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CHAPTER I 
 
 

INTRODUCTION 

 

Shortleaf pine and loblolly pine 

 

Shortleaf pine (Pinus echinata Mill.) and loblolly pine (Pinus taeda L.) are two important 

commercial conifers native to the southeastern United States.  Both species have the 

ability to produce wood in large volumes on lands with soils unsuited to intensive 

agriculture (Nakane, 1994).  These pines have the widest natural ranges among all 

southern pines, with shortleaf pine having the largest.  Much of the geographic range of 

shortleaf pine and loblolly pine is shared.  Shortleaf pine occurs in areas further north 

where it’s too cold for loblolly pine to survive.  

 

However, loblolly pine is more financially attractive than shortleaf pine, due to its higher 

wood production rate resulting largely from its faster juvenile growth and greater full-

grown size.  Loblolly pines now occupy 65 percent of the commercial forest land in the 

southern United States and directly or indirectly contribute $30 billion to the economy of 

the region (Schultz, 1999; Conner and Hartsell, 2002).  Hence, loblolly pine is entitled 

“the pine for the twenty-first century” (Schultz, 1999). 
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Fire and pine species 

 

Fire is one of the most important ecological factors associated with pine (Agee, 1998). 

Fire is responsible in large part for the wide distribution of pines.  Much of pine species’ 

current large ranges are due to its ability to quickly spread to open places created by 

various disturbances such as fire.  Disturbances help remove the previous vegetation, 

recycle nutrition and create space for the development of pine seedlings.  Without 

disturbance like fire, pines on better sites might be completely eliminated and replaced by 

hardwoods, because without disturbance the hardwood species develop more rapidly on 

these sites (Denevan, 1961; Kowal, 1966).  

 

Some pine species have developed the capacity to resprout from the stem or root collar to 

help survive after disturbance (McCune, 1988).  Shortleaf pine, pond pine (Pinus serotina 

Michx.) and pitch pine (Pinus rigida Mill.) are the three southern pines known to have 

strong basal sprouting ability (Fowells, 1965; Stone and stone, 1954).  Vigorous 

resprouting from axillary buds can be produced at the base of the stem of seedlings of 

these species (Agee, 1998).  The preformed buds, originally located in axils of primary 

needles, are well protected by bark and can sprout following fire in these pine species up 

to age 10 or older (Ledig and Little, 1979).  These buds are connected to the pith by a bud 

trace.  They remain almost dormant under the bark and grow only a little each year so 

that the tip can keep pace with cambial growth (Kozlowski et al., 1991).  Under severe 

conditions when the leaves, or more seriously, the stem are lost by fire, the bud dormancy 
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is released (Kozlowski et al., 1991).  Basel sprouting is, however, largely restricted to 

seedlings and small saplings (Stone and stone, 1954; McCune, 1988).  

 

Species with sprouting ability may be more competitive than those that reproduce only by 

seeds because the sprouts grow faster than seedlings (Biswell, 1974; Kozlowski et al., 

1991).  Liming (1945) reported that shortleaf pines developed from sprouts caught up 

with other shortleaf pines planted at the same time as the originally top-killed shortleaf 

pines, and later even surpassed undamaged planted shortleaf pine in height.   

 

Natural regeneration and artificial regeneration of pine 

 

Natural regeneration of pine species includes regeneration through natural seedlings or 

from sprouts (Butler, 2003).  However, most pines have limited ability to regenerate from 

sprouts, with several exceptions including shortleaf pine.  Thus, natural regeneration of 

pines generally depends on seeds provided by older trees left there to regenerate the site 

(Duryea, 1992).  Natural regeneration has its advantages, such as lower cost, less labor 

and ensured adaptation of the native stock to the site (Edward, 1987).  However, due to 

limited seed production, and competition for light, nutrition and space, pine species’ 

natural regeneration rates can be quite low in any given year (Liming, 1945).  The 

competition with natural regenerating of pine stands can come from other trees and 

shrubs, grasses, and woody vines.  
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Artificial regeneration methods include planting seedlings or direct seeding (Butler, 

2003).  In recent years, pine management has changed from dependence on natural 

regeneration to artificial regeneration by planting seedlings or sowing seeds 

(http://www.forestencyclopedia.net/p/p599).  Despite its higher initial cost and labor, 

artificial regeneration has its own advantage: it reduces the time required for 

establishment, provides better control of spacing, and allows establishment of genetically 

improved trees (Edward, 1987).  Due to the financial attractiveness of growing loblolly 

pine compared to shortleaf pine, many more areas of loblolly pine are being regenerated 

by artificial regeneration, even on those lands which were originally occupied by 

shortleaf pines (Moser et al., 2008).  

 

Shortleaf pine is declining 

The acreage and volume of shortleaf pine has been decreasing during the last several 

decades (Moser et al., 2008).  The decline is due to the following two reasons.  One is 

landowners’ preference for loblolly pine.  In much of the original shortleaf pine range, 

shortleaf pine is being replaced by loblolly pine through plantation establishment.  

Secondly, shortleaf pine’s establishment is more dependent on disturbance like fire than 

most other tree species.  However, disturbance is extremely restricted in today’s 

increasingly urbanized world (Johnson et al., 2002; Moser, 2003; Moser et al., 2008).  

Due to lack of disturbances like fire in shortleaf pine stands, when shortleaf pines become 

overmature and die, midstory hardwoods tend to dominate the stand and replace the 

original shortleaf pine.  
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Prescribed fire 

 

Fire is an important factor in forest ecosystems.  It is a major disturbance, and if 

uncontrolled, it can result in stand replacement.  Unlike wildfire, prescribed fire is now 

utilized in forest management because it is helpful in improving regeneration.  First, 

prescribed fire can effectively reduce built-up fuel levels, and chances for the outbreak of 

a stand-replacing wildfire are greatly reduced after application of prescribed fire.  Second, 

after prescribed fire, site conditions are more favorable for the establishment of pine 

seedlings, as non-fire-adapted resource-competing species are eliminated.  Third, more 

nutrition is available for pine seedling development, as otherwise immobilized nutrients 

from other understory vegetation are released to the soil after fire (Schultz, 1997).  

Therefore prescribed burning is used for regenerating southern pines either by artificial 

regeneration, or natural regeneration (Pritchett, 1979).  Prescribed fire is considered the 

most economical site preparation tool (Luke et al., 2000). 

 

Shortleaf pine sprouting and natural regeneration 

 

Shortleaf pine’s strong sprouting ability and prescribed fire might be useful for natural 

regeneration in silvicultural applications.  Prescribed fire not only helps to promote 

shortleaf pine seedling establishment on the site by providing a seed bed and nutrition 

recycled from other above-ground competing species, but also eliminates species with 

less fire resistance that would otherwise compete for the resources (Moser, 2003; Moser 

et al., 2008).  When prescribed fire is applied, some shortleaf pine seedlings or saplings 
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might be killed, but sprouts developed from top-killed stems and new shortleaf pines 

developed from seeds may provide adequate regeneration.  Spouting is much less 

common in loblolly pine than in shortleaf pine (Schultz, 1997). 

 

Utilizing microarrays to profile gene expression related to sprouting due to 

dormancy release  

 

Microarrays have been utilized to answer many diverse biological questions since the 

middle of the 1990s (Chee et al., 1996; van Hal et al., 2000).  The microarray method was 

developed on the principle that complementary nucleic acids hybridize with each other.  

Unlike other techniques for the analysis of gene expression at the mRNA level, such as 

Northern blot hybridization (Kevil, 1996), differential display (Liang and Pardee, 1992), 

or serial analysis of gene expression (SAGE; Adams 1996), microarray technology can 

be utilized to examine the expression pattern of large subsets of genes simultaneously for 

any particular organism at any developmental stages and under varied environmental 

stimuli (Duggan et al., 1999; Richmond and Somerville, 2000). 

 

The microarray method has been used for many different purposes, such as comparing 

global expression profiles under different environmental conditions (Reymond et al., 

2000) and identifying genes of specific functions (Park et al., 2006; Ducreux et al., 2008).  

Recently several microarray experiments have been carried out to profile genes 

responsible for dormancy release of buds of perennial trees and perennial grasses (Huang 

et al., 2008; Mazzitelli et al., 2007; Pacey-Miller et al., 2003).  Normally, for a cDNA 
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array, the cDNA clones printed on the slides and the labeled mRNA hybridized to it are 

from the same species, but researchers have utilized so called “cross hybridization”, and 

found that when fluorescent tagged leafy spurge (Euphorbia esula L.) mRNA is 

hybridized to Arabidopsis cDNA based array slides, 60% of the cDNAs show successful 

hybridization (Chao, 2002). 

 

Experimental Objectives 

Although there have been many investigations of dormancy, the molecular mechanisms 

that control the transitions into and out of dormancy are still unclear; and to this author’s 

knowledge, there is no report on the molecular mechanism involved in dormancy release 

that leads to sprouting in pine species.  This study aimed to identify genes that lead to 

shortleaf pine’s quick bud break and prolific sprouting after top-kill; and to explain why 

shortleaf pine and loblolly pine have huge differences in response to dormancy release 

after top-killing besides the fact that dormant buds are better protected from disturbances 

by the J-shaped crook of shortleaf pine.  The results generated from this experiment 

might be helpful in shortleaf pine regeneration planning as well as simply understanding 

the process.  
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CHAPTER II 
 
 

LITERATURE REVIEW 

 

Loblolly pine (Pinus taeda L.) and shortleaf pine (Pinus echinata Mill.) are commercially 

important tree species in the southeastern United States, and stands may be successfully 

regenerated by either natural or artificial methods.  In regenerated stands, pine seedlings 

are frequently top damaged by a wide variety of animals, insects, forestry operations and 

fire (Bond and Midgley, 2001).  Small seedlings in natural strands are especially at risk, 

as they are not protected like seedlings in a nursery.  Animals such as cows and deer may 

eat them.  Harvest activities may damage existing natural regeneration.  Wildfire is 

common in forest areas and prescribed fire is applied to reduce hazardous fuel buildup 

and help create an exposed soil bed to encourage desired regeneration.  Both wildfire and 

prescribed fire can cause severe damage to pine seedlings.  Thus, sprouting ability 

following top-kill may be an adaptation to insure survival following some of these kinds 

of damage.  

 

Sprouting is a well-organized mode of vegetative recovery, which helps repair the 

damaged tree after top-killing (Blake, 1983; Yamada et al., 2001).  A species’ sprouting 

ability is responsible for how well plants can recover following top damage.  Shortleaf 

pine’s sprouting ability after top-kill by fire is well recognized among southern
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pines (Boucher, 1990; Bellingham, 1994; Everham and Brokaw, 1996).  Loblolly pine is 

also found to be able to sprout after top-kill, but its sprouting ability along the base of the 

stem after fire damage is significantly reduced compared to shortleaf pine (Shelton, et al., 

2002).  Shortleaf pine’s strong ability to sprout following fire is partially due to its 

characteristic J-crook, by which the stem of young shortleaf pine runs parallel to the 

ground for a few centimeters before growing vertically.  This basal crook helps bring 

dormant buds in contact with the soil surface and allows shortleaf pine to sprout near 

ground line by avoiding fire kill of that portion of the stem.  For loblolly pine, dormant 

buds on the stem above the cotyledons are exposed to and usually killed by fire (Shelton, 

et al., 2002). 

 

Sprouting 

Sprouting in plants is a form of vegetative recovery, which helps damaged plants to 

survive (Yamada et al., 2001; Bond and Midgley, 2001).  For some tree species such as 

the rainforest tree Nothofagus cunninghamii, which can regenerate both from seeds and 

by sprouting, sprouting is more common than regeneration by seed following fire or 

drought on drier and less fertile sites (Read and Brown, 1996; Bellingham, 2000).  After 

fire, plants that can not sprout (eg. non-fire adapted species) are probably most threatened 

by extinction from the site, while resprouters survive.  Survival by sprouting is therefore 

a good adaptation for regeneration (Johnston and Lacey, 1983; Ohkubo, 1992; Midgley, 

1996).  Sprouting following top-kill can occur higher in the canopy or at the base of the 

plant (Bond and Midgley, 2003).  For the latter, there are four basic sprouting types: 

“collar sprouts from the base of the trunk, sprouts from specialized underground stems 

(lignotubers and rhizomes), sprouts from roots (root suckering), and opportunistic sprouts 
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from layered branches” (Del Tredici, 2001; Bond and Midgley, 2003).  

 

Sprouting at the base occurs in certain species when the above-ground portions of the 

plants are cut down or are killed by fire or other kinds of damage, such as animals 

browsing, logging, hurricanes, etc. (Putz et al., 1989; Yamada et al., 2001).  In temperate 

and tropical forests, sprouting is a common means of regeneration after forest harvesting 

(Webb et al., 1972; Knight 1975; Zahner et al., 1985).  Plants of different age and size 

have different sprouting abilities (Bond and Midgley, 2001).  Many angiosperm tree 

species can sprout after top-killing when they are seedlings and saplings, while most 

conifers can only sprout when they are seedlings (Del Tredici, 2001; Bond and Midgley, 

2003).  Sprouting abilities also vary according to type and severity of injury (Bellingham 

and Sparrow, 2000; Bond and Midgley, 2001).  Almost all plants are able to resprout 

when exposed to minor herbivory (Ito and Gyokusen, 1996; Chamberlin and Aarssen, 

1996). 

 

It is generally accepted that resources are needed from the remaining stems and roots for 

sprouting, when trees are top-damaged.  But disagreement exists with regard to where 

these resources come from.  Kramer and Kozlowski (1979) suggest that for the sprouting 

of woody plants, resources come from the stumps and roots; while the investigation of 

Sakai and Sakai (1998) shows that for the sprouting of a Mediterranean shrub named 

Euptelea polyandra, the resources are from above ground.   
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Carbohydrates (mainly starch and soluble sugars) are the major resources used for 

sprouting.  Bowen (1993) and Canadell (1998) reported that carbohydrate is most 

depleted among all nutrients (eg. Carbohydrate, nitrogen, phosphorus and so on) after 

sprouting of the shrub Stirlingia latifolia.  It takes two years for the shrub to recover to 

pre-fire carbohydrate levels (Bowen and Pate, 1993).  Will and Tauer (unpublished paper, 

2006) proposed that a difference in carbohydrate availability is the reason why shortleaf 

pine sprouts more vigorously following a winter burn than a summer burn.  In addition to 

carbohydrates, other nutrients such as nitrogen, phosphorus, potassium and magnesium, 

are required for sprouting (Miyanishi and Kellman, 1986; Canadell and Lopez-Soria, 

1998).  Pate (1990) reports starch storage is higher in roots for sprouters than for none-

sprouters (also called seeders).  The signal process involved in the use of these nutritional 

resources for sprouting is not known.  

 

Sprouting potential of shortleaf pine and loblolly pine  

 

Shortleaf pine and loblolly pine are two southern pines that at a young age can sprout 

after top-killing.  When top damaged, the potential for recovery of both shortleaf pine and 

loblolly pine is good, with shortleaf pine having a stronger sprouting ability.  Top-

damaged shortleaf and loblolly pine sprout from dormant buds in the axils of the primary 

needles and the base of secondary needles.  Lateral buds or shoots can also develop into 

dominant ones (Shelton and Cain, 2002).  Spouting in pines is restricted to the portion of 

the stem above the cotyledons, where primary needles exist. No foliage is produced on 

the hypocotyl, which is the stem between the root collar and the cotyledons.  Therefore, 

stem death below the cotyledons will lead to the death of the seedlings (Shelton and Cain, 
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2002).  Adventitious buds on roots, which are used by hardwoods for vegetative 

propagation (Kramer and Kozlowski, 1979), are rarely seen in mature shortleaf pine and 

loblolly pine.  Adventitious rooting ability of shortleaf pine and loblolly pine is lost with 

maturation (Diaz-Sala et al., 1997).  

 

Top-killed shortleaf pine saplings can sprout from dormant buds, which are previously 

developed in the axils of the primary needles (Stone and Stone, 1954).  Shortleaf pine has 

a characteristic J-shape-crook in its stem at ground-line, which is usually a few 

centimeters long.  These crooks cause the stems of young shortleaf pine to run parallel to 

the ground before they grow vertically.  These crooks help to keep the dormant buds near 

the soil surface, which is proposed to be responsible for facilitated sprouting (Shelton and 

Cain, 2000).  Buds on the soil surface or in the litter-layer suffer less damage from 

animals and fire than erect stems.  Loblolly pine has erect stems.  

 

Shelton and Cain (2002) reported that more than 95% of one-year-old shortleaf pine 

seedlings survived by sprouting after a winter burn, which top-killed almost all the 

seedlings (>99%).  Sprouting ability decreases when shortleaf pine becomes older and 

larger.  But Harlow et al. (1979) reported that shortleaf pine can still sprout even when 

they are 10 years old, when their main stems are top-killed by fire or cutting.  Moore 

(1936) reported that shortleaf pines of four or more inches in diameter did develop 

sprouts but with less vigor than younger and smaller trees.  Even trees over six-eight 

inches in diameter may still sprout (Fowells, 1965). 
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Unlike shortleaf pine, no J-shape crook is developed on loblolly pine seedlings to protect 

the dormant buds from fire.  But if loblolly pine seedlings are planted with the cotyledons 

below ground level, survival by sprouting is improved flowing top-damage.  Shelton and 

Cain (2002) reported that for one-year-old loblolly pine seedlings, the average length of 

hypocotyls is 0.6-1.6 inches.  For three-year-old seedlings, if cut above the cotyledon, the 

survival rate from sprouting was 97% for winter cut trees and 96% for summer cut trees 

(Shelton and Cain, 2002).   

 

Genes related to sprouting 

 

Sugars not only play a central role in metabolism to provide nutrition and energy, but also 

function in gene expression regulation (Koch, 1996; Smeekens, 1998). Regulation of 

gene expression by sugar is involved in a number of physiological and developmental 

processes, such as seed germination (Garciarrubio et al., 1997; Finkelstein and Lynch, 

2000), flowering (Corbesier et al., 1998; Bernier et al., 1993), photosynthesis (Krapp et 

al., 1993; Araya et al., 2006) and tuber formation in potatoes (Muller-Rober et al., 1992; 

Gibson, 2000).  Change of sugar concentration may be associated with the sprouting 

process, and it is possible that this kind of change may be responsible for regulation of 

gene expression involved in sprouting.  However, to this author’s knowledge there is no 

report on sugar signal transduction associated with tree sprouting.  What genes, how 

many genes, and how they are involved in sprouting is still obscure.  With more and more 

research reported related to dormancy release in buds and seeds, a detailed review of 

genes related to dormancy release which leads to sprouting is of interest. 
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What is dormancy? 
 
 
By definition, dormancy is “the temporary suspension of visible growth of any plant 

structure containing a meristem” (Lang et al., 1987).  Woody perennial plants rely on 

dormancy for survival; bud break of woody perennials plants is regulated by a dormancy 

release mechanism seasonally (Olsen, 2002; Viemont and Crabbe, 2000; Rohde and 

Bhalerao, 2007).  In addition, dormancy in some plant organs (such as seeds) or 

meristems also plays an important role in controlling plant morphogenetic characters 

(Horvath et al., 2003).  Dormancy makes it possible for axillary buds to replace a 

damaged primary shoot (Shimizu-Sato and Mori, 2001; Olsen, 2002).  

 

Dormancy can be classified into different types according to the different dormancy 

developmental stages: induction, maintenance, and breakage (Olsen, 2002).  More 

commonly, dormancy is divided into three types: eco-, para- and endo-dormancy (Lang et 

al., 1987).  Ecodormancy is suspension of growth provoked by limitations in 

environmental factors.  Paradormancy is arrest of growth imposed by physiological 

factors coming from another part of the plant outside of the dormant tissue (Olsen, 2002).  

Endodormancy is a type of dormancy controlled by internal factors within the dormant 

tissue and it is released only when a chilling requirement is met (Lang et al., 1987).  

Dormancy of axillary buds fall into the paradormant category, as such dormancy is 

caused by apical dominance, an inhibitory effect caused by growing apical buds, which is 

a factor in the plant but outside of the dormant tissue (Olsen, 2002).  Shortleaf pine and 

loblolly pine have axillary buds located in the axils of the primary needles.  The buds 

remain in a paradormant state after formation.  The buds are released from dormancy if 
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apical dominance is removed by loss of the main stem.  

 

Bud dormancy vs. seed dormancy 
 
 
There is some commonality between bud and seed dormancy.  For example, seed 

germination and bud break may be induced or inhibited by similar growth regulators, and 

these processes are regulated similarly as well (Powell, 1987; Dennis, 1996; Olsen, 2002). 

In seeds of specific plant species, such as sweetgum (Liquidambar styraciflua), the 

chilling requirement for breaking dormancy is similar to that for the buds.  However, 

seeds have potential internal controls, while buds are part of the plant and may be 

affected by other parts of the plant (Crabbé and Barnola, 1996; Olsen, 2002).  It is 

reasonable to assume that differences exist between bud dormancy and seed dormancy of 

the same species, and also for bud dormancy or seed dormancy between different species.  

But until now, there is little detailed information on these differences. 

 

Types of bud dormancy 
 
Dormancy of axillary buds 
 
 
Axillary meristems, so called plant stem cells, are formed in the axils of leaves on the 

primary shoot axis (Geier et al., 2008).  After initiation, axillary meristems form axillary 

buds (Schmitz and Theres, 2005; Beveridge, 2006).  After formation, the buds may 

continue growth to form axillary shoots.  Or, most often, the bud remains dormant 

indefinitely unless its growth is triggered by one or more cues from its developmental 

program or from the outside environment (McSteen and Leyser, 2005; Shimizu-Sato and 
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Mori, 2001).  

 

Indefinite dormancy is caused by “apical dominance”, which is “the inhibitory control of 

the shoot apex over the outgrowth of lateral buds” (Cline, 1991; Napoli et al., 1999).  

Apical dominance was demonstrated by a well-known decapitation study, which 

examined the inhibiting function of the shoot tip on the outgrowth of axillary buds 

(Thimann and Skoog, 1933; Bangerth, 1994).  Environmental cues or developmental 

programs or both can function to release apical dominance (Shimizu-Sato and Mori, 

2001).  Most interestingly, apical dominance plays an important role in plant survival 

mechanisms.  If the primary shoot is damaged or removed after disturbance like grazing, 

pruning or fire, axillary meristems in indefinite dormancy might help the plant to survive 

by replacing the damaged primary shoot, as is seen in some tree and annual plant species 

(Klimesova and Klimes, 2003 and 2007; Anderson et al., 2001; Shimizu-Sato and Mori, 

2001).  For tree species, it seems that apical dominance is primarily limited to the 

juvenile stages (Cline, 2000), which may be why some tree species, like shortleaf pine, 

can resprout at an early age following top-kill or serious damage, but looses this ability 

with maturity.  

 

It is known from the decapitation study that it is auxin, which is produced mainly in the 

growing shoot apex, that inhibits the immediate continued development of axillary 

meristems and results in so called “apical dominance”.  It was further reported that by 

adding auxin to tops of decapitated Vicia faba plants, growth inhibition of their axillary 

buds is resumed (Thimann and Skoog, 1933).  Transgenic studies also confirmed the role 
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of auxin in apical dominance, showing reduced branching ability with an increased level 

of auxin, and vice versa (Klee and Lanahan, 1995).  Despite intensive research on the 

function of auxin, how it acts in plants is still much a mystery.  To date, it is known that 

auxin works indirectly on the dormant bud, and direct application of auxin to buds does 

not inhibit their outgrowth (Klee and Lanahan, 1995; Ferguson and Beveridge 2009).  It 

has been noted that levels of auxin in buds rise as they resume growth (Lincoln et al., 

1990). 

 

Although auxin is the major player in apical dominance, its function is regulated by 

several other secondary messengers, including cytokinin, abscisic acid (ABA), and a 

newly discovered hormone which inhibits bud growth in pea (Pisum sativum L.) and 

branching in Arabidopsis, named rms and max, respectively (Beveridge, 2000; Morris et 

al., 2001).  Cytokinin functions to promote bud outgrowth, and by applying cytokinin to 

tops of decapitated Arabidopsis plants, buds begin to grown in spite of the existence of 

apical auxin (Chatfield et al., 2000).  ABA is found to be associated with the maintenance 

of dormancy in both apical and axillary buds of woody plants (Frewen et al., 2000).  The 

level of dominance can be determined by assessing the ABA concentration, which is 

found in both the decapitation study with regard to the effect of indefinite dormancy on 

European white birch (Betula pendula Roth) and in the study of isolated buds of Rosa 

hybrida cultured in vitro (Galoch et al., 1998; LeBris et al., 1999).  In Arabidopsis, ABA 

application to tops of decapitated plants functions to enhance the inhibitory effect of 

apical dominance due to apical auxin (Chatfield et al., 2000). 
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Dormancy of buds of perennial plants 
 
In perennial wood plants, dormancy is a key factor in their survival.  Many temperate 

trees grow in a fashion of alternative bud flush and growth arrest (Crabbé and Barnola, 

1996).  By adopting a dormant state in meristems, during which the buds are insensitive 

to growth-promoting signals, woody plants remain freeze-tolerant to protect themselves 

against severe weather conditions in the winter (Kozlowski, 1943; Weiser, 1970).  When 

weather conditions become favorable, woody plants resume growth with the release of 

dormancy in the bud meristems.  There is little known about the mechanism behind the 

seasonal cycling between growth and dormancy of perennial trees and it is as yet 

unknown whether these dormancy mechanisms are similar to those of the axillary buds of 

herbaceous and woody plants (Rohde and Bhalerao, 2007). 

 

Photoperiod is known to control the establishment of dormancy by triggering growth 

cession of many trees (Nitsch, 1957; Rohde and Bhalerao, 2007).  The photoperiod signal 

is sent to the plant apex by leaves (Hemberg, 1949; Wareing, 1956), in which 

photochrome and two newly found genes FLOWERING LOCUS T (FT) and CONSTANS 

(CO) play an important role in sensing short-day signals for growth cessation (Bohlenius 

et al., 2006).  Interestingly, the FT and CO genes had been previously found to be 

involved in floral meristem transition in photoperiodic controlled flowering in long- and 

short-day plants (Hayama and Coupland, 2004).   

 

It is known that for most plant species, dormancy can only be released when a chilling 

requirement is met (Falusi and Calamassi 1990; Myking and Heide 1995). The most 
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interesting discovery with regard to woody plant dormancy release is the finding of a 

FLC (FLOWERING LOCUS C)-like gene, which shows differential expression during the 

completion of the chilling requirement in Populus (Chen and Coleman, 2006; Rohde and 

Bhalerao, 2007).  FLC is found to be involved in vernalization of Arabidopsis (Sung and 

Amasino, 2005).  The similarity between vernalization and dormancy release is that a 

chilling requirement must be met before growth resumes (Rohde and Bhalerao, 2007). 

 
Hormone controlled dormancy release in seeds and buds 
 
Most of what is known about hormone controlled dormancy release in seeds and buds is 

obtained from research reports on seed dormancy release before germination.  Multiple 

factors work cooperatively to achieve seed dormancy release, including environmental 

cues, endogenous hormones, and other small molecules in the plants or seeds (Finkelstein 

et al., 2008).  The relative abundance and sensitivity of endogenous ABA and GA are the 

key regulators of breaking dormancy, with ABA functioning to maintain dormancy, 

while GA progresses toward release and germination (Thomas et al., 2005).  

 

Gibberellins (GA) are plant hormones belonging to a subfamily of tetracyclic diterpenes 

(Thomas et al., 2005).  Increased GA levels and sensitivity are both reported to be 

associated with dormancy release in seeds of most species, but in no species is 

germination found to be stimulated by GA treatment alone (Finkelstein et al., 2008; Ali-

Rachedi et al., 2004; Bewley, 1997; Derkx et al., 1994).  GA functions to promote 

germination by inducing multiple enzymes, which work not only to induce mobilization 

of seed storage reserves, but also to promote embryo expansion (Bewley and Black, 

1994).  Resultant mobilized reserves and softened seed tissues ready the seed for growth 
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(Finkelstein et al., 2008). 

 

GA synthesis is required for dormancy release.  Investigations have shown that in 

dormancy released Arabidopsis seeds, the expression level of one GA biosynthetic gene 

GA3ox2 (GIBBERELLIN 3 OXIDASE) is about 40 times of that of seeds still in 

dormancy (Finch-Savage et al., 2007).  Experiments on Arabidopsis and tomato 

(Solanum lycopersicum L.) show that those plants with mutant genes for GA synthesis 

fail to germinate (Mitchum et al., 2006; Steber et al., 2007).  Seeds of some species have 

to go through stratification before germination.  During stratification, function of genes 

involved in GA biosynthesis is increased, while function of those genes involved in GA 

catabolism is decreased (Yamauchi et al., 2004).  One of the known negative regulators 

of GA is DELLA (named after a conserved amino acid motif; Sun and Gubler, 2004).  

GA stimulates germination by degradation of the DELLA proteins (Ariizumi and Steber, 

2007; Tyler et al., 2004). 

 

ABA can inhibit germination, and ABA’s concentration is positively correlated with the 

level of dormancy (Morris et al., 1991).  Genes involved in ABA catabolism have been 

found to function in dormancy release (Cadman et al., 2006; Millar et al., 2006).  

Accumulated H2O2 can promote dormancy release through pathways that lead to ABA 

breakdown (Bailly, 2004). 

 

Ethylene is another kind of phytohormone found to promote dormancy release.  It 

stimulates seed germination through antagonistic interaction with ABA signaling. 
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Increased dormancy, increased sensitivity to ABA during seed germination, and 

increased ABA synthesis are found in seeds of ethylene resistant receptor mutants 

(Beaudoin et al., 2000; Chibani et al., 2006; Ghassemian et al., 2000). 

 
Sugar signaling and dormancy release 
 
Sugars have been shown to function as signaling molecules in plant development through 

regulation of gene expression (Jang et al., 1997; Sheen et al., 1999; Ho et al., 2001). 

Sugar signaling and its role in dormancy release are best documented for leafy spurge 

(Euphorbia esula L.), an invasive perennial weed in North America (Horvath and 

Anderson, 2002).  Chao et al. (2006) reported that bud break and new shoot growth 

results in decreased level of endogenous starch and sucrose, but an increased level of 

fructose, which is the exact opposite of what is found in buds that are in dormancy 

(Anderson et al., 2005).  The increased level of fructose might not only supply an energy 

source for sprouting, but also function as a signal molecule to cross talk with other 

signalling molecules such as plant hormones, calcium, phosphatase and kinase.  

Interestingly, GA is proposed to promote the synthesis and activity of α-amylases and 

invertase, two key enzymes in carbon metabolism (Jones et al., 1998; Nakayama et al., 

2002; Koch, 2004).  Sugar is proposed to interact with GA (Gesch et al., 2007).  A direct 

application of sucrose and glucose to leafy spurge roots inhibited root bud growth after 

decapitation, while the application of GA cancelled the effect, thus it was suggested that 

sucrose or its metabolites inhibited the GA response pathway or abundance of active 

GA’s is decreased due to the presence of excessive extrinsic sucrose (Gibson, 2004; Chao 

et al., 2006).  Sugar-signaling is proposed to play an important role in regulating 

dormancy of leafy spurge’s underground adventitious buds (Anderson et al., 2005; 
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Horvath et al., 2003).  Unlike in axillary buds, the paradormancy in the adventitious buds 

is not only controlled by auxin from the shoot apices, but also by sugar signals 

transmitted from the leaves (Horvath, 1998; Horvath, 1999; Horvath et al., 2002).  

 

Oxidative stress and dormancy release 
 
In general, active oxygen species (AOS) are highly reactive and can cause damage to a 

majority of biomolecules, such as nucleic acids, enzymatic proteins, and cell membranes, 

and therefore AOS are considered to be toxic to the cell (Foyer et al., 1997; Beckman and 

Ames, 1997; Bailly, 2004).  AOS are produced during electron transport processes, where 

oxygen is originally involved as an electron acceptor (Bailly, 2004).  Dormancy break in 

seeds and buds is associated with a sudden increase in respiratory activity and an 

enhanced production of AOS, as mobilization of lipid requires beta-oxidation, which 

produces H2O2 (Huang et al., 1983).  Antioxidant molecules and enzymes, such as 

catalase (CAT) and reduced glutathione, have been widely considered as being of 

particular importance for the AOS accumulation process (Kranner and Grill, 1993; De 

Gara et al., 2003; Tommasi et al., 2001).  In addition, a rapid accumulation of H2O2 is 

seen in wounded plants (Angelini et al., 1990).  H2O2 has been found to function as a 

second messenger for the induction of defense genes in the plant wounding response 

(Orozco-Cardenas et al., 2001).  

 

Besides wounding, AOS are proposed to function as signaling molecules in plant 

responses to many other various stimuli through interactions with other proteins and 

molecules, such as MAP kinase (mitogen-activated protein kinase; Samuel et al., 2000), 
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calcium (Bowler and Fluhr, 2000; Rentel and Knight, 2004), phytohormones and 

jasmonic acid (Vranova et al., 2002).  AOS are also found to be involved in the 

regulation of gene expression (Desikan et al., 1998; Desikan et al., 2001). 

 

Of interest, AOS and antioxidants also play an important role in seed dormancy 

regulation (Bailly, 2004).  Increased levels of H2O2 tend to promote dormancy release in 

seeds of barley (Hordeum vulgare L.; Fontaine et al., 1994; Stacy et al., 1996) and apple 

(Malus Mill.; Bogatek et al., 2003).  It was shown that by using chemicals that inhibit 

catalase activity, germination of sunflower (Helianthus annuus L.) seeds (Oracz et al., 

2007) and sprouting of potato (Solanum tuberosum L.) are promoted due to dormancy 

release (Hendricks and Taylorson 1975; Bajji et al., 2007).  With regard to bud dormancy 

break, high H2O2 levels were seen during dormancy release in the buds of grapevine 

(Vitis vinifera L.; Pacey-Miller et al., 2003; Perez and Lira, 2005).  It is proposed that 

H2O2 might decrease ABA content and activity through H2O2 signaling, and decreased 

ABA activity in turn leads to dormancy release.  There is abundant evidence supporting 

this hypothesis.  For example, Bogatek et al. (2003) have shown that dormancy release of 

apple embryos by cyanide includes an increase in H2O2 concentration associated with a 

decrease in ABA concentration.  In addition to ABA, increased ethylene production 

promoted by H2O2 signaling is demonstrated to be involved in breaking seed dormancy 

(Corbineau and Côme, 1995 and 2007). 

 

Although there have been many investigations of dormancy, the molecular mechanisms 

that control the transitions into and out of dormancy are still unclear; to this author’s 
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knowledge, there is no report on the molecular mechanism involved in dormancy release 

that leads to sprouting in pine species.  This study aimed to identify what genes lead to 

shortleaf pine’s quick bud break and prolific sprouting after top-kill; and to explain why 

shortleaf pine and loblolly pine have huge differences in response via dormancy release 

after top-killing.  Hopefully, the results generated from this study might be helpful in 

shortleaf pine regeneration planning. 
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CHAPTER III 
 
 

METHODOLOGY 

 

Materials 

 

Four hundred one-year-old shortleaf pine and 400 one-year-old loblolly pine bare-root 

seedlings, from the Missouri Department of Natural Resources (MoDNR) nursery and the 

Oklahoma Department of Agriculture Food and Forestry (ODAFF) nursery, respectively, 

were planted in potting compost soil in plastic pots in the NREM greenhouse (Figure 1).  

The loblolly pines were planted on April 16, 2007, and the shortleaf pines were planted 

on April 18, 2007.   For convenient tissue collection from both the cutting treatment and 

the corresponding control treatment, the seedlings of both shortleaf pine and loblolly pine 

were divided into two groups, with 200 seedlings in each group.  One group was used for 

a cutting treatment, and the other was for a control treatment (Figure 2).  On May 6, 200 

shortleaf pines and 200 loblolly pines in the cutting treatment groups were top cut with 

one inch of stem remaining above the soil.  In the following days, tissues were collected 

from shortleaf pine and loblolly pine every day.  For the treatment groups, the remaining 

one-inch stems on 10 individuals were collected daily.  For the control groups, 10 

seedlings were cut every day to collect the one-inch stem segment above ground level.  If 

sprouts were seen in the treatment group, stems with sprouts and stems without sprouts
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sprouts were collected separately.  The collected materials were kept on ice for about one 

half hour until they were transferred to a -80°C freezer.  For shortleaf pine, sprouts were 

seen on the stumps two days after top-cutting (Figure 3A and 3C).  Stems without sprouts 

collected on the first and second day were used for subtractive cDNA libraries.  For 

loblolly pine, sprouts were seen seven days after treatment, and stems collected on day 

six and seven after treatment were used (Figure 3B and 3D).  After tissue collection, the 

experimental approach used is outlined in Figure 4.  

  

Construction of subtractive cDNA libraries 

 

Total RNA was extracted from shortleaf pine and loblolly pine tissue samples collected 

as described above.  As we aimed to identify genes responsible for sprouting in shortleaf 

pine and loblolly pine after top-killing, only tissues collected just before visual sprouting 

occurred were used for cDNA library construction.  For shortleaf pine, samples collected 

24 hours and 48 hours after the cutting treatment were used; and for loblolly pine, 

samples collected six and seven days after treatment were used.  Stem tissue was ground 

into a fine powder in liquid nitrogen and total RNA was extracted following the pine tree 

RNA isolation method described by Chang, et al. (1993).  cDNAs were obtained by using  

the Super SMART cDNA synthesis kit (Clonetech, Palo Alto, CA), and cDNA 

subtraction was carried out using the PCR-Select cDNA subtraction kit (Clonetech, Palo 

Alto, CA) according to the manufacturer's recommendations.  In brief, two different 

cDNA subtractions (forward subtraction and reverse subtraction) were carried out to 

construct forward and reverse cDNA libraries, respectively, for both shortleaf pine and 

loblolly pine.   For the forward libraries, cDNA from cutting-treated shortleaf pine and 
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loblolly pine was used to produce the “tester” (Tester is the cDNA that contains 

differentially expressed transcript to be identified), and cDNA from uncut shortleaf pine 

and loblolly pine collected at the same time was used to synthesize the “driver” (Driver is 

the cDNA that is used as the reference).  For the reverse libraries, cDNA from uncut 

shortleaf pine and loblolly pine was used to produce the “tester”, while cDNA from 

cutting-treated shortleaf pine and loblolly pine was used to produce the “diver”.  Two 

rounds of subtractive hybridization and PCR amplifications were performed according to 

CLONTECH instructions.  The resultant PCR products were cloned into the pCR8-TOPO 

T/A cloning vector (Invitrogen, Carlesbad, CA), and transformed into E. coli TOP10 cells 

(Invitrogen, Carlesbad, CA).  Spectinomycin-resistant colonies were picked and grown 

overnight in liquid LB medium containing spectinomycin.  The LB medium was 

incubated at 37°C on a shaker (250 rpm).  Transformed cells were stored in liquid LB 

medium containing 15% glycerol. 

 

Amplification of cDNA inserts and preparation of the cDNA microarray 

 

The cDNA inserts ligated to the pCR8-TOPO T/A cloning vector were amplified by PCR 

using the primer pair corresponding to the flanking adaptor sequences (Nested 1, 5'-

TCGAGCGGCCGCCCGGGCAGGT-3'; Nested 2R, 5'-

AGCGTGGTCGCGGCCGAGGT-3'; Clontech).   

Transformed bacterial cell lysates rather than the purified plasmid DNA were used for 

PCR reactions.  To lyse cells, five microliters of bacterial culture was added into 95 µl of 

double-distilled water, and then the mixture was incubated at 98 °C for seven minutes.  

After incubation, 0.6 µl of burst cell templates were added to 10 µl of PCR mixture 
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containing 0.20 mM of each nucleotide, 0.25 µM of each primer, 1X buffer, 1.5mM 

MgCl2 and 0.25 units of Taq DNA polymerase (Promega).  The PCR protocol included 

an initial step of 5 min at 95 °C, followed by 35 cycles of the following incubation 

pattern: 95 °C for 45 sec, 68 °C for 45 sec, and 72 °C for 1 min.  A final step at 72 °C for 

7 min concluded the reaction.  PCR products were subjected to agarose gel 

electrophoresis and the gels were inspected to find positive transformants.  Then for the 

positive transformants, two microliters of burst cell templates were added to 50 µl of 

PCR mixture.  The PCR product was cleaned up by ethanol precipitation.  For 

precipitation, the PCR product was mixed with 125µl ethanol and 5 µl of 5 M NH4OAc 

(pH 7.4).  The mixture was inverted several times and then stored at -80°C for one hour.   

To recover the precipitated DNA, the mixture was centrifuged at 4,600 rpm (3,650 G) for 

40 min at 4°C.  The DNA pellet was rinsed with 70% ethanol and centrifuged again.  

After the second centrifugation, the DNA pellet  was dried and resuspended in 15 µl 3X 

SSC, which was diluted from 20X SSC (3 M NaCl, 0.3 M sodium citrate).  

Normalization control DNAs (spike_1, spike_3, spike_5, spike_7, and spike_9) from the 

microarray control set provided by the Arabidopsis functional genomics consortium 

(AFGC) were included in the printing as well.  These control DNAs were amplified by 

PCR reactions and purified with ethanol precipitation for use.  As intensities of the two 

fluorescent dyes Cy3 and Cy5 are affected by many systematic sources of variation, 

normalization is applied to remove such systematic sources of variation in order to make 

measured intensities within and between slides comparable.  Spiked controls from a 

different organism spotted on the array slides and included in the two different samples at 

certain amounts are one frequently used normalization method.  Each cDNA clone was 
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printed three times on Arrayit Superamine2 slides (Telechem International, Sunnyvale, 

CA) using the GeneMachines OmniGrid 100 system (Genomic solution, Ann Arbor, MI) 

for technical replication.  After printing, the slides were left in the machine for one hour 

to be rehydrated with hot vapor.  Then, the slides were baked at 80°C overnight to 

immobilize the printed cDNAs. 

 

Preparation of probes and microarray hybridization 

 

Microarray probes were produced from total RNA from stem segments of seedlings from 

cut and uncut treatments of both shortleaf pine and loblolly pine seedlings, which were 

collected as described earlier.  Total RNA was quantified and the A260:280 ratio was 

checked using a NanoDrop 1000A spectrophotometer.  RNA amplification was 

performed with 200 nanograms of total RNA using the Amino Allyl MessageAmp II 

aRNA Amplification kit (Ambion Inc., Austin, TX, USA) following the manufacturers' 

instructions.  In addition, 100 pg of each spike control (spike_1, spike_3, spike_5, 

spike_7, and spike_9) DNA was mixed to the total RNA of each sample for 

normalization.  In brief, RNA was reverse transcribed into first strand cDNA, which was 

primed from an oligo(dT) primer containing a phage T7 RNA polymerase promoter 

sequence.  The second-strand was synthesized by DNA polymerase, which was primed 

by fragments of the original RNA partially digested by RNase H.  Then doubled-stranded 

cDNA was purified and in vitro transcription was performed to generate antisense RNA 

(aRNA), during which amino allyl-labeled dUTPs were included.  The amino allyl UTP 

residues on the aRNA were coupled to Cy (Cy3 for control samples; Cy5 for cutting 

treated samples) dyes (Amersham Biosciences) following aRNA purification.  
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Quantification was carried out on products of each step with the NanoDrop 

spectrophotometer.  OD (optical density) and gel electrophoresis were used to check 

nucleic acid integrity.  Thus RNA from each sample was comparable and the quality was 

assured for each step.  The resultant cDNA probes were mixed with formamide-based 

hybridization buffer and nuclease free water.  Then the cDNA probe mixture (from both 

cutting treatment samples and control samples) was transferred to the slide without 

creating any bubbles.  A 24x60 mm LifterSlip (Erie Scientific Company, Portsmouth, 

NH) cover slip was placed on top of the array slide and the slide was kept in the 

hybridization chamber at 42°C overnight for hybridization.  After hybridization, stringent 

washes were carried out according to the manufacturer's instructions.  Probes for the 

replicate hybridizations were independently prepared from cutting treated and control 

shortleaf pine and loblolly pine tissues to minimize technical errors.   

 

Microarray scanning and data analysis 

 

Fluorescent intensities of Cy3 and Cy5 dyes at each spot on the array slides were 

determined by using ScanArray Express scanner (Perkin-Elmer, Wellesley, MA, USA).  

Separate images for Cy3 and Cy5 dyes were obtained through array scanning at the 

wavelength of 633nm and 543nm, respectively.   The images were then combined, and 

ScanArray Express microarray analysis software was used to identify combined spots.  

Laser power and PMT (Photo Multiplier Tube) settings were adjusted during the 

scanning process to balance overall intensities in two channels (i.e. Cy3 and Cy5) while 

avoiding a high number of saturated spots.   Signal ratios at spike control spots (Spike_1, 
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spike_3, spike_5, spike_7, and spike_9) were watched during adjustment, and setting 

adjustment was complete when most of spike control spots had Cy5 to Cy3 ratios equal 

to one and appeared yellow on balanced images.  Local background was subtracted from 

intensity of each spot.  The ratio of the resultant adjusted intensities of Cy5 to Cy3 was 

computed for each spot.  The normalization process was conducted according to GenePix 

Pro program (version 6.0), during which spots with bad quality and low signal intensity 

(less than 200 Relative Fluorescence Units) were removed.  Differences in expression 

were considered significant for a 2-fold change between the treated tree sample and the 

control tree sample, therefore log2 ratios of less than minus one or greater than one were 

deemed significant.   

 

DNA sequencing and database search 

 

The differentially expressed cDNAs after top-killing identified by array experiments were 

sequenced as follows.  Cell lysates used for the synthesis of microarray cDNA were used 

as PCR templates.  Inserts of the cDNA clones were amplified by PCR using M13 

forward primer (5'-GTAAAACGACGGCCAG-3') and M13 reverse primer (5'-

CAGGAAACAGCTATGAC-3').  Shrimp alkaline phosphatase (SAP) and exonuclease I 

(EXO I) were used to purify PCR products for sequencing.   Five microliters of PCR 

product was mixed with 0.4 µl of enzyme mix (0.5 U/ µl of SAP and 0.5 U/ µl EXO I), 

and then the mixture was incubated at 37 °C for 30 min and 85 °C for 15 min.  Two 

microliters of purified PCR product was added to the following reaction mixture: 1µl 5X 

sequencing buffer (400 mM Tris, 10 mM MgCl2, pH 9), 1 µl M13 forward primer (100 

ng/ µl), 2µl BigDye Terminator (Applied Biosystems, Forster City, CA), and 4 µl of 
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deionized water.   The PCR protocol for sequencing reactions included an initial step of 

30 sec at 95 °C, followed by 36 cycles of the following incubation pattern: 96 °C for 

10 sec, 50 °C for 5 sec, and 60 °C for 4min.  The resultant PCR products were purified by 

ethanol precipitation and were sequenced using the ABI Model 3700 DNA Analyzer 

(Applied BioSystem).   BLAST search was performed to determine functions of 

differentially expressed genes.    The sequences were searched against GenBank 

databases, protein (nr) and EST (dbEST), by BLASTX and BLASTN, respectively.  

BLASTN was used for cDNAs which had no significant hits (with E value cutoff at 0.001) 

when BLASTX was performed.  

 

Real time "quantitative" PCR (q RT-PCR) analysis 

 

Real time "quantitative" PCR analyses were performed to validate the microarray results 

and also to further examine when genes important for sprouting were expressed.  Total 

RNA was isolated from tissues collected at several different time points following the cut 

treatment, as well as from non-treated control shortleaf pine and loblolly pine seedlings 

(Figure 5).  Reverse transcription was carried out on 5µg of DNase-treated mRNA with 

the SuperScript III (Invitrogen) reagent set.  Primers were designed for the various 

specific genes which were proposed to be significant for triggering sprouting.  Five 

nanograms of cDNA along with 250 nM of each primer pair were subjected to real time 

PCR using an ABI Prism 7500 sequence detection system (Applied Biosystems) and 

SYBR Green master mix, according to manufacturer's recommendations (Applied 

Biosystems).  In brief, qRT-PCR amplification mixtures (15 µl) containing 15 ng 

template cDNA, 2x SYBR Green I Master Mix buffer (7.5 µl), and 300 nM forward and 
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reverse primer were prepared.  Target mRNA values were normalized using actin mRNA 

as an internal control.  Primer pairs used for actin amplification were as follows: 5'-

TCCATCGTCCACAGAAAATG-3' (forward primer), and 5'-

CAAGATGCGTCATCCCACTA-3' (reverse primer).  PCR was performed as follows: a) 

50°C for 2 min; b) 95°C for 10 min; c) 95°C for 40 sec; d)55°C for 40 sec; e)72°C for 40 

sec; f) repeat step c to step e for 45 cycles.  A comparative threshold cycle (CT) was used 

to determine gene expression relative to the control.  For each sample, the CT values were 

calculated using the formula ∆CT = CTreference- CTtarget.  To determine relative expression 

levels, the following formula was used ∆∆CT = ∆CTcontrol- ∆CTtreatment and the value used 

to indicate relative gene expression was calculated using the formula 2-∆∆CT. 

 

 

REFERENCES 

Chang S, Puryear J, Cairney J (1993) Simple and efficient method for isolating RNA 

from pine trees. Plant Mol Biol Rep 11: 113-116 



 45

CHAPTER IV 
 
 

RESULTS 

 

Shortleaf pine and loblolly pine were studied to profile sprouting responsive genes after 

top-killing to provide a better understanding of (1) shortleaf pine’s prolific sprouting after 

top-killing and (2) gene expression differences that may relate to sprouting between 

shortleaf pine and loblolly pine after top-killing.  As seen during tissue collection, 

shortleaf pine and loblolly pine showed huge differences in sprouting speed and number 

of sprouts after cutting treatment (Figure 3A-3D).  Numerous sprouts became apparent 

between 24h-48h after cutting treatment on shortleaf pine, while on loblolly pine, only a 

few sprouts were observed seven days after cutting treatment.   As we wanted to identify 

genes responsible for sprouting after top-killing, only tissues collected just before 

sprouting were used for cDNA library construction and the array experiment.  Therefore, 

for shortleaf pine, tissues collected on the first and second day were used, and for loblolly 

pine, tissues collected on the sixth and seventh day were used.  

 

cDNA library construction and array slides preparation 

Two SSH (suppression subtractive hybridization) cDNA libraries enriched in genes 

responsive to top-killing were constructed from the shortleaf pine and loblolly pine tissue 

samples.  One thousand and eighteen shortleaf pine cDNA inserts and 1,319 loblolly pine 
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cDNA inserts were included in the cDNA libraries.  In total, a collection of 2,337 cDNA 

clones were obtained from the SSH cDNA libraries and printed on specially designed 

Arrayit Superamine2 slides (Telechem International, Sunnyvale, CA) for the microarray 

analysis.   

 

The cDNA clones were arranged on the slides as shown in Figure 6.  The left part of the 

slides contained cDNA from shortleaf pine and the right part of the slides contained 

cDNA from loblolly pine.  As each slide contained both shortleaf pine cDNA inserts 

and loblolly pine cDNA inserts, the hybridization conducted on the slide actually 

included self hybridization and cross hybridization.  When labeled shortleaf pine RNA 

was applied to the slides, on the left part of the slide, the result was shortleaf pine self 

hybridization, on the right part of the slide, the result was cross hybridization between 

labeled shortleaf pine RNA and loblolly cDNA.  The converse was true when using 

labeled loblolly pine RNA.   

 

Based on the collected cDNAs, two microarray analyses were performed.  Each 

microarray analysis was designed to investigate expression patterns of transcriptomes 

from shortleaf pine and loblolly pine, respectively.  In the microarray analyses, 

expression profiles of shortleaf pine and loblolly pine genes showed induction or 

suppression in response to cutting treatment after top-killing.  Three technical replicates 

were used to minimize variability of the results.  
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Differentially expressed genes in shortleaf pine and loblolly pine detected by array 

experiments 

In this study, genes were considered differentially regulated if intensity ratios of cDNA 

clones from the microarray analyses showed more than a two-fold change of expression 

up or down.  Genes with more than two fold up or down regulation were sequenced.  

Ultimately, 139 unique genes showing differential expression were identified.  The 

partial sequence of each of these genes is included in Appendix I (page 190).  These 

genes have been deposited in the GenBank EST database and they can be accessed with 

the corresponding accession numbers given in the appendix.  One hundred and six of 

these genes were of shortleaf pine origin, with the gene names starting with SLP, and 

38 were of loblolly pine origin, with the gene names starting with LLP.  As shown in 

Figure 7, five out of the 139 unique genes were identified from both shortleaf pine and 

loblolly pine, with the names starting with SLP_LLP.  

 

Although 106 differentially expressed genes were of shortleaf pine origin, not every 

gene was identified during shortleaf pine self-hybridization; rather, four genes were 

sent for sequencing because of their detected differential expression during cross 

hybridization.  As shown in Figure 1, 61 and 42 genes of shortleaf pine origin showed 

up and down regulation during shortleaf pine self-hybridization, respectively.  Four 

genes of shortleaf pine origin did not show differential expression during shortleaf pine 

self-hybridization, but showed differential expression during shortleaf pine-loblolly 

pine cross hybridization when labeled loblolly pine cDNAs were applied to the array 

slides and hybridized to the shortleaf pine cDNA on the array slides.  On the other 
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hand, 25 out of 34 genes of loblolly pine origin were sent for sequencing due to 

differential expression during cross hybridization.  The cross hybridization provided us 

with information of genes which were differentially expressed but were not included in 

the cDNA libraries of either shortleaf pine or loblolly pine.  For loblolly pine, six and 

seven genes showed up- and down- regulation during loblolly pine self hybridization, 

respectively; while another 15 and four genes showed up- and down- regulation during 

the cross hybridization when labeled loblolly pine cDNAs were applied to the array 

slides and hybridized to the shortleaf pine cDNAs on the array slides. 

Function of diffentially expressed genes determined by BLAST search  

 
cDNA sequences were blasted against the NCBI database 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  BLAST hits for each query cDNA sequence 

showed up in order according to the similarity between specific sequences in the 

database and the query cDNA sequence, with the most similar sequence detected in the 

database showing up in the first place.  The E value provided information regarding the 

possibility of the query cDNA sequence matching any random sequences in the 

database.  A smaller E value indicated a higher possibility for the query sequence to 

have the exact same function as one specific “fished” gene in the database.  Initially, 

each cDNA was blasted against GenBank’s non-redundant protein (NR) database, 

during which the cDNA was first translated into proteins according to different open 

reading frames (ORFs) and then the translated protein sequences were blasted against 

the protein database.  If no hit was found (with E value cutoff at 0.001), the query 
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cDNA was then blasted against GenBank EST databases (dbEST, None-human, none 

mouse ESTs, EST others) with BLASN.  

Functional classification of genes 

A total of 139 genes differentially regulated in response to cutting treatment were listed 

and categorized according to the putative function of each gene from BLAST search 

(Tables 2-16).  The signal intensity ratios of these genes from microarray analyses are 

also provided in the tables.   The putative functions of these genes were inferred from 

metabolic processes known to be related to each gene.  Although some genes act in 

multiple metabolic processes, they were classified according to their main functions in 

plant metabolism.  The genes found responsive to cutting treatments were classified 

into 15 functional categories (Tables 2-16), including transcription factors, cell growth 

and maintenance, carbohydrate metabolism, signal transduction, ubiquitin related, 

pathogenesis related, hormone related, fatty acid metabolism, transport, protein and 

amino acid metabolism, stress responsive, translation, photosynthesis, transcribed loci 

with unknown function, and genes with no hit in the databases (Figure 8).  The largest 

two categories of genes were genes for transcribed loci with unknown function and 

genes with no hit in the databases searched; genes that were stress responsive and genes 

that were involved in cell growth and maintenance were ranked as the third and fourth 

largest groups, respectively; followed by protein and amino acid metabolism related 

genes (Figure 8).  
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Sequence annotation and analysis for differentially expressed genes  

Based on the preliminary results generated by NCBI BLAST search, cDNAs encoding 

interesting and important proteins from each functional category were further 

analysized and annotated.  Determination of a gene as “interesting and important” was 

based on literature search results.  If the results suggested the possibility of any specific 

gene to function in bud dormancy release and/or sprouting processes in some way, this 

gene was included in the detailed analysis.  Housekeeping genes and genes with no 

documentation for bud dormancy release and/or sprouting function were not included.  

First, DNA translation analysis was performed on cDNAs of interest by using ExPASy 

Translate tool (http://ca.expasy.org/tools/dna.html), during which each cDNA was 

translated into proteins according to six different open reading frames (ORFs).  

Deduced proteins with reasonable length (at least 10 amino acids long) were selected, 

and amino acid sequences of these deduced proteins were recorded and put in order 

according to their length.  Each deduced protein was then blasted against GenBank’s 

non-redundant protein (NR) database to identify if it had conserved domains for one 

specific protein family or if it had homologs from other species.  If no conserved 

domains or homologs were detected for any deduced proteins from the query cDNA 

sequence, this query cDNA was then blasted against NCBI EST databases, and if 

found, a longer EST with high similarity (close to 100%) to this cDNA was used for 

DNA translation analysis.  (Deduced) protein sequences from several other species 

sharing conserved domains or homology with the deduced protein sequence from the 

query cDNA were identified during blast search.  Multiple sequence alignment (MSA) 
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was performed using ClustalW2 (http://www.ebi.ac.uk/Tools/clustalw2/index.html) on 

these (deduced) protein sequences including the one from the query cDNA.  

 

Transcription factor related genes 

Three transcription factors were identified, SLP1, SLP2 and SLP3, as shown in Table 2.  

These three genes are all of shortleaf pine origin, as indicated by the names.  In Table 2, 

values for signal ratio for genes with at least a two-fold up-or down-regulation were 

shaded in blue and yellow, respectively.  As seen in Table 2, SLP1 showed 

downregulation in shortleaf pine, while SLP2 and SLP3 showed upregulation.  No 

transcription factor of loblolly pine origin was identified.  Neither did cross 

hybridization of loblolly pine cDNA with shortleaf pine cDNA printed on the array 

slides produce strong signals.   

 

 SLP1 encodes a NAM transcription factor, which functions in plant shoot meristem 

formation (Aida and Tasaka, 2006), as well as in stress response (Olsen et al., 2005; 

Chen et al., 2008; Seo et al., 2008).  SLP1 was 380 base pairs in length and the deduced 

protein from SLP1 was 95 amino acids long (Figure 9).  Figure 10 provides the MSA of 

SLP1 with NAM proteins from several other tree species, including white spruce (Picea 

glauca (Moench) Voss), Norway spruce (Picea abies L.), and black spruce (Picea 

mariana Mill.).  As seen from this alignment, sequences for NAM transcription factor 

from different tree species shared a high level of similarity.  

 

SLP2 is homologous to the homeobox transcription factor KN3 in eastern white pine 

(Pinus strobes L.).  In Arabidopsis, this gene has another name: STM (SHOOT 
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MERISTEMLESS).  SLP2 was 466 base pairs in length.   By translation, the deduced 

protein was 114 amino acids long (Figure 11).  Protein blast showed that this protein 

had a conserved homeodomain, which is known to function in transcriptional regulation 

during plant development.   Figure 12 shows the MSA of SLP2 with STM proteins 

from several other species.  As seen from this alignment, sequences for the STM 

transcription factor from diverse species shared a high level of similarity.   

 

SLP3 encodes a GT-1-like transcription factor.  SLP3 was 481 base pairs in length.  No 

significant hits were observed during BLASTX search.  SLP3 was then blasted against 

GenBank EST databases using BLASTN.  Although BLASTN identified SLP3 as a 

homolog to Arabidopsis DNA binding protein GT-1, DNA translation analysis of SLP3 

did not detect any deduced protein sequences (of at least 10 amino acids) containing 

any conserved domains; neither did those deduced sequences have GT-1-like homologs 

from other species.  Therefore, query SLP3 cDNA sequence might only include the five 

or three prime untranslated region (5' UTR or 3’UTR) of the full GT-1 cDNA sequence, 

or part (less than 10 amino acids long) of the GT-1 coding region, and it was difficult to 

detect any conserved domain or homologs based on such short deduced protein 

sequences.  SLP3 was then blasted against the NCBI EST database again, and a longer 

EST sequence (903bp, accession number: 148815838) from sitka spruce (Picea 

sitchensis (Bong.) Carrière) aligning very well with SLP3 was identified.  This EST 

was used for DNA translation analysis, and one deduced protein sequence (49 amino 

acids long) had GT-l homologs from several other species.  Figure 13 shows the MSA 
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for all these GT-1-like proteins.  As seen from this alignment, sequences for the GT-1-

like transcription factor from diverse species shared a high level of similarity.   

 

Genes in cell growth and maintenance 

Thirteen cell growth and maintenance related genes were differentially expressed as 

shown in Table 3.  All these genes are of shortleaf pine origin, with the exception of 

LLP1.  Eleven out of the 13 genes showed differential expression in shortleaf pine 

(except SLP10 and LLP1).   LLP1 is of loblolly pine origin and it showed 

downregulation in loblolly pine.  Besides LLP1, five genes of shortleaf pine origin 

showed differential expression during shortleaf pine-loblolly pine cross hybridization 

when labeled loblolly pine cDNAs were applied to the array slides for hybridization.   

For genes both differentially expressed in shortleaf pine and loblolly pine (either 

through self hybridization or cross hybridization), SLP4 showed differential expression 

in opposite directions in the two species, with downregulation in shortleaf pine while 

upregulated in loblolly pine.  The other three genes (SLP6, SLP7 and SLP12) showed 

differential expression in the same direction, either upregulation or downregulation, in 

both species.  

 

SLP4 encodes an expansin-like protein.  SLP4 was 273 base pairs long.  A much longer 

loblolly pine EST (873bp, accession number: 67488878) with high similarity (close to 

100%) to SLP4 was used for DNA translation analysis.  The deduced protein from this 

EST was 99 amino acids long.  Protein blast showed that this protein had a conserved 

domain among expansin-like proteins.  Figure 14 shows the MSA for the expansin-like 

proteins from several species.  As seen from this alignment, the deduced protein 
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sequence from SLP4 shared a high level of similarity with ATEXPA4-like proteins 

from diverse species, including China fir (Cunninghamia lanceolata (Lamb.) Hook.), 

castorbean (Ricinus communis L.), tomato (Solanum lycopersicum L.) and soybean 

(Glycine max L. Merr.). 

 

SLP5 encodes a pectin-methylesterase-like protein.  SLP5 was 502 base pairs long.  

The deduced protein was 55 amino acids long.  Protein BLAST showed that this protein 

has a pectin-methylesterase-specific domain.  Figure 15 shows the MSA for pectin-

methylesterase-like proteins from several species.  As seen from this alignment, the 

deduced protein sequence from SLP5 shares a high level of similarity with pectin-

methylesterase-like proteins from diverse species, including black cottonwood (Populus 

trichocarpa L.), castorbean (Ricinus communis L.), banana (Musa acuminata), and 

coffin tree (Taiwania cryptomerioides). 

 

SLP7 and SLP8 both encode glycine-rich cell wall proteins.  SLP7 was 83 base pairs in 

length, and SLP8 was 307 base pairs long.  No significant hits were observed during 

BLASTX search for both sequences.  Individual BLAST search with SLP7 and SLP8 

against NCBI EST databases showed that both sequences had a high similarity to one 

loblolly pine EST sequence with the accession number of 68089089.  SLP7 and SLP8 

shared 15 base pairs at the end of the sequences, where sequencing error rate was 

normally high.  Due to the high sequencing error, SLP7 and SLP8 were regarded as 

different genes initially and deposited into GenBank.  EST68089089 was 814 base pairs 

long, and the deduced protein was 154 amino acids long.  Figure 16 shows the MSA for 
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(deduced) amino acid sequences for glycine-rich cell wall like proteins from different 

species, including the loblolly pine EST with the accession number of 68089089, which 

was used as substitute for SLP7 and SLP8 during analysis due to high sequence 

similarity shared among EST68089089, SLP7 and SLP8. 

 

SLP11 encodes STT3B (staurosporine and temperature sensitive 3-like B), which acts 

as an oligosaccharyl transferase.  SLP11 was 330 base pairs long, and the deduced 

protein was 109 amino acids long.  Figure 17 shows the MSA of SLP11 with STT3B-

like proteins from several other species, including Arabidopsis, black cottonwood 

(Populus trichocarpa L.), and grape (Vitis vinifera L.).  As seen from this alignment, 

the deduced protein sequence from SLP11 shared a high level of similarity with 

STT3B-like proteins from diverse species.  

 

LLP1 encodes an O-methyltransferase-like protein.  It was 315 base pairs in length.  

The deduced protein was 104 amino acids long, and it had a conserved domain shared 

by methyltransf_2 superfamily proteins.  Figure 18 shows the MSA of LLP1 with O-

methyltransferase-like proteins from several different species, including loblolly pine, 

black cottonwood (Populus trichocarpa L.), barrel clover (Medicago truncatula 

Gaertn.), and Arabidopsis. 

 

SLP13 encodes a TET8 (TETRASPANIN8)-like protein.  SLP13 was 363 base pairs 

long, and the deduced protein was 68 amino acids long.  This protein had a conserved 

domain shared by proteins belonging to the tetraspanin_LEL (large extracellular loop) 
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superfamily.  Figure 19 shows the MSA for TET8-like proteins from several species.  

As seen from this alignment, the deduced protein sequence from SLP13 shared a high 

level of similarity with TET8-like proteins from diverse species, including black 

cottonwood (Populus trichocarpa L.), wild cabbage (Brassica oleracea L.), and 

Arabidopsis.  

 

SLP15 encodes a pentatricopeptide repeat-containing protein.  SLP15 was 317 base 

pairs long.  The deduced protein was 105 amino acids long.  Protein blast showed that 

this protein contained a conserved pentatricopeptide repeat domain (PPR motif).  This 

conserved domain consists of 33 amino acids.  Figure 20 shows the MSA for PPR 

motifs in several species.  As seen from this alignment, the deduced PPR motif-

containing protein sequence from SLP15 shared a high level of similarity with PPR 

motifs from diverse species, including black cottonwood (Populus trichocarpa L.), rice 

(Oryza sativa L.), and Arabidopsis.  

 

Carbohydrate metabolism related genes 

Seven carbohydrate metabolisms related genes showed differential expression as shown 

in Table 4.  All these seven genes are of shortleaf pine origin, as indicated by their 

names.   All these seven genes showed upregulation in shortleaf pine, except SLP23, 

which showed downregulation.  None of these seven genes showed differential 

expression in loblolly pine.  

 

SLP17 encodes malate synthase, which is involved in glycolysis.  SLP17 was 437 base 

pairs long, and the deduced protein was 92 amino acids long.  This protein contained a 
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conserved domain which belongs to the malate synthase superfamily.  Figure 21 shows 

the MSA for malate synthase from diverse species.  As seen from this alignment, the 

deduced protein sequence from SLP17 shared a high level of similarity with (deduced) 

protein sequences for malate synthase from diverse species, including black 

cottonwood (Populus trichocarpa L.), rice (Oryza sativa L.), and castorbean (Ricinus 

communis L.).  

 

SLP18 encodes pyruvate kinase, which is also involved in glycolysis.  SLP18 was 499 

base pairs long, and the deduced protein was 95 amino acids long.   When blasted 

against the NCBI protein database, this protein was identified as having a conserved 

domain shared by the PK (pyruvate kinase)_C superfamily.   Figure 22 shows the MSA 

for pyruvate kinase from diverse species.  As seen from this alignment, the deduced 

protein sequence from SLP18 shared a high level of similarity with (deduced) protein 

sequences for pyruvate kinase from diverse species, including corn (Zea mays L.), 

barrel clover (Medicago truncatula Gaertn.), and castorbean (Ricinus communis L.).  

 

SLP19 encodes fructose-bisphosphate aldolase.  SLP19 was 400 base pairs long, and 

the deduced protein was 70 amino acids long.   This protein had a conserved domain 

belonging to the TIM_phosphate_binding superfamily.  Figure 23 shows the MSA for 

fructose-bisphosphate aldolase from several different species.  As seen from this 

alignment, the deduced protein sequence from SLP19 shared a high level of similarity 

with (deduced) protein sequences for fructose-bisphosphate aldolase from diverse 
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species, including corn (Zea mays L.), tobacco (Nicotiana tabacum L.), and castorbean 

(Ricinus communis L.). 

 

SLP20 encodes glucose-6-phosphate 1-dehydrogenase (G6PD), which functions in the 

pentose pathway.  SLP20 was 339 base pairs long.  When SLP20 sequence was blasted 

against the EST database, a longer loblolly pine EST (619bp, accession number 

34350332) with close to 100% similarity to SLP20 was identified.  This longer EST 

was used for DNA translation analysis.  The deduced protein from this longer EST was 

85 amino acids long.  Protein blast showed that this protein had a conserved domain 

belonging to the G6PD_C (Glucose-6-phosphate dehydrogenase, C-terminal domain) 

superfamily.  Figure 24 shows the MSA for G6PD from several species.  As seen from 

this alignment, the deduced protein sequence from SLP20 shared a high level of 

similarity with (deduced) protein sequences for G6PD from diverse species, including 

common wheat (Triticum aestivum L.), poplar (Populus suaveolens), tobacco 

(Nicotiana tabacum L.), and Arabidopsis. 

 

SLP21 encodes invertase, which is involved in carbohydrate metabolism by breaking 

down sucrose to fructose and glucose (Bocock et al., 2008).  SLP12 was 416 base pairs 

in length, and the deduced protein was 96 amino acids long (Figure 25).  When blasted 

against the protein database, this protein showed a conserved domain belonging to the 

plant neutral invertase superfamily.  Figure 26 shows the MSA for invertase.  As seen 

from this alignment, the deduced protein sequence from SLP21 shared a high level of 

similarity with (deduced) protein sequences for invertase from diverse species, 



 59

including legume (Lotus japonicus), tomato (Solanum lycopersicum L.), rice (Oryza 

sativa L.), and corn (Zea mays L.). 

 

SLP22 encodes amylase, which is involved in carbohydrate metabolism by breaking 

down starch to sucrose (Lao et al., 1999; Yamasaki, 2003).  SLP22 was 344 base pairs 

in length.  The deduced protein was 68 amino acids long (Figure 27).  This protein had 

a conserved domain belonging to the glyco_hydro (glycosyl hydrolase) family 14.  

Figure 28 shows the MSA for amylase.  As seen from this alignment, the deduced 

protein sequence from SLP22 shared a high level of similarity with (deduced) protein 

sequences for amylase from diverse species, including barley (Hordeum vulgare L.), 

soybean (Glycine max L. Merr.), corn (Zea mays L.), and Arabidopsis. 

 

 

Genes in signal transduction 

Four signal transduction related genes were differentially expressed in this study as 

shown in Table 5.  SLP_LLP1 was identified in both species, and in this case, only the 

signal ratio shown during self-hybridization is included in the table.  SLP_LLP1 

showed upregulation only in shortleaf pine, while no strong signal was detected in 

loblolly pine whether during self-hybridization or cross hybridization.  The other three 

genes (SLP24, SLP25 and SLP27) are all of shortleaf pine origin.  SLP24 and SLP25 

were both upregulated in shortleaf pine, while SLP27 was downregulated.  Of these 

four differentially expressed genes, only SLP25 showed a more than two-fold 

upregulation in loblolly pine during cross hybridization.   
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SLP24 encodes a phosphatase 2C (PP2C)-like protein, which acts in plant signal 

transduction by adding phosphate groups to target proteins.  SLP24 was 287 base pairs 

in length, and the deduced protein was 45 amino acids long (Figure 29).  This protein 

had a conserved domain belonging to the PP2Cc (serine/threonine phosphatases, family 

2C, catalytic subunit) protein family.  Figure 30 shows the MSA for PP2C.  As seen 

from this alignment, the deduced protein sequence from SLP24 shared a high level of 

similarity with (deduced) protein sequences for PP2C from diverse species, including 

barrel clover (Medicago truncatula Gaertn.), rice (Oryza sativa L.), castorbean (Ricinus 

communis L.), and Arabidopsis.   

 

SLP25 encodes the catalytic subunit of protein phosphatase 2A (PP2A).  SLP25 was 

497 base pairs in length, and the deduced protein was 65 amino acids long (Figure 31).  

When blasted against NCBI protein database, this protein showed a conserved domain 

for protein family PP2Ac (protein phosphatase 2A homologues, catalytic domain).  

Figure 32 shows the MSA for the catalytic subunit of PP2A.  As seen from this 

alignment, the deduced protein sequence from SLP25 shared a high level of similarity 

with (deduced) protein sequences for the catalytic subunit of PP2A from diverse 

species, including corn (Zea mays L.), rice (Oryza sativa L.), tomato (Solanum 

lycopersicum L.) and Arabidopsis. 

 

SLP_LLP1 was 328 base pairs long.  When the SLP_LLP1 sequence was blasted 

against the GenBank EST databases, SLP_LLP1 was identified as a weak homolog of 

an Arabidopsis receptor-like protein kinase.  The deduced protein of SLP_LLP1 was 99 
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amino acids long, and when it was blasted against the protein database, hypothetical 

protein kinases from several species were identified.  Figure 33 shows the MSA for 

these protein kinases.  As seen from this alignment, the deduced protein sequence from 

SLP_LLP1 shared similarity with (deduced) protein sequences for hypothetical receptor 

kinases from diverse species, including corn (Zea mays L.), grape (Vitis vinifera L.), 

and Arabidopsis. 

 

Hormone related genes 

Six hormone related genes were differentially expressed in this study as shown in Table 

8.  All these genes are of shortleaf pine origin with the exception of LLP3.  All six 

genes were differentially expressed in shortleaf pine, with SLP34, SLP35 and SLP37 

showing upregulation, and the other three showing downregulation (LLP3’s 

downregulation was detected during cross hybridization).  Five out of the six genes did 

not show differential expression in loblolly pine either through self-hybridization or 

cross hybridization, and the only exception was SLP34, which showed upregulation 

during cross hybridization.  

 

SLP34 encodes AP2/ERF (APETALA2/ethylene-responsive factor), which is an 

ethylene responsive transcription factor.  SLP34 was 397 base pairs in length.  The 

deduced protein was 132 amino acids long (Figure 34).  Blast search showed that this 

protein contained a 59 amino acids-long DNA-binding domain unique to plant 

transcription factors such as APETALA2 and EREBP.  Figure 35 shows the MSA for 

the DNA binding domain of AP2/ERF.  As seen from this alignment, the deduced 

protein sequence from SLP34, which contains the 59 amino acid-long DNA binding 
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domain, shared a high level of similarity with (deduced) protein sequences for the DNA 

binding domain of AP2/ERF from diverse species, including chickpea (Cicer arietinum 

L.), soybean (Glycine max L. Merr.), corn (Zea mays L.), and black cottonwood 

(Populus trichocarpa L.). 

 

SLP35 encodes an auxin-repressed protein-like protein.  SLP35 was 606 base pairs 

long, and the deduced protein was 136 amino acids in length (Figure 36).  Protein blast 

search showed that this protein had a conserved domain belonging to the auxin-

repressed protein superfamily.  Figure 37 shows the MSA for auxin-repressed protein-

like proteins from several species.  As seen from this alignment, the deduced protein 

sequence from SLP35 shared a high level of similarity with (deduced) protein 

sequences for auxin-repressed protein-like proteins from diverse species, including tree 

peony (Paeonia suffruticosa Andrews), citrus (Shiranuhi), bonnet bellflower 

(Codonopsis lanceolata), corn (Zea mays L.), and Solanum virginianum. 

 

SLP37 was 370 base pairs long, and the deduced protein was 123 amino acids long.  

This protein had a conserved domain belonging to the superfamily of isopenicillin N 

synthase and related dioxygenases.  This protein showed a high sequence similarity to 

gibberellin 7-oxidase found in squash (Cucurbita maxima Duchesne).   Figure 38 shows 

the sequence alignment between deduced protein sequences for SLP37 and squash 

gibberellin 7-oxidase.  
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SLP38 encodes anthocyanidin reductase.  SLP38 was 438 base pairs long, and the 

deduced protein was 146 amino acids long.  Protein blast showed that this protein had a 

conserved domain belonging to the DADM (nucleoside-diphosphate-sugar epimerases) 

Rossmann superfamily.  Figure 39 shows the MSA for anthocyanidin reductase from 

several species.  As seen from this alignment, the deduced protein sequence from 

SLP38 shared a high level of similarity with (deduced) protein sequences for 

anthocyanidin reductase from diverse species, including upland cotton (Gossypium 

hirsutum L.), black cottonwood (Populus trichocarpa L.), and maidenhair tree (Ginkgo 

biloba L.).  

 

LLP3 encodes a flavanone 3-hydroxylase-like protein.  LLP3 was 667 base pairs in 

length, and the deduced protein was 69 amino acids long.  Figure 40 shows the MSA 

for flavanone 3-hydroxylase like proteins from several species.  As seen from this 

alignment, the deduced protein sequence from LLP3 shared similarity with (deduced) 

protein sequences for flavanone 3-hydroxylase like proteins from two other species 

wheat (Triticum aestivum L.) and castorbean (Ricinus communis L.). 

 

SLP39 encodes a tetratricopeptide repeat (TPR)-containing protein.  SLP39 was 897 

base pairs long, and the deduced protein was 298 amino acids long.  Protein blast 

showed that this protein contained a conserved TPR (tetratricopeptide repeat) domain.  

Figure 41 shows the MSA for TPR domains from several species.  As seen from this 

alignment, the deduced protein sequence from SLP39, which contained a TPR domain, 
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shared a high level of similarity with (deduced) protein sequences for TPR domains 

from two other species Arabidopsis and rice (Oryza sativa L.).  

 

Fatty acids metabolism related genes 

Three fatty acids metabolism related genes were differentially expressed in this study as 

shown in Table 9.  All three genes are of shortleaf pine origin, and they were 

differentially expressed in shortleaf pine, with SLP40 and SLP41 showing upregulation, 

while SLP42 showing downregulation.  In loblolly pine, during cross hybridization, 

SLP40 was upregulated, no signal was detected for SLP41, and no strong signal 

(greater than a two-fold change in expression) was detected for SLP42.   

 

SLP40 encodes caleosin.  SLP40 was 560 base pairs long, and the deduced protein was 

127 amino acids long.  Protein blast showed that this protein had a conserved domain 

belonging to the caleosin superfamily.  Figure 42 shows the MSA for caleosin from 

several species.  As seen from this alignment, the deduced protein sequence from 

SLP40 shared a high level of similarity with (deduced) protein sequences for caleosin-

like proteins from diverse species, including sago cycad (Cycas revolute Thunb.), rape 

(Brassica napus L.), Easter lily (Lilium longiflorun Thunb.), and corn (Zea mays L.). 

 

SLP41 encodes a triacylglycerol lipase (Class III)-like protein.  SLP41 was 475 base 

pairs long, and the deduced protein was 86 amino acids long.  This protein contained a 

45 amino acids-long protein sequence, which shared a high sequence similarity to 

triacylglycerol lipase proteins in many other species, including sitka spruce (Picea 
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sitchensis (Bong.) Carrière), castorbean (Ricinus communis L.), and rice (Oryza sativa 

L.), as shown by the MSA in Figure 43.  

 

SLP42 encodes a GNS1/SUR4 membrane protein.  SLP42 was 373 base pairs long.  

When blasted against the EST databases, a longer loblolly pine EST sequence 

(accession number: 48949032) was identified as having close to 100% similarity to 

SLP42, with only a few base pairs differences at the beginning of SLP42, which might 

be due to sequencing errors.  This loblolly pine EST was used for DNA translation 

analysis.  The deduced protein from this EST was 165 amino acids long.  Protein blast 

showed that this protein had a conserved domain belonging to the ELO (elongation) 

and GNS1/SUR4 protein family.   Figure 44 shows the MSA for GNS1/GNS1 proteins 

from several species.  As seen from this alignment, the deduced protein sequence from 

SLP42 shared a high level of similarity with (deduced) protein sequences for 

GNS1/SUR4 membrane proteins from diverse species, including barrel clover 

(Medicago truncatula Gaertn.), corn (Zea mays L.), and Arabidopsis. 

 

Transporter related genes 

Seven transporter related genes were differentially expressed in this study as show in 

Table 10.  Three of them are of shortleaf pine origin, and the other four are of loblolly 

pine origin.  All seven genes showed differential expression in shortleaf pine either 

during self-hybridization or cross hybridization, with SLP43, SLP44 and LLP6 showing 

upregulation, and the remaining (LLP4, LLP5 LLP7, and SLP45) showing 

downregulation.  Only SLP44 showed upregulation during cross hybridization in 

loblolly pine. 
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SLP43 encodes an ABC transporter protein.  SLP43 was 681 base pairs long, and the 

deduced protein was 87 amino acids long.  This protein had a conserved domain 

belonging to the ABC transporter superfamily.  Figure 45 shows the MSA for ABC 

transporter proteins from several species.  As seen from this alignment, the deduced 

protein sequence from SLP43 shared a high level of similarity with (deduced) protein 

sequences for ABC transporter proteins from diverse species, including black 

cottonwood (Populus trichocarpa L.), pepper (Capsicum chinense Jacq.), and 

Arabidopsis. 

 

LLP6 encodes a nitrate transporter-like protein.  It was 95 base pairs in length.  It had 

close to 100% similarity with a longer loblolly EST sequence (783bp) in GenBank EST 

databases, with the accession number of 67487349.  This longer EST sequence was 

then used in DNA translation analysis.  EST 67487349 encoded a protein of 163 amino 

acids long, which had a conserved PTR2 (peptide transporter 2) domain.  Figure 46 

shows the MSA for nitrate transporter-like proteins from several species.  As seen from 

this alignment, the deduced protein sequence from LLP6 shared a high level of 

similarity with (deduced) protein sequences for nitrate transporter-like proteins from 

diverse species, including black cottonwood (Populus trichocarpa L.), tobacco 

(Nicotiana tabacum L.), and Arabidopsis. 

 

Protein and amino acid metabolism genes 

Thirteen protein and amino acid metabolism related genes were differentially expressed 

in this study as shown in Table 11.   Ten out of these 13 genes are of shortleaf pine 
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origin, and the other three are of loblolly pine origin.  All 13 genes showed differential 

expression in shortleaf pine during either self-hybridization or cross hybridization, with 

ten showing upregulation and three downregulation.  None of these 13 genes showed 

differential expression in loblolly pine either in self-hybridization or cross 

hybridization.   

 

SLP47 encodes a serine-type peptidase/ signal peptidase.  SLP47 was 518 base pairs 

long.  The deduced protein was 50 amino acids long.  This protein had a conserved 

domain belonging to the peptidase superfamily.  Figure 47 shows the MSA for signal 

peptidase from several different species.  As seen from this alignment, the deduced 

protein sequence from SLP47 shared a high level of similarity with (deduced) protein 

sequences for signal peptidase proteins from diverse species, including black 

cottonwood (Populus trichocarpa L.), rice (Oryza sativa L.), corn (Zea mays L.), and 

Arabidopsis. 

 

SLP48 encodes an aleurain-like protease.  SLP48 was 185 base pairs long.  The 

deduced protein was 61 amino acids long.  This protein had a conserved domain which 

belongs to the peptidase C1A superfamily.  Figure 48 shows the MSA for the aleurain-

like protease from several species.  As seen from this alignment, the deduced protein 

sequence from SLP48 shared a high level of similarity with (deduced) protein 

sequences for aleurain-like protease from diverse species, including corn (Zea mays L.), 

rape (Brassica napus L.), sunflower (Helianthus annuus L.), plan (Plantago major L.), 

and tobacco (Nicotiana tabacum L.). 
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SLP49 encodes a subtilisin-like protein, subtilase.  Subtilase acts in protein reserve 

mobilization (Liu et al., 2001; Fontanini and Jones, 2002).  SLP49 was 390 base pairs 

long.  The deduced protein was 126 amino acids long.  Homologs of sublilase from 

several other species were identified when the deduced protein was blasted against the 

NCBI protein database.  Figure 49 shows the MSA for subtilisin-like proteins from 

several species.  As seen from this alignment, the deduced protein sequence from 

SLP49 shared a high level of similarity with (deduced) protein sequences for subtilase 

from diverse species, including Norway spruce (Picea abies L.), grape (Vitis vinifera 

L.), and Arabidopsis. 

 

SLP51 encodes a thioredoxin h-like protein.  SLP51 was 777 base pairs long.  The 

deduced protein was 120 amino acids long.  It contained a conserved domain belonging 

to the thioredoxin like superfamily.  The conserved domain was 88 amino acids long.   

Figure 50 shows the MSA for the conserved domain from several species.  As seen 

from this alignment, the deduced protein sequence from SLP51 shared a high level of 

similarity with (deduced) protein sequences for thioredoxin h from diverse species, 

including rubber tree (Hevea brasiliensis Muell. Arg.), grape (Vitis vinifera L.), black 

cottonwood (Populus trichocarpa L.), and Arabidopsis. 

 

Stress responsive genes 

Fifteen stress responsive genes were differentially expressed in this study as shown in 

Table 12.  Two out of the 15 genes were identified from both species (SLP_LLP3 and 

SLP_LLP4).  For the remaining 13 genes, 10 are of shortleaf pine origin, and the other 
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three are of loblolly pine origin.  In shortleaf pine, five out of the 15 genes showed 

downregulation, including LLP12, SLP60, SLP62, SLP63 and SLP64, either through 

self-hybridization or cross hybridization.  Among these five genes, four were oxidative 

stress related, including LLP12, SLP60, SLP62, and SLP63.  The other eight genes 

showed upregulation in shortleaf pine during self-hybridization, and the remaining two 

genes of loblolly pine origin did not show differential expression during shortleaf pine-

loblolly pine cross hybridization.  Five out of the 15 genes showed differential 

expression in loblolly pine, either through self-hybridization (SLP_LLP3, LLP11, 

LLP13, and LLP14) or cross hybridization (SLP59).  For the corresponding 

differentially expressed oxidative stress related genes, which were downregulated in 

shortleaf pine, none of them showed downregulation in loblolly pine, with one of them 

(LLP11) showing upregulation.  

 

SLP57 encodes a cystatin-like protein.  SLP57 was 226 base pairs long. The deduced 

protein was 75 amino acids long.  This protein had a conserved domain belonging to the 

CY (cystatin-like domain) superfamily.  Figure 51 shows the MSA for cystatin-like 

proteins from several species.  As seen from this alignment, the deduced protein 

sequence from SLP57 shared a high level of similarity with (deduced) protein 

sequences for cystatin-like proteins from diverse species, including tomato (Solanum 

lycopersicum L.), soybean (Glycine max L. Merr.), black cottonwood (Populus 

trichocarpa L.), and common wheat (Triticum aestivum L.).  
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LLP11 and LLP12 both encode peroxidase-like proteins.  LLP11 was 236 base pairs 

long and LLP12 was 330 base pairs long.  LLP11 and LLP12 had no sequence overlap 

and were initially thought to be two different genes.  Each was deposited into the 

GenBank databases.  However, detailed BLAST search showed that both cDNAs were 

part of a loblolly pine EST with the accession number of 67962276.  This longer 

loblolly pine EST was used for DNA translation analysis.  This EST was 826 base pairs 

long, and the deduced protein was 188 amino acids long.  This protein had a KatG 

(catalase/hydroperoxidase) domain unique to the plant peroxidase superfamily.  This 

protein belong to the class I superfamily of peroxidases, which is responsible for 

hydrogen peroxide removal in chloroplasts and cytosol of higher plants.  Figure 52 

shows the MSA for peroxidase from several different species. 

 

SLP60 encodes a peroxidase-like protein.  SLP60 was 403 base pairs long.  When 

SLP60 was blasted against the EST database, a longer loblolly pine EST sequence 

(accession number 66976703) was identified with close to 100% similarity to SLP60.  

This loblolly pine EST was 707 base pairs long and was used for DNA translation 

analysis.  The deduced protein from this EST was 156 amino acids in length.  Protein 

blast showed that this deduced protein had a conserved domain belonging to the plant 

peroxidase superfamily.  More specifically, this protein was a member of the class III 

subfamily of peroxidases, which included secretory peroxidases functioning in 

hydrogen peroxide detoxification and stress response.  Figure 53 shows the MSA for 

peroxidase-like proteins from several species.  As seen from this alignment, the 

deduced protein sequence from SLP60 shared a high level of similarity with (deduced) 
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protein sequences for secretory peroxidase-like protein from diverse species, including 

upland cotton (Gossypium hirsutum L.), soybean (Glycine max L. Merr.), and 

Arabidopsis. 

 

SLP61 encodes cytochrome P450.  SLP61 was 478 base pairs long, and the deduced 

protein was 159 amino acids in length.  Protein blast showed that this protein had a 

conserved domain belonging to the CypX superfamily.  Figure 54 shows the MSA for 

cytochrome P450 from several species.  As seen from this alignment, the deduced 

protein sequence from SLP61 shared a high level of similarity with (deduced) protein 

sequences for cytochrome P450 from diverse species, including sweetleaf (Stevia 

rebaudiana), potato (Solanum tuberosum L.), and black cottonwood (Populus 

trichocarpa L.). 

 

SLP62 encodes an aldo/keto reductase-like protein.  SLP62 was 432 base pairs long.  

The deduced protein was 143 amino acids in length.  Protein blast showed that this 

protein had a conserved domain belonging to the AKRs (aldo-keto reductase) 

superfamily.  Figure 55 shows the MSA for aldo/keto reducatase from several species.  

As seen from this alignment, the deduced protein sequence from SLP62 shared a high 

level of similarity with (deduced) protein sequences for aldo/keto reductase from 

diverse species, including castorbean (Ricinus communis L.), grape (Vitis vinifera L.), 

Arabidopsis, and black cottonwood (Populus trichocarpa L.).  
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SLP63 encodes a glutathione S-transferase (GST).  SLP63 was 88 base pairs long.  

When blasted against EST databases, a much longer loblolly pine EST with close to 

100% sequence similarity with SLP63 was identified.  This EST was 721 base pairs 

long, and its accession number was 34490708.  This longer EST was used for DNA 

translation analysis.  The deduced protein from this EST was 222 amino acids long.  

Protein blast showed that this protein had a 76 amino acids-long conserved domain, 

which was unique to the GST protein family.  Figure 56 shows the MSA for GST from 

several different species.  As seen from this alignment, the deduced protein sequence 

from SLP63 (substituted by a loblolly pine EST with the accession number 34490708) 

shared a high level of similarity with (deduced) protein sequences for GST from diverse 

species, including rice (Oryza sativa L.), green alga Ostreococcus tauri 

(Prasinophyceae), Arabidopsis, and black cottonwood (Populus trichocarpa L.).  

 

SLP_LLP4 was differentially upregulated in both species.  SLP_LLP4 was 282 base 

pairs long and the deduced protein was 56 amino acids long.  Protein blast showed that 

this protein had a conserved domain belonging to the LEA (late embryogenesis 

abundant)_3 superfamily.  Figure 57 shows the MSA for LEA proteins from several 

different species.  As seen from this alignment, the deduced protein sequence from 

SLP_LLP4 shared a high level of similarity with (deduced) protein sequences for LEA 

from diverse species, including tobacco (Nicotiana tabacum L.), aleppo pine (Pinus 

halepensis Mill.), and white spruce (Picea glauca (Moench) Voss).  
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LLP13 encodes galactinol synthase (GolS).  LLP13 was 682 base pairs long, and the 

deduced protein was 107 amino acids long.  When this protein was blasted against NCBI 

protein databases, homologs from several species were identified.  Figure 58 shows the 

MSA for these GolS proteins.  As seen from this alignment, the deduced protein 

sequence from LLP13 shared a high level of similarity with (deduced) protein 

sequences for GolS from diverse species, including ajuga (Ajuga reptans L.), showy 

mullein (Verbascum phoeniceum L.), rape (Brassica napus L.), and Arabidopsis.  

 

SLP36 encodes a water deficit inducible LP3-like protein.  SLP36 was 517 base pairs 

long.  The deduced protein was 128 amino acids long.  Protein blast showed that this 

protein had a conserved domain belonging to the ABA_WDS (water deficit stress) 

superfamily.  Figure 59 shows the MSA for the LP3-like proteins from diverse species.  

As seen from this alignment, the deduced protein sequence from SLP36 shared a high 

level of similarity with (deduced) protein sequences for LP3-like proteins from 

different species, including loblolly pine, maidenhair tree (Ginkgo biloba L.), and 

douglas-fir (Pseudotsuga menziesii (Mirb.) Franco).  

 

Translation related genes 

Twelve translation related genes were differentially expressed in this study as shown in 

Table 13.  Ten out of these 12 genes are of shortleaf pine origin.  11 genes were 

differentially expressed in shortleaf pine, either through self-hybridization (10 genes) or 

cross hybridization (only one gene, LLP16), with most of the ribosomal proteins 

showing upregulation.  Most of these genes did not show differential expression in 

loblolly pine, with the exception of these three genes, LLP15, SLP66, and LLP16.    
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LLP15 and LLP16 were identified through self-hybridization, while SLP66 was 

identified through cross hybridization. 

 

SLP70 encodes a DCP1-like decapping protein.  SLP70 was 381 base pairs long, and 

the deduced protein was 93 amino acids long.  When this protein was blasted against 

the NCBI protein databases, homologs from several species were identified.  Figure 60 

shows the MSA for DCP1-like proteins from several species.  As seen from this 

alignment, the deduced protein sequence from SLP70 shared a high level of similarity 

with (deduced) protein sequences for DCP1-like proteins from diverse species, 

including rice (Oryza sativa L.), corn (Zea mays L.), and Arabidopsis.  

 

Real-time PCR to confirm the microarray results  

 
Six genes were selected to further confirm the microarray results and to study gene 

expression patterns using quantitative real-time PCR (qRT-PCR).  The quantitative PCR 

experiment was performed using actin as the endogenous control.  Genes used for 

verification were KN3 (SLP2, GO479091), invertase (SLP21, GO479110), amylase 

(SLP22, GO479111), AP2/ERF (SLP34, GO479123), a water deficit inducible LP3-like 

protein (SLP36, GO479125), and a putative receptor kinase (listed as kinase in Table 

17, SLP_LLP1, GO479192).  These selections represent genes from five different 

functional categories: KN3 is a developmental related transcription factor; invertase 

and amylase function in carbohydrate metabolism; AP2/ERF is a hormone related gene; 

the LP3-like protein is involved in plant stress response; and the receptor kinase 

functions in signal transduction.  
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The software Primer 3 (http://frodo.wi.mit.edu/) was used to design primers based on 

sequence information obtained in this study.  The sequence information is available 

from GenBank with the corresponding accession numbers.  Normal PCR was applied to 

test the specificity of each pair of primers.  Only primers with high specificity showing 

one band in an agarose gel were used in qRT-PCR.  Table 16 lists all the primers used 

for qRT-PCR in this study.  

 

In general, the qRT-PCR and array results were in agreement (Figure 61-66).  There 

were some differences between them.  For some cases, results from qRT-PCR showed a 

higher gene expression level in mRNA abundance than did the array.  The higher 

expression level in qRT-PCR might result from qRT-PCR’s greater sensitivity to detect 

RNA abundance.  Another possible reason for the difference was that the time points 

for the array experiment and qRT-PCR were not exactly the same: for shortleaf pine, 

tissues used in the array experiment were a combination of tissues collected at 24 hour 

and 48 hour after top-killing, and tissues for qRT-PCR had clear-cut time points, from 

two hour after cutting treatment to 48h after cutting treatment;  for loblolly pine, tissues 

used in the array experiment were a combination of tissues collected on the sixth and 

seventh day after top-killing, and again tissues for qRT-PCR were tissues collected 

from one day after cutting treatment to one week after cutting treatment.  Therefore, 

qRT-PCR results provided us with information on the detailed expression pattern of 

each gene at different time points after cutting treatment, while array result only 
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provided us with general information on transcriptome profile for an extended period of 

time.  

 

From the qRT-PCR results, shortleaf pine’s quick response to top removal was more 

obvious, as five out of six genes showed expression peaks between four to eight hours 

after top-killing.  For example, expression of invertase and amylase in shortleaf pine 

after top-killing reached expression peaks after four hour and eight hour after 

topkilling, respectively.  For loblolly pine, the expression peaks for these two 

carbohydrate metabolism genes were seen three days after cutting treatments.  

 

As shown in Figure 61, the abundance of invertase transcripts increased within two 

hours after cutting treatment in shortleaf pine, and continued to increase to reach an 

expression peak four hours after cutting treatment, showing a ten-fold upregulation.   

Shortleaf pine invertase RNA abundance had a second but smaller peak at 24 hours 

after cutting treatment, showing a two-fold upregulation.   Correspondingly, array 

experiments detected a two-fold upregulation on mixed shortleaf pine samples collected 

at 24hours and 48hours after cutting treatment.  For loblolly pine, expression peak of 

invertase was at three days after cutting treatment, showing a two-fold upregulation.  

The abundance of invertase transcripts began to decrease thereafter, and at five days 

and seven days after cutting treatment, there was almost no difference in loblolly pine 

invertase RNA abundance between control samples and cutting treated samples, which 

was in agreement with array results. 
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The abundance of amylase transcripts also increased within two hours after cutting 

treatment in shortleaf pine (Figure 62), and continued to increase to reach an expression 

peak eight hours after the cutting treatment, showing a 3.5-fold upregulation.   For 

loblolly pine, the expression peak was at three days after cutting treatment, showing a 

2.5-fold upregulation.   

 

The abundance of AP2/ERF transcripts increased within two hours after cutting 

treatment in shortleaf pine (Figure 63), and reached the expression peak eight hours 

after cutting treatment, showing a 12-fold upregulation.   AP2/ERF RNA abundance 

had a small peak at 24 hours after cutting treatment, showing a 2.8-fold upregulation in 

shortleaf pine.   Correspondingly, the array experiment detected a 2.2-fold upregulation 

in mixed shortleaf pine samples collected at 24hours and 48hours after cutting 

treatment.  For loblolly pine, the expression peak was at three days after cutting 

treatment, showing an 11-fold upregulation.  The abundance of AP2/ERF transcripts 

began to decrease thereafter, but began to increase again at five days after cutting 

treatment.  And at seven days after cutting treatment, there was a four-fold change in 

AP2/ERF RNA abundance between cutting treated samples and control samples, which 

was in agreement with array results. 

 

The abundance of transcripts encoding KN3 increased within two hours after cutting 

treatment in shortleaf pine (Figure 64), and continued to increase to reach the 

expression peak after four hours, showing a five-fold upregulation.   For loblolly pine, 

KN3 showed no significant (more than two-fold) upregulation at any of the four time 



 78

points; rather, at five days after cutting treatment, KN3 transcript was significantly less 

in treated samples than in control samples.  

 

The abundance of LP3-like gene transcripts increased within two hours after cutting 

treatment in shortleaf pine (Figure 65), and continued to increase to reach an expression 

peak eight hours after cutting treatment, showing a six-fold upregulation.   LP3-like 

gene RNA abundance decrease thereafter, but at 24 hours and 48 hours after cutting 

treatment, it reaches a plateau, maintaining a two-fold upregulation.  Correspondingly, 

the array experiment detected a two-fold upregulation in mixed shortleaf pine samples 

collected at 24 hours and 48 hours after cutting treatment.  For loblolly pine, the 

expression peak was at three days after cutting treatment, showing a 6.5-fold 

upregulation.  The abundance of the LP3-like transcripts began to decrease thereafter, 

and at seven days after cutting treatment, there was almost no difference in LP3-like 

RNA transcript abundance between control samples and cutting treated samples, which 

was in agreement with array results. 

 

The abundance of kinase transcripts increased within four hours after cutting treatment 

in shortleaf pine (Figure 66), and transcripts reached peak abundance at 48 hours after 

cutting treatment, showing a 2.6-fold upregulation.  For loblolly pine, the expression 

peak was at seven days after cutting treatment, showing a seven-fold upregulation.  

With the exception of this time point, the abundance of loblolly pine kinase transcripts 

were significantly less in cutting-treated sample than in control samples. 
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CHAPTER V 
 
 

                                                             DISCUSSION 

 

Shortleaf pine and loblolly pine are two species possessing large differences in 

sprouting capability after top cutting treatment.  These pines were used for cDNA 

subtraction and microarray experiments to identify genes responsible for prolific 

shortleaf pine sprouting and the gene expression differences that lead to the large 

differences between shortleaf pine and loblolly pine’s sprouting ability following top-

killing.  In these comparative analyses with a 2400 cDNA microarray, a total of 139 

transcripts were identified to be responsive for sprouting after top-killing.  

 

There have been several recent studies carried out using microarray to study dormancy 

in buds of other plants, including leafy spurge, raspberry (Rubus idaeus L.) and poplar 

(Populus tremula L.; Horvath et al., 2005; Mazzitelli et al., 2007; Schrader et al., 2004).  

These studies were focused on dormancy release of either primary or axillary buds of 

perennial woody species, adventitious buds on perennial weeds, or buds on a perennial 

vine.  This study might be the first study designed to examine pine species’ sprouting 

ability due to bud dormancy release after top-killing.  In this study of shortleaf pine and 

loblolly pine, dormancy release was a main response to top-death.  Outside 

environmental cues like temperature and light might not play a pivotal role in this



 81

system as it does in the other systems reported in study of dormancy release.  However, 

it might still be of interest to find common genes and mechanism involved in the 

different dormancy release systems, and these concerns will be included in the 

discussion of genes in different functional categories of genes identified.  

 

Optimum tissue collection for gene profiling 

As our goal was to identify genes responsible for sprouting after top-killing of both 

shortleaf pine and loblolly pine, it was important to identify the appropriate time points 

for gene profiling.  By a careful watch of the two pine species’ response after top 

killing, we found that shortleaf pine sprouted 24 hours-48 hours after top-killing, while 

loblolly pine sprouted seven days after top-killing.  Therefore, the tissues collected on 

the first and second day for shortleaf pine were used for the array experiment, while for 

loblolly pine tissues collected on the sixth and seventh day were used. 

 

Through the array experiment 130 differentially expressed genes responsible for 

dormancy release were identified for shortleaf pine; while for loblolly pine, only 32 

genes were found.  It seems that the time points for shortleaf pine tissue collection are 

optimal, but the time points for loblolly pine tissue collection may not be optimized.  

Perhaps loblolly pine’s sprouting stimulus at the molecular level is a result of a 

combination of genes with low level changes in expression which in turn could explain 

the limited and slow sprouting response observed.  The results demonstrated that six-

seven days after treatment, limited gene activity was noted in the remaining loblolly 

pine stumps.  Few differentially expressed genes related to loblolly pine bud dormancy 
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release and sprouting were found.  In a study reporting the influence of defoliation on 

the dormancy release of underground adventitious buds of leafy spurge, it was found 

that genes, such as histone H3 and tubulin, were differentially expressed between 24h 

to 48h after the defoliation treatment (Horvath et al., 2002).  A similar study reported 

that 24-h time points displayed the greatest number of differentially expressed genes in 

leafy spurge (Horvath et al., 2005).  And of note, growth of underground buds was 

detected four to five days after defoliation treatments (Horvath et al., 2005).  

 

Functional categorization of differentially expressed genes  

Carbohydrate metabolism 

Seven genes were found involved in carbohydrate metabolism.  Six of them were 

upregulated in shortleaf pine.  All of these seven genes were of shortleaf pine origin.  

Not a single gene came from loblolly pine.  Even the cross hybridization of these genes 

with loblolly pine RNA did not produce strong signals.  These genes encode well-

known enzymes involved in glycolysis (malate synthase by SLP17; pyruvate kinase by 

SLP18; fructose-bisphosphate aldolase by SLP19) and the pentose phosphate pathway 

(glucose-6-phosphate dehydrogenase by SLP20).  Upregulation of genes involved in 

glycolysis and the pentose pathway suggested that active carbohydrate metabolism was 

involved in dormant bud release in shortleaf pine after top-killing to provide energy for 

bud growth.  And of note, increased expression levels of genes involved in glycolysis 

and the pentose pathway were also found associated with poplar dormant bud release 

(Canam et al., 2008). 
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Amylase and invertase were also found upregulated after top-killing in shortleaf pine.  As 

key enzymes in carbohydrate catabolism, amylase and invertase play significant roles in 

the regulation of sugar concentration, which in turn influences gene expression through 

sugar signalling pathways (Roitsch et al., 2003).  And of note, in trees, two invertase 

genes were found involved in processes related to poplar dormant bud release (Canam 

et al., 2008).  High levels of expression of amylase and invertase genes in this study 

might promote dormant bud release in shortleaf pine by not only providing energy 

through mobilization of carbohydrate reserves, but also functioning in sugar signaling 

pathways. 

 

The one gene found downregulated was glycogenin glucosyltransferase.  This enzyme 

catalyzes an essential step in glycogen synthesis (Lomako et al., 1988; Qi et al., 2005).  

Downregulation of a glycogenin glucosyltransferase gene in shortleaf pine suggests that 

the series of chemical reactions to store glucose as glycogen might be suppressed during 

dormant bud release after top-killing.  The lowered rate of these chemical reactions might 

be due to the fact that sprouting is an energy consuming process and no excessive glucose 

is available to be stored as glycogen.   

 
Hormone related genes 

As shown in Table 7, six hormone related genes were found differentially expressed 

after top-killing in shortleaf pine: two genes related to gibberellin, three to auxin, and 

one to ethylene.  Gibberellin 7-oxidase functions to finely modulate GA biosynthesis 

(Israelsson et al., 2004; Lange et al., 1994, 1997).  A gibberellin 7-oxidase-like gene 

(SLP37) was found upregulated in shortleaf pine after top-killing.  The high expression 
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levels of gibberellin 7-oxidase suggested that GA was actively involved in dormant bud 

release in shortleaf pine after top-killing.  Another GA related gene encoded a putative 

tetratricopeptide repeat (TPR) protein similar to SPINDLY(SPY), which is a putative O-

linked N-acetyl-glucosamine transferase, and is deemed as a negative regulator of the GA 

signal transduction pathway (Tseng et al., 2001; Swain et al., 2002; Maymon et al., 2009).  

In this study, the SPY-like TPR-containing gene (SLP39) was downregulated in shortleaf 

leaf pine after top-killing, and it might function in one of the pathways that lead to 

abundant GA accumulation during dormant bud release.   

 

An auxin-repressed protein (ARP; SLP35) was upregulated in shortleaf pine after top-

killing.  ARP showed enhanced expression in the root nodules of Japanese silverberry 

(Elaeagnus umbellata; Kim et al., 2007) and seemed to have a positive role in plant 

development.  High expression levels of ARP were also reported to be associated with 

dormant bud release in tree peonies (Paeonia suffruticosa Andrews; Huang et al., 2008).  

Like in tree peonies, the upregulation of ARP might promote sprouting in shortleaf pine 

after top-killing.  

 

The other two auxin-related differentially expressed genes were a gene encoding 

anthocyanidin reductase (SLP38) and a gene encoding flavanone 3-hydroxylase (LLP3).  

Both genes are involved in flavonoid biosynthesis.  Flavonoid biosynthesis genes were 

found to be rapidly down-regulated during loss of paradormancy in root buds of leafy 

spurge (Euphorbia esula), and they were documented to be negative regulators of auxin 

transporters (Horvath et al., 2005).  Therefore the downregulation of the two genes 
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involved in flavonoid biosynthesis in shortleaf pine might lead to a higher expression 

level of auxin transporter genes which might be responsible for auxin transport from 

other minor sources (such as primary root tip) after top-killing, as auxin is required for 

further bud growth after dormancy release (Lincoln et al., 1990).   In this study, the 

stimulation of auxin transporter genes by downregulation of flavonoid biosynthesis genes 

might be helpful for dormant bud growth.  The apical dominance of shortleaf pine was 

released by top-killing, but auxin might be required for sprout growth and perhaps to 

inhibit growth of remaining lateral buds on stems of shortleaf pine. 

 

The differentially expressed gene related to ethylene was the AP2/ERF domain-

containing transcription factor.  AP2/REF, like its counterpart ERF1, is a component of 

the ethylene signaling pathway, and might play the same role during shortleaf pine bud 

dormancy release as ERF1 does in promoting sunflower (Helianthus annuus L.) seed 

dormancy release (Oracz et al., 2009).  Investigations have also shown that ethylene plays 

a role during tiller release from apical dominance (Harrison and Kaufman, 1982).  

Ethylene might have the same role during dormant bud release in shortleaf pine after top-

killing.  

 

Cell growth and maintenance 

Fourteen differentially expressed genes were found involved in cell growth and 

maintenance in shortleaf pine and loblolly pine after top-killing.  SLP11 is a homolog to 

the STT3B, which functions in protein N-glycosylation (Koiwa et al., 2003).  Specific 

protein glycosylation might be important for cell cycle progression under stress 
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conditions.  In this study, the upregulation of the STT3B-like gene SLP11 might help cell 

growth of shortleaf pine under wounding stress.   

 

Glycine-rich gene (SLP8) was upregulated in shortleaf pine following top-kill.  The 

function of glycine-rich proteins (GRPs) is obscure, some were found to be components 

of plant cell walls (Ringli et al., 2001) and some were proposed to be players in plant 

defense mechanisms (Mousavi and Hotta, 2005).  In this study, the increased expression 

level of GRPs might help the remaining stems of shortleaf pine to survive wounding 

stress after top-killing.  This glycine-rich gene is of shortleaf pine origin, and cross 

hybridization of loblolly pine cDNAs to the array slides showed upregulation.  

 

Two cell-wall loosening genes were downregulated in shortleaf pine: an expansin like 

gene (SLP4) and a pectin methylesterase-like gene (SLP5).  Both genes play important 

roles in cell wall modification during plant growth and development (Lee et al., 2003; 

Phan et al., 2007).  The downregulation of expansin and pectin methylesterase genes 

seen in this study may be due to their more active role in seedling development rather 

than dormancy release and sprouting.  

 

A methyltransferase (MTase)-like gene (SLP9) was downregulated in shortleaf pine 

after top-killing.  MTases are essential enzymes functioning in DNA and protein 

methylation (Wang et al., 2005).  There are reports showing decreased MTase 

expression during dormancy release in potato tubers (Campbell et al., 2008).  
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Downregulation of MTase in shortleaf pine might play a similar role in bud dormancy 

release after top-killing. 

 

Tetraspanins were found involved in regulation of cell differentiation (Olmos et al., 

2003).  One homolog of tetraspanin (SLP13) was upregulated in both shortleaf pine and 

loblolly pine.  One pentatricopeptide repeat-containing, EMBRYO-DEFECTIVE 

similar gene (SLP15) was found to be upregulated in shortleaf pine after top-killing.  

This is a newly discovered gene, which was found to be important for Arabidopsis seed 

development (Devic, 2008).  Upregulation of the homologs of tetraspanin and 

EMBRYO-DEFECTIVE genes in shortleaf pine after top-killing might be helpful for 

dormant bud release after top-killing because of their positive function in plant 

development.  

 

Signal transduction related genes  

There were four differentially expressed genes in this category, including one receptor-

kinase like gene, two phosphatase-like genes and one PB1domain-containing protein.  

The two phosphateases related genes, protein phosphatase 2A (PP2A) catalytic subunit-

like gene (SLP25) and protein phosphatase 2C (PP2C)-like gene (SLP24), were both 

upregulated in shortleaf pine after top-killing.  Investigations have shown that they both 

can negatively regulate abscisic acid (ABA) response (Pernas et al., 2007; 

Schweighofer et al., 2004; Yoshida et al., 2006), with PP2A’s possible involvement in 

the signal transduction pathway mediated by GAs (Chang et al., 1999) and PP2C’s 

direct function as an ABA-insensitive locus to attenuate ABA signal (Leung et al., 

1994, 1997; Meyer et al., 1994; Rodriguez et al., 1998).    
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One receptor-kinase like protein (SLP_LLP1) was significantly upregulated in shortleaf 

pine after top-killing.  One investigation showed that a protein kinase mRNA level was 

low in dormant pea (Pisum sativum L.) axillary buds on intact plants and the level 

increased when buds were stimulated to grow during loss of apical dominance by 

decapitating the terminal bud (Devitt and Stafstrom, 1995).  The upregulation of one 

receptor-kinase like protein in shortleaf pine and loblolly pine following removal of the 

top may represent a similar response. 

 

Transcription factor related genes 

One NAM transcription factor-like gene (SLP1) was downregulated in shortleaf pine 

after top-killing.  NAM not only functions in the initial development of plant lateral 

organs from shoot meristems (Aida and Tasaka, 2006), but also is responsive to various 

stresses (Olsen et al., 2005; Chen et al., 2008; Seo et al., 2008).  Under stress conditions, 

NAM was found upregulated where ABA might be induced due to water loss (Ganesan et 

al., 2008).  In this study, the NAM-like gene might be downregulated due to the lower 

ABA levels associated with dormant bud break in the shortleaf pine sprouting process.  

 

A SHOOT MERISTEMLESS (STM) homolog KN3-like gene (SLP2) was found highly 

expressed in shortleaf pine after top-killing.  The STM gene belongs to the Arabidopsis 

Knotted1-like homeobox (KNOX) gene subfamily and encodes homeodomain 

transcriptional regulators that regulate shoot growth in the shoot apical meristem 

(SAM) (Long et al., 1996; Scofield et al., 2007).  In this study, the high expression 
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level of a KN3-like gene in shortleaf pine suggests increased meristem activity 

involved in sprout formation following dormant bud break in shortleaf pine.   

 

The DNA binding protein GT-1 is a light-modulated transcription factor (Marechal et 

al., 1999).  In this study, a GT-1-like gene was found upregulated in shortleaf pine after 

top-killing.  GT-1 might interact with light responsive genes to promote dormant bud 

release in shortleaf pine.   

 

Protein and amino acid metabolism 

Thirteen genes related to protein and amino acid metabolism were differentially 

expressed during sprouting following cutting treatment, including genes involved in 

protein reserve mobilization, amino acid metabolism and genes involved in 

posttranslational modulation or degradation of enzymes (such as plant hormones).  Both 

the serine-type peptidase/signal peptidase and prolyl endopeptidase are proteins involved 

in the maturation and degradation of peptide hormones.  Homoglogs of these two genes 

(SLP47 and LLP8) were both found upregulated in shortleaf pine.  The upregulation is 

probably an indicator of active involvement of plant hormones in dormant bud release in 

shortleaf pine after top-killing.   

 

Aleurain (cysteine protease), subtilase (endopeptidase) and thioredoxin h (small redox 

regulating proteins) were all documented to be associated with mobilization of storage 

protein in seed germination (Rogers et al., 1997; Fontanini and Jones, 2002; Gelhaye et 

al., 2004).  Homologs of these three genes (SLP48, SLP49 and SLP51) were upregulated 

in shortleaf pine after top-killing.  The upregulation of these genes functioning in protein 
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degradation suggested active reserve mobilization during dormant bud release in shortleaf 

pine after top-killing.   

 

Several genes functioning in amino acid metabolism were also differentially expressed; 

they tend to be upregulated in shortleaf pine. These genes might function to provide 

more energy for sprouting by further breakdown of proteins and amino acids.  Druart et 

al. (2007) reported similar results from research on dormant bud release in poplar. 

 

Fatty acid metabolism genes 

Three differentially expressed genes were found to be associated with fatty acid 

metabolism after top-killing: one caleosin-like gene (SLP40), one triacylglycerol (TAG) 

lipase-like gene (SLP41), and one gene encoding proteins belonging to GNS1/SUR4 

membrane family (SLP42).  In shortleaf pine, the first two genes were upregulated, while 

the third one was downregulated.   

 

Caleosins (a group of calcium binding proteins) and TAG lipase are both involved in 

lipid degradation during seed germination to provide an energy source to support the 

early development of seedlings (Quettier and Eastmond, 2008; Padham et al., 2007).  

The upregulation of the two fatty acid catabolism genes (triacylglycerol lipase-like, 

SLP41; caleosin-like, SLP40) suggested that fatty acids were actively mobilized during 

dormant bud release in shortleaf pine after top-killing.  Fatty acid metabolism related 

genes were also found upregulated during poplar dormant bud release (Druart et al., 

2007).   
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A gene encoding proteins belonging to GNS1/SUR4 membrane family was 

downregulated in shortleaf pine after top-killing.  The GNS1/SUR4 membrane family 

genes were found associated with fatty acid elongation (Baudry et al., 2001).   The 

downregulation of GNS1/SUR4-like gene (SLP42) further indicates that in top-killed 

shortleaf pine, fatty acids were broken down to provide energy for dormant bud release 

and bud growth.  

 

Transport genes 

Seven differentially expressed genes related to transport were found in this study, 

including two ABC (ATP-binding cassette) transporter-like genes, a sulfate transporter-

like gene, an nitrate transporter-like gene, and two genes encoding transporters for 

unknown proteins and a transporter for basic amino acids (carnitine:acyl carnitine 

antiporter).   

 

Nitrate transporters help mediate NO3
- uptake from external sources (Chopin et al., 

2007).  Nitrate can promote dormancy release and seed germination by positively 

regulating the activities of enzymes involved in ABA catabolism and GA biosynthesis 

(Finch-Savage et al., 2007; Bethke et al., 2007).   Hence the upregulation of a nitrate 

transporter-like gene (LLP6) in shortleaf pine after top-killing might function not only 

to provide nutrition for sprouting, but also to play a role in dormancy release.   

 

The ATP binding cassette (ABC) functions to transport various molecules across cell 

membranes by use of energy from ATP (Theodoulou, 2000; Jasinski et al., 2003).  Two 

ABC-transporter related proteins were found either up regulated (SLP43) or 
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downregulated (LLP4) after top-killing in shortleaf pine.  These two ABC transporters 

might be involved in transporting different molecules, either toxic or nutritional in 

reverse directions, during shortleaf pine dormant bud release after top-killing.  The 

reason why the two ABA transporter genes did not have the same direction of 

differential expression (either upregulation or downregulation) might be due to the 

different functions they have in the bud dormant release process.  

 

Stress responsive genes 

Fifteen stress responsive genes were found either upregulated or downregulated after 

top-killng.  A cystatin (cystein protease inhibitor)-like gene (SLP57) was found 

upregulated in shortleaf pine.  In plants, high-level expression of cystatin was 

associated with enhanced resistance to various abiotic stresses (Zhang et al., 2008).  In 

this study, the upregulation of a cystatin-like gene (SLP57) might better protect 

shortleaf pine from wound stress.  

 

LEA (late embryo abundant) proteins are extremely hydrophilic proteins, and they are 

proposed to play an important role in protecting cells from dehydration stress (Gilles et 

al., 2007; Baker et al., 1988).  After the top-cutting treatments, both shortleaf pine and 

loblolly pine were in the danger of losing too much water from the wounds, which 

would affect further development.  Upregulation of LEA-like genes (SLP_LLP4) 

probably function to protect both shortleaf pine and loblolly pine from extreme water 

loss. 
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In this study, four genes involved in oxidative stress release were all downregulated in 

shortleaf pine, including two peroxidase-like genes (LLP11_LLP12, SLP60), one 

glutathione S-transferase-like gene (SLP63) and one aldo-keto reductase-like gene 

(SLP62).  Peroxidase, glutathione S-transferase and aldo-keto reductase are known to be 

components of the complex network of active oxygen species (AOS) enzymes in plant 

cells.   

 

Glutathione S-transferase (GST) functions to add reduced glutathione (GSH) to a variety 

of substrates (Yu et al., 2003), and can protect cells from oxidative damage (McGonigle 

et al., 2000).  Decreased expression of glutathione S-transferase (GST) was found 

associated with dormancy breakage in Trollius ledebouri seeds (Bailey et al., 1996) and 

grape buds (Halaly et al., 2008).  On the other hand, accumulation of GST was found 

associated with dormancy introduction in Castanea crenata trees (Japanese chestnut) 

(Nomura et al., 2007).  The downregulation of the GST-like gene (SLP63) after top-

killing in this study might have an important role in keeping high levels of oxidative 

stress in dormant buds and the increased levels of oxidative stress in turn helps to 

promote dormant bud release in shortleaf pine.  

 

One homolog of the Arabidopsis peroxidase gene At5g64120 was found downregulated 

after top-killing in shortleaf pine.  As catalase, At5g64120 is capable of decreasing 

oxidative stress by decreasing H2O2 levels (Riganti et al., 2004; Rouet et al., 2006).  In 

this study, an At5g64120-like gene (LLP11_LLP12) showed decreased expression levels 

in shortleaf pine after cutting treatment.  Downregulation of the At5g64120-like gene 
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suggested that oxidative stress might be resultant from the decreased level of antioxidant 

genes, and oxidative stress might function to promote dormant bud release in shortleaf 

pine.   

 

Aldo-keto reductases function primarily to reduce aldehydes and ketones to primary and 

secondary alcohols (Jin and Penning, 2007; Oberschall et al., 2000).  In wild oat (Avena 

fatua L.), aldose reductase was found associated with seed dormancy, with high 

expression levels in dormant seeds but low expression levels in afterripened ones (Li and 

Foley, 1995).  In this study, an aldo-keto reductase-like gene (SLP62) was downregulated 

in shortleaf pine after top-killing.  This suggested that decreased expression of aldo-keto 

reductase might be one pathway leading to the accumulation of AOS other than H2O2, 

such as primary and secondary alcohols.  These primary and secondary alcohols could 

function cooperatively with H2O2 to promote dormant bud release in shortleaf pine.  

Therefore decreased expression of all these genes involved in antioxidant systems might 

produce oxidative stress and promote dormant bud break in shortleaf pine.  

 

Cytochrome P450 genes catalyse multiple important reactions in plant secondary 

metabolism and are responsive to plant stress (Bolwell et al., 1994).  It was found that 

plant cytochrome P450 enzymes were involved in wound healing and pest resistance of 

Arabidopsis plants (Noordermeer et al., 2001).  In this study, a cytochrome P450-like 

gene (SLP61) was upregulated after top-killing in shortleaf pine.  Increased P450 

expression might help shortleaf pine survive wounding stress after cutting treatment.  
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Galactinol synthase (GolS) is an essential enzyme functioning in the synthesis of 

raffinose family oligosaccharides that act as osmoprotectants in plant cells (Wakiuchi et 

al., 2003).  It was proposed that galactinol and raffinose might function to scavenge 

hydroxyl radicals to protect plant cells from oxidative damage caused by stress like 

high salinity and chilling (Nishizawa et al., 2008; Kim et al., 2008).  Decreased 

expression of GolS-like gene (LLP13) in loblolly pine might be a sign of decreased 

tolerance to environmental stress, and hence reduced sprouting ability after top-killing.  

 

Translation genes 

Ribosomal proteins are involved in the cellular process of translation (Sohal et al., 

2008).  Five ribosomal-like genes were upregulated in shortleaf pine after top-killing.  

Upregulation of ribosomal genes suggested that active translation might occur after top-

killing, and this translation activity most probably resulted in abundant hormones and 

transporter proteins that might be especially important for dormancy release and 

sprouting.  

 

A DCP1 (an mRNA-decapping enzyme)-like gene (SLP70), was found upregulated in 

shortleaf pine after top-killing.  DCP1 was proposed to be important for shoot apical 

meristem formation (Xu et al., 2006).   In this study, the upregulation of a DCP1-like 

gene (SLP70) in shortleaf pine after top-killing suggested that DCP1 might be 

important for shortleaf pine dormant bud break and or shoot apical meristem 

development.  
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Transcribed loci with unknown function and genes with no hit in the databases 

The genes with unknown function or no hit in the databases ranked as the two largest 

groups of all the categories.  A total of 17 cDNAs failed to match any sequence in the 

GenBank databases by the BLAST search, and 28 had matched sequences but their 

functions had not yet been characterized.  These two categories represented 32 percent 

of the sequenced differentially expressed genes.  Some of them showed strong up or 

down regulation after top-killing, suggesting that these genes might be intimately 

involved in regulation of dormant bud release and development after top-killing.  

However due to limited sequence information available in the GenBank database, we 

do not know their function.  Hopefully, as more information is reported in the near 

future, more can be inferred from the results in this study with regard to what genes are 

involved in shortleaf pine’s prolific sprouting after top-killing, and the differences in 

gene expression between shortleaf pine and loblolly pine.   

 

Oxidative stress and dormancy release 

In this study four genes (two peroxidase-like genes, one glutathione S-transferase-like 

gene and one aldo-keto reductase-like gene) involved in antioxidant systems were 

cooperatively downregulated in shortleaf pine after top-killing, suggesting oxidative 

stress’ possible role in dormant bud release.  Simultaneous downregulation of four genes 

acting in antioxidant systems might result efficient promotion of dormancy release in 

shortleaf pine buds after top-killing through oxidative stress. 

 

Dormant bud release in shortleaf pine was primarily a response to top-death, which was 

a different stimulus from that of other studies of dormant bud release, e.g. in grape and 
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perennial trees.  However, one common point exists for all species, that is, abiotic stress 

was associated with the dormancy release processes.  For this study, shortleaf pine 

underwent wound stress, and for the other studies, plants endured low temperature 

stress to fulfill chilling requirements needed for dormancy release.  Both wound stress 

and low temperature stress can lead to active oxygen species (AOS) build-up and 

oxidative stress (Swindell, 2006).  Decreased catalase activity and oxidative stress were 

proposed to be associated with dormant bud release in perennial trees (Shulman et al., 

1983).   In this study, AOS resulting from top-killing might contribute to dormant bud 

release in shortleaf pine.  

 

Sprouting was an energy-consuming process, during which fatty acid reserve might be 

broken down to provide energy for sprouting.  In this study,  genes (one triacylglycerol 

lipase-like gene, one caleosin-like and one gene encoding proteins belonging to 

GNS1/SUR4 membrane family) involved in fatty acid metabolism were cooperatively 

regulated,  which suggests that fatty acid was actively mobilized during dormancy release 

after top-killing to provide energy for sprouting.   Beta-oxidation, an essential step in 

fatty acid breakdown, might be activated (although no genes for beta-oxidation were 

identified in this study) and lead to the accumulation of H2O2, because beta-oxidation is 

an active H2O2
 producing reaction (Huang et al., 1983).  As its role in promoting seed 

dormancy release (Finkelstein et al., 2008), resultant H2O2 from beta-oxidation might 

play a positive role in bud dormancy release in shortleaf pine.   

 

Taken together, three major factors might play essential roles in AOS build-up and 
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oxidative stress during dormant bud release in shortleaf pine after top-killing: 1) wound 

stress due to cutting treatments; 2) a reduced antioxidant system; 3) beta-oxidation in 

fatty acid reserve mobilization.  Elevated oxidative stress was effectively achieved due 

to the combinational effect of all three factors, and an increased level of oxidative stress 

probably promoted dormant bud release in shortleaf pine, which leads to prolific 

sprouting.  

 

Interestingly, increased intrinsic levels of H2O2 were proposed to stimulate the pentose 

pathway, which is important for dormancy release (Hendricks and Taylorson, 1975).  In 

this study, a Glucose-6-phosphate dehydrogenase (G6PD6)-like gene (a gene involved 

in the pentose pathway), was upregulated in shortleaf pine after top-killing.  

Upregulation of G6PD6 suggests an enhanced pentose pathway after cutting treatments.  

The stimulated pentose pathway might be due to excessive endogenous H2O2 resulting 

from accumulated oxidative stress in shortleaf pine after top-killing.  Therefore, 

increased pentose pathway activity in this study might be an indicator of the oxidative 

stress associated with dormant bud break in shortleaf pine after top-killing.  

 

Hormone regulated dormancy release 

Hormone plays a central role in plant development.  GA and ethylene have been shown 

to be involved in dormancy release in seeds and buds.  Auxin was demonstrated to act 

in axillary bud dormancy release after removal of apical dormancy through decapitation.  

In this study, genes related to auxin, GA and ethylene were differentially expressed and 
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they might play an essential role in regulating various developmental pathways leading 

to dormant bud release in shortleaf pine.  

 

An AP2/ERF transcription factor-like gene was upregulated during dormancy release of 

shortleaf pine and loblolly pine buds.  Upregulation of AP2/ERF might promote dormant 

bud release in shortleaf pine and loblolly pine because of AP2/ERF’s positive role in 

ethylene production.  Interestingly, ethylene’s activity and abundance might be affected 

by AOS, which has been reported to be able to enhance ethylene accumulation through 

its interaction with ethylene response factors (Oracz et al., 2009).  An increased level of 

AOS in shortleaf pine and loblolly pine after the cutting treatments might further elevate 

ethylene expression levels, which would function to promote dormant bud release.  

 

GA’s interaction with various genes in dormant bud release in shortleaf pine 

Hormones, as central players in plant development, are demonstrated to cross-talk with 

components of various signal transduction pathways.  In this study, together with 

increased levels of GA, various other potentially functionally related genes were 

upregulated.  With GA’s documented roles in gene regulation of expression of various 

genes, it is possible that in this study GA’s active interaction with genes of diverse 

function might help explain dormant bud release in shortleaf pine after top-killing.  A 

number of such possible interactions are discussed below. 

1) GA’s involvement in reserve mobilization 

GA was proposed to promote dormancy release due to its possible role in mobilization of 

storage reserves by inducing enzymes functional in the mobilization processes (Bewley 
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and Black, 1994).  For example, GA was proposed to promote the synthesis and activity 

of α-amylases and invertase, two key enzymes in carbon metabolism (Jones et al., 1998; 

Nakayama et al., 2002; Koch, 2004).  GA also induces expression of aleurain, a type of 

cysteine protease associated with the mobilization of storage proteins during seed 

germination (Koehler and Ho, 1990; Phillips and Wallace, 1989).  In this study, 

amylases-like, invertase-like and aleurain-like genes were all upregulated in shortleaf 

pine after top-killing.  It is possible that GA played a positive role in carbohydrate and 

protein reserve mobilization by regulating activities of genes involved in the reserve 

mobilization processes, including invertase and aleurain.  

 

2) GA’s possible role in sugar signal transduction  

In addition to their role in carbohydrate degradation, invertase and amylase were 

proposed to be important players of sugar signal transduction (Koch, 2004).   Therefore, 

GA might be directly or indirectly involved in sugar signal transduction because of its 

interaction with pathways associated with amylase and invertase activity and abundance.  

Cross-talk might exist between sugar signal pathways and GA-mediated plant 

developmental pathways, and the cross-talk might play an important role in dormant bud 

release in shortleaf pine after top-killing.  

 

3) GA’s possible role in signal transduction mediated by PP2A 

GA might play a positive role in dormancy release by interacting with other components 

in signal transduction pathways.  For example, protein phosphatase 2A (PP2A) is an 

important phosphatase involved in reversible protein phosphorylation to regulate many 
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cellular processes (Hunter, 1995; Millward et al., 1999).  GA was proposed to be 

involved in the PP2A signal transduction pathway (Chang et al., 1999).  Therefore, GA’s 

abundance and activity might affect various pathways which had reversible protein 

phosphorylation mediated by PP2A, because of GA’s involvement in PP2A signal 

transduction.  Interestingly, it was found that PP2C acts to negatively regulate ABA 

activities by functioning as an ABA insensitive locus to attenuate ABA signal (Meyer et 

al., 1994; Rodriguez et al., 1998).  In this study, one PP2A-like was upregulated in 

shortleaf pine after cutting treatments.  It is possible that cross-talking between GA and 

components from other signal transduction pathways (including ABA mediated pathways) 

might be involved in dormant bud release in shortleaf pine.  

 

4) GA’s regulation of light sensitive genes 

GA synthesis was proposed to be influenced by light because some GA synthesis genes 

were known to be light sensitive.   For example, light promotes GA synthesis in 

imbibing lettuce seeds (Toyomasu et al., 1998).  In this study, a GT-1-like gene (a light-

modulated transcription factor), was upregulated in shortleaf pine after cutting 

treatments.  The increased expression levels of the GT-1-like gene might have an 

important role in regulating light responsive genes, such as those genes involved in GA 

synthesis, which would function to promote dormancy release.   

 

5) GA might be regulated by nitrate 

Nitrate was proposed to be able to positively regulate the activities of enzymes involved 

in GA biosynthesis (Finch-Savage et al., 2007).  In this study, a nitrate transporter gene 
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was upregulated in shortleaf pine after cutting treatments.  Increased levels of nitrate 

resultant from elevated levels of nitrate transporter genes might function to promote 

GA biosynthesis during dormant bud release in shortleaf pine.  

 

Application of array results to pine regeneration planning 

Reserve mobilization appears to play an important role in shortleaf pine bud dormancy 

release and sprouting.  To insure good sprouting, it may be important to optimize the 

timing of prescribed fire.  A winter burn might be better than summer burn, because 

following a winter burn, adequate reserves can be mobilized for sprouting.  Conversely, 

following a summer burn, as most of the reserves have already been used for the growth 

in the spring and early summer, sprouting could be limited due to limited reserves.  

 

Oxidative stress might play an important role in bud dormancy release and sprouting.  

Chemicals could be applied to loblolly pine stems to decrease activities of enzymes 

(such as catalase) involved in the antioxidant systems to attempt to induce oxidative 

stress.  The resultant oxidative stress might function to promote loblolly pine sprouting 

after top-killing.  

 

In conclusion, by gene profiling with about 2400 cDNA clones obtained from 

suppression subtractive hybridization, 139 differentially expressed genes were found to 

be associated with sprouting, including genes functioning in reserve (carbohydrates, 

protein and fatty acid) mobilization, transcriptional regulation, stress response, plant 

development, signal transduction and hormone regulation.  130 differentially expressed 
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genes were found to be responsible for the dormancy release of axillary buds of 

shortleaf pine after top-killing.  Shortleaf pine responds actively to top-killing at the 

molecular level.  In contrast, only 32 differentially expressed genes were detected for 

loblolly pine.  It seems that loblolly pine’s sprouting stimulus at the molecular level 

was a result without much change in expression level, and may explain loblolly pine’s 

slow and limited sprouting compared to shortleaf pine.    

 

As reported for dormancy release of buds of other perennial plants, oxidative stress 

might be the major factor in dormancy release of axillary buds of shortleaf pine.  It is 

apparent that cross talking between plant hormones (especially gibberellins and auxins), 

carbohydrates, and other players of signal transduction work cooperatively to promote 

sprouting of shortleaf pine after top-killing. 
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Table 1. Number of upregulated and downregulated genes identified in microarray 
experiments 
 Upregulateda Downregulateda 

 
Upregulated in 
cross 
hybridization     

Downregulated in 
cross 
hybridization  

Shortleaf pine 60b 42 3 24 
Loblolly pine 6 7 15 4 
a Only differentially expressed genes identified during self-hybridization were included. 
b Values of signal intensity ratios showing a more than two-fold up- or down- regulation were included.  
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Table 2. Transcription factor genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing  
Name Accession 

numbera 
Annotationb E valuec Source SLP LLP 

SLP1 GO479090 NAM; transcription factor 1e-17 Picea glauca -2.75d 1.67 

SLP2 GO479091 homeobox transcription factor 
KN3 

2e-49 Pinus strobus 2.47 1.22 

SLP3 GO479092 DNA binding protein GT-1,  
transcription factor 

2e-10 Zea mays 2.18 * 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
* Data not available due to the low significance.   
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Table 3. Genes related to cell growth and maintenance and their expression levels in 
shortleaf pine (SLP) and loblolly pine (LLP) after top-killing 
Name Accession 

Numbera 
Annotationb E valuec Source SLP LLP 

SLP4 GO479093 expansin 2 2e-10 Cunninghamia 
lanceolata 

-2.64d 2.11 

SLP5 GO479094 pectin-methylesterase 4e-26 Musa acuminata -3.42 1.56 
SLP6 GO479095 actin 1 7e-29 Picea abies 2.79 2.41 
SLP7 GO479096 glycine-rich protein 7e-26 Arabidopsis 

thaliana 
3.98 2.09 

SLP8 GO479097 glycine-rich protein 4e-132 Arabidopsis 
thaliana 

2.86 1.77 

SLP9 GO479098 methyltransferase  6e-14 Arabidopsis 
thaliana 

-3.01 1.37 

SLP10 GO479099 histone H4 5e-13 Zea mays 1.54 -2.60 
SLP11 GO479100 STT3B 1e-19 Arabidopsis 

thaliana 
2.74 -1.88 

SLP12 GO479101 endomembrane protein 
70 

7e-22 Oryza sativa 2.23 2.55 

SLP13 GO479102 TETRASPANIN8 3e-21 Arabidopsis 
thaliana 

2.13 1.75 

SLP14 GO479103 pyridoxine 
biosynthesis protein   

7e-24 Lotus corniculatus 2.77 1.56 

SLP15 GO479104 pentatricopeptide 
repeat-containing 
protein; similar to 
EMBRYO 
DEFECTIVE 2745 

4e-10 Ricinus communis 2.59 -1.16 

SLP16 GO479105 thioesterase family 
protein 

1e-46 Arabidopsis 
thaliana 

2.49 1.44 

LLP1 GO479197 O-methyltransferase  2e-17 Arabidopsis 
thaliana 

1.42 -3.13 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 4. Carbohydrate metabolism genes and their expression levels in shortleaf pine (SLP) 
and loblolly pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

SLP17 GO479106 malate synthase 2e-10 Glycine max 3.48d 1.31 

SLP18 GO479107 pyruvate kinase-like 4e-31 Deschampsia 
antarctica 

2.04 1.01 

SLP19 GO479108 fructose-bisphosphate aldolase 4e-17 Ricinus 
communis 

2.91 1.56 

SLP20 GO479109 glucose-6-phosphate 
dehydrogenase(G6PD6) 

2e-59 Populus 
suaveolens 

2.90  -1.24 

SLP21 GO479110 invertase 8e-23 Lotus 
japonicus 

2.18 1.17 

SLP22 GO479111 beta-amylase 1e-14 Solanum 
tuberosum 

3.16 1.36 

SLP23 GO479112 glycogenin-related; transferring 
glycosyl groups 

2e-11 Ricinus 
communis 

-2.72 1.52 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 5. Signal transduction genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

SLP24 GO479113 protein phosphatase 2C  2e-25 Zea mays 3.52d 1.82 

SLP25 GO479114 protein phosphatase 2A catalytic 
subunit  

6e-37 Zea mays 3.50 2.09 

SLP27 GO479116 octicosapeptide/Phox/Bem1p 
(PB1) domain-containing protein 

3e-25 Medicago 
truncatula 

-2.88 1.34 

SLP_LLP1 GO479192 serine-threonine protein kinase 5e-04 Ricinus 
communis 

7.66  
 

1.22 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 6. Ubiquitin related genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing 
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

SLP28 GO479117 ubiquitin extension protein-like 
protein 

2e-26 Elaeis 
guineensis 

2.43d * 

SLP29 GO479118 ubiquitin system component Cue 
domain containing protein 

1e-22 Zea mays 3.22 1.50 

SLP30 GO479119 20S proteasome subunit alpha-1 1e-36 Carica 
papaya 

-2.14 1.48 

SLP31 GO479120 26S protease regulatory subunit 8 3e-59 Pinus taeda 2.90 1.64 
a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
* Data not available due to the low significance.   
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Table 7. Pathogenesis related genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing 
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

SLP_LLP2 GO479193 PR1a preprotein 1e-37 Capsicum 
annuum 

-3.87d 1.79 

LLP2 GO479198 TIR/NBS/LRR disease 
resistance protein  

5e-05 Pinus taeda -3.76 1.52 

SLP32 GO479121 PR4 (Pathogenesis-
Related 4) 

0.0 Arabidopsis 
thaliana 

2.64 1.49 

SLP33 GO479122 NBS/LRR 0.001 Pinus taeda -2.33 1.90 
a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 117

 
Table 8. Hormone related genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing 
Name Accession 

Numbera 
Annotationb E valuec Source SLP LLP 

SLP34 GO479123 AP2/ERF domain-
containing transcription 
factor 

6e-05 Populus     
trichocarpa 

2.23d 2.81 

SLP35 GO479124 auxin-repressed protein-like 
protein ARP1 

6e-23 Manihot 
esculenta 

2.31 -1.07 

SLP37 GO479126 gibberellin 7-oxidase 4e-09 Cucurbita 
maxima   

3.20 -1.50 

SLP38 GO479127 anthocyanidin reductase 9e-35 Ginkgo biloba -2.79 1.19 

SLP39 GO479128 tetratricopeptide repeat 
protein, tpr;  
similar to SPY (SPINDLY) 

2e-65 Ricinus 
communis 

-2.89 1.54 
 

LLP3 GO479199 flavanone 3-hydroxylase 6e-04 Triticum 
aestivum 

-4.42 1.29 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 9. Fatty acid metabolism genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing 
Name Accession 

Numbera 
Annotationb E valuec Source SLP LLP 

SLP40 GO479129 caleosin 2e-45 Cycas revoluta 2.69d 1.99 

SLP41 GO479130 triacylglycerol lipase 1e-06 Ricinus 
communis 

1.95 * 

SLP42 GO479131 GNS1/SUR4 membrane 
family protein  

6e-45 Medicago 
truncatula 

-3.03 1.58 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
* Data not available due to the low significance.   
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Table 10. Transport genes and their expression levels in shortleaf pine (SLP) and loblolly 
pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

SLP43 GO479132 ABC transporter 2e-88 Populus 
nigra 

4.27d 1.38 

SLP44 GO479133 protein transport protein SEC61 gamma 
subunit 

5e-19 Zea mays 2.58 2.84 

SLP45 GO479134 ATMBAC2/BAC2  2e-12 
 

Arabidopsis 
thaliana 

-2.27 1.62 

LLP4 GO479200 ATMRP15  2e-62 Arabidopsis 
thaliana 

-3.64 1.73 

LLP5 GO479201 sulfate transporter (SULTR3)  5e-23 Arabidopsis 
thaliana 

-4.53 1.42 

LLP6 GO479202 nitrate transporter (NTP2) 7e-21 Arabidopsis 
thaliana 

5.23 -1.85 

LLP7 GO479203 protein transport ATGDI1  6e-69 Neurospora 
crassa 

-20.44 -1.56 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance when 
searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 11. Protein and amino acid metabolism genes and their expression levels in shortleaf 
pine (SLP) and loblolly pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

LLP8 GO479204 prolyl endopeptidase 2e-07 Ricinus 
communis 

3.14d 1.33 

LLP9 GO479205 serine carboxypeptidase 2e-77 Oryza sativa -2.42 1.77 

LLP10 GO479206 homoserine O-
acetyltransferase 

1e-21 Pyrenophora 
tritici-repentis  

-2.89 1.69 

SLP47 GO479136 serine-type peptidase/ 
signal peptidase 

7e-12 Arabidopsis 
thaliana 

2.15 1.72  
 

SLP48 GO479137 aleurain-like protease 6e-71 Arabidopsis 
thaliana 

2.08 -1.32 

SLP49 GO479138 subtilase 7e-43 Picea abies 2.57 1.44 

SLP50 GO479139 ATP-dependent Clp 
protease proteolytic 
subunit 

5e-08 Ricinus 
communis 

2.13 1.41 

SLP51 GO479140 thioredoxin h 7e-22 Hevea 
brasiliensis 

2.17 1.22 

SLP52 GO479141 O-acetylserine(thiol)-
lyase 

9e-35 Sesamum 
indicum 

2.93 -1.17 

SLP53 GO479142 tryptophan synthase 0.0 Physcomitrella 
patens 

2.55 1.57 

SLP54 GO479143 ketol-acid 
reductoisomerase 

5e-76 Spinacia 
oleracea 

2.51 1.49 

SLP55 GO479144 fumarylacetoacetate 
hydrolase 

5e-79 Ricinus 
communis 

2.10 -1.03 

SLP56 GO479145 peptidase M3 family 
protein 

3e-48 Arabidopsis 
thaliana 

-2.05 1.72 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 12. Stress responsive genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E valuec Source SLP LLP 

SLP36 GO479125 deficit inducible LP3-
like protein 

2e-34 Pseudotsuga 
menziesii 

2.25d 1.21 

SLP46 GO479135 metallothionein-like 
protein class II 

6e-08 Picea abies 4.41 1.58 

SLP57 GO479146 cystatin, cysteine 
protease inhibitor 

5e-22 Glycine max 3.01 -1.72 

SLP59 GO479148 peroxiredoxin (PRX)-
like 2 family 

8e-04 Oryza sativa 2.17 2.00 

SLP60 GO479149 secretory peroxidase 8e-04 Catharanthus 
roseus 

-2.28 1.16 

SLP61 GO479150 cytochrome P450  8e-63 
 

Picea 
sitchensis 

2.33 * 

SLP62 GO479151 aldo-keto reductases 5e-44 Ricinus 
communis 

-2.00 1.46 

SLP63 GO479152 glutathione S-
transferase 

4e-33 Ostreococcus 
tauri 

-2.94 1.35 

SLP64 GO479153 strictosidine synthase 
family protein 

8e-17 Marinobacter 
aquaeolei 

-2.95 1.45 

SLP65 GO479154 type 3 metallothionein 2e-09 Prosopis 
juliflora 

3.25 -1.52 

SLP_LLP3 GO479194 class I chitinase 2e-22 Pinus elliottii 2.24 -5.44 

SLP_LLP4 GO479195 LEA 3e-25 Pinus 
halepensis 

5.17 1.79 

LLP11 GO479207 peroxidase_ 
At5g64120 

4e-11 Solanum 
lycopersicum 

-1.68 2.47 

LLP12 GO479208 peroxidase_ 
At5g64120 

4e-11 Solanum 
lycopersicum 

-3.74 1.77 

LLP13 GO479209 galactinol synthase 8e-15 Ajuga reptans 1.52 -3.50 

LLP14 GO479210 low molecular weight 
HSP 

9e-08 Pseudotsuga 
menziesii 

1.62 4.20 
 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
* Data not available, due to the low significance.   
 
 
 
 
 
 
 



 122

 
Table 13. Translation related genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

LLP15 GO479211 40S ribosomal protein S17 4e-5 Solanum 
tuberosum 

1.35d -3.60 

LLP16 GO479212 60S ribosomal protein L21 4e-86 Arabidopsis 
thaliana 

3.91 12.81 

SLP66 GO479155 60S ribosomal protein L30  7e-35 Pisum sativum 1.98 1.98 

SLP67 GO479156 60S ribosomal protein L27 1e-50 Elaeis 
guineensis 

2.86 1.27 

SLP68 GO479156 40S ribosomal protein S14 2e-57 Elaeis 
guineensis 

1.97 1.02 

SLP69 GO479158 eukaryotic translation initiation 
factor 5 (eIF-5) 

4e-35 Ricinus            
communis 

2.84 
 

1.31 

SLP70 GO479159 DCP1 (DECAPPING 1) 2e-6 Oryza sativa 2.16 * 

SLP71 GO479160 XS domain-containing protein 
 

2e-35 Ricinus 
communis 

-2.74 1.46 

SLP72 GO479161 CDK-activating kinase assembly 
factor MAT1 

2e-09 
 

Ricinus 
communis 

-4.41 1.43 

SLP73 GO479162 MIF4G domain containing RNA 
binding protein 

1e-101 Physcomitrella 
patens 

4.88 1.58 

SLP74 GO479163 RNA-binding protein, similar to 
GR-RBP5 (glycine-rich RNA-
binding protein 5) 

5e-26 Ricinus 
communis 

-2.08 1.69 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
* Data not available, due to the low significance.   
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Table 14. Photosynthesis genes and their expression levels in shortleaf pine (SLP) and 
loblolly pine (LLP) after top-killing 
Name Accession 

Numbera 
Annotationb E 

valuec 
Source SLP LLP 

SLP75 GO479164 photosystem I reaction 
center subunit XI 

5e-15 Zea mays -2.82d 1.38 

SLP76 GO479165 PSBQ-2; calcium ion 
binding 

1e-08 Arabidopsis 
thaliana 

-3.21 1.66 

a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 15. Transcribed loci with unknown function and their expression levels in shortleaf 
pine (SLP) and loblolly pine (LLP) after top-killing  
Name Accession 

Numbera 
Annotationb E valuec Source SLP LLP 

SLP77 GO479166 DR060572.1 1e-172 pinus taeda  2.49d 2.98 

SLP78 GO479167 DR055374.1 0.0 Pinus taeda -1.94 2.11 

SLP79 GO479168 DR072693.1 0.0 Pinus taeda 1.53 -4.78 

SLP80 GO479169 DR017586.1 6e-80 Pinus taeda -3.07 1.23 

SLP81 GO479170 AT1G16210  1e-52 Arabidopsis 
thaliana 

-2.38 1.64 

SLP82 GO479171 AT2G45990  7e-47 Oryza sativa 
Indica Group 

-2.76 1.83 

SLP83 GO479172 DR117814.1 0.0 Pinus taeda -4.22 1.49 

SLP84 GO479173 AT4G24330 0.0 Arabidopsis 
thaliana 

3.27 * 

SLP85 GO479174 DT624870.1 4e-22 Pinus taeda 2.30 1.38 

SLP86 GO479175 AT5G46090 5e-120 Arabidopsis 
thaliana 

3.05 2.83 

SLP87 GO479176 DV986162.2 6e-79 Picea glauca -2.52 1.28 

SLP88 GO479177 BX784157.1 5e-121 Pinus pinaster -2.53 1.41 

SLP89 GO479178 CO158582.1 1e-52 Pinus teada 3.23 * 

SLP90 GO479179 AT4G30790 0.0 Arabidopsis 
thaliana 

2.04 1.92 

SLP91 GO479180 AT4G02880 0.0 Arabidopsis 
thaliana 

2.76 1.07 

SLP92 GO479181 CT576025.1 0.0 Pinus pinaster -2.55 1.49 

SLP93 GO479182 BX680450.1 2e-130 Pinus pinaster -3.86 1.45 

SLP94 GO479183 BQ655588.1 6e-28 Pinus teada -2.72 1.95 

SLP95 GO479184 EG967606.1 5e-92 Tamarix 
hispida 

-2.80 1.63 

SLP26 GO479115 DR017133.1 0.0 Pinus taeda 1.05 -4.45 

LLP17 GO479213 CN852425.1 4e-116 Pinus taeda -3.22 -9.49 

LLP18 GO479214 CX648522.1 2e-45 Pinus taeda -2.57 1.73 

LLP19 GO479215 ES248885.1 2e-27 Pinus taeda -3.49 2.13 

LLP20 GO479216 DR072326.1 2e-123 Pinus taeda -6.02 1.62 

LLP21 GO479217 DR021735.1 8e-64 Pinus taeda -2.84 1.53 

LLP22 GO479218 BM493742.1 1e-43 Pinus taeda -2.67 2.33 

LLP23 GO479219 DR017133.1 0.0 Pinus taeda -1.71 -3.96 

LLP24 GO479220 CAN72731 4e-04 Vitis vinifera -2.60 1.75 

SLP_LLP5 GO479196 CO362028.1 3e-73 Pinus taeda -3.43 -11.26 
a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c The Expect value (E) is a parameter that describes the number of hits one can "expect" to see by chance 
when searching a database of a particular size.  The lower the E-value, or the closer it is to zero, the more 
"significant" the match is. 
d Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
* Data not available due to the low significance.   
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Table 16. Genes with no hit in the databases and their expression levels in shortleaf pine 
(SLP) and loblolly pine (LLP) after top-killing  
Name Accessiona 

number 
Annotationb E value Source SLP LLP 

SLP58 GO479147 No hit   -3.53c 1.49 

SLP96 GO479185 No hit   -4.17 1.49 

SLP97 GO479186 No hit   0.77 -2.99 

SLP98 GO479187 No hit   -2.87 1.42 

SLP99 GO479188 No hit   -2.94 1.44 

SLP100 GO479189 No hit   -2.62 1.49 

SLP101 GO479190 No hit   -3.95 1.44 

SLP102 GO479191 No hit   -2.22 1.60 

LLP25 GO479221 No hit   -4.11 1.51 

LLP26 GO479222 No hit   1.11 2.08 

LLP27 GO479223 No hit   -3.07 1.27 

LLP28 GO479224 No hit   -3.08 1.52 

LLP29 GO479225 No hit   -3.53 1.45 

LLP30 GO479226 No hit   -2.85 1.38 

LLP31 GO479227 No hit   -2.46 1.64 

LLP32 GO479228 No hit   -3.06 1.45 

LLP33 GO479229 No hit   -2.67 1.53 

LLP34 GO479230 No hit   -3.17 1.22 
a GenBank accession number.  All cDNA sequences were submitted to GenBank.   
b BLASTX was used to identify homologous genes and putative functions of genes.  BLASTN was used in 
case no hits were found by BLASTX. 
c Values of signal intensity ratios showing a more than two-fold up- or down- regulation are shaded with 
blue or yellow, respectively. The median intensity value of the replicates was used to calculate the signal 
intensity ratio. 
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Table 17.  Primers used in qRT-PCR.  
Gene name Accession 

numbera 
Forward primer (5→3) b Reverse primer (5→3) 

SLP2 GO479091 AAGCGACATTGGAAACCATC TCCATTGAAAAGGCAGTTCC 
SLP21 GO479110 CGAGCAATTGAACTTGCAGA TGGCGGCTTTATCTTCTTGT 
SLP22 GO479111 CAGTCCGGAGGGTCTCATTA CTGAACAGTGCCTCCCTCAT 
SLP34 GO479123 CATTAGGGTTTGGCTTGGAA AATCAGGGTTTTTGGCACAG 
SLP36 GO479125 GCCTATGGATCGTCCGATTA ACGCTTGTGGTGTTTCTCCT 
SLP_LLP1 GO479192 GGCTTTGTCGGATCCTTGTA AATCCACCACATTCGGAAAA 
a GenBank accession number.  
b Primers were designed using Primer 3.   
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Figure 1.  Shortleaf pine and loblolly pine in the greenhouse seven days after planting.  

One-year-old shortleaf pine and loblolly pine were planted in plastic pots in the NREM 

greenhouse.   
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Figure 2.  Top cut pines (foreground) and untreated controls (background).  Shortleaf 

pine and loblolly pine in the treatment groups were topcut with one-inch of stem left 

seven days after planting.   
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Figure 3.  Pictures taken during tissue collection.  3A was taken two days after cutting 

treatments on shortleaf pine; 3B was taken seven days after cutting treatments on loblolly 

pine; 3C was taken one week after sprouting (nine days after cutting treatments) on 

shortleaf pine; 3D was taken one week after sprouting (14 days after cutting treatments) 

on loblolly pine.  
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Figure 4.  Detailed experimental outline.  Tissues were collected at different time points, 

and tissues collected at the optimum time points (shortleaf pine, the first and second 

day; loblolly pine, the sixth and the seventh day) were used for preparation of array 

cDNA, cDNA labeling and the array experiment.  

Uncutting control Cutting treatment 

RNA isolated from tissues before sprouting 

Forward and reverse cDNA 
library constructed 

mRNA reverse transcribed 
and  fluorescently labeled 

PCR amplified SSH 
library cDNA clones 

spotted onto glass slides 

Experimental 
Cy5 Red 

Array hybridization with the labeled probe 

Array scanning with laser scan 

Data analysis 

Control 
Cy3 Green 

Determination of differentially expressed genes 

Shortleaf pine or loblolly pine seedlings 

Validation of differentially expressed genes and study of 
detailed expression pattern by real-time PCR 
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Figure 5.  Tissue collection for Real-time PCR.  Tissues were collected at different time 

points after top-killing for quantitative realtime PCR experiments.  For shortleaf pine, 

tissues were collected at two, four, eight, 16, 24 and 48 hours after top-killing.   For 

loblolly pine, tissues were collected at one, three, five and seven days after top-killing.  
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Figure 6.  Array slides layout.  The left side of the array slides printed 1,018 cDNAs 

originated from the shortleaf pine cDNA library, and the right side printed 1,319 cDNA 

from the loblolly pine cDNA library.  In total, 2,337 cDNA clones were obtained from 

the cDNA libraries and printed on the array slides, and each cDNA spot had three 

technical replications.  
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Figure 7.  Venn diagrams of the origin of differentially expressed genes, which showed 

at least a two-fold change in expression either during self

hybridization.  SLP indicates differentially expressed genes coming from shortleaf pine 

cDNA library, and LLP indicates differentially expressed genes coming from loblolly 

pine cDNA library.  
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Venn diagrams of the origin of differentially expressed genes, which showed 

fold change in expression either during self-hybridization or cross 

hybridization.  SLP indicates differentially expressed genes coming from shortleaf pine 

cDNA library, and LLP indicates differentially expressed genes coming from loblolly 

Venn diagrams of the origin of differentially expressed genes, which showed 

hybridization or cross 

hybridization.  SLP indicates differentially expressed genes coming from shortleaf pine 

cDNA library, and LLP indicates differentially expressed genes coming from loblolly 
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Figure 8.  Functional categories of differentially expressed genes after top-killing 

treatment.  In this chart, functional groups and the proportion of genes in each group are 

indicated under each column.  Numbers of genes in individual functional groups are 

shown above each column.  
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cttagatcgtgcagatacagtattcacccaatctccccctcacagacaaattacaattca  60 
 L  R  S  C  R  Y  S  I  H  P  I  S  P  S  Q  T  N  Y  N  S  
acagagttaatctcaggattgcatgatgatttcagtcgttccaaggcatcatcatcttca  120 
 T  E  L  I  S  G  L  H  D  D  F  S  R  S  K  A  S  S  S  S  
gaacccatctgggagaaagaagctgagagcagccccagaacggaaaatccctcgcagaag  180  
 E  P  I  W  E  K  E  A  E  S  S  P  R  T  E  N  P  S  Q  K  
cagcaacaatcattatttaatatggatctggaaggtctacaaagttccttccctcatcta  240 
 Q  Q  Q  S  L  F  N  M  D  L  E  G  L  Q  S  S  F  P  H  L  
gaccaaatatcttttagcgatgcttatcaagactggcttttactc                 285   
 D  Q  I  S  F  S  D  A  Y  Q  D  W  L  L  L   
 

Figure 9.  Nucleotide and deduced amino acid sequences of SLP1.  The deduced amino 

acid sequences are shown below the second nucleotide of each corresponding codon. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 136

 

 
 

Figure 10.  Alignment of amino acid sequences of SLP1 with NAM proteins from 

several tree species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name. The amino 

acid sequences of SPL1 used in the alignments were deduced from nucleotide 

sequences. 
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agcgtgtcgcggccgaggtacttgagcagtctcaagcaagaatttcttaagaagaaaagg  60 
 S  V  S  R  P  R  Y  L  S  S  L  K  Q  E  F  L  K  K  K  R  
Aaaggcaaactccccaaggaagcaaggcaaaagttgttggattggtggaccagaaactat  120 
 K  G  K  L  P  K  E  A  R  Q  K  L  L  D  W  W  T  R  N  Y  
Aagtggccatatccttcggaaagtcaaaagatagcattggcagaatctaccgggctggat  180 
 K  W  P  Y  P  S  E  S  Q  K  I  A  L  A  E  S  T  G  L  D  
Cagaagcaaataaataactggtttataaatcagcgcaagcgacattggaaaccatctgaa  240 
 Q  K  Q  I  N  N  W  F  I  N  Q  R  K  R  H  W  K  P  S  E  
Gagatgcagttcgtggttatggatagtcctaatcctcacaacgctgcttttttcctggag  300 
 E  M  Q  F  V  V  M  D  S  P  N  P  H  N  A  A  F  F  L  E  
Ggacatctcaggacagatggaactgccttttcaatggattgt                    342 
 G  H  L  R  T  D  G  T  A  F  S  M  D  C 

 
Figure 11.  Nucleotide and deduced amino acid sequences of SLP2. The deduced amino 

acid sequences are shown below the second nucleotide of each corresponding codon. 
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Figure 12.  Alignment of amino acid sequences of SLP2 with STM proteins from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SPL2 used in the alignments were deduced from nucleotide sequences. 
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Figure 13.  Alignment of amino acid sequences of SLP3 with GT-l-like proteins from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SPL3 used in the alignments were deduced from a loblolly pine EST 

sequence (accession number: 148815838). 
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Figure 14.  Alignment of amino acid sequences of SLP4 with expansin-like proteins 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SPL4 used in the alignments were deduced from a loblolly pine EST 

sequence (accession number: 67488878). 
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Figure 15.  Alignment of amino acid sequences of SLP5 with pectin-methylesterase-

like proteins from diverse species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of SPL5 used in the alignments were deduced from nucleotide 

sequence. 
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Figure 16.  Alignment of amino acid sequences of SLP8 with cell wall like-proteins 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP8 used in the alignments were deduced from a loblolly pine EST 

sequence with the accession number of 68089089. 
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Figure 17.  Alignment of amino acid sequences of SLP11 with STT3B-like proteins 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SPL11 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 18.  Alignment of amino acid sequences of LLP1 with O-methyltransferase-like 

proteins from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of LLP1 used in the alignments were deduced from nucleotide 

sequences. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 145

 
 

Figure 19.  Alignment of amino acid sequences of SLP13 with TET8-like proteins from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SPL13 used in the alignments were deduced from nucleotide sequences. 
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Figure 20.  Alignment of amino acid sequences of SLP15 with PPR motif from diverse 

species.  Residues identical in all compared proteins are marked by asterisks, and 

residues showing similarity are denoted by colons and periods, with colons meaning 

higher similarity.  The GenBank accession numbers assigned to the sequences analyzed 

are showing at the left side along with species name.  The amino acid sequences of 

SPL15 used in the alignments were deduced from nucleotide sequences. 
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Figure 21.  Alignment of amino acid sequences of SLP17 with malate synthase from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SPL17 used in the alignments were deduced from nucleotide sequences. 
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Figure 22.  Alignment of amino acid sequences of SLP18 with pyruvate kinase from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SPL18 used in the alignments were deduced from nucleotide sequences. 
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Figure 23.  Alignment of amino acid sequences of SLP19 with fructose-bisphosphate 

aldolase from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SPL19 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 24.  Alignment of amino acid sequences of SLP20 with glucose-6-phosphate 1-

dehydrogenase from diverse species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of SPL20 used in the alignments were deduced from a loblolly 

pine EST (accession number: 34350332). 
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atattctgtggttctctgctgcctgcatcaaactggaaggcccatattgcaaaacgagca 60 
 I  F  C  G  S  L  L  P  A  S  N  W  K  A  H  I  A  K  R  A  
attgaacttgcagaacggagattatctaaagatggatggcctgaatactatgatggtaaa 120 
 I  E  L  A  E  R  R  L  S  K  D  G  W  P  E  Y  Y  D  G  K  
cttggaagatacattggaaagcaagctcggaaatttcagacatggtctgttgctggctat 180  
 L  G  R  Y  I  G  K  Q  A  R  K  F  Q  T  W  S  V  A  G  Y  
ctggtagctaagatgatgcttgaagatccatcccacttaggtatgatatcacttgaggaa 240 
 L  V  A  K  M  M  L  E  D  P  S  H  L  G  M  I  S  L  E  E  
gacaagaagataaagccgccactcaccagatcacattcctggacatgt             288 
 D  K  K  I  K  P  P  L  T  R  S  H  S  W  T  C   

 

Figure 25.  Nucleotide and deduced amino acid sequences of SLP21. The deduced 

amino acid sequences are shown below the second nucleotide of each corresponding 

codon. 
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Figure 26.  Alignment of amino acid sequences of SLP 21 with invertase from diverse 

species.  Residues identical in all compared proteins are marked by asterisks, and 

residues showing similarity are denoted by colons and periods, with colons meaning 

higher similarity.  The GenBank accession numbers assigned to the sequences analyzed 

are showing at the left side along with species name.  The amino acid sequences of 

SPL21 used in the alignments were deduced from nucleotide sequences. 
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atgaaagaagttgcaaggcgaggaaatatacctttaacaggtgaaaatgcaattgaacgc  60 
 M  K  E  V  A  R  R  G  N  I  P  L  T  G  E  N  A  I  E  R  
tttgataaggaggctttctctcaaattgtgagaaatgcttacaatcgtcctcaagatgtg  120 
 F  D  K  E  A  F  S  Q  I  V  R  N  A  Y  N  R  P  Q  D  V  
agagcctttacgtatttccgaatgagggaggcactgttcaggactgataattggaaatca  180 
 R  A  F  T  Y  F  R  M  R  E  A  L  F  R  T  D  N  W  K  S  
ttcgtgaactttgttaagcagaag                                      204  
 F  V  N  F  V  K  Q  K 
 

Figure 27.  Nucleotide and deduced amino acid sequences of SLP22. The deduced 

amino acid sequences are shown below the second nucleotide of each corresponding 

codon. 
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Figure 28.  Alignment of amino acid sequences of SLP 22 with invertase from diverse 

species.  Residues identical in all compared proteins are marked by asterisks, and 

residues showing similarity are denoted by colons and periods, with colons meaning 

higher similarity.  The GenBank accession numbers assigned to the sequences analyzed 

are showing at the left side along with species name.  The amino acid sequences of 

SPL22 used in the alignments were deduced from nucleotide sequences. 
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atgaaaaatcaagaggctgttgatttggttagaaaaatcaaggaccctcaggtggcagcc  60 
 M  K  N  Q  E  A  V  D  L  V  R  K  I  K  D  P  Q  V  A  A  
aagtgtctgactgaaaatgcagttgcaagaaagagcaaagatgatatttcatgcattgtt  120 
 K  C  L  T  E  N  A  V  A  R  K  S  K  D  D  I  S  C  I  V  
gtgcgtttccagcat                                               135   
 V  R  F  Q  H   

 
Figure 29.  Nucleotide and deduced amino acid sequences of SLP24. The deduced 

amino acid sequences are shown below the second nucleotide of each corresponding 

codon. 
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Figure 30.  Alignment of amino acid sequences of SLP 24 with protein phosphatase 2C 

(PP2C) from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SPL24 used in the alignments were deduced from nucleotide 

sequences. 
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atggagggtttcaattggtgtcagggcaacaatgttgttacagtttttagcgcaccgaat  60 
 M  E  G  F  N  W  C  Q  G  N  N  V  V  T  V  F  S  A  P  N  
tattgctataggtgtggtaatatggcagctataatggagattagtgagactatggagcaa  120 
 Y  C  Y  R  C  G  N  M  A  A  I  M  E  I  S  E  T  M  E  Q  
aacttcattcaatttgagccagcacccaggcaaattgaacctgatatgacacgcaagaca  180 
 N  F  I  Q  F  E  P  A  P  R  Q  I  E  P  D  M  T  R  K  T  
cctgattattttttg                                               195 
 P  D  Y  F  L   
 

Figure 31.  Nucleotide and deduced amino acid sequences of SLP25. The deduced 

amino acid sequences are shown below the second nucleotide of each corresponding 

codon. 
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Figure 32.  Alignment of amino acid sequences of SLP 25 with the catalytic subunit of 

protein phosphatase 2A (PP2A) from diverse species.  Residues identical in all 

compared proteins are marked by asterisks, and residues showing similarity are denoted 

by colons and periods, with colons meaning higher similarity.  The GenBank accession 

numbers assigned to the sequences analyzed are showing at the left side along with 

species name.  The amino acid sequences of SPL25 used in the alignments were 

deduced from nucleotide sequences. 
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Figure 33.  Alignment of amino acid sequences of SLP_LLP1 with receptor kinase-like 

proteins from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP_LLP1 used in the alignments were deduced from nucleotide 

sequences. 
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ctggggaggagggcacgggattcgagatcccagaagggcattagggtttggcttggaaca 60  
 L  G  R  R  A  R  D  S  R  S  Q  K  G  I  R  V  W  L  G  T  
tttaacactgcggaagaggccgccaaggcgtatgatgcagaggctaaaaagatcagaggc 120 
 F  N  T  A  E  E  A  A  K  A  Y  D  A  E  A  K  K  I  R  G  
aagaaagccaagcttaactttgctgatggctcctgctctgtaaaagaggacagtcgcaac 180 
 K  K  A  K  L  N  F  A  D  G  S  C  S  V  K  E  D  S  R  N  
aaaatgtcaaggaagaaagtaaagtcctgtgccaaaaaccctgatttattattggctttg 240 
 K  M  S  R  K  K  V  K  S  C  A  K  N  P  D  L  L  L  A  L  
aatataaagagtaaggtaaaatcttcatattcaccaaagcctgatttattagaggattgc 300 
 N  I  K  S  K  V  K  S  S  Y  S  P  K  P  D  L  L  E  D  C  
tatcttcaaatggaacgctctttgaaggatgtccgcagatccgatctttcaatctatggc 360  
 Y  L  Q  M  E  R  S  L  K  D  V  R  R  S  D  L  S  I  Y  G  
tacgatgatatggagtacctcggccgcgacaccgct                         396 
 Y  D  D  M  E  Y  L  G  R  D  T  A 

 

Figure 34.  Nucleotide and deduced amino acid sequences of SLP34. The deduced 

amino acid sequences are shown below the second nucleotide of each corresponding 

codon. 
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Figure 35.  Alignment of amino acid sequences of SLP34 with the DNA binding 

domain of AP2/ERF from diverse species.  Residues identical in all compared proteins 

are marked by asterisks, and residues showing similarity are denoted by colons and 

periods, with colons meaning higher similarity.  The GenBank accession numbers 

assigned to the sequences analyzed are showing at the left side along with species 

name.  The amino acid sequences of SLP34 used in the alignments were deduced from 

nucleotide sequences. 
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atgttggataagatatgggatgacactcttggcggcccgcagccagacaagggcctcagg  60 
 M  L  D  K  I  W  D  D  T  L  G  G  P  Q  P  D  K  G  L  R  
aggcttcgcaataattcaggcaaattgcaggtgagcccagtagatattgacgagatgaat  120 
 R  L  R  N  N  S  G  K  L  Q  V  S  P  V  D  I  D  E  M  N  
ctaaaagaagggagtgggggaattcgtgtgattggaaagccgcagaaattcgcttttcaa  180 
 L  K  E  G  S  G  G  I  R  V  I  G  K  P  Q  K  F  A  F  Q  
cgctcgttatccctggaaaatagccccccatcttcaccaactgcagcctcttcctcatcc  240 
 R  S  L  S  L  E  N  S  P  P  S  S  P  T  A  A  S  S  S  S  
gcttcctctactccacgagatcgggagaatgtatggagaagtgtgttcaatccggggagt  300 
 A  S  S  T  P  R  D  R  E  N  V  W  R  S  V  F  N  P  G  S  
aatatcaattccaagacaattgggtctgcaaaattcgacaaaccagaaccacagagccct  360 
 N  I  N  S  K  T  I  G  S  A  K  F  D  K  P  E  P  Q  S  P  
acggtgtatgactggctctacagtggagagactaaatccaaatggcgt              408  
 T  V  Y  D  W  L  Y  S  G  E  T  K  S  K  W  R   

 

Figure 36.  Nucleotide and deduced amino acid sequences of SLP35. The deduced 

amino acid sequences are shown below the second nucleotide of each corresponding 

codon. 
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Figure 37.  Alignment of amino acid sequences of SLP35 with auxin-repressed protein 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP35 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 38.  Alignment of amino acid sequences of SLP37 with gibberellin 7-oxidase 

from squash.  Residues identical in all compared proteins are marked by asterisks, and 

residues showing similarity are denoted by colons and periods, with colons meaning 

higher similarity.  The GenBank accession numbers assigned to the sequences analyzed 

are showing at the left side along with species name.  The amino acid sequences of 

SLP37 used in the alignments were deduced from nucleotide sequences. 
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Figure 39.  Alignment of amino acid sequences of SLP38 with anthocyanidin reductase 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP38 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 40.  Alignment of amino acid sequences of LLP3 with flavanone 3-hydroxylase 

like proteins from two other species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of LLP3 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 41.  Alignment of amino acid sequences of SLP39 with anthocyanidin reductase 

from two other species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP39 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 42.  Alignment of amino acid sequences of SLP40 with caleosin from diverse 

species.  Residues identical in all compared proteins are marked by asterisks, and 

residues showing similarity are denoted by colons and periods, with colons meaning 

higher similarity.  The GenBank accession numbers assigned to the sequences analyzed 

are showing at the left side along with species name.  The amino acid sequences of 

SLP40 used in the alignments were deduced from nucleotide sequences. 
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Figure 43.  Alignment of amino acid sequences of SLP41 with triacylglycerol lipase-

like proteins from diverse species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of SLP41 used in the alignments were deduced from nucleotide 

sequences. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 170

 

 

Figure 44.  Alignment of amino acid sequences of SLP42 with GNS1/SUR4 from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SLP42 used in the alignments were deduced from a loblolly pine EST 

sequence (accession number: 48949032). 
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Figure 45.  Alignment of amino acid sequences of SLP43 with ABC transporters from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SLP43 used in the alignments were deduced from nucleotide sequences. 
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Figure 46.  Alignment of amino acid sequences of LLP6 with nitrogen transporter-like 

proteins from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of LLP6 used in the alignments were deduced from a loblolly pine EST 

sequence (accession number: 67487349). 
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Figure 47.  Alignment of amino acid sequences of SLP47 with serine-type peptidase/ 

signal peptidase from diverse species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of SLP47 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 48.  Alignment of amino acid sequences of SLP48 with aleurain-like protease 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP48 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 49.  Alignment of amino acid sequences of SLP49 with subtilisin-like protein 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP49 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 50.  Alignment of amino acid sequences of SLP51 with thioredoxin h from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SLP51 used in the alignments were deduced from nucleotide sequences. 
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Figure 51.  Alignment of amino acid sequences of SLP57 with cystatin-like proteins 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP57 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 52.  Alignment of amino acid sequences of LLP11 and LLP12 with peroxidase-

like proteins from diverse species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of LLP11 and LLP12 used in the alignments were deduced from 

one loblolly pine EST (accession number: 67962276), due to LLP11 and LLP12’s close 

to 100% similarity with this EST. 
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Figure 53.  Alignment of amino acid sequences of SLP60 with secretory peroxidase-

like proteins from diverse species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of SLP60 used in the alignments were deduced from a loblolly 

pine EST (accession number: 66976703). 
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Figure 54. Alignment of amino acid sequences of SLP61 with cytochrome P450 from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of SLP61 used in the alignments were deduced from nucleotide sequences. 
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Figure 55.  Alignment of amino acid sequences of SLP62 with aldo/keto reductase-like 

proteins from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP62 used in the alignments were deduced from nucleotide 

sequences. 
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Figure 56.  Alignment of amino acid sequences of SLP63 with glutathione S-transferase 

from diverse species.  Residues identical in all compared proteins are marked by 

asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP63 used in the alignments were deduced from a loblolly pine EST 

sequence (accession number: 34490708). 
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Figure 57.  Alignment of amino acid sequences of SLP_LLP4 with LEA from diverse 

species.  Residues identical in all compared proteins are marked by asterisks, and 

residues showing similarity are denoted by colons and periods, with colons meaning 

higher similarity.  The GenBank accession numbers assigned to the sequences analyzed 

are showing at the left side along with species name.  The amino acid sequences of 

SLP_LLP4 used in the alignments were deduced from nucleotide sequence. 
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Figure 58.  Alignment of amino acid sequences of LLP13 with galactinol synthase from 

diverse species.  Residues identical in all compared proteins are marked by asterisks, 

and residues showing similarity are denoted by colons and periods, with colons 

meaning higher similarity.  The GenBank accession numbers assigned to the sequences 

analyzed are showing at the left side along with species name.  The amino acid 

sequences of LLP13 used in the alignments were deduced from nucleotide sequence. 
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Figure 59.  Alignment of amino acid sequences of SLP36 with water deficit inducible 

proteins from several other tree species.  Residues identical in all compared proteins are 

marked by asterisks, and residues showing similarity are denoted by colons and periods, 

with colons meaning higher similarity.  The GenBank accession numbers assigned to 

the sequences analyzed are showing at the left side along with species name.  The 

amino acid sequences of SLP36 used in the alignments were deduced from nucleotide 

sequence. 
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Figure 60.  Alignment of amino acid sequences of SLP70 with DCP1-like decapping 

proteins from diverse species.  Residues identical in all compared proteins are marked 

by asterisks, and residues showing similarity are denoted by colons and periods, with 

colons meaning higher similarity.  The GenBank accession numbers assigned to the 

sequences analyzed are showing at the left side along with species name.  The amino 

acid sequences of SLP70 used in the alignments were deduced from nucleotide 

sequence. 
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Figure 61.  qRT-PCR results for an invertase-like gene (SLP21) in shortleaf pine and 
loblolly pine.  The relative transcription levels in shortleaf pine and loblolly pine were 
measured using actin as an internal control.  Tissues used on shortleaf pine were collected 
at two, four, eight, 16, 24, and 48 hours after top-killing.  Tissues used on loblolly pine 
were collected at one, three, five, and seven days after top-killing.  Expression level units 
are values linearized with the 2(-∆∆CT) method, where CT is the threshold cycle. 
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Figure 62.  qRT-PCR results for an amylase-like gene (SLP22) in shortleaf pine and 
loblolly pine.  The relative transcription levels in shortleaf pine and loblolly pine were 
measured using actin as an internal control.  Tissues used on shortleaf pine were collected 
at two, four, eight, 16, 24, and 48 hours after top-killing.  Tissues used on loblolly pine 
were collected at one, three, five, and seven days after top-killing.  Expression level units 
are values linearized with the 2(-∆∆CT) method, where CT is the threshold cycle. 
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Figure 63.  qRT-PCR results for an AP2/ERF transcription factor-like gene (SLP34) in 
shortleaf pine and loblolly pine.  The relative transcription levels in shortleaf pine and 
loblolly pine were measured using actin as an internal control.  Tissues used on shortleaf 
pine were collected at two, four, eight, 16, 24, and 48 hours after top-killing.  Tissues 
used on loblolly pine were collected at one, three, five, and seven days after top-killing.  
Expression level units are values linearized with the 2(-∆∆CT) method, where CT is the 
threshold cycle. 
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Figure 64.  qRT-PCR results for a KN3-like gene (SLP2) in shortleaf pine and loblolly 
pine.  The relative transcription levels in shortleaf pine and loblolly pine were measured 
using actin as an internal control.  Tissues used on shortleaf pine were collected at two, 
four, eight, 16, 24, and 48 hours after top-killing.  Tissues used on loblolly pine were 
collected at one, three, five, and seven days after top-killing.  Expression level units are 
values linearized with the 2(-∆∆CT) method, where CT is the threshold cycle. 
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Figure 65.  qRT-PCR results for a water deficit inducible protein (SLP36) in shortleaf 
pine and loblolly pine.  The relative transcription levels in shortleaf pine and loblolly pine 
were measured using actin as an internal control.  Tissues used on shortleaf pine were 
collected at two, four, eight, 16, 24, and 48 hours after top-killing.  Tissues used on 
loblolly pine were collected at one, three, five, and seven days after top-killing.  
Expression level units are values linearized with the 2(-∆∆CT) method, where CT is the 
threshold cycle. 
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Figure 66.  qRT-PCR results for a receptor-like kinase (SLP_LLP1) in shortleaf pine and 
loblolly pine.  The relative transcription levels in shortleaf pine and loblolly pine were 
measured using actin as an internal control.  Tissues used on shortleaf pine were collected 
at two, four, eight, 16, 24, and 48 hours after top-killing.  Tissues used on loblolly pine 
were collected at one, three, five, and seven days after top-killing.  Expression level units 
are values linearized with the 2(-∆∆CT) method, where CT is the threshold cycle. 
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APPENDIX I  

cDNA sequences 

 

>SLP1_GO479090 
CACTTAGATCGTGCAGATACAGTATTCACCCAATCTCCCCCTCACAGACAAAT
TACAATTCAACAGAGTTAATCTCAGGATTGCATGATGATTTCAGTCGTTCCAA
GGCATCATCATCTTCAGAACCCATCTGGGAGAAAGAAGCTGAGAGCAGCCCC
AGAACGGAAAATCCCTCGCAGAAGCAGCAACAATCATTATTTAATATGGATC
TGGAAGGTCTACAAAGTTCCTTCCCTCATCTAGACCAAATATCTTTTAGCGAT
GCTTATCAAGACTGGCTTTTACTCTAGCGAGCCATGACCCAGTGGAAGGTCTA
TTGACCTCTGGGTTTTTTAATTGTTGAAAGACTACCTCTAATTCGATTGAATTT
ATGGACTTAC 
 
>SLP2_GO479091 
TCTTCATATCTGCCGTTTGAAAAGGCCATTTTAGAGATCAGCTATACATATAA
AAGATGAGTCAGACAAATCTACAGCATTGCACTAAAACTGGTGTTTGCCTCA
AAAATGGGTTTAACCTCAACAATCCATTGAAAAGGCAGTTCCATCTGTCCTG
AGATGTCCCTCCAGGAAAAAAGCAGCGTTGTGAGGATTAGGACTATCCATAA
CCACGAACTGCATCTCTTCAGATGGTTTCCAATGTCGCTTGCGCTGATTTATA
AACCAGTTATTTATTTGCTTCTGATCCAGCCCGGTAGATTCTGCCAATGCTAT
CTTTTGACTTTCCGAAGGATATGGCCACTTATAGTTTCTGGTCCACCAATCCA
ACAACTTTTGCCTTGCTTCCTTGGGGAGTTTGCCTTTCCTTTTCTTCTTAAGAA
ATTCTTGCTTGAGACTGCTCAAGTACCTCGGCCGCGACACGCTA 
 
>SLP3_GO479092 
CCTATGCAGCTTATTACAGTTTGACTGTGCTCTCTAGTTTTTCAGCTGTGTAAT
TTTTACTAGTTTACAGCTTCACTGCAGTATGAAAGCTTGCACTAGAATGAGAG
GATTTAGCAAATAATCCTAAATGTTGCAAGTGCGGCATCCGAGGCACCTATT
ATTTCCCTTAAGATTCCAATGCCTTACGCAGTATATAAACTGCAGAATGAAAA
AGCAGTCCAATCACTCTTCTCAACTTCTCTCTTCCCAAAACTAATCATTTTACT
GTATGACATGGTTTCTCATAAATATATATATGGGCCCTTTCTGCCTGGGAAAT
GACAGAAGATGAGATAATGGCTACATCTCAAATCAGAAACATCGCATTCAA A
TCCTTGTAAATGCTTTGCTGGTTGCAATCCTATAATAATACACTAGAACCTAC
ATGGAAAGAAATGCTCTTCCATTCAGTCTGCAGGTAACATAGGCATGCGGTT
GCTGT 
 
>SLP4_GO479093 
CCTGGGACGGACTTGGATTCATCCGCAGCATTGAGCACAGCTCTGTTCACAG
CGGGCTAAGCTGTGGAGCCTGCTTTGAGATCAATGTGTGAATGACCCAGAAT
GGTGTCACCCGGGTAACCCTTCGATTTTGGTCACGGCCACCAATTTCTGCCCT
CCCAACTATGCTCTGCCTAACGACAATGGCGGCTGGTGCAATCCTCCTCGCCC
CCATTTTGATCTCTCCATGCCAATTTTCCTCAAGATGGCCGTGTACCTCGGCC
GCGCCACGCT 
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>SLP5_GO479094 
CCGATAGCTGGGGTATTCGCCTGCGGGCTGGCTGGAATGGGATGGAGCTTTT
GCTTTGAAAACTTTGTATTATGGAGAGTATATGAATACAGGGCCAGGCTCTG
CTACTGGAAACCGTGTGAAATGGCCTGGCTATCGGGTGATCAAAAGTTCTCA
AGAGGCGAGCAAATTTACAGTGGGAGAATTCATACAAGGAAATTCCTGGTTG
CAGTCCACTGACATCGACTACATCGACGGATTGACAAATTAGCGACGTCGCC
AAACTTTTGAAGAAGTTCGTCTGTGTCTGTAGTTCGCTTTCAACTTTTGAAGA
AGATTGTCTGTGTCTGTAGTGTCTGTATTTCGCTTTCTATCGTTTTTGTAGTGT
ATCCGTAGTTCGCTTTCAACTTTTGAAGGAGATCGTTTGTGTCTGTAGTGTCT
GTATTTCGCTTTCTATCGTTTTTGTAGTGTATCCATAGAACGTTCTATGGAGTA
ATGATAAAATAAAATCATATTGAACTTT 
 
>SLP6_GO479095 
CTAGGGTGTCTATGGCTCCTGCAGCTTCATCCAATTAAAGAAGGCTGGAACA
ATACTCCAGGGCATCTAAAACGTTCAGCACCAATGGTGATCACCTGCCCATC
AGGGAGCTCGTAACTTTTGTCAATGGACGAGCTGCTTTTAGCTGTCTCAAGCT
CCTGTTCATAGTCAAGAGCCACATATGCAAGCTTTTCCTTCACATCACGGACA
ATTTCACGCTCTGCAGTGGTGGTGAATGAATACCCTCTTTCTGTCAAGATCTT
CATTAATGCATCTGTCAAATCTCTCCCTGCAAGATCCAACCTAAGTATAGCAT
GAGGCAGGGCATATCCTTCATAAATTGGCACTGTGTGACTAACACCATCCCC
AGAATCCAGTACCTCGGCCGCGACACGCATA 
 
>SLP7_GO479096 
CTTTATATTCAGCCTGGCATGCTTAAAAGTATGTTTATGCCCGTTGGTAATCG
TGCTTTCGCTCATGTAAAGACTTTGCAAGT 
 
>SLP8_GO479097 
CCATGGGGCGTCTCTGGCTCGGCAGTGGCTTGGCAGTGGCTCTGGTTCGGCTA
CGGAAGTGGTTCTGGTAGCGGCAGTGGCTACGGAAGCGGCTCCGGTGCTGGC
TCGGGCTACGGTTCTGGCCCTGGTTCCGGTTACGGCGCTGGAAATGGTGGCA
GTAATGGAGGAGCTCCTGGTGGTGGATACTAAATTCAAAGAGGAAGGGAAA
CAGAAAAAACCTTCTAGCTTTGCCAAAATAGTTGCGTCGTTTGCATTATAATA
TGGTTTGCATCGTAATATAATAATGCGTACCTCGGCCGCGCCACGC 
 
>SLP9_GO479098 
CAAATGCTGGCCCTTATTACCCTCCCGAATCGAACCCGCAACCTCATCGGCTA
AGGAGAAGCGCGAATAATCTGGTCCTAAATCGACCAACCGCACATCTCTTAT
CTATGACTCCGGGATCGAATCCCATCCAATCCTATCTTTCCCTCACAGGCCTG
AAAGACCGGGTTTTACAGAGAACCGGGAATCCACGACCTAATCTCCGAGAGA
TTATATCTCTGCAGGAATCTTTTTAAATAAACAACTCGACCGCTTCAAATGCA
AAACCCAGCAAATTAATTAAACAACATAACTAATCAAGGCGACCACTATCA T
CTCGCATCCATATGGGCACATGGATATATACGTAAATGAGATAACATCAACA
TATACCCGAGCCCAAGCGTATATATCACTAGCTGTATATATCATTGAAATTGT
GCGCCGATCCCTGTGCAGGTAAGGACAGCTCAGGAGGGTATACACATAGCTT
GAAATGAATATATAAAGATTTACACAAATCCCCAGTC 
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>SLP10_GO479099 
CCAGGGGGCGTCTTGTGACTTTTTGGGATGTCTTAGAGACGCCGTTACTTACA
CTGAGCACGCAAGGCGCAAGACTGTCACCGCCATGGATGTCGTCTATGCGCT
CAAGAGGCAGGGCAGAACCCTCTACGGCTTTGGCGGTTAACATTGAACTCAT
TTGTTTCGTTTCTAGGGTTTAAATCCTGGTTCAATTTTGGGGTAGATATTTATT
TTGCCTGGCAAATTTTGAGATAAAGGTGTGTTGTTTGCACTTAATTAATGCAA
TGAATAGATTGCATTAATCCTTATCTATTTTCTTGCTCCGTTTTTAGGATAAGT
CGATTTTTTACCAGAGCAATGGTTGGATTGAATACGT 
 
>SLP11_GO479100 
CATCTGCTGCGGCAATACCCCTCCTGAGCCAGGTAATGTCGTGGTGGGACTAT
GGATATCAAATCACGGCAATGGGAAACAGAACTGTTATTGTTGACAACAATA
CATGGAACAATACACACATTGCCACTGTTGGGCGGGCGATGTCATCATATGA
GCATGAAGCCTATGAGATCATGCAATCACTTGATGTGGACCATGTGTTGGTTG
TATTTGGAGGTGTTACTGGTTATTCTTCTGACGACATTAACAAATTTTTATGG
ATGGTTCGCATTGGAGGTGGAGTGTTTCCCGTTATCAAGGAGGCTGATTATCT
TGTTAATGGAGAGT 
 
>SLP12_GO479101 
CATTACACCGTCGTAAACATTAACCCTTGCCTATATTACAGAAAACGCTGAA
AAATCAGATATTAGCAACGGAGACCTCATGCCCAGATTCCACAGGCCGTCTT
ATTCCATACTATAACAAGTTCAACATTCAGCAGCCCGGAGGAGAATTTAACT
TGCACTCTCCAGGCAAAGCCTTGGCAAGATCCGGATCGATTCCAAACATGCG
AAGAAGGGAGGGATAGTCATTCCCAAATTCACAGAAGCACGTAAGATTTGCA
GTGCTTAACACGCTGCAACAGGCTTCAACAGGCTGTGCAGGAGGCTGTGTGA
CTGCTGGCTTACATGGCATTAGGTCATCCTTACTCACATTGCAGATCTGAACG
GCCCCTCTGGCCAAAGAAATGCTAGCGAGCAATGCTACTGTAACTATTGCCA
AGCCAATAATTATCTTCATCCCCGCGTACCTCGGCCGCGCCACCGCTA 
 
>SLP13_GO479102 
CACATCTACCGTAGCTCCTAAACATAATAATAACAACACAAATGAATATAT A
AAATATGAAAAAATAGCGACTATACAGGAAAATCCGATCTAAACATGAAAT
GATCTTCTGTGTCTCTGTCTGTGCCCCTGTCTATGAAAAAAAGATATGCTATT
TTAGAGATAGCCCTTCCCATAACTGTTATCGCTCCTATTGTTCCTGAAGGCAC
AGCAGCCGACGCTGTAGACGATGATGAGGAAGATAAGCATCACTATATTCAC
AACCGCCACCTTTCGCCAGTCGTGCTTCAGGTTTGCAAGAACCCCGGCCTTGC
ATGAGTTGCAGTCATAGCACAACTGGGTCGAGTTGTTGCTCCAAGTAGT 
 
>SLP14_GO479103 
CCTAGGTGCTCGGACCGCGAGCTGGACCCGCTTTTGAACACGCCTGAACCTA
CAAAAACACCATCACAACCTAGCTGCATCATCAAGGCAGCATCGGCAGGTGT
AGCAACACCTCCTGCTGCAAAATTCACAACAGGAAGCCTTCCCAACAGCTTG
GTTTGCCTCACAAGCTCATAGGGAGCAGCAATTTGTTTAGCAAAGGTAAAAA
CTTCATCATCATCCAAGCTCTGAAGCTTACGTATATCACCCAAAACAGACCTT
ACATGTCTTACTGCTTCAACAACATTACCAGTACCTCGGCCGCGACACGCAC
A 
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>SLP15_GO479104 
CATCGGCATTACACTTTGTGATACCACAAGCTTCAGAGGCCGTGGAGACCTTC
GAGCATCTCCTTTCTGCAAAATCTGAATCGAAGCCCAATCTCATCACCTGCAA
TCATTTGTTAAGTAGCCTAATCCGACAGAATCGACGTGAACCAGCGCTGTCTG
TTTACAGACTTATGGTTGAAGCGGACATTGTTCCGAATCTGAGAACTTTTACC
ATTGTCATCAATTGTCACTGTCAATCTGGCAGAATGAATAATGCATTGAAAGT
GTTTGAAGAAATGGAAGCTCAAGGTCATGTTCCAAATATCATAACCTTCAGT 
 
>SLP16_GO479105 
CCCATGGACTCTCTCGCGGCTCCTTCACCTCCTCAGTGCTCTCCGCCCTCCTAT
CTCCTATCCTCAATCCTCCGCTCCAGTGCTTTCTTCCCAAACCACCTCTGCTCC
AGGTCCCTAATCTCTTCCATTTCGGTCCCTTTTCTTATAATTGGTTAAACATGG
CAGACAACCAGGATCAGCAGAATCCAAATGTTCCAACAATCAACTTAGACAG
ACTCTTCAGCAGAGAATGCACCATGTGCAAAGCCCATACAGTCATGATCAAT
AGTTTTGTTAAGCATTTCAACGAGCTAAAGGAAGATTATGAAGCGGATAGCA
GGTCCAAGCGGAAAAAACTAGAGAAGCAAAAGGCAGAAATCGAAAATTTGA
AAGGAAGATGCAGTCACCTGGAGGAAGCAGTGCAGCAGATCAGATCCCTCA
CTCAAAGCCATCAAGCTGAGACATCCACAAGAATCAGTGCCAGGAGAAACC
CACAGCCGGATGATTCAGCCACTCAGAAAATCTCTTAAGATTCTATGGTTTGT
CAATTTCGTAGGATAGGTGGTGTGTTGTTAGGCAATATAGCCGTTTTCTTTTC
AATTGCAGTCACAGAGGTAGCATCGAGGAGTTTGGGTCTGCGTACCTCGGCC
G 
 
>SLP17_GO479106 
CAGCGACCTAGGTATATATAATTATTTTTAAAAAGTTTATTAAAAACTTTT CA
CGTTTTCCAAAGAGTGGTAGAGTCTGGAGAAATTTATTTATGCTGCTGGTGCC
CACGAACAAAACTAGAAGAGCAGAGAAGCTTTGGTTCAAGGGCGGGAACTA
TCAAATACGGGAAGATGCGACTGGGGTCGGATGGAATTGCAGAATGGATGTA
TAGACATCGAGAGTGAGAAAATCATCCAACGATGGAGCAGTGCACTGCCTCC
CAAACATTTTGGCTGCTTCTTCATATCGCCCGCCCTTGAATTTCTTGGTGCCAA
CTTCCCTCTCAATTCGCGCCATCTCTTCGGCCAGAATCCTGCCAACCAATTCC
CGGGTGACCTTCACCGGCACCACTTCCCCATCCAGAACCACCTCATAATGAA
TCCACTGCCAGTTTTGT 
 
>SLP18_GO479107 
CATAGAATCTGTTATTTTAGAGGATATGAAACTTAGCATCGAACCATGAGTCC
TCGGAATCTATTGCAACCCGGCAGTAAGTGCAGCAATCAATGTGAAGGCTTC
AGTTATTGTTGTGTTCACAGCATCTGGACGAACTGCTAGGTTAATAGCAAAAT
ACCGTCCTACTATGCCTGTGTTATCTGTTGTCATCCCAAGATTGACAACAAAT
CAGTTGAGATGGAGCTTTACTGGTGCATTTCAAGCAAGACAGACTCTTGTTGT
TAGAGGACTTTTTCCTATGCTGGCAGATCCTCGACATCCAGCTGAATCAATTA
ATGCAACGAATGAGTCTGTATTGAAGATTGCATTGGATCATGGTAAAACAGT
AGGGTTAATTAAGCCTCATGATCGAATTGTTGTATGCCAAAAGATAGGGGAC
TCGGCGGTTGTTAAGATACTTGAGCTTGAAGATTAGGACAATACAGAAGGCA
GTTGGCAGATTTTAGACTCGTGTACA 
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>SLP19_GO479108 
CCAGGGGGGGGCATGTTTTCTTTTATATGCACGTGCCTTGCAGAATACATCTC
TCAAGACCTGGAAGGGTCTTCCAGAGAATGTTGAAGCAGCTCAGAGGGCGCT
TCTTATTCGGGCCAAGGCTAATTCTCTGGCCCAGCTTGGGCGATACTCTGCTG
AAGGTGAAAGTGAGGAGTCTAAGAAGGGAATGTTCGTTAAGGGATACACAT
ATTAAGAATGCGGGTCATAGTTTTCTTACGGGAAGAACTCGTTCAATGCGGA
TAGGTTAAGCTTTTATGTTTATTTATTTGGCACTTACAATCCTGAACTTTTTGA
AGAGTTTATATTTTGGTCAATAATGGGCAAAGTGCAAATTGGTTGTAGCCTTT
TACCTATGTTGTACCTCGGCCGCGACACGCTA 
 
>SLP20_GO479109 
TCCTTGTAGGGGTTGGGACTTGCACTCCAACTAGAGATTAGCAACTCCTCTAG
TCTATATGTTTTTATTTCCATTTTGAGAATCTAAAAACTCCTTCAAAAACA AC
AATATTTTTATTAATAAATATAACTTGCATTCTTATATCAAATAAATAGTG AC
GAAAGAGCCGTGTATATTGAATATACATAAGCTGCTTGTGTAACATATGACA
ACCCTTCATAACACTACAAATATGAAGAGGGTCCATGGAACAAGTAATAAC T
AAATATTTTCACCATCTCACTTCTATGGATCAGTCAGTTTGTAATGATGGCGG
AATCCATATGTACAGAGAGTTTG 
 
>SLP21_GO479110 
CATATTCTGTGGTTCTCTGCTGCCTGCATCAAACTGGAAGGCCCATATTGCAA
AACGAGCAATTGAACTTGCAGAACGGAGATTATCTAAAGATGGATGGCCTGA
ATACTATGATGGTAAACTTGGAAGATACATTGGAAAGCAAGCTCGGAAATTT
CAGACATGGTCTGTTGCTGGCTATCTGGTAGCTAAGATGATGCTTGAAGATCC
ATCCCACTTAGGTATGATATCACTTGAGGAAGACAAGAAGATAAAGCCGCCA
CTCACCAGATCACATTCCTGGACATGTTGAAGTCCATCGTTAGGGGAATCAAT
CCTTTTCTCTTGTATAATGGATAGGCCCATCCCTGTTCATAATCTTGTATAATT
TCTGTGGCATTTTACTTGTTTGTTCACTCCAGGACCGAAGAAGAAGC 
 
>SLP22_GO479111 
AAAATGAGCTTCTTAGTGAGGGTATGATTAATCGCTGCATCTTTGGGACTGGG
GCAGCTTTTAATATTCCTTGTATGGAGATGTTTGATAGTGAACAGCCGAGATA
TACTGCTGCAGTCCGGAGGGTCTCATTAAGCATATGAAAGAAGTTGCAAGGC
GAGGAAATATACCTTTAACAGGTGAAAATGCAATTGAACGCTTTGATAAGGA
GGCTTTCTCTCAAATTGTGAGAAATGCTTACAATCGTCCTCAAGATGTGAGAG
CCTTTACGTATTTCCGAATGAGGGAGGCACTGTTCAGGACTGATAATTGGAA
ATCATTCGTGAACTTTGTTAAGCAGAAGT 
 
>SLP23_GO479112 
CACCGGGGTGGTTTTCGCCTTTTTTTTAATGTTACTGCATCCATCCATGGTCGA
CAGTGACAGAGATTGTTCGGACTGGTTACAAAGTTTTCATTTTTGACATGAAC
ATGGTTAATCTCGACTGAGATGACCCATACTCTCGGAGTTAACCCATTAGAA
GTTGTATTCACTGATAGTTCAAAAGGTTCAAGTTCAGTTTTCTTGCAATCTTA
GATATTGTATTGACTGATCTCTCAAACGGTCAAGATCAGTTTTCCTGGAATTA
TAGAAGTGGTATTGACAAACGTTCATGTTCAGTTTTCTTGTGATCTGGTAGTA
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GGAACGAAAGTTCATGTCCTCTTATTACAAGGAGTTAATATTGTTGTTTCGGT
AATAAATTGTTCAGAGAATTTTGCATATAC 
 
>SLP24_GO479113 
CCTTGCGGATTATGGTAGCTTGCTGTAGCTCGTGCGTTTGGTGACAGGAGCCT
GAAGCAACATTTAAGTTCAGAACCAGATGTGAGAGACACGACCGTAGATGCA
AGCACAGAATTTCTTATTTTGGCTAGTGATGGATTGTGGAAGGTCATGAAAA
ATCAAGAGGCTGTTGATTTGGTTAGAAAAATCAAGGACCCTCAGGTGGCAGC
CAAGTGTCTGACTGAAAATGCAGTTGCAAGAAAGAGCAAAGATGATATTTCA
TGCATTGTTGTGCGTTTCCAGCATTA 
 
>SLP25_GO479114 
CCTTGTGAAGGGCCTCTGTGTGATCTACTGTGGTCGACCCAGATGATCGATGT
GGGTGGGGTATTTCACCTAGAGGAGCTGGATATACTTTTGGTCAGGACATAG
CAGCCCAACTCAATCACAAAAATGGTTTGAATTTGGTTGCAAGAGCACACCA
GCTCGTTATGGAGGGTTTCAATTGGTGTCAGGGCAACAATGTTGTTACAGTTT
TTAGCGCACCGAATTATTGCTATAGGTGTGGTAATATGGCAGCTATAATGGA
GATTAGTGAGACTATGGAGCAAAACTTCATTCAATTTGAGCCAGCACCCAGG
CAAATTGAACCTGATATGACACGCAAGACACCTGATTATTTTTTGTAATTTTG
CTTTACAAGAGTGTAGGGTTTTCATATATTCTGTAATGTTTTAAATGCAGAAA
ACATATACTGAAAAGTCTAGAGCATTCTTTTGTCGAAGTTGATTTTTGCTTTC
CGTACCTCGGCCGCGACAACGGCT 
 
>SLP26_GO479115 
CCAGGGGGCTTGATGGGAGCCTGGGGAATGGTGAAGAAGCCACCGAGTTTAT
TCAATGCAGTGAAAGATTACCCAGAAGACGTGCAATTAGTAGGCAGCTACGC
TTCTTTTCTATGGGAATTATCCAACAATAATTAGTGTGTAGTGTTTTCTAGTGG
CGTGTGCAGAATTTGAGGTGTGGGGTGGTTGGGTCGGGTGATTCTCATGTATA
TTTTTTCAATTGTGTCTAGAGCAGTTCTTAATCATATGTAGTCTTATTTATGAC
GACTAAAATATCTCATTTAATCATTGGACTACATCTAGGCAGCTACACTTTTT
TTCCATACTCATAATTAGTGTGCAGTGTTTTTTGTGAGGTGTGTAGAATCTAA
AGTGTCCAGTGGGTGGGTTGATTTTCATGTATATTTTTTTTCAACTGTATCTGA
ACAGCTCTCAGCTATATGTAGTCTTATTTTTTTTTTGGAAATTATCTAACAATA
ATTAGTGTACCTGCCCGGGCGCCGCTCAAAAAA 
 
>SLP27_GO479116 
CATTGTTCTCGGCTGAGCTCTTTGTGTTCTCTAATAAGCCCGATGGGGTTTCG
GCGCAGGGCAATTTGGGGTCGCTGATGGAAGAATCGAAGCAAGAGGATTGG
TTCGTGGATGCCCTTAATGTCGGTCCGGTTAGCAGACCAGAGACTGTTCAGCA
GGGGAATTGGATGAATAATGCGCCCA 
 
>SLP28_GO479117 
CCTAGGGGGCATGGTAGAATAACACTAGAGTTGAAGCCTCTGATACGATCGA
CAATGTCAAGGCCAAGATCCAAGACAAGGAGGGTATTCCGCCCGACCAGCA
GCGCCTGATATTCGCGGGAAAGCAGCTGGAAGATGGCCGGACGTTGGCGGAC
TACAACATTCAAAAGGAATCGACCCTGCATCTGGTCCTCCGACTGAGGGGAG
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GTGCCAAGAAGCGAAAGAAGAAGACCTACACGAAGCCCAAGAAGCTCAAGC
ACAAGAAGAAGAAGATCAAGCTCGCTGTTCTGCAGTACCTCGGCCGCGCCAC
GTCTA 
 
>SLP29_GO479118 
CACAGGCCTTTCGGGCCTTTACTCTGATGTGTTCTGAAAGCTCATCGACAAGG
GTTTGCTTTAAGGATTTGAAAACAAATCAAGCGGAAGTTGAAACATATCTT A
TGTTTATAAGGTGGTTATGTTAATTAGTTGCTTGTTATTCTTTTAAGATGTTGG
TCTCGCCTAGTATTCTTGGAACTAAGCGTGTAAAAGCTCCCATACTCTCCTCG
TATCAACCTGCAAAGAGTTTCATGATTCTACCATTTGATAGGATGCATTATTG
AAGTTTATATGAAAATGGTGAAATGCCAGCACTTAAACTTGGATGATAGTA C
CTCGGCCGCGACACGCTC 
 
>SLP30_GO479119 
CCATGTTACCAGTAGGATGATGAAATCTGACAGCGATCGTGAGCGGGACTAA
ATATCTGAATTTGAGAAGAGTTCTCTAAATCTGCAATTCCTTTTTATTGTTGAT
TCTGCTAGTGCAGCAGAAGAAAATCTCTGCATGAAGAGAGAATGTTAATGAA
ATGCCAGTCCCATGAGTTTGGGTATATTCTATGGGTTTACATCTGGAATGGTT
GGTGCAATTATTATTTGAACACTTGAAAACATGAATTTTAGAATGCTTCAA GT
TTCAAATAACTTTTTTTCTCATATCAAATTATTTTTGAAATGGCAATGATA AA
CTTCAACTGTAG 
 
>SLP31_GO479120 
TCCCTTGTGATGAAGAAAGGCTGGTTCGAGAGCTTTTTGTTATGGCAAGAGA
ACATGCTCCCTCGATTATATTTATGGATGAAATTGACAGTATAGGATCTGCTC
GAATGGAGTCTGGCACTGGTAATGGTGATAGTGAAGTCCAGCGAACTATGCT
TGAGCTCCTTAATCAACTTGATGGCTTTGAGGCATCTAATAACATTAAGGTTC
TAATGGCTACAAACCGGATAGATATTCTTGATCAAGCTCTTCTTCGACCTGGT
AGGATTGACAGGAAAATTGAATTTCCTAATCCTAATGAAGAGTCTCGTTTTGA
CATTCTGAAAATCCACTCAAGAAAAATGAATCTAATGCGGGGCATCGATCTA
AAGAAAATTGCTGAAAAAATGAGTGGTGCATCAGGTGCAGAGCTTAAGGCTG
TATGCACAGAAGCTGGGATGTTTGCATTGCGGGAGCGACGTGTCCATGTTAC
ACAAGAAGATTTCGAAATGGCTGTAGCTAAGGTTATGAAAAAGGAAACAGA
GAAGAACATGTCACTGAGGAAACTATGGAAGTAAGGAAAGGATCAGTGGAT
TCGTTGGTTCAATATATCAAGCTACTGTGTGTATTTCAGTGGGTTAAACATGT
CCAAGTGGTTGTATTACTTGCGATGGCAACATGGAAATAAGTGGATATTTTGC
AAGTGAAATTTGTTTCTAAATTCATTTTGGGCTTGAAGATGCCTTGGTCTATA
TATTCTCTGCGGGAAGCTTGGACCCTGAATCAAAAAATTTAGTTAATTTCCAA
AGT 
 
>SLP32_GO479121 
CCCCCGGGACTTCAACTGGAAGCAAAGGAGGAAGTCCCTCAGGTTGAGAAG
GTGGCCCAAGAAACGAATGGTGAGGATGATGGCGAGACCGATCGAGGTATA
AGCGCAAGGTTCATGGTCAATCGCTCTAAGCCTCGGTCACATGGCTTTGTCCC
TTTTGATGATTACGATGCTGCCCCGCCTCGAGGATCATATAGCCGTGTCTCAC
AGCATGAATATCCTCCTCGTCAAGGTCATGGCAGCCACACCTACCAAGAACG
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TGTAGAATATGAGGTGTCTGATGAAGAAGATGGTTACGAGGAGAATTATGGG
CACCATGGGCACCAAGCCATACCCTACAACAAAAAGCCTCAACAATACTATA
GACGCGATACATATGTTGTGGATCAACCGCCACCTCCTCCTCCCCCAC 
 
>SLP33_GO479122 
CAAGGTAACTCTCCAAATAAAGGGAGCTGTGATTCTTGTTGCCCAATGTTTTT
AATTTTTTCCCGGACACCTCAAGAAACATTAGCTTCTTCATTGGAATGAAAGA
AGGGAGAGATGAGTGTGGACACTGGTTCCAGCGGAGCCATATGAGATTTGGC
GACTTCACGCTCTTCAGAATGCGTTCCAAGAGGGAACCTTCAGTATCAACAA
GGTGTAACCTCGTCATTTGAATAGAATCAAAAGCATCATCATCATCATGGCAT
TCGCTAAGAACCATTCTAATTCCCCGCACGGTTATCATTCCCTGCCCATCATT 
 
>SLP34_GO479123 
CCTGGGGAGGAGGGCACGGGATTCGAGATCCCAGAAGGGCATTAGGGTTTG
GCTTGGAACATTTAACACTGCGGAAGAGGCCGCCAAGGCGTATGATGCAGAG
GCTAAAAAGATCAGAGGCAAGAAAGCCAAGCTTAACTTTGCTGATGGCTCCT
GCTCTGTAAAAGAGGACAGTCGCAACAAAATGTCAAGGAAGAAAGTAAAGT
CCTGTGCCAAAAACCCTGATTTATTATTGGCTTTGAATATAAAGAGTAAGGTA
AAATCTTCATATTCACCAAAGCCTGATTTATTAGAGGATTGCTATCTTCAAAT
GGAACGCTCTTTGAAGGATGTCCGCAGATCCGATCTTTCAATCTATGGCTACG
ATGATATGGAGTACCTCGGCCGCGACACCGCT 
 
>SLP35_GO479124 
CAATGGGGGGTATAAAGATGGATTTGTATGAATTGTTAACAGGTTGGTAAGA
CAGGCTGAGTGTGAGAATTAGCTTTGGGAGTAGCAGGCCAGAAATTAAGCAA
TCATGTTGGATAAGATATGGGATGACACTCTTGGCGGCCCGCAGCCAGACAA
GGGCCTCAGGAGGCTTCGCAATAATTCAGGCAAATTGCAGGTGAGCCCAGTA
GATATTGACGAGATGAATCTAAAAGAAGGGAGTGGGGGAATTCGTGTGATTG
GAAAGCCGCAGAAATTCGCTTTTCAACGCTCGTTATCCCTGGAAAATAGCCC
CCCATCTTCACCAACTGCAGCCTCTTCCTCATCCGCTTCCTCTACTCCACGAG
ATCGGGAGAATGTATGGAGAAGTGTGTTCAATCCGGGGAGTAATATCAATTC
CAAGACAATTGGGTCTGCAAAATTCGACAAACCAGAACCACAGAGCCCTACG
GTGTATGACTGGCTCTACAGTGGAGAGACTAAATCCAAATGGCGTTAAAGAC
GACCTCCTCTTCCAGCTTCTTGAATCCATGCATGGTGATGCATGCAGTATGTA
TTTATGTACCTCGGCCGCGCCACCCCCTAGAA 
 
>SLP36_GO479125 
CCCCACTTGCCAGCGGCAGCAGCAGCAATCTCCTCCTCTATCTTGTGCCTCCT
AGCGTTCTCCGGATCCTTCTTTGCCTCGTGCTTCTCATACAGTGCATAGCCTCC
TGCAGCCACGGTTCCGAGCTCCCCAACGTGCTCCATACGCTTGTGGTGTTTCT
CCTCCTTTAGGGCTTTCTCATATTCGCTTGTTTGATCTTCCTGATAAGCAGAAC
CAGTGTTGTAACCAGAGGCGGCGTTATAGTCCGAGCTAGTCTGATAATCGGA
CGATCCATAGGCGCCCTGATCAGCACCCGATCCGTAAGCATAGTCTGAAGCA
ACGTTAACGTTACCCTCGTCCTCTTCCTTCTTGTGGTGGAAGAGGTGGTGACG
GTGCTCGCCAGACATGATTGGAGAAAAGAAAATAAAATATGGTGGCGACTA
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GAACCCAAAAACAAACACACACAGACTTGATCACACAAATGAAGAGCAAAC
TATCTATCGAGGATCCCCGCGTACCTCGGCCGCGCCACCCCCTA 
 
>SLP37_GO479126 
CGGTGCGACCAAGTCGGAATCCACGGGTTACAATGTGTATCACCTTGCAGAT
GGGATTCATACGAGAACCTATACTACGTGACCGACCCAGCAGCGTGCAACGC
TTTTCCGGAGGACTTGCCTCAATTGCGATTGGTTATAGAGAAGTTACTGGTAT
TCTTGGCTCGAACGGTGGAGTTTATCGAGAGCCTCATCTCGCAAAGCCTCGG
ATTGCCTGCTAATTTTCTCAAGGAATTCAACGGTGACGGAATCGAGGCGTTTA
AAGTGCTCTGCTATCCGAAAGCCAGGAGTCAAGAAGAAGAGGTAGGAGCGC
GAGCGCATCAAGACAGTAGCTGCATCACCATCGTGGGACAAGACGGCAGCG
GAGGGT 
 
>SLP38_GO479127 
AAAATCGTCGAAACTGCTGGCGAGTGGATTCCTCCGAACCAAAAGCCCCCTG
CCTGGGCATATGGCGTTGCCAAGACGCTTGCAGAACAAGCAGCGCTGCAGTA
TGGAAAAGAAGATGCGGGGCTGGATGTGGTAACCATCAACCCTGTGTTGGTG
TTGGGATCTGCCATTACTCCCATCGTCCCCTACACCATTGAGATAACCCTTTC
TCTACTCACGGGCAACAACCAAAACGTAGAAGCTTTGAAGGGGACACAGAC
CATATACGGCGGTATTTCGTTGGTTCACGTCGATGACGTATGCAGTGCTCATA
TTTTCTTGATGGAGAACCCCTCTGCAGAGGGCCGCTACATTTGCAGTGCCATC
AACATATCTGTCCCACAGCTGGCAGACTACTTATCCAAACGCTATCCGCAGT
ACCTCGGCCGCGACACGCTA 
 
>SLP39_GO479128 
TCCCGGGAGGCTTCGGCTGCGGTATCGCTTCTTCATTCCGATAGAACACAATG
GTCTCAGGAGTAAACAGAGGTTTTTGGCAAGATGTGGGATAGATTATACGTC
TTCTGTAAGAGCTGCGGTCGCATCACAGTTATTTGGAGGGACCAGGGAGCTA
CGTATAGTGGCAGCTATTGATCCGGAAGTTTCCAGAAGGAGTTTACATCTGG
GCAAGGACAAGCAGCACAGTTTGGATTCTCATTTTTGGACTTGGATGTTTCTG
TCTGGATTTTCTTCCTCCTCAAGCTTTGCAGAAGTTGCATTTGCTAGTGAAGCT
GTGACACCAAATGCAGTTTATGAAGTTGGTGAATTATTTGAATTTGGAATACA
GTTAATTTACCTTGGAGCATTAATTAGCTTGCTTGGGGTTGGGAGTTTTTTTGT
TGTTCGCCAAGTCGTTATTCGCAGAGAGCTTGAAAATGCTGTCAAAGAATTG
CAGGAACGAGTTCGTAGTGGTGAAGCCAATGCAGTGGAATACTTTGAATTGG
GTGCAGTGATGTTGAGGAAAAAGTTTTACCCTCTTGCTGCTAAATACCTTGAA
CAGGCTATCGCGAAATGGGAGGGTGATGTTCAAGATCTGGCACAGGTTCATA
ATGCACTTGGCTTCAGTTATGCAAGTGATGGAAAATTAGATAAGGGTATCAC
GCACCATGAGAAGGCTGTGGAACTTCAACCGGGATATGTAACAGCTTGGAAT
AATATGGGTGATGCCTTTGAGAAGAAGAAGGATCTGAAAGCTGCACTCAAAG
CATATAATCAAGCACTTATTTTTGACCCAAATGATAAAGTCGCAAGATCTT GT
CGAGATTTCTTAAAAGAGCGCGTGGACCTTTTTGAGGGTATTCCTTCTAAACC
AAG 
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>SLP40_GO479129 
CATAGACTCCTCGTGTCTACACCTCTGATCGCTTCCTGCTTTGCTTTGTGAATG
TTATCGATGTGTATGGGTAAATAACAGTGATGGTATCCAACTAGATGATGTTG
GGTAGCTCAGTGTGAGATTGATAAACAGTGCCGCTACCAAGGAGATCGATAT
GCTAAATCCAATGGCACGGAAACCTTGGTAGGTTTCCCAGGGGTAAATGATC
CCATCCTTGTTCCTGTCAAAGAAGGCCACATGCTGTTGAAGAACGCTCATGTT
ATTGTGTTGGTGTCCCTTGGATCCATTAAGACACTCCGGATCAACTGCAACCA
GAGCCCTTGCCAGATATGGTTTAGGCATTTGATCTTCTAGCTCTGTGTTCAAC
TTCCGGCGTGAAGTAATAGGTGCCTTCGCCGCAACCGTCTGCAACGATTCCTC
AGAAGCTTTCTCCATTTTTGTTTCTCTTCTGTTCTCCACCAATCCTGAGGAGCA
ACTGGTTATGTTCTTGAGCCTTTAAAACGATTAACAAAAGAGACCCGGGCTTT
ACGCATCGTACCTCGGCCGCGCCAACCCCT 
 
>SLP41_GO479130 
CATGGTCTGTACTGCGAAACGAGGGGAAAGATTTCGTGAAGGTTGGTTCGCA
CTGTGTTTCCGATTTATGGGAATTTTGTTACCGGGTATGTCTGCACACAGTCC
CGTGAACTATGTGAATGCAATTAGACTGGGTCACACAGACTTAACTGTGACA
GACGAAGATTCAGACATCGATGGAATTGAAACTCCATTAATTAATGGGGGAG
GAAGGGACAACGGAAATGATGGATTGCTGGGAAGATGGGATAGGAAAAAGT
AAATAAGGCGTGGAATTAATTGGTTGAACGCTACTCCTGTTGGTTGGTGGAA
GAGTGGTAGCTTCTTCATTCCTTTGCGTTTAAATGTGCGCAGCCATGACAAGA
TTGTGAGGGAGTTTATTCTCCATTCACGAGACTTATCTATTAGTGATAGTTTA
CTATTGACGAGACTTATCTATTACTGATAATTTACTGTACCTCGGCCGCGACA
CCGC 
 
>SLP42_GO479131 
CCTACGTTTTACTTCATAAGCGGCAATACAGGAAAGGTAAAATGAGGGTAGG
CGTAGCAAGGAAGGTGGAGTGACATTCAGATGGTGTTTTGTTGCAGAGGGCC
CGTTCTCAACCCTCCATTTTAAAATTTGATCATGACAAGGACATGAACTTGTT
GTCTAAATTTGATTATAACATTGACATGAGTTTGTGGTCTGATGGCATTGTGG
AAAATTAACCAAACGCAGGTCTCAAACCCCATCGTCAATACCGAGGAAGACT
TTTGGGGTAACCAGTAACTGGACTTGGTATCCCTTGATCTTAGTGATGAGAGG
GATAAATAAATGTCACTTGTCACATTAAAAGAAAATGTTATTGCACTTCTC TT
AGATC 
 
>SLP43_GO479132 
CAGGGGGATCTTCCTCTATGCCCTCTCTAGAAATTCCATAGAGTCCCTATCAG
TTACATTTCCATGGTCATGAGTTGATCGTTGATTCAGAGCTCGAACTGAATCA
TGGAAGGCGCTATGGATTACTCGGGCTCAATGGATGTGGTAAGCCTACACTC
CTCACTGCTCTGGGATGTCGGGAGATTCCCATACCAGATCATATGGACATCTA
TCATCTGACCAGGGAAATAGAAGCAACTGATATGACTGCACTTGAGGCTGTG
ATGAACTGTGACGAAGAGAGGCTAAAAATAGAGAAGGAAGCTGAAGCTCTT
GCTGCACAAGATGATGGAGGTGGAGAGGCACTAGATCGATTATATGAGCGTC
TAGAATCCTTGGATGCTGCAACAGCAGAAAAGCGAGCAGCTGAAATATTATT
TGGCTTAGGTTTTGATAAAAAAAATGCAAGCAAAAAAGACAAGTGACTTCT C
TGGTGGTTGGCGTATGCGAATAGCTCTGGCACGAGCGTTGTTCATGAATCCTA
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CAGTTTTGTTACTAGATGAACCTACAAATCATCTTGATCTTGAAGCTTGTGTA
TGGCTCGAGGAAATGCTGAAAAAATTTGATCGCATTTTGGTTGTAATATCACA
TTCGCAAGATTTTCTCAATGGAATTTGTACCTGCCCGGGCGCCGCCTTAAAA 
 
>SLP44_GO479133 
CATTGCTGGTCGTCGGTAGTGAGCTTATCGCAAGGAGAGTATAGAGGCGCGA
TAAAAATGGAAGCCGTGGACGCTGTCGTAAGGCCGCTGCAGGACTTTGCCAA
AGATAGCGTGCGCCGCGTCAAAAGATGTCACAAGCCTGATCGCAAAGAGTTT
AGTAAAGTGGCTTTCAGAACGGCTATTGGATTTGTTGTTATGGGATTTGTTGG
TTTCTTTGTCAAGTTGATATTCATACCAATCAACAACATCATTGTGGGATCAG
GATAGATGAAGCAGACTATGATGAAGTAGAGATGAGAAGGCCGAAGTGACA
ACTCACCAACAATTAAGGTGGTTTGAATTAATTTGACATGATCTTTGGTCATT
TTAAGAATTTTCAATGTTATTTGAGCACATAAATTAATGTGCATTTTTTAT ATC
CTTGGACTCAGACTTGCAATTGGCCGGGGGTCAACTCAGATTCGGACTCAGA
CTTGGTACCTCGGCCGCGCCACCGCTA 
 
>SLP45_GO479134 
CCTTTGGAGACATGTTGCTGCTTCAAAGATGTACAAGAAGAAGGACTTCCAG
TCCTCTGGCGAGGCCTTGGAACTGCTGTGTCACGTGCTTTTTTGGTAAATGGA
GCTATATTTGCAGCATATGAACTCGCATTGCGTTGTTTCTTCCCAGAGACACC
GGATCAGGTGCTTAACACTGCTGGTTAGCTCTGCGAGAGACAGAAACACTAA
ATTTCAAATGATCTTCATGGGGAAGAATGATAATCAGTGTATGGAATACAGT
GTATTCTTTACTCTGTGTCGATCCTTTTAGTAATGTAAATTCTTGTACTTCCAT
ATTGTTTAAGAATGAAATATCTGTTGCATTTTCCAAAAAGGAAACAAAAAC A
ATATATTGTCAGATGGGGGATATTATAGAAGCTTCAGATGTGGTCCTGGAGTT
CTTCAAGGAGGGAGTTCCAGTTCCTTTTTCATGAGTTGGGTATCAAAAGCTTA
GCGTTCAAAGG 
 
>SLP46_GO479135 
GCGGCGCTCGGCAGTGGCTGCAGGGGTGCAAAAGACCGTCGACCTTTCTTTT
AGTGAGAAGACAGTGGAGGCGCCCCTATTTGCATCCACGGCTTCTGACATGG
GATCTTTTGAGGGTTCTGCTACTGTGTCGGGAGAGAGTGGGTGCTGCGCTTCT
GGCGGTTGCAAGTGTGGATCCAACTGT 
 
>SLP47_GO479136 
CATCATGGTGATTTGATTTTTTTTGGACGGATGAATATTTGGTACAGTGAGTG
ACATCTTGGGTAGAGTGATCTACTGCCTGCGCTCTTCTGTGGACCATGGTCCC
ATCAAAAACAGTGAAACTGCAATGCAGAGAGATTCCCCAGCCTTGGCTGTGG
AGTTGGATATAGATGAATCGGCAAGGAGCCCCAAGACATGATGCTGGCATAA
TCCATATAGGCCTGATTAACACGTCTTGTAAATTTTAAAGTTCCTCTTTTGTGA
GGCATGGTTAAATGTTTTCTGCCTTTATTCAAGGTAAGAATGAAGTATAAAGG
TTTATGATGATGTGTGCAAAAAGATTATGATCCTGCATGATTTCTCGTTGATC
ACTGAATTTTATTGAAGAACCCAATTGAATTTCTTCTCTTATTCAAAACGCTT
ATTTCATGGCATGAAGCTGGATTCTCAATCAAGTTGATGTCCACTATAAGAGA
TATGTATTGTACCTCGGCCGCGCCACCGCTTAGGGCATAATG 
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>SLP48_GO479137 
CACAACTTGTGGTCAAGGCCCAATGGATGTCAACCATGCTGTTTTGGCCGTTG
GGTATGGTGTTAGTGACGAGGGGACTCCACACTGGATCATCAAGAATTCCTG
GGGAAAGAGCTGGGGTGTTGATGGATACTTCAAGATGGAGTTAGGGAAGAA
TATGTGTGGTGTTGCGACTTGTGCTTCGT 
 
>SLP49_GO479138 
CCTGACATTTATGCTTTCCTCGCTCCAACGAGTGTTCCGAAAACATATCCTTT
GGTGGCAACCTTGGTTGCTTTAAAAACTACATCGAAAGATAGCTTCTTGGAA
GTTTGAGAGAATTGAAGAATTTCTGGAGAGACCTTCACAGTCAGACCCGGAG
GTGCACCGATGGTAACCTTGTAAGTGGGTGCGAGATCAGGACTGATGTTTGT
GACGCTTCTGCTTACAATTGTGCTCCCATTCACAATATTTAACTTGGAAATGG
CTATACTTGGATAGTTCATGTTACTGATCAGATCCACCTTTGCACCGGATGGA
CACCTATAGGTTTTATTCGCAGCGATGAGCTTGATATTCTCAGTGTCCCCCGC
GTACCTCGGCCGCGACACGCTT 
 
>SLP50_GO479139 
CAAAGGTACGTGCTATAAGAAAAATATAAAGTAGCAGATAAATCGTTATTG G
CACTAAAACTTCCAAGCGATGACCAGCCAAATATATGTAACTTATAAAAAT T
CCATTACAACTAACTGATGGATCACCAATTCAGCTTTATATGCAATACAATTT
CCTCACGGCATGTGTAATAACTGCACAAGAGGCTCGAAGCCTTGAGCTAATC
TTAGGGACATACATATTGATATACTGCAACATGTTACAACCGACTGCCCACA
AAAATCAACCCAGACCACTACTTCCTGCACCATAACTCACAGGCCGCTCGAC
AAGTTTAATGCCGGCCCTCTTGTCCCACTCAGCTGGTGAAAGGGTATCTCCTA
TAGCTTCCTGGCCTTCCCATAGAATCTTGTCGGCCACTCCAAATTCCACAGCT
TCCCTGGGAAACATGTACCTCGGCCGCGCCACGCT 
 
>SLP51_GO479140 
CCCCGGGATTCGAGTTCTGGTGGTCGATTCTGAAACTCTGGGATATCATTATG
GGTCAAGCCCAAGGACAGGCCTGCCCGGTTGTAGTGCATTTTACTGCAGAAT
GGTGCGCGCCTTCGAAATACATGGCGGGGTTTTTCGAGAATCTGGCGTTGAA
GTATCCTGACATCCCGTTCCTGTTAGTTGATGTGGATGAAGTGAAAGGAGTTA
AAGACAAAATGGATGTAAAGGCCATGCCCACTTTCTTGTTAATGAAAGGGAA
TCTGCAGGTCGACAAAATAGTGGGAGCCAACGCCGATGAGTTGCAGAAAAG
GGTGGCCGCTTTTGCTCAGAGCATTCGCGAATCCGCCGAAGTCCAAGTCTAA
AGCCTATGCCTGCTAAATTTATCTTTCACTGAAGTTGCAGGAGTTTTCCAATA
ATATACAGATAATCTGTAATTTAATGTCCTCGTGGTTTTGACATTTTATAGAA
TTTGTTCATTATAGTTGTAGGGTTTAGTTTTGGGTTGTGCTCAAATAATTAGGT
TTGGTCTCCACATACTGTTTAATCTGAGAGACTATATGCCTGAAAACGAACTG
GAGCAAGTGCGACTTCTTCCTTTAAAAAAAAACTCTTGTATGGTTTGTTTTAT
TCTAAGCTTTGGCTTTCCTGTAATGTATTGTTGTAATGTGATAAATATCTTCAC
CGGTTTATTCACAGTTTGGTCTTACACAAACAAATCCAGCCTCAATTTTTTTTT
TGTAAATATCTTTGGAGAAATGAAACAGAGTTATTCAC 
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>SLP52_GO479141 
CATGAGTTCTGGGCAGGGCGTTTCTGAGGAGAAGAAGCCGAGGTCAAGATCT
ATGGTGCGGAGCCAATAGAGAGTGCTGTTATATCTGGAGGCAAGCCAGGCCC
TCACAAAATTCAAGGAATTGGTGCTGGTTTCATTCCTGGGAATCTGGATGTGA
ATATTCTTGATGAGGTCATACAGATTTCAAGTGATGAGGCTGTTGACATGGCC
AAGCAGCTAGCATTAAAGGAAGGTTTGCTGGTGGGTATATCATCAGGTGCTG
CGACTGCAGCGGCAATTAGAGTTGCAAAGAGGCCTGAAAATGCTGGGAAGTT
GATTGTTGTGATACTCCCAAGCTTTGGAGAGCGGTATCTTTCTTCGGTACCTC
GGCCGCGACAACGC 
 
>SLP53_GO479142 
CATGGTGCAACACATCTATATTTTTTAGAATGTTGCAGTCCCGAGAGACCAAC
CACTACAGACTTGATAGATACTGACACATTCAATAATTTTTCCATACCATTGA
TGACTAGTCATAATTTTAATGACCCATCCCAGCTCCTTGTAATCCTATTTGTCT
CATATCTATTGAACTAGTTTACATCTGGCTCAAGCAATTTCAAAGAATGGAAC
CCAGATTGTCTCGTCTCTCCTGAAAATTGCATCAACCCTTATATTTAACAAGG
TGGTTGAATTTAGGCTTTATATTTAACCCATCACAGCATCCTGTCCACAGAAT
ACTCCTGTGTGTCATCGGAGTGGAGTGAAACAACTCGTCGTAAATATCAATT
ATTTCAGAGAAGCAAGTGAATTATTCGTTTAAACATATATATACATCTCTG GA
TCATTTGATTTATCATGTTCCAGTGCCTTCGATGT 
 
>SLP54_GO479143 
ACATCGGGGGGGGCGTCGTTTGTTGAGAGGAGGGCTCCGCATTTCCCATGGG
TAAGATTGACCAACACGAATGTGGAAAGTTGGCGAACGTGTTCGTGCAGTGC
AGCCTGCTGGGGACTTGGGTCCTCTTTATCCATTTACTGCAGGTGTTTATGTG
GCATTAATGATGGCACAGATTGAGATCTTGAGGAAGAAGGGACATTCATACT
CGGAGATAATTAATGAGAGTGTGATTGAAGCCGTGGACTCTTTAAATCCTTTC
ATGCATGCACGGGGTGTTTCCTTCATGGTGGACAACTGCTCAACAACAGCAC
GGCTTGGGTCAAGAAAATGGGCCCCTCGATTTGATTATATTTTAACTCAACAA
GCTTTTGTGGCTATTGATGCGGGCTCACCCATTAACAGAGATCTCATAAGTAA
CTTTCTTTCTGACCCTGTGCACAATGCTATAGAAGAATGTGCAAAATTACGCC
CGACTGTTGACATAGCAGTCACAGCCAACGCGGATTATGTAAGGCCAGAATT
ACGGCAGTAAAGTGTACCTCGGCCGCGCCACCCGCTA 
 
>SLP55_GO479144 
ACAACGGGAGTCGCTGCCTGCTGTATAGGGGACATACAGACTTCTTTACCTCC
AAGTATCATACAATGAACTGTGGAATTATATTTCGTGGTCCTGAAAATCCTCT
TCCTCCAAACTGGCTTCATCTTCCAGTTGCATATCATGGGAGAGCATCCTCTG
TTGTTATCTCTGGAGCAGATCTTCACAGACCTAGAGGTCAAAAACGTCCAAT
GGGCACACCTACACCAGGATTTGGACCAAGTGTGAAACTTGATTTTGAGCTA
GAAATGGCTATGCTGGTTGGACCTGGAAATGAGTTGGGAACGTCCGTGAGTG
TGGATGATGCAGCTGATCATATTTTTGGGCTGGTTCTAATGAATGATTGGAGT
GCAAGGGATATACAGGCGTGGGAATATCAACCACTTGGGCCATTTTTGGGAA
AGAGCTTTGGAACAAGCATCTCACCCTGGATTGTCACTCTAGAGGCCTTAGA
GCCTTTCACCTGTGAAGCACCTTTACAGGATCCACCTCCCCTGCCCTATCTAA
CTGGGAAAAGTAGCAGGACCTATGATATCCCTTTAGAGGTTGCCTTAAAACC
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AGCCGGGGAAGAGAAAGCTTCTGTTATTTGTAAGAGCAACTTTAAACACCTA
TATTGGACACTTGAACAACAACTTGCACACCATACCATCAATGGTTGTAATTT
GAGGTCTGGAGATTTGCTAGGATCTGGAACCATAAGTGGGCCTGAGCCTGAA
AGTTTTGCTTCCCTATTAGAGCTATCATGGGATGGGAAGAAGCCACTGAAAC
TTGGAAATAATATCTCTCGAACATTTGTGGAAGATGGTGATGAGGTCATTTTA
ACAGCATGCTGTCAGGGAGATGGATATAGGGTGGGCTTTGGTACCTCGCCGG 
 
>SLP56_GO479145 
CACATGTGTTTCGCGAGCACTGAGCATTTTGTAAGACGAACTACATAACAAA
TGTAACAAGGACGTGCAAATGACGGTCGTAAATGGCAATGCTGCATATACAG
AAAGGATACCATTCTAATTGCATTTTTCATTCACAGATTCCTCTTTAAGCTGCT
GCAGCTGTTGGCAGCAAGCCATTATGCCTGAGGAGTGGATCCGTAGATGGCT
CTCTACCCCGAAAATCTATGAAAACCTTCAATGGGGGCCGGCCACCACCCAG
AGCAAGAACAGTATCCCTAAATCTTTTTCCTGTCTCCTTGACAGCCTTCTCATT
ATCCAGTCCAGCCTCTTCAAATGCTGAGAATGCATCTGCGGACAGAACCTCA
GCCCACTTGTAGCTATAGTAACCTGCTGCATATCCACCTGCAAAGATATGAA
GGAAACTGCATAAGAACCTATCTTCCTGCGACGGTGGAGGAACTTGTGTCCT
CTGAGCTACCCTCTGATCAACATCGAAAATAGTCTCTGAACCACCAGGAACA
TACTTTGAATGCCCCGCGTACCTCGGCCGCGCCACCCCC 
 
>SLP57_GO479146 
CCAGGGGGGGTAGCGGCATGGGACTCTCGGAGTTTACGCGATGTGAAAGATT
TTCAGAACTCAATAGAGACGCTCGATCTTGGGCGCTTTGCCGTTGATGAACAC
AACAAGCAGCAGAATGGCGATATATCGTTTCGTCGAGTGGTGGCGGCAAAGG
AGCAAGTTGTAGCGGGGACTATGTATCATCTGACCATAGAGGCCGAGGAGGG
CGATAAGCCCAAGCTGT 
 
>SLP58_GO479147 
CCCTGGGGCGCTCGTATTAACCACTATTTCGTCGTTTGGTGTAGACTCAGGAA
GCAATCTTAGCTGTTAACAATATTTGACCTCGCTTTCATAGCTATCATATTAG
TCTCAAATATATAGTCAGTAATAGAAACATCTTCTTCCACTCGATAGCAACTA
CGGGTATTAGAGGATGATACCCGTATTCTTGGCTATTGATTACGGGTAGGTTC
AAGGCATGTCATATGTAGGATGATACAATTCTACGACTCTAAATAAAAGGA C
AAATTTCGCATC 
 
>SLP59_GO479148 
CAACGTGCTCATTTCAGAGGTTATATAAGGCAAGAAAGCATGTTCTATCGTC
AATCTAAGAATCCATGTATTTGTTCTCGAGGAAAATTCTTAACAGTAATGA CA
TGATTCTAAAATAGACAAATTATGCTGCAAATAATTAACCTCTGTTTTTAC AT
TTTGACTTTGATCTGGCAAAGCTTCAGGTTGAAATGTAACTCCATACATATCC
ATATTCACTGTGACCTGGGAGCTCTGCACCTGCCATTATACCGGATCTATGAA
TTGAATACATAACTATATACACACATACATATCCAACTTAAATTCGGCATG TT
TTTTCTCTCTTTCATCTTGTTTAGTGACAAATGAGTCTAAGCCGCTGGAGTTTT
GCAACAGAGATTGAGAACTTCATCCAGGGGAGCATGATCTCCAGTACCTCGG
CCGCGACAACGCTA 
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>SLP60_GO479149 
CAGTCACGGCCGTTGTGAAGAGAGGCAAAAAGCCAGGAATACTTCTTCAAAT
ACTTCTCCCGGGCACTCACCATCCTCTCTGAGAACAATCCTCTCACCGGCGCT
CGAGGAGAAATCCGTCGGCAGTGCTCGCTCAAAAACAAATTGCACACAAAA
AGCAAGCGTTGAGCGATAGCTCAATGCCGCAGTGGTGGGAGTGATAGCGTGA
TGCCACAGTGGTGGGCATTTCATATATAAATTGCAGTTTGCGTTTTTATTAGA
TAATCATAATGGTGTGGTGTGACTATGCCCTGCGAATCACATCGATGAACCA
CAACCGAACCGTGGAACAGTAGGCTTATTTCCTTATGTAAGCAGAACCTTTTA
TTATAAACAAAAAAGACACAATCCTGTCTGTTATTCT 
 
>SLP61_GO479150 
CCCATGCTTATGTACTGAGGTTCTCCGCCAAAATTTAAGCAGCACCGTCAAAG
TAGAACTGCTGGTGTCATGACCTGCATATAATAGCAGAAGGATATTGTCCTG
AATCTCGTTGTCTGTGAGAGACGAACCCTGCTCGTCAACATTAGAGAGCAGG
AAAGACAATAGATCTTGCTCTGGAGAAGCTTTTCCCATAGCCAATGCATCTTT
CCTCTCATTAAGAAGGCGACCGAGTTGTTGGCGAATGGCATTAGCTGCGCGC
CTGGCTTTGTTATATCGCGTACCAGGTAGATCTATGGGAACCTGCATTACTCC
TTTCACAAAAACCATAAAATGACGCCAAAACCTCGCTTGCTCTTCTCGATTGT
TTATGGTTGCAAACAAGTCACAAGCGAGAGAGAAAGTGTAACGTTTCAATAG
AGGTAAAGCCCTCACCTCATTTTTACCGATCCAGTACCTCGGCCGCGACAAC
GCTAAA 
 
>SLP62_GO479151 
CACTTGCGCTGGGCGATGCGTTTGGGATCCAAGGATTAGAAGTATCAGCACT
GGGGTTAGGTTGCGTGGGCATGTCGGACTTCTATGGCCCTCCAAAGCCCGAG
CAAGAAATGATTTCCCTTATCCACTATGCCGTCTCCAGAGGTGTCACTTTTCT
TGATACTTCGGACATTTATGGCCCTTTCACCAACGAAATCCTCATTGGAAAGG
CCATTAAAGGAATTAGGGAGAAAGTCCAATTAGCCACAAAATTTGGGATAGC
ATATGTGGATGGAAAACCAGAAGCTCGAGGAGATCCTGCATATGTTCGTGCT
GCCTGTGAAGCAAGCTTGCAGAGACTTGAAGTGGATTTTATCGATCTTTATTA
TCAACATCGTATTGACACTAAAGTCCCCATTGAAGTGACGATTGGAGAACTG
AAGAAATTAGTTG 
 
>SLP63_GO479152 
AACGCCGGGCGGTATGCAGACAAACGGTGGTTTTTCTAAGAACAGATCGTAA
ACCCTGAACCCTCATTGTCCCCAAAGATTATTGGGC 
 
>SLP64_GO479153 
ACAGGGGGGATGTAATTGGGACAGGGGTTCTGGAAGGCCGAAGATACAGCT
ATAGACAGCCGGGGATTGGTTTACACCGCCACCCAGGATGGTTGGATTAAAC
GCATGCATTTGAATGGATCGTGGGAAGACTGGAAGATGGTTGGACTTACTCC
TCTTGGGCTTACTGTCACCAAGAGTGGAGATGTTCTTGTTTGTATGCCCAACC
AGGGTCTGCTTAACGTCAGTGATGATCAAATATCTCTTTTGACTTCTGAGATA
GATGGAATTCCAATCAGGTTTGCTAATGCGGTAGTAGAGGCTAGCGATGGAA
GTATATACTTTTCAGATGCCAGTAC 
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>SLP65_GO479154 
TCACTTGCGTTGGCCGCACTTGCAATCTTTTCCGAAATACATCTGCACCACAT
CCCATCTCATAGCTTGTCTCCACAATACCATCCATCTGGAATCCCTTCTTCTTG
GTGCACTGGCTCTTGTCAGCGCAGTCGCAATTTCCGCAATCGCTCGACATGTT
TGCAATACAATTATCAGAAAAACAGATTACTTACACTTCTGAAGTTCTAAG TT
CTCCAATGCTCCCTTCCCCGCGT 
 
>SLP66_GO479155 
CCTTGATAACTCTCCGTTGCCTCTGGATTTCTACCCACTAGTTTGCTACTACCT
TCTCAAAAAATTGGAACAATGTCAGAAAATGACAATTCTCTTGCTTAACCA TC
CCAGATGCTCTCACTGGTCTCCTGAGACCGTCTTAATAATATCAGAATCACCC
GGATCCATAATGCTAAGACAGCACACACGGTAATACTTGCCACAGGCTGTTC
CCAGATCAACATTGTTTCCATTGAAATGATGCACTCCAACCTTAGCAAGCATA
GCATAATACTCTATTTCTGATCTACGGAGAGGAGGGCAGTTATTTGCAATGAT
AATAAATTTTCCTTTGTTAGTCCTTATAGACTTGATGGTAGTCTTGTAACCCA
GTGTATACTTGCCACTCTTCATGACAAGCGCCAATCTGCTGTTGATATTCTCA
TGAGCCTTTTTAGTTTTCTTTGTGGCCACCATTGTGCCTGTTGCCTGCAATAAT
ACGCTCGCCTCGTCTCGCTCCGCCCCGCCCGCACTAAGGGTTTCTTAGATACA
AGAGGAAACAGGCCACC 
 
>SLP67_GO479156 
CCTATGCTCATGAGATCTCAAACCTAAGTTTTGTAAAGAACCTCTATTCTTCC
CTGCTTTGAACCTCTCCTCAAAGGAAGCTTTTACTCCCTTTAGCGCCGCCACC
TTCTTATCGCGGGTCTCCAGTTTATCAAAAGTAACCACAGCCTTCAAATCCAC
ATCCAAACTATACCTGGTGGGCATGATGTGGTTGTAGTTAACAACCTTGATGA
AAGCCTTCAATCTTGATTTCTTCGCCGTTTTCTTCGCAGAGTCCTTTCTGATGA
CCTTCTTAGGGTATTTCGCGATACCCGCTACAAGGCAGTGGCCATATGCCCGT
CCAGTAGTGCCATCGTCGAAGGTTTTAATGATAACGGCCTTCCGACCTGCGA
AGCGTCCCTGCAAGAGAACGACAACTTTGTTTTGCTTCAGAAACTTCACCATT
CTCGCTGATCTCCCTCCACCCGCTCTTGCTCTTCCTCTTCTCTGCCTCGCCCGC
GT 
 
>SLP68_GO479157 
AAATGCGAGGCTGCAAGTGTGAGTGCTGACGTTTAACTCGAAAACATAGTGA
TCTATAAATCTGATGTTTTAGGCATTAAGCTGCCTAGAAAAAAAACGCCCAA
AAGGAGGTATCAAAGCCTTCTTCCTCGTCGTCCACCCTTTCTTCCGGTGCTGT
CCGTTGGAATTGGAGTCACGTCCTCTATGCGGCCAATCTTCATCCCAGATCGA
GCAAGAGCACGAAGAGCAGATTGTGCTCCAGGCCCAGGAGTCTTAGTTTTAT
TTCCTCCCGTGGCACCAAGCTTAATGTGCAAAGCAGTTATTCCCAGCTCCTTG
CACCTTTGTGCAACATCTTGTGCAGCAAGCATAGCGGCATAGGGTGAAGATT
CATCTCTATCAGCTTTAACCTTCATGCCACCAGTAACACGAGCCATTGTTTCC
TTCCCAGACAAATCAGTCACATGCACAAATGTATCATTAAATGAAGCAAAA A
TGTGTGCCACACCAAACACTTGTTCTCCTTCTCTGACAGTAGGCCCTAGTGTC
ACATTATCCTCCTTAGGTTCCCTGACCTTTTTCTTGCCAGACATTTTGACGCAG
TCGCGAGCTTCTGGATCAAAGGAAAAAGAACAGGAACTATACGCCCTCTATT
CTCGCACACTCCAGCTGCAAAATGGCTTCTCTATCCCCGCGT 
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>SLP69_GO479158 
CACTTTGGGGGCTTGAGGTTGGGATCTCCGAAAAATTACAATCCTACATAAA
ATCCTCAAATGGTTCTCCACAGGAAATCATGAATGCCTATTTTGAAGCTCTTT
TTGACGGCGTAGGAAGAGGATTTTCAAAAGAGGCACTTATGGAGAAAGGCTA
TCTATCCAGAGTTGTGCAAGATGAAAATTCTCAGTCGATGCTGCTTGGTGCTA
TTGAGGCATTTTGTAACAATGCACGAGCTGAAGCGGTCAAAGAGGTTTCTTT
AGTTCTTAAAGTTTTATATGATGAGGACATCTTGGAGGAAGACATCATTTTCC
AATGGTATGATAAAGGTTCAGCTGGAAACACCTCACAACTATGGAAAACTGT
CAAACCATTTGTTGAGTGGCTGAAGAGTGCCGAAGCTGAATCAGATGAAGAA
TAAGTCTTTATCCTCGTTGGAAAGTTACCTGCATTCTAGGAATCTTACAGTAC
CTCGGCCGCGACAACGCTACA 
 
>SLP70_GO479159 
CACTGAGACCTCTCGAGAAATGGATACATCTAAAAATTACACAAGAAAAGC G
TGTTTACAAACAGAAACGCTGCAAAAAAGCATTTTCCCAAGCATCTTCATGA
AAGGTGAGCATTCATCATTTCCCGATACACCATGTCAATGAAATGTTCATTCT
GGATTAATTTAACTAGAGCATCACGGATACCATCTCTTGTTATAATTGGTCCA
TGACTCATGCTTGAAGCTGGAGCAAGAGATGGAGGCGGAGTAGGAGGGGGA
AAAGGTTGAAGAAGGGGTGAACCATGTGAAGGCTGCAGTTGTGAGGGTGGTT
GAACAGGTGGGGCTGTCAGTGTGGAAGAAATGGGTGGAGCCATTAATGCTGG
AGATACCAATGGTGGT 
 
>SLP71_GO479160 
CCAGGGTCATCCGATTTTACGTGAAAATACCTAGAAGAAGAGATTATTAGGT
CCCGGGGGTATTTAATGTCAAGACAGCCATCGCACTATGATAGCCCGCATGG
GGTTCCTGCATCGAGATTCACTTCCAATAACAAGGATCCTATGCGTGGTCCCT
CTGCTGAATCATGGGTGTCACCATCCCATCAAGGCCCAGGTGGATCACTGAG
CCGAGGGAGGCAGGATTTACAGTATAATAATGCTTTAGGTAGGGATCGGGAG
GAAGGACATGATTATCAGCGTCCTTTTAAGCACCAAAGACTGAATGATGCTC
ATGATAGTCAAAATAGAGTTGGAAGTGAGCGTCATGCAATTGACGATGCTTT
GAAATCGGATCGGGAGCCTATGCAGCAGCCTGGTTTAGTGGAGAATAATCAG
GAGCTCAAGCAACAAGTACCTGCCCGGGCGGCGCTCGAAAA 
 
>SLP72_GO479161 
CCAGGGTCCGAGGCGCAGGGCAGGAGGGTGGACTCCTGAACTGTGTAGAAA
GAGAGCATTTGAAGAAGCTTTTGGTAGCTTGTTGTCTTGTTGATCGTTTAGTT
TGGGTTTTTTTGACCAAACAATATTTTAGAGGCAGCTTGCAAGCCACTAACGA
AGGATGTTCTATCTGATGGGTTAAGCCTTAAAATTTATAAACAAAAAATTA TA
TGATTTTCAAGCATCATGGGGAAGCTTAATTCTTTAGTTCCTGTATTCTTGTAA
GCAACATGAAAGCGAGAATCAGGCAATTAATTCTTTGGAAGGTAATTTTCAG
AGAGGATATTCTATATCTCCACCCAC 
 
>SLP73_GO479162 
CAGAATGTATGACTTGATGCCCATACAGAACAGCTACATAAGTATAAATAC A
TCATTAAAATGTCGAGCCAAGTCCTGTTTCTGTTGAAAATTATGACCGAGTGC
TGTAGTTGTGCAATACAACTGTAAAACTATTTTTCTCCCAGACACCAAGACAC
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CAACATTACTGTCTATATTTTAGAAATGAAAGTCTTGACTTGCACCATGTTTA
CAGTTCCCGCATCTGCACTGAAACTCACATAAGACCTTAAGAAAGACGTCTG
TTAAAAGCAACAGCAGTTATCTCACTGTATCGT 
 
>SLP74_GO479163 
CACGGGAGGGAAAGCCTTTGAGGAAGAAGTCCTGGTTCCGGGTTCAGGCGTT
TCCTGGGGACTCACCTCTCTTCTCCTTTCCCGCTTTACAACCTTCTTCTCGGGG
GGAGTCACCACCAAACTTTTTGTTGGAGGACTTTCTTTTTATACAACAGAGAA
GGCTTTGACAGAAGCATTTTCACGCTTTGGTGAAGTAGTCGAAGTTAAAATA
GTTATGGATAGAGTTTCCCAAAGATCAAAAGGCTTTGGCTTTGTTCAATATGC
TTCTGAAGCAGATGCTGAAAGGGCTAAAGCTGAAATGAATGGGAAGGTTCTG
AGTGGGAGAATAATATTTGTGGATGACGTAAAACCTAAATCTCAGCTTAGTG
GGGATCTTCCGAGTTCCACAGTCTCTCCTGTTTTAAGCAATAAAACAATTGGA
AGAGATGATTTTGAAAAGCTCTAATTTAGAGATTATATGATTTTGGAATTT CT
GGTTTGCATTTCCAACAAAGAGTCATCATTGGTATATTGCCTAGAATAGCATT
AGAACATTCATTGTATTGCTTTGTTGTC 
 
>SLP75_GO479164 
CAGGCGCGAAGCTGGGTCGCTGGCCGCTGCAGGTCTCGTGATCTACTGTCTGT
GTGCCTGACCTCTACGGAATCGCTTCTTTCAGCCCGGGGAGCCTCCCCTGGCT
CCCTCGCTTACCTTGACGGGGCGAAAGAAGGAGGGCGATAAGCTCCAGACTG
CCGAAGGTTGGGCTTCGTTCGCTGGCGGGTTCTTCTTCGGAGGGCTCTCTGGT
GTGACTTGGGCTTACATTCTTCTCTATGTCTTGAACCTCCCCTACTTCGTCAAG
TGAAATATTATGATGTAAATGCTGTTTGATTTTTCATAAGCTTTGAAACTT TTT
TTTGTAAATTTATGAATTGCTTTCAAACTTTTTTGTAAATTTATGAATTGC CAC
TAGATGCTGGGGGCTTTTGTCTAGCGTTACC 
 
>SLP76_GO479165 
CATTGCCGTAGCCTCGCTCAGGCTTCTTACCTTCGCTACGACCTCAACACCGT
TATCTCCTCAAAGCCCAAGGACCAGAAGAAGCCCCTCAAAACCCTCACCACC
AAGCTTTTTGACACCCTTGACAACCTGGACTACGCTGCAAGGAGCAAGGATA
CACCCAAGGCAGAGAAATACTATGCAGAGGCTGTGACCGCACTTAATGATGT
CATTTCCAAGCTTGGTTAAGCTGTATGCATCATTGTAACAAACTTAGCATCAA
TTTATGCTGTGTTGCATCTCCATCTTTTATGTAATAACGTTCTTGTTCCCATAC
GTTCACACTCACATTTTCTGCGGAAAATATTCGACTTTTATTCATGTTTTGAAT
GTGCTAATTTATTGTTGTTTCC 
 
>SLP77_GO479166 
CATAGAATGCGTAACATCACACCCTATGTCCTGGAAAACATGTAATTTAGTC
GCATTTCTCCCAGGAAACGCCATCTAGTTTGCATTCCCCATCGCTCCATCTCC
TAAATCTCTACAGAAAGCAATAGAACAAGCATAAAGTGTCAATCTGTGGAT C
ACTGATCGACAAGAGTTTGACTAATTCTGCTTTTCTTCTTTGGGATTGTGATTC
AAGCTCGGTGATCTTCTTTTCTCACTAACGCCAACATTCATCACCGAAAGGGG
CAGGCAACATTTGCTCATCTGCCTGTCATACTGCTTGTGTGACTTATTTTCCTC
GTTGTTTTCTGCTTTATTTACTAACAGATTTGAATACCCCCCAGGACTTTTTGG
GTGTACCTCGGCCGCGACACGCAT 
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>SLP78_GO479167 
CACGTAAATATACGTTAATACCTCCAACGTGAACTGCAGAAGATTGAAACAC
CTTGAGAAAGTGAAAAGGATGAAGATGCACCAAATACCTCTGGGAAACGCG
GTGTTAAAAGCAATCCGGGACTGTCTTGCTTAGTTACAGACATAGCTGTATCC
TAATAGATTAGTCAACCTATTATTGTCAGGATGAGAGGCAATGTTTATCGGA
ATTGATGTATATTTGTAGTCTATGGCCTGAAGCTAATGATTGCAGTCAGGCGG
ATGAATCATTTATAAATTATCTTTGGCTGTGTAAGGTCAGAAAGGTTCAAA TT
CATCTCCAGCTTTGAAGGCCTGATGACGACGCACACACACTGGACCAGTATT
CTGCACTAATGAACTTGTGCTCAAGAAGCTTTCTTAATTCTTATAAACATGTG
TATGGTATAGGATTTGTATAATTTAATTAAGCGCTTGGTGGCAAGTTTTACAT
TCTCATGAACTGCAACATTATGTTTTTGTTTTGCATGGGAGGCTGCCCAGCGT
TTTGATCGTTAAATTCTTTTTCCCTAACG 
 
>SLP79_GO479168 
CCCGGTGGCTTGATGGAGCCTGGGAAATGGTGAAGAAGCCACCGAGTTTATT
CAATGCAGTGAAAGATTACCCAGAAGACGTGCAATTAGTAGGCAGCTACGCT
TCTTTTCTATGGGAATTATCCAACAATAATCAGTGTGTAGTGTTTTCTAGTGG
CGTGTGCAGAATTTGAGGTGTGGGGGTGGTTGTGTCGGGTGATTCTCATGTAT
ATTTTTTTTCAATTGTGTCTAGAGCAGTTCTTAATCATATGTAGTCTTATTTAT
GACGACTAAAATATCTCATTTAATCATTGGACTACATCTAGGCAGCTACACTT
TTCTTCCATACTCATAATCAGTGTGCAGTGTTTTTTAGTGAGGTGTGTAGAAT
CTAAAGTGTCCAGTGGGTGGGTTGATTTTCATGTATATTTTTTTTCAACTGTAT
CTGAAGAGCTCTCAGCTATATGTAGTCTTATTTTTTTTTGGAAATTATCTAACA
ATAACTAGTGTGCAGTGTTCTTTTAGTGGGGTGTGTAGAATTTGAGGTGTCCA
GTGGGTGGGTTGATTTTCATGTATATTTTTTTCCAATCTTATCTGGAGCAGCTC
TCAGCTATATGTATATGTACCTGCCCGGGCGCCCGCCTCGAA 
 
>SLP80_GO4791669 
AATCGTTTCTTTTTTGAGCGCTTCGCTTCGCTTCTTTGTGAAAATAACAACTTT
CTCTTAACTTAATTTTTATGGCTTCCTTCCAACTCTCATTAGCCAGACATTCTT
GATGTATATTATTGGAAATAATAGAAGTCAGGAACTTAGATAATCCTGAGC T
TTCCATTAAAGCGGGTAAACATGGATTTCTGTTAATAAACCATTCGACGACA
GTCTAATATCCTATGGGGCAGGCTTTCTGCCATTCAGGTTAGTCAATCTTTGG
GAATGGTTTATGCACTTTTTCATTATACTTGTAATCTTGATACCATATTGTCAA
CGGTTTATATACATTATTACATATAAGCACATGGTTTGGTTTTAGTG 
 
>SLP81_GO479170 
CATCTGTAGTGCTCTGTTTTGCTAGAAACTCGGTCCTAGCCTTTTGTGCTGTTA
AATTTAGGTTTCTTCATTCTTCCCATCGGTCAATCATCCCAAAGGTGATGTAA
ATACTCGCACCTTATTATGGGGAAGAGTACT 
 
>SLP82_GO479171 
AAACGGTGTGATGGTTGGACCGATCTCTCGGCTGGATTGGAGCTAACAGATT
CTATCCGGGGACTGCAGATGCACTTAGGTTTGCAAGCTCGAAAGTATATATT
GTCACAACTAAACAGGCTAAGTTCGCTGAGGCCCTTCTGCAGAAACTGGCTG
GAGTGAGTATTCCGCCCGAGAGGATCTATGGTCTAGGAACAGGGCCAAAGGT
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TGAGGTGCTGAAGCAACTTCAAAGCAAACCTGAACATTCTGGGCTGACACTG
CACTTTGTTGAGGATCGGCTTGCAACTCTGAAGAATGTGATTAAGGAACCAC
AGCTGGATAAATGGAACCTCTATCTTGGCACTTGGGGTTACACAAGGAGTTC
ACACCTATTGATGGGCATGACATTGGACAGTTTCCTGGCTCAGAATCACTAA
AAGAACAAGATTCTGCATCTTCAGAACCTGCTTTTGTATAATTTTGTTGCAAA
AGGCATGTTTCCCTCAACAATATTGAAAATCCAAATCTTTTCTCTTTTAGTGA
ATATTTGTCATTTTTCCTTTTCAATCTTTTGATTGTAATAAAATGGGAAGA ACG
TTTTTGTT 
 
>SLP83_GO479172 
CCTTTGCTTACTGTATCTTAAATGACATGAGAAGGGATATCAGGAGTCGGAC
AGCCTTCAGTGAAGCATTACAACAAGAATCTTCGGAAAAGGCCCCCACAATG
GTTCATGTCTGACATATGGTAGCTTCAATTGGCAACTTCTCTATGGATGACAA
AATTTTAAGTCATGACCCATTCTTCATTGTTTCATACCCTTCGTTGAATTGACG
TCAAGTCATGGTAAATTGTGGTAGAACAAAGAAAATTTAAGTGAATATAAT G
CAATGAATGAATGGATATAGTTGCATTGCCAGAAGCGATGAGAGAGATTTGG
TGTTGCCTCTTTCGATTAGATCGATACAAATTATTTGGAAATTGCTGTGCAGC
AGCACCTTGTATATGTTGAGTATGTTAAATGTATCTTGCCATAAGATTTTGAT
AAATGGAAATTTTGGCGAAAAAACACAGCATCTTACGATATGCAAACAAAA T
GATTAATCCTTGTGGTGATAC 
 
>SLP84_GO479173 
CAACGATTATATTGTCTTGTTGGGCGCTACAAGCTAAGCACTCAGGCTCGTGC
CAAGGCAGATTCTGCAAGAGTAAAGGTCACTCAGGAGTTATATAAAGAACAG
CAGATTGCTCGACAGGAAGCAATTCAGAGAAGAAAGGAAGAGAGAAAGAAA
AATGTAGAGGAGACTGACACTAAGCTTAGTGCCGAGGCAATCCGGAGGAAG
GAAGAGAAGGATCGTCAGCGTCAGCTGAAGAAGTCAATGCCAAAAATAAAG
ATGACTCGTGTGCATTAGAATTTTTTTTTAAACTAGCATGTGCTCCCACTGCCT
TTACCATTAGGATAACCTTGCTTTTGTTTTCCATAATCAAAGTTGGTGGCCAT
CAGTGCCCACTTTTTAGTCATTTGGCTCACTTATAATGTACCTCGGCCGCGAC
ACGCT 
 
>SLP85_GO479174 
TATGGGGTGGGTTCTGTATTTTGCTATATTGTTTTCGTTTTCGTCTTCTTGCGC
TTCTTTGCTGTAGAAAATGGCGTCTTTGGTTGTTCAGGTCCATGATTTGAACT
CAGAATCGGCAATAACGTCGCCAAAGAATATCGGCACCCATCCATCTTCAGA
AGATGTTGCGACGAGCTTTTCTTCGCCAAAATTGGAGCATAAATCATGCCTCT
GCTCTCCCACTACTCACGAGGGACCTTTTCGTTGCCGCTTTCATCGATCGTCG
TCTGGTTATTGGGGTAAGAGGCCCATGCCATCGCCAACGTCAACGCCCACGC
CCAAGCCCACAGGTAATGGCGTTGTAAATGGAACAGAGCAGTCTGTAGAATC
TCAGTCAAATATAGCAGATGCCTTCTGTACCTCGGCCGCGACACGCT 
 
>SLP86_GO479175 
CATTGCCAGTACTTTAATTGATTTGCATATGCAATAATAGTAACGGCTATATA
ATGGTAGCTTCACGTTAATCGGCAGCGGGATATCCAATTCCATTGCGTTTGGA
AGGAAACTTAAGAAAGACCATACTGCAAACAGTCCCAACTACGATCGGAAG
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GATTGTGACCAACAGCTTCTGGTCCTCGCGAGCATCCACGTAGTAACAGCTC
GCAACGTTGGGATCCATGAGGGCTACCGAGGCAAACACCAAAACTGATAAC
ACCGCGTGCACGAAATCAAGAAACGTGAACTTGTAAGAAGATAGATCCGCTG
TCCTGTTGATCCCTGGGTTCATCGTCCACATCCCGCTTCTGGTAGCGATCCCG
TAGTATAACGCCCCGTACCTCGGCCGCGACACGC 
 
>SLP87_GO479176 
CCTTTATTTTTTTTTGTATCTTAAGATTTTCTCTTTCTGAGAATCTCTTGCATTA
CACCTTGTATTTGTTAGTTCTATGCTAAATAGCTCCAACTGGCTAACAAAATT
AATAGGTGCACTGGGAAATTGTAGGCTGCCGAACCTATTCTCCCTTTATCGGG
TTGTATTTCTTGCTATAATCTATGACCGGTTGGTTAAATTATTCTTGTAACGAA
TATGGAAAGCGAGGGACATTCTTCAAATGCACTAAGAAACAATGATTTAAA T
GCCTTGTGCATTATAGTTCTATGAAGCTCATCAAAATGGTGTTATG 
 
>SLP88_GO479177 
CCTGCCAGTTGCAGAATAAGGAGCTATGAGCCTGAATGTTAAGCTGTCTCAT
AGGCGGGCGATCTCGTGTTGCTTTAGCCCTCCAGATCAGGGGGCAGACATGA
AAGCGGAGTTGAATCGTTAAAGATGAAGGGTTTTTAAGGTTTTTTATTAATCA
AAGTCTCTCTGCTATTGCATGTTTTCTTTGTCAATCTGTTAGTAAAATACTAAA
ATGTGTTAGGAACAAAACGAATTGTTATTCATATCTGGTTTGGACTGCAGATT
AAAGTGTTGCCATGGATGATATTAACAGAAGTTGTGGGACTGTAAACAGAGT
TATGAAAGATCAAATATTGGAATTGGAATTTTCAATTTTGTCC 
 
>SLP89_GO479178 
CATTGTCAGTATGACCTGAGCTTAGAGCTTTTCCCGGGAGCTGGGCGTTACTC
ACTTCGACTCACGAGGAGTCTCGTCATCACATCTCAGGATATGAGCCACCGG
ATTTACCTAGCGACTCTCCCTACATGCTTAAACAGGCAACCAACGCCTGCTGA
GCTAGCCTTCTCCGTCACCCCATCGCAGTCATACCGGGCACAGGAATATTAA
CCTGTTTTCCATCGGCTACACCTTTCGGTCTCGTCTTAGGAACCGGCTTACCCT
GCGCCGATTAACGTTGCGCAGGAACCCTTGGGCTTTCGGCGTGCGGGTTTTTC
ACCCGCATTAACGTTACTCATGTCAGCATTCGCACTTCTGATACCTCCAGCAG
ACCTCACAGTCCACCTTCACAGGCGTACCTCGGCCGCGACACGCTA 
 
>SLP90_GO479179 
CCCTTGGGCGACTTGTTACAGCTCCTTGTATGTGGAGCATGTTTTCAGAAAGC
CAACGATATAAGCTTAATAATGTGGCGATTGTATTGTATCAAGAACAATGGC
CACATTAACTACCAATAACTCGGTGCCTATAGGAAGGCCATAAGGATTGCTG
CGAGACCTTGAACTACTAGAAGGTGGAGCCTGCCATGCAACATTCCTTTCTAT
ATGCACAATCTGACCAATTTTTTATTGACGTCCATTTGGAAGGTTATCAACTC
AGAGGGCAATGGACTCCTCTGATAAATAGTAATTCCTGCAGTTGCGGTTGAA
CGCTTCATAATGCCCTGCACAATTACGGACGAATGCAGCAAGCTCATGGACT
TCAAATCGAGTGAAAGATATCTTTTCCTTGTTCACCACTCCCTCCATTTTATGT
TTCCCATACAAATTCTTTACTAGTTCACTCTTGCTCTCCAATTCCTTTGATAAA
TGCCCTTGGGCACCCCCTGCCCTTGTGCACCTTTCCAGAAGTTCCAGGCCCTG
TTAACACTGTATCCTATCTTCTCCGCTAAAACCCTGATACAAGCCCGAAACTC
CACCGT 
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>SLP91_GO479180 
TACTTGGAGAGTGACATTTGTTGAGGTCGATGAGATATATTTTTGTAAATAGT
TTCGGTTTAGAGTTTGTTCAGCGCTGGCCCATCTGTGCAGGGTTCTTGTATGA
GCAGTGGACACAAATCACAAAGTTTATAGCACATGGAGTCTTTTTTTGTTAAT
GGGATAAATGCTATAAACCCAGCGTCCCCGCGGAATAAGGAGTTACAAATAG
TTTTCTAGGTACTATTTTAAGATGCATAAAATGCAAAACTGCCACTATGGTAG
AAAATATAGCTAAACATCTAACTTTGCTTGGCTTTCACTGAGCTTGATGGAGG
ACTGCCAGATACCGATCTCCTGAATTCTTCGTCAAACGCATCTAACATCTGCC
ACCCATCATCGGAGCCTATCTTCACATACTGTTGCTTCTCTGCTTTTACAGAAT
AGTTTGAGATTTGGGGACTTGCACCCTGGCATTCTGTATCTGTTTCAACCATA
CGTCTTTCCACTCCACTTGTGAGGTAATCCATTTCATCATTATTAATACGTAAT
GAAGGGAAACCTGTGTAAGGGACAAACTCTGCTAATCTAGCAGAACTTGCAG
TAGGAATTAGATTGGCAACATTATCAATGGACTGATAGAGACTGCTATGCAG
AGACTGTGCATCTTGTGAATCACGGCTGCTACTTCGCATGCTGAACTTTGACA
TATTGATATCATCATTCCCACCATGTGTCCTTAAAGAAAAAGATCCAAAAG TA
TGATCATTGGAAGCTGTCCAATGCTCATCCATGTTCTGACATCTGGGAGGTGC
AGCCAGGTTTATATTCAAAAATCCATTTGCAAATTTAGTTATACCTCCATCCA
TCTGTTCTTTTAACACTTTGACATCTTCAGATAGAACAGATACTTCCCCTTGCA
ACACATCGACCATGTGGCCCCCGCGTACCTCGCCGCCACCCCCCTAA 
 
>SLP92_GO479181 
CACAGGCACTAAGCAATGATACAAATCCTTTCCTATGCCGCATACCACTATTA
CTGCTCCCCAGGCAATGCACAGCATTTGGAGAATCCTCCTGGCACTTGTGATC
CATACAGTAATCCGCAGGCACAGGAATTAATGCAGCTATTACCACATCCAGA
ATGGGCAGTCCATGGCTATCCCTCGAAGAGTGGAGAAGGATGGATTGGTGAC
CCTAGAACATGGGAGCTAGATGTTGGAGCCCTCTCCAGCCGTTTATACTTCTA
TCAAGATCCAGGGACAAAACCAGCAAGTAGAATATGGACTTCACTTGACGTT
GGCACTGAAATCTTTGTGAGTGACAAAGATGAAATTGCAGAGTGGACAGTCA
GTGACTTTGATGTCGTTGTTCCAGTGGCAGGCCATGCATAAGCAGTCAATTTC
ATAAAGTATCCTGCAGTGACAGATGCATGAAGAAGCCAGAATAAGCTGAGCC
TTTCCTTTGTCATTCATTTTCGCATTCTAGTAGCTTTCACATTCCTGCCAAAGG
GCAGGAGCAATTCTTTCCAGAGGTTTTCTCAACCTATTGCTGTTATCAACAAG
AGATTTATTAGATTGAGATAATGATTCAGAAAGTATTTGCAACGTG 
 
>SLP93_GO479182 
CACTGTTAGTAGGTCGTTTGAGCGCGAAAAATCGGCACCTCGTTGTCTATGAT
GATTGCCAGCAGGAGCGGCTTGATCTTAAGAAGGAGAGGATTAAGATTCCGG
ATGAAGCCGGCAACGTGTCTGGGGAAACTTCAGAGGTTAGAGCTGCCCTGCC
TGAAAGTGATAAAGATATCGACACGAAGGAAAGCAAGGAGGCTAACAACAA
GAATTCTGTGAAAAGTAAGGAGGAGGGTGTCATTGTTGATGGTGGCAAGAAG
AGTGGTGTGAAGAGAAAGCAGGGGAAAAAGAATGACAGGAAAAGAAAGGA
AGAAGAGGAAGAAACTGCCGGGAAGGAGAAAGTTGAAATGAAGGTCGAAAT
TATGAGCACTGATGTTGAAGACAGC 
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>SLP94_GO479183 
TAGCCTCTTGCCCACTGTCCTTGGTCGCTGGCACAAGTCCGCTACGAGCTTAA
GCCACTTCTATGAGCTCTTAGAAAAATCTTTTTAACTGATGGATGAAAGCTAA
CTCAAAGGAGGCTAGTCTACTTGCAGCAAGAAGTGAAAAGCGAAAAGGAAA
TGCAAGCCCTAGCAAACCCTAGTTTTACCGACTAACCCTACTGGTGCAAGAA
AAATGATGAAAGCTACAGAAAGGAATGCCATTGACTTCTAGGAAGGTAAAA T
ACATGTGTCTAAGCTACTTCTACAGTAACATCCGGGT 
 
>SLP95_GO479184 
TAGGGCTGTCCCTCTAGGCGCCTCTTCCGAGACTTACACCAGCGGCCTTCCCA
CGACGTATGCTCCCGAGGCTACAATTCCCAAGTGTCCAGGTTCAATAAAGAC
AGCACCGGGATTTCAAACCTGAGCTATTTCCCACTTCGCTCGCCGCTACTGAG
GGAATCCTAGTTAGTTTCTTCTCCTTCCTTTAATAATATGCTTAAGTTCAAGGA
GTAGTCCTACCTGATTTGAGGATGATTTTTGGAATGGTGTGATGGAG 
 
>SLP96_GO479185 
AGGGCTACATTTGAGATTCTTCCTCCGGGGAAGGCGAGCATTGGGTAAGCAA
GCCAGATATCAAAGATACATTGAGTATTTGGGGGAACGATTTCAAGTGCCGA
GTCATTTCCAGCTTGCCTCATTCATTTTACCTTGCATAATTTTGTCCACAAGTC
ATCAAGGGAAAATATCAGACTTCAATACTCAGTCAGAAAGCAAGAACAAAC T
TTGCCCTGTAGTTGGTTGCTGAAGCCATCAATATACTCAGTGCAAGAGGAGC
AATAAGTATTAAGAACACCTGTAGCCAACATTCTTCAGGGAGCATTGTCACA
CATCATCAACGAAAGAGGACTATACTACAGACTCCAAATCAGGTTCCTTGTTT
TATGGCACACTATAAATCATTATTTCAGAGACTGTCCTAGCTTGAACTAGATA
GACTTGTTTCAACACTCAATTTCTTCCTGAATTCATCAATCAAAGTTGATTTG
AAGCAATGTTGATGGCTGTAAATGTATATTTAAACTCAAAATTTCAAAAGT G
CACCTACAAAACTTTGTGAGCC 
 
>SLP97_GO479186 
CATCTTCCCTTCGTTTTTTGAGCTTCTTCTTCCTAAAATGGTGGGATAGGAGCA
GTGAAAAAAATATGGAAATCTCTTCGAACTTCCGCCCTCGCTAGAAGGGAAC
TGAAGAAATGGACGTTGGCGTTGAGAAATGCCCTGAAGAAGAAGAGGGTAT
TCAGAAGTGGAGAGAGGCAGT 
 
>SLP98_GO479187 
CAGCGAGATACAAGGTGGAGCAGATGATGGATCAAACGGTTCGGGAGTGAC
GTCTTAGTTGTTGAGTTGAGGGCATTGAAGGCACATGGACGCCACTTCTTGTT
TTCCTTCATGATTGCAATTAATGCTACTCCTAATAGGACATCGTTGTCGGTGT
GCTACCTAGATCTAGTAGAGTATTTTAATGCTTATCGACATTTATCAGCCATC
TAATTTATATCGCTCCACTAGTATAACATAATGTCATCTAAATTT 
 
>SLP99_GO479188 
ACGAGTGGTAGTGTTGTTGTCCGCCCTACACGCGCTGGCTATTCTCCTAACGA
TCTGGGTCTACGTGGTTGTCGGATGTCTCGTCAACCTGTTCATCCTGATCCGT
ACTCGCCGAGATGATGAACATCCGGCCAGCGGAGGCAATGCAATGCCTCTCT
CGGCCATAAAAGGCTCACATCAATCTTCCACGCATTCGCACACTCGGTCCGA
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CGATCGTAAACCGGTATACATCATGGCACATACCACCACGCATGTGGTCGTG
GACGACACACATCACCGATCTTCTGGGTCTGACCATGGTCTTGAGAAAACAT
TTACTCCTCGGAGCGCGCGCGACCCTGAACTCGAAAGCGCTTATTCTCTGGGC
ACTCAATTCGCCGAGGACGACACCCCCAAGGCGAAGACGCTCGACACCGACT
TAGAGGCGGACCGATGGAGGGTTCAATGATTGTGTTTGTATTGTGTATCTTAC
GTGCTGATCCCTCTTTCGATCCACCATTCGATTCACCTTTTCCTACTGGTCTCT
GGATAATTATAATCGCGAATGGCCTACACGTTCTCTGTACCTATAAACTCCCA
TTGTGTTCCATCAGAATACTCGTGTAATAATAAATGCGGTCTCCCCG 
 
>SLP100_GO479189 
CGAGCTTCGCTCGTTGAGGTATCGAGGATGATAGCGTTTGGTTTTGTAAATTG
ATGGCGACCCCTGCGACGTTTTTAAGGGTAGCCTGTGCAGAAGCGGCAATTA
ATGGGCGGTAACCGTATATGCCCATCGGAACTACATCCCACCTATTCCCATTA
ACGGCCTCCCAGCAAGTTGGATAATTGTTGCTGCCGTAGAGCTAGACTTGTTA
ATTACGTTGCATTGATAGAATATCTGCTTGGTTTCGGTGGGTTGTGGAGCTCA
ATATCGAACCCACAGTCAAACCAAGATCACAATTTTTACTATGTTCAATAA AT
TTAATAATATTTTGGATTATGATGTTCGATGCTG 
 
>SLP101_GO479190 
GCAGCCGAACAGAGAAAAAAAACAATACCGACGACGGTATGAAACCGGCCA
CGCGCACGGTCGAAAATCGAAAAAACGAAAAATAAT 
 
>SLP102_GO479191 
CCTACGTTGCTGCTTCAATGAATGTGAATCCTCGTGTTCTGAAGCAGCAACAA
AATCAAGGACGAGTCATTGAGATGTGTGATGTTTCTCAGCTGCTGGGGTCCA
AACTGAAATTGTAAGGCAATTCAATTCGGCCTCGAGAGAGAGGGGTCGTTCC
CCTGCAGCACTGGATGCATGAATATATAAATTATATAAAATAAATGCATAT T
ATGTCGACATATAAATTGTATGTTAAATGGTTGAACAGTTTTTTTAAGATG AA
ACTGCTGAAAAGTTGCTTTGAAGATAGAGTAATTTTTATGTCTTTAGTTTTTCC
TATTACCAGGAACG 
 
>LLP1_GO479197 
CAGTTCTCCGATTTAGAAAGAAAAACCGGCTGCTTGGAGTAGATATTCCATC
GTTTTCGGGTCCTTTCACCACCTCCCGGTAAACAATCCAACATAAGAGAATCT
AAAACATCGGCAGGTCCTATCATGTCAGAACCTTCTGTTAAATCCAAGATAG
CCTCAGATAATATTAGCTTTCCTTTGTCCGGAAGAGCCTGGTGGCAGTTGTTC
AGTAGCTTGATGCAGTCTTCGTCGTTCCAACTATGCAGAAAATTCTTCATAAA
AATGGCATCTGCAGAGGGTGTGCTCTCAAACAGGTTTCCGGTCATGTGCTGT 
 
>LLP2_GO479198 
CAATCTTCTTATACAAGTGTTCAAGGGAATGCACATCACATAGTTCTTCCGGC
AAAGTTTTGAATGCTGCATGCCTTATGTCAATCTCTACCAAGTTCTTCACCTG
CATTAAGGACTTGGGAAAGCGACAAAGCGGAGCGCAGATACACAGCTTTCGC
AACTGGCGAGGCACCTGCAGTGTTTGTGTTTCAACTATCACAAAAACGTCTAC
GATGATTTTCACTTAGAAAATGAAGTTGAACGCTGAAGG 
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>LLP3_GO479199 
CCACTGGTGCCAGCTTTACCTCCGAAGAGACTGTTTTCATATGGATGGACTAC
CTGAAACACCACCGTTATCCTCTGGAAGATTATATCGATCCTCGGCCTGCAAA
ACCTGCTGCTTACAGAGAAGCCGCTAGTAAATACTGCACAGAGGCCAGAGCA
CGGCAACAAGCAAAGGAATATGGAGCCTACAATAAAAAGCACAACAGAGAA
TGAAGCAATCTCGAGGATATAAAATCTGGAGGAAGTGAAAAAGAAAATGCG
AAAGCGTTAAAGCCTTGAGTCATTGTAAGCCTTGCTGACACATAGACCAGCA
GACATGTTTAGATTTCTATTGTAAGACTAGCGGGCATAATCGAGTCATGTTGA
GTCATACAATCGTAATTAAGGGGGAGTGTTAGAAATTGTAATCACTCTTGCAT
GAGGAGTTGATTAAAATTAGAGAATCAGTTAATTAAGCGTTGAGCATTGAGT
CAAGTCGAGTGATGGATGAAGAGTTAAGTGCAGTCCATATTTAGAGTGTGAG
TTAACTAAGTTAAGTGTGCATGCATGTTAAGATATTTTAGGCAAGTCGCTAGT
TGGAAAATGTTAAATGTCCTTCACTGAGTTGATTGTAAGTATCATGTTTTATG
TGATCAATAGAACAACCACAACTTATGTGTTTTATGTGG 
 
>LLP4_GO479200 
CCAGCGCTGTTAGTTTATAGAGAGGTGAGAGTGGAAAAGACTGAACTACAGA
AAGGAACTTTTCGTCTACTGCGACACTCGAATTTTAACGAAAATTATGAATGA
CTACTTTTAGTTTTTTATTCACTCTATAAATTTAAATTATGTGGAGCGTG 
 
>LLP5_GO479201 
AATATGCCCTCTATGAAAGTCTCACTTGACAACAAACACACGAGGTGTCGAC
GATGAAGAAGCTGAGATTGATCGACAATCGATCCACGATAATCAAACCAACG
TTTAATATATTGCATGGGTCTGTTGTGAAGTTCAAGAGTGGTGGATATTTATG
CCCGTTGCATGGGTCTGTTGTGAAGTCCAAGTGTGGTGGATATTTATGCCCGC
CATTTTCGTGACCATCTCTGTCGAGTTCCAAAACAAAGAGTTGCCATCATTAG
GAGAACGTTGTTGTAATTCAAATTGAAGACTTAATCAATAGGTCGGCATTACT
AC 
 
>LLP6_GO479202 
CAGCAGATTACGGTGCTACTCTCATCCAAAGGTATCTCGTTGCTAATCCAATA
TCAATCCGTTCAAATCTTCAAAAGCCAACCTGCCCGGGCGGC 
 
>LLP7_GO479203 
CGACTTCTGTTTGTTCTGTATTCTCTATCTAATAGCTTCTTTATCTATGTTTGA
ATAAAACGTGATTCTCTGAACAAGAGAATCTGATGCTGTGCTATTCTCATTCT
CATAGGTCGTTATTTAAATCCTTCATATAATATATAATAAAGCAGTTATCA TG
C 
 
>LLP8_GO479204 
CATATACAGTTTGAATGGAAGTCTATCTAGGATGGTCTATAGTGCTGTGATGC
GCTCACTCAGTATCTCTCTTGTCTCACAAGCCTTTAGTAAGGATTCAGTTAAG
ACCACTTGCTTCTCAACAAAATCCTTGACTTCCTTTGAATCAGGGTCTTCCAG
CTCTGTCGAGCTGTGGTCCAGTGGTAAATCGAAGCACTTGAAATAGTAATAA
GCTACGGTGAAAGTCCAGTAGCCATGCTCCCTGTGATAATGTGGTTGATCAA
GTTCTCCAGACTTGTGAGACCATATCAATGTTACAAACACCGGTTCCATGCGA
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ATGCAGAAGTGCTGTTAATGGTGGTCCCCATCTTAATGCAGTCTTGCAAATGA
GATCAGTGCAAGTCCTGGGTGAGTTTGACAGAATCGATACCACTAGTAAGAG
CTTCTTAGCTGAAGTTCTTCTGATTGTAAAACGGGTGAAATTGAAATAAGTTC
TGTACTTTCTCCAGTCAAAAGGGGTTTACTGAAAG 
 
>LLP9_GO479205 
CCGGTGGCGTCTTTGTGAGCCAGCATCCCTCTATTCTTGAAAATTATTAGTCT
AAGTTGTCTGTAAGATGAGATCTTGCAACTTTAATCTAAATCTTTTTATAGTG
GGAACAATGACTGATATCAACTCCCCCATTTCTACTGTTGTGACCATGCTCTG
GTTCAGCATTCTAATATATGAAGGAAACATTATTTGTTG 
 
>LLP10_GO479206 
CCAGGTGGCAACGGAACGGCTTTATGCCCCGATTTCCTTATCGAGACCTACTT
GGATATCAGGGCGAACAATCTTGCTTGAAATACGATGCCAACCCGTTCTTGT
ACATCTCAAAAGCAATGGACTTGTTCGACATGACACATTCAAACCTCCAGTC
CCTTTCCGTTCCCGCTCCTCCTCCTTCCTCGACGATCCCTCCACCGTCACCTGC
AAAAGCACCGCTGCACCTCGCGCCACCCCCAAGATACCTTTCCGACCTCTCGT
CCGGCCTCGCACCCCTCGCTCATACACCTACGCTCGTTCTCGGCGTGCAGTCG
GATATTCTATTCCCAGTTGAGCAGCAGCGCGAAATGGCTGACGCGCTTCGCA
TGGCCGGAAATGGATCGGTAGTGTATTACGAGCTGGGTGGCGTTTGGGGCCA
TGATACTTTCTTGATTGATGTAATGAATGTTGGTGGCGCGATTAGGGGATTCT
TGGCATAGGGGTGGCTGGGTTTGGATGCATATATCATAGTGCTGTGTCTCTGT
TTCATGCGCACGCGTGCGGGCAAAATGTATATGAATTTCTTCCTTGCTTCT 
 
>LLP11_GO479207 
CGATACGCCACTTTTATGGCACCCCTTTTCTCTCCTTTTTGGGTTTCGAAGCCC
CAGTGATAGAAAGGAGCCCTGGAAATTTAAGTCATGACCTGGATTTTCTGGA
CTGGAGGCATGAAATCTACGATCAATCTGTGAATTACACTAATGTTTTGTTCA
TTGTGCTCCATATAATCCAACTTCTGGTTTCCGCATATATTTGGTAATATTGCT
GTAATAAAAATTGGTTTCAGCAT 
 
>LLP12_GO479208 
CCCTTGATTCTCTGACTCTCTCTTGGGGTGCTGTCTTCCACCAACGTTACCGAG
CTTCACCATGGATTTCGTGAAGGCGGAGTTGAAAGAGTCGACTGAGTTTGCA
AAAGTCTCTACAAGGCGCTCGGTATCAGGGTCAGAGACGAGGTCTACATCAG
GATTCTAGCACTGCATTTCCTGCGAGAAGGTTCTGGAAGTAGCTTGCGTCCCA
CGTATTTTTACTCCCTTTGTCAAGAGCCACTCTACTGTTCCCGTTTCCATTCGC
AGGGCAAATGCTCTGGAGTTGCCTCAGTGAGTTTCGATTTATGCTTGGGTCCG
GCATTCCCGCGT 
 
>LLP13_GO479209 
CATCGTGGTTCTGAGTTCTGCAATCTATTCGAAATTTCAAACCTGAACTGCCC
TGAATAAAAAGCACCGTTATTTTGTTCTGCAGATACCAAAAACTGTGTTCTAC
ATAAAACCGTACGCAGCAGCTCTTTCAGGCTACAATTATCAGTCACTCAAAA
GCAAATCATCCCAAACACGAGCTTACTTCACAAATATTTATATATATATAT AT
ATTACTGGCTGGTCACCCACGACAATGTAATCAATTATCATTACACAGATAA
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ACTTCTATGCCTATGGAGGTGGAACCTCTGGCAACTTCTATACGACTACACTG
CAATGTTAAAGAACTTCCATAATGAATGATCATCTGAATAATCAAGCTGCA G
AAGGAGCAGGAATGAAACCAGCGGCCGTGGGAATTGTAGCCAACAATGAAT
TCGCTGTAATTTGTTGCAAGTTCGAAAGTGTTTCGGCCTCAGGAATTGAATGC
TCCTCTGCTTTGTAATCCAGAGACTCGTCGTTATATATATCCCACCATTTCTTA
ACTAATACTTTTATGTCTTCCCTCTGCATGTTCTCCTCCTTACCCGCGTACCTG
CCCGGGCGGCGCCTCGAAAAAATAACCTCGGCCGCGACCACGCTACCTGGGC
GGAGAAACGCTAAAAAGTGAAAAAACAAAGGCGGAAAGAGGGTAAAATCA 
 
>LLP14_GO479210 
CATGGGGGGGCGCGCAACAGAGAGAGAGAATGACAAATGGCACCGCATTGA
GCGATCCCGTGGAAAATTCCTTAGGCGTTTCCGGCTGCCGCAGAATGTGAAG
GTGGAAGAGATAAAGGCGAGCATGGAAAACGGTGTGTTGACAGTGACAGTG
CCGAAGCAGCCTGAGCCCAACCTCCTCAACCCAAATCCATCGAGATCTCTGG
TTGACCTCTCACGCGGTATGAAGATGTCATACTAGACCTGCTGTGGCCGTAGA
GGAAGGTTGCATAATGTGTAGATGTGTGTAGGAAGCGGTTCTCCGTCATCCC
AGTTGTTCCATCGATTACAATGTGCTTGTATGTATGTGTTGTGTGTCCTTTAAT
AGTATAATAAAAGGGAGGCAGGTTCAGGCTTC 
 
>LLP15_GO479211 
CCATCGACGTCGCTATTAAGAGGAGTTTCGAGGTTGACAAAGAAACTATGGA
TATGCTTGCTTCATTGGGCATGTCTGATTTACCTGGAGTTGTTAAGCAGGCGG
ATCCCCCAGCAGGTGGTGGTGGTTTCATCAAGCCAGGTGGATTCCAAGGTGG
TGGTGGAATGGGCAGGAGATATTAGAAAAAAGATAATTCGTATTTTTCCAAA
GTTTTGCGGTTAGGTATCAGATTGTATAAGAGCATTTGGGACAGGCTTTTGGT
TGGAGTAATGACATTTGTTTTTGAACTAATTTATTTTGTTGAGGCTTCTTTAGT
GAAAAGTGCTTGATAATTTGTTGAGACATC 
 
>LLP16_GO479212 
CATGGTCGAAGCAGTCGATTTGGTGACACACAGTCGATTCTGAAGGCCGCTG
CAAACCATAAAAACTCAAATAAAATCCGGTGTGTCTATCTATCTTGTATGT AG
GTAACGTCTAGTCCTAGTTCAGTCGTGGGTTTAATGGTGTGGTTGTGGGTGTG
AATCTCAGAAATAATACTGCAGGAGAGCATGAAGCCATGTAGGCTCTGT 
 
>LLP17_GO479213 
CATAAAGCGTCCCTGATTGGTAGAATTGATATGGGGATGCCTTATTTATATAA
AAACACGATTTGGCTCTCAACTGATTATATATGGACACCTAGTCAGTTTAAGA
TACACAGATAATCTTCGACTGTATATATTCTTTCCCATACCTGGTAGTAAGTT
GCTCTAAAAGCTTATTGGGCTGTGTTGCCGTCGATATTGGTGCCGGGGCCGTT
GACGTTCCTGGTGCCGCTGTTGTCCCCGAGT 
 
>LLP18_GO479214 
CAGGATTTGTTTTTTTGAACTCTTTTTTTTGTTTTGTGTTTTTTCTTGTTTTAATT
TTTTTTATGTTTTCTTATTTTTTGAAATTTTAATGTATTTCGGGGTCATGATAA
AATATTTTACGCCATTATTTCGAAATGTTGAAATTTACCCTTGAAGAAAAA GT
GTTATCCCAACGTCAACACTTTTCGTTTTGAGAGTGTTTTTTGT 
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>LLP19_GO479215 
CCAACGTTCTGCTTCAATGAATGTGAATCCTCGTGTTCTGAAGCAGCAACAAA
ATCAAGGACGAGTCATTGAGATGTGTGATGTTTCTCAGCTGTTGGGGTCCAA
ACTGAAATTGTAAGGCAATTCAATTCGGCCTCGACAGAGAGGGGTCGTTCCC
CTGCAGCACTGGATGCATGAATATATGAATTATATAAAATAAATGCATATT A
TGTCGACATATAAATTGTATGTTAAATGGTTGAACAGTTTTTTTTAAGATG AA
ACAGCTGAAAAGTTTCTTTGAAGATAGAGTATTTTTTATGCC 
 
>LLP20_GO479216 
CATGGGATGACCAACAAACTGAACTTACCCTAAACACCCACTATTCCTATTTT
TCGAGGGCACTAATAAATAAAAGTGCCAGAGAGGAGGTCTTCAAAAACTGA
CCTCGCACTCACCTCCGATTACAGAGCAAGGAGGACCAACAAAATCCCTCCT
ACACTCTCCTAAACTAAAATTAAAACAAGATCTGATGATGCAGACCTAGGA A
ATATGCAGGATTGTCAGTGCATCAAATGGGATGGAAAAATAACCCACATAGC
TGATGCATACAATCCAGTGC 
 
>LLP21_GO479217 
AACATGTACCCTATTAAGTCCGCATGCTTAGCGATAGCAGGGAGTTTACTAC
AACTGGACCAATAGAAGCCATAAAACGATATGTCCACAGACCCCACTCCGAC
CCTAAAACATGGGGTGAAGGGGTTTTATGTTGAATAAAAACAACAACAAAT T
GGCCACTGGCTGCTAAATGCGTTTTGCATGGCTCTATATGAGAATCCCTAAAA
CAATATGCCGTAGGACCCGTCACTCCATGACCCCACTCCGGCC 
 
>LLP22_GO479218 
TCACTGCAATGCTTTGCATAATAATTCTTTAGAACTCAATCTGTGTTCTATTTA
CCTGGTTCCTGTCAAACAATTCTGTCTGCTCTTGCTATATTTATACAAAGCAA
TTATTACG 
 
>LLP23_GO479219 
ACCTTATCTATAGCTGGGCTGCTCCGAAATATTGGATAAAAATATACATGAA
AATCACCCACCCATTGGACACCTCAAATTCTACACACCCCACTAAAAAACAC
TGCACACTAATTATTGTTAGATAATTTCCAAAAAAAATAAGACTACATATA G
CTGAGAGCTGTTCAGATACAGTTGAAAAAAAATATACATGAGAATCAACCC A
CCCACTGGACACTTTAGATTCTACACACCTCACAAAAAACACTGCACACTAA
TTATGAGTATGGAAAAAAAAGTGTAGCTGCCTAGATGTAGTCCAATGATTAA
ATGAGATATTTTAGTCGCCATAAATAAGGCTACATATGATTAAGAACTGCT CT
AGACACAATTGAAAAAAAATATACATGAGAATCACCCGACCCAACCACCCC
ACACCTCAAATTCTGCACACGCCACTAGAAAACACTACACACTAATTGTTGTT
GGATAATTCCCATAGAAAAGAAGCGTAGCTGCCTACTAATTGCACGTCTTCT
GGGTAATCTTTCACTGCATTTGAATAAACTCGGTTGGCTTCTTCACCATTTCCC
AGTGCTTTCCATGCAAACCCCGCGT 
 
>LLP24_GO479220 
ACTGGTGTGTCTCGTTTTACCGCCCCCAAAATTTGGATTTTTAACAGGATTTT
AGCAAAAAACAAGAGTTTAACCAAAGCGTGTAGAGGCCGTTGCAAGCTCTGC
AAGAGCTTTTGGCTACATCGAAACTACCTCTCCAATTTTTTTTTGCCATAGAG
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AGAATATCAACTCCTAGTTTGGTTTCTTGAAGAAATAGAACTGGAGGAGTAT
ATCTTCTCATTAATTCTTTAACTGCCTAGGATTTTATGGGGTTTCCCGTTCCCC
GTATATTCCAAGAAACAACAATCATTTAAACTTAGAGGAGCTTGACTTACC T
ACTCCAGACTTTGCACTCCCGCGT 
 
>LLP25_GO479221 
AAAAATAATGATTTTCATACATAAAACAGTTTTAATAGGTGAGAAAGTCGT C
ACATATTTCAATATTTATCACTCTTAAATAATGACTGTTGCTTTAAAATCA AA
CACCTATAATGTAGGTTAACTGACTCCACGAAAAACAATGCTTTCCATCCGCT
GTATTCCACCGAGTGTAGACTCCAAGAGTTGTATTAGACTCTTTGACTTATGC
TAACTCGACACTATATTCAATCTATCAAAGTAAACCGTAATCTGCATTTAA CA
CGTTCTGTATGGAAAAAACACATTTGCATTCCCAATAAACATTGTAAACAG A
ATTTAACCAAAGGGCCATATGCCGGACACGCCGAAGTAGATAGGAATTGCGG
TGAAAATCTTTATAAACTCCAATGGATTAACGTAAACGAACAGTATTAAAT A
AACC 
 
>LLP26_GO479222 
CCAGCGGACTCATTTTTATTCGTAAAATCCATTGCATCTCTCCCAGTCTAAGT
GTCGCGTGCATAAACAACTGCGCTTAGGGACTAATTTTTGGGCCAAATT 
 
>LLP27_GO479223 
CAGCAGTCCCATAAATTAATTCACAATTTAATTATTCCTTAGGCAATTAAT TG
AAAGGTAAATGAATAAATCAAAATCTTTTAATGTGACTAAAAATTAAATCA A
AAGGGCTTAGTCAAAAATTAAATATTTTATGGGCCCTAACTCAAATTCCCCCT
TTCGATTTATTTCTTTTACAATTCTAAAGTCACATAAATGAAAAATAAAAT AT
ATTTTTTAATGTTTTTGAATGTTTTTCTG 
 
>LLP28_GO479224 
CAGATAGAAGAAGAACCTGGGATGCAAACCGATCTACCTGGGAAAGAACCA
ATAGAGAAGGCAACATCTTTCTCTATATAATTATATAGCAACTATGAACAG G
CAACTCCTATTAACTGGAATATCAATATCGTTCTTGTCTTTTTCTTAGCAACAA
CGATAAATAAACAATGCCTTTTCTTAGTCAACTCTTTCAGCTCTCACGTCATTT
GATACCAACACTTCCACAGCAAGTCTTCGACGCAGATCCCAACAATGCAATA
CATGGTGTCCACAAAAAAAAAGACTCACAACACAAT 
 
>LLP29_GO479225 
CATGTGGATTTAACTCTGTTTCATTGTCTCTGTATATATTTTTTTTACCCTAGTT
TCTATTCTGTTCCCAGAAACTATCAGACTTTTATATACTAATCAGCAAAAA AC
TTATGTATTTCGGCAAATTTTTTGTATATGAGGGGTTGTTTTCCTTCAACGAAG
GAGACTCCAGCAAATGCTACTTCTTTCTCTGCCCTGCGTGGCGTCATTACCTC
CGTCAGGGAGGCGGAATCATATGGATTCATCTAGAAGCAGAAAAGCTCCAGT
TTATTGTTGAGCTGTTACTTATTTTCTTGTGCCAACAGTGTGGCTGTAATGTTT
GGGAAACTCCCCCTTTTTTATCTCAATATAAAGGTTGTGGACTTTTTTCAGCG
G 
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>LLP30_GO479226 
CCAAAGGGGCAGGTTAAACTTACTTTTTATACATCAAAAAGGAAATGCAAG G
TGCATGTCCCTCTGGACGCATAAGTGCTGAATAAACTAGGTGCTGATTGAACT
AAAATACAGATCCAAGTTACTTGGATCTATTCGACTTACACTTAGAGAGGGA
TCCAAGAAGGAAGGATTTAGGGATCAAAGAAGAAAAGAAAAATGC 
 
>LLP31_GO479227 
TAGGCACGTAATAATATTAATACGACGACGAGTCCTCCCCCTCCCACGTCTTA
TACGTGGCCGGCCGATAACGCGCGACGTTGATAAATATCTCGTAGG 
 
>LLP32_GO479228 
CATATCCCTCGGGTTGTGGCTCTTGTGTATTTTGAAGGATAAATACAACGTTG
TTTGAAATCAGGTATTTGTTTAAACAACTATGCACAGTGTTTATCAGATTCTT
TGGAGTGCAACGATGTTTTCCCCTCTTGAAAATGATAGGATATGACTTTCAAC
AATGTTTTAAGAATTTCATATTAATATGCATTGTATAAACTAAGTGCATGG TG
TTTTCAACTCTTAGCTGAACAGTGGGAGATTGTTAATTTTGTTGAGTTTTTGCA
TGTAAAACACTGAAATTTTTATTTTATTGATTGTGCAATGTGTCGATGGAAGT
ATTTTAAAGCTTTTATGTGG 
 
>LLP33_GO479229 
CATTAGTATAATAGGAAAACAATTTCTAACAACTGATTACACCATATCTAA A
CTACTCAACTACCCCTAAAATAAAGTAGTTTTTAAATATAAATTAAAATCA TA
TTCAAGTAGACTTTTTTTTAATGATAAAGTTAAATTTTAACATAAATACAA AC
CGAAAAAGAGAAAGGAAAATCACTTAACTGCTATTTTCCGGACACCAAAAA A
ACCTATTAAATTTTGTAATAATATCAGATACTAACCAGAAACAAAATTTGA TT
ATTACTTCCCTGCAAAAGTT 
 
>LLP34_GO479230 
CCCTTGTTGCTGGACATCCCAACTATACACAAAATATAAATGACATTTGTCCT
TTGCACCACCCATGTGGCAATCAAAATATAACTATAGTTGTATGCCAAGCAC
AGGGTCCATAATAAACCTATGCAAATAAGATCCTCATCTAATCACTTTGTCAT
TTACCACATGGAGCTCCAAACCTTTAACACAAAATTGGAATTTACAATATG TG
TGTAGAGTTGGATACACATCACGAAAGGATCAACAACATTCTTGAAGAGTAT
CCATTGCATCCCTGTAGGGAATCCACACTCTCAAAATGATTATAAGTATGGAT
TTCCTCCTACTTATTATCAAATAACCAATGAAATGTGAAAGAATACAAACC A
AACATATCCTATAACAAGATTGATATCTAAACACTAAAAGGATTGGTAAAG G
ATAGGAAAACAAGTAAAAAAGGATAAAATTCATGCTAAAAGTCTAGTCAAA
AGATGACATTGCCAAAGCCCATCGACGACATCCTAAAATAATTGCTTGGAGG
TTTTATCACCATTT 
 
>SLP_LLP1_GO479192 
CAGCTACACCTGGGAGCGTGGTGTTAGATGCTGGAGCGTGAGACTATGACAC
AGGAGAAGTCACAAAGGCAGGCTTTGTCGGATCCTTGTATACAGGACCAAAG
CCTTCCTCTCCGAGCTTGTTGTCATCATGAAAGATATTCGTGGCACCTCTTAA
CGTTTCCATCTTAAATACCATATGTCCATCAGGATCGGTTGCTCTGTTTTCCTC
ATCTTCATAGCCTTTTCCGAATGTGGTGGATTTCAGTCTCTTCCCAGTTGCAA
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ACAAGCATGCCATGAATACGAGAGCCAACCCCCCCACAACACCTAAAATTAA
AATTGTGTGTGT 
 
>SLP_LLP2_GO479193 
TCACTTGCTAATAAAAATGGTGACTTTGCACGGCAGAATAGATGCCCTTCTCA
ACGGCCTTCCCTAATTTCTAATTAGGGTAGGGCACTGATTTTAAATATAGTAT
ATATAGTTTGCATTTGCTTGTG 
 
>SLP_LLP3_GO479194 
CAGCCGGCCTGTGTGCGGGAAGCAGTGACTCGAGCAGCAGGATCGCATCGGC
TTCTACAAAAGATACAGTGACATTCTTGGGGTGAGCTACGGATCAAACCTGG
ATTACAACAACCAGAGGCCATTCGGCGCTGCAGTTCAATCTGAACCTCGTCTT
ATCAAAACCGTCGTTTGAACACTTCTCATAAATCTGAGATTTCGGATTAGCAG
CAGTCCGATCTCCATCTGTGTA 
 
>SLP_LLP4_GO479195 
CACGGTCGCAGACGGTGAGGACAGTGCAAGAATCTCGAAGATGTCCCTTGCC
CCATCCTACATCCCCTCTGTCTTCGGCAAGGGAATCCCTGATGTTAATACTAA
ACTATTATTTTCTGGAGGAGAGCAGCTTCTGCCTCAGCGCTGCAGTGTCGGTC
TCACCGAAGTGATCCTCCGGAATCCAGTTCCCCGTGGCCGGATCCCTCATCCA
GAACACCGTTCCCTTGTTATTTCCTCCACCTCTGCCTGCCTTGCTAACCTCTGG
AAATTCCCGCCCCGCGT 
 
>SLP_LLP5_GO479196 
CACAGGTTATTGCACTTAGTAGACCACTTATACTAGGTATGGGAAAGAATAT
ATACAGTCGAAGATTATCTGTGTATCTTAGACTGACTAGGTGTCCATATATAA
TCAGTTGAGAGCCAAATCGTGTTTTTATATAAATAAGGCATCCCCATATCAAT
TCTACCAATTCTAGTTGGACGCTGGTTTGTTG
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Scope and Method of Study: Shortleaf pine sprouts prolifically after disturbance such as 

fire.  Much attention has been paid to its restoration due to its increasingly 
declining population.  Shortleaf pine’s strong sprouting ability has huge potential 
in promoting its regeneration.  However, little is known about its sprouting 
mechanism at the molecular level.  A microarray experiment was designed to 
study genes responsible for this sprouting ability.  

 
Findings and Conclusions:  In this study, one year old shortleaf pine and loblolly pine 

seedlings are top-killed, and tissues collected just before sprouting were used.  As 
in the natural environment, shortleaf pine showed extraordinary strong sprouting 
ability and large amounts of sprouts were seen two days after top-killing. 
However, on loblolly pine only a few sprouts were seen one week after top-
killing. By microarray gene profiling with about 2400 cDNA clones obtained 
from suppression subtractive hybridization, 139 differentially expressed genes 
were found to be associated with sprouting, including genes functioning in reserve 
(carbohydrates and fatty acid) mobilization, transcriptional regulation, stress 
response, plant development, signal transduction and hormone regulation.  130 
differentially expressed genes were found to be responsible for the dormancy 
release of axillary buds of shortleaf pine after top-killing.  In contrast, only 32 
differentially expressed genes were detected for loblolly pine.  Shortleaf pine 
responds actively to top-killing at the molecular level.  As reported for dormancy 
release of buds of other perennial plants, oxidative stress might be the major 
factor in dormancy release of axillary buds of shortleaf pine.  It is apparent that 
cross talking between plant hormones (especially gibberellins, ethylene and 
auxins), carbohydrates, and other players of signal transduction work 
cooperatively to promote sprouting of shortleaf pine after top-killing. 


