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CHAPTER I 
 
 

Introduction 

Wheat (Triticum aestivum L.) is one of the major world crops supplying calories to the 

human diet and represents 25 percent of total cereal grain production (Reynolds et al., 1999). 

The world demand for wheat is increasing at a rate of 2% per year; however, the genetic gain 

through breeding programs has lower rates (Sayre et al., 1997).  

Wheat-breeding strategies for developing new genotypes are based on the generation of 

large numbers of crosses for deriving segregated populations (Jackson et al., 1996). Wheat 

breeding has been based extensively on the classical empirical approach of grain yield per se as 

the main selection criterion for identifying higher yielding genotypes (Aparicio et al., 2000). A high 

number of genotypes needs to be evaluated in order to select the best ones for specific 

environments compared to the commercial cultivars (Ball and Konzak, 1993). 

An adequate and alternative breeding strategy is required for a better understanding of 

the factors responsible for plant development and growth because grain yield in a given 

environment is directly and indirectly influenced by genetic, morphological, physiological, and 

environmental factors (Richards, 1996). Even though the genetic basis for yield improvement in 

wheat is not well established, genetic improvement in yield has been particularly successful for 

spring wheat under irrigated conditions, and there has also been significant progress under 

drought and heat stressed environments in the developing world (Richards et al., 2001; Lantican 

et al., 2002; Trethowan et al., 2002). The use of morpho-physiological parameters could make the 

yield empirical selection more efficient (Reynolds et al., 2001). The limited application of 

analytical approaches is probably due to improper knowledge and estimation of the physiological 

parameters and their genetic associations with grain yield (Richards, 1996). 
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Some efforts have been made to develop physiological selection criteria such as stomatal 

conductance, canopy temperature depression, carbon isotope discrimination (CID) of grains, etc. 

(Reynolds et al., 1999). However, these efforts have been limited to specific environments, while 

CID is an expensive method.  

Canopy spectral plant properties is a new area of research that has great potential as an 

indirect tool for selecting genotypes for high grain yield and biomass (Araus et al., 2001; Aparicio 

et al., 2002; Osborne et al., 2002; Royo et al., 2003). Methods that integrate the whole canopy for 

the yield assessment of many genotypes in a short time are highly desirable because field 

evaluation of genotypes for several years across locations is expensive and time consuming 

(Reynolds et al., 1999). 

Spectral reflectance of the canopy is based on the principle that leaf pigments (i.e., 

chlorophyll and carotenoids) absorb light in the visible region (400-700 nm) of the electromagnetic 

spectrum, while the light is highly reflected in the near infrared region (700-1300 nm), which is 

influenced by structural components of the leaf tissue (Araus et al., 2001; Peñuelas and Filella, 

1998). Spectral reflectance indices (SRI) have been used to estimate diverse physiological traits 

such as leaf area, photosynthetic capacity, chlorophyll content, and absorbed radiation on plants 

(Penuelas et al., 1993, Penuelas, 1998; Araus et al., 2001).  

Because spectral reflectance indices respond to physiological variables involved in crop 

growth that determine final grain yield, it is possible to use the indices for yield prediction in 

wheat, corn, and other crops (Rudorff and Batista, 1990; Wiegand et al. 1991). With periodic 

measurements of reflectance during the growing cycle of a crop, the grain yield and biomass can 

be predicted (Wiegand et al., 1991; Rudorff & Batista, 1990, Gitelson et al., 1996). 

Similarly, it is possible to estimate changes in crop water content in wheat genotypes 

under water deficit conditions, and use these changes for selecting genotypes that produce high 

yields under water stress conditions (Penuelas et al., 1993). Plant water content provides 

information for making irrigation decisions to prevent water deficit stress to the crop and for 

assessing the crop growth (yield) under drought conditions (Tucker, 1980; Penuelas et al., 1993). 

Several water indices based on canopy reflectance measurements have been established to 
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assess grain yield using different wavelengths in well irrigated, water stress, and rainfed 

conditions (Babar et al., 2006a, and Prasad et al., 2007a). This has an important implication in 

breeding programs because the selection of high yielding lines can be identified easily in different 

environments. 

However, canopy spectral reflectance can be influenced or altered by traits related to the 

leaf surface (i.e., cutin and wax) (Ribeiro, 2006). Leaf thickness, trichome abundance, and wax 

composition have an influence on the spectral reflectance pattern in different species (Ribeiro, 

2006). Other leaf components such as cellulose and cutin also have also shown some influence 

on the canopy spectral reflectance pattern (Ribeiro, 1996). The spike reflected more energy in the 

visible region because of its lower chlorophyll concentrations and distinctive surface properties 

compared to leaves (Guyot, 1990). The difference in the internal and external morphology of 

spikes compared to leaves causes variations in the reflectance signals (Riedell and Blackmer 

1999). 

In summary, spectral reflectance techniques have high potential in breeding programs to 

identify high yielding wheat lines in diverse environments. Their employment could help us 

understand physiological changes in plant growth and plant water status (transpiration rate, 

canopy temperature) that influence final yield under adverse growing conditions. Spectral 

reflectance can also serve as an indirect selection tool to identify high yielding genotypes more 

easily and quickly in breeding programs. 
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CHAPTER II 
 
 

Spectral water indices for assessing yield in elite bread wheat genotypes 

grown under well irrigated, water deficit stress, and high temperature 

conditions 
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Abstract 

Spectral canopy reflectance can be employed for evaluating yield among genotypes for 

identifying and selecting those lines with high yield potential in wheat. Spring wheat genotypes 

were evaluated in Northwest Mexico during three growing seasons to determinate the relationship 

between diverse spectral reflectance indices (SRI) and grain yield, and to evaluate the SRI as an 

indirect selection tool for breeding purposes based on their genetic correlation, heritability, and 

correlated response under well-irrigated, water deficit, and high temperature conditions. Diverse 

advanced lines were used which corresponded to three international trials of the International 

Maize and Wheat Improvement Centre (CIMMYT); 24th Elite Spring Wheat Yield Trial (ESWYT), 

11th Semi-Arid Wheat Yield Trial (SAWYT), and 11th High Temperature Wheat Yield Trial 

HTWYT). The SRI were determined at three growth stages (booting, heading, and grain filling) 

during cloud free days using a field portable spectrometer (Analytical Spectral Devices, Boulder, 

CO) and diverse SRI were estimated. Significant genotypic differences for grain yield and for the 

SRI were found in the three environments for all the trials. In the diverse environments, the water 

indices (NWI-1 and NWI-3; normalized water index 1 and 3, respectively) always provided higher 

correlation with grain yield when heading and grain filling were combined, except for the high 

temperature environment (HTWYT trial). The vegetative indices RNDVI, GNDVI, and SR; red 

normalized difference vegetative index, green NDVI, and simple ratio showed inconsistency in 

their relationship with grain yield in individual years and across years for the well irrigated and 

water stress environments, but they showed a good association with grain yield in the high 

temperature environment. The water indices gave higher genetic correlations with grain yield than 

the vegetative indices in the three trials in all the environments when heading was combined with 

grain filling across years. Heritability was higher for the vegetative indices than for the water 

indices in all the environments in spite of their low phenotypic and genetic correlations, but the 

correlated response was higher for the water indices, except in the water stress environment 

(SAWYT trial). The relationship between grain yield and canopy temperature determined at grain 

filling was strongest in the high temperature environment. The high temperature environment also 

showed the strongest associations between SRI and grain yield demonstrating the potential of 
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SRI for achieving genetic gains in breeding for warmer climates. In conclusion, the water indices 

can be used for breeding purposes in well-irrigated, water deficit stress, and high temperature 

environments for selecting high yielding advanced wheat lines, and canopy temperature could 

complement and support the selection of high yielding lines. 
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Introduction 

Breeding strategies for wheat (Triticum aestivum L.) involve a large number of 

segregating genotypes that are compared and evaluated for selecting high yielding genotypes 

among and within segregating populations (Ball and Konzak, 1993). This process also involves a 

large number of crosses for deriving new genotypes that have to be contrasted with commercial 

cultivars in specific environments. Selection of breeding lines for grain yield in advanced 

nurseries often needs repetition to enhance success (Ball and Konzak, 1993). However, this 

methodology is expensive and a time consuming process because more than one field evaluation 

must be made during several years and locations.  

Wheat breeding around the world for yield improvement has been based primarily on the 

empirical selection criteria of yield per se; however, yield has demonstrated low heritability and a 

high genotype-environment interaction (Slafer and Andrade, 1991; Jackson et al., 1996; 

Trethowan et al., 2003). An adequate breeding strategy requires a better understanding of the 

factors responsible for development and growth because grain yield in a given environment is 

directly and indirectly influenced by genetic, morphological, physiological, and environmental 

elements (Richards, 1996). Genetic improvement in yield has been particularly successful for 

spring wheat in irrigated environments, which mainly has been attributed to better partitioning of 

photosynthetic products (Calderini et al., 1997; Sayre et al., 1997; Richards et al., 2001; 

Trethowan et al., 2002). However, there has been significant progress under drought and heat 

stressed environments in the developing world (Heisey et al., 2002).  

Royo et al. (2003) indicated that promising high yielding genotypes could be identified in 

breeding programs before the crop is harvested (yield prediction) and hundreds of high yielding 

genotypes could be identified in segregating populations. For reducing the laborious and time-

consuming process of yield selection, an easy, rapid, and inexpensive selection tool is desirable 

for helping breeders to screen a large number of genotypes in a relatively short time (Reynolds et 

al., 1999). In addition, this selection tool would need to have high heritability and a strong 

correlation with grain yield for detecting high yielding genotypes rapidly and efficiently from a 

large number of early-generation lines and for advanced genotypes. Breeders often need to 
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identify the very best yielding genotypes from among a sample of already superior lines and a 

method that integrates the whole canopy is highly desirable to assess many genotypes in a short 

time (Reynolds et al., 1999). Several authors have been employing some physiological traits to 

improve grain yield in diverse environments like canopy temperature, which has shown a high 

association with grain yield in spring wheat genotypes in irrigated high-radiation environments 

(Reynolds et al., 1994, 1999). Carbon isotope discrimination (CID) is another method used 

successfully improve grain yield potential in wheat under water deficit environments (Condon et 

al., 2002; Condon et al., 2004). However, CID determinations resulted expensive and time 

consuming process. Spectral reflectance indices are a potential technique that could assess yield 

at the genotypic level without destructive sampling (Reynolds et al., 1999).  

Assessments based on remote sensing techniques (canopy spectral reflectance) 

measured in the visible [400-700 nm], near-infrared [700-1200 nm], and mid-infrared [>1200 nm] 

regions) are convenient because they are noninvasive, and easy to use (Field et al., 1994; 

Reynolds et al., 1999; Araus et al., 2001). Canopy reflectance properties are based mainly on the 

absorption of light at specific wavelengths associated with plant characteristics (Araus et al., 

2002). In the visible region, reflectance is relatively low because the light is absorbed by leaf 

pigments (chlorophyll, carotenoid and anthocyanins). In contrast, the reflectance in the NIR 

wavelengths is high because the radiation is scattered by plant tissue structures in the canopy.  

Several spectral reflectance indices (SRI) have been established for estimating 

physiological traits and for predicting yield by periodic measurements of reflectance during the 

plant development in diverse crops (Rudorff and Batista, 1990; Wiegand et al., 1991). The most 

commonly known index for analyzing vegetation is the normalized difference vegetation index 

(NDVI; [R900-R680]/[R900+R680]) (Araus et al., 2001) used as an indirect assessment of canopy 

biomass, leaf area index, light-absorption, and potential photosynthetic capacity (Peñuelas, 1998; 

Araus et al., 2001). Reynolds et al. (1999) found an association between NDVI and yield and 

biomass (r2=0.36-0.44) in bread wheat genotypes in an irrigated environment. The red NDVI 

(RNDVI, [R780-R670]/[R780+R670]) and the green NDVI (GNDVI, [R780-R550]/[R780+R550]) have been 

established for estimating canopy photosynthetic area for predicting grain yield and biomass in 
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wheat and corn under water stressed environments (Gitelson et al., 1996; Raun et al., 2001; 

Shanahan et al., 2001; Gutierrez-Rodriguez et al., 2004; Osborne et al., 2002). The simple ratio 

(SR, R900/R680) is also used as an indicator of canopy photosynthetic active area (Aparicio et al., 

2000). Other studies in durum wheat genotypes have demonstrated a strong association 

(r2>0.80) between several SRI (i.e., NDVI, SR) and grain yield and biomass under rainfed and 

irrigated conditions (Aparicio et al. 2002; Royo et al., 2003).  

Similarly, it is possible to estimate the canopy water content using SRI (Peñuelas et al., 

1993). The water index (WI, R970/R900) proposed by Peñuelas et al. (1993) is an indicator of the 

plant water status at the leaf and canopy level. It can assess the changes of relative water 

content, leaf water potential and stomatal conductance when water stress is considerable 

(Peñuelas et al., 1993). Babar et al., (2006a) proposed two normalized water indices (NWI-

1=[R970-R900]/[R970+R900] and NWI-2=[R970-R850]/[R970+R850]) based on the water index proposed 

by Peñuelas et al. (1993) for screening grain yield in spring wheat. Two other normalized water 

indices (NWI-3=[R970-R880]/[R970+R880] and NWI-4=[R970-R920]/[R970+R920]) were proposed for 

screening grain yield in winter wheat (Prasad et al., 2007a). These five water indices based on 

NIR wavelengths can be used for predicting yield because they have shown strong relationships 

with grain yield in spring and winter wheat genotypes (r=-0.40 to -0.88) over time under well 

irrigated, water deficit stress, and rainfed conditions (Babar et al., 2006a, b; Prasad et al., 2007b). 

Genetic variation for biomass production and canopy temperature in spring wheat can also be 

effectively estimated under irrigated conditions using the water indices (Babar et al., 2006c). The 

water indices explained a large part of grain yield variability and they are an alternative 

breeding/selection tool for grain yield in different breeding lines (Babar et al., 2006a; Prasad et 

al., 2007a). 

An alternative indirect selection for grain yield is appropriate if the genetic correlation 

between the selected and unselected traits is high and if heritability is higher for the selected trait 

than for the unselected trait (Falconer, 1989). Indirect selection is based on the fact that the 

primary trait (yield) and the secondary trait (SRI) are subjected to the same selection pressure in 

the same environment. Reynolds et al. (1998) found that canopy temperature explained the grain 
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yield variation in diverse spring wheat genotypes and it was easier, cheaper and quicker to 

measure in the field than grain yield.  

The wheat breeding program at the International Maize and Wheat Improvement Center 

(CIMMYT) releases advanced breeding lines every year for developing countries where spring 

wheat is grown (Trethowan and Crossa, 2007). The international yield trials distributed include 

the Elite Spring Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT), High 

Temperature Wheat Yield Trial (HTWYT) and others (Trethowan and Crossa, 2007; Lage et al., 

2008). The ESWYT includes advanced breeding lines that are targeted to highly productive 

irrigated wheat production areas; the SAWYT includes advanced lines for the semi arid regions, 

and the HTWYT has advanced lines for heat-stressed areas (Lillemo et al., 2004; Trethowan and 

Crossa, 2007). High yielding and well adapted lines have been derived for many areas where 

spring wheat is grown in developing countries (Trethowan et. al., 2002).  

The main goal of the present work is to determinate the relationship between diverse 

SRI, especially for the normalized water indices, and grain yield in advanced breeding lines that 

were included in the 24th Elite Spring Wheat Yield Trial (ESWYT), 11th Semi-Arid Wheat Yield 

Trial (SAWYT), and 11th High Temperature Wheat Yield Trial (HTWYT) determined at three 

growth stages (booting, heading, and grain filling). Secondly, to evaluate the potential of the SRI 

as an indirect selection tool based on their genetic correlation, heritability, and correlated 

response for breeding purposes under well-irrigated, water deficit, and high temperature 

conditions during three growing seasons.  
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Materials and Methods 

Experimental materials 

Bread wheat genotypes (Triticum aestivum L.) from CIMMYT (International Maize and 

Wheat Improvement Center) were used for this study. The genetic materials represented 

advanced breeding lines developed by CIMMYT that corresponded to three international trials; 

24th ESWYT (25 genotypes) represented advanced lines developed for irrigation conditions, 11th 

SAWYT (40 genotypes) represented advanced lines for reduced irrigation, and 11th HTWYT (18 

genotypes) represented advanced lines for high temperature conditions (Elite Spring Wheat Yield 

Trial, Semi-Arid Wheat Yield Trial, and High Temperature Wheat Yield Trial, respectively). The 

ESWYT genotypes were planted under well irrigated conditions, SAWYT genotypes under well 

irrigated and water stress conditions, and HTWYT genotypes under water stress, high 

temperature and well irrigated conditions. The genetic materials were previously selected for 

desirable agronomic traits and grain yield potential for each environment. 

 

Growing conditions 

The genotypes were grown during the winter season at CIMMYT’s experiment station in 

Cd. Obregon, Northwest Mexico (27.3oN, 109.9oW, 38 m above sea level). The weather is mostly 

sunny and dry during the winter cropping cycle and hot for the April-June months (Table 1). The 

soil type is coarse sandy clay, mixed montmorillonitic type caliciorthid, low in organic matter and 

slightly alkaline (pH 7.7) in nature (Sayre et al., 1997). 

The seeding rate for each experiment was 78 kg ha-1. Nitrogen and phosphorous were 

applied to the plots at the rate of 150 kg ha-1 and 22 kg ha-1, respectively. Field plots consisted of 

two raised beds 5 m long (80 cm width each) with 2 rows, 10 cm apart on each bed. An alpha 

lattice design with 2 repetitions was employed for all experiments.  

For the well irrigated and water stress experiments, the planting dates were in November 

and plants reached booting and heading during February-March. For the experiments under high 

temperature conditions, the genotypes were planted in February and plants reached booting and 

heading in April-June (ambient temperature around 30-35oC) (Table 1). There were three crop 
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growing years for all experiments planted in the fall that are referred to as years; 2006 for the 

cycle 2005-2006, 2007 for the cycle 2006-2007 and 2008 for the cycle 2007-2008. The HTWYT 

trial under water stress conditions was grown only in 2007 and 2008. The HTWYT under late 

sowing for high temperature conditions was grown in all three growing cycles (2006, 2007 and 

2008).  

Flood irrigation was applied every 20-25 days for well-irrigated treatments. In trials 

subjected to drought stress conditions, one irrigation was applied before seeding (providing 

approximately 100 mm of available water), and two irrigations of 50-70 mm prior to the booting 

stage. For the trial of high temperature conditions, irrigations were also applied as needed to 

prevent drought stress. 

Folicur (Tebuconazole) was applied at the booting and heading-grain filling stages at the 

rate of 0.5 L ha-1 to protect the experimental materials from leaf rust (caused by Puccinia triticina) 

 

Spectral reflectance measurements 

Canopy reflectance was measured in the 350 to 1100 nm range, collected at 1.5-nm 

intervals using a FieldSpec spectroradiometer (Analytical Spectral Devices, Boulder, CO). Data 

were collected during cloud-free days at solar noon between (10:30 and 14:00 hrs) and a 

previous calibration was carried out using a white plate of barium sulphate (BaSO4) that provides 

maximum irradiance (Labsphere Inc., North Sutton, USA). Four measurements in each plot were 

taken at heights of 0.5 m above the canopy with a field of view of 25o. Each reflectance 

measurement was the average of 10 scans from an area of 18.94 cm2 of the plot. The sensor 

was mounted with the help of a pistol grip approximately 50 cm above the canopy facing the 

center of the plot. Canopy reflectance measurements were taken at random places in each plot 

during booting, heading and grain filling growth stages.  

Eight SRI were calculated following the equations with wavelengths (nm) described by 

several authors. Three vegetative indices were estimated; red normalized difference vegetative 

index (RNDVI=[R780-R670]/[R780+R670]), the green NDVI (GNDVI=[R780-R550]/[R780+R550]) and 

simple ratio (SR=R900/R680) (Gitelson et al., 1996; Aparicio et al., 2000; Raun et al., 2001). The 
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water index proposed by Peñuelas et al. (1993) was estimated (WI=R970/R900) and four 

normalized water indices proposed by Babar et al. (2006a) and Prasad et al. (2007a) (NWI-

1=[R970-R900]/[R970+R900]; NWI-2=[R970-R850]/[R970+R850], NWI-3=[R970-R880]/[R970+R880] and NWI-

4=[R970-R920]/[R970+R920]) were also estimated.  

 

Estimation of genetic correlations  

Genetic correlations between traits were estimated using the SAS software with proc 

mixed, following the method described by Singh and Chaudhary (1977) (SAS Inst., 2001). The 

formula used to estimate genetic correlation was: 

rg = (CovXY )/(√VarX•VarY ) 

where Var and Cov, respectively, refer to the components of variance and covariance. 

The genetic correlations between grain yield and the SRIs were estimated within each 

growing year (2006, 2007 and 2008) and across years in all the trials and environments for all 

SRI in each growth stage (booting, heading, grain filling stages) and by combining them.  

 

Broad-sense heritability 

To calculate broad-sense heritability, the variance components associated with genotype 

(σ2
g), genotype x year interaction (σ2

gy), and residual (σ2
e) were estimated for all SRI. The broad-

sense heritability within and across years was estimated by using the following formulae:  

Heritability (within year), h2 = (σ2
g )/(σ2

g + σ2
e) 

Heritability (across years), h2 = (σ2
g )/([σ2

g + σ2 gy]/[y+ σ2
e /y•r]) 

where y and r are the number of years and replications, respectively. 

 

Estimation of selection response, correlated response, and efficiency of indirect selection 

Expected response to selection (R), correlated response to selection (CR), and efficiency 

of indirect selection (CRX/RX) were estimated according to Falconer (1989), and are described 

below: 

R = h2
x σx 
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where h2
x and σx are the heritability and phenotypic standard deviation values for trait X, 

respectively: 

CR = hxhyrg σy 

where hx and hy are the square root of the heritability of trait X and Y, respectively; rg is the 

genetic correlation between trait X and Y; and σy is the phenotypic standard deviation for trait Y. 

The efficiency of indirect selection using SRI was as follows: 

CRX/RX = hyrg/hx 

Mean values of SRI combining heading and grain filling and grain yield were obtained 

across years for all the experiments for R, CR, and CR/R. 

 

Selection of high and low yielding lines (25% range) 

Selection for the 25% highest yielding and 25% lowest yielding genotypes was made 

according to Prasad et al. (2007b). The genotypes were ranked according to grain yield and SRI 

across two growth stages (heading and grain filling). Grain yield differences between the 

genotypes of the two selection groups were based on the 25% highest and the 25% lowest SRI 

values. Percent of yield differences were estimated between yield per se and yield estimates 

based on different SRI. 

 

Grain yield  

In all experiments grain yield was measured after physiological maturity by harvesting and 

threshing the four rows of the plot, excluding a 0.5-m border at each end. Prior to grain harvest, a 

random subsample of 100 spike-bearing culms was removed from the plot. The subsample was 

oven-dried, weighed, and threshed. The grain weight was recorded and individual kernel weight 

estimated using a subsample of 200 kernels.  

 

Canopy temperature 

During the grain filling stage a hand-held infrared thermometer (Mikron M90 Series, 

Mikron Infrared Instrument Co. Inc., Oakland, NJ) was used to measure canopy temperature 
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depression. The difference in temperature between the canopy and air was estimated with a 

thermistor built into the infrared thermometer. The mean of four readings was obtained from the 

same side of each plot at an angle of approximately 30o with respect to the horizontal angle in 

order to integrate many leaves without viewing the soil. The measurements were taken during the 

afternoon (13:00-14:00 h) when the crop was experiencing maximum transpiration rates. 

 

Statistical analysis 

The three experiments were analyzed according to the alpha lattice design by using proc 

mixed in the SAS program for each growth stage, growing year, and combining growth stages 

and years (SAS, 2001). Pearson correlation coefficients were used to estimate the phenotypic 

relationship of spectral reflectance indices and yield and other parameters. In addition, the 

genetic correlation between traits was also estimated using proc mixed following the method 

described by Singh and Chaudhary (1977). A multiple regression analysis was conducted using 

Proc Stepwise for the SRI and grain yield. 

Data from the different SRI, canopy temperature and grain yield for each environment 

and trial were analyzed by principal component analysis (PCA) using SAS. The PCA was 

conducted using mean of heading and grain filling combined for the SRI, canopy temperature at 

grain filling, and grain yield averaging the three growing seasons (2006, 2007, and 2008), except 

for the HTWYT trial in water stress conditions (2007 and 2008). The PCA was conducted for 

ESWYT (well irrigated), SAWYT (well irrigated, water stress, and combining both growth 

conditions), and HTWYT (well irrigated, water stress, high temperature, and combining the three 

growth conditions). 
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Results 

The SRI were classified into two groups; one group called vegetative indices included the 

visible and NIR wavebands (RNDVI, RNDVI and SR), and another group called water indices that 

only included NIR wavebands primarily based on the 970 nm water absorption band (WI, NWI-1, 

NWI-2, NWI-3, NWI-4). However, two normalized water indices (NWI-1, NWI-3) gave the best 

relationship with grain yield. These two water indices were better than the other three (WI, NWI-2 

and NWI-4) in their relationship with grain yield, generally by 3 to 10% across years. As a 

consequence, we decided to discuss only these two water indices (NWI-1 and NWI-3) instead of 

all of the other water indices estimated. Because of the minimal differences between SRI in each 

group, the results will be discussed primarily on the basis of water indices versus vegetative 

indices. When significant differences occurred within the group, they will be indicated and 

discussed. 

Other well known SRI indices were also analyzed in a multiple regression but their 

individual association was lower than the vegetative and water indices in explaining grain yield 

variations in the three environments in each international trial. These spectral indices were the 

ratio analysis of reflectance spectra for chlorophyll a (RARSa), for chlorophyll b (RARSb) and for 

carotenoids (RARSc), the structural independent pigment index (SIPI), the photochemical 

reflectance index (PRI), and the normalized phaeophytinization index (NPQI). 

 

Genotypic variation for spectral reflectance indices and grain yield 

Significant genotypic differences for grain yield (p ≤0.05 and 0.01) were found for the trials 

ESWYT, SAWYT and HTWYT under well irrigated, water stress and high temperature conditions 

(Table 2). The only exception was for the combined years in the HTWYT under water stress 

conditions. The lack of significant genetic differences across years was caused by the minimal 

differences in grain yield among genotypes for the year 2007 (0.98-1.80 t ha-1), while the range 

was wider and higher for the year 2008 (2.89-4.31 t ha-1). As a consequence, when both years 

were combined, the average yield did not give significant differences. 
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Also, genotypic differences were found for nearly all SRI at different crop growth stages 

(booting, heading and grain filling) for the ESWYT, SAWYT and HTWYT trials in the three 

environments (Table 3). The only exception was for the booting stage in the SAWYT under water 

stress conditions for the water indices. The vegetative indices were higher at booting and lower at 

the heading and grain filling stages. In contrast, the water indices were lower at booting and 

higher at the heading and grain filling stages. 

 

Interaction between genotypes, growth stage, and years 

The ANOVA revealed that genotypes and growth stage main effects were significant in 

the three environments for all SRI (data not shown). Also, the growth stage by genotype 

interaction was significantly different for the well irrigated and high temperature environment for 

all the SRI, but not for the water stress environment for the SAWYT and HTWYT trials where the 

water indices were mainly not significant. The main effect of years also showed significant 

differences in all the environments, as well as the interaction between years, genotypes, and 

growth stage. 

 

Phenotypic correlation between spectral reflectance indices and grain yield 

The water indices always exhibited a negative association with grain yield in each 

individual experiment in every year and across years in the three environments when the 

association was significant. On the other hand, vegetative indices always showed positive 

correlations with grain yield.  

In the ESWYT trial under well irrigated conditions, the association between the water 

indices and grain yield showed a higher relationship with grain yield at heading and grain filling 

compared to booting in every year and across years (Table 4). In contrast, the vegetative indices 

showed low correlation coefficients, especially in the year 2006 and 2007, but if the SRI were 

combined over years they showed a significant association with grain yield. The relationship 

between all SRI and grain yield was low and not significant for the growing year 2006, but 

combining the SRI over the three years resulted in a significant relationship. When the growth 
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stages were combined, the correlations coefficients were slightly higher or similar to the highest 

correlation coefficient of any individual growth stage. The weak correlation values obtained with 

the booting stage affected the association when booting, heading and grain filling were combined 

in each year and across years. The relationship between the water indices and grain yield was 

much stronger when the SRI at heading and grain filling were combined, and the water indices 

gave higher associations than the vegetative indices. 

In the SAWYT trial under well irrigated and drought conditions, the relationship between 

the water indices and grain yield generally showed a higher association at heading, grain filling, 

and by combining the two growth stages in every year and across years compared to the booting 

stage (Table 4). The low correlation values at booting in most growing seasons negatively 

affected the association of average SRI with grain yield when the three growth stages were 

combined (booting, heading and grain filling) in both environments for the SAWYT trial. For the 

water stress environment, the combination of heading and grain filling showed a stronger 

association each year and across years, except for the year 2007. In comparison, the vegetative 

indices showed a low association with grain yield among years and across years under well 

irrigated conditions, with some exceptions in the year 2008. Under water stress conditions, the 

vegetative indices showed some significant correlation coefficients with grain yield in the three 

growing seasons; however, across years the vegetative indices did not show any strong 

relationship with grain yield. The vegetative indices were inconsistent in their relationship with 

grain yield in the different growing years and across years for the two environments, while the 

water indices showed a better and more consistent association at heading, grain filling and by 

combining heading and grain filling. 

In the HTWYT trial, the association between the water indices and grain yield also 

showed a higher relationship at the heading and grain filling stages across years except for the 

year 2007 under well irrigated conditions (Table 5). Under water stress conditions, this 

association at the booting stage was lower compared to the heading and grain filling stages, but 

significant for the majority of years. When the two years were combined (2007 and 2008) for the 

water stress environment, the booting stage gave similar correlation coefficients than the 
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correlation coefficients obtained by combining growth stages. For the high temperature 

environment, booting, heading and grain filling stages did not show big differences in each year 

or across years. The highest association (highly significant at p≤0.01) between the water indices 

and grain yield was obtained in this environment. In contrast, the vegetative indices generally 

showed a low relationship with grain yield under well irrigated conditions with some exceptions in 

the year 2007. The same pattern occurred under water stress conditions with some significant 

associations in the year 2008, but across years the association with grain yield was lower and not 

significant. Under high temperature conditions, the three vegetative indices gave a very strong 

association with grain yield, but always lower than the water indices. When growth stages were 

combined for the water indices, the three growth stages (booting, heading and grain filling) were 

generally lower than averaging two growth stages (heading and grain filling) in the irrigated 

environment, but the differences between three and two growth stages combined were minimal in 

the water stress and high temperature environment, especially across years.  

The mean grain yield and mean index value of NWI-3 for three years combining heading 

and grain filling for the ESWYT, SAWYT and HTWYT trials under well irrigated, water stress and 

high temperature conditions are shown in Fig. 1. The two water indices; NWI-1 and NWI-3, 

showed minimum differences in their relationship with grain yield for the three environments in all 

the trials, but NWI-3 generally gave a slightly higher association across years when combining 

heading and grain filling. The relationship between NWI-3 and grain yield was described by a 

linear model, and the strongest relationship was obtained in the high temperature environment for 

the HTWYT trial.  

A multivariate approach was conducted to compare the relationship of all SRI with grain 

yield (Fig. 2). The two water indices (NWI-1 and NWI-3) were spread in a negative direction while 

grain yield and the vegetation indices were spread in a positive direction in the three 

environments. Uncorrelated variables in a biplot are at 90o while a bigger or smaller angle 

indicates a higher association. The principal component analysis revealed that the water indices 

had a stronger relationship with grain yield (negative correlation) compared to the vegetation 

indices in every environment (well irrigated, water stress and high temperature). When the SRI 
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where analyzed combining environments for the SAWYT (well irrigated and water stress) and the 

HTWYT (well irrigated, water stress and high temperature), NWI-3 and canopy temperature 

maintained significant relationships with grain yield in both trials, while RNDVI had a lower 

relationship (Fig. 3).  

 

Genetic correlation between spectral reflectance indices and grain yield 

The water indices gave significant genetic correlations with grain yield in the three trials 

(ESWYT, SAWYT and HTWYT) under different growing conditions (well irrigated, water stress 

and high temperature conditions) when heading was combined with grain filling in each year and 

across years (Table 6). The genetic correlation ranged from -0.31 to -0.95 for the water indices in 

the three environments, while the vegetative indices showed a few significant genetic correlations 

for the well irrigated and water stress conditions. However, they showed a highly significant 

relationship with grain yield in the high temperature environment, but the genetic correlation 

coefficients were lower than the water indices. The same behavioral relationship occurred each 

year and across years in the different trials and growth conditions and a similar pattern was 

obtained when individual growth stages were tested (data not shown). In all environments, the 

genetic correlation values were higher than the phenotypic correlations in every year and across 

years for both groups of SRI. 

 

Heritability, selection response, correlated response, and relative selection efficiency 

The water indices gave moderate to high heritability values in all environments, with a 

range of 0.41 to 0.96, and the vegetation indices showed heritability values that ranged from 0.48 

to 0.96 (Table 7). Even though the vegetative indices gave low and moderate phenotypic and 

genetic correlations in some years under well irrigated and water stress conditions, they showed 

high heritability. The heritability was higher for the vegetative indices than for the water indices in 

all the environments. Grain yield heritability generally showed high values for every year and 

across years in the three environments for the three trials. 
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The response to selection (R) for SRI and grain yield, correlated response (CR) for grain 

yield using SRI, and relative selection efficiency of the SRI for grain yield are presented in Table 8 

for heading and grain filling averaged across years. In general, the vegetative indices showed 

higher selection response compared to grain yield and the water indices in the three 

environments across years. However, the correlated response was higher for the water indices 

compared to the vegetative indices except for the water stress environment in the SAWYT trial 

where both SRI groups showed low values. The relative selection efficiency of vegetative indices 

was low due to low values of correlated response. In contrast, the water indices showed high 

correlated response values under well irrigated and high temperature conditions, but not for the 

water stress environment. The relative selection efficiency gave significant relationships for the 

water indices in the three environments, except for the HTWYT under water stress conditions.  

 

Genotype selection using the water indices and grain yield 

When the selection was based on the 25% highest and the 25% lowest using the two 

water indices (NWI-1 and NWI-3), the percentage of comparable lines selected by grain yield and 

by SRI were from moderate to high (Table 9). These two water indices performed better than the 

vegetative indices that gave low and inconsistent relationship with grain yield (data not shown). In 

addition, both water indices gave similar trends when individual growth stages were considered, 

but the combination of heading and grain filling always worked better for all the trials in the three 

environments. When the 25% highest yielding genotypes and the 25% lowest yielding genotypes 

from the ESWYT under well irrigated conditions were identified, the efficiency of selection ranged 

from 17-83% across years, for the SAWYT under well irrigated conditions it ranged from 10-80%, 

from 20-80% under water stress conditions, for the HTWYT under well irrigated conditions the 

efficiency was from 20-80%, from 20-80% under water stress conditions, and from 40-100% 

under high temperature conditions. Once again, the best results for selecting high yielding 

genotypes and/or for rejecting low yielding genotypes were obtained in the high temperature 

environment.  
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Phenotypic correlation between spectral reflectance indices and grain yield across environments 

Because of a stronger relationship between the water indices and grain yield compared 

with the vegetative indices, the water indices measured in one environment for the same trial 

were correlated with grain yield of another environment. The water indices were averaged 

combining the heading and grain filling stages across years. An association between the water 

indices measured in one environment and the yield of the same genotype in another environment 

would mean that the water indices could be used to predict yield in diverse environments.  

For the SAWYT trial, the water indices for irrigated conditions compared to the grain yield 

under water stress gave a low relationship (data not shown). Similar results were obtained by 

combining the opposite relationship. For the HTWYT trial, the water indices for irrigated 

conditions compared with its yield in the high temperature environment resulted in a significant 

relationship (Table 10). The opposite combination between the water indices under high 

temperature conditions and the yield in the irrigated environment resulted in lower correlation 

values (not significant). Other comparisons resulted in low relationships.  

 

Interseason correlation for grain yield 

The interseason correlation among years for grain yield resulted in a significant 

relationship for the ESWYT and SAWYT trials for the well irrigated environments (Table 11). For 

the same environment, the correlation only resulted significant between the years 2006 and 2008 

in the HTWYT trial. In the water stress environment, the interseason correlation for grain yield 

gave the lowest correlation values for the SAWYT and HTWYT trials even though the correlations 

were significant for the SAWYT trial. Finally, in the high temperature environment, the interseason 

correlation resulted significant for the three years in the HTWYT trial. 

 

Canopy temperature and grain yield 

The association between grain yield and canopy temperature determined at grain filling 

resulted in some significant associations for the ESWYT and SAWYT trials under well irrigated 

conditions in every year and across years (Table 12). In the water stress environment, the 
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relationship with grain yield was significant for two years and across years in the SAWYT trial and 

only for one year in the HTWYT trial. For the high temperature environment, the relationship 

between canopy temperature and grain yield was highly significant for every year and across 

years. This association showed a similar pattern to the relationship between water indices and 

grain yield because the strongest association was obtained in the high temperature environment 

(Fig. 2). When the diverse environments were combined in the SAWYT (well irrigated and water 

stress) and HTWYT (well irrigated, water stress and high temperature), canopy temperature 

showed a lower relationship with grain yield for the SAWYT trial than for the HTWYT trial (Fig. 3). 
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Discussion 

Genotypic variation and growth stages 

Significant genotypic variation for grain yield was found in this study for the three trials 

under well irrigated, water deficit stress and high temperature conditions (Table 2). Also, we 

observed a wide range of genetic variation for the different SRI in the three environments at 

different growth stages referred to as booting, heading, and grain filling stages confirming the 

existence of sufficient genetic variation in each trial for SRI and yield (Table 3). Similar variation 

has been reported in earlier studies under irrigated conditions in spring wheat (Babar et al., 

2006a), under water deficit stress conditions (Gutierrez-Rodriguez et al., 2004; Babar et al., 

2006b), under rainfed conditions in durum wheat (Royo et al., 2003), and under rainfed conditions 

in winter wheat (Prasad et al., 2007a). 

 

Interaction between genotypes, growth stage, and years 

In this study, we observed significant interaction between growth stages and genotypes 

in regard to their SRI values. The interactions of growth stages by genotype suggests that the 

growth stage for predicting yield based on SRI needs to be identified with caution for accurately 

selecting high yielding genotypes in breeding programs (Babar et al., 2006a,b; Prasad et al., 

2007a). Other studies have also reported a significant interaction between growth stages and 

spectral indices (NDVI’s and SR and water indices) in spring, winter, and durum wheat (Aparicio 

et al., 2002; Babar et al., 2006a,b; Prasad et al., 2007a).  

 

Phenotypic correlation between spectral reflectance indices and grain yield 

Our results showed that the vegetation indices (RNDVI, GNDVI, and SR) generally had 

positive correlation coefficients with grain yield (Tables 4, 5). Similar positive associations have 

been reported in spring wheat, durum winter and winter wheat (Royo et al., 2003; Babar et al., 

2006a, b, c; Prasad et al., 2007a). In contrast, the water indices (NWI-1 and NWI-3) always 

showed strong negative correlations with grain yield in all the three environments tested. The 

negative association between the water indices and grain yield has previously been reported 
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under well irrigated and water stress conditions for spring wheat (Babar et al., 2006a, b) and for 

winter wheat under rainfed conditions (Prasad et al., 2007a). Peñuelas et al. (1993, 1997) 

reported an inverse relationship between the water indices and water potential, relative water 

content, and leaf temperature in wheat and other crops. A decrease in plant water content causes 

an increase in the amount of light reflected at 970nm, and lower water content in the canopy 

results in lower grain yield (Babar et al., 2006a, b; Prasad et al., 2007a). Moreover, the 

association between the water indices and grain yield indicates that canopy water content plays a 

vital role in yield among genotypes under diverse growth conditions (Babar et al., 2006b; Prasad 

et al., 2007a). One advantage of the water indices is that the NIR wavelengths penetrate deeper 

into the canopy for estimating the water status and for indicating a higher water content at 

heading (14 to 22%) than at the grain filling stage in spring wheat (Babar et al., 2006c).  

Phenotypic correlations between grain yield and the water indices in our study were 

stronger when heading and grain filling were combined for the well irrigated, water stress and 

high temperature environments. The water indices always provided a higher association with 

grain yield compared to the three vegetative indices that showed inconsistency in their 

relationship with grain yield in the well irrigated and water stressed environments (Table 4, 5). 

The association between the SRI combining heading and grain filling across years is clearly 

observed for each trial and environment (Fig. 2). Two first principal components explained more 

than 80% of the variance for the well irrigated and water stress environments (ESWYT, SAWYT, 

and HTWYT), and explained 95% of the variance in the high temperature environment (HTWYT). 

It is clear that the water indices showed a higher relationship than the vegetative indices in all the 

environments. This indicates that the water indices explained a large amount of the variation 

related to grain yield among genotypes that was not caused by or derived from environmental 

effects. The combination of SRI from three growth stages gave lower correlations for the well 

irrigated and water stress environments, while under high temperature conditions combining two 

or three growth stages gave similar results (Table 5). We are assuming that growth development 

under high temperature is accelerated resulting in major morphological differences among 

genotypes during booting, heading and grain filling in the HTWYT trial. Other studies have shown 
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that combining SRI across two growth stages (heading and grain filling) gave a better relationship 

with grain yield than any individual growth stage in spring and winter wheat (Babar et al., 2006a, 

b; Prasad et al., 2007b). The genetic variability for grain yield can be estimated by determining 

canopy reflectance during the heading and grain filling stages, and by combining the SRI from 

both growth stages, and yield prediction can be further improved in diverse environments (Babar 

et al., 2006a, b, c). Prasad et al. (2007a) postulated that the overall fitness of a genotype can be 

determined over time by estimating the water indices at anthesis and grain filling.  

The five water indices gave similar correlation values with grain yield but the NWI-1 and 

NWI-3 showed a slightly higher association with grain yield (Fig. 1, 2). Babar et al. (2006a) 

reported that the normalization of the water index did not give better results for predicting yield in 

spring wheat under optimal or adverse growing conditions. However, in our study, the NWI-1 and 

NWI-3 gave better results (3-10%) in their association with grain yield compared to the water 

index proposed by Peñuelas et al. (1993). 

For most SRI, genotypes cannot be distinguished from one another at the booting stage 

and therefore, gave a low association with grain yield, especially under irrigated and water stress 

conditions (Table 4, 5). This could be attributed to the morphological uniformity of leaves (no 

presence of reproductive organs) and large leaf area index (LAI), which over shadowed the 

differences among genotypes. Aparicio et al. (2000), found that diverse SRI (NDVI, SR, and WI) 

did not show significant differences among wheat genotypes at the booting stage due to large 

LAI, which normally reaches maximum values at this growth stage. The presence of spike and 

differences in its size increases morphological variation among genotypes at heading and during 

grain filling derived from a decrease of LAI. Several authors have reported that genotypic 

variability increased as the crop growth progressed because of spike size and/or its morphology 

(Asrar et al., 1984; Ahlrichs and Bauer, 1983). In our study, the entries in the ESWYT trial 

showed a low relationship between the water indices and grain yield in the well irrigated 

environment for the year 2006. Probably, large LAI caused low morphological genotypic 

differences at booting, heading and grain filling because grain yield had the lowest range in the 

year 2006 compared to the other two years (2007 and 2008) (Table 2, 4). In contrast, the 
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strongest relationship between the water indices and grain yield was obtained for the year 2008 

when grain yield had the biggest range. When plants showed a wider range in grain yield, it 

suggests major differences in LAI compared with the year 2006.  

Even though the vegetative indices (mainly NDVI’s) have been reported to have 

significant correlations with grain yield in bread and durum wheat under well watered and water 

deficit stress conditions (Ball and Konzak, 1993; Raun et al., 2001; Royo et al., 2003), our results 

indicated that the vegetative indices performed inconsistently in these environments (Table 4, 5). 

The vegetative indices cannot be used for predicting yield under well-irrigated and water stress 

conditions for the advanced lines of the ESWYT and SAWYT trails that we tested. We don’t have 

a clear explanation why the association with grain yield was generally low for both environments. 

However, they gave a similar association with grain yield compared to the water indices in the 

high temperature environment. In this environment, the association for all SRI resulted highly 

significant for the vegetative and water indices during the three seasons. Under high temperature 

conditions, plant growth is accelerated and we assume that the HTWYT genotypes had a major 

genotypic diversity for LAI compared to the well-irrigated and water stress conditions. Of course, 

the morphological differences are also associated with the size, erectness and wax content in 

spikes and leaves in every genotype in each trial. We believe that in the HTWYT trial the 

genotypes have a major morphological diversity for the traits mentioned; however, this hypothesis 

needs to be corroborated. There was a lower association between the water indices and grain 

yield in the water stress environment for the HTWYT trial, where we assumed high morphological 

diversity. However, the advanced lines in this trial were selected for high temperature conditions 

and not for water stress conditions. The resistant and high yielding genotypes for high 

temperature conditions are not the same kind of genotypes as those selected for the water stress 

conditions. We did not find any relationship between the water indices under water stress 

conditions and the yield of the genotypes under high temperature conditions, or for the opposite 

relationship (Table 10). 

Our study demonstrates a high efficiency of the water indices to evaluate the yield 

performance of genotypes selected for the three environments; well-irrigated (ESWYT), water 
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stress (SAWYT), and high temperature conditions (HTWYT trial) during three growing seasons. 

The genotypes of the HTWYT showed the strongest association under high temperature. In fact, 

this is the first study reporting the association between the water indices and grain yield under 

high temperatures conditions. The potential of using SRI as a tool in breeding programs for 

selecting genotypes for increased yield potential has been demonstrated in spring wheat and 

winter wheat genotypes (Babar et al., 2006a; Prasad et al., 2007a). The water indices showed 

stability over time and environment that is a major concern for breeders in evaluating genotypes 

for a particular environment. The water indices have higher predictability at the genotypic level for 

grain yield variation compared to the vegetation based indices for selecting superior genotypes 

for grain yield for the three environments tested. The water indices NWI-1 and NWI-3 gave the 

best results in selecting the top yielding genotypes for grain yield and for discarding low yielding 

genotypes. The identification of low yielding lines has important implications in breeding programs 

because these lines are not desirable for making new crosses. Similar results were reported by 

Prasad et al. (2007a) for the water indices where NWI-3 also showed the highest relationship with 

grain yield. The two water indices (NWI-1 and NWI-3) proved to be quite accurate in selecting the 

top 25% and the 25% lowest yielding (Table 9). Once again, the high temperature environment 

gave the best results for selecting high yielding genotypes and/or for rejecting low yielding 

genotypes.  

When the environments were combined in the SAWYT and HTWYT trials, the 

relationship between NWI-3 and grain yield was maintained significant and resulted stronger for 

the HTWYT trial (Fig. 3). The two first components explained 89% of the variance for the HTWYT, 

while for the SAWYT, only explained 68% of the variance. 

 

Genetic correlation between spectral reflectance indices and grain yield 

The water indices showed a higher association at the genetic level than the vegetation 

indices suggesting that canopy water content is more powerful in predicting grain yield. The 

genetic coefficients calculated based on individual growth stages, combining three growth stages 

(booting, heading, and grain filling), and combining two growth stages (heading and grain filling) 
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gave similar results. However, higher genetic correlations were obtained when heading and grain 

filling were combined for the well irrigated, water stress and high temperature conditions (Table 

6). The genetic correlation was stronger than the phenotypic correlation in the diverse 

environments in our study. This strong correlation is also evidence of an improved association 

between SRI and grain yield over years and growth stages, which has not been reported before 

for high temperature conditions. Babar et al. (2007) and Prasad et al. (2007a) also reported 

strong genetic correlations for the water indices under well irrigated, water stress and rainfed 

conditions.  

 

Heritability, selection response, correlated response, and relative selection efficiency 

The heritability calculated in our study is the proportion of phenotypic variance derived 

from genetic effects and indicates repeatability of SRI at different times (Falconer, 1989). The 

water indices showed moderate to high heritability while the vegetative indices showed the 

highest heritability for the three environments. Even though the vegetative indices had high 

heritability, they cannot be used for predicting yield because of their low phenotypic and genetic 

correlations (Table 4, 5, 6, 7). The inconsistency of the vegetative indices is highly repeatable 

(highly heritable) for both environments. However, they can be used for predicting yield in the 

high temperature environment because they had similar phenotypic and genetic correlations and 

higher heritability than the water indices. Jackson (2001) indicated that an indirect selection trait 

should have higher heritability than the direct trait, and high genetic correlation with the direct 

trait. Regarding the water indices in our study, they generally showed strong phenotypic and 

genetic correlations, and reasonably high heritability for the three environments. A genetic gain in 

grain yield by selection with the water indices (indirect selection criteria) can be achieved in 

breeding programs. 

Grain yield also had high heritability for every year and across years in the three 

environments (Table 7). The advanced lines selected for the three environments in each trial 

demonstrated high heritability. Selecting genotypes by grain yield (direct selection) could be 

achieved for the three environments evaluated, but this method consumes considerable time 
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when a large number of genotypes are evaluated in the field compared to the use of the water 

indices. 

The vegetative indices showed a higher response to selection (R) than the water indices, 

but they had low correlated response (CR) and low efficiency of indirect selection (CR/R) in the 

well irrigated and water stress environments (Table 8). In contrast, the water indices showed a 

higher CR and CR/R than the vegetative indices in both environments. For the high temperature 

environment, the vegetative indices and the water indices had similar R, CR, and CR/R values. 

Similar results have been reported for spring and winter wheat genotypes (Babar et al., 2006a, b; 

Prasad et al., 2007a). The ratio between correlated response for a primary trait via a secondary 

trait and the response to selection for the primary trait is a measure of the relative selection 

efficiency (Falconer, 1989).  

The strong phenotypic and genetic correlation, heritability, CR, and CR/R suggest that 

the use of the water indices has significant potential for achieving greater genetic gain in grain 

yield in the three environments.  

 

Canopy temperature and grain yield 

Canopy temperature gave some strong relationships with grain yield in the well irrigated 

environment (Table12). In the water stress environment, the association between canopy 

temperature and grain yield was also significant. However, the association between canopy 

temperature and grain yield was the highest in the high temperature environment. Canopy 

temperature followed the same pattern as the water indices, showing the best association in this 

environment. This means that the advanced lines in the HTWYT can be selected indirectly for 

high grain yield using either the water indices or the canopy temperature (Fig. 2, 3). Both 

methods offer great advantages because they are cheaper, easier and quicker to measure in the 

field, especially when a large number of genotypes are being screened for yield. Also, canopy 

temperature could complement and support the selection of high yielding lines in other 

environments because it showed additive effects with the water indices for explaining grain yield 

according to a multiple analysis when heading and grain filling were combined (data not shown), 
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especially for the well irrigated environment in the three trials (4-19%). For the other 

environments, the canopy temperature showed low additive effects (1-4%). 
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Conclusions 

The water indices (NWI-1 and NWI-3, as well as NWI-2 and NWI-4) demonstrated great 

potential to differentiate high and low yielding genotypes in advanced lines of spring wheat under 

well irrigated, water stress and high temperature conditions in the diverse trials. This is the first 

study reporting the association between the water indices and grain yield for the high temperature 

environment that resulted in the best association. The combined growth stages of heading and 

grain filling can be used to differentiate genotypes for grain yield. The relationship between the 

water indices and grain yield also demonstrated a genetic base (high genetic correlation and 

heritability). The water indices can be used for breeding purposes in a well-irrigated, water deficit, 

and high temperature environments for selecting high yielding advanced lines of spring wheat 

because yield can be predicted using SRI. Additionally, canopy temperature could be used for 

predicting grain yield, especially in the high temperature environment. In other environments, 

canopy temperature could support the selection of high yielding lines by its additive effects with 

the water indices in the well irrigated environment for the three trials. 
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Tables 

Table 1. Mean, maximum and minimum temperature (oC) and monthly total rainfall (mm) for three 
growing seasons in Northwest, Mexico.  
 Normal growing season     

   Late growing season  Mean/Sum 
Cycle Nov. Dec. Jan. Feb. Mar. Apr. May Jun.   

2005-06           
Min   12.3 7.6 5.7 8.4 8.7 10.8 15.0 22.5  11.4 
Max   31.7   26.7   25.8   26.6   27.0 32.1 35.2 38.1  30.4 
Average   22.0   17.2   15.7   17.5   17.8 21.4 25.1 30.3  20.9 
Total rainfall 0.0 1.0 0.0 0.2 1.0 0.0 0.0 31.6  34.8 

2006-07           
Min   13.0 7.7 6.2 7.3 8.3 10.8 13.6 22.0  11.1 
Max   31.6   24.7   21.7   25.2   28.6 29.3 34.2 36.7  29.0 
Average   22.3   16.2   14.0   16.3   18.5 20.1 23.9 29.4  20.1 
Total rainfall 0.0 4.4   19.0 0.4 0.0 0.2 0.4 0.0  24.4 

2007-08           
Min   14.1 7.9 7.1 6.9 7.3 10.3 14.0 22.3  11.2 
Max   29.9   22.6   23.8   25.4   27.0 31.6 33.3 35.8  28.7 
Average   22.0   15.3   15.4   16.1   17.2 21.0 23.7 29.0  20.0 
Total rainfall   14.8   44.4 6.2 0 1.0 0.0 0.0 3.0  69.4 
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Table 2. Mean, maximum and minimum yield levels (t ha-1) for pair wise genotypic comparisons 
and significance levels for Elite Spring Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial 
(SAWYT) and High Temperature Wheat Yield Trial (HTWYT) during three growing years and 
across years. 

Year ESWYT  SAWYT  HTWYT 

Irrigated  Irrigated Water stress  Irrigated Water 
stress 

High 
temperature 

2006         
Min 6.36  3.33 0.51  5.70  1.87 
Max 8.38  8.35 2.49  8.29  3.80 
Mean 7.35  6.91 1.53  7.33  3.16 
LSD (5%) 0.57  0.73 0.69  0.65  0.41 
Significance level **  ** **  **  ** 

2007         
Min 5.07  4.86 0.36  4.61 0.98 1.11 
Max 7.93  9.45 3.13  7.85 1.80 3.90 
Mean 6.57  6.32 1.85  6.03 1.39 2.66 
LSD (5%) 0.78  1.13 0.89  1.10 0.24 0.76 
Significance level **  * *  * * * 

2008         
Min 4.80  4.48 1.97  4.64 2.89 1.26 
Max 7.21  7.24 4.58  7.49 4.31 3.46 
Mean 5.95  6.12 3.23  6.01 3.45 2.28 
LSD (5%) 0.68  0.51 0.80  0.76 0.31 0.70 
Significance level *  ** **  ** * * 

Combined         
Min 4.80  3.33 0.36  4.61 0.98 1.11 
Max 8.38  9.45 4.58  8.29 4.31 3.90 
Mean 6.62  6.45 2.20  6.46 2.42 2.70 
LSD (5%) 0.86  0.72 1.04  0.97 1.72 0.77 
Significance level **  ** **  **  ** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
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Table 3. Mean (±SE) of spectral reflectance indices at three growth stages for Elite Spring Wheat 
Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT) and High Temperature Wheat Yield 
Trial (HTWYT) grown in three different growing conditions. Estimates were based on combined 
years. 

Growth 
stage 

Vegetative indices†  Water indices‡ 

RNDVI GNDVI SR  NWI-1 NWI-3 
  ESWYT-Well irrigated  
Booting 0.917±0.004** 0.808±0.004** 24.4±0.9**  -0.076±0.002** -0.075±0.002** 
Heading 0.886±0.006** 0.785±0.006** 18.2±0.8**  -0.094±0.002** -0.094±0.003** 
Grain filling 0.859±0.008** 0.767±0.008** 15.1±0.7**  -0.092±0.003** -0.092±0.003** 
  SAWYT-Well irrigated  
Booting 0.910±0.004** 0.793±0.003** 22.9±0.9**  -0.076±0.002** -0.076±0.002** 
Heading 0.865±0.003** 0.767±0.004** 15.1±0.4**  -0.095±0.002** -0.096±0.002** 
Grain filling 0.830±0.004** 0.729±0.005** 11.9±0.4**  -0.092±0.002** -0.092±0.002** 
  SAWYT-Water stress  
Booting 0.858±0.008** 0.755±0.008** 16.2±1.0**  -0.063±0.003** -0.059±0.003** 
Heading 0.791±0.011** 0.712±0.007** 10.5±0.6**  -0.048±0.002** -0.045±0.003** 
Grain filling 0.592±0.018** 0.598±0.011** 4.8±0.3***  -0.027±0.002** -0.023±0.002** 
  HTWYT-Well irrigated  
Booting 0.919±0.004** 0.806±0.006** 25.0±1.3**  -0.070±0.001** -0.071±0.001** 
Heading 0.880±0.006** 0.781±0.007** 17.1±0.9**  -0.092±0.003** -0.094±0.003** 
Grain filling 0.832±0.011** 0.737±0.014** 12.7±0.9**  -0.090±0.004** -0.090±0.003** 
  HTWYT-Water stress  
Booting 0.873±0.005** 0.778±0.007** 16.8±0.8**  -0.063±0.002** -0.062±0.002** 
Heading 0.749±0.030** 0.696±0.021** 10.5±1.3**  -0.046±0.005** -0.041±0.005** 
Grain filling 0.650±0.039** 0.647±0.024** 7.2±1.0***  -0.035±0.004** -0.030±0.004** 
  HTWYT-High temperature  
Booting 0.752±0.024** 0.664±0.014** 8.8±0.8**  -0.042±0.004** -0.042±0.004** 
Heading 0.746±0.020** 0.675±0.012** 8.4±0.6**  -0.045±0.004** -0.042±0.004** 
Grain filling 0.617±0.030** 0.602±0.018** 5.2±0.5**  -0.034±0.004** -0.030±0.004** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio;  
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
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Table 4. Phenotypic correlations between spectral reflectance indices and grain yield for Elite Spring Wheat Yield Trial (ESWYT), and Semi-Arid 
Wheat Yield Trial (SAWYT) grown under well irrigated and water stress conditions during three years and across years.  
Spectral 
index 

Growth stage 
ESWYT-Irrigated  SAWYT-Irrigated  SAWYT-Water stress 

2006 2007 2008 Combined  2006 2007 2008 Combined  2006 2007 2008 Combined 
Vegetative indices†               
RNDVI Booting 0.23* 0.21** 0.68** 0.45**  0.07** 0.25* 0.25** 0.20*  0.06** -0.06*** 0.31** -0.16* * 
 Heading -0.03** 0.33** 0.70** 0.42**  0.18** -0.02** 0.41** 0.17*  0.51** 0.39** 0.45** 0.37** 
 Grain filling 0.06* 0.30** 0.73** 0.48**  0.12** 0.10* 0.41** 0.19*  0.30** 0.28** 0.44** 0.13** 
 Boot-Head-GF‡ 0.08* 0.30** 0.73** 0.47**  0.15** 0.11* 0.40** 0.20*  0.39** 0.33** 0.44** 0.17** 
 Head-GF§ -0.05** 0.33** 0.73** 0.46**  0.15** 0.05* 0.42** 0.18*  0.44** 0.34** 0.46** 0.22** 
GNDVI Booting 0.44* 0.28** 0.65** 0.51**  0.12** 0.15* 0.17** 0.18*  0.07** 0.05** 0.08** -0.30* * 
 Heading 0.19* 0.38** 0.70** 0.49**  0.03** -0.10** 0.34** 0.04*  0.39** 0.50** 0.30** 0.29** 
 Grain filling 0.26* 0.37** 0.66** 0.50**  0.02** 0.04* 0.29** 0.02*  0.20** 0.17** 0.17** -0.06 ** 
 Boot-Head-GF‡ 0.34* 0.38** 0.70** 0.53**  0.06** 0.05* 0.30** 0.07*  0.27** 0.33** 0.21** -0.01 ** 
 Head-GF§ 0.17* 0.39** 0.69** 0.51**  0.03** -0.01** 0.32** 0.03*  0.33** 0.36** 0.24** 0.08** 
SR Booting 0.26* 0.54** 0.66** 0.44**  0.12** 0.24* 0.25** 0.27*  0.07** -0.09*** 0.29** -0.30 ** 
 Heading 0.01* 0.36** 0.68** 0.43**  0.14** -0.01** 0.39** 0.17*  0.48** 0.09** 0.48** 0.14** 
 Grain filling 0.09* 0.41** 0.67** 0.41**  0.01** 0.15* 0.37** 0.15*  0.30** 0.32** 0.41** 0.11** 
 Boot-Head-GF‡ 0.17* 0.32** 0.69** 0.45**  0.06** 0.21* 0.36** 0.24*  0.34** 0.03** 0.41** -0.06 ** 
 Head-GF§ -0.02** 0.34** 0.69** 0.43**  0.09** 0.08* 0.39** 0.16*  0.47** 0.15** 0.47** 0.14** 
Water indices‡               
NWI-1 Booting -0.18** -0.09** -0.45** -0.19**  -0.36** -0.18** -0.33** -0.05**  -0.38** -0.49** -0.19** -0.07** 
 Heading -0.26** -0.43** -0.77** -0.56**  -0.50** -0.41** -0.62** -0.63**  -0.63** -0.59** -0.40** -0.46** 
 Grain filling -0.28** -0.52** -0.84** -0.64**  -0.45** -0.45** -0.63** -0.57**  -0.53** -0.46** -0.59** -0.40** 
 Boot-Head-GF‡ -0.28** -0.40** -0.76** -0.51**  -0.34** -0.46** -0.60** -0.55**  -0.63** -0.62** -0.42** -0.40** 
 Head-GF§ -0.29** -0.52** -0.82** -0.62**  -0.51** -0.44** -0.64** -0.61**  -0.65** -0.60** -0.52** -0.47** 
NWI-3 Booting -0.21** -0.06** -0.41** -0.17**  -0.41** -0.17** -0.35** -0.01**  -0.35** -0.49** -0.25** -0.16** 
 Heading -0.25** -0.41** -0.74** -0.54**  -0.52** -0.41** -0.66** -0.66**  -0.67** -0.57** -0.44** -0.53** 
 Grain filling -0.28** -0.48** -0.84** -0.63**  -0.42** -0.46** -0.63** -0.56**  -0.54** -0.41** -0.64** -0.42** 
 Boot-Head-GF‡ -0.29** -0.36** -0.74** -0.49**  -0.30** -0.47** -0.62** -0.55**  -0.65** -0.62** -0.49** -0.47** 
 Head-GF§ -0.27** -0.49** -0.81** -0.61**  -0.51** -0.46** -0.67** -0.63**  -0.67** -0.57** -0.59** -0.52** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
§Boot-Head-GF, average of the booting, heading and grain filling stages. 
¶Head-GF, average of the heading and grain filling stages. 
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Table 5. Phenotypic correlations between spectral reflectance indices and grain yield for High Temperature Wheat Yield Trial (HTWYT) grown 
under well irrigated, water stress, and high temperature conditions during three years and across years. 
Spectral 
index 

Growth stage 
Irrigated  Water stress  High temperature 

2006 2007 2008 Combined  2007 2008 Combined  2006 2007 2008 Combined 
Vegetative indices†              
RNDVI Booting 0.20 0.38* 0.24 0.22*  -0.09** 0.46* -0.05*  0.69*** 0.75** 0.83** 0.86** 
 Heading 0.42 0.40* 0.36 0.38*   0.22** 0.47* 0.19  0.75*** 0.83** 0.83** 0.85** 
 Grain filling 0.43 0.20* 0.43 0.35*  -0.06** 0.54* -0.21*  0.77*** 0.64** 0.80** 0.88** 
 Boot-Head-GF§ 0.40 0.36* 0.37 0.34*   0.11** 0.51* -0.18*  0.76*** 0.79** 0.82** 0.88** 
 Head-GF¶ 0.44 0.33* 0.41 0.37*   0.14** 0.51* -0.21*  0.75*** 0.77** 0.81** 0.88** 
GNDVI Booting 0.27 0.42* 0.12 0.23*  -0.01** 0.48* -0.19*  0.70*** 0.77** 0.83** 0.84** 
 Heading 0.44 0.34* 0.24 0.30*   0.16** 0.34* -0.10*  0.77*** 0.81** 0.81** 0.82** 
 Grain filling 0.41 0.15* 0.21 0.26*  -0.07** 0.33* -0.07*  0.80*** 0.63** 0.78** 0.83** 
 Boot-Head-GF§ 0.41 0.34* 0.21 0.28*  -0.03** 0.39* -0.12*  0.80*** 0.88** 0.81** 0.85** 
 Head-GF¶ 0.43 0.25* 0.26 0.28*  -0.04** 0.33* -0.09*  0.77*** 0.76** 0.81** 0.84** 
SR Booting 0.05 0.49* 0.27 0.22*  -0.01** 0.41* -0.09*  0.68*** 0.56** 0.82** 0.80** 
 Heading 0.31 0.48* 0.36 0.38*   0.22** 0.42* -0.15*  0.71*** 0.71** 0.83** 0.81** 
 Grain filling 0.32 0.22* 0.41 0.30*  -0.03** 0.49* -0.19*  0.72*** 0.52** 0.81** 0.84** 
 Boot-Head-GF§ 0.22 0.53* 0.34 0.29*   0.06** 0.46* -0.13*  0.72*** 0.65** 0.83** 0.83** 
 Head-GF¶ 0.32 0.46* 0.38 0.35*   0.16** 0.45* -0.17*  0.71*** 0.68** 0.83** 0.84** 
Water indices‡              
NWI-1 Booting -0.23* -0.69** -0.51** -0.41**  -0.43** -0.65** -0.54*  -0.77*** -0.86** -0.93** -0.92** 
 Heading -0.30* -0.66** -0.66** -0.55**  -0.64** -0.66** -0.52*  -0.78*** -0.88** -0.94** -0.87** 
 Grain filling -0.46* -0.69** -0.77** -0.61**  -0.62** -0.69** -0.53*  -0.77*** -0.79** -0.81** -0.88** 
 Boot-Head-GF§ -0.36* -0.79** -0.72** -0.58**  -0.60** -0.71** -0.57*  -0.76*** -0.89** -0.92** -0.92** 
 Head-GF¶ -0.39* -0.74** -0.73** -0.59**  -0.63** -0.69** -0.54*  -0.78*** -0.87** -0.90** -0.90** 
NWI-3 Booting -0.22* -0.64** -0.59** -0.45**  -0.43** -0.68** -0.56*  -0.75*** -0.88** -0.93** -0.92** 
 Heading -0.33* -0.62** -0.69** -0.57**  -0.66** -0.68** -0.48*  -0.75*** -0.89** -0.94** -0.88** 
 Grain filling -0.43* -0.69** -0.79** -0.67**  -0.69** -0.68** -0.54*  -0.80*** -0.73** -0.89** -0.92** 
 Boot-Head-GF§ -0.38* -0.79** -0.79** -0.64**  -0.64** -0.72** -0.55*  -0.71*** -0.90** -0.93** -0.93** 
 Head-GF¶ -0.42* -0.74** -0.78** -0.63**  -0.69** -0.70** -0.53*  -0.75*** -0.87** -0.92** -0.92** 
*,**Significant at the 0.05 and 0.01 probability level, respectively.  
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
§Boot-Head-GF, average of the booting, heading and grain filling stages. 
¶Head-GF, average of the heading and grain filling stages. 
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Table 6. Genetic correlations between spectral reflectance indices and grain yield for Elite Spring 
Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT), and High Temperature Wheat 
Yield Trial (HTWYT) grown under different growth conditions. Average of combined growth 
stages (heading and grain filling stages) during three years and across years. 

Year Vegetative indices†  Water indices‡ 

RNDVI GNDVI SR  NWI-1 NWI-3 

  ESWYT-Well irrigated  

2006 0.03** 0.22** 0.08**  -0.49** -0.45** 
2007 0.20** 0.25** 0.22**  -0.50** -0.45** 
2008 0.79** 0.72** 0.72**  -0.84** -0.83** 
Combined 0.46** 0.52** 0.45**  -0.63** -0.62** 

  SAWYT-Well irrigated  

2006 0.16** 0.01** 0.08**  -0.63** -0.63** 
2007 0.01** -0.11* * 0.04**  -0.58** -0.62** 
2008 0.47** 0.36** 0.43**  -0.75** -0.77** 
Combined 0.18** 0.01** 0.18**  -0.74** -0.77** 

  SAWYT-Water stress  

2006 0.46** -0.36* * 0.59**  -0.76** -0.89** 
2007 0.10** 0.01** -0.33* *  -0.31** -0.33** 
2008 0.56** 0.28** 0.62**  -0.55** -0.53** 
Combined -0.04* * -0.25* * -0.26* *  -0.38** -0.46** 

  HTWYT-Well irrigated  

2006 0.46** 0.46** 0.35**  -0.40** -0.46** 
2007 0.38** 0.29** 0.52**  -0.98** -0.98** 
2008 0.31** 0.25** 0.30**  -0.73** -0.68** 
Combined 0.42** 0.32** 0.39**  -0.63** -0.71** 

  HTWYT-Water stress  

2007 0.12** -0.01 ** 0.14**  -0.70** -0.76** 
2008 0.65** 0.37** 0.50**  -0.72** -0.71** 
Combined -0.16* * -0.35* * -0.30* *  -0.58** -0.62** 

  HTWYT-High temperature  

2006 0.75** 0.74** 0.71**  -0.85** -0.84** 
2007 0.84** 0.86** 0.64**  -0.89** -0.89** 
2008 0.83** 0.81** 0.84**  -0.92** -0.95** 
Combined 0.92** 0.86** 0.85**  -0.97** -0.97** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
₤PRI, photochemical reflectance index. 
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Table 7. Broad-sense heritability for spectral reflectance indices and grain yield for Elite Spring 
Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT), and High Temperature Wheat 
Yield Trial (HTWYT) grown under different growing conditions. Average of combined growth 
stages (heading and grain filling) during three years and across years. 

Year Grain yield Vegetative indices†  Water indices‡ 

RNDVI GNDVI SR  NWI-1 NWI-3 

  ESWYT-Well irrigated  

2006 0.92 0.92 0.93 0.93  0.80 0.77 
2007 0.96 0.96 0.97 0.95  0.87 0.86 
2008 0.48 0.84 0.91 0.87  0.69 0.69 
Combined 0.81 0.89 0.94 0.92  0.80 0.79 

  SAWYT-Well irrigated  

2006 0.96 0.87 0.89 0.83  0.83 0.83 
2007 0.50 0.65 0.65 0.67  0.77 0.72 
2008 0.90 0.83 0.84 0.87  0.79 0.81 
Combined 0.77 0.86 0.89 0.85  0.83 0.83 

  SAWYT-Water stress  

2006 0.64 0.44 0.53 0.29  0.39 0.42 
2007 0.69 0.77 0.67 0.70  0.51 0.52 
2008 0.69 0.88 0.89 0.87  0.81 0.79 
Combined 0.62 0.49 0.56 0.44  0.37 0.41 

  HTWYT-Well irrigated  

2006 0.86 0.94 0.98 0.93  0.93 0.91 
2007 0.73 0.92 0.93 0.85  0.69 0.70 
2008 0.77 0.82 0.91 0.87  0.67 0.62 
Combined 0.72 0.95 0.96 0.89  0.75 0.71 

  HTWYT-Water stress  

2007 0.79 0.93 0.95 0.95  0.91 0.85 
2008 0.86 0.72 0.88 0.85  0.74 0.70 
Combined 0.74 0.96 0.97 0.94  0.87 0.87 

  HTWYT-High temperature  

2006 0.84 0.97 0.97 0.97  0.96 0.96 
2007 0.85 0.96 0.97 0.96  0.94 0.95 
2008 0.93 0.97 0.97 0.97  0.91 0.95 
Combined 0.78 0.90 0.92 0.87  0.83 0.84 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
₤PRI, photochemical reflectance index. 
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Table 8. Selection response (R) for the spectral reflectance indices and grain yield, correlated 
response (CR) for grain yield using SRI, and relative selection efficiency (CR/R) for grain yield for 
Elite Spring Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT) and High 
Temperature Wheat Yield Trial (HTWYT) grown under different growing conditions. Average of 
heading and grain filling stages across years. 
 Selection 

parameter 
Grain 
yield 

Vegetative indices†  Water indices‡ 

 RNDVI GNDVI SR  NWI-1 NWI-3 
   ESWYT-Well irrigated  

Combined R 0.39** 0.47** 0.64** 0.53**  0.30** 0.29** 
years CR  0.19** 0.22** 0.19**  -0.25*** -0.24* * 

 CR/R  0.40** 0.34** 0.36**  -0.81*** -0.84*** 

   SAWYT-Well irrigated  

Combined R 0.53** 0.64** 0.67** 0.61**  0.45** 0.38** 
years CR  0.10** -0.01* * 0.10**  -0.41*** -0.43*** 

 CR/R  0.16** -0.01* * 0.16**  -0.91*** -1.12*** 

   SAWYT-Water stress  

Combined R 0.20** 0.20** 0.18** 0.15**  0.12** 0.14** 
years CR  -0.01* * -0.05* * -0.04* *  -0.06*** -0.08* * 
 CR/R  -0.03* * -0.28* * -0.29* *  -0.51** -0.57*** 

   HTWYT-Well irrigated  

Combined R 0.36** 0.80** 0.82** 0.76**  0.25** 0.22** 
years CR  0.17** 0.13** 0.16**  -0.23*** -0.26* * 
 CR/R  0.22** 0.16** 0.21**  -0.94*** -1.18*** 

   HTWYT-Water stress  

Combined R 0.65** 0.97** 0.99** 0.93**  0.82** 0.73*** 
years CR  -0.08* * -0.18* * -0.15* *  -0.29*** -0.30* * 
 CR/R  -0.09* * -0.18* * -0.17* *  -0.35*** -0.41* * 

   HTWYT-High temperature  

Combined R 0.39** 0.56** 0.58** 0.60**  0.36** 0.38** 
years CR  0.38** 0.36** 0.35**  -0.39*** -0.40* * 
 CR/R  0.69** 0.63** 0.58**  -1.10** -1.06*** 
*,**Significant at the 0.05 and 0.01 probability level, respectively.  
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
₤PRI, photochemical reflectance index. 
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Table 9. Percentage of the 25% highest and lowest yielding genotypes selected by the two water 
indices compared with direct selection by grain yield in Elite Spring Wheat Yield Trial (ESWYT), 
Semi-Arid Wheat Yield Trial (SAWYT) and High Temperature Wheat Yield Trial (HTWYT) grown 
under different growth conditions during three years and across years. 
Trial NWI-1†  NWI-3† 
 Lowest (%) Highest (%)  Lowest (%) Highest (%) 
ESWYT-Well irrigated     
2006 33 17  33 17 
2007 17 17  17 17 
2008 83 50  83 50 
Mean‡ 83 33  83 33 
SAWYT-Well irrigated     
2006 50 10  50 10 
2007 80 40  80 50 
2008 70 60  70 60 
Mean‡ 60 30  60 30 
SAWYT-Water stress     
2006 60 40  60 40 
2007 50 60  60 50 
2008 60 70  60 80 
Mean‡ 40 20  40 30 
HTWYT-Well irrigated     
2006 60 20  60 20 
2007 40 60  40 60 
2008 80 80  80 80 
Mean‡ 60 40  80 40 
HTWYT-Water stress     
2007 40 80  60 80 
2008 60 60  60 60 
Mean‡ 60 20  80 40 
HTWYT-High temperature     
2006 80 40  100 40 
2007 80 60  80 60 
2008 100 80  80 80 
Mean‡ 80 60  100 60 
†NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
‡Average of the heading and grain filling stages. 
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Table 10. Inter-environmental correlations between spectral reflectance indices and grain yield for 
the trial High Temperature Wheat Yield Trial (HTWYT) combining growth conditions (well 
irrigated, water stress and high temperature). Average of combined years.  
Spectral 
Indices† 

 Grain yield 

 Boot-Head-GF‡ Head-GF§ 

Well irrigated  High temperature 

NWI-1  -0.55* -0.58* 
NWI-3  -0.54* -0.57* 
High temperature Well irrigated 

NWI-1  -0.37* -0.38* 
NWI-3  -0.36* -0.43* 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
‡ Boot-Head-GF, average of the booting, heading and grain filling stages. 
§Head-GF, average of the heading and grain filling stages. 
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Table 11. Interseason correlations for grain yield during diverse growing seasons for Elite Spring 
Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT) and High Temperature Wheat 
Yield Trial (HTWYT) grown under different growth conditions.  

  Well irrigated  

 ESWYT  SAWYT  HTWYT 
 2006 2007  2006 2007  2006 2007 

2007 0.71**   0.45**   0.39**  
2008 0.52** 0.48*  0.66** 0.55**  0.65** 0.34* 

 Water stress  High temperature 

 SAWYT  HTWYT  HTWYT- 
 2006 2007  2006 2007  2006 2007 

2007 0.34**      0.49**  
2008 0.37** 0.39**   0.23**  0.58** 0.64** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
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Table 12. Phenotypic correlations between grain yield and canopy temperature determined at 
grain filling stage for Elite Spring Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial 
(SAWYT) and High Temperature Wheat Yield Trial (HTWYT) grown under different growth 
conditions during three years and across years. 
Trial 2006 2007 2008 Combined 
Well irrigated     
ESWYT -0.14** -0.15** -0.50** -0.38** 
SAWYT -0.26** -0.19** -0.27** -0.34** 
HTWYT -0.14** -0.58** -0.59** -0.37** 
Water stress     
SAWYT -0.13** -0.45** -0.33** -0.40** 
HTWYT  -0.22** -0.48** -0.12** 
High temperature     
HTWYT -0.74** -0.50** -0.86** -0.82** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
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Figure 1. Linear relationship between grain yield and normalized water index 3 (NWI-3) 
combining heading and grain filling stages for Elite Spring Wheat Yield Trial (ESWYT), Semi-Arid 
Wheat Yield Trial (SAWYT) and High Temperature Wheat Yield Trial (HTWYT). Average of 
combined years. 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
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Figure 2. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of different spectral reflectance indices and grain yield for the 
Elite Spring Wheat Yield Trial (ESWYT), Semi-Arid Wheat Yield Trial (SAWYT) and High 
Temperature Wheat Yield Trial (HTWYT) grown in three environments. Average of heading and 
grain filling stages across years.  
RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio; WI, water index; NWI-1, normalized water index 1; NWI-3, normalized water index 3; PRI, photochemical reflectance 
index; CT-GF, canopy temperature at grain filling; YLD, yield 
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Figure 3. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of NWI-3, RNDVI, grain yield and canopy temperature at grain 
filling combining environments in Semi-Arid Wheat Yield Trial (SAWYT) and High Temperature 
Wheat Yield Trial (HTWYT). Average of heading and grain filling stages across years.  
RNDVI, red normalized difference vegetation index; NWI-3, normalized water index 3; CT-GF, canopy temperature at 
grain filling; YLD, yield. 
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CHAPTER III 
 
 

Indirect selection for grain yield in diverse nurseries worldwide using 

parameters locally determined in NW Mexico in spring bread wheat 
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Abbreviations 

 

CIMMYT, International Maize and Wheat Improvement 

ESWYT, Semi-Arid Wheat Yield Trial  

HTWYT, High Temperature Wheat Yield Trial 

NWI-1, normalized water index-1  

NWI-2, normalized water index-2  

NWI-3, normalized water index-3  

NWI-4, normalized water index-4  

SAWYT, Elite Spring Wheat Yield Trial 

WI, water index  
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Abstract 

A strong relationship has been previously reported between the spectral reflectance parameter 

normalized water index three (NWI-3) and grain yield in NW Mexico at the principal wheat 

breeding station of The International Maize and Wheat Improvement Centre (CIMMYT). This 

study determined the relationship between NWI-3 and canopy temperature with the grain yield of 

multi-location yield trials of advanced spring wheat lines included in the 24th ESWYT (elite spring 

wheat yield trial), 11th SAWYT (semi-arid wheat yield trial), and 11th HTWYT (high temperature 

wheat yield trial) planted at international locations in 2003. The NWI-3, canopy temperature, and 

grain yield were determined in NW Mexico in distinct environments for each international trial: 24th 

ESWYT (well irrigated), 11th SAWYT (well irrigated and water stress) and 11th HTWYT (well 

irrigated, water stress, and high temperature) during three growing seasons (2006, 2007, and 

2008). The database from CIMMYT for the 24th ESWYT, 11th SAWYT, and 11th HTWYT was used 

to obtain grain yield data for each international trial in diverse worldwide nurseries for the year 

2003. All trials were planted in an alpha lattice design with two replications at every location. The 

analysis encompassed data from fifty yield testing sites of the 24th ESWYT, twenty nine sites for 

the 11th SAWYT, and twenty two sites for the 11th HTWYT. The mean grain yield of each nursery 

site showed great diversity during the year 2003, ranging from 0.75 to 9.0 t ha-1 for the 24th 

ESWYT entries, from 0.62 to 8.17 t ha-1 for the 11th SAWYT entries, and from 0.41 to 6.98 t ha-1 

for the 11th HTWYT entries. The overall mean was 4.47 t ha-1 for the 24th ESWYT entries, 3.48 t 

ha-1 for the 11th SAWYT, and 3.73 t ha-1 for the 11th HTWYT. The NWI-3, canopy temperature, 

and grain yield obtained from NW Mexico in distinct environments (well irrigated, water stress, 

and high temperature) showed significant associations with the grain yield of genotypes in several 

nurseries located in different regions worldwide for the three international trials (24th ESWYT, 11th 

SAWYT and 11th HTWYT). Depending on the environment in which NWI-3 and CT were 

measured, they showed significant relationships with specific locations distributed in worldwide 

sites. However, when the top 25% yielding lines for each international trial and environment (6 

lines for 24th ESWYT, 10 lines for 11th SAWYT, and 5 lines for 11th HTWYT) were selected 

according to NWI-3, canopy temperature and grain yield in NW Mexico, the number of significant 
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associations increased dramatically. For the 24th ESWYT, significant correlations were obtained 

with nurseries located mainly in Central Asia, North Africa, Southern Europe, and North America; 

for the 11th SAWYT, using parameters determined in the irrigated and water stress environments 

gave significant correlations with the grain yield of nurseries from Central Asia, North Africa, 

Southern Europe, and South and North America; and for the 11th HTWYT, several significant 

correlations were obtained using the NWI-3 and canopy temperature measurements from the 

irrigated, water stress, and high temperature environments, especially for nursery locations in 

Central Asia. NWI-3 gave higher number of significant correlations than canopy temperature for 

predicting yield performance of the advanced breeding lines in diverse regions worldwide. 
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Introduction 

A typical wheat breeding program must evaluate a large number of advanced lines for 

high yield potential, and the methodology used normally involves field evaluation during several 

years and locations (Ball and Konzak, 1993). An early estimate of grain yield is particularly 

important for breeding purposes to detect, identify and select high yielding genotypes (Marti et al., 

2007). Indirect selection criterion might offer better knowledge of factors involved in growth and 

grain yield (Richards, 1982; Shorter et al., 1991). Yield prediction based on models derived from 

remotely sensed information can be used for this purpose (Bouman, 1995). A technique for 

assessing yield of diverse genotypes in a fast, cheap and accurate way could reduce work and 

time for breeders because high yielding genotypes could be detected among thousands of lines 

in different environments (Royo et al., 2003). The development of a new selection index must 

integrate several traits, trait interrelations, and repeatability for predicting yield into breeding 

programs (Baker, 1986).  

Spectral reflectance indices (SRI) are a potential tool for assessing yield among 

genotypes (Reynolds et al., 1999). The most widely used SRI is the normalized difference 

vegetation index (NDVI) that has been used to predict grain yield in wheat and corn under well 

watered and stressed environments (Osborne et al., 2002). The red NDVI (RNDVI) has shown to 

be a good predictor of grain yield and biomass in winter wheat (Raun et al., 2001; Moges et al., 

2004). The green NDVI (GNDVI) has also been associated with yield in corn and wheat 

genotypes (Shanahan et al,. 2001; Gutierrez-Rodriguez et al., 2004). Five water indices based on 

near infrared wavelengths; one water index and four normalized water indices (WI and NWIs, 

respectively), have been used for predicting yield and they have shown a strong relationship with 

grain yield in spring and winter wheat genotypes over time (three growing seasons) under well 

irrigated, water deficit stress, and rainfed conditions (Babar et al., 2006; Prasad et al., 2007). Our 

results have also demonstrated strong associations between the water indices and grain yield in 

advanced lines of spring wheat in irrigated, water stress, and high temperature environments 

(Gutierrez et al., 2008). As a result, the water indices are an alternative breeding/selection tool for 

predicting grain yield in different environments in wheat. 
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The wheat breeding program at the International Maize and Wheat Improvement Center 

(CIMMYT) develops advanced breeding lines every year for developing countries where spring 

wheat is grown (Trethowan and Crossa, 2007). Diverse countries collaborate in the testing of the 

breeding lines and share their own germplasm for new crosses at CIMMYT. In addition, every 

collaborator sends yield data to CIMMYT, which are collected and analyzed across sites 

(Trethowan and Crossa, 2007). Advanced lines have been distributed around the world through 

yield trials by CIMMYT since 1964 (Trethowan and Crossa, 2007). The yield trials are called; Elite 

Spring Wheat Yield Trial (ESWYT), Semi- Arid Wheat Yield Trial (SAWYT), High Temperature 

Wheat Yield Trial (HTWYT), and others (Trethowan and Crossa, 2007; Lage et al., 2008). High 

yielding and well adapted lines have been derived through this exchange program for many 

regions where spring wheat is grown in developing countries (Trethowan et. al., 2002). The 

ESWYT includes advanced breeding lines that are targeted to highly productive irrigated wheat 

areas, the SAWYT includes advanced lines for the semi arid regions, and the HTWYT has 

advanced lines for heat-stressed areas; these trials are distributed annually to international 

cooperators (Lillemo et al., 2004; Lillemo et al., 2005; Trethowan and Crossa, 2007). In addition 

to providing approximately 1,000 new genotypes annually to national wheat programs worldwide 

as a public good, the international yield trials represent an important information source of 

feedback on how effective the targeting of germplasm is, and information on how the 

physiological traits expressed in the selection environments relate to international performance 

could complement this data base. 

Several studies of international trials have been reported using yield data of nurseries 

from CIMMYT’s database (Peterson and Pfeiffer, 1989; DeLacy, et al., 1994; Trethowan et al., 

2001, 2003; Lillemo et al., 2004, 2005). Trethowan et al. (2001) evaluated and examined the 

grain yield data for the advanced lines included in the SAWYT at 122 locations representing 

diverse environments over a six year period. The impact of CIMMYT wheat germplasm in highly 

productive environments in developing countries has increased significantly, but drought reduces 

and may even eliminate yield performance advantages in some semi arid environments 

(Trethowan et al., 2001). The yield testing of advanced lines in diverse environments or regions is 
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important for identifying environmental factors that affect crop yield performance (Lillemo et al., 

2005). For example, the yield performance of advanced lines in diverse nurseries was analyzed 

to the amount of annual rainfall received in each testing site for explaining yield progress across 

years for the ESWYT (Trethowan et al., 2001).  

Northwest Mexico (Yaqui Valley) has been reported as a good site for developing 

advanced lines for diverse environments (irrigated, drought, and high temperature) around the 

world based on yield per se, especially for developing countries (Lillemo et al., 2005). The main 

goal of the present work was to compare the expression of yield and two remotely, sensed 

selection criteria -spectral indices and canopy temperature, when measured in the selection 

environment of NW Mexico with expression of yield across a range of international target 

locations. Specific objectives were (i) to determine the level of association between SRI 

(vegetative and water indices) determined in Northwest, Mexico (Yaqui Valley) during 3 growing 

seasons at two growth stages (heading and grain filling), and average grain yield of the advanced 

breeding lines that were included in the 24th ESWYT, 11th SAWYT and 11th HTWYT nurseries for 

the year 2003, and (ii) to evaluate the potential of the SRI for predicting average yield 

performance of the respective advanced lines at the international testing sites. 
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Materials and Methods 

International trials 

Advanced breeding lines from CIMMYT (International Maize and Wheat Improvement 

Center) were used for this study. The genetic material corresponded to three international trials; 

Elite Spring Wheat Yield Trial (24th ESWYT) (25 genotypes) comprised of advanced lines 

developed for irrigation conditions, Semi-Arid Wheat Yield Trial (11th SAWYT) (40 genotypes) 

composed of advanced lines developed for reduced irrigation or semi arid conditions, and the 

High Temperature Wheat Yield Trial (11th HTWYT) (18 genotypes) containing advanced lines for 

high temperature regions.  

 

Growing conditions for Northwest Mexico (Yaqui Valley) 

The 24th ESWYT genotypes were planted under well irrigated conditions, the 11th 

SAWYT genotypes under well irrigated and water stress conditions, and the 11th HTWYT 

genotypes under well irrigated, water stress, and high temperature conditions. The genotypes 

were grown during the winter season at CIMMYT’s experimental station in Cd. Obregon, NW 

Mexico (27.3oN, 109.9oW, 38 m above sea level). The seeding rate for each experiment was 78 

kg ha-1. Nitrogen and phosphorous were applied at the rate of 150 kg ha-1 and 22 kg ha-1, 

respectively. Field plots consisted of two raised beds 5 m long (80 cm width each) with 2 rows, 10 

cm apart on each bed. An alpha lattice design with 2 replications was employed for all 

experiments. 

Planting was accomplished in November and plants reached booting and heading during 

February-March for the well irrigated and water stress conditions. For the experiments under high 

temperature conditions, the genotypes were planted in February to reach booting and heading in 

April-May (ambient temperature around 35-40oC). There were three crop growing seasons for all 

experiments referred to as years; 2006, 2007 and 2008. The 11th HTWYT trial under water stress 

conditions was grown only in 2007 and 2008.  

Flood irrigation was applied every 20-25 days for well-irrigated treatments. In trials 

submitted to drought stress conditions, one irrigation was applied before seeding providing 
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approximately 100 mm of available water, and two irrigations of 50-70 mm prior to the booting 

stage. For the high temperature trial, irrigations were also applied as needed to prevent drought 

stress. 

Grain yield was determined at maturity by harvesting the complete plot, but excluding a 

0.5-m border at each end.  

 

Spectral reflectance measurements in Northwest Mexico 

Canopy reflectance was measured in the 350 to 1100 nm range using a FieldSpec 

spectroradiometer (Analytical Spectral Devices, Boulder, CO). Data were collected during cloud-

free days at solar noon between (10:30 and 14:00 hrs) with a previous calibration using a white 

plate of barium sulphate (BaSO4) that provides maximum irradiance (Labsphere Inc., North 

Sutton, USA). Four measurements in each plot were taken at heights of 0.5 m above the canopy 

with a field of view of 25o during the heading and grain filling growth stages.  

Five water indices (WI=R970/R900, NWI-1=[R970-R900]/[R970+R900], NWI-2=[R970-

R90850]/[R970+R850], NWI-3=[R970-R880]/[R970+R880], and NWI-4=[R970-R920]/[R970+R920]) and other 

spectral reflectance indices were determined at booting, heading, and grain filling in advanced 

lines of the 24th ESWYT (well irrigated), 11th SAWYT (well irrigated and water stress) and 11th 

HTWYT (well irrigated, water stress, and high temperature) in NW Mexico (Penuelas et al., 1993; 

Babar et al., 2006; Prasad et al., 2007). The combination of heading and grain filling for the NWI-

3 was employed in the present study, which gave the best association with grain yield in all 

environments in NW Mexico for predicting yield in the 24th ESWYT, 11th SAWYT, and 11th 

HTWYT (Gutierrez et al., 2008).  

 

Canopy temperature 

Canopy temperature during grain filling was determined in diverse advanced lines of the 

24th ESWYT (well irrigated), 11th SAWYT (well irrigated and water stress) and 11th HTWYT (well 

irrigated, water stress, and high temperature) in NW Mexico, and was employed for the present 
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study (Gutierrez et al., 2008). A hand-held infrared thermometer (Mikron M90 Series, Mikron 

Infrared Instrument Co. Inc., Oakland, NJ) was used to measure canopy temperature depression.  

 

Grain yield data for international nurseries 

The database from CIMMYT for the 24th ESWYT, 11th SAWYT, and 11th HTWYT for the 

year 2003 was used to obtain grain yield data. This database contains yield data from every 

location for the diverse array of collaborators. Some information such as latitude, longitude, soil 

type, and soil pH were reported by some cooperators (Table 1). However, the information 

provided by many collaborators was incomplete. 

The advanced breeding genotypes of the 24th ESWYT, 11th SAWYT and 11th HTWYT 

were planted in an alpha lattice trial with two replications. All trials were packaged and 

randomized at CIMMYT, Mexico and each nursery was sown under local agronomic practices.  

The advanced breeding lines in the 2003 nurseries corresponded to the same lines 

planted in NW Mexico (Cd. Obregon) during the years 2006, 2007 and 2008. For other years, the 

breeding lines in each international nursery are different because CIMMYT sends new advanced 

breeding material to its collaborators each year. 

 

Statistical analysis 

Grain yield data for the diverse genotypes in each trial location were analyzed by SAS 

(SAS Institute, 2001) using proc mixed and the adjusted means were obtained according to the 

alpha lattice design. The SRI determined at heading, grain filling, and by combining both growth 

stages were averaged for the three seasons (2006, 2007, and 2008) in NW Mexico for each trial 

and environment. Pearson correlation coefficients were used to estimate the phenotypic 

relationship between the NWI-3 and canopy temperature (diverse environments in NW Mexico) 

and the grain yield of international nurseries. 

Data from the different SRI were analyzed by principal component analysis (PCA) using 

SAS. PCA was conducted using NWI-3 from heading-grain filling and canopy temperature 

measured from grain filling, and grain yield of NW Mexico averaging three growing seasons 
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(2006, 2007, and 2008), while the grain yield of nurseries was averaged using yield data for the 

year 2003. The PCA was conducted for the 24th ESWYT, 11th SAWYT, and 11th HTWYT trials 

with their respective nurseries (Table 1). 
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Results 

As previously reported, the combination of measurements at heading and grain filling for 

the normalized water index three (NWI-3) gave the most significant associations with grain yield 

across environments for the three international trials; 24th ESWYT (well irrigated), 11th SAWYT 

(well irrigated and water stress), and 11th HTWYT (well irrigated, water stress, and high 

temperature) (Gutierrez et al., 2008). The vegetative indices (i.e., RNDVI and GNDVI) determined 

in the same environments in NW Mexico showed lower relationships with grain yield. In this 

study, the NWI-3 (at heading and grain filling) and canopy temperature (mean of grain filling) 

were compared for their association with grain yield of the genotypes in the three international 

nurseries at diverse locations. 

 

Grain yield diversity of nurseries and their association with NW Mexico parameters  

There was high average grain yield diversity among nursery sites where the advanced 

lines of the 24th ESWYT, 11th SAWYT, and 11th HTWYT were evaluated (Table 2). The average 

grain yield of nurseries ranged from 0.75 to 9.0 t ha-1 for the 24th ESWYT entries, from 0.62 to 

8.17 t ha-1 for the 11th SAWYT entries, and from 0.41 to 6.98 t ha-1 for the 11th HTWYT entries. 

There were fifty five international nursery sites for the 24th ESWYT, twenty nine sites for the 11th 

SAWYT, and twenty two sites for the 11th HTWYT (not including the environments of NW 

Mexico). The overall mean was higher for the 24th ESWYT (4.47 t ha-1), than for the 11th SAWYT 

(3.48 t ha-1) and for the 11th HTWYT (3.73 t ha-1). The analyses of variance using nursery yields 

showed significant differences for environment and genotype as main effects, as well as for the 

genotype by environment interactions for the three international trials (data not shown). There 

was a large amount of yield variability among the genotypes at the different sites (Fig. 1, 2, 3). 

The interaction between the parameters determined in NW Mexico (NWI-3, canopy temperature, 

and grain yield from the irrigated, water stressed, and high temperature environments) and the 

grain yield of genotypes at different nursery sites were analyzed by the multivariate approach of 

principal component analysis (PCA) for showing their distribution for each international trial (Fig. 

1, 2, 3).  
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The wide yield diversity of advanced lines among international nursery sites in every 

international trial (24th ESWYT, 11th SAWYT, and 11th HTWYT) is clearly observed in the PCA 

biplots (Fig. 1-5). The parameters determined in NW Mexico (NWI-3, canopy temperature and 

grain yield) in distinct environments (irrigated, water stress, and high temperature) revealed that 

some international nursery sites are closely associated (significant relationships) with them and 

yield performance can be successfully predicted in those nurseries. 

Diverse nurseries showed significant relationships (p≤0.05 and 0.01) with the parameters 

determined in the irrigated environment in NW Mexico for the 24th ESWYT trial (Fig. 1). NWI-3 

correlated well with eleven nurseries, which were located in Central Asia (Afghanistan, India 

[five], and Nepal), West Asia (Turkey), Central Africa (Zambia), Southern Europe (Italy), and 

South America (Argentina) (Table 3; Fig. 1). Canopy temperature showed significant correlations 

with nurseries in Central Asia (India [two] and Pakistan), South Africa (Angola, South Africa, and 

Zimbabwe), Southern Europe (Spain), and South and North America (Argentina and Canada 

[two], respectively). Grain yield from NW Mexico had significant relationships with nurseries sites 

in Central Asia (Afghanistan [two], India [two], Iran, and Nepal). 

For the 11th SAWYT trial, parameters from NW Mexico were determined for two 

environments (irrigated and water stress) (Fig. 2). NWI-3 from the irrigated environment showed 

significant relationships with the nurseries from North Africa (Morocco) and Southern Europe 

(Spain), and canopy temperature for Central Asia (Afghanistan and Pakistan) and Southern 

Europe (Serbia Montenegro). Grain yield from NW Mexico was correlated with nurseries sites in 

Central and West Asia (India and Turkey), North Africa (Morocco [two]), Southern Europe 

(Spain), South America (Argentina), and North America (Mexico-Ciano). For the parameters 

determined in the water stress environment, NWI-3 showed significant relationships with 

nurseries from Central Asia (India [two] and Pakistan) and North Africa (Morocco). Canopy 

temperature showed significant relationships with nurseries from Central Asia (Pakistan), North 

Africa (Morocco), Southern Europe (Spain) and South America (Argentina), while grain yield from 

NW Mexico was correlated with nurseries from Central Asia (India [two]) and Central Africa 

(Kenya). When the parameters from the two environments were averaged and correlated with the 
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grain yield of international nurseries (Fig. 4), the number of significant correlations decreased 

drastically for the NWI-3 because only one nursery gave a significant relationship (Morocco in 

North Africa). Canopy temperature showed a few significant correlations with nurseries from 

Central Asia (Pakistan), North Africa (Morocco) and South America (Argentina), while grain yield 

in NW Mexico increased, and included nurseries in Central Asia (India and Pakistan), North Africa 

(Morocco [two]), Southern Europe (Spain), and South and North America (Argentina and Mexico-

Ciano, respectively) (Table 3). 

Three environments for the 11th HTWYT were managed in NW Mexico, for well irrigated, 

water stress, and high temperature (Fig. 3). The NWI-3 determined in the well irrigated 

environment showed only one significant relationship with a nursery in Central Europe (Hungary), 

and there were no other significant associations for the water stress and high temperature 

environments. Canopy temperature measured in the irrigated and water stress environments did 

not show any significant relationship, but when determined in the high temperature environment, 

there was one significant correlation with a nursery from Pakistan (Central Asia). Grain yield 

measured in the irrigated environment in NW Mexico showed significant associations with 

nurseries from Central Asia (India [two]) and North Africa (Morocco), and when determined in the 

water stress environment showed significant associations with nurseries from North Africa 

(Morocco) and North America (Canada). Grain yield from the high temperature environment gave 

significant associations with nurseries from Central Asia (India and Pakistan). If the three 

environments from NW Mexico were combined (Fig. 5), the mean NWI-3 did not show any 

significant association with an international nursery site, canopy temperature only showed two 

associations for nurseries from Central Asia (India and Pakistan), and grain yield also gave two 

significant correlations with nurseries from Central Asia (India) and North Africa (Morocco) (Table 

3). 

 

Selection of the top 25% yielding lines from NW Mexico environments 

When the parameters from the 25% top yielding lines from each trial in every 

environment from NW Mexico (24th ESWYT [well irrigated], 11th SAWYT [well irrigated and water 
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stress], and 11th HTWYT [well irrigated, water stress, and high temperature]) were considered, 

the number of significant correlations with international nursery sites increased (Table 3). The 

25% top yielding lines were selected using each parameter determined in NW Mexico (NWI-3, 

canopy temperature, and grain yield in each international trial and environment (6 lines for the 

24th ESWYT, 10 lines for the 11th SAWYT, and 5 lines for the 11th HTWYT).  

For the 24th ESWYT, using the NWI-3, canopy temperature, and grain yield from NW 

Mexico (irrigated environment), there were nurseries of diverse worldwide regions showing 

significant correlations, especially for the Central Asia region (Table 3). Generally, NWI-3 and 

grain yield from NW Mexico had more significant correlations with international sites from his 

region than canopy temperature. However, other regions (West Asia, North, Central and South 

Africa, Southern and Central Europe, and South and North America) showed few differences in 

number of significant correlations (less than three significant correlations) among international 

nursery sites and NWI-3, canopy temperature and grain yield from NW Mexico.  

For the 11th SAWYT, NWI-3 from the irrigated environment showed more significant 

correlations with nurseries from Central Asia (eleven) than canopy temperature (seven) or grain 

yield (seven) of NW Mexico (Table 3). NWI-3, canopy temperature, and grain yield of NW Mexico 

measured in the water stressed environment did not show any differences in the number of 

significant associations with nurseries from Central Asia. There were a few significant correlations 

(no more than three) in nursery sites from West Asia, North, Central and South Africa, Southern 

Europe, and South and North America employing parameters determined in the irrigated and 

water stressed environments.  

For the 11th HTWYT, NWI-3 determined in the irrigated, water stress, and high 

temperature showed more significant correlations with international nursery sites than canopy 

temperature, and grain yield from NW Mexico (six, ten, and eight significant correlations for NWI-

3; four, five, and six for canopy temperature, and three, five, and seven for grain yield in the 

irrigated, water stress and high temperature environment, respectively) (Table 3). For 

international nurseries from West Asia, North Africa, Southern and Central Europe, and North 

America there were two or less significant correlations in each region for the NWI-3, canopy 
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temperature and grain yield determined in the irrigated, water stressed and high temperature 

environments (Table 3). 
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Discussion 

The diverse associations between the NWI-3 and canopy temperature determined in NW 

Mexico and grain yield at international sites was the result of wide yield differences among the 

international trials (24th ESWYT, 11th SAWYT, and 11th HTWYT), as demonstrated by their 

distribution in the PCA biplots (Table 2, Fig. 1, 2, 3). The yield diversity of the advanced breeding 

lines among nurseries suggests that they were influenced by local agronomic practices and 

international factors. In fact, we found significant genotype by environment interactions for the 

three international trials (data not shown). The nursery grouping in our study was based only on 

the grain yield for the year 2003, and the lack of information prevented us from associating the 

nursery yields with other factors such as environmental conditions (temperature, precipitation, 

etc), amount of fertilizer, local tillage practices, soil type, etc.  

Even though there was a wide range in grain yield among nurseries, the NWI-3, canopy 

temperature, and grain yield measured in the three environments in NW Mexico showed that yield 

performance can be predicted in certain nurseries (Fig. 1, 2, 3). Even though NWI-3 and canopy 

temperature were determined in a different environment in Mexico, these indirect selection 

parameters successfully predicted genotype performance in some nurseries, mainly those in 

Central Asia, North Africa, Southern Europe, and South and North America. The mean NWI-3, 

canopy temperature, and grain yield of NW Mexico obtained by combining two environments 

(irrigated and water stress) in the 24th SAWYT and three environments (irrigated, water stress, 

and high temperature) in the 11th HTWYT did not improve yield prediction for the international 

nursery sites (Table 3; Fig. 4, 5). There were very few differences when the environments in NW 

Mexico were combined in both trials compared with individual environments. 

Several nursery sites of the 24th ESWYT were significantly associated with the NWI-3 

and canopy temperature measured in the irrigated environment in NW Mexico (Table 3). Even 

though the advanced lines were developed by CIMMYT for high yield in irrigated environments, it 

is evident that other factors affected the genotype yield performance (yield ranged from 0.75 to 

9.0 t ha-1) in diverse nurseries (Table 2). It seems that drought was a determining factor affecting 

the yield performance in many nurseries of the 24th ESWYT, either because of low rainfall and/or 
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limited irrigations (data not shown). Trethowan et al. (2001) reported that drought reduces and 

may even eliminate yield performance advantages in some semi arid environments in diverse 

worldwide regions. However, when the top 25% yielding lines were selected for their grain yield in 

NW Mexico, the number of nurseries that showed significant associations with the NWI-3 and 

canopy temperature increased, especially for the Central Asia region. There were thirty different 

nurseries in Central Asia that were associated with the parameters from NW Mexico, while in 

other regions, the number of nurseries was lower (less than two significant associations) in West 

Asia, North, Central and South Africa, Southern Europe, South and North America.  

In the 11th SAWYT, the parameters determined in the irrigated and water stress 

environments of NW Mexico, as well as their combination, generally a showed similar pattern to 

the associations with yield per se in Central Asia and North Africa (Table 3; Fig. 2, 4). Averaging 

the parameters of NW Mexico across both environments did not increase or improve the yield 

prediction of the advanced lines in other worldwide regions. Even though there were some 

significant associations of NWI-3 and canopy temperature from NW Mexico for the 11th SAWYT 

(advanced lines selected for semiarid regions), the NWI-3 did not predict yield performance in 

well known nurseries that suffer continuous drought from Central Asia, North Africa and Southern 

Europe (Mediterranean region). The lack of information for rainfall, amount of irrigation and other 

environmental factors for many nurseries (not reported) did not permit us to postulate why these 

results occurred. However, if parameters from the 25% top yielding lines were used, the number 

of associated nurseries increased using the NWI-3 and canopy temperature determined in NW 

Mexico, especially for the Central Asia region.  

The 11th HTWYT represented advanced lines selected for high yield in hot environments 

(Lillemo et al., 2005). The NWI-3 and canopy temperature obtained from this environment in NW 

Mexico only predicted the yield performance of few nurseries in Central Asia. The parameters of 

NW Mexico determined in the irrigated and water stress environments, and their combination 

showed similar patterns (low number of nurseries associated) (Fig. 3, 5). When the 25% top 

yielding lines were selected based on the NW Mexico parameters, the number of significantly 

associated nurseries increased dramatically in Central Asia, North Africa, Southern and Central 
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Europe, and North America regions. It means that certain advanced lines (same lines for all 

locations) showed a higher adaptation than others in diverse nursery sites, and that these lines 

with high yield performance can be detected using the NWI-3 and canopy temperature for 

predicting the yield in international nursery sites. In a previous study (Gutierrez et al., 2008), the 

direct selection of lines for grain yield and the indirect selection using the NWI-3 resulted in the 

similar selection (same genotypes) of the top yielding lines (25%) in the three international trials 

and for every environment in NW Mexico (well irrigated, water stress, and high temperature). 

Similarly to the 24th ESWYT, not all the advanced lines selected in NW Mexico for high yields in 

hot environments of the 11th HTWYT were well adapted in many worldwide locations. Every 

nursery site represents a particular environment with distinctive traits such as altitude, latitude, 

soil type, rainfall, temperature, and other factors. In addition, the genotype by environment 

interactions indicated that many genotypes were not well adapted to all the environments 

(locations) where the advanced lines were tested. Trethowan et al. (2002) reported that grain 

yield of individual sites is inaccurate in estimating yield progress over time and used the five 

highest yielding genotypes from the ESWYT and SAWYT at each location over time (20 years) to 

determine the relationship between locations. In our study, significant correlations were obtained 

between the parameters determined in the three environments from NW Mexico and the grain 

yield of diverse sites when the 25% top yielding lines were used in the three international trials 

(Fig. 1-5).  

Lage et al. (2008) grouped individual sites into clusters using a shifted multiplicative 

model based on environmental data and grain yield (35 years averaged) and found that 18 sites 

were similar and 23 were contrasting. The ESWYT genotypes were clustered in 29 nurseries, 

SAWYT in 20, and HTWYT in 15, and this established that the grain yield of NW Mexico (Yaqui 

Valley) was similar to six nurseries in Western and Central Asia; two regions each in Turkey 

(Southwest), Pakistan (Northeast and Northwest), and Syria. Several authors have proposed that 

other sites around the world could be used for testing the advanced breeding genotypes from 

CIMMYT for diverse environments (Trethowan et al., 2006; Lage et al., 2008). In this study, the 

grain yield of locations mainly in Central Asia gave significant correlations with the NWI-3, canopy 
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temperature, and grain yield from NW Mexico for the 24th ESWYT, 11th SAWYT, and 11th 

HTWYT. The nurseries from Central Asia presented the major number of significant associations 

for the parameters measured in NW Mexico for the three international trials, especially with the 

top yielding advanced lines. Trethowan et al. (2003) found that some nurseries from Egypt and 

Pakistan were also associated with NW Mexico. Trethowan and Crossa (2007) reported that 

other nurseries located in North Africa, Western Asia and South America (Argentina) were also 

similar to NW Mexico. In our study, the nurseries from Morocco in North Africa showed high 

associations with the parameters from NW Mexico for the three international trials, especially for 

the 24th ESWYT. Trethowan and Crossa (2007) identified five environments for the HTWYT 

employing environmental factors: continuous heat stress; terminal heat stress; temperate non-

heat stressed; dry heat; and humid heat. The authors found that late planting in NW Mexico 

(February) was a good predictor of grain yield in sites with high temperatures such as Tandojam, 

Pakistan and Indore, India. In our study, the NWI-3 and canopy temperature determined in the 

high temperature environment in NW Mexico did not predict the yield performance using the 

complete set of advanced lines of the 11th HTWYT at many worldwide nurseries, but when 

employing the top 25% high yielding lines, the parameters from NW Mexico can predict yield in 

diverse worldwide regions, especially for Central Asia (Table 3).  

The evaluation of diverse genotypes, individual traits, trait interrelationships, and their 

predictive repeatability are considered by breeders for selecting potential high yielding lines 

(Baker, 1986). The potential of developing new selection indices needs to be based on the fact 

that an index could integrate several traits for predicting yield into breeding programs. Optimum 

selection indices must incorporate a genetic base, interaction of several traits, and the relative 

economic value for selecting or evaluating genotypes (Baker, 1986). When selection is based on 

accurate parameter estimates, the potential index could provide the best solution to maximize 

genetic improvement for the selection goal (Milligan et al., 2003). Using the NWI-3 and other 

water indices determined at heading and grain filling in NW Mexico, high genetic gains (high 

genetic correlation and heritability) can be obtained in diverse environments (irrigated, water 

stress, and high temperature) (Gutierrez et al., 2008). In our study, we used a selection index 
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based on canopy spectral reflectance (NWI-3) and canopy temperature for integrating the whole 

plant canopy for predicting yield. NWI-3 from NW Mexico was more predictive of yield at more 

international nursery sites than canopy temperature. Depending on the environment in which the 

parameters from NW Mexico were determined, they can be used to predict grain yield in many 

worldwide locations (nurseries), especially in Central Asia, North Africa, Southern Europe and 

North America (Table 3). 
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Conclusions 

The NWI-3, canopy temperature and grain yield obtained from NW Mexico in three 

environments (well irrigated, water stress, and high temperature) showed significant associations 

with the grain yield of nurseries located in diverse worldwide regions for the three international 

trials (24th ESWYT, 11th SAWYT and 11th HTWYT). Depending on the environment where the 

NWI-3 and canopy temperature where determined, these parameters demonstrated significant 

associations with certain nurseries. Many significant associations were obtained when the 25% 

top yielding lines were used for the relationship between the NW Mexico parameters and the 

grain yield of genotypes at international nursery sites. This means that the best yielding lines in 

NW Mexico are frequently the same high yielding lines in other regions of the world. Locations 

from Central Asia, North Africa, Southern Europe, and North America showed the stronger 

associations with NWI-3 and canopy temperature measurements from NW Mexico in diverse 

environments, and NWI-3 showed a greater number of significant associations than canopy 

temperature, especially when the 25% top yielding lines were selected. The NWI-3 and canopy 

temperature successfully predicted yield performance of advanced breeding lines in the three 

international trials (24th ESWYT, 11th SAWYT, and 11th HTWYT), especially for selected locations 

in Central Asia, North Africa, Southern Europe and North America regions. Our results indicate 

that these two indirect selection parameters have the potential to identify genotypes with high 

yield and broad adaptation, but further studies are required to confirm these observations. 
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Tables 

Table 1. List of international locations where advanced lines of the 24th Elite Spring Wheat Yield 
Trial (ESWYT), 11th Semi-Arid Wheat Yield Trial (SAWYT), and 11th High Temperature Wheat 
Yield Trial (HTWYT) were planted in 2003 under diverse environmental conditions.  
Country Site Latitude Longitude Altitude 

(m) 
Soil pH International trial 

Northwest Mexico (2006, 2007 and 2008)        
Mexico Cd. Obregon 27o24’N 109o56W 38 Caliciorthid 7.7 ESWYT SAWYT HTWYT 
International nurseries (2003)         
1. Afghanistan Behsud 34o26’N 70o02’E 570      HTWYT 
2. Afghanistan Coll. of Agriculture      ESWYT   
3. Afghanistan Darul 34o28’N 69o03’E 1841  5.6-7 ESWYT   
4. Afghanistan Dehdadi 36o65’N 66o96’E 477  7.1-8 ESWYT SAWYT  
5. Afghanistan Khoja 34o04’N 32o01’E 1198    SAWYT  
6. Afghanistan Kunduz R. Station 36o43’N 68o51’E 403   ESWYT   
7. Afghanistan Shesham Bagh 34o42’N 70o74’E 552  5.6-7 ESWYT   
8. Afghanistan Urdokhan 34o01’N 62o01’E 1096   ESWYT   
9. Algeria El Khroub    Vertisol 7.1-8 ESWYT SAWYT  
10. Angola Humpata      ESWYT   
11. Argentina Marcos J. 32o42’S 62o07’W 110 Arguidol 5.6-7 ESWYT SAWYT  
12. Argentina Pergamino    Pergamino 5.6-7 ESWYT SAWYT  
13. Argentina Tucuman-Obispo      ESWYT   
14. Canada Aafc Glenlea F. St.    Black Orthic 7.1-8 ESWYT   
15. Canada Kernen Res. F.    Sutherland  ESWYT  HTWYT 
16. Canada Swift Current      ESWYT SAWYT HTWYT 
17. Egypt Sids      ESWYT   
18. Hungary Szeged      5.6-7   HTWYT 
19. India Azad University 26o28’N 80o24’E 406  7.1-8   HTWYT 
20. India Banaras H. U. V. 25o16’N 82o57’E   7.1-8   HTWYT 
21. India Bari      7.6-8 ESWYT SAWYT HTWYT 
22. India Bihar Agric. Coll. F.        HTWYT 
23. India D. Plant Breeding     5.6-7 ESWYT   
24. India Durgapura     7.1-8 ESWYT   
25. India Dwr-Karnal 15o42’N 76o07’E 638  7.1-8 ESWYT SAWYT HTWYT 
26. India Gwalior    Alluence 7.1-8 ESWYT   
27. India Iari Genetics Div.      ESWYT SAWYT HTWYT 
28. India Indore 22o37’N 75o05’E 600 Black cotton 5.6-7 ESWYT   
29. India Livestock Farm 23o00’N 79o58’E 412 Medium black 5.6-7 ESWYT  HTWYT 
30. India Nepz, Ubkv    Flurauents 5.6-7 ESWYT   
31. India Niphad 20o06’N 74o06’E 549 Medium black >8   HTWYT 
32. India Pantnagar 29o00’N 79o30’E 243  7.1-8 ESWYT   
33. India Powarkheda    Vertisol 7.1-8  SAWYT  
34. India Pusa-Iari       SAWYT  
35. India Vijapur 23o35’N  75o45’E 126  >8 ESWYT   HTWYT 
36. Iran Ahwaz 31o17’N 48o40’E 20 Terriorthents 7.1-8   HTWYT 
37. Iran Araghee Mohaleh 36o54’N 54o25’E 132 Xerochrepts 7.1-8 ESWYT   
38. Iran Fars    Entisols 7.1-8 ESWYT  HTWYT 
39. Iran Moghan 39o49’N 47o50’E 60   7.1-8 ESWYT   
40. Iran Safiabad A. Res.    Calarious 7.1-8 ESWYT   
41. Iran Zargan 29o46’N 52o43’E 1603 Calcixerollix 7.1-8 ESWYT   
42. Italy Montelibretti 47o07’N 12o42’E 80   ESWYT   
43. Kenya Npbrc-Njoro      ESWYT SAWYT  
44. Mexico CIANO 27o24’N 109o56W 38 Caliciorthid 7.1-8  SAWYT  
45. Morocco Marchouch      ESWYT SAWYT HTWYT 
46. Morocco Tassaout      ESWYT SAWYT HTWYT 
47. Nepal Nwrp- Bhairahwa 27o30’N 83o27’E 105 Hablaquets 7.1-8 ESWYT   
48. Pakistan Bannu 32o05’N 70o05’E 285  >8  SAWYT  
49. Pakistan Barani 32o05’N 72o05’E 490    SAWYT  
50. Pakistan Dera 31o50’N 70o54’E 171 Aridosol 7.1  SAWYT HTWYT 
51. Pakistan Jarm Res. S. 33o05’N 71o05’E 500  7.1-8  SAWYT  
52. Pakistan Narc Islamabad 33o05’N 73o00’E 683   ESWYT SAWYT  
53. Pakistan Pirsabak 35o05’N 71o05’E 340   ESWYT SAWYT  
54. Pakistan Quetta Ari Sariab     >8  SAWYT  
55. Pakistan Regional Agric. R.     >8 ESWYT   
56. Pakistan Sakrand 26o31’N 68o03’E 31  7.1-8 ESWYT   
57. Pakistan Sariab     7.1-8 ESWYT   
58. Pakistan Wheat Res. I.     7.1-8 ESWYT SAWYT HTWYT 
59. Poland Danko-Choryn     5.6-7 ESWYT   
60. Poland Radzikow P. Breed     5.6-7 ESWYT   
61. Portugal P. Alentejo    Alluvial 7.1-8 ESWYT SAWYT HTWYT 
62. Saudi Arabia Tabuk Ars     7.1-8 ESWYT   
63. Serbia Montenegro Kragujev 44o02’N 20o56’E 182 Vertisol 5.6-7 ESWYT SAWYT  
64. South Africa Pannar     5.6-7 ESWYT SAWYT  
65. Spain Alameda O.    F. xerochrept >8 ESWYT   
66. Spain Gimenells 41o35’N 0o32’E 290  >8  SAWYT  
67. Spain Tomejil 27o24’N 5o35’W 72 Vertisol 7.1-8 ESWYT   
68. Turkey Aegean  38o04’N 27o00’E 10  7.1-8 ESWYT   
69. Turkey SE Anatolian     7.1-8  SAWYT HTWYT 
70. Turkey Univ. of Cukurova 35o01’N 37o01’E 90   ESWYT  HTWYT 
71. Turkey Ziraat  38o42’N 28o45’E 10 Xerofluvient 7.1-8 ESWYT   
72. Zambia Golden Valley     7.1-8 ESWYT   
73. Zimbabwe Rattray    Salisbury SE 5.6-8 ESWYT   
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Table 2. Minimum, maximum, and mean grain yield (t ha-1) of advanced lines from the 24th Elite 
Spring Wheat Yield Trial (ESWYT), 11th Semi-Arid Wheat Yield Trial (SAWYT), and 11th High 
Temperature Wheat Yield Trial (HTWYT) planted in NW Mexico and diverse worldwide sites.  
Country Mean Min. Max.  Country Mean Min. Max. 
Northwest Mexico† 24th ESWYT  Northwest Mexico† 11th SAWYT 
Well Irrigated 6.63** 5.93 7.21  Well Irrigated 6.42** 4.51 7.12 
     Water stress 2.20** 1.49 2.77 
International sites     International sites    
2. Afghanistan, C. Agric. 5.45** 4.15 6.24  4. Afghanistan, Dehdadi 2.05* 1.46 3.35 
3. Afghanistan, Darul 1.22** 0.46 2.38  5. Afghanistan, Khoja 0.70** 0.30 0.97 
4. Afghanistan, Dehdadi 4.64* 3.93 5.29  9. Algeria, El Khroub 5.21** 1.10 7.12 
6. Afghanistan, Kunduz 4.69* 3.97 5.24  11. Argentina, Marcos J. 3.46** 1.48 4.77 
7. Afghanistan, Shesham 4.02 3.29 4.69  12. Argentina, Pergamino 2.61** 1.46 3.45 
8. Afghanistan, Urdokhan 3.03** 1.98 3.74  16. Canada, Swift 1.59** 0.83 1.97 
9. Algeria, El Khroub 5.27** 1.49 7.78  21. India, Bari 3.37** 2.35 4.25 
10. Angola, Humpata 3.12* 1.87 4.45  25. India, Dwr-Karnal 4.03** 2.91 5.54 
11. Argentina, Marcos J. 4.20** 2.39 5.09  27. India, Iari 1.30 0.67 1.81 
12. Argentina, Pergamino 3.90** 3.14 4.54  33. India, Powarkheda 5.90** 4.84 7.26 
13. Argentina, Tucuman 1.50** 1.14 2.11  34. India, Pusa 2.84** 0.81 4.15 
14. Canada, Aafc 3.53** 2.88 4.35  43. Kenya, Npbrc 0.64** 0.22 1.33 
15. Canada, Kernen 2.64** 1.90 3.19  44A. Mexico, CIANO 5.52** 3.31 6.63 
16. Canada, Swift 1.57** 0.71 2.41  44B. Mexico, CIANO 5.43** 3.44 6.66 
17. Egypt, Sids 7.15 5.31 9.95  45. Morocco, Marchouch 5.61** 3.38 7.25 
21. India, Bari 3.07* 2.15 3.95  46. Morocco, Tassaout 5.70** 3.32 7.50 
23. India, D. Plant B. 7.13** 4.57 9.37  48. Pakistan, Bannu 1.79** 0.50 2.47 
24. India, Durgapura 1.38 1.13 1.65  49. Pakistan, Barani 2.21** 1.50 3.00 
25. India, Dwr-Karnal 3.74** 2.79 5.08  50. Pakistan, Dera 1.36** 0.84 2.04 
26. India, Gwalior 4.86** 3.86 5.71  51. Pakistan, Jarm 3.36 1.70 5.30 
27. India, Iari 4.36* 3.79 5.24  52. Pakistan, Narc 3.43* 2.56 4.37 
28. India, Indore 7.87** 7.20 8.64  53. Pakistan, Pirsabak 3.25* 2.29 4.17 
29. India, Livestock 3.02* 1.84 3.68  54. Pakistan, Quetta 0.62 0.37 0.95 
30. India, Nepz 3.58** 2.70 4.32  58. Pakistan, Wheat R. I. 3.02** 1.97 4.14 
32. India, Pantnagar 4.16** 3.35 5.00  61. Portugal, P. Alentejo 4.26** 3.05 5.45 
35. India, Vijapur 3.87** 2.73 4.91  63. Serbia Mont., Kragujev 8.26** 5.69 9.80 
37. Iran, Araghee 4.08** 1.23 5.64  64. South Africa, Pannar 1.25** 0.22 2.04 
38. Iran, Fars 5.36 4.00 6.68  66. Spain, Gimenells 8.17* 6.05 9.39 
39. Iran, Moghan 5.09** 2.39 7.10  69. Turkey, SE Anatolian 3.79** 2.89 4.49 
40. Iran, Safiabad 5.61** 4.44 6.70  Overall mean 3.48   
41. Iran, Zargan 6.05** 5.08 7.25      
42. Italy, Montelibretti 6.44** 4.61 7.49  Northwest Mexico† 11th HTWYT 
43. Kenya, Npbrc 0.75** 0.38 1.24  Well Irrigated 6.42** 5.64 7.17 
45. Morocco, Marchouch 5.85** 4.68 7.72  Water stress 2.40 2.17 2.64 
46. Morocco, Tassaout 6.24 5.06 7.15  High Temperature 2.69** 1.94 3.31 
47. Nepal, Nwrp 2.50** 2.03 2.92  International sites    
52. Pakistan, Narc 3.09 2.16 3.62  1. Afghanistan, Behsud 4.69 3.51 5.48 
53. Pakistan, Pirsabak 4.43 3.06 5.12  15. Canada, Kernen 2.76** 2.08 3.19 
55. Pakistan, Reg. Agric. 3.17** 2.20 4.16  16. Canada, Swift 1.57** 1.01 2.13 
56. Pakistan, Sakrand 2.66 1.50 3.59  18. Hungary, Szeged 4.27** 2.99 5.11 
57. Pakistan, Sariab 2.72* 2.27 4.22  19. India, Azad 4.14** 3.34 5.52 
58. Pakistan, Wheat R. I. 3.74** 3.13 4.26  20. India, Banaras 3.40** 2.77 3.91 
59. Poland, Danko 6.84** 5.78 8.13  21. India, Bari 3.54** 2.64 4.04 
60. Poland, Radzikow 2.94** 2.32 3.47  22. India, Bihar 2.71 2.00 3.30 
61. Portugal, P. Alentejo 4.13 3.11 5.03  25. India, Dwr-Karnal 3.48 2.27 4.32 
62. Saudi Arabia, Tabuk 8.52** 4.96 10.83  27. India, Iari 2.78** 2.14 3.24 
63. Serbia Mont., Kragujev 4.60 2.63 5.63  29. India, Livestock 3.67* 2.83 4.54 
64. South Africa, Pannar 9.00* 7.29 10.02  31. India, Niphad 1.58 1.08 2.26 
65. Spain, Alameda 5.58** 3.41 7.32  35. India, Vijapur 3.16** 2.07 4.19 
67. Spain, Tomejil 4.29** 2.64 5.72  36. Iran, Ahwaz 4.84 3.55 5.73 
68. Turkey, Aegean 7.28* 4.97 8.70  38. Iran, Fars 6.97 5.42 8.13 
70. Turkey, U. Cukurova 7.39 5.74 9.24  45. Morocco, Marchouch 5.66 4.73 6.75 
71. Turkey, Ziraat 2.51 1.61 3.17  46. Morocco, Tassaout 5.66* 4.24 7.28 
72. Zambia, Golden V. 6.49 3.68 8.44  50. Pakistan, Dera 0.41** 0.26 0.71 
73. Zimbabwe, Rattray 7.22** 3.03 8.99  58. Pakistan, Wheat R. I. 2.65** 1.91 3.31 
Overall mean 4.47    61. Portugal, P. Alentejo 3.39* 2.81 4.15 
     69. Turkey, SE Anatolian 3.86** 2.99 4.55 
     70. Turkey, U. Cukurova 6.98* 4.32 9.20 
     Overall mean 3.73   
†Average of three years (2006, 2007 and 2008) 
*, ** Significant at the 0.05 and 0.01 probability level, respectively. 
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Table 3. Nursery distribution by region that showed significant correlations between the 
parameters measured in NW Mexico and grain yield of nurseries for the 24th Elite Spring Wheat 
Yield Trial (ESWYT), 11th Semi-Arid Wheat Yield Trial (SAWYT), and 11th High Temperature 
Wheat Yield Trial (HTWYT).  

Trial Parameter 
NW 
Mexico† 

 Nurseries by region  
Asia Africa Europe America 

   24th ESWYT  
Irrigated NWI-3 Central (7)‡ & West (1) Central (1) Southern (1) South (1) 
 CT Central (3) Central (1) & South (1) Southern (1) South (1) and North (2) 
 Yield Central (6) - - - 

   11th SAWYT  

Irrigated NWI-3  North (1) Southern (1) - 
 CT Central (2) - Southern (1) - 
 Yield Central (1) &West (1) North(2) Southern (1) South (1) & North (1) 
Water 
stress 

NWI-3 Central (3) North (1) - - 

 CT Central (2) North (1) Southern (1) - 
 Yield Central (3) Central (1) - - 

   11th HTWYT  

Irrigated NWI-3 - - Central (1) - 
 CT - - - - 
 Yield Central (2) North (1) - - 
Water 
stress 

NWI-3 - - - - 

 CT - - - North (1) 
 Yield - North (1) - North (1) 
High NWI-3 - - - - 
temperature CT Central (1) - - - 
 Yield Central (2) - - - 

   Mixed environments from NW 
Mexico 

 

   11th SAWYT (irrigated and water stress)  
Combined NWI-3 - North (1) - - 
 CT Central (1) North (1) - South (1) 
 Yield Central (2) North(2) Southern (1) South (1) & North (1) 

   11th HTWYT (irrigated, water stress, and high temperature)  
Combined NWI-3 - - - - 
 CT Central (1) North (1) - - 
 Yield Central (2) - - - 
   Selecting the top 25% yielding lines from NW 

Mexico 
 

   24th ESWYT  
Irrigated NWI-3 Central (23) & West (4) North (3), Central (2) & South (2) Southern (3) & Central (1) South (1) & North (3) 
 CT Central (18) & West (1) North (3), Central (1) & South (2) Southern (3) & Central (2) South (2) & North (2) 
 Yield Central (22) & West (4) North (2), Central (2) & South (2) Southern (2) & Central (2) South (3) & North (1) 

   11th SAWYT  
Irrigated NWI-3 Central (11) North (2) Southern (1) South (1) & North (1) 
 CT Central (7) & West (1) North (1), Central (1) & South (1) Southern (1) South (2) & North (1) 
 Yield Central (7) &West (1) North(3) & South (1) Southern (1) South (2) & North (2) 
Water 
stress 

NWI-3 Central (7 & West (1)) North (1) Southern (1) South (1) & North (3) 

 CT Central (7) & West (1) North (2), Central (1) &South (1) Southern (2) South (1) & North (1) 
 Yield Central (7) & West (1) North (1) & South (1) Southern (2) North (2) 

   11th HTWYT  
Irrigated NWI-3 Central (6) & West (2) North (1) Southern (1) & Central (1) North (1) 
 CT Central (4) & West (2) North (1) Central (1) North (1) 
 Yield Central (3) & West (2) North (1) Central (1) North (1) 
Water 
stress 

NWI-3 Central (10) & West (1) North (1) Southern (1) & Central (1) North (2) 

 CT Central (5) &West (1) North (1) Central (1) - 
 Yield Central (5) & West (1) North (2) - - 
High NWI-3 Central (8) & West (2) North (1) Southern (1) & Central (1) North (2) 
temperature CT Central (6) & West 

(2) 
North (1) Central (1) - 

 Yield Central (7) North (1) Southern (1) & Central 
(1) 

North (2) 

†NWI-3, normalized water index three; CT, canopy temperature. 
‡parenthesis number indicates the total of nurseries in each region.  
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Figures 

 
 
Figure 1. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of NWI-3, canopy temperature, and grain yield from NW 
Mexico and grain yield of diverse nurseries for the Elite Spring Wheat Yield Trial (ESWYT). 
Estimates were based on three combined years (2006, 2007, and 2008) for NW Mexico and one 
year (2003) for the international nursery sites. 
Yld-I, grain yield-irrigated; NWI3-I, normalized water index three-irrigated; CT-I, canopy temperature-irrigated; Numbers 
indicates sites (see Table 1). 
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Figure 2. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of NWI-3, canopy temperature, and grain yield from NW 
Mexico and grain yield of diverse nurseries of the Semi-Arid Wheat Yield Trial (SAWYT). 
Estimates were based on three combined years (2006, 2007, and 2008) for NW Mexico and one 
year (2003) for the international nursery sites. 
Yld-I, grain yield-irrigated; Yld-D, grain yield-drought; NWI3-I, normalized water index three-irrigated; NWI3-D, normalized 
water index three-drought; CT-I, canopy temperature-irrigated; CT-D, canopy temperature-drought; Numbers indicates 
sites (see Table 1). 
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Figure 3. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of NWI-3, canopy temperature, and grain yield from NW 
Mexico and grain yield of diverse nurseries of the 11th High Temperature Wheat Yield Trial 
(HTWYT). Estimates were based on three combined years (2006, 2007, and 2008) for NW 
Mexico and one year (2003) for the international nursery sites. 
Yld-I, grain yield-irrigated; Yld-D, grain yield-drought; Yld-H, grain yield-heat; NWI3-I, normalized water index three-
irrigated; NWI3-D, normalized water index three-drought; NWI3-H, normalized water index three-heat; CT-I, canopy 
temperature-irrigated; CT-D, canopy temperature-drought; CT-H, canopy temperature-heat; Numbers indicates sites (see 
Table 1). 
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Figure 4. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of NWI-3, canopy temperature, and grain yield from NW 
Mexico and grain yield of diverse nurseries for the 24th Elite Spring Wheat Yield Trial (ESWYT). 
Average of heading and grain filling stages across years (2006, 2007, and 2008) and 
environments (well irrigated and water stress). 
Yld, grain yield; NWI3-I, normalized water index three; CT, canopy temperature; Numbers indicates sites (see Table 1). 
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Figure 5. Two-dimensional distributions of coefficients of the first two principal components (PC) 
obtained by a multivariate analysis of NWI-3, canopy temperature, and grain yield from NW 
Mexico and grain yield of diverse nurseries for the 24th Elite Spring Wheat Yield Trial (ESWYT). 
Average of heading and grain filling stages across years (2006, 2007, and 2008) and 
environments (well irrigated, water stress, and high temperature). 
Yld, grain yield; NWI3-I, normalized water index three; CT, canopy temperature; Numbers indicates sites (see Table 1). 
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CHAPTER IV 
 
 

Association between water spectral indices and plant water status in 

spring wheat under water stress conditions 
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Abbreviations 

 

CIMMYT, International Maize and Wheat Improvement 

SBS-I, subset of advanced sister lines in the year 2006 and 2007 

SBS-II, subset of sister lines in the year 2008 

WUE-I, advanced lines selected for high water use efficiency in the year 2006 

WUE-II, advanced lines selected for high water use efficiency in the year 2007 

SYNDER, advanced synthetic derivative lines selected for high grain yield under drought 

SRI, spectral reflectance indices  

WI, water index  

NWI-1, normalized water index-1  

NWI-2, normalized water index-2  

NWI-3, normalized water index-3  

NWI-4, normalized water index-4  

RWC, relative water content 
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Abstract 

The use of spectral reflectance indices for estimating the plant water status in adverse growth 

conditions (i.e., water stress) offer great advantages in wheat. Several water indices were 

determined to establish their relationship with water potential, relative water content (RWC), 

canopy temperature, soil moisture, and root weight in spring wheat lines under water stress field 

conditions. Diverse advanced breeding lines from the International Maize and Wheat 

Improvement Centre (CIMMYT) were employed that corresponded to five trials: a subset of sister 

lines including parents (SBS-I and SBS-II), lines selected for high water use efficiency (WUE-I 

and WUE-II), and a group of synthetic derivatives (SYNDER) selected for high grain yield under 

drought conditions. All genotypes were planted at CIMMYT’s experiment station in Northwest, 

Mexico during three growing seasons (2006, 2007, and 2008). Five water indices (WI and four 

NWIs; water index and normalized water indices, respectively) were determined at diverse growth 

stages (booting, heading, and grain filling) using a field portable spectrometer (Analytical Spectral 

Devices, Boulder, CO). The relationships between the normalized water index three (NWI-3) and 

the water potential were significant for the WUE-I, WUE-II, and SBS-II trials when both 

parameters were correlated in individual growth stages. However, when growth stages were 

combined (booting, anthesis and grain filling), the relationships between the NWI-3 and water 

potential were stronger for the SBS-II (r2=0.85) and SYNDER (r2=0.76) trials in the year 2008, 

and explain a larger proportion of the water potential variations. Similarly, canopy temperature 

showed a strong association with the water indices (r2=0.81 and 0.78 for SBS-II and SYNDER, 

respectively) as well as with water potential (r2=0.61 and 0.72 for SBS-II and SYNDER, 

respectively) combining midday determinations. The SBS-II and SYNDER genotypes showed 

stronger relationships between NWI-3 and water potential, canopy temperature, grain yield, and 

biomass. In addition, there were good relationships between the NWI-3 and soil moisture. 

Apparently, resistant genotypes with high water content, high grain yield, and low canopy 

temperature access deeper soil layers for water uptake. The use of the water indices, especially 

NWI-3, offers great advantages in wheat breeding programs because they can be determined in 
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an easy and quick manner integrating the complete canopy at low economic cost, and large 

genotype numbers can be evaluated for estimating additional parameters (i.e., water potential) 

  



 

 88 

Introduction 

Water availability is an important factor that limits plant growth in semiarid areas and 

reduces crop yield and causes economic losses in diverse regions worldwide (Hanks, 1988, Araus 

et al., 2002). Water status refers to the amount of water in a plant, crop, or soil, and it is influenced 

by environmental conditions, agronomic practices, and soil properties (Hanks, 1988). The plant 

water status provides information that can be used to prevent crop water deficit stress through 

irrigation and to assess crop growth under drought conditions (Tucker, 1980; Peñuelas et al., 

1993).  

Measurements of relative water content (RWC) and water potential are the standard 

parameters for determining the plant water content under water deficit stress conditions (Slatyer, 

1967; Nobel, 1983). The RWC provides information about the plant water content by measuring 

the amount of water that the plant requires to reach maximum turgor, and it is expressed as a 

percentage in specific growth stages (Slatyer, 1967). Nobel (1983) established that the leaf water 

potential is the most accurate indicator of the plant/crop water status. Because of value 

differences in the soil, plant, and atmosphere, the water potential is considered the main driving 

force in transpiration, providing information about the water content of the plant and soil as an 

integrated system (Kozlowski et al., 1991). The pressure chamber technique developed by 

Scholander et al. (1964) is the most common method for determining leaf water potential where 

the pressure applied to the leaf is approximately equal to the plant water potential (Kramer and 

Boyer, 1995). Water potential and RWC have been employed for assessing plant water content in 

diverse wheat genotypes under water stressed environments, and their combination with canopy 

temperature, and grain yield are used to distinguish drought resistant from drought susceptible 

genotypes in wheat (Munjal and Dhanda, 2005). 

The stomatal conductance and transpiration indicate stomata opening level and are also 

used to screen water status in diverse crops (Lu et al., 1998). Both parameters depend highly on 

the plant water content in adverse or optimal growth conditions (Condon et al., 2004; Lu et al., 

1998). Modern cultivars of Pima cotton and bread wheat with superior high yield potential showed 

enhanced stomatal conductance compared to old cultivars under irrigated and high temperature 
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conditions (Lu et al., 1998). Breeding for high yield potential in Pima cotton and bread wheat 

generated better stomatal conductance rates than photosynthetic rates (Lu et al., 1998). Similarly, 

spring wheat cultivars delivered in diverse years (1962-1988) in northwest Mexico had increased 

stomatal conductance (63%), higher photosynthetic rate (23%), and reduced canopy temperature 

(0.6oC cooler), while grain yield was only improved 27% (Fisher et al., 1998). Elevated stomatal 

conductance is associated with enhanced leaf cooling at flowering and boll filling in Pima cotton 

and at anthesis and grain filling in bread wheat, especially for high demanding environments 

(Fisher et al., 1998; Lu et al., 1998). Stomatal conductance can be used in breeding programs as 

a selection criterion for high grain yield in wheat in irrigated, drought and hot environments (Lu et 

al., 1998; Condon et al., 2004). 

Another method for detecting crop water status is canopy temperature, which is based on 

the assumption that a plant transpires water through its leaves, thereby reducing their 

temperature (cooling system) (Reynolds et al., 1994). Plant canopy temperature indicates how 

transpiration cools leaves, and indicates the cooling efficiency under high demanding 

environments (Araus et al., 2008). High transpiration rates and stomatal conductance mean 

better cooling in leaves for optimizing the photosynthesis process (Araus et al., 2008). Lower 

canopy temperature in particular genotypes also indicates their capacity for taking water from the 

soil to maintain satisfactory plant water status (Araus et al., 2008). Selecting lines with high 

transpiration rates is an alternative manner for selecting for high yield potential (Reynolds et al., 

1999). The maintenance of favorable plant water status during a water stress (high water 

potential) implies reduced water loss through stomata and maximizes water uptake through the 

root system (Barnabás, 2008). When the soil water availability decreased, leaf water potential, 

canopy temperature, transpiration rate, stomatal conductance and photosynthesis rate are 

reduced (Sharma and Pannu, 2008). Screening for canopy temperature has been conducted in 

vegetative (non complete ground cover) and in reproductive growth stages (full groundcover) 

under drought stressed and irrigated crops (Royo et al., 2005). Thermal imaging is an innovative 

phenotyping method for the spatial examination of canopy temperature patterns associated with 

transpiration at the canopy or leaf level (Chaerle et al., 2007, Grant et al., 2007). Thermal imaging 
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is a promising phenotyping technique for screening canopy temperature in a large number of 

genotypes with high efficiency in a short time (Araus et al., 2008; Chapman 2008). 

Another promising potential trait for determining crop water status is the carbon isotope 

discrimination (CID) (discrimination for the stable isotope 13C). CID has been proposed as a 

predictive selection criterion for high grain yield in wheat under water stressed environments 

(Araus et al., 1998; 2001; Condon et al., 2002). In fact, Australia has delivered two commercial 

wheat cultivars for rainfed conditions by selecting genotypes with low CID (high transpiration) at 

tillering (Richards, 2006). Similarly, CID measured in mature grains is also positively correlated 

with grain yield in wheat in Mediterranean regions (Araus et al., 1998; Condon et al., 2004). CID 

has been correlated with stomatal conductance and grain yield in Pima cotton and bread wheat 

cultivars, and is also associated with yield progress in wheat cultivars (Lu et al., 1998, Fischer et 

al., 1998). The positive relationship between CID and grain yield in genotypes with low CID 

indicates a better water status (Araus et al., 2002; Condon et al., 2004). Even though CID offers 

various advantages, this technique has had low acceptance due to the high cost of processing 

samples (Araus et al., 2008). 

The term water use efficiency (WUE) refers to the efficiency of water consumed by a crop 

for producing biomass or grain yield by carbon assimilation, and is an important parameter in 

semiarid regions (Tambussi et al., 2007). WUE is defined as the biomass produced per mm of 

water extracted from the soil and transpirated by plant. Genotypes with high WUE indicate high 

biomass capacity per mm of water, and CID can be used for this purpose (Condon et al., 2002). 

Wheat genotypes with high biomass production were more efficient for extracting soil water (11%) 

compared with genotypes with low biomass production (Reynolds and Trethowan, 2007). The 

WUE also offers great potential for breeding purposes to increase grain yield in wheat (Condon et 

al., 2004). 

Several of the methods and techniques described previously offer great advantages for 

determining the crop water content and grain yield in wheat, but many of these physiological 

approaches have limitations due to high costs of processing samples (CID), time for determining 

a specific parameter (stomatal conductance, water potential, RWC), and determination of 
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additional parameters (WUE). Spectral reflectance is an alternative that offer great advantages, 

such as easy and quick determinations, complete canopy integration, and additional parameters 

estimation (i.e., photosynthetic capacity, leaf area index, intercepted radiation, and chlorophyll 

content) (Araus et al., 2001). Moreover, the canopy reflectance is also considered as an efficient 

phenotyping technique for screening many field plots (Chapman, 2008). Plant water status can be 

assessed by remote sensing systems by using canopy spectral reflectance indices associated 

with the changes in crop water content (Peñuelas et al., 1997; Ustin et al., 1998; Stimson et al., 

2005). Several spectral water indices have been proposed using different wavelengths for 

detecting changes in plant water status in diverse crops (Peñuelas et al., 1993; Gao, 1996; 

Peñuelas et al., 1997; Serrano et al., 2000; Stimson et al., 2005). Energy is strongly absorbed by 

water in specific wavelengths and diverse indices have been proposed (simple ratios) for 

predicting crop water content. Accurate estimations can be obtained using wavelengths which 

penetrate far into canopies (Sims and Gamon, 2003). Diverse wavelengths in the near infrared 

(700-1300 nm) and short infrared (1300-2500 nm) have been employed for monitoring plant water 

status and several water bands have been proposed in the electromagnetic spectrum at 970, 

1240, 1400, and 2700 nm (Tucker, 1980; Peñuelas et al., 1993; Gao, 1996; Zarco-Tejada and 

Ustin, 2001; Anderson et al., 2004; Stimson et al., 2005). Gao (1996) developed the normalized 

difference water index (NDWI; [R860-R1240]/[R860+R1240]) to determine canopy water content in 

soybean and corn (Anderson et al., 2004). Stimson et al. (2005) found that the NDWI and the 

normalized difference vegetation index (NDVI; [R900-R680]/[R900+R680]) showed significant 

correlation with water potential (r2=0.68, and 0.71, respectively) in Pinus. Zarco-Tejada and Ustin 

(2001) proposed the simple ratio water index (SRWI, R860/R1240) to measure the water status in 

forest canopies. 

The water index (WI, R970/R900) proposed by Peñuelas et al. (1993) was used to estimate 

water status in Phaseolus vulgaris, Capsicum annuum and Gerbera jamesonii, and was related 

with the RWC under reduced water conditions. In broccoli plants, the WI explained the plant 

water content variations and total biomass under diverse water treatments (El-Shikha et al., 

2007). Babar et al., (2006) proposed two normalized water indices (NWI-1=[R970-R900]/[R970+R900] 
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and NWI-2=[R970-R850]/[R970+R850]) based on the water index proposed by Peñuelas et al. (1993) 

for screening grain yield in spring wheat genotypes under well irrigated and water deficit stress 

conditions. Two additional normalized water indices (NWI-3=[R970-R880]/[R970+R880] and NWI-

4=[R970-R920]/[R970+R920]) were proposed for screening grain yield of advanced lines of winter 

wheat under rainfed conditions (Prasad et al., 2007). These five water indices (WI and four NWIs) 

explained a large proportion of grain yield variability and are alternative approaches for selecting 

high yielding lines in diverse environments (Babar et al., 2006; Prasad et al., 2007). The 

normalized water indices (NWIs) are based on the hypothesis that the NIR wavelengths (970 nm) 

penetrate deeper into the canopy and accurately estimate water content at heading and grain 

filling (Babar et al., 2006; Prasad et al., 2007; Gutierrez et al., 2008). The association between 

the water indices and grain yield indicates that canopy water content plays a vital role in yield 

among wheat genotypes under optimal and adverse growth conditions (Babar et al., 2006; 

Prasad et al., 2007). However, a large number of studies have been reported using several 

formulas and diverse wavelengths based on theoretical perspectives, but there is relatively little 

validation with field data (Serrano et al., 2000; Sims & Gamon, 2003). The objective of the 

present study is to establish the relationship between water indices (WI and NWIs) and water 

potential, RWC, canopy temperature, soil moisture, and root weight in wheat genotypes during 

booting, anthesis (heading), and grain filling under water stress field conditions in Northwest, 

Mexico. 
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Materials and Methods 

Experimental materials 

Spring bread wheat and advanced synthetic derivatives from the International Maize and 

Wheat Improvement Center (CIMMYT) were used for this study. Fourteen sister lines from the 

cross Seri-M82/Babax plus the two parents were used in a trial called subset of sister lines (SBS-

I) in the year 2006 and 2007. The number of sister lines was reduced to six plus the two parents 

in the year 2008 (SBS-II). The sister lines used in 2006 and 2007, and subsequently in 2008 were 

selected on the basis of grain yield and physiological performance (i.e., canopy temperature) 

under water stress conditions. Another trial included 16 advanced lines selected for high water 

use efficiency (WUE-I) in the year 2006. In the year 2007, the WUE-II trial included four advanced 

lines from WUE-I and twelve new advanced lines selected for high grain yield and high water use 

efficiency under water stress conditions. Finally, ten advanced synthetic derivative lines 

(SYNDER) selected for high grain yield under water stress conditions were tested in the year 

2008.  

 

Growing conditions 

The genotypes were grown during the winter season at CIMMYT’s experiment station in 

Cd. Obregon, Northwest Mexico (27.3oN, 109.9oW, 38 m above sea level). The weather is mostly 

sunny and dry during the winter cropping cycle (see Gutierrez et al., 2008 for environmental 

conditions in the years 2006, 2007, and 2008). The soil type is coarse sandy clay, mixed 

montmorillonitic type caliciorthid, low in organic matter and slightly alkaline (pH 7.7) in nature 

(Sayre et al., 1997). 

The seeding rate for each experiment was 78 kg ha-1. Nitrogen and phosphorous were 

applied to the plots at the rate of 150 kg ha-1 and 22 kg ha-1, respectively. Field plots consisted of 

two raised beds, 5 m long (80 cm wide each) with 2 rows, 10 cm apart on each bed. An alpha 

lattice design with 2 repetitions was employed for all experiments.  

The planting dates were in November and plants reached booting and heading during 

February-March and were harvested in May. The crop growing seasons for all experiments are 



 

 94 

referred to as years: 2006 for the cycle 2005-2006, 2007 for the cycle 2006-2007 and 2008 for 

the cycle 2007-2008. The SBS-I, WUE-I, and WUE-II trials were planted under water stress 

conditions in the 2006 and 2007 growing seasons. The SBS-II and SYNDER trials were also 

planted under water stress conditions during the 2008 growing season.  

The drought stress conditions were achieved by applying one irrigation before seeding 

that provided approximately 100 mm of available water, followed two irrigations of about 50-70 

mm each applied prior to the booting stage.  

Folicur was applied at the booting, heading, and grain filling stages at the rate of 0.5 L ha-

1 to protect the experimental materials from leaf rust caused by Puccinia triticina. 

 

Spectral reflectance measurements 

Canopy reflectance was measured in the 350 to 1100 nm range and collected at 1.5-nm 

intervals using a FieldSpec spectroradiometer (Analytical Spectral Devices, Boulder, CO). Data 

were determined during cloud-free days at midday between (10:30 and 14:00 hrs) after a 

calibration using a white plate of barium sulphate (BaSO4) that provides maximum irradiance 

(Labsphere Inc., North Sutton, USA). Four measurements in each plot were taken at heights of 

0.5 m above the canopy with a field of view of 25o. Each reflectance measurement was the 

average of 10 scans from an area of 18.94 cm2 of the plot. Canopy reflectance measurements 

were taken at random places in each plot during booting (SBS-II and SYNDER), anthesis (SBS-II, 

and SYNDER), and grain filling (all trials) under water stress conditions.  

The water index proposed by Peñuelas et al. (1993) was estimated (WI=R970/R900) and 

four normalized water indices proposed by Babar et al. (2006) and Prasad et al. (2007), NWI-

1=[R970-R900]/[R970+R900], NWI-2=[R970-R850]/[R970+R850], NWI-3=[R970-R880]/[R970+R880], and NWI-

4=[R970-R920]/[R970+R920], were also estimated.  

 

Water potential and relative water content (RWC) 

The water potential and RWC were estimated using flag leaves during booting (SBS-II 

and SYNDER), anthesis (SBS-II, and SYNDER), and grain filling (all trials) one day before or one 
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day after the spectral reflectance measurements. Four flag leaves in each plot were used to 

determine water potential using a pressurized pump (Scholander’s pump) in the morning close to 

sunrise (6:00-8:30 h), at midday (13:00-15:00 h), and at night (22:00-24:30 h).  

The RWC was taken almost synchronously with the spectral measurements, and fresh 

samples of four flag leaves per plot (7-10 cm2) were collected and immediately weighed (fresh 

weight, FW). Intact leaves were transferred to sealed tubes, rehydrated in de-ionised water 

(around 8-12 h until fully turgid at 25oC), and weighed again (turgid weight, TW). Finally, the leaf 

samples were oven dried at 78oC for 24 h and weighed (dry weight, DW). The RWC was 

calculated by the following formula: RWC (%) = (FW - DW)/(TW - DW)100. 

 

Canopy temperature 

A hand-held infrared thermometer (Mikron M90 Series, Mikron Infrared Instrument Co. 

Inc., Oakland, NJ) was used to measure canopy temperature depression during grain filling in all 

the experiments. The mean of four readings was obtained from the same side of each plot at an 

angle of approximately 30o with respect to the horizontal angle to integrate as many leaves as 

possible without viewing the soil. The measurements were taken in the afternoon (13:00-14:00 h) 

when the crop experienced maximum transpiration rates. 

 

Dry root weight and soil moisture 

For estimating the soil moisture content, a hydraulic probe (tube of 2.5 inches in diameter 

and 2 m length) connected to a tractor was used for collecting soil samples at different depths (0-

30, 30-60, 60-90 90-120 cm) during booting, anthesis, and maturity in the SBS-II and SYNDER 

experiments. For the SBS-I, WUE-I and WUE-II the soil moisture was determined only at maturity 

(2006 and 2007). After the biomass harvesting in each stage, the probe was placed where shoots 

had been cut and four soil samples were collected (soil plus roots) at different depths in each plot. 

The soil samples were kept in a plastic bag in a cooler to avoid moisture loss. The soil from each 

depth was mixed in the plastic bag and a subsample of 100-150 g was taken for recording fresh 

weight. Later, the soil samples were oven dried at 78oC for 48 h to register the soil dry weight. 
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The moisture content was determined by dividing the fresh weight by the dry weight and 

multiplying by the apparent soil density (1.3 g cm-3) and expressed in mm units.  

Another soil subsample (100-150 g) was dissolved in water for 8-12 h for extracting the 

roots at each soil depth. The roots were collected using a mesh, washed with water, and placed 

in sealed bottles. All roots were put in a Petri dish with a dark bottom to facilitate the root 

collection, and then placed in sealed tubes and oven dried at 78ºC for 48 h for recording root dry 

weight. 

 

Grain yield and biomass 

In all experiments grain yield was determined after physiological maturity by harvesting 

and threshing the entire plot, excluding a 0.5 m border at each end. Prior to grain harvest, a 

random subsample of 100 spike-bearing culms was removed from the plots. The subsample was 

oven-dried, weighed, and threshed. The grain weight was recorded and individual kernel weight 

estimated using a subsample of 200 kernels.  

For the biomass harvesting, all the plants in a 0.5 m long area were cut at soil level in one 

of the two beds of each plot. The area harvested for biomass was 0.4 m2 (0.5 by 0.8 m). The SRI 

data were taken randomly before biomass harvesting. The biomass was collected randomly in the 

middle of the 5 m plot. After the biomass harvesting, the total fresh weight was taken and a 

representative sample was oven dried at 78oC for 48 h. The dry weight of the biomass was 

recorded for estimating biomass by area (g m-2). The biomass was sampled at booting, anthesis, 

and maturity in the SBS-II and SYNDER experiments for the year 2008. During the previous 

years (2006 and 2007), the biomass was just determined at physiological maturity in the SBS-I, 

WUE-I and WUE-II trials. 

 

Statistical analysis 

All the experiments were analyzed according to the alpha lattice design by using Proc 

Mixed in the SAS program for each growth stage and year (SAS, 2001). Pearson correlation 
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coefficients were used to estimate the phenotypic relationship of the water indices to water 

potential, RWC, grain yield, soil moisture and root weight. 
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Results 

According to previous studies (Gutierrez et al., 2008) as well as in this study, two 

normalized water indices: NWI-1 and NWI-3, have given the strongest relationship between water 

potential and grain yield, but NWI-3 was slightly better (non-significant) than the other water 

indices (WI, NWI-1, NWI-2, and NWI-4) during three growing seasons under water stress 

conditions. As a result, we will discuss only this water index as an exemplification of the other 

three normalized water indices. Even though other SRI were estimated (RNDVI, GNDVI, and SR; 

red normalized vegetative difference index, green NDVI, and simple ratio, respectively) they 

showed lower relationships with water potential, canopy temperature, relative water content, soil 

moisture, and root weight (data not shown) in all the experiments. 

In order to know the value range and significance in certain parameters determined in our 

study, we simplified their examination by combining growth stages for the normalized water index 

three (NWI-3), water potential, and biomass for SBS-II and SYNDER trials during 2008 (Table 1). 

In all the trials and years, canopy temperature and grain yield were analyzed at grain filling and 

maturity, respectively. However, the SBS-II and SYNDER trials were analyzed in each individual 

growth stage and time of determination (water indices and water potential) during the year 2008. 

The NWI-3 did not give significant differences for the SBS-I, WUE-I and WUE-II trials in the years 

2006 and 2007, but it gave highly significant results in the year 2008 for SBS-II and SYNDER. 

Water potential did not show significant difference for the SBS-I and WUE-I trials during 2006, but 

it was significant for the SBS-I and WUE-II trials during 2007 as well as for the SBS-II and 

SYNDER trials during 2008. Canopy temperature was only significant for the SBS-II and 

SYNDER trials in the year 2008, but not for previous years (2006 and 2007). Grain yield showed 

significant differences for all the trials, except for the SBS-I during 2007. Finally, biomass was 

significant for the SBS-II and SYNDER trials averaging booting, anthesis, and grain filling during 

2008. 
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Association of the water indices with water potential and relative water content 

Different normalized water indices (NWIs) always gave negative relationships with water 

potential during booting, anthesis, and grain filling in all the trials under the water stress 

conditions (Tables 2, 3). The relationship between NWI-3 and water potential showed moderate 

correlations in the SBS-I during 2006 and 2007, while this relationship was significant for the 

same years in the WUE-I and WUE-II trials (Table 2). There were few differences in the water 

potential determinations taken in the morning or at the night in both years in the three trials. 

However, when the genotype number was reduced from sixteen (SBS-I) to eight (SBS-II), the 

correlations between the water potential and the NWI-3 showed stronger relationships (highly 

significant) for the anthesis stage in the year 2008 (Table 3). There were minimal differences for 

the NWI-3 determined at midday (11:00 h, 13:00 h, and 15:00 h) and their corresponding 

relationships with water potential, but correlations generally were slightly lower at 15:00 h. When 

water potential was determined at night for the year 2008, the relationships were lower than when 

determined at midday for the SBS-II trial (Table 3). For the SYNDER trial, the relationships 

between the NWI-3 and water potential ranged from low to moderate (non significant). 

When the NWI-3 determinations taken at midday were averaged (11:00 h, 13:00 h, and 

15:00 h) and related to the water potential determinations at midday at booting, anthesis, and 

grain filling (not averaged), the relationship was highly significant (p≤0.01) for the SBS-II (r2=0.85) 

and for the SYNDER (r2=0.76) trials (Fig. 1). Similar results were obtained using other normalized 

water indices (NWI-1, NWI-2 and NWI-4) (data not shown). The relationship was reduced using 

night determinations of water potential, but remained significant for both trials (r2=0.59 for the 

SBS-II and r2=0.64 for the SYNDER). 

On the other hand, the relationships between the RWC and NWI-3 (same for other NWIs) 

did not show a clear association in diverse experiments during the three growing seasons for all 

the experiments. The association between NWI-3 and RWC was low and negative for two years 

(2006 and 2007) in the SBS-I, WUE-I, and WUE-II trials, while some positive and negative 

correlations were obtained during the year 2008 in the SBS-II and SYNDER trials (Tables 2, 3).  
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Relationship between water indices and canopy temperature 

The correlations between the water indices and canopy temperature were positive and 

ranged from low during 2006 to moderate during 2007 with one significant correlation at grain 

filling in the SBS-I trial (Table 2). The same relationship was highly significant at the anthesis and 

grain filling stages for the SBS-II trial during 2008 (Table 3). However, for SYNDER, the 

correlations were lower and only one correlation was significant at booting.  

The mean value of the NWI-3 at midday (averaging determinations at 11:00 h, 13:00 h, 

and 15:00 h) for each growth stage (booting, anthesis, and grain filling) showed a highly 

significant relationship (p≤0.01) with canopy temperature using determinations at booting and at 

grain filling (Fig. 2). The NWI-3 showed a highly significant association with canopy temperature 

for the SBS-II (r2=0.81) and for the SYNDER (r2=0.78) trials. In the same way, canopy 

temperature also showed a significant relationship (p≤0.01) with water potential in the same trials 

during 2008 (r2=0.61 for SBS-II and r2=0.72 for SYNDER) (Fig.3). 

 

Association of the water indices with soil moisture and root weight 

Soil moisture gave significant correlations with the NWI-3 at 30-60 cm during 2006, 0-30 

cm and 90-120 cm during 2007 for the SBS-I, while for the WUE-II, a significant correlation was 

found at the 30-60 cm soil depth (Table 2). For the year 2008, the significant correlations were 

found at grain filling at 0-30 cm, 30-60 cm, and 90-120 cm soil depths for the SBS-II, while for the 

SYNDER trial, the significant correlations were found at 60-90 cm soil depth at grain filling (Table 

3). When the mean value of NWI-3 at midday (averaging determinations at 11:00 h, 13:00 h, and 

15:00 h) for booting, anthesis, and grain filling were combined and correlated with the soil 

moisture, the relationship between both parameters was significant for the SBS-II (r2=0.13-0.74) 

and for SYNDER (r2=0.42-0.72) (Fig. 4). The relationship was stronger at superficial soil layers 

(0-30 cm) than at deeper layers (90-120 cm).  

Root weight at 60-90 cm soil depth showed highly significant correlations with the NWI-3 

in SBS-II at anthesis and grain filling, and the SYNDER trial showed one significant correlation at 

0-30 cm for the booting stage and at 30-60 cm soil depth for the booting and grain filling stages.  
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Association of the water indices and canopy temperature with grain yield and biomass 

The relationships between grain yield and the NWI-3 gave low correlation values (non 

significant) for the WUE-I and WUE-II trials during 2006 and 2007, while in the SBS-I trial, the 

relationship between both parameters was significant during 2007 (Table 4). The correlations 

between grain yield and the NWI-3 were highly significant for the anthesis and grain filling stages 

and when the two growth stages were combined in the SBS-II for the year 2008. For SYNDER, 

the correlations with grain yield were significant for the grain filling stages.  

The NWI-3 showed highly significant correlations with biomass at anthesis, grain filling, 

and when both growth stages were combined in the SBS-II trial during 2008 (Table 4). For the 

SYNDER trial, the significant correlations were found at grain filling, and when anthesis and grain 

filling were combined. 

Canopy temperature showed strong relationships with grain yield and biomass in the 

SBS-II and SYNDER trials for the year 2008, but not for previous years (Table 4). 
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Discussion 

There were few significant differences for the parameters determined during 2006 and 

2007, but major differences were obtained for the water parameters (NWI-3, water potential, and 

canopy temperature), grain yield, and biomass in the SBS-II and SYNDER trials during 2008. 

 

Association of the water indices with water potential and relative water content 

The relationship between NWI-3 (same for other NWIs) and water potential were 

significant for the WUE-I and WUE-II trials grown during 2006 and 2007 at grain filling, and was 

highly significant at anthesis in the SBS-II during 2008 (Table 2, 3). NWI-3 and water potential 

showed low and moderate associations in individual growth stages; however, the best 

relationships (p≤0.01) were obtained when the three growth stages (booting, anthesis and grain 

filling) were combined (not averaged), and when the NWI-3 midday determinations were 

averaged (11:00 h, 13:00 h, and 15:00 h) in the SBS-II and SYNDER trials during 2008 (Fig. 1). 

The water potential variations were explained by NWI-3 (Fig 1) and the other water indices (data 

not shown). Leaf water potential is considered the most accurate indicator of plant water status, 

and some authors have used it for evaluating plant water content and drought resistance in 

diverse wheat genotypes in water stressed environments (Nobel, 1983; Munjal and Dhanda, 

2005). These relationships were similar for SBS-II and for SYNDER using midday (r2=0.85 and 

r2=0.76, respectively) and night (r2=0.59 and r2=0.64, respectively) determinations of water 

potential (Fig. 1). At midday (high sunshine), plants express the maximum response to drought 

resistance with higher temperatures and the most resistant genotypes maintain higher water 

content than the sensitive plants. The enhanced water content in certain genotypes allows the 

plants to maintain growth in reduced soil water conditions, which results in higher yields. Our 

results indicate that NWI-3 can be used for identifying genotypes with better canopy water 

content that also leads to high stomatal conductance, transpiration, and lower leaf temperature. 

Rapid and easy determination, complete canopy integration, low technique cost, 

screening of large genotype numbers in a short time, estimation of additional physiological 

parameters (water potential), and a strong correlation with grain yield are some advantages that 
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the water indices offer to wheat breeding (Babar et al., 2006; Prasad et al., 2007; Gutierrez et al., 

2008). It is much easier to determine the water indices for assessing canopy water content 

instead of the time consuming method of measuring water potential with Scholander’s pressure 

pump. In fact, estimation of the crop water stress by remote sensing is an important goal for 

irrigation scheduling because the plant water status provides information to prevent crop water 

stress (Jackson, 1986). If crop water stress is detected (low crop water content) in certain critical 

growth stages (i.e., anthesis and grain filling) using a water index, yield losses could be prevented 

by applying irrigations. Koksal (2008) evaluated several water spectral indices to develop a water 

deficit index for irrigation purposes based on the crop water content during the crop growing 

season.  

Diverse studies have been using spectral reflectance indices for estimating plant water 

status and water stress in several crops (Luquet et al., 2003; Penuelas et al., 1993, Anderson et 

al., 2004; Stimson et al, 2005; Zarco-Tejada and Ustin, 2001). In our study, the four normalized 

water indices (NWIs) explained the water potential variations and they could be used for 

predicting plant/crop water content (Fig. 1). Other studies have found that the relationship 

between spectral indices and plant water status decreased with low and moderate levels of water 

stress (Peñuelas et al., 1997; Stimson et al., 2005). Our results demonstrated that the 

correlations between the water indices and water potential were stronger under high water stress 

field conditions in diverse trials (Table 2, 3; Fig 1). The plant water potential ranged from –0.59 to 

–2.70 MPa for the year 2006, from –0.72 to –1.54 MPa for the year 2007, and from -1.01 to –3.99 

MPa for the year 2008. The selection of specific wavelengths with strong absorption by water is 

essential to increase the sensitivity of selected spectral indices for explaining changes in plant 

water status (Eitel et al., 2006). The 970 nm wavelength employed in the four normalized water 

indices resulted sensitive for detecting water content differences among wheat genotypes 

growing under water deficit conditions. 

Under reduced soil water content, plants close stomata on leaves to conserve water in 

order to maintain adequate water content (Serrano et al., 2000). Our hypothesis that the water 

indices are associated with the plant water content is confirmed because the water indices 
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consistently detected changes in water potential and are also associated with canopy 

temperature (high stomatal conductance, transpiration, and low leaf temperature). An increase in 

plant water content causes a decrease in the amount of light energy that is reflected at the 970 

nm, and lower water content in the canopy results in lower grain yield and biomass (Babar et al., 

2006; Prasad et al., 2007; Gutierrez et al., 2008). The association between the water indices and 

grain yield indicates that canopy water content plays a vital role in yield among genotypes under 

diverse environments (well irrigated, water stress, rainfed, and high temperature conditions) in 

spring and winter wheat (Babar et al., 2006; Prasad et al., 2007; Gutierrez et al., 2008). The 

water indices explained a large part of grain yield variability and they can be used as an 

alternative breeding tool for selecting high yielding wheat lines (indirect selection) (Babar et al., 

2006; Prasad et al., 2007, Gutierrez et al., 2008).  

Even though RWC has been reported to estimate plant water content (Slatyer, 1967; 

Chaves et al., 2002); in our study, we did not find any relationship between NWI-3 and RWC. The 

RWC determinations did not show any pattern of association with the water indices. In another 

study, the normalized difference water index (NDWI) showed a high correlation with RWC at the 

leaf (r2 = 0.94) and canopy levels (r2 = 0.60), but the plant water content variations over time were 

not explained by the RWC (Eitel et al., 2006). Kozlowski et al. (1991) reported that RWC has 

limitations when the full saturation of leaves cannot be determined appropriately, thereby 

reducing its accuracy (Bradford and Hsiao, 1982). 

 

Association between the water indices and canopy temperature 

The relationship between the water indices and canopy temperature was stronger when 

growth stages were combined (booting, anthesis, and grain filling) for the SBS-II and SYNDER 

trials (Fig. 3). Plant canopy temperature indicates that transpiration cools leaves, and indicates 

the cooling efficiency under demanding environments (Araus et al., 2008). If the plant water 

content decreases, the transpiration rate is reduced, thereby losing the cooling efficiency of the 

leaves. The positive relationship between the water indices and canopy temperature found in our 

study (Fig. 2), means that plants with lower canopy temperature maintain adequate water content 
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for growing in adverse growth conditions (drought). Genotypes with better drought resistance 

(high yielding) in SBS-II and SYNDER could be identified using the water indices and/or canopy 

temperature because the most drought resistant genotypes maintained better water content 

(lower water potentials) under water stress conditions (Fig. 3). In consequence, the plant water 

status can be estimated using the water indices and/or canopy temperature because both 

parameters showed a significant relationship with water potential in the SBS-II and the SYNDER 

trials (Fig. 2, 3). The NWI-3 and canopy temperature are easy to measure in the field for 

evaluating large number of genotypes and both could be used for predicting plant water content 

in genotypes with high yield potential (high water content). There are few advantages of using the 

NWI-3 instead of canopy temperature because other spectral reflectance indices can be used for 

estimating additional physiological traits (i.e., leaf area index and intercepted radiation). However, 

the parameters could be used together to confirm the selection the best yielding lines. 

 

Association of water indices with soil moisture and root growth 

There are no reports in the literature to explain the relationship between canopy spectral 

indices and soil water content in different soil layers. Spectral soil reflectance has only been used 

to estimate moisture on surface layers, type of texture, and organic matter content (Hummel et 

al., 2001). The SBS-II genotypes always showed highly significant correlations between the water 

indices and plant water content parameters (water potential and canopy temperature), and they 

also showed an association with soil moisture (Table 2, 3; Fig. 4). This seems to verify that these 

eight genotypes, which were selected on the basis of grain yield under water stress conditions, 

have good resistance to drought (Table 3, 4). The relationship between the NWI-3 and soil 

moisture was significant for diverse soil depths in SBS-II and SYNDER (Fig. 4). It indicates that 

canopy water content estimated by the water indices (especially NWI-3) gives a relationship with 

soil moisture content at different soil depths. In other words, the most drought resistant genotypes 

(high water content, transpiration, grain yield, and low canopy temperature) develop a root 

system into deeper soil layers. In drought and hot-irrigated environments, deeper root growth 

permits better access to soil water to maintain high transpiration rates (better cooling) (Reynolds, 
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and Trethowan, 2007). According to the root weight results in this study, the SBS-II genotypes 

showed a significant relationship with the water indices at the 60-90 cm soil depth, while the 

SYNDER genotypes showed some significant correlations at the surface layers (at 0-30 cm and 

30-60 cm depths) (Table 3). If the water indices indicate higher water content in high yielding 

genotypes, then one would expect to find a relationship between root weight and the water 

indices. The significant correlations at the 60-90 cm soil depth could be related to this assumption 

in the SBS-II genotypes, but this assumption needs further investigation.  

 

Water indices and yield 

The lower relationship of the NWI-3 with water potential and canopy temperature during 

2006 and 2007 in the SBS-I, WUE-I and WUE-II trials was the result of a weaker relationship 

between NWI-3 and grain yield (Table 4). However, for the SBS-II and SYNDER trials in 2008, 

the significant association of the water indices with water potential and canopy temperature 

paralleled the relationship between NWI-3 and grain yield and biomass, especially for the SBS-II 

trial (Table 4). The eight advanced lines in the SBS-II trial gave the strongest relationship 

between NWI-3 and grain yield. The canopy temperature also showed a significant relationship 

with grain yield and biomass in both trials during 2008, while the water potential gave a 

relationship with grain yield and biomass in the three years (data not shown). 
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Conclusions 

The relationship between the water indices and leaf water potential was highly significant 

for the SBS-II and SYNDER genotypes under water stress conditions during 2008. The strongest 

association between the water indices and water potential were obtained using midday 

determinations. The NWI-3 explained a large proportion of the water potential variations when 

booting, anthesis, and grain filling were combined. Similarly, the canopy temperature showed a 

strong association with NWI-3 and with water potential if growth stages were combined. The use 

of NWI-3 and other water indices offer great advantages as an indirect selection tool in wheat 

breeding, for example, determinations are quick and easy, low economic cost, complete canopy 

integration, additional parameter estimation (water potential and canopy temperature), and easy 

in evaluation of large genotype numbers. The water indices and canopy temperature showed 

strong correlations with water potential and grain yield and they could be used for detecting plant 

water content and for predicting high yield potential under water stressed environments. The 

hypothesis that plant water content is an important factor in high yielding genotypes was 

corroborated. The time consuming methods for estimating water potential is greatly reduced by 

using the water indices for selecting genotypes with high water content. The significant 

association between the water indices and soil moisture in the SBS-II and SYNDER genotypes 

could suggest that resistant genotypes with better water content access water in deeper soil 

layers. Better water content among high yielding genotypes can be detected by the water indices, 

which indicates high stomatal conductance, transpiration, and low leaf temperature. 
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Tables 

Table 1. Minimum, maximum, mean, and least significant difference (LSD) for the normalized 
water index three (NWI-3), water potential, canopy temperature, grain yield, and biomass in a 
subset of sister lines (SBS-I and SBS-II), lines selected for high water use efficiency (WUE-I and 
WUE-II), and synthetic derivatives (SYNDER) grown under water stress conditions.  
Trial Year Minimum Maximum LSD Mean Significance 
   NWI-3  
SBS-I 2006 -0.039 -0.004 0.020 -0.020 NS 
WUE-I 2006 -0.026 -0.007 0.020 -0.010 NS 
SBS-I 2007 -0.042 -0.001 0.022 -0.016 NS 
WUE-II 2007 -0.034 -0.001 0.015 -0.015 NS 
SBS-II† 2008 -0.062 -0.011 0.007 -0.038 ** 
SYNDER† 2008 -0.069 -0.011 0.010 -0.036 ** 
   Water potential‡ (MPa)  
SBS-I 2006 -3.99 -2.70 0.59 -3.42 NS 
WUE-I 2006 -3.99 -2.01 1.33 -2.78 NS 
SBS-I 2007 -3.15 -1.15 0.72 -1.90 ** 
WUE-II 2007 -3.98 -0.78 1.54 -2.19 * 
SBS-II† 2008 -3.73 -2.29 0.35 -3.04 * 
SYNDER† 2008 -3.99 -2.98 0.20 -3.59 ** 
   Canopy temperature (oC)  
SBS-I 2006 27.4 29.1 1.14 28.1 NS 
WUE-I 2006 28.6 33.6 2.53 31.3 NS 
SBS-I 2007 26.0 28.1 0.90 27.3 NS 
WUE-II 2007 31.7 34.5 1.12 33.3 NS 
SBS-II† 2008 28.9 31.0 0.23 29.6 ** 
SYNDER† 2008 26.2 31.2 1.23 29.0 ** 
   Grain yield (Kg ha-1)  
SBS-I 2006 0.38 3.48 0.60 1.30 ** 
WUE-I 2006 0.28 2.36 0.74 1.13 * 
SBS-I 2007 0.64 0.76 0.53 0.71 NS 
WUE-II 2007 0.83 2.12 0.39 1.44 ** 
SBS-II† 2008 1.69 4.28 0.16 3.25 ** 
SYNDER† 2008 2.13 3.96 0.18 2.98 ** 
   Biomass (Kg ha-1)  
SBS-II† 2008 4.71 8.11 0.71 6.34 ** 
SYNDER† 2008 2.02 9.41 1.88 4.78 ** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. NS; non significant differences. 
†Booting, anthesis and grain filling were averaged.  
‡The water potential determinations were averaged for the determinations at 11:00, 13:00 and 15:00 h during 2008 
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Table 2. Relationship between the normalized water index three (NWI-3) and diverse water 
content parameters in a subset of sister lines (SBS-I) and lines selected for high water use 
efficiency (WUE-I and WUE-II) grown under water deficit stress conditions during 2006 and 2007.  

Water 
indices† 

Growth 
stage 

Water status  Canopy temp.  Soil moisture‡ 

Water potential† RWC  Grain filling  0-30 cm 30-60 cm 60-90 cm 90-120 cm 

SBS-I (n=16)          
2006  Morning         
NWI-3 Grain filling -0.48* -0.21*  0.38*  -0.31** -0.69** -0.33*** -0.20** 
2007  Night         
NWI-3 Grain filling -0.47 -0.17*  0.58*  -0.61** -0.26** 0.39** 0.58* 
WUE-I (n=16)          
2006  Morning         
NWI-3 Grain filling -0.53* -0.12  0.30*  -0.05** -0.34** -0.13*** -0.33** 
WUE-II (n=16)          
2007  Night         
NWI-3 Grain filling -0.57* -0.32*  0.49*  -0.12** 0.50* 0.37** 0.47* 
*,**Significant at the 0.05 and 0.01 probability level, respectively.  
†Water potential was determined in the morning (6:00-8:30 h) and at night (22:00-24:30 h). 
‡Soil moisture was determined at maturity. 
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Table 3. Relationship between the normalized water index three (NWI-3) and diverse parameters for a subset of sister lines (SBS-II) and synthetic 
derivatives (SYNDER) grown under water deficit stress conditions during 2008. 

Water 
indices 

Growth 
stage 

Time 
for the 
NWIs 

Water status  Canopy temperature  Dry root weight§  Soil moisture 

Water potential† RWC  Grain filling  0-30 cm 30-60 cm 60-90 cm 90-120 cm  0-30 cm 30-60 cm 60-90 cm 90-120 cm 

SBS-II (n=8)  Midday Night              
NWI-3 Booting 13:00 -0.66** -0.24** 0.14  0.70**  0.44 * 0.21* -0.69** 0.04*  -0.36** -0.70** 0.29 -0.14** 

 Anthesis 11:00 -0.90** -0.84** 0.47  0.91**  0.10 * 0.23* -0.94** -0.55*  -0.36** 0.67* 0.53 0.65* 
  13:00 -0.90** -0.86** 0.31  0.87**  0.12 * 0.32* -0.91** -0.57*  -0.21** 0.66* 0.65 0.74* 
  15:00 -0.96** -0.75** 0.25  0.89**  0.10 * 0.12* -0.95** -0.58*  -0.35** 0.53* 0.56 0.65* 

 Grain filling‡ 11:00 -0.40** -0.12** -0.21*  0.94**  -0.06** -0.09** -0.91** -0.59*  -0.86** -0.83** -0.17* 0.69* 
  13:00 -0.31** -0.11** -0.31*  0.95**  0.09 * -0.04** -0.96** -0.57*  -0.87** -0.79** -0.17* 0.73* 
  15:00 -0.20** -0.02** -0.37*  0.95**  0.13 * 0.03* -0.96** -0.59*  -0.86** -0.72** -0.14* 0.74* 

SYNDER (n=10)  Midday Night              
NWI-3 Booting 13:00 -0.49** 0.10* -0.11*  0.61**  -0.80** 0.28 * 0.15* -0.38*  -0.39** -0.42** 0.15 0.04* 

 Anthesis 11:00 -0.45** -0.33** -0.57*  -0.36***  0.21 * -0.23** -0.02** 0.25*  0.27* -0.10** 0.11 -0.07** 
  13:00 -0.57** -0.31** -0.53*  -0.35***  0.16 * -0.06** 0.12* 0.30*  0.29* -0.22** 0.02 -0.24** 
  15:00 -0.49** -0.44** -0.55*  -0.43***  0.35 * -0.18** -0.02** 0.30*  0.25* -0.04** -0.03* -0.16** 

 Grain filling‡ 11:00 -0.56** -0.59** 0.28  0.34**  -0.35** -0.60** -0.39** -0.37*  0.24* -0.01** -0.57* -0.48** 
  13:00 -0.49** -0.46** 0.34  0.41**  -0.28** -0.68** -0.29** -0.37*  0.28* 0.25* -0.61* -0.43** 
  15:00 -0.44** -0.58** 0.31  0.43**  -0.28** -0.77** -0.45** -0.43*  0.30* 0.21* -0.61* -0.39** 
*,**Significant at the 0.05 and 0.01 probability level, respectively.  
†Water potential was determined at midday (13:00-15:00 h) and at night (22:00-24:30 h). 
‡The NWI-3 determined at grain filling was associated with soil moisture determined at maturity. 
§Root weight was determined at anthesis.  
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Table 4. Relationship of grain yield and biomass to the normalized water index three (NWI-3) and 
canopy temperature in a subset of sister lines (SBS-I and SBS-II), lines selected for high water 
use efficiency (WUE-I and WUE-II), and synthetic derivatives lines (SYNDER) grown under water 
stress conditions during three years.  
  WUE-I WUE-II  SBS-I  SBS-II  SYNDER 
  Grain yield  Grain yield  

Grain yield Biomass§ 
 Grain 

yield Biomass§ 
Parameter Growth 

stage 
2006 2007  2006 2007  2008 2008  2008 2008 

NWI-3† Anthesis       -0.91** -0.71**  -0.33** -0.15** 
 Grain filling -0.33 -0.38  -0.38* -0.56*  -0.96** -0.95**  -0.68** -0.79** 
 Anth-GF‡       -0.95** -0.96**  -0.43** -0.64** 
             
Canopy temp. Grain filling -0.10 -0.06  -0.27* -0.21*  -0.95** -0.94**  -0.68** -0.76** 
*,**Significant at the 0.05 and 0.01 probability level, respectively.  
†Midday determinations of NWI-3 (11:00, 13:00 and 15:00 h) were averaged for the year 2008. 
‡Anth-GF, average of anthesis and grain filling. 

§Biomass determined at physiological maturity. 
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Figure 1. Relationship between the normalized water index three (NWI-3) and water potential 
determined at midday (13:00-15:00 h) and at night (22:00-24:30 h) in a subset of sister lines 
(SBS-II) and synthetic derivatives lines (SYNDER) under water stress conditions during 2008. 
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Figure 2. Relationship between the normalized water index three (NWI-3) and canopy 
temperature in a subset of sister lines (SBS-II) and synthetic derivatives lines (SYNDER) under 
water stress conditions during 2008. 
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Figure 3. Relationship between canopy temperature and water potential in a subset of sister lines 
(SBS-II) and synthetic derivatives lines (SYNDER) under water stress conditions during 2008. 
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Figure 4. Relationship between the normalized water index three (NWI-3) and soil moisture at 
diverse depths in a subset of sister lines (SBS-II) and synthetic derivatives lines (SYNDER) under 
water stress conditions during 2008. 
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CHAPTER V 
 
 

Effect of morphological traits over spectral reflectance indices in spring 

wheat 
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Abbreviations 

 

CIMMYT, International Maize and Wheat Improvement 

GNDVI, green normalized difference vegetation index  

NWI-1, normalized water index-1  

NWI-2, normalized water index-2  

NWI-3, normalized water index-3  

NWI-4, normalized water index-4  

RNDVI, red normalized difference vegetation index  

SR, simple ratio 

SRI, spectral reflectance indices  

WI, water index  
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Abstract 

Spectral reflectance indices are directly influenced by plant architecture, especially leaf 

distribution, but other reproductive organs have considerable influence. Diverse morphological 

traits (leaf and spike wax content, leaf and spike orientation, and awns on spikes) were studied in 

spring wheat genotypes to determine their influence on different spectral reflectance indices (SRI) 

and on the relationship between the respective SRI and grain yield under well irrigated conditions. 

Twenty advanced lines with contrasting morphological differences on leaves and spikes 

developed by the International Maize and Wheat Improvement Center (CIMMYT) were used. Ten 

bread wheat advanced lines, eight sister lines, and two double haploid lines were selected. All 

genotypes were planted at CIMMYT’s experiment station in NW Mexico during two growing 

seasons (2007 and 2008). Three vegetative indices (red normalized difference vegetative index, 

green NDVI, and simple ratio; RNDVI, GNDVI and SR, respectively) and two water indices 

(normalized water indices one and three; NWI-1, and NWI-3) were determined at heading and 

grain filling during two growing seasons using a field portable spectrometer (Analytical Spectral 

Devices, Boulder, CO). A multiple regression model demonstrated that leaf and spike wax 

content and leaf orientation were the traits that showed major influences on the vegetative indices 

(14-30%) at heading, grain filling, and by combining both growth stages. The water indices were 

affected mainly by spike orientation and by the presence of awns on spikes (14-24%), and the 

same character affected grain yield per se (6-17%). Each morphological trait was used as as 

covariable for obtaining adjusted means and for estimating the relationship between the SRI and 

grain yield. The vegetative indices were more sensitive to the leaf morphological traits (orientation 

and wax content), and the water indices to the spikes morphological traits (orientation and awns). 

The association between the vegetative indices and yield was improved by adjusting for leaf 

orientation, but the relationship between both groups of SRI and grain yield was decreased by 

adjusting for spike orientation and awns on spikes. 

  



 

 122 

Introduction 

Assessments based on canopy spectral reflectance are convenient for identifying 

promising high yielding lines in breeding programs before the crop is harvested (yield prediction) 

(Royo et al., 2003). Several spectral reflectance indices (SRI) have been established to estimate 

physiological traits and grain yield in diverse crops (Rudorff and Batista, 1990; Wiegand et al., 

1991; Araus et al., 2001). The normalized difference vegetation index (NDVI, [R900-

R680]/[R900+R680]) is the SRI most widely used to predict grain yield in wheat and corn under well 

watered and stressed environments (Raun et al., 2001; Osborne et al., 2002). The red NDVI 

(RNDVI, [R780-R670]/[R780+R670]) has been a good predictor (r2=0.82) of grain yield and biomass in 

winter wheat (r2=0.76) (Moges et al., 2004). The green-NDVI (GNDVI, [R780-R550]/[R780+R550]) has 

also been associated with yield in corn and wheat genotypes (Shanahan et al,. 2001; Gutierrez-

Rodriguez et al., 2004). The water index (WI, R970/R900) and four normalized water indices (NWI-

1=[R970-R900]/[R970+R900], NWI-2=[R970-R850]/[R970+R850], NWI-3=[R970-R880]/[R970+R880], and NWI-

4=[R970-R920]/[R970+R920]) have been used to screen grain yield in spring and winter wheat 

genotypes (Babar et al., 2006; Prasad et al., 2007). These five water indices have explained a 

large proportion of grain yield variability and represent an alternative method for selecting high 

yielding lines in diverse environments (well irrigated, water stress, and rainfed conditions) for 

breeding purposes (Babar et al., 2006; Prasad et al., 2007). Our results have also demonstrated 

strong associations between the water indices and grain yield in advanced lines of spring wheat 

in high temperature environments (Gutierrez et al., 2008).  

Energy reflected from plant surfaces (canopy) is related to the geometric form of objects 

and is an important consideration in remote sensing systems (Lillesand et al., 2004). Plant 

architecture is a consequence of stem and leaf arrangement (shape, angle, distribution of layers), 

making canopies highly heterogeneous (Darvishzadeh et al., 2008; Serrano, 2008). Canopy 

reflectance is affected not only by plant architecture, but also by internal and external factors of 

leaf structure (i.e., trichomes, epidermis and mesophyll thickness) (Datt, 1998). These scattering 

properties of leaves cause additive effects over the SRI due to differences in leaf morphology, 

and the applicability of SRI is reduced over a wide range of species (Darvishzadeh et al., 2008; 
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Serrano, 2008). For instance, canopy reflectance for estimating chlorophyll content is highly 

influenced by anatomical leaf characteristics (Datt, 1999). The effects on canopy reflectance of 

leaf properties such as leaf arrangement, leaf number, and leaf area have been studied in seven 

deciduous trees and Mediterranean scrubs. Thicker leaves showed lower values for the 

vegetative indices compared to thinner leaves with similar chlorophyll content (Serrano, 2008). 

Some vegetative indices were highly affected and others were less affected by external noise 

caused by soil, leaf angle, and leaf distribution (Serrano, 2008). Datt (1998) developed a 

reflectance index that corrected for leaf surface differences in 21 Eucalyptus species. Similarly, 

Sims and Gamon (2002) studied the effects on SRI of structural variations of leaves for 

estimating pigment content in more than 50 different species, proposing a new spectral index 

(mSR705) that corrects for leaf scattering. 

Canopy spectral reflectance is also modified by factors associated with leaf constituents 

such as cutin, wax content, leaf thickness, trichome abundance, and wax composition, producing 

alterations on the SRI in diverse deciduous tree species (Ribeiro, 2006). Thicker wax and high 

trichome amounts affected spectral canopy reflectance by causing a pronounced attenuation at 

the 1031 nm wavelength in Acer rubrum. When wax was relatively thin on leaves, spectra 

reflectance was strongly influenced by inner tissue layers (i.e., cellulose, cutin) (Ribeiro, 2006). 

Holmes and Keiller (2002) established that epicuticular wax is an effective reflector of UV 

radiation, and leaf hairs reduce the amount of PAR (photosynthetic active radiation, 400-700 nm) 

arriving at the leaf surface. 

When the relationship between the SRI (vegetative and water indices) and grain yield is 

assessed for breeding purposes in diverse wheat genotypes in a particular environment, the SRI 

can be used to detect, identify, and select high yielding genotypes (Babar et al., 2006, Prasad et 

al., 2007, Gutierrez et al., 2008). Genotypes represent genetic diversity for grain yield, but also for 

other features like morphological traits on leaves and spikes due to the specific genes of each 

genotype. Some differences in spike and leaf orientation, wax content, and other traits are 

evident in the canopy reflectance of every genotype. The effect of awns on spikes and other 

morphological traits on the SRI has not been considered in wheat. The main goal of the present 
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work is to determine how morphological differences of spikes and leaves influence the 

relationship between the SRI (vegetative indices and water indices) and grain yield. For this 

purpose, twenty advanced lines with contrasting differences in leaf and spike orientation, 

presence or absence of awns on spikes, and wax content on leaves and spikes were used. 
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Materials and Methods 

Experimental materials 

Spring wheat genotypes from the International Maize and Wheat Improvement Center 

(CIMMYT) were used for this study. The genetic material represented twenty advanced lines 

developed by CIMMYT in diverse breeding trials. These lines were selected for contrasting 

morphological traits of leaves and spikes (Table 1). The trial was composed of ten bread wheat 

advanced lines (four lines from a ‘Babax’ cross, three lines from a ‘Rialto’ cross, one line from a 

‘Koel’ cross, plus two other advanced lines called ‘Cunningham’ and ‘Pastor’) with differences for 

leaf orientation (curved and erect leaves) and leaf-spike wax content. Four pairs of bread sister 

lines with awned and anwless spikes (each pair was contrasting). Two double haploid lines 

(61DHB and 126DHB) were selected due to high wax content on spike and leaves. The two 

double haploid lines were obtained from the cross between the cv. Rialto and an advanced line 

(L14) which has large spikes. The twenty lines were also selected for similarity in time to anthesis 

(around 90 days) and maturity (around 125 days).  

 

Growing conditions 

The genotypes were grown during the winter season at CIMMYT’s experiment station in 

Cd. Obregon, Northwest Mexico (27.3oN, 109.9oW, 38 m above sea level). The weather is mostly 

sunny and dry during the winter cropping cycle (see Gutierrez et al., 2008). The soil type is 

coarse, sandy clay, mixed montmorillonitic type caliciorthid, low in organic matter and slightly 

alkaline (pH 7.7) in nature (Sayre et al., 1997). 

The seeding rate for each experiment was 78 kg ha-1. Nitrogen and phosphorous were 

applied to the plots at the rate of 150 kg ha-1 and 22 kg ha-1, respectively. Field plots consisted of 

two raised beds 80 cm apart and 5m long, each with 2 rows 10 cm apart on each bed. An alpha 

lattice design with 2 repetitions was employed for all experiments.  

The planting dates were in November and plants reached booting and heading during 

February-March and were harvested in May. The crop growing seasons for all experiments are 

referred to as years: 2007 for the cycle 2006-2007 and 2008 for the cycle 2007-2008. In both 
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years the genotypes were planted under well irrigated conditions. Flood irrigation was applied to 

the plots every 20-25 days, providing approximately 100 mm of water. Folicur was applied at the 

booting, heading, and grain filling stages at the rate of 0.5 L ha-1 to protect the experimental 

materials from leaf rust caused by Puccinia triticina. 

 

Spectral reflectance measurements 

Canopy reflectance was measured in the 350 to 1100 nm range, collected at 1.5-nm 

intervals using a FieldSpec spectroradiometer (Analytical Spectral Devices, Boulder, CO). Data 

were collected during cloud-free days at midday between (10:30 and 14:00 hrs) after calibration 

with a white plate of barium sulphate (BaSO4) that provides maximum irradiance (Labsphere Inc., 

North Sutton, USA). Four measurements in each plot were taken at heights of 0.5 m above the 

canopy with a field of view of 25o. Each reflectance measurement was the average of 10 scans 

from an area of 18.94 cm2 of the plot. The sensor was mounted with the help of a pistol grip 

approximately 50 cm above the canopy facing the center of the plot. Canopy reflectance 

measurements were taken at random places in each plot during anthesis (heading) and grain 

filling growth stages.  

Eight SRI were calculated following the equations with wavelengths (nm) described by 

several authors. Three vegetative indices were estimated; the red normalized difference 

vegetative index (RNDVI=[R780-R670]/[R780+R670]), the green NDVI (GNDVI=[R780-R550]/[R780+R550]) 

and the simple ratio (SR=R900/R680) (Gitelson et al., 1996; Aparicio et al., 2000; Raun et al., 

2001). The water index proposed by Peñuelas et al. (1993) was estimated (WI=R970/R900) and two 

normalized water indices proposed by Babar et al. (2006) and Prasad et al. (2007) (NWI-1=[R970-

R900]/[R970+R900] and NWI-3=[R970-R880]/[R970+R880]) were also estimated.  

Canopy spectral reflectance curves in the visible (400-700 nm) and in the infrared region 

(700-1100 nm) were compared for each morphological trait by selecting a certain group of 

genotypes with the same morphological trait (Fig. 1). For spike orientation, there were six 

genotypes with curved spikes and fifteen with erect spikes. There were nine genotypes with 

curved leaves and eleven genotypes with erect leaves (leaf orientation), six genotypes with 
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awnless spikes and fourteen with awned spikes (awns on spikes), six genotypes with 

intermediate waxy content and fourteen with waxy spikes (spike wax content), eight genotypes 

with intermediate wax content and twelve with waxy leaves (wax content on leaves).  

 

Morphological traits on leaves and spikes 

The genetic diversity for morphological traits of leaves and spikes in the twenty 

genotypes is shown in Table 1. Every trait was estimated on a scale from 1 to 10 at heading 

(close to the flowering stage) during the year 2007 and confirmed during 2008. The number 10 

represented high erectness and a high waxy content of leaves and spikes. For awns of spikes, 

the number 10 represented large awns, a number below 5 represented short awns and the 

number 1 a total absence of awns (awnless spikes). 

 

Grain yield  

In all experiments grain yield was determined after physiological maturity by harvesting 

and threshing the four rows of every plot, excluding a 0.5 m border at each end. Prior to grain 

harvest, a random subsample of 100 spike-bearing culms was removed from the plots. The 

subsample was oven-dried, weighed, and threshed. The grain weight was recorded and individual 

kernel weight estimated using a subsample of 200 kernels.  

 

Statistical analysis 

All the experiments were analyzed according to the alpha lattice design by using Proc 

Mixed in the SAS program for each growth stage and year (SAS, 2001). Pearson correlation 

coefficients were used to estimate the phenotypic relationship of the vegetation and water indices 

to grain yield. A multiple regression analysis was conducted using Proc Stepwise for all the SRI 

and morphological traits.  

Additionally, every morphological trait (leaf and spike orientation, leaf and spike wax 

content, and awns on spikes) was used as covariables in a covariance analysis for obtaining 
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adjusted means for each spectral index and grain yield. These adjusted means were used for 

estimating the relationship between SRI and grain yield using Pearson correlations. 
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Results 

The two normalized water indices, NWI-1 and NWI-3, gave a stronger relationship with 

grain yield than the three vegetative indices (RNDVI, GNDVI, and SR) during the two growing 

seasons (2007 and 2008). Significant genotypic differences (p≤0.01) for the spectral reflectance 

indices (SRI) and grain yield were found for both years and across years (Table 2).  

 

Individual effects of morphological traits over the spectral reflectance indices and yield 

The effects of diverse morphological traits over the SRI and grain yield were detected 

through a multiple regression analysis (traits significant at p≤0.05) combining two years (2007 

and 2008) for the twenty lines (Table 3). The wax content on leaves and spikes, and the leaf 

orientation were the morphological traits that influenced the vegetative indices at heading, grain 

filling, and when heading and grain filling were combined. Spike wax content showed the major 

more effect over the vegetative indices (7-15%) than the other two morphological traits (4-7%). In 

contrast, the water indices were influenced more by spike orientation (5-9%) and by awns on 

spikes (5-13%). Finally, grain yield was highly influenced by the awns on spikes (17%), and also 

spike orientation showed a significant influence (6%).  

There were minor differences in the spectral reflectance curves in the visible region (400-

700 nm) when a certain group of genotypes with the same morphological traits were compared 

(Fig. 1). Genotypes with erect spikes (n=15) showed a decreased of reflectance in the infrared 

region (700-1100 nm) compared to genotypes with curved spikes (n=5). The same happened 

when genotypes with waxy spikes (n=14) were compared with intermediate wax amount (n=6). In 

contrast, the presence of awns (n=14) increased the amount of reflectance in the infrared region 

compared with those genotypes that had awnless spikes (n=6). Similarly, genotypes with erect 

leaves (n=11) had increased canopy reflectance (n=9) compared with genotypes with curved 

leaves. 
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Association between the spectral reflectance indices and yield without considering morphological 

traits  

The relationship between the SRI and grain yield was tested without considering the 

influence of any morphological trait (non adjusted means) (Table 4). The water indices always 

exhibited negative associations with grain yield, while the vegetative indices showed positive 

correlations. The correlation values between the water indices and grain yield were higher at both 

heading and grain filling than for the vegetative indices and grain yield during two years and 

across years. The vegetative indices showed lower correlation coefficients during 2008 with no 

significant relationships. The weaker correlation values for the vegetative indices in 2008 affected 

the correlation values across years when heading and grain filling were combined. The 

correlation coefficients were slightly higher or similar to the highest correlation coefficient of any 

individual growth stage for both groups of SRI.  

 

Effects of morphological traits over the relationship between the spectral reflectance indices and 

yield 

It was difficult to examine the effects of individual morphological traits over the 

relationship between the SRI and grain yield because every genotype presented two or more 

morphological traits (Table 1). However, every morphological trait was used as a covariable for 

obtaining adjusted means and estimating the relationship between the SRI and grain yield (Table 

5). The correlation values obtained by using adjusted means for each morphological trait were 

compared to the correlations obtained without any adjustment (Table 5). Correlation values 

adjusted for leaf wax content did not show any effect on the relationship between the SRI 

(vegetative and water indices) and grain yield. Slight decreases in the correlation values occurred 

for the vegetative indices when adjusted for the amount of wax on spikes, while water indices 

were not affected by the amount of wax on the spikes. However, the correlations were improved 

(higher values) for the vegetative indices when means were adjusted for leaf orientation, whereas 

the water indices presented weaker correlations in their relationship with grain yield. Means 

adjusted for spike orientation decreased the relationship between both groups of SRI and grain 
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yield because the correlations were lower, but remaining significant (except the vegetative indices 

at grain filling). The highest decrease in the correlation values between SRI and grain yield were 

caused by adjusting means for awns on spikes. The water indices remained significant, while the 

vegetative indices were not significant at grain filling. 

RNDVI and NWI-3 were chosen to represent the vegetative indices and the water 

indices, respectively, to demonstrate how the different morphological traits affected the 

relationship between the SRI and grain yield (Fig. 2). Mean adjustments for awn on spikes 

showed that this trait had the most effect on the relationship between RNDVI and grain yield, 

while the correlations adjusted for leaf orientation improved this relationship. For NWI-3, none of 

the adjustments for morphological traits improved its relationship with grain yield, while adjusting 

for leaf orientation made the relationship non significant. For both spectral indices (RNDVI and 

NWI-3), correlations adjusted for awns on spikes and spike orientation reduced the relationship 

with grain yield, but it still remained significant. 

  



 

 132 

Discussion 

The combination of heading and grain filling showed a stronger relationship between the 

SRI and grain yield as has previously been reported by other authors (Babar et al., 2006; Prasad 

et al., 2007; Gutierrez et al., 2008). The two normalized water indices (NWI-1 and NWI-3) gave 

more significant associations with grain yield than the vegetative indices (RNDVI, GNDVI, and 

SR) in the twenty lines tested. Similar results have been found in spring wheat for diverse 

environments (well irrigated, water stress, and high temperature) in NW Mexico (Gutierrez et al., 

2008).  

 

Individual effects of morphological traits over the spectral reflectance indices and yield 

There was a clear influence of the leaf and spike morphological traits over the canopy 

spectral reflectance and consequently, over the SRI (Table 4; Fig. 1). The vegetative indices were 

mainly affected by leaf and spike wax content and leaf orientation, while the water indices were 

mainly affected by spike orientation and awns on spikes. Moreover, a considerable amount of the 

grain yield variation was explained by the influence of awns on spikes.  

The canopy spectral reflectance showed small changes in the visible region (400-700 nm) 

indicating few differences in the amount of chlorophyll and other leaf pigments among genotypes 

(Fig 1). However, considerable changes occurred in the infrared region (700-1000 nm) that is 

more related to the plant structure, especially of leaves (Lillesand et al., 2004). Canopy 

reflectance of spikes and leaves followed a similar pattern in the amount of reflectance in both 

regions. Qifa and Jihua (2003) found that the spectral reflectance of rice spikes gave similar 

reflectance signals as leaves, but spikes reflected more energy in the visible region because of a 

lower chlorophyll concentration and distinctive surface properties. Guyot (1990) determined that 

the difference between the maximum and minimum reflectance peaks in the visible region was 

greater for spikes than for leaves. The difference in internal and external morphology of the 

spikes compared to leaves causes variations in the reflectance signal due to large spaces among 

grains, rachis branches, and high intercellular spaces among cells (Riedell and Blackmer 1999). 
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In our study, we determined reflectance in the entire plant canopy (spikes and leaves) for 

detecting major effects of the morphological traits.  

Erect spikes and waxy spikes decreased the reflectance in the infrared region, while 

curved spikes and intermediate waxy spikes increased it. Particular genotypes with erect spikes 

could absorb more radiation (less reflectance) compared with those presenting curved spikes 

because there is less interference for radiation to reach leaves. Gaju et al., (2009) found that two 

genotypes with large spikes (LPS1 and LPS2) showed lower radiation interception compared with 

a cultivar with shorter spikes (cv. Bacanora), thereby having less biomass. The lower radiation 

interception in genotypes with curved spikes (bigger size) can be associated with a major amount 

of energy reflected compared to genotypes with erect spikes found in our study (Fig. 1). 

Gausman et al. (1970) reported that the spectral reflectance of the spike is primarily influenced by 

chlorophyll and carotenoid in the visible region, while its internal structure affected the reflectance 

in the infrared region. In relation to the waxy spikes, the lower amount of reflectance detected 

could be caused by radiation being transmitted in different directions by the waxy reflection. 

However, this hypothesis needs further investigation.  

The presence of awns on spikes in certain genotypes increased the reflectance in the 

infrared region, while the awnless genotypes decreased it. No studies have reported the effect of 

awns on canopy spectral reflectance in wheat and other crops, but the presence of awns might 

reflect a higher amount of radiation, especially in genotypes with curved spikes. If awns act as 

reflectors of the radiation, in curved spikes the amount of reflected radiation could be increased in 

a dense canopy, thereby reducing also the amount of radiation in lower leaf layers.  

Genotypes with erect leaves reflected more radiation than genotypes with curved leaves in the 

infrared region (Fig. 1). We also expected to find differences in the visible region, but no 

differences were obtained. However, the effect of other traits (waxy leaves, curve spikes, and 

awned spikes) in genotypes with erect or curved leaves makes it difficult to establish a concrete 

tendency. In fact, the spectral reflectance curves plotted in Figure 1 were not corrected or 

adjusted by any particular morphological traits.  
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Morphological traits and the relationship between spectral reflectance indices and grain yield 

The combined effects of morphological traits over the relationship between the SRI and 

grain yield followed a similar pattern as their individual effects over the SRI and grain yield (Table 

5). The vegetative and water indices were little affected in their relationship with grain yield when 

the correlation values were adjusted for leaf and spike wax content.  

An adjustment for leaf orientation improved the correlation values of the vegetative 

indices with grain yield, but the correlations for the water indices were decreased. Darvishzadeh 

et al. (2008) established that erectophile canopies reduced the efficiency of the SRI for assessing 

the leaf area index, while planophile canopies were less influenced. In our study, the effects of 

erect and curved leaves were considered together in their relationship with grain yield for the 

vegetative and water indices in the twenty lines (Fig. 2). 

The spike orientation (adjusted means) was one of the morphological traits with the major 

effect over the vegetative and water indices (curved spikes), decreasing their relationship with 

grain yield (Table 5). A similar pattern was found for the effects of awns over the relationship of 

the vegetative and water indices with grain yield. It is evident that these two morphological traits 

negatively affect the relationship between the SRI and grain yield.  

Even though genotypes had different combinations of morphological traits, our results 

demonstrated that leaf and spike orientation and awns on spikes influenced the SRI and their 

relationship with grain yield. The SRI described in the present study were adjusted to each 

morphological trait to show their influence over the SRI. In other studies, the SRI were corrected 

by chlorophyll content differences for estimating leaf area index in diverse plant species 

(perennial) (Nagler et al., 2004; Wang et al., 2005). If RNDVI and NWI-3 are adjusted for each 

morphological trait, the correlation values can be improved or decreased (Fig. 2). For example, 

the correlation values with RNDVI were improved by adjusting for leaf orientation, but NWI-3 and 

RNDVI correlation values decreased when both were adjusted for spike orientation and awns on 

spikes. 
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Conclusions 

Morphological traits of leaves and spikes influenced SRI, affecting their relationship with 

grain yield. The vegetative indices were affected by leaf and spike wax content and leaf 

orientation, while the water indices and grain yield were affected by spike orientation and awns 

(individual effects). The relationship between SRI and grain yield (combined effects) was 

improved by adjusting for leaf orientation, but affected negatively by adjusting for spike orientation 

and awns. The relationship between water indices and grain yield was reduced by spike 

orientation (curved spikes) and awns on spikes. The vegetative indices were more sensitive to 

leaf morphological traits, and the water indices to the spikes morphological traits (same for grain 

yield). The association between the vegetative indices and yield was improved by adjusting for 

leaf orientation, but the relationship between both groups of SRI and grain yield decreased due to 

spike orientation and awns on spikes. 
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Tables 

Table 1. Diversity in morphological traits for leaves and spikes in twenty wheat genotypes.  
  Orientation Awns on Wax content 
Lines Source/identification Spikes Leaves spikes Leaves Spikes 
Bread wheat lines     
1 Babax cross Erect Curved Awned Intermediate waxy Intermediate waxy 
2 Babax cross Erect Curved Awned Intermediate waxy Waxy 
3 Babax cross Erect Erect Awned Waxy Waxy 
4 Babax cross Erect Erect Awned Intermediate waxy Intermediate waxy 
5 Rialto cross Erect Erect Awned Intermediate waxy Intermediate waxy 
6 Rialto cross Erect Curved Awned Waxy Waxy 
7 Rialto cross Erect Erect Awned Waxy Waxy 
8 Koel cross Curved Curved Awned Waxy Waxy 
9 Cunningham Erect Curved Awned Waxy Intermediate waxy 
10 Pastor Erect Curved Awned Intermediate waxy Intermediate waxy 
Sister lines      
11 FA2+ Erect Curved Awned Waxy Waxy 
12 FA2- Erect Curved Awnless Waxy Waxy 
13 JA1+ Erect Curved Awned Intermediate waxy Waxy 
14 JA1- Erect Erect Awnless Intermediate waxy Waxy 
15 WA2+ Curved Erect Awned Intermediate waxy Intermediate waxy 
16 WA2- Curved Erect Awnless Waxy Waxy 
17 WA5+ Curved Erect Awned Waxy Waxy 
18 WA5- Erect Erect Awnless Waxy Waxy 
Double haploid lines      
19 61DHB Erect Erect Awnless Waxy Waxy 
20 126DHB Curved Erect Awnless Waxy Waxy 
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Table 2. Minimum, maximum, mean, and least significant difference (LSD) for the spectral 
reflectance indices (heading-grain filling) and grain yield in twenty lines grown under well irrigated 
conditions.  
Year Grain 

yield 
 Vegetative indices†  Water indices‡ 
 GNDVI RNDVI SR  NWI-1 NWI-3 

2007         
Min 4.40  0.633 0.584 4.78  -0.117 -0.120 
Max 7.19  0.936 0.843 30.24  -0.052 -0.050 
Mean 6.07  0.822 0.724 12.71  -0.086 -0.084 
LSD (5%) 0.32  0.024 0.026 2.81  0.009   0.009 
Significance level **  ** ** **    **   ** 
2008         
Min 3.82  0.734 0.694 7.22  -0.097 -0.099 
Max 8.69  0.901 0.827 20.69  -0.056 -0.050 
Mean 6.79  0.847 0.761 13.48  -0.082 -0.082 
LSD (5%) **  0.012 0.014 1.20  0.005   0.008 
Significance level 0.45  ** ** **  **   ** 
Combined         
Min 3.82  0.633 0.584 4.72  -0.117 -0.121 
Max 8.69  0.936 0.843 30.24  -0.052 -0.050 
Mean 6.43  0.834 0.743 13.10  -0.084 -0.085 
LSD (5%) 0.27  0.013 0.014 1.45  0.005   0.006 
Significance level **  ** ** **    **   ** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
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Table 3. Correlation coefficients obtained from a stepwise multiple regression for explaining the 
influence of diverse morphological traits on the spectral reflectance indices and grain yield in 
twenty lines grown under well irrigated conditions. Estimates were based on combined years; 
variables in the model were significant at the 0.05 significance level. 
Morphological 
Trait 

Grain  Vegetative indices†  Water indices‡ 
yield  RNDVI GNDVI SR  NWI-1 NWI-3 

    Heading  
Leaf wax content -  0.051 0.054 0.044  - - 
Spike wax content -  0.150 0.088 0.153  - - 
Leaf orientation -  0.046 - 0.050  - - 
Spike orientation  0.056  - - -  0.052 0.060 
Awns on spikes 0.168  - - -  0.096 0.119 
Total variation 0.224  0.247 0.143 0.247  0.148 0.179 
    Grain filling  
Leaf wax content   0.065 - 0.075  0.052 - 
Spike wax content   0.121 - 0.104  0.080 - 
Leaf orientation   0.098 - 0.099  - - 
Spike orientation    - - -  0.105 0.129 
Awns on spikes   - - -  - 0.093 
Total variation   0.283 - 0.278  0.237 0.222 
    Heading-Grain filling  
Leaf wax content   0.068 0.068 0.070  - - 
Spike wax content   0.134 0.072 0.153  - - 
Leaf orientation   0.082 0.060 0.079  - - 
Spike orientation    - - -  0.076 0.094 
Awns on spikes   - - -  0.105 0.131 
Total variation   0.283 0.200 0.302  0.181 0.225 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
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Table 4. Correlation coefficients between spectral reflectance indices and grain yield without 
considering the effect of morphological traits in twenty lines grown under well irrigated conditions 
during two years and across years.  
Spectral index Growth stage 2007 2008 Combined 
Vegetative indices† 

 
  

RNDVI Heading 0.71** 0.28** 0.69** 
 Grain filling 0.50** 0.49** 0.53** 
 Heading-Grain filling 0.67** 0.43** 0.65** 
GNDVI Heading 0.69** 0.13** 0.62** 
 Grain filling 0.39** 0.38** 0.40** 
 Heading-Grain filling 0.62** 0.29** 0.55** 
SR Heading 0.69** 0.22** 0.60** 
 Grain filling 0.42** 0.42** 0.43** 
 Heading-Grain filling 0.65** 0.31** 0.58** 
Water indices‡    
NWI-1 Heading -0.73*** -0.72** -0.82*** 
 Grain filling -0.75*** -0.75** -0.85*** 
 Heading-Grain filling -0.77*** -0.74** -0.85*** 
NWI-3 Heading -0.72*** -0.70** -0.82*** 
 Grain filling -0.75*** -0.78** -0.86*** 
 Heading-Grain filling -0.77*** -0.76** -0.86*** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
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Table 5. Correlations coefficient estimated using means adjusted by a covariance analysis for 
each morphological trait for the spectral reflectance indices and grain yield in twenty lines grown 
under well irrigated conditions. Estimates were based on combined years. 

Growth stage 
Vegetative indices†  Water indices‡ 
RNDVI GNDVI SR  NWI-1 NWI-3 

  Non adjusted  
Heading 0.69** 0.62** 0.60**  -0.82*** -0.82*** 
Grain filling 0.53** 0.40** 0.43**  -0.85*** -0.86*** 
Heading-Grain filling 0.65** 0.55** 0.58**  -0.85*** -0.86*** 
  Leaf wax content  
Heading 0.67** 0.60** 0.54*  -0.82** -0.80** 
Grain filling 0.53* 0.40 0.44  -0.84** -0.85** 
Heading-Grain filling 0.62** 0.54* 0.57**  -0.85** -0.85** 
  Spike wax content  
Heading 0.70** 0.62** 0.62**  -0.81** -0.81** 
Grain filling 0.42 0.28 0.34  -0.82** -0.86** 
Heading-Grain filling 0.59** 0.46* 0.59**  -0.83** -0.86** 
  Leaf orientation  
Heading 0.78** 0.74** 0.74**  -0.82** -0.72** 
Grain filling 0.50* 0.46* 0.55*  -0.42 -0.27 
Heading-Grain filling 0.74** 0.72** 0.74**  -0.73** -0.52* 
  Spike orientation  
Heading 0.58** 0.57** 0.60**  -0.79** -0.79** 
Grain filling 0.31 0.17 0.27  -0.77** -0.63** 
Heading-Grain filling 0.48* 0.38 0.52*  -0.77** -0.73** 
  Awns on spikes  
Heading 0.63** 0.55* 0.55*  -0.65** -0.63** 
Grain filling 0.35 0.32 0.34  -0.57** -0.48* 
Heading-Grain filling 0.55* 0.48* 0.54*  -0.61** -0.56** 
*,**Significant at the 0.05 and 0.01 probability level, respectively. 
†RNDVI, red normalized difference vegetation index; GNDVI, green normalized difference vegetation index; SR, simple 
ratio. 
‡NWI-1, normalized water index 1; NWI-3, normalized water index 3. 
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Figure 1. Canopy spectral reflectance response for wheat lines with differences in morphological 
traits on leaves and spikes grown under well irrigated conditions. Estimates were based on 
combined years. 
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Figure 2. Relationship between spectral reflectance indices (RNDVI and NWI-3, red normalized 
difference vegetation index and normalized water index three, respectively) and grain yield 
without and with adjusting means for estimating their relationships. Estimates were based on 
combined years and growth stages (heading and grain filling). 
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CHAPTER VI 
 
 

Conclusions 

The potential of using spectral reflectance indices for differentiating high yielding lines in 

advanced spring wheat lines under well irrigated, water stress, and high temperature conditions 

was achieved using the water indices (WI and four NWIs). The water indices were more effective 

in predicting grain yield than the commonly reported indices (RNDVI, GNDVI, and SR), because 

they were strongly correlated to grain yield, thus demonstrating their effectiveness for detecting, 

identifying, and selecting high yielding advanced lines of the 24th ESWYT, 11th SAWYT, and 11th 

HTWYT during three individual years and across years in the three environments. The highest 

relationships were obtained under high temperature conditions for the 11th HTWYT, which is a 

new environment reported for this relationship. Combining canopy spectral reflectance from 

heading and grain filling, resulted in better relationships between the water indices and grain yield 

compared to individual growth stages. Two water indices (NWI-1 and NWI-3) demonstrated better 

relationships with grain yield in all the trials in the three environments. The water indices gave 

high genetic correlations and heritability (broad sense) with grain yield, demonstrating high 

potential for achieving genetic gains in all the environments. In addition, they also showed high 

response to selection and correlated response, relative selection efficiency, and efficiency in 

selecting the higher yielding genotypes. The water indices and canopy temperature determined in 

NW Mexico also can be used for predicting the yield in other nurseries located around the world 

where the advanced lines of the 24th ESWYT, 11th SAWYT, and 11th HTWYT where tested. 

Depending on the environment where NWI-3 and canopy temperature were measured, they can 

estimate and predict yield performance in certain nurseries, especially for the Central Asia region. 
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The water indices were related with parameters commonly employed for assessing the 

crop water status (i.e., water potential). The relationships between water potential and canopy 

temperature to the water indices were highly significant in diverse advanced lines when booting, 

anthesis and grain filling were combined under water stress conditions. The majority of the water 

potential variability was explained by the water indices and canopy temperature confirming our 

hypothesis that the water indices are associated with the plant water content under adverse 

growth conditions (drought). In fact, the water indices can predict crop water deficit stress during 

the growing season and make irrigation decisions to avoid yield losses. 

Our results also demonstrated that some changes in the relationship between the water 

indices and grain yield were influenced by morphological traits associated with leaves and spikes. 

The relationship between the water indices and grain yield was affected mainly by erect leaves 

and spike orientation. Erect spikes and awned spikes slightly affected the water indices. 

The potential of employing the water indices for selecting high yielding lines represents a 

significant advantage in breeding programs because the top yielding lines can be selected among 

a group of advanced lines with high yield potential and low yielding lines can be discarded in an 

accurate, inexpensive, and easy manner. The water indices also can be employed for assessing 

crop water status under water stress conditions for avoiding yield losses.  
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