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ABSTRACT 

Grain yield and associated agronomic traits are important factors in wheat 

(Triticum aestivum L.) improvement.  Knowledge regarding the number, genomic 

location, and effect of quantitative trait loci (QTL) would facilitate marker-assisted 

selection and the development of cultivars with desirable characteristics.  Our objectives 

were to identify QTLs directly and indirectly affecting grain yield expression in the 

Southern Great Plains of the USA.  A population of 132 F12 recombinant inbred lines 

(RILs) was derived by single-seed descent from a cross between the Chinese facultative 

wheat Ning7840 and the US soft red winter wheat Clark.  Phenotypic data were collected 

for 15 yield and other agronomic traits in the RILs and parental lines from three locations 

in Oklahoma from 2001 to 2003.  Twenty-nine linkage groups, consisting of 363 AFLP 

and 47 SSR markers, were identified.  Using composite interval mapping (CIM) analysis, 

10, 16, 30, and 14 QTLs were detected for yield, yield components, plant adaptation 

(shattering and lodging resistance, heading date, and plant height), and spike morphology 

traits, respectively.  The QTL effects ranged from 7 to 23%.  Marker alleles from Clark 

were associated with a positive effect for the majority of QTLs for yield and yield 

components, but gene dispersion was the rule rather than the exception for this RIL 

population.  Often, QTLs were detected in proximal positions for different traits.  

Consistent, co-localized QTLs were identified in linkage groups 1AL, 1B, 4B, 5A, 6A, 

and 7A, and less consistent but unique QTLs were identified on 2BL, 2BS, 2DL, and 6B.  

Results of this study provide a benchmark for future efforts on QTL identification for 

yield traits. 

Keywords: Wheat · QTL · Yield · Plant adaptation · Spike morphology · SSR · AFLP  
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INTRODUCTION 

As the world�s most important food crop, wheat (Triticum aestivum L.)  is grown 

on over 208 million hectares, yielding 2665 kg ha-1, and now producing over 556 million 

metric tons annually (FAO, 2004).  Grain yield in wheat is determined concurrently by a 

number of plant and grain characteristics.  These are complex quantitative traits 

controlled by several genes, expressed in progeny populations in continuous distributions, 

and highly influenced by environmental conditions (Kearsey and Pooni 1996).  These 

factors make it difficult to define yield according to gene effect or gene number using 

classical quantitative genetic methods.  The application of new molecular marker 

technologies for quantitative trait locus (QTL) analysis, such as amplified fragment 

length polymorphism (AFLP), simple sequence repeat (SSR), and single nucleotide 

polymorphism (SNP) markers, has provided an effective approach to dissect complicated 

quantitative traits into component loci to study their relative effects on a specific trait 

(Langridge et al. 2001; Doerge 2002).  

Using single chromosome recombinant substitution lines and restriction fragment 

length polymorphism (RFLP) markers, QTLs for yield and important agronomic traits 

were identified on chromosomes 3A (Shah et al. 1999; Campbell et al. 2003), 4A (Araki 

et al. 1999), and 5A (Kato et al. 2000).  Using a more saturated RFLP map derived from 

the population, Opata 85/W7984, (Borner et al. 2002) detected 64 QTLs for about 20 

agronomic characters.  Additional QTLs controlling other plant adaptation and 

morphology traits were reported, including heading date (Shah et al. 1999; Bullrich et al. 

2002; Shindo et al. 2003), plant height (Cadalen et al. 1998; Huang et al. 2003, 2004), 

lodging (Keller et al. 1999), leaf rust reaction (Singh et al. 2000), and spike morphology 

(Sourdille et al. 2000; Borner et al. 2002). 
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The development of molecular markers for important wheat traits and their 

application in breeding programs is challenged by multiple genome constitution 

(AABBDD, allohexaploid and amphidiploid: 2n = 6x = 42) and a relatively large genome 

size of 16,000 Mbp, of which more than 80% is repetitive DNA (Roder et al. 1998; 

Marshall et al. 2001).  One advantageous marker class for QTL detection in wheat might 

be AFLP markers, which amplify a large number of DNA fragments in a single PCR 

reaction, show a high level of polymorphism, and offer high reproducibility and 

reliability under stringent PCR conditions (Vos et al. 1995).  Another important marker 

class is simple sequence repeat (SSR), also called microsatellites, which are stable, 

abundantly dispersed throughout the genome, and locus-specific in hexaploid wheat.  

Detailed SSR genetic maps are now available for wheat (Roder et al. 1998, 2002; 

Pestsova et al. 2000; Somers et al. 2004).  Though SSR markers now are recognized for 

their efficiency in detecting a single locus with polymorphism of known identity, QTL 

mapping based exclusively on SSRs currently may be an unrealistic goal due to limited 

availability of SSR primers (Langridge et al. 2001).  The creation of a �skeletal� genetic 

map with SSRs, however, is achievable and serves a critical role in providing physical 

anchor points for specific chromosomes in a saturated AFLP map. 

Identification of QTLs influencing grain yield and related traits is needed to more 

precisely define their inheritance.  The vast majority of genomic-based research in wheat 

has previously focused on more simply inherited traits with indirect effects on 

productivity.  The objectives of this study were to 1) dissect QTLs affecting grain yield in 

winter wheat based on AFLP and SSR markers, 2) determine the chromosome locations 

and phenotypic effects of these yield related QTLs, 3) identify molecular markers 

associated with these traits. 
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MATERIALS AND METHODS 

Plant materials 

A population of 132 F12 recombinant inbred lines (RIL) was derived by single-seed 

descent from the F2 of the cross, Ning7840/Clark.  Ning7840 is a Chinese hard red 

facultative cultivar with the pedigree, Avrora/Anhui 11//Sumai 3.  It has relatively low 

yield potential but is highly resistant to various rust pathogens and Fusarium 

graminearum (Bai et al. 1999).  Clark is a soft red winter wheat cultivar developed at 

Purdue University, IN, USA (Ohm et al. 1988).  Distinctive features of Clark are its early 

date of heading combined with good yield potential, high kernel weight, and resistance to 

Wheat soilborne mosaic virus (Ohm et al. 1988). 

Experimental design 

Ning7840, Clark, and the 132 RILs were evaluated at one to three Oklahoma 

locations (Stillwater, 36°9�N and 97°05�W, Lahoma, 36°22� and 98°00�, and Altus, 

34°39� and 99°20�) for each of three crop years ending in 2001, 2002, and 2003, using a 

replicates-in-sets design with three replications.  Plot size was 1.4 m2, and seeding rate 

was 58 kg ha-1.  All experiments were planted according to a grain-only management 

system (early Oct. to early Nov.), and fertilizer was added according to soil-test 

recommendations for a 4000 kg ha-1 yield goal. 

Traits 

In addition to grain yield, information on adult-plant characters was collected based 

on relevance to this mapping population and on level of trait expression (Table 1).  Grain 

yield (GY) was measured as the weight of wheat grain harvested from the entire plot 

area.  Spike number (SN) was calculated from the number of spikes present in two 50-cm 

row segments 23 cm apart.  Kernel number spike
-1

 (KS) and kernel weight spike-1, 
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hereafter called spike weight (SW), were determined from the mean of 15 random spikes.  

Heading date (HD) was recorded as the number of days after 31 March when spikes were 

fully emerged from 50% of the plants in a plot.  Physiological maturity date (MD) was 

recorded on a visual scale from 1 = early to 4 = late based on the appearance of a yellow 

peduncle at the base of the spike.  Plant height (HT) was measured at harvest maturity 

from ground level to the tip of the spike, excluding awns.  Shattering (SH) and lodging 

(L) were recorded at harvest maturity on a visual scale from 1 = no shattering or no 

lodging to 5 = severe shattering or lodging.  Plant yellowing, indicative of barley yellow 

dwarf symptoms, was recorded from 10 to 30 April (heads emerged and during anthesis) 

using the scale from 1 = completely green canopy (no symptoms) to 5 = yellow canopy 

(severe symptoms).  Leaf rust reaction (LR) was based on percent severity.  Spike length 

(SL) was measured from base to tip, excluding awns.  Spike density (SD) was rated on a 

scale from 1 = compact spike to 4 = lax spike.  Chaff color (C) was recorded as dark 

(score of 1), intermediate (2), or light (3).  Some trait measurements were restricted to 

two or three environments depending on their level of repeatability or expression (Table 

1).  Twenty-seven RILs which showed unusually high shattering were removed from the 

data analysis in 2003.  

Analysis of SSRs 

Total genomic DNA was isolated from young leaf tissue of 2 to 4 week-old 

greenhouse-grown plants of both parents (Ning7840 and Clark) and the 132 F12 RILs 

using the modified cetylmethylammonium bromide (CTAB) procedure (Saghai-Maroof 

et al. 1984).  The PCR was performed in a volume of 12 µL containing 0.200 mM of each 

dNTP, 1x PCR buffer, three pmol of each primer, 2.5 mM MgCl2, 1 U of Taq 

polymerase, and 50 ng DNA.  The PCR was performed by means of a touchdown 
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program consisting of five cycles of 45 s at 95°C, 5 min of annealing at 68°C which 

decreased by 2°C each cycle, and 1 min at 72°C.  In the following five cycles the 

annealing temperature started at 58°C for 2 min and lowered by 2°C per cycle.  The PCR 

continued for 25 additional cycles of 45 s at 95°C, 2 min at 50°C, and 1 min at 72°C with 

a final elongation step of 72°C for 5 min.  The PCR products were denatured for 5 min at 

94oC before they were separated in a 6.5% polyacrylamide gel on a Li-Cor IR-4200 DNA 

sequencer (Li-Cor Inc., Lincoln, NE) using a fluorescent-labeled M13 primer for PCR 

detection.  The SSRs screened in this study included 181 XGWMs (Roder et al. 1998), 

160 BARCs (Cregan et al. 1999), 36 GDMs (Pestsova et al. 2000), 20 WMCs (Gupta et 

al. 2002), and 3 DUPWs (Du Pont, USA). 

Linkage mapping 

The two parents and the 132 RILs were previously characterized using AFLP 

markers (Bai et al. 1999), producing 618 polymorphic band readings (G. Bai, 

unpublished data).  Segregating SSR and AFLP markers were scored visually for each 

RIL and recorded as either type �A� (Ning7840) or �B� (Clark), whereas ambiguous bands 

were scored missing (-) and later combined for constructing a genetic linkage map.  

Linkage analysis was performed using the MAPMAKER program (Macintosh V2.0, 

Lander et al. 1987).  Recombination frequencies were converted to centimorgans (cM) 

using the Kosambi mapping function (Kosambi 1944). 

Statistical analysis 

The complete set of data from each environment was subjected to analysis of 

variance (ANOVA) to determine the main effects of genotype (RIL) and replication 

factors.  Phenotypic correlations were calculated for all combinations of traits based on 

RIL means across environments.  Principal component (PC) analysis of genotypes across 
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environments was performed based on standardized (µ = 0, σ = 1) means data using the 

PRINCOMP procedure of SAS (SAS Institute 2003).  Briefly, the resulting PC scores 

were represented in a genotype x trait biplot, trait vectors were drawn from the origin to 

the coordinates for each trait, and genotypes were represented by markers determined by 

their coordinates.  An angle formed between two traits (or genotypes) approximated their 

correlation, with 0- and 180-degree angles indicating strong correlations and a 90-degree 

angle representing a weak or zero correlation (Yan and Kang 2003).   

QTL analysis 

The original set of marker data, the genetic map generated with MAPMAKER 2.0, 

and the phenotypic data were used in the QTL analysis.  The Windows version of QTL 

Cartographer V2.0 (Wang et al. 2004) was used to conduct composite-interval mapping 

(CIM) analysis based on model 6 of the Zmapqtl procedure (Basten et al. 2001).  The 

closest marker to each local LOD peak (putative QTL) was used as a cofactor to control 

the genetic background while testing at a position of the genome.  The walking speed 

chosen for all QTL analysis was 2.0 cM.  The LOD significance was estimated from 

1000 permutations of the data.  Additive effects of detected QTL were estimated by the 

Zmapqtl procedure.  The proportion of phenotypic variance explained by a QTL was 

estimated as the coefficient of determination (R2) using single-factor analysis from a 

general linear model procedure (Basten et al. 2001).  For each QTL, R2 was determined 

for the single marker closest to the identified QTL. 
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RESULTS AND DISCUSSION 

Linkage map 

A total of 400 SSR markers were screened, of which 82 (21%) were polymorphic 

between the parents.  Combined with the 619 AFLP markers previously identified as 

polymorphic, 701 markers were subjected to linkage analysis.  Twenty-nine linkage 

groups were constructed from 363 AFLP and 47 SSR markers, after removal of markers 

< 1 cM apart.  Each group contained at least one anchor SSR marker (Fig. 1).  This 

linkage map spanned 2,223 cM, with an average interval length of 5.4 cM.  The 

recommended map distance for genome-wide QTL scanning is 10 recombinations per 

100 meiotic events, or an interval length less than 10 cM (Doerge 2002).  Of the 410 loci 

mapped, segregation distortion was detected for 28 AFLP and 2 SSR marker loci 

randomly distributed in different chromosomes. 

Phenotypic summary 

The phenotypic data were classified into three categories: yield traits, plant 

adaptation traits, and spike morphology traits (Table 1).  The analysis of variance (data 

not shown) indicated a high level (P < 0.01) of genetic variation for all traits in all 

environments.  Transgressive segregation was common among all traits (Table 1).  

Continuous distributions were also common except for shattering score.  Test statistics 

for skewness and kurtosis were generally less than 1.0, indicating suitability of the data 

for QTL analysis. 

Clark performed more favorably for yield and spike morphology traits, and 

Ning7840 showed greater resistance to leaf rust (Table 1).  Mean grain yield, spike 

number, kernel number spike-1, and spike weight were 9 to 26% greater for Clark than for 

Ning7840 across environments (P < 0.05).  Clark also produced longer spikes than 
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Ning7840 in all environments (P < 0.05).  Only for yield in Stillwater 2003 and for spike 

number in Stillwater 2001 did Ning7840 exceed Clark.  Though genetic variation was 

found in the RIL population for all plant adaptation traits, Ning7840 and Clark did not 

differ for these traits, except for Clark�s greater susceptibility to leaf rust.  Parental 

differences were present, but inconsistent among environments, for heading date, 

shattering score, and lodging score.   

Positive phenotypic correlation coefficients were found between each of the three 

yield components and grain yield (Fig. 2).  As expected, greater shattering, lodging, plant 

yellowing, and leaf rust susceptibility were associated with lower yield.  Hence, 

identification of QTLs with direct effects on yield requires scanning for QTLs that 

influence yield independently of these adaptation traits.  Differences in the degree of 

spike compactness did not correlate with differences in grain yield, although more 

compact spikes made shorter spikes.  From the biplot (Fig. 3), vectors representing 

uncorrelated traits formed 90-degree angles (e.g., GY vs. SD or HT), whereas highly 

correlated traits formed either acute (positive association; e.g., LR, Y, and L) or obtuse 

(negative association; e.g., GY vs. LR, Y, L, or SH) angles.  In general, the biplot 

produced four distinct trait clusters indicative of strong positive association within 

clusters: GY and SW; KS and SL; LR, Y, and L; and HT, SN, and HD.  Spike weight 

showed the strongest positive association with grain yield, which might be expected 

considering that spike weight integrates the effects of kernel number spike-1 and kernel 

weight.  Furthermore, given the breadth of environments for which yield and spike 

weight were associated, mapping of these traits could reveal consistent QTLs across 

variable environments. 



 11

QTL mapping 

The composite-interval mapping analysis produced a total of 206 putative major 

and minor QTLs (Table 2, Fig. 1).  For all categories of traits, QTL frequency was 

highest in the B genome with 124 QTLs (60%); another 64 (31%) and 18 (9%) QTLs 

were found in genomes A and D, respectively.  Distribution of QTLs was balanced 

among homologous chromosome groups one to seven as follows: 25 (12%), 33 (16%), 34 

(17%), 25 (12%), 29 (14%), 36 (17%), and 24 (12%).  Chromosomes 2A, 3D, and 4D 

were not included in the analysis.   

We detected a mean of six putative QTL for yield related traits, four for plant 

adaptation traits, and five for spike morphology traits.  These results coincide with a 

summary of 47 studies on cereals, where the number of QTLs identified for a particular 

trait varied up to about 16 with a mean of about 4 (Kearsey and Farquhar 1998).  

QTLs for yield traits 

Ten QTLs were detected with a major effect on grain yield (Tables 2 and 3) and 

with a high degree of gene dispersion between the parents.  The Clark allele increased 

grain yield for five QTLs in linkage groups 2BL, 4AL, 4B, 5A, and 6B, with LOD values 

of 3.2 to 6.0 and accounting for 8 to 19% of the phenotypic variation.  Alleles from 

Ning7840 increased yield at the other five major QTLs in linkage groups 1AL, 1B, 5B, 

7A, and 7DL2, with LOD values from 3.1 to 7.0, accounting for 9 to 21% of the 

phenotypic variance.   

Chromosome 5A, where our most repeatable yield QTL was identified, is known to 

carry a number of influential genes affecting anthesis date, frost tolerance, drought 

tolerance (Shindo et al. 2002; Toth et al. 2003), productivity, and adaptability (Kato et al. 

2000; Huang et al. 2004).  The QTL in 5A identified here may be related to the one 
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detected for yield by Kato et al. (2000).  The yield QTL in linkage group 4B was 

uniquely detected in this population, though this genomic region was coincidental to 

other adaptation traits (plant height and shattering) and to spike length (Fig.1).  We found 

no previous report of a yield QTL on 4B. 

Less consistent or environment-specific chromosome regions associated with yield 

were identified in linkage groups 2BL, 4AL, 5B, 6B, and 7DL2 (Fig. 1).  Similar findings 

with yield were reported for 2BL and 5B (Huang et al. 2003), 4AL (Araki et al. 1999), 

and 6B (Huang et al. 2004).  No QTL was previously reported on 7DL. 

The lack of association between yield and spike number at ST01 and ST02 resulted 

in no common QTLs between them (Fig. 3).  Inconsistent parental differences in spike 

number (Table 1) further hindered an attempt to detect meaningful QTLs for this yield 

component.  Linkage group 3BS contained a major QTL for spike number that explained 

12% of the phenotypic variance (Table 3).  This finding agrees with the results of Huang 

et al. (2003), but Huang et al. (2004) reported another QTL for spike number on 

chromosome 1B that may correspond to the consistent minor QTL we detected in linkage 

group 1B (Table 2).   

In contrast to spike number, eight major QTLs were detected for kernel number 

spike-1 (Table 3). Six of these were mapped to linkage groups 1AL, 1B, 2BS, 3BS, 4B, 

and 7BS2 at which the Clark allele increased kernel number spike-1.  Two other QTLs, 

with positive effects from Ning7840, were found in linkage groups 2DL2 and 6A.  The 

major QTL in linkage group 6A was significant in all environments and coincident with 

the 6A minor QTL for yield (Fig. 1).  In another unrelated population, Huang et al. 

(2004) identified a QTL in the same genomic position and with similar effects.  Other 

important QTLs for kernel number spike-1, CTCG.CGAC6/CTCG.CT2 on 1AL and 
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ACT.CAT11/AGG.CAG1 on 4B, showed common effects with grain yield in some, but 

not all, environments (Table 3 and Fig. 1). 

Distinct differences between parental lines for spike weight allowed the 

identification of seven major QTLs in as many linkage groups (Table 3).  Four QTLs in 

linkage groups 2DL, 3BS, 5A, and 6B explained 10 to 13% of the phenotypic variation, 

in which the Clark allele increased spike weight.  Three QTLs in which Ning7840 

increased spike weight were located in linkage groups 1B, 2BL, and 3BL2, explaining 8 

to 11% of the phenotypic variance.  Putative QTLs in linkage groups 1B and 6B were 

among the most consistent across environments, yet we found no QTLs previously 

reported in those positions.  Additional evidence of QTLs was reported by Huang et al. 

(2004) in chromosomes 3BS and 6A; by Araki et al. (1999) and Borner et al. (2002) in 

chromosome 4A, and by Kato et al. (2000) in chromosome 5A.  The strongest phenotypic 

association exhibited by spike weight and yield (Fig. 3) may be reflected in the common 

marker interval in linkage groups 1B (GCTG.GTG2/AAC.GAC10) and 5A 

(BARC180/ACG.GAC1.2).  No common locus was identified among other QTLs that 

mapped to the same chromosome (2BL and 6B).  The role of these unique QTLs for 

spike weight to yield formation is not easily elucidated considering yield fluctuations are 

tempered by spikes with fewer heavy kernels or with more numerous lighter kernels. 

Summarizing to this point, yield traits in this population were largely influenced by 

QTLs distributed among linkage groups 1AL, 1B, 2BL, 3BS, 4B, 5A, 6A, and 6B.  

Considering all traits (Table 3), a QTL for spike number, kernel number spike-1, and 

spike weight mapped to the same position in the marker interval 

XGWM533/CTCG.AGC1 (linkage group 3BS) as did a QTL for kernel number spike-1 

and kernel weight in the marker interval AGG.CTC13/CTCG.AGC9 (linkage group 1B) 
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and AGT.CTG13/XGWM389 (linkage group 3BS).  Concordance in genomic positioning 

signals a molecular basis for the phenotypic relationships summarized in Figure 3.   

QTLs for plant adaptation traits 

Genomic regions significantly associated with yield were also associated with traits 

conditioning adaptation.  Clusters of yield-coincident QTLs were found in linkage groups 

1B (lodging and leaf rust reaction), 4B (plant height), 5A (shattering, lodging, and leaf 

yellowing), and 7A (shattering).  Coincidence of QTLs may indicate either single genes 

with pleiotropic effects or that the genomic regions associated with these QTLs harbor a 

cluster of linked genes associated with yield potential and adaptation. 

Shattering and lodging scores, leaf yellowing, and leaf rust reaction associated 

negatively with grain yield (Fig. 2, 3).  Expression of shattering was relatively light in 

three environments (ST02, ST03, and LA03), but distinctly more severe in LA02 and 

AL03.  Across those five environments, six putative QTLs were found in linkage groups 

4B, 5A, 6A, 6B, 7A, and 7DL (Tables 2, 3).   Detection of these QTLs was highly 

inconsistent among environments, and most had moderate effect with LOD values 

ranging from 3.2 to 3.5.  One notable exception was the QTL in linkage group 7DL 

identified in ST03, which exhibited a LOD value of 9.8 and accounted for 56% of the 

phenotypic variance (Table 3).  Interestingly, this major QTL was easiest to detect in an 

environment that produced the lowest RIL population mean for shattering.  Grain yield in 

this environment did not map to the same linkage group as did the shattering QTL.  Grain 

yield, however, did map to the same position for regions in linkage groups 5A 

(ACG.GAC1.2/ACG.GAC6) and 4B (AAC.CAG2/ACT.CAT11; closest marker interval), 

but still only in isolated environments (ST02 and LA02, Tables 2 and 3).  The only 

linkage group to which shattering was mapped in multiple environments was 6B, a 
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linkage group relatively unimportant to grain yield expression in this population.  We 

have found no published precedent for a shattering QTL in wheat. 

Three major QTLs for lodging score were identified in linkage groups 1B, 4AL, 

and 5A.  The QTL in 5A was identified in two of three environments and a QTL in a 

similar location was reported by Keller et al. (1999).  Chromosome 5A is also mentioned 

as one of the locations of a stem solidness gene (Cook et al. 2004).  Among all traits 

plotted in Figure 3, lodging score showed the strongest negative association with yield.  

This relationship may in part be attributed to the consistent QTL on linkage group 5A, 

which mapped to the same chromosome region for both traits.  For this region, the allele 

from Clark increased yield but decreased lodging score. 

The leaf yellowing we observed immediately prior to heading was indicative of 

barley yellow dwarf symptoms, though this was not confirmed serologically.  Six QTLs 

were detected across linkage groups 2BL, 2DL2, 3BS, 5A, 6A, and 7DL3.  Marker-

assisted selection for resistance to Barley Yellow Dwarf Virus (BYDV) was previously 

attempted (Henry et al. 2000) based on microsatellite marker XGWM37 located also on 

7DL.  We identified a single QTL on 7DL3 (LA03).  The QTLs for leaf yellowing and 

yield coincided in a genomic region in linkage group 5A.  Marker alleles associated with 

this locus had inverse effects on yield versus leaf yellowing.   

Three major QTLs on 3BS, 1B, and 2DL2 were associated with leaf rust reaction.  

The QTL on 3BS (XGWM493/ACT.TGC7) was previously associated with Lr34/Yr18 

(Singh et al. 2000). 

Spike development and date of heading in wheat are considered to be controlled by 

three major groups of genes: photoperiod response genes on 5A and 5D; vernalization 

response genes on 5A, 5B, and 5D; and �earliness per se� genes on homoeologous groups 
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2 and 4, 3A, 6B, and 7B. (Shah et al. 1999; Bullrich et al. 2002; Shindo et al. 2003).  All 

QTLs identified in this population for heading date, except the linkage group in 3BL2, 

could be traced to those same chromosomes.  The QTL on 5B, detected in three of the 

five environments (Table 2), was most consistent though two major QTLs could be 

detected from other linkage groups (3BL2 and 6B) in certain environments.  Hence, 

heading date differences were likely driven by a combination of developmental factors in 

this population.  The Ning7840 allele always delayed heading date for all QTL.  Some of 

the same linkage groups harboring QTLs for heading date also influenced maturity date 

(5B and 6B).  One major QTL unique to maturity date was detected in linkage group 1B, 

indicating independent mechanisms controlling maturity. 

 Six putative QTLs influenced plant height, but QTLs on 4B and 6A were the most 

consistent as they were detected in most environments.  These regions have been widely 

reported elsewhere (Cadalen et al. 1998; Borner et al. 2002; Huang et al. 2003, 2004).  

The Clark allele on 6A increased plant height, but the Clark allele on 4B reduced it, 

owing to the complexity of genetic control of plant height.  We found no significant 

association between yield and height in this population to warrant the consideration of 

height QTLs to indirectly manipulate yield (Fig. 1 and 3).  However, a common marker 

interval was identified in linkage group 4B (ACT.CAT11//AAC.GCAG4; Table 3), in 

which the allele from Clark increased yield but decreased plant height. 

Spike morphology 

Nine major QTLs were identified for spike length.  Those in linkage groups 1AS, 

2BL, 2BS, 4B, and 7A showed a positive effect from the Clark allele, whereas QTLs on 

1AL, 1B, 3BL, 5B, and 7BS showed a negative effect.  The QTL on chromosome 3BL 

was detected in every environment (Table 2), although this chromosome rarely 
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contributed to grain yield variation.  Only the QTLs identified on 1AS and 2BS were 

consistent with previous results (Sourdille et al. 2000).  Contrary to their moderate 

phenotypic correlation coefficient, the degree of spike compactness, or spike density, was 

mostly dissociated with spike length based on coincidence of QTLs.  Four QTLs 

affecting spike density were identified in linkage groups 1B, 4AL, 7BS, and 7DL3.  Only 

the QTL on 7BS was found in the same position (AGC.GCG13/AGG.CT3) for both traits 

(Fig. 1). 

Despite distinct differences in awn presence between parents (Clark, awnletted; 

Ning7840, fully awned), we were not able to reproduce findings of earlier studies for 

major QTLs on 4A and 6B (Sourdille et al. 2002); instead, we did identify one major 

QTL in linkage group 7BS2.  Chaff color was attributed to genes on homologous group-1 

chromosomes in an earlier study (Borner et al. 2002).  We identified a major QTL for 

chaff color in linkage group 1B with darker color contributed by Clark. With a LOD 

value of 40 this QTL explained 45% of the total variability.  The flanking interval for this 

QTL was ACT.CAGT1/ACA.CTA8. 

Summarizing across all traits, the identified QTLs in each linkage group 

influenced, on the average, three traits.  The QTLs for an unusually high number of traits 

were located on the linkage group 1B (eight from fifteen possible).  Ning7840 is believed 

to possess the 1RS.1BL translocation (NGRP 2004), which was likely segregating in this 

RIL population.  The 1RS.1BL translocation from Avrora was previously shown to 

increase grain yield in Oklahoma by 9 to 10% (Carver and Rayburn 1994), but only in 

one environment (ST03) was a QTL directly attributed to yield in linkage group 1B 

(Table 2).   
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In conclusion, the genetic control of grain yield and associated agronomic traits of 

wheat was dissected into QTLs.  These traits were primarily influenced by QTLs 

concentrated in at least seven distinct genomic regions.  Key QTLs in linkage groups 

2BL, 2BS, 2DL, and 6B were uniquely associated with yield and yield components and 

offer the greatest potential for marker-assisted yield improvement schemes.  In addition 

to 1B, other major QTLs in linkage groups 1AL, 4B, 5A, 6A, and 7A impacted grain 

yield through their effect on related traits (e.g., lodging resistance).  Several important 

interval markers were AFLPs and will thus need to be converted into sequence-tagged 

site (STS) or more SSR markers need to be identified in these regions.  With further 

validation, the identified QTLs for yield and agronomic related traits should allow the 

design of appropriate marker-assisted selection strategies that center on multi-trait 

selection for desirable characters with coincident QTL locations and on breaking 

unfavorable linkages between negatively correlated traits. 
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Table 1.  Phenotypic summary of yield related traits, plant adaptation traits, and spike morphology for 

Ning7840, Clark, and their RIL progeny evaluated in various Oklahoma environments from 2001 to 

2003 (environments listed for each trait in decreasing order for RIL mean yield) 

Parents  RIL Population�  
Trait  

 
Env. Clark Ning7840  Mean Max. Min. SD 

Skew- 
ness 

Kurto- 
sis 

 
�������������������� Yield ������������������� 

Grain yield LA03 5089 4360  4074 5741 2089 803 0.03 -0.29 

(kg ha-1) ST03 3579 3777  3491 5686 2345 535 0.68 1.91 

 ST01 2725 2381  2308 3616 431 641 -0.50 0.16 

 AL02 2038 1892  1865 3247 381 555 -0.04 -0.02 

 ST02 1947 1585  1691 3001 412 483 -0.10 0.10 

 LA02 1481 953  1628 3880 186 826 0.47 -0.36 

 AL03 1304 589  1241 3236 260 739 0.51 -0.79 
           

Spike number  ST01 456 494  442 690 270 71 0.36 0.48 

 ST02 721 539  608 955 387 98 0.34 0.42 

           

LA03 33.7 32.6  31.4 44.7 24.3 3.8 0.73 0.80 Kernel number 
spike-1 ST03 38.0 34.6  37.2 51.3 28.7 4.3 0.64 0.62 

 ST01 37.0 33.5  36.8 52.0 23.0 5.2 0.09 0.57 

 AL02 33.7 30.3  29.1 43.7 10.0 6.5 -0.30 -0.29 

 ST02 36.7 31.3  32.5 41.7 22.0 4.0 0.12 -0.55 

           

Spike weight LA03 1.11 0.91  0.97 1.27 0.70 0.12 0.25 -0.28 

(g)  ST03 1.23 0.96  1.10 1.40 0.83 0.12 0.06 -0.46 

 ST01 1.20 0.80  1.12 1.50 0.70 0.15 -0.45 0.10 

 AL02 0.90 0.70  0.72 1.13 0.23 0.17 -0.25 0.18 

           
������������������������������������� Plant adaptation ��������������������������������� 

Heading date� LA03 24 22  25 34 19 4.6 0.31 -1.25 

 ST03 27 27  28 34 22 2.5 -0.27 0.32 

 ST02 21 25  23 27 16 3.0 -0.62 -0.44 

 LA02 20 29  25 32 18 3.4 -0.09 -0.91 

           

Maturity date  ST03 1.7 1.7  2.2 4.0 1.0 0.8 0.19 -1.08 

(1-4) ¶ ST01 1.5 1.5  1.6 4.0 1.0 0.7 1.02 0.19 

           

LA03 86 85  85 102 67 8 -0.28 -0.46 Plant height 
(cm) ST03 78 78  78 93 59 7 -0.16 -0.21 

 ST01 71 70  67 88 48 7 0.15 0.23 

 ST02 82 75  79 98 62 7 -0.02 -0.19 

 LA02 83 72  79 103 55 9 -0.15 -0.04 
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Parents  RIL Population�  
Trait  

 
Env. Clark Ning7840  Mean Max. Min. SD 

Skew- 
ness 

Kurto- 
sis 

           

Shattering 
score  

LA03 1.1 1.7  1.7 4.3 1.0 0.8 1.04 0.65 

(1-5)§ ST03 1.2 1.1  1.2 3.7 1.0 0.4 2.97 11.56 

 ST02 1.7 1.0  1.4 4.0 1.0 0.6 2.15 5.24 

 LA02 3.5 2.0  2.2 4.0 1.0 1.2 0.41 -1.35 

 AL03 3.0 4.3  3.4 5.0 1.0 1.6 -0.41 -1.44 

           

Lodging score  LA03 1.0 1.2  1.7 5.0 1.0 0.9 1.45 1.77 

(1-5)�� ST03 1.2 1.1  1.6 4.0 1.0 0.7 1.18 0.60 

 ST02 1.3 1.7  2.4 4.0 1.0 0.8 0.00 -0.99 

           

LA03 1.2 2.3  1.9 4.0 1.0 0.7 0.95 0.56 

ST03 1.9 1.8  1.9 3.3 1.0 0.5 0.63 0.36 

ST02 1.7 2.0  2.1 3.7 1.0 0.5 0.38 0.22 

Leaf 
yellowing  
(1-5)�� 

LA02 1.3 2.3  2.1 4.7 1.0 0.8 1.09 1.77 

           

LA03 2.4 1.0  4.3 30.0 1.0 5.4 2.44 6.88 

ST02 46.0 12.7  45.9 93.3 1.3 27.5 -0.08 -1.30 

Leaf rust 
reaction  
(%)¶¶ 

LA02 24.3 12.3  53.5 99.0 2.3 32.5 -0.13 -1.55 

           
����������������������������������� Spike morphology ��������������������������������� 

LA03 8.1 7.7  8.0 10.0 6.0 0.75 0.16 0.17 

ST03 8.9 8.0  8.1 10.3 6.0 0.91 -0.17 0.16 

Spike length  
(cm) 

ST01 7.5 7.5  7.4 9.5 5.0 0.97 -0.11 -0.13 

 AL02 8.0 6.7  7.7 9.7 5.7 0.86 0.24 -0.13 

 ST02 8.0 6.3  8.2 10.7 6.3 0.91 0.57 0.09 

           

Spike density   LA03 3.0 2.0  2.8 4.0 1.0 0.6 -1.18 1.47 

(1-4)§§ ST03 3.0 2.3  2.8 4.0 1.0 0.7 -0.95 0.94 

 ST01 4.0 3.0  3.4 4.0 1.0 0.8 -1.37 0.88 

� Population of 132 F12 recombinant inbred lines 
� Days after 31 March 
¶ Early=1, late=4 
§ No shattering=1, severe shattering=5 
�� No lodging=1, severe lodging=5 
�� No yellowing=1, severe yellowing=5 
¶¶ % severity 
§§ Compact=1, lax=4 
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Table 2. QTLs detected in more than one environment (italicized) by composite interval mapping analysis for the Ning7840 x Clark RIL population evaluated in 

Oklahoma from 2001 to 2003 (bold  = major QTLs, LOD > 3; non-bold = minor QTLs, 2 < LOD ≤ 3).  QTLs detected only in a single environment are given 

in plain type.  Environments arranged from left to right in decreasing order for RIL mean yield.   

  Environments  

  Lahoma Stillwater Stillwater Altus Stillwater Lahoma Altus  

Trait Symbol 2003 2003 2001 2002 2002 2002 2003 Total 

Consistent 
linkage 
groups � 

������������������������������ Yield traits ������������������������������ 

Grain yield GY 2BL, 5A, 1AL 

2BS 

4B, 5B, 6B, 

7A, 1B, 7DL3 

2BL, 5A, 6A, 

6B, 3AS2, 4AL  

5A, 6A, 7A 4B, 5A, 5B, 

6A, 7A 

4B, 5A, 6B 2BL, 5A, 

7A, 3BL, 

7DL2 

13-19 5A 

Spike number  SN   1B, 3BS, 6A  1B   1-3 1B 

Kernel number 

spike-1 

KS 1AL, 2BS, 4B, 

6A, 2BL, 

2DL2 

2BS, 4B, 6A, 

5A, 7A 

6A, 1B, 1AS 

7BS2, 7DL 

3BS, 4B, 

6A  

1AL, 3BS, 

4B, 6A,  

2DL, 3BL 

  10-15 6A 

Spike weight SW 6B, 2BL, 

3BL2 

1B, 2BS 6B, 1AL 1B, 3BS, 

6B, 5A 

3BS, 2DL, 

4AL, 6A 

  10-5 6B 

����������������������������� Plant adaptation traits  ����������������������������� 
Heading date HD 3BL2, 2BS, 

7BL 

3A5A, 4B, 5B, 

6B 

  3A5A, 4B, 5B  3BL2, 5B, 3BS  3-10 5B 

Maturity date MD  1B, 5B, 

3AS2, 6B 

1B, 5B, 7A     4-3 1B, 5B 

Plant height HT 6A 2BL, 4B, 6A, 2BL, 4B, 2DL,  2BS, 3BL, 2BS, 3BL, 4B,  13-6 4B, 6A 
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  Environments  

  Lahoma Stillwater Stillwater Altus Stillwater Lahoma Altus  

Trait Symbol 2003 2003 2001 2002 2002 2002 2003 Total 

Consistent 
linkage 
groups � 

5B 2DL2 4B, 6A 6A, 4AL, 6B 

Shattering score SH 3BL, 6B, 

3BL2 

6B, 7DL   3BL, 4B, 6B, 

7A 

1AL, 2DL, 5A 4B, 7A, 

2DL2, 6A 

6-10 6B 

Lodging score L 5A, 4AL, 5B 5A, 3A5A, 4B   1B, 2DL, 6B, 

7BS2 

  4-6 5A 

Leaf yellowing Y 5A, 6A, 

2DL2, 7DL3 

5A, 6A, 1B, 

4B 

  5B 5A, 2BL, 2BS, 

3BS 

 9-4 5A 

Leaf rust reaction LR 4B, 7BS2    1B, 2DL2, 

3BL, 3BS, 6B 

1B, 2DL2, 3BL, 

3BS, 6B, 2BS 

 4-9 3BS 

������������������������������ Spike morphology ������������������������������ 
Spike length SL 2BS, 3BL, 5B, 

1AL, 6A 

1AS, 1B, 

3BL2, 5B, 7A 

2BS, 3BL, 

3BL2, 5B, 2BL 

1AS, 3BL, 

5B 

1B, 3BL, 7A, 

2DL, 4B, 7BS 

  12-12 3BL 

Spike density SD 1B, 6B, 4AL 1B, 4B, 5B, 

7DL3 

6B, 2BL, 7BS     4-6 1B, 6B 

Awns A 7BS2 7BS2 3AS2, 6A  3AS2   2-3 7BS2 

Total  17-21 22-22 14-19 8-5 16-28 12-13 6-3 95-111  

� Linkage group(s) with the highest consistency across environments
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Table 3.  Primary genomic regions and their associated additive gene effects for grain yield related traits, 

plant adaptation traits, and spike morphology identified by composite interval mapping (CIM) with a 

minimum LOD threshold of 3.0.   

Linkage group Position  Marker interval LOD a� R2 

 cM     % 

Grain yield     kg ha-1  

       

1AL 66  CTCG.CGAC6/CTCG.CTC2 3.2 -252 9.4 

1B 35  GCTG.GTG2/AAC.GAC10 3.4 -172 9.6 

2BL 3  AAG.CAGT12/AGC.GCG2 3.5 253 11.3 

4AL 78  AAC.CTG8/ACT.CAGT4B 3.2 181 7.6 

4B 78  ACT.CAT11/AGG.CAG1 4.0 267 10.2 

5A 38  ACG.GAC1.2/ACG.GAC6 6.0 241 18.5 

5B 49  ACC.AGC7/AAG.CTA1 3.1 -185 11.2 

6B 39  GCTG.CTT1/GTG.GAC9 3.1 175 7.3 

7A 103  BARC108.7AL-S/AGG.CAG10 7.0 -361 21.1 

7DL2 4  BARC97.7DL/AAC.CGAC9 3.3 -384 10.6 

       

Spike number m-2     no.  

       

3BS 59  XGWM493.3BS/ACT.TGC7 4.3 -25 12.0 

       

Kernel number spike-1     no.  

       

1AL 68  CTCG.CGAC6/CTCG.CTC2 3.6 1.2 9.0 

1B 62  GCTG.GCG8/AAG.CAG4 5.1 1.9 12.0 

2BS 179  CTCG.AGC6/ACA.CTA3 3.3 1.2 9.3 

2DL2 14  AGC.TGC5/WMC41.2DL 4.5 -1.3 12.2 

3BS 72  AGT.CTG13/XGWM389.3BS 3.9 1.2 8.7 

4B 78  ACT.CAT11/AGG.CAG1 6.0 1.5 14.1 

6A 80  AAC.CTG5/AAC.CTG5 7.4 -2.1 21.0 

7BS2 24  CTCG.CAT2/AGT.CTG3 4.1 1.7 9.6 

       

Spike weight     g  

       

1B 46  ACT.GCG2/ACT.CAGT1 3.5 -0.06 7.9 

2BL 61  AGC.CTC11/U298 3.1 -0.04 11.0 

2DL 0  GTG.CTT4/ACTG.GCG5 4.1 0.05 9.7 

3BL2 88  GCTG.GCAG6/GCTG.GTG9 3.2 -0.04 9.9 

3BS 72  AGT.CTG13/XGWM389.3BS 4.8 0.04 11.3 

5A 25  BARC180.5AS-6BL/ACG.GAC1.2 4.7 0.06 10.7 

6B 95  AGC.TGC7/ACA.GCG1.2 4.5 0.06 13.2 
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Linkage group Position  Marker interval LOD a� R2 

 cM     % 

Heading date     d  

       

3BL2 169  AGG.GAC10/AGC.TGC2 3.3 -1.1 9.3 

5B 60  ACA.CTA13/CTCG.CAT7 4.7 -1.1 12.0 

6B 77  AGG.CTC5/ACA.CTGA7 3.4 -0.9 10.7 

       

Maturity date rating     (1-4)  

       

1B 50  ACT.CAGT1/ACA.CTA8 3.9 -0.27 9.9 

3AS2 14  GCTG.GAC12/AAC.CAG5 3.3 0.28 10.0 

6B 57  AAG.CTG5/DUPW216.6B 4.2 -0.32 11.5 

       

Plant height     cm  

       

2BL 40  ACT.CAT4/GCTG.ACGC2 6.0 3.0 16.7 

2BS 144  ACA.AGC6.5/GCTG.ACGC1 6.0 -3.8 16.9 

2DL 33  GCTG.GCAG2/AGG.CTG1 4.9 2.8 12.3 

3BL 27  CTCG.AGC3/CTCG.CTC4 4.4 2.9 9.6 

4B 75  AAC.CTG1/AAC.CAG2 6.7 -2.8 14.9 

6A 87  AGC.TGC4/ACC.AGC5 5.6 2.5 12.1 

       

Shattering score     (1-5)  
       

4B 73  AAC.CTG1/AAC.CAG2 3.5 -0.21 9.2 

5A 32  ACG.GAC1.2/ACG.GAC6 3.3 -0.36 8.9 
6A 63  CTCG.GTG2/AAC.CGAC8 3.2 0.50 9.3 

6B 93  ACA.CTG16/AGC.TGC7 3.3 0.84 10.2 

7A 99  GCTG.GCG2/BARC108.7AL-S 3.3 0.59 12.1 

7DL 56  AAC.AGC10/AAG.CTA8 9.8 -0.61 55.9 

       

Lodging score     (1-5)  

       

1B 41  AAC.GCAG13/AGT.CTG1 7.1 0.37 16.7 

4AL 4  GCTG.CTT9/BARC170.4AL 5.0 0.36 14.1 

5A 38  ACG.GAC1.2/ACG.GAC6 5.9 -0.39 23.0 

       

Leaf yellowing     (1-5)  

       

2BL 38  ACT.CAT4/GCTG.ACGC2 4.6 -0.29 11.0 

2DL2 16  AGC.TGC5/WMC41.2DL 5.2 0.31 14.5 

3BS 72  CTCG.AGC1/AGT.CTG13 4.0 0.27 9.3 

5A 38  ACG.GAC1.2/ACG.GAC6 6.0 -0.35 16.6 
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Linkage group Position  Marker interval LOD a� R2 

 cM     % 

6A 31  ACA.CTA1.5/AAC.GAC1 4.3 -0.35 12.3 
7DL3 29  CTCG.GTG9/AAG.CTC6 3.4 -0.26 8.7 

       

Leaf rust reaction     %  

       

1B 41  AAC.GCAG13/AGT.CTG1 3.4 7.7 7.4 

2DL2 16  AGC.TGC5/WMC41.2DL 3.5 -9.2 7.9 

3BS 51  ACT.CAT3/XGWM493.3BS 7.2 -11.6 16.9 

       

Spike length     cm  

       

1AL 58  AGG.CTG7/AGC.GCG3.7 4.1 -0.44 12.8 

1AS 79  BARC28.1AS/AGT.GCG6 3.3 0.31 10.8 

1B 70  CTCG.AGC9/AAG.CAGT1 3.7 -0.30 9.6 

2BL 53  AGC.CTC11/U298 3.8 0.37 11.9 

2BS 159  GCTG.GTG7/AAC.CAG1 4.3 0.31 13.7 

3BL 61  AGG.CTC7/CTCG.CTC11 3.3 -0.30 7.4 

4B 83  BARC20.4BS-7BL/AAC.GCAG4 8.2 0.40 18.0 

5B 134  ACA.CTG1/GCTG.GCAG3 6.8 -0.44 16.6 

7A 24  CTCG.CAT1/AAG.AGC12 4.7 0.40 17.1 

7BS 39  AGC.GCG13/AGG.CTC3 4.3 -0.28 8.7 

       

Spike density     (1- 4)  

       

1B 0  ACA.CTA7/CTCG.CTC10 3.2 -0.24 9.8 

4AL 21  CTCG.GTG3/ACC.AGC2 3.5 0.22 11.8 

7BS 38  E13/AGC.GCG13 5.8 -0.33 15.9 

7DL3 7  BARC172.7DL/GTG.CAGT4 3.8 -0.29 14.1 

� Additive effects were estimated as the mean (in trait unit) difference between the two RIL genotypic 

groups carrying the Clark and Ning7840 alleles.  A positive value implies the Clark allele increased 

phenotypic value whereas a negative value implies the Clark allele decreased phenotypic value.
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Fig. 1 Primary genomic regions of major QTLs (LOD > 3) identified by composite 

interval mapping for grain yield and yield components, plant adaptation traits, and 

spike morphology from the Ning7840 x Clark RIL population evaluated in Oklahoma 

from 2001 to 2003.  Bars indicate the number of environments for which the same 

marker interval was detected.  Triangles indicate the interval exhibiting the peak LOD 

value.  
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Fig. 2 Correlation coefficient plot among yield related traits, plant adaptation traits, and spike morphology for the Ning7840 x Clark 

RIL population evaluated in Oklahoma from 2001 to 2003.  Only significant r-values (P < 0.05) are shown in the plot.  Traits are 

grain yield (GY), spike number (SN), kernel number spike-1 (KS), spike weight (SW), heading date (HD), plant height (HT), 

shattering score (SH), lodging score (L), leaf yellowing (Y), leaf rust reaction (LR), spike length (SL), and spike density (SD). 
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Fig. 3 Principal component (PC) analysis biplot summarizing the relationship among yield traits, plant 

adaptation traits, and spike morphology for the Ning7840 x Clark RIL population evaluated in 

Oklahoma from 2001 to 2003.  Traits are grain yield (GY), spike number (SN), kernel number spike-1 

(KS), spike weight (SW), heading date (HD), plant height (HT), shattering score (SH), lodging score (L), 

leaf yellowing (Y), leaf rust reaction (LR), spike length (SL), and spike density (SD). 
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APPENDIX 

 
 

Table 1.  Location and years for which traits pertaining to grain yield, plant adaptation, and spike 

morphology were measured (X) in the Ning7840 x Clark RIL population (Stillwater, ST; Lahoma, LA; 

and Altus, AL, Oklahoma). 

2001   2002    2003   
Trait category 

Trait 
Abbreviation ST  ST LA AL  ST LA AL 

Yield           

   Grain yield  GY X  X X X  X X X 

   Spike number  SN X  X       

   Kernel number spike-1 KS X  X  X  X X  

   Spike weight  SW X  X  X  X X  

Plant adaptation            

   Heading date  HD   X X   X X  

   Maturity date  MD X      X   

   Plant height  HT X  X X   X X  

   Shattering score  SH   X X   X X X 

   Lodging score  L   X    X X  

   Leaf yellowing Y   X X   X X  

   Leaf rust reaction  LR   X X    X  

Spike morphology           

   Length  SL X  X  X  X X  

   Density SD X      X X  

   Awns  A X  X    X X  
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Fig. 1.  Integrated AFLP and SSR linkage map based on Ning7840 x Clark RIL population. Cumulative 

distances between markers are given in cM, calculated from recombination frequencies according to 

Kosambi mapping function. 
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ABSTRACT 

Grain quality factors are important in determining the suitability of wheat 

(Triticum aestivum L.) for end-use product value, and they constitute prime targets for 

marker-assisted selection.  The objective of this study was to identify quantitative trait 

loci (QTLs) that influence milling quality.  A population of 132 F12 recombinant inbred 

lines (RILs) was derived by single-seed descent from a cross between the Chinese hard 

facultative wheat Ning7840 and the soft red winter (SRW) wheat Clark.  The population 

was grown at three Oklahoma locations from 2001 to 2003.  In addition to wheat protein, 

physical factors such as test weight, kernel weight, and kernel diameter, and class factors 

such as hardness index, were characterized.  The map of this population consisted of 410 

markers (363 AFLP and 47 SSR) in 29 linkage groups.  The additive effects of individual 

QTLs identified by composite interval mapping analysis accounted for up to 27% of the 

phenotypic variation.  Positive phenotypic correlations were found among physical 

factors.  A unique QTL was identified for test weight in linkage group 5B that influenced 

test weight independent of kernel weight and presumably through grain packing 

efficiency.  Common markers were identified for test weight, kernel weight, and kernel 

diameter on 5A.  Consistent co-localized QTLs were identified for kernel weight and 

kernel diameter in linkage group 6A.  Unique consistent genomic regions on 1B and on 

1AL were associated with kernel weight and kernel diameter, respectively.  Consistent 

QTLs were also identified with specific effects for hardness index (3AS2 and 7BS2) and 

wheat protein (2BL, 4B, 6B, and 7BL).  The consistency of physical factor QTLs across 

environments reveals their potential for marker-assisted selection. 

 



 38

INTRODUCTION 

The economic value of wheat (Triticum aestivum L.) is framed by intrinsic quality 

factors that affect the end-use product (Morris and Rose, 1996; Ammiraju et al., 2001).  

Physical factors, described by test weight, kernel weight, and kernel size, determine 

milling yield if not agronomic yield (Varshney et al., 2000; Dholakia et al., 2003).  Wheat 

class factors, described by kernel hardness and protein content, broadly define 

functionality of the grain (non-leavened vs. leavened products) as well as the type of 

milling process and the physical nature of the milled product (Bushuk, 1998; Khan et al., 

2000; Lillemo et al., 2002). 

As a result of genetic analysis using classical and aneuploid methods, several 

hundred wheat genes have been identified, but for only a few have their function and 

effects been described.  Among them, market class differences in kernel hardness can be 

explained by allelic differences at a single locus, Ha, on chromosome 5D, identified 

through a marker protein for kernel softness called friabilin containing two major 

polypeptides, puroindolines a and b (Nelson et al., 1995; Martin et al., 2001; Lillemo et 

al., 2002).  Though extensively studied, grain protein content has proven to be one of the 

more difficult traits to genotype.  To date, only four genes have been identified:   pro1 

and pro2 on chromosome 5D and 5A, and unnamed genes on 2D (Prasad et al., 1999) and 

6B (Khan et al., 2000; Distelfeld et al., 2003).  All genes have been recognized as 

quantitative trait loci (QTL), and no major genes have been discovered.  In addition to its 

direct effect on baking quality, Galande et al. (2001) suggest that protein content may 

have indirect effects on kernel weight and test weight. 

Earlier studies on physical factors reported that test weight is influenced by kernel 

shape, uniformity, density, and kernel packing efficiency (Campbell et al., 1999; Galande 
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et al., 2001).  Kernel weight and size are controlled by several QTLs located on as many 

as 15 chromosomes (Campbell et al., 1999; Galande et al., 2001; Dholakia et al. 2003).  

Unfortunately, genetic improvement in kernel weight may be compromised by a 

concomitant reduction in kernel number per spike, thus neutralizing the agronomic 

benefit derived from increased kernel weight (Marshall et al., 1984; Wiersma et al., 

2001).  However, relatively small increases in kernel weight or kernel size, at the same 

yield level, should have a proportionately favorable impact on milling quality. 

Molecular markers have provided a useful tool for a clearer understanding of the 

genetic basis of important traits in a variety of crops.  Two marker systems have been 

frequently used to characterize species with relatively large genome size such as wheat 

(2n = 6x = 42, 16,000 Mbp): simple sequence repeat (SSR) and amplified fragment 

length polymorphism (AFLP).  The former is evenly distributed across the genome, 

inherited in a co-dominant manner, chromosome specific, and an ideal marker system for 

map construction and marker-assisted selection (Röder et al., 2002).  The AFLP is a 

multiplex marker system based on selective amplification of a limited number of DNA 

restriction fragments and has the advantage of permitting simultaneous coverage of 

several loci in a single assay (Vos et al., 1995).   

The objective of this study was to identify and locate QTLs affecting wheat 

quality factors in a winter wheat population previously characterized for agronomic traits 

by Marza et al. (2005).  Parental differences in kernel weight and hardness suggested this 

population could expand our understanding of the genetic control of milling quality.  

Hence our study focused on physical and market class components relating to kernel size 

and texture, test weight, and wheat protein content. 
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MATERIALS AND METHODS 

Genetic material and experimental design 

A population of 132 F12 recombinant inbred lines (RIL) was derived by single-seed 

descent from the F2 of the cross, Ning7840/Clark (Bai et al., 1999).  Ning7840 

(Aurora/Anhui 11//Sumai 3) is a hard red facultative cultivar from China with type II 

scab resistance (Zhou et al., 2003) and relatively low yield potential.  Clark is a SRW 

cultivar from Purdue University, Indiana (Ohm et al., 1988) with an early date of 

heading, relatively high yield potential, and high kernel weight.  The RILs along with the 

parental genotypes were grown at three Oklahoma locations (Stillwater, Lahoma, and 

Altus) for three years using a replicates-in-sets design with three replications and a plot 

size of 1.4 m2 planted at a density of 58 kg ha-1. 

Traits 

Information was collected on wheat quality factors relevant to this mapping 

population (Table 1).  Test weight (TW) was measured in kg hL
-1

 from the weight of 

grain filling a 0.95-L container.  The single-kernel-characterization system (SKCS) 

(Model 4100, Perten Instruments North America, Inc., Springfield, IL) was used to 

estimate kernel weight (KW, mg), kernel diameter (KD, mm), and SKCS-hardness index 

(HI-SK, on a scale of 0 = extremely soft to 100 = extremely hard) from a sample of 300 

sound kernels per plot. Wheat protein content (WP, g kg
-1

) and another assessment of 

hardness index (HI, same 0-to-100 scale) were determined by near-infrared reflectance 

(NIR) spectroscopy according to AACC method 39-70a (AACC, 1995) using 9 g ground, 

whole-wheat samples from each plot.  Trait measurements were taken from at least five 

environments per trait (Table 1). 
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Isolation and amplification of DNA 

Genomic DNA extraction from both parents and the 132 F12 RILs was carried out 

according to the cetylmethylammonium bromide (CTAB) method (Saghai-Maroof et al., 

1984).  Parental polymorphism was assessed with 400 SSR primers.  The polymerase 

chain reaction (PCR) amplifications of microsatellite primers were performed in 12-µL 

reaction volumes in a thermal cycler (Perkin Elmer, Norwalk, CT).  Amplified products 

were resolved by automated PCR product amplification with the Li-Cor IR-4200 DNA 

sequencer (Li-Cor Inc., Lincoln, NE) using a fluorescent-labeled M-13 primer for PCR 

detection, followed by SSR product separation in a 6.5% polyacrylamide gel in the Li-

Cor IR-4200 DNA sequencer.  The two parents and the 132 RILs were previously 

characterized with AFLP markers (G. Bai, unpublished results), producing 618 

polymorphic band readings according to the method described by Bai et al. (1999).   

Linkage mapping 

For constructing a genetic linkage map, segregating SSR and AFLP markers were 

scored visually for each RIL and recorded as either type �A� (Ning7840) or �B� (Clark), 

whereas ambiguous bands were scored missing (-).  Linkage analysis was performed 

using the MAPMAKER program (Macintosh V2.0, Lander et al., 1987).  Recombination 

frequencies were converted to centimorgans (cM) using the Kosambi mapping function 

(Kosambi, 1944).   

Statistical analysis 

Skewness and kurtosis were estimated to describe the phenotypic distributions 

relative to normality.  The complete set of data from each environment was subjected to 

analysis of variance (ANOVA) to determine the effects of genotype (RIL and parent) and 

environment. Phenotypic correlations were calculated for all combinations of traits based 
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on RIL means across environments.  Principal component (PC) analysis of genotypes 

across environments was performed based on standardized (µ = 0, σ = 1) means data 

using PRINCOMP procedure of SAS (SAS Institute, 2003).  Briefly, the resulting PC 

scores for genotypes and traits were plotted in a biplot, and trait vectors were drawn from 

the origin to their corresponding coordinates.  An angle formed between two trait vectors 

approximated their correlation, with 0o and 180o angles indicating strong correlations and 

90 o angles representing a weak correlation (Yan and Kang, 2003).   

QTL analysis 

A Windows version of QTL Cartographer V2.0 (Wang et al., 2004) was used to 

perform composite interval mapping (CIM) analysis based on model 6 of the Zmapqtl 

procedure (Basten et al., 2001).  The closest marker to each local LOD peak was used as 

a cofactor.  The walking speed for scanning the genome was set at 2.0 cM.  The LOD 

threshold used to declare a significant QTL was estimated from 1000 permutations of the 

data.  Additive effects of the detected QTL were estimated by the Zmapqtl procedure.  

The proportion of phenotypic variance explained by a QTL was estimated as the 

coefficient of determination (R2) using single-factor analysis from a general linear model 

procedure (Basten et al., 2001).  For each QTL, R2 was determined for the single marker 

closest to the identified QTL. 
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RESULTS AND DISCUSSION 

Linkage map 

The map for this population included 410 markers (363 AFLP and 47 SSR) 

distributed across 29 linkage groups of five or more markers.  Each linkage group 

contained at least one SSR marker.  Total map distance spanned 2,223 cM with a mean 

interval length of 5.4 cM.  Linkage groups were designated by chromosome number, and 

chromosome arm if known.  Most of the markers (93%) fit the expected 1:1 segregation 

ratio for F12 RIL.  Therefore, the saturated map fulfilled basic requirements to perform a 

whole-genome QTL scan.   

Phenotypic summary 

Between the parents, Clark produced heavier kernels (29.7 mg KW) and larger 

kernels (2.26 mm kernel diam) across environments (P < 0.05) compared to Ning7840 

(26.3 mg KW and 2.14 mm kernel diam) (Table 2).  As expected for a SRW wheat, Clark 

produced lower values for both measurements of hardness index.  Despite these 

differences in kernel size and texture, both parents produced similar values for test weight 

and wheat protein content. 

Most values for skewness and kurtosis did not exceed 1.0 (Table 2), indicating the 

RIL phenotypic distributions exhibited normality except for hardness index (Fig. 1).  The 

RILs apparently segregated for few genes with major effects on hardness, as indicated by 

the bimodal distributions for NIR and SKCS measurements.  That transgressive 

segregation occurred in both directions for all traits implies that a high level of gene 

dispersion existed between the parents of this population.  In general, all traits exhibited 

polygenic segregation patterns and continuous variation. 
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Positive correlations were observed between test weight and kernel weight or 

kernel diameter (Fig. 2).  Hence RILs with higher test weight tended to have larger, 

heavier kernels.  Previous studies in bread wheat on correlation of these factors varied 

from positive (Gibson et al., 1998) to slightly negative (Schuler et al., 1994).  Yamazaki 

and Briggle (1969) and Marshall et al. (1984) described the components of test weight as 

kernel weight (influenced by the density of the grain) and kernel morphology (affecting 

kernel packing efficiency).  Differences in kernel morphology may modify the 

association of volumetric grain weight and kernel weight.  Kernel weight and kernel 

diameter were also moderately associated with wheat protein content (Fig. 2). 

The bi-trait correlations summarized in Fig. 2 may be extended to view multi-trait 

relationships within the space of RIL variation using the PC-biplot (Fig. 3).  This biplot 

revealed two important genotype x trait trends: a strong association of PC1 with kernel 

size factors (kernel diameter and kernel weight), and the separation of two distinctive 

clusters of genotypes by PC2 according to hardness index.  Kernel diameter and kernel 

weight showed a strong association in the biplot, as did test weight and kernel diameter.  

Protein content showed close association with kernel weight, but the relatively short 

vector for wheat protein (or relatively low differentiation among RILs for wheat protein) 

compromises the significance of their association.  

Earlier reports indicated that kernel hardness index and wheat protein content were 

positively correlated, in which hard wheat was generally higher in protein content than 

soft wheat (Bushuk, 1998).  However, no association was found in our population across 

all RILs with major and minor differences in hardness index (Fig. 3).  When the RILs 

were grouped on the basis of relatively high HI ( > 40 HI-SK, n = 64) and low HI ( ≤ 40 
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HI-SK, n = 68), mean wheat protein content of the hard RILs across environments was 

only 2 g kg-1 or 0.2 percentage units greater (P > 0.05) than that of the soft RILs.  In 

contrast, wide variation (P < 0.05) observed for wheat protein within each hardness 

group.  Within groups, the harder RILs showed a significant correlation for HI-SK vs 

wheat protein (r = 0.42, P < 0.01), which is consistent with Carver (1994), while no 

significant correlation was detected within the softer RILs.  Any QTL that might be 

associated with wheat protein content in this population is therefore not expected to 

represent a pleiotropic effect of major genes conferring hardness differences. 

QTL mapping 

Summarizing the molecular linkage map and composite interval-mapping analysis, 

we detected a total of 131 putative major and minor QTLs.  Among all quality traits, the 

highest frequency of QTLs was found in the B genome with 70 QTLs (53%); 46 (35%) 

QTLs were found in the A genome and 15 (12%) in the D genome.  Most of the QTLs 

identified for kernel weight and kernel diameter were associated with genomes A and B, 

whereas QTLs for test weight, protein content, NIR-hardness index, and SKCS-kernel 

hardness were associated with genome B (Table 3).  All quality traits here showed a weak 

association with D genome.  The number of QTLs from homoeologous groups one to 

seven were 7 (5%), 13 (10%), 23 (18%), 16 (12%), 31 (24%), 20 (15%), and 21 (16%), 

respectively.  Chromosomes 2A, 3D, and 4D were not included in the analysis.  The 

mean number of putative QTLs detected in this study was five for test weight and kernel 

size and four for wheat protein and hardness. 

Test weight (TW) 

Markers associated with test weight were concentrated in linkage groups 4B, 5A, 

5B, and 6B (Table 4).  The phenotypic contributions of an individual linkage group 
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ranged from 9 to 21%.  The QTLs in linkage groups 5A and 5B were the most 

consistently detected in four and five of the seven environments, respectively.  Markers 

in linkage group 5B were exclusively associated with test weight, where AFLP marker 

interval ACT.CAGT7/GTG.GAC2 was the most common across environments.  The Clark 

allele from the identified region on 5A increased test weight, while on 5B the Ning7840 

allele increased test weight.  Several of the markers associated with test weight on 5A 

were also associated with kernel weight and kernel diameter (Table 4), as may be 

expected from the high phenotypic correlation among these traits.  Moreover, the marker 

interval BARC180/ACA.CTA4 was consistently identified as common for all traits (Fig. 

4). 

Contrary to the similar test weights of the parents across environments (mean 

difference of 0.4 kg hL-1), their kernel morphology differed noticeably.  Kernels of 

Ning7840 were narrow and long, whereas kernels of Clark were short and rounded 

(plump).  The QTL on 5B may influence one component of test weight, packing 

efficiency, through its effect on kernel morphology, since that was the only distinctive 

contribution of Ning7840 to higher test weight, at least with respect to linkage group 5B.  

To test that hypothesis, we classified the RILs based on the most consistent marker 

interval on 5B (ACT.CAGT7/GTG.GAC2), with or without the purported allele from 

Ning7840.  Using kernel characteristics based on Briggle and Reitz (1963), kernels of 

RILs with the Ning7840 allele exhibited a crease with narrow width and shallow depth, 

angular cheeks, and a tendency toward oval shape.  On the other hand, kernels of RILs 

without the Ning7840 allele had midwide and middeep crease, rounded cheeks, and 

tendency toward ovate shape.  These patterns were consistent across all environments in 

which kernel samples were available (5 of 7 environments).  To further support these 
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visual observations, test weight was compared between marker groups.  The RILs with 

the Ning7840 allele exceeded those without by 1.08 kg hL-1 (P < 0.05). Interestingly, 

those same groups differed by only 0.02 mm kernel diameter.  Differences in kernel 

weight were negligible.   

Our QTL analysis not only accounted for test weight variation through the interval 

relating to packing efficiency in linkage group 5B but also through the interval in linkage 

group 5A (BARC180/ACA.CTA4) relating to kernel weight and kernel diameter.  To our 

knowledge, there are very few molecular mapping studies which target test weight.  The 

two minor QTLs on 2BS and 4AL, along with the major QTL on 5A, were coincident 

with QTLs reported by Campbell et al. (1999).  Additionally, the QTL identified in 

linkage group 6B corroborates previous evidence of QTLs found in similar chromosome 

regions by Galande et al. (2001) and Elouafi et al. (2004). 

Kernel weight and kernel diameter  

Phenotypic variation for kernel weight and kernel diameter were highly informative 

in this population, evidenced by the relatively long trait vectors in the biplot (Fig. 3).  For 

kernel weight, we identified major QTL regions in linkage groups 1B, 2BS, 3BS, 4B, 5A, 

5D, 6A, and 6B (Table 4).  These QTLs explained from 7 to 27% of the phenotypic 

variance.  The most consistent QTLs for kernel weight were in linkage groups 5A and 

6A, with their respective intervals, BARC180/ACA.CTA4 and AAC.GAC1/AAC.CGAC8.  

The Clark allele for the majority of major QTLs listed above increased kernel weight.  

Lately, several attempts have been made to understand the genetic basis of kernel weight.  

Chromosome regions associated with kernel weight on 5AL were reported by Campbell 

et al. (1999); on 2B, 4B, 6B by Varshney et al. (2000) and Elouafi et al. (2004); on 6B by 

Ammiraju et al. (2001); and on 2B by Gross et al. (2003).  Co-localization of QTLs was 
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observed between kernel weight and grain yield (Marza et al., 2005) in linkage groups 4B 

(AGG.CAG1/AAC.GCAG4) and 5A (BARC180/ACA.CTA4).  This has important 

implications for simultaneous improvement of milling yield and grain yield (Marshall et 

al., 1984; Schuler et al., 1994). 

Common QTL regions were identified for kernel weight and kernel diameter from 

several linkage groups (e.g., 4B, 5A, 5D, 6A, and 6B), as would be expected with their 

strong phenotypic relationship (Fig. 3).  Among these, the major QTLs on 5A and 6A had 

the largest influence.  The major QTL found on 5D for kernel weight and kernel diameter 

was the only QTL detected in that linkage group.  A locus on 1B was exclusive to kernel 

weight, and though only identified in certain environments, QTLs on 2BS and 3BS also 

were uniquely associated with kernel weight.   

Putative QTLs associated with kernel diameter were detected in linkage groups 

1AL, 4B, 5A, 5D, 6A, 6B, and 7DL (Table 4 and Fig. 4).  The Clark allele increased 

kernel diameter for most of those.  The QTL regions on 5A and 6A were the most 

consistent across environments.  Markers in linkage group 1AL, which were relatively 

consistent across environments, and those in 7DL identified from a single environment 

(ST01), were uniquely associated with kernel diameter.  Our findings coincided with 

earlier reported QTLs on 5A (Campbell et al., 1999) and with a gene controlling kernel 

width on 1A (Gura and Saulescu, 1996), but none of the QTLs reported by Dholakia et al. 

(2003) on 2BL and 2DL were identified here.  

Wheat protein content 

Even with no difference in mean protein content of Clark and Ning7840 (136 g kg-

1), the RILs varied significantly from 123 to 157 g kg-1 (Table 2 and Fig. 1).  With this 

level of transgressive segregation, four major consistent QTLs were detected for protein 
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content in linkage groups 2BL, 4B, 6B, and 7BL (Tables 3).  They explained 9 to 13% of 

the phenotypic variance.  Alleles from Clark showed positive effects on protein content 

on 6B and 7BL, and negative effects at the other QTLs.  The QTLs on 4B were common 

to kernel weight and kernel diameter.  Additionally, a QTL on 7BL was common to a 

minor QTL identified for kernel weight and hardness index (Table 3).  One of the most 

widely studied quality traits in wheat is protein content.  Prasad et al. (1999) and 

Campbell et al. (2001) reported QTLs for protein content on chromosomes 2B and 2D;  

however, the most widely reported QTLs were on 5D, 5A, and 6B (Khan et al., 2000; 

Olmos et al., 2003; Distelfeld et al., 2003).  

NIR-hardness index and SKCS-hardness index  

The bimodal distributions observed for both measurements of hardness index (Fig. 

1) indicates that this population of RILs contained two distinct hardness classes, based 

either on differential particle size (NIR) of uniformly ground whole-wheat samples or on 

resistance to crushing (SKCS).  Though hardness class differences can be attributed to 

allelic differences at single locus (Giroux et al., 1998), our study identified four genomic 

regions associated with NIR-hardness index on linkage groups 2DL, 3AS2, 5B, and 7BS2 

(Table 4).  Each region explained 10 to 18% of the phenotypic variance, and the allele 

from the soft wheat parent, Clark, decreased NIR-hardness index in all regions except 

one (2DL).  Five QTLs in linkage groups 3AS2, 3BS, 4B, 7BS2, and 7DL2 were 

identified for SKCS-hardness index, explaining 10 to 15% of the phenotypic variance, 

and the allele from Clark decreased SKCS-hardness index in all QTLs except one (7DL2) 

(Table 4).   

Puroindoline proteins a and b represent the molecular genetic basis of hardness 

variation attributable to chromosome 5DS (Morris, 2002).  Our study was unable to 
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attribute any effect for kernel hardness to QTLs on that chromosome arm.  Further 

marker screening with emphasis on chromosome 5D may be needed to identify marker 

associations in that critical region.  Nevertheless, our study did find highly consistent 

QTLs for both methods of hardness estimation on linkage group 3AS2, which coincides 

with a previously reported QTL on the same arm (Campbell et al., 1999).   Sourdille et al. 

(1996) reported minor effects for hardness on 2A, 2D, 5B and 6D.   Isolated major QTLs 

identified here on 2DL and 5B may be related.  The single common region associated 

with hardness index and protein content was a QTL region on 7BS2. 
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CONCLUSIONS 

In this inter-class cross of U.S. and Chinese wheat, QTLs associated with test 

weight and kernel size were reduced to five genomic regions.  A unique QTL in linkage 

group 5B (ACT.CAGT7/GTG.GAC2) was identified for test weight that indirectly appears 

related more to packing efficiency than kernel size.  We identified another consistent 

major QTL for test weight in linkage group 5A (ACG.GAC6/ACA.CTA4) that appears 

pleiotropic to kernel weight and diameter and, thus, could impact kernel density rather 

than packing.  The strong relationship between kernel weight and diameter was also 

reflected in the common QTL on linkage group 6A (CTCG.GTG2/AAC.CGAC8).  Unique 

QTLs for kernel weight (1B) and kernel diameter (1AL) also were identified.  We 

identified QTLs with specific effects for hardness index (3AS2 and 7BS2) and for wheat 

protein (2BL, 4B, 6B, and 7BL).  Because end-use quality has multiple components that 

add complexity to breeding efforts, important common QTLs influencing more than one 

trait add value to an already valuable selection tool. 
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Table 1.  Locations and years for which traits pertaining to wheat quality factors were measured in the RIL 

population, Ning7840 x Clark (Stillwater, ST; Lahoma, LA; and Altus, AL, Oklahoma).   

2001   2002    2003  
Trait  Symbol 

ST  ST LA AL  ST LA AL 

Physical factor           

   Test weight  TW X  X X X  X X X 

   Kernel weight KW X  X  X  X X  

   Kernel diameter  KD X  X  X  X X  

Class factor           

   Wheat protein  WP X  X  X  X X  

   NIR-hardness index HI X  X  X  X X  

   SKCS-hardness index  HI-SK X  X  X  X X  
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Table 2.  Summary of phenotypic data for wheat quality factors of Ning7840, Clark, and their RIL progeny 

evaluated in various Oklahoma environments from 2001 to 2003. 

Parents  RIL population�  
Env. Clark Ning7840  Mean Max Min SD Skewness Kurtosis 

 ��������������� Test weight, kg hL-1  �������������� 

ST01 70.9 69.6  70.9 76.0 61.9 2.3 -0.92 2.00 

ST02 68.3 68.3  66.1 72.2 54.6 3.1 -0.87 1.21 

LA02 69.2 69.6  67.5 72.6 59.3 2.5 -0.72 0.65 

AL02 70.9 70.9  69.1 76.0 61.9 2.4 -0.34 0.43 

ST03 70.6 70.3  70.1 74.8 64.0 2.1 -0.40 0.20 

LA03 71.6 72.0  71.7 75.6 64.5 2.4 -0.87 0.63 

AL03 72.0 70.3  70.8 74.8 64.9 1.9 -0.30 -0.24 

 ������������������������������ Kernel weight, mg ������������������������������ 

ST01 32.4 24.8  29.8 37.6 21.6 3.3 -0.03 -0.38 

ST02 28.7 25.5  25.2 32.2 19.2 2.8 0.11 -0.40 

AL02 29.6 24.3  25.8 32.8 19.5 3.0 -0.02 -0.63 

ST03 30.8 29.4  28.6 33.7 22.2 2.6 -0.12 -0.27 

LA03 27.2 27.4  28.9 34.0 23.9 1.8 -0.20 0.21 

 ������������������������������ Kernel diameter, mm ��������������� 

ST01 2.30 2.10  2.26 2.65 1.90 0.16 0.20 -0.50 

ST02 2.23 2.13  2.10 2.57 1.80 0.16 0.25 0.03 

AL02 2.27 2.03  2.06 2.47 1.73 0.15 -0.03 -0.52 

ST03 2.31 2.26  2.23 2.50 1.93 0.13 -0.21 -0.49 

LA03 2.17 2.19  2.25 2.50 2.00 0.09 -0.10 0.66 

 ��������������� Wheat protein, g kg-1 �������������� 

ST01 126 120  130 152 112 8 0.44 -0.16 

ST02 131 130  131 159 116 8 0.78 1.16 

AL02 143 150  144 159 132 5 0.09 -0.44 

ST03 137 138  141 156 129 6 0.19 -0.73 

LA03 138 141  141 152 131 4 -0.07 0.10 

 ��������������� NIR-hardness index � �������������� 

ST01 29 68  46 105 14 22 0.41 -1.02 

ST02 43 56  47 89 29 13 0.74 0.12 

AL02 38 75  53 105 32 16 0.56 -0.62 

ST03 45 61  53 96 33 16 0.48 -1.17 

LA03 45 58  53 92 34 14 0.43 -1.03 

 �������������� SKCS-hardness index � �������������� 

ST01 0 56  32 87 0 23 0.17 -1.43 

ST02 25 52  42 91 10 22 0.22 -1.44 

AL02 13 58  40 91 6 20 0.22 -1.31 

ST03 24 59  42 92 11 18 0.28 -1.09 

LA03 32 61  43 85 16 17 0.24 -1.21 

� Population of 132 F12 recombinant inbred lines; SD = standard deviation among RIL means 
� Extremely soft = 0, extremely hard = 100
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Table 3. QTLs detected in more than one environment (italicized) by composite interval mapping analysis for the RIL population, Ning7840 x Clark, evaluated 

in various Oklahoma environments from 2001 to 2003 (bold  = major QTLs, LOD > 3; non-bold = minor QTLs, 2 < LOD ≤ 3).  QTLs detected in only one 

environment are given in plain type.  

Environments 

2001  2002  2003 
 

 
Trait                                 Symbol 

Stillwater  Stillwater Lahoma Altus  Stillwater Lahoma Altus 

 
 

Total� 

 
Consistent 
Linkage 
group� 

 

������������������������������� Physical factors ����������������������������� 

Test weight TW 2BS, 5A, 5B, 

6B, 7DL 

 5A, 5B, 7DL  3BL, 5A, 

5B 

2BS, 5A, 5B, 

4AL, 4B 

 5A, 3BL2 2BS, 3BL, 

5A, 5B, 6B 

5A, 5B, 

7DL 

11-15 5A, 5B 

Kernel weight KW 1B, 5A, 5D, 6A, 

7A 

 1B, 2BS, 5A, 5D, 

6A, 3BS, 7BL 

 1B, 4B, 5A, 

5D, 6A, 6B 

 2BS, 4B, 5A, 

6A, 1AL 

2BS, 4B, 6A, 

6B 

 18-9 5A, 6A 

Kernel diameter KD 5A, 6A, 5D, 

7BS2, 7DL 

 2BS, 5A, 6A, 1B, 

3BL 

 1AL, 4B, 5A, 

6A, 3BS 

 1AL, 2BS, 

4B, 5A, 6A 

4B, 6A, 

2DL, 6B 

 16-8 5A, 6A 

        ������������������������������� Class factors ������������������������������� 

Wheat protein WP 7BL, 2BL, 5B  3AS2, 4B, 7BL, 3BS  3AS2, 4B, 7BL  4B, 6B, 5D 3AS2, 4B, 7A  4-12 4B 

NIR-hardness index HI 5B, 7BS2, 

7DL2, 3BS, 7BL 

 2BS, 3AS2, 6A  2DL, 3AS2, 

6A, 7BS2, 

 2DL, 7BS, 

7BS2 

3AS2, 5B, 

7DL2, 3BL2, 4B 

 6-14 3AS2, 

7BS2 

SKCS-hardness index HI-SK 3AS2, 4B, 5B, 

3BL 

 3AS2, 6A, 3BS  3AS2, 4B, 6A  3AS2, 7BL, 

7BS2, 7DL2 

3AS2, 4B, 5B, 

3BL2 

 7-11 3AS2 

Total  14-13  12-13 1-2 12-14  12-10 10-15 1-2 62-69  

� Incidence of a major QTL identified across all environments (boldface) � incidence of a minor QTL identified across environments. 

� Linkage group(s) with the highest consistency across environments.
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Table 4.  Primary genomic regions and their associated additive gene effects for wheat quality factors 

identified by composite interval mapping with a minimum LOD threshold of 3.0.  Peaks of these linkage 

groups are listed in bold italics in Table 3. 

Linkage group Position  Marker interval LOD a� R2 

 cM     % 

Test weight     kg hL-1  

       

4B 83  AGG.CAG1/BARC20.4BS-7BL 4.0 -0.77 9.7 

5A 29  BARC180.5AS-6BL/ACG.GAC1.2 6.5 1.14 20.6 

5B 149  AGC.GCG12/AAG.CTC4 6.1 -0.92 15.5 

6B 24  AGC.GCG1/GTG.CTT1 3.7 0.71 9.0 

       

Kernel weight     mg  

       

1B 68  AGG.CTC13/CTCG.AGC9 8.6 -1.24 19.3 

2BS 0  BARC35.2BS/AGT.CAGT5 3.1 0.74 7.5 

3BS 51  ACT.CAT3/XGWM493.3BS 3.5 0.74 7.2 

4B 85  BARC20.4BS-7BL/AAC.GCAG4 3.4 -0.55 9.4 

5A 41  ACG.GAC6/ACA.CTA4 5.7 1.26 13.7 

5D 61  AGT.CTG10/AGG.CTC4 4.1 -0.96 9.8 

6A 80  AAC.CTG5/AAC.CTG5 9.9 1.42 26.6 

6B 91  ACT.GCG11/ACA.CTG16 3.6 0.60 9.4 

       

Kernel diameter     mm  

       

1AL 64  AAG.CTA11/CTCG.CGAC6 6.4 -0.05 14.2 

4B 81  AGG.CAG1/BARC20.4BS-7BL 4.2 -0.03 10.9 

5A 45  ACG.GAC6/ACA.CTA4 7.3 0.06 16.9 

5D 59  AGT.CTG10/AGG.CTC4 3.2 -0.05 9.5 

6A 69  CTCG.GTG2/CTCG.GTG2 9.1 0.07 25.0 

6B 91  ACT.GCG11/ACA.CTG16 4.5 0.03 11.8 

7DL 4  ACTG.GCG8/ACA.CTA14 3.2 0.05 7.4 

       

Wheat protein     g kg-1  

       

2BL 38  ACT.CAT4/GCTG.ACGC2 3.5 -2.6 9.4 

4B 83  BARC20.4BS-7BL/AAC.GCAG4 4.2 -2.5 12.5 

6B 101  ACT.CAT2/AAC.CTG2 3.7 2.5 10.9 

7BL 14  CTCG.CTG9/BARC63.7BL 3.1 2.5 8.6 

       

NIR-hardness index     0-100�  

       

2DL 59  BARC159.2DL/ACA.GCG1 3.4 5.2 10.0 

3AS2 83  XGWM2.3AS/AGC.CTC1 4.3 -5.0 13.8 
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Linkage group Position  Marker interval LOD a� R2 

 cM     % 

5B 42  AGT.CTG2/ACC.AGC7 3.1 -7.1 10.1 

7BS2 32  AGT.CAGT6/XGWM537.7BS-5BL 5.4 -7.1 17.6 

       

SKCS-hardness index     0-100�  

       

3AS2 83  XGWM2.3AS/AGC.CTC1 4.5 -8.0 14.7 

3BS 46  AAG.AGC10/CTCG.CTC9 3.9 -9.3 10.7 

4B 13  ACT.CTC7/BARC114.4BL 3.6 -5.8 11.1 

7BS2 25  AGT.CTG3/AGT.CAGT6 3.1 -6.2 9.6 

7DL2 0  BARC97.7DL/AAC.CGAC9 3.6 7.0 11.8 

 
� Additive effects were estimated as the mean (in trait unit) difference between the two RIL genotypic 

groups carrying the Clark and Ning7840 alleles.  A positive value implies the Clark allele increased 

phenotypic value whereas a negative value implies the Clark allele decreased phenotypic value. 

� Extremely soft = 0, extremely hard = 100 
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Fig. 1.  Frequency distributions for wheat quality traits of 132 RILs averaged across n 

environments.  Parental means of Ning7840 and Clark are indicated by arrows. 
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Fig. 2.  Summary of phenotypic correlation coefficients for wheat quality traits and class 

factors for the RIL population, Ning7840 x Clark, evaluated in various Oklahoma 

environments from 2001 to 2003.  Only significant r-values (P < 0.05) are shown in the 

plot. Traits are test weight (TW), kernel weight (KW), kernel diameter (KD), wheat 

protein (WP), NIR-hardness index (HI), and SKCS-hardness index (HI-SK). 
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Fig. 3.  Principal component (PC) analysis biplot summarizing the relationship among 

wheat quality traits for the RIL population, Ning7840 x Clark, evaluated in various 

Oklahoma environments from 2001 to 2003.  Traits are test weight (TW), kernel 

weight (KW), kernel diameter (KD), wheat protein (WP), NIR-hardness index (HI), 

and SKCS-hardness index (HI-SK). 
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Fig. 4.  Primary genomic regions of identified major QTLs (LOD > 3) affecting wheat 

quality traits and class factors for the Ning7840 x Clark RIL population evaluated in 

various Oklahoma environments from 2001 to 2003.  Bars indicate the number of 

environments for which the same marker interval was detected.  Triangles indicate the 

interval exhibiting the peak LOD value
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MODEL EXPANSION WITH EPISTATIC AND QTL x ENVIRONMENT 

INTERACTION EFFECTS IN MAPPING QTLs FOR WHEAT 

 YIELD AND QUALITY TRAITS
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ABSTRACT 

Additive effects, epistatic effects, and their environmental interactions of QTLs are 

crucial genetic components of quantitative traits.  In this study, QTLMapper 1.0 was used 

to analyze the genetic basis of yield and quality related traits in wheat.  The objective was 

to dissect effects of QTLs into additive and epistatic components as well as their 

interactions of the QTLs with environments, and to evaluate the relative magnitude of 

these components.  A recombinant inbred line population from Ning7840 x Clark tested 

in replicated field trails in five environments was subjected to QTL analysis based on 

mixed-model.  A total of 20 main effect QTLs and 37 epistatic digenic interactions with 

relative magnitude (h2) > 2 were detected for yield, plant height, test weight, kernel 

weight, protein content, and hardness index.  Important QTLs with additive effects only 

were identified in linkage groups 5A (yield), 5A, 2BS (test weight), and 5B (kernel 

weight).  The h2 of additive QTLs was larger than h2 of epistatic QTLs for kernel weight 

and yield, while for protein content, plant height and especially for hardness index was 

the opposite.  Epistatic QTLs tended to show a greater level of QTL x environment 

interaction than additive QTLs, suggesting that epistatic QTLs are more prone to 

environmental influence than additive QTLs.  For all the loci with epistatic effect, 46% 

did not have significant additive effects on their own but were involved in digenic 

interactions.  These loci might play the role of modifying agents that tend to activate or 

modify the action of other loci.  This study attempted to assess the genetic components 

that may be crucial to consider in marker-assisted selection. 
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INTRODUCTION 

Economically important traits such as yield and quality in wheat (Triticum aestivum 

L.) are genetically complex, are governed by loci that have quantitative effects on the 

phenotype, and are highly sensitive to genetic background and environmental factors 

(Barton and Keightley, 2002; Walsh, 2002).  Even so, extraordinary rates of genetic 

improvement have been achieved for intricate quantitative traits in plants despite the 

limitation of phenotype being an imperfect predictor of breeding value (Dekkers and 

Hospital, 2002).  Advances in molecular-marker techniques, and the availability of high-

density linkage maps together, led to the discovery of quantitative trait loci (QTLs) for 

important traits in wheat (Marshall et al., 2001; Langridge et al., 2001; McIntosh et al., 

2003).  Presumably due to the lack of appropriate methodology, marker-based QTL 

analysis for quantitatively inherited traits is typically conducted under the hypothesis of 

additive main effects only, and assuming the absence of epistasis and QTL x environment 

interaction.  Hence main effects are assumed to be expressed in the same way across 

different environments.  

Epistasis describes any interaction between two or more loci, such that the 

phenotype of any genotype cannot be predicted simply by summing the genetic effects of 

individual loci (Carlborg and Haley, 2004).  Accumulation of favorable epistatic 

combinations is considered critical to the evolution of adaptiveness in plants; 

furthermore, it is considered even more important in self-pollinated crops such as wheat 

which has evolved from a fixed genome with relatively few recombination events 

(Goldringer et al., 1997).   

Goldringer et al. (1997) and Carlborg and Haley (2004) argue that epistasis should 

be accounted for in complex trait analysis because genetic models with no epistatic terms 



 68

could lead to a biased estimation of QTL parameters.  The knowledge of the relative 

proportion of non-additive variance with respect to additive might be crucial for adopting 

appropriate breeding strategies.   

One of the significant hurdles to extending QTL analysis to breeding application is 

the manifestation of environmental instability of mapped QTLs.  The QTLs detected in 

one environment but not in another might indicate QTL x environment interaction, but it 

is impossible to assess the contribution of QTL x environment interaction to phenotype 

variation by simply comparing QTLs detected in multiple environments.  Significant 

epistasis and QTL x environment interaction effects were reported in many crops (Cao et 

al., 2001; Kamoshita et al., 2002; Campbell, 2004).   Xing et al. (2002) and Li et al. 

(2003) point out that interactions among loci and environmental factors make a 

substantial contribution to variation in complex traits and therefore should be accounted 

for in complex trait studies.  

Continuing advances in methodologies for analysis offer direct mapping of QTLs 

with additive and epistatic effects, as well as their QTL x environment interaction, based 

on mixed linear model approaches (Wang et al., 1999).  The software QTLMapper 

version 1.0 was developed (Wang et al., 1999; Zhu, 1999) for that purpose.  In this study 

phenotypic and molecular marker data of 132 RILs were subjected to two-locus analysis 

via QTLMapper.  Previous studies revealed highly significant QTLs affecting agronomic 

and milling quality traits in this population, but several traits appeared to be influenced 

by multiple QTLs with minor and/or major effects that were not highly consistent across 

environments (Marza et al., 2005a, 2005b).  Hence, the objectives of the study were to 

further characterize yield and quality traits for the presence of epistatic QTLs and QTL x 

environment interactions, and to evaluate the relative magnitude of these components.    
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MATERIALS AND METHODS 

Genetic material and field experiments 

The population used in this study consisted of 132 F12 recombinant inbred lines 

(RILs) derived by single-seed descent from a cross between Ning7840 and Clark (Bai et 

al. 1999).  The details of the Ning7840 x Clark population are described in previous 

report (Marza et al., 2005a).  Briefly, Ning7840 is hard facultative wheat from China.  

Clark is a soft red winter wheat cultivar developed at Purdue University (Ohm et al., 

1988).  The RIL population and the two parental genotypes were grown at three 

Oklahoma locations (Stillwater, Lahoma, and Altus), using a replicates-in-sets design 

with three replications and with a plot size of 1.4 m2 planted at a density of 58 kg ha-1.   

The study utilized data for six traits measured in five Oklahoma environments: 

Stillwater in 2001, 2002, and 2003 (ST01, ST02, ST03); Altus, 2002 (AL02); and 

Lahoma, 2003 (LA03).  Grain yield (GY) was measured as the weight of wheat grain 

harvested from the entire plot area.  Plant height (HT) was measured at harvest maturity 

from ground level to the tip of the spike, excluding awns.  Test weight (TW) was 

measured in kg hl
-1

 as the weight from a 0.95-L container.  The single kernel 

characterization system 4100 (SKCS) (Perten Instruments North America, Inc., 

Springfield, IL) was used to estimate kernel weight (KW, mg) and hardness index (HI, on 

a scale of 0 = extremely soft to 100 = extremely hard), using a sample of 300 kernels 

from each plot.  Grain protein content (WP, g kg
-1

) was determined by near-infrared 

reflectance (NIR) spectroscopy according to AACC method 39-70a (AACC, 1995).  The 

test was performed using ground, whole wheat, 9-g samples from each replicate.   
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Molecular markers and QTL analysis 

Two kinds of DNA markers representing 410 loci were used to develop the genetic 

linkage map using the Mapmaker program (Macintosh V2.0, Lander et al., 1987).  The 

SSR marker assay followed the method described by Bai et al. (2004) and the AFLP 

assay was conducted as described by Bai et al. (1999).  The genetic linkage map that was 

used for QTL mapping of this population contained 363 AFLP and 47 SSR markers 

distributed among 29 linkage groups covering 2,223 cM with an average distance of 5.4 

cM between markers (Marza et al., 2005a). 

The two-locus analysis that tests the additive main effect and additive X additive 

epistatic effects, as well as their environmental interaction effects, was performed using 

QTLMapper version 1.0 (Wang et al., 1999).  The phenotypic value of the k = 132 RILs 

in l = 5 environments can be partitioned by the following mixed linear model (Zhu, 

1999):  

lijklijljkljliklilklijkjkik EAAEAAEAEAEAEAEEAAijAjAikl eueueueuxaaxaxay +++++++= µ  

           kl
ln

MMMM
lf

MM lnlnklflfk
eueu ξ∑∑

)()(
)()()()(
+++ , 

In which µ is the population mean; ia and ja are the additive fixed effects of two putative 

loci iQ and jQ , respectively; ijaa is the additive x additive epistatic fixed effect between 

the loci; 
ikAx , 

jkAx and 
ijkAAx  are the coefficients for these genetic main effects; 

lEe  is the 

random effect of environment l with a coefficient 
klEu ; 

li EAe  (or
lj EAe ) is the random 

additive x environment interaction effect with coefficient 
kli EAu (or 

klj EAu ) for iQ  (or jQ ); 

lij EAAe is the random epistatic x environment interaction effect with a coefficient 
klij EAAu ; 
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)( lfMe  is the random effect of marker f nested within the l-th environment with a 

coefficient 
)( lfkMu , 

)( lnMMe  is the random effect of the n-th bi-marker interaction nested 

within the l-th environment with a coefficient 
)( lknMMu ; and klξ  is the random residual 

effect.   The marker factors 
)( lfMe  and 

)( lnMMe  in the model are used to absorb the additive 

and epistatic effects of background QTLs. 

The QTL analysis by means of QTLMapper v 1.0 was carried out in three steps.  

First, significant (P=0.005) markers were identified across the genome using stepwise 

regression based on single-marker genotypes for putative main-effect QTL and on all 

possible marker pairs for epistatic QTL in an individual environment.  Second, all 

putative main-effect and epistatic QTL were identified in putative QTL regions.  The 

associated QTL effects and test statistics were simultaneously estimated at the positions 

of respective LOD peaks in individual putative QTL regions using the restricted 

maximum likelihood (LR) method (LOD = 0.217 LR) (Wang et al., 1999).  Additive and 

epistatic main QTLs were filtrated under the threshold P = 0.005.  Third, genetic effects 

were further tested by a t-test with the jackknifing re-sampling procedure.  QTLs were 

reported when genetic main effects (a and aa) or QTL x environment (QE) interaction 

effects (ae and aae) were significant (P = 0.005).  The proportion of phenotypic variance 

caused by a specific genetic source  (a, aa, ae, and aae) was calculated and interpreted as 

an estimate of narrow sense heritability (h2) contributed by that source. 
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RESULTS AND DISCUSSION 

Phenotypic summary 

Between the parents, Clark produced higher yield (2595 kg ha-1), heavier kernels 

(29.7 mg), and marginally taller plants (80 cm) across environments (P<0.05) compared 

to Ning7840 (2219 kg ha-1, 26.3 mg, and 76 cm).  As expected for soft red winter (SRW) 

wheat, Clark had lower kernel hardness index (18) than Ning7840 (57).  These parents 

produced similar values for test weight (71 vs. 70 kg hL-1 for Clark and Ning7840 

respectively) and protein content (136 g kg-1).  Most traits described here segregated 

continuously, and both skewness and kurtosis values were less than 1.0.  The only 

exception was hardness index, which exhibited bimodal distribution.  Transgressive 

segregation occurred in both directions for all traits, indicating gene dispersion between 

the two parents. 

QTL mapping 

The genomic proportion of the 29 linkage groups used here were 9 (702.0 cM), 13 

(1222.2 cM), and 7 (298.3 cM) for A, B, and D respectively.  In this study we detected a 

total of 90 and 177 putative QTLs with additive and epistatic effects respectively.  For all 

traits the total number of QTLs with main effect were 28 (31%), 53 (59%) and 9 (10%) 

for genomes A, B, and D respectively.  Most of the main effect QTLs were associated 

with genome B and least with D.  The genome distribution of the epistatic QTLs was not 

different from that of additive effects 56 (32%), 100 (56%), and 21 (12%) for genomes A, 

B, and D respectively.  The highest number of additive QTLs was concentrated in 

homologous chromosomes 3 and 7, whereas for epistatic QTLs linkage groups associated 

with homologous chromosomes 3 and 6 were the most common. 
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QTLs with additive main and additive x environment interaction effects 

The two QTL interaction analysis resolved a total of 14 to 17 significant (P < 

0.005) QTLs with additive main effect among the six traits (Figs. 1a and 2).  For grain 

yield and kernel weight, nine additive x environment interaction effects were detected.  

This was the highest frequency of ae interactions for any trait as might be expected given 

their typically low heritability.  Only two interactions were detected for kernel hardness.  

Collectively, the additive effects explained 13 to 56% of the phenotypic variation, while 

the additive x environment effects accounted for 1 to 15% of the phenotypic variation 

(Fig. 1b).   

Wang et al. (1999), in testing the power of the mixed model approach for the two-

locus QTL analysis, indicated that QTLs with large additive and/or epistatic effects with 

relative magnitude h2 > 6% can almost always be detected and their positions and effects 

accurately estimated.  On the other hand QTLs with h2 < 2% are considered largely 

unstable.  In our study, we first quantified the total number of significant additive and/or 

epistatic effects (P < 0.005, equivalent to LOD = 2.79), including their environmental 

interactions (Fig. 1a) and their total relative magnitudes (Fig. 1b).  Similarly, the full 

range of intervals of additive and /or epistatic effects depicted in Figure 2 also include all 

significant (P < 0.005) effects.  However, further discussion will focus on the more 

consistent additive and/or epistatic effects as recommended by Wang et al. (1999).  We 

summarized in Tables 1 and 2 only those QTLs which explained > 2% of the phenotypic 

variation. 

For grain yield, two additive main effects were identified in linkage groups 4AL 

(AGG.CTG11/GCTG.GTG5) and 5A, accounting for 6 and 2% of the phenotypic 

variation respectively; for both QTL the allele from Clark increased the phenotypic value 
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(Table 1).  The role of chromosome 4AL (Araki et al., 1999), and that of chromosome 5A 

(Kato et al., 2000; Marza et al., 2005a) for yield have been particularly emphasized.  The 

effect of the QTL in linkage group 5A was exclusively additive.  These QTLs identified 

for yield were slightly sensitive to environmental variation.  The additive x environment 

interaction effect for 4AL with environment AL02 was negative, while the interaction 

effect of the QTL in 5A with environment LA03 was positive; yet their relative 

magnitudes were low (h2 < 1%; Table 1).   

Three additive main effects for plant height explaining 7, 4, and 3% of the 

phenotypic variation were mapped in linkage groups 6A (AGC.TGC4/ACC.AGC5), 4B, 

and 1B respectively (Table 1).  These regions have been widely reported for this trait 

(Borner et al., 2002; Huang et al., 2003, 2004; Marza et al., 2005a).  The QTL in linkage 

group 6A exhibited the strongest ae interaction, involving four of the five environments 

and explaining 4% of the phenotypic variation; in contrast 4B and 1B were insensitive to 

environmental variation.  For grain yield and plant height, all major QTLs detected by 

single-locus analysis for the same population (Marza et al., 2005a) was confirmed here.  

However, an additional QTL for plant height in linkage group 1B was discovered here (h2 

= 3%), which went undetected in the single-locus analysis. 

For test weight, the two most important QTLs with additive effects in linkage 

groups 5B and 5A explained 4 to 6% of the phenotypic variation (Table 1).  These were 

found associated with kernel packing efficiency (5B) and kernel density (5A) in similar 

regions in the earlier report (Marza et al., 2005b).  The Clark allele increased test weight 

in 5A, whereas the Ning7840 alleles increased test weight in 5B and two other important 

QTLs in linkages groups 2BS and 4B.  The QTLs on 2BS and 5A were reported in 

similar regions by Campbell et al. (1999).  Interestingly, QTLs in linkage groups 5A and 



 75

2BS were exclusively associated with additive effects.   For test weight, three of the four 

QTLs interacted with environments, each accounting for 1% of the phenotypic variation, 

suggesting that test weight was relatively insensitive to environmental variation.  

In this study, extraordinarily large additive effects contributed to variation in kernel 

weight (Fig. 1b), suggesting that more than half of the variation for this trait was fixable 

and that the associated QTLs should be particularly useful in marker-aided breeding.  The 

three most important QTLs for kernel weight were mapped in linkage groups 6B 

(ACT.GCG11/ACA.CTG16), 6A (CTCG.GTG2/AAC.CGAC8), and 1B 

(CTCG.AGC9/AAG.CAGT1), explaining 16, 11, and 7% of the phenotypic variation, 

respectively, and with the alleles from Clark increasing the phenotypic value (Table 1).  

The identified intervals for 6B and 6A (Fig. 2) were found in the exact same genomic 

positions based on single-locus analysis (Marza et al., 2005b), which corroborates the 

argument of Wang et al. (1999) that QTLs with h2 > 6% will always be detected in the 

same position.  Additional QTLs with h2 > 2% were identified in linkage groups 5D, 5A, 

5B, 3BL, and 7A.  The effects of QTLs on 5B and 7A were exclusively additive.  Among 

the traits considered here, kernel weight was the trait with the largest additive x 

environment effect (Fig. 1b).  Most of the QTLs with additive effect for kernel weight 

exhibited QTL x environment interaction; but two exceptional QTLs in linkage groups 

5B and 7A were insensitive to environmental variation; moreover, they associated with 

additive effects only.  

The lack of phenotypic differences between parental lines for wheat protein was 

reflected in the relatively low magnitude of effects associated with the identified QTLs 

(Table 1 and Fig. 1b).  Additive effects of two important QTLs (linkage groups 4B and 

3AS2) accounted for only 2% of the phenotypic variation, and each QTL exhibited 
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positive additive x environment interaction with LA03 and AL02, respectively.  The 

results of two-locus QTL analysis for hardness index identified one QTL on linkage 

group 3AS2 (XGWM2.3AS/AGC.CTC1) with a relatively large additive effect.  The 

Ning7840 allele increased the phenotypic value (Table 1) as expected given Clark�s SRW 

classification.  A QTL for this trait was reported in the same chromosomal arm location 

by Campbell et al. (1999).  The identified QTL was insensitive to environmental 

variation and did not map to the chromosomal region of 5DS believed to explain major 

differences in hardness of soft versus hard wheat (Morris, 2002).   

In general, most of the QTLs with additive effects identified previously based on 

single-locus analysis (Marza et al., 2005b) were found in the same vicinity of the QTLs 

identified here (Fig. 2).  More striking was the overall lack of sensitivity to environmental 

variation of those QTLs associated with additive effects only, which may be one of the 

virtues of two-locus analysis that may help uncover QTLs amenable for marker-assisted 

selection.  Additive x environment interaction presumably arose from differential gene 

expression in different environments, or from QTL expression in one environment but 

not in another.  The pattern of differential expression of additive x environment 

interaction with no direction of the effects in this study appears to be very complex.  

QTLs with epistatic and epistatic x environment interaction effects  

Among all traits, the two-locus QTL analysis resolved a total of 6 to 24 QTLs with 

significant (P < 0.005) additive x additive epistatic (aa) effects and 2 to 10 QTLs with 

additive x additive x environment (aae) interaction effects (Fig. 1a and Table 2).  In 

either case, grain yield accounted for relatively few aa and aae effects, whereas epistasis 

was prominent for hardness index.  Virtually all of the phenotypic variation for hardness 

was epistatic.  For the other traits, epistatic effects accounted for 10 to 40% of the total 
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phenotypic variation.  Epistatic x environment interaction effects accounted for < 16% of 

the phenotypic variation, and for grain yield this component comprised only 1% (Fig. 

1b).   

The digenic epistatic interaction of two loci in linkage group 4AL for grain yield 

accounted for 5% of the phenotypic variation with little sensitivity to environmental 

variation (Table 2, Fig. 2).  For plant height, five digenic epistatic interactions explained 

2 to 5% of the phenotypic variation.  They included five additive main effects (6B, 6A, 

3BL, 4B, and 3AS2) but four others produced non-significant additive effects.  The latter 

have been referred to as �modifier factors�, meaning that gene expression of some QTLs 

could be induced by the environment (Cao et al., 2001).  In addition, important epistasis x 

environment interactions between two intervals in linkage group 6A explained 12 % of 

the phenotypic variation; interactions with environments ST01, ST02, and ST03 were 

negative, whereas the interaction with LA03 was positive.   

For test weight, four digenic epistatic QTLs were identified in linkage groups 3BL, 

5A, 5B, 6B, 7A, and 7DL and accounted for 2 to 5% of the variation.  None of these 

influential epistatic effects interacted with environments.  For kernel weight, eight 

epistatic QTLs (including 8 of the additive QTLs) were distributed in six linkage groups 

(6A, 6B, 5B, 4B, 3BL2, and 7BS) and were involved in five digenic interactions 

explaining 2 to 12% of the variation (Table 2 and Fig. 2).  A single digenic interaction 

between QTLs 5B and 7BS was positive, while all the remaining QTLs produced 

negative interaction effects.  The epistatic x environment interaction for this trait 

appeared to be induced by the effects of years more than sites.  Negative effects were 

associated with ST02 and AL02, while positive effects were associated with ST03 and 
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LA03.  The largest effect (5%) was produced by the digenic interaction of two loci in 

linkage group 6A.   

For protein content 14 QTLs were identified in seven digenic combinations 

distributed across 12 linkage groups (Table 2 and Fig. 2).  Seven of these 12 loci 

coincided with QTLs showing additive main effects (Table 1).  Among the seven digenic 

combinations, four showed epistatic x environment effects with one to three of the 

environments explaining < 3% of the phenotypic variation.  Epistatic effects were 

positive at four pairs of loci indicating that recombination of the parental alleles increased 

protein content.  Altogether, 24 digenic epistatic interactions were detected for hardness 

index, explaining 4 to 11% of the variation (Table 2, Fig. 2).  Among them, 11 pairs had 

at least one additive effect at one site, but five pairs showed no significant additive 

effects.  Only six pairs showed epistatic x environment interaction effects in one to two 

environments.  Gene interactions obviously play a major role in hardness expression for 

this population.  To our knowledge, characterization of this trait for epistatic effects was 

not addressed.  Interactions between QTLs and other modifying loci might be the 

prevalent form of epistasis (Yu et al., 1997). 

Overall, the model containing a, aa, ae, and aae effects constituted varying 

proportions of phenotypic variation, depending on the trait.  For grain yield, the 

proportion was lowest (28%).  For plant height, test weight, and protein content, the 

model was much more effective (53 to 77%), whereas for kernel weight and hardness 

index, a digenic model with additive effects was sufficient (122 to 148%).  As would be 

expected, we were more successful in dissecting a component of grain yield and kernel 

weight, than grain yield itself.  In comparing genetic effects with non-genetic effects, and 

averaging across traits, the combined a and aa effects outweighed the ae and aae effects 
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by four to one (80% vs. 20%).  Still, 23 to 72% of the phenotypic variation for yield, 

plant height, test weight, and protein content remains unexplained and may be attributed 

either to higher order interactions or environmental variation.  It is also possible that 

some of the QTLs for these traits escaped detection because the alleles for these QTLs 

did not differ in the Ning7840 and Clark parents.  Additional factors for the high 

percentage of unaccounted variance may be due to the genome coverage (poor for some 

linkage groups). 

Knowledge of the proportions of additive vs. epistatic effects is clearly very 

important for the purpose of breeding and marker-assisted selection.  The importance of 

epistasis in determining quantitative trait variation has been well demonstrated here by 

the large number of epistatic QTLs identified and by the involvement of many additive 

effects in epistasis.  Our finding that epistatic QTLs tended to show a greater level of 

QTL x environment interaction than the additive main effect QTLs is perplexing.  It 

suggests that epistatic QTLs could more likely be influenced by the environment than 

additive QTLs.  Since epistatic effects might be spuriously induced by the environment, 

selection of these QTLs may not contribute to genetic gains.  Hence marker-assisted 

selection should concentrate more heavily on QTLs with additive main effects.   
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Table 1.  Summary of estimated additive (a) and additive x environment interaction (ae) effects of QTLs 

(h2  > 2%) for grain yield, plant height, test weight, kernel weight, wheat protein, and hardness index 

detected by two-locus analysis using QTLMapper for the Ning7840 x Clark RIL population evaluated in 

Stillwater (ST), Lahoma (LA), and Altus (AL), Oklahoma from 2001 to 2003 (bold = QTLs with 

additive effects only). 
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  h2a  
§ 

 
ae ¶ 

ST01 

 
ae 

ST02 

 
ae 

AL02 

 
ae 

ST03 

 
ae  

LA03 

 
h2ae 

§ 
           

    %      % 

Grain yield, kg ha-1          

           

4AL_11 AGG.CTG11/GCTG.GTG5 9.1 296 5.7   -77   0.2 

5A_6 ACG.GAC1.2/ACG.GAC6 30.0 176 2.0     139 0.5 

           

Plant height, cm          

           

6A_21 AGC.TGC4/ACC.AGC5 16.0 2.7 7.0 -2.1 -1.0  2.0 1.1 3.6 

4B_13 AGG.CAG1/BARC20.4BS-7BL 28.1 -2.0 4.0       

1B_8 CTCG.AGC8/AGC.CTC12 12.7 -1.6 2.6       

           

Test weight, kg hL-1          

           

5B_27 AAG.CAG3/ACT.GCG3 23.9 -0.68 5.9  -0.61    1.2 

5A_6 ACG.GAC1.2/ACG.GAC6 34.3 0.54 3.7   -0.32  0.36 0.8 

2BS_19 GCTG.ACGC1/AAC.CTG3 10.7 -0.43 2.3       

4B_13 AGG.CAG1/BARC20.4BS-7BL 20.5 -0.38 1.9 0.43     0.9 

           

Kernel weight, mg          

           

6B_17 ACT.GCG11/ACA.CTG16 16.4 1.45 16.1 -0.40 -0.41  0.43 0.35 1.2 

6A_13 CTCG.GTG2/AAC.CGAC8 33.8 1.20 11.1   0.52   0.9 

1B_32 CTCG.AGC9/AAG.CAGT1 28.4 -0.94 6.9   -0.36  0.92 2.2 

5D_5 AGT.CTG10/AGG.CTC4 34.3 -0.77 4.6 -0.53 0.35   0.59 1.7 

5A_7 ACG.GAC6/ACA.CTA4 58.4 0.69 3.7 0.71    -0.61 2.0 

5B_14 ACA.CTG1/GCTG.GCAG3 4.7 -0.58 2.6       

3BL_3 AAC.AGC7/AGG.CAC1 10.4 0.56 2.5  0.43    0.6 

7A_5 CTCG.CAT1/AAG.AGC12 8.8 0.53 2.2       

           

Wheat protein, g kg-1          

           

4B_11 AAC.CAG2/ACT.CAT11 18.0 -0.15 2.2     0.12 2.2 

3AS2_2 GCTG.GAC12/AAC.CAG5 16.1 -0.14 2.0   0.12   0.4 
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    %      % 

Hardness index, (0-100)          

           

3AS2_8 XGWM2.3AS/AGC.CTC1 54.5 -7.0 11.3       

� LG-In represent the linkage group and serial number of the initial interval on the corresponding linkage 

group. 

� a is the additive main effect.  A positive value implies Clark allele increasing the corresponding 

phenotypic value; a negative value implies the Clark allele decreased it. 

¶ ae is the additive x environment interaction effect. 

§ h2a is the percentage of the phenotypic variation explained by a, and h2ae is the percentage of the 

phenotypic variation explained by ae.
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Table 2. Summary of significant (P < 0.005 and h2aa > 2%) epistatic (aa) and epistasis x environment interaction (aae) effects of QTLs detected by two-locus 

analysis using QTLMapper for the Ning7840 x Clark RIL population evaluated in Stillwater (ST), Lahoma (LA), and Altus (AL), Oklahoma from 2001 to 

2003.  (bold = QTLs with significant additive effect). 
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     %      % 
Grain yield, kg ha-1            

             

4AL_11 AGG.CTG11/GCTG.GTG5 4AL_15 ACT.CAGT6/AAC.GAC3 9.1 -277 5.0       

             

Plant height, cm            

             

6B_34 AGG.CTC9/ACT.GCG9 7BL2_1 XGWM344.7BL/ACG.CTG7 34.1 -2.3 5.2  -0.8    0.3 

6A_17 ACC.CAG4/CTCG.TGC8 6A_21 AGC.TGC4/ACC.AGC5 16.0 1.6 2.7 -2.1 -1.3  -1.8 5.1 11.7 

2DL_21 AAG.CAGT11/GCTG.CTC13 4B_9 GCTG.GTG1/AAC.CTG1 23.1 1.6 2.6       

3BL_1 CTCG.CTC6/CTCG.CAG5 7BS_13 AGC.CAGT4/XGWM68.7BS-5B 17.7 -1.5 2.4       

2DL2_1 ACA.CTG5/ACT.CAT14 3AS2_5 AGT.CTG4/AGG.CTC11 11.3 -1.5 2.3 1.4    -1.8 1.8 

             

Test weight, kg hL-1            

             

5B_17 GTG.GAC2/XGWM540.5B 5B_24 CTCG.CTG4/BARC74.5BL 9.4 0.64 5.2       

6B_10 AAG.CTG5/DUPW216.6B 7A_8 GCTG.CGAC2/GCTG.GCG2 16.6 -0.45 2.5       

3BL_5 AGC.GCG5/BARC164.3BL 7DL_7 AAG.CTA8/AGG.CTG4C 15.8 -0.40 2.0       

5A_1 BARC165.5AL/BARC100.5AL 6B_24 GTG.CTGA4/AGG.CAG7 19.3 0.38 2.0       

             

Kernel  weight, g            

             

6A_17 ACC.CAG4/CTCG.TGC8 6A_21 AGC.TGC4/ACC.AGC5 41.8 -1.25 12.0  -0.37 -1.22 0.74 0.58 4.9 
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     %      % 
6B_15 GCTG.ACGC4/ACT.CAT5 6B_18 ACA.CTG16/AGC.TGC7 7.8 -0.81 5.0   -0.60 0.54  1.3 

5B_25 BARC74.5BL/ACG.CTG4 7BS_8 E13/AGC.GCG13 5.0 0.63 3.0 0.88  -0.36   1.9 

4B_6 AAG.CTA7/ACC.CAG6 7BL2_5 ACTG.CTC6/GCTG.CTC11 18.8 -0.59 2.7       

3BL2_11 BARC77.3BL/AAG.CTA6 5B_18 XGWM540.5B/BARC4.5BL 9.0 -0.53 2.1       

             

Wheat protein, g kg-1            

             

1B_6 GCTG.GAC2/BARC61.1BL-1BS 4AL_2 GCTG.CTT9/BARC170.4AL 14.2 0.22 4.9       

5B_6 ACC.AGC7/AAG.CTA1 7BS_13 AGC.CAGT4/XGWM68.7BS-5B 15.3 0.17 2.9 0.26  -0.13  -0.17 3.1 

3BL2_6 CTCG.CAG6/AGC.GCG3 5B_14 ACA.CTG1/GCTG.GCAG3 21.3 -0.16 2.5  -0.17    1.5 

6A_13 CTCG.GTG2/AAC.CGAC8 6A_19 AAC.CTG5/BARC1055.6AL 7.6 0.15 2.4       

2BS_5 AGG.CTC6/AGG.TGC7 3BL_13 AGG.CTC7/CTCG.CTC11 23.0 0.15 2.3  0.10  0.13  1.2 

3AS2_4 GTG.CTGA3/AGT.CTG4 7A_13 ACT.CTC5/ACT.CAT6 19.1 -0.15 2.2       

2DL_7 CTCG.CGAC2/AGC.TGC10 5D_2 ACA.AGC5/XGWM654.5DL 8.3 -0.14 2.0   0.16   1.7 

             

Hardness index, (0-100)            

             

6B_11 DUPW216.6B/AGG.CTC5 6B_37 ACT.CTC2/DUPW217.6B 60.1 7.0 11.4    -3.2  1.0 

2BL_6 GCTG.ACGC2/AAG.CTG8 6B_4 AAG.CTA9/AGC.GCG1 44.0 -6.6 10.0 3.4    -2.8 1.3 

5A_1 BARC165.5AL/BARC100.5AL 5B_22 AAG.CTC4/ACT.GCG10 55.4 -6.0 8.2  -2.2  4.1  1.7 

2BL_2 AAG.CAGT12/AGC.GCG2 3AS2_5 AGT.CTG4/AGG.CTC11 31.6 5.9 7.9       

2BS_5 AGG.CTC6/AGG.TGC7 3BL2_7 AGC.GCG3/GCTG.CTC1 33.6 5.6 7.3       

1B_11 ACA.CAT6.5/ACA.AGC12 5B_14 ACA.CTG1/GCTG.GCAG3 33.7 -5.1 5.9   -2.6 3.7  1.4 

1B_10 ACG.CTG6/ACA.CAT6.5 4AL_11 AGG.CTG11/GCTG.GTG5 35.8 4.9 5.6       

5B_2 GAC.CAG4/GTG.CAGT3 6B_17 ACT.GCG11/ACA.CTG16 33.4 -4.7 5.1       

5B_16 ACT.CAGT7/GTG.GAC2 6A_21 AGC.TGC4/ACC.AGC5 27.1 4.7 5.0       
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6B_32 ACA.CTGA9/GTG.GAC8 7A_5 CTCG.CAT1/AAG.AGC12 25.4 -4.5 4.6 -3.0    2.7 1.3 

3A5A_6 GTG.CTGA2/BARC197.3A-5AL 4B_13 AGG.CAG1/BARC20.4BS-7BL 30.1 -4.5 4.5   -2.2 2.5  0.9 

1B_1 ACA.CTA7/CTCG.CTC10 7BS2_2 CTCG.CAT2/AGT.CTG3 22.4 -4.2 4.1       

5A_2 BARC100.5AL/AAC.CGAC10 6A_10 CTCG.GTG7/AAC.GAC9 26.5 4.2 4.1       

6A_14 AAC.CGAC8/ACT.GCG8 7BL_2 GCTG.GCG3/ACT.GCG7 27.7 4.1 3.8       

2DL2_2 ACT.CAT14/AGT.CTG7 7DL2_1 BARC97.7DL/AAC.CGAC9 25.8 4.1 3.8       

� LG-Ini and LG-Inj represent the linkage group and serial number of the point tested on the corresponding linkage group. 

� aaij is the epistatic effect between points i and j; a positive value indicates that the two-locus parental genotypes had a positive effect (increased phenotypic 

value), while the recombinants had negative effects.  

¶ aaeij is the epistatic interaction effect between points i and j and the environment. 

§ h2aaij and h2aaeij are the percentages of the phenotypic variation explained by aaij, and aaeij respectively
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Fig. 1.  Frequency distributions for genetic and non-genetic components of phenotypic 

variation for grain yield (GY), plant height (HT), test weight (TW), kernel weight 

(KW), wheat protein content (WP), and hardness index (HI) in the Ning7840 x Clark 

population: a) total number of significant (P < 0.005) QTLs identified for additive (a), 

additive x environment (ae), epistatic (aa), and epistatic x environment interaction 

(aae) effects, and b) total relative magnitude of significant (P < 0.005) a, ae, aa, and 

aae effects. 
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Fig. 2. Primary genomic regions of identified QTLs (P < 0.005) affecting grain yield 

(GY), plant height (HT), test weight (TW), kernel weight (KW), wheat protein content 

(WP), and hardness index (HI) in the Ning7840 x Clark RIL population evaluated in 

various Oklahoma environments from 2001 to 2003.  A single and double bar indicate 

additive and additive x environment interaction, respectively.  Arrows represent the 

interval exhibiting peak h2.  Intervals exhibiting additive x additive epistatic effects are 

ranked independently for each trait in pairs (e.g., 4 and 4� represent the pair of QTLs 

exhibiting digenic epistatic interaction in linkage groups 1AL and 3A5A with the 

fourth highest relative magnitude for grain yield).   



VITA 

Felix Marza-Mamani 

Candidate for the Degree of  

Doctor of Philosophy 

 

Thesis:   MAPPING QUANTITATIVE TRAIT LOCI FOR AGRONOMIC AND 
QUALITY FACTORS IN WHEAT  

 
Major Field:  Crop Science 
 
Biographical: 
 

Education:  Received Bachelor of Science degree in Agronomy from Technical 
University of Oruro, Bolivia in 1993; received Master of Science degree in 
Andean Agriculture from National University of Altiplano, Puno, Peru in 
1998. Completed the requirements for the Master of Science degree with a 
major in Plant and Soil Sciences at Oklahoma State University in August, 
2001.  Completed the requirements for Doctor of Philosophy degree in Crop 
Science at Oklahoma State University in May 2005. 

 
Experience:  Faculty member, Department of Agronomy, Technical University of 

Oruro (UTO), Bolivia, 1993 to 1998; Andean genetic resources research 
counterpart, Department of Agronomy, UTO, Bolivia, 1996 to 1998.  
Graduate research assistant, Department of Plant and Soil Sciences, 
Oklahoma State University, 1999 to 2005.  

 
Professional Menbership:  Crop Science Society of America. 
 
 
 
 
 
 



Name:  Felix Marza-Mamani                                                    Date of Degree:  May, 2005 

Institution:  Oklahoma State University                             Location:  Stillwater, Oklahoma 

Title of Study:  MAPPING QUANTITATIVE TRAIT LOCI FOR AGRONOMIC AND 
 QUALITY FACTORS IN WHEAT 
 

Pages in Study:  90                                 Candidate for the Degree of Doctor of Philosophy  

Major Field:  Crop Science 
 
Scope and Methods of Study:  Agronomic and quality traits are important factors in 

wheat (Triticum aestivum L.) improvement and in determining end-use product 
value.  Knowledge regarding the number, genomic location, and effect of 
quantitative trait loci (QTL) would facilitate marker-assisted selection and the 
development of cultivars with desired trait complexes.  Our objectives were to 
identify QTLs influencing agronomic and milling performance, and to determine 
their genetic effects.  A population of 132 F12 recombinant inbred lines (RILs) was 
derived by single-seed descent from a cross between the Chinese facultative wheat, 
Ning7840, and the U.S. soft red winter wheat, Clark.  The population was grown at 
three Oklahoma locations from 2001 to 2003.  Measurements were collected for 
yield, yield components, plant adaptation, spike morphology, kernel size, and class 
factors. 

   
Findings and Conclusions:  Twenty-nine linkage groups, consisting of 363 AFLP and 47 

SSR markers, were identified.  Using composite interval mapping (CIM) analysis, 
10, 16, 30, and 14 QTLs were detected for yield, yield components, plant adaptation, 
and spike morphology traits, respectively.  Alleles from Clark were associated with a 
positive effect for the majority of QTLs for yield and yield components.  Consistent, 
co-localized QTLs for yield and yield components were identified in linkage groups 
1AL, 1B, 4B, 5A, 6A, and 7A, and less consistent but unique QTLs were found on 
2BL, 2BS, 2DL, and 6B.  For quality traits, a unique QTL was identified for test 
weight in linkage group 5B, presumably influencing grain packing efficiency.  
Common markers were identified for test weight, kernel weight, and kernel diameter 
on 5A.  Consistent co-localized QTLs were identified for kernel weight and kernel 
diameter in linkage group 6A.  Important QTLs with strictly additive effects were 
identified in linkage groups 5A (yield), 5A, 2BS (test weight), and 5B (kernel 
weight) through mixed-model QTL analysis.  Epistatic QTLs tended to show a 
greater level of QTL x environment interaction than additive QTLs, suggesting that 
epistatic QTLs are more prone to environmental influence than additive QTLs.  
Results of this study provide a benchmark for future efforts on QTL identification. 

 
 
 
 
 
ADVISER�S APPROVAL:  Dr. Brett F. Carver                                                                . 


