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CHAPTER I 
 

YIELD POTENTIAL ESTIMATION IN GRAIN SORGHUM (Sorghum bicolor L.) 

 
ABSTRACT 

 
 

Sensor based nitrogen management helped to improve fertilizer 

recommendations for various crops. The objective of this study was to estimate 

the yield potential of grain sorghum (Sorghum bicolor L. Moench) at different 

nitrogen levels using a self illuminated hand held optical sensor designed at 

Oklahoma State University. A total of six experiments with four levels of nitrogen 

(50,100,150,200 kg ha-1) and there types of applications (Preplant, topdress and 

split) were arranged in a randomized complete block design in three replications 

at Efaw, Lake Carl Blackwell and Hennessey, OK in summers of 2004 and 2005. 

Sensor readings were taken using red (650   10 nm full width half magnitude 

(FWHM)) and green (550 + 12.5 nm FWHM) head sensors at five growth stages 

(2, 3, 5, 6 and 7) from two middle rows out of four rows in each experimental unit. 

Results from statistical analysis have shown that sorghum grain yield and grain 

nitrogen content are highly correlated to both green and red NDVI readings at 

growth stage 3. In-season estimated yield (INSEY) was also found highly 

correlated with final grain yield. Over all results of these experiments suggest that 
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INSEY can be used as a tool to predict yield and to determine mid-season 

fertilizer N rate.  

 

INTRODUCTION 

 
Grain sorghum (Sorghum bicolor L. Moench) is grown on 42 million hectar 

worldwide and 3.6 million hectar in the United States (FAO, 2002). It is a major 

feed ingredient for both cattle and poultry in the United States, and it is grown for 

grain or silage in different parts of the Southern Great Plains. Research with 

grain sorghum, a relatively low acreage crop to Oklahoma, has shown sorghum 

to be a more water-use-efficient-crop than corn (Zea mays L.). It has been 

recognized as a more drought tolerant crop (Bennett et al., 1990; Khosla et al., 

1995) and an alternative to corn and grows best in places with warm conditions 

with low moisture and high temperatures. Sorghum is generally grown in rotation 

with winter wheat (Triticum aestivum L.) and often double cropped with soybeans 

(Glycine max). However, in-sufficient data on N fertilization of grain sorghum are                

available for this region.  

Successful crop growth is achieved through proper management of 

necessary mineral nutrients required by the crop. One of the most demanded 

nutrients by sorghum is nitrogen. Every cropping season substantial amount of N 

fertilizer is applied to sorghum due to its high biomass production. In fact, 

efficient utilization of nitrogen by crops is often governed by the cumulative 

effects of different factors including available soil moisture, fertilization time and 

growth stage of the crop. Devising a nutrient management program which 
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synchronizes these factors to recommend optimum rates of nitrogen (N) for 

maximum economic yield has always been a challenge (Mengel et al., 1982; 

Touchton and Hargrove, 1982; Rao and Dao, 1992). Besides economic 

consequences, excess N fertilization may result in contamination of surface and 

ground water (Feinerman et al., 1990).  

Several researchers have shown that more than half of the N applied is 

lost from fields by processes other than crop harvest during the first year after 

application (Sanchez and Blackmer, 1988). As per the report of Sanchez and 

Blackmer (1988), about 49 to 64% of the fall-applied fertilizer N was lost from the 

upper 1.5 m of the soil profile through pathways other than plant uptake.  

Therefore, potential contamination of groundwater from nitrates dictates that N 

fertilizer applications be timed so that crop N use is high (Gravelle et al., 1988). 

Identifying the period of peak demand of crops for water (Passioura, 1994) and 

nutrients (Baethgen and Alley, 1989) could potentially enable us to design more 

efficient nutrient management schemes that can improve nitrogen use efficiency 

(NUE) and boost grain yield.  

A major factor limiting NUE for traditional N management schemes is 

routine application of large doses of N early in the season, before the crop can 

effectively utilize it.  This stored N fertilizer is at considerable risk to 

environmental losses as noted in a review by Raun and Johnson (1999). They 

pointed out that previous research has shown that NUE could be greatly 

improved by moving away from early season application and towards a greater 
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emphasis on mid-season applications of N fertilizer in amounts that better 

coincide with crop needs.  

Most conventional methods of N fertilizer recommendations were 

developed on a state or regional scale, so it is questionable whether these 

methods can reasonably be used for variable-rate N management that attempts 

to account for within-field spatial and temporal variability (Hergert et al., 1997). 

Several research studies have found large differences in crop yield and crop N 

response within individual fields (Kitchen et al., 1995; Vetch et al., 1995), 

confirming the need for reliable methods to generate site-specific N 

recommendations (Hergert et al., 1997). Farmers often use uniform rates for N 

fertilization based on expected yield (yield goal) that could be inconsistent from 

field to field and year to year. In most instances expected yield can be higher or 

lower than the actual yield depending on factors that are difficult to predict prior 

to fertilization.  

Spatial (field to field or within field) variability of crop yields can be the 

product of biotic and abiotic factors in any production environment (Machado et 

al., 2000; Sadler et al., 2000). Biotic factors including plant genotype, pests, 

diseases, and abiotic factors include soil physical and chemical properties, 

moisture, temperature and climate. The effects of soil physical and chemical 

properties on crop yields are easily predictable (Morn et al., 1997; Machado et 

al., 2000) and can be manipulated for good crop growth. On the other hand, 

effects of temporal variability on crop yields are very difficult to predict (Morn et 
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al., 1997; Machado et al., 2000) and could have substantial impact on nutrient 

budget of the crop. 

Thus, it is very important to consider spatial and temporal variability in any 

nutrient management program for efficient utilization of farm inputs. As crop 

growth depends on the prevailing biotic and abiotic factors it would be vital to 

monitor crop growth patterns in the process of a site-specific nutrient 

management program that could possibly address the problem of spatial and 

temporal variability at the same time. Because crop yields vary spatially and 

temporally, using yield goal based fertilizer recommendations may result in the 

misuse of resources that incur extra costs or reduce revenue from over or under 

fertilization.  

According to Pierce and Nowak (1999) there are three basic management 

approaches currently being tested for variable-rate N application. The first 

involves determining plant-available N levels from field grid sampling and 

interpreting N rates based on current recommendations (i.e., N balance 

equation). The second approach bases N rates on observed crop N responses 

using replicated strips with varying N rates across the landscape. The third 

approach involves determining crop N status by monitoring (i.e., light reflectance 

or chlorophyll content). Currently the last method is the most widely used in site-

specific nutrient management programs as it minimizes time, labor and cost of 

fertilizer application.  

Crop monitoring through remote sensing using indirect and non-

destructive methods has become one of the best techniques to enhance fertilizer 
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application on-the-go as it avoids cumbersome activities like soil sampling and 

processing. Early research by Colwell (1956) showed that infrared aerial 

photography could be used to detect loss of vigor from disease in wheat (Triticum 

aestivum L.) and other small grains. One of the earliest digital remote-sensing 

analysis procedures developed to identify the vegetation contribution in an image 

was the ratio vegetation index , created by dividing near-infrared reflectance 

(NIR) by red reflectance (Jordan, 1969). The basis of this relationship is the 

strong absorption (low reflectance) of red light by chlorophyll and low absorption 

(high reflectance and transmittance) in the NIR by green leaves (Avery and 

Berlin, 1992). Dense green vegetation produces a high ratio while soil has a low 

value, thus yielding a contrast between the two surfaces. The red normalized 

difference vegetation index (RNDVI), where RNDVI = (NIR - Red)/(NIR + Red), 

was originally proposed as a means of estimating green biomass (Tucker, 1979). 

The basis for the relationship between NDVI and green biomass appears to be 

related to the amount of photosynthetically active radiation absorbed by the 

canopy (Sellers, 1985). The NDVI relates the reflectance in the red region (near 

chlorophyll a absorption max.) and NIR region to vegetation variables such as 

leaf area index, canopy cover, and the concentration of total chlorophyll.  

Numerous researchers (Teillet, 1992; Wade et al., 1994; Ramsey et al., 

1995; Roderick et al., 1996) have utilized NDVI, derived from a very high 

resolution radiometer collected from satellite platforms, to assess the health and 

condition of crops and natural vegetation over large geographical regions. 

Alternatively, Gitelson et al. (1996) proposed the use of the green normalized 
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difference vegetation index (GNDVI) (where the green band is substituted for the 

red band in the NDVI equation), which may prove to be more useful for assessing 

canopy variation in green crop biomass. Shanahan et al. (2001) showed that the 

green normalized difference vegetation index (GNDVI) values derived from 

images acquired during mid-grain filling were the most highly correlated with grain 

yield. Blackmer and Schepers (1994) found that chlorophyll meters were useful 

for monitoring N status in irrigated corn. Blackmer et al., (1994) and Thomas and 

Oerther (1972) found that light reflectance near 550 nm was best for separating 

N-deficient from non-N-deficient corn and sweet pepper (Capsicum annuum L.) 

leaves, respectively. Bausch and Duke (1996) investigated using a ratio of 

NIR/green reflectance as an N-sufficiency index. Walburg et al. (1982) showed 

that N-deficient corn canopies had increased red reflectance and decreased NIR 

reflectance when compared with N-sufficient corn canopies. A ratio of the 

average reflectance from 760 to 900 nm divided by reflectance from 630 to 690 

nm exhibited a good separation between N treatments. Aase and Tanaka (1984) 

reported a relationship between green leaf dry matter and NIR/red ratios, and 

suggested that reflectance measurements could be used to estimate leaf dry 

matter or leaf area measurements in spring and winter wheat (Triticum aestivum 

L.). Work by Stone et al. (1996) demonstrated that total plant N could be 

estimated using spectral radiance measurements at the red (671 nm) and NIR 

(780 nm) wavelengths. They calculated a plant-N-spectral-index for the amount 

of fertilizer N required to correct in-season N deficiency in winter wheat.  
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The majority of sorghum N research has focused on preplant and in-

season fertilization regardless of the prevailing soil-plant nutrient status within the 

growing season. Observations during the grain sorghum growing season reveals 

that luxuriant crop growth can occur when the crop receives adequate to 

excessive rainfall in the early part of the growing season and has adequate to 

excessive N available. However, this luxury vegetative growth does not 

necessarily result in higher grain yields because heavy rainfall during the early 

growing season may leach NO3-N from the soils resulting in late-season N 

deficiency. Also, early season luxurious vegetative crop growth significantly 

increases the daily crop water use (Khosla and Persaud, 1997). Consequently, 

plants may experience severe water stress later in the growing season causing 

early leaf senescence, poor head development and grain filling, and resulting in 

lower grain yields. Optimum grain yields therefore depend on whether there is an 

adequate supply of N and water stored in the soil to meet the plant N and water 

needs. Thus, the objective of this experiment is (1) to determine the optimum 

amount of N which will give the best yield (2) to identify the specific growth stage 

when sorghum grain yield can be predicted using sensor readings from 

vegetative stages and; (3) to identify the peak nutrient demanding growth period 

which is highly responsive to fertilization.  

 

Role of CV in Mid-Season Grain Yield Prediction 

Coefficient of variation (CV) provides a relative measure of data dispersion 

compared to the mean. It is defined as the ratio of standard deviation to the 
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sample mean (Lewis, 1963 and Steel et al., 1997) and usually expressed in 

terms of percentage (%). In accordance with the definition of CV, when a high 

standard deviation is observed, it is likely that the coefficient of variation will be 

large (Taylor et al., 1997). The coefficient of variation can be used to compare 

the results of two dissimilar experiments which have similar measurement units 

(Steel et al., 1997) conducted by different experimenters. The coefficient of 

variation in practice “scales” the standard deviation by the size of the mean, 

making it possible to compare coefficient of variation across variables measured 

on different scales. It is a relative measure of variability and often changes with 

every individual comparison made and its meaning largely depends on the 

existence of  previous data which would help in determining its meaning (large or 

small) (Steel et al., 1997). Taylor et al., (1997) have shown that here is a 

remarkable negative relationship between wheat grain yield and coefficient of 

variation. They further showed that plot size and coefficient of variation are 

directly related to each other. Soil nutrient application and response could 

possibly be fine tuned by predicting mid-season coefficient of variation 

(Washmoon et al., 2002). Better prediction of yield could be achieved by 

incorporation of the coefficient of variation in the in-season estimated yield 

(INSEY) prediction equation. Therefore, coefficient of variation from sensor 

readings could be used to refine the prediction yield.  
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MATERIALS AND METHODS 
 

Experimental Design and Treatment Structure 

 In the summers of 2004 and 2005, a total of six experiments were 

conducted at three locations, Lake Carl Blackwell (Port fine-silty, mixed, 

superactive, thermic Cumulic Haplustoll), Hennessey and Efaw (Easpur loam 

fine-loamy, mixed, superactive, thermic Fluventic Haplustoll), Oklahoma. Initial 

soil analysis results are presented in Table 1. Four pre-plant, three split and four 

topdress nitrogen rates were applied in a randomized complete block design with 

three replications at all the experiments (Table 2).  

In the first cropping season (summer 2004), sorghum was planted May 6, 

2004 at Efaw, Lake Carl Blackwell and Hennessey using a John Deere Max 

Engine planter set at 75 cm row spacing and at a population of about 111,150 

plants per hectare. An amount of 24.4 kg P per hectare was applied pre-plant 

and incorporated to the soil by using a tractor mounted barber spreader. The pre 

plant nitrogen rates were applied before planting and incorporated by a field 

cultivator harrow. Urea (46-0-0) was used as the pre-plant source of nitrogen in 

all experiments. Top dress nitrogen was applied as UAN (28-0-0) at sorghum 

growth stage 3 (growing point differentiation) between June 14 and 16. In the 

second cropping season (summer 2005) sorghum was planted May 17, 2005 at 

Efaw and Lake Carl Blackwell and May 18, 2005 at Hennessey, Oklahoma and 

the same management practices were carried as in 2004. 
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Plot sizes were about 3 m x 6 m (18 m2). There were four rows of sorghum 

plants in each plot where the two middle rows were used for physical and sensor 

measurements and for collecting final grain yield.  

 

Sensor Measurements 

 A GreenSeeker® Hand Held Optical Sensor (NTech Industries, Inc.) was 

used to collect normalized difference vegetative index (NDVI) measurements.  

This device uses a patented technique to measure crop reflectance and to 

calculate NDVI.  The unit senses a 0.6 x 0.01 m area when held at a distance of 

approximately 0.6 to 1.0 m from the illuminated surface.  The sensed dimensions 

remain approximately constant over the height range of the sensor.  The sensor 

unit has self-contained illumination in the red (650   10 nm full width half 

magnitude (FWHM)), green (550 + 12.5 nm FWHM) and NIR (770   15 nm 

FWHM) bands.  The device measures the fraction of the emitted light in the 

sensed area that is returned to the sensor (reflectance).  These fractions are 

used within the sensor to compute Red (RNDVI) and Green (GNDVI) according 

to the following formula:   

    
dNIR

dNIR

FF
FF

RNDVI
Re

Re

+
−

=  
 

GreenNIR

GreenNIR

FF
FF

GNDVI
+
−

=  

Where: FNIR – Fraction of emitted NIR radiation  
  returned from the sensed area (reflectance). 
 

FRed – Fraction of emitted Red radiation  
returned from the sensed area (reflectance). 
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FGreen – Fraction of emitted Green radiation  
returned from the sensed area (reflectance). 

  
  

          The sensor unit is designed to be “hand-held” and measurements were 

taken nadir as the sensor is passed over the crop surface.  It samples at a 

very high rate (approximately 1000 measurements per second) and averages 

measurements between outputs.  The sensor outputs NDVI at a rate of 10 

readings per second.    The sensor was passed over the crop at a height of 

approximately 0.7 m above the crop canopy and oriented so that the 0.6 m 

sensed width was perpendicular to the row and centered over the row.  With 

advancing stage of growth, sensor height above the ground increased 

proportionally.  Travel velocities were at a slow walking speed of 

approximately 0.5 m s-1 resulting in NDVI readings averaged over distances 

of < 0.05 m.   

            Sensor readings for each year were taken at growth stage 2 (collar of 

5th leaf is visible: occurs approximately 20 days after emergence), 3 (growing 

point differentiation: 35 days after emergence), 5 (boot stage), 6 (half bloom) 

and 7 (soft dough). Duration of growth stages may vary depending on the 

existing weather condition in the growing season. Sensor readings were 

taken from the two middle rows by sensing each row at a time. Plot NDVI 

readings were estimated by averaging readings from the two middle rows. 

 

 

 
 

12



Grain Yield Sampling 

Final plot grain yield was obtained from two middle rows which were 

harvested using a plot harvesting Massey Ferguson combine which has 

automated moisture and weighing scales.  Grain yield was adjusted for standard 

moisture content of grain sorghum (13%) using the following formula: 

⎥
⎦

⎤
⎢
⎣

⎡
−

−=
moisturestatndard

moitureactualyieldharvestedyieldadjustedMoisture
100

100*  

Total N in the grain was determined using a Carlo Erba  (Milan, Italy) NA-

1500 dry combustion analyzer (Schepers et al., 1989) after grain samples were 

dried (70 oC for three days) and grounded to pass a 0.125 mm (120-mesh) sieve 

and analyzed.  

 

Data Analysis 

In-season estimated yield (INSESY) was calculated as a ratio of average 

plot NDVI and growing degree days (GDD> 0). GDD represents the duration of 

biomass production where only days with optimum temperature for growth are 

considered throughout the growth cycle. INSEY and GDD were calculated using 

the following formulas: 

⎥
⎦

⎤
⎢
⎣

⎡
>

=
0GDDwhereDays

NDVIINSEY  

C
TT

GDD 0minmax 4.4
2

−⎥⎦
⎤

⎢⎣
⎡ +

=  
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Where Tmin and Tmax represent daily ambient minimum and 

maximum temperatures, respectively. 

 Coefficient of variation for red and green NDVI for each plot were 

calculated automatically by the software in the Greenseeker. 

The relationship among grain N uptake, grain yield, in-season estimated yield 

(INSEY) and GNDVI and RNDVI at different growth stages were evaluated using 

simple regression analysis proc reg procedure using SAS (SAS, 1999) statistical 

software.  
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RESULTS 

Grain Yield 

Crop Year 2004 

Average grain sorghum yield was somewhat higher at Lake Carl Blackwell 

(6482 kg ha-1) when compared to Efaw (4278 kg ha-1). Over all grain yields 

ranged from 3703 to 5062 kg ha-1 and from 5465 kg ha-1 to 7440 kg ha-1 at Efaw 

and Lake Carl Blackwell, respectively (Table 3). The range in sorghum grain 

yields was largely attributed to the response to fertilizer N.  At all locations, 

sorghum grain yields increased with increasing N applied, but the significance of 

this trend over locations varied by site (Table 4).  Maximum yields were generally 

achieved at the 100 or 150 kg N ha-1 rates, and yield increases over the 0-N 

check were more than 700 kg ha-1 over all sites (Table 3).  

 

Crop Year 2005 

Average grain yield of sorghum was 3420, 2399 and 8476 kg ha-1 at Efaw, 

Hennessey and Lake Carl Blackwell, respectively (Table 3). The highest yield 

was obtained from mid-season applied 150 kg N ha-1, split applied 100 kg N ha-1 

and split applied 150 kg N ha-1 with corresponding yields of 4442, 3125 and 9245 

kg ha-1 at Efaw, Hennessey and Lake Carl Blackwell, respectively (Table 3). For 

the 5 site-years included in this work, only Lake Carl Blackwell in 2004 showed 

limited response to fertilizer N.  
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Over all sites, differences in preplant, topdress, and split methods of N 

application produced variable results.  Split applied N was expected to be better 

where irrigation was available and yield levels were higher (Lake Carl Blackwell), 

but results were inconsistent (Table 3), evidenced in the lack of significant effects 

from single degree of freedom contrasts (Table 4).   

 

Sensor Measurements 

Crop Year 2004 

Results of simple linear regression analysis showed that there was a 

significant relationship between NDVI and final sorghum grain yield from sensor 

readings collected at growth stage 3.  When evaluating this relationship over 

stages of growth, the best correlation between grain yield and GNDVI and 

RNDVI was obtained at growth stage 3 (coefficient of simple determination (r2) of 

0.70 (RNDVI) and 0.65 (GNDVI) (Figures 1 and 2). Similarly, simple regression 

analysis of the combined location data revealed that in-season estimated yield 

(INSEY) was significantly correlated with both red (r2=0.68) and green (r2=0.71) 

NDVI (Figures 3 and 4).  It should be noted that the use of INSEY did not 

significantly improve this relationship over that of NDVI alone for either red or 

green.  At the same growth stage grain N uptake was also significantly correlated 

with red (r2= 0.48) and green (r2= 0.48) NDVI (Figures 5 and 6). Coefficient of 

variation (CV%) from RNDVI (r2 = 0.46) and GNDVI (r2=0.50) was also correlated 

with grain yield at growth stage 3 (Figures 7 and 8). Over sites, CV’s decreased 

with increasing NDVI (red and green, Figures 9 and 10) at growth stage 2, while 
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similar results were noted for green NDVI at stage 3 (Figure 11).  As surface 

coverage increases (higher NDVI), it seems plausible that CV’s would decrease 

due to decreased soil background detected using the Greenseeker sensor. 

 

Crop Year 2005 

 Results over sites (Efaw and Hennessey) from simple regression analysis 

of grain yield on red NDVI showed only limited correlation for growth stages 2 

and 3 (Figures 12 and 13).  Similar results were noted for green NDVI at growth 

stage 3 (Figure 14). There was only a weak relationship between grain yield and 

NDVI at growth stages beyond growth point differentiation. In-season estimated 

yield (INSEY) where NDVI values were divided by the number of days from 

planting to sensing did not improve this relationship over sites.  

 Similar to 2004 results, combined location data for coefficient of variation 

(CV) data from sensor readings regressed on red NDVI resulted in highly 

significant negative correlation at sorghum growth stages 2, 3, 5, and 6 (Figures 

15 – 18).  Although the correlation was somewhat improved the same trend was 

noted for CV regressed on green NDVI (Figures 19-22).   
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DISCUSSION 

 
Grain Yield 
 

In 2004 no grain was harvested from the Hennessey experimental site due 

to severe bird damage after seed set. The majority of the experimental plots in 

the third replication at this site were water logged for some part of the growing 

period. The water logging problem led to uneven emergence, planting skips, 

ultimately poor crop stands in both years.  Moreover, extended moisture stress 

due to erratic and low rainfall was responsible for very low yields at this site. 

In the 2004 cropping year there was only limited yield response to nitrogen 

rates at Lake Carl Blackwell. Non-responsiveness or negative-responsiveness of 

grain sorghum yields in the 2004 cropping year were attributed to high levels of 

residual mineral N present in the soil profile at planting.  Also, erratic rainfall 

patterns that promoted early season luxuriant crop growth caused severe water 

stress conditions later in the season. These conditions translated into poor early 

season growth, later season head development and grain fill.  Consequently, 

grain yields were lower and only limited response was noted to applied N 

fertilizer. Analysis of soil samples collected from the experimental area prior to 

planting showed that there was substantial residual nitrogen (Table 1). Soil test 

results indicated relatively high residual ammonium N present at all sites in the 

15 cm soil surface (Table 1).  Khosla et al (2000) has also suggested that 

residual mineral N levels greater than 45 kg N ha-1 in the surface 0.3 m of soil 

were sufficient to support the crop growth until midseason fertilizer was applied.  
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These results demonstrate the importance of soil testing at each experimental 

site prior to planting.  

 In 2005 the Lake Carl Blackwell experimental site was irrigated and as a 

result, grain yields in excess of 9000 kg ha-1 were realized. At this site statistical 

data analysis showed that there was a remarkable response of grain yield to 

nitrogen treatments.  The main effect of nitrogen rate was linear (P<0.01) or 

quadratic (P<0.05) for all pre-plant, top dress and split nitrogen applications 

methods.  Sorghum grain yields peaked at 200, 150 and 150 kg N ha-1 

treatments for pre-plant, top dress and split application methods, respectively. 

However only limited differences in application methods were noted for grain 

yield at all sites (Table 4).  

 

Sensor Measurements 

In both 2004 and 2005 crop years it was observed that the relationship of 

NDVI and grain yield was better at the stage of growing point differentiation 

(growth stage 3). This stage (35 days after emergence) is a period of rapid 

growth and nutrient uptake by the sorghum plant (Vanderlip, 1993). In-season 

estimated yield (INSEY) is a measure of mid-season potential yield using NDVI 

(estimate of biomass) as a function of the number of days transpired to the time 

sensor measurements are collected.  Invariably the relationship with final grain 

yield was improved at growth stage 3 when compared to other stages evaluated.  

This enhances the importance of collecting early season sensor measurements 

for projecting grain yield, for ensuing adjustments in nutrient needs.  
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  Combined data over all locations and years appeared to show a trend 

somewhat similar to what was found from data on individual locations on grain 

yield and NDVI relationships at growth stage 3. The scatter plot diagram of grain 

yield on both green and red NDVI illustrated a discernable trend for most sites, 

excluding the 2005 Lake Carl Blackwell site (Figures 23, and 24). Since this site 

was irrigated throughout the growth period, higher grain yields were realized 

compared to the other locations (Figures 23 and 24), and response was also 

detectably different. Therefore, this site resulted in a data cluster much different 

than the rest that were produced under dryland conditions.  This finding is 

consistent with the need for highly specialized yield prediction equations reported 

on the NUE web site (http://www.nue.okstate.edu/Yield_Potential.htm).  

However, it should be noted that when using INSEY the combined data were in 

fact normalized and the outer boundary for detecting yield potential was quite 

clear using the green NDVI sensor (Figure 23).  Scatter below the outer 

boundary is expected since post sensing conditions can lead to the 

underestimation of yield potential (drought stress, disease, insect damage, etc.).  

But, what is important to note is that both rainfed and irrigated sites could be 

combined on one graph (Figure 25) when using INSEY (green NDVI sensor), 

further suggesting that early season detection of growth rate (biomass produced 

per day, estimated using NDVI divided by the number of days from planting to 

sensing) is in fact related to final grain yield.   

 This same trend was noted when using the red NDVI at growth stage 3 

over sites and years versus sorghum grain yield (Figure 26).  However, for this 
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data, INSEY failed to normalize all sites, as was noted for INSEY when using 

green NDVI (Figure 25).  Excluding the Lake Carl Blackwell site, red NDVI and 

INSEY did provide reasonable detection of sorghum grain yield potential (outer 

left hand boundary of the data).  In general the combined location and year data 

showed that the INSEY and grain yield relationship could be explained by red 

and green NDVI with green having slightly better performance. Similar scenario 

was observed when INSEY from cumulative growing degree days is related to 

grain yield (data not presented).  

 The coefficient of variation computed automatically from NDVI sensor 

readings tended to increase with decreasing grain yields (Figures 7 and 8).  As 

growth proceeds the canopies grow closer together and thus it becomes more 

difficult to accurately determine plant biomass. The average maximum CV of 

RNDVI was obtained at sorghum growth stage 2 (collar of the fifth leaf visible) 

23.8% and 22.9% at Efaw and Lake Carl Blackwell, respectively. At this stage 

there was irregular spacing of sorghum plants, resulting from skips by the planter 

and this in association with limited tillering at this stage, certainly resulted in low 

canopy closure. This is the reason why higher CV’s are encountered at earlier 

stages of growth as has been noted by others. The average minimum CV of 

RNDVI was obtained at growth stage 5 (head enclosed in swollen flag leaf 

sheath) 6.6% and 6.2% at Efaw and Lake Carl Blackwell, respectively (data not 

reported).  

Analysis of data from this experiment suggest that the there is a direct 

relationship between coefficient of variation and the existing plant population in 
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the field.  This is in turn related to final grain yield which has also been reported 

in the literature.  Work by Raun et al. (2005) and Arnall et al. (2005) have shown 

that there is significant relationship between grain yield and coefficient of 

variation, and that is tied to plant population in corn and wheat.  

 

CONCLUSIONS 

The results obtained from this experiment suggest that yield potential 

prediction in sorghum using spectral measurements should be carried out at a 

stage of critical biomass production and nutrient demand. This was shown by the 

relationship of INSEY and final grain yield at sorghum growth stage 3 (growing 

point differentiation) which starts approximately 35 days after planting. Red and 

the green NDVI sensor data collected at growth stage 3 were highly correlated 

with final sorghum grain yield.  However, the use of INSEY as has been 

employed in wheat and corn trials was not as effective in normalizing sites 

whereby one yield prediction equation could be established.  Further work will 

need to focus on the use of cumulative growing degree days and/or other 

denominators for the INSEY equation in order to refine yield potential prediction 

equations for sorghum.   
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Table 1.  Initial surface (0-15 cm) test soil characteristics of the experimental 
plots at Efaw, Lake Carl Blackwell and Hennessey, OK, 2004 and 2005 
 Crop year 

 2004 2005 

 LCB Efaw Hennessey LCB Hennessey

Soil pH 5.4 4.7 4.8 4.9 4.2 

Organic C, % 0.58 1.23 1.22 0.57 1.16 

Total N, % 0.04 0.17 0.08 0.04 0.07 

NH4-N, mg kg-1 19 21 24 15 13 

NO3-N, mg kg-1 8 9 5 8 10 

P mg kg-1 17 26 100 26 106 

K , mg kg-1 98 149 454 104 434 

Organic C and total N – dry combustion, NH4-N and NO3-N – 2 M KCl extractions. 
 
 
Table 2. Treatment structure for sorghum yield potential study experiments at 
Efaw, Lake Carl Blackwell and Hennessey, OK, 2004 and 2005. 
Treatment  Pre-plant N 

rates (kg/ha) 
Top dress  
N rate † 
(kg/ha) 

Total N 
(kg/ha) 

P (kg/ha) ‡

1 0 0 0 25 
2 50 0 50 25 
3 100 0 100 25 
4 150 0 150 25 
5 200 0 200 25 
6 0 50 50 25 
7 0 100 100 25 
8 0 150 150 25 
9 0 200 200 25 
10 50 50 100 25 
11 75 75 150 25 
12 100 100 200 25 

† Top dress N is applied 30 days after emergence as UAN (28-0-0). 
‡ P is applied pre-plant as Triple super phosphate (TSP) (0-46-0). 
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Table 3. Average gain yield of sorghum yield potential experiment at Lake Carl 
Blackwell, Hennessey and Efaw, OK, 2004 and 2005. 
 

++ Standard error of the difference between two equally replicated means   +Lake Carl Blackwell 

2004 

 

2005 

Efaw LCB+ Efaw Hennessey LCB 

 

 

Trt. 

No. 

 

N rate 

(kg ha-1
)

 

Application 

method 

------------------- kg ha-1 -------------------- 

1 0 Preplant 3703 6127 2987 1943 6760 

2 50 Preplant 4710 6752 2628 2187 8220 

3 100 Preplant  5062 5465 4246 2547 8539 

4 150 Preplant 4199 6909 3471 2694 8597 

5 200 Preplant 4032 6141 3356 2145 8677 

6 50 Top dress 4264 6035 3161 2022 7776 

7 100 Top dress 4847 6504 3492 1780 8803 

8 150 Top dress 4088 6833 4442 2375 8958 

9 200 Top dress 3858 6358 3091 2687 8631 

10 100 Split  4004 6340 3804 3125 8677 

11 150 Split  4537 6878 3994 2984 9245 

12 200 Split  3835 7440 2575 2321 8831 

Mean   4278 6482 3420 2399 8476 

SED++   655 734 812 588 923 
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Table 4.Test of significance using single degree of freedom non-orthogonal 
contrasts of overall N treatments for grain yield at Efaw and Lake Carl Blackwell 
(LCB) in 2004 and 2005.  

2004 2005 source 
Efaw LCB Efaw LCB 

N rate  
Pre-plant N linear 
Pre-plant N quad. 
Top dress N linear  
Top dress N quad. 
Split N linear  
Split N quad. 
Pre-plant vs. top  
Pre-plant vs. split  
Split vs. top dress 

NS 
* 

NS 
<0.1 
NS 
NS 
NS 
NS 
NS 
NS 

NS 
NS 
NS 
NS 
NS 
* 

NS 
NS 
NS 
NS 

* 
NS 
NS 
NS 

<0.1 
NS 
** 

NS 
NS 
NS 

* 
** 
* 
** 
* 
** 
* 

NS 
NS 
NS 

*, **, indicate significance at 0.05 and0.01 probability levels, respectively;  
† NS non significant at   0.1.  
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Figure 1. Relationship of RNDVI and Sorghum grain yield at 
Growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004. 
 
 
 
 

 
Figure 2. Relationship of GNDVI and sorghum grain yield at 
growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004. 
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Figure 3. Relationship of red INSEY and sorghum grain yield at 
growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004. 
 
 
 
 

 
Figure 4. Relationship of green INSEY and sorghum grain yield 
at growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004. 
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Figure 5. Relationship of RNDVI and sorghum grain N uptake at 
growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004 
(GNUP, grain nitrogen uptake). 
 
 
 
 

 
Figure 6. Relationship of GNDVI and sorghum grain N uptake at 
Growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004 
(GNUP, grain nitrogen uptake). 
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Figure 7. Relationship of red CV and sorghum grain yield at 
growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004. 
 
 
 
 

 
Figure 8. Relationship of green CV and sorghum grain yield at 
growth stage 3 at Efaw and Lake Carl Blackwell, OK, 2004. 
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Figure 9. Relationship of CV and RNDVI at growth stage 2 at  
Efaw and Lake Carl Blackwell, OK, 2004. 
 
 
 
 

 
Figure 10. Relationship of CV and GNDVI at growth stage 2 at  
Efaw and Lake Carl Blackwell, OK, 2004. 
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Figure 11. Relationship of CV and GNDVI at growth stage 3 at  
Efaw and Lake Carl Blackwell, OK, 2004. 
 
 
 
 

 
Figure 12. Relationship of RNDVI and grain yield at sorghum 
growth stage 2 at Efaw and Hennessey, OK, 2005. 
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Figure 13. Relationship of RNDVI and grain yield at sorghum 
growth stage 3 at Efaw and Hennessey, OK, 2005. 
 
 
 
 

 
Figure 14. Relationship of GNDVI and grain yield at sorghum 
growth stage 3 at Efaw and Hennessey, OK, 2005. 
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Figure 15. Relationship of RNDVI and CV at sorghum growth 
stage 2 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2005. 
 
 
 
 

 
Figure 16. Relationship of CV and RNDVI at sorghum growth 
stage 3 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2005. 
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Figure 17. Relationship of CV and RNDVI at sorghum growth  
stage 5 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2004. 
 
 
 
 

 
Figure 18. Relationship of CV and RNDVI at sorghum growth  
stage 6 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2005. 
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Figure 19. Relationship of CV and GNDVI at sorghum growth  
stage 3 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2005. 
 
 
 
 

 
Figure 20. Relationship of CV and GNDVI at sorghum growth 
stage 5 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2005. 
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Figure 21. Relationship of CV and GNDVI at sorghum growth  
stage 6 at Efaw, Hennessey and Lake Carl Blackwell, OK, 2005.      
 
 
 
 

 
Figure 22. Relationship of CV and GNDVI at sorghum growth  
stage 7 at Hennessey and Lake Carl Blackwell, OK, 2005. 
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Figure 23. Relationship of GNDVI and grain yield at growth  
stage 3 combined over all locations and years, 2004-2005. 
 
 
 
 
 
 
 

 
Figure 24. Relationship of RNDVI and grain yield at growth  
stage 3 combined over all locations and year, 2004-2005. 
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Figure 25. Relationship of Green INSEY and grain yield at growth  
stage 3 combined over all locations and years, 2004-2005. 
 
 
 
 
 
 
 
 

 
Figure 26. Relationship of Red INSEY and grain yield at growth  
stage 3 combined over all locations and years, 2004-2005. 
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CHAPTER II 
 

EFFECT OF PLANT HEIGHT, SENSING ANGLE AND HEIGHT ON YIELD 
PREDICTION OF CORN (ZEA MAYS L.) 

 
ABSTRACT 

 

Plant to plant corn (Zea mays L.) yield variability is one of the most 

important issues that should be addressed to delineate the appropriate scale of 

operations in a crop demand based nutrient management program specially 

nitrogen. The objectives of these experiments were to determine the magnitude 

of variability in mid season measured corn plant heights and their relationships 

with final grain yield and to determine the best sensing height and angle where 

sensors should be positioned that will provide the best relationship of NDVI and 

grain yield. A total of 20 transects (each 20 m long) were used in one experiment 

from which measurements of individual plant heights (at growth stages V8, VT 

and R1) and grain yield were made at Efaw, Perkins and Lake Carl Blackwell, 

OK in summer of 2004 and 2005. In another experiment a total of 4 transects (50 

plants per transect) were used for optical sensor (bicycle mounted) and grain 

yield measurements. Data analysis showed that plant height was consistently 

correlated with grain yield at growth stage VT at all locations and years and 

sensor readings taken at 0.76 m above the canopy at nadir showed better 

relationship of NDVI and grain yield.   
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INTRODUCTION 
 
Excess fertilizer is applied for corn (Zea mays L.) throughout North America. 

Aiming to obtain the highest yield in the rs traditionally 

apply nitro

early-season side d aries with growth 

stage and weather conditions. The am nt available in a soil of a 

certain

 

growing season, farme

gen (N) fertilizers at uniform rates across a field as either a pre-plant or 

ress application. But, plant nutrient uptake v

ount of nutrie

 field may vary over time (temporal) and space (spatial). Fertilizer 

management practices that fail to consider these variables may result in low N 

use efficiency (NUE). Since N fertilizer has been relatively inexpensive and 

weather conditions vary from year to year along with yield potential (Wilhelm et 

al., 1987), producers typically apply N at levels so as not to limit yield in good 

years. This can result in excess N applied beyond which the plant can remove 

from the soil. In fact, Raun and Johnson (1999) estimated that NUE for world 

cereal grain production systems to be only 33%, with the unaccounted 67% 

representing a $15.9 billion annual loss of fertilizer N.  With the increasing costs

of N fertilizer due to natural gas shortages, unaccounted fertilizer N is now 

estimated to be worth more than $20 billion dollars annually. Failure to recover 

the applied fertilizer may contaminate surface and subsurface water supplies. 

Nitrogen losses during corn production are of special concern because large  

areas are planted to this crop, and N is applied at relatively high rates, with 

substantial amounts of NO

 

 

Several research works have shown that 

more than half of the N applied is lost from fields by processes other than crop 

3–N found in water that drains from these soils (Gast et 

al., 1978; Baker and Johnson, 1981). 

 
 

44



harvest during the first year afte mer, 1987; Sanchez and 

 

  

 ke. 

e 

al 

r application (Black

Blackmer, 1988; Timmons and Cruse, 1990). 

Paramasivam et al. (2002) showed that 21 to 36% of fertilizer N leached

below the root zone, while plant uptake accounted for 40 to 53%. Sanchez and 

Blackmer (1988) reported that 49 to 64% of the fall-applied fertilizer N was lost 

from the upper 1.5 m of the soil profile through pathways other than plant upta

They speculated that transport of this N to the Gulf of Mexico results in th

creation of a hypoxic zone, with dissolved oxygen levels too low to sustain anim

life, adversely impacting a $2.8 billon commercial and recreational fishing 

industry in the region. Sexton et al. (1996) observed that NO 
3-N leaching 

increased rapidly as N rates exceeded 100 kg N ha  yr  for corn grown on a  -1 -1

sandy loam soil in central Minnesota, and as N rates increased to about 250 kg   N 

ha  (corresponding to maximum yield), NO-1   3-leaching increased exponentially.

They also reported that reducing N application rates by 5% less than that  

required to achieve maximum corn yield reduced NO3
 

from 

f 

 

leaching by 40 to 45%. 

Kranz and Kanwar (1995) estimated that 70% of the NO3-N leached came 

less than 30% of cornfields. According to Dennis et al. (2002) spatial variability o

corn yield creates a significant challenge for N fertility management because 

excessive N can result in NO3-N contamination of surface and ground water 

bodies and inadequate N results in yield and profit losses. Increasing use of

spatial demand as a basis for N management can remarkably reduce surface 

and ground water contamination and loss of revenue (Dorge et al., 2002). 
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Amount and timing of N fertilization can significantly affect the outcome

any efficient nutrient management program. Va

 of 

rious works on N management 

have d

 

 

nse of 

ally 

 

eveloped a yield goal based N fertilizer recommendation, none of which 

addressed inherent field spatial and temporal variability in a growing season. As

per the work of Katsvairo et al. (2003) yield goal based N application, based on

yield map data, have resulted in over fertilization of N in about 25% of the field 

where corn yields were greatest and under fertilization on about 15% of the 

fields where corn yields were the poorest. The biggest challenge in the current 

nutrient management system is identifying areas in crop fields where respo

N would be maximized with a minimum loss to the environment. This actu

requires a through investigation and detailed measurement to understand why

crop yield varies over time and space (Sadler et al., 2000; Machado et al., 2002).  

One of the best ways to improve efficiency is via crop monitoring. Crop 

monitoring usually helps to improve control over temporal variation in crop growth 

and also provides information on crop development that is useful in developing 

management strategies that improve water and nutrient use efficiency. Water and

nutrient applications

 

 made at periods of peak demand improve water (Passioura, 

1994) and nutrient (Baethgen and Alley, 1989) use efficiency and increase grain 

yields. Furthermore, efficient use of nutrients could result in N savings without 

reduction in grain yield (Stone et al., 1996). Most research work on plant 

monitoring has been done by remote sensing (Nilsson, 1995; Moran, 1997). The 

main emphasis has been to increase the accuracy of estimating crop biomass 

(Bedford et al., 1993), leaf area index (Bouman et al., 1992), nutrient deficiency 
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(Thom  

e 

as and Oerther, 1972; Peñuelas et al., 1994), water stress (Peñuelas et al.,

1994), and diseases (Nilsson, 1995; Pederson and Nutter, 1982). However, littl

effort has gone into relating these measurements to final grain yield (Blackmer et 

al., 1996; Zhang et al., 1998) and determining how this information could be used 

for managing site-specific farming. 

There have been several techniques tested to estimate N uptake and 

availability in corn, most which are time consuming and cumbersome. These 

. include chlorophyll meter readings, destructive plant sampling and soil sampling

Increased scientific understanding of spectral responses of crops is increasing 

the potential for using remote sensing to detect nutrient stresses. One of the 

earliest digital remote-sensing analysis procedures developed to identify the 

vegetation contribution in an image was the ratio vegetation index, created by 

dividing near-infrared reflectance (NIR) by red reflectance (Jordan, 1969). The 

basis of this relationship is the strong absorption (low reflectance) of red light by 

chlorophyll and low absorption (high reflectance and transmittance) in the NIR by

green leaves (Avery and Berlin, 1992). Blackmer et al. (1994) and Thomas and 

 

Oerther (1972) found that light reflectance near 550 nm was best for separating 

N-deficient from non-N-deficient corn and sweet pepper (Capsicum annuum L.) 

leaves, respectively. Bausch and Duke (1996) investigated using a ratio of 

NIR/green reflectance as an N-sufficiency index. Comparison of this method to 

the SPAD chlorophyll meter measurements (Minolta Corp., Ramsey, NJ) 

demonstrated that the NIR/green ratio and SPAD measurements exhibited a 1:1 

relationship and that the ratio could be used to determine fertilization need for 
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irrigated corn. Aase and Tanaka (1984) reported a relationship between green 

leaf dry matter and NIR/red ratios, and suggested that reflectance measurements 

could be used to estimate leaf dry matter or leaf area measurements in spring 

and winter wheat (Triticum aestivum L.). Work by Stone et al. (1996) 

demonstrated that total plant N could be estimated using spectral radiance 

measu  rements in the red (671 nm) and NIR (780 nm) wavelengths. They 

calculated a plant-N-spectral-index for the amount of fertilizer N required to 

correct in-season N deficiency in winter wheat.  

Sensor based variable rate technologies nowadays widely used in site-

specific nutrient management scheme. However, their practical application on

field is closely related to soil and crop parameters that could possibly alter the

information collected from fields at different circumstances. Hence thorough 

investigation of the relationship between crop parameters and sensor readings 

would be of a great importance in the refinement of sensors used in crop 

measurements. Researches have shown that crop parameters such as plant 

height affect early season sensor readings, as it is related to final grain yield and

yield variability in a field. Sadler et al. (2000) reported that Plant height and 

biomass during corn vegetative development showed significant spatial variabilit

in an 8-ha cornfield in South Carolina. Plant height at the V12 (12

 a 

 

 

y 

e) 

r 

k after 

rly 

th leaf stag

(Ritchie et al., 1993) correlated with grain yield in a dry year but not in a wet yea

in a 2.7 ha field in Texas (Machado et al., 2002). Plant height at 4 and 8 w

emergence correlated with corn yield at three of five sites in the Corn Belt in the 

USA (Mallarino et al., 1999). They also reported that conditions that favored ea
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season corn growth are the most important factors in explaining the spatial yield

variability. Katsvairo et al. (2003) reported that plant height at the V6 and V10 

stages were more sensitive indicators than biomass and N uptake at the V6, R

and R6 growth stages in assessing the spatial variability in corn field. 

Sensor measurements traditionally taken by holding the sensor at a 

certain height from the corn canopy disregarding the effect of individual pla

height on biomass and grain yield estimation. Thus to study the effect of 

individual plants height on estimation of biomass

 

1, 

 

nt 

 and yield, considering individual 

plants 

Therefore two different experiments were designed with the following 

hypothesis.  

population is normally distributed over the mean height. 

in the course of sensing would be more informative. 

1. individual corn plant height has significant effect on final grain yield   

2. Sensor measurements taken at different geometric positions and height in 

reference to corn canopy surface can equally be used in estimating final 

grain yield. 

 

The objectives of these experiments were, 

1. to determine the best combination of sensing height and sensing angle 

where sensors would be positioned to get NDVI measurements that can 

be used to estimate final grain yield. 

2. to determine the effect of individual plant height measurements on corn 

grain yield at different growth stages and to observe if plant height 
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MATERIALS AND METHODS 
 

Sensing Height and Angle Experiment  

Two already established corn fields were used in the summer of 2004, one 

near S ur 

 

stoll), 

(Oklahoma State 

university research site) located on a Port fine-silty, mixed, superactive, thermic 

Cumulic Haplustoll.  

Bt corn variety was used at both locations with 113 days maturity at Efaw 

and 108 days maturity at Perkins. At each location two transects were selected 

from corn rows where there is detectible variability in plants. There were fifty 

sequential plants in each transect used for by-plant sensor readings and yield 

measurements. Distance of each individual plant in relation to and from its 

neighbor was measured in order to determine by-plant corn grain yield per area 

(based on the area occupied as a function of neighboring plants) and by-plant 

sensor reading. Plants were tagged at V6 (six leaf fully expanded) to avoid 

confusion of missing plants. 

bike m of light, 

24 inch  by positioning 

tillwater (planted on April 7), at the Agronomy Research Station (Easp

loam fine-loamy, mixed, superactive, thermic Fluventic Haplustoll) and Perkins

(planted April 2) (Teller sandy loam-fine-loamy, mixed, thermic Udic Argiu

Oklahoma. In summer of 2005 transects were selected, from corn field at Efaw 

(planted April 7) and Lake Carl Blackwell (planted April 12) 

Sensor readings were taken using Oklahoma State University designed 

ounted (GreenSeeker™), which produces an infrared sensing strip 

es long and 0.5 inches wide. Senor readings were taken
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the sensor 76 cm and 10  at growth stages V8 

ight full expanded leaves), VT (tasseling), and R1 (silking). Two sensing angles 

e the canopy) and 45 degree (sensor 

tilted a

ly 

Percent grain N was determined using dried grain samples which were 

ground to pass a 0.125 mm (120-mesh) sieve and analyzed for total N using a 

Carlo 

AS 

 

at 

r of 2004 and at Efaw and Lake Carl Blackwell in 

summer of 2005.  

0 cm above corn canopy surface

(e

nadir (senor held parallel and directly abov

t 45 degree from the canopy) were used to take readings from the 

selected rows at each growth stage.  

Ears from plants in each transect were harvested and weighed individual

and recorded.  Once removed from the stalk, ears were dried at 66°C for 48 

hours and weighed before and after shelling. The weight taken from the dry, 

shelled corn was the final grain weight used for yield determination.  

Erba  (Milan, Italy) NA-1500 dry combustion analyzer (Schepers et al., 

1989). The relationship between NDVI versus grain yield and grain N was 

determined by simple linear regression method using proc reg procedure in S

software program. 

Effect of Plant Height on Grain Yield 

This experiment was conducted on an already established corn field 

Efaw and Perkins, in summe

Plant height and grain yield measurements were made on five transects of 

20 m length which were selected randomly from corn field at each location. At 
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corn growth stage V6 individual plants in each transect were counted and 

distance between plants in each transect measured and recorded and each plant 

was tagged to track missing plants. The first and the last plant were not 

considered for analysis to avoid boarder effect. Distances between plants 

used to calculated area occupied by e

were 

ach plant in relation to its neighbor.  

Relative area occupied by a plant was calculated by the following formula: 

RA iiii
i ⎥⎦⎢⎣

+= +−
22
11

 

Where: A is the area occupied by the i

dddd ⎤⎡ −−

i 

 

 

(V10 

centimeter graduated yard stick from the base of the plant up 

to the tip of fully expanded leaf (stretched vertically) at growth stages V8. At 

growth stages VT and R1 plant height measurement was made from the base of 

recorded individually.  Once removed from the stalk, ears were dried at 66°C for 

fter shelling. The weight taken from the dry, 

shelled

th plant,  

   di-1,di,di+1 are the distances to the i-1, i, and i+1 plants  and  

        R is the row spacing 

 Individual corn plant height was measured at three growth stage V8 

in fall of 2005), VT and R1 for each transect at each location. Plant height was 

measured by using 

the plant to the collar of the last leaf which bundles the tassel.  

Ears from plants in each transect were harvested and weighed and 

48 hours and weighed before and a

 corn was the final grain weight used for yield determination. Relationship 

between plant height and grain yield was estimated using simple linear 
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regression method using proc reg procedure in SAS (SAS institute, 1988) 

software program.  

 
 

 
 

53



RESULTS AND DISCUSSION 
 

Plant Height and Grain Yield 

rop Year 2004C  

After excluding dead or damaged plants a total of 514 (Efaw) and 383 

(Perkins) individual plants in five transects were used for height and grain yield 

measurements. Average corn plant heights of combined transects were 107, 171 

and 174 cm at Efaw and 80, 113 and 130 cm at corn growth stages V8, VT and 

R1 at Perkins, respectively (Table 1). Corn planted at Perkins was found to be 

relatively short due to the sandy texture of the soil and less efficient to conserve 

moisture during the growing cycle.  As a result most plants at this site had 

stunted growth and resultant low grain yields.  

There was significant variability observed in by-plant grain yield of corn.  

Grain yield of individual plants ranged from 979 kg ha-1 (15 bu/acre) to 14,160 kg 

ha-1 (226 bu/acre) at Efaw and from 1,151 kg ha-1 (18 bu/acre) to 8,837 kg ha-1 

(141 bu/acre) at Perkins (Table 2).  The average corn grain yield was 5,219 and 

3,924 kg ha-1 with corresponding standard deviations of 2,070 and 1,321 Kg ha-1 

at Efaw and Perkins, respectively (Table 2). At both locations close to 70 and 95 

percent of by-plant grain yield measurements were in the range of one and two 

standard deviations from the mean grain yield, respectively (Table 2).  

Simple regression analysis of the data showed that there was a significant 

relationship between corn grain yield and plant height at both locations in this 

year. At Efaw, grain yield calculated on an area basis was highly correlated with 

plant height at growth stage VT (r2=0.61) (Figure 1). Similar results were found at 
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growth stage R1 at Efaw ip was improved when 

y-plant corn grain yield was regressed with plant height, without considering 

ficient of simple determination (r2) of 0.74 

igure 2).  The improved relationship of by plant yields with plant 

height

is 

Crop y

(data not shown). This relationsh

b

area. This was shown by a coef

obtained at VT (F

, not accounting for area was also observed at R1 (data not reported).  

At Perkins an r2 of 0.55 was obtained at growth stage R1 when by-plant 

grain yields accounting for area were regressed with individual plant height 

measurements (Figure 3).  When by-plant grain yields without considering area 

were regressed on plant height, an r2 of 0.69 was obtained at R1 (Figure 4).  Th

same trend was observed at growth stage VT (improved correlation of non-area 

dependent data versus area dependent).  

 

ear 2005 

A total of 455 (at Efaw) and 540 (at Lake Carl Blackwell) plants in five 

transects were used for by-plant height and grain yield measurements. Average

plant height was 128, 161 and 170 cm at Efaw and 130, 186, 206 cm at Lake 

Carl Blackwell at growth stage V8, VT and R1, respectively (Table 3). Corn 

plants were relatively taller at Lake Carl Blackwell as compared to the Efaw site. 

This was due to irrigation at the Lake Carl Blackwell site which resolved the 

water stress problem from planting to harvest and increased early seas

 

on and 

late se

 

ason biomass accumulation.  

By-plant corn grain yields ranged from 258 kg ha-1 (4 bu/acre) to 15,881

kg ha-1 (226 bu/acre) at Efaw and from 2,327 (37 bu/acre) to 42,906 kg ha-1 (684 
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bu/acre) at Lake Carl Blackwell (Table 4). Average by-plant corn grain yields 

were 5,093 kg ha-1 (81 bu/acre) at Efaw and 16,757 kg ha-1 (267 bu/acre) at La

Carl Blackwell (Table 4). At both locations 71 and 96 percent of individual 

yields were with in one and two standard deviations from the mean by-plant yield, 

respectively (Table 4) and appeared to be normally distributed.  

ke 

plant 

Simple regression analysis of the data revealed that by-plant corn grain 

yield (calculated on an area basis) was related to plant height at growth stage VT 

(r = 0.53) at Efaw (Figure 5). Similar results were found at growth stages V8 and 

R1 (data not shown). This relationship was somewhat better when by-plant yield 

(non-area based) was regressed with plant height at growth stages VT (r =0.62) 

and slightly weaker at V8 (data not shown) at the Efaw site (Figure 6).  The same 

scenario of improved relationship between by-plant corn grain yield and plant 

height was observed in 2004 when non-area based yield was related to individual 

plant height measurements.  

nopy surface and holding the sensor 

directly

canopy, or at a 45 degree angle (Figure 7).  Data for the 45 degree angle 

2 

2

 

Sensing Height and Angle 

Results of simple regression analysis of the data have shown that there 

was a significant variation in the relationship between grain yield and NDVI 

depending on height and geometric position of the sensor. Measurements of 

NDVI taken 0.76 m above the corn ca

 above the corn canopy (nadir) showed improved correlation with corn 

grain yield at growth stage V8 (r 2=0.69) when compared to 1m directly above the 
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measurements were lost for the VT growth stage, however, similar to that note

at V8, improved correlation was found at the 0.76 m height when compared to 

1m for readings collected at this growth stage (Figure 8).  Identical to results at 

the V8 growth stage, 0.76m NDVI data collected directly above the corn canopy 

at R1 (Figure 9) resulted in improved correlation with final by-plan

d 

t grain yield 

when compared to NDVI data collected at the 1m height either directly above the 

canopy or at a 45 degree angle.  

In general the relationship of grain yield and NDVI was weaker when 

moving from 0.76 m to the 1 m height above the canopy surface and from nadir 

to the 45 degree position (Figures 7 and 9). This may be due to the sensor’s loss 

of vision of crop canopy at increased height and 45 degree angles. The 

relationship between NDVI and by-plant grain yields remained positive when 

moving from 0.76m to 1m, but the correlation was significantly reduced (Figures 

7, 8, and 9).  However, consistent for both the V8 and R1 growth stages, sensing 

at 45 degree angles significantly decreased the correlation of NDVI and by-plant 

grain yield, especially at the 1m height (Figures 7 and 9).   

  

 

 

 

 

 

 

 
 

57



CONCLUSIONS 

 

Results from this study showed that part of the variability in corn grain yield can 

be explained by plant height data collected at either VT or R1 growth stages.  

Plant height is clearly an important variable when recognizing differences in yie

potential in corn, evidenced in the consistency for the two stages of growth 

reported in this work.   Similar stud

ld 

ies by Machado et al. (2002) showed that 60% 

of varia

 

VI 

 

 sensor readings 

 m directly above the corn canopy, and using measured plant 

height. 

 

 

 

 

 

tion in corn yield was explained by plant height.  

Sensor NDVI measurements taken at two vertical distances above the 

corn canopy and two geometric sensor positions showed differences in 

performance of predicting by-plant corn grain yield. Results of regression

analysis of the data showed the presence of a strong relationship between ND

and grain yield when sensor measurements were taken at nadir position and 

0.76 m above the corn canopy surface. This relationship was weak when sensor 

measurements were taken 1 m high either directly above or at 45 degree angles. 

By plant corn grain yields can be accurately predicted using

collected 0.76
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Table 1. Average corn height (cm) 
at three growth stages and two locations at Efaw and Perkins, OK, 2004. 

  

and corn by-plant yield for five transects  

 
 
…………….. Height (cm)……………… 

 V8 VT R1 

 
Grain yield  (kg ha-

1)

Efaw Ave.
‡

Std 
dev 

Ave. Std. 
Dev.

Ave. Std. 
Dev.

Ave. Std. 
Dev. 

Transect 1 
Transect 2 

109 
101 

8 165 10 193 10 4393 1117 

Transect 3 
Transect 4 
Transect 5 

 
Average  

102 
111 
112 

 
107 

7 
12 
10 
13 
 

11 

159 
162 
182 
191 

 
171 

10 
13 
9 
8 
 

16 

186 
165 
165 
165 

 
174 

8 
13 
7 
7 
 

15 

3927 
4718 
6179 
7169 

 
5219 

1219 
1811 
2088 
2089 

 
2078 

Perkins 

Transect 1 
Transect 2 
Transect 3 
Transect 4 
Transect 5 

 
Average  

79 
80 
79 
80 
82 
 

80 

8 
7 
9 
8 
8 
 
8 

107 
109 
112 
117 
120 

 
113 

16 
14 
16 
15 
15 
 

16 

125 
128 
129 
132 
136 

 
130 

12 
10 
10 
11 
9 
 

11 

3163 
4180 
3820 
4199 
4155 

 
3920 

1100 
1090 
1390 
1390 
1330 

 
1320 

‡Average plant height  std. Dev.=standard deviation 
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Table 2. Minimum, maximum, mean, standard deviation and CV for  
by-plant corn grain yields for individual transects at Efaw and Perkins, 
OK, 2004.  
 No. 

o
plan
ts 

Min Max Mean Std. ±1 std
d
(%)‡ 

±2 std 

(%)† 

CV 
f Dev. ev dev (%) 

Transect             E                           faw 
               … …… ………… ..kg ha-1 ………………… …… ……. ……… ….. 

 
1 106 18   93 17 69 96  

9  04 0 6 95  
11 10370 18 11 68 97  

9 27 14160 97 89 68 91  
5 

A
99 2364 

9
13270 
14160 

69 
19

2089
7

67 
7

94 
95  

  Perkins 

85 6876 43  11  25
2 105 79 7621 39  12 2 7 31
3 108 34 47  18  38
4 6 56 61  20  34

verage 514 79 
71
52  20

 
0 0 

29 
40

1 
2 
3 
4 
5 

Average 

6
8
7
7
7
8

1151 
1270 
1819 
1249 
1742 
1151 

 
 
 
 
 

64
84
20
99
55
24

0
8
8
9
2

321

5
6
7
6
7
69 

99 
97 
87 
96 
96 
96 

 
 
 
 
 

9 
5 
7 
6 
6 
33  

5842
7611
6675
7233
8837
8837 

31  11
41  13
38  10
41  13
41  

 
13
139

1 
6 
6 
1 
7 
 

9 
8 
4 
8 
2 

35
33
28
33
32
34 

st n d d atio ini  † im  

† number of pants with grain yiel

 

d. Dev.=sta dar evi n,  †M mum †Max um 
‡ number plants with grain yield within one standard deviation 

d within two standard deviations 
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Table 3. Average corn height (cm) and corn by-plant yield for five transects 
ell,   at three growth stages and two locations at Efaw and Lake Carl Blackw

OK, 2005. 
 
 

… … t 
(cm)………………… 

 V8 VT R1 

…… ……… .. Heigh  
Grain yield  (kg 

ha-1)

Efaw Ave Std. Ave. Std. Ave. Std. 
Dev.

Ave. Std. 
Dev. 

Tra
Transect 2 
Transect 3 
Transect 4 
Transect 5 
 

Average  

123 
 
 
 

8 

18 163 
1
1

17 
19 
14 

 

168 
 
 
 

 

14 5417 
4950 
5281 
5266 

5093 

2451 
 
 
 

 

.‡‡ Dev. Dev.
nsect 1 121 14 158 17 161 13 5247 3087 

126
132
134

 
12

17 
14 
19 
 

16 
 

56 
62 

161 18 
 

161 15 

169
173
170

 
168

 

13 
10 
15 
 

11 
 

2869
2602
2719

 
2123

Lake Carl Blackwell 

Transect 1 
Transect 2 
Transect 3 
Transect 4 

 

6 
6 
2 
7 
 

1
1
1
1
1

12 
24 
16 
18 
13 

 
 
 
 
 

16404
16408
17456
17424
16042

 
 
 
 
 

7081 

7219
7153
7130
7496
6755

 
Transect 5

 
Average  

 
130 

 
15 

 
186 

 
14 

 
206 

 
12 1

13
13
12
13
125

12 
15 
13 
16 
14 

83 
78 
87 
88 
82 

203
203
206
203
208

8 
14 
12 
16 
15 

 
6757

‡‡ Average plant height std.dev = standard deviation. 
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Table 4. Minimum, m  deviation and C  for  
y-plant corn grain yie ects at Ef
arl Blackwell, OK, 2005.  

No. of 
la

Max†† an 
 

Std
ev

±1

de
 (%

 
std. 

ev.
) 

 
 

aximum, mean, standard
lds for individual trans

V
b aw and Lake  
C

  

p nts 

 
Min†

  
Me . std. 

D . 

 ±2

v. d
) (%

 (%)

 
CV‡

Transect                                         Efaw
      …… … … ..K a- … … ……… …… …… g h 1…… …… ……… .. 

1 9 1 01 56 88 
2 91 879 19503 481 2392 78 98 

4 62 01 78 
4 82 278 15949 5346 2550 73 94 48 

58 
2

18185 5266 
93

2719 
23

79 
7

98 52 

 Lake Carl Blackwell 

8 380 28065 53  30  96 58 
 5 44 

3 90 40 20202 50  28  96 55 

5 94 2
Average 455 58 15881 50  21  2 95 42 

1 1
2 1
3 
4 

1

5 1
Average 540 2327 42906 16757 7

14 
11 
14 
5 9

2327 
2126 
2361 
7

2796 

04
08
56
24
42

19
53
30
9
5
81

7
7
6
7
7
7

02 
1  3

46215
38346
39312
38 337
36908

164
164
174
174
160

72  
71  
71
74

 
 6

567
0

 
 

4 97 
2 96 
9 
1 

96 
93 

8 
0 

96 
96 

44 
44 
41 
43 
42 
42 

std. Dev.=standard deviation,  Minimum Maximum  
‡ coefficient of variation  

 

 

 

 

 

 

 

 

 

† ††
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Figure 1. By-plant corn grain yield per area and plant height relationship 

 s T aw 20
 
 
 
 
 

 
Figure 2. By-plant corn grain yield (grams per plant) and plant height  
relationship at growth stage VT at Efaw, OK, 2004. 

at growth tage V  at Ef , OK, 04. 
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Figure 3. By-plant corn grain yield per area and plant height  
relationship at growth stage R1 at Perkins, OK, 2004. 

 

K, 2004. 
 
 

 
 
 
 
 

Figure 4. By-plant corn grain yield (grams per plant) and plant  
height relationship at growth stage R1 at Perkins, O
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Figure 6. By-plant corn grain yield (grams per plant) and plant  
height relationship at growth stage VT at Efaw, OK, 2005.  

 
 
 

Figure 5. By-plant corn grain yield per area and plant height  
relationship at growth stage VT at Efaw, OK, 2005. 
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igure 7. Grain yield and NDVI relationship at growth stage V8 at different 
ensing height and angle combination at Efaw and Perkins, OK, 2004. 
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igure 8. Grain yield and NDVI relations
nd 1 m sensing height at nadir at Efaw
at 0.76  
004.  

 VT hip at growth stage
 and Perkins,  OK, 2

70
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igure 9. Grain yield and NDVI relatio
t different sensing height and angle c
erkins, OK, 2004. 
nship at growth stage R1 
ombination at Efaw and  
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Growth stage escription D

0 Emergence occurs (coleoptile is visible at the soil surface) 3- 10 days  
1 Three leaf (leaves fully expanded) 10 days after emergence 
2 Five leaf (leaves full expanded ) 3 weeks after emergence  
3 Growing point differentiation  (time of changing from vegetative to 

reproductive) 
5 Boot stage (The head is full size and is encompassed by the flag-leaf 

sheath) 
6 Half bloom (50% of the t some stage of blooming)  plants in the field a
7 Soft dough (grain has a dough-like consistency) 
9 Physiological maturity (Maximum total dry weight of the plant has 

occurred) 
Adopted from: 
http://weedsoft.unl.edu/documents/GrowthStagesModule/Sorghum/Sorg.htm  
 
Figure A.1. Schematic representation of growth stages in grain sorghum. 
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Figure A.2. Relationship of red INSEY and s
( e
 
 
 
    
 
 

 
Figure A.3.  Relationship of GNDVI and sorghum grain N uptake at growth stage 
7 (soft dough) at Efaw and Lake Carl Blackwell, OK, 2004. 

orghum grain yield at growth stage 2 
five le f staga ) at Efaw and Lake Carl Blackwell, OK, 2004. 



 
Figure A.4. Combined location average CV of green and red NDVI at each 
growth stage of sorghum at Efaw and Lake Carl Blackwell, OK, 2004. 
 
 
 
 
 
 

 
Figure A.5. Relationship of CV and RNDVI at sorghum growth stage 5 at  
Efaw, Hennessey and Lake Carl Blackwell, OK, 2004. 
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Figure A.6. Relationship of CV and RNDVI at sorghum growth stage 6 at Efa
Hennessey and Lake Carl Blackwell, OK, 2005. 

w, 

growth stage 5 at Efaw, 
Hennessey and Lake Carl Blackwell, OK, 2005. 

 
 
 
 
 
 

 

Figure A.7. Relationship of CV and GNDVI at sorghum 
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Figure A.9. Relationship of CV and GNDVI at sorghum growth stage  

 

Figure A.8. Relationship of CV and GNDVI at sorghum growth stage 6 at Efaw, 
Hennessey and Lake Carl Blackwell, OK, 2005  
 
 
 
 
 
 

7 at Hennessey and Lake Carl Blackwell, OK, 2005. 
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Figure A.10. By-plant corn grain yield and plant height relationship at growth 
stage VT at Perkins, OK, 2004 
 
 
 
 
 
 

 
aFigure A.11. By-plant corn dry cob weight and plant height relationship t growth 

 
 
 

stage V8 at Perkins, OK, 2004 
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Figure A.12. By-plant corn grain yield and plant height relationship at growth 
stage V8 at Perkins, OK, 2004. 
 
 
 
 
 
 

 
Figure A.13. By-plant corn grain yield and plant height relationship at growth 
stage V8 at Perkins, OK, 2004. 
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Figure A.14. By-plant grain yield and plant height relationship at growth stage
at Efaw, OK, 2004. 

 R1 

 

 
t at 

 
 
 
 
 

Figure A.15. Relationship of by-plant corn grain yield per area and plant eigh
growth stage V8 at Efaw, OK, 2005. 

h
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Figure A.16. Relationship of by-plant grain yield and plant height at growth stage 
V8 at Efaw, OK, 2004. 

 

. 

 
 
 
 
 

 
Figure A.17. By-plant corn grain yield per area and plant height relationship at 
growth stage VT at Perkins, OK, 2004
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Figure A.18. Relationship of by-plant grain yield per area and plant height at 
growth stage R1 at Efaw, OK, 2004. 

 
th 

 
 
 
 
 
 

Figure A.19. By-plant corn wet cob weight and plant height relationship at grow
stage R1 at Perkins, OK, 2004 
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wth 

 
 
 
 
 
 

 

Figure A.20. By-plant corn dry cob weight and plant height relationship at gro
stage R1 at Perkins, OK, 2004 

 
Figure A.21.  Relationship of by-plant wet cob weight and plant height at growth 
stage VT at Efaw, OK, 2004. 
 

 
 

83



 
Figure A.22. Relationship of by-plant dry cob weight and plant height at growth 
stage VT at Efaw, OK, 2004. 
 
 
 
 
 
 

t growth stage R1 at Efaw, OK, 2004. 

 
Figure A.23. By-plant NDVI and corn grain yield relationship at growth stage R1 
(0.76 m nadir position) at Efaw and Perkins, OK, 2004. 
a
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Figure A.24. Relationship of by-plant corn wet cob weight and plant height 
growth stage V8 at Efaw, OK,

at 
 2005. 

 

 

 
 
 
 
 
 

 
Figure A.25. Relationship of by-plant dry cob and plant height at growth stage R1
at Efaw, OK, 2004. 
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Figure A.26. Relationship of by-plant corn wet cob weight and plant height at 
growth stage V8 at Efaw, OK, 2005. 
 
 
 
 
 
 

 
Figure A.27. Relationship of by-plant corn dry cob weight and plant height at 
growth stage V8 at Efaw, OK, 2005. 
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Figure A.28. Relationship of by-plant corn grain yield per unit area and plant 
height at growth stage VT at Lake Carl Blackwell, OK, 2005. 

th 

 
 
 
 
 
 

 
Figure A.29. Relationship of by-plant corn grain yield and plant height at grow
stage V8 at Efaw, OK, 2005. 
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Figure A.30. Relationship of by-plant corn grain yield and plant height at growth 
tage VT at Lake Carl Blackwell, OK, 2005. 

 

 

 

 

 

 

 
 

 

 

 

 

s
 

 
 

 
 

88



VITA 
 

Shambel Maru Moges 
 

Candidate for the Degree of  
 

Doctor of Philosophy 
Thesis:            I. YIELD POTENTIAL ESTIMATION IN GRAIN SORGHUM      
                           Sorghum bicolor L.),  

 II. EFFECTS OF PLANT HEIGHT, SENSING ANGLE AND     
     HEIGHT ON YIELD PREDICTION OF CORN (Zea mays. L) 

 
Major Field:  Soil Science 

iographical: 
 

Personal Data:  born in Nazareth, Ethiopia on May 12, 1970 
 
Education: Graduated from Harar Meda Model High school, Arsi, 

Ethiopia in August 1988; received Bachelor of Science degree in 
Plant Sciences from Awassa College of Agriculture, Awassa, 
Sidamo, Ethiopia in July, 1997; received Master of Science degree 
in Plant and soil Sciences from Oklahoma State University, 
Stillwater, Oklahoma, 2002. Completed the requirements for the 
Doctor of Philosophy degree with a major in Soil Sciences and 
minor in Statistics at Oklahoma State University in December 2005.  

 
Experience: Employed by Ethiopian Agricultural Research Organization 

(EARO) as Junior Agricultural Research Officer (December, 1997 – 
December, 2000); employed as a graduate research assistant for 
the Department of Plant & Soil Sciences, Oklahoma State 
University, 2001- 2005. 
 

Professional Memberships:  member of Ethiopian Weed science, Crop 
science, and Agronomy societies of Ethiopia since 1997. 
Member of American Society of Agronomy, Since 2002.Name:  

 
 
 

 
 

 
B

 
 

89



Name: Shambel Maru Moges             Date of Degree: December, 2005 
 
Institution: Oklahoma State University                    Location: Stillwater, Oklahoma 
 
Title of Study:  YIELD POTENTIAL ESTIMATION IN GRAIN SORGHUM      
                        Sorghum bicolor L.), AND EFFECTS OF PLANT HEIGHT,   
     SENSING ANGLE AND HE
     OF CORN (Ze

 
Pages in Study: 88   of Doctor of Philosophy 
 
Major Field: Soil Science 

r one, grain sorghum (Sorghum bicolor 
L. Moe l of 
grain s ld 
optical sensor. A total of six experiments with four levels of nitrogen 
(50,100,150,200 kg ha-1) and there types of applications were arranged in 
a randomized complete block design in three replications. Sensor 

 at five different growth stages (2, 3, 5, 6 and 7). For 
the second chapter, in one set, a total of 20 transects of corn (Zea mays 

 with 20 m length were used to estimate the relationship of plant 
height and grain yield. Plant height was measured at there different growth 

d last collar 
af at V8 and up to the base of the last collar leaf at stages VT and R1. In 

determ d 
grain y R1 
and us
 

Findings and ld  
 was no
 shown
 treatments in 2004. Significant linear or quadratic responses were  
 
 
 INSEY
 of this od 
 predictor of sorghum yield at growth stage 3. For the second chapter, 
 plant height was highly related to grain yield at VT over locations and
 
 predict lso 
 sensor  
 etter  relationship with grain yield and NDVI at corn growth stage VT. 

ADVISER’S APPROVAL:  Dr. William R. Raun                                                    

IGHT ON YIELD PREDICTION  
a mays. L) 

       Candidate for the Degree

 
Scope and method of study: For chapte

nch) experiments were conducted to estimate the yield potentia
orghum at different nitrogen levels using a self illuminated had he

readings were taken

L.) each

stages (V8, VT and R1) from the ground to the tip of extende
le
the other set, a total of four transects (50 plants each) were used to 

ine the effects of sensing height and angle on sensor readings an
ield. Sensor measurements were taken at stages V8, VT and 
ed to estimate the relationship of by-plant NDVI and grain yield. 

Conclusions: For chapter one, over years and locations, grain yie
t significantly affected by N application methods. Sorghum has 

 a response to N but there were no significant differences among  

observed in 2005 for irrigated sites. Simple linear regression analysis 
showed that grain yield was highly related to green and red NDVI and 

 at growth stage 3, with green slightly better than red. The results
experiment has indicated that INSEY could be used as a go

years. The data suggested that including plant height as one of yield
ion component can improve corn yield prediction model. A
 measurements taken at 0.76 m and nadir position have shown a

b
 

 
 

90

                                      


	Table   Page
	Figure  Page
	Figure  Page
	Figure  Page
	Figure  Page
	RESULTS
	DISCUSSION
	REFERENCES
	Aase, J.K., and D.L. Tanaka. 1984. Effects of tillage practi
	INTRODUCTION
	MATERIALS AND METHODS
	RESULTS AND DISCUSSION
	REFERENCES


