It has been stated that as much as 90 percent of the 

biomass of some grasses is in the roots (Brown 1979:6).   

 

Fire is a critical component to maintaining grasslands, in part because frequent 

fires prevent trees from becoming established on the prairie; fires are thus important in 



  

 42   

establishing and maintaining the grassland/forest boundary (Vankat 1979:167).   A forest 

has thick tree growth, whereas a “woodland vegetation is dominated by trees, but…most 

of the crowns do not touch,” and a savanna is “even more open; trees (or shrubs) have a 

cover of less than 30 percent and the dense herbaceous layer is the best developed 

stratum” (Vankat 1979:205).  Summer droughts also enhance the action of fire to restrict 

tree incursion (Anderson 1982:298-301).  Grasses are able to survive fires because, 

unlike most other plants that have apical meristems, the vegetative growth of grasses (via 

bulbs, corms, or rhizomes) occurs at, or immediately below the ground surface (Vankat 

1979:171-172).  Grasses also have intercalary meristems throughout the culm (Gard, 

personal communication).  Thus, grass is able to resume growing after the aerial biomass 

has burned.  Many of the perennial grasses undergo vegetative growth by tillers and 

stolons which also contain meristematic tissue enabling them to resume growth after a 

heavy grazing or fire has removed the above ground biomass (Brown 1979:5). 

 

In the Great Plains of North America, there are three main prairie types or plant 

associations which are referred to as the Tallgrass Prairie, Mixedgrass Prairie, and 

Shortgrass Prairie (Figure 5).  The Shortgrass Prairie is bounded to the west southwest by 

the Desert Grassland (which is not present in Oklahoma).  These basic prairie types 

mirror gradually decreasing water availability as one travels from east to west.  Situated 

between the Shortgrass and Tallgrass Prairies, the dominant plants of the Mixedgrass 

Prairie association have intermediate moisture requirements between the two adjacent 

extremes.  Along with less moisture, overall soil depth, nutrients, and organic matter also 

decreased (Bazzaz and Parish 1982:233).  Even within these three basic prairie types, the  
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Figure 5.  A depiction of the location of the three prairie types on the North American 
Great Plains during the early 19th Century exploration of the continent.   
(http://www.smscland.org/images/OriginalPrairieExtentMap.gif.) 

 

plant community composition is not unchanging.  Whereas the location of a given prairie 

type may have 100 (or more) individual botanical species present, generally only 3-5 

http://www.smscland.org/images/OriginalPrairieExtentMap.gif�
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species at one given location make up 95% of the total annual biomass (Tyrl personal 

communication).  The actual plant association composition or community making up a 

given prairie type varies by location due to specific local growing conditions (c.f. 

Fredlund and Tieszen 1994:323), and also includes forbs as well as grasses (Bazzaz and 

Parrish 1982:233; Tyrl, Bidwell and Masters 2002:17).  

 

Of these three prairie types, it is generally the Mixedgrass Prairie boundaries that 

move most (Brown 1979:10) in response to variations in precipitation (Vankat 1979:167).  

Rather than actual physical movement of species across the boundary, the moisture 

variations over time generally result in various grass species that are already present 

becoming relatively more or less frequent in the particular prairie resulting in an apparent 

change or transition in the prairie type (Tyrl personal communication).  In a contrarian 

view, Brown (1993) researched early explorer records and current field data and 

concluded that the eastern boundary of the Shortgrass Prairie has retreated significantly 

westward since the early nineteenth century, leading to his conclusion that dispersal may 

be a more significant cause of the Tallgrass Prairie invasion than climatic variation.  It is 

possible that both of these mechanisms occur operating on vastly different time scales. 

 

Prairie grasses have been the object of numerous phytolith studies once it was 

realized that morphologically distinctive and significant differences in the phytoliths were 

noted among basic botanical specimens.  The original grass phytolith morphologic 

classes were first observed and reported by Twiss, Suess, and Smith (1969).   Three basic 

groupings or clusters of forms were observed to be attributable predominantly (but not 
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exclusively) to the three grass subfamilies:  the cool-season Pooideae (formerly referred 

to as the Festucoids.), the warm season (with some intermediate moisture requirement) 

Panicoideae, and the hot dry climate-adapted Chloridoideae (Twiss, Suess, and Smith 

1969).  Although some decades have passed since this initial proposal, this basic 

typologic clustering is still considered to be valid (Fredlund and Tieszen 1994:326; 

Pearsall 2000:363-368; Twiss 2001; Piperno 2006:28). 

 

The reason for the morphologic differences observed primarily in the short cell 

phytoliths of species in these Poaceae subfamilies is due to metabolic differences 

between these families which in turn are due to their climatic preference; i.e., their 

metabolic rates in relation to their water regime and optimal growing temperature.  The 

cool season Pooids are commonly referred to as “C3” plants, a specific reference to their 

metabolic pathway.  All grasses take in carbon dioxide and utilize light energy from the 

sun via photosynthesis to generate their carbon fuel, and release oxygen.  The so called 

C3 Pooids execute this via a 3 carbon chain-based metabolic pathway, incorporating the 

carbon from carbon dioxide (CO2) into a larger non-volatile 3 carbon molecule via the 

Calvin cycle (Taiz and Zeigler 2002:146) which then ultimately undergoes further 

reaction to generate larger carbohydrate molecules.  This particular process is very 

efficient at cooler temperatures, and becomes less energy efficient as the environmental 

temperature increases. 

 

In a climatic adaptation, an alternate metabolic pathway—referred to as C4 

metabolism—developed, and is used by the Panicoids and Chloridoids (both C4 type 
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plants) as a means of concentrating CO2 and conserving plant water.  Although the Calvin 

cycle is embedded as a sub-cycle in the overall C4 metabolic process, there are additional 

steps in the C4 process due to differences in plant cell architecture and layout.  In short, 

in C4 plants the Calvin cycle biochemical machinery is located farther from the point of 

entry of the carbon dioxide into the plant (i.e., farther from the stoma, several cells 

removed).    The ultimate reason for this architectural difference is that by moving the 

site of biochemical processing farther from the entrance (i.e., stomat), less water is lost 

during respiration.  Upon entry into the plant in the mesophyll cell, the carbon from the 

CO2 is fixed onto an existing C3 acid to form a C4 acid intermediate.  This C4 molecule 

is then transported farther inside the plant to the bundle sheath cells where the CO2 is 

released and enters the Calvin Cycle as described previously.  The name of this overall 

C4 process is referred to as Kranz metabolism—being named after the bundle sheath 

cells.   Both mesophyll and bundle sheath cell types have chloroplasts, but perform 

different biochemical processing steps.  The biochemically different C4 process, based in 

part on physically different cell layout/architecture as compared to the C3 process, 

enables the plant to produce energy more efficiently in a drier climate at hotter 

temperatures; a major advantage of this process is minimizing the amount of water lost 

from the plant compared to the basic C3 metabolic pathway (Taiz and Zeigler 2002:156-

160).  C3 metabolism predominated in earlier geologic time, with C4 metabolism 

becoming more predominant in the late Miocene Epoch, about 7-8 million years ago 

(MacFadden 2000:49).  Based on the difference in cell metabolism, the cell architecture 

is also different; in part, it is this physical manifestation of the morphologic difference 
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that is preserved, recovered, visualized, and evaluated via the short cell phytoliths 

recovered from soils. 

 

An additional type of CO2 concentration mechanism, not encountered in the field 

work during this current project, is referred to as Crassulacean Acid Metabolism (CAM) 

which improves water use efficiency even further.  Although similar to C4 metabolism, 

in this variation, plant stomata only open at night when atmospheric CO2 is collected and 

stored as a malate intermediate; then in the daytime, when the stomata are tightly closed, 

photosynthesis proceeds by metablolizing the malate and utilizing the internally released 

CO2.  This metabolic pathway, which occurs in cacti and some other plants, conserves as 

much as 90% the amount of water relative to the C3 and C4 processes (Taiz and Zeigler 

2002:160-162).  Another interesting observation is that cacti sometimes produce genus 

diagnostic phytoliths made of calcium oxalate rather than amorphous silica (Jones and 

Bryant 1992) (and calcium oxalate crystals occasionally occur in other species as well).   

 

Based on phytolith evidence, grasses have been reported to have existed during 

the Miocene Epoch (Thomasson 1980; Thomasson, Nelson, and Zakrzewski 1986; 

Retallack, Dugas and Bestland 1990; Strömberg 2002).  Strömberg also reports grass 

phytoliths from the late Oligocene (2002).  Of particular interest is the report, based on 

coprolite evidence, that dinosaurs had actually grazed on grasses (Prasad, Strömberg, 

Alimonhammadian, and Sahni 2005; Piperno and Sues 2005).  Although non-Poaceae 

specimens, even earlier phytoliths have been reported from the Devonian, Permian, and 

Triassic Periods (Carter 1999). 
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Soils under Prairies 

 

Grass phytoliths were first described by botanists looking at plant anatomy (c.f. 

Prat 1936; Metcalfe 1960).  Via their roots, plants actually help to weather rocks and 

build soil (Iler 1979:747).  The early soil phytolith work involving grasses determined 

soil phytolith concentrations, size variations, and also noted the presence of other 

biogenic silica (Beavers and Stephen 1958; Jones, Hay, and Beavers 1963; Jones and 

Beavers 1964a, 1964b; Jones, McKenzie, and Beavers 1964; Wilding and Drees 1968; 

Bonnett 1972).  Other early work on grass phytoliths of the Great Plains also looked at 

concentration and size distribution in several Oklahoma soils (Yeck 1969; Yeck and Grey 

1969, 1972).  Since the firm basic morphologic foundation reported by Twiss et al. 

(1969) based on C3 and C4 metabolic differences, the study of grass phytoliths has 

continued to develop over the ensuing decades.  Twiss continued to study grass phytoliths 

and their value as climatic indicators (1980; 1983; 1986; 1987; 1992; and 2001).   

 

Brown studied and reported phytolith morphologic forms from a variety of 

voucher specimens; in addition to documenting forms, Brown also evaluated phytolith 

size relative to water availability (1984, 1986a, 1986b).  Mulholland (Mulholland, Rapp, 

and Gifford 1982), who first studied phytoliths from Troy, later studied grass phytoliths 

on the northern Great Plains with particular interest in maize (Mulholland 1986c; 

Mulholland 1993; Mulholland, Rapp, and Ollendorf 1988), observed that the specific 

morphologic forms were encountered in multiple grass subfamilies (Mulholland 1989), 

and began to deal with trying to increase the availability of botanical reference standards 
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processed and studied (Mulholland and Rapp 1989), and to standardize morphologic 

nomenclature (Mulholland and Rapp 1992b).  The annotated bibliography by 

Mulholland, Lawlor, and Rovner (1992) was also a significant contribution to the field. 

 

Subsequent phytolith research on the Great Plains has studied climate change and 

Paleoclimate as reflected in the Poaceae phytolith morphologic signature of soils.  In a 

survey of A horizon phytoliths across the Great Plains, Fredlund and Tiezen (1994, 

1997a) developed a calibration formula to correlate the phytolith morphologic signature 

to the temperature and tested it on buried soil phytolith signatures.   Other regional 

research involves looking at riparian and alluvial settings on the plains (Johnson and 

Martin 1987; Martin and Johnson 1987; Johnson and Logan 1990; Arbogast and Johnson 

1994; Bozarth 1995; Baker, Fredlund, Mandel, and Bettis 2000).  Cordova and Johnson 

(2007) have initiated a study to look at the southern Great Plains during the Holocene, 

and study the interaction of climate, fire, grazing and vegetation using paleobotanical 

data (phytoliths, pollen, charcoal, and fungal spores).   

 

Numerous reports regarding phytoliths in the extensive loess deposits covering 

part of the plains have also been published (Fredlund 1986; Feng, Johnson, Sprowl, and 

Lu 1994; Miao, Mason, Johnson, and Want 2007; Aleinkoff et al. 2008; Mason et al. 

2008; Muhs et al. 2008).  Sand dunes have been yet another active setting for phytolith 

research (Goble, Mason, Loope, and Swinehart 2004; Boyd 2005; Cordova, Porter, 

Lepper, Kalchguber, and Scott 2005), and playa features on the plains have also been 

studied (Fredlund, Bousman and Boyd 1998; Holliday, Mayer, and Fredlund 2008).  
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Pursuit of radiocarbon dating and carbon isotope studies at Kansas prairie sites is 

ongoing; Martin and Johnson (1995) documented variations in radiocarbon dates 

obtained from three different soil organic matter factions (total, humic acid, and residue) 

while Johnson, Willey, and Macpherson (2007) studied the variation in carbon isotope 

ratio in soil profiles under a Tallgrass prairie.  A phytolith study of a Colorado Shortgrass 

locale has been reported which involved five sites with Holocene buried soils formed in 

alluvium; periods of stability and instability were noted, along with changes in climatic 

conditions (Blecker, Yonker, Olson, and Kelly 1997).  The vegetation history of the 

Prairie Peninsula of Illinois has been studied via phytolith signature (Wilding and Drees 

1968), and the opal content of a prairie soil in Pennsylvania has also been documented 

(Waltman and Ciolkosz 1995).   

 

Initial Great Plains phytolith work by this researcher was on soil from the Waugh 

Site during a one semester SEM course (Sudbury 2000); although instrument uptime was 

very limited, the conceptual groundwork for future studies was laid.  At an early site on 

the northern plains, phytolith stability and preservation issues were encountered which 

resulted in the lack of phytoliths in the soil, presumably due to soil pH issues (Sudbury 

2007).  Working on samples from a late prehistoric archeological site in Oklahoma, 

maize agriculture was confirmed and site activity areas were evaluated (Sudbury 2006).   

 

Although not true grasslands, studies involving mixed grassland-forest interfaces 

and intermingling are also significant to this current research.  A number of studies 

looked at various established forest/grassland systems (Fisher, Jenkins, and Fisher 1986; 
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Reider, Huckleberry and Frison 1988; Bozarth 1993; McClenahen and Houston 1998; 

Kerns 2001; Kerns, Moore and Heart 2001).  In soils under a Sequoiadendron giganteum  

forest in California, the absence of grass phytoliths was interpreted to indicate the historic 

absence or lack of grassland in the modern forest (Evett et al. 2006). 

 

Outside of the Great Plains, numerous phytolith studies have been conducted 

involving grasses and grasslands.  Coupled with pollen data and using core samples, 

Fearn (1995) studied the grassland history of the Southwestern Louisiana Prairie, and 

also used phytoliths recovered from sediment as an aid to identify the source of grass 

pollen (Fearn 1998).  Lu and Liu (2003a, 2003b) studied a series of coastal grasses along 

the Gulf of Mexico documenting phytolith forms present in numerous reference 

specimens and taking important steps to associate various phytolith morphotypes with 

different coastal plant communities developed on loess deposits.  The Pacific northwest 

has been the site of extensive research inquiries looking at modern phytolith assemblages 

and loess deposits to determine vegetation and climate change during the past 100,000 

years  (Blinnikov, Busacca, and Whitlock 2001, 2002; Sweeney, Busacca, Richardson, 

Blinnikov, and McDonald 2004; Blinnikov 2005).  Several early Canadian range grass 

studies are of note; Johnston, Bezeau, and Smoliak (1967) looked at the variation in silica 

content of range grasses over time, whereas Blackman (1971) reported the phytolith 

forms present in a variety of reference specimens.  Three important studies out of the 

Missouri Botanical Garden deal with the relative age of several grasslands, the 

development of grasslands, and the phylogeny of the Poaceae (Leopold and Denton 1987; 

Jacobs, Kingston, and Jacobs 1999; GPWG 2001).   
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 In South America, following a very early report by Fontana (1954) about silica 

deposition in Panicum maxicum leaves, a series of studies about grasses from the 

Brazilian Cerrados began appearing in the 1960s (Sendulsky and Labouriau 1966; de 

Campos and Labouriau 1969; Teixeira and Labouriau 1970; Songdahl and Labouriau 

1970; Figueiredo and Handro 1971) as well as one study about Amazonian grasses 

(Cavalcante 1968).  In the past 15 years, the resurgence in published South American 

grassland studies has come from Argentina (Zucol 1996, 1998; Gallego and Distel 2004; 

Gallego, Distel, Camina, and Rodrígues Iglesias 2004; Fernández Honaine, Laborde, and 

Zucol 2008; Fernández Honaine, Osterrieth, and Zucol 2009; Fernández, Gil, and Distel 

2009; Osterrieth, Madella, Zurro, and Alvarez 2009).   

   

Other major contributions to grassland phytolith studies come from Africa.  

Palmer (1976) suggested using phytoliths to help identify grasses represented by the 

pollen in lake core samples.  Subsequently, the Smithsonian Institution Press has 

published a series of volumes documenting the epidermis of African grasses (Palmer and 

Tucker 1981, 1983; Palmer, Gerbeth-Jones, and Hutchinson 1985; Palmer and Gerbeth-

Jones 1986, 1988 [Also, Smithsonian Contributions to Botany phytolith volumes have 

issued for the tropical American grasses (Piperno and Pearsall 1998a), and for Southeast 

Asia (Kealhofer and Piperno 1998)]).  Again, the early African studies looked at 

morphology (Stewart 1965).  Alexandre studied silicon cycling and weathering 

(Alexandre, Meunier, Colin, and Koud 1997) and also late Holocene grasslands 

(Alexandre, Meunier, Lézine, Vincens, and Schwartz 1997).  Beyond the African 

phytolith volume (Runge 2000), soil phytoliths and paleoenvironmental reconstructions 
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were also addressed (Runge and Runge 1995, 1997).  Bremond, Alexandre, Peyron, and 

Guiot (2005a) looked at the correlation between water stress and grass types as reflected 

in the phytolith record as it relates to evapotranspiration, and developed effective 

humidity-aridity and water stress indices.  The timing of the development and expansion 

of C4 African grasses in geologic time was studied (Ségalen, Lee-Thorp, and Cerling 

2007).  In several related studies, grass subfamilies in mountains were studied to develop 

a phytolith index to correlate with the C3/C4 grass composition and tree cover density 

(Bremond, Alexandre, Wooller, Hély, Williamson, Schäfer, Majule, and Guiot 2008), and 

also looking at the leaf area index—as well as the same grass composition and tree 

density factors—in Cameroon (Bremond, Alexandre, Hely, and Guiot 2005b). 

 

Although prairie grasses were prominent in early phytolith studies, the body of 

phytolith literature is not restricted to the Great Plains of North America, nor to prairies.  

The field is international in scope with many different lines of investigation.  In 

particular, much research (including the early seminal work by Pearsall (1978, 1979, 

1987) and Piperno (1984, 1985c, 2001)) has been directed to the development of 

agriculture in the tropics—concentrating on maize (also see Pearsall and Piperno (1990), 

Piperno and Pearsall (1998b), and Staller, Tykot and Benz (2006)).  Other agricultural-

related research has involved the early development of wheat (Hodson and Sangster 

1988; Tubb, Hodson, and Hodson 1993; Ball, Brotherson, and Gardener 1993; Ball, 

Gardner, and Anderson 1999) including examining the effects of irrigation on phytolith 

size (Rosen and Weiner 1994).  Also significant activity has been expended studying the 

development of rice agriculture in Asia (Akai 1939; Lanning 1963; Kido and Yanatori 
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1964; Watanabe 1968; Chaffey 1983; Kealhofer and Piperno 1994; Kealhofer and Penny 

1998; Jiang 1995; Pearsall et al. 1995; Houyuan, Naiqin, and Baozhu 1997; Zhao 1998).   

 

 

Soils and Buried Soils 

 

The primary soil horizon of interest in this current research is the A horizon which 

is “the topmost mineral soil horizon, usually showing signs of organic matter 

accumulation [i.e., darkening]” (Schaetlz and Anderson 2005:741).  This organic-rich 

layer, in common vernacular often referred to as topsoil, supports active plant growth—

including the visible modern prairies that were studied during this project.  A very 

detailed and useful system of soil taxonomy has been developed (Soil Survey Staff 1999; 

Schaetlz and Anderson 2005:106-163; Buol, Southard, Graham, and McDaniel 2003: 

193-213).  Soil is critical to survival; by one estimate, soil is ultimately responsible for 

producing 97% of the calories consumed by humans (Bouyoucos 2009). 

  

If the rate of alluviation on an A horizon is greater than 3 mm per year, then well-

developed soils cannot form and distinct stratified sediments accumulate 

(Alexandrovskiy, Glasko, Krenke, and Chichagova 2004).  Soil development may not 

occur at sediment accumulation rates as low as 1 mm per year; well developed soils can 

develop when accumulation is less than 1 mm/year (Alexandrovskiy et al. 2004).  When 

an A horizon is buried by an alluvial, eolian, fluvial, or another event, it becomes referred 

to as a buried soil, or Ab horizon.  The Soil Survey Staff (1992:1) defines a buried soil as  
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covered 

with a surface mantle of new soil material that is either 50 cm or more thick, or is 30 to 
50 cm thick and has a thickness that equals at least half the total thickness of the name 
diagnostic horizons that are preserved in the buried soil.   

 

However, Schaetzl and Anderson (2005:53) argue that a buried soil is one that is simply 

unrelated to the overlaying mantle—regardless of mantle thickness—meaning that the 

previously active soil forming processes stopped at the time of burial (Schaetzl and 

Anderson 2005:587).  The buried soil actually represents a former geomorphic surface 

(Schaetzl and Anderson 2005:619) and thus contains discrete historical information—

unraveling this story at the time of burial is a major objective of this dissertation. 

 

With time the new surface material will undergo pedogenesis to form a new A 

horizon in this location.  Buried deeply enough, the newly designated Ab horizon no 

longer is actively involved in pedogenic processes.  When this process occurs repeatedly 

in one location, the series of stacked buried A horizons are numbered sequentially from 

the top down (i.e., Ab, Ab2, Ab3, etc.).  On some occasions, a process known as soil 

welding combines overlaying A horizons (Ruhe and Olson 1980); soil welding occurs 

when extensive melanization in a stable upper A horizon causes distinct A horizons 

below it to become incorporated into the upper melanized unit as the upper unit continues 

to develop downward through the lower A horizons.  Recent investigations indicate that 

variations in clay mineralogy in such polygenic soils can help identify instances of soil 

welding (Presley, Hartley, and Ransom 2010).  
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One unresolved question regarding thick buried A horizons is whether they form 

by addition of mineral components to an A horizon thus resulting in a cumulic A horizon, 

or whether it is possible that these soils may sometimes develop solely by the process of 

melanization.  The tendency in the archeological literature seems to be to assume that 

thick well-developed A horizons must be cumulic in order to become so thick; however, 

melanization should also be considered as a soil formation option (Ferring 1992). 

 

In geological formations, paleosols—or fossil soils (i.e., buried soils)—can   

generally be identified by three features:  soil horizons, soil structure, and root traces 

(Retallack 2001:13).  Retallack (2001:187)—whose interest includes paleosols within the 

geological record—also defines five stages of paleosol development.  Buried soils, 

sometimes also referred to as buried paleosols, are actually one of three classes of 

paleosols (Waters 1996:57-60).   The other two types of paleosols are relict paleosols and 

exhumed paleosols (Ruhe 1965).  A relic paleosol has never been buried, thus remains at 

the modern surface, yet it formed under “previous and presumably different 

paleoenvironmental conditions” (Schaetzl and Anderson 2005:621-622).   Exhumed 

paleosols were once buried, and then have been subsequently re-exposed by removal of 

the overburden and thus are again the modern surface (Schaetzl and Anderson 2001:621-

622).   To avoid possible confusion, the term buried soil is used in the remainder of this 

dissertation; all buried soils are considered to be paleosols, but not all paleosols are 

buried soils.  Another term sometimes used interchangeably with paleosols and buried 

soils is geosol (Waters 1992:75); however, Holliday states that the term geosol does not 

simplify the lexicon and suggest that the word soil is equally appropriate (Holliday 
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2004:76-77).  More recently, the The North American Stratigraphic Code clearly 

recognizes and defines identifes a geosol as 

… a laterally traceable, mappable, geologic weathering profile that has a consistent 
stratigraphic position. The term is adopted and redefined here as the fundamental and 
only unit in formal pedostratigraphic classification… (AAPG 2005:1560) 

 
and also clearly states that 

(1) a geosol may be in any part of the geologic column, whereas a pedoderm is a  
                   surficial soil;  

(2) a geosol is a buried soil, whereas a pedoderm may be a buried, relict, or exhumed  
                   soil;  

(3) the boundaries and stratigraphic position of a geosol are defined and delineated  
      by criteria that differ from those for a pedoderm; and  
(4) a geosol may be either all or only a part of a buried soil, whereas a pedoderm  

                   is the entire soil. (AAPG 2005:1559). 
 
 
 
Pedology is the study of soils; Schaetzl and Anderson (2005:774) define peology 

as  

The branch of soil science that addresses soils, their properties, origins, distribution and 
occurrence on the landscape, as well as their evolution through time.  The study of soils 
as a naturally occurring phenomena taking into account their composition, distribution 
and method of formation. 
 
 

Easterbrook (1999:49) notes that paleosols, which represent a stable soil surface that 

underwent pedeogenesis long enough for A horizon development, are actually an 

unconformity in the soil sequence.  Paleopedology, a growing field, is “the study of 

paleosols and the environments in which they formed” (Schaetzl and Anderson 

2005:773); volumes devoted to Paleopedology are available (c.f., Retallack 2001; 

Constantini, Makeev, and Sauer 2009). 

 

    Geoarchaeologists, who frequently study buried soils, do so because past stable 

soil surfaces are often associated with human occupations; thus, the detail that the soil 

matrix contains provides information about the site setting and climate at the time of site 
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occupation (Valentine and Dalrymple 1976; McCarty and Schwandes 2006:472).  The 

presence of buried soils has long been recognized in Oklahoma (Harper and Hollopeter 

1931; Harper 1932, 1933; Sears and Couch 1934; Hall 1968; Goss, Ross, Allen, and 

Haney 1972).  During the Holocene, the Great Plains—and indeed all of North 

America—is known to have been subject to considerable climatic variation.   Between 

any and perhaps all of the intervals of climatic fluctuation during the Holocene, periods 

of relative climatic stability would be expected to have been conducive to landscape 

stability and thus periods of soil formation that supported relatively stable plant growth 

that would be potentially be recorded as A horizons in the soil record.  Conversely, 

during periods of intense climatic activity, erosion might remove existing soil whereas 

during intervals of fluvial, colluvial, or eolian deposition, sediments would cover an 

existing stable surface A horizon resulting in the creation of a buried soil (Rapp and Hill 

2006:43). 

 

 

Climate and Paleoclimate 

 

Based on North American pollen data and radiocarbon dates Wendland (1978) 

and Wendland and Bryson (1974) identified the following “Holocene episodes” (dates 

given are radiocarbon dates BP14; descriptive comments taken from Wendland 1978).  

The so-called Late Glacial period lasted until ca. 10,030 BP, and was followed by the 

Pre-Boreal (ca. 10,030-9,300 BP) during which time the grasslands shifted eastward.  

                                                 
14 The development of an accurate correlation between calendar years and radiocarbon years is ongoing 
(Broecker 2006; Bement and Carter 2008). 
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During the Boreal ca. (9,300-8,490 BP) the grasslands continued to expand eastward and 

the vegetation border moved northward.  During the Atlantic (ca. 8,490- 5,060 BP) the 

“Great Plains were drier and/or warmer than today, particularly from ca. 7,000 BP to 

5,500 BP” and the “northern limit of the conifer-hardwood forest had about reached its 

modern position” (Wendland 1978:278-279).  The Atlantic, also often referred to as the 

Altithermal or Hypsithermal, was a period of “maximum warmth and dryness” (Vehik 

2001:146-148).    

 

The Altithermal was followed by the Sub-Boreal interval (ca. 5,060-2,760 BP) 

when moisture distribution on the Great Plains appears to have been uneven; this was 

followed by the somewhat moister Sub-Atlantic which began ca. 2,760 BP, and was next 

followed by the warmer Scandic which occurred from about 1,680-1,260 BP (Wendland 

1978:280-281).  The next interval was the somewhat moister Neo-Atlantic (ca. 1,260-850 

BP), followed by the somewhat drier Pacific interval during ca. 850-400 BP, and the 

cooler Neo-Boreal period from ca. 400 -100 BP (Wendland 1978:280-281).  The Neo-

Atlantic interval is also known as the Medieval Warming period (Vehik 2001:146) while 

the Neo-Boreal period is frequently referred to as the Little Ice Age (Vehik 2001:146; 

Wendland 1978:281).   

 

The current interstadial, referred to as the Holocene Epoch, includes three distinct 

cooler periods. The first and most severe, known as the Younger-Dryas, occurred early in 

the Holocene, lasted about 1,300 years (Kennett et al. 2009), and saw the temperatures 

rapidly cool ~5ºC for a period of time (Fredlund and Tieszen 1997a).  The so-called 
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8,200 BP cool event (von Grafenstein, Erlenkeuser, Müller, Jouzel, and Johnsen 1998; 

Dean, Forester, and Bradbury 2002) was a shorter less intense cooling interval, whereas 

the final reported distinct Holocene cooling event is commonly referred to as the Little 

Ice Age.  

 

In the latter half of the Holocene, there was increased eolian activity which 

resulted in sand dune formation on the north side of drainage basins in Oklahoma as well 

as other parts of the Plains and southwest (Arbogast 1996; Arbogast and Johnson 1998; 

Lepper and Scott 2002; Cordova, Porter, Lepper, Kalchgruber, and Scott 2005; Boyd 

2005; Forman et al. 2006).  The fluctuating regional weather during later parts of the 

Holocene was such that periods of valley cutting and filling occurred (c.f. Holliday 1995; 

Arbogast and Johnson 1994). 
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CHAPTER III 
 

MATERIALS AND METHODS 
 

 

Background 

 

The laboratory methodology used in this current study is based extensively on the 

method outline presented by Piperno (1988) and Pearsall (2000) as summarized 

previously (Sudbury 2000).  Relying on past analytical chemistry experience and the 

specific needs of this current project, some simplifications and improvements of the 

established procedure were implemented during the course of this research.  The resulting 

phytolith isolation method used in this project is presented in this section.  Not all soil 

samples were processed identically during the course of this study.  A discussion of the 

different methods employed and reason for alterations in the method is presented in 

Appendix D.  The equipment, materials, and supplies used during this research are listed 

in Appendix E. 

 

Methodology – Collecting Soil Samples (Modern Prairie Control Soils) 

 

Three major prairie types occur in Oklahoma (Tallgrass, Mixedgrass, and Shortgrass 

Prairies (Figures 5-7)).  Modern surface soil samples (0-5 cm) were collected from  
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Figure 6.  Map of the state of Oklahoma in the United States of America 
(http://www.cleanairworld.org/images/statesrevOK.jpg (1-3-10)). 
 
 

 

Figure 7.  Oklahoma ecoregions map showing prairie types, prairie reference soil 
(calibration) sampling sites, and buried soil sampling sites.  [Original base map from 
http://www.nature.org/wherewework/northamerica/states/oklahoma/images/places_eco.jpg.] 
 

http://www.cleanairworld.org/images/statesrevOK.jpg�
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examples of each of these major vegetation units.  These soil samples were used as 

controls from which to extract reference soil phytoliths from known modern prairie types.  

The control site surface soil sample locations are denoted by the red stars in Figure 7.  

Initial sampling of the modern Shortgrass Prairie occurred during sampling a series of 

buried soils in an exposed profile at the Bull Creek Site (Bement et al. 2007).  The Bull 

Creek surface sample consisted of a single 10 cm depth sample.  As field work 

progressed to other prairie control sample locations, a more extensive sampling protocol 

was developed.  A twenty-meter diameter circle was laid out over the area to be sampled, 

and twenty soil samples were collected at spaced intervals within the circle (the 

numbered sampling locations are identified in Figure 8).   

 

The soil probe was fitted with an adjustable stop to control depth of soil 

penetration.  This was done by affixing a piece of Tygon® tubing to the soil probe and 

holding it in place with a hose clamp to act as a stop.  A wooden block was perforated to  

 

 

 

 

 

  

 
 
 
Figure 8.  Twenty-meter sampling area showing individual sample locations.  The singleton 
samples were collected at the center of the circle, the three underlined sample locations were 
pooled for the n=3 sample, and samples from the twenty numbered sample locations were pooled 
to become the n=20 composite sample. 
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accommodate the probe.  The tubing/clamp placement on the probe was adjusted so that 

5 cm of the probe tip extended below the block in order to collect the initial 5 cm deep  

soil sample (Figure 9).  This enabled collection of replicate soil samples of a known  

constant cross-sectional area and depth from various locations at the prairie soil of 

interest.   

 

An individual soil sample (n=1) was collected from the center of the sampling 

area (to obtain enough soil for extraction from the central n=1 location, three replicate 

samples were taken from immediately adjacent to each other in the center of the sampling 

circle and combined into a single sample).  Single soil samples were taken from the 

remaining twenty numbered sample locations and pooled in pre-weighed sample jars (n = 

1 [x=3; single soil core samples from sample locations 9, 11, and 15 were pooled for this 

n=1 sample], and n=1 [x=20]; separate cores at the previous three locations (i.e., 9, 11, 

and 15) were included in the n=1 [x=20] sample which consisted of one sample from 

each of the 20 individual sample locations).  Once sampling was completed, the 

tubing/wood block stop was moved up the probe in 5-centimeter increments, and each 

hole re-sampled for the next 5-centimeter soil increment.  In this manner, nine sequential 

composite soil samples were collected in repeatable 5-centimeter increments from each 

sampling hole up to the effective depth of the soil probe (0-45 centimeters).   

 

This controlled circular pooled sampling protocol was first employed on a 

Mixedgrass Prairie site located in the Dempsey Divide region of western Oklahoma 

(Figure 10).  Engineering flags were used to mark the individual sample locations   in the 
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sampling template.  After core sampling in the center of the circle, a soil profile block 

was removed from the central sampling location and returned to the laboratory for study.  

The back dirt from the shovel hole made to enable collection of the soil block clearly 

shows the presence of carbonate (Figure 11).   

 

The Dempsey Divide region is actually interfingered grasslands, with Shortgrass 

Prairie on the uplands, and Mixedgrass Prairie on the side slopes (Figure 12).  Sampling 

of the adjacent Dempsey Shortgrass Prairie by this same sampling protocol was initiated, 

but not completed (Figure 13).  The severe drought and extremely hard dry soil resulted 

in both available soil probes being rendered unusable (twisted into S-shapes) after the 

first 10 cm of sample depth, so sampling this Shortgrass Prairie location was abandoned.   

 

 

 

 

 

 

 

 

 

 

 
 
Figure 9.  Soil sampling probe with depth stop set for 5 cm sampling depth.  Photograph 
taken at Dempsey Divide Mixedgrass Prairie.  
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Figure 10.  Dempsey Divide Mixedgrass Prairie sampling location (circle #1) and 
intended Dempsey Divide Shortgrass Prairie sampling location (circle #2) on the 
Thurmond Ranch along Brokenleg Creek..  Soil types on this USDA/NRCS aerial 
photograph with mapped soil designations are QwE (Quinlan-Woodward Complex, 5-
12% slopes), SaB (St. Paul Silt Loam, 1-3% slopes), WoD Woodward Loam (5-8% 
slopes), and Rb (Quinlan-Rock Outcrop Complex, 12-45% slopes).  (Aerial photo from 
USDA/NRCS Soils Web Site). 
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Figure 11.  Dempsey Divide Mixedgrass Prairie site sampling template location “o”.  The 
dense vegetation is predominantly little bluestem (with some western ragweed and side-
oats grama visible); soil carbonates are clearly visible in the back dirt. 
 

 

Figure 12.  Upland Shortgrass Prairie interfingered with Mixedgrass Prairie on the 
adjacent side slope at Dempsey Divide, Roger Mills County, Oklahoma.   
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Figure 13.  Shortgrass Prairie upland sampling location at Dempsey Divide.  The flags 
mark soil sampling locations.  
  
 
      The same twenty-meter circular sampling protocol was successfully used on a 

virgin Tallgrass Prairie site northeast of Cushing Oklahoma, referred to as Manning 

Tallgrass Prairie or Manning Prairie (Figures 14 and 15).  Two Manning Prairie locations 

were selected on which to perform three different soil phytolith investigations: 

 

1. Determine the total phytolith concentration relative to soil depth in five 

centimeter increments to a depth of 45 cm (n=1, n=1 [x=3], and n=1 [x=20]). 

2. Evaluate the composite soil samples (n=x [x=20]) for phytolith morphologic type 

distribution relative to soil depth. 

3. Conduct a singleton study of 21 separate replicate samples to evaluate sampling 

reproducibility and homogeneity of soil components and phytoliths in the top 5 

centimeters of soil (n=21). 
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The two locations experimentally sampled at Manning Prairie are identified as 

white circles in Figure 14.  Investigation numbers 1 and 2 (above) were conducted at 

location 1 and investigation number 3 was conducted at location 2 (Figure 15).  

Composite sampling in 5 cm depth intervals was conducted at 20 locations in one 20 

meter diameter circle in investigations 1 and 2, and at 21 locations in investigation 3 (20 

sampling points plus central origin).  The numbered sampling locations on the 20 meter 

diameter sample template (Figure 8) are used to denote specific sample numbers in the 

following description, data sets, and ensuing discussion.  The USDA/NRCS aerial photo 

also includes information about soil types present at Manning Prairie (Figure 14).  Nearly  

 

Figure 14.  Manning Tallgrass Prairie site showing the two sample template locations in 
this study locatead in Coyle Loam.  USDA soil series reported in this marked aerial 
photograph are:  CoyB (Coyle Loam, 1-3% slopes), 12 (Agra Silt Loam, 1-3% slopes), 13 
(Agra Silt Loam, 3-5% slopes), FSLE (Foraker-Shidler-Lucien Complex, 1-12% slopes, 
“very rocky”), MulC (Mulhall Loam, 3-5% slopes), and StDD (Stephenville-Darnell 
Complex, 3-8% slopes, “rocky”).  (Aerial photograph with soil designations obtained 
from NRCS/USDA web site http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm). 

 

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm�
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Figure 15.  One Manning Tallgrass Prairie sample template location.  The two five gallon 
buckets are stacked in the center of the 20 meter circle; some sample location flags are 
visible (view to the northeast). 
 
  
all samples were successfully completed to full 45-centimeter depth (the target of x=20 in 

investigations 1 and 2 was reduced for the 5 cm sample increments below 20 cm (see 

Table 10) due to rock encountered in the lower part of the profile in some sample 

locations.).    

 

Methodology – Collecting Soil Samples (Buried Soils) 

 

At the Bull Creek site, the entire profile was sampled in fixed ten-centimeter 

increments (Bement et al. 2007), and then selected soil samples were analyzed for their 

phytolith signature.  At the Carnegie Canyon and Lizard Sites, the profiles were sampled 

by individual soil units (Carter et al. 2009).  When these soil horizons were too thick, the 

individual units were subdivided into smaller sections.  Phytolith content (weight percent 

of soil, and morphologic type distribution) were obtained for the entire vertical sequence 
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of soil samples at these later two sites.  The buried soils investigated and discussed in this 

dissertation are on the Great Plains of North America and primarily date to Holocene 

Epoch (i.e., the past ~11,000 years); the research sites are located in Oklahoma (Figure 

6).   

 

 

Methodology – Laboratory Soil Sample Processing and Phytolith Analysis15 

 

  During the course of this investigation, a number of sample preparative 

techniques were employed in an effort to identify the most effective and reproducible 

procedure for quantitative recovery of phytoliths from soil.  The final optimized method 

used to process the Manning Tallgrass and Dempsey Divide Mixedgrass Prairie reference 

soil samples (and part of the Lizard Site soil sample sequence) is described on the 

following pages.  Additional comments and observations regarding some of the other 

laboratory methods employed are presented and discussed in Appendix D.  The reagents, 

supplies, and equipment used in this project are listed in Appendix E. 

 

Soil Processing and Quantitative Silt Fraction Isolation - The soil samples are 

first passed through a 10 mesh (2 mm) sieve to remove large particles (both mineral and 

organic matter) and thoroughly mixed to homogenize the samples.  Next, the portion of 

each soil sample to be analyzed is oven-dried at 105°C in pre-weighed glass sample 

containers, cooled in a desiccator, and reweighed to determine initial parent soil sample 

                                                 
15 In addition to the phytolith extraction and recovery, samples were also prepared for carbon isotope (Delta 
13) analysis (see a description of the prep method developed in Appendix F). 
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weights that are processed.  Diagnostic phytoliths from most soils, including prairie 

environments, occur predominantly in the silt fraction of the soil (2-50 microns [“μ”] 

particle size).  Thus, the first series of steps in recovering soil phytoliths is to isolate the 

silt fraction of the soil.  

 

The USDA (Schoeneberger et al. 2002:2-35) defines fine silt as 2-20 microns, and 

coarse silt as 20-50 microns.  Piperno (1985b:263; 1988:121; 2006:91) reported the fine 

fraction as 5-20 microns and coarse fraction as 20-50 microns, whereas in a phytolith 

method summary, Pearsall (1989:365, 2000:430) corrected the fine silt fraction definition 

to 2-20 microns with coarse silt remaining 20-50 microns.   

 

Based on past confusion in the literature, this researcher recommends that the 

Canadian Society of Soil Science silt size designations—which splits the smaller particle 

size silt fraction in question into fine (2-5 microns) and medium (5-20 microns) 

(Sheldrick and Wang 1993:500)—be adopted by the phytolith research community in 

order to help minimize terminology confusion in future literature.   This size difference is 

significant as there are very small phytoliths (c.f. Table 7, page 135), and there is a 

drastic difference in settling time between 2 and 5 micron particles [for instance for 2.30 

g/cm3 particle to settle 10 cm at 20ºC, the calculated times are 588.9 minutes for a 2 

micron particle and 94.3 minutes for a 5 micron particle].  Under this current proposal, 

the coarse silt fraction definition remains unchanged (20-50 microns).  These three 

proposed silt size definitions are used throughout the remainder of this dissertation.   
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The particle settling times used were calculated based on Stokes Law (Scott 

2000:46-49).  Representative calculated settling times in minutes for various sized 

idealized spherical particles of four different particle densities at three representative 

temperatures are listed in Table 4.    

 

As can be seen from these sample times, temperature makes a difference in 

settling time, but by far the biggest variable is particle size followed by another large 

discrepancy based on particle density.  Tabular particles of a given dimension will 

actually settle more slowly than the calculated times for spherical particles, so 

conservative settling times were used in this project to separate silt and clay (i.e., clay is 

< 2 microns) and for the sand removal (sand is > 50 microns).  When performing particle 

separations via timed sedimentation, the settling times presented in Table 4 should be 

considered.  If one performs the timed separation at 20ºC for 2 micron particles for 

588.93 minutes, any lower density biogenic silica particles present (of the same 

dimension) will be decanted and lost with the clay fraction.  Regardless of the settling 

time selected, reproducibility is a key ingredient to having internally consistent results.   

The shorter settling time gives a cleaner fraction, but it also potentially provides income-

plete fraction recovery as it is missing any lower density biogenic silica component that is 

present in the original sample.  (When working with pollen, measuring the terminal 

settling velocity for one’s particle and then using the observed settling time as the settling 

time for the same non-spherical particles in future sedimentations is recommended 

(Brush and Brush 1994:36-38).  With the large diversity of shapes and densities in a 

phytolith assemblage, this would not seem to be a viable option for phytoliths.) 
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16

                                                 
16 Various agencies with established soil particle size definitions: USDA (U.S. Department of Agriculture), 
CSSS (Canada Soil Survey Committee), ISSS (International Society of Soil Science), AASHTO (American 
Association of State Highway and Transportation Officials), FAA (Federal Aviation Agency System), 
USC/USCS (Unified Soil Classification System), and ASTM/UNIFIED (American Society of Testing 
Materials/Unifed Soil Classification System).  In addition to these soil systems, geologists use the Phi and 
modified Wentworth scales. 
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   Each soil sample is suspended in water containing a detergent solution (5% 

Calgon® or hexametaphosphate solution) and shaken vigorously for 24 hours to 

deflocculate the clays so the soil particles are disaggregated.  In the initial sample 

series17, the samples were passed through a 270 mesh (53 micron) sieve which retained 

the sand fraction by washing the silt and clay through the sieve leaving the silt and clay 

components together for further processing.  The following step is ordinarily to remove 

the smaller clay particles (< 2 microns) from the silt fraction (2-50 microns).  This is 

performed by taking the clay/silt mixture that passed through the sieve, suspending it in 

water, allowing the larger silt particles to settle out for a predetermined time, and then 

decanting or pipetting off the suspended clay particles.  Repetitive decant steps are 

required for an effective clay removal step leaving a clean silt fraction. 

 

The final separation method developed during this project involved first 

repetitively decanting the clay fraction from the soil based on the maximum settling time 

(1.50 g/cm3).  This timed decant is repeated 20-30 times for each sample—each time 

pouring off about 80% of the liquid phase including the suspended clay particles—until 

the decant from above the settled silt/sand fraction is clear.  The decanted clays are 

retained until the entire phytolith isolation and analysis procedure is completed.  Once the 

repeated clay decants were clear, the silt fraction was repetitively decanted into fresh 

containers leaving the sand behind in the quart jars (Figure 16 shows the initial clay 

decanting step).   

 

                                                 
17 The initial samples were processed via the routine method described in the literature (see Appendix C). 
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The density of phytoliths (maximum of 2.30 g/cm3) is less than the density of 

sand (2.65 g/cm3).  Thus, if one decants the clay and silt fractions away from the sand, 

any larger sand-sized phytoliths in the sand fraction (such as cucurbits, bulliforms,  

elongates, and phytolith aggregates) and also sponge spicules are generally retained with  

the decanted fractions (in the previous method, these larger particles would potentially be 

removed by the standard established procedure of sieving out the sand fraction and thus 

separated from the finer silt and clay factions).  This novel approach was developed to 

expedite removal of the clay fraction and to retain the maximum amount of phytolith 

residue possible with the silt fraction—including large biogenic silica particles. Some 

very small clay-size phytolith fragments were not retained; however, the soils in each 

sample series were all processed identically within the series enabling comparison of the  

 

 

Figure 16.  Soil sample series during the clay fraction decanting step.  At a calculated time 
interval after mixing, the suspended soil fractions were transferred to and pooled in the individual 
labeled 2-liter bottles visible in the back row.  The buried soil of interest in this particular sample 
series begins with the darker solutions 2/3s of the way down the row of sequential samples.  In 
this illustration, the clay is being decanted from the sand and silt fractions; in subsequent sample 
series both the clay and silt were simultaneously decanted from the sand; later the clay fraction 
was decanted away from the silt fraction with a settling time calculated on 1.50 g/cm3 density. 
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recovered phytolith content of the samples.  An added benefit of processing in this  

manner is that the sand fraction separated in this manner does not ordinarily need to be 

examined for larger phytoliths or other particles of interest.  The sand fraction isolate by 

all permutations were oven dried, weighed, and then transferred to vials for storage. 

 
 

The sequential decants containing the silt fraction (including the phytoliths) for 

each sample are collected and pooled for further processing.   Each sample’s silt fraction 

(2-50 microns) was processed as illustrated in Figures 17-32.  These pooled decants were 

first allowed to sit undisturbed for three days so most of the particulate settled (Figure 17) 

(based on the bottle height, this is the time required for 1.50 g/cm3 particles to settle).  

The majority of the settled silt fraction for each sample is present in the first decant bottle 

(normally one sample’s silt decants filled at least five two-liter bottles, to be filtered 

later).  The relatively clear liquor from the initial decant liquid receiving bottle was 

transferred to another bottle leaving the bulk of the silt fraction behind in the first  

bottle (Figures 18-20).  The silt remaining in the original decant bottle (Figure 20) is 

transferred directly to a 100 ml crucible (Figures 21-22); filtering this portion of the silt 

(estimated to be > 95% of the silt in the sample) is not required.  The bottle is next rinsed 

with pure water to effect quantitative transfer of the bulk of the remaining residue from 

the bottle to the crucible (Figure 23).  To complete rinsing and transfer, a small amount of 

ultra pure water is added to the bottle, the lid put in place, and the bottle is vigorously 

shaken to effectively rinse the walls.  This rinse is repeated until the rinse water is clear 

(Figure 24).  The entire settled silt fraction and all of the bottle rinses of the bulk silt can 

be achieved in less than 100 milliliters (Figure 25).  The last remaining trace  
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silt residue on the bottle walls in the previous step is easiest to remove and transfer if the  

particulate has never been allowed to dry out in the bottle.  If required (i.e., if drying has 

occurred), ultrasonication can be used as needed to facilitate particulate removal. 

 

This process of pre-settling the sediment in two-liter bottles and in the crucible 

enables the remaining relatively clear liquid to be vacuum-filtered for phytolith and silt  

 
Table 4 

Calculated Settling Times for  
  Phytoliths of Different Size and Particle Density18 

 
Minutes for Particle to Fall 10 cm 

T (ºC) 
Particle 
Density 

(gm/cm3) 2 microns 5 microns 20 microns 50 microns 

      
20 1.60 1272.26 204.00 12.74 2.04 
 1.22 7.66 122.46 764.53 2.00 ״
 0.94 5.89 94.27 588.93 2.30 ״
 0.74 4.64 74.27 464.25 2.65 ״
      

22 1.60 1216.55 194.02 12.13 1.94 
 1.17 7.29 116.55 727.80 2.00 ״
 0.90 5.61 89.70 561.17 2.30 ״
 0.71 4.42 70.01 442.09 2.65 ״

      
25 1.60 1126.13 180.77 11.30 1.81 
 1.09 6.79 1.8.65 680.27 2.00 ״
 0.84 5.23 83.67 522.47 2.30 ״
 0.66 4.12 65.93 412.54 2.65 ״

 

 

                                                 
18 Minutes to fall calculated for a 10 cm distance.  Times for three representative densities of phytoliths are 
provided (1.60, 2.00, and 2.30 g/cm3 (sand density is 2.65 g/cm3)).    
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Figure 17.  Decanted silt fraction after settling for several days.  FDA approved 2-liter 
bottles are used in lieu of ten to fifteen 1 liter beakers per sample as an effective cost- and 
space-saving alternative.  Most of the particulate matter that was originally suspended in 
solution has settled.  The volume of the liquor is poured off into another bottle (fitted 
with funnel in photograph) and the majority of the sediment is left behind in the original 
settling bottle.  The retained liquid is later vacuum filtered to recover remaining 
suspended silt and phytoliths.  Sampling of the haze present suspended in the bottle 
indicated it was predominantly clay-size particles. 
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Figure 18.  Decanting supernate from initial sample silt decant container.  A paperclip 
between the funnel and the receiving bottle mouth prevents bumping as air escapes from 
the receiving bottle.  Although there some solution cloudiness is visible, most of the 
settled silt remains in the original bottle. 
 

 
 
Figure 19.  Transfer of decanted solution above silt is nearly complete. 
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Figure 20.  Solution transfer complete; the bottle shape helps to retain the majority of the 
settled silt fraction.  Also, the bottle lip design effectively minimizes sample or liquid 
drippage. 
 

 

Figure 21.  After decanting the relatively clear upper liquid, the silt on the bottom of the 
original decant bottle is transferred to a 100 ml porcelain crucible.  Other clarified sample 
solutions are visible in the background, as well as the quart jars containing the sand 
fraction from which the suspended silt fraction was decanted (center, top).   
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Figure 22.  The settled silt in the bottom of the settling bottle is poured into a 100 ml 
porcelain crucible.  Prior to initiating sample transfer, the crucible is placed in a Pyrex® 
Petri dish in order to minimize the possibility of loss through spillage or overflow.  Glass 
countertops help minimize sample loss and ease of recovery or clean up. 
 
 
recovery in about ¼ of the time (6-8 hours vs. 24+ hours for the entire silt fraction).  This 

entire protocol is felt to be advantageous for quantitative phytolith recovery as fine silt-  

size lower density phytoliths (perhaps as low as 1.5 g/cm3) will take much longer to  

settle than the same size silt particle with the density of sand (2.65 g/cm3).19 

                                                 
19 For instance, at 20°C in water and assuming spherical particles, a 2 μ sand particle will settle 10 cm in 
464 minutes, where the following settling rates would occur for various density phytoliths:   
   2.30 g/cm3 phytoliths settle 10 cm in 589 minutes (9.82 hours),  
  2.00 g/cm3 phytoliths would settle 10 cm in 764 minutes (12.73 hours, and  
  1.50 g/cm3 phytoliths settle 10 cm in 1529 minutes (25.48 hours).  
The height of the water column in the two liter bottles is 27 cm, so three days settling time before filtration 
is adequate to allow most of the suspended low density silt particles to settle.  Since the remaining decanted 
liquid is later filtered, no significant quantity of phytoliths is lost.  Allowing most of the suspended solids to 
settle out of the solution prior to filtration results in much faster solution and sample processing. 
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Figure 23.  The final sediment residue on the bottom and on the sides of the settling bottle 
is rinsed into the same crucible using Milli-Q water.   
 
 
Next, the suspended silt in the decanted liquid from one sample is vacuum filtered 

through ashless filter paper in the reverse sequence to the order in which the bottles had 

been decanted to recover the fine suspended particulate (Figures 26-28).  By using the 

larger pore size filter on top of the finer one, one effectively installs a prefilter in front of 

their operational filter which retards filter plugging.  As soon as any particulate material 

hits and is retained by the first filter, the effective top filter paper pore size rapidly 

decreases—thus one is literally using the sample silt particles as a filter bed on the top 

filter.  Consequently, even though the filter manufacturer’s guaranteed pore size is larger 

than one might initially select to filter fine silt-sized phytoliths, the stacked filter papers 
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Figure 24.  The bottle is then rinsed with additional small water aliquots until no 
sediment remains.  The screw cap and constricted bottle neck make vigorous mixing in 
this manner very effective.   
 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 25.  The final clear rinses are added to the crucible.  The crucible is allowed to sit 
one day enabling most of the sediment to settle.  The clear liquid in the crucible is then 
filtered with the rest of the clear silt sample supernate that was retained in the 2-liter 
bottles (Figures 18-21). 
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effectively remove nearly all silt size particles—including diagnostic phytoliths—from 

suspension.  That is the reason that the two filter papers specified in the materials list are 

different diameters (Appendix E); the smaller filter always goes on top (i.e., Whatman 

ashless filter paper 40 goes on top of Whatman ashless filter paper 41).  Using two 41 

filters below the 40 enhances the efficiency even further in cases where samples contain 

more fine size particles.  In the rare event some cloudiness occurs in the filtrate, 

additional number 41 paper can be added to the bottom of the stack and the solution re-

filtered if necessary.  Examination of the cloudy material with a polarizing microscope 

can help one determine if any amorphous silica is present in the material that passes 

through the filter pack.  Multiple filter packs are normally required to filter one silt 

sample (10+ liters of decanted solution).  If desired the filtrate can be isolated for each 

sample and retained to check for filtration efficiency. 

 

 

 

 

 

 

 

 

 

 
 
Figure 26.  Ashless Filter paper is used to filter the “clear” decanted liquid from the silt 
settling bottles using a Millipore vacuum ultra-filtration unit.  



  

 86   

 

 

 

 

 

   

 

 

 
 
 
Figure 27.  Even though the settled decanted solution appeared to be clear, sediment is 
visible on the filter in this image.  The walls of the filter funnel need to be rinsed before 
the filters are removed from the holder.  
 
 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
Figure 28.  After the 2-liter bottles are empty, they are rinsed to effect 100% transfer of 
all particulate matter to the funnel.  The bottle can be capped and shaken if necessary to 
obtain an efficient rinse (see Figure 24).  Working in a clean catch basin allows sample 
retention and recovery should a loss or equipment failure occur. 



  

 87   

After completion of the filtration step, the filter papers are added to the sample 

crucible containing the bulk of the settled silt, a lid installed, and the crucible and 

contents oven-dried overnight at 105°C to remove the water.  The samples are then 

transferred to a muffle furnace to remove organic matter from the isolated silt fraction via 

ashing.   

 

There are several different ways to remove organic matter; these include removal 

using an industrial hydrogen peroxide solution, via digestion with nitric acid, via 

digestion with nitric acid with perchlorate added, and dry or thermal ashing (i.e., via 

muffle furnace).  All four methods were utilized during the course of this project in the 

order presented.  During this research project, it was concluded that thermal ashing was 

best although all four treatment methods work well with each technique having its 

specific benefits and drawbacks.   

 

The muffle furnace treatment must be used carefully.  Heating via furnace at 

550ºC to remove organic matter changes the phytolith refractive index, water content, 

surface area, and trace element composition (Jones and Milne 1963:217).  Phytolith 

density may increase closer to 2.30 g/cm3 by muffle furnace ashing up to 550ºC (Jones 

and Milne 1963:213).  Although some amorphous silica was converted to cristobalite at 

these low temperatures, most of the amorphous silica was converted to cristobalite by 

ashing at 700ºC and to the tridymite form at 900ºC (Jones and Handreck 1967:125).  The 

temperature selected to use in this current project was 530ºC, and was achieved via a 

gradual stepped temperature ramp so no temperature overshot would.  The samples are 
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heated for four hours at 110°C, ramped up to 325°C for three to six hours, and then 

slowly to 530°C for a minimum of six hours.  

 

After ashing and cooling, the ashless filter paper is effectively gone although the 

silt layered on the paper has retained form of the paper (Figure 29).  At this point, 10% 

hydrochloric acid can be added to the crucible to react with any carbonates that are 

present (Figure 30).   If effervescence is noted (Figure 31), additional hydrochloric acid 

can be added to the sample until no reaction is observed.  The silt and acid are gradually 

quantitatively transferred to pre-weighed 50 milliliter test tubes (Figure 32). If more acid 

needs to be used than the tube will hold, the partially filled test tube can be centrifuged, 

the clear liquid removed via pipette before sample additions continue, and more acid can 

be added to the sample and the transfer repeated until no further reaction is observed.   

 

 

Figure 29.  The sample crucible containing the silt fraction after ashing in the muffle 
furnace to remove the organic material.  The thin layers of silt that coated the filter papers 
are visible on the top of the bulk transferred sediment deposit. 
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Figure 30.  Hydrochloric acid is added to the ashed silt sample to react with any 
carbonates that are present.   
 

 

 

 

 

 

 

  
 
 
  
 
 
Figure 31.  Effervescence is visible in this image from reaction of carbonates with the 
hydrochloric acid.  After acid addition, the crucible is covered, and the neutralization 
reaction allowed to continue; the crucible resides in a glass Petri dish during this reaction.   
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Figure 32.  After the initial aliquot of hydrochloric acid has been neutralized, the silt and 
acid solution is transferred to a 50 ml centrifuge tube.  Additional acid is used to rinse the 
crucible to effect 100% transfer of the sediment to the tube.  The acidified ashed silt 
fraction is then centrifuged and the clear liquid removed via Pasteur pipette.  Additional 
acid is added to the tube, and the mixture stirred on the Vortex Genie®.  Repeated acid 
addition, mixing, centrifuging, and removal of clear liquid continues until the sample 
carbonates have completely reacted.  The silt pellet is then rinsed 5-7 times with pure 
water, centrifuging between rinses, and finally dried in a 40°C oven.  At this point the silt 
fraction has been isolated, the carbonates removed, and the dry soil silt fraction is ready 
for phytolith flotation and recovery.  
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Generally, the crucible walls need to be scraped with a spatula so the remainder of the 

moist sample residue can be dislodged and transferred to the centrifuge tube.   If the 

reaction is ongoing after completion of transfer to the tube, more acid can be added to the 

centrifuge tube after each clear liquid removal.   

 

Once the reaction is completed, the silt in the centrifuge tube should be rinsed five 

or more times with ASTM Type A water which effectively dilutes the acid; pH strips can 

be used to test solution pH if needed.  The centrifuge tube containing the recovered 

neutralized silt is then dried in a 40°C oven; once dry, the tube is reweighed to determine 

the amount of silt recovered from the original sample.  Knowing the silt and sand 

weights, one knows the soil sample texture.  The quantitative phytolith content of the 

sample can be calculated as weight percent soil or weight percent silt. 

 

Quantitative Phytolith Recovery Procedure - This quantitative recovery method 

involves exhaustive extractions in an effort to recover all phytoliths present in the 

isolated silt fraction (nominally, larger than 2 microns).  Recovery improves with each 

repetition of the phytolith flotation and subsequent cleanup step.  The first step is that the 

phytoliths need to be released from the silt fraction if the silt fraction has been thermally 

processed (either by organic removal in the muffle furnace, or oven drying to remove the 

water in order to obtain the recovered silt weight).  Simple passage of time (i.e., weeks) 

sitting in the zinc bromide solution will gradually loosen up the matrix and release the 

phytoliths.  This procedure can be accelerated somewhat by occasional agitation using a 

Vortex Genie, or placing the tube in an ultrasonic bath for a few minutes; either of these 
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procedures enhances wetting, particle separation, and phytolith release.  The actual time 

required depends on the tightness of the specific sample matrix.  If one does not 

disaggregate the silt fraction, no phytoliths will be recovered.  The time required is 

definitely longer than if no thermal treatment was used and the silt was never dried out 

since the original 24 hour sample disaggregation in Calgon® solution.  The original 

treatment was primarily aimed at the clay component contributing to the parent soil 

sample structure; in this current step, concern has shifted to the dried silt fraction, usually 

compacted by centrifugation before drying.  

 

Zinc bromide solution (density of 2.35 g/cm3) is added to the dried silt fractions in 

50 ml centrifuge tubes.  Once released from the silt matrix, the phytoliths (density < 2.3 

g/cm3) float on this dense aqueous solution whereas quartz-based minerals that comprise 

most of the remaining soil matrix (density of ~2.65 g/cm3) sink—thereby separating the 

trace phytolith component from the bulk of the denser sand-based silt matrix.  Once the 

phytoliths are released, the silt fraction/zinc bromide solution mixtures are centrifuged 

and the upper liquid phases decanted into clean labeled centrifuge tubes; this procedure is 

repeated a minimum of four more times—adding fresh zinc bromide, mixing, 

centrifuging, and pooling the sequential decants of light fraction for each sample.  It is 

best to float the silt residue two times after the final phytoliths were visually observed 

during the previous transfer to make certain that the remaining trace amount is recovered.  

The separated phytolith solutions are then capped, remixed on the Vortex Genie®, and 

centrifuged to release any heavier minerals that may have carried over in the original 

light particle fraction decants.  If any heavy mineral contamination is observed, the upper 
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phytolith solution is decanted to a clean tube, rinsed as needed, and the separation and 

fraction cleanliness confirmation process repeated until a pure isolate is obtained.   

 

Once phytolith fraction purity is verified, water is added to the tubes containing 

the pure phytoliths in zinc bromide in order to lower the liquid density below 1.50 g/cm3.  

These tubes containing the diluted zinc bromide/phytolith mixture are centrifuged which 

results in the purified phytoliths forming a pellet at the bottom of each tube. The phytolith 

pellets are next rinsed with pure water, mixed, and centrifuged seven times to remove 

zinc bromide residue from the phytoliths.  The clean phytoliths are transferred to pre-

weighed labeled vials, oven-dried, desiccator-cooled, and weighed to determine the 

quantity of phytoliths (also including other forms of biogenic silica) recovered.  Any time 

sample vials or tubes are weighed for determination of quantitative analyte recovery, a 

similarly labeled blank vial or tube also needs to be simultaneously carried through the 

identical analytical procedure.  Then the resulting sample weights can be blank corrected.  

When multiple samples are being processed, it is always a good idea to label the lids as 

well as the containers.  This quantitative phytolith extraction and recovery enables 

determination of the phytolith concentration as weight percent phytoliths in the parent 

soil sample and in the silt fraction.  An effort was made to identically process all of the 

samples in a given sample series, using the same processing time, and with the same 

solutions and other parameters, so the data within a given set of samples would be 

comparable. 
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Following sample processing, the diluted zinc bromide solutions collected during 

sample processing are filtered, and the water removed by evaporation in order to recover 

and recycle the zinc bromide.  Once the phytolith analysis is complete, the silt samples 

are also water extracted to recover the zinc bromide for reuse.  The filtered concentrated 

reagent density can be checked, the density adjusted as necessary, and then stored for 

later use.  Recycled zinc bromide solution is kept separate from fresh (virgin or first use) 

zinc bromide as soluble species from the soil are present in the recovered solvent.  New 

zinc bromide solutions are reserved for instances when phytolith samples need to be 

isolated for radiometric dating in order to help minimize the possibility of sample 

contamination. 

 

Preparing Microscope Slides for Scans and Particle Counting – Each dry 

phytolith isolate is gently mixed (Figure 33), and a ~1-2 milligram sample of phytoliths is 

transferred to a clean microscope slide (Figures 34-36).  For this current study, the 

recommendation  to use Canada Balsam (Deborah Pearsall, personal communication) 

was followed which allows particle rolling and thus enables three dimensional particle 

examination to confirm particle morphology (see Figure 41).  The initial slide mounts in 

this current project were made using Norland Optical adhesive; this was discontinued 

once the need for and value of particle rolling was realized.   

 

Separate clean spatulas are used for each step; extreme caution must be used to 

never contaminate the Canada Balsam reagent.  For this reason, a small amount of 

Canada Balsam is transferred [poured into] to a one-half ounce glass bottle to use for 
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phytolith sample mounting.  A drop of Canada Balsam is placed on top of the phytoliths 

(Figure 36), and the mixture is then gently stirred (Figure 37).  Next, a cover slip is 

placed on the sample on the slide.  The completed slides are placed on the hot plate used 

to warm the Canada Balsam for 1-2 minutes to help spread and level the Canada Balsam.  

After the mounting media spreads and levels (Figure 38), the slide is stored in a Boekel 

incubator (35°C) for 1-2 weeks to accelerate curing until the balsam seals along the edge  

  
  
   
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 33.  Dry phytolith fraction being gently mixed prior to sampling. 
 
 

 

Figure 34.  A small phytolith sample being transferred with stainless steel micro-spatula.  
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Figure 35.  Phytoliths after being placed on the microscope slide. 
 

 
 

Figure 36.  A drop of Canada Balsam being placed on top of the phytoliths on the slide.    
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 37.  Canada Balsam and phytoliths being mixed prior to installing the cover slip to 
seal the slide. 
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Figure 38.  Slide (left) mounted with Canada Balsam on low temperature hot plate for 
several minutes to help level and spread the Canada Balsam and sample mixture under 
the coverslip. The other two slides were part of an evaluation to look at particle size of 
materials passing through the filter pack during vacuum filtration (the particles observed 
were micron size or smaller). The sheet of tempered glass on the hot plate helps to 
minimize temperature fluctuations and eliminate hot spots. 
 

of the cover slip.  Cover slip size is determined by the amount of Canada Balsam placed 

on the slide; a variety of sizes ranging from 18 x 18 mm through 24 x 60 mm is kept on 

hand and used as appropriate. 

 

After curing, the slides are microscopically scanned while observing for 

phytoliths at 500x.  While scanning, a count is taken of the standard phytolith 

morphologic forms observed during the scan (example tabulation sheet shown in Figure 

39; debris, fragments, and odd forms are not normally tabulated).  Photographs of 

representative phytoliths are taken during the sample scans via a digital camera on the 

PLM (Figure 40).  After the formal particle count is complete, the entire slide is 

examined for any other significant particle forms present that may not have been 

observed during the particle count; any additional observed particles of interest are 

photographed.   
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Figure 39.  Sample count form for recording phytolith particle count frequency for 
Manning Tallgrass Prairie samples (original size 8.5 x 11 inches). 
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Figure 40.  Microscopy work station showing the petrographic microscope (right) used to 
count phytoliths in sample slides; camera system includes a monitor that shows the center 
of the field of view.   
 
 

Use of Canada Balsam as the mounting media enables particle rolling so that a 

three dimensional examination of the sample phytoliths can be performed during 

microscopy (Pearsall, personal communication).  An example of a short cell phytolith 

before and after rolling is shown in Figure 41. 

 

 

 

 

 
 
 
 
Figure 41.  Example of the benefit of particle rolling.  Phytolith as originally observed on 
the slide (A) and after particle rolling (B).  (Phytolith is 12 microns long). 
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CHAPTER IV 
 

RESULTS AND DISCUSSION 
 
 
 

Reference Botanical Specimen Phytoliths 

 

The initial step in any phytolith analysis is to obtain reference phytolith specimens 

from representative botanical species in the study area.  The basic grass phytolith 

morphologic short cell forms were defined by Twiss et al. (1969) and later illustrated by 

Fredlund and Tieszen (1994).  The individual grass species selected from which to 

prepare spodograms are listed in Table 5; phytolith reference data are used to evaluate 

modern soil phytoliths from the three modern control prairie sites and also from the 

buried soils.  The grass species selected are from three of the twelve subfamilies of the 

Poaceae:  Pooideae, Panicoideae, and Chloridoideae.  Additionally, due to peculiarities in 

the soil phytoliths encountered at one of the research sites (see the discussion at the end 

of the Manning Tallgrass Prairie results and discussion section) two members of the 

subfamily Arundinoideae were added to the original botanical reference specimen 

inventory.   

 

Identified botanical specimens collected in the field at the research sites, and from 

the OSU/Ag Herbarium, were used to prepare reference phytolith specimens.  These 
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fourteen samples (predominantly leaves) were water rinsed to dislodge any contaminants 

that were present, dried, cut into small sections, placed in a covered crucible, and ashed 

in the muffle furnace in the same manner as the silt fractions described previously.  After 

ashing, the samples were treated with 10% hydrochloric acid, repeatedly water-rinsed to 

neutralize the pH, centrifuged, transferred to labeled 4-dram glass storage vials, and 

dried.   Representative portions were mounted on microscope slides in Canada Balsam in 

the same manner as the field phytolith samples as shown in the previous illustrations. 

 

The soil sample phytolith types observed, tabulated, and analyzed during this 

research project are based on the established literature morphologic phytolith types 

(Twiss et al. 1969) as illustrated by these actual reference botanical specimen phytoliths 

(Figures 42-56).  Representative images these isolated reference Poaceae leaf phytoliths 

are shown in the following fifteen plates; the range of short cell forms observed in these 

reference preparations is illustrated in these figures.  When possible, in situ phytoliths 

(i.e., articulated silica cell skeletons taken from the epidermal layer of botanical specimen 

leaves) are shown.  These images illustrate the extensive variation and diverse 

appearance of various short cell phytolith forms in one small section of one leaf.  A 

familiarity of the morphologic variation within any single short cell category is very 

helpful when actually classifying and counting specimens during scans of soil phytoliths 

on microscope slides. 

 

The crenate short cell form is observed in Prairie Junegrass (Figure 42).  For the 

most part, these crenate phytoliths are generally rectangular with gently rounded corners  



  

 102   

Table 5 
Prairie Poaceae Species Used to Generate Known Origin Phytolith Specimens 

 
Poaceae Subfamily / 

Metabolic Type Genus species Common Name20 

   
Pooideae / C3 Koeleria macrantha (Ledeb.) Schult.  Prairie Junegrass 

Pooideae / C3 Elymus smithii (Rydb.) Gould Western 
Wheatgrass 

Pooideae / C3 Elymus canadensis L. Canada Wildrye 
Pooideae / C3 Hordeum jubatum L. Foxtail Barley 
Pooideae / C3 Phalaris arundinacea L. Reed Canarygrass 

Pooideae / C3 Poa pratensis L. Kentucky 
Bluegrass21 

Pooideae / C3 Hesperostipa comata (Trin. & Rupr) 
Barkworth 

Needle-and-Thread 
Grass 

Pooideae / C3 Oryzopsis hymenoides (Roem. & 
Schult.) Ricker22 Indian Ricegrass 

Arundinoideae / C4 Aristida longiseta Red Threeawn  
Arundinoideae / C4 Aristida purpurea Nutt. Purple Threeawn 
Panicoideae / C4 Andropogon gerardii Vitman Big Bluestem 

Panicoideae / C4 Schizachyrium scoparium (Michx.) 
Nash Little Bluestem 

Panicoideae / C4 Sorghastrum nutans (L.) Nash Indiangrass 
Chloridoideae / C4 Buchloe dactyloides (Nutt.) Engelm. Buffalograss 

 

and weakly developed crenate edge profiles.  In contrast, the crenate phytoliths in 

Western Wheatgrass have considerable more edge contour detail, and vary substantially 

from the general rectangular form noted previously (Figures 43 B-D, F, and G).  Western  

Wheatgrass also contains keeled short cell phytoliths (Figures 43 A and G).  Canada 

Wildrye was observed to have two primary short cell phytolith forms:  a less developed 

                                                 
20  Common names based on Tyrl et al. (2002).  Species not listed in Tyrl’s book were researched on the 
USDA Plants web site (http://plants.usda.gov/). 
 
21 Kentucky Bluegrass, the only non-native species listed in Table 5, was processed in order to obtain good 
examples of pyramidal phytoliths which were not readily apparent in the other C3 species examined. 
 
22  The USDA name is Achnatherum hymenoides (Roem. & Schult.) Barkworth 
(http://plants.usda.gov/java/nameSearch?keywordquery=indian+ricegrass&mode=comname&submit.x=18
&submit.y=7 (6-26-09)). 
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rectangular crenate phytolith with more closely spaced edge contours (Figure 44B) and a 

round disc-shaped form referred to as a disc-shape (Figures 44 A, C, and E).  Some 

phytoliths were also noted that may possibly be an intermediate form between these two 

cell types (Figure 44D).   

 

Foxtail Barley was noted to have an abundance of fairly weakly developed 

crenate forms (Figures 45 A, B, D, and E) as well as some smaller rondels and a few 

keeled phytolith short cells (Figure 45C). 

 

Reed Canarygrass contains an abundance of keeled phytoliths (Figures 46 A-E 

and H); there are also weakly developed crenate short cell phytoliths (Figures 46 I and 

K).  The crenate phytoliths occur with keeled short cell forms (Figure 46 K) as well as 

some much shorter crenate forms (Figure 46 I).  Generally, adjusting the microscope to 

focus through crenate phytoliths, a faint purple band is visible along the long axis of the 

cell (Figures 42 F, 44 B, and 45 B); the presence of this band in some shorter near-round 

forms (disc or rondel?) (Figure 46 I) suggests that these may be another crenate variant or 

related form even though there is no edge development.  However, not all of these 

apparent rondels have the purple band (Figures 46 F and 45 C), so the proper 

identification of these plain disks—which were only observed in Pooideae species in this 

study, remains uncertain.  These rondels may represent a distinct short cell phytolith 

form, a large conical variant, or perhaps an intermediate morphologic type between 

conical and crenate forms. 
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Figure 42.  Phytoliths prepared from Prairie Junegrass (Koeleria macrantha (Ledeb.) 
Schult.).  The predominant diagnostic phytoliths present are the crenate form.  Bar scales 
are 20 microns. 
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Figure 43.  Phytoliths prepared from Western Wheatgrass (Elymus smithii (Rydb.) 
Gould) showing predominantly crenate (B-D, F and H) and keeled (A, C, D) short cell 
phytoliths.  Bar scales are 20 microns. 
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Figure 44.  Phytoliths prepared from Canada Wildrye (Elymus canadensis L.) showing 
predominantly crenate (B) and round disc-shaped (A, C, and E) short cell phytoliths.  Bar 
scales are 20 microns.
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Figure 45.  Phytoliths prepared from Foxtail Barley (Hordeum jubatum L.) showing 
predominantly crenate short cell phytoliths (A-B and D-E).  Bar scales are 20 microns. 
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Kentucky Bluegrass, a non-native species, contains well-developed crenate short 

cell phytoliths with deep edge convolutions (Figures 47 H-I).  Keeled phytolith short cells 

are also present (Figure 47 E) as well as pyramidal phytoliths (Figure 47 D) and mixtures 

of keeled and pyramidal phytoliths (Figure 47 F).  Most interesting is the gradational 

series of phytoliths in Figure 47 A which shows the range of forms from keeled through 

pyramidal short cells in one small epidermal area.  These various short cell forms in such 

close proximity suggest that these different distinctive short cell morphologic types 

established and described in the literature may actually be a family or series of related 

particle types.  In the specimens examined, all of these short cell forms are in the 

Pooideae subfamily as previously reported by other researchers (c.f. Twiss et al. 1969, 

Fredlund and Tieszen 1994).  

 

The next two specimens in Table 5, Needle-and-Thread Grass and Indian 

Ricegrass, are both members of the Stipeae tribe of the Pooideae subfamily.  Although 

stipa short cell phytoliths were expected from the Needle-and-Thread Grass specimen, 

none were observed in the scanned slides.  The Needle-and-Thread Grass specimen did 

show a number of keeled short cell phytoliths (Figure 48 A) and mixtures of keeled and 

conical short cell forms (Figure 48 C) as well as weakly formed crenate cells (Figure 48 

E).  The epidermal section in Figure 48 B includes weak “lined” crenates and rounder 

unlined specimens or rondels, as well as keeled, conical, and pyramidal short cell forms.   

A concentration of the rounder forms is in Figure 48 D.  The phytoliths in Figure 48 F are 

another (“true”) form of rondel.  On the other hand, Indian Ricegrass showed less short 

cell variety, primarily consisting of the stipa short cell form (Figures 49 B and C) and  
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Figure 46.  Phytoliths prepared from Reed Canarygrass (Phalaris arundinacea L.) 
showing predominantly keeled (A-E and H) and crenate (I and K) short cell phytoliths.  
Bar scales are 20 microns. 
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Figure 47.  Phytoliths prepared from Kentucky Bluegrass (Poa pratensis L.) showing 
keeled, conical and pyramidal forms (A, D, and F) and crenate (C and G-I) short cell 
phytoliths.  Bar scales are 20 microns. 
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also including a few keeled specimens (Figures 49 A and D).  The third through fifth 

stipa cells on the bottom row (Figure 49 D) have a pale purple line down the middle, and 

the third specimen actually has two indentations on the upper side which might make it 

more correctly identified as a crenate form rather than true stipa. This variation may be 

another indication that the short cell phytolith forms within individual species of the 

Pooideae subfamily are actually a continuum with inter-morphological type gradations 

present between the clearly defined and established morphological types in the literature.   

 

Next, two species of subfamily Arundinoideae were evaluated (Red Threeawn 

and Purple Threeawn).  These and the remaining specimens discussed in the following 

paragraphs are C4 metabolic species whereas the specimens previously discussed were 

all C3 plants (Pooideae).  In moving to the C4 species, a marked change in short cell 

phytolith form is observed with both Threeawn species being predominantly bilobate 

forms (Figures 50-51).  Considerable variation in the size and relative width and length of 

the shaft connecting the lobes is present.  The polylobate form was also observed in a 

very limited quantity (Figure 51 E). 

 

Phytoliths were isolated from three specimens of the Panicoideae subfamily:  Big 

Bluestem (Figures 52-53), Little Bluestem (Figure 54) and Indiangrass (Figure 55).  In 

Big Bluestem, we see the Panicoid lobate form (Figure 52 B), varieties of the so-called 

crosses (Figure 52 C), as well as several polylobate forms (Figures 53 D-E) (also some 

specimens in Figures 52 A, B, 53 B, and C).  Little Bluestem also demonstrated Panicoid 

lobate, polylobate, and crosses (Figure 54) as well as one specimen of an odd untyped  
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Figure 48.  Phytoliths prepared from Needle-and-Thread (Hesperostipa comata (Trin. & 
Rupr) Barkworth).  Bar scales are 20 microns. 
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Figure 49.  Phytoliths prepared from Indian Ricegrass (Oryzopsis hymenoides (Roem. & 
Schult.) Ricker).  Bar scales are 20 microns. 
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variant (Figure 54 F).  Indiangrass likewise showed the same three basic Panicoid 

phytolith short cell forms although fewer polylobates were observed (Figure 55). 

 

The final botanical reference specimen, Buffalograss, is from the subfamily 

Chloridoideae--plants that are adapted to thrive in a hot dry climate.  The predominant 

short cell phytolith form in these plants is referred to as “saddles” (Figure 56).  

Isolation of these phytolith short cells from known botanical specimens enables the 

microscopist to become proficient at identifying the various morphologic types so that 

accurate tabulations can be made from unknown samples.  Overall, the basic typology, 

originally defined by Twiss et al. (1967) and illustrated by others (Fredlund and Tieszen 

1994) was used for identifications in this current research.  The cool season C3 grasses of 

the Pooideae contain one or more of certain short cell types (referred to as keeled, 

conical, rondel, crenate, and pyramidal); in addition, some members of the C3 Stipeae 

tribe have what is designated as the “stipa” form.  The phytolith short cell “saddle” form 

appears to be unique to the Chloridoideae subfamily of grasses which is adapted to very 

hot dry climatic conditions.  The so-called Panicoid forms (Panicoid lobates, crosses, and 

polylobates) occur in specimens of the Panicoideae subfamily of Poaceae, which are the 

hot season grasses with higher water requirements than the Chloridoideae specimens (i.e., 

Panicoideae thrive in a hot moist climate).  For convenience, in the remainder of this 

study, these forms will be referred to as the Pooid, Panicoid, and Chloridoid forms.  The 

different cellular architecture of these three grass subfamilies as evidenced in these 

distinctive short cell phytolith forms is a reflection of their metabolism and the climate in 

which they have adapted to thrive.  Thus, when preserved as a soil phytolith record, 
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Figure 50.  Phytoliths prepared from Red Threeawn (Aristida longiseta) showing a 
considerable variation of predominantly dumbbell form phytoliths (A-E).  Bar scales are 
20 microns.
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Figure 51.  Phytoliths prepared from Purple Threeawn (Aristida purpurea Nutt.).  Bar 
scales are 20 microns. 
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Figure 52.  Phytoliths prepared from Big Bluestem (Andropogon gerardii Vitman) 
showing crosses (C), panicoid lobate (B), and polylobate (A and D (second from left) 
short cell forms.  Bar scales are 20 microns. 
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Figure 53.  Phytoliths prepared from Big Bluestem (Andropogon gerardii Vitman) 
showing cross, lobate, and polylobate (E) short cell phytolith forms.  Bar scales are 20 
microns.
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Figure 54.  Phytoliths prepared from Little Bluestem (Schizachyrium scoparium (Michx.) 
Nash) showing panicoid lobate, polylobate (B-C), and cross-shaped (D and I-L) short cell 
phytoliths.  Bar scales are 20 microns. 
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Figure 55.  Phytoliths prepared from Indiangrass (Sorghastrum nutans (L.) Nash) 
showing panicoid lobate (B-D), polylobate (E), and cross-shaped (F-H)short cell 
phytoliths.  Bar scales are 20 microns. 



  

 121   

 

Figure 56.  Phytoliths prepared from Buffalograss (Buchloe dactyloides (Nutt.) Engelm.) 
showing saddle-shaped short cell phytoliths.  Bar scales are 20 microns. 
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the relative frequency of these various short cell forms can be used to interpret the 

prevailing climatic condition (temperature and moisture) that was present when the 

vegetation was actively growing.   

 

 

Panicoid and Saddle Phytolith Imposters 

 

One problem was encountered in examining and tabulating phytoliths during 

scans of the Manning Tallgrass Prairie slides that deserves special mention.  There is a 

phytolith form present at the Manning Tallgrass Prairie site that initially superficially 

appears to a Panicoid lobate form (Figure 57).  These phytoliths are narrower, and often 

have a significantly longer shank than regular Panicoid lobate phytoliths (see Figures 57 

A and B).  Mulholland (1989:506) suggested that these long-shank forms are found in 

Aristida.  Due to this different morphology, these bilobate forms are clearly discernable 

from Panicoid lobate phytoliths once one is aware of the need to look for them.  The 

potential problem in phytolith counting enters the picture when these long shank 

phytoliths are broken (Figures 58 and 59).   

 

As these long-shanked lobate phytoliths appear to be relatively fragile, they often 

appear in slide preps in fragmentary condition.  It is generally recommended that each 

partial lobate specimen be counted as ½ particle in the tabulation.  Thus, the fragmentary 

Aristida lobate forms such as those shown in Figure 58 would potentially often be 

counted with lobate type C4 phytoliths. The longer shank fragments on these particular 
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specimens are an indicator that these phytoliths are distinct from normal Panicoid lobates 

as defined by Twiss et al. (1969) and reiterated Fredlund and Tieszen (1994).  The real 

potential problem occurs when the shank is nearly or completely broken off (Figure 59).  

In these cases, one could potentially misidentify the fragmentary lobate particle as a 

saddle form (i.e., Chloridoid phytolith) which could significantly skew the resulting 

phytolith climatic data.  Awareness of the presence of potential imposter forms, being 

aware of asymmetry in the particle and presence of a small shank portions, and particle 

rolling to examine the 3-D shape of the particle in question are all effective means to help 

avoid fragmentary phytolith misidentifications.  This potential for misidentification is the 

reason why Canada Balsam was used as the slide mounting media in this study (Figure 

41). 

 

The variety of morphologic forms shown in these three figures (57-59) indicates 

that many species may be represented in these illustrations, so an identification of 

specific plant origin for all of these specimens is not being claimed.  However, the need 

to be aware of the possibility of confusing these lobate fragments with saddle 

(Chloridoid) forms should be kept in mind when assessing prairie phytolith morphology.  

All phytoliths illustrated in Figures 57-59 are from the 0-5 cm surface soil samples at 

Manning Tallgrass Prairie.  Cummings (1996) likewise recommended caution when 

examining and categorizing bilobate form phytoliths.  On the other end of the “confuser” 

or “imposter” phytolith spectrum, a bilobate form has been reported from Danthonia 

spicata which is a Pooid (Brown 1984:Figure 1:VI:23C)—again indicating that the 

boundaries between phytolith morphology are not always clear-cut between the various  
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Poaceae subfamilies (i.e., redundancy is an ongoing issue).   

 

Figure 57.  Panicoid imposter forms, Manning Tallgrass Prairie (0-5 cm surface soil 
samples).  True panicoid lobate forms are on the left in Figures A and B, with the 
probable Aristida forms on the right.  The other images are all non-Panicoid forms.  (Bar 
scales are 20 microns.) 
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Figure 58.  Various apparent long shank lobate forms, broken with partial shank 
remaining.  (Bar scales are 20 microns.) 
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Figure 59.  Various broken apparent lobate forms that at times superficially look more 
like saddles.  (Bar scales are 20 microns.) 
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Research Objective 1:  Methodological Improvements 

 

 The laboratory method detailed in the previous chapter included a number of 

modifications and recommended changes from established protocols.  This method is felt 

to be an optimized quantitative phytolith recovery procedure for a number of reasons. 

 

This method as presented enables retention and recovery of larger particles that 

are part of the phytolith/biogenic silica fraction that would otherwise be removed via 

initially sieving the soil sample with a 270 mesh sieve (i.e., > 50 micron particles).  In 

addition to sand, sieving removes larger biogenic silica particles of interest (such as large 

phytoliths, articulated phytolith skeletons, and longer sponge spicules).  By leaving the 

biogenic silica fraction intact, the sand fraction does not need to later be separately 

evaluated or processed for phytolith recovery.  The lower particle density (relative to 

sand) and non-spherical shape of the larger phytoliths helps them to remain suspended 

longer while the sand particles settle when using the preceding technique of decanting the 

silt and clay fractions away from the sand fraction before isolating the silt fraction. 

 

The vacuum filtration using stacked ashless filter paper was implemented to speed 

up the overall silt recovery process.  The total volume of suspended silt solution (about 

10+ liters per sample [depending on initial soil sample size]) remaining after decanting 

from could be filtered much more rapidly than trying to filter the entire suspended silt 

effluent.  Allowing the silt to pre-settle minimized the amount of particulate processed by 

filtration. 
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Thermal treatment of the isolated silt fraction does allow use of the preceding 

filtration step as the ashless paper is removed by the muffle furnace treatment.   However, 

thermal treatment for organic removal—very advantageous in the procedure as presented 

here—may not be appropriate for studies involving phytolith micrometrics as some 

distortion of phytoliths reportedly may occur.   

 

The thermal treatment of the silt fraction does necessitate the need to disaggregate 

the silt fraction in order to be able to extract the phytoliths (either mechanically, or by 

allowing time to loosen up in the flotation solvent); this added step cannot be 

circumvented when using this procedure.  This is the primary draw back of this new 

method (in addition to the required longer settling times). 

 

Zinc bromide was selected for use as the heavy density liquid in this study as it 

provides excellent quality phytolith preparations.  Use of reagent grade zinc bromide in 

aqueous solution was effective.  The only reason to use zinc bromide in hydrochloric acid 

may be that the acid may better dissolve the other calcium salt contaminant impurities 

when using technical grade reagents.  When using reagent grade zinc bromide, there is no 

apparent benefit to adding HCl. Due to toxicity issues, use of zinc bromide solution may 

be inadvisable due to safety concerns when the analyst only possesses rudimentary 

chemical laboratory skills.  Use of recycled zinc bromide solution is inadvisable when 

processing phytolith samples to use for radiometric dating although new reagent grade 

zinc bromide should be readily useable in sample preparations destined for dating 

purposes.   
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The silt fraction should be dried prior to adding the heavy liquid for phytolith 

flotation.  Otherwise, depending on the ratio of sample size (i.e., total residual water 

content in the sample) to volume of heavy liquid used for flotation, the water in the 

sample may dilute the heavy liquid to the point that the densest phytoliths (2.30 g/cm3) 

may not be recovered.  Using excess heavy liquid for the flotation would minimize if not 

eliminate this dilution problem; however, the expense of the heavy liquid is such that 

most analysts tend to be quite frugal with their reagents23.   

 

To demonstrate this density problem, a simple experiment was conducted.  Using 

2.348 g/cm3 density zinc bromide solution, a series of volumetric dilutions were made 

with ultrapure water to simulate the effect of residual soil water on the effective density 

of the zinc bromide solution when mixed with a soil or silt sample in order to recover 

phytoliths.   The experiment was conducted using 10 ml volumetric flasks, a volumetric 

pipette for the water, a transfer pipette for the zinc bromide, and a four place balance. 

Although the soil samples used in this dissertation ranged from 25 to 100 grams, a more 

common sample size reported in the phytolith research literature seems to be 5 grams.  

Thus, a 5 gram sample weight was used for these experimental calculations.  Although 

the volume of zinc bromide added tends to vary in normal sample processing (i.e. enough 

to wet everything and have room to float phytoliths free of the matrix, but not so much 

solvent as to be excessive or wasteful), a total liquid volume (zinc bromide stock solution 

plus simulated soil water) was set at 10.0 ml and held constant for the purposes of this 

experiment.  The water volume used and the sample weights are in Table 6.  As can be 

                                                 
23 The cost of 2.35 g/cm3 density reagent grade zinc bromide solution is more than $1.00 per milliliter.  
This reagent expense encourages solvent recycling. 
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seen in the resulting density data (Figure 60) the dry soil sample maintained an effective 

zinc bromide solution density of 2.348 g/cm3.  However, as little as 0.5 ml of water 

present in the sample matrix (i.e., 10% soil moisture in a 5 gram soil or silt sample) is 

enough to lower the zinc bromide below 2.30 g/cm3, and the drop off continues in a linear 

fashion (Figure 60).  Of course, things are never as simple as they seem; for one thing, 

soluble soil minerals may serve to help mitigate this impact by increasing flotation 

solution density and offsetting at least part of this effect.   

 
 

In practice, there are several simple ways to help mitigate the negative impact of 

potential low phytolith recovery due to this solution density issue, including:  

 

• to use more flotation solution (i.e., add enough high density liquid to the 

sample dilute out the soil water at the time of extraction thus raising the  

total solution density to more than 2.30 g/cm3),  

• to use a higher initial density of zinc bromide solution so the sample’s 

inherent water does not dilute the mixture below 2.30 g/cm3 (being careful 

not to approach too closely to the density of sand (2.65 g/cm3)), or  

• to use sequential additions of the heavy liquid to the soil sample so that the 

resulting solution density of the pooled decanted solution is greater than 

2.30 g/cm3. 
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Table 6 
Experimental Data from Simulating the Effect of Soil Water on Zinc Bromide Density 

 
Sample 

No. 
Empty 10 ml 
Volumetric 
Flask plus 
Stopper 

Weight (g)24 

ml of Water 
placed in  

10 ml 
Volumetric 

Flask 

Wt. Flask + 
Water Aliquot 
made to 10.0 

ml with ZnBr2 
solution (g) 

Density of 
Resulting 
10.0 ml 
Mixture 
(g/cm3) 

Equivalent  
Soil Moisture 
Concentration 
in this 5.0 g 

Sample (Wt %) 
      

0 43.4607 0 66.9424 2.348 0% 
1 43.5994 1.00 65.7809 2.218 20% 
2 43.9702 2.00 64.8564 2.089 40% 
3 42.9374 3.00 62.4875 1.955 60% 
4 43.3919 4.00 61.7201 1.833 80% 

 

 

 

 
 

 

 

 
 
 
 
 
 
 
Figure 60.  Effect of soil water on zinc bromide flotation solution density (weight 
water/weight dry soil). 
 
 

Considering the expense of the zinc bromide solution, the possible dissolution of 

other soil minerals, and the existence of intermediate density particles (i.e., 2.30 g/cm3 < 

other particles < 2.65 g/cm3), and the fact that thermal removal of the organic matter can 

                                                 
24 Each flask was weighed in a labeled 50 ml beaker (the beakers served as containment in case of spillage, 
and stabilized the flasks to prevent them from tipping over). 
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increase phytolith density from 2.02 to 2.26 (Jones and Milne 1963:213), I concluded it 

was appropriate for purposes of quantitative recovery to isolate phytoliths from an oven 

dried silt matrix (i.e., 0% water).  In part, this decision was supported by the fact that 

following carbonate removal before flotation—the samples were wet [i.e., saturated at the 

very least] in the centrifuge tubes.   The down side of this decision to remove one 

variable from the processing procedure is that additional time is required for the sample 

to “loosen up” and disaggregate in the zinc bromide solution following oven drying.   An 

upside is that a dry organic-free silt fraction sample weight is obtained.  When thermal 

ashing is used to remove organic material, making certain the soil water does not dilute 

the heavy liquid is even more important to help maximize phytolith recovery. 

 

This probable procedural error (potentially not recovering denser phytoliths when 

floating wet samples) is pointed out in some detail so other researchers can make an 

informed decision regarding sample soil/silt water content and phytolith recovery.  The 

analyst can oven dry a duplicate sample at this step in their procedure and determine what 

adjustments, if any, are needed in the flotation protocol.  To my knowledge, this 

laboratory error potentially affecting recovery of the densest phytoliths has not been 

previously addressed in the literature. 

 

Use of ASTM Type A water helps to minimize ionic contamination in recycled 

zinc bromide (recycling involves filtering the dilute zinc bromide solution and then 

evaporating the excess water until the target density is achieved). 
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Although there are many assumptions involved with Stoke’s law (the primary 

assumption relative to phytolith research is the assumption of sphericity; many phytoliths 

are more tabular than spherical), the established phytolith isolation methodology in the 

literature bases the heavy liquid separation on the density differences of particles (i.e., 

phytolith vs. sand), then proceeds to use the sand density to calculate the needed settling 

times to obtain various size fractions.  If the phytoliths of specific interest in one’s 

research project are large, this would not cause a problem.  However, if dealing with 

smaller reference phytolith specimens—particularly towards the lower end of the particle 

density spread—this can cause potentially major difficulties and poor diagnostic 

specimen recovery.  If one lengthens the time of clay settling the small phytolith recovery 

will be enhanced. Then, by filtering all of the silt fraction decants (which may include 

excess clay if prolonged clay settling is allowed), all phytoliths included with the silt 

fraction are recovered while the actual clay particles pass through the ashless filter pack.  

The filtrate passing through the filter can be examined for recovery information, and 

refiltered if necessary.  This change thus potentially results in much better phytolith 

recoveries in various research situations.  One should be aware of idealized phytolith 

particle settling times when using the laboratory protocol outlined in this dissertation. 

 

The phytolith literature varies in defining the silt fraction as 5-50 microns (the 

engineering definition) and 2-50 microns (the soil science definition).  Given the 

potential to lose small lower density phytoliths in the separation process, universal 

adaptation of the conservative 2-50 micron silt fraction definition would seem to be 

prudent.  Again, if one’s research is studying bulliform phytoliths, this issue is not 
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relevant.  However, if one is looking at phytoliths in the lower size range of the silt 

fraction size range (~2-5 microns), one should be aware of the potential to not be 

completely recovering the smaller phytoliths by current established published methods. 

 

As a convenient example, Jones and Beavers (1964a and 1964b) reported particle 

size distribution of phytoliths in specimens of Big Bluestem and Reed Canary Grass 

prepped by thermal ashing.  Their data is reproduced in Table 7, with the values for 2-5 

micron amorphous silica being calculated from their data and included in the table.  

Clearly, in some cases, there is a significant amount of amorphous silica in the fine (2-5 

μ) fraction—while more than half of the soil total amorphous silica may be in the clay 

fraction.  Although the clay fraction is predominantly small nondescript fragments, the 

fine silt fraction does contain some diagnostic biogenic silica specimens.   While is it 

most important to always routinely process one’s samples in an identical manner, it is 

also important to not accidentally and unknowingly skew the data by missing very small 

(or very large) specimens of interest. 

 

The use of cheap, readily available, and potentially disposable 2-liter plastic 

(soda) bottles for settling containers and other processing steps is a major opportunity to 

 
Table 7 

Weight % Amorphous Silica in Two Grasses  
by Size Fraction (Jones and Beavers 1964a:414) 

 
 

 

 
> 50 

microns 
20-50 

microns
 5-20 

microns 
 2-5 

microns 
< 2 

microns
      
Big Bluestem 19.8% 13.5% 29.2% 13.6% 23.9% 
Reed Canary Grass 19.8%   7.3% 18.8%   3.0% 51.1% 
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not only minimize costs but to also make saving various fractions until the project is 

completed more palatable—especially when using larger size soil samples.  The 2-liter 

bottles pour easily with no drip, the shoulder helps retain solids during decanting, they 

are easy to seal and shake (or store), they do not break when dropped, they are readily 

storable, and they can be discarded or recycled when appropriate.  (In this researcher’s 

laboratory, bottles are not reused between projects, between sites, and seldom if ever 

between samples—and bottles are never reused if samples have dried in them.) 

 

Likewise the use of quart jars for multiple steps (from settling and decanting 

containers to bottles to oven dry to obtain sample or fraction weights) without ever 

having to transfer the samples provides a number of time-saving and cost-saving benefits 

as well as minimizing the number of sample transfers. 

 

The use of the ashless filter pack (i.e., a stacked ashless filter paper series of 

different porosity) enables faster processing and better recovery of residual fine silt 

fraction still suspended in water—which consists of the finer particles and/or lower 

density particles.   

 

These laboratory procedures result in cleaner phytolith fractions than I have 

observed in most other laboratories where I have been able to observe phytolith 

processing results.  The extensive photographs were included to help document and 

transfer this new protocol information. 
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Although not included in the preceding chapter, during the course of this research 

an improved procedure for preparing soil samples for delta 13 analysis was developed 

(Sudbury 2007:29-32).  For convenience, this basic information is included as Appendix 

F at the end of this dissertation. 

 

The stop gauge added to the soil probe for field sampling is a very convenient and 

affordable means of obtaining a constant cross-sectional area, depth, and volume soil 

samples.  Although a spoon works for collecting samples, a known volume probe sample 

offers the potential of better reproducibility, control, and permits all of the soil sub-

samples to uniformly contribute to the final composite soil sample. 

 

Quantitative phytolith recovery takes much longer than semi-quantitative or 

qualitative recovery.  Although the steps described here to execute quantitative recovery 

take longer (calendar time) than alternative procedures, they actually require less hands 

on analytical time per sample than established methods if applied for quantitative 

phytolith recovery from soil samples.  It is for these reasons—improved data quality and 

efficiency—that these method alterations were developed during this project, and are 

presented here (additional method comments are included in Appendix D).  

 

 

Discussion of Laboratory Procedure and Sampling Enhancements - The 

suggested improvements made in the laboratory phytolith isolation protocols were 

designed to result in efficient quantitative phytolith recovery from relatively large soil 
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samples (25-100 g)25.  Depending on phytolith preservation at any given site, this larger 

soil sample size enables recovery of an adequate quantity of phytoliths for radiocarbon 

dating as well as climatic interpretation based on Poaceae phytoliths.  Data from other 

particle forms (including diatoms, sponge spicules, and charcoal) is also present in the 

same isolate and contributes to the interpretable environmental data.  Several serious 

discrepancies in the phytolith literature were observed during the course of this 

research—and recommended method improvements developed—including:  

 

• the silt particle size definition was inconsistent (the recommended change is to 

recognize three size fractions:  fine (2-5 microns), medium (5-20 microns) and 

coarse (20-50 microns) (pages 23-24)), 

• the apparent historical tendency to base phytolith settling times on sand density 

(representative calculated values are shown of the settling times for different size 

and density particles [Table 4, page 77]26 ; although consistent times are the key 

to reproducibility within any given study, other laboratory protocols potentially 

lose smaller and/or less dense biogenic silica from their phytolith isolates; 

conservative settling times are recommended.  A revised order of serial fraction 

decants followed by filtration to recover the total silt fraction is the method 

recommended to overcome these potential losses),  

                                                 
25 Enough sample is needed to adequately address the research topic at hand.  It is particularly beneficial to 
process larger size samples in high sand content soils.  
 
26 Base the settling time determined by Stoke’s Law on the correct minimum target particle size and the 
correct particle density range.  Use target phytolith density rather than sand density in the calculation. 
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• adding heavy density liquid to wet soil samples potentially dilutes the heavy  

liquid below the effective upper phytolith density range (i.e., if the sample 

contains 10% water, 2.35 g/cm3 zinc bromide would possibly be diluted to less 

than the 2.30 g/cm3 density target (pages 129-132))27.  Several potential 

techniques to circumvent this problem were noted; for this current research, 

floating phytoliths from totally dry silt fractions was selected as the method of 

choice. This technique is somewhat slower in that the silt must disaggregated 

again before phytolith flotation; however, this procedure resulted in cleaner and 

more complete silt-size phytolith fraction recovery), and  

• performing phytolith morphologic counts on non-pure phytolith isolates (i.e., 

prepared sample fractions with significant non-biogenic silica content)28 leads to 

incorrect recovery information (phytolith wt% concentration in soil) and 

contamination interferences during counting.   In order to circumvent this 

problem, multiple flotations, multiple rinses of the isolate, using large enough 

starting sample size, minimizing losses, repetitive separations, and completely 

disaggregating the sample are can be utilized.   

 

                                                 
27 The original phytolith density information provided by Kanno and Arimura (1958) and Jones and 
Beavers (1963) was obtained by analysis of coarse silt fraction phytoliths (20-50 μ), yet most 
climatic/environmental interpretations are based on short cell phytoliths which populate the medium silt 
fraction (5-20 μ).  Although the phytolith density from these different phytolith types and sizes (i.e., from 
cells with different functions in the parent plant) may be the same, to simply assume the density is uniform 
is risky at best.  A conservative separation method (i.e., making certain that the effective flotation solution 
density remains above 2.30 g/cm3 [see discussion involving Table 6 and Figure 60]) is one way to help 
minimize potential phytolith loss until the actual short cell phytolith density range is determined. 
 
28 Phytolith isolates previously observed in some reports and communications by other researchers include 
significant clumps of clay containing phytoliths and other particles that potentially may obscure smaller 
phytoliths thus skewing the resulting particle count results.   
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The laboratory techniques section in the Literature Review chapter (pages 30-37) 

and in the Materials and Methods chapter regarding laboratory methods used in this study 

(pages 71-99) clearly discuss and illustrate the laboratory methods used during this 

research.  A number of the basic improvements to the standard method protocol 

developed during this study include:  

 

• processing larger soil samples, oven dried, 

• retaining the larger biogenic silica particles with the silt fraction by repeatedly 

decanting the clay and silt away from the sand rather than sieving out the sand 

fraction, 

• using conservative settling times (based on 1.50 g/cm3 density phytoliths) to 

decant the clay from the silt, and allowing the decanted liquid to settle in order to 

recover the entire silt fraction, 

• vacuum filtering the large volume of decanted silt solution to improve the speed 

of the silt particulate fraction recovery, 

• removing organic material (including the ashless filter paper) by thermal ashing, 

• using flotation to separate phytoliths from dry silt in order to keep the solvent 

density at the effective 2.35 g/cm3 target rather than diluting it with soil water 

(additional disaggregation is necessary due to this procedural modification).  

• Quart canning jars and 2-liter plastic soda bottles were readily incorporated into 

the laboratory processing protocols, and provide a significant cost savings in 

operating supplies in addition to making quantitative processing and recovery 

simpler while helping to minimize transfer losses.  Use of reagent grade reagents 
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is also highly recommended. 

 

The resulting final laboratory method yielded quantitative phytolith recoveries 

that were effective for performing the detailed phytolith studies on the control prairie and 

buried soil site A horizons analyzed and discussed in this dissertation.  Depending on 

one’s research objectives, quantitative recovery is a viable option, and these various 

method improvements can be readily implemented by other laboratories.  

 

An improved processing method for carbonate removal prior to δ-13 analysis was 

also developed.  All processing for one sample was performed in a single sample 

container which minimizes potential sample transfer losses [Appendix F]. 

 

In addition to these enhancements in laboratory protocol, a very simple sample 

probe modification that enables repetitive controlled depth/volume soil sampling of 

surface prairie soil samples was implemented (pages 63-65).  This tool was also used to 

collect individual samples and to prepare composite soil samples.  Soil sample 

reproducibility and homogeneity are both important.    

 

Careful sample collection, preparation, and skillful execution of the laboratory 

procedure are the key first steps to obtaining quality data in any application.  As the 

resulting data cannot be any better than the sample or sample fraction, so one should not 

allow the field sampling technique or the laboratory methodology to become the limiting 

quality factor in the overall analysis.  
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Research Objective 2:  Reference Modern Prairie Soil Sample Phytolith Signatures 

 

Three different botanical sites serve as modern prairie controls in this phytolith 

study.  These sites are representative of the three main prairie types found in Oklahoma: 

• Tallgrass Prairie (Manning Tallgrass Prairie, Payne County),  

• Dempsey Mixedgrass Prairie (located on the Thurmond Ranch in the Dempsey 

Divide area, Roger Mills County), and  

• Shortgrass Prairie (the Bull Creek Site locale in Beaver County).   

The location of these three sites is shown in Figure 61.  These three sites are comprised of 

typical indigenous prairie vegetation which differ from each other due to their local 

temperature and moisture regimes (Table 8) resulting in the three different prairie types 

(Figures 5 and 7) .  The reference prairie sites will be discussed in the above order, with 

the most extensive investigative work having been conducted at Manning Prairie near the 

end of this project.   

 

Figure 61.  Oklahoma map indicating the location of the prairie control reference sites 
discussed in this report.  (Base map from http://www.okhistory.org/outreach/map.jpg.)  

http://www.okhistory.org/outreach/map.jpg�
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As far as site ecogeography, the following average modern data for geomorphic 

province, annual number of frost free days, annual normal precipitation, and precipitation 

effectiveness were gleaned from Tyrl, Bidwell, and Masters (2002:7-12) for the five sites 

studied in this project (Table 8). 

 

Reference botanical specimens were collected from Manning Tallgrass Prairie 

and the Dempsey Mixedgrass Prairie at Thurmond Ranch.  Phytoliths were quantitatively 

isolated and recovered from surface A horizon soil samples collected at all three prairie 

 
 

Table 8 
Study and Control Site Ecogeography (Tyrl, Bidwell, Masters, and Jansen 2002)  

 

Site Name Geomorphic 
Province 

Annual 
No. Frost 
Free Days 

Normal 
Precipi-
tation 
(cm)29 

Precipita-
tion 

Effective-
ness30 

Prairie 
Control 
Site31 

Buried 
Soil 
Site 

       
Bull 

Creek High Plains 182-189 51-56 < 32 % SG X 

Dempsey 
Divide 

Western 
Redbed Plains 196-203 56-61 32-48 % 

[~34] MG  

Carnegie 
Canyon 

Western 
Sandstone 

Hills 
203-210 71-76 32-48 % 

[~44]  X 

Manning 
Prairie 

Northern 
Limestone 

Cuesta Plains 
203-210 86-91 48-64 % 

[~55] TG  

Lizard 
Site 

Claremore 
Cuesta Plains 189-196 91-97” 48-64 % 

[~60]  X 

                                                 
29 Average regional rainfall for the interval 1961-1990 originally reported in inches (in ascending order:  
20-22”, 22-24”, 28-30”. 34-36”, and 36-38” [data presented in the table is rounded to the nearest cm]) (Tyrl 
et al. 2002:9). 
 
30 Defined as the ratio of precipitation to evaporation in a 24 hour period (Tyrl et al. 2002:7, 10). 
 
31 SG = Shortgrass Prairie, MG = Mixedgrass Prairie, and TG = Tallgrass Prairie. 
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reference sites.  Short cell phytoliths from these surface soil samples were tabulated as 

described in the materials and methods section in order to evaluate climatic indicators 

present in these modern prairie soil environments. 

 

 

Manning Tallgrass Prairie – The small relict Tallgrass Prairie remnant known as 

Manning Prairie is located east-northeast of Cushing, in Payne County, Oklahoma.  This 

13.4 hectare native pasture (Figure 14) currently serves as a hay meadow which is 

regularly cut except in times of drought.  This site is known to be a virgin (i.e., never 

plowed) Tallgrass Prairie.  The sandstone outcrops present on the eastern end of the site 

may indicate one reason that the acreage remains unplowed.  The west end of the site was 

selected for reference sampling in this study as the soil column was deeper before 

sandstone fragments were encountered (20-45 cm deep).  Three separate visits to 

Manning Prairie were conducted to identify botanical species present at the site; the 

results from those surveys are presented in Table 9. 

 

In a photograph of sampling template location 1 (Figure 14), the center of the 

sampling area is marked by a white bucket and some of the orange flags at the 20 

sampling locations are visible (Figure 11).  Due to the ongoing drought when the initial 

soil samples were collected, prairie hay at Manning Prairie was not cut in 2006.  The two 

sample locations were selected along the top of the gently convex ridge to help minimize 

potential effects on the phytolith data from being down-slope and potentially subject to  
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Table 9 
Species Identified at Manning Tallgrass Prairie (2006-2009) (page 1 of 3) 

 
Genus species Common Name  Date32

 
Achillea millefolium L. Yarrow 1 
Aegilops cylindrica L.   Jointed Goatgrass 3 
Agrostis hyemalis (Walter) Britton, Sterns & Poggenb. Winter Bentgrass 2 
Allium canadense L. Meadow Garlic 1, 2 
Ambrosia psilostachya DC. Wester Ragweed 3 
Amorpha canescens Pursh Leadplant 1, 3 
Andropogon gerardii ssp.gerardii Big Bluestem 3 
Andropogon ternarius Michx. Splitbeard Bluestem 3 
Andropogon virginicus L. Broomsedge Bluestem 3 
Antennaria neglecta Greene Field Pussytoes 1 
Apocynum cannabinum L. Indianhemp 2.3 
Aristida oligantha Michx. Annual Threeawn 3 
Aristida purpurea Nutt. Perennial Threeawn 3 
Asclepias stenophylla A. Gray Slimleaf Milkweed 2 

Asclepias viridis Walter Antelope-horn 
Milkweed 

2 

Aster ericoides L. Heather Aster 3 
Baptisia australis (L.) R.Br. Blue Wild Indigo 1 
Baptisia spp. Wild Indigo 3 
Baptisia x bushii Small (pro sp.) [bracteata × 
sphaerocarpa] 

  1 

Baptisia x variicolor M. Kosnik, G. Diggs, P. 
Redshaw & B. Lipscomb [australis × sphaerocarpa]  

  1 

Bothriochloa laguroides ssp. torreyana Silver Bluestem 3 
Bouteloua curtipendula (Michx.) Tort. Sideoats Grama 3 
Bouteloua gracilis (Willd. Ex Kunth) Lag. ex Griffiths Blue Grama 3 
Bouteloua hirsuta Lag. Hairy Grama 3 
Callirhoe alcaeoides (Michx.) A. Gray  Light Poppymallow 2 
Callirhoe involucrata (Torr. & A. Gray) A. Gray Purple Poppymallow 1 
Camassia scilloides (Raf.) Cory Atlantic Camas 2 
Carex meadii Dewey  Mead's Sedge 1 
Carex sp. (x3) Sedge 1 
Carya sp. Hickory 3 
Castilleja indivisa Engelm. Indian Paintbrush 1 
Coelorachis cylindrica (Michx.) Nash Rattail Grass 2 
Coreopsis grandifloraHogg ex Sweet Largeflower Tickseed 2 
Coreopsis tinctora Nutt. Plains Tickseed 1 
Dalea purpurea Vent. Purple Prairie Clover 3 

                                                 
32 Botanical survey inventory dates: 1 = April 22, 2009, 2 = May 23, 2009, and 3 = November 2, 2006. 



  

 145   

Table 9 (Cont.) 
Species Identified at Manning Tallgrass Prairie (2006-2009) (page 2 of 3) 

 
Genus species Common Name  Date 

   
Delphinium carolinianum Walter Carolina Larkspur 2 
Desmodium sp. Trefoil 3 
Dichanthelium oligosanthes (Schult.) Gould 
var.scribnerianum (Nash) Gould Scribner's Panicum 2, 3 

Dichanthelium sphaerocarpon (Elliot) Gould Roundseed Panicgrass 2 
Diospyros virginiana L. Persimmon 3 
Echinacea pallida (Nutt.) Nutt. Pale Purple Coneflower 2 
Eleocharis compressa Sull.   2 
Eleocharis sp. Spikerush 1 
Elymus canadensis L. Canada Wildrye 3 
Elymus virginicus L. Virginia Wildrye 3 
Eragrostis spectabilis (Pursh) Steud. Purple Lovegrass 3 
Euthamia gymnospermoides Greene  Texas Goldentop 3 
Festuca paradoxa Desv. Clustered Fescue 2 
Helianthus annuus (L.) Annual Sunflower 3 
Helianthus mollis Lam. Ashy Sunflower 3 
Hypoxis hirsuta (L.) Coville Common Goldstar 1 
Juncus acuminatus Michx. Tapertip Rush 2 
Juncus interior Wiegand Inland Rush 3 
Juncus secundus P. Beauv. ex Poir. Lopsided Rush 2 
Juncus torreyi Coville Torrey's Rush 3 
Juniperus virginiana L. Eastern Redcedar 3 
Lepidium densiflorum Schrad. Common Pepperweed 2 
Leptoloma cognatum (Schult.) Chase Fall Witchgrass 3 
Lespedeza capitata Michx. Roundhead Lespedeza 3 
Lespedeza virginica (L.) Britton Slender Lespedeza 3 

Liatris punctata Hook. Dotted Gayfeather 
(Blazing Star) 3 

Linaria canadensis (L.) Chaz. Canada Toadflax 2 
Marselia vestita Hook. & Grev. Hairy Waterclover 2 
Marshallia caespitosa Nutt. ex DC. Puffballs 2 
Mimosa quadririvalis L. Var. Nuttallii (DC.) Barneby Catclaw Sensitivebriar 2, 3 
Muhlenbergia sp. Muhly 3 
Nemastylis geminiflora Nutt. Prairie Pleatleaf 1. 3 
Nothoscordum bivalve (L.) Britton  Crowpoison 1 

Oenothera linifolia Nutt. Threadleaf Evening 
Primrose 2 

Oenothera speciosa Nutt. Pinkladies 2 
Opuntia macrorhiza Engelm. Prickly Pear 1, 3 
Oxalis violacea L. Violet Wood Sorrel 1 
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Table 9 (Cont.) 
Species Identified at Manning Tallgrass Prairie (2006-2009) (page 3 of 3) 

 
Genus species Common Name  Date 

   
Packera glabella (Poir.) C. Jeffrey  Butterweed 2 
Packera tampicana (DC.) C. Jeffrey  Great Plains Ragwort 1 
Penstemon cobaea Nutt. Cobaea Beardtongue 2 
Penstemon oklahomensis Pennell  Oklahoma Beardtongue 2 
Petalostemon purpureus Vent. var. purpurea  Purple Prairie Clover 3 
Phalaris caroliniana Walter Carolina Canarygrass 2 
Polytaenia nuttallii DC. Nuttall's Prairie Parsley 1 
Populus deltoides Marshall Easter Cottonwood 3 
Psoralidium tenuifolium (Pursh) Rydb. Scurfpea (Prairie Turnip) 1 
Quercus marilandica Muenchh. Blackjack Oak 3 
Quercus stellata Wangenh. Post Oak 3 
Rhus copallinum L. Winged Sumac 2, 3 
Rubus sp. Blackberry 2, 3 
Salvia azurea Michx. Ex Lam. Blue Sage (Pitcher Sage) 3 
Schedonorus pratensis (Huds.) P. Beauv. Meadow Fescue 2 
Schizachyrium scoparium (Michx.) Nash Little Bluestem 3 
Scirpus sp.   3 
Silphinium laciniatum L. Compass Plant 2, 3 

Sisyrinchium angustifolium Mill. Narrowleaf Blue-eyed 
Grass 1 

Sisyrinchium campestre E.P. Bicknell Prairie Blue-eyed Grass 1 
Solidago missouriensis Nutt. Missouri Goldenrod 3 
Sorghastrum nutans (L.) Nash Indiangrass 3 
Spermolepis inermis (Nutt. ex DC.) Mathias & 
Constance  

Red River Scaleseed 2 

Sphenopolis obtusata (Michx.) Scribn. Prairie Wedgescale 2 
Sporobolus asper (Michx.) Kunth Tall Dropseed 3 
Sporobolus compositus (Poir.) Merr. Composite Dropseed 2 
Tradescantia ohiensis Raf. Bluejacket 2 
Tridens flavus (L.) Hitchc. Purpletop 3 
Tridens strictus (Nutt.) Nash Longspike Tridens 3 
Triodanis perfoliata (L.) Nieuwl. var. biflora (Ruiz 
& Pav.) Bradley 

Small Venus' Looking-
glass 1 

Ulmus americana L. American Elm 3 
Valerianella radiata (L.) Dufr. Beaked Cornsalad 2 
Vulpia octoflora (Walter) Rydb. Sixweeks Fescue 2 
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the influence of run off (i.e., erosion or deposition) or from a different soil type.  No 

specific or unusual surface features were visible due to uncut prairie growth. 

 

Soil in the center of sample location 1 was removed with a 4 inch hand auger at 

position “o” [origin, or center of sampling template] to a depth of 107 cm.  The top 35 cm 

from the side of the auger hole wall was removed by shovel and photographed showing 

the A and BA horizons (Figure 62).  The study area was selected in Coyle Loam which is 

a fine-loamy, siliceous, active, thermic udic argiustolls (Web Soil Survey).  The soil 

profile description of the soil encountered at sample location “o” is in Table 10. The soil 

pH values are in Table 10.   

 

Individual soil samples for phytolith analysis were collected at each black 

numbered location in the circle (Figure 8) and pooled resulting in the n=1 [x=20] 

composite sample.  Additional soil samples taken at the locations of the three underlined 

numbers were pooled to yield the n=1 [x=3] composite sample.  The n=1 [x=1] sample 

was taken at the center of the template (location “o”) where the soil profile sample was 

taken. 

 

Manning Prairie Data Set 1:  Phytolith concentration change with soil depth - 

The phytolith concentration of the soil samples is presented as the percent of the weight 

of phytoliths/weight of dry soil [or weight of phytoliths/weight of dry silt] (wt/wt %) in 

Table 11.   The phytolith/soil wt/wt % data from Table 11 are plotted in Figure 63 for all 

three samples (n=1 [x=1, 3, and 20]). 



  

 148   

Although there is some variation in the data, overall there is good agreement in 

the three different soil samples analyzed (n=1 and composite samples n=1 [x=3], and n=1 

[x=20]).  The increased phytolith concentration deviations in the n=1 [x=20] profile (10-

15 cm, 25-30 cm, and 30-35 cm in Figure 63) are attributed to be the result of several soft 

spots or voids (suspected rodent runs and/or nests) encountered in the southeast quadrant 

of the sampling area.  These questionable sample aliquots were pooled with the others as 

planned in an effort to retain the total target number of subsamples comprising the 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 62.  Top 35 cm of soil showing A and BA horizons at Manning Tallgrass Prairie 
sampling site number 1. 
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Table 11 
Manning Tallgrass Prairie Soil pH and n=1 [x=20] Replicate Information 

 
Sample Depth 

(cm) Soil pH No. of Replicates in n=20 
Composite Sample 

   
0-5 5.67 20 
5-10 4.61 20 
10-15 4.63 20 
15-20 4.65 20 
20-25 4.75 19 
25-30 4.91 18 
30-35 5.22 17 
35-40 5.59 15 
40-45 5.88 13 

 
 
composite sample.  However, in retrospect, the suspect subsamples should have been 

discarded and omitted from the study.  The presumed rodent disturbances were not 

encountered in the n=1 and n=3 samples.  The substantial variation that can actually 

occur between individual samples is addressed later in Manning Experiment (“Data Set”) 

3. 

 

Overall the exponential phytolith data concentration profile as relative to soil 

depth (Figure 63) is interpreted as indicative of stable long-term soil development, with 

probable contributions to soil building by gradual accumulation of wind-borne sediment 

and accumulation of inorganic portions of decaying vegetation.  The stats for the three 

sets of data (Table 12 and Figure 63) are in Table 13. 
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Table 12 
Manning Tallgrass Prairie 

Experiment 1 - Phytolith Weight in Coyle Loam 
Soil Profile in 5 cm Depth Intervals through 45 cm 

 
 
 

Depth 
(cm) 

Composite Sample 
Size (n=1 [x=_]) 

Phytoliths 
(g) 

Phytoliths/Soil 
(wt/wt %) 

Phytoliths/Silt 
(wt/wt %) 

     
 0-5 1 0.1726 0.69% 1.86% 

   5-10 1 0.1345 0.53% 1.28% 
 10-15 1 0.1096 0.43% 1.07% 
 15-20 1 0.0913 0.36% 0.91% 
 20-25 1 0.0767 0.30% 0.79% 
 25-30 1 0.0618 0.25% 0.67% 
 30-35 1 0.0574 0.23% 0.71% 
 35-40 1 0.0382 0.15% 0.51% 
 40-45 1 0.0341 0.13% 0.43% 

     
 0-5 3 0.1385 0.55% 1.52% 

   5-10 3 0.1185 0.47% 1.24% 
 10-15 3 0.0936 0.37% 1.10% 
 15-20 3 0.0825 0.33% 1.03% 
 20-25 3 0.0825 0.33% 1.01% 
 25-30 3 0.0610 0.24% 0.79% 
 30-35 3 0.0517 0.21% 0.72% 
 35-40 3 0.0369 0.15% 0.52% 
 40-45 3 0.0233 0.09% 0.34% 

     
 0-5 20 0.1577 0.63% 1.61% 

   5-10 20 0.1244 0.49% 1.31% 
 10-15 20 0.1163 0.46% 1.30% 
 15-20 20 0.0935 0.36% 1.03% 
 20-25 19 0.0728 0.29% 0.92% 
 25-30 18 0.0894 0.35% 1.18% 
 30-35 17 0.0703 0.28% 0.99% 
 35-40 15 0.0416 0.17% 0.58% 
 40-45 13 0.0362 0.14% 0.53% 
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Figure 63.  Soil Phytolith concentration plotted versus sample depth (soil samples 
collected in 5 cm increments).  [Actual n = 1 [x = 20] sample sizes for each depth are in 
Table 11.] 
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Table 13 
Manning Tallgrass Prairie Experiment 1 

Phytolith Concentration Mean and Standard Deviation in Soil (wt/wt %) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Manning Prairie Data Set 2:  Phytolith Distribution as Climatic Indicators – The 

phytoliths recovered during Manning Tallgrass Prairie Experiment 1 were analyzed 

further.  A representative portion recovered from each soil phytolith sample (n=1 [x=20]) 

was mounted on microscope slides for evaluation.  The observed morphologic forms 

observed were tabulated (Table 14).  The concentration of the major short cell phytolith 

forms in the composite soil samples (n=1 [x=20]) was determined by summing the 

individual counts for those short cell types, and normalizing their values (Table 15).  In 

these twelve categories, there are cool season morphologies (Pooid forms: keeled, 

conical, pyramidal, and crenate), hot/dry climate season morphologies (Chloridoid forms: 

tall saddles and squat saddles), and hot moist climate morphologies (the five Panicoid 

forms designated as lobate and cross).   The Stipa category actually has plants in both the 

cool and warm moist season categories—in the following data processing, the Stipa are 

Sample 
depth (cm) 

n=1 
[x=1] 

n=1 
[x=3] 

n=1 
[x=20]

Mean 
(n=3) 

Std Dev 
(n=3) 

      
  0-5 0.69% 0.55% 0.63% 0.62% 0.070 

   5-10 0.53% 0.47% 0.49% 0.50% 0.031 
 10-15 0.43% 0.37% 0.46% 0.42% 0.046 
 15-20 0.36% 0.33% 0.36% 0.35% 0.017 
 20-25 0.30% 0.33% 0.29% 0.31% 0.021 
 25-30 0.25% 0.24% 0.35% 0.28% 0.061 
 30-35 0.23% 0.21% 0.28% 0.24% 0.036 
 35-40 0.15% 0.15% 0.17% 0.16% 0.012 
 40-45 0.13% 0.09% 0.14% 0.12% 0.026 
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included in the hot moist climatic category.  The values for the members of these three 

metabolic/climatic groups are summed in Table 16, and presented as normalized values 

in Table 17.  The additional phytolith forms listed in Table 14 are not short cells, 

although their frequency was tabulated when scanning the slides to count short cell 

phytoliths.   

 

The climatic categories represented in the different phytolith short cell forms 

indicate the environment where these specific species (and plant communities or 

associations) of plants best thrive.  These plant adaptations to climate are reflected in 

their cell metabolism, specifically their ability to efficiently utilized carbon at various 

temperatures and their need for and ability to utilize (and sequester) water (Taiz and 

Zeiger 2002).  The Pooids are the cool wet season phytoliths which have C3 metabolism.  

The Chloridoids are the hot dry season phytoliths and best thrive under those conditions 

with their C4 metabolism which are adapted to conserving plant water.  The hot moist 

season plants are the Panicoids which do well in warm weather and also have C4 

metabolism—but have a higher water requirement than the Chloridoids.  With both C3 

and C4 members, the Stipa straddle these two metabolic groups.  The contribution by the 

so-called Stipa form is a relatively minor component of these phytolith counts; the other 

three Poaceae subfamilies are the predominant climatic short cell phytolith indicator 

groupings. 

 

A plot of the data in Table 16 is presented in Figure 64.  Modern day climate is 

assumed to be represented by sample 1.  Relative to sample 1, the interval represented by 
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sample 2 appears to have been a wetter period, while the interval represented in sample 3 

(10-15 cm deep) appears to have been more similar to the modern climate.  The interval 

shown by intervals 4-7 was relatively stable, although there was a slight cooling after 

interval 4.  In intervals 8 and 9, significant long term continuous cooling is reflected in 

the phytolith data.  (As discussed later in this chapter, the climatic interpretation of non-A 

horizons based on phytolith composition is not nearly as straightforward as for A 

horizons because A horizons had stable long-term established plant communities present 

during pedogenesis.)  There are no radiocarbon dates available for this profile.  The 5 cm 

sampling interval makes each individual sample a time composite representing many 

years (perhaps hundreds if not thousands of years).  Thus, climatic events of short 

duration are not discernible in this record. What is often identifiable in the phytolith data 

are times of stability marked by stable soil surfaces, major changes, and/or long term 

events.  

 
 

Several other particle types recovered with the phytoliths were tabulated with the 

original data when scanning microscope slides of phytoliths (Table 14).  These other 

specimen counts were summed; in order to provide a more useful frequency of  

occurrence value, these forms were ratioed to the total diagnostic short cell count in the 

same fields of view (from Table 16); these ratios are tabulated in Table 18. 

 
 

The sponge spicules were very uncommon in the scanned microscope slide fields, 

but were present in small numbers on each slide.  In this upland setting, the spicules are 

presumably a result of eolian contribution (Wilding and Drees 1971) and/or from animal  
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Table 14 
Manning Tallgrass Prairie Experiment 2 

Counts by Phytolith Morphology in Representative  
5 cm Interval Soil Profile Samples (n=1 [x=20]) 

 

 
 

Sample Depth, 
5 cm increments 0-5 5-10 10-

15 
15-
20 

20-
25 

25-
30 

30-
35 

35-
40 

40-
45 

         
Keeled 26 32 21 15 11 17 28 12 14
Conical 49 116 58 66 40 56 96 104 72
Pyramidal 9 12 4 2 4 2 6 16 14
Crenate 12 15 23 15 23 27 50 56 13
Saddle, Squat 36 69 34 41 34 46 80 43 11
Saddle, Tall 47 65 48 66 41 49 90 76 31
Stipa 3 8 3 5 1 3 4 11 9
Lobate, Simple 7.5 10 16 10 18 19 37 24 6
Lobate, Panicoid 71 173.5 62 84 46 61 107 95 23.5
Lobate, Panicoid 
(compound) 0 4 4 8 12 20 32 1 0

Cross, Panicoid 
(<10 µ) 9.5 11 7 3 1 2 3 3 8

Cross, Panicoid 
(>10 µ) 2 2 2 3 3 2 5 0 2

Spiny spheroid 0 0 0 0 0 0 0 7 0
Sponge spicule 0 1 0 0 0 0 0 4 0
Trichome, Hair 
Cells 4 6 1 3 4 0 4 5 2

Bulliform, square 5 7 10 8 5 6 11 55 2
Bulliform, 
rectangular 18 35 21 15 9 15 24 62 2

Bulliform, keystone 5 8 16 10 3 6 9 29 4
Bulliform, Y-
shaped 1 1 7 0 0 0 0 4 1

Bulliform, other 3 16 12 3 2 8 10 29 3
Elongate, smooth 7 21 11 2 4 1 5 12 6
Elongate, sinuous 3 3 7 1 1 1 2 3 2
Elongate, castillate 3 6 5 0 0 2 2 5 0
Elongate, spiny 0 0 0 0 0 2 2 1 0
Sedge 1 8 2 2.5 4 6.5 10.5 2.5 1
Charcoal 12 25 5 29 12 18 30 105 176
Diatoms and 
fragments 64 65 27 19 19 13 32 18 16

Burned Panicoid 
lobates 9 14.5 10.5 9 4 9 13 28.5 9
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Table 15 
Manning Tallgrass Prairie Experiment 2 

Normalized % Phytolith Counts (n=1 [x=20])  
Composite Soil Samples in 5 cm Depth Intervals through 45 cm 

 
Phytolith Short 

Cell Morphology 
0-5 
cm 

-10 
cm 

-15 
cm 

-20 
cm 

-25 
cm 

-30 
cm 

-35 
cm 

-40 
cm 

-45 
cm 

          
Keeled 9.6 6.2 7.6 4.8 5.0 6.0 5.5 2.7 6.9
Conical 18.0 22.4 20.9 21.3 18.0 19.7 19.0 23.6 35.4
Pyramidal 3.3 2.3 1.4 0.6 1.8 0.7 1.2 3.6 6.9
Crenate 4.4 2.9 8.3 4.8 10.4 9.5 9.9 12.7 6.4
Saddle, Squat 13.2 13.3 12.2 13.2 15.3 16.2 15.8 9.8 5.4
Saddle, Tall 17.3 12.6 17.3 21.3 18.5 17.3 17.8 17.2 15.2
Stipa 1.1 1.5 1.1 1.6 0.5 1.1 0.8 2.5 4.4
Lobate, Simple 2.8 1.9 5.8 3.2 8.1 6.7 7.3 5.4 2.9
Lobate, Panicoid 26.1 33.5 22.3 27.1 20.7 21.5 21.1 21.5 11.5
Lobate, Panicoid 
(compound) 0.0 0.8 1.4 2.6 5.4 7.0 6.3 0.2 0.0

Cross (>10 μ) 3.5 2.1 2.5 1.0 0.5 0.7 0.6 0.7 3.9
Cross (>10 μ) 0.7 0.4 0.7 1.0 1.4 0.7 1.0 0.0 1.0

 
 

Table 16 
Manning Tallgrass Prairie Experiment 2 

Total Short Cell Phytoliths Grouped by Climatic Indicators  
 (n=1 [x=20]) Composite Soil Samples in 5 cm Depth Intervals through 45 cm) 

 

 

 
0-5 
cm 

-10  
cm 

-15 
cm 

-20 
cm 

-25 
cm 

-30 
cm 

-35 
cm 

-40 
cm 

-45  
cm 

           
Pooids (Cool Wet 
Phytoliths) 96 175 106 98 78 102 180 188 113 

Chloridoids (Hot 
Dry Phytoliths) 83 134 82 107 75 95 170 119 42 

Panicoids (Hot 
Moist Phytoliths) 93 208.5 94 113 81 107 188 134 48.5 

Total Short Cell 
Phytoliths 272 517.5 282 318 234 304 538 441 203.5
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Table 17 
Manning Tallgrass Prairie Experiment 2 

Normalized % Short Cell Phytoliths Grouped by Climatic Indicators  
(n=1 [x=20]) Composite Soil Samples in 5 cm Depth Intervals through 45 cm) 

 

 
0-5 
cm 

-10 
 cm 

-15 
cm 

-20 
cm 

-25 
cm 

-30 
cm 

-35 
cm 

-40 
cm 

-45 
cm 

          
Cool Wet 
Phytoliths 35.3 33.8 38.1 31.6 35.1 35.9 35.6 42.6 55.5 

Hot Dry 
Phytoliths 30.5 25.9 29.5 34.5 33.8 33.5 33.6 27.0 20.6 

Hot Moist 
Phytoliths 34.2 40.3 32.4 33.9 31.1 30.6 30.8 30.4 23.8 

 

 

 

Figure 64.  Graph of data from Table 16 illustrating representative contribution of each 
seasonal phytolith short cell category to the total phytolith count. 
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Table 18 
Manning Tallgrass Prairie Experiment 2 

Incidence of Other Particles Recovered in the Phytolith Fraction  
Relative to Phytolith Short Cell Forms Counted (Soil Composites, n=1 [x=20]) 

 
Sample 

Depth (cm) Charcoal Burned 
Panicoids Diatoms Sedge 

Phytoliths 
Sponge 
Spicules 

      
 0-5   4.41% 1.40% 23.53% 0.37% 0.00% 

 05-10   4.83% 5.36% 12.56% 1.55% 0.00% 
 10-15   1.80% 3.70%  9.71% 0.72% 0.00% 
 15-20   9.35% 2.90%  6.13% 0.81% 0.00% 
 20-25   5.41% 1.80%  8.56% 1.80% 0.00% 
 25-30   6.34% 3.17%  4.58% 2.29% 0.00% 
 30-35   5.93% 2.57%  6.32% 2.08% 0.00% 
 35-40 23.81% 6.46%  4.08% 0.57% 0.91% 
 40-45 86.49% 4.42%  7.86% 0.49% 0.00% 

 
 

droppings.  The other four categories in Table 18 were present in all counted sample  

tabulations.  Sedges are present at this dry upland site in modern times, so their presence 

in the phytolith record is not unexpected.  The observed diatoms may be indigenous soil 

diatoms (Sylvia, Fuhrmann, Hartel, Zuberer 1999:98).  Many diatoms at Manning 

Tallgrass Prairie were small (suggesting they may be soil diatoms (Sylvia et. al. 

1999:98)), and very faint or “wispy”.  This later observation and their very high surface 

area may indicate that their decreasing count with soil depth is due to gradual dissolution 

by soil water.  The exponential decrease of the relative soil diatom content (Table 18) 

mirrors that previously noted for phytoliths (Figure 63) albeit at a lower overall 

concentration. 

 

Two other tabulated forms of note are the burned Panicoid phytoliths (which were 

also counted as various Panicoid forms, but these were noted to be discolored by having 
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been exposed to fire), and the charcoal fragments (Table 18).  Although a few burned 

Chloridoid and Pooid phytoliths were observed, the vast majority of burned phytoliths 

were Panicoid forms.  If fire is present, this burned Panicoid prevalence would be 

expected as the bulk of the Tallgrass prairie biomass is present as Panicoid species.  This 

occasional burning may have been caused by spring fires (such as occurs during modern 

thunderstorms from lightning strikes) when the dry biomass from the preceding year was 

still standing.  Several large aggregates of charred phytoliths were observed, implying 

based on particle size that at least some of the prairie fires were definitely local rather 

than all of the burned phytoliths being introduced by eolian processes. 

 

The other major particle type of interest is another fire indicator—charcoal.  

However, the charcoal concentration data does not seem to correlate with the burned 

Panicoid data.  There is a small charcoal spike in sample 4, and a huge spike in samples 8 

and 9.  The sample 4 spike correlates with a period of warmer climate, but with roughly 

the same moisture level as indicated by the 31.1-33.9 % Panicoid range (Table 17 and 

Figure 64).  However, the charcoal fragment concentration increase in samples 8 and 9 

(35-45 cm) is different because it correlates with a strong prolonged cooler, wetter period 

(Table 17 and Figure 64).  Sample 8 also had a significant increase in burned Panicoid 

phytolith concentrations.  One way to explain this combination of parameters would be 

some cataclysmic incident such as a volcanic eruption or an asteroid-related event.  The 

time interval represented by samples 8 and 9 is currently unknown.  Unfortunately, it is 

not possible to determine if charcoal deposition at a particular site is due to water or 

aerial transport as charcoal is simply an environmental variable (Williams, Dunkerley,  
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De Deckker, Kershaw, and Chappell 2003:201-203).  

 

 
Figure 65.  Incidence of diatoms, burned Panicoid phytoliths, and charcoal relative to 
total short counts in the same microscopic fields. 

 

 

Manning Prairie Data Set 3:  Study of 5 cm replicate surface soil samples to  

evaluate sampling reproducibility and homogeneity of soil components and phytoliths 

(n=21) – In this final experiment at Manning Prairie, the same circular sampling design 

was used (Figure 8) at location 2 (Figure 14).  The center of the circle was designated as 

sample 0, so a total of 21 samples were collected.  Four sequential 5 cm sample sets were 

collected with increasing depth; however, only the top 5 cm set of 21 soil samples were 

analyzed.  These samples were collected with the soil probe stop set at 5 cm intervals, 

and immediately transferred to preweighed labeled sample jars from the probe.  The 

discrete samples were then oven dried and weighed to determine soil sample weight in 
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each soil sample pulled.  The remaining steps in sample processing were identical to 

those described previously.  Phytoliths were extracted from each intact soil sample. 

 

The resulting total soil sample weight (corrected weight after organic material in 

the sand and silt fraction was back calculated out), sand weight, silt weight, and weight of 

phytoliths recovered from all 21 samples are shown in Table 19.  The same data ranked 

by relative soil phytolith concentration is presented in Table 20.  The average values for 

n=21 are shown at the bottom of this table.   

 

The next step of this evaluation was to count phytolith forms on microscope slides 

for each of the 21 samples; the resulting sample counts are presented in Tables 22 and 23.  

The normalized short cell phytolith values for these 21 five cm surface soil samples are 

presented in Tables 24 and 25.  The average value and relevant statistics for these 12 

short cell form categories are presented in Table 26.    

 

The same data, ranked by highest to lowest normalized % relative to short cell 

phytolith count is shown in Table 27.  As would be expected if the data was reasonable, 

the highest concentration of phytoliths has the lowest percent standard deviation.  The 

lower concentration particles have very high percent standard deviations; this is due to 

their relative paucity in the samples.  This phenomenon is also in part due to the non-

uniform distribution of plants on the prairie, and that most of the plant litter containing 

phytoliths is incorporated into the soil follows a vertical drop to the soil as the individual 

plants die and decay or undergo senescence.    
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The comparable statistical values for a smaller data set, half of these samples were 

calculated to generate comparable data to that shown in Tables 26 and 27.  Tables 28 and 

29 resulted from using the sample data from Table 25 (n=10).  As would be predicted the 

percent standard deviations of the higher concentration particles went up and the percent 

standard deviations of the lowest concentrations went down.  However, in this ranking, 

only the relative positions of pyramidal and crenate reversed between Tables 27 (n=21) 

and 29 (n=10).  To enable ease of comparison, both sets of these values are placed side 

by side in Table 30. 

 

This initial data suggests that the number of replicates needed depends on the 

particle types of interest.  For the common/high concentration particles, a smaller number 

of composited sub-samples is probably acceptable.  However, for the low concentration  

 
Table 26 

Manning Tallgrass Prairie 5 cm Surface Soil Test  
Average Normalized Values by Phytolith Short Cell Type (n=21) 

Phytolith 
Short Cell Type Average Standard 

Deviation 

95% 
Confidence 

Interval 

% 
Standard 
Deviation

     
Keeled 6.66% 0.0228947 0.0097920 34.39% 
Conical 21.52% 0.0281694 0.0120480 13.09% 
Pyramidal 3.64% 0.0118427 0.0050651 32.50% 
Crenate 3.69% 0.0103398 0.0044223 28.03% 
Saddle, Squat 8.60% 0.0200694 0.0085837 23.34% 
Saddle, Tall 16.78% 0.0322803 0.0138063 19.23% 
Stipa 1.67% 0.0082163 0.0035141 49.23% 
Lobate, Simple 3.37% 0.0164790 0.0070481 48.83% 
Lobate, Panicoid 29.05% 0.0355179 0.0151910 12.23% 
Lobate, Panicoid (cmpd) 0.64% 0.0059820 0.0025585 93.07% 
Cross, Panicoid (<10 um) 3.37% 0.0144870 0.0061961 43.00% 
Cross, Panicoid (>10 um) 1.01% 0.0074267 0.0031764 73.68% 
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particles (trace components of the phytolith assemblage), larger sample composites are 

clearly more beneficial to the study. 

 

Summing the short cell values into the three climatic groupings (Pooids, 

Chloridoids, and Panicoids) was performed and the values normalized.  The results of 

this final step for n=21 are shown in Tables 31 and 32.  The summary data for n=21 is 

presented in Table 33.  The same calculation performed for the previously discussed 

n=10 data set is shown in Table 34. 

 
 

Table 27 
Manning Tallgrass Prairie 5 cm Surface Soil Test 

Average Normalized Values Ranked by Phytolith Short Cell Type Concentration (n=21) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Phytolith 
Short Cell Type 

Normalized % 
of Short Cell 

Phytolith Count 

% Standard 
Deviation 

      
Lobate, Panicoid 29.05% 12.23% 
Conical 21.52% 13.09% 
Saddle, tall 16.78% 19.23% 
Saddle, squat   8.60% 23.34% 
Keeled   6.66% 34.39% 
Crenate   3.69% 28.03% 
Pyramidal   3.64% 32.50% 
Lobate, Simple   3.37% 48.83% 
Cross, Panicoid (<10 um)   3.37% 43.00% 
Stipa   1.67% 49.23% 
Cross, Panicoid (>10 um)   1.01% 73.68% 
Lobate, Panicoid (compound)   0.64% 93.07% 
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Table 28 
Manning Tallgrass Prairie 5 cm Surface Soil Test  

Average Phytolith Values by Short Cell Type (n=10) 

 
 
 

Table 29 
Manning Tallgrass Prairie 5 cm Surface Soil Test  

Average Phytolith Values Ranked by Short Cell Type Concentration (n=10) 
 

Phytolith 
Short Cell Type 

Normalized % of 
Short Cell 

Phytolith Count 

% Standard 
Deviation 

      
Lobate, Panicoid 29.12% 13.83% 
Conical 21.38% 14.83% 
Saddle, tall 15.27% 22.76% 
Saddle, squat   8.08% 19.41% 
Keeled   7.13% 36.70% 
Pyramidal   4.15% 33.81% 
Crenate   3.99% 19.24% 
Lobate, Simple   3.78% 33.66% 
Cross, Panicoid (<10 um)   3.53% 36.55% 
Stipa   1.60% 56.79% 
Cross, Panicoid (>10 um)   1.44% 58.45% 
Lobate, Panicoid (compound)   0.54% 75.13% 

 
 

Phytolith 
Short Cell Type Average Standard 

Deviation

95% 
Confidence 

Interval 

% Standard 
Deviation 

         
Keeled 7.13% 0.026162 0.016215 36.70% 
Conical 21.38% 0.031711 0.019654 14.83% 
Pyramidal 4.15% 0.014016 0.008687 33.81% 
Crenate 3.99% 0.007668 0.004753 19.24% 
Saddle, Squat 8.08% 0.015681 0.009719 19.41% 
Saddle, Tall 15.27% 0.034752 0.021539 22.76% 
Stipa 1.60% 0.009079 0.005627 56.79% 
Lobate, Simple 3.78% 0.012739 0.007896 33.66% 
Lobate, Panicoid 29.12% 0.040276 0.024963 13.83% 
Lobate, 
Panicoid(compound) 0.54% 0.004088 0.002534 75.13% 
Cross, Panicoid (<10 um) 3.53% 0.012886 0.007987 36.55% 
Cross, Panicoid (>10 um) 1.44% 0.008389 0.005200 58.45% 
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Table 30 
Manning Tallgrass Prairie 5 cm Surface Soil Test Comparing Average  

Normalized Values Ranked by Phytolith Short Cell Type Concentration (n=21 vs. n=10) 
 

Phytolith 
Short Cell Type 

Normalized % 
of Short Cell 
Count (n=21) 

Normalized % 
of Short Cell 
Count (n=10) 

% 
Standard 
Deviation 

(n=21) 

% Standard 
Deviation 

(n=10) 

        
Lobate, Panicoid 29.05% 29.12% 12.23% 13.83% 
Conical 21.52% 21.38% 13.09% 14.83% 
Saddle, tall 16.78% 15.27% 19.23% 22.76% 
Saddle, squat   8.60%   8.08% 23.34% 19.41% 
Keeled   6.66%   7.13% 34.39% 36.70% 
Crenate   3.69%   3.99% 28.03% 19.24% 
Pyramidal   3.64%   4.15% 32.50% 33.81% 
Lobate, Simple   3.37%   3.78% 48.83% 33.66% 
Cross, Panicoid (<10 
um) 3.37% 3.53% 43.00% 36.55% 

Stipa 1.67% 1.60% 49.23% 56.79% 
Cross, Panicoid (>10 
um) 1.01% 1.44% 73.68% 58.45% 

Lobate, Panicoid 
(compound) 0.64% 0.54% 93.07% 75.13% 

 

 

The data from the Tables 33-34 is summarized in Table 35.  The n=21 stats are 

clearly the best and provide greater reliability than n=10. 

 

This final set of sample counts in this project also provided the opportunity to 

compare frequency of burned Panicoid, Chloridoid, and Pooid phytoliths in these 21 

replicate samples.  These values, as well as those for charcoal, diatoms, sedges, and 

sponge spicules, are presented in Table 36.  This data gives an idea of the average value 

that would be obtained for these various forms had these 21 sample portions been pooled 

into one composite sample for analysis.  As expected, the individual standard deviations  
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Table 33 
Manning Tallgrass Prairie 5 cm Surface Soil Test  

Average Phytolith Values Grouped by Climatic Type (n=21) 
 

Phytolith Short Cell Climatic 
Type 

Average 
Normalized 
Short Cell % 

Standard 
Deviation 

95% 
Confidence 

Interval 

% Standard 
Deviation 

     
Pooids (Cool Wet  
Climate Phytolith Types) 35.51% 0.0298690 0.0127750   8.41% 

Chloridoids (Hot Dry 
Climate Phytolith Types) 25.38% 0.0322174 0.0137793 12.69% 

Panicoids (Hot Moist 
Climate Phytolith Types) 39.11% 0.0378090 0.0161709   9.67% 

 
 

Table 34 
Manning Tallgrass Prairie 5 cm Surface Soil Test  

Average Phytolith Values Grouped by Climatic Type (n=10) 

 
 
 

for these minor particle forms are high.  The charcoal value for this sampling site 

compares well to that of 4.41% obtained for the n=20 actual composite sample analyzed 

from Sampling Area 1 (Table 18).  This suggests that charcoal particles are fairly 

uniformly distributed across the site.  The normalized diatom concentrations are also in 

reasonably good agreement (27.91% vs. 23.53%).  The other minor particle types show  

Phytolith Short Cell Climatic 
Type 

Average 
Normalized 
Short Cell % 

Standard 
Deviation 

95% 
Confidence 

Interval 

% Standard 
Deviation 

     
Pooids (Cool Wet  
Climate Phytolith Types 36.64% 0.034677 0.021493   9.46% 

Chloridoids (Hot Dry 
Climate Phytolith Types) 23.35% 0.030670 0.019009 13.14% 

Panicoids (Hot Moist 
Climate Phytolith Types) 40.01% 0.043290 0.026831 10.82% 
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Table 35 
Comparison of Manning Tallgrass Prairie 5 cm Surface Soil Test  

Average Phytolith Normalized % Grouped by Climatic Type (n=10 and n=21) 
 

 

 

 

 

 

 

 

more variability between these two data sets which may be due to differences in specific 

plant location and moisture regime relative to individual sampling location.   

 

There are a number of important points that are clearly demonstrated by this final 

experiment on Manning Tallgrass Prairie soil samples.  First, the reproducibility of 

counting the individual short cell phytolith morphologic forms is relatively poor—

especially the minor forms (see Table 30).  However, summing the same phytolith data 

into three climatic categories provides much more reproducible results (Tables 33-35) 

than any of the individual twelve short cell phytolith forms considered.   Second, the 

smaller subsample (n=10) yields a climatic value different than n=21 and has a somewhat 

worse standard deviations than n=21 for the climatic version of this consolidated data set 

(Table 35).  This confirms that larger composite sample from more multiple small 

samples does indeed produce better data as previously indicated by others (see discussion 

pages 29-30, and Strömberg’s (2009a) comments about relative particle frequencies). 

Average Short 
Cell % 

% Standard 
Deviation 

Phytolith 
Short Cell 

Climatic Type (n=21) (n=10) (n=21) (n=10) 
     

Pooids  
(Cool Wet Climate 
Phytolith Types) 

35.51 36.64   8.41   9.46 

Chloridoids  
(Hot Dry Climate 
Phytolith Types) 

25.38 23.35 12.69 13.14 

Panicoids  
(Hot Moist Climate 
Phytolith Types) 

39.11 40.01   9.67 10.82 
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Table 36 
Manning Tallgrass Prairie Experiment 3 

Ratio of Other Particle Forms to Total Phytolith Short Cell Count, Top 5 cm Soil (n=21) 
 

Sample 
Location 

Burned 
Panicoids 

Burned 
Chloridoids

Burned 
Pooids Charcoal Diatoms Sedges Sponge 

Spicules 
        

  0 3.08% 0.88% 0 2.93% 27.86% 1.32% 0 
  1 2.18% 0 0.27% 3.54% 26.39% 0.14% 0 
  2 3.27% 1.26% 0.25% 3.53% 19.14% 1.26% 0.50% 
  3 4.64% 0.77% 0 3.87% 35.98% 1.35% 0.39% 
  4 3.09% 0.62% 0.62% 7.10% 16.05% 2.01% 0 
  5 3.69% 0.28% 0.85% 1.13% 21.28% 1.42% 0.28% 
  6 2.72% 0.00% 0.52% 3.36% 25.61% 0.39% 0 
  7 4.54% 0.30% 0.61% 2.42% 26.93% 0.45% 0.30% 
  8 4.58% 0.33% 0 6.54% 24.84% 1.63% 0 
  9 3.51% 0.91% 0.30% 1.83% 26.83% 0.61% 0 
10 3.85% 0 1.59% 2.39% 31.30% 0.27% 0 
11 1.59% 0.35% 0 3.19% 39.65% 0.35% 0 
12 1.25% 0.72% 1.43% 2.15% 25.76% 0.72% 0 
13 2.77% 0 0 5.18% 26.62% 0 0 
14 4.47% 0.50% 0 6.45% 39.21% 1.99% 0 
15 3.72% 0.41% 0 7.02% 21.90% 4.13% 0 
16 2.42% 0.40% 0 4.44% 44.35% 0.81% 0 
17 2.38% 0.79% 0 2.12% 32.28% 1.06% 0 
18 3.09% 0.39% 0 3.48% 17.41% 0.39% 0 
19 2.24% 0 0.45% 6.71% 31.32% 0.45% 0 
20 4.79% 0.37% 0.74% 5.52% 25.41% 1.47% 0 

average 3.23% 0.44% 0.36% 4.04% 27.91% 1.06% 0.07% 
% Std 
Dev 31.7% 79.6% 131.0% 46.4% 26.4% 87.6% 218.3% 

 

The exponential Manning Tallgrass Prairie phytolith concentration curve with 

depth through 45 cm suggests long term stable soil development in this upland setting.  

The individual phytolith categories show considerable variation in distribution, but when 

the relevant short cell phytolith totals are summed to evaluate the three major botanical 

climatic indicators—based on cellular metabolic type--the phytolith data clearly show 

past environmental fluctuations (i.e., temperature and moisture).  Burned particles 

(phytoliths and charcoal) indicate occurrence of occasional fires as would be expected to 
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maintain the prairie environment.  The increased charcoal concentration down profile 

suggests the possibility that some massive past fire event did occur that directly affected 

the site and/or made an eolian contribution to site debris that was concurrent with 

considerable climatic cooling. 

 

Discussion of Manning Tallgrass Prairie Phytolith Data – Of the three prairie 

reference sites studied during this research project, the Manning Tallgrass Prairie 

provided by far the most complete data set.  The Manning data provided information 

about soil sampling reproducibility and the distribution of the various phytolith 

morphologic forms.  The percent standard deviation for the normalized soil content of 

twelve individual short cell phytolith forms varied from 12.23-93.07 % (n=21, Table 27).  

However, by grouping these twelve short cell forms into their three Poaceae subfamily 

“climatic groupings”, the statistics for the same sample data’s percent standard deviation 

improved to 8.41-12.69 % for the three categories (Table 33) indicating the benefit of 

using the summed short cell data as climatic indicators (i.e., the representing the overall 

temperature and moisture regime of the specific study area rather than individual short 

cell forms).  The values and reproducibility of the n=21 data set were better than those 

achieved by the n=10 data subset (Tables 30, 33, 34).  Smaller composite samples may be 

useful for developing a general climatic signature of the particular soil being investigated; 

however, phytoliths with a low incidence of occurrence at a given site are more likely to 

be recovered in the larger pooled samples due to their limited representation.  Thus, the 

size of the composite sample collected (i.e., number of individual soil aliquots added to 
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make up the composite soil sample) may be altered depending on one’s specific research 

objectives. 

 

Actual constant soil volume sampling proved to be a reliable sampling technique.  

The percent standard deviation of the soil sample weight collected (12.41%, n=21, Table 

21) was much larger that that obtained for the percents of sand indicating that the soil 

textural components are uniformly distributed.  The larger variation in soil sample size is 

primarily due to air voids in the soil sample and bioturbation (i.e., bulk density) which do 

not affect the overall average textural composition of the soil itself. 

 

The three phytolith concentration curves relative to soil depth of the different 

samples (n=1 [x=1, 3, and 20]) tend to mirror each other reasonably well (Figure 63).  

The most concentration variation is near the surface; this is presumably due to variations 

in distribution of plant litter across the soil surface.  At the time of the April 2009 

botanical inventory to the site, the ground cover was estimated to be about ~30-50%, so 

there is definite variability in plant density and location.  The large variation from the 

general phytolith concentration curve profile at a depth of 25-35 cm (n=20, Figure 63) is 

felt to be due to the presence of rodent burrows encountered and included in the n=20 

composite soil sample.  The higher phytolith values in these particular samples are most 

likely due to accumulated vegetation stored in the burrows (or silt transported into the 

burrows by weathering activities) skewing the phytolith concentration. 
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The plots of phytoliths/silt and phytoliths/soil (wt/wt %) for the Manning 

Tallgrass Prairie are shown in Figure 66 (n=20).  Both data sets were fitted with an 

exponential curve (equations shown).  Although the presumed rodent-induced phytolith 

concentration aberration is still visible in the phytolith/soil plot, it has significantly less 

effect on the correlation coefficient as silt is only one soil component.  The benefit of 

grouping the short cell phytolith forms into Pooids, Panicoids, and Chloridoids noted in 

the surface singleton study would apply equally well down profile.   

 
 
Figure 66.  Plot of relative phytolith concentration versus depth, Manning Tallgrass 
Prairie (n = 1 [x = 20]). 
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Figure 67.  Plot of Manning Tallgrass Prairie soil phytolith concentrations when grouped 
by three Poaceae subfamilies used as climatic indicators.  
 
 

The n=1 [x=20] data set for the three climatic groupings is shown in Figure 67.   

Interval 2 is cooler than interval 1 with more summer-time moisture.  In contrast to 

interval 2, interval 3 appears to have less summer moisture with a temperature similar to 

modern day, and an expanded cool C3 growing season.  Although the warmer 

temperature returns in soil interval 4 with a much less productive C3 component the 

Panicoid fraction also increases slightly perhaps indicating a longer warm growing 

season.  Intervals 5-7 were essentially constant indicating a period of climatic stability.  

However, the big change indicated by this climatic indicator is a very strong prolonged 

cooling trend in intervals 8 and 9 (again, these are non-A horizon samples).  Other 

particle data showed an increased in charcoal particle concentration in the same two soil 

intervals (35-45 cm) in the profile (Figure 65).  Simultaneous cooling and increase in fire 
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activity suggest the occurrence of some major environmental perturbation.  With no 

radiocarbon dates available, the rate of soil formation at this locale is uncertain; thus, the 

time period represented by this cooling interval is not known.  Obtaining radiocarbon 

dates for this soil profile is an obvious next step in order to better assess the information 

provided by this soil phytolith data. 

 

 

        Dempsey Divide Mixedgrass Prairie – The Mixedgrass Prairie sampled in this study 

is located on the Thurmond Ranch in Roger Mills County, Oklahoma.  This prairie is 

named the Dempsey Divide Mixedgrass Prairie; the location name refers to the “uplands 

between the Washita and North Fork of the Red rivers in western Oklahoma” (Thurmond 

1990, Thurmond et al. 2002:10).  This Mixedgrass Prairie area is adjacent to a Shortgrass 

Prairie, and located on Woodward Loam (Figure 10).  Woodward loam is a coarse-silty, 

mixed, superactive, thermic typic haplustept.  

  

An extensive botanical survey was conducted in the Dempsey Divide region in 

2001 (Thurmond et al. 2002).  The species noted in the specific Mixedgrass Prairie area 

sampled during this 2006 phytolith study are listed in Table 37.   

 

The 20 meter diameter circle from which soil samples were collected was 

predominantly little bluestem (Figure 68).   The n=1 [x=20] composite soil samples were 

processed to recover the phytoliths; phytolith concentrations recovered versus soil weight 

and silt weight are given in Table 38.  No appreciable phytoliths were recovered below 
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25 cm in this particular sampling location, and the soil pH was found to be slightly 

alkaline (Table 39).  Basic soil conditions are known to result in poor phytolith 

preservation (Piperno 2006).  The soil at the center of the sampling template shows an 

abundance of carbonate at the lower levels (Figure 11); no phytoliths were recovered 

from depth.  A soil profile taken from the wall of the hole at the center of the sampling 

template is shown in Figure 69. 

 

Soil pH may affect phytolith survival by increasing rate of phytolith dissolution 

into the ground water, although this phenomenon is normally reported under more basic 

soil conditions (Piperno 2006, Sudbury 2007).  As an illustration of relative phytolith 

weathering at Dempsey Divide, a series of bulliform phytolith images is shown in Figure  

70.  Although all soil sample levels had some bulliform phytoliths present in good 

condition, overall phytolith preservation deteriorated as one moved down profile.  The 

observed variation in phytolith preservation at any given depth and soil pH may be an 

indicator of the plant origin and the actual specific gravity of the bulliform phytolith (i.e., 

how much water is present in the amorphous silica matrix) at any given depth.  Although 

phytolith dissolution rates have been compared for different plant types (Wilding and 

Drees 1974, Bartoli and Wilding 1980), the actual density and solubilization rate of 

different phytolith morphologic forms from the same plant have not been determined.   

 

As bulliform phytoliths are larger than short cell phytoliths and have a lower 

surface area relative to volume, they may well be more durable in a given soil pH  

environment than the smaller short cell forms with a higher surface area to volume ratio.   
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Evaluated by the preservation scale presented by Fredlund and Tieszen (1997a:211), the 

Dempsey bulliform phytoliths range from 0-6 (none to excellent, with many in the poor 

and extremely poor preservation category).   Thus, the low soil phytolith concentrations 

compared to other sites, such as Manning Tallgrass Prairie (Figure 63) may be due to 

poor preservation due to issues such as soil pH.  Soil solution silica concentration (and 

thus potentially phytolith solubility) is affected by the presence of metal ions and salts 

(Iler 1979:747, 74).   It is also possible that in this young soil, less total phytolith 

deposition has had time to occur. 

 

 

Table 37 
Botanical Species Identified at Dempsey Divide Mixedgrass Prairie (September 2006) 

 
 

Genus Species Common Name 
  

Ambrosia psilostachya DC. Western Ragweed 
Bouteloua curtipendula (Michx.)  Side-oats Grama 
Buchloe dactyloides (Nutt.) Buffalograss 
Bouteloua hirsuta v hirsuta Hairy Grama 
Croton texensis Texas Croton (Texas Doveweed) 
Cirsium sp. Thistle 
Eriogonum lachnogynum Torr. ex Benth. Woollycup Buckwheat 
Helenium amarum Bitterweed (Bitter Sneezeweed) 
Heterotheca stenophylla Stiffleaf False Goldenaster 
Liatris punctata Dotted Gayfeather (Blazing Star)
Lygodesmia juncea Rush Skeletonplant 
Paronychia jamesii James' Nailwort 
Plantago sp. Platain 
Schizachyrium scoparium (Michx.) Nash Little Bluestem 
Stenosiphon sp. Stenosiphon 
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Figure 68.  Dempsey Divide Mixedgrass Prairie site sampling template adjacent to a 
Shortgrass Prairie (foreground) which is predominantly Buffalograss; the interfingered 
Mixedgrass Prairie is predominantly Little Bluestem.  Five orange engineering flags are 
visible between the two white spots; most of the entire template (18 of 21 flags) is present 
in this photograph. The center of this sampling template is shown in Figure 11. 
 

 
Table 38 

Dempsey Divide Mixedgrass Prairie Phytolith Weight in  
Woodward Loam Profile in 5 cm Depth Intervals through 45 cm (n=1 [x=20]) 

 
Depth 
(cm) 

Soil Sample 
Weight (g) 

Silt Weight 
(g) 

Phytoliths 
Weight (g) 

Phytoliths/Soil 
(wt/wt %) 

Phytoliths/Silt 
(wt/wt %) 

      
 0-5 25.16 7.2566 0.0344 0.14% 0.47% 

 05-10 25.41 7.4800 0.0285 0.11% 0.38% 
 10-15 25.17 7.5472 0.0221 0.09% 0.29% 
 15-20 25.71 7.5839 0.0158 0.06% 0.21% 
 20-25 25.47 7.2995 0.0075 0.03% 0.10% 
 25-30 25.37 7.5900 0.0000 0 0 
 30-35 25.62 8.4172 0.0000 0 0 
 35-40 25.32 8.8288 0.0000 0 0 
 40-45 25.55 8.9387 0.0000 0 0 
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Table 39 
Dempsey Divide Mixedgrass Prairie Soil pH  

 
Sample Depth 

(cm) 
Soil pH 

 
  

0-5 7.01 
5-10 7.22 
10-15 7.19 
15-20 7.19 
20-25 7.46 
25-30 7.48 
30-35 7.45 
35-40 7.42 
40-45 7.49 

 

The phytolith counts for these n=1 [x=20] samples are recorded in Table 40, and 

the normalized values for the short cell forms are presented in Table 41.  The same data 

summed by short cell climatic form is given in Table 42, and the normalized (relative to 

total short cell count) climatic values are in Table 43 with a bar graph illustrating the data 

in Figure 71.  Some of the other particle types observed in these samples are presented in 

Table 44; the values presented are a ratio of the particle count (Table 40) to the total short 

cell phytolith count (Table 42).  A plot of the other soil particle data is shown in Figure 

72. 

 

Three soil intervals (1, 4, and 5) appear to reflect similar climatic conditions 

(Figure 71) with the two deeper zones being slightly moister and cooler than modern day.  

The interesting climatic changes in this profile show a dramatically warmer period 

represented in interval 2 (5-10 cm) preceded by an intermediate warming period in 

interval 3 (10-15 cm) as reflected by the soil short cell phytolith record.   
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Figure 69.  Woodward Loam profile from the wall of the excavation shown in Figure 69 
showing the A, Bw, and BCk horizons.  The board in the figure is ¾ inch thick. (The 
backdirt from the hole generating this soil profile sample is visible in Figure 11.) 
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Figure 70.  Dempsey Divide Mixedgrass Prairie soil sample bulliform phytoliths showing 
variation in phytolith preservation (i.e., weathering and dissolution).  A-B: 0-5 cm, C-D: 
5-10 cm, E-J: 10-15 cm, K-O: 15-20 cm, and P-T: 20-25 cm.   
 

 

As for the other particle types (Figure 72), there is a small spike in charcoal concentration 

that correlates with the warmest period (interval 2, 5-10 cm) and a large charcoal spike in 

interval 5 (20-25 cm soil depth) which actually correlates with the coolest interval in this 

sample series.  Unfortunately, the soil phytolith record at this location is not complete to 

45 cm--apparently due to phytolith preservation issues.  There was also a charcoal spike 

noted at the deepest levels of Manning Tallgrass Prairie (Figure 65).  Again, the actual 

age of these particular soil increments remains to be determined, so a positive inter-site  
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Table 40 
Dempsey Divide Mixedgrass Prairie Phytolith Counts with Depth (n=1 [x=20]) 

 
 

 

Sample Depth,  
5 cm Increments 0-5 -10 -15 -20 -25 -30 -35 -40 -45

        
Keeled 42 15 31 17 13 0 0 0 0 
Conical 60 28 61 53 34 0 0 0 0 
Pyramidal 4 1 1 4 1 0 0 0 0 
Crenate 5 4 6 5 8 0 0 0 0 
Saddle, Squat 87 64 89 50 33 0 0 0 0 
Saddle, Tall 189 113 195 128 86 0 0 0 0 
Stipa 3 0 1 2 1 0 0 0 0 
Lobate, Simple 7.5 3 8 6.5 4.5 0 0 0 0 
Lobate, Panicoid 14 5.5 5.5 8 5.5 0 0 0 0 
Lobate, Panicoid (cmpd) 0 0 0 0 0 0 0 0 0 
Cross, Panicoid (<10 um) 1 0 1 0 0 0 0 0 0 
Cross, Panicoid (>10 um) 1 0 0 0 0 0 0 0 0 
Spiny spheroid  0 1 0 1 3 0 0 0 0 
Sponge spicule 1 1 0 0 2 0 0 0 0 
Trichome, Hair Cells 11 3 2 9 12 0 0 0 0 
Bulliform, square 12 11 8 32 52 0 0 0 0 
Bulliform, rectangular 18 14 16 36 65 0 0 0 0 
Bulliform, keystone 9 10 12 29 53 0 0 0 0 
Bulliform, Y-shaped 0 0 0 3 2 0 0 0 0 
Bulliform, other 6 10 10 16 9 0 0 0 0 
Elongate, smooth 2 3 0 3 3 0 0 0 0 
Elongate, sinuous 1 0 3 1 1 0 0 0 0 
Elongate, castillate 1 1 3 1 7 0 0 0 0 
Elongate, spiny 0 0 0 0 0 0 0 0 0 
Sedge 2 0.5 2.5 0.5 0 0 0 0 0 
Charcoal 8 7 3 4 21 0 0 0 0 
Diatoms and fragments 8 4 5 5 2 0 0 0 0 
Burned Panicoid lobates 0 0 0 0 0 0 0 0 0 
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Table 41  
Dempsey Divide Mixedgrass Prairie Normalized % Phytolith  

Counts in Composite Soil Samples in 5 cm Depth Intervals through 45 cm (n=1 [x=20]) 
 

 0-5  
cm 

-10  
cm 

-15  
cm 

-20  
cm 

-25  
cm 

-30 
cm 

-35 
cm 

-40 
cm

-45 
cm

          
Keeled 10.2% 6.4% 7.8% 6.2% 7.0% 0 0 0 0 
Conical 14.5% 12.0% 15.3% 19.4% 18.3% 0 0 0 0 
Pyramidal 1.0% 0.4% 0.3% 1.5% 0.5% 0 0 0 0 
Crenate 1.2% 1.7% 1.5% 1.8% 4.3% 0 0 0 0 
Saddle, Squat 21.0% 27.4% 22.3% 18.3% 17.7% 0 0 0 0 
Saddle, Tall 45.7% 48.4% 48.9% 46.8% 46.2% 0 0 0 0 
Stipa 0.7% 0.0% 0.3% 0.7% 0.5% 0 0 0 0 
Lobate, 
Simple 1.8% 1.3% 2.0% 2.4% 2.4%

0 0 0 0 

Lobate, 
Panicoid 3.4% 2.4% 1.4% 2.9% 3.0% 0 0 0 0 

Lobate, 
Panicoid 
(compound) 

0.0% 0.0% 0.0% 0.0% 0.0% 0 0 0 0 

Cross (>10 μ) 0.2% 0.0% 0.3% 0.0% 0.0% 0 0 0 0 
Cross (>10 μ) 0.2% 0.0% 0.0% 0.0% 0.0% 0 0 0 0 

 
 

Table 42 
Dempsey Divide Mixedgrass Prairie 

Total Short Cell Phytoliths Grouped by Climatic Indicators  
(Composite Soil Samples in 5 cm Depth Intervals through 45 cm (n=1 [x=20]) 

 

 
0-5 
cm 

-10 
 cm 

-15 
 cm 

-20  
cm 

-25 
cm 

-30 
cm

-35 
cm 

-40 
cm 

-45 
cm

           
Cool Wet 
Phytoliths 111 48 99 79 56 0 0 0 0 

Hot Dry 
Phytoliths 276 177 284 178 119 0 0 0 0 

Hot Moist 
Phytoliths 26.5 8.5 15.5 16.5 11 0 0 0 0 

Total Short 
Cell 
Phytoliths 

413.5 233.5 398.5 273.5 186 0 0 0 0 
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Table 43 

Dempsey Divide Mixedgrass Prairie 
Normalized Short Cell Phytoliths Grouped by Climatic Indicators  

(Composite Soil Samples in 5 cm Depth Intervals through 45 cm (n=1 [x=20])) 
 

 
0-5 
cm 

-10 
 cm 

-15 
cm 

-20 
cm 

-25 
cm 

-30 
cm 

-35 
cm 

-40 
cm 

-45 
cm

          
Cool Wet 
Phytoliths 26.8% 20.6% 24.8% 28.9% 30.1% 0 0 0 0 

Hot Dry 
Phytoliths 66.7% 75.8% 71.3% 65.1% 64.0% 0 0 0 0 

Hot Moist 
Phytoliths 6.4% 3.6% 3.9% 6.0% 5.9% 0 0 0 0 

 
 
 
 

 
 
Figure 71.  Dempsey Divide Mixedgrass Prairie seasonality profile (plot of data in Table 
42). 
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Table 44 

 Dempsey Divide Mixedgrass Prairie 
Incidence of Other Particle Types Recovered in the Phytolith Fraction  

Relative to Tabulated Phytolith Short Cell Forms (Soil Composite Sample (n=1 [x=20]))  
 

Sample Depth 
(cm) Charcoal Burned 

Panicoids Diatoms Sedge 
Phytoliths 

Sponge 
Spicules 

      
 0-5 1.93% 0 1.93% 0.48% 0.24% 

 05-10 3.00% 0 1.71% 0.72% 0.43% 
 10-15 0.75% 0 1.25% 0.63% 0 
 15-20 1.46% 0 6.13% 0.18% 0 
 20-25 11.29% 0 1.08% 0 1.08% 

 
 
 

 
 

Figure 72.  Dempsey Divide soil particles relative to total short cell phytolith count (plot 
of data in Table 43). 
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correlation has not been established.  Concurrent environmental cooling and an increase  

activity (i.e., interval 5, 20-25 cm at Dempsey Mixedgrass Prairie) may be a marker for a 

serious environmental event.  A spike in the interval 4 diatom concentration was also 

observed; the significance of this fluctuation is unknown. 

 

Discussion of Dempsey Mixedgrass Prairie Phytolith Data – Although soil dates 

are again unknown, the Dempsey Divide Mixedgrass Prairie data also shows a warming 

trend in soil depth interval 2 (5-10 cm, Figure 73).  The other particle data also shows a 

strong spike in charcoal concentration in the lowest soil interval reported (Table 18).  If 

the Manning and Dempsey prairie charcoal spikes are from the same event, the relative 

soil depths would suggest that soil building and development occurred somewhat more 

slowly at the Dempsey Divide Mixedgrass Prairie than at Manning Tallgrass Prairie.  

Unfortunately, the apparent dissolution of phytoliths  

 

 
 

Figure 73.  Dempsey Divide Mixedgrass Prairie soil phytolith seasonality profile from 0-
25 cm in depth. 
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from the lower part of the soil profile studied resulted in a truncated Dempsey Divide 

Mixedgrass Prairie data set.  There was concurrent cooling trend with the increase in 

charcoal concentration at Manning Tallgrass Prairie, whereas in the limited data available 

from Dempsey Mixedgrass Prairie the increase in charcoal content occurs with only a 

moderate temperature decrease.  The plot of phytolith/soil concentrations (wt/wt %) from 

Dempsey is nearly linear (Figure 75); it is probable that this reflects a rate of phytolith 

dissolution in the basic soil as well as the rate of soil formation, so the phytolith 

concentration relative to soil depth is presumably skewed via increased dissolution with 

depth.  The very low phytolith recoveries at the site in the lower samples (Table 38) 

support this theory.  The exponential Manning Tallgrass Prairie phytolith profile (Figure 

75) suggests long-term soil stability with gradual aggradation occurring while the 

Dempsey Divide Mixedgrass phytolith data suggest dissolution issues, or possibly a very 

young soil. 

 

 

Bull Creek site (Shortgrass Prairie) – Detailed soil sampling (n=1 [x=20]) was 

initiated at the Dempsey Divide Shortgrass Prairie (Figure 10, location 2).  However 

while sampling the top 5 cm soil interval both available soil probes were twisted into “S” 

shapes rendering them unusable; the extremely hard soil being a side effect of the 2006 

drought.  Further Shortgrass Prairie soil sampling at Dempsey Divide was abandoned. 

  

For this reason, the previously collected surface 10 cm soil sample from the Bull 

Creek site was used as the Shortgrass Prairie control soil sample in this study (n=1).  The 
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Bull Creek site is located in the Oklahoma Panhandle (Figure 61).  The eroded high wall 

profile that yielded the surface Shortgrass Prairie sample is shown in Figure 74.  The 

predominant species currently present on the site is Buffalograss.  The surface soil 

sample, designated sample BC-52, contained 1.65% phytoliths by weight.  The raw count 

data and normalized short cell values are in Table 45.  The climatic summary data is 

presented in Table 46; the phytolith signature is a strong hot dry one as would be 

expected for a Shortgrass Prairie on the High Plains.  The complete soil phytolith profile 

was not prepared at Bull Creek although a total of eleven soil samples were analyzed (see 

Figure 81).  The additional phytolith results from this site are discussed in the Bull Creek 

buried soil data section.  

 
 
 

Discussion of Bull Creek Shortgrass Prairie Phytolith Data – The last reference 

prairie phytolith data present in this series is from the Shortgrass Prairie sample from the 

Bull Creek site.  However, with the series of eight dated buried soils present at this site 

(see next data section; Bement et al. 2007), it is known that the 50 cm interval above the 

first buried soil represents less than 6,200 years.  Extensive erosion and soil burial events 

occurred at the Bull Creek Site over 12,000+ years.  The presence of nanodiamonds in a 

buried soil at Bull Creek correlating with the hypothesized Younger-Dryas precipitating 

event at ~12,900 BP (Firestone et al. 2007, Kennett et al. 2009) may well indicate the 

cause for regional climatic disruption and fire.  However, this early time interval at the 

Bull Creek site is clearly not represented in the Surface A horizon profile soil, so this is 

not addressed for the Shortgrass Prairie control sample. 
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Figure 74.  Profile showing soil sampling points at Bull Creek 1 (photograph courtesy of 
Lee Bement). 
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Table 45 
Bull Creek Surface Soil Sample (BC-52) Phytolith Counts (10 cm, n=1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 46 
Bull Creek Surface Soil Sample (BC-52)  

Short Cell Phytoliths Summed by Climatic Grouping (10 cm, n=1) 
 

Climatic Short Cell Phytolith Types Normalized 
Percent 

  
Pooids (Cool Wet Phytoliths) 10.1% 
Chloridoids (Hot Dry Phytoliths) 82.2% 
Panicoids (Hot Moist Phytoliths)  7.7% 

 

Phytolith Form Phytolith 
Count  

Normalized 
Short Cells  

 
Keeled 13 5.2% 
Conical 5 2.0% 
Pyramidal 2 0.8% 
Crenate 3 1.2% 
Saddle, Squat 184 73.6% 
Saddle, Tall 27 10.8% 
Stipa 13 5.2% 
Lobate, Simple 2 0.8% 
Lobate, Panicoid 1.5 0.6% 
Lobate, Panicoid (cmpd) 0 0.0% 
Cross, Panicoid (<10 μ) 1 0.4% 
Cross, Panicoid (>10 μ) 13 5.2% 
Spiny Spheroid 9  
Sponge Spicule 1  
Trichome, Hair Cells 1  
Bulliform, square 6  
Bulliform, rectangular 49  
Bulliform, keystone 0  
Bulliform, Y-shaped 2  
Bulliform, other 5  
Elongate, smooth 19  
Elongate, sinuous 11  
Elongate, castillate 21  
Elongate, spiny 2  
Diatoms and fragments 0  
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Figure 75.  Dempsey Mixedgrass Prairie and Manning Tallgrass Prairie phytolith soil 
concentrations (wt/wt %).  The R2 value for the six 0-25 cm Manning data points is 
0.9966. 
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Reference Control Prairie Comparison Discussion – The relative surface soil 

phytolith concentrations at three control prairie sites are shown in Table 47.  The low 

Dempsey Mixedgrass Prairie phytolith concentration may be a reflection of phytolith 

stability/dissolution issues or rate of soil development.   The difference in phytolith 

concentration may also be related to biomass load and to the actual phytolith 

concentration present in the dominant plant species at the various prairie locations.  Due 

the amount of annual biomass at the Tallgrass versus the Shortgrass Prairies, it was 

anticipated that the Tallgrass Prairie would have the highest soil phytolith concentration.  

However, this clearly was not the case; this difference may be an indicator of the relative 

rate of soil formation at these two sites (and at the Mixedgrass Prairie as well).  

 

This unexpected observation may be due to a number of possible factors 

impacting these two sites including:  

 

• different relative rates of soil formation and aggradation at the sites, 

• average greater precipitation at the Manning Tallgrass Prairie site may have led to 

increased erosional losses of shed phytoliths in the runoff, 

• possible skewing of the Shortgrass Prairie by only having the upper few cm of 

soil present in the actual portion of the soil sample that was analyzed, and 

• Different land use practices (harvesting prairie hay at Manning Prairie which 

would remove most of the leaf biomass for the past 100 years), and possible 

differences in frequency of natural fire events. 



  

 202   

  The variation the phytolith recoveries for the two different Manning Tallgrass 

Prairie sampling templates tested (n=1 [x=20] vs. n=21 replicates values, Table 44) 

indicates that significant phytolith concentration differences occur at one given site; these 

two sampling locations were centered less than 100 meters apart.  The average of the 

value from location 2 (n=21) is 48% higher than the average of the values obtained from 

location 1 (n=1 [x=20]) (Table 47).  Even within sampling location 2, the range of 

phytolith concentrations in the 21 discrete sampling locations varied from 0.77 to 1.20 

weight % of soil (Table 19) indicating a very non-homogenous phytolith distribution for 

21 discrete individual samples collected in a 20 meter diameter circle (314.16 square 

meter sample template).  Thus, actual horizontal soil phytolith concentration and 

distribution is highly variable in a small area, reflecting the variability in plant 

distribution, organic material deposition, and possibly other factors (Table 47). 

 

Likewise, as previously noted, the concentration of the individual short cell forms 

can be highly variable within a given site based on the evidence from Manning Tallgrass 

Prairie (Table 26).  The data for the normalized short cell concentrations for the surface 

Table 47 
Three Control Prairie Surface Soil Sample Phytolith Concentrations 

 
 

 

 

 

 

Prairie Type Phytoliths/Soil 
(wt/wt %) 

  
Manning Tallgrass Prairie (0-5 cm, n=1 [x=1]) 0.69 % 
Manning Tallgrass Prairie (0-5 cm, n=1 [x=3]) 0.55 % 
Manning Tallgrass Prairie (0-5 cm, n=1 [x=20]) 0.63 % 
Manning Tallgrass Prairie (0-5 cm, 10 replicates) 0.93 % 
Manning Tallgrass Prairie (0-5 cm, 21 replicates) 0.93 %  
Dempsey Mixedgrass Prairie (0-5 cm, n=1 [x=20]) 0.14 % 
Shortgrass Prairie at Bull Creek (0-10 cm, n=1) 1.65 % 
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Table 48 
Three Control Prairie Surface Soil Sample Short Cell Phytolith Signatures 

 

 
 
soil of the three control prairies evaluated in this study are summarized in Table 48, and 

plotted in Figure 76.  

 

The relative normalized concentration of the various short cell forms at these 

study sites is shown in Figure 76.  The concentration of keeled (1), pyramidal (3), crenate 

(4), stipa (7), simple lobate (8), compound Panicoid lobate (10), large and small Panicoid 

crosses (11 and 12) are very similar across these three study sites even though they are 

different prairie types and have very different climatic regimes.  As would be expected, 

the Panicoid lobate (#9) form is much higher at the Tallgrass Prairie site than at the other 

two sites.  The conical form (2) is similar for the Mixedgrass and Tallgrass Prairies which 

Normalized Short Cells 

Phytolith Form 
Manning 

Tallgrass Prairie 
(0-5 cm,  

n=1 [x=20]) 

Dempsey 
Mixedgrass 

Prairie (0-5 cm,  
n=1 [x=20]) 

Bull Creek 
Shortgrass 

Prairie  
(0-10 cm, n=1) 

   
Keeled   9.6% 10.2%   5.2% 
Conical 18.0% 14.5%   2.0% 
Pyramidal   3.3%   1.0%  0.8% 
Crenate   4.4%   1.2%   1.2% 
Saddle, Squat 13.2% 21.0% 73.6% 
Saddle, Tall 17.3% 45.7% 10.8% 
Stipa   1.1%   0.7%   5.2% 
Lobate, Simple   2.8%   1.8%   0.8% 
Lobate, Panicoid 26.1%   3.4%   0.6% 
Lobate, Panicoid(cmpd)     0%   0.0%   0.0% 
Cross, Panicoid (<10 μ)   3.5%   0.2%   0.4% 
Cross, Panicoid (>10 μ)   0.7%   0.2%   5.2% 
    

Tall:Squat saddle ratio 1.31 2.18 0.15 
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are both appreciably higher than the conical concentration in the Shortgrass Prairie.  The 

major distinctive difference in these three prairie types is most pronounced in the relative 

ratios of the two saddle phytolith morphologic forms (#5 and 6) (Figure 76).  The two 

different saddle forms are similar in the Tallgrass Prairie environment, but the relative 

concentrations are strongly inverted in the Mixedgrass Prairie compared to the Shortgrass 

Prairie environments.  This striking differences suggests that saddle morphology (i.e., 

short versus tall form, with the difference being which axis of the phytolith is relatively 

longer) is the most sensitive indicator present in the identified short cell phytolith forms 

in the modern soils of the three prairie types evaluated in this study.  Saddle phytoliths 

merit future attention in grassland and prairie-related studies. 

 
Figure 76.  Normalized individual short cell phytolith forms for three prairie sites.  
Phytolith Form key:  1:  Keeled; 2:  Conical; 3:  Pyramidal; 4:  Crenate; 5:  Saddle 
(Squat); 6:  Saddle (Tall); 7:  Stipa; 8:  Lobate (Simple); 9:  Lobate (Panicoid); 10:  
Lobate (Panicoid, Compound), 11:  Panicoid Cross (<10 um); and 12:  Panicoid Cross 
(>10 um).  
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A plot of sample saddle ratio verses the total normalized percent of saddles to the 

short cell count provides another way to look at this data (Figure 77).  As expected from 

the previous values, there are three data clusters by prairie type.  The ratio within each 

sample varied, but linear trends were observed in the data.  For instance, the line through 

the Dempsey Divide Mixedgrass Prairie data has a R2 value of 0.8695.  The grey best fit 

line through all of the Manning Tallgrass Prairie had a R2 value of 0.5004.  However, in 

looking at the Manning data, there appear to be two linear subsets in the data (black lines) 

with the 5-10 cm data point being an outlier (Figure 77). 

 

The meaning of the linear regions in these two data subset is unknown.  One 

potential explanation is that each subset reflects the dominance (or absence) of a 

particular species or part of the prairie plant association during the time interval reflected 

in that particular soil sample.  This series of comments regarding saddle phytoliths in the 

samples only considers the relative shape (tall versus squat).  Other factions which have 

not been addressed in this study, such as an understanding of the variation in saddle size, 

may also have significant importance in the understanding saddle variations among 

specific plant species and prairie types.  

 

Summing the short cell data (Table 48) by climatic type results in the values given 

in Table 49 and plotted in Figure 78. 

 

Figure 78 very clearly shows the correlation between prairie types and the 

summed short cell climatic indicators.  The Manning Tallgrass Prairie has roughly equal  
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Figure 77.  Plot of saddle ratio verses normalized % of saddles in the short cell count.   
from either subset.  The correlation coefficients of these two Manning Prairie subset lines 
are both better than 0.99 (upper line R2 = 0.9976; lower black line R2 = 0.9902).  The two 
data subsets to share one common point (25-30 cm).  The upper portion (0-5 and 10-15, 
and lower portion (34-45 are on one line, and the intermediate zones (top half of the BA 
horizon) are on the other line.  The deeper samples of the Dempsey Divide Mixedgrass 
prairie (15-25 cm) also have a higher saddle ratio than the corresponding shallower 
samples (0-15 cm).  For both Dempsey and Manning, the 5-10 cm interval has the lowest 
ratio of their respective series. 
 

 
Table 49 

Reference Prairie Surface Soil Sample  
Short Cell Phytoliths Summed by Climatic Grouping  

 

Climatic Short Cell 
Phytolith Types 

Manning 
Tallgrass 
Prairie 

Normalized 
Percent 

Dempsey 
Mixedgrass 

Prairie 
Normalized 

Percent 

Bull Creek site 
Shortgrass 

Prairie 
Normalized 

Percent 
    
Cool Wet Phytoliths 33.3% 26.8% 10.1% 
Hot Dry Phytoliths 30.5% 66.7% 82.2% 
Hot Moist Phytoliths 34.2% 6.4%  7.7% 
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Figure 78.  Concentration of phytolith climatic short cell grouping for each prairie type 
studied. 
 

Pooid, Chloridoid, and Panicoid short cell phytolith composition. As one moves west 

across the Great Plains to other prairie types, the climate becomes warmer and much 

drier.  The Mixedgrass and Shortgrass Prairies both have a roughly equal low normalized  

Panicoid component.  The Mixedgrass Prairie has an intermediate cool wet season 

(Pooid) component being somewhat more similar to the Tallgrass Prairie.  The Shortgrass 

Prairie has the lowest Pooid component of all as a result of the extremely xeric 

conditions.   

 

The largest change between these three plots is the increased Chloridoid 

component in the Mixedgrass and Shortgrass Prairies.  This difference is a direct result of 

the plant communities adapted to those hotter drier prairie settings.  This adaptation 

occurs by overall increase in frequency in the plant community of hot season adapted 

plants—those that that use C4 metabolism—which benefits the plants by helping to 
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conserve plant water.  This change is clearly reflected in the phytolith data from these 

control prairie samples.  However, even though both Chloridoid counts are high, the 

actual Chloridoid forms (i.e., squat vs. tall) making up the count are drastically different 

between the Mixedgrass and Tallgrass Prairie (Figures 76-78) which may be attributable 

to actual species differences in the plant communities. 
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Research Objective 3: Phytolith Samples from Buried Soil Study Sites 
 

 

Phytolith signatures were determined for buried A horizons at three Oklahoma 

research sites (Figure 79).  Each site contains one or more buried soils whose age has 

been determined by radiocarbon dating (Bement et al. 2007; Carter et al. 2009).  The data 

from these sites will be presented in order from west to east.  

 

 

Bull Creek Site (34BV176) –  The Bull Creek Site is located along Bull Creek, a 

small ephemeral tributary of the North Canadian River (Bement et al. 2007).  The 

exposed profile that provided the soil samples for this phytolith study is shown in Figure 

74.  The soil profile description has been published (Bement et al. 2007).  The surface 

soil sample (BC-52) is the reference Shortgrass Prairie sample described in the previous 

section.  The Bull Creek Site actually has a stacked series of nine distinct A horizons.  

The lower seven buried soils in this sequence are the subject of this current investigation.  

Soil phytoliths were quantitatively isolated from the surface A-Horizon (BC-52), the 

seven lower buried A horizons, and the ABkb3 (BC-42), 2Bkb4 (BC-34) and 2ACb8 

(BC-19) horizons.   The raw phytolith counts for these eleven soil sample extracts are in 

Tables 50 and 51.  The normalized data by short cell type is in Table 52 and the 

normalized phytolith seasonality groupings are in Table 5333.  Figure 80 is a plot of the 

climatic data.  The Chloridoid component of the seasonality profile is shown in more 

detail in Figure 81. 

                                                 
33 Tables 51 and 52 included recount data for samples BC-34 and BC-47). 
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Figure 79.  Oklahoma map indicating the location of the three buried soil study sites 
discussed in this research report.  (Base map from  
http://www.okhistory.org/outreach/map.jpg.) 
 

 

 The stipa morphologic form count is included in the Panicoid fraction in Figure 

8034.  Initially, it was anticipated that the rather ubiquitous rondel forms (Mulholland 

1989) would be included with the Pooid fraction.  The Bull Creek phytolith data for the 

saddle and rondel phytolith forms is plotted in Figure 81 (particle count totals taken from 

Tables 50 and 51).  Although there is a low baseline level of rondels present in all of the 

samples (roughly 0-10 specimens/200 recognizable short cells), it appears that spikes in 

rondel frequency in these soil samples generally correlate with the higher saddle phytolith 

form counts.  This is most obvious in the modern day soil—where the soil represents the 

Oklahoma panhandle climate which is exceptionally hot and dry.  Thus, as Fredlund and 

Tieszen (1994, 1997a) did not include rondels in the phytolith counting scheme used to 

calibrate grasslands of the Great Plains, and because the peak rondel concentrations at  

                                                 
34 In the original publication of this data the stipa fraction is included on the Panicoid side of the graph but 
remains distinct (Bement et al. 2007).  Including both C3 and C4 species, the Stipa count could potentially 
be included in the Pooid or in the Panicoid fraction.  If these fairly low values were switched to the Pooid 
region, the Chloridoid portion would be shifted slightly to the right in Figure 88, but otherwise relatively 
unchanged.  The stipa morphologic form ranged from 0.9-10.6 normalized percent of the short cell count in 
these eleven Bull Creek samples (Table 51).   

http://www.okhistory.org/outreach/map.jpg�
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Table 50 
Counts of Bull Creek Short Cell and Other Phytolith Forms (BC-34 through BC-52) 

 

Sample No.
BC-
52 

BC-
47 BC-45 BC-42 BC-37 BC-34 

Form       
Keeled 13 11 18 18 12 21 
Conical 5 49 45 35 36 72 
Pyramidal 2 18 6 17 13 22 
Crenate 3 56 27 20 16 15 
Saddle, Squat 184 41 22 103 42 35 
Saddle, Tall 27 11 72 23 74 29 
Stipa 13 2 13 4 24 26 
Lobate, Simple 2 15.5 5.5 7.5 8.5 9.5 
Lobate, Panicoid 1.5 13 5 7.5 5 5 
Lobate, Panicoid (cmp’d) 0 1 0 0 0 1 
Cross, Panicoid 1 1 3 2.5 5.5 3 

Total Short Cell Count 251.5 218.5 216.5 237.5 236 238.5 
Ratio saddles (Squat:Tall) 6.815 3.727 0.3056 4.4783 0.568 1.2069

       
Non-short cell forms:            

Rondel (bipoint) 52 3 0 0 16 0 
Rondel, other 8 5 0 7 13 0 
Dicot, knobby 2 12 8 4 9 9 
Spiny spheroid 9 27 7 12 5 7 
WWW 8 2 10 12 7 15 
Schlerid 0 0 0 0 0 0 
Diatom 0 0 0 2 4 0 
Sponge spicule 1 2 1 2 0 1 
Trichome 1 15 6 8 8 7 
Hair cells 0 1 0 1 2 0 
Bulliform, square 6 22 6 3 3 1 
Bulliform, rectangular 49 45 12 6 18 8 
Bulliform, keystone 0 17 4 5 2 1 
Bulliform, Y-shaped 2 0 0 0 1 1 
Bulliform, other 5 37 3 8 23 15 
Elongate, smooth 19 36 23 15 24 19 
Elongate, sinuous 11 15 25 17 14 15 
Elongate, castillate 21 21 10 8 13 15 
Elongate, spiny 2 23 10 15 17 18 
             

Other Phytolith Count: 202 283 125 125 179 132 
Ratio “Short Cell:Other” 1.24 0.772 1.732 1.90 1.318 1.8068
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Table 51 
Counts of Bull Creek Short Cell and Other Phytolith Forms (BC-19 through BC-31) 

                                                 
35 In addition to the individual phytolith forms counted and reported in this table for sample BC-19, an 
additional 6300 fragments and unidentifiable fragments were tallied in the same count fields yielding 242.5 
short cells. 

Sample No. BC-31 BC-28 BC-25 BC-22 
BC-
1935 

Form      
Keeled 13 13 37 21 46
Conical 34 70 86 67 45
Pyramidal 5 20 7 29 7
Crenate 29 34 7 27 13
Saddle, Squat 39 50 54 16 49
Saddle, Tall 83 10 3 18 32
Stipa 19 2 14 24 3
Lobate, Simple 11 13.5 7 12 3
Lobate, Panicoid 4 6.5 2 9.5 3.5
Lobate, Panicoid (cmp’d) 1 0 1 0 0
Cross, Panicoid 2 3.5 3.5 3 0

Total Short Cell Count 240 222.5 221.5 226.5  201.5 
Ratio saddles (Squat:Tall) 0.47 5.00 18.00 0.8889 1.5283 

Non-short cell forms:          
Rondel (bipoint) 4 0 1 0 1
Rondel, other 18 1 0 0 0
Dicot, knobby 10 8 8 9 14.5
Spiny spheroid 10 20 12 13 7
WWW 8 1 6 2 3
Schlerid 0 0 0 0 0
Diatom 0 0 1 0 3
Sponge spicule 0 0 0 1 1
Trichome 17 10 6 6 17
Hair cells 0 2 0 3 1
Bulliform, square 9 7 8 11 7
Bulliform, rectangular 22 13 8 10 23
Bulliform, keystone 7 7 6 3 1
Bulliform, Y-shaped 0 0 0 1 2
Bulliform, other 44 14 13 35 98
Elongate, smooth 42 17 15 14 39
Elongate, sinuous 15 4 18 6 6
Elongate, castillate 24 12 18 5 11
Elongate, spiny 17 8 20 10 8
           

Other Phytolith Count: 247 124 140 129 242.5
Ratio “Short Cell:Other” 0.972 1.794 1.582 1.7558 0.8309
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Figure 80.  Bull Creek soil sample phytoliths in normalized seasonality groupings (data 
from Table 53).  The dates given are in radiocarbon years before present (RCYBP). (Two 
non-A horizons were not dated. The non-A horizons analyzed at the Bull Creek Site are 
BC-42 [ABKb3], BC-34 [2BKb4], and BC-19 [2ACb8]). 
 

Bull Creek correlated with an increase in saddle incidence (Figure 81), it was decided to 

exclude the rondel form from the short cell count totals and normalization.  This is  

supported by the previous discussion regarding confuser/imposter forms.  The so-called 

saddle form is the only major recognized Chloridoid short cell type used in past prairie 

studies on the Great Plains Fredlund and Tieszen (1994, 1997a).  The actual botanical 

source of the rondels in soil at the Bull Creek Site has not been determined.  
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In today’s hot dry climate, the Bull Creek Site area’s modern Shortgrass Prairie 

phytolith sample is dominated by the saddle form (BC-52 Chloridoid component in 

Figure 80); however, none of the Bull Creek Site buried A horizon samples show 

phytolith evidence of a climate anywhere near as hot and dry as B-52.  An increase in the 

Pooid fraction, as seen in BC-47 and BC-28 through BC-22, represents relatively cooler 

intervals at this site.  Conversely, the increase relative to an adjacent A horizon of the 

Chloridoid fraction represents a warmer climatic interval (cf. BC-45, BC-37 and BC-31).  

The Panicoid (including Stipa) fraction is generally the smallest category at this site 

ranging from 7 to 21.4 %.  The modern Manning Tallgrass Prairie control sample 

Panicoid fraction varied from 34-40% (Tables 17 and 35).  The Dempsey Mixedgrass 

Prairie soil samples never got up to 7% Panicoids (Table 43).  Perhaps the most 

impressive feature about the climate swings evidenced in the Bull Creek buried soil 

 
 

Figure 81.  Comparison of actual particle counts of saddle and rondel forms in these 
eleven Bull Creek Soil Samples. 
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phytolith data is how large the climate swings are between some of the closely dated 

buried soils—particularly during the interval represented by BC-22 through BC-37.  

 

One way to interpret the data in the saddle plot (Figure 82, data from Tables 50 

and 51) is that the scatter along the x-axis reflects the speed or extent of climate change 

as evidenced by the length of time apparently available for invasive botanical species to 

encroach on the site.  In this case, the difference between the modern surface sample 

(BC-52, in red) and the cluster containing BC-25, BC-28, and BC-47 is that the Pooid 

fraction grows relative to the Chloridoid fraction, and the plant community (as reflected  

 

 
 

Figure 82.  Plot of ratio of Tall:Squat Saddles vs. Normalized Percent Saddles for the 
Bull Creek Site.  Control Tallgrass and Mixedgrass Prairie surface data points also 
included for reference.  All black Bull Creek data points (except BC-19 and BC-34) are 
buried A Horizons. 
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in the climatic data summary) was very similar at the times these three earlier A horizons 

formed.  Thus, these three qualitative phytolith signatures (i.e., representing extant plants 

at the time of soil formation) do not give evidence of vegetation change although the 

quantitative portion of the data shows that the climate was much cooler than modern day 

in that Pooid fraction was markedly increased while and the Chloridoid fraction was 

smaller.  The relative saddle composition (i.e., tall verses squat ratio) remained 

remarkably constant (i.e., the same C4 plants were presumably present, but with much 

less annual foliage on average resulting in a decrease in total Chloridoid content in the 

phytolith signature; Figure 82) while the cooler weather enabled the Pooids in the area to 

flourish and their phytolith composition (i.e., annual biomass) to increase.  By the same 

logic, the BC-42 data point (ABkb3) suggests similar vegetation was present at the site at 

that time, but indicates an intermediate cooling trend from the previous cluster of three 

cases relative to modern-day.  By this proposed reasoning, one would expect the 

previously known very cool climate sample (immediately post-glacial interval, 11,070 BP 

sample BC-22) in this series to have the lowest saddle concentration—and that is the 

case.  During the BC-22 formation interval, the actual plant community composition 

appears to have been different than that present during BC-52, BC-42, BC-25, BC-28, 

and BC-47) due to the presumed presence of additional plant species causing a shift in 

Tall:Squat saddle ratio along the x-axis. 

 

What Figure 82 appears to add to the information about the other samples with a 

greater tall saddle component is an apparent indication that the extreme cooling (climatic 

variation) that occurred was either  
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• extreme enough that the formerly minor plant species with a different saddle ratio 

became dominant enough to significantly shift the overall saddle ratio, or that  

• the phytolith signature change was gradual enough that the actual plant 

community composition changed via additional plant species with a different 

saddle signature (tall vs. squat) encroaching on (gradually migrating to) the site in 

response to the climate change. 

 

In contrast, sample BC-45 shows an extreme change in the soil phytolith saddle 

morphology ratio (x-axis movement) as well as an intermediate temperature range (y-axis 

movement).  This shift suggests a major change occurred in the plant community at the 

site.  This may mean that enough time lapsed prior to or when developing the BC-45 A 

horizon (versus BC-42 development) to enable incursion of new plant species into the 

area which significantly changed the saddle signature.  By this reasoning, the samples 

BC-31 and BC-37 developed somewhat more rapidly than BC-45, but still slowly enough 

to enable some change in extant plant species in the plant association.  The variation in 

the saddle ratio of two Manning data points (Figure 82) is felt to be the result of different 

moisture conditions (and thus different dominant botanical species, with no temperature 

variation) at the two adjacent Manning sampling locations.  This potential intra-site 

moisture variation does not apply to the Bull Creek Site as all of the Bull Creek samples 

are from one single vertical soil profile. 

 

It should be noted that three of the four A horizon samples that had a relative 

increase in total Chloridoid fraction (BC-31, BC-37, and BC-45) are the three samples 
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with the largest change in saddle morphology ratio.  This could be explained by invasive 

species gradually migrating into the area during an interval of or as a result of climate 

change.  The relative position on the plot in Figure 82 may indicate how quickly the 

migration occurred and/or how long of an interval of new A horizon was stable.  If this is 

the correct interpretation, the longest period of changed climatic stability (i.e., the speed 

of botanical species migration was most rapid) for BC-45, and slower for BC-31 and for 

BC-37.  The fourth warm interval noted previously (BC-42) shows essentially no change 

in saddle morphologic signature which by the above reasoning would suggest the climate 

change was relatively fast and/or the period of stability was very short [BC-42 was not an 

A horizon].  The saddle signature would change by relative intensity of growth of the 

plant community components (i.e., less seasonal time for Chloridoid growth (y-axis) 

relative to modern-day, but maintaining the same saddle ratio) and/or with more non-

Chloridoid growth (biomass) in the prolonged cooler seasons (resulting in the ratio 

change, seen as movement along the x-axis). 

 

The Bull Creek Site soil profile contained the most buried soils ranging over the 

longest dated time interval of any site studied.  For this site, primarily A horizon 

phytoliths were evaluated so pedogenesis is not addressed in this present discussion.  The 

soil profile has been published elsewhere, and details of soil formation addressed 

(Bement et al. 2007).   The Bull Creek Site saddle data (Figure 82) shows considerably 

more diversity than was noted in the two previously discussed buried soil sites.  The Bull 

Creek Site climatic phytolith data is presented as a graph in Figure 83.  This Bull Creek 

plot differs from previous linear plots in that additional soil samples that occurred 
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between the analyzed A Horizon samples were omitted resulting in discontinuities in the 

data presented from this stratigraphic column. 

 

 

Figure 83.  Seasonal plot of Carnegie Canyon Site phytolith data. 
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The Bull Creek site buried soil sequence begins in the early portion of the 

Holocene at the end of the Wisconsin Glacial and Pleistocene Epoch.  Although the 

topography of the landscape at that time is uncertain, the higher Chloridoid fraction in  

BC-19 (2ACb8) verses BC-22 may be indigenous in contrast to what was previously  

observed at the Lizard Site when alluvial inputs added to the local phytolith signatures.  

The parent material in BC-19 [through BC-37] was colluvium while the BC-42 through 

BC-52 soils were loess-derived (Bement et al. 2007).  

 

The phytolith signature of BC-22, dating to 11,070 BP has the lowest Chloridoid 

and highest Panicoid content of the samples, and represents the first A horizon sample 

analyzed after the beginning of glacial retreat; the climate was still very cool, with the 

phytolith signature most similar to the cool moist riparian data observed from the Lizard 

Site (Figure 109) of the sites examined in this study.  Slight warming occurred in BC-25 

and was apparently sustained during BC-28, with an additional warmer spike in BC-31—

with the temperature then being relatively stable through BC-37 and BC-42 (Figure 84).  

BC-34 (2Bkb4) was cooler during this interval, but was not an A horizon (Bement et al. 

2007).  The loess era saw a cooling trend in BC-45 and BC-47, with the modern soil 

phytolith sample (BC-52) being extremely hot and dry (Figure 84). 

 

The lower portion of the colluvial sequence has discrepancies in the carbon dates 

(Figure 84) within the BC-22 through BC-31 interval.  This time interval includes the 

BC-22 A horizon from which nanodiamonds were recovered (Kennett et al. 2009); the 

nanodiamonds which are thought to be a direct result of the cosmic event proposed by 
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Firestone et al. (2007) in southeastern Canada during this time interval.  If their theory is 

correct and contributed to the end of the large Pleistocene fauna and demise of the Clovis 

culture, a major environmental impact occurred.  However, a drastic change is not seen in 

the phytolith signature during this and immediately following this interval; there is slight 

summer warming with less summer moisture from BC-22 to BC-25, but the Pooid 

signature remains constant from the BC-22 through BC-28 interval.  If the cosmic event 

did severely alter the landscape at the time of occurrence (and nanodiamonds do occur at 

Bull Creek Site thousands of kilometers from the event source suggesting a major event), 

the next buried A horizon that formed at the site had a similar climatic signature to the 

previous soil sample.  There is a distinct warming trend apparent in BC-31 with a higher 

Chloridoid component offsetting a Pooid decrease, but this is post-event and the climate 

was significantly warmer during the period of stability reflected in BC-31 (Figure 84).   

 

The problem with the inversion of specific radiocarbon dates at the Bull Creek 

Site (i.e., BD- 25 and BC-28 in the sampling sequence) may have been caused by the 

cosmic event which occurred and may be responsible for precipitating the cold Younger-

Dryas period in a manner previously described (Firestone and Topping 2001; Firestone et 

al. 2007).  It is interesting to note that a similar date inversion (9,160 and 9,330 BP)—

somewhat later and not as extreme—was previously reported from the Dry Creek alluvial 

fan (profile B) (Fredlund and Tieszen 1997b:212, 214). 
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Figure 84.  Bull Creek Site climatic phytolith data. 
 

 

  For phytolith research, the most significant finding coming out of the 

nanodiamond discovery at Bull Creek is that the nanodiamonds did not migrate from 

their point of deposition (i.e., no vertical scatter or redistribution observed) (Kennett 

2009, Bement Personal Communication).  Possible phytolith movement and migration in 

the soil profile has long been theorized and discussed (Rovner 1986b; Piperno 2006:111-
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115; Hart and Humphreys 1997; 2003; Fishkis. Ingwersen, and Streck 2009); the Bull 

Creek nanodiamond evidence suggests that such particle movement does not routinely 

occur (Kennett et al. 2009)—at least in certain soil types. 

 

 The Bull Creek Site saddle data (Figure 82), BC-25, BC-28, and BC-47 are tightly 

clustered suggesting a similar cool climate and plant community at those three times of A 

horizon formation.  Their total saddle content tends to mirror what was observed in the 

Carnegie Canyon cluster and in the Tallgrass Prairie controls, but with less morphologic 

saddle variation (Figure 109).  The samples BC-19 and BC-34 [non-A horizons] are 

actually within the Carnegie Canyon Site cluster (Figure 109).  The BC-42 sample, at the 

beginning of the loess deposition phase, has the same morphologic ratio as BC-25, BC-

28, and BC-47, but a significantly lower Pooid component indicating it was much 

warmer (Figures 84 and 109).  The end of the colluvial sequence (BC-37) and the middle 

of the loess sequence (BC-45) have significantly altered saddle morphology ratios, but 

retain a similar total saddle concentration to BC-42.  This would suggest, as proposed by 

Bement et al. (2007), that the incursion of invasive species contributed to the change in 

the phytolith signature.  Based on pollen data, cheno-ams were suggested as a possible 

contributing species (Bement et al. 2007). 

 

 

Carnegie Canyon Site (34CD76) – Carnegie Canyon is a short southern tributary 

of the Washita River located in Caddo County, Oklahoma (Lintz and Hall 1983).  Four 

plant associations were identified in the study area (Lintz and Hall 1983) of which “the 



  

 226   

Woodland or Creek and River Associations” best describes the Carnegie Canyon Site 

evaluated in this current phytolith project.  The site location is shown in Figures 7, 79, 

and 85, and the cleaned soil profile is illustrated in Figure 86.  The Noble fine sandy loam 

is a coarse-loamy, siliceous, active, thermic udic haplustept.  The soil profile description 

for this locale has been published (Carter et al. 2009).  The raw phytolith counts for the 

32 soil samples collected from this profile are given in Tables 54-57, and the normalized 

short cell values and the seasonality groupings are presented in Tables 58-60.  The 

phytolith concentrations36 reported as weight percent of dry soil are in Table 61 and 

plotted in Figure 87.  The seasonality profile bar graph is presented in Figure 88. 

 

The Caddo County paleosol (Ab3), beginning at 234 cm below current ground 

surface, has been carbon dated to 1010 ± 50 rybp (Carter et al. 2009).  Thus, the soil 

above this A horizon filled in at an average accumulation rate of 2.32 mm of sediment 

per year starting from when the soil was initially buried.  It was also suggested that Ab2 

probably correlates with the 500 rybp Delaware Creek soil (Carter et al. 2009).  Some 

periods of relative stability occurred in this total sequence—enough so that A horizons 

had sufficient time to develop.  However, the Cb2 horizon between Ab2 and Ab3—

apparently representing about 500 years--is nearly 1.6 meters thick and shows no sign of 

definitive melanization.  This indicates a period of rapid alluvial deposition in Carnegie 

Canyon in the first half of the past millennium.   

 

                                                 
36  As the separation is based on particle density, the phytolith fraction weight is actually the total biogenic 
silica weight (including phytoliths, diatoms, and spicules). 
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The high phytolith concentration in the Ab3 horizon (Figure 87, samples 20-28) 

indicates that there was a well-developed plant community at the time that the Caddo 

County paleosol was formed, suggesting a period of stability.  The paleosol thickness 

(1.18 m (Carter et al. 2009)) suggests a prolonged period of stability.  The higher total 

phytolith concentration at the Carnegie Canyon Site than observed at the prairie control 

sites is possibly an indication of the greater availability of moisture and nutrients in the 

soil that help nourish and sustain vegetative growth.  The flood events that occurred at 

this site have been detailed based on the soil particle size data (Carter et al. 2009).   

 

 

Figure 85.  Carnegie Canyon Site (34CD76), Caddo County, Oklahoma.  USDA soil 
series reported as present in this marked aerial photograph are:  CoC (Binger fine sandy 
loam, 3-5 % slopes), LuD (Ironmound-Dill complex, 3-12 % slopes), LuE (Ironmound-
Dill complex, 12-30% slopes), NoD (Noble fine sandy loam, 3-8 % slopes), PcB (Pond 
Creek fine sandy loam, 1-3 % slopes), and Ro (Darnell-Rock outcrop complex, 20-70% 
slopes).  (Aerial photograph with soil designations obtained from NRCS/USDA web site 
http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm). 

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm�
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Figure 86.  Carnegie Canyon Site soil profile showing prominent buried soil Ab3 below 2 
meters. 
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Table 54 
Carnegie Canyon Site (34CD76) Phytolith Counts (Samples 1-8) 

 
Sample S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 

Morphology         
Keeled 38 44 29 18 21 23 14 35 
Conical 39 42 38 51 48 48 46 43 
Pyramidal 0 2 6 1 4 3 0 4 
Crenate 2 13 8 4 4 8 19 15 
Saddle, Squat 44 30 37 51 55 58 43 46 
Saddle, Tall 16 19 17 41 25 26 37 41 
Stipa 19 8 15 5 13 8 5 6 
Lobate, Simple 8.5 12.5 16.5 10.5 6 13 5 15 
Lobate, Panicoid 34.5 22.5 25.5 30 30 41.5 34.5 44 
Lobate, compound 0 1 0 0 0 1 0 0 
Cross (<10 μ) 5 9 8 5.5 2 2 1 4 
Cross (>10 μ) 6 3 7 1 1 0 0 4 
Maize Rondel 3 0 0 0 1 1 1 5 
Rondel, bipoint 0 0 0 0 0 0 0 0 
Rondel, other 0 1 0 0 0 1 0 5 
Dicot, knobby 0 5 0 0 4 1 1 3 
Spiny spheroid 4 1 0 0 0 1 3 1 
WWW 0 0 0 0 0 0 0 0 
Schlerid 0 0 0 0 0 0 0 0 
Diatom 45.5 8 1 1 1 3 2 0 
Sponge spicule 5 6 8 0 1 0 1 0 
Trichrome 6 6 3 8 15 4 5 7 
Hair Cells 0 0 0 0 0 1 0 0 
Bulliform, square 5 8 9 7 12 15 12 8 
Bulliform, 
rectangular 4 6 13 17 8 29 12 13 

Bulliform, keystone 0 2 1 4 0 2 2 3 
Bulliform, Y-shaped 1 0 0 0 0 0 1 0 
Bulliform, other 6 24 25 19 35 43 37 23 
Elongate, smooth 5 10 5 2 5 15 13 8 
Elongate, sinuous 3 3 3 0 3 4 3 4 
Elongate, castillate 2 6 3 1 5 17 9 2 
Elongate, spiny 9 1 0 2 0 1 1 2 
Sedge 3.5 0 1 0 1 0 2 1 

         
Total Phytoliths 314 293 279 279 300 369.5 309.5 342 

Total Short Cells 212 206 207 218 209 231.5 204.5 257 
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Table 55 
Carnegie Canyon Site (34CD76) Phytolith Counts (Samples 9-16) 

 
Sample S-9 S-10 S-11 S-12 S-13 S-14 S-15 S-16

Morphology         
Keeled 27 25 30 20 15 25 24 9 
Conical 46 46 36 36 64 54 36 40 
Pyramidal 6 6 3 3 3 2 3 5 
Crenate 8 19 15 8 10 12 10 9 
Saddle, Tquat 29 28 47 40 38 37 33 39 
Saddle, Tall 37 18 42 44 38 39 28 28 
Stipa 12 11 5 10 6 7 6 5 
Lobate, Simple 3 5 6 6 5 3 7 12.5 
Lobate, Panicoid 59 44 49 47.5 30.5 24 38 55.5 
Lobate (cmpd) 0 0 0 1 0 0 0 0 
Cross (<10 μ) 0 7 6 0 5 2 5 2 
Cross (>10 μ) 0 1 1 0 1 0 0 0 
Maize Rondel 0 1 1 0 1 0 0 0 
Rondel, bipoint 0 0 0 0 0 0 0 0 
Rondel, other 2 4 4 6 6 4 7 2 
Dicot, knobby 0 0 0 0 0 2 0 1 
Spiny spheroid 4 1 3 0 3 0 0 0 
WWW 0 0 0 0 0 0 0 0 
Schlerid 0 0 0 0 0 0 0 0 
Diatom 2 1 0 0 0 1 1 0 
Sponge spicule 3 2 7 4 4 3 3 2 
Trichrome 14 11 6 11 10 10 8 15 
Hair Cells 1 0 0 0 0 0 0 0 
Bulliform, square 13 4 10 11 11 8 13 20 
Bulliform (rect) 15 22 6 17 13 16 8 22 
Bulliform, keystone 5 4 11 7 6 4 5 10 
Bulliform, Y-shaped 0 2 0 0 0 0 0 0 
Bulliform, other 86 94 41 33 36 21 27 27 
Elongate, smooth 11 10 9 8 3 4 1 5 
Elongate, sinuous 4 11 2 0 3 0 3 4 
Elongate, castillate 7 10 5 3 4 4 4 6 
Elongate, spiny 0 1 1 4 2 3 1 2 
Sedge 3.5 6 3.5 5 0.5 3 1 2 

         

Total Phytoliths 
397.

5 394 349.5 324.
5 318 288 272 323 

Total Short Cells 227 210 240 215.
5 

215.
5 205 190 205 
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Table 56 
Carnegie Canyon Site (34CD76) Phytolith Counts (Samples 17-24) 

 
Sample S-17 S-18 S-19 S-20 S-21 S-22 S-23 

Morphology        
Keeled 31 25 32 36 35 50 30 
Conical 56 43 50 49 37 48 42 
Pyramidal 3 8 7 4 3 7 3 
Crenate 8 8 8 13 12 13 16 
Saddle, Squat 27 35 53 17 39 50 41 
Saddle, Tall 26 18 17 10 27 24 14 
Stipa 8 5 12 17 10 19 7 
Lobate, Simple 7 5 8 6 7 5 3 
Lobate, Panicoid 46 42 31.5 36.5 47.5 48.5 49.5 
Lobate, compound 0 1 0 0 0 1 2 
Cross (<10 μ) 3 4 5 4 4 9 2 
Cross (>10 μ) 0 1 4 0 2 1 0 
Maize Rondel 0 1 1 3 1 3 0 
Rondel, bipoint 0 0 0 0 0 0 0 
Rondel, other 5 3 1 6 7 0 2 
Dicot, knobby 0 1 0 1 0 2 1 
Spiny spheroid 1 0 2 0 0 0 0 
WWW 0 0 0 0 0 0 0 
Schlerid 0 0 0 0 0 0 0 
Diatom 1 6 69 28 34 45 21 
Sponge spicule 3 1 7 5 3 3 0 
Trichrome 7 15 6 3 4 6 3 
Hair Cells 0 0 0 0 1 0 0 
Bulliform, square 18 18 9 1 4 6 6 
Bulliform, rectangular 10 19 7 2 9 11 10 
Bulliform, keystone 10 18 1 1 4 2 4 
Bulliform, Y-shaped 0 0 0 0 0 0 0 
Bulliform, other 55 53 13 12 20 24 12 
Elongate, smooth 14 10 23 11 9 12 3 
Elongate, sinuous 3 4 4 1 4 4 1 
Elongate, castillate 8 10 3  7 2 2 
Elongate, spiny 2 3 1 3 0 2 0 
Sedge 3.5 3 2 1 4 4 4 

        
Total Phytoliths 355.5 360 376.5 270.5 334.5 401.5 278.5 

Total Short Cells 215 195 227.5 192.5 223.5 275.5 209.5 
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Table 57 
Carnegie Canyon Site (34CD76) Phytolith Counts (Samples 25-32) 

 

Sample 
S-
24 

S-
25 

S-
26 

S-
27 

S-
28 

S- 
29 

S- 
30 

S-
31 

S-
32 

Morphology          
Keeled 25 29 28 37 21 18 11 7 7 
Conical 49 38 38 39 52 29 21 21 25 
Pyramidal 8 8 10 10 7 13 9 7 1 
Crenate 8 24 19 16 9 7 10 1 16 
Saddle, Squat 30 21 22 25 29 29 20 16 16 
Saddle, Tall 14 11 18 23 12 31 15 10 14 
Stipa 21 11 16 5 3 1 0 1 11 
Lobate, Simple 19 11 9 4 1 3 1.5 0 3 
Lobate, Panicoid 19 54 60 63 59 42 54 31 39 
Lobate, compound 1 0 0 3 1 0 0 0 0 
Cross (<10 μ) 5 2 1 1 2 1 3 0 0 
Cross (>10 μ) 1 0 0 2 0 2 0 0 0 
Maize Rondel 0 0 0 0 0 0 0 0 0 
Rondel, bipoint 0 0 0 0 0 0 0 0 0 
Rondel, other 2 1 1 3 4 1 1 0 0 
Dicot, knobby 1 1 1 1 2 1 1 0 0 
Spiny spheroid 0 0 0 3 3 1 2 1 0 
WWW 0 0 0 0 0 0 0 0 0 
Schlerid 0 0 0 0 0 0 0 0 0 
Diatom 28 5 4 3 0 1 0 0 3 
Sponge spicule 4 1 3 4 2 0 0 2 3 
Trichrome 6 4 6 2 9 8 0 8 19 
Hair Cells 0 1 1 0 0 0 0 0 0 
Bulliform, square 6 7 6 12 17 22 15 25 39 
Bulliform, rectangular 22 14 11 28 22 34 21 25 42 
Bulliform, keystone 8 5 2 6 8 25 12 10 22 
Bulliform, Y-shaped 0 2 0 1 0 0 0 2 1 
Bulliform, other 26 23 38 44 51 31 17 30 11 
Elongate, smooth 12 5 7 7 16 1 2 3 2 
Elongate, sinuous 4 3 5 8 18 3 0 5 2 
Elongate, castillate 8 4 2 4 11 2 4 2 6 
Elongate, spiny 0 1 2 1 2 0 0 0 1 
Sedge 4 3 4 3 2 4 2 3 3 

          
Total Phytoliths 331 289 314 358 363 310 221.5 210 286 

Total Short Cells 200 209 221 228 196 176 144.5 94 132 
 



  

 233   



  

 234   



  

 235   



  

 236   

 

Table 61 
Carnegie Canyon Site Soil Sample and Recovered Phytolith Weights 

 
34CD76 Profile 
Sample Number 

Soil Sample 
Wt (g) 

Phytoliths 
Recovered (g) 

Phytoliths,  Wt% 
per unit dry soil 

    
 1  98.88 0.16807 0.17% 
 2 101.47 0.10850 0.11% 
 3 101.28 0.11888 0.12% 
 4 101.49 0.09206 0.09% 
 5 107.13 0.11101 0.10% 
 6 106.20 0.17801 0.17% 
 7  98.45 0.03970 0.04% 
 8 107.63 0.02083 0.02% 
 9 104.15 0.02569 0.02% 
10  98.43 0.03056 0.03% 
11 104.86 0.02735 0.03% 
12 102.80 0.01678 0.02% 
13 101.35 0.02462 0.02% 
14 100.86 0.05681 0.06% 
15 101.48 0.07515 0.07% 
16  99.72 0.07561 0.08% 
17 102.75 0.04956 0.05% 
18 101.95 0.07713 0.08% 
19 109.92 0.44615 0.41% 
20 107.43 1.23103 1.15% 
21 103.78 0.95909 0.92% 
22 104.20 0.79590 0.76% 
23 103.73 0.70488 0.68% 
24 114.99 0.74474 0.65% 
25 115.62 0.63827 0.55% 
26 101.06 0.53388 0.53% 
27  97.40 0.39545 0.41% 
28  98.73 0.14569 0.15% 
29 103.86 0.04891 0.05% 
30 108.16 0.05308 0.05% 
31 101.91 0.03349 0.03% 
32  99.95 0.00907 0.01% 
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Figure 87.  Phytolith (biogenic silica) concentration in the soil profile samples from the 
Carnegie Canyon Site. 
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Figure 88.  Bar graph of seasonality profile data for the Carnegie Canyon Site.  Sample 1 
is the modern A Horizon, Sample 3 is Ab, Sample 6 is Ab2, Sample 19 contains “finely 
dispersed A horizon material”, and sample 20 (A1b3) represents the top of Ab3 (Carter et 
al. 2009). 
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Another potential contributor is the time interval involved in soil formation.  The upper 

55% and the lower 10% of the Caddo County paleosol were determined to be formed by 

the process of melanization, with the lower portion having much lower phytolith content, 

whereas the intervening soil zone was cumulic in nature (Carter et al. 2009).  

 

 The morphologic data for the saddle short cell phytoliths for this entire soil profile 

sequence is plotted in Figure 89.  This sub-fraction of the phytolith samples tends to be 

clustered, but does not mirror any of the three control prairie saddle samples.  This is 

presumably due at least in part to the fact that several of the control sites (Manning 

Tallgrass Prairie and Dempsey Divide Mixedgrass Prairie) are in upland prairie settings 

whereas the Carnegie Canyon Site study area is located on a short drainage system 

dominated by riparian vegetation.  This riparian setting would include numerous non-

Poaceae species which would contribute their phytolith signature to the total assemblage 

in the soil which would also presumably include phytoliths that may have been 

transported into the drainage during rain events. 

 

This same data is further dissected in Figure 91 with the upper A horizons 

sampled being highlighted with green diamonds, and the other melanized soil samples 

being marked with white diamonds.  With this additional winnowing, the data becomes 

clearer.  Samples 1, 3, 6 and 19 cluster tightly; these are all A horizons (#1 is actually an 

AC horizon).  Sample 19 showed signs of finely dispersed A material; in this plot it 

appears that—although weakly melanized, soil sample 19 rather than soil sample 20 was 

actually the upper portion of the Caddo County paleosol and very similar to modern 
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Figure 89.  Carnegie Canyon Site data (numbered black diamonds) showing the 
distribution of relative saddle morphology vs. normalized saddle concentration. 
 
 

climatic and vegetative conditions.  Although there is slight variability in the vertical 

distribution of 1, 3, 6, and 19 possibly suggesting some temperature variation during this 

one thousand year interval, overall the climatic conditions at the times that these four A 

horizons developed (including the modern day AC horizon) appear to have been similar 

in their vegetative signature.  What happened during the intervening cumulic periods 

between A horizon formations is not addressed in these four samples, but based on Figure 

90, the relatively stable periods of A horizon formation all show a somewhat similar soil 

botanical signature with some temperature variation suggested.  
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Figure 90.  Carnegie Canyon saddle data with top of A horizons denoted by green 
diamonds (1=AC, 3=Ab, 6=Ab2, 20=Ab3 (top), and 19 contains “finely dispersed A 
horizon material” (Carter et al. 2009)).  The additional lower melanized samples collected 
from the very thick Ab3 Caddo County paleosol are marked by white diamonds. 
 

The data points for the melanized zone below the top of the Caddo County 

paleosol does not cluster as closely (Figure 90, white diamonds--numbers 21-27.)  

However, the two samples judged to be cumulic (26 and 27) do cluster tightly and to the 

right of the other melanized samples (#21-25).  This shift may be a reflection of 

phytoliths from upstream or upland settings being deposited with the alluvial material 

during this cumulic period and thus being non-indigenous phytoliths added to the alluvial 

material that altered the soil saddle signature at the site.  Interestingly, based on Figure 90 

the absolute coolest interval in the series based on low total Chloridoid count (#20) 

immediately preceded the burial of the Caddo County paleosol. 
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Generally, the other soil samples from the profile which primarily represent Bk 

and C horizons (denoted by black diamonds) do not overlap with the upper soil from the 

four A horizons (green diamonds, Figure 90).  The soil samples adjacent to the upper 

boundary of the A horizons (2, 5, and 18) do tend to be clustered more closely in saddle 

characteristics to the upper A horizon samples than the other non-A horizon samples 

(Figure 90). 

 

The two warmest periods as indicated by decline in Pooid frequency (#12 and #16 

in Figure 88) both occur in the five hundred year interval between the Ab2 and Ab3 

(Delaware and Caddo County paleosols).  Conversely, the two intervals with the lowest 

Panicoid content (#13, 14) also occurred in this interval, although the Pooid fraction grew 

in these two intervals—the summers in these intervals apparently tended to be hotter and 

drier than previously.  Together, these four out of five sequential intervals—two with a 

shorter spring season and two with a hotter drier summer—could have potentially 

affected the vegetation to increase regional erosional runoff upstream resulting in more 

alluvial deposition at the site.  Unfortunately, charcoal particle counts were not collected 

for the soil samples from this site so the potential influence of fire affecting area 

vegetation and alluvial deposition events at the Carnegie Canyon Site remains unknown. 

 

However there is additional data; counts of sedge phytoliths, diatoms, and sponge 

spicules were collected (Figure 91).  In order to standardize the data, the values plotted 

are the number of indicated particles calculated as percent relative to the total short cell 

count for the same sample.  Thus by this data, the sedge population spiked in soil samples 
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10, 12, and 31—the one of which (#12) is in the hotter interval during which time the rate 

of alluvial deposition increased. 

 

The sponge spicules, which also had a low fluctuating count throughout the soil 

profile sequence, have their highest concentration at the time that Ab was forming.  As 

sponges require clear water, this suggests the interval was wet if sponge spicule origin 

and deposition was indigenous to the site.  On the other hand, the spicules could also 

eolian, alluvial, or even originating from animal droppings, so their ultimate source and 

significance is not absolutely clear. 

 

 However, the striking particle data in Figure 91 is the diatom fraction—which 

made up over 20% of the recognizable biogenic silica particle count in soil sample 1937.  

Indeed, the entire melanized portion of the Caddo County paleosol was a period with a 

significant elevation in the diatom population at the site.  There were actually four diatom 

concentration peaks within the Caddo County paleosol at samples 19, 22, 24, and a slight 

shoulder at 26.  These peak diatom concentrations appear to mirror the surfaces of the 

four buried soils reported that later welded to form the thick Caddo County paleosol 

(Carter et al. 2009).  There is also another diatom spike in the modern-day sample (#1).  

In contrast, the diatom counts in cumulic intervals of sand deposition between A horizon 

formation are very low.  Although diatoms are frequently thought of as water-based 

organisms, soil diatoms also occur.  Diatoms have been reported to colonize sand grains 

in fresh water (Round 1965, Meadows and Anderson 1966).  Identification of diatom  

                                                 
37 All recognizable diatoms and diatom fragments were counted in these samples.  The phytolith short cells 
counted were recognizable and reasonably complete—except for broken Panicoids which were each 
counted as one-half. 
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Figure 91.  Other biogenic silica and phytolith particles in the Carnegie Canyon Site soil 
profile (percent determined is the ratio of the specific particle type to the (total number of 
morphologically distinct phytoliths [“total Phytoliths” in Tables 54-57] counted in each 
sample less the count for the specific other analyte being evaluated)). 
 

species in the soil samples from this site will be the topic of a future study.  The high 

diatom content of these A horizons does imply moist conditions conducive to growth.  

The thriving diatom community could help explain the low TOC values (i.e., by 

consuming organic debris in the soil) that were previously interpreted to indicate cumulic 

A horizon development within part of this paleosol (Carter et al. 2009). 
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One additional noteworthy observation was made during laboratory processing 

the Carnegie Canyon Site soil samples.  A significant variation in sand fraction color was 

observed in the profile samples; a portion of the clean sand fraction from each soil 

sample was laid out and the sand samples were photographed at one time while 

illuminated via overhead lighting (Figure 92).  Although #1, #3, and #6 (A, Ab, and Ab2) 

are slightly darker than the neighboring samples (#11, a sample which had a slightly 

elevated TOC value, is also darker than #10), all of the samples on the top row are darker 

than the samples on the two lower rows.  Perhaps most interesting is that beginning with 

sample #19, the sands appear to be nearly white.  Although there is some slight darkening 

beginning with Sample #22, the entire series #19-#27 is lighter than any of the other sand 

samples obtained from upper portion of the soil profile sequence.  This lightest portion of 

the series correlates with the Caddo County paleosol, and also with the higher observed 

incidence of diatoms and phytoliths in the soil profile.  This same series of samples is 

shown during the clay removal step where the darker colored Caddo County Paleosol is 

clearly visible (Figure 16).  Below the Caddo County paleosol (beginning with sample 

28) the sands again begin to display a reddish brown color (Figure 92). 

 

 

Figure 92.  Sand fraction samples from the Carnegie Canyon Site soil profile showing 
variation in color with sample depth.  The number indicates the soil sample of origin 
(number 1 is the surface AC sample). 
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All of the sand in this profile is coming from the same short drainage system, so 

the base sand color would be expected to remain relatively unchanged as the parent 

material is presumably unchanged.  The most plausible explanation for the observed sand 

color change is related to the presence of water standing at the site.  If the site was wet 

enough frequently enough or for a long enough period of time, the soil bacteria would 

experience anaerobic conditions.  At that point, the anaerobic soil bacteria will use red 

ferric iron (Fe3+) as an electron acceptor in their metabolism, producing colorless ferrous 

iron (Fe2+).  The result of this metabolic change is that the sand (with surficial and/or 

included iron deposits such as iron oxide) would lose its red hue, as was observed in the 

Carnegie Canyon Site soil sands in the Ab3 horizon (samples #19-27, Figure 92).  The 

increased carbon present as organic matter in the buried soil may have also contributed a 

rich food source for microbes (and also diatoms).  Microscopic images of several 

Carnegie Canyon Site sand fraction samples are shown in Figure 93.   

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 93.  Microscopic images of Carnegie Canyon Site sample sand fraction 18 (A) and 
19 (B) showing the relative paucity of sand grains red iron coloration in sample 19 (B). 
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The interval of the Caddo County paleosol development and melanization also 

represents the longest prolonged period of low Chloridoid values in the entire sequence, 

which also implies a cooler and somewhat wetter environment.  The sand color 

observations (Figures 92-93) also tentatively support the previous contention based on 

the saddle morphology plot (Figure 90) and the diatom concentration (Figure 91) that the 

top of the Caddo County paleosol actually begins with sample #19 rather than #20.  

However, the peak in phytolith concentration and the lowest temperature at the site 

during the time interval studied actually correlates with sample #20.  Sample #20 also has 

the greyest (least red) sand sample suggesting the maximum moisture and/or highest 

active anaerobic bacterial load during this interval.  The high diatom concentration in 

sample 19 (and perhaps all of the diatom concentration spikes in the buried Ab3 

horizons) could actually be a reflection of the diatoms feeding on the recently buried 

highly concentrated organic plant debris and/or an increase in moisture and/or organic 

matter at the end of A horizon development during an ongoing wetter interval.  

 

 A number of well-preserved tree stumps were reported in the strata below the 

Caddo County paleosol at this site; these stumps, buried under six to 11 meters of fill, 

were carbon dated to 2600-3200 years BP (Lintz and Hall 1983; Hall and Lintz 1984) 

suggesting very rapid sediment deposition and tree burial.  The authors postulated a 

higher water table at the time of the Caddo County paleosol formation, citing “four 

independent lines of evidence (mollusks, paleosol carbonate, carbonate encrustations, 

spring conduit)” (Lintz and Hall 1983:40) which would have assisted in preservation of 

the tree stumps.  Now, based on this new data, the support of a high diatom concentration 
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in the soil samples and the loss of reddish hue attributed to bacterial action on the sand 

attributed to anaerobic (i.e., submerged) conditions can be added to the evidence 

supporting a higher water table which resulted in tree stump preservation.  The image of 

the soil profile (Figure 86) also shows redoximorphic features visible immediately below 

the Ab3 buried soil; although there are likely redoximorphice features within the buried 

soil itself, the dark color of the Ab3 horizon obscures the features. 

 

Overall the saddle phytolith profile of the Carnegie Canyon site clusters more 

tightly than that of the Lizard site, and with relatively minimal overall x- or y- movement 

(Figures 90, 104, and 109).  The sand and TOC data for the Carnegie Canyon site has 

been reported (Carter et al. 2009:Figure 2).   On average, the sand content of non-A 

horizons is significantly higher at the Carnegie Canyon Site than at the Lizard Site, but 

the saddle data shows less spread.  Buried soil Ab3 (#20) “was buried at 1010±50 rybp 

(Beta 1923130)” (Carter et al. 2009) and Ab2 (#6) is presumed to be the previously 

reported Delaware Creek Soil dating to about 500 BP (Carter et al. 2009, Ferring 1986). 

 

 The Carnegie Canyon Site seasonality profile (Figure 83) shows a very striking 

cool snap at the time that Ab3 (#20) was buried, followed by a drastic warming in sample 

#19 (which had the highest diatom concentration (Figure 91) and may or may not actually 

be the top of Ab3).  This dramatic climatic shift may have led to the events that buried 

this A horizon in Carnegie Canyon.  A smaller cool spike occurred farther down the 

profile in Ab3 (#25).  There was a somewhat milder summer compared to adjacent data 

points at the time Ab2 (#6) ended which was followed by a warming trend (#5 and 4).  
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The sand concentration (Carter et al. 2009) is very high at this site except during the 

interval of Ab3 stability and melanization which suggests an interval of a relatively stable 

environment ending in about 1010 BP; during the process of Ab3 formation, the sand 

concentration was still high but relatively constant (and lower than at any other point in 

the soil profile sequence). 

  

Whereas the Lizard site Chloridoid component was relatively stable in the upper 

half of the profile, the Carnegie Canyon Site Chloridoid values vary constantly with 

essentially no period of stability.  More detail is visible in the in the upper portion of the 

Carnegie Canyon Site profile because it is less time compressed than the Lizard Site 

profile.  Sample 1 (actually an AC horizon), Ab (#3), and #19 cluster very tightly having 

a very similar climatic signature based on the saddle data (Figure 109).  The reported top 

of Ab3 (#20) diverges from the cluster as does #6 (Ab2) (#20 is somewhat cooler, and #6 

is warmer; Figure 109).  With the exception of #26 and #27 (which cluster with each 

other) the lower portions of each A horizon remain clustered with the upper zones. 

 

 Overall, the Carnegie Canyon Site saddle phytolith data clusters more tightly than 

the Lizard site profile samples (Figure 109).  Although the Lizard Site shows more x-axis 

movement in its spread, the narrower spread at Carnegie Canyon mirrors that seen in the 

3000 year era represented at the Lizard Site.  However, the Carnegie Canyon site saddle 

signature is never as cool as the comparable 1000 year segment of the Lizard Site data.   
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This tight overall clustering suggests that on average, only relatively moderate 

climate variation occurred at the Carnegie Canyon Site compared to the other two buried 

soil sites studied in this project.  The climate at the time the upper portion of AC (#1) and 

Ab (#3) were formed was practically identical, while Ab2 (#6) was warmer with a 

moderate shift in saddle ratio in the direction of the Mixedgrass Prairie control.  Sample 

#20 (Ab3) is the only A horizon that was significantly cooler than the pack—representing 

the coolest saddle signature sample recovered from the entire Carnegie Canyon Site 

profile (Figures 83 and 109).  

 

 The striking warm snap in sample #19 immediately after the coolest period (#20) 

may indicate that the climatic change at about 1000 BP led to ending and burying Ab3.  

The higher sand content in 8-19 suggests higher water flows and/or more erosive runoff 

occurred.  Sample #19 may actually be the top of Ab3, potentially having been partially 

removed at the time of burial of Ab3 (#20).  The highest diatom interval at the site 

(Figure 91) is in #19 suggesting it may actually be the remnant top of Ab3.  An 

alternative explanation could be that the diatom population was attracted to and 

concentrated in the organic-rich content of the buried organic material covered by the 

sand at the top of Ab3.  Meadows and Anderson actually report that diatoms colonize the 

surface of wet or periodically wet sand grains (1966).   

 

 Either way, the high diatom concentration throughout Ab3 indicates that 

conditions were favorable to support a substantial diatom population.  The spikes in 

diatom population accurately mirror the tops of the four buried soils that were later 
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welded to form Ab3.  Thus, in buried soil sites that formed under moist conditions where 

diatoms thrived, diatom concentration fluctuations may be indicative of different soil 

surfaces and may help to identify instances when soil welding has later occurred.  Similar 

evidence of multiple A horizons was also faintly visible in the soil phytolith 

concentrations (Figure 87) although not nearly as strikingly evident as in the diatom data.  

Presley (et al. 2010) also notes that differences in clay composition may be very useful 

evidence in confirming the presence of soil welding in complicated profiles (2009). 

 

 The final piece of evidence observed relating to soil moisture conditions at the 

site is related to sand color (Figures 93-94).  The loss of iron from sand as observed by 

whiter sand throughout the Ab3 sequence relative to the redder sand observed elsewhere 

throughout the profile is interpreted to mean that anaerobic conditions occurred at the site 

during Ab3 pedogenesis due to very wet conditions at the site.  Although this could have 

occurred at the end of Ab3 when it was truncated and A horizon formation ended, it is 

also possible that the site was very wet intermittently during Ab3 formation (i.e., as 

multiple A horizons were forming, and later welded).  The diatom concentrations 

mirroring the various A components within Ab3 would seem to suggest this later 

explanation.  Other evidence for wet conditions at the site includes the presence of 

sponge spicules and sedge phytoliths throughout much of the profile.   

 

 Interestingly, one of the lowest spicule and sedge counts for the site occurred in 

Ab2 (#6) at ~500 BP—which also correlates with rising temperature saddle signature at 

the top of the A horizon.  Other than the cool snap evidence in #10, samples #4-8 and 11-
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16 are all warmer saddle signatures than any other samples (except #29).  Samples #19 

and 21 are also high, with #20 being very low: #17 and 18 are intermediate in saddle 

temperature signature between #19 and 20 (Figure 109).  The Medieval Warm Period, 

centered around 1,000 years BP, correlates reasonably well with the date of this soil 

(Ab3, #19) and may be clearly reflected in this saddle phytolith data.  If so, this 

historically documented warm interval may have directly contributed to the termination 

of Ab3 at the Carnegie Canyon Site and subsequent increasing sand deposition at the site.    

 

 

Lizard Site (34WN107) – The Lizard site is located in Washington County in 

northeastern Oklahoma (Figures 7 and 79) on South Cotton Creek (Figure 94).  Verdigris 

silt loam is a fine-silty, mixed, superactive, thermic cumulic hapludoll.  Images are 

shown of the soil profile before (Figure 95) and after cleaning (Figure 96).  The soil 

description of the Lizard Site profile has been previously published (Carter et al. 2009).   

 

As soils from the Lizard Site were the first samples processed in this phytolith 

research project, the phytolith data were handled somewhat differently than at the 

previously discussed sites.  The deflocculated soil samples were sieved to remove the 

sand using a 270 mesh sieve, and organic matter removal was by digestion of individual 

samples in 27 percent sodium hypochlorite while the bottles were in a hot water bath (5-

10 days).  After flotation, the isolated phytoliths were separated into medium (5-20 

micron) and large (20-50 micron) fractions by sedimentation.  The lower profile samples 

(8-27) were initially processed for phytolith recovery; upon review of the data, it was 
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decided to also quantitatively isolate the phytoliths from the remainder of the soil profile 

samples.  Several fresh portions of several samples from the initial series were also re-

extracted to replace fractions previously lost during initial processing. 

 

 

Figure 94.  Lizard Site (34WN107), Washington County, Oklahoma.  USDA soil series 
reported as present in this marked aerial photograph are:  Bk (Eram-Verdigris complex, 
0-12% slopes), DaF (Darnell extremely stony sandy loam, 5-30 % slopes), DtB (Dennis 
silt loam, 1-3 % slopes), DtC (Dennis silt loam, 3-5% slopes), Ma (Mason silt loam, 0-1 
% slopes), PaA (Parsons silt loam, 0-1 % slopes), Ro (Niotaze-Darnell complex, 30-60% 
slopes), SuB (Summit silty clay loam, 1-3% slopes), Vd (Verdigris silt loam, 0-1 % 
slopes), and Vs (Verdigris silt loam, 0-2 % slopes).  (Aerial photograph with soil 
designations obtained from NRCS/USDA web site 
http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm). 

http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm�
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Figure 95.  South Cotton Creek cutbank exposure at the Lizard Site before the soil profile 
was cleaned. 
 
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 96.  Exposed soil profile at the Lizard Site. 
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Table 62 
Lizard Site Phytolith Concentrations 

 

 

The total, medium, and coarse phytolith fraction weights for the entire profile are 

also given in Table 62, and the phytolith concentration in the soil profile (weight percent 

total phytoliths in dry soil) is plotted in Figure 97. 

 

Sample 
Number 

Medium 
Phytoliths  

(wt. % in soil) 

Coarse 
Phytoliths  

(wt. % in soil) 

Total Phytoliths 
(Medium+Coarse) 

(wt. % in soil) 

Ratio 
Medium:Coarse 

Phytoliths 
   
1 1.07% 0.39% 1.46% 3.63 
2 1.05% 0.26% 1.31% 5.28 
3 1.33% 0.33% 1.66% 4.97 
4 2.25% 0.62% 2.87% 2.96 
5 2.04% 0.50% 2.53% 2.91 
6 1.61% 0.68% 2.29% 2.69 
7 1.12% 0.50% 1.62% 2.97 
8 0.68% 0.37% 0.68% 1.80 
9 0.80% 0.51% 0.81% 1.56 
10 1.05% 0.72% 1.77% 1.46 
11 1.01% 0.65% 1.66% 1.55 
12 0.98% 0.59% 1.57% 1.68 
13 0.97% 0.54% 1.50% 1.80 
14 0.85% 0.41% 1.26% 2.07 
15 0.79% 0.35% 1.14% 2.26 
16 0.70% 0.33% 1.03% 2.10 
17 0.72% 0.20% 0.92% 3.70 
18 0.50% 0.25% 0.75% 1.97 
19 0.46% 0.22% 0.68% 2.04 
20 0.42% 0.18% 0.60% 2.36 
21 0.46% 0.14% 0.60% 3.28 
22 0.42%   0.092% 0.51% 4.60 
23 0.23% 0.10% 0.33% 2.31 
24 0.14% 0.03% 0.17% 5.54 
25 0.16% 0.08% 0.24% 2.10 
26 0.19% 0.02% 0.21%         11.35 
27 0.30%   0.093% 0.39% 3.23 
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As the majority of the short cell phytoliths occur in the 5-20 micron fraction, the 

medium-size isolate was the portion of the phytolith sample that was counted for short 

cell morphologic forms.  The counts for the medium phytolith fractions are presented in 

Tables 63-66, the normalized short cell forms and summed climatic values of this data 

are in Tables 67-69, and the seasonality phytolith plot is in Figure 98.  The ratio of total 

medium phytoliths:total coarse phytoliths (weight % of soil:weight % of soil, Table 62) is 

also plotted (Figures 99 and 100).  Interestingly, a number of the elevated data points in 

Figure 100 (numbers 2, 7, 22, 24, 26) that indicate a higher relative weight percent 

medium phytolith concentration correlate with a higher soil sand concentration (Figure 

100) reported previously (Carter et al. 2009).  The sample sand data are given in Table 

70.  The original sample 17 sand weight percent value is barely above a line between 

samples 16 and 18—not nearly as significant as the corresponding phytolith ratio spike 

(Figure 100).  Figure 100 is potentially confusing in that the overlain plots have different 

scales in order to overlap the different data on the same scale to enable ease of 

comparison; the phytoliths are presented as a weight to weight direct ratio, whereas the 

sand values are (weight % /10).    

 

Although there appears to be some correlation between relative elevation of the 

medium phytolith fraction and increased sand deposition in this alluvial system, it is hard 

to interpret due to several factors:  the samples were not all analyzed at the same time, 

several intermittent samples were reanalyzed, and the individual parent samples were not 

well-mixed and homogenized before sampling multiple (soil sample portions were  
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Figure 97.  Phytolith concentration in the Lizard Site soil profile (weight % in soil).
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Table 63 
Lizard Site Medium-sized Raw Phytolith Counts (Samples 1-7) 

Morphology/Sample 1 2 3 4 5 6 7 
Keeled 98 24 34 14 28 39 13 
Conical 23 27 56 33 43 40 25 
Pyramidal 10 11 13 6 7 7 20 
Crenate 34 24 22 8 4 12 8 
Saddle, Squat 12 18 10 10 10 7 4 
Saddle, Tall 19 13 11 9 7 7 5 
Stipa 8 16 9 11 7 8 13 
Lobate, Simple 10 15 13 6 9 11 9 
Lobate, Panicoid 41 68 64 100.5 82.5 81.5 92 
Lobate, Pan’d (cmpd) 0 1 1 2 2   3 
Cross, Panicoid (<10 μ) 2.5 3 0 5 1 3 7 
Cross, Panicoid (>10 μ) 12 7 5 8 3 5 10 
Maize Rondel 0 0 0 0 0 5 0 
Rondel (bipoint) 2 0 0 0 0 0 0 
Rondel, other (Large) 32 5 1 8 0 0 0 
Rondel, Ruffled (?) 0 0 2 0 0 0 0 
Dicot, knobby 2 0 3 1 1 1 1 
Spiny spheroid 0 0 0 1 0 0 1 
WWW 0 0 0 0 0 0 0 
Schlerid 4 3 0 1 0 1 1 
Diatom (fragments) 28 37 30 9 10 14 5 
Sponge spicule 6 11 8 4 3 1 5 
Trichome 4 3 5 3 3 0 1 
Hair cells 0 0 0 0 0 0 0 
Bulliform, square 2 2 0 0 1 0 1 
Bulliform, rectangular 2 1 2 0 2 2 0 
Bulliform, keystone 1 0 0 0 0 0 0 
Bulliform, Y-shaped 0 0 0 0 0 0 0 
Bulliform, other 0 0 0 0 0 0 0 
Elongate, smooth 6 1 6 2 0 0 0 
Elongate, sinuous 2 1 3 0 0 0 0 
Elongate, castillate 2 3 1 0 0 0 0 
Elongate, spiny 0 0 0 0 0 0 0 
Sedge 0 0 0 0 0 1 0 
Asteraceae 0 0 1 0 0  +  + 
Charcoal 0 0 0 0 0 0 0 
non-spiny spheres 0 0 0 0 0 0 0 
Total Short Cells 269.5 227 238 212.5 203.5 220.5 209 
     Total Cool 204 133 155 91 106 120 88 
     Total Hot/Dry 31 31 21 19 17 14 9 
     Total Warm/Moist 99.5 99 86 129.5 97.5 105.5 121 
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Table 64 
Lizard Site Medium-sized Raw Phytolith Counts (Samples 8-13) 

 
Morphology / Sample 8 9 10 11 12 13 14 

Keeled 20 33 10 19 2 7 12 
Conical 40 45 58 52 38 36 31 
Pyramidal 10 7 8 8 9 4 6 
Crenate 15 14 11 15 15 10 7 
Saddle, Squat 7 13 17 11 12 10 22 
Saddle, Tall 5 5 24 7 8 10 6 
Stipa 6 4 2 7 1 5 3 
Lobate, Simple 30 20.5 27.5 15 21 31 24 
Lobate, Panicoid 76 88 74.5 69.5 97 100.5 69 
Lobate, Pan’d (cmpd) 0 2 2 5 2 2 4 
Cross, Panic’d (<10 μ) 18 10 13 7 5 11 9 
Cross, Panic’d (>10 μ) 2 3 0 1 0 1 0 
Maize Rondel 1 2 0 2 0 0 1 
Rondel (bipoint) 0 0 0 0 0 0 0 
Rondel, other (Large) 19 13 9 7 15 12 6 
Rondel, Ruffled (?) 1 0 0 0 0 0 0 
Dicot, knobby 0 0 0 0 0 1 0 
Spiny spheroid 1 1 0 2 1 1 1 
WWW 0 0 0 0 0 0 0 
Schlerid 2 1 4 6 2 0 3 
Diatom (fragments) 0 0 1 0 0 0 0 
Sponge spicule 1 3 2 1 1 1 2 
Trichome 3 2 1 3 8 4 10 
Hair cells 1 0 0 1 0 0 0 
Bulliform, square 2 0 0 0 5 0 0 
Bulliform, rectangular 0 1 0 1 1 1 8 
Bulliform, keystone 0 0 0 0 1 0 1 
Bulliform, Y-shaped 0 0 0 0 0 0 0 
Bulliform, other 0 0 0 2 3 0 3 
Elongate, smooth 25 33 0 29 27 3 16 
Elongate, sinuous 25 27 0 29 31 4 16 
Elongate, castillate 16 5 0 3 6 1 4 
Elongate, spiny 0 0 0 1 1 2 1 
Sedge 0 1 0 0 0 0 0 
Asteraceae 0 0 0 0 0 0 0 
Charcoal 4 4 3 15 21 13 34 
non-spiny spheres 1 0 6 0 6 6 1 
Total Short Cells 228.5 244.5 247 216.5 209.5 227.5 193 
     Total Cool 103 121 130 119 85 82 87 
     Total Hot/Dry 12 18 41 18 20 20 28 
     Total Warm/Moist 146.5 138.5 126 106.5 139.5 157.5 113 
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Table 65 
Lizard Site Medium-sized Raw Phytolith Counts (Samples 15-21) 

Phytolith Form / Sample 15 16 17 18 19 20 21 
Keeled 5 4 8 8 11 8 7 
Conical 17 39 39 26 37 36 24 
Pyramidal 4 6 12 9 3 8 11 
Crenate 19 21 8 22 15 17 18 
Saddle, Squat 24 32 35 34 19 24 32 
Saddle, Tall 33 51 38 43 37 68 35 
Stipa 5 0 1 1 0 1 0 
Lobate, Simple 23.0 31.5 39 12.5 33.5 22.0 17.0 
Lobate, Panicoid 55 66 42 46.5 52.5 41.0 35.5 
Lobate, Panicoid (cmpd) 3 0 1 3 1 0 0 
Cross, Panicoid (<10 μ) 6 6 3 3 6 4 5 
Cross, Panicoid (>10 μ) 0 0 0 0 0 0 0 
Maize Rondel 1 0 1 0 0 0 0 
Rondel (bipoint) 0 0 0 0 0 0 0 
Rondel, other (Large) 11 10 19 17 20 12 13 
Rondel, Ruffled (?) 0 0 0 0 1 0 0 
Dicot, knobby 0 0 0 0 1 0 0 
Spiny spheroid 4 1 14 7 11 7 15 
WWW 0 0 0 0 0 0 0 
Schlerid 1 2 1 1 5 1 3 
Diatom (fragments) 0 0 0 0 0 0 1 
Sponge spicule 1 0 1 0 0 4 2 
Trichome 4 0 8 5 7 10 5 
Hair cells 0 0 0 0 0 0 0 
Bulliform, square 1 3 2 2 7 3 2 
Bulliform, rectangular 4 3 4 1 1 6 3 
Bulliform, keystone 0 0 0 0 0 0 1 
Bulliform, Y-shaped 0 0 2 0 0 0 0 
Bulliform, other 2 0 2 0 0 0 0 
Elongate, smooth 9 4 8 1 0 0 0 
Elongate, sinuous 4 1 12 3 0 0 0 
Elongate, castillate 1 1 4 0 0 0 1 
Elongate, spiny 1 1 0 1 0 0 1 
Sedge 1 2? 0 0 0 1 1 
Asteraceae 0 0 0 0 0 0 0 
Charcoal 27 42 54 58 124 147 141 
non-spiny spheres 4 16 5 47 26 22 33 
Total Short Cells 193.5 256.5 226 208 215 229 184.5 
     Total Cool 107 153 141 143 122 162 127 
     Total Hot/Dry 57 83 73 77 56 92 67 
     Total Warm/Moist 98.5 113.5 105 82 114 79 70.5 
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Table 66 
 Lizard Site Medium-sized Raw Phytolith Counts (Samples 22-27) 

Phytolith Form / Sample 22 23 24 25 26 27 
Keeled  0    5    2    2    0    2 
Conical 21  17  31  19    7  10 
Pyramidal    6    2  11    2    0    0 
Crenate  12    9  30  18    1    5 
Saddle, Squat  38    3  15    5    2    5 
Saddle, Tall  64    6  24    6    3    8 
Stipa    0   0    0    0    0    0 
Lobate, Simple     25.0     3.5  38.5    8    4    3 
Lobate, Panicoid     38.5     7.0  39.5  16    1  12 
Lobate, Panicoid (cmpd)    1    0    0    1    0    0 
Cross, Panicoid (<10 μ)    3    2    4    2    0    0 
Cross, Panicoid (>10 μ)    0    0    0    0    1    2 
Maize Rondel    0    0    0    0    0    0 
Rondel (bipoint)    0    0    0    0    0    0 
Rondel, other (Large)    4    2  14    6    4  10 
Rondel, Ruffled (?)    0    0    0    0    0    0 
Dicot, knobby    0    0    0    0    0    0 
Spiny spheroid    8    4  14  16    5  12 
WWW    0    0    0    0    0    0 
Schlerid    1    1    1    1    0    0 
Diatom (fragments)    0    0    0    0    0    0 
Sponge spicule    1    0  10    2    1    4 
Trichome    3    0    1    1    0    4 
Hair cells   0    0    0    0    0    0 
Bulliform, square    0    2    3    0    1    1 
Bulliform, rectangular    1    0    0    0    0    0 
Bulliform, keystone    0    0    1    0    0    1 
Bulliform, Y-shaped    0    0    0    0    1    0 
Bulliform, other   0    0    0    0    0    0 
Elongate, smooth    0    1    0    0    0    0 
Elongate, sinuous    0    0    0    0    0    0 
Elongate, castillate    0    0    0    2    0    0 
Elongate, spiny    0    0    1    0    0    0 
Sedge    3    0    2  14    6    5 
Asteraceae    1    1    0    0    0    0 
Charcoal   89    4 156    7    9  28 
non-spiny spheres   15  10   41  24    6  33 
Total Short Cells 208.5 54.5 195 78.5 18.5 47 
     Total Cool 141 42 113 52  13  30 
     Total Hot/Dry 102 9 39 11   5  13 
     Total Warm/Moist 71.5 14.5 96   32.5 9.5     27 
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Figure 98.  Seasonality profile of Lizard Site short cell phytoliths. 
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Figure 99.  Ratio of medium to coarse phytoliths (weight/weight) in the Lizard Site soil 
profile. 
 

 

Figure 100.  Plots of medium:coarse phytolith ratio and the sand concentration (times 
0.10) in the Lizard Site soil profile. 
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Table 70 
Lizard Site Phytolith and Sand Data 

 
Lizard Site 
Soil Sample 

Ratio Medium:Coarse  
Phytoliths (wt/wt) 

Sand  
(% / 10) 

Sand  
(%) 

    
1 3.632 2.8 28 
2 5.276 2.9 29 
3 4.972 2.5 25 
4 2.960 1.4 14 
5 2.912 1.5 15 
6 2.694 2.4 24 
7 2.973 3.5 35 
8 1.804 3.2 32 
9 1.562 2.6 26 
10 1.460 1.9 19 
11 1.550 1.8 18 
12 1.680 1.6 16 
13 1.800 1.5 15 
14 2.070 1.4 14 
15 2.260 1.8 18 
16 2.097 2.3 23 
17 3.700 2.4 24 
18 1.970 2.5 25 
19 2.040 2.7 27 
20 2.360 3.2 32 
21 3.282 4.0 40 
22 4.600 4.9 49 
23 2.309 4.9 49 
24 5.538 6.6 66 
25 2.101 7.0 70 
26                  11.353 6.5 65 
27 3.230 5.1 51 

 
 

removed from the bulk sample for various analyses).  The poorest data, at the lower end 

of the soil profile, correlates with very low phytolith content (<0.2 weight percent) and 

very low total short cell counts.  The elevated medium phytolith concentration, if 

confirmed in future studies, could be explained by enhanced Poaceae biomass associated 
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with additional moisture as indicated by increased sand deposition and/or erosional 

runoff from rains preferentially transporting the lighter phytoliths from upland settings.   

 

 After later encountering the high diatom counts at the Carnegie Canyon site 

buried soil (Figure 91), I recounted 250 fields of the phytolith prep slides from Lizard 

Site sample numbers 10-15 buried soil to make certain that diatoms had not been 

overlooked during the early stages of this project.  This recount data is reported in Table 

71.  Evidence of maize as represented by observing the distinctive ruffle-top rondel was 

noted (Figure 101; also previously reported from other soil samples—see Tables 63-66).  

There was certainly not an abundance of diatoms at the Lizard site, with the number of 

spicules and sedges both being higher than the diatoms.  As sedges indicate a wet 

environment whereas sponges require clear flowing water, the ratio of these two particle 

types was plotted for the buried A horizon (Figure 102).  Although there appears to be a 

general trend in the data, a best fit line through the data resulted in a poor correlation 

coefficient (0.6863).  However, if one divides the six data points into two sets of 3 data 

points, the sample 10-12 value results in a correlation coefficient of 0.9968 and the 

sample 13-15 data results in a 0.9922 correlation coefficient.  Although these trends are 

visible when looking at Figure 102, both of these zones were judged based on soil 

properties to be due to cumulic soil formation (Carter et al. 2009).  However, the 

phytolith curve shows a clear inflection point between these two data subsets in the 

middle of a melanized zone (Figure 97). This sedge/spicule data suggests that the 

inflection in the biogenic silica data, which correlated with an inflection within the 

melanized zone (15-13 and 12-10) which was not visible in the TOC data (Carter et al. 
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2009) was not simply due to moist conditions but rather to a change in flowing water as 

tentatively suggested by the relative increase in relative sponge spicule count.   

 
Table 71 

Additional Counts of Particles in Medium Size Phytolith Fraction 
 

Lizard 
Site 

Sample 
No. 

Spicule Diatom Sedges Asteraceae Curcubit Maize 
Rondel 

Sedge/Spicule
Ratio 

        
 2-10 11 1 1 0 0 0 0.0909 
 2-11 13 1 4 0 0 0 0.3077 
 2-12 14 1 8 2 1 1 0.5714 
 2-13 5 1 1 0 0 0 0.2000 
 2-14 12 0 9 0 0 0 0.7500 
 2-15 2 0 3 0 0 0 1.5000 

 
 

 
 
Figure 101.  Ruffled top rondel diagnostic for maize from Lizard site phytolith fraction 
from soil sample 12 (immediately above 20 micron scale bar).   
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  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 102.  Plot of ratio of sedge phytoliths to sponge spicules. 
 
 
 Specifically, based on this limited data for Ab2 (Table 71), sample 13—with 

lower total and spicule count [non-normalized] appears to have possibly formed during 

an interval of very low water flow, before and after which water flows at the site were 

higher.  In the seasonality graph (Figure 98), sample 13 correlates with a shortened cool 

season and the largest panicoid sample recovered from the entire site profile indicating an 

interval of relatively cooler summers.   

 

Whether the sponge spicules in this profile are actually indigenous to the site, or 

transported in during frequent small overbank depositional episodes is not clear.  

However, although the spicules in the medium phytolith fraction tended to be 

fragmentary, they were relatively unworn suggesting minimal movement (Figure 103 B, 
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C, E, and F)38; the coarse phytolith fraction actually contained pristine complete spicules 

(Figure 103 A and D).  No gemmules were observed during particle counting from any of 

the sites studied (for an example of gemmules, see Sudbury 2007:156 (Figure 17C-E)); 

the adult spicules recovered from the research sites in this current project are not 

identifiable to species.  The adult spicules illustrated do suggest that several species are 

represented in this sample.  The one recounted sample below the Ab2 horizon (2-15) also 

had a very low spicule and sedge count.  The increase in incidence of both biogenic silica 

forms observed in 2-14 (i.e., wetter conditions and running water) correlates with the 

lowest portion of Ab2 (more stability, plant growth, and A horizon development). 

 

The counts of the same biogenic silica particles in the original short cell data 

(Tables 63-66) were too small to see any definitive trend although sample 24 had a 

notably high spicule count and sample 25 had a very high sedge count.  Although 

admittedly a small data set (Figure 102), the R2 values of these two previously noted 

Lizard Site buried soil subsets (10-12, 13-15) are striking enough that this type of data 

merits a more in depth evaluation on other buried soil sites in alluvial settings.   

 

 The Lizard site Tall:Squat Saddle ratio was also processed (Table 72) and 

plotted (Figure 104).  The three A horizons (green diamonds) are not clustered quite as 

tightly as the Carnegie Canyon Site A horizons (Figure 90) suggesting somewhat more 

climatic fluctuation and difference between periods of stability resulting in A horizon 

formation.  However, at the Lizard Site, the top of Ab2 (sample 10) plots very close to 

                                                 
38 Some spicules may have been broken in processing; this is the only sample set reported in this 
dissertation that was sieved to remove the sand fraction.   
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the modern A horizon (sample 1) suggesting a climate very similar to our modern climate 

at the time that the buried A horizon terminating in sample 10 was forming.  On the other 

hand, sample 4 (top of Ab, the presumed Copan geosol (Carter et al. 2009) is shifted to 

the left in Figure 104 putting it about half the distance between climate represented by the 

modern A horizon at the Lizard Site (Figure 104) and the cluster at the Carnegie Canyon 

Site (Figure 90), likely indicating a climatic shift—but much cooler and/or wetter at the 

 

 

Figure 103.  Sponge Spicules recovered from the phytolith fractions of soil sample 12 
from the Lizard Site.  The bar scales are 20 microns (500x); unscaled images (A and D) 
are specimens recovered from the coarse phytolith fraction (200x).  Note the burned 
panicoid phytolith in C. 
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Table 72 
Lizard Site Saddle Phytolith Ratio  

and Normalized Percent of Short Cells39  
 

Soil 
Sample 

Ratio 
(Tall:Squat)

Normalized 
Percent 

   
  1 1.583 11.50% 
  2 0.722 13.66% 
  3 1.100   8.82% 
  4 0.900   8.94% 
  5 0.700   8.35% 
  6 1.000   6.35% 
  7 1.250   4.31% 
  8 0.714   5.25% 
  9 0.385   7.36% 
10 1.412 16.60% 
11 0.636   8.31% 
12 0.667   9.55% 
13 1.000   8.79% 
14 0.273 14.51% 
15 1.375 29.46% 
16 1.594 32.36% 
17 1.086 32.30% 
18 1.265 37.02% 
19 1.947 26.05% 
20 2.833 40.17% 
21 1.094 36.31% 
22 1.684 48.92% 
23 2.000 16.51% 
24 1.600 20.00% 
25 1.200 14.01% 
26 1.500 27.03% 
27 1.600 27.66% 

 

Lizard Site (i.e., a lower chloridoid content) than at Carnegie Canyon.  Even more 

interesting, sample 13 (a lower Ab2 horizon sample)—marking the proposed transition 

to temporary lower water flow at the Lizard site during Ab2 (via sedge/spicule data, 

Figure 102) almost directly overlies that of sample 4 (Ab).  This can be interpreted to 

                                                 
39 Samples 22-27 were too low in total short cells for the counts to be reliable. 
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indicate that the Lizard Site climate during sample 4 (i.e., the plant community that 

deposited phytoliths at the time that A horizon was forming) was very similar to that 

present at the time of the formation of the soil zone represented by sample 13.  This 

evidence may indicate that soil welding of two A horizons, as reported at the Carnegie 

Canyon site (Carter et al. 2009), may have also occurred within what has been identified 

as the Ab2 Horizon at the Lizard Site.  Alternatively the process of melanization 

continued at the stable developing A horizon during intermittent water flow fluctuations. 

 

 
 
Figure 104.  Saddle data from the Lizard Site (34WN107).  Green diamonds are the top 
of A horizons, white diamonds are lower portions of A horizons, and small blue 
diamonds are non-A horizon samples.  (In the Carnegie Canyon sample, the white 
diamonds remained in the A horizon cluster or shifted right in the saddle plot (Figure 90).  
In the Lizard Site plot (Figure 104), the white diamonds shifted to the left—possibly 
suggesting different processes or inputs occurring at the two sites.) 
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The charcoal data (charcoal particle count / total short cell phytolith count in the 

same fields (Tables 63-66)) is shown in Figure 105 along with the sand and phytolith 

weight percent concentrations for the same samples.  Overall, charcoal concentrations 

were very low until the top of Ab2 (sample 10), with charcoal concentration higher from 

sample 10 through most of the rest of lower profile.  Again, sample 13 is an anomalous 

point—perhaps with lower water flow correlating with less run off and thus less charcoal 

deposition from the upper portion of the drainage system.  The charcoal concentration 

increases in 14, briefly drops off and then increases much more with the higher sand 

concentration in the lower samples in the profile.  The highest sand concentration 

correlates with at time of high charcoal incidence, suggesting that fires and vegetation 

loss may have resulted in more severe erosion following upland fires that deposited 

charcoal in the drainage system.  Even though the entire specimen slides were counted, 

the short cell counts were too low for samples 23 and 25-27 to feel comfortable with the 

actual numerical value.  However, Figure 105 suggests a very high charcoal 

concentration in the predominantly sandy sediment load that occurred when the alluvium 

now at the bottom of the profile was being deposited.  This possibly suggests a high rate 

of erosion, or a high velocity runoff, and also suggests that fires were more prevalent on 

the landscape.  The spicule and sedge data from the portion of the profile also suggested a 

very wet period during this interval of high sand deposition.  Based on the low phytolith 

short cell counts for some of these lower profile samples, larger samples of high sand 

content alluvial soils should be processed for phytolith recovery. 
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Figure 105.  Phytolith, sand, and charcoal data from the Lizard Site soil profile 
(34WN107).  Phytolith and sand data are weight %; the charcoal data is a numerical ratio 
of charcoal fragments to short cell phytoliths overlain on the same graph.  (The charcoal 
data [and all particle data] in #22-25 is suspect due to low particle counts.) 
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The Lizard Site shows considerable variation in placement of the three A horizons 

on the saddle plot (Figure 109) while still indicating that each sample represents a cool 

moist climate in a known riparian setting.  The placement variation of the asterisks 

suggests that the climate/vegetation regime of A horizon samples 1 and 10 were 

relatively similar, and while that of 4 was somewhat different; Figure 98 indicated that 

sample 4 had a much stronger Panicoid content and a smaller total Chloridoid content 

than the other two A horizons (Figure 98).  The sample 4 A-horizon was concluded to be 

the Copan Soil geosol dated to about 1200 BP (Carter et al. 2009, Hall 1990).  The 

sample 10 A horizon “was buried at 3120±60 rybp (Beta 192314).” (Carter et al. 2009).   

 

The TOC data for the A (1) and Ab (4) samples supported melanization whereas 

the TOC data for Ab2 (10) and below (down to sample 14) indicated a cumulization 

process of soil formation (Carter et al. 2009).  However, as previously discussed in this 

current chapter (Figure 97), the phytolith data showed an exponential drop-off in 

phytolith concentration with depth in each of these three A horizons suggesting that all 

three A horizons were formed by the process of melanization.  On potential explanation 

for this dichotomy between the two data sets (TOC vs. phytolith soil concentration in 

Ab2) is that the moist riverbank environment at the Lizard site immediately after 

inundation of the Ab2 horizon may have supported extensive microbial growth that over 

time would have lowered the TOC values but not had an effect on the inorganic phytolith 

concentration.  It is not known if there were any erosional losses from the Lizard Site 

between 3120 and 1200 BP; however, based on the [remaining] deposits recovered (#5-9) 

conditions were not suitable for formation of another A horizon during that time interval. 
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If the site remained wet enough during this time interval, microbial activity in the organic 

rich layer would have tended to decrease the buried soil TOC, perhaps resulting in the 

apparent cumulic TOC values that were observed.  The evidence at the Lubbock Lake 

Site suggested deterioration of the strong TOC signature of a soil by one thousand years 

after burial (Holliday 1988:601).  The Lizard Site soil profile has been previously 

published (Carter et al. 2009). 

 

The saddle plot data for the Lizard site (Figure 109) is very interesting with 

considerable spread along each axis.  However, as noted previously the three A horizons 

are all situated within a zone that is consistent with what would be expected from a 

riparian setting; of these three A horizons, Ab2 (#10) and A (#1) are somewhat more 

similar in relative placement to the Tallgrass Prairie controls than Ab(#4).  All of the 

sample data points number 1-14 are essentially lower than any of the points from 

Carnegie Canyon Site (Figure 109) while #15-27 are more in line with the y-axis value 

(warming) noted at Carnegie Canyon (except for the temporary decrease seen in #23-25).   

 

The seasonality data from Figure 98 is plotted in Figure 106 in a way to make it 

easier to judge individual relative plant metabolic type contributions.  The top of Ab2 

(sample #10) correlates with a significantly warmer period with a lesser contribution 

from the cooler Pooid fraction; this 3,200 BP buried soil formation ended after this warm 

interval spike.  In the lower Ab2 horizon, sample #11 had cooler summers and more 

prolonged C3 growing seasons, whereas #12-13 had much stronger Panicoid component 

(longer cooler moister summers) and less C3 growing interval.  
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 At this point, the two dimensional plot in Figure 109 is very useful when 

compared with the sand data (Carter et al. 2009).  FE 2 resulted in relatively low sand 

content in the soil compared to the overall sand load in FE 3 (Carter et al. 2009).   In 

looking at Figure 109, it appears that the saddle signature during FE 2  interval samples 

(#4-9) mirrors that of the relatively cool riparian phytolith signature of Ab (#4) whereas 

the signature of the samples below Ab2 (#15-27) generally move closer to that to the 

Tallgrass Prairie.  This observation may indicate that the apparent relatively lower flow 

FE 2 interval tended to move and redeposit sands that were already present in the stream 

drainage system (and thus have a strong cool Pooid signature), while the erosion that 

occurred during FE-3 from higher flows (i.e. much more sand deposition) actually moved 

in much more material (including phytoliths) from a surrounding upland Tallgrass 

Prairie.  Thus, in the Cotton Creek alluvial system, non-A horizons, such as the Bw, BC, 

BTss, Bt, and Bc at the Lizard site, the entombed phytolith signature in these samples 

appears to mirror the stream bottom riparian vegetation in low flow (relatively low 

quantity of sand depositional events), and the surrounding uplands in high flow erosional 

events.  The apparent anomaly in this data set is samples 23-25 which occurred at the 

very peak flow (sand deposition) would show an intermediate stage between Tallgrass 

and riparian phytolith signature (Figures 106 and 109); however, in actuality there was so 

much sand and so few phytoliths recovered that these specific counts are not reliable.  

Samples 20 and 22 are more far afield in their scatter. 

 

 The sedge and sponge spicule data (Figure 102) shows intriguing indicators of 

changes in water flow at the site which are suggestive of climatic changes, with periods  
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Figure 106.  Seasonal plot of Lizard Site phytolith data.  (Short cell phytolith total counts 
below sample 22 are significantly lower than desirable). 
 

of lower and higher flow during development of Ab2.  Phytoliths representing maize, 

curcubits, and asteraceae were also noted in the profile (#12).  Diatom incidence 

remained very low farther down the profile than sample #7.  The occurrence of charcoal 
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flecks (Figure 106) in the phytolith fraction isolates increased in Ab2, dropping off in 

temporarily in sample 13 which the sedge/spicule ratio (Figure 103) indicated was a 

period of relatively higher spicule ratio with somewhat lower particle counts.  This 

presumably indicates that the charcoal was entering the drainage system from the 

uplands, and the lower flows cut back charcoal entry into the system.  It also suggests a 

much higher incidence of fire in the area in the interval prior to 3,100 BP.  The Panicoid 

fraction peaked in #13 for the whole profile, and was elevated somewhat throughout the 

development interval of Ab2.  The lower Panicoid fraction in #10 and 11, and the 

Chloridoid spike in #10 offsetting the drop in the Pooid fraction may have combined to 

create the environmental change that led to burial of Ab3.   The Chloridoid fraction from 

#7 gradually increased until present day, although the Pooid and Panicoid components of 

the phytolith signature were in a constant state of flux—continually offsetting each other 

suggesting a variation in the relative amount of cool season growth throughout the past 

3,000 years.  The zone from #15-21 (Figure 106) confirms what was seen in the saddle  

morphology data (Figure 109)—that the vegetation represented in the profile appears 

similar to that originating from a Tallgrass Prairie.  The sand data (Carter et al. 2009) 

indicating high sand content in the profile suggests that the phytoliths (and charcoal) in 

the lower part of the profile are likely of upland setting and contributed to the profile by 

erosive runoff.  Charcoal incidence above Ab2 in the profile is very low presumably 

reflecting a lower fire incidence post-3,100 BP.  The higher charcoal incidence earlier 

clearly correlates with a significantly warmer period than encountered on average during 

the past three millennia. 
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Discussion of Buried Soils and Saddle Phytolith Signature Data – The three 

Oklahoma research sites contained buried A horizons with dates ranging from about 500 

to 11,000 BP.  The soil phytolith concentrations of these buried soils is summarized in 

Table 73 [control site data ppresented in Table 47].  The large range in observed soil 

phytolith concentration is felt to be due to a variety of interacting factors including the 

length of time that the soil horizon was the stable ground surface, the rate of aggradation 

(i.e., the rate at which added material dilutes the phytolith concentration of the soil), the 

biomass load at the site, the relative phytolith concentration 

Table 73 
Buried Soil Site A Horizon Soil Phytolith Concentrations 
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of the particular botanical species present, the stability of the phytoliths in the soil 

environment, and relative soil fertility.  The soil types at the six study sites (Table 74) 

show that both Inceptisols (newly forming soils) and Mollisols (well-developed fertile 

prairie soils) were both represented. Before discussing the individual site saddle data, a 

brief additional discussion about saddle morphology is warranted. 

 
Table 74 

Modern A Horizon Soil Types Present at Study Sites 
 

Site/Location Soil Series Soil Description 
   
Bull Creek Mansic fine-loamy, mixed, superactive, thermic aridic calciustoll 
Carnegie Noble coarse-loamy, siliceous, active, thermic udic haplustept 

Quinlan loamy, mixed, superactive, thermic, shallow typic haplustept Dempsey 
  Divide Woodward coarse-silty, mixed, superactive, thermic typic haplustept 
Lizard Verdigris fine-silty, mixed, superactive, thermic cumulic hapludoll 
Manning Coyle Loam fine-loamy, siliceous, active, thermic udic argiustoll 

 

The Bull Creek Site Shortgrass Prairie has a very high saddle phytolith 

concentration and a very minor tall saddle phytolith component.  Several saddle phytolith 

images from sample BC-52 relevant to morphology are shown in Figures 107 and 108.   

These images include numerous tall and squat saddle phytoliths.  There are also several 

that are nearly square in dimension, and two that actually measure to be a different ratio 

than what they visually appear to be.  Several saddle imposter forms (Aristida sp.?) are 

also present in these images (labeled “I” in Figure 108 H, I, and K). 

 

Moving south-southeast about 145 kilometers to the Dempsey Divide Mixedgrass 

Prairie sampling area (Figure 7), which is adjacent to a Shortgrass Prairie also dominated  
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Figure 107.  BC-52 Tall (“T”) and Squat (“S”) phytoliths.  Bar scale is 20 microns.
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Figure 108.  BC-52 Tall (“T”), Squat (“S”), and imposter (“I”) phytoliths.  Bar scale is 20 
microns. 
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by Buffalo Grass (Figures 10-13), the saddle signature changes very abruptly.  Although 

the total saddle content is still very high, the relative saddle morphology (tall verses 

squat) changed drastically with the addition of new plant species to the landscape in the 

Mixedgrass Prairie.  Although perhaps slightly more moist, the Dempsey Divide climate 

is still very hot and dry (agreeing with high overall saddle content); however the saddle 

signature ratio shifts distinctly along the x-axis indicating a strong vegetative change 

compared to the Shortgrass Prairie.   

 

Moving 250 kilometers east from the Dempsey Divide Mixedgrass Prairie to the 

virgin Manning Tallgrass Prairie, the total Chloridoid fraction in the surface soil samples 

is essentially halved, and the saddle ratio moderates to an intermediate position.  The 

Tallgrass Prairie is a more balanced mixture of C4 hot, C4 warm and moist, and C3 cool 

season species (see Figure 64 soil sample 1).  The new species present in the Tallgrass 

Prairie are a reflection of more moisture which helps decrease the relative incidence of 

C4 hot dry species, and increases the cool moist season C3 species.  Phytolith 

assemblages, such as those from cooler climates or shady moist riparian settings, are 

predicated to plot on this chart lower than the Tallgrass Prairie data points due to their 

higher incidence of cool/most vegetation decreasing the relative Chloridoid content.   

 

 For the southern Great Plains, based on this limited data set, the big mover on the 

x-axis (i.e., saddle morphology) appear to significantly be affiliated with species in the  

sampled Mixedgrass Prairie assemblage.  The increase in Panicoid fraction in the 
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Tallgrass Prairie seems to dilute the saddle morphologic change on the x-axis as the total 

Mixedgrass Prairie species contribution to the Tallgrass Prairie declines, with a 

concomitant significant downward shift on the y-axis (i.e., total Chloridoid content) 

reflecting an increase in average available annual moisture.  

 

 Summarizing the saddle data from the buried soil sites and the control prairie sites 

resulted in Figure 109.  Here, the asterisks denote the upper sample taken from each A 

horizon, the closed circles indicate the non-upper A horizon samples (when present), and  

the diamonds represent the non-A horizon samples.  The three prairie control samples are 

plotted.  The buried soil site samples are red (Bull Creek Site), purple (Carnegie Canyon 

Site), and blue (Lizard Site).  Figure 110, showing the saddle data plot for the A Horizons 

(and the upper sample from A horizons when thick A horizons were subsampled), is less 

cluttered and shows a relatively tight data cluster at Carnegie Canyon (squares), 

somewhat more species variation at the Lizard Site (circles), and broad ranges along both 

axes (i.e., temperature and species variations) at the Bull Creek Site (asterisks). 

 

     In the Bull Creek saddle plot (Figure 83) and the earlier phytolith short cell type 

plot (Figure 79), both the Shortgrass and Mixedgrass prairie controls [Table 48] have  

high saddle concentrations (84.4% and 66.7%), but a considerable spread in the saddle 

morphology ratio (0.147% vs. 2.176%).  The data and the current site conditions suggest 

that the y-axis (concentration) is related to thermal conditions.  The main difference in 

the Short- and Mixedgrass Prairies (both have hot climate with limited moisture) is the 

addition of new plant species that make up the Mixedgrass Prairie which effectively  
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Figure 109.   Composite plot of saddle morphology verses total saddle concentration for 
the three prairie control sites, and for all buried soil site samples evaluated.  
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dilutes the Shortgrass species input.  This particular compositional change results in a 

strong shift along the x-axis, suggesting this movement is due to species change (such as 

the “invasive species” noted previously (Bement et al. 2007)).   

 

An examination of the individual saddle data from the 21 surface A horizon 

replicate samples from Manning Tallgrass Prairie (Experiment 3) shows a fairly tight y-

axis clustering and a very large x-horizon deviation of the data (Figure 111)—larger than 

the range observed in the various Bull Creek buried A horizon samples (Figures 82, 109, 

and 110). This supports the interpretation that climate indicated by the Bull Creek saddle 

signatures for samples 31, 37, 42, and 45 was relatively constant although there was 

 

Figure 110.  Plot of buried soil site A horizons (and upper A horizon sample when the 
horizon was subdivided into fractions) saddle signatures.   
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considerable variation in the actually botanical species represented in the soil phytolith 

signature at the sampling point over time.   The individual Manning replicate surface 

samples (that produced the average Manning value for Experiment 3, n=21) are plotted in 

Figure 111.   

 

There are two noticeable outliers to the n=21 data cluster (samples #8 and #14 in 

Figure 111); even so, the average of the remaining 19 data points is still to the right and 

below that of the  n=1 sample average data value.  As the temperature was consistent at 

these two locations, some other factor(s) must lead to the species variation that is 

represented in the soil saddle phytolith signature.  These differences could be a 

combination of a variety of factors including soil moisture, mineral composition, organic 

matter, and overall fertility.  Regardless of the specific cause, the x-axis variation appears  

 
 

 
 
Figure 111.  Plot of saddle data from individual replicates from Manning Tallgrass Prairie 
experiment 3 (saddle and short cell count data from Tables 22 and 23). 
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to be due to local site factors, whereas the y-axis variation is primarily due to temperature 

variations (with a possible smaller moisture component) 

 

Supporting this same reasoning, the two Manning Tallgrass Prairie sampling areas 

show significant variability in plant species (i.e., the saddle ratio varied from 1.31 (n=1 

[x=20] composite sample) [Table 15] to 1.95 (n=21) [Table 26]), while the actual total 

chloridoid concentration (i.e., the proposed relative thermal indicator based on 

normalized saddle phytolith concentration (y-axis)) only varied from 30.50% (n=1 

[x=20]) to  26.38% (n=21), or 32.8% variation in the saddle ratio due to species variation 

versus 15.6% variation for the total saddle concentration (i.e., climatic factors—

predominantly temperature (x-axis)).  Thus, even with the variation caused by the 

extremely irregular horizontal phytolith morphologic distribution of various species 

across the Manning Tallgrass Prairie site (as noted previously in Tables 26-30), the 

overall climatic signature—meaning moisture and especially temperature—were the 

same (Tables 33-35). 

 

With these thoughts in mind regarding the variation in the Manning Prairie 

replicates data, additional comments can be made about the A horizon saddle data in 

Figure 110.  The Bull Creek data shows a very large x-axis variation (species variation) 

and a large y-axis deviation (primarily thermal changes, with some possible local 

moisture input).  In contrast, the Carnegie Canyon data (a very small drainage area) 

shows minimal species variation (x-axis) and a larger variation in thermal conditions (y-

axis); the thermal deviation is larger than that observed in the two samples (n=1 [x=20] 
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and n=21) at Manning Tallgrass Prairie.  On the other hand, the Lizard site data (on a 

larger drainage basin) shows minimial environmental thermal change over the time 

interval studied (y-axis) although it does show more species variation (x-axis).  The range 

of species variation recorded in the Lizard site saddle data is less than the modern range 

noted at Manning Tallgrass Prairie (Figure 111). 

 

Environmentally, the Bull Creek Shortgrass Prairie and the Dempsey Divide 

Mixedgrass Prairie are similar (Tables 8 and 75).  The difference in these two average 

modern soil saddle phytolith ratios values thus reflect a difference in the predominant  

plant species rather than in the actual temperature and moisture conditions prevalent at 

both sites.   At Manning Tallgrass Prairie, the overall normalized saddle concentration 

moderates from the Shortgrass and Mixedgrass extremes (on the y-axis), but the 

predominant species present tend to have an intermediate tall:short saddle ratio.  Thus, 

Manning Tallgrass Prairie–with a different moisture and temperature regime—shows a 

significant thermal change (y-axis difference in normalized saddle concentration) from 

the other two prairie types, and an intermediate species saddle signature (x-axis).  

 

 

Paleoclimate Temperature Calculations – One product of prior Great Plains’ 

phytolith research investigations was development of a formula that correlated current 

prairie soil phytolith morphologies with local mean July temperature (Fredlund and 

Tieszen 1997a):   
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    July Mean Temp (ºC) =  

                    (-0.263)[Stipa] + (0.135)[Saddle] + (0.324)[C4 Lobates] + (0.246)[Crenate].  

 

where the percent of each morphologic type named in the bracket is taken from the 

previous data tables with normalized percent of each short cell for a given site. 

Developed during the study of 34 modern prairie locations across the plains, Fredlund 

and Tieszen (1997a) also applied this formula to soil phytolith samples from earlier 

Holocene deposits in order to calculate the environmental temperatures at the time that 

the deposits formed.   

 

 In this current study, this formula was used to estimate the temperature at time of 

formation/deposition of modern A Horizons, dated buried soil deposits, and other 

previously discussed samples.  Based on the phytolith sample concentrations determined 

in this study (presented earlier in this chapter), the calculated temperatures of the various 

isolated soil phytoliths are presented in Tables 75, 77-78, and 80-81, and discussed in this 

section. 

 

The calculated dates for the five surface A horizons in this study are in Table 75.  

The modern mean July temperature for each site was needed in order to make the 

temperature calculations.  This temperature data was obtained from the National Weather 

Service mean values for the period 1971-2000 (NWS nd).  No NWS temperature 

collection sites were close to Bull Creek, so the sites used to calculate the modern mean 

July Temperature were to the east (Buffalo and Fort Supply, Oklahoma) and north and 
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northeast (Liberal and Ashland, Kansas) of the site.  The Dempsey Divide Mixedgrass 

Prairie temperature average was based on NWS values from Reydon, Hammon, Elk City, 

Sayre, and Arnette, Oklahoma (n=5).  No NWS data collection sites were available from 

immediately east of Manning Prairie, so the average temperature value was based on data 

from Cushing, Perkins, and Stillwater.  Although the local Carnegie NWS site reading 

was 27.7ºC, there was considerable variation in the immediately surrounding area.   

For this reason the composite Carnegie value (ºC) was used based on the average of eight 

locations (Anadarko, Apache, Carnegie, Chickisha, Cordell, Hobart, Weatherford, and 

Wichita Mountain Wildlife Refuge).  There were no local NWS reporting sites near the 

Lizard Site locality; the default value of the closest sites would be in Kay County (over  

 
Table 75 

Temperature Calculation of Modern Soil Samples from Study Sites 
 

Field Site Horizon 
(cm) 

Calculated 
Deviation from 

T (ºC) 

Mean Modern 
July 

Temperature 
(ºC)40 

Number of 
Locations used to 

Determine Modern 
Mean July T 

     
Bull Creek Site 
(Shortgrass 
Prairie) 

A 
(0-10) -0.163 27.02 n=4 

Dempsey 
Mixedgrass 
Prairie 

A 
(0-5) -0.029 26.91 n=5 

Manning 
Tallgrass Prairie 

A 
(0-5) +3.962 27.82 n=3 

Carnegie 
Canyon 

AC 
(0-11) -2.301 28.19 n=8 

Lizard Site A 
(0-6) -1.242 26.46 n=1 

 

                                                 
40 The modern temperature value is based on adjacent modern geographically local collection sites.  The 
temperature deviation is blue (negative value) when the calculated temperature is less than the modern 
temperature, and red (positive value) when above modern temperature. 
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140 kilometers away, but at approximately the same latitude as the Lizard Site, with a 

temperature of 27.7ºC).  Due to this large distance, the available local Oklahoma Mesonet 

July temperature average mean from 1994-2009 (Table 76) was used for the relative 

temperature calculation for Copan.  As an example of the normal annual variation in local 

temperatures over a sixteen year interval the annual mean July temperature data is shown 

in Table 76, which includes a range of 4.9ºC at the Copan data collection location. 

 

Although slightly lower, the calculated modern temperature values based on 

phytolith soil data for Bull Creek and Dempsey Divide Mixedgrass Prairie Sites were 

very close to the known modern temperature (Table 75).  The cause of the significantly 

higher aberration in the temperature calculated from the Manning Prairie data is not 

known and should be addressed in future research.  As the Manning location was the 

most heavily sampled surface A horizon in this study, this variation presumably may be 

due to the specific botanical signature at the site and/or an error in the local modern 

temperature value.     

 

 Based on the reported phytolith assemblage for all soil samples analyzed at each 

site, the environmental temperature correlating with each sample collected from the 

profile that was analyzed for phytolith content was calculated.  The Fredlund and Tieszen 

temperature formula was developed based on the surface of A horizons, so it is 

anticipated that the B and C horizon samples analyzed for phytolith composition may not 

be suitably addressed by this formula.  Thus, calculations will only be performed on A 

(and one AC) horizons. 
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 Eight of the eleven Bull Creek samples were A horizons.  The calculated 

environmental temperature correlating with each deposit based on the phytolith record is 

presented in Table 77.  The bottom of the tested sequence at the Bull Creek site, starting 

with BC-22, represents the period of retreat from the glacial maximum on the North 

American continent following the end of the Wisconsin Glacial.  Interpretation of pollen 

records on the Great Plains has helped track the glacial retreat (Wendland 1978).  Thus, 

the colder calculated temperatures at this the early Holocene Bull Creek Site time agree 

with the regional climate picture developed for this interval.   

 

The radiocarbon dates obtained for BC-25, BC-28, and BC-31 are not in the 

expected chronological order (Table 77).   The calculated temperatures for BC-31 and 

BC-28 indicate a relatively warm climate, much more similar to modern day than to the 

then immediately preceding glacial episode.   In contrast, calculated temperature based on 

BC-25 is actually somewhat colder than the adjacent temperatures (BC-22 and BC-28).  

If one were to look at the bracketing dates that appear to be in correct time sequence (i.e., 

BC-22 and BC-31), this time interval corresponds with what is referred to as the 

Younger-Dryas period; one or both samples yielding questionable radiocarbon date/s 

(10,840 and/or 10,350 BP) are potentially included in the Younger Dryas period.   

 

The relative temperature data calculated via Fredlund and Tieszen’s formula 

(Table 75) does not correlate well with the previous normalized short cell seasonal 

phytolith data (Figure 84; Bement 2007 et al. Figure 7) even though the same base 

phytolith data set was used.  The difference is that, when developed to obtain the best 
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correlation based on modern prairie soil A horizons, the final Fredlund formula excluded 

several major C3 short cell phytolith morphologic types (C3 short cells excluded from 

Fredlund’s final formula include keeled, conical, and pyramidal forms) whereas the Bull 

Creek data in this report (Figure 84) includes all of the short cell forms.   Whether 

Fredlund’s formula is applicable to immediately post-glacial conditions which had a high 

 
Table 76 

 Mean July Temperature, Copan and Beaver Mesonet Sites (1994-2009) 
 

Year Mean July Temp (ºF) 
 Copan Beaver41 
   

2009 77.7 80.1 
2008 79.7 80.1 
2007 78.1 78.7 
2006 82.6 83.8 
2005 79.1 79.0 
2004 75.8 76.5 
2003 81.9 84.2 
2002 80.2 81.1 
2001 84.6 87.1 
2000 79.0 81.7 
1999 81.7 82.2 
1998 81.8 81.0 
1997 71.9 80.3 
1996 80.2 80.2 
1995 80.3 79.8 
1994 79.5 81.6 

   
Mean  79.63 81.09 
Mean   26.5 ºC 27.7 ºC 
SDev    1.6 ºC  1.4 ºC 

 
                                                 
41 The NWS values from the surrounding reporting sites were used to obtain the Bull Creek average July 
temperature in Beaver County that used were for the Bull Creek temperature calculations. This decision 
was made because NWS temperature records were the data source Fredlund and Tieszen used to derive the 
original correlation formula.  However, as the Oklahoma Mesonet Beaver data collection point is very near 
the Bull Creek site (Mesonet nd), the Mesonet data is recorded here for comparative purposes.  The average 
temperature for the interval at Beaver from 1994-2009 Mesonet data was 81.09ºF (27.72ºC), close to the 
composite NWS data from 1971-2000 (27.02ºC, or 80.63ºF) used in the actual preceding Bull Creek Site 
temperature calculations. 
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Table 77 
Bull Creek Site A-Horizon Paleotemperature Calculations 

 

Sample Date  Calculated 
Relative T (ºC) 

Stipa 
(%) 

Saddle 
(%) 

C4 Lobates 
(%) 

Crenate 
(%) 

       
BC-52 Modern  -0.2  5.2 84.4  1.8  1.2 
BC-47 6,200 BP +2.7  0.9 23.8 14.0 25.6 
BC-45 7,660 BP  -1.7  6.0 43.5  6.2 12.5 
BC-42 8,760 BP +0.2  1.7 53.1  7.5   8.4 
BC-37 9,850 BP  -2.8 10.2 49.2  8.0   6.8 
BC-31 10,400 BP  -0.9  7.9 50.9  7.5 12.1 
BC-28 10,850 BP  -0.5  0.9 27.0 10.6 15.3 
BC-25 10,350 BP  -6.4  6.3 25.8 6.2   3.2 
BC-22 11,070 BP  -5.4 10.6 15.0 10.8 11.9 

 

incidence of C3 species phytoliths present in the botanical signature remains to be clearly 

demonstrated.  Further information from the delta 13 values obtained from buried soils 

across Great Plains is also available and shows temperature variations (cooler and 

warmer) over time during the Holcene (Nordt et al. 2007).  A 6ºC temperature drop 

during in the Younger-Dryas was reported based on oxygen isotope data obtained from 

biogenic silica (i.e., diatoms) in a lake core (Shemesh and Peteet 1998), which is similar 

to the temperature change noted at Bull Creek based on phytolith signature (Table 77).  

 

Rather than being in an upland prairie setting as were the three control prairies, 

the other two study site profiles providing buried soil data were exposed by erosion from 

adjacent active modern streams.  The paleotemperature data derived from these two sites 

is considerably more problematic and less informative than those from the earlier Bull 

Creek Site although it was also originally in an alluvial setting.  The data from the Lizard 

Site (Table 78) shows what an erroneously high modern temperature, and even higher 

temperatures in the buried soils.  This is presumably due to the riparian site setting and 



  

 299   

the possibility of contamination from adjacent upland settings.  Thus, a brief 

consideration of the Lizard Site setting is in order.   

 

Table 78 
Lizard Site Paleotemperature Calculations 

Sample Date 
(BP) 

Calculated 
Relative T (ºC) 

Stipa 
(%) 

Saddle 
(%) 

C4 Lobates 
(%) 

Crenate 
(%) 

       
1 Modern +1.2 3.0       11.6 24.3 12.6 
4 ~1,200BP +8.8 5.2       8.9 57.2  3.8 
10 3,120 BP +7.9 0.8       16.6 47.4  4.5 

 

The Lizard site is on South Cotton Creek, a second order meandering steam with 

additional input feeding in from intermittent drainages (Reid and Artz 1984, DeLorme 

2003).   The drainage area above the Lizard Site location on South Cotton Creek is about 

73 square kilometers.  The soil profile sampled in this study was initially observed in the 

cutbank exposed by South Cotton Creek.  The phytolith climatic/temperature signature of 

the modern A horizon is not in good agreement with the mean modern July temperature 

readings (Table 75).  The sand content in the soil samples from this alluvial Lizard Site 

setting ranged from approximately12-70%, and particle size analysis documented that 

numerous flood events had occurred impacting the site (Kelley 2006:51).  Whereas 

Fredlund used several collection sites near the Bull Creek Site to develop the temperature 

calibration formula, all of the control sites used in development of the temperature 

formula were more than 300 kilometers away from the Lizard Site locality (Fredlund and 

Tieszen 1997a:201 (Figure 1)).  Thus, the Lizard site may simply lie outside of the 

effective geographical boundaries where the temperature formula is effective.   
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The majority of the soil samples from this profile are not from established A 

horizons, and thus the Fredlund/Tieszen temperature correlation formula developed based 

on modern prairie A horizons would not be expected to apply for these samples.  

However, even in cases of the Lizard Site buried A horizon samples, the temperatures 

obtained via the prairie temperature calibration formula seem high.  This result is 

presumably attributable to a combination of the fluvial action occurring at the site and the 

dissimilarity of a riparian site setting to the upland prairie reference samples used to 

develop Fredlund’s formula.   Grade and flooding frequency in the riparian setting do 

affect vegetation species diversity (Hupp 1982; Harris 1987).  Indeed, bot flooding and 

soil characteristics at a given site affect the plant community (Burke, King, Gartner, and 

Eisenbies 2003).  Erosional losses would be expected to occur from the site, and 

deposition also could occur from upstream erosional runoff.   As spring rains are 

generally the highest volume water input in this region (Table 79, Figure 112), this low 

biomass/high moisture interval spring prairie setting might tend to deposit dead vegetal 

debris from the previous summer’s growing season along with the alluvium.  Also, higher 

spring runoff could increase the erosional loss of riparian species plant debris along the 

stream.  Any input, removal, or dissimilarity of the study site to the controls would tend 

to skew the phytolith data.   The botanical composition in this riparian setting is not the 

same as the up-drainage established prairie; the tree and woody species at the site would 

also be represented the phytolith sample potentially further altering the sample 

composition.   Irregardless of the specific cause, in this case the alluvial-based A horizons 

in a riparian setting representing moderate-sized drainage basins of upland grasslands do  



  

 301   



  

 302   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 112.  Average Monthly Rainfall at the Lizard Site (Oklahoma Mesonet Data 1994-
2009). 

 

not appear to provide an accurate site phytolith signature to use for temperature 

correlation calculation based on upland prairie phytolith samples.   

 

The Carnegie Canyon Site is another alluvial site in a modern riparian setting.  

However, at this site, the skewing of the calculated temperature is not as severe as at the 

Lizard Site.  At the Carnegie Canyon Site, the channel is only eight meters wide  

immediately above the site profile location which is only about one-third of the way 

down the short 2.7 kilometer long stream (Lintz and Hall 1983:4).  An even more 

significant measurement is that the land area above the Carnegie Canyon Site draining 

into the stream is slightly less than one square kilometer.  Thus, although this site is in 

another riparian/non-upland prairie setting, the Carnegie Canyon Site is dissimilar from 

the Lizard Site in that there is less total land area in the drainage and less total runoff 

occurs in the stream.  However, the narrower channel may indicate that higher flow 
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velocities do occur at Carnegie Canyon during and following rainfall events.  Thus, again 

interpretation of the phytolith results in an alluvial/riparian setting for temperature 

correlation purposes remains to be elucidated.   The Carnegie Canyon Site is actually 

more similar to the Bull Creek Site than the Lizard Site. 

 

In examining the Fredlund temperature calculations based on phytolith content at 

Carnegie Canyon (Table 80), there is some variation in the temperatures obtained around 

zero difference (in contrast to the uniformly high temperature values obtained at the 

Lizard Site  relative to the modern temperature (Table 78)).  The modern day Carnegie 

Canyon temperature calculation is several degrees low which is potentially explained by 

the observation that the sampled site phytolith assemblage is not from an established A 

horizon in a prairie setting (i.e., not equivalent to the upland prairie controls).   Given the 

observations made on the previous Lizard Site temperatures, temperature calculations in a 

riparian setting encompassing alluvial conditions should certainly be viewed as suspect.  

  

The buried Ab3 horizon soil actually extends from sample S-19 to S-27 (the 1,010 

BP date was obtained from sample S-20).  This particular A horizon has a complex 

formation history, including periods of cumulization and melanization, and the welding 

of multiple buried A horizons into a single thick buried soil (Carter et al. 2009).   

 

In addition to the reported elevated TOC (Total Organic Carbon) values and 

relatively low sand values associated with Ab3 (Carter et al. 2009), this current research 

also showed an elevated phytolith concentration and an elevation in the diatom content in  
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Table 80 
Carnegie Canyon Site Paleotemperature Calculations 

 

Sample Date 
(BP) 

Calculated 
Relative T (ºC) 

Stipa 
(%) 

Saddle 
(%) 

C4 Lobates 
(%) 

Crenate 
(%) 

       
S-1 Modern -2.3 9.0 28.3 25.5 0.9 
S-3 NA -0.7 7.2 26.1 27.6 3.9 
S-20 1,010BP -3.1 8.8 14.0 24.2 6.8 

 
 

Table 81 
Microfossils and Calculated Temperatures for the Carnegie Canyon Ab3 Horizons 

 

Horizon (Carter 
et al. 2009) 

Sample
No. 

Phytolith 
Conc. (wt %) 

Diatom Conc. (% 
of  Other Particles 

Counted) 

Calculated 
Temperature 

(ºC) 
     

C8b2 18 0.08%   1.69% +0.56 
CAb2 19 0.41% 22.44% -1.71 

20 1.15% 11.55% -3.15 A1b3 21 0.92% 11.31% +0.67 
22 0.76% 12.62% -1.73 A2b3 23 0.68%   8.16% +4.30  
24 0.65%   9.24% -6.83  A3b3 25 0.55%   1.76% -5.79 
26 0.53%   1.29% +0.70 A4b3 27 0.41%   0.85% +2.12 

ABb3 28 0.15%   0.00% +1.72 
 

the Ab3 horizon (Figures 87 and 91).  Interestingly, the diatom concentration plot shows 

three spikes one small shoulder that generally correlate within the welded A horizons; the 

A4b3 diatom concentration is lowest in the series (and this horizon also provided the 

warmest temperature value indicated in A4b).  The phytolith concentration spiked in S-20 

suggesting this upper zone of Ab3 experienced the longest period of stability in this series 

of welded soils. The A4b3 region from S-26 to S-27 was determined to have formed by 

cumulization, whereas the other portions of Ab3 were formed by melanization (Carter et 

al. 2009).  The Ab3 data is summarized in Table 81 (for the sand concentration in these 
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Ab3 sub samples, see Carter et al. 2009).  The one other significant environmental 

indicator associated with this buried A Horizon was the change observed in the sand 

color in this interval relative to other deposits in the same profile (Figures 92-93); this 

color change is felt to be an indicator of anaerobic (i.e., wet) conditions in the A horizon 

resulting in bacterial conversion of Fe3+ to Fe2+.  The seasonality plot discussed earlier 

(Figure 88) suggests that S-20 was the coolest, wettest interval in the Carnegie Canyon 

soil sample series.   

 

The use of the Fredlund/Tieszen correlation formula for determining paleo 

temperatures in riparian/alluvial settings appears to not always be appropriate.  It does not 

appear to be relevant for modern A horizons formed in a moderate sized drainage basin 

such as the Lizard Site location, although it performed somewhat better in a much a 

smaller drainage system (i.e., at the Carnegie Canyon Site).  These results indicate that a 

different correlation formula needs to be developed and tailored for non-upland/riparian 

settings due to alluvial inputs, possible losses to erosion, contamination and dilution of 

the phytolith signature by numerous non-Poaceae species that do not occur on upland 

prairies, and the lack of dominant prairie grass species in a lowland setting.   With the 

exception of Manning Tallgrass Prairie, the Fredlund formula held up well for the three 

modern A horizons at the other upland prairie sites (Dempsey Divide Mixedgrass Prairie 

and at the Bull Creek Site (Shortgrass Prairie)).  Although the buried Bull Creek Site 

consists of alluvial deposits and is on the modern Bull Creek drainage, it is being incised 

and eroded by the drainage system in modern day and thus the modern surface is actually 

an upland prairie setting. 
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Discussion of Soil Phytolith Distribution, Pedogenesis, and Paleoclimate 

 

Soil Phytolith Distribution and Pedogenesis – The soil samples from modern 

prairies and buried A horizons provide important information about phytolith distribution 

in soil and about soil pedogenesis.  The most detailed modern control prairie sample data 

was obtained from Manning Tallgrass Prairie.  The three Manning experiments involved 

collection and analysis of replicate samples (pages 143-183).  Using the fixed 5 cm deep 

soil probe increment, the surface soil samples had a fairly consistent texture and phytolith 

concentration (Tables 12, 19-21).  The vertical phytolith distribution showed an 

exponential decrease in concentration with depth (Figure 66, Table 12) suggesting a long-

term stable environment and period of melanization at this virgin Tallgrass Prairie site 

developed on a Mollisol.   

 

In addition to soil samples and phytolith concentrations, the Manning samples 

provide an excellent example of the wide variability in individual phytolith morphologic 

form content (Tables 22-25).  As expected, and as predicted by others (c.f., Strömberg 

2009), the phytolith forms present at a relatively low concentration have very high 

standard deviations whereas the higher concentration phytolith forms have lower 

deviations (Tables 26-30).  This is the type of individual data—for twelve distinctive 

phytolith morphotypes—on which the temperature calibration formula developed by 

Fredlund and Tieszen (1997a) was based; the original formula was arrived at by picking 

the individual morphotype combinations from their dataset that provided the best 

statistical result.  Although this current researcher is historically a splitter rather than a 
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lumper42, the morphologic phytolith data from Manning Tallgrass Prairie is improved 

when it is grouped into three climatic categories (Tables 33-35) as the overall percent 

standard deviations for these three grouped categories (Table 35) are significantly better 

than those of the twelve individual phytolith morphotypes (Tables 29-30).  Thus—except 

for performing the actual temperature calculations based on the published Fredlund/-

Tieszen formula (pages 292-305)—these three combined climatic or seasonality 

groupings are used in the discussions in the remainder of this dissertation.   

 

The original eureka event that led to evaluating lumping the various phytolith 

forms together for climatic interpretation was prompted by the fortuitous selection a 

single non-native reference botanical species (Kentucky Bluegrass) in order to obtain 

representative images of pyramidal phytoliths which had not been observed in the other 

Poaceae reference specimens selected at that time.   The visible morphologic gradation 

observed from keeled to pyramidal phytolith in close proximity suggested that the 

recognized individual morphotypes may actually be gradations or variations of a general 

form rather than discrete morphotypes (see Figures 47 A and D; also note the conical 

forms present in Figure 47B); this observation led to investigation and subsequent 

adoption of the three broader climatic groupings of phytoliths for seasonality evaluations. 

 

The tremendous phytolith form variability between adjacent samples (Tables 22-

25) helps to explain why the adjacent sampling sites of Fredlund and Tieszen (1994, 

1997a) had such extensive variation in phytolith signatures.  The fact that the Manning 

                                                 
42 For examples of this researcher’s tendency toward splitting, see the glass trade bead descriptions 
(Sudbury 1976) and white clay trade pipe descriptions (Sudbury 2009b). 
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Prairie has at least 105 plant species present based botanical surveys conducted during 

this project (Table 9)43 is indicative of the extensive species diversity present at this 13.4 

hectare (33 acre) site, and demonstrates why there can be such tremendous variability in 

individual seasonality markers (i.e., keeled, conical, etc.) in adjacent samples—even on a 

level consistent virgin prairie surface.  Based on this Manning Tallgrass Prairie phytolith 

control data, the three proposed seasonality groupings44 are considered to be more 

reproducible than the individual phytolith morphologic types.  Likewise, the benefits of 

composite samples to average out the variations in phytolith morphotype content are also 

shown to be beneficial for the climate groupings, although not as much so as for the 

specific individual forms (particularly those present in relatively low concentrations). 

 

The phytolith profile at Dempsey Divide was linear rather than exponential 

(Figure 75).   The current soil pH values (Table 39), the deteriorated bulliform phytoliths 

through the upper portion of the profile (Figure 70), and the dearth of phytoliths in the 

soil below 25 cm (Table 38) all suggest that phytolith preservation is poor in the young 

soil at this particular Dempsey Divide Mixedgrass Prairie locale.  Thus, the linear 

phytolith concentration plot obtained may actually be more akin to a dissolution plot 

rather than an actual unaltered soil phytolith concentration curve.  Overall similar 

biogenic silica preservation issues were noted previously during the analysis of the 

Sewright Site samples (Sudbury 2007:12-18, Figure 23).  Phytolith preservation issues 

                                                 
43 The other botanical survey during this project, conducted at Dempsey Divide Mixedgrass Prairie, yielded 
15 different species collected from within the 20 m sampling circle during a single visit (Table 37). The 
Manning Tallgrass Prairie sample was collected during different seasons over several years from the entire 
13.4 hectare (33 acre) property.  Species identifications from both prairies were performed by Mary Gard. 
 
44 These three groupings, are as originally proposed by others early in Poaceae phytolith studies (see page 
39), are Pooids (cool moist climate), Panicoids (warm moist climate) and Chloridoids (hot dry climate).  
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have been previously been reported to occur in basic pH soils and also to be affected by 

the presence of iron and aluminum in the soil, as well as other factors (Piperno 

2006:108)45. 

 

At the Bull Creek Site, primarily A horizons were analyzed from the profile; thus, 

the phytolith concentration profile for the entire stratigraphic column under this modern 

Shortgrass Prairie was not obtained46.  One interesting feature at the Bull Creek Site is 

how rapidly some A horizons developed in the early Holocene (see the radiocarbon dates 

in Figure 80) indicating repeated intermittent periods of climatic stability during what has 

been identified as periods of colluvial deposition (Bement et al. 2007).   

 

The other two buried soil sites studied are both in alluvial settings situated in 

different size drainage systems.  Of the two sites, the Carnegie Canyon Site (pages 225-

251) provided the most pedogenic information.  The phytolith concentration in all three 

Carnegie Canyon Site buried A horizons showed an exponential phytolith concentration 

curve indicating that melanization had occurred (Table 61; Figure 87; Carter et al. 2009); 

this finding is in direct opposition to Hall’s previous assertion that the all of the buried 

soils in Carnegie Canyon were “cumulic A-Horizons” (Hall 1983:36-38).   

 

                                                 
45 The charcoal concentration was also noted to increase in the lowest Mixedgrass Prairie sample analyzed, 
20-25 cm (Table 44).  Processing the lower four Dempsey Divide Mixedgrass samples (25-45 cm) was 
suspended when no phytoliths were recovered from the silt fraction, so the charcoal content in the 25-45 
cm interval is unknown.  The possible affinity of charcoal to alter metal ion concentration in the soil water 
solution has been previously mentioned as a possible mechanism to potentially affect phytolith preservation 
issues (Sudbury 2007:18).  However, the hypothesis that charcoal may affect phytolith preservation under 
some soil conditions remains untested. 
 
46 Of the 52 Bull Creek soil samples, eleven were analyzed including nine A horizons (Figure 80). 
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The thick Carnegie Canyon Ab3 soil is particularly noteworthy for several 

reasons.  First, the phytolith concentration curve is much stronger than the corresponding 

TOC (Total Organic Carbon) curve (Carter et al. 2009)47.  Second, the soil profile 

properties indicate that the Ab3 soil is actually four A horizons that have been welded 

together (Carter et al. 2009).  The diatom concentration in these same soil samples (i.e., 

the Ab3 soils, Figure 91) mirrors the soil phytolith concentration (Figure 87); both the 

diatom and the phytolith concentration spikes correlate with the position of the upper 

surfaces of the four recognized welded buried A horizons (Carter et al. 2009).  Thus, the 

wet conditions in this particular drainage at the time of the development of this series of 

welded soils (ending at about 1010 B.P.) were suitable to support a high diatom 

concentration and stable landscapes—confirmation of which is preserved in the soil 

biogenic silica record—both diatoms and phytoliths.  Third, soil wetness, previously 

documented by the presence of preserved buried tree stumps and mollusks (Lintz and 

Hall 1983; Hall and Lintz 1984), is also supported by the properties observed in the 

welded buried A horizon record.  In this case, the soil was wet enough beginning with 

soil sample 19 that the reddish sand lost its coloration and became near-white (Figures 

92-93); this visual difference is interpreted as being due to wet soil conditions which 

caused anaerobic bacteria to chemically reduce the iron deposited on the sand grains 

resulting in a lower chroma.  The close-up image of the sand grains does document their 

overall change from red-tinted to near white supporting the theory that the iron oxidation 

state was changed rather than the actual sand composition.  Thus, sand grain coloration, 

                                                 
47 Holliday reports that the organic material in a buried A horizon can disappear in less than one-thousand 
years (1988); thus, this profile intensity difference has a logical explanation (i.e., stable inorganic phytoliths 
vs. gradually degrading TOC). 
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phytolith concentration, and the concentration of other biogenic silica (i.e., in this case 

diatoms), all contribute to a better understanding of past environmental conditions and 

pedogenesis at the Carnegie Canyon Site.  This same biogenic silica data for sample 19 

suggests that 19 may actually be the top portion of the buried A horizon rather than 

sample 20 as determined by standard soil particle analysis. 

 

For the buried soils present at the Lizard site, phytoliths again served as a good 

proxy for the TOC in the younger buried soil; where the deeper buried soil Ab2 TOC 

values suggested cumulic formation, the phytolith data again suggested that the soil 

formed by melanization (Table 62, Figure 97; Carter et al. 2009). 

 

 

Paleoclimate Information from Phytolith and Soil Data – The previous section 

discussed the pedogenic information revealed by biogenic silica during this research 

project.  Several major limitations of phytolith analysis are the dual issues of redundancy 

and multiplicity.  Redundancy refers to the fact that the same phytolith shape is present in 

numerous different plant species, whereas multiplicity refers to the fact that each plant 

often contains a large variety of different phytolith forms (Rovner 1971).  Thus, selecting 

morphologically significant phytolith forms for analysis is at times less that 

straightforward.  Over the decades, Poaceae short cell phytoliths have consistently been 

recognized as very useful forms upon which to base paleoclimatic interpretations.  These 

phytolith morphotypes tend to be most frequently affiliated with certain grasses based 

primarily on their metabolic differences and thus the optimal environmental conditions 
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under which they thrive.  These metabolic/climatic differences are recorded as the 

phytolith signature left behind in any given soil. 

 

The assortment of the twelve short cell forms of interest for the three control 

prairie soils are summarized in Table 48 and in Figure 76.  As evident in Figure 76, the 

distinctive short cell phytolith form for the Manning Tallgrass Prairie is the Lobate 

Panicoid, and the major differentiator between the Dempsey Divide Mixedgrass Prairie 

and the Bull Creek Shortgrass Prairie are the tall and squat saddles, respectively.  

Although other differences are present within the soil phytolith data, those are clearly the 

three most significant differences, and include one stand-out form from each of the three 

prairie types studied.48   

 

The biogenic silica morphologic form counts for the various buried soil samples 

were performed, and their climatic signatures plotted as both bar and linear graphs for the 

Manning Tallgrass (Figures 64 and 67) and Dempsey Divide Shortgrass Prairies (Figures 

71 and 73).  The same seasonality groupings plots were prepared for the Bull Creek Site 

(Figures 80 and 84 [the Bull Creek soil phytolith samples represent only part of the 

stratigraphic column]), Carnegie Canyon Site (Figures 83 and 88), and the Lizard Site 

(Figures 98 and 106).  Discussion regarding the climatic information contained in these 

various figures is in the pertinent sections of Chapter 4. 

 

                                                 
48 It is interesting to note that the saddle phytolith plots of total normalized saddle phytolith concentration 
versus tall:short saddle phytolith ratio for the Mixedgrass and Tallgrass Prairie samples tend to be linear 
with only moderate slopes (Figure 77 [complete profile of the Shortgrass Prairie not available]).  The 
significance of this observation remains unknown. 
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The climatic summaries of the three modern prairie soils are plotted in Figure 78 

(data in Table 49).  The Manning Tallgrass Prairie has a fairly constant concentration of 

the three different phytolith seasonality groupings, whereas the Bull Creek Shortgrass and 

Dempsey Divide Mixedgrass Prairies have higher chloridoid components, very similar 

panicoid concentrations, and the Shortgrass Prairie has low pooid and panicoid 

components whereas the Mixedgrass Prairie has an intermediate Pooid content between 

the Tallgrass and Shortgrass Prairie pooid concentrations (Figure 78).  Although the 

Shortgrass and Mixedgrass Prairies are discernable in both the pooid and chloridoid 

components, the chloridoid values are further isolated from the panicoid fraction and thus 

potentially easier to study and interpret.  Thus, the chloridoid fraction (i.e., saddle 

phytoliths) were scrutinized more closely in this study. 

 

The saddle phytolith data for the three sites, reported as saddle ratio (tall:squat) 

vs. normalized chloridoid (saddle) concentration (as percent of total short cells counted in 

the same microscopic fields of view), was plotted for the three surface control prairie A 

horizon soil samples (Figure 78 and 82).  This modern prairie information was included 

as the base plot reference/control for the same type of saddle data for all of the samples 

from each buried soil site (Carnegie Canyon Site (Figures 89-90); Lizard Site (Figure 

104); and Bull Creek Site (Figure 82)).  Representative examples of the tall and short 

saddles are shown in Figures 107-108.  All surface control prairie samples and buried soil 

samples analyzed were also included in one single plot (Figure 109).  The large squares 

are the three prairie control surface sample values (color coded red, blue, and green, 

which correlates with the data colors in the tables in Chapter 4).  The figure legend 
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identifies which geometric shape represents an A horizon, the lower portion of an A 

horizon, and a non A-horizon.  This plot was discussed in some detail previously (pages 

282-292).  As a brief summary, several data highlights are: 

 

• The two different Manning Tallgrass Prairie surface composite sample values 

from the two different sample template areas gave a larger x-axis variation than y-

axis variation in this particular data scatter (large green squares).  This is 

interpreted to mean that the species composition varied quite a bit between the 

two adjacent sampling locations although the actual total saddle concentration at 

the site was fairly stable 49.  

• Three Bull Creek buried A horizons (25, 28, and 47) cluster very tightly, 

suggesting similar vegetation and climate at those three times.  The two earlier 

samples in this cluster (25 and 28) are the two samples with inverted radiocarbon 

dates that occurred during the Younger Dryas50. 

• Bull Creek sample 22 shows appreciable x-axis (i.e., species) deviation from the 

two immediately following A horizons, but was actually somewhat colder and/or 

moister.  Three later Bull Creek samples 37, 31 and 45 showed much larger x-axis 

deviations, with 45 being the largest deviation noted of all buried A horizon 

samples analyzed during this study (i.e., species variation); all three of these later 

                                                 
49 While performing the spring botanical inventories, it was observed that different species tended to be 
clustered in various portions of the prairie setting, giving living visual evidence of the non-uniform 
distribution of species across the site. 
 
50  These two sample dates were potentially impacted by the proposed early Holocene asteroid event 
(Firestone et al. 2007; Kennett et al. 2009). 
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stable soil environments appear to have been warmer/drier than the earlier Bull 

Creek Samples (i.e., more y-axis excursion). 

• No buried soil site sample has a chloridoid content close the very hot dry modern 

Bull Creek surface Shortgrass Prairie soil sample (BC-52, top red square).  The 

modern Dempsey Divide Mixedgrass Prairie profile samples also demonstrated a 

high chloridoid concentration (top blue square) but showed considerable species 

variation from the Shortgrass Prairie (i.e., x-axis deviation). 

• Both riparian setting sample series (Carnegie Canyon and Lizard Sites) were 

dissimilar from the control prairie samples, and somewhat similar to each other, 

with the Carnegie Canyon samples clustering fairly tightly and the Lizard Site 

tending to be slightly cooler/drier and showing more species variation.   The 

Lizard Site A horizon saddle samples showed more intra-x-axis range, whereas 

the Carnegie Canyon Site A horizons showed more saddle sample deviation along 

the y-axis.  This may be a reflection of drainage parameters and/or other local 

environmental conditions within these riparian settings. 

 

Although this saddle data is difficult to interpret with such a small series of 

control samples, the juxtaposition of A horizons from several sites (notably Bull Creek 

25, 28, and 47; and Carnegie Canyon 1 [AC horizon], 3, and 19) suggest that the surface 

horizons within each of these two individual clusters had similar botanical signatures.  

Conversely, the signature of the Lizard Site A horizons were not as similar suggesting 

more species variation over time at the Lizard Site, while the other Bull Creek A horizons 

exhibit an even greater species variation. 



  

 316   

The potential occurrence of broken panicoids being imposters that superficially 

appear to be saddles (Figures 57-59) was given additional attention due to the 

significance placed on saddle-shaped phytoliths in interpreting this buried soil data.  

Likewise, the concern over retaining smaller saddles, if present, supported the laboratory 

concerns regarding silt definitions, settling times, and potential particle and solution 

density issues51; all of these method improvements were developed with the intent of 

resolving specific potential problems encountered in the procedures employed during the 

course of this research.  Based on the three prairie control samples investigated, saddle 

phytolith morphology appears to be a sensitive indicator and a potentially significant tool 

for evaluating landscape stability and plant species changes—thus, additional study 

appears to be merited52.  Considerable deviation and variety was also observed in the 

crenate forms (see reference images in Figures 42-47) and in bulliform phytolith 

morphology, but time constraints did not permit pursuit of these observations. 

 

At the Manning Tallgrass Prairie, a significant spike in spheroid phytoliths, 

spicules, and charcoal occurred in the 35-40 cm sample (Table 14; Figure 65) which 

correlates with a cooler wetter interval via the Poaceae phytolith signature (Figures 64 

and 67) that extended to the 40-45 cm level [both samples from non-A horizons].  The 

only other significant climatic deviation noted at Manning was that the time interval 

                                                 
51 I.e., to make certain to retain any lower density and/or smaller phytoliths and also to keep the effective 
flotation solvent density of 2.35 g/cm3 which prompted the decision to float phytoliths from dry silt 
samples rather than risk having a potential negative effect on the flotation recovery. 
 
52 Previously, Brown provided measurements for saddles from 24 species, and looked at saddle size from 
43 Bouteloua gracilis specimens over two years to correlate size with June/July rainfall (1984:364-365).  
Lu and Liu (2003b) reported relative saddle type morphologies for a number of reference specimens from 
the southeastern USA, and developed associations between other phytolith morphotypes and coastal plant 
communities. 
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represented by the 5-10 cm interval appears to have been warmer (Figures 64 and 67).  

Concurrently, the per cent of burned panicoid phytoliths was also higher during these 

same intervals (5-10, and 35-45 cm) (Table 18).  The noted increase in spiny spheroids 

(35-40 cm) is often associated with trees and woody species (Lejju 2009).  As Manning 

Prairie is in an upland setting, this spheroid spike may indicate a major vegetation change 

at the time of the cooler weather (35-40 cm).  Whether this climate change and particle 

increase (i.e., charcoal) is associated with a past glacial episodes and/or known fire events 

remains uncertain.  A spike in the charcoal concentration was also observed in the lowest 

Dempsey Divide soil sample processed (Table 44, Figure 72) again suggesting a 

significant fire history—possibly indicating regional fires.  The radiocarbon dates of 

these particular control prairie soil samples have not been determined, so further 

interpretation is not currently possible.  Due to the riparian conditions which support non-

Poaceae growth, the spiny spheroid content fluctuations at the Carnegie Canyon and 

Lizard Sites cannot confidently be climatically interpreted53.  Additional known 

vegetative control samples containing spiny spheroids from these various settings are 

needed.   

 

When applying the temperature correlation formula to this site phytolith data, the 

modern prairie temperature calculation based on the modern Bull Creek Site surface A 

horizon phytolith signature is very accurate (Table 75) and the temperature calculations 

for the Bull Creek Site buried soils (Table 77) seems to correlate reasonably well with the 

values from other sites reported by Fredlund and Tieszen (1997b).   The calculated 

                                                 
53 The absolute charcoal concentration at the Lizard site clearly peaked during the development of the Ab2 
horizon which had a terminal radiocarbon date of 3120 BP (Tables 62-65).  This soil evidence indicates 
extensive fire activity. 
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modern temperature value for the Dempsey Divide Mixedgrass Prairie was also dead on 

(Table 75), although the value for Manning Tallgrass Prairie was significantly off and 

will be investigated further in the future.   Of the temperature values for the two riparian 

buried soils, the calculated values for the Lizard Site were way off (Table 78) and the 

Carnegie Canyon values are suspicious (Table 80).  These later two calculated 

temperatures are felt to be erroneous primarily due to the fact that the prairie controls 

used to develop the original formula (Fredlund and Tieszen 1997a) are apparently not 

applicable in riparian settings because the phytolith signature of those soils reflect 

considerable contamination from the watershed and/or species growing in the moister 

setting, and thus are not totally representative of an upland prairie setting reference 

materials used to establish the temperature formula. 

 

 The proposed Bond Cycles that have been correlated with climatic change are 

based on multiple evidence lines of Holocene ice rafting episodes in the North Atlantic 

(Bond et al. 1997; Bond et al. 1999; Bond et al. 2001).  One composite Bond plot is 

reproduced in Figure 113 with this current study’s buried soil data superimposed on the 

chart.  The correlation is inexact, at least in part because the radiocarbon dates obtained 

for the buried soils54 are not directly translatable to the corresponding Bond data which 

was presented in calendar years.  The three data points from the most recent 2000 years 

correlate with Bond peaks; however, presumably the farther back the dates are in time, 

the greater the degree of divergence in the two dating systems.  A good correlation 

                                                 
54  The buried soils plotted over the Bond Cycle graph were previously noted in this dissertation:  the 
Lizard Site buried dates are in Table 78, the Carnegie Canyon Site dates are in Table 80, and the Bull Creek 
dates are listed in Table 77.  These radiocarbon dates were published by Bement et al. (2007) and Carter et 
al. (2009). 
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between these two series of dates remains to be established.  Prior comments suggest that 

a cosmic event may have distorted the radiocarbon dates around the time of the Younger 

Dryas (Firestone and Topping 2001). 

 

 

Figure 113.  Buried Soil A horizon radiocarbon dates superimposed on Bond Cycle 
calendar year date ice rafting composite data regarding 1500 year Bond Cycles (Bond 
Cycle chart from Bond 2001:2130). 
  

In addition to these various lines of investigation, the relative weight/weight 

concentration of coarse (20-50 μ) to medium (5-20 μ) size phytoliths was determined for 

the Lizard Site soil sequence (Table 70, Figure 99)55.  Although variation in the ratio was 

noted, this data subset—which likely indicates the relative change in the bulliform 

phytolith concentration in the samples (and thus changes in moisture conditions and in 

species present)—was not pursued further on soil samples from the other research sites; 

this is because the improved laboratory protocol used on samples processed later resulted  

                                                 
55 The Lizard Site samples were the first samples processed in this project using the initial laboratory 
methods presented in Appendix C.  As later work progressed toward complete saddle recovery, the 
phytolith fraction was left intact when processing samples from subsequent sites. 



  

 320   

in keeping the phytolith assemblage intact rather than subdividing the phytoliths into 

medium and coarse silt fractions.  

 

The Lizard and Carnegie Canyon Sites are both in alluvial settings, with buried 

soils that formed on a stable landscape being buried by water-borne sand deposits. The 

three most recent radiocarbon dates (500, 1010, and 1200 BP) which are the terminal 

dates for three buried soils tend to correlate with the data reported by Ely (1997; dates in 

radiocarbon years).  Ely, studying sites in Arizona and Utah, reported peak flooding 

intervals during 900-1100 BP and subsequent to 500 BP (Ely 1997).  Ferring reports 

stable buried soils in Oklahoma [including the Caddo and Copan soils included in this 

current study] near the time of each of these intense flooding intervals, as well as noting 

similar sites from Texas (1990).  Interestingly, Ely reports a relatively calm interval 

between 5000 and 3600 BP (1997), which in the Figure 113 data is closely followed by 

the 3200 Lizard Ab2 soil (and preceded by Bull Creek-47 (6,200 BP)).  

 

Investigation of buried soils in the Kansas sand prairie yielded dates of stability of 

500 and 1000 years, in addition to others (Arbogast 1996).  Also noted was that “valley 

filling between 5000 and 1000 yr B.P. was interrupted by soil formation about 1800, 

1500, and 1200 yr BP” (Arbogast and Johnson 1993).  In reviewing other reported 

instances of area floodplain stability, significant dates of stability noted are 10,500, 8900, 

5700, 5000, 4200, 2600, 2000, and 1200 years BP (Arbogast and Johnson 1993).  Several 

of these dates are near the dates reported in this current report (Figure 113) suggesting 

similar environmental trends over much of the Great Plains during the Holocene. 
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The Bull Creek data from the Oklahoma panhandle shows gradual warming in the 

early Holocene with numerous periods of landscape stability.  The first buried soil (BC-

22) contains nanodiamond evidence that is thought to mark the start of the much colder 

Younger Dryas (Kennett et al. 2009); the second and third buried soils (BC-25 and BC-

28) share a common vegetative and climatic signature although they have inverted 

radiocarbon dates which are possibly due to the after effects of the earlier North 

American cosmic event that correlated with BC-22 (which in turn was responsible for the 

nanodiamond deposit).  While the climatic signature of BC-31 indicates a warming trend 

at the end of the Younger Dryas (Figure 80), the saddle data shows a major change in 

plant composition (Figure 82).  Although there was slight moderation in BC-37 species 

composition, the climate appears to have been stable and samples 31 and 37 have a very 

similar phytolith signature.  The next three buried soils (BC-42, 45, and 47) show a 

significant gradual cooling trend and increase in moisture (Figure 80) which was 

accompanied by major swings in vegetation (Figure 82) which ended with BC-47 which 

has a signature remarkably similar to that observed during the Younger Dryas interval 

(Figures  80, 82).  The modern climate at the Bull Creek site, represented by the BC-52 

phytolith signature of the Bull Creek Shortgrass Prairie, is hotter and drier than anything 

observed previously (Figures 80, 82)56.   

 

                                                 
56 The modern Bull Creek Shortgrass Prairie saddle concentration is also higher than in any of the prairie 
phytolith signatures reported by Fredlund and Tieszen (1994, 1997a) or any other samples processed during 
this current project.  One possible reason may be that the laboratory methodology changes in this current 
research may have improved recovery of smaller saddle phytoliths.  The analyst was careful to exclude 
broken Aristida lobate phytoliths (see Figures 57-59) from the count so that potential error is not felt to 
have affected the current saddle counts reported in this dissertation. 
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The other two buried soil sites help to fill in the gaps in the last half of the 

Holocene that are not represented in the soil record preserved at the Bull Creek Site 

(which is located in the Oklahoma Panhandle (Figure 79)).  Both the Carnegie Canyon 

Site (south central Oklahoma) and the Lizard Site (northeastern Oklahoma) show 

intervals of extensive alluvial fill interspersed with periods of climatic stability marked 

by development of A horizons that later became buried soils.   

 

As noted previously, the buried soil dates from 3,200 through 500 BP at the 

Carnegie Canyon and Lizard Sites, and those at the Bull Creek Site (11,010-6,200 BP), 

frequently correlate with the dates of other buried soils reported from the Plains and 

indicate that the climatic events and periods of stability were happening on a regional 

scale.  The common environmental factors causing these broad changes include the end 

of the Wisconsin glacial, the melting and withdrawl of the Laurentide ice sheet, the 

apparent cosmic event at the start of the Younger Dryas, the gradual climatic change to a 

hotter drier climate by the mid-Holocene which was accompanied by major vegetative 

shifts, a cooling trend, and then extensive flooding episodes in the last third of the 

Holocene—again brought on by changing climate. 

 

 

Summary – It is evident that phytolith analysis and research is a relevant, 

multidisciplinary, viable, rapidly growing discipline which can address a variety of 

research issues including paleoclimate, environmental change, and pedogenesis. 
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Although ubiquitous across the landscape, buried soils are most frequently 

observed when exposed by environmental conditions such as water erosion.  The three 

sites with buried soils selected to study in this project were exposed in stream cut banks.  

Additionally, radiocarbon dates have been determined for the buried soils at these sites.  

In order to utilize established prairie short cell phytolith research protocols to evaluate 

these sites for their climatic phytolith signature, pristine prairie locations were sought as 

grassland controls.  The areas selected for sampling and analysis are representative 

Tallgrass, Mixedgrass, and Shortgrass Prairies.  Intentionally, the locations selected were 

not included in previous published studies (Fredlund and Tieszen 1994, 1997a) in order 

to add additional study site data to the prairie control points for the Great Plains.  Both 

the control prairie and buried soil sites cover a wide swatch of Oklahoma from the hot 

dry panhandle, to south central Oklahoma, and to the moister northeast portion of the 

state. 

 

Approaching phytolith analysis from the viewpoint of soil science and chemistry, 

significant climatic and soil pedogenic observations were made.   Obtaining a good 

uniform representative sample is critical to success of the investigation.  Making 

significant improvements in established laboratory methodology, a quantitative phytolith 

recovery protocol was developed, and several common protocol errors embedded in the 

literature were noted and alternate procedures developed and recommended.   

 

Quantitative phytolith recovery from stratigraphic soil columns enabled 

determination that soil phytolith concentration mirrored total organic carbon (TOC) and 
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thus can serve as a TOC proxy.  In instances where the soil carbon signature had faded, 

the phytolith content continued to indicate the occurrence of soil melanization in place of 

what in the past has frequently been assumed to be cumulic formation.  Due to their plant 

origin, phytolith concentration mirrors soil A-horizon development (i.e., cumulic vs. 

melanization), so phytolith concentration confirms the existence of and the mechanism of 

A horizon formation.  Diatoms and phytoliths also help confirm moisture conditions, and 

the presence of soil welding; in one case, changes in sand color also helped address the 

issue of past moisture conditions present at the site.  In the future, in order to study buried 

soils in riparian site settings, control samples from similar settings are needed rather than 

using upland control prairie soil phytolith samples. 

 

A tremendous variability in phytolith morphologic distribution was documented 

across a virgin Tallgrass Prairie site location (21 individual soil probe samples collected 

in a 314 m2 area).  Grouping various phytolith morphologic forms into their broad 

environmental/climatic categories based on three groupings rather than twelve individual 

phytolith morphotypes improved the reproducibility of the results as far as paleoclimatic 

interpretation.  Saddle-shaped phytoliths have been long reported, occasionally studied, 

and are recognized as being indicative of hotter drier climate.  During the course of this 

study, evidence indicated that dimensionally different saddles (i.e., the ratio of tall:squat 

forms) may turn out to be a useful interpretive tool for variations in the composition of 

vegetative cover while the total saddle concentration continues to mirror temperature and 

moisture conditions (i.e., hot and dry vs. cool and moist).    



  

 325   

When looking at the saddle signatures of various soil samples, tight data clusters 

are tentatively interpreted to indicate similar vegetation in the buried soils represented in 

the cluster whereas differences in either the total normalized saddle concentration (i.e., 

different relative hot/dryness) or in the tall:squat saddle ratio (which is postulated to 

represent a change in vegetative composition) indicate different climatic and/or 

vegetative conditions.  Thus, saddle phytolith characterization potentially represents a 

significant undeveloped opportunity to help improve the understanding of 

paleoenvironmental conditions and to offer an additional level of discernment.  Saddles 

are sometimes one of the smaller diagnostic phytoliths, making the issue of optimal 

phytolith recovery in the laboratory an important objective.  Likewise, other particle 

types (including diatoms, sponge spicules, and charcoal) also contribute to our 

understanding of past environmental conditions and climate change.   

 

During the Holocene the Great Plains were in a period of climatic fluctuation.  

The Phytolith data from the Bull Creek site, with buried A horizons spanning the range 

from 6,200-11,070 BP shows the general warming trend that occurred on the Great Plains 

following the retreat from the Wisconsin Glacial period.   The Younger Dryas cooling 

interval, the start of which appears to be clearly visible at the Bull Creek Site profile as 

marked by the nanodiamond deposit (Kennett et al. 2009), is not recorded in the 

recovered soil phytolith signature from the buried A horizons.   The colluvial interval at 

Bull Creek shows good general agreement regarding stability of the land surface when 

compared with intervals of stability reported in Kansas, although the correlation breaks 

down in the eolian period (Johnson and Martin 1997).  At the end of the altithermal, the 
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final buried A horizon that was dated shows a distinct cooling interval (based on 

seasonality groupings)—which is the opposite result of what is indicated by Fredlund’s 

calibration formula.  The compressed or missing millennia above BC-47 are known to 

have been a time of heavy erosional activity on the plains.  Sand dune studies in 

Nebraska indicate that dune formation there occurred during the 3,000-1,500 B.P 

interval, suggesting considerable environmental activity during part of this period 

(Ahlbrandt, Swinehart, Maroney 1983). 

 

The 3,120 BP buried A horizon at the Lizard Site correlates with a time of 

stability flanked by extensive erosion on the plains.  The estimated 1,200 BP buried A 

horizon at the Lizard Site (Figures 98 and 106) seems to represent a period with a wetter 

summer interval similar to that seen in the middle of the Ab2 (peaking in S-13.)  There is 

warming trend seen in the slightly later ~500 BP soil (S-5) at Carnegie Canyon after 

which time pedogenesis ceased.  The final Ab horizon—a very cool interval—at 

Carnegie Canyon was not dated, but it may correlate with what is often referred to as the 

Little Ice Age.  Subsequent to formation of the Ab horizon, another true A horizon has 

not formed at the Carnegie Canyon Site.
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CHAPTER V 
 

CONCLUSIONS 
 
 
 

 
The phytolith samples evaluated in this research were collected from three control 

prairie sites and from three buried soil sites.  The modern reference prairies are good 

representative examples of Shortgrass, Mixedgrass, and Tallgrass Prairies.  Botanical 

specimens were collected and identified from two of the prairie locations.  The three 

buried soil sites included fifteen buried A horizons (including four A horizons that had 

welded into one unit); many of the A horizons formed while exposed to alluvial 

environments. 

 

In order to quantitatively recover phytoliths from these soil samples, a number of 

modifications and significant improvements were made to the laboratory methods 

published in the literature.  Issues regarding definitions (silt particle size) and techniques 

(relevant density values, settling times, and dilution of heavy density flotation liquid with 

soil water) were clearly addressed and cost saving equipment ideas effectively 

demonstrated.  The final laboratory method utilized a reversed order of particle 

separation by decanting rather than sieving, zinc bromide solution as the heavy density 

liquid for flotation, and longer particle settling times based on the lowest possible 

phytolith density.  Vacuum filtration using ashless filter paper was determined to be the 
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most efficient silt recovery method for this project.  The result of this procedure was to 

include all biogenic silica in one fraction and to recover a more complete fraction 

including the larger, smaller, and/or less dense particles that might ordinarily be lost 

using other isolation schemes.   

 

After phytoliths were quantitatively recovered from the soil samples, the phytolith 

signature was ascertained of each of the A horizons and a number of the other soil 

horizons.  Extensive study of the Manning Tallgrass Prairie phytolith samples 

demonstrated the variability the horizontal phytolith concentration (wt/wt % in soil), and 

permitted determination of the phytolith morphological composition or signature 

(normalized percent of twelve established short cell phytolith forms).  The fortuitous 

observation of a Western Wheatgrass spodogram (Figure 43A) showed how variable 

some of the short cells were in a small area, with the distinctive forms rapidly grading 

into related distinctive forms.  This gradation implied there are families of similar short 

cell types rather than distinct unrelated morphotypes, which led to summing the twelve 

forms into the three broad recognized climatic categories.  The climatic interpretation 

was based on these three groupings rather than twelve individual groupings as had been 

proposed by others in the recent past. The problem of imposter phytolith forms was also 

recognized and addressed. 

 

The reference botanical specimens showed considerable species variability in a 

number of phytolith forms which all hold considerable promise for future research 

(crenates, bulliforms, and saddles to name a few).  Of these, the soil saddle phytolith 
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composition at the three reference prairie sites (Figures 76-78) demonstrated the most 

promise for helping to discern differences in plant association composition as indicators 

of variations in environmental conditions.  In particular, a simple ratio based on the 

predominant saddle morphology in a soil phytolith sample (i.e., the tall:short saddle ratio, 

based on which particle axis was longest) vs. the total saddle concentration normalized 

relative to the total short cell count, provided a great deal of information about changes in 

plant composition at the sites over time (Figure 109). 

 

The vertical soil phytolith concentration profile proved to be a good proxy for 

total organic carbon (TOC).  Variations in the phytolith concentration profile in a massive 

buried A horizon mimicked the other soil evidence and helped to mark the location of the 

welded buried A subunits.  The normalized concentration of diatoms in the same profile 

also mirrored the phytolith concentration changes and soil welding evidence.  The color 

change of the recovered sand fractions collected from the stratagraphic column also 

corroborated the observation of redoximorphic features observed in the soil and 

confirmed that at the time of the buried A horizon formation, the site had experienced 

very wet conditions.  Numerous other components observed in the recovered phytolith 

fractions (burned phytoliths, sedge phytoliths, sponge spicules, and charcoal) provided 

additional information about past environments and site conditions.  A number of proxies 

for soil wetness were observed in this study.   

 

 The phytolith signature data for two of the three modern control prairies gave 

accurate temperature values (Table 75) based on the temperature correlation developed to 
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study paleoenvironments on the Great Plains corroborating the effectiveness of that 

earlier work for upland prairie settings.  The older Bull Creek buried A horizon samples 

also yielded calculated temperature values that agree with similar age sites reported from 

across the plains.  The data from the two later buried soil sites was not as clear cut, and is 

felt to reflect the difficulties and limitations of using an upland prairie-based temperature 

correlation in active riparian settings.  The non-Poaceae dominated plant communities 

present in drainages and riparian settings are not necessarily appropriate for evaluation by 

the prairie derived temperature formula.  The instances of erosional losses and valley 

filling episodes at these Oklahoma sites fit well with the regional picture of climatic 

conditions and changes across the Great Plains during the Holocene. 
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APPENDIX A 
 
 

Amorphous Silica in Foods 
 
 

Comments about sources of silicon in the diet are of interest.  Despite the health 

warnings noted in the literature review regarding silicon inhalation and ingestion57, fine 

amorphous silica is now widely used as a common food additive.  Silicon dioxide at 

levels of less than 2% has been an approved food additive for over three decades (Iler 

1979:757).  This product goes by a variety of names, and is widely advertised as an 

approved anti-caking (“keep free flowing”) food additive.  This silicon component is 

probably best described by the sales literature phrase of precipitated amorphous silica, 

but is apparently marketed commercially under a variety of descriptors—based on 

specific manufacturing protocols to produce numerous closely related materials including 

fumed silica and colloidal silica.   

 

  Sosman (1965:231) referred to fumed and precipitated silica as “micro-

amorphous granular silica”.  One commercial form of precipitated silica is called “white 

carbon black” by a number of manufacturers, a number of whom identify the material 

specifically as “hydrated silica dioxide”58 and indicate that it is used as a filler in rubber 

                                                 
57 The reported ingestion problem is presumably due to phytoliths acting as an abrasive (irritant) problem in 
food. 
 
58 Described and for sale by http://sanjichemical.en.made-in-china.com/product/bevQPsMTAHkW/China-
White-Carbon-Black.html and http://www.made-in-china.com/showroom/amy-guo/product-
detailrbTxjqSGCDWC/China-White-Carbon-Black.html (11-27-09).  Another producer indicates that white 
carbon is used in production of tires, shoe soles, medicine, feedstuff, silicone rubber, and food 
(http://uboliaxiamen.en.made-in-china.com/product/bqymWYNlCTRe/China-White-Carbon.html (11-27-
09)).  Yet another producer touts fumed silicas use as a “thickener in milkshakes”, as an abrasive in 
toothpaste, and that its “light-diffusing properties” make it useful in cosmetics (http://may-ally.en.made-in-
china.com/product/rovERxAKsDci/China-Fumed-Silica.html (11-27-09)).  
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tires (thus replacing carbon black)--perhaps implying this material’s pervasive presence 

in our modern world.  Silica gel, a well-known separation media used in many laboratory 

settings, is also amorphous hydrated silicon dioxide (Fried and Sherma 1999:25).  

Representative MSDSs in Appendix B present useful information about amorphous 

SiO2•ηH20 in commerce including CAS number, numerous synonyms, end-products 

incorporating the material, and the density of the different product forms. 

 

A brief perusal of in stock kitchen seasoning ingredients59 show that  “silicon 

dioxide” is present in 5th® Season Chili Powder, Cain’s® Sugar Substitute, Cook Shack 

Rib Rub, Fruit-Fresh®, Great ValueTM Paprika, Head Country All Purpose Championship 

Seasoning, Mc® McCormick Garlic Season-All Seasoned Salt, Tones® Lemon Pepper, 

and Cajun Grill Smokeless No Fry Seasoning.   

 

The ramifications of this widespread use of amorphous silica in food remain to be 

seen.  However, as this is a relatively soluble form of silica, widespread adoption as a 

common anti-caking agent in foods (and applications in other high volume commercial 

end uses) may potentially gradually impact the global soluble silicon balance.  This new 

high volume application of fairly soluble silicon (both commercial processing and usage) 
                                                                                                                                                 
 
59 Other anti-caking food additives encountered during this brief kitchen self-survey include “calcium 
silicate” (in KP Sugar Substitute [Saccharin], McCormick® Garlic Salt, Morton® Iodized Salt, S® Schilling 
Meat Tenderizer, Sweet’n Low [Saccharin], and Sweet Plus® [Saccharin]), “calcium phosphate” (Sugar 
Free Crystal Light® Diet Soft Drink Mix), “silica gel” (in Original Mesquite Longhorn Grill Seasoning), 
“sodium silico aluminate” (Best Choice® Poultry Seasoning, Pizza Hut® Parmesan, Pizza Hut® Romano 
and Hard Grating Cheese Blend), and ‘tricalcium phosphate” (Ever-FreshTM, Junket® Rennet Tablets, L® 
Lawry’s Seasoned Salt, McCormick® Szechuan Style Pepper blend, and Spice Island® Beau Monde® 
Seasoning).  Sodium silico aluminate, (alternatively spelled sodium silicoaluminate or sodium silico-
aluminate), is also universally present in all individual serving size salt packets that I have observed over 
the years, presumably suggesting a common sodium chloride supplier (available samples include Arbys®, 
Borden®, Church’s Fried Chicken®, Diamond Crystal Salt Company, Diamond Crystal Specialty Foods, 
Hardee’s®, Kraft®, McDonald’s® Corporation, PPI Portionpac, Red & White International, and Sonic®).   
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could potentially, over time, essentially have the effect of gradually increasing the overall 

global rate of silica weathering.  Although perhaps only a slight possibility, this increased 

large scale production and marketing of amorphous silica could conceivably result in a 

small increase in ocean silicon concentration.  The global silica cycle and balance is an 

area of active research (c.f. Yool and Tyrrell 2003; Street-Perrott and Barker 2008; 

Laurelle et al. 2009).  Diatoms are a very important component in this cycle, being 

recognized as a major silicon cycler (Lopez, Descle´s, Allen, and Bowler 2005) and 

crucial to CO2 absorption by the oceans.   

 

The theoretical possibility that increased world-wide synthetic amorphous silica 

production and use may coincidentally increase overall worldwide silica weathering 

rates, thereby increasing the ocean Si load, which in turn may result in higher diatom 

populations which in turn may process more CO2 and thus potentially impact global 

warming may be the most important concept to result from this phytolith research project. 
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APPENDIX B 

 

Representative Material Safety Data Sheets Relevant to Amorphous Silica 

 

1. Chem Abstracts MSDS Information 

2. WACKER FUMED SILICA HDK H20 Material Safety Data Sheet 
 

3. Allied High Tech Products, Inc.  MATERIAL/CHEMICAL SAFETY 
 

    DATA SHEET 
 

4. Fisher:  Material Safety Data Sheet Silica Gel Desiccant 
 

5. PPG INDUSTRIES INC -- HI-SIL 233 -- 6850-01-022-7031  
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The first document, although not as up to date as the following four MSDSs 

(Material Safety Data Sheets), is included because it provides 28 synonyms for 

“amorphous fumed silica” and also provides the CAS (Chem Abstract Service) 

compound numbers.   

 

The Chem Abstracts MSDS information for amorphous fumed silica60: 

 
 

MSDS   :  Silica, amorphous fumed 
CAS   :  112945-52-5 
SYNONYMS   : * Acticel 

* Aerosil 
* Amorphous silica dust 
* Aquafil 
* Cab-O-grip II 
* Cab-O-sil 
* Cab-O-sperse 
* Cataloid 
* Colloidal silica 
* Colloidal silicon dioxide
* Davison SG-67 
* Dicalite 
* Dri-Die insecticide 67 
* ENT 25,550 
* Fossil flour 
* Fumed silica 
* Fumed silicon dioxide 
* Ludox 
* Nalcoag 
* Nyacol 
* Nyacol 830 
* Nyacol 1430 
* Santocel 
* SG-67 
* Silica, amorphous 
* Silicic anhydride 
* Silikill 
* Vulkasil 
  

 

 

 
 

                                                 
60 These five pages copied verbatim from http://www.chemcas.com/msds/cas/msds126/112945-52-5.asp 
(11-29-09). 
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Catalog of Chemical Suppliers Buyers Distributors And Custom Synthesis & Organic 
Synthesis & Bio-Synthesis Companies [ Silica, amorphous fumed 112945-52-5 ] 
 

Suppliers:     
 

Not Available  
 

Buyers:   
 

Not Available  
 
 

  
 
                     *** CHEMICAL IDENTIFICATION *** 
 
RTECS NUMBER            : VV7310000 
CHEMICAL NAME           : Silica, amorphous fumed 
CAS REGISTRY NUMBER     : 112945-52-5 
OTHER CAS REGISTRY NOS. : 50926-93-7 
                          67256-35-3 
LAST UPDATED            : 199710 
DATA ITEMS CITED        : 18 
MOLECULAR FORMULA       : O2-Si 
MOLECULAR WEIGHT        : 60.09 
WISWESSER LINE NOTATION :  SI  O2 
COMPOUND DESCRIPTOR     : Tumorigen 
                          Mutagen 
SYNONYMS/TRADE NAMES : 
   * Acticel 
   * Aerosil 
   * Amorphous silica dust 
   * Aquafil 
   * Cab-O-grip II 
   * Cab-O-sil 
   * Cab-O-sperse 
   * Cataloid 
   * Colloidal silica 
   * Colloidal silicon dioxide 
   * Davison SG-67 
   * Dicalite 
   * Dri-Die insecticide 67 
   * ENT 25,550 
   * Fossil flour 
   * Fumed silica 
   * Fumed silicon dioxide 
   * Ludox 
   * Nalcoag 
   * Nyacol 
   * Nyacol 830 
   * Nyacol 1430 
   * Santocel 
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   * SG-67 
   * Silica, amorphous 
   * Silicic anhydride 
   * Silikill 
   * Vulkasil 
  
                       *** HEALTH HAZARD DATA *** 
  
                        ** ACUTE TOXICITY DATA ** 
  
TYPE OF TEST            : LD50 - Lethal dose, 50 percent kill 
ROUTE OF EXPOSURE       : Oral 
SPECIES OBSERVED        : Rodent - rat 
DOSE/DURATION           : 3160 mg/kg 
TOXIC EFFECTS : 
   Details of toxic effects not reported other than lethal dose value 
REFERENCE : 
   ARSIM* Agricultural Research Service, USDA Information Memorandum. 
   (Beltsville, MD 20705)  Volume(issue)/page/year: 20,9,1966 
  
TYPE OF TEST            : LDLo - Lowest published lethal dose 
ROUTE OF EXPOSURE       : Intraperitoneal 
SPECIES OBSERVED        : Rodent - rat 
DOSE/DURATION           : 50 mg/kg 
TOXIC EFFECTS : 
   Details of toxic effects not reported other than lethal dose value 
REFERENCE : 
   AHBAAM Archiv fuer Hygiene und Bakteriologie.  (Munich, Fed. Rep. Ger.) 
   V.101-154, 1929-71.  For publisher information, see ZHPMAT. 
   Volume(issue)/page/year: 136,1,1952 
  
TYPE OF TEST            : LD50 - Lethal dose, 50 percent kill 
ROUTE OF EXPOSURE       : Intravenous 
SPECIES OBSERVED        : Rodent - rat 
DOSE/DURATION           : 15 mg/kg 
TOXIC EFFECTS : 
   Lungs, Thorax, or Respiration - acute pulmonary edema 
REFERENCE : 
   BSIBAC Bolletino della Societe Italiana di Biologia Sperimentale.  (Casa 
   Editrice Idelson, Via A. de Gasperi, 55, 80133 Naples, Italy)  V.2- 1927-  
   Volume(issue)/page/year: 44,1685,1968 
  
TYPE OF TEST            : LDLo - Lowest published lethal dose 
ROUTE OF EXPOSURE       : Intratracheal 
SPECIES OBSERVED        : Rodent - rat 
DOSE/DURATION           : 10 mg/kg 
TOXIC EFFECTS : 
   Details of toxic effects not reported other than lethal dose value 
REFERENCE : 
   AHBAAM Archiv fuer Hygiene und Bakteriologie.  (Munich, Fed. Rep. Ger.) 
   V.101-154, 1929-71.  For publisher information, see ZHPMAT. 
   Volume(issue)/page/year: 136,1,1952 
  
                 ** OTHER MULTIPLE DOSE TOXICITY DATA ** 
  
TYPE OF TEST            : TCLo - Lowest published toxic concentration 
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ROUTE OF EXPOSURE       : Inhalation 
SPECIES OBSERVED        : Rodent - rat 
DOSE/DURATION           : 154 mg/m3/6H/4W-I 
TOXIC EFFECTS : 
   Lungs, Thorax, or Respiration - structural or functional change in trachea 
   or bronchi 
   Biochemical - Enzyme inhibition, induction, or change in blood or tissue 
   levels - dehydrogenases 
   Biochemical - Metabolism (Intermediary) - other proteins 
REFERENCE : 
   FAATDF Fundamental and Applied Toxicology.  (Academic Press, Inc., 1 E. 
   First St., Duluth, MN 55802) V.1-    1981-  Volume(issue)/page/year: 
   16,590,1991 
  
                          ** TUMORIGENIC DATA ** 
  
TYPE OF TEST            : TCLo - Lowest published toxic concentration 
ROUTE OF EXPOSURE       : Inhalation 
SPECIES OBSERVED        : Rodent - rat 
DOSE/DURATION           : 50 mg/m3/6H/2Y-I 
TOXIC EFFECTS : 
   Tumorigenic - Carcinogenic by RTECS criteria 
   Lungs, Thorax, or Respiration - tumors 
REFERENCE : 
   CREMEX Cancer Research Monographs.  (Praeger Pub., 521 Fifth Ave., New York, 
   NY 10175)  V.1-    1983-  Volume(issue)/page/year: 2,255,1986 
  
                            ** MUTATION DATA ** 
  
TYPE OF TEST            : Unscheduled DNA synthesis 
ROUTE OF EXPOSURE       : Intratracheal 
TEST SYSTEM             : Rodent - rat 
DOSE/DURATION           : 120 mg/kg 
REFERENCE : 
   ENVRAL Environmental Research.  (Academic Press, Inc., 1 E. First St., 
   Duluth, MN 55802) V.1-    1967-  Volume(issue)/page/year: 41,61,1986 
  
TYPE OF TEST            : Body fluid assay 
TEST SYSTEM             : Rodent - rat Lung 
DOSE/DURATION           : 120 mg/kg 
REFERENCE : 
   ENVRAL Environmental Research.  (Academic Press, Inc., 1 E. First St., 
   Duluth, MN 55802) V.1-    1967-  Volume(issue)/page/year: 41,61,1986 
 
                              *** REVIEWS *** 
  
   IARC Cancer Review:Animal Inadequate Evidence 
   IMEMDT IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals 
   to Man.  (WHO Publications Centre USA, 49 Sheridan Ave., Albany, NY 12210) 
   V.1-    1972-  Volume(issue)/page/year: 42,39,1987 
 
   IARC Cancer Review:Human Inadequate Evidence 
   IMEMDT IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals 
   to Man.  (WHO Publications Centre USA, 49 Sheridan Ave., Albany, NY 12210) 
   V.1-    1972-  Volume(issue)/page/year: 42,39,1987 
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   IARC Cancer Review:Human Inadequate Evidence 
   IMEMDT IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals 
   to Man.  (WHO Publications Centre USA, 49 Sheridan Ave., Albany, NY 12210) 
   V.1-    1972-  Volume(issue)/page/year: 68,41,1997 
 
   IARC Cancer Review:Group 3 
   IMEMDT IARC Monographs on the Evaluation of Carcinogenic Risk of Chemicals 
   to Man.  (WHO Publications Centre USA, 49 Sheridan Ave., Albany, NY 12210) 
   V.1-    1972-  Volume(issue)/page/year: 68,41,1997 
 
   TOXICOLOGY REVIEW 
   NTIS** National Technical Information Service.  (Springfield, VA 22161) 
   Formerly U.S. Clearinghouse for Scientific & Technical Information. 
   Volume(issue)/page/year: CONF-691001 
 
   TOXICOLOGY REVIEW 
   ECRVE8 Environmental Carcinogenesis Reviews. (Marcel Dekker, 270 Madison 
   Ave., New York, NY 10016) V.3-   1985-  Volume(issue)/page/year: 6,197,1988 
 
                    *** U.S. STANDARDS AND REGULATIONS *** 
  
   MSHA STANDARD-dust in air:TWA 20 mppcf 
   DTLWS* "Documentation of the Threshold Limit Values for Substances in 
   Workroom Air," Supplements. For publisher information, see 85INA8. 
   Volume(issue)/page/year: 3,33,1973 
 
                          *** STATUS IN U.S. *** 
  
   EPA TSCA TEST SUBMISSION (TSCATS) DATA BASE, JUNE 1998 
    
   NIOSH Analytical Method, 1994: Silica, amorphous, 7501 
    
   OSHA ANALYTICAL METHOD #ID-125G 
 
  
                            *** END OF RECORD ***  
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Following is the Fumed silica MSDS copied verbatim from the Wacker web site  
 

noting five product end uses61:  
 

 

                                                 
61 Eight page document copied from http://candmz04.brenntag.ca/MSDS/Fr/00066334.pdf (11-29-09).  An 
MSDS in French is also included in the same pdf file.  Searching the MSDS literature reveals the intended 
end uses of the product; also the final materials where fumed silica is an ingredient are described.  
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The MSDS for a 40-70% suspension of colloidal silica suspension is described on 

the following two pages.62 

 

                                                 
62 Two page document copied from http://www.alliedhightech.com/msds/ColloidalSilicaWhite.pdf (11-29-
09) 
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Silica Gel is the form of amorphous silica most widely used in laboratory 

settings.63 

 

                                                 
63 Five pages copied verbatim from  http://www.atmos.umd.edu/~russ/MSDS/silicagel60200.html (11-29-
09). 
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  This PPG MSDS is included due to the additional information provided about 

pulmonary issues.64 

 

                                                 
64  Three pages copied verbatim from http://hazard.com/msds/f2/cgh/cghfv.html (11-29-09). 
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APPENDIX C 
 
 
 

Initial Laboratory Methodology Used at the Start of this Buried Soil Project 
 
 

Appendix 165 

Isolation of Phytoliths from Soils  

 

This method for phytolith preparation was condensed from Phytolith Analysis An 

Archaeological and Geological Perspective by Piperno (1988). The phytoliths are a small 

part of the soil, so they must be cleaned up and concentrated in order to be readily 

detectable. In the following procedure, the phytoliths are isolated by deflocculating the 

sample which is essential as most phytoliths are not free, but rather are bound to the soil 

particles (Dimbleby 1985). Next, the sample is subdivided into three particle size 

fractions; then the carbonate and organic impurities are removed by acid treatment. In the 

final step, heavy liquid floatation is used to isolate the phytoliths from the remainder of 

the soil sample residue. 

A. Deflocculation of soil samples:  

1. Add 5% solution of Calgon (sodium hexametaphosphate) [or 

sodium bicarbonate) to 25-50 g of soil and stir.  

2. Put the solutions on an automatic shaker and shake overnight.  

                                                 
65 This appendix taken from Sudbury (2000:48-52). 
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3. Separate sand particles (soil fraction greater than 50 μm) by wet 

sieving through 275 mesh sieve.  

4. Set sand aside for later analysis (it may contain multi-celled 

aggregates of phytoliths and other taxa).  

5. Remove clay by gravity sedimentation (Jackson 1956).  

i. Place soil in 1000 mL beaker.  

ii. Add water to the beaker to a depth of 10 cm.  

iii. Stir vigorously.  

iv. After one hour, pour off the supernatant leaving  

     the silt fractions behind (5-50 μm). 

v. Repeat steps ii-iv as needed.  

vi. Clay removal is complete when the supernatant is clear.  

B.  Further divide the remaining silt fraction into fine (5-20 μm) and coarse (20-50  

      μm) fractions by gravity sedimentation. [This is done so that the analyst can  

       look at the small phytoliths as a separate sample.]  

1. Place samples in 100 mL tall form beakers.  

2. Add water to each beaker to a depth of 5 cm.  

3. Stir vigorously.  

4. Allow to settle for 3 minutes.  

5. Decant the supernatant into a 1000 mL beaker.  

6. Dilute remaining suspension to a height of 5 cm with water.  
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7. Stir vigorously.  

8. Allow to settle for 140 seconds.  

9. Decant supernatant into the same 1000 mL beaker.  

10. Repeat steps 6-9 about 7-8 times to effect the silt fractionation.  
 
 

C. Process the isolated soil fractions:  

1. Further process and analyze each of the soil fractions:  

 i.  Fine silt  

 ii.  Coarse Silt  

 iii.  Sand.  

2. Place 1-1.5 grams of each fraction into a 16 x 100 mm test tube.  

3. Add a 10% solution of hydrochloric acid to remove carbonates.  

4. Centrifuge samples at 500 rpm for 3 minutes.  

5. Decant supernatants.  

6. Repeat steps 3-5 until no reaction is noticed when adding the 

hydrochloric acid.  

7. Wash twice with distilled water.  

8. Remove organic material by adding concentrated nitric acid and 

placing in a boiling water bath until the reaction (if present) has 

subsided (about 1 hour) [can also use either hydrogen peroxide (takes 

longer) or chromic sulfuric acid (can't heat) so have to leave 

overnight].  

9. If the nitric acid solution in the tube is tinted red or red orange, organic 

compounds are still present and will inhibit future phytolith 
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separations.  

10. If organic materials are still present (step 9 visual evaluation), add a 

few 0.1 g of potassium chlorate to the heated tubes of solution to 

eliminate the remaining organic material. Once the reddish hue is 

gone, the organic components have been oxidized adequately for 

further processing.  

D. Heavy Liquid Flotation:  

Specific gravity of phytoliths ranges from 1.5 to 2.3, and that of quartz is 

2.65. So, a solvent with a specific gravity between 2.3 and 2.4 is needed to 

float the phytoliths and allow the soil to sink. Possible solvents to use 

include:  

i. cadmium iodide and potassium iodide.  

ii. tetrabromoethane and absolute ethanol  

iii. tetrabromoethane and nitrobenzene  

  iv.  bromoform and nitrobenzene  

   v.  zinc bromide and water.  

1. Prepare heavy liquid solution of Zinc Bromide (70%).  

2. Add 10 ml solution to each of the soil samples.  

3. Mix well.  

4. Centrifuge at 1000 rpm for 5 minutes.  

5. Remove floating phytolith fraction at the top of the tube with a Pasteur 

pipette and transfer to another test tube.  
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6. Repeat steps 2-5 several times to maximize phytolith recovery from 

the samples.  

7. Add distilled water to the phytolith collection tube at a ratio of 2.5: 1. 

This lowers the specific gravity to below 1.5 and causes the phytoliths 

to settle to the bottom of the new tube.  

8.   Centrifuge the tube at 2500 rpm for 10 minutes.  

9.   Decant the supernatant.  

10. Repeat steps 7-9 two more times to remove all of the heavy liquid 

from the phytoliths.  

11. Wash phytoliths twice with acetone for quick drying.  

12. For light microscopy, one can mount on slides with Permount which 

has the correct refractive index for viewing phytoliths which have a 

refractive index of 1.42. (One can also view phytoliths by Phase 

Contrast microscopy mounted in silicone oil).  

13. The phytolith portion not mounted can be stored in EtOH in vials.  

E. Note:  

One may have to modify this method based on problems or 

peculiarities of the particular soil being analyzed.  9. 



Appendix 266 
 

Isolation of Phytoliths from Ash 

 

Piperno (1988) also has a very short section regarding the preparation of phytoliths from 

ash samples for microscopy. This procedure is much less involved than that presented in 

Appendix 1 as there is not any organic material or soil matrix to contend with. Indeed, if 

the concentration of phytoliths is high enough in ash, it is conceivable that sample 

cleanup and phytolith concentration in ash may not be required at all.  

   1.  Mix a small ash sample in a 10 % solution of hydrochloric acid to remove  

        carbonates.  

2. Centrifuge to clear up the hydrochloric acid, and decant.  

3. Repeat steps 1-2 until there is no visible reaction.  

4. Wash cleaned phytolith sample several times in distilled water to remove the 

acid residue.  

5. Dry in acetone or in an oven set at low temperature.  

6. Mount on double sticky tape on SEM stubs for analysis.  

7. Allow to air dry on the stub.  

8. Store in a desiccator.  

9.   Sputter coat, and visualize by SEM.  

10. Phytolith sample fractions that are not being used can be stored by suspending 

the phytoliths in a small amount of 95% EtOH in screw cap vials.  

                                                 
66 This appendix taken from Sudbury (2000:53). 
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APPENDIX D 
 
 
 

Variations in Laboratory Methodology During the Course of this Project 
 
 

 
 

The final method developed and used in this procedure is described in the 

materials and methods section.  That procedure is a long way from the overview 

presented in the previous literature survey (Appendix C).  This current appendix fills in 

some of the holes and addresses potential questions that may arise regarding the rationale 

for the method as developed.  Several novel ideas were tested and implemented during 

this project, and are appropriately recorded here. 

 

Once the soil sample has been collected, coarse sieved, homogenized, and 

deflocculated, the normal next step is to use a 270 mesh sieve to remove the sand (> 50 

microns) from the sample by washing the silt and clay through the sieve.  The sand 

collected on the sieve can be then be retrieved, dried, weighed, and saved for later 

examination (for large phytoliths, other minerals, or component differences).  While 

performing this step on original samples in this project, it was noted that some brands of 

1 gallon plastic pails held an 8 inch sieve—and thus provided a much larger receiving 

reservoir than a normal metal sieve bottom pan (Figure 114).  Tilting the pail about one 

inch allows improved drainage and throughput.  Once the sand collects in the lower side 

of the sieve, the sieve can be rotated and the sample again slowed moved across the sieve 

using a fine stream of water from a squirt bottle.  Once sand removal is completed, the 

receiving pail which contains the less than 50 micron particle fraction can be covered and 
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stored if necessary.  The next separation step can actually be efficiently performed in the 

gallon pail. 

 
Figure 114.  270-mesh stainless steel sieve on gallon receiving bucket.  Vortex Genie, 
Boekel slide drier (fitted with a wooden frame and 10 glass shelves so it will hold 50 
slides at one time), and centrifuge in background.  Working on glass bench tops has 
numerous advantages for cleanup and for minimizing contamination. 

 

Due to the liquid volumes involved, these gallon buckets were also used as the 

settling chambers for the initial clay removal step.  A paint mixing attachment on a 

cordless drill was used to stir and resuspend the sediment prior to the settling interval; 

water in a wash bottle was used to rinse off the paint mixer between samples.  After the 

timed settling interval, the clay fraction was collected via vacuum in a side arm flask, and 

transferred to storage containers pending completion of the phytolith isolation and 

analysis.  This procedure was effectively used on 250 g soil samples in the initial 

experiments.  Later experiments used smaller soil samples, so the equipment volumes 

were downsized and adjusted as appropriate.  
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The longer sedimentation times for fine silt fraction lighter density phytolith 

particles (Table 4) overall increased decanted solution storage volume needs.  This was 

the initial reason that 2 liter soda bottles were implemented as storage containers (and 

later as sedimentation chambers used to pre-settle silt fractions as reported in the 

materials and methods section)—to replace dozens of one and two liter glass beakers.  

Besides low cost, other benefits are that the bottles are unbreakable, easy to seal, easy to 

handle, easy to stack, and easy to pour from without drippage; they have no obvious 

disadvantages67.  Use of these durable universally available containers actually represents 

a major cost savings and procedural advance (see Figures 17-25 and 28). 

 

The Fleakers recommended to use for sediment settling are readily available in 

quantity in the laboratory (Figure 115).  However, quart canning jars are cheaper, 

universally available, very durable for handling and heating, and also seal well.  Also, if 

you scratch a quart jar via sand abrasion and have to discard the jar, the jar is 95+%  

 
 
 
 
 

 

 

 

 
 
F

 
igure 115.  Part of 1500 ml Fleaker inventory. 

                                                 
67 Obviously the plastic bottles should not be excessively heated.  These two liter bottles are also not 
appropriate for storing strong caustic solutions. 
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cheaper—assuming any Fleakers can be located for purchase.  This, this adaptation 

resulted as a matter of logistics, economics, and improved performance—not availability. 

 

By using quart jars for initial sample processing, one also has the advantage of 

never having to transfer the sample to another container thus minimizing transfer losses 

or sample mix ups or labeling problems.  For example, the sieved soil sample is mixed, 

and a soil aliquot placed in the preweighed quart jar (label lid and band also to avoid later 

mix ups, and weigh with and without the jar).  The sample in the open jar is then oven 

dried, the lid replaced and jar sealed while hot, allowed to cool, and weighed.  The 

detergent solution is then added to the jar which is sealed and placed on an Eberbach 

shaker laying down for 24 hours.  Padding between the jars prevents contact and 

breakage.  The jar is then removed from the shaker, the upper wall rinsed, the water 

column adjusted to 10 cm, and then the timed sedimentation decants occur using the 

same initial sample weighing and shaking jar.  After the first decant is performed, more 

water is added, the lid installed, the jar shaken vigorously (shaking and swirling are both 

beneficial), the jar set down, the lid removed, the lid and walls quickly rinsed with a 

minimal volume of water via squirt bottle, and the lid (not band) replaced as a dust cover.  

Based on the lab temperature, a timer is set to indicate when the settling interval will be 

completed.   

 

Once the clay and then later the silt fraction have been removed, the clean sand 

remaining in the jar can be oven dried and weighed in the same jar.  The sand can then be 

quantitatively transferred to a smaller container for curation.  I have used this quart jar 
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procedure for four years, with 0% breakage from handling, sample processing, or the 

heating process.  Initially, I used the drill (set on low) and paint mixer to stir the samples; 

however, a shoulder injury led to the method modification of shaking to resuspend the 

sediment prior to the timed settling interval. 

 

Initial organic removal was effective using commercial hydrogen peroxide 

solution added to samples in heavy plastic bottles placed in a hot water bath; this 

procedure, although effective, took several weeks.   The next set of silt samples were 

transferred to 1 ounce Boston Round bottles fitted with Polyseal lined caps for organic 

removal.  The samples were dried, nitric acid added, and the bottles sealed, mixed, and 

placed on a hot plate with the surface temperature adjusted to 110ºC.  This successful 

procedure was the fastest organic removal method tested; however, due to the obvious 

risks involved, it was not repeated after the initial 35 samples were processed.   

 

Nitric acid was effective at organic removal.  As the overall laboratory procedure 

had progressed to using quart jars for sample processing, the quart jars were used for the 

next organic removal trial which also proved to be effective (albeit slower than the low 

pressure hot plate treatment described above).  The setup in operation is shown in Figure 

116; nitric acid was added to the silt in the bottom of the jars.  The samples were gently 

swirled each day (not inverted) to make certain mixing was effective.  If the orange acid 

color was not visible during morning examination, more acid was added to each vessel at 

that time when they were cool and depressurized.  A thermometer in an empty quart jar 

on this tray registered 142ºF (61ºC) during this July trial.  This process was allowed to 
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continue for a week; there was no breakage, leakage, or sample loss—and good organic 

matter removal was achieved.  Once the samples were completed, the jar seals were 

observed to show deterioration.  Lids with white enamel on the inner surface (Ball brand) 

held up better than other brands.  Although very effective and requiring minimal effort, 

this is a seasonal limited procedure (i.e., hot sunny weather), so it was not repeated.  Use 

of Parafilm liners inside the normal lids to seal the jars would potentially allow this 

procedure to be performed in a laboratory oven. 

 

 

Figure 116.  Thermal treatment of silt samples mixed with nitric acid.  The white 
reinforced tray is part of a cement cone slump testing apparatus. 
 
 

A crisis led to the final organic removal procedure—thermal ashing—which is 

described in the materials and method chapter.  A helper forgot to remove the organic 

matter from a series of silt samples.  Once the zinc bromide solution was added, the result 
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was an opaque black solution (Figure 117) and thus one was unable to observe the 

effectiveness of the separation in the tube.  There were no more soil samples available 

from this site, so the samples in progress had to be salvaged.   

 

 

Figure 117.  Zinc bromide solution with phytoliths (?) after decanting from denser  
(> 2.35 g/cm3) silt residue. 

 

The samples were all diluted to lower the solution density so the phytoliths would 

sink.  They were then centrifuged, and the liquid phase removed via pipette; the silts were 

rinsed again, centrifuged, and pipetted until the solution density was near 1 (i.e. all the 

zinc bromide had been removed).  The silts were then quantitatively transferred to100 ml 

crucibles, and oven dried.  Having ashed botanical specimens, the operating temperature 

limits were know; the three step temperature increase previously described in the 
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materials and methods section was implemented (4 hours at 110ºC, 325ºC for 3-6 hours, 

and slowly to 530ºC for 6 hours).  Once cooled, the clean silts were successfully 

processed for phytolith recovery as described in the body of this dissertation. 

 

 

Figure 118.  After diluting the solutions, and recovering and reconstituting the fractions 
that produced the issue noted in Figure 117, and thermally ashing the recovered silt/ 
phytolith material, the phytoliths visibly floated away from the soil matrix onto the top of 
the zinc bromide solution. 
 

One of the ongoing laboratory technique problems addressed and resolved during 

this project was minimizing the inclusion of other silt particles with the isolated 

phytoliths.  Although some silt particles may be present mixed with or adhering to the 

floating lower density biogenic silica particles after flotation with 2.35 g/cm3 zinc 

bromide solution (i.e., due to incomplete defloculation after ashing), it is probable that 
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most of the silt contamination occurs when decanting the floating fraction from the tube.  

The source of this contamination is thought to be the silt that is present on the tube wall 

above the solvent line and the isolated phytoliths following mixing (Figure 119).  After 

stirring the soil matrix/zinc bromide mixture to release and separate the biogenic silica, 

some particulate remains on the tube wall (Figure 119).  As the silt fraction particulate is 

~1 weight per cent phytoliths, the remaining ~99% of this residual material is likely to be 

silt; if this visible residue is transferred with the phytoliths, false high phytolith recoveries 

 
Figure 119.  Phytoliths floating on zinc bromide solution.  Care must be exercised to not 
allow the silt on the tube walls (visible in the top portion of the tube) from contaminating 
the final phytolith isolates. Serial centrifuging the decanted phytoliths in multiple tubes is 
an effective means to remove this silt contaminant. (This 50 ml centrifuge tube is about 1 
inch in diameter.) 
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are recorded and the resulting dirty phytolith fractions are mounted on microscope slides 

for particle counting.  By  transferring the floating fraction to a new tube, reprocessing 

the floating decanted material (i.e., by remixing with the heavy liquid and recentrifuging 

in as many sequential tubes as necessary), the carried over quartz-based silt fraction (and 

clay if present) is all gradually transferred to the pellet and pure phytoliths can be 

harvested floating on the heavy density liquid. 

 

  Another problem encountered during work with this particular series of samples 

was concern over possible trace contamination.  Although volcanic glass shards can be 

expected to be encountered in soil samples, some of the specimens in this sample series 

seemed unduly large considering the sample preparation method (c.f. Figure 4).  As a 

volcanic ash project had recently been conducted at the school lab in use for sample preps 

at that time, all future sample preps were conducted at a facility and with equipment that 

had not had been previously used to process any volcanic ash samples.  Also, volcanic 

ash data from these buried soil samples was not processed or reported. 

 

Several other problems encountered during this research should be noted.  First, 

the insoluble impurities in technical grade zinc bromide float on zinc bromide solution, 

and thus interfere with quantitative phytolith recovery; use of higher purity reagent grade 

zinc bromide is strongly recommended over technical grade. 

 

Early in the project, while using chemical methods to remove organic material 

from the sample, a white floating residue was noted on a diluted zinc bromide solution 
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(solution density of 1.65 g/cm3).  Although some opaque phytoliths were visible in the 

floating residue, a dried water droplet containing this material produced a white residue; 

this floating material does not appear to be zinc bromide or another zinc salt.  Although 

this material was never identified, I deduced that it could be polymer residue from the 

water purification cartridges.  The ASTM Type A water is ionically pure (as measured by 

electrical conductivity), but it may potentially contain non-ionic polymeric material.  The 

thermal ashing procedure used in later sample preparation procedures would remove any 

polymer residue.   
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APPENDIX E 
 

Materials, Equipment, and Supplies 
 

 
An inventory of the basic materials, equipment, and supplies used in this research 

is document in this appendix.  

  
Materials 

Reagents68 
 

Chemicals (reagent grade): 
    Acetone 
    Ammonium Perchlorate 

   ASTM Type 1 Water 
    Canada Balsam 
    Hydrochloric Acid 

Indicator Silica Gel (for desiccator) 
    Nitric Acid 

   Zinc Bromide 
Chemicals (other) 

Calgon®, 5% solution, (Commercial grade Calgon® 

            (sodium hexametaphosphate with calcium carbonate  
         filler)) 

    Hydrogen Peroxide (27%) 
    Sonic cleaning solution 
   

Supplies 
 

  4 dram glass vials with screw lids (Kimax®) 
  Beakers, Pyrex® (10ml-2000 ml assortment) 
  Canada Balsam bottles 
  Canning jars (quart) 

 Centrifuge tubes, 15 ml plastic 
Centrifuge tubes, 50 ml plastic (Corning) 

 Centrifuge tube racks 
 Cover slips (assorted, 18x18 mm - 20x60 mm). 

Crucible tongs 
 Engineering flags 
 Filter forceps 
 Filter paper (quantitative) 

                                                 
68 Items used in this investigation; substitutions are possible for many items.  Use of high-purity chemicals 
is strongly recommended. 
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 Filtration flasks, 1 liter glass (heavy walled)  
Forceps (stainless surgical forceps) 

 Glass, tempered (8” x 8” x 1/8”) 
 Glass and plastic funnels (stemmed and powder) 

Glassware, Pyrex® - assorted (graduated cylinders, flasks, watch   
  glasses, separatory funnels) 
Gloves, nitrile and leather 
Hose clamp 

  Kim Wipes 
  Laboratory timers 
  Magnetic stirring bars (assorted) 
  Microscope slides (Fisher)  

Microscope slide storage boxes 
  Pasteur pipettes and 2 ml rubber pipet bulbs 

Plastic bottles, 2 liter 
Plastic containment basins (10-quart) 

  Porcelain crucibles with lids (15, 30, and 100 ml) 
  Pyrex® Petri dishes 

Ring stands, clamps, rings, and Castalloy flask holders (plus  
   framing and connectors) 

  Sample bottles, varied 
Squirt bottles, plastic 

  Stainless steel spatulas and micro-spatulas 
  Tungsten needle 
  Tygon® tubing (various diameters) 
  Vial racks and test tube racks 
  Whatman ashless filter paper number 40 (55 mm, Cat No  
   1440055) 
  Whatman ashless filter paper number 41 (70 mm, Cat No  
   1441070) 
  ZipLoc® bags 
  
            Equipment   

 
Brady TLS2200 Thermal Labeling System 
Centrifuge, IEC Centra68R 
Centrifuge, IEC HNSII 
Computer (including 1TB data backup system, Microsoft Office  
 Professional, Photoshop, and Adobe Professional)  
Eberbach shakers 
Incubator, Boekel 
Laboratory ovens 
Hot water bath 
Mettler balances, 2-5 places 
Millipore ultrafiltration assembly (mesh screen support type  

   preferred) 
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Muffle furnace 
  Micrometer slide 
  Nikon Coolpix 4500 camera 

Oakfield soil probe 
  Olympus BX51 petrographic microscope, with X-Y Stage 
  Olympus DP-11 digital camera system 

Olympus SZ12 stereo zoom microscope 
  Rainin pipettors and disposable pipette tips (1, 5, 10 ml) 

Repipettors 
Stainless mesh sieves (Numbers 10, 270) 

  Stainless steel desiccator 
Stirring hot plates 
Ultrasonic bath 
UV light 

  Vacuum oven 
  Vacuum pump 
  Vortex Genie® mixer 

     413 



APPENDIX F 
 

Soil Sample Preparation Method:   
 

Carbonate Removal Prior to Delta 13 Analysis 
 
 

Samples of a soil profile column suite are frequently submitted to an outside 

laboratory for carbon isotope [“Delta 13”] analysis.  Historically, the procedure used at 

the OSU Agricultural Department to prepare samples for this analysis included carbonate 

removal, oven drying, and a final step that involved manually scraping dried soil residue 

from 400 ml beakers.  A new improved laboratory protocol for this important sample 

preparation was developed and implemented during this phytolith study69.  The step-wise 

procedure is:   

1. Pulverized sieved soil samples are received for processing. 

2. Mix soil sample and transfer a representative sample portion (weigh 200-500 mg) 

to a labeled 4 dram glass vial. 

3. Dry samples in a 105°C oven. 

4. Cool the hot dried samples in a desiccator. 

5. Weigh the dried soil sample aliquots. 

6. Add 10% hydrochloric acid to each 4 dram glass sample vial via a repipettor (set 

to dispense 1 ml) to react with carbonates in the soil samples. 

7. Add additional acid to the vial once the effervescence subsides. 

8. Cap the sample vial, and use a Vortex Genie mixer in brief pulses to help 

effectively mix the soil sample and acid. 

                                                 
69 This procedure represents a marked improvement over the old method in that 100% of the mineral 
portion of the soil sample is included in the final sample prepped and submitted for carbon isotope testing.  
In the old method, a significant portion of the clay fraction was left adhering to wall of the 400 ml beaker. 

     414 



9. Gently release the pressure, recap the glass vials, and centrifuge at 2000 rpm for 

10 minutes. 

10. Remove the clear acid layer with a glass Pasteur pipet and collect the acid for 

neutralization or disposal. 

11. Repeat steps 6-10 as needed (~3-6 times) until two sequential acid additions do 

not result in effervescence. 

12. Add Milli-Q water to the soil sample residue (fill ~70% of vial capacity).   

13. Cap the sample vials and mix the carbonate-free soil sample and water with the 

Vortex Genie mixer. 

14. Centrifuge the vials at 2000 rpm for 10 minutes. 

15. Remove the clear water phase via Pasteur pipet. 

16. Repeat steps 12-15 five more times to effective dilute and remove most of the 

remaining hydrochloric acid. 

17. Dry the sample residues in a 105°C oven, cool in a desiccator, and cap the vials 

containing the dried residues. 

18. A blank vial (carried through the entire analytical procedure as a control and 

back-ground check for possible contamination issues) is also submitted for 

analysis along with the sample residues. 

  
The carbonate-free totally dry samples are then ready for shipment and Delta 13  

analysis.  Figure 120 shows a dried soil sample after processing for carbonate removal.  

In the old method, the clay coating the lower wall of the vial is the material was 

incompletely recovered using the scraping method to recover the dried sample.  In this 

new procedure, 100% of the dried sample is in the sealed vial ready for analysis. 
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Figure 120.  Soil sample after carbonate removal, centrifuging, repetitive water rinsing, 
and final oven drying.  Even in the centrifuge, the soil sample stratifies by particle size.  
Three distinct zones or fractions are visible in the vial: 
 

1) the larger particles (containing sand and silt) can be seen in the lower portion of 
the vial, whereas  
 

2) some clay particles coat the vial wall above the sediment [this clay adhering to the 
wall remained suspended in the water as the sample was oven dried; this clay 
coating is the sample portion that coated the wall of a 400 ml beaker during the 
old processing method and would have been partially lost during recovery and 
transfer], and  
 

3) the larger clay particles form a layer on top of the sample sediment (in the 
illustrated example, this clay layer curled when the sample was oven dried).   

 

As clay particles contain a significant portion of the soil organic matter, it is 

important that all of the clay remain with the soil sample for delta 13 analysis.  Thus, this 
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new procedure represents a significant improvement—by miniaturizing the glassware 

used, and avoiding any sample transfer from the original reaction vessel/sample 

container.   The soil sample remains intact with the carbonates completely neutralized 

and removed. 

.. 
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APPENDIX G70 
 

“‘Land grants’ could lead hunger fight 

Oct 14, 2009 10:57 AM, By Forrest Laws, Farm Press Editorial Staff  

Gebisa Ejeta says the world will have to increase its production of food more in the next 
four decades than it has since the dawn of civilization. 

Accomplishing that task will require concerted efforts by governments, agribusiness and 
farmers, says Ejeta, the winner of this year’s World Food Prize. The glue holding those 
parts together may be a revitalization of the land-grant university system. 

With the world’s population expected to grow from current estimates of 6 billion people 
to more than 9 billion by 2050, the world’s agricultural leaders must figure out a way to 
double food production during the same timeframe. 

‘We can do this by revitalizing our agricultural sciences and recommitting to the time-
tested, mission-oriented legacies of our land-grant university models and ideas,’ said 
Gebisa, a native of Ethiopia who grew up in a one-room thatched hut with a mud floor 
but went on to earn a Ph.D. in plant breeding and genetics at Purdue University. 

Gebisa, who is currently a distinguished professor of agronomy at Purdue, will receive 
the $250,000 World Food Prize during ceremonies at the Iowa State Capitol Thursday 
(Oct. 15). The World Food Prize was founded by Dr. Norman E. Borlaug, the universally 
recognized father of the Green Revolution. Borlaug, a native of Cresco, Iowa, died Sept. 
12. 

Ejeta, whose own work on the development of higher-yielding and weed-resistant 
sorghum varieties is believed to have helped feed hundreds of thousands of people in 
Africa, paid tribute to Borlaug during the annual Norman Borlaug Lecture at Iowa State 
University Monday night. 

‘The land-grant model legislated in 19th century helped build this great nation and made 
20th Century American agriculture the envy of the world,’ said Ejeta ‘It has succeeded 
internationally, bringing about the Asian Green Revolution championed by Norm 
Borlaug and furthered by many others.’ 

Even in the face of emerging 21th Century issues like climate change and the uncertainty 
of global energy supplies, Ejeta said, ‘the land grant model can be counted upon once 
again to address the challenges of doubling food and feed production.’ 

Over the last century, the U.S. agriculture sector has become one of the most productive 
in the world, and citizens of this country as well as the rest of North America and 

                                                 
70  This article (Laws 2009) is reproduced in its entirety with permission of Forrest Laws of the Southwest 
Farm Press; the original was copied verbatim from the Southwest Farm Press (10-15-09). 
(http://southwestfarmpress.com/grains/land-grants-1014/). 
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Western Europe have become accustomed to a safe and relatively inexpensive supply of 
food. 

Agricultural research and genetics, crop and animal husbandry, pest and disease control 
through chemical inputs and integrated pest management, post-harvest technology and 
value-added products have all spurred the nearly tenfold increase in commodity yields in 
the United States over the last 100 years. 

The first agricultural revolution was brought about by the advent of corn hybrid 
technology which gave rise to the private seed industry and the associated complex of 
services and partnerships, he said, noting the role of Iowa State graduate Henry Wallace 
in those efforts. 

‘One way the success of modern agriculture is reflected is in how much we pay for food. 
In the 1933, according to USDA ERS, Americans spent more than 25 percent of their 
income on food. By 1985, that had dropped to 11.7 percent and, in 2000, below 10 
percent for the first time in history.’ 

‘In contrast, the poorest nations spend 70 percent or more of their disposable income on 
feeding their families.’ 

‘The success of U.S. agriculture spurred the advent of the Asian Green Revolution, 
helping Borlaug and other scientists convert countries like India from “basket cases to 
bread baskets,’ said Ejeta. 

‘In my view, the transformative changes brought about by modern agriculture sciences in 
his native Iowa inspired Norm Borlaug to dream about helping the poor in developing 
countries overcome hunger with the breakthrough he achieved in wheat genetics.’ 

Borlaug, he said, saw how the advent of hybrid corn in private sector initiatives in the 
seed industry and other agribusinesses spurred not only productivity increases on farms 
but also enhanced the livelihoods of rural Americans. ‘Fresh from the economic hardship 
of the great depression this must have been an easy lesson for young Norm to take to 
heart.’ 

Ejeta quoted from his testimony before the U.S. Senate Committee on Foreign Relations’ 
hearing on global food security last March. 

‘Norm Borlaug, the universally acknowledged father of the Green Revolution, is a hero 
to me and very many others. I personally admire his single-minded devotion to science 
and agriculture development and his unending empathy and service to the poor.’ 

‘As I reflect on his accomplishments and leadership, however, in my view, the genius of 
Norm Borlaug was not in his creation of high yield potential and input responsive wheat 
varieties. Not even in his early grasp of the technology but to a great extent in his 
relentless attempts to mobilize policy support and encourage the development of the 
agro-industry complex, to sustain the synergistic affects of technology, education and 
markets.’ 

email: flaws@farmpress.com” 
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APPENDIX H71 
 

 
“An Urgent Appeal for Soil Stewardship  
From the 2009 Bouyoucos Conference on  
Soil Stewardship in an Era of Global Climate Change  
 
Upon viewing the deforested and eroded landscape near Attica, Greece in the 4th century 
BC, the philosopher Plato vividly described the loss: “What now remains compared with 
what then existed is like the skeleton of a sick man, all the fat and soft earth having 
wasted away, and only the bare framework of the land being left.” Plato’s observation of 
soil degradation is no less relevant 2400 years later. If the importance of healthy soils for 
nutritious food and clean water has been known for millennia, why has an enduring 
commitment to thoughtful soil stewardship proven so elusive to so many and for so long?  
 
Soil is a fundamental source of life. It plays a critical role in providing water, nutrients, 
and support for plant growth, recycling organic materials and protecting surface and 
ground waters from contaminants. Soil is the base of the terrestrial food chain, directly or 
indirectly providing over 97% of the calories that now nourish more than six billion 
people. This modern bounty was enabled by a providential combination of weathering 
processes that created fertile soils from inert rock and favorable climates suitable for 
growing a variety of food plants. At the start of the 21st century we express our deep-felt 
concern that three of the integral resources of agricultural production, soil, water and 
climate, are increasingly impaired by human actions with potentially serious 
consequences for global food security.  
 
We are, each of us, people of the soil. Most indigenous peoples and organized religions 
have oral or written accounts of human origin or experiences that include a deep 
reverence associated with the life that springs from the soil. Our cultural traditions 
acknowledge the significance of soil even if our environmental practices do not. The facts 
about the current condition of global soil resources are sobering. Recent estimates are that 
one fourth of the earth’s inhabitants already depend on degrading lands. Future 
generations may be forced to obtain ever more sustenance from decreasingly available 
productive land. Potential changes in rainfall and temperature patterns and their 
variability as the global climate changes add yet another challenge. There is a long and 
tragic correlation between cultures that fail to protect the health of their soil and the 
demise of those same cultures. Life, as we perceive it, exists only on a planet having soil, 
as we know it. Soil is the interface between lifeless cosmic rock and all terrestrial life. 
Healthy soil is itself a living community, containing up to four billion microorganisms in 
each teaspoon. But soil is also a fragile, finite resource requiring care. Destroying soil is 
the equivalent of destroying the self-renewing capacity of the Earth.  
 

                                                 
71  This document (Bouyoucos 2009) copied in entirety from 
http://pss.okstate.edu/home/rightsidebar/anurgentappealforsoilstewardship.pdf.   
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Too often we forget our shared human history and the reality of our dependence on the 
soil. Too often we fail to enact our historical and rightful commitment to the land, our 
home place. We are therefore shirking our inherent responsibility to care for the planet. 
The poor of the world are those most immediately and dramatically affected by both soil 
degradation and climate change, therefore, soil stewardship is both an environmental and 
a moral challenge to society.  
 
What is the way forward? What is our task in the face of this reality, this disconnect 
between the importance and the condition of our soil? We recognize and affirm a cultural 
and physical link to soil. We assert a shared obligation to soil stewardship that is based 
on more than purely utilitarian concerns. We acknowledge that soil degradation is an 
ethical issue, that science and economics alone will not and can not determine a proper 
course of action. We cannot therefore ignore the mistreatment of our lands and at the 
same time escape moral denunciation. Encouraging a more broad and thoughtful soil 
stewardship ethic is not naïve, idealistic, or altruistic but rather perceptive, pragmatic, and 
essential to our societal response to the challenges posed by global climate change and an 
increasing human population.  
 
Given that our environmental problems stretch beyond the domain of any particular 
discipline, genuine solutions to these problems will only be found by engaging all facets 
of the human mind. We call for soil scientists to humbly and dutifully work across 
disciplines – including the humanities and the arts, in efforts to engage in a practice 
of public scholarship with the goal of building new relationships and networks that 
advance the soil stewardship ethic. We call for the products of such collaborations to 
be openly communicated to the public and to policy makers, raising awareness and 
urging proactive action. Finally, we call for the recognition and celebration of 
successful soil stewardship stories to serve as examples, to inspire, and to lead us 
forward.” 
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