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Abstract 

The current study examines the dynamics of entrainment and the evolution of the dry 

atmospheric convective boundary layer (CBL) when wind shear is present and seeks to 

make comprehensive tests of existing hypotheses regarding the effects of wind shear on 

entrainment and the parameterizations that have been developed from them. 

24 large eddy simulations (LES) were conducted for CBLs growing under varying 

conditions of surface buoyancy flux, free atmospheric stratification, and wind shear.  

With the intent of elucidating the effects of surface layer shear versus shear at the CBL 

top, the simulations were divided into three categories: a free atmosphere with no mean 

wind (NS), an atmosphere with a height-constant geostrophic wind of 20 m/s (GC), and a 

case with strong shear in the geostrophic wind (GS).  The entrainment predictions of LES 

were then compared with predictions from two 1.5-order, e-l turbulence models based on 

the Reynolds-Averaged Navier-Stokes (RANS) and with two bulk models based on 

integral budgets of CBL buoyancy, momentum, and turbulence kinetic energy (TKE): the 

zero order model (ZOM) and the first order model (FOM). 

In the LES cases, the sheared CBLs grew fastest, relative to the shear-free CBLs 

when the surface buoyancy flux was weak and the atmospheric stratification was 

moderate or weak.  From the simulations, there are two fundamental findings.  The first is 

that the entrainment zone shear is much more important than the surface shear in 

enhancing CBL entrainment.  The other is the discovery of a layer of constant Ri that 

forms within the entrainment zone when the relative effects of shear stand out strongly 

enough. 

The tests of the ZOM parameterizations using LES data highlighted their 

mathematical deficiencies, which caused them to fail when shear was strong.  When the 

full FOM equations were integrated using an entrainment zone depth limited by a critical 

Richardson number (Ri), they were able to model some of the sheared CBL cases in 

which ZOM fails.  Based on the FOM and LES results and the results of testing other 



 

 xvii

parameterizations, any Ri-limited entrainment equation would seem to be most suited to 

model the dynamics of entrainment in sheared CBLs.  Despite its shortcomings, the ZOM 

places the shear-free CBLs in a common framework from which they can be easily 

compared to sheared CBLs. 

Tests of RANS-based e-l closures against the LES data show that the e-l closures 

exaggerate the differences between the entrainment rates of shear-free CBLs and sheared 

CBLs.  The entrainment rate predicted by e-l closures for sheared CBLs is too large, 

regardless of whether the modeled entrainment zone TKE is larger or smaller than that in 

LES.  It is possible that the formulation of the master length scale l for CBL turbulence 

needs to be reduced when shear is a significant source of TKE. 

The comparisons between LES and the lidar data for the May 22, 2002 sheared 

CBL case show that CBL depth comparisons can be made relatively easily when a 

suitable atmospheric sampling strategy is used.  However, the observed CBL growth rates 

differed considerably from LES, underscoring the fact that atmospheric processes not 

simulated in LES have a significant influence on the CBL depth.  Despite these problems, 

the conclusions based on the simulation results need to be tested more fully against 

atmospheric data. 
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Chapter 1  

Introduction 

1.1 What is the Convective Boundary Layer? 

The atmospheric boundary layer is the layer of the atmosphere that is sensitive to fluxes 

of momentum, temperature, and passive scalars on the time scale of about an hour or less 

(Stull 1988).  By its nature, the atmospheric convective boundary layer (CBL) is a 

turbulent boundary layer, and its turbulence is primarily forced by the heating at the 

surface below, radiational cooling in clouds at its top, or both.  If the CBL has no clouds, 

it is referred to as a dry CBL, and the main driving mechanism is heating at the lower 

surface. 

The dry atmospheric CBL is the subject of this study.  Turbulence in the dry 

CBLs develops when the heating of the ground becomes strong enough that the buoyancy 

force exceeds the viscous force by a critical threshold value, creating absolute instability, 

and convective motions ensue, transporting the heat upward in plumes or thermals.  A 

thermal is defined as “a relatively small-scale, rising current of air produced when the 

atmosphere is heated enough locally by the earth’s surface to produce absolute instability 

in its lowest layers” (Glickman et al. 2000). 

To facilitate discussion throughout the rest of this text, the CBL will be divided 

into its three sublayers.  The surface layer is the lowest sublayer that comprises 
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approximately 10 percent of the CBL depth.  The convective motions in the surface layer 

are limited by the rigid lower surface and thus cannot transport heat away from the 

surface effectively.  This results in a superadiabatic lapse rate (potential temperature 

decreases with height) in the near-surface layer.  In the middle of the CBL is the mixed 

layer, often referred to as the CBL interior, in which stronger vertical motions mix 

momentum, temperature, and other scalars so that their vertical gradients are much 

smaller than in the surface layer.  The mixed layer is usually the thickest sublayer in the 

CBL.  At the CBL top is the entrainment zone, where stable stratification inhibits vertical 

mixing, and vertical gradients of potential temperature, momentum, and other scalars 

again become large.  The entrainment zone is often called the interfacial layer.  Above 

the CBL is the free atmosphere, which is usually stably stratified. 

Since the dry CBL is driven mostly be the surface heating, we will be discussing 

the flux of the energy coming from the surface heating.  Since the meaning of heat is 

somewhat controversial in science, we can be more precise and speak of enthalpy 

(Glickman et al. 2000).  However, it is often more convenient for discussion to use “heat 

flux”, so “heat flux” is used often in this dissertation, but when so used, its meaning is 

intended to be the same as the meaning of “flux of enthalpy”.  With the aid of the gas 

laws and dividing by mass, we can describe the flux in terms of specific enthalpy 

(enthalpy per unit mass).  Dividing specific enthalpy flux by the specific heat at constant 

pressure, we have the temperature flux, and when temperature is standardized in terms of 

a reference pressure, we can speak of the flux of potential temperature.  When water 

vapor is present, we can then speak of the flux of virtual potential temperature.  Finally, 

when discussing the sources and sinks of turbulence kinetic energy in the system, it is 
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often most convenient to speak of buoyancy flux.  Buoyancy is defined traditionally as 

( )0
0

v v
v

gb θ θ
θ

= − , where g is gravitational acceleration, vθ  is virtual potential 

temperature, and 0vθ  is the reference value of virtual potential temperature [see Doswell 

and Markowski (2004) for a more complete description of the meaning of buoyancy].  

The terms buoyancy flux, potential temperature flux, virtual potential temperature flux, 

and heat flux will often be used interchangeably. 

Over land, the CBL undergoes a well-known diurnal cycle (Stull 1988), in which 

vigorous convective motions are initiated by surface heating in the morning, and the CBL 

grows during the day as the thermals ascend into the free atmosphere.  Late in the day, 

when insolation weakens to the point that the net heat flux convergence at the surface is 

negative, the mixed layer decouples from the surface and becomes a residual layer of 

decaying turbulence.  The nocturnal boundary layer then forms as the air in contact with 

the surface cools and becomes stably stratified.    Over the oceans, the diurnal cycle is not 

as pronounced as over land, and CBLs can occur any time of the day. 

In this study, the focus is on the mid-to late-morning and afternoon portion of the 

diurnal cycle, when the CBL growth is forced by shear or heating of the lower surface, or 

to be more general, any time the CBL, whether over the oceans or land, is growing.  This 

study focuses specifically on the impact of wind shear on CBL growth.  Although the 

CBL growth, in most cases, is primarily driven by heating at the surface, a pure CBL of 

this type rarely exists, and there are many situations in which the surface heating is weak 

(such as in the winter or in the early morning) and the shear-production of turbulence is 

relatively strong.  In these cases, the shear effects on entrainment cannot be ignored.  To 

date, many studies of entrainment have focused on the shear-free CBL, and their 



 

 4

hypotheses for shear-free entrainment have been well-tested in laboratory tanks, 

atmospheric measurements, and numerical simulations.  Far fewer studies have been 

performed on the influence of shear on CBL entrainment, and most of the hypotheses and 

parameterizations developed so far have not been well tested over a suitably wide range 

of atmospheric conditions.  The goal of the current study is to examine the dynamics of 

entrainment when wind shear is present in the CBL and to comprehensively test existing 

hypotheses and parameterizations regarding the effects of wind shear on entrainment and, 

more generally, on the CBL development. 

1.2 Definition of Entrainment 

The CBL growth is controlled by three mechanisms. 

The first of these (although not necessarily the largest) is mean upward vertical 

velocity at the CBL top (Lilly 1968).  It is associated with horizontal convergence of the 

flow within the CBL.  Such flows can be forced by quasigeostrophic and other processes 

in the atmosphere (Holton 1992). 

The second mechanism of CBL growth is differential temperature advection.  

When advection changes with height, it can alter the vertical gradients of potential 

temperature in the atmosphere and thus alter the environment in which the CBL is 

growing. 

Finally, CBL growth can be driven by the process of entrainment, in which more 

highly buoyant air from the free atmosphere is engulfed by, and becomes part of, the 

growing CBL (Randall and Schubert 2004).  This study focuses specifically on 

entrainment. 
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Entrainment occurs as thermals, rising from the surface layer, overshoot their 

equilibrium level in the inversion at the CBL top (Stull 1988).  As they sink back into the 

mixed layer, they pull down air from above, which is non-turbulent and has a higher 

potential temperature than the mixed layer air.  This free atmospheric air air is annexed 

into the turbulent mixed layer (Randall and Schubert 2004).  Entrainment is not a 

straightforward mixing process.  Mixing involves an exchange of particles in both 

directions across an interface.  However, in the entraining CBL, the interface is moving 

upward with time, allowing free atmospheric air to enter the CBL, but CBL air does not 

enter the free atmosphere (unless there are cumulus clouds, which are beyond the focus 

of this study).  As such, entrainment is essentially a one-way process.  The entrained free 

atmospheric air usually has lower concentrations of water vapor and pollutants than the 

mixed layer air, but the positive fluxes of these constituents from the surface counteract 

the dilution of these constituents by entrainment. 

1.3 The Importance of Entrainment 

Understanding the entrainment process is critical for numerous reasons.  Firstly, 

entrainment regulates the exchange of momentum, water vapor, pollutants, and other 

scalars between the boundary layer and the overlying free atmosphere.  Since entrainment 

controls the CBL depth, it regulates how deeply pollutants and water vapor mix upward 

into the atmosphere.  Numerical weather prediction (NWP) modeling relies on the 

accurate characterization of the horizontal and vertical distributions of water vapor in the 

atmosphere (Weckwerth et al. 2004), and since the concentration of water vapor is 

highest in the lower atmosphere, the CBL has a strong influence on its distribution.  For 
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air pollutants, a deeper CBL means greater dilution for pollutants that are released near 

the ground (Lyons and Scott 1990).  This applies to toxic air pollutants such as sulfur 

oxides, nitrogen oxides, and carbon monoxide, as well as to greenhouse gases such as 

methane and carbon dioxide (Davis et al. 1997).  Understanding boundary layer 

entrainment and its effects on the distribution of scalars in the atmosphere is, therefore, a 

necessity when modeling climate, as well as predicting air quality. 

Secondly, entrainment is a process that regulates the formation and dissipation of 

horizontally extensive marine stratocumulus clouds over the large ocean areas off the 

western coasts of the continents (Lilly 1968, Stevens 2002).  These clouds have albedoes 

that reach 50%, thereby scattering back to space much of the solar radiation that would 

otherwise heat the ocean below (Randall and Schubert 2004).  Thus, the presence of these 

clouds helps to maintain the relatively low temperature of the water over which they form, 

and the cool water helps to maintain the clouds.  Thus, marine stratocumuli, which are 

strongly influenced by entrainment, represent a significantly positive feedback 

mechanism and are an important part of the earth’s climate system. 

Third, entrainment affects the depth and quality of moisture in the boundary layer, 

and when wind shear is present, it can have also have a strong influence on the CBL 

momentum profiles (Stull 1988).  The importance of low-level shear on the character of 

deep, moist convection (Weisman and Klemp 1982, 1984) has generally been agreed 

upon in the meteorological community (Doswell and Bosart 2001).  The low-level 

momentum profiles have an impact on the nature of deep moist convection once it has 

developed, but it may also affect the initiation of storms (Ziegler and Rasmussen 1998).  

Since the CBL occupies most of the layer in which such shear is important, CBL 
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processes, an important part of which is entrainment, have a strong impact on the 

character of deep, moist convection. 

Finally, wind energy resources assessment also requires some knowledge of 

entrainment, since entrainment of momentum affects mean wind profiles and the 

turbulence structures within the CBL.  Since the entrainment rate directly affects the CBL 

dynamics, it directly or indirectly affects a number of other phenomena.  It is therefore 

critically important to understand how entrainment works, both in the shear-free and 

sheared CBL. 

1.4 Entrainment Related to CBL Integral Budgets of Energy 

The growth of the CBL through entrainment can be conceptualized most easily within an 

ensemble-averaged framework.  In theory, an ensemble average consists of the average 

across an infinite number of realizations of the considered flow.  In the shear-free, 

horizontally homogeneous CBL, horizontal averages can substitute for the ensemble 

averages, and the horizontally averaged buoyancy and turbulence fields can be 

considered as functions of time and height.  Neglecting mean vertical motion at the CBL 

top, the evolution of the buoyancy profile in the CBL can then be described entirely in 

terms of its turbulent vertical flux, and the evolution of the turbulence kinetic energy 

(TKE) profile can be described in terms of the sources (buoyancy flux), transport (by 

TKE and pressure), and the dissipation (by viscosity) of TKE. 

The entrainment rate is essentially determined by a balance among various 

sources and sinks of energy.  In the shear-free dry CBL, the surface buoyancy flux is the 

only turbulence production mechanism.  It begins when heating generates instability in 
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the surface layer, causing plumes to form and begin rising to the CBL top.  In the 

ensemble-averaged framework, the buoyancy flux profile is approximately linear 

throughout most of the CBL.  The flux describes the rate of production of TKE (where 

the flux is positive) or destruction of TKE (where the flux is negative).  The buoyancy 

flux is largest near the surface, where the heating is supplied, and it decreases to zero 

somewhere near the CBL top, where plumes reach their equilibrium level, that is, the 

level at which their temperature matches the horizontally-averaged temperature.  The 

convergence of the turbulent flux describes the time rate of change of horizontally 

averaged buoyancy in the CBL interior. 

The turbulence fills the entire CBL and it is usually largest within the CBL 

interior.  As the thermals rise from the surface, they carry TKE upward with them, and in 

so doing, they transport TKE away from the surface layer, where they originate, and 

towards the CBL top, where that TKE is spent for entrainment, provided it is not 

dissipated before then.  The transport of TKE thereby represents a sink of TKE near the 

surface and a source of TKE higher in the CBL. 

Ultimately, all TKE meets its demise and is converted into some other form of 

energy.  There are two possible outcomes related to its demise.  The TKE can go through 

the energy cascade process associated with three-dimensional turbulence, with energy 

transferred from larger to smaller scales until it is entirely converted to heat energy 

through viscous dissipation.  Alternatively, if turbulent plumes manage to rise upward 

past their equilibrium level and penetrate into the stable layer before this process is 

complete, they can contribute to the entrainment of warmer air from the free atmosphere 

into the CBL.  This process requires work and consumes the TKE, converting it into the 
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potential energy of the CBL-free atmosphere system.  This occurs in the entrainment 

zone, where the TKE is destroyed by negative buoyancy flux.  Also, some energy loss 

can occur out the CBL top due to the radiation of internal gravity waves. 

As the CBL grows, the heat supplied at the surface is mixed throughout the CBL 

interior by the turbulence.  The buoyancy in the CBL increases as long as the flux 

convergence is positive, and the CBL grows as turbulence entrains free atmospheric air 

from above.  The CBL buoyancy profile thereby “climbs” up the background profile of 

the free atmosphere.  If the heating rate at the surface increases, the heating rate of the 

CBL interior increases and the CBL will grow more quickly.  If the free atmosphere 

stratification strengthens, the heating required for the CBL to “climb” the free 

atmospheric buoyancy profile also increases, and the CBL grows more slowly.  The 

fraction of TKE that is dissipated versus consumed by entrainment at the CBL top also 

determines the entrainment rate (Lilly 1968).  If 100% of the TKE is dissipated, there is 

no negative heat flux at the CBL top, and the entrainment rate is relatively slow.  If 100% 

of the TKE is used for entrainment, as was assumed by Ball (1960), the negative area of 

the heat flux profile in the entrainment zone equals the positive area below, and the CBL 

grows at its fastest possible rate.  Overall, the entrainment rate is governed by the surface 

buoyancy flux, the free atmospheric stratification, and the dissipation rate of TKE.  The 

dissipation of TKE determines the fraction of buoyancy-produced TKE that becomes 

available for the negative buoyancy flux of entrainment. 

In the shear-free CBL, this fraction is essentially independent of surface buoyancy 

flux and stratification (Carson 1973; Tennekes 1973; Betts 1973).  The CBL top is 

commonly identified where the buoyancy flux reaches its minimum in the entrainment 
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zone.  The ratio of the negative of this minimum to the surface buoyancy flux is known as 

the entrainment flux ratio. 

In the presence of shear, the kinetic energy of the mean flow can become an 

additional source of energy for the CBL.  In this case, the momentum balance must be 

considered (Fedorovich 1995, Stull 1988) in addition to the buoyancy and TKE balances.  

Larger scale pressure gradient and Coriolis forces are essential components of the 

momentum balance.  Like buoyancy, momentum is also dependent on its turbulent 

vertical flux.  At the surface, friction slows the flow, and the momentum flux is generally 

negative (it sign is opposite to the sign of momentum), and since turbulence also mixes 

momentum in the CBL, it transports the weaker momentum upward (Stull 1988).  

Therefore, the negative flux often extends throughout the CBL, but if there is large 

enough shear in the free atmospheric momentum profile, the flux can reverse sign.  

Where the flux convergence is positive, the momentum increases, and vice versa. 

Shear generates TKE when vertical turbulent fluxes of momentum interact with 

vertical gradients of momentum (Stull 1988).  Since turbulent motions in the CBL mix 

momentum, the wind shear tends to concentrate at the bottom and top of the CBL, and it 

is in these two places that the shear-generation of turbulence has the potential to be 

greatest. 

The impacts of shear-generated turbulence on entrainment can be understood in 

the same terms as buoyancy-generated turbulence.  Some fraction of the TKE produced 

by shear is dissipated, and some is used for entrainment.  Depending on where the shear-

driven TKE is generated, transport is involved in determining this fraction.  The shear at 

the surface is usually strongest, but this shear-generated turbulence must be transported 
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upward to the CBL top before it can drive entrainment.  At the CBL top, shear-generated 

turbulence is immediately in a location where it can influence entrainment, but shear at 

the CBL top is, in many instances, weaker than at the surface.  The location of stronger 

shear more distant from the entrainment zone compared to weaker shear immediately in 

the entrainment zone leaves it unclear which of these two shears has a greater influence 

on entrainment.  The respective roles of the surface and entrainment zone shears in 

driving entrainment will be examined in this study. 

An important aspect of entrainment zone shear is its contribution to the instability 

at the CBL top.  The primary type of instability associated with sheared flows is Kelvin-

Helmholtz (K-H) instability.  When sufficient shear exists across a density interface or a 

stably stratified layer, the destabilizing effects of the shear may become larger than the 

stabilizing effects of the positive vertical buoyancy gradients, and K-H instabilities ensue 

(Kundu 1990).  K-H instability can occur when the Richardson number, defined as 
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is sufficiently low.  In (1.1), u and v are the x- and y-components of velocity, respectively.  

Ri represents the ratio of the buoyant suppression of turbulence to the shear generation of 

turbulence. The necessary theoretical condition for K-H instability is 0.25Ri ≤ , but in 

many flows, this is not a sufficient condition for the instability. 

Although the instability analysis, in the strict sense, applies to nonturbulent flow, 

Kim et al. (2003) have examined K-H type instabilities at the CBL top, examining the 

turbulence structures there and their qualitative similarity to K-H billows.  Entrainment of 

free atmosphere air can be enhanced during the wave breaking process associated with K-
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H type instability at the CBL top.  They also analyzed Ri in the entrainment zone, finding 

Ri<1 over a significantly deep layer in the upper portion of the CBL, but the study does 

not answer questions about the development, persistence, and depth of this layer over a 

variety of different backgrounds of shear and gravitational stability.  It is also uncertain 

whether there is a limit to Ri in this layer when the shear becomes strong.  The present 

study seeks to continue the Ri analysis in entraining CBLs in a wider variety of 

background conditions to relate Ri to the strength of the shear-enhanced entrainment. 

Grabowski and Clark (1991, 1993a,b) studied instabilities on the interface 

between a cloud and its environment by numerically simulating the development of these 

instabilities at the top of a rising thermal.  Grabowski and Clark (1993b) focused on the 

effects of environmental shear in the development of these instabilities and found the 

effects of the environmental shear on the development of instabilities were far secondary 

to the effects of the baroclinically generated shear at the immediate interface.  Their 

studies have limited applicability to the sheared CBL, because the turbulence in the CBL 

concentrates shear at the CBL top more than what was modeled in Grabowski and Clark 

(1993b).  Nevertheless, they can explain some instabilities at the top of the CBL thermals 

in shear-free CBLs.  The overall effect of the concentrated shear at the CBL was not 

addressed. 

More fundamentally, there is no consensus on whether mean shear enhances or 

suppresses entrainment.  Shear across the CBL top can deform thermals such that they do 

not penetrate as readily into the inversion, and this can theoretically interfere with the 

entrainment process.  If thermals are prevented from overshooting their equilibrium level, 

then the entrainment zone heat flux would be reduced, and the CBL growth would be 
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slightly slower.  If this effect dominates, the shear, in essence, shelters the CBL from the 

free atmospheric air (Hunt and Durbin 1999).  The present study hopes to provide some 

additional insight that could be useful for answering this fundamental question. 

1.5 Methods to Evaluate Entrainment 

Entrainment can be studied using three fundamental groups of methods: direct 

atmospheric measurements, scaled laboratory experiments, and numerical modeling.   

1.5.1 Atmospheric Measurements 

It would seem most intuitive to test atmospheric entrainment hypotheses using data 

directly from atmospheric measurements, and the most natural way to do so would be to 

measure entrainment directly.  However, these direct measurements are very difficult to 

make.  In many cases, it is more feasible to measure the evolution of the CBL depth, 

entrainment zone thickness, and other parameters of entrainment in conjunction with 

surface heat flux, and free atmospheric stratification measurements.  Owing to the fact 

that it is not possible to control atmospheric motions precisely, atmospheric measurement 

data reflect all fluid processes that are occurring simultaneously at the point of 

measurement, and it is very hard to find pure cases in which only the process of interest is 

present. 

In the case of the CBL, one of these competing processes is the organized vertical 

motion due to larger scale atmospheric flows, such as baroclinic disturbances, deep moist 

convection, or processes that are related to horizontal variability of the underlying forcing 

(sea breezes, drylines, etc.).  Averaging over areas kilometers or tens of kilometers wide 
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may still not be enough to remove these vertical motions from the analysis, so the 

horizontal convergence within the CBL must be measured very precisely.  The most 

recent entrainment-related experiments (Stevens et al. 2003) are beginning to overcome 

the limitations to estimating divergence. 

When strong wind shear is present, the CBL growth is also affected by differential 

temperature advection, which can change the background profile through which the CBL 

grows.  Also, the CBL depth has considerable local variability.  The interface height 

between the mixed layer air and the free atmospheric air is highly variable both in space 

and time, so the measurements of CBL depth must be averaged over a considerable area 

or time so that the mean of these measurements converges to the ensemble mean, which 

is necessary for comparison with models (see Chapter 3).  Many instruments, such as 

radiosondes, take measurements only above a point or a small area and cannot be used for 

averaging.  Others, such as aircraft (Lenschow 1973; Flamant et al. 1997; Davis et al. 

1997), are expensive to operate and typically have only provided CBL measurements 

during field campaigns.  Some of the more promising measurements (lidar, radar, wind 

profilers) can perform scans or sample the atmosphere continuously at a relatively high 

resolution, but many of these technologies are relatively new and have not yet provided 

sufficient data that could be used in entrainment studies. 

However, atmospheric CBL measurements have provided useful data for 

comparison with entrainment theories in near calm conditions, when the effects of 

advection and mean vertical motion are significantly reduced.  The entrainment rate in 

relatively shear-free conditions has been estimated with these data (Batchvarova and 

Gryning 1991, 1994; Boers et al. 1984; Garcia et al. 2002).  Additionally, more 
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established methods of measurement, such as balloon soundings, can be used to retrieve 

profiles of temperature and horizontal components of momentum (Hoxit 1974, Garratt 

and Wyngaard 1982, LeMone et al. 1999) to evaluate how they are affected by 

entrainment. 

1.5.2 Laboratory Models 

If laboratory models are used to study entrainment, the environment of the experiment 

can be tightly controlled specifically to test the entrainment hypothesis at hand, and the 

competing effects of other processes can largely be eliminated.  Among laboratory 

approaches, the water tank and wind tunnel model studies have been the most successful 

so far. 

Water tank studies of the CBL have typically used thermal stratification or height-

varying salinity.  If the appropriate scaling is applied (Deardorff 1980, Fedorovich et al. 

2004a), the water tank results can be made comparable with atmospheric measurements.  

Water tank experiments have been performed for shear-free CBLs (Deardorff et al. 1969; 

Deardorff et al. 1980, 1985) and for shear-driven boundary layers (Long 1975; Wu 1973; 

Deardorff and Willis 1982) but never for sheared CBLs.  Water tank studies of the CBL 

were especially popular in the 1970s and 1980s, after which time rapid advancements in 

computer technology made numerical simulations a less expensive alternative. 

Scaled down simulations of the atmospheric CBL can also be conducted in wind 

tunnels (Fedorovich et al. 2001a, b; Fedorovich and Kaiser 1998).  In these experiments, 

horizontally evolving CBLs are studied.  The downwind distance in a horizontally 

evolving CBL is the analog of time in the temporally evolving, horizontally 
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homogeneous CBL that is the focus of the current study.  A complicating effect of shear 

on entrainment in the wind tunnels is that turbulent momentum fluxes cause flow 

divergence in the horizontally evolving CBL, and this effect directly competes with 

entrainment in influencing the CBL depth. 

1.5.3 Numerical Techniques 

Entrainment can also be studied numerically using either simulations or models. 

1.5.3.1  Simulations 

If the TKE-containing turbulent motions are resolved in the numerical study, the study 

can be considered a simulation (Wyngaard 1998).  With grid spacing on the order of a 

few millimeters, direct numerical simulation (DNS) resolves all turbulent motions 

because it numerically integrates the Navier-Stokes and thermodynamic equations 

(Wyngaard 1998; Pope 2000).  Because of the limitations of computer power, it can only 

be used for domains several orders of magnitude shallower than the atmospheric CBL.  

Also, DNS makes use of finite difference approximations to the equations of motion, 

which is subject to various artifacts, including phase speed errors, artificial viscosity, and 

dispersion errors (Durran 1999). 

Large eddy simulation (LES—Deardorff 1970a, 1974a, 1974b, 1980; Moeng 

1984; Schmidt and Schumann 1989; Sykes and Henn 1989; Moeng and Sullivan 1994; 

Sorbjan 1996a,b; Lewellen and Lewellen 1998; Sullivan et al. 1998; and Fedorovich et al 

2001a,b) is a simulation that integrates the filtered Navier-Stokes and thermodynamic 

equations (see Appendix A) and resolves most of the energy-containing scales of 
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turbulence.  Any motions that are not resolvable are assumed to be only a small fraction 

of the total TKE and are parameterized with a subgrid TKE scheme. 

A rapid increase in computer power over the past one or two decades has made 

large eddy simulation (LES) a very popular tool for studying CBL processes.  In LES, the 

environmental parameters such as surface heating, stratification, and shear can be 

precisely controlled.  Representation of flows in LES need not depend on the Taylor 

hypothesis [see Stull (1988)] because the thermodynamic and kinematic properties are 

known at all points in the grid simultaneously, making it very easy to calculate horizontal 

averages, and time averages can be calculated as well.  In this manner, LES has been a 

helpful tool in studying the statistics of turbulence (Deardorff 1974a,b; Moeng and 

Sullivan 1994) and in visualizing the turbulence structures in the CBL (Kanna and 

Brasseur 1998), leading to a better understanding of the dynamics of entrainment and the 

behavior of turbulent structures.  The inherent drawbacks of LES are the same as those of 

DNS, except LES also is limited by the ability of the subgrid model to predict the effects 

of the subgrid motions on the filtered (resolved) fields.  This is the price that must be paid 

in order to simulate turbulence in larger domains.  LES, despite its larger domains, often 

cannot encompass all the heterogeneity that exists in atmospheric CBLs. 

1.5.3.2 Models 

In NWP, turbulence must also be described numerically, but the available computer 

power is insufficient to simulate the turbulence over the entire NWP domain.  The 

computational needs can be substantially reduced if the Reynolds-Averaged Navier-

Stokes (RANS) equations are used.  In RANS for the CBL, ergodicity is assumed—that 
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is—the horizontal and ensemble averages are assumed to converge to the same mean.  

The horizontal averaging is used to form prognostic equations that are integrated forward 

in time to calculate vertical profiles of averaged TKE, momentum, and buoyancy in the 

CBL.  Because of the horizontal averaging, the turbulence is described not in a resolved 

but in a statistical sense, and the RANS-based techniques are not turbulence simulations, 

but rather, they are referred to as turbulent flow models (Wyngaard 1998). 

One particular category of these models is e-l models (Xue et al. 2001; Fiedler 

and Kong 2003).  In e-l models, a prognostic equation for TKE (e) is solved, and the TKE 

is related to dissipation and the subgrid eddy diffusivities of momentum and heat through 

some turbulence integral length scale (l).  The e-l models and other RANS-based 

techniques are common in numerical weather prediction (NWP) models or in other 

situations where grid cell sizes are not sufficiently small to resolve the principal CBL-

scale turbulent motions.  The effect of those turbulent motions on the resolved fields 

needs to be predicted correctly. 

To simplify the equations even further, one can integrate the TKE, momentum, 

and buoyancy balance equations over the depth of the CBL, forming equations that 

describe the CBL integral budgets of TKE, momentum, and buoyancy (Lilly 1968, 

Zilitinkevitch 1991, Fedorovich 1995).  In this case, all parameters of the flow become 

time-dependent only.  These equations can provide insight into the mechanisms 

responsible for entrainment, and in some cases, they can be solved analytically to yield 

prognostic equations for CBL depth.  Such models are often used in air quality models to 

predict the mixing depth, and they are sometimes used in global circulation models 

(GCMs) as well (Stevens et al. 2002). 
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In order to enable the vertical integration that leads to these equations, a 

simplified CBL structure is assumed.  These simplified profiles underlie the conceptual 

models of the CBL, and the degree of simplification of the CBL vertical structure 

separates these models from one another. 

The simplest model is the zero order model (ZOM) [Lilly (1968)] in which the 

CBL is represented as a slab mixed layer with height-constant buoyancy and a linear 

buoyancy flux profile.  At the CBL top, there is a finite discontinuity, or jump, in both the 

buoyancy and the buoyancy flux, with buoyancy changing to its free atmospheric value 

(usually a linear profile) and buoyancy flux jumping from a negative value just below the 

CBL top to zero.  The ZOM gets its name because the discontinuities are in the zero order 

derivatives of the buoyancy and momentum profiles (i.e. the profiles themselves).  These 

equations have been used to a limited extent to describe CBLs with shear (Zeman and 

Tennekes 1977; Tennekes and Driedonks 1981; Driedonks 1982; Boers et al. 1984; 

Fedorovich 1995; Pino et al. 2003) and have also been solved analytically (Zilitinkevitch 

1991; Fedorovich et al. 2004a).  It will be shown in Chapters 3 and 10 that for CBLs with 

shear, ZOM entrainment equations suffer from deficiencies that make their usage 

problematic.  The deficiencies may be of a physical origin, but they reveal themselves in 

a mathematical form in the equations. 

The first order model (FOM) [Betts (1974)] has a constant-buoyancy mixed layer 

just as the ZOM does, but it includes an entrainment layer of finite thickness at the top of 

the mixed layer, so that the discontinuities in the buoyancy and momentum profiles are in 

their first derivatives.  For the shear-free CBLs, some argue that it is necessary for a finite 

entrainment zone thickness to be taken into account, as in the FOM, in order for any 
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conceptual model to capture the true essence of the entrainment process (Sullivan et al. 

1998; Van Zanten et al. 1999).  Others (Fedorovich et al. 2004a) find the zero order 

model description of entrainment to be sufficient.  For sheared CBLs, the matter may 

become more important, but it has certainly not been resolved.  Studies using the FOM 

for sheared CBLs (Mahrt and Lenschow 1976; Kim 2001) have made assumptions that 

neglect some of the effects of the entrainment zone finite thickness.  These issues will be 

addressed in Chapter 10. 

Higher order models, such as the general structure model (GSM; Deardorff 1979; 

Fedorovich and Mironov 1995) have so far been used only for shear-free CBLs.  These 

models have smoother profiles that match the actual horizontally averaged profiles in the 

CBL a bit more closely.  Prognostic entrainment equations from these more complex 

models are solved numerically.  To be true to its definition, the GSM can be reduced to 

lower order models like the FOM as particular cases of the GSM.  The GSM requires the 

specification of a polynomial function describing the buoyancy profile in the entrainment 

zone.  Since the FOM profile is a first order polynomial, it can fall within the general 

framework of the GSM. 

Because of the demonstrated utility of LES to study CBLs of different types 

without the large expense of atmospheric field measurement programs, it will be used as 

the primary tool to investigate sheared CBLs in this study.  Since it is relatively 

straightforward to revise the LES code into a one-dimensional e-l model, and because e-l 

models are so commonly used in regional NWP models, it is very worthwhile to examine 

how these models represent entrainment in sheared CBLs.  The results can be widely 

applied to weather prediction, so the ability of these models to reproduce the entrainment 
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rates in LES will be examined.  Finally, to answer some questions revolving around the 

ZOM versus the FOM and the importance of entrainment zone thickness, this study will 

compare entrainment predictions of those models with each other and with LES 

predictions. 

1.6 Layout of Remaining Chapters 

The remaining body of this dissertation is divided into the following chapters.  Chapter 2 

will provide a more detailed review of previous work focusing on sheared CBLs.  

Chapter 3 will describe the theoretical and numerical techniques that are used to study the 

sheared CBL and will present them as a hierarchy of numerical techniques, ranging from 

LES through the RANS-based closures to the ZOM.  Chapter 4 is dedicated to resolving 

some issues surrounding the shear-free CBL dynamics.  It shows that shear-free CBLs 

growing through atmospheres of different stratification fall into a common regime of 

entrainment.  This feature will be used later to directly compare the shear-free and 

sheared CBL evolution.  Chapter 5 develops this framework further and explains some of 

the differences among the entrainment flux ratios of the ZOM, higher order models, and 

LES.  The goal is to understand which conceptual model framework is best for 

comparison between sheared and shear-free CBLs and why their entrainment flux ratios 

are so different.  Chapter 6 describes the methods that are used in the numerical 

experiments performed. 

Chapters 7 through 10 present results of the numerical experiments.  Chapter 7 

contains a detailed analysis of the vertical profiles of mean flow and turbulence statistics 

from the simulations, and Chapter 8 focuses on the turbulence structure.  Chapter 9 
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presents some considerations for comparing simulations with atmospheric data and then 

describes a case study comparing simulated CBL growth rates with measured 

atmospheric CBL growth rates.  Chapter 10 shows comparisons of entrainment 

predictions by LES and the RANS-based and integral budget-based (bulk) models (ZOM 

and FOM). 

Finally, Chapter 11 summarizes the results and presents the overall findings of the 

numerical experiments. 
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Chapter 2  

Background 

2.1 Early Studies of Entrainment 

By definition, the dominant turbulence production mechanism in the convective 

boundary layer is buoyancy flux.  In dry convective boundary layers, entrainment is 

governed mostly by the surface buoyancy flux, which produces TKE, and the overlying 

atmosphere’s hydrostatic stability, which destroys TKE.  With this in mind, early studies 

of entrainment (Ball 1960, Lilly 1968, Betts 1973, Carson 1973, and Tennekes 1973) 

took the shear generation term in the TKE balance equation to be negligible.  Ball’s 

approach was based on the conservation of energy, with heat energy from the surface 

being converted into the kinetic energy of thermals, then to potential energy by 

entrainment.  Arguing that viscous dissipation was negligible on the CBL scale, he did 

not include dissipation of TKE in the calculations, and the entrainment flux ratio was 

unity.  Lilly (1968) allowed for some dissipation of the buoyancy-generated TKE within 

the mixed layer and, not knowing how much dissipation occurred, allowed the 

entrainment flux ratio to have a value between 0 and 1.  Betts (1973), Carson (1973), and 

Tennekes (1973) then followed up with papers proposing the entrainment flux ratio to be 

approximately 0.2—a number that has essentially been agreed upon (Fedorovich et al. 

2004a).  Additionally, Stull (1973) provided a detailed analysis of the structure of 
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overshooting thermals in the entrainment zone and developed a theory of entrainment 

based upon that structure. 

Laboratory water tank entrainment experiments proceeded concurrently with the 

theoretical studies.  Many of the laboratory studies were motivated by the desire to 

understand the rate of deepening of the ocean thermocline forced by wind stress (Wu 

1973, Long 1975), while others were intended as models of the atmospheric CBL 

(Deardorff et al. 1969, 1980), but all provided relevant data toward the entrainment 

problem.  Turner (1965) studied the turbulent transport of heat and salinity across a 

density interface between warm, fresh water and cold, salt water with turbulence forced 

by heating from below, and then (Turner 1968) studied the transport with turbulence 

forcing provided by mechanical agitation (but not mean shear).  Kato and Phillips (1969) 

explored the shear-forced turbulent entrainment in a laboratory experiment that was 

carefully designed to apply a constant stress at the upper surface.  The intent was to study 

the ocean equivalent of mechanical turbulence generated by wind stress at the surface.  

Wu (1973) applied the wind stress more directly, setting a wind tunnel atop the water 

tank and studying the rate of deepening of the thermocline in the tank.  Long (1975) 

made further analyses of these and other experiments, in which the mechanical forcing 

was by agitation (Turner 1968) or shear (Kato and Phillips 1969, Wu 1973) and 

reconciled some of the differences in those studies. 

However, Deardorff et al. (1969) were first to design their experiments to 

simulate the growth of the atmospheric CBL forced by heating of the ground and to 

directly test the theories set forth in Lilly (1968).  Their data showed that the entrainment 

flux ratio was much less than unity, which is an important result in understanding the fate 
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of buoyancy-produced TKE in the CBL (dissipation versus entrainment).  Willis and 

Deardorff (1974) focused more on turbulent statistics in their water tank CBL and 

demonstrated the comparability of those statistics with atmospheric data when they are 

normalized by the convective velocity and temperature scales proposed by Deardorff 

(1970b).  Unfortunately, some differences between the atmospheric and water tank CBLs 

stood out, such as the smaller scaled variance of the horizontal velocity in the water tank 

than in the atmosphere.  This was believed to happen because of the confined horizontal 

dimension of the water tank and the consequently low width to depth aspect ratio of the 

CBL.  Additionally, the study provided measurements of the buoyant production, 

turbulent transport, and dissipation of TKE. 

Deardorff  (1970a; 1972a; 1974a,b; 1980) made the first three-dimensional 

numerical simulations of the atmospheric CBL.  In these simulated flows, the turbulence 

statistics could be calculated simultaneously everywhere on the grid without sensors 

contaminating the flow, so these numerical simulations, which came to be known as large 

eddy simulation (LES), served as a useful tool in understanding the dynamics of 

turbulence and entrainment in the CBL, despite the relatively coarse resolution that was 

possible at that time.  These early studies concentrated on the turbulence statistics and the 

turbulence structure in the simulated horizontally quasi-homogeneous CBL.  Since the 

simulations were conducted under typical atmospheric conditions, some showed effects 

of shear, with the convection organizing into horizontal roll structures (Deardorff 1972a).  

Because of numerical limitations, the CBL spanned the entire vertical domain of the 

model grid in these first simulations and therefore was non-entraining. 
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Deardorff (1974a,b) used a grid large enough to simulate both a CBL and the free 

atmosphere above it, so this study was the first to simulate entrainment.  The changes in 

the mean profiles of temperature, humidity, and wind as the boundary layer grew were 

numerically simulated, and the effects of entrainment could be seen in the turbulence 

statistics.  These simulations provided further tests of the entrainment hypotheses of the 

early conceptual models.  Deardorff (1974b) looked at the structures, the TKE budgets, 

temperature variance and other second moment budgets, as well as the spectra of velocity 

fluctuations in the numerical simulation of the CBL initialized with sounding data from 

Day 33 of the Wangara experiment (conducted in Australia in the 1960s).  The LES 

output data were compared with the atmospheric data from the experiment, and the study 

represents the first LES-atmospheric data comparison. 

2.2 Evidence of Shear Effects 

While many of the theoretical and observational studies of atmospheric CBL growth were 

focused on shear-free entrainment, atmospheric studies were finding effects of wind shear 

on the development of the CBL and turbulence structure within it.  Lenschow (1970) 

studied the CBL turbulence structure and TKE budgets and identified shear production of 

turbulence in the surface layer.  Lemone (1973) studied the structure of CBL rolls using 

aircraft and instrumented tower data.  Pennell and Lemone (1974) also studied the 

turbulence structure and vertical profiles of the terms in the TKE budget in a trade wind 

boundary layer, finding significant input by shear throughout the CBL below cloud base.  

Finally, Lenschow (1974) looked further into the TKE budgets and developed a model 

for the height variation thereof.  These studies provided some quantification of the shear 
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generation of TKE in the surface layer but not at the CBL top.  Nonetheless, their 

analyses indicated a significant shear contribution to the TKE budget in the lower CBL 

for rather typical atmospheric wind speeds on the order of 10 m/s.  Their estimates of 

dissipation, however, showed that most of the shear generation near the surface was 

probably balanced by dissipation.  At the CBL top, measurements were not sufficient to 

address shear generation of TKE. 

Evidence for shear effects on boundary layer structure has been well-documented 

in radiosonde data as well.  Hoxit (1974) performed a study analyzing radiosonde data 

over four consecutive cold seasons (November through March), finding evidence for 

some downward turbulent transport of horizontal momentum associated with the vertical 

shear of the geostrophic wind.  The velocity profiles were found to be dependent on the 

orientation of the thermal wind vector (shear in the geostrophic wind) relative to the 

surface geostrophic wind vector.  The data are not presented in a format in which the 

boundary layer top can be precisely identified, but the vertical profiles provide some 

evidence of the deepening of and mixing by a turbulent boundary layer between morning 

(12 UTC) and evening (00 UTC).  Arya and Wyngaard (1975) developed a physical 

model of the baroclinic CBL and used it to predict wind profiles in the CBL.  The model 

profiles agreed reasonably well with profiles from atmospheric measurements. 

Kaimal et al. (1976) analyzed data from a field experiment in northwestern 

Minnesota and found unexpectedly large turbulent stress in the CBL, which was taken as 

evidence of significant heat and momentum entrainment into the CBL.  The data in the 

upper 40 percent of the CBL were fairly sparse, so the entrainment of momentum and 

heat had to be inferred from extrapolation of the lower level measurements.  To estimate 
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these fluxes in the upper CBL better, an experiment at Ashchurch, Worcestershire was 

conducted a couple years later, and the data, presented by Caughy and Palmer (1979), 

complemented the Minnesota data fairly well, confirming the effects of entrainment in 

heat flux and momentum profiles in the CBL.  Some entrainment flux ratios higher than 

the shear-free predictions of 0.2 were observed, indicating some possible enhancement of 

entrainment beyond what would theoretically be found in a shear-free case.  

Unfortunately, there was some uncertainty in the estimate of the entrainment flux ratio 

since the surface heat flux was not directly measured (it can be inferred by extrapolating 

the mixed layer heat flux profile to the surface).  These studies were focused on the 

second moments of turbulence and did not present much data on mean wind profiles, 

which would have been helpful in relating the entrainment of momentum and heat to 

shear in the CBL. 

Price et al. (1978) performed a study of oceanic mixed layer deepening, with the 

intention of finding whether the relevant velocity scale for shear-induced mixed layer 

deepening was the surface friction velocity *u  or the velocity change across the bottom of 

the mixed layer uδ .  Their data indicated that the observed deepening rate scaled best 

with uδ .  This result has particular relevance for the current study, which also seeks to 

quantify the relative contributions of surface and entrainment zone shear on CBL 

entrainment. 

2.3 Conceptual Models with Shear 

With evidence for shear effects on entrainment building in the mid 1970s, the CBL 

conceptual models were extended to include the effects of shear on TKE production.  The 
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very first attempt to include any shear effects in the CBL growth equation was by 

Tennekes (1973), who developed a hybrid velocity scale that combined the Deardorff 

(1970b) convective velocity scale and surface friction velocity.  However, the first true 

theoretical analyses of the shear influence on atmospheric CBL entrainment were by 

Mahrt and Lenschow (1976) and Stull (1976a,c).  Mahrt and Lenschow worked with the 

FOM and, although the equation they proposed was not tested against atmospheric, LES, 

or laboratory data, they did, nonetheless, make an effort to quantify the effects of shear 

on entrainment.  Stull (1976a,c) derived a ZOM-based entrainment rate formula that 

distinguished four separate processes affecting entrainment: 1) buoyancy generation and 

consumption of TKE, 2) mechanical generation of TKE due to surface shear, 3) shear 

generation of TKE at the CBL top, and 4) radiation of energy by vertically propagating 

gravity waves (Stull 1976b).  His parameterization of the shear term at the CBL top 

includes a finite entrainment zone thickness and thereby departs from the ZOM 

methodology, leaving his proposed equation an outlier from later ZOM-based 

entrainment equations, but this inconsistency winds up being somewhat fortuitous since it 

avoids the most characteristic problem of the shear-inclusive ZOM-based entrainment 

equations.  This problem is discussed later in this section and in Chapter 3. 

Zeman and Tennekes (1977) adhered more strictly to the ZOM assumptions and 

independently derived parameterizations of CBL growth that included the effects of shear 

at the surface, and they also attempted to take into account the effects of shear at the CBL 

top.  Given lack of experimental data regarding the portion of the shear-generated TKE 

that was dissipated rather than used for entrainment at the CBL top, they could only 

suggest a general form for the entrainment zone shear term in their equations, and they 
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could formally parameterize only the surface shear.  However, armed with the ocean 

studies of Price et al. (1978), Tennekes and Driedonks (1981) were able to resolve this 

issue and proposed an entrainment equation that parameterized the effects of the velocity 

jump at the CBL top.  The parameterization, however, becomes unbounded and predicts 

infinite entrainment when the shear becomes strong enough.  Tennekes and Driedonks 

(1981) made reference to the atmospheric measurements of Caughy and Palmer (1979), 

which probably was the first time the motivation for the extension of the ZOM equations 

was directly provided by atmospheric data. 

Driedonks (1982) proposed a parameterization similar to that of Tennekes and 

Driedonks but found that using a velocity scaling like that of Tennekes (1973), which 

accounted only for the effects of surface shear on entrainment, worked best against his 

limited atmospheric dataset.  The number of cases with shear is very small, and the 

results really could not be generalized.  Boers et al. (1984) were able to propose their own, 

very similar parameterization and test it against lidar measurements of atmospheric CBL 

depth.  At about the same time, Fairall (1984), motivated to understand the effect of CBL 

entrainment on the refractive index structure parameter, derived an independent, quite 

different expression for CBL growth forced by buoyancy and shear.  It was never tested.  

Batchvarova and Gryning (1991, 1994) also have a parameterization much like the 

classic ZOM form, except the surface friction velocity is used to parameterize the shear 

effects on entrainment.  They tested it against their own balloon-borne atmospheric 

measurements and found reasonably good agreement with the atmospheric data.  Pino et 

al. (2003) proposed the most recent parameterization, which they compared with 

atmospheric data for one case of CBL growth on a day that had strong surface winds and 
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some shear above the CBL.  Most recently, Sorbjan (2004) developed a parameterization 

for the buoyancy flux at the top of the entrainment zone.  The parameterization is 

formulated in terms of the Richardson number in the entrainment zone and, like the Stull 

(1976a,c) formula, it deviates from the ZOM methodology and does not become 

unbounded with finite shear as do the more strict ZOM parameterizations such as 

Tennekes and Driedonks (1981) or Boers et al. (1984). 

The derivation of the ZOM and FOM equations describing shear- and buoyancy- 

induced entrainment will be detailed in Chapter 3.  However, an important feature of the 

entrainment equations, if they are derived using strict adherence to the ZOM 

methodology, should be pointed out here: the effects of shear are represented by a 

negative sign term in the denominator of the entrainment ( /idz dt ) equation.  If the shear 

term becomes large enough, the denominator goes to zero and the expression becomes 

unbounded, and if the shear term continues to increase, the entrainment flux ratio changes 

sign.  Both conditions are physically unrealistic.  The entrainment flux ratio should 

become infinitely large as the surface heat flux approaches zero (from the positive side) 

and the boundary layer becomes purely shear-driven, but the ZOM parameterizations can 

become unbounded simply with large shear, regardless of the buoyancy flux.  The FOM 

equations include terms that may offset the entrainment zone shear term, but the FOM 

equations are not fundamentally different from the ZOM equations in their mathematical 

structure, and they have some of the same undesirable behavior when shear is strong.  

The complete set of FOM equations has not been derived by any of the authors 

mentioned above, but the complete set of equations will be derived in Chapter 3 and their 

effectiveness at modeling CBL entrainment when shear is strong will be tested in Chapter 
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10.  The FOM may be more realistic than the ZOM in that the FOM entrainment zone 

thickness can be adjusted to limit the bulk Richardson number to some critical value, 

thereby limiting the size of the shear term.  The true behavior of the FOM equations will 

be explored in Chapters 3 and 10. 

In order to develop equations within the ZOM or FOM framework, it is necessary 

to make a number of assumptions about the integrals of TKE in the CBL, as well as the 

fraction of buoyancy- or shear-produced turbulence that is available for entrainment, 

rather than being dissipated.  Many of these assumptions are based on very limited 

atmospheric or laboratory measurements, while others appear to be based solely on 

intuition.  On a more fundamental level, the ZOM and FOM may be too simplified to 

capture the most important aspects of sheared CBL entrainment. 

To summarize the above papers describing entrainment in sheared CBLs, the 

expressions of Zeman and Tennekes (1977), Tennekes and Driedonks (1981), Boers et al. 

(1984), Fairall (1984), and Pino (2003) all essentially follow the ZOM methodology, and 

the expressions of Mahrt and Lenschow (1976) and Kim (2001) are based on the FOM.  

The parameterizations of Tennekes (1973), Driedonks (1982), and Batchvarova and 

Gryning (1991, 1994) only use the surface friction velocity to model the effects of shear 

on CBL entrainment.  The expressions of Stull (1976a,b) and Sorbjan (2004) deviate 

from the strict ZOM and FOM methodologies and cannot become unbounded with finite 

shear. 
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2.4 Continuation of Field Programs 

Atmospheric boundary layer field programs continued in the 1980s and onward, but the 

data provided on entrainment in the presence of shear were still very limited, and the 

experiments mostly provided evidence (without formal quantification) of the 

enhancement of entrainment by shear.  Lenschow et al. (1980) analyzed the mean field 

and second order turbulence statistics budgets in a baroclinic CBL.  In their study, they 

found that the mean momentum and temperature budgets were affected by the horizontal 

temperature gradients, but the second moments of turbulence were not greatly affected.  

Garratt and Wyngaard (1982) analyzed data from three experiments and did an analysis 

of wind profiles similar to that of Hoxit (1974), finding significant effects of entrainment 

on the profiles.  This finding was supported by Lemone et al (1999) who found 

significantly “non-mixed” momentum profiles in the CBL when rapid entrainment 

occurred on a day with strong winds.  Brost et al. (1982a,b) studied marine, 

stratocumulus-topped CBLs, some of which had some strong shear.  Their Part I paper 

analyzed the mean profiles of humidity, potential temperature, and actual and geostrophic 

wind.  In some cases, the shear in both the measured and geostrophic wind was rather 

substantial, reaching values on the order of 0.01 s-1.  In their Part II paper, they examined 

the turbulent fluxes and TKE budgets and found substantial shear production of TKE at 

the top of the CBL. 

Several authors who developed the entrainment equations mentioned above tested 

their equations against atmospheric data.  Boers et al. (1984) used six atmospheric case 

studies of daytime CBL growth from sunrise, finding some effects of shear on the 

entrainment rate.  Although their equation parameterized entrainment zone shear, it did 
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not perform as well in sheared CBL cases as it did with shear-free CBLs.  Batchvarova 

and Gryning (1991) tested their equation against an encroachment model for seven 

atmospheric CBL growth cases in field experiments in Germany in 1989 and 1990.  They 

used a tethersonde (temperature and humidity sensors tied to a retractable balloon) to 

measure the CBL depth and temperature and, to estimate the effects of shear, they 

measured the surface friction velocity with sonic anemometers.  In two of their cases, 

their parameterization clearly outperformed the encroachment model, suggesting the 

necessity to include shear in the entrainment equation.  However, their strongest case 

only had surface winds of about 5 m/s.  Batchvarova and Gryning (1994) combined their 

ZOM prognostic entrainment model (Batchvarova and Gryning 1991) with their 

entrainment zone thickness parameterization (Gryning and Batchvarova 1994) and tested 

it against four central Illinois CBL growth cases, using the same lidar data as Boers et al. 

(1984), but no evaluation was made on the impact of shear on the results. 

Chou et al. (1986) measured the turbulence in a horizontally evolving CBL during 

a cold air outbreak over the Atlantic ocean off the east coast of the United States.  Their 

analysis of the TKE budgets derived from the aircraft data showed that shear was a 

significant term in the turbulence production in the CBL, not only near the surface where 

it was largest, but at the CBL top as well.  The vertical resolution of the momentum 

profile (there are only two points) was not good, and the authors acknowledged some 

uncertainty in the estimate of the local shear at the CBL top since the vertical spacing of 

flight legs was large.  Nevertheless, the data provided evidence that shear production was 

a significant contributor to the TKE in that particular CBL. 
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The First International Satellite Land Surface Climatology Project Field 

Experiment took place in 1987 and provided data from which entrainment flux ratios 

could be estimated (Grossman 1992; Betts et al. 1992; Betts and Ball 1994; Betts and 

Barr 1996; Margulis and Entekhabi 2004).  In most of these studies, some rather large 

entrainment flux ratios were observed, suggesting some shear enhancement of 

entrainment may have occurred during the experiment.  However, the correlation 

between shear and entrainment flux ratios was, overall, relatively weak, indicating that 

factors other than the shear itself (i.e., stratification) probably affect the shear 

enhancement of entrainment. 

Barr and Strong (1996) used heat budget methods to analyze data from soundings 

released from Kenaston and Saskatoon, Canada in June and July 1991 and found some 

relatively large entrainment flux ratios (on the order of 0.5 rather than the commonly 

accepted 0.2).  Similar methods were used by Angevine (1999), who also found some 

rather high entrainment flux ratios.  Angevine additionally made some association 

between large entrainment flux ratios and entrainment zone Richardson number, finding 

ratios of nearly 0.9 when 0<Ri<0.5 and more typical shear-free ratios of 0.2 or 0.3 when 

Ri>0.5.  Additionally, Davis et al. (1997) associated high entrainment flux ratios with 

large entrainment zone velocity jumps in their aircraft and sounding data from a field 

experiment over the boreal forests of Saskatchewan and Manitoba, Canada in 1994. 

Flamant et al (1997) made atmospheric measurements just south of the Pyrenees 

in the vicinity of the Mediterranean coast.  They measured the CBL depth and 

entrainment zone thickness with an aircraft-mounted, downward-looking lidar and made 

turbulent heat flux measurements at three levels in the CBL using aircraft-mounted 
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sensors.  Assuming a linear heat flux profile from the surface to the CBL top, the three-

point heat flux profile was extrapolated to the lidar-estimated height of the CBL top. 

With this extrapolation, the surface heat flux and the entrainment zone heat flux were 

estimated.  They found the entrainment flux ratio varied from 0.1 in shear-free conditions 

to about 0.3 when the entrainment zone shear was stronger, and they tested the 

entrainment flux ratio parameterizations of Stull (1976a) and Driedonks (1982) for their 

cases with shear.  They found qualitatively good results with the Stull and Driedonks 

parameterizations for the cases with shear, and the Tennekes and Driedonks (1981) 

parameterization worked reasonably well against atmospheric measurements when the 

shear was weak.  Interestingly, they found that the ZOM parameterization of Driedonks 

(1982) became unbounded when they attempted to compare it with the LES data of 

Moeng and Sullivan (1994).  Since it is not known exactly how the lidar determination of 

the CBL top compares to the level of the heat flux minimum (the heat flux minimum is 

the traditional method of determining CBL top and the one that works best within the 

ZOM framework), and because of the fact that most of the entrainment zone and surface 

heat flux estimates were extrapolated from measurements within the CBL, the actual 

values of the entrainment flux ratio may have considerable error, but the authors 

indicated their results provided evidence for the direct effects of shear on entrainment.  

Plotting the entrainment flux ratio as a function of entrainment zone velocity jumps, 

however, does not reveal an obvious association between shear and entrainment flux ratio. 

Haegeli et al. (2000) described a technique of fitting idealized profiles of 

backscatter to actual lidar backscatter profiles to determine local CBL depth and 

entrainment zone thickness.  From these depths, one can determine the entrainment flux 
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ratio theoretically by the following formula (Nelson et al. 1989), assuming a linear heat 

flux profile:  

1
2

i i i
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where iz  is the CBL depth, ilz  is the height where the buoyancy flux profile crosses zero, 

SB  is the surface buoyancy flux, iB  is the buoyancy flux at iz , and izδ  is the entrainment 

zone thickness, which is assumed to be twice the distance between iz  and ilz .  For this 

assumption to hold, iz  must be exactly halfway between ilz  and i iz zδ+ .  The 

experimental results of Fedorovich et al. (2004a) show that this is not the case.  Also, 

lidar-detected iz  is not necessarily the same level as the level of the heat flux minimum, 

as it is traditionally defined in the ZOM and FOM. 

Haegeli et al. (2000) measure relatively high entrainment flux ratios using this 

method during the rapid growth phase of the CBL in the morning, but Fedorovich et al. 

(2004a) results show that the entrainment flux ratios should be relatively low when the 

CBL grows through weak stratification, as it does in the late morning hours. 

Angevine et al. (2001) made observations of the initial development of the CBL 

during the morning in the Flatland96 experiment in central Illinois and the Tropospheric 

Energy Budget Experiment in 1995 and 1996 at the Cabauw tower in the Netherlands.  

Wind and temperature readings at several heights up to 200 meters on the tower were 

used, as were surface heat flux measurements (to determine when the flux became 

positive in the morning) and a 1290 MHz profiler was used to detect the onset of 

turbulence at 200 meters above ground level.  They integrated an equation for CBL 

growth given by Garratt (1992) using surface heat flux data and showed that the equation, 
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along with its assumption that the heat flux of entrainment is a small fraction of the 

surface heat flux, does not hold during the morning transition.  They concluded that 

mechanically produced turbulence, which is not accounted for by this equation, must be a 

contributing factor to the TKE and the downward heat flux that is commonly observed 

during the morning transition.  The experimental data of Angevine et al. (1999, 2001) 

probably provide the most solid atmospheric evidence of shear-enhanced entrainment. 

Otherwise, the atmospheric data do provide general evidence of the shear 

enhancement of entrainment, but little quantification of those effects has been made from 

those data. 

2.5 Continuation of Laboratory Experiments 

Laboratory experiments continued in the 1980s and onward as well.  During the first half 

of the 1980s, laboratory water tanks were still widely used for experiments on CBL 

entrainment.  They have been used a lot less since then, because increasing computer 

power of the last two decades has made numerical simulations a much less expensive 

alternative to study the CBL.  The laboratory tanks can still be useful for testing the 

theories and the results of numerical simulations. 

Deardorff et al (1980) examined, in more detail, the entrainment rate and the 

entrainment zone thickness in a shear-free laboratory experiment with heating applied at 

the lower surface.  They performed a larger number of experiments and examined the 

parameter space of stratification more thoroughly than had been done before, using an 

upgraded version of the Willis and Deardorff (1974) tank.  Fedorovich et al. (2004a) 

found agreement among these water tank data, numerical simulations of atmospheric 
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CBLs, and the theory of Zilitinkevitch (1991) for the particular CBL regime of 

equilibrium entrainment (the equilibrium regime will be explained in Chapter 3). 

Deardorff and Willis (1985) repeated their 1974 experiments with a shallower 

CBL to improve the CBL depth to tank width aspect ratio that they blamed for the 

relative lack of horizontal velocity variance in their 1974 data.  With this change, the 

variance in the laboratory tank matched the atmospheric data much more closely.  

Additionally, they reexamined the TKE budgets and found that pressure transport term, 

which they had neglected earlier, could be a significant component of the TKE budget. 

Deardorff and Willis (1982) also performed their own version of the rotating 

annulus experiments of Kato and Phillips (1969).  While many earlier studies examining 

the entrainment rate in sheared boundary layers were focused on the effects of the shear 

forcing at the surface layer, rather than directly at the density interface where entrainment 

was occurring, Deardorff and Willis decided to look at both of these.  They found an 

entrainment rate formula of 1/ 2 1.4
*/ 0.33i

v
dz u Ri Ri
dt τ

−= , where /idz dt is the entrainment rate, 

and *u  is the friction velocity, to fit their data best.  The Richardson numbers in this 

relation have the following definitions: 2
*/iRi bz uτ δ=  and 2/v iRi bz uδ δ= , where bδ  

and uδ  are the buoyancy and velocity jumps across the entrainment zone.  In analyzing 

the water tank experiments, one must be careful to distinguish between the effects being 

studied (the turbulence forced by vertical shear in the horizontal velocity) and the side 

effects (side wall turbulence and centripetal acceleration in the annulus).  The Deardorff 

and Willis study indicated plans to follow up with an experiment combining shear and 

buoyancy forcing, but no such publication ever followed.  Perhaps the most significant 

outcome of Deardorff and Willis (1982) with regard to the current study can be seen in 
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their statement on the dependence of entrainment on surface shear and entrainment zone 

shear: “Together, the dependence indicates that both *u  and uδ  promote [entrainment], 

with the uδ  being the stronger.” 

Fernando (1991) wrote a review article of numerous laboratory water tank studies 

of entrainment in the absence of mean shear (forcing by buoyancy or mechanical 

agitation) and entrainment in cases when shear produced the bulk of the turbulence. 

Most recently, McGrath et al. (1997) conducted further laboratory water tank 

studies of mixing at shear-free density interfaces, with turbulence generated by 

mechanical agitation.  They examined, in detail, the structures related to the mixing 

process and the different processes that led to the development of these structures.  They 

found that different mechanisms (i.e., “engulfment”, generation of linear internal waves, 

and wave breaking and K-H instability) played roles in mixing at the interface at the top 

of the boundary layer over different ranges of a bulk Richardson number they defined.  

They also found results consistent with the hypothesis (Fernando and Hunt 1997) that, at 

high values of the bulk Richardson number, the density interface consists of both linear 

internal waves at high frequencies and breaking waves at low frequencies. 

Most recently, the temporally homogeneous, horizontally evolving atmospheric 

CBL was studied in a wind tunnel model (Fedorovich et al. 1996; Fedorovich and Kaiser 

1998; Kaiser and Fedorovich 1998; Fedorovich et al. 2001a, 2001b; and Fedorovich and 

Thaeter 2001).  Fedorovich et al. (1996) studied the statistics of turbulent velocity and 

temperature fluctuations in the wind tunnel and compared them to atmospheric, water 

tank, and LES data, noting similarities and differences among the datasets.  In particular, 

the horizontal velocity variances were found to be greater in the wind tunnel than in the 
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shear-free LES and water tank experiments, an effect which was attributed to surface 

shear.  This provided evidence that the surface shear was enhancing turbulence 

production, but the effects of this shear-generated turbulence on entrainment were still 

not clear. 

Fedorovich et al. (2001a) studied the development of turbulence in the wind 

tunnel of Fedorovich et al. (1996) and compared the wind tunnel data with LES of the 

wind tunnel to explore the effects of initial velocity and temperature disturbances on the 

development of turbulent regimes downstream from the velocity inlet.  The 

corresponding LES/wind tunnel model intercomparison study, Fedorovich et al. (2001b), 

looked at the effects of shear and surface roughness on the horizontal CBL development 

and found the effects of shear to depend on the sign of the shear.  In cases when the wind 

speed increased above the horizontally evolving CBL, the downwind development of the 

CBL was slower than in the basic case with no wind shear at the CBL top.  When the sign 

of the shear was negative, the CBL developed faster than in the basic case.  The positive 

case appeared to provide experimental evidence supporting the theory of shear sheltering 

of turbulence proposed by Hunt and Durbin (1999), but the negative shear case, which 

had a faster CBL growth than the basic case, contradicted this evidence.  The difference 

was believed to be due to the upright tilting of thermals in the negative shear case, such 

that they were able to penetrate the inversion more easily and speed the entrainment 

process. 

It was later discovered that the primary effect of the sign of the shear on the 

growth of the CBL was due to the CBL divergence resulting from the turbulent 

momentum flux in the horizontally evolving CBL (Fedorovich and Thaeter 2001).  In the 
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positive shear case, greater momentum from above the entraining CBL was transported 

downward by the turbulent momentum flux, making the x-component of CBL momentum 

greater at the outlet of the tunnel than at the inlet.  The divergence in the CBL thereby 

became positive, and a net sinking motion developed at the CBL top.  This sinking 

motion suppressed CBL growth.  When shear was negative, slower momentum was 

transported into the CBL, causing convergence and rising motion at the CBL top.  The 

results are specific to the horizontally evolving CBL in the wind tunnel, and because this 

x-dependent momentum transport is absent in horizontally homogeneous CBLs, the wind 

tunnel model results cannot be generalized to the horizontally homogeneous atmospheric 

CBL.  Nevertheless, the vertical turbulent kinematic temperature flux profiles appeared 

qualitatively similar between the positive and negative shear cases, indicating the 

entrainment effects of the absolute value of the shear across the CBL top were similar 

between the two cases.  Fedorovich and Thaeter (2001) also provided an analysis of the 

entrainment of momentum and heat across the interface.  Kaiser and Fedorovich (1998) 

studied the turbulence spectra in the wind tunnel CBL. 

2.6 Large Eddy Simulations of Sheared Convective Boundary 

Layers 

LES has become a much more popular tool for investigating CBL flow regimes, owing to 

the rapid increase of computer power and the decrease in computer costs.  These changes 

have made computing a more attractive alternative than laboratory experiments.  Still, it 

must be taken into account that numerical methods have their limitations, depending on 

the schemes in use in any particular model.  For these reasons, the LES-atmospheric data 
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intercomparison studies of Deardorff (1974b) and Pino et al. (2003) and the LES-wind 

tunnel intercomparison of Fedorovich et al. (2001a,b) are vital in showing that LES can 

simulate realistic CBL structures, turbulence statistics, and entrainment. 

A few other notable LES studies of CBL statistics and turbulent transport from 

the 1980s were Moeng (1984), Wyngaard and Brost (1984), Nieuwstadt and Brost (1986), 

Moeng and Wyngaard (1988), Schmidt and Schumann (1989), and Mason (1989).  These 

studies focused on the turbulence statistics and structure within the CBL.  The 

simulations had the utility of providing data on these structures with a resolution that was 

very difficult to achieve with atmospheric measurements and so, LES became an 

important tool for understanding the dynamics of the CBL. 

The earliest LES study dedicated to the sheared CBL was that of Sykes and Henn 

(1989), who studied the idealized case of a boundary layer between two flat plates, 

comparing sheared and shear-free simulations.  These data were compared with the 

laboratory studies of Deardorff et al. (1969), and it was shown that the profiles of 

turbulence statistics were qualitatively similar.  The most significant finding of Sykes and 

Henn was that the convection organized into roll-type disturbances when the ratio of the 

friction velocity to the Deardorff (1980) convective velocity scale, * */u w  was around 

0.35.  

Moeng and Rotunno (1990) compared the vertical velocity skewness in LES with 

the skewness calculated from atmospheric CBL data, noting the differences in the 

profiles of vertical velocity skewness.  The LES showed positive skewness that increased 

with height to near the CBL top and then decreased rapidly in the entrainment zone.  

Atmospheric data, however, showed skewness to be only slightly positive throughout 
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most of the depth of the mixed layer, decreasing only gradually near the CBL top, where 

it approached zero (Kaimal et al. 1976).  Numerical constraints in LES were suggested as 

the reason for the discrepancy in the profiles, but it could be that shear had an effect as 

well, as will be seen in later sections.  

Moeng and Sullivan (1994) demonstrated the effects of the shear on the CBL 

profiles of velocity variances.  They focused on the structures and the TKE budgets of 

four different CBL types ranging from a purely convective boundary layer to a relatively 

highly shear-driven boundary layer, with two intermediate cases.  With their results, they 

verified a velocity scaling that is applicable to intermediate boundary layers with 

combined shear and buoyancy forcing.  They found roll structures when the ratio * */u w  

was around 0.65 or greater, which is nearly twice as large as what Sykes and Henn (1989) 

found.  Their analysis focused on the dynamics of turbulence in the CBL and did not 

directly address entrainment rates. 

Brown (1996) performed large eddy simulations of the baroclinic boundary layer 

and compared the resulting velocity variance profiles with predictions from one-

dimensional closure models.  In an effort to eliminate the effects of entrainment on the 

results, rigid lid boundary conditions were imposed at the top and bottom of the domain.  

The author acknowledged that entrainment effects would need to be taken into effect 

before generalizing the results to the atmosphere, and that baroclinic CBL growth might 

lead to increased shear across the CBL top, which would enhance the entrainment there. 

Kanna and Brasseur (1998) made a detailed examination of the structure of CBL 

rolls and their dependence on the relative forcing by shear and buoyancy, looking most 

closely at the mechanisms for the development of low-speed streaks in sheared 
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convective boundary layers.  They suggested that the basis of the formation of the 

horizontal convective rolls is shear at the surface.  Warm air from the heated surface 

accumulates in these low-speed streaks and helps to organize their ascent.  Kim and Park 

(2003) examined the vortical nature of these structures near the surface.  While these 

studies describe the dynamical origins the horizontal convective rolls, they did not 

specifically address the entrainment rate in sheared CBLs. 

Kim et al. (2003) performed an LES study examining the effects of Kelvin-

Helmholtz-like instabilities at the top of the CBL under strong wind conditions, 

examining the shear-driven processes that might enhance CBL entrainment.  They found 

that the Kelvin-Helmholtz type instabilities developed along the top of horizontal CBL 

rolls as the Richardson number approached the critical value of 0.25 for the onset of 

Kelvin-Helmholtz instability.  They also concluded that any parameterization used to 

compute CBL entrainment must take into account the shear across the CBL top since 

these studies were done under typical atmospheric wind speeds and shear.  Their study 

made a rather thorough analysis of the entrainment mechanism at the CBL top but did not 

quantify what the enhancement might be or what the relative effects of surface shear 

versus entrainment zone shear might be. 

Pino et al. (2003) addressed the subject of the current study rather directly, 

looking at the effects of shear on the entrainment rate in a CBL using atmospheric data 

and three LES runs.  The LES runs used the same atmospheric temperature profile as on 

the morning of the particular atmospheric case they studied, and the runs were divided 

into a shear-free case, a case of height-constant wind, and a case using the wind profile of 

the morning sounding, which had height-dependent wind.  The LES case with the height-
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dependent wind had the fastest CBL growth rate and was best able to reproduce the 

observed CBL growth rate.  The agreement of the LES CBL growth with the atmospheric 

CBL growth and also with the predictions of the ZOM-based entrainment equation they 

developed was taken as a general result for CBL types with varying shear and buoyancy 

forcing.  Their entrainment equation worked well for their particular case study but was 

not tested against a larger variety of atmospheric conditions. 

Although not directly addressing sheared CBLs, the LES experiments of 

Fedorovich et al (2004a) directly addressed the entrainment rate of shear-free CBLs 

developing against a background of varying atmospheric stratification and provided a 

framework for comparison between shear-free and sheared CBLs.  In particular, the study 

evaluated the ZOM equations and solutions detailed in Zilitinkevitch (1991) and the 

general structure model (GSM) of Fedorovich and Mironov (1995).  The CBLs examined 

in Fedorovich et al. (2004a) were a subset of the CBL types examined in Zilitinkevitch 

(1991), namely, those falling within the equilibrium entrainment regime.  In this regime, 

the nonstationarity (time rate of change of TKE) term can be neglected, and the 

entrainment flux ratio is a constant.  This study will be examined in greater detail in 

Chapter 4. 

Finally, Sorbjan (2004) used LES to test the effects of baroclinity on the 

entrainment flux ratio of the CBL.  He also made efforts to quantify the effects of 

advection on the potential temperature profiles in the simulation domain.  His results 

showed that shear that developed at the CBL top, due to the effects of baroclinity, 

enhanced the entrainment flux ratio, and he compared the results to the entrainment 

parameterization he developed (see Section 2.3) 
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Other notable LES studies of entrainment during the 1990s include Lewellen and 

Lewellen (1998), who considered the size of the eddies that are most important in 

controlling entrainment. Sorbjan (1996a,b) looked at the effects of stratification, and 

Sullivan et al. (1998) focused on entrainment zone structure.  More recently, Otte and 

Wyngaard (2001) performed high-resolution LES found the entrainment zone to be fairly 

similar to the nocturnal boundary layer in terms of spectral peaks, eddy diffusivities, 

variances, and dissipation rates. 

2.7 Shear Sheltering of Turbulence 

Interestingly, opposing points of view have been formulated, such as the theory of shear 

sheltering of turbulence proposed by Hunt and Durbin (1999), in which shear across the 

CBL top prevents thermals from penetrating into the stably stratified air above the mixed 

layer.  As a result, the downward heat flux at the CBL top is reduced, and CBL growth is 

slowed.  The wind tunnel study of Fedorovich et al. (2001b) addressed this theory to 

some degree, but given the divergence effects in the wind tunnel CBL, they were unable 

to fully assess the validity of this theory.  Most other studies reviewed in this section have 

suggested shear to be an entrainment-enhancing mechanism rather than an entrainment-

suppressing mechanism.  A basic understanding of TKE generation processes leads one 

to believe that shear, as a generator of TKE, should lead to larger entrainment in CBLs.  

It may be possible that some entrainment suppression effects may occur due to shear 

sheltering, but any effects may be compensated, partially or fully, by the entrainment-

enhancing effects of the TKE shear generation term. 
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2.8 Sheared CBLs in Numerical Weather Prediction Models 

Finally, it would be good to review the history of the turbulence closure models in 

numerical weather prediction (NWP) and global circulation models (GCMs).  Early 

planetary boundary layer parameterization schemes relied on prognostic equations of 

boundary layer depth based on conceptual models such as the ZOM.  Deardorff (1972b) 

describes one example of such a scheme.  Numerical resolution has since improved, and 

NWP codes are moving to subgrid turbulence closure schemes that do not require a 

prognostic prediction for iz .  Rather, the turbulent diffusion is able to produce a fairly 

well-mixed CBL structure, since the vertical resolution is sufficient to simulate the 

vertical structure of CBLs whose depths are about a kilometer or more. 

Some of the more popular schemes use a prognostic form of the TKE equation.  

Deardorff (1980) developed a 1.5 order scheme that is commonly used as a subgrid 

turbulence model in LES and is also used as a turbulence model in some NWP models, 

such as the Advanced Regional Prediction System (ARPS—Xue et al. 2001) developed at 

the Center for Analysis and Prediction of Storms at the University of Oklahoma.  It 

computes the TKE at each time step of the model run, and the eddy diffusivities for 

momentum and heat are calculated using a master length scale of turbulence.  In LES of 

the CBL, this length scale is usually the same as the grid cell length in unstable 

conditions and less than that in stable conditions.  In NWP, the CBL turbulence cannot be 

explicitly resolved, and the master length scale is much larger.  In most models, this 

length scale is a function of height relative to the CBL depth, which is diagnosed (Xue et 

al. 2001).  The length scale can also be calculated as the root mean square of the 
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distances a parcel would travel upward and downward until it expended all its TKE on 

work against buoyancy forces or until it hits the lower surface (Fiedler and Kong 2003). 

Mellor (1973) and Mellor and Yamada (1974, 1982) developed a hierarchy of 

turbulence closure schemes that have become popular in regional models, including the 

National Center for Environmental Prediction’s (NCEP) Eta model (Janjic 1990, 1994; 

Black 1994).  The version in use in the Eta models is the so-called Level 2.5 closure with 

Level 2 closure applied in the surface layer.  This scheme also contains, at its core, a 

prognostic equation for TKE but also contains equations relating the individual velocity 

variances to the mean vertical gradients of horizontal velocity, a relevant length scale, 

and the eddy diffusivity.  The CBL structure predicted by Level 2.5 closure was 

evaluated against LES data by Ayotte et al. (1996), who found that most RANS-based 

schemes used in NWP have considerable problems modeling entrainment. 

Troen and Mahrt (1986) described the basic scheme that has been used in the 

NCEP Global Forecast System (GFS) model.  This system specifies a profile of the eddy 

diffusivities of momentum in the boundary layer as a function of height relative to the 

boundary layer depth ( / iz z ) and the dimensionless shear.  The boundary layer depth is 

diagnosed according to the profile of temperature and is dependent on a bulk Richardson 

number, which is dependent, in turn, on the wind speed at the boundary layer top and the 

temperature excess in the surface layer, relative to the mixed layer temperature.  The 

surface layer excess temperature is proportional to the surface heat flux.  Countergradient 

transport of heat is also introduced. 

There is a precedent for testing some of these schemes against LES.  LES resolves 

the CBL turbulence and can provide idealized tests that isolate the effects of shear on 
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entrainment.  Moeng and Wyngaard (1989) examined the turbulence statistics predicted 

by turbulence closure in large scale meteorological models and compared the entrainment 

rates of those schemes against LES entrainment.  They found a number of problems with 

the closure schemes, among the most basic of which were the countergradient diffusion 

of potential temperature, which is seen in LES profiles but does not occur in profiles 

produced by the turbulence closure schemes.  Ayotte et al. (1996) performed a variety of 

tests of neutral and convective planetary boundary layer parameterizations used in GCMs 

and NWP models to see how they compared against LES for a variety of boundary layer 

types, ranging from a neutral boundary layer with shear-forced turbulence to boundary 

layers with a strong surface heat flux.  The primary finding of their tests indicated most 

of the schemes had some difficulty representing entrainment at the CBL top, although 

some of the models were able to model entrainment rather well over a limited range of 

conditions. 

Lenderink et al. (1999) performed an analysis to see if a 1.5 order, TKE-based 

turbulence closures were able to simulate entrainment in stratocumulus-topped boundary 

layers, where radiative cooling at the cloud top forces the CBL turbulence.  The results 

indicate that the evaluated closure did not predict entrainment in the same manner as LES.  

The LES showed that entrainment was best understood in terms of a conceptual model of 

process partitioning, which partitions the buoyancy flux into a TKE-consuming part and 

a TKE-producing part, with these parts further partitioned according to the process 

generating the buoyancy flux.  The TKE-based turbulence closure scheme, on the other 

hand, behaved according to a conceptual model of Eulerian partitioning, which only 

makes the partition between the TKE-consuming and a TKE-producing buoyancy flux.  
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For the dry CBLs to be simulated in the current study, these two conceptual models were 

essentially similar, as was seen in Van Zanten et al. (1999). 

Lenderink and Holtslag (2000) looked at the effects of grid resolution on TKE-

based turbulence model predictions of stratocumulus-topped CBL entrainment and found 

that coarser resolution detracted from the model’s ability to correctly predict entrainment.  

Fiedler (2002) then evaluated the utility of using an adaptive grid at the CBL top that 

would provide finer resolution around the inversion level.  His results indicated that it 

would be more productive to use a higher order differencing scheme to represent the 

sharp gradients at the CBL top than to use an adaptive grid there.  Fiedler and Kong 

(2003) examined the dependence of the TKE-based scheme’s performance on the 

horizontal grid resolution in a nonhydrostatic model. 

2.9 Goals of this Study 

Some of the preceding studies have examined entrainment in the presence of shear, but 

they have done so within a limited range of atmospheric conditions.  Many have looked 

at the effects of shear, but only Kim (2001), Pino et al. (2003), and Sorbjan (2004) have 

addressed entrainment directly.  Neither of these has tested the turbulence closures that 

are found in regional and global NWP models.  With regard to the results of the 

aforementioned studies, the goals of this study are to anser the following four questions: 

1. What are the effects of shear on entrainment across a wider variety of atmospheric 

conditions? 

2. How well would the zero- and first-order model parameterizations proposed in the 

studies work under such conditions? 
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3. Given that these parameterizations are not used, per se, in current NWP models, 

what would the parameterizations in use in those models predict for entrainment 

under such conditions? 

4. What is the role of shear at the surface versus shear at the CBL top? 

Thus, the current study seeks to examine further the growth of the convective 

boundary layer when both shear and buoyancy forcing exist.  The aim of the study is to 

address the above four questions using a more comprehensive set of cases and to analyze 

these cases in terms of our previous understanding of entrainment when shear and heat 

flux are both present.  Our previous understanding comes from the following: 

1. Conceptual models of CBL entrainment (zero order, first order models) 

2. Turbulence closure schemes used in numerical weather prediction and global 

circulation models. 

3. Atmospheric and laboratory studies (a much more limited set). 

4. LES studies. 

To address the above four questions, the theoretical framework of the models and 

simulations must be developed, as will now be done in Chapter 3. 
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Chapter 3  

Numerical Simulations and Models 

3.1 A Hierarchy of Numerical Methods 

As an alternative to using data directly from atmospheric measurements, the influence of 

shear on atmospheric CBL entrainment can be studied using numerical methods.  These 

methods vary widely in their computational cost and can be conceptually organized into a 

hierarchy of numerical techniques for studying of the horizontally homogeneous CBL.  

According to Wyngaard (1998), if the method resolves the CBL turbulence, it is a 

numerical simulation, it lies at the top of the hierarchy, and its computational costs are 

the greatest.  If it does not resolve the turbulence, it is a model and is computationally 

much less expensive. 

The models are formed by some sort of integration across the CBL.  The 

integration can be in terms of horizontal averaging, or it can combine these horizontal 

averages with a vertical integration over the depth of the CBL to form a bulk model.  The 

former method lies in the middle of the hierarchy, and the latter method requires the least 

computational resources and has the simplest structure.  Although the bulk models lie at 

the bottom of the hierarchy of complexity, their relative simplicity may make them the 

best tools for providing a conceptual understanding of CBL entrainment. 
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3.2 Simulations 

The top of the numerical hierarchy is occupied by simulations (Wyngaard 1998).  The 

most expensive of these are direct numerical simulations (DNS).  DNS resolves all 

turbulent motions, but it must be done on a very fine grid, and because of the limitations 

of computer power, it can only be used for domains several orders of magnitude smaller 

than the atmospheric CBL.  To model CBLs, LES is needed. 

LES is designed to resolve the principal energy-containing motions in the CBL 

and models the non-resolvable, smaller-scale motions using a subgrid turbulence closure 

scheme.  The grid spacing in LES must be fine enough that motions in the energy 

production region of the 3-D turbulence cascade are well-resolved, and the grid should 

also be able to resolve some motions in the Kolmogorov inertial subrange [see Wyngaard 

(1998), Pope (2000), and Piomelli and Chasnov (1996) for a description of LES 

methodology].  LES has been used extensively to study the CBL since it was first 

developed by Deardorff (1970) and others.  Because of computer power limitations, these 

first simulations were on a very coarse grid that did not really meet the requirements 

listed above, but computer power has increased enough over the past 30 years that LES 

has become a very well-accepted and widely used technique for the study of CBL 

turbulence.  LES can simulate CBLs of almost any size, and because the peak in energy is 

at length scales approximately equal to the CBL depth scale (Caughy et al. 1979), LES is 

ideally suited for the study of the atmospheric CBL.  Because it is a commonly used 

technique, the derivation of the LES equations will be left to Appendix A. 
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3.3 Turbulence Equations for the Horizontally Homogeneous 

CBL 

When simulations are too computationally expensive, we can model the turbulence to 

reduce the computational cost.  The first step in modeling the CBL turbulence is to 

develop the governing equations for the CBL type considered in this study.  Since 

entrainment equations must be formulated using first principles (conservation of energy), 

the horizontally homogeneous, temporally evolving CBL is considered a system in which 

heat energy is input into the system, and a portion of this energy is converted into kinetic 

energy.  Some of this kinetic energy is then dissipated by viscosity via the three 

dimensional turbulence cascade, and the rest is converted into potential energy by the 

work involved in the entrainment process. 

Entrainment transports low vθ  air upward and high vθ  air downward, resulting in 

an increase in the potential energy of the system.  Shear instabilities at the CBL top 

generate additional TKE that can also be dissipated or consumed by the negative 

buoyancy flux of entrainment.  To some extent, local shear can exist at the interface 

between the CBL and the free atmosphere, even when shear in the mean wind is zero, 

owing to the variance of horizontal velocity in the turbulent fluid at the lower side of the 

interface (Stull 1988).  As the mean wind and/or the shear in the mean wind increase, 

shear generation of TKE becomes more significant owing to the presence of surface shear, 

entrainment zone shear, or shear within the mixed layer.  This is particularly true if the 

bulk Richardson number of the mean flow is low enough to support the generation of 

turbulence through the K-H instability mechanism (Kundu 1990, Kim et al. 2003), but 
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one must also keep in mind the Ri<0.25 criterion in K-H stability analysis applies to 

nonturbulent flows. 

Because the CBL is turbulent, we look specifically at the equations governing 

turbulent flow, which are developed using the RANS equations.  We define the average 

to be an ensemble average, which is the average of an infinite number of realizations.  In 

all practicality, this averaging cannot be performed for atmospheric CBLs, so some 

approximations must be made.  In the horizontally homogeneous, temporally evolving 

CBL in the current study, the ensemble averages can be represented by averages across 

horizontal planes of infinite extent.  For the atmospheric quasi-homogeneous CBL, the 

ensemble average has to be approximated by averages across finite horizontal planes, 

which should be chosen large enough that the averaging is representative of the ensemble 

average.  The method of deciding what constitutes a suitable approximation of the 

ensemble average is subjective, and it is often determined by the limits of the domain 

being sampled, such as the horizontal extent of a radar or lidar scan, or the horizontal area 

of the domain in numerical simulations of the atmospheric CBL.  Three-dimensional 

turbulence structures exist everywhere within the atmospheric CBL, so the CBL can only 

be quasi-homogeneous in the statistical sense.  With these considerations in mind, we 

develop the RANS-based equations describing the CBL that is statistically horizontally 

homogeneous. 

The CBL is generally shallow enough that the changes of density with respect to 

its mean value can be ignored (except in the gravity term) and the Boussinesq 

approximation can be made.  Also, the ensemble averaged vertical velocity is assumed to 

be zero. 
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Let φ  be any variable describing the state of the fluid, φ  its ensemble average, 

and φ′  the deviation of φ  from its ensemble average.  For the horizontally homogeneous 

CBL type considered in this study, any ensemble averaged variable is assumed to be a 

function of height and time [ ( , )z tφ φ= ].  The fluctuating components are functions of x 

and y, height, and time.  The total instantaneous variable is therefore 

( , , , ) ( , ) ( , , , )x y z t z t x y z tφ φ φ′= + .  In the following equations, we adhere to Einstein 

notation, where iu  is the ith component of velocity, ijδ  is the Kroneker delta, and ijkε  is 

the alternating tensor, as defined in Kundu (1990). 

The separated form φ φ φ′= +  is substituted into the Navier-Stokes and 

thermodynamic equations, yielding the following equations. 

( ) ( ) ( )

( ) ( )

( ) ( )

3
0

2

0 3 2
0

1

i i j j i i
j

j j ij
i

i i i
j

u u u u u u
t x

p p f u u
x

g u u
x

ε
ρ

θ θ θ δ ν
θ

∂ ∂′ ′ ′+ + + +
∂ ∂

∂ ′ ′= − + + +
∂

∂′ ′+ + − + +
∂

 (3.1) 

( ) ( ) ( ) ( )
2

2j j H
j j

u u
t x x

θ θ θ θ ν θ θ∂ ∂ ∂′ ′ ′ ′+ + + + = +
∂ ∂ ∂

 (3.2) 

In (3.1), we have made the approximation 0 0 0 0( ) / ( ) /ρ ρ ρ θ θ θ− − ≅ − , and mass 

conservation is expressed by / 0i iu x∂ ∂ =  and / 0i iu x′∂ ∂ = .  In the above equations, p is 

pressure, 0ρ  is the reference value of density, f  is the Coriolis parameter, g  is the 

gravitational acceleration, θ  is potential temperature ( 0θ  is its reference value), ν  is 

kinematic viscosity, and Hν  is the thermal diffusivity.  Next, (3.1) and (3.2) are ensemble 
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averaged.  Following the rules of averaging, which state 0φ φ φ′ ′= = , / /x xφ φ∂ ∂ = ∂ ∂ , 

and i ia aφ φ=  (a is a constant), the RANS equations and thermodynamic equation are 

derived: 
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∂ ′ ′∂∂ ∂

+ + =
∂ ∂ ∂ ∂

 (3.4) 

Subtracting these equations from (3.1) and (3.2) yields the equations describing the 

fluctuating quantities of the flow: 

( )
2

3 3 2
0 0

1

i
i j i j i j i j

j

i
j ij i

i j

u u u u u u u u u
t x

up gfu
x x

ε θ δ ν
ρ θ

′∂ ∂ ′ ′ ′ ′ ′ ′+ + + −
∂ ∂

′′ ∂∂ ′ ′= − + + +
∂ ∂

 (3.5) 

( )
2

2j j j j
j j

u u u u
t x x

θ θθ θ θ θ ν
′ ′∂ ∂ ∂′ ′ ′ ′ ′ ′+ + + − =

∂ ∂ ∂
 (3.6) 

The equations for the time rate of change of the velocity variances and covariances can 

then be formulated by performing further mathematical manipulations of (3.5).  One can 

copy the equation for the ith component of momentum and replace the index i with the 

index k.  Next, the equation for iu′  is multiplied by ku′ , and the equation for ku′  is 

multiplied by iu′ .  Adding these two equations and performing Reynolds averaging on the 

result gives the following budget equation for Reynolds stresses: 
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i k i k

k j ij i j kj k i i k
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∂ ∂∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − − −
∂ ∂ ∂ ∂ ∂

   ′ ′∂ ∂∂ ∂′ ′ ′ ′ ′ ′− + + +  ∂ ∂ ∂ ∂   

′ ′ ′ ′ ′ ′ ′ ′+ + + +

′ ′∂ ∂∂ ′ ′+ −
∂ ∂ ∂

 (3.7) 

The TKE equation is derived by taking one half the sum of the equations for i=k.  

The TKE equation is: 

3
0 0

2

3 2

1

2 ,

i
j i j i i j j

j j j

i i
i j ij

j j j

ue e gu u u u u e u p
t x x x

u uf u u e
x x x

θ δ
θ ρ

ε ν ν

 ∂∂ ∂ ∂′ ′ ′ ′ ′ ′ ′= − − + − − ∂ ∂ ∂ ∂  
′ ′∂ ∂∂′ ′+ + −

∂ ∂ ∂

 (3.8) 

where e is the TKE.  The first term on the right hand side represents the advection of 

horizontally averaged TKE by the mean wind.  The next two terms represent the source 

terms for TKE, the first of which describes the interaction between the turbulent fluxes 

and the shear in the mean wind.  Since /i ju x∂ ∂  and  i ju u′ ′  usually have opposite signs, 

the term is usually a source of TKE.  The second source term is the buoyancy generation 

of turbulence, which consists only of the vertical turbulent flux of buoyancy.  The next 

term is the transport of TKE by the fluctuating part of the velocity field ( ju e′ ) and by 

pressure ( ju p′ ′ ). The fifth and sixth terms represent the Coriolis forces acting on the 

turbulent velocity fluxes and the viscous diffusion of TKE.  These terms can be neglected 

for the CBL because the time scale of turbulence (~ 310 s for the largest eddies) is much 

shorter than the Coriolis time scale (nearly 510 s), and because the turbulent transport is 
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several orders of magnitude larger than the viscous transport in the CBL.  The final term 

represents the viscous dissipation of TKE. 

The TKE equation can be simplified further for the horizontally homogeneous 

CBL.  Because the horizontal derivatives ( / x∂ ∂  and / y∂ ∂ ) of all averaged quantities are 

zero, the horizontal advection terms disappear.  Although vertical gradients can still be 

strong, vertical advection is also zero because the mean vertical velocity 3u  is zero.  For 

the shear production term, only the i=1,2 and j=3 terms will contribute because horizontal 

gradients (j=1,2) in the mean horizontal wind (i=1,2) are zero.  For the transport terms, 

only the j=3 will remain because only vertical gradients exist.  The resulting TKE 

equation for the horizontally homogeneous CBL is:  

0 0

1e u v gw u w v w w e w p
t z z z

θ ε
θ ρ

 ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + − − − ∂ ∂ ∂ ∂  
, (3.9) 

where 1u u= , 2v u= , and 3w u= .  One can also make the same simplifications to the 

RANS equations for the horizontally homogeneous CBL (3.3).  All horizontal gradients 

are zero in the ensemble averaged horizontally homogeneous CBL, and the equation for 

i=3 disappears because 0w = .  Again, only the terms with i=1,2 and j=3 contribute.  If 

the geostrophic component of the wind is subtracted from the equations by subtracting 

the terms
0

1
g

pfu
yρ

∂
= −

∂
and

0

1
g

pfv
xρ

∂
=

∂
, the pressure gradient and Coriolis terms can be 

combined to represent the accelerations of the Coriolis force on the ageostrophic 

component of the wind.  Finally, the viscous diffusion of mean momentum is negligible 

for a turbulent CBL, and the buoyancy term does not contribute to the mean horizontal 
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momentum.  The resulting equations for momentum in the horizontally homogeneous 

CBL are: 

( )g
u u w f v v
t z

′ ′∂ ∂
= − + −

∂ ∂
 (3.10) 

( )g
v v w f u u
t z

′ ′∂ ∂
= − − −

∂ ∂
 (3.11) 

Likewise, the thermodynamic equation (3.4) is simplified to: 

'vw
t z

θθ ′∂∂
= −

∂ ∂
. (3.12) 

Equations (3.9) through (3.12) can be used in two ways to model the CBL 

turbulence.  First, the full set of differential equations can be used mostly in the above 

form, except that the second order moments of turbulence are parameterized in terms of 

eddy diffusivities and vertical gradients.  The diffusivities are proportional to the kinetic 

energy e  and a master length scale l, so the turbulence closure scheme is known as e-l 

closure.  This is the fundamental basis of many of the RANS-based turbulence models 

used in Numerical Weather Prediction (NWP).  The NWP grid can typically resolve some 

of the CBL vertical structure of potential temperature and velocity but must parameterize 

the turbulence in terms of eddy diffusivities.  Through these eddy diffusivities, the effects 

of CBL turbulent motions on the resolved velocity in the NWP model are accounted for. 

Alternatively, one can integrate (3.9) through (3.12) over the depth of the CBL to 

formulate equations describing the integral budgets of momentum, buoyancy, and TKE.  

The integration removes the height-dependence of momentum, buoyancy, and TKE, and 

the resulting equations can be solved analytically or numerically to find the CBL depth 
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and other parameters of entrainment as a function only of time.  This integral budget 

approach is widely used in applied atmospheric dispersion studies as well as a few GCMs. 

Both of these methods are now discussed. 

3.4 RANS-Based Closures 

3.4.1 TKE-Based Closures 

Equations (3.9) through (3.12) contain second order moments of turbulence, which are 

still unknowns in the problem. These turbulent fluxes are parameterized according to the 

following hypotheses, which state that the turbulent moments can be specified in terms of 

eddy diffusivities and mean gradients: 

0

1 2 m
ew e w p K
zρ

∂′ ′ ′ ′+ = −
∂

, (3.13) 

m
uw u K
z

∂′ ′ = −
∂

, (3.14) 

m
vw v K
z

∂′ ′ = −
∂

, and (3.15) 

hw K
z
θθ ∂′ ′ = −

∂
, (3.16) 

where mK  and hK  are the eddy diffusivities of momentum and heat, respectively.  Since 

mK  and hK  are themselves unknown, one more assumption is required to relate these 

quantities to other variables in the system.  The eddy diffusivities are written as the 

product of a master length scale l and some velocity scale.  The choice of the master 
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length scale is somewhat arbitrary, but it must represent the length scales of the 

turbulence being modeled.  The most obvious turbulence velocity scale is e . 

The eddy diffusivity of momentum, therefore, has the following general form: 

( )1/ 2

m KK e lα=  (3.17) 

where Kα  is a constant of proportionality.  The eddy diffusivity for heat is related to the 

eddy diffusivity for momentum through the turbulent Prandtl number, which generally 

ranges from one third to one under unstable conditions.  Dissipation is parameterized by 

the expression 

( )3/ 2
e

lεε α= ,  (3.18) 

where εα  is a constant.  The values of Kα , εα ,  l , and the turbulent Prandtl number are 

dependent on the particular scheme being used for turbulence modeling.  We highlight 

two particular schemes in this study. 

 The first scheme is that of Xue et al. (2001).  The turbulence length scale in this 

closure is dependent on the hydrostatic stability.  In stable conditions, the length scale is 

( )1/ 2 10.76sl l e N −= = , (3.19) 

where N is the Brunt-Väisälä frequency.  In neutral or unstable conditions (the boundary 

layer portion of the flow), the length scale is 

( )
( )0

1 exp 4 /
1.8

0.0003exp 8 /
i

u i
i

z z
l l l z

z z

 − −  = =   
−    

 (3.20) 

where z  is the height, iz  is the boundary layer depth, and 0 0.25l = .  The profile of 

mixing length (3.20) was determined from atmospheric data as described in Caughy et al. 
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(1979).  The boundary layer depth is defined as the level at which a parcel, lifted from the 

lowest model grid level above ground, becomes neutrally buoyant.  Because ul  doesn’t 

become small until iz z> , where the atmosphere is stable, the maximum of sl and ul  is 

taken in the region to facilitate a smooth transition.  The turbulent Prandtl number is 

1
1 2Pr max , 1
3t

v

l
−  

 = + ∆   
, (3.21) 

where v∆  is the vertical dimension of the grid cell. The constants in (3.17) and (3.18) are 

0.1Kα =  and 0.93εα = , except 3.9εα =  at the first grid level above ground. 

 The scheme of Fiedler and Kong (2003), hereafter referred to as F&K, does not 

depend on the determination of the CBL depth to determine l.  Rather, it defines the 

length scale as the geometric mean of an upward length scale and a downward length 

scale, as in Bougeault and Lacarrere (1989).  The upward and downward length scales are 

defined as the vertical distance an air parcel would travel from its original height, 

working against buoyancy forces, until all its TKE were expended.  Mathematically, 

these length scales are defined through the following integrals: 

( )
*( ) ( ) ( , )

( )

upz z

v v
z v

ge z z z z dz
z

λ

θ θ
θ

+

 ′ ′ ′= − ′∫ , and (3.22) 

( )
*( ) ( ) ( , )

( )

downz z

v v
z v

ge z z z z dz
z

λ

θ θ
θ

−

 ′ ′ ′= − ′∫ , (3.23) 

where upλ  and downλ  are the vertical distances of parcel travel and *
vθ  is the virtual 

potential temperature a parcel would have if it ascended or descended from its starting 

level z to a new level z′ .  Once upλ  and downλ  are determined, the mixing length is the 
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geometric mean: ( )1/ 2

up downl λ λ= .  The specifications for the constants are 0.35Kα = , 

0.5εα = , and Pr 1t = . 

The TKE-based schemes [Xue et al. (2001), Fiedler and Kong (2003)] presented 

here will be tested against LES data in Chapter 10. 

3.4.2 Other RANS-Based Closures 

In this section, we have looked specifically at 1.5 order, TKE-based, e-l closure schemes 

within the framework of the horizontally homogeneous CBL, but there are numerous 

other ways to model turbulence within the RANS framework.  It is worthwhile to identify 

these methods to understand where the e-l schemes fit within the larger realm of 

turbulence closure models. 

 The first manner in which RANS-based turbulence models may differ is with 

regard to the order of the closure.  The order of closure is defined as the highest order 

turbulent moments that are explicitly contained in the model’s prognostic equations.  The 

e-l schemes described above are formally considered 1.5-order turbulence closure 

because they contain a prognostic equation for TKE, which by definition, contains some 

of the second order moments—namely, the velocity variances—but not all of them, and it 

does not account for any turbulence anisotropy.  In other words, 2 2 2 2
3

u v w e′ ′ ′= = = .  

1.5-order closure is rather typical in NWP codes, but higher and lower order closures are 

also found. 

 First order closure schemes do not contain a prognostic equation for TKE, and the 

assumption (3.17) is not made.  Rather, the eddy viscosity is related to a length scale and 
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to the rate of strain, i.e. 2~ /mK l U z∂ ∂ .  The most well-known of these closures is the 

Lilly-Smagorinsky (1967) closure, which includes the assumption that the TKE is in a 

balanced state and the rate of production is exactly equal to the rate of dissipation, which 

is exactly what is needed to relate the eddy viscosity directly to the strain rates and a 

length scale.  The Lilly-Smagorinsky closure can also be described in terms of 1.5-order 

closure, since it is derived from the TKE equation with shear production in balance with 

dissipation of TKE, but it does not carry a TKE equation and is, therefore, first order.  

Other closure schemes, such as O’Brien (1970), simply use an assumed profile of eddy 

viscosity in the boundary layer and are therefore purely first order. 

Alternatively, one can proceed upward in complexity and derive a second order 

turbulence closure scheme, based on Equation (3.7), which describes the rate of change 

of all the Reynolds stresses.  The most commonly used higher order schemes for 

modeling atmospheric turbulence are the Mellor-Yamada hierarchy of turbulence 

closures (Mellor 1973; Mellor and Yamada 1974, 1982), which are formally derived from 

a non-Boussinesq version of Equation (3.7).  The level of turbulence closure is based on 

the degree of simplification from the starting equation.  The so-called Level 4 model (the 

top of the heirarchy) can be considered a full second-order closure, because it 

parameterizes only the third order moment term and retains prognostic equations for all 

Reynolds stresses.  All other levels have an increasing number of simplifications that 

reduce the formal order of the closure to something between 1.5 and 2.  The Level 2.5 

scheme used in the NCEP Eta model (Janjic 1994) and several other NWP models 

contains a prognostic equation only for TKE, and it parameterizes the remaining 
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Reynolds stress terms through simpler equations describing the anisotropy of turbulence, 

so the scheme is not a 2.5-order closure as its name might lead one to believe. 

Rather than changing the order of the closure, one can replace the master length 

scale of e-l closure with a prognostic equation for dissipation, making the scheme an e-ε 

closure.  In e-ε closure, the prognostic equation for the dissipation ε is formed by 

assuming the turbulence frequency, defined as / eω ε= , is constant.  The equations for 

TKE and dissipation are then solved.  Such approaches are not commonly used to model 

atmospheric turbulence and will not be further considered here. 

3.4.3 Points of Caution for RANS-Based Closures 

Sometimes, different length scales l might be used in the horizontal and vertical 

dimensions.  The use of more than one length scale departs from the basic assumptions 

about e-l closure, which only requires a single master length scale to close the problem.  

Xue et al. (2001) make use of separate horizontal and vertical length scales. 

Additionally, with the increasing resolution of regional NWP models, the 

horizontal grid cell size is becoming small enough that the implied horizontal averaging 

within the grid cell may differ considerably from an ensemble average, and some of the 

turbulence might start to become resolved.  As such, the assumptions implicit in the 

RANS-based NWP turbulence closures may not hold, putting these RANS-based 

schemes in a very awkward position.  Because they are modeling only part of the CBL 

turbulence, they depart from their RANS-based origin, and because the grid cell (or filter) 

width lies in the energy production range of the turbulence spectrum and not within the 

inertial subrange, they are also not subgrid TKE-based schemes (see Appendix A).  This 
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is a particularly important problem in contemporary NWP, and it is addressed, to some 

extent, by Fiedler and Kong (2003).  However, in this study, it is assumed that the grid 

cell sizes are large enough that the implied horizontal averaging can be considered 

representative of an ensemble average, and the assumptions of a RANS-based scheme 

will still hold; we make the assumption that the grid cells are infinitely wide. 

Fiedler and Kong (2003) introduce a tunable parameter β  in to their model in 

order to account for some turbulence resolution on the grid.  If the horizontal grid cell 

becomes small enough, β  is reduced in order to avoid “double-counting” the turbulence.  

Fiedler and Kong (2003) experimented with 1.0β =  for grid cells of 72 km and 0.3β =  

for grid cells of 2 km.  Their paper represents the first effort to adjust the turbulence 

parameterization scheme for fine grids. 

3.5 Integral Budget Methods 

In order to further simplify the equations for the CBL growth, one can integrate the 

buoyancy, momentum, and TKE balance equations over the depth of the CBL.  To 

simplify these integrations, the overall CBL structure can be represented in a schematic 

form, as long as the schematic profiles capture the essential features of the CBL. 

3.5.1 Zero Order Model (ZOM) 

The greatest possible simplification is to use the zero order model (ZOM) profiles of 

buoyancy and TKE.  Fedorovich (1995) derived ZOM equations for many types of CBLs, 

including the CBL with surface wind shear and shear in the geostrophic wind.  In the 
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ZOM, the surface layer and entrainment zone, being only a small fraction of the overall 

CBL depth, are assumed to be infinitesimally shallow.  The CBL is therefore 

schematically represented as a mixed layer in which all scalars are independent of height. 
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Figure 3.1:  Profiles of (a) buoyancy and buoyancy flux and (b) velocity in the 
horizontally homogeneous CBL. Solid lines indicate LES or atmospheric horizontally 
averaged profiles, and heavy dashed lines indicate their representation in the ZOM. 
Lighter dashed lines are the lower ( ilz ) and upper ( iuz ) limits of the entrainment zone. 
The diagonal dashed line in (b) represents the profile of geostrophic wind.  For changes 
of any variable φ  across the entrainment zone, δφ  refers to the change of that variable 
across the entire entrainment zone, and φ∆  refers to the change of that variable in the 
ZOM. 

 

At the CBL top, the scalar quantities jump to their free atmospheric values and 

therefore have finite discontinuities ( u∆ , v∆ , and θ∆ ) in their zero order derivatives—

hence the name zero order model.  Figure 3.1 clarifies the differences between these 

jumps, which are specific to the ZOM, and the total changes of momentum and potential 

temperature across the entrainment zone.  Zero order velocity jumps also occur at the 

surface, where u  and v  change from zero to their mixed layer values mu  and mv .  Above 
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the entrainment zone, the profiles of momentum and temperature are assumed to be linear 

and independent of time.  The surface buoyancy flux sB  is assumed to be an independent 

variable. 

3.5.1.1 ZOM Equations 

The notation in the ZOM equations is made simpler by expressing (3.12) in terms of the 

traditional definition of buoyancy, 0 0( / )( )v v vg θ θ θ− .  With Equations 3.9-3.11 

unchanged, and the momentum, buoyancy, and turbulence kinetic energy in the 

horizontally homogeneous CBL are: 

( )g
u u wf v v
t z

′ ′∂ ∂
= − −

∂ ∂
, (3.24)  

( )g
v v wf u u
t z

′ ′∂ ∂
= − − −

∂ ∂
, (3.25) 

0

'b B g w b
t z zθ

′∂ ∂ ∂
= − = −

∂ ∂ ∂
, and (3.26) 

0

1e u vu w v w w b w e w p
t z z z

ε
ρ

 ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′ ′ ′ ′ ′= − − + − + − ∂ ∂ ∂ ∂  
. (3.27) 

Since the geostrophic wind profiles in the ZOM are linear, the geostrophic wind 

can be written as 0g g uu u z= + Γ  and 0g g vv v z= + Γ , where 0gu  and 0gv  are the surface 

wind components, /u gu zΓ = ∂ ∂ , and /v gv zΓ = ∂ ∂ . 

Integral budgets of momentum, buoyancy, and TKE are formed by integrating 

(3.24) through (3.27) over the depth of the ZOM CBL structure. The upper limit of 

integration is taken an infinitesimally small distance past iz  to incorporate the 



 

 71

discontinuities at iz .  Leibniz’ rule is used at the upper interface ( iz ) because this level 

changes with respect to time.  The flow is assumed to be non-turbulent at the upper limit 

of integration.  The integrated equations are: 

0 2
m i v

si m g i i
du dzz w u u f v v z z
dt dt

Γ ′ ′= + ∆ + − − 
 

, (3.28) 

0 2
m i u

si m g i i
dv dzz w v v f u u z z
dt dt

Γ ′ ′= + ∆ − − − 
 

, and (3.29) 

m i
si

db dzz w b b
dt dt

′ ′= + ∆ . (3.30) 

The first two equations describe the integral momentum budget in the ZOM CBL.  On the 

left hand side of each of these equations is the integrated mixed layer momentum.  The 

first term on the right hand side is the turbulent surface flux of momentum.  In most cases, 

this term removes momentum from the CBL because it is of opposite sign to the 

momentum.  Strictly, this term can only be used in the surface layer above the viscous 

sublayer because w′  reaches zero at the ground (z=0).  The second term on the right hand 

side represents the entrainment of momentum at the CBL top as the CBL grows.  The last 

terms in the integral momentum equations represent the integral effects of the Coriolis 

force on the ageostrophic flow in the mixed layer.  In the integral buoyancy budget 

equation (3.30), the change of mixed layer buoyancy (left side of the equations) depends 

on the fluxes from the surface (first term on the right hand side) and the entrainment of 

buoyancy that occurs as the CBL grows (second term on the right hand side). 

To make the budget equations for momentum and buoyancy somewhat more 

concise, we can relate the mixed layer scalars to their free atmospheric profiles by the 

relation: m s izφφ φ φ= + Γ − ∆  ( φΓ  is the free atmospheric gradient of φ   with 2
b NΓ = , 
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and sφ  is the surface value if the free atmospheric profile is extrapolated there).  With this 

change, the integral budget equations are rewritten: 

2 2

2 2
u v

si i i i
d z uz u w f z vz
dt

Γ Γ   ′ ′− ∆ = + − ∆   
   

  (3.31) 

2 2

2 2
v u

si i i i
d z vz u w f z uz
dt

Γ Γ   ′ ′− ∆ = − − ∆   
   

 (3.32) 

2 2

2
i

si s
N zd bz w b B

dt
 

′ ′− ∆ = = 
 

 (3.33) 

 One can obtain profiles for the turbulent fluxes of momentum and buoyancy in 

the CBL by integrating (3.24) through (3.26) from the surface up to some arbitrary level z.  

In so doing, we realize that / /mu t du dt∂ ∂ =  in the mixed layer, allowing us to use the 

expression m s izφφ φ φ= + Γ − ∆  as was done for (3.31)-(3.33).  The flux profiles are 

[ ]
2

( )
2

i
s u v i v

dz d u zw u z w u z f z v z
dt dt

 ∆ ′ ′ ′ ′= − Γ − + Γ − ∆ − Γ  
   

, (3.31) 

[ ]
2

( )
2

i
s v u i u

dz d v zw v z w v z f z u z
dt dt

 ∆ ′ ′ ′ ′= − Γ − − Γ − ∆ − Γ  
   

, and (3.32) 

2( ) i
s

dz d bw b z w b z N
dt dt

∆ ′ ′ ′ ′= − − 
 

. (3.33) 

The flux profiles are all linear if the Coriolis effects are neglected.  If not, the momentum 

flux profiles are quadratic, but because f  is relatively small, they are nearly linear in 

most cases.  Evaluating (3.31) through (3.33) at iz z=  and making use of (3.31) through 

(3.33), we find the following identities: 

( ) i
i

dzw u z u
dt

′ ′ = −∆ , (3.34) 
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( ) i
i

dzw v z v
dt

′ ′ = −∆ , and (3.35) 

( ) i
i i

dzw b z b B
dt

′ ′ = −∆ ≡ . (3.36) 

With the use of (3.36), the linear buoyancy flux profile in the ZOM CBL can be written 

' '( ) 1 i
s

i i

dzz zw b z B b
z dt z

 
= − − ∆ 

 
. (3.37) 

The integral TKE budget is derived by taking the integral of (3.27), using (3.31) 

through (3.33) for the turbulent fluxes.  We begin by integrating the shear terms.  

Because the momentum is constant with height in the ZOM mixed layer, the shear 

generation of TKE is limited to the surface layer and the entrainment zone.  Because 

these layers in the ZOM are infinitesimally thin, the shear becomes infinitely large, 

making the integration a bit more complicated. 

For the integration across the surface layer, one assumes u  changes smoothly 

from 0 to mu  (the velocity profile is logarithmic or nearly so), and the turbulent flux can 

be assumed constant, which is generally true in the surface layer.  Evaluating 

0
0

1lim ( )sw u u z dz
∆

∆→
′ ′

∆∫  yields the x-component surface shear contribution to the TKE 

integral budget, smu w u′ ′− .  The same applies to the y-component. 

At the CBL top, one can handle the integration by isolating a layer of finite 

thickness ∆, over which u  and w u′ ′  are assumed to change linearly.  /u z∂ ∂  has a 

constant value of /u∆ ∆ , and because of (3.34), w u′ ′  changes linearly from /iudz dt−∆  

to zero.  Evaluating the integral, taking its limit as 0∆ → , and doing the same for the y-
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component yields the entrainment zone shear contribution to the TKE integral budget: 

( )2 21
2

idzu v
dt

∆ + ∆ . 

The contribution of buoyancy flux to the TKE integral can be found simply by 

integrating (3.37) from the surface to the CBL top.  Because of the rigid lower surface, 

the vertical velocity fluctuations are zero there, and the TKE transport is zero.  At the 

CBL top, we parameterize the transport by iΦ .  For now, we do not yet specify any form 

for the integrals of /e t∂ ∂  and dissipation, but using Leibniz’ rule in combination with 

the assumption that ( ) 0ie z + = , the time derivative can be brought outside the integral of 

TKE.  The resulting TKE integral budget is 

( )2 2

0

0

1
2

.
2

i

i

z
i

s sm m

z
i i

s i

dzd edz u w u v w v u v
dt dt

z dzB b dz
dt

ε

′ ′ ′ ′= − − + ∆ + ∆

 + − ∆ − Φ − 
 

∫

∫
 (3.38) 

Since the signs of  mu  and mv  are generally opposite those of sw u′ ′  and sw u′ ′ , the 

surface shear is a source of TKE.  The entrainment zone shear term can also be described 

as the generation of TKE owing to entrainment of momentum into the CBL.  This term is 

always positive as long as the entrainment, /idz dt , is positive.  The fourth term describes 

the generation and destruction of TKE by buoyancy forces in the CBL.  If the surface 

flux of buoyancy sB  is positive, it is a source of TKE.    As long as b∆  and /idz dt  are 

both positive, the other part of the buoyancy term represents the TKE consumption by 

entrainment.  iΦ  is usually small enough in atmospheric applications that it can be 

neglected (Stull 1976b, Fedorovich et al. 2004). 
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Equations (3.31)-(3.33) and (3.38) do not form a closed set, since the surface 

momentum fluxes and the integrals of TKE and dissipation are still unknown.  Some 

assumptions about these quantities must be made before the system of equations can be 

solved. 

3.5.1.2 ZOM Analytic Solutions for Shear-Free Equilibrium Entrainment 

If the mean wind components throughout the depth of the considered layer are identically 

zero, the momentum equations (3.31) and (3.32) drop out, and the integral TKE equation 

simplifies to 

0 0

1
2

i iz z
i

s i
dzd edz B b z dz

dt dt
ε = − ∆ − 

 ∫ ∫ . (3.39) 

The integrals of TKE and dissipation in their current form remain unknowns in the 

equation, but simplifications can be made.  Zilitinkevitch (1991) applied the Deardorff 

(1980) scaling hypothesis, which assumes that the profiles of TKE and dissipation in the 

CBL are self-similar and can be scaled by the Deardorff (1970) velocity scale, 

( )
1
3

* s iw B z= .  The profiles of TKE and dissipation are therefore described in terms of the 

dimensionless height: 

3
2 *
* ( ), ( ),e

i i

w ze w
z zεϕ ζ ε ϕ ζ ζ= = = , (3.40) 

where eϕ  and εϕ are universal functions of dimensionless height ζ .  Applying this 

assumption, the scaled integrals of TKE and dissipation become constants: 

1 1

2 3
* *0 0 0 0

1 1( ) , ( )
i iz z

e e
i

edz d C dz d C
w z w ε εϕ ζ ζ ε ϕ ζ ζ= = = =∫ ∫ ∫ ∫ . (3.41) 
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Making these substitutions, we have: 

( )2 3
* *

1
2

i
i e s i

dzd w z C B b z w C
dt dt ε

 = − ∆ − 
 

. (3.42) 

With ( )2 2
* *

5
3

i
i

dzd w z w
dt dt

=  and dividing by 3
*w  (i.e., normalizing by sB  and iz ), we have: 

1 1
3 310 1 2

3

i

i
e s i

s

dzbdz dtC B z C
dt B ε

− −
∆

= − − . (3.43) 

(3.43) is simplified for a final time by assuming that the entrainment is in an equilibrium 

regime.  In equilibrium entrainment, the CBL turbulence is sufficiently developed that 

the buoyancy production of TKE (the “1” in the above equation) is no longer used to fill 

the reservoir of TKE in the CBL, so the left hand side of (3.43), the Zilitinkevitch (1975) 

“spin-up” term, can be neglected.  (A scale analysis for typically well-developed CBLs 

shows that the left hand side term of Equation 3.43 is nearly an order of magnitude 

smaller than the middle term on the right hand side, which is the next smallest.)  The 

buoyant production of TKE is then balanced only by dissipation and the buoyancy flux of 

entrainment ( /ibdz dt−∆ ), with the latter being a constant fraction of the surface 

buoyancy flux, sB .  We therefore, define a constant 1 1 2C Cε= − , which brings the TKE 

equation to the following form: 

1

i

s

dzb
dt C

B

∆
=  (3.44) 

1C  is the ZOM entrainment flux ratio, 0 /i sB B− , in the shear-free CBL that is in the 

equilibrium regime of entrainment.  1C  represents the portion of buoyancy-produced 

TKE that is used for entrainment, as opposed to being dissipated. 
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(3.33) and (3.44) form a closed set of equations whose dependent variables can be 

put into a dimensionless form.  Because time forms the independent variable in the 

problem and Bs and N are also considered independent variables, we may choose t, Bs, 

and N to normalize the dependent variables in the equation.  We define t̂ tN= , 

1/ 2 3/ 2ˆi i sz z B N−= , and 1/ 2 1/ 2ˆ
sb bB N− −∆ = ∆ .  Making these substitutions, we have: 

2ˆ ˆˆ 1ˆ 2
i

i
zd z b

dt
 

− ∆ = 
 

, and (3.45) 

1
ˆˆ
ˆ
idzb C

dt
∆ = . (3.46) 

(3.45) and (3.46) are then combined into a single, first-order, ordinary differential 

equation that can be solved by inverting the equation and using an integrating factor. 

Taking the constants of integration for the problem 0ˆ 0iz =  and 0̂ 0b∆ =  at ˆ 0t = , the 

solutions are 

( )
1
2

1
ˆˆ 2 2 1iz C t = +  , and (3.47) 

( )

1
2

1
1

ˆ2ˆ
1 2

tb C
C

 
∆ =  + 

. (3.48) 

The CBL depth and the buoyancy jump across the entrainment zone both increase at a 

rate proportional to the square root of time. 

Fedorovich et al. (2004a) examined this regime of entrainment using LES and 

found excellent agreement between the LES data and the above solutions.  These results 

will be discussed more extensively in Chapter 4. 
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3.5.1.3 ZOM Entrainment Parameterizations 

The entrainment rate for the full set of sheared CBL ZOM equations (3.31-3.33, 3.38) can 

be found by parameterizing individual terms in the TKE equation and solving for the 

entrainment rate, /idz dt .  We begin by making the same scaling assumptions of (3.41) 

for the sheared CBL. 

( ) ( )2 2 2
*

3
*

10 2
3

2

i i
s se m m

i
s i i

dz dzC w u w u v w v u v
dt dt

dzB z bz w C
dt ε

′ ′ ′ ′= − + + ∆ + ∆

+ − ∆ −
 (3.49) 

This scaling assumption may not be valid for the sheared CBL, but the intent here is to 

merely to show the derivations of the entrainment equations as they have been done 

before.  Other assumptions will be evaluated in Chapter 10. 

Collecting the terms involving /idz dt  on the left hand side, we have 

( ) ( )2 2 2
*

3
*

10 2
3

2 .

i
s se i m m

s i

dzC w bz u v u w u v w v
dt

B z w Cε

  ′ ′ ′ ′+ ∆ − ∆ + ∆ = − +  
+ −

 (3.51) 

Since the entrainment is conveniently expressed by the entrainment flux ratio, /i

s

bdz dt
B

∆ , 

we bring out b∆  on the left hand side of the equation, then normalize by 3
* s iw B z= , the 

cube of the convective velocity scale. 

( ) ( )
2 22

*
3
*

10 21
3

1 2

i

s se m m
i i s

dzbu vw dtC u w u v w v
bz bz B w

Cε

∆ ∆ + ∆
′ ′ ′ ′ + − = − +

∆ ∆  
+ −

 (3.52) 

In the surface layer, the hypothesis of Tennekes (1973) is applied.  The Deardorff 

(1970b) velocity scale in the CBL is 3
* s iw B z= , and because the heat flux at the CBL top 
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is 3
* /i s iB B w z− =∼  for the shear-free CBL, Tennekes hypothesized that the surface 

shear-generated turbulence contributed proportionally to the velocity scale in the CBL 

and therefore, the buoyancy flux scales by a linear combination of 3
*w  and 

*

3u .  Therefore, 

with 11 2C Cε− =  in the shear-free case, and, given the velocity scaling by 3 3 3
* *mw w Au= + , 

the right hand side of (3.52) can be rewritten as 3 3
1 * */sC C u w+ , where 1sC AC= .  Solving 

for the negative of the entrainment flux ratio yields the following form: 

( )

3
*

13
*

2 22
*1

i
S

i

s s

T P
i i

udz C CbB wdt
B B u vwC C

bz bz

+∆
− = =

 ∆ + ∆
+ − 

∆ ∆  

. (3.53) 

The constant SC   indicates the relative contribution of surface shear to the buoyancy flux 

at the CBL top.  The constant TC  parameterizes the uptake of TKE by the reservoir that 

exists within the CBL, making it temporarily unavailable for entrainment (Zilitinkevitch 

1975), and PC  represents the portion of the shear-generated TKE at the CBL top that is 

not dissipated.  The constant PC  implies that the integral dissipation of entrainment zone 

shear-produced TKE can be scaled by ( )2 2 /iu v dz dt∆ + ∆ , so the net contribution of 

entrainment zone shear production to the buoyancy flux at the CBL top is a fraction of 

the shear generation of TKE.  Rewriting (3.53) using the velocity scale mw , we have 

( )
3

1
3 2 22* *1

i

i m

s s

T P
i i

dzbB w Cdt
B B w u vwC C

bz bz

∆
− = =

 ∆ + ∆
+ − 

∆ ∆  

. (3.54) 
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More generally, the effective velocity scale is * *mw w Auη η η= + , with 3η =  in this case 

[Tennekes and Driedonks (1981) and Driedonks (1982) use 2η = ].  We can further 

define the following Richardson numbers, remembering that 
0

gb θ
θ

∆ = ∆ :  

( )2 2 22 2
0 0 * 0 *0

i i i i
t b GS u

m

gz gz gz gzRi Ri Ri Ri
w w uu v

θ θ θ θ
θ θ θθ∆

∆ ∆ ∆ ∆
= = = =

∆ + ∆
. (3.55) 

Since the uptake of TKE by the reservior of the CBL affects both the shear- and 

buoyancy-generated TKE, most authors scale the nonstationary term (in the denominator 

of 3.54) by 2
mw  rather than 2

*w .  This term could also scale by some fraction of the 

entrainment zone shear-generated TKE, but for reasons unknown, the authors do not 

include such a scaling.  The final form of the entrainment parameterization is 

3
1

3 1 1
* 1

i

i m

s s T t P GS

dzbB w Cdt
B B w C Ri C Ri− −

∆
− = =

 + − 
. (3.56) 

This is a very popular form of the ZOM parameterization proposed by most authors.  As 

mentioned in Chapter 2, one potential mathematical problem with (3.56) can be seen 

immediately.  If the shear term in the denominator ( 1
P GSC Ri− ) is large enough, it can grow 

to a size equal to the other terms, and the ZOM entrainment flux ratio becomes 

unbounded.  If the shear increases further, the sign of the expression changes, and 

detrainment is predicted.  While an infinitely large entrainment flux ratio seems 

reasonable for a boundary layer that is driven only by shear, (3.56) can become 

unbounded when 0sB > . 

The first attempts to parameterize the effects of shear on the entrainment equation 

were by Tennekes (1973), who noted that when significant surface shear exists in CBLs, 
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the net production of TKE is larger and the effective velocity scale mw  should be 

introduced to account for this.  Tennekes’ parameterization reads: 

3
*

1 3
*

1i

s

B uC A
B w

 
− = + 

 
. (3.57) 

This expression reverts back to the shear-free case when * 0u = . 

Zeman and Tennekes (1977) did not include the effects of the shear across the 

inversion because they did not know what to assume for the fraction of shear-generated 

TKE at the inversion base that would be available for entrainment.  Tennekes and 

Driedonks (1981) used the experimental results of Price et al. (1978) to estimate this 

fraction, and their entrainment equation (3.56) forms the basis of the subsequent ZOM-

based parameterizations (Driedonks 1982, Boers et al. 1984, Pino et al. 2003).  Table 3.1 

lists the constants that are used in these parameterizations. 

Three parameterizations that are essentially tied to the ZOM, but their approaches 

differ from the strict ZOM methodology.  They are Stull (1976a,b), Fairall (1984), and 

Batchvarova and Gryning (1990, 1994). 

Stull (1976a, 1976c) used a ZOM for the most part but deviated from that model 

slightly when parameterizing shear across the inversion base.  His hypothesis regarding 

the mechanical generation of TKE at the inversion base was that ' 'w u  scaled by 

/iudz dt∆  as is typical in the ZOM, but the scaling for /u z∂ ∂  is ( )2/ ~ / /iu z u dz dtδ∂ ∂ ∆ , 

where i ilz zδ = − .  Stull used the equation 

 1i i

s i

B z
B z δ

− = −
−

. (3.58) 
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Stull’s hypothesis has the fortuitous result that the problems characteristic of the more 

typical ZOM-based entrainment equations (i.e. the shear production being a term of 

negative sign in the denominator) are avoided.  His entrainment equation is: 

2 3
*

1 2 33 3
* *

mi i i

s

u uB z z uA A A
B w wδ δ

∆
− = + + , (3.59) 

where 1 0.1 0.05FA C= = ± , 2 0.05 0.025A = ± , and 3 0.001 0.0005A = ± , based on the best 

fits of this expression with atmospheric data analyzed by Stull (1976c). In this equation, 

the dependence on surface shear appears to be somewhat greater than the dependence on 

entrainment zone shear, which is contrary to the water tank data of Willis and Deardorff 

(1982).  The third term on the right hand side of the equation is also problematic to 

interpret.  3u∆ can have a positive sign or a negative sign, which would mean the shear 

across the entrainment zone would depend on the sign of u∆ .  Such a result does not 

seem to make sense based on physical reasoning.  The expression would predict opposite 

effects of shear on entrainment if a coordinate transformation is made by rotating 180 

degrees about the z-axis. 

Fairall (1984), motivated to find the effects of entrainment on the refraction of 

electromagnetic waves (for atmospheric remote sensing), developed an independent 

parameterization, which reads: 

( )
( )( )

1 13

3 1 1
0 *

2
1 ,

1 2 1
f fi m

F
f f

rR rRQ wC
Q w rR s rR

− −

− −

 +
 − = +

+ + −  
 (3.60) 

where 0.2FC = , 3 3 3
* *8mw w u= + , and the other constants are: 

( )
( ) ( ) ( )

2 2
1 1 1 2

2
0 1 2 1 2

7 2 4 4, ,
6 / 2 2 5 2 2 5f

u v c c cR r s
g c c c c

δ δ

θ δθ
−

+ Γ − − +
= = =

+ − + −
, (3.61) 
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where 1 11c = , and 2 3 /14c = (the value of 2c  is not perfectly clear in the paper). 

Table 3.1.  Values of Constants in Entrainment Equations 

Author A  η  
1C  TC  PC  

Tennekes (1973) 12.5 3 0.2 0 0 

Zeman and Tennekes (1977) 4.6* 3 
0.5 0.024 i

m

Nz
w

−

 
3.55 0 

Tennekes and Driedonks (1981) 4* 2 
0.6 0.03 i

m

Nz
w

−

 
4.3 0.7 

Driedonks (1982) 25 3 0.2 0 0 
Boers (1984) 23 3 0.32 0.75 1 

Batchvarova and Gryning 
(1990,1994) 12.5 3 0.2 0 0 

Pino et al. (2003) 8 3 0.2 4 0.7 
* Expression uses 2 2 2

* *mw w Au= +  rather than 3 3 3
* *mw w Au= +  

Batchvarova and Gryning (1990, 1994) use a somewhat different derivation that 

involves the elimination of θ∆ , a dependent variable, from the entrainment equation by 

substituting a diagnostic equation that relates θ∆  to surface friction velocity, heat flux 

(both of which can be calculated from measured surface quantities), and boundary layer 

depth.  The Batchvarova and Gryning formula is: 

( )
(1 )

1 1 2
i BG BG

s BG BG BG

B X X
B X Y X

+
− =

+ + +
, (3.62) 

where 3 3 3 3
* * */ (1 / )BG m FX w w C Au w= = + , and 2 2 2

* /( )BG BG iY B u N z= .  

3.5.2 First Order Model (FOM) 

Some relaxation of the degree of simplification of CBL structure may be necessary to 

retain features of the CBL that may be important for entrainment.  In particular, 

entrainment usually occurs over a layer of finite thickness that might play an important 
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role in regulating the entrainment rate, particularly for the case when mean shear exists 

across the entrainment zone.  The first order model (FOM), described by Betts (1974), 

represents the entrainment zone using a layer of finite thickness z∆ , and all scalars 

change linearly with height within this layer, so there are no zero-order discontinuities 

(jumps) in the scalar profiles.  The discontinuities are all in their first derivatives with 

respect to height.  The FOM profiles are shown in Figure 3.2.  The parameters of 

entrainment, where they differ from the ZOM, bear the added subscript “1”.  
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(b) 
Figure 3.2:  Profiles of (a) buoyancy and buoyancy flux and (b) velocity in the 
horizontally homogeneous CBL.  Dashed black lines indicate LES and atmospheric 
horizontally averaged profiles, and thin solid lines indicate their representation in the 
FOM.  Thin horizontal lines are the lower ( ilz ) and upper ( iuz ) limits of the 
entrainment zone.  The diagonal dashed lines represent the background profiles of 
buoyancy in (a) and geostrophic wind in (b).  For changes of any variable φ  across the 
entrainment zone, δφ  refers to the change of that variable across the full depth of the 
entrainment zone in the atmospheric or LES profile, and 1φ∆  refers to the change of 
that variable in the FOM entrainment zone. 

3.5.2.1 FOM Equations 

The FOM integral budgets of momentum, buoyancy, and TKE are obtained in the same 

manner as the ZOM budgets, by integrating over the depth of the CBL and the 
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entrainment zone.  The mixed layer budgets in the FOM are very similar to their ZOM 

counterparts, but in the entrainment zone, the equations become a bit more complex.  To 

find the flux profiles for momentum and buoyancy there, the linear profiles of buoyancy 

and momentum must be integrated, yielding quadratic equations.  These quadratic 

equations for the buoyancy and momentum fluxes must then be integrated to form the 

TKE integral budgets, which are cubic.  The resulting set of equations is a bit more 

complicated than in the ZOM, and their linear terms, which they share with the ZOM and 

have the same basic meaning, can become obscured by a large number of higher order 

terms, which might not be the most significant terms in the equations.  For this reason, 

most authors (Mahrt and Lenschow 1976, Kim 2001) chose to make simplifying 

assumptions that result in the absence of the higher order terms in the flux profiles.  

Chapter 10 will analyze the validity of these assumptions. 

 The equations describing the buoyancy and momentum budgets of the FOM CBL, 

in their mathematically concise form, are: 

( )22

12 2
i

i s

N z zd zb z B
dt

 + ∆ ∆ − ∆ + =  
   

, (3.63) 

( )

( )

2

1

2

1

2 2

,
2 2

iu
si

v i
i

z zd zu z w u
dt

z z zf v z

 Γ + ∆ ∆   ′ ′− ∆ + =   
 

 Γ + ∆ ∆ + − ∆ +  
   

 (3.64) 
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( )
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1

2

1

2 2

.
2 2

iv
si

u i
i

z zd zv z w v
dt

z z zf u z

 Γ + ∆ ∆   ′ ′− ∆ + =   
 

 Γ + ∆ ∆ − − ∆ +  
   

 (3.65) 
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In these equations, the subscript “1” is added to represent FOM parameters of 

entrainment when they differ from the ZOM parameters.  Otherwise, the notation is the 

same. 

It is more convenient for understanding to write these equations in terms of the 

time rate of change of mixed layer scalars: 

( ) ( )21
1 1

1
2

m i
i s i
db dz d dz B b zN z z b z
dt dt dt dt

= + ∆ − ∆ + ∆ + ∆ ∆  (3.66) 

( ) ( )

( )

1
1 1

2

1

1
2

2 2

m i
si u i

v i
i

du dz d dz w u u z z z u z
dt dt dt dt

z z zf v z

′ ′= + ∆ − ∆ Γ + ∆ + ∆ ∆

 Γ + ∆ ∆ + − ∆ +  
   

 (3.67) 

( ) ( )

( )

1
1 1

2

1

1
2

2 2

m i
si v i

ug i
i

dv dz d dz w v v z z z v z
dt dt dt dt

z z zf u z

′ ′= + ∆ − ∆ Γ + ∆ + ∆ ∆

 Γ + ∆ ∆ − − ∆ +  
   

 (3.68) 

As in the ZOM equations, the first term on the right hand side represents the contribution 

from the surface flux, and the second term describes the change of mixed layer scalars 

due to the entrainment of these scalars from the free atmosphere into the CBL.  The third 

and fourth terms exist because, unlike the ZOM, the identities (3.34)-(3.36) do not hold in 

the FOM.  The right hand-most term in both the momentum equations represents the 

change in integral mixed layer momentum due to the Coriolis force acting on the 

ageostrophic component of the wind. 

 If (3.24) through (3.26) are instead integrated not over the entire CBL depth but 

only to some arbitrary level z, equations for the profiles of buoyancy and momentum 

fluxes can be obtained.  In the mixed layer, these profiles have the form: 
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1( ) m
s

dbw b z B z
dt

′ ′ = −  (3.67) 

( )
2

1
1( )

2
m

s v i v
du zw u z w u z f z z v z
dt

 
′ ′ ′ ′= − + Γ + ∆ − ∆ − Γ   

 
 (3.69) 

( )
2

1
1( )

2
m

s u i u
dv zw v z w v z f z z u z
dt

 
′ ′ ′ ′= − − Γ + ∆ − ∆ − Γ   

 
 (3.70) 

In the entrainment zone, the profiles are: 

( )2
1 1( )

2
im

s

z zdb d bw b z B z
dt dt z

 −∆′ ′ = − −  
∆  

, (3.71) 
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 (3.72) 
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u i u

z zdv d vw v z w v z
dt dt z

z zz uf z u z f
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δ

 −∆′ ′ ′ ′= − −  
∆  

−  ∆
− Γ + − ∆ − Γ +    ∆ 

 (3.73) 

The TKE equation (3.9) can then be integrated over the depth of the CBL and 

entrainment zone using (3.67) through (3.73).  The buoyancy flux profile is 

straightforward to integrate, since there are no zero order discontinuities in the buoyancy 

flux profile. 

The vertical gradients of momentum are zero in the mixed layer, so there is no 

shear contribution to TKE in the FOM mixed layer.  Again, special care must be taken to 

integrate the shear source term at the surface.  This integration can be handled in the 

same manner as it is done in the ZOM.  Across the FOM entrainment zone, the 
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integration of the shear term is more straightforward, since the shear is constant there (i.e. 

/u z∆ ∆  and /v z∆ ∆ ), and the flux profiles are given by (3.71)-(3.73), which have no zero 

order discontinuities. 

Once the integrations of the individual terms are carried out, 1 1m s izφφ φ φ= + Γ − ∆  

is substituted for the mixed layer scalars 1mφ .  The resulting integral TKE budget is: 

0 0 0 0 0

i i i i i

i

z z z z z z z z z z

x y z z
e dz S dz S dz Bdz dz
t

ε
+∆ +∆ +∆ +∆ +∆

+∆
∂

= + + + Φ −
∂∫ ∫ ∫ ∫ ∫  (3.74) 

The individual terms are written as follows: 

( )2 1 1
1

0
22

11 1 1

1
2 2 3

,
6 6 6

iz z
i

sx m u i
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dz z u d uS dz u w u u z z
dt dt

u f zu d z f u v z
dt
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∆ Γ ∆∆ ∆ ∆ ∆ ∆
+ + −

∫
 (3.75) 
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∫
 (3.76) 
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dt

z d z d bz b z
dt dt

+∆
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∆ ∆ ∆  + + ∆ − ∆  
  

∫
 (3.77) 

The first term on the right hand sides of the source integrals represent the contribution to 

TKE from surface fluxes.  In the surface layer, these terms are generally source terms as 

they are in the ZOM. 

 The second terms on the right hand sides of the integrals represent the 

contributions from changes across the entrainment zone and are the same in form and 
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meaning as their ZOM counterparts.  The remaining terms result from the finite 

entrainment zone depth. 

(3.63)-(3.65) and (3.74) form a set of equations for the integral budgets of 

buoyancy, momentum, and TKE for the FOM CBL.  Most authors simplify these 

equations a fair bit.  Such simplifications will be seen in the next two sections. 

3.5.2.2 FOM Entrainment Parameterizations 

Mahrt and Lenschow (1976) developed a FOM set of equations for the entraining CBL 

with wind shear and bottom heating.  They made three assumptions in order for the 

equations to maintain some degree of simplicity.  The first of these assumptions was that 

the entrainment zone thickness is much smaller than the CBL depth.  This allowed them 

to neglect terms of order ( z∆ ) in the momentum and buoyancy balance equations (3.66)-

(3.68), simplifying them to the following forms: 

1
1 ,m i

si
db dzz w b b
dt dt

′ ′= + ∆  (3.78) 

1
1 1 ,

2
m i v i

si i
du dz zz w u u fz v
dt dt

Γ ′ ′= + ∆ + − ∆  
 and (3.79) 

1
1 12

m i u i
si i

dv dz zz w v v fz u
dt dt

Γ ′ ′= + ∆ − − ∆  
. (3.80) 

For the TKE equation, they expected the terms of order ( z∆ ) to still be relatively large, 

but to simplify the TKE equation, they made their second assumption, which is that the 

turbulent fluxes of momentum and buoyancy were linear in the entrainment zone.  

Thirdly, the fluxes at iz  were approximated by 1 /i iw dz dtφ φ′ ′ = −∆ , which is not an exact 

expression in the FOM.  The resulting TKE equation is 
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∫
 (3.81) 

which is very similar to the ZOM TKE equation.  Solving this equation for /idz dt  and 

rearranging it to describe /i sB B−  yields 

0
1

2 2
1 1

1

1 2 2 1
2

1

i

ii

s s

i i

zdz C Cb zB dt
B B z u v

z b z

ε

  ∆
+ − +  ∆−   = =
 ∆ ∆ + ∆+ −  ∆ 

, (3.82) 

where 0C  is the constant specifying the loss of TKE due to transport out of the CBL by 

gravity waves. 

Kim (2001) also worked with the first order model in developing an entrainment 

parameterization for CBLs with wind shear.  She assumed dissipation to be a linear 

combination of production mechanisms and also made the approximation that the 

turbulent flux profiles in the entrainment zone were linear.  This is inconsistent with the 

strict FOM methodology, which specifies quadratic buoyancy flux profiles in the 

entrainment zone.  She assumed / 0d z dt∆  and, based on her evaluation of the integrals 

of TKE budget terms using LES data, this approximation seems somewhat reasonable for 

her LES cases.  Her definition of the CBL depth by the level of maximum potential 

temperature gradient is somewhat inconsistent with FOM, which clearly defines iz  to be 

at the buoyancy flux minimum.  The FOM has a constant potential temperature gradient 

in the entrainment zone, so a unique absolute maximum does not exist, and it is therefore 
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not possible to identify a unique height in the FOM where the potential temperature 

gradient is largest. 

Kim’s parameterization reads: 

( )( )( )
2
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0 1

1
2 / / 2
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s
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Q T
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g z z zθθ θ

−
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, (3.83) 

where 
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 (3.84) 

In these expressions, 1 0.2KA = , 2 0.26KA = , and 3 1.44KA = .  It is unclear what 

entrainment zone thickness ( z∆ ) to use when evaluating the parameterization.  The 

thickness is parameterized by the following formula that she proposes: 

( ) ( )
1 1

2 2 2 2
* * 1 1

1.12 0.08
4 0.1

i
i k k

b zz z Ri Ri
w u u v

− ∆
∆ = + =

+ + ∆ + ∆
. (3.85) 

These equations, along with the FOM equations for buoyancy and momentum listed in 

the previous section, provide a complete set of equations that can be integrated forward in 

time to predict the entrainment rate. 

More recently, Sorbjan (2004) developed a parameterization specifically to 

parameterize the heat flux at the sheared CBL top.  This parameterization takes into 

account the Richardson number of the entrainment zone and therefore requires a finite 

entrainment zone thickness.  The Sorbjan parameterization is 

( )
( )

22
* 1/ 2

1 /
1 1/

S
i H i

c Ri
B c w N

Ri
δ

δ

+
=

+
 (3.86) 
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with 0.015Hc =  and 2 1.5Sc = .  iN  is the Brunt-Väisälä frequency of the interfacial layer, 

and the Richardson number is the interfacial Richardson number 

( )2 2/iRi b z u vδ δ δ δ δ= + , where the velocity and buoyancy jumps are interpreted as their 

changes across the full entrainment zone izδ .  This approach is more consistent with the 

FOM than the ZOM, so it is grouped here with the FOM parameterizations. 

3.5.3 General Structure Model (GSM) 

Fedorovich and Mironov (1995) describe the general structure model (GSM) for the 

shear-free convective boundary layer.  In the GSM, which originated with Deardorff 

(1979), higher order polynomials can be used to describe horizontally averaged 

entrainment zone structure in a more realistic manner than with the ZOM or FOM.  The 

model is based on the idea of the self-similarity of the buoyancy profile in the 

entrainment zone.  For the shear-free case, the basic method for solving the entrainment 

equation with the GSM equations is the same as with the ZOM and FOM.  The buoyancy 

balance equation is integrated over the depth of the mixed layer and the buoyancy flux 

profile is derived.  The buoyancy flux is then used in the integral of the TKE balance 

equation, and the TKE balance equation serves as the cornerstone for the CBL depth 

versus time.  The two parameters that are specified in the GSM are the polynomial 

function describing the buoyancy profile in the entrainment zone, as a function of the 

depth relative to the entrainment zone thickness, and the relative entrainment ratio G, 

which describes the overall stratification in the entrainment zone, as a ratio of the free 

atmospheric stratification.  Fedorovich et al. (2004a) found 1.2G ≈ .  In order for the 

GSM to work well in describing entrainment, the buoyancy profile must remain self-
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similar, meaning that its shape, after application of appropriate scaling, must not change 

with time.  Fedorovich et al. (2004a) evaluated this assumption.  Details of the evaluation 

will be provided in Chapter 4. 
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Chapter 4  

Evaluations of Integral Budget Models of 

Entrainment with LES for the Shear-Free CBL 

4.1 Methods 

This chapter represents a summary of the findings of Fedorovich et al. (2004a), in which 

entrainment prediction of the ZOM and GSM were tested against LES data for shear-free 

CBLs.  In particular, the shear-free, ZOM equilibrium entrainment equations (3.47, 3.48) 

of Zilitinkevitch (1991) were evaluated in detail, and the GSM of Fedorovich and 

Mironov (1995), mentioned in Section 3.5.3, was also evaluated. 

4.1.1 LES Setup 

The LES runs were designed to test the predictions of CBL growth in the equilibrium 

entrainment regime.  Details of the LES code used in the study can be found in Wyngaard 

and Brost (1984), Nieuwstadt and Brost (1986), and Fedorovich et al. (2001a), and in 

Appendix A.  The Boussinesq equations of motion and the thermodynamic equation were 

solved numerically using centered, second order finite difference methods on a staggered 

Cartesian grid.  Pressure was from a diagnostic (Poisson) equation solved using a fast 

Fourier transform in the horizontal directions and a tridiagonal matrix factorization in the 
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vertical.  The boundary conditions were periodic in the horizontal directions.  At the top, 

the Neumann boundary conditions were specified, with gradients the same as their free-

atmospheric values, and at the bottom, Monin-Obukhov similarity functions were applied 

locally for velocity and temperature, along with a no-slip condition for velocity.  

Mathematical details of the LES equations are included in Appendix A. 

The LES settings for the equilibrium entrainment studies are listed in Table 4.1.  

The simulation domain was X×Y×Z = 5×5×4 km3 on a 50×50×200 grid.    No vertical grid 

stretching was applied. 

The grid cells were 100 meters across in the horizontal direction and 20 meters 

tall.  To test the effects of grid anisotropy on the simulation results, an additional run was 

conducted on a 100×100×200 grid.  Results of the testing on the finer grid showed that 

the means and second order statistics on both the finer and coarser grids differed by no 

more than five percent, indicating the runs can be performed on a coarser grid without 

significantly affecting the results of the tests. 

 The initial domain state was a fluid at rest with a two-layer temperature structure.  

The lower layer extended up to 400 meters and had a potential temperature that was 

constant with height.  Within this layer, a random temperature perturbation with a 

standard deviation of 2 K was applied to initiate convection.  Above this layer was the 

free atmospheric layer, whose potential temperature increased linearly with height.  In 

order to test the equilibrium entrainment solutions over a wide range of atmospheric 

stratification, the vertical potential temperature gradient ranged from 0.001 K/m to 0.010 

K/m, which is a range that is considered representative of its variability in the atmosphere.  
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Table 4.1.  Parameters of LES for Test of Equilibrium Entrainment Regime 
Parameter Setting 
Domain size 5×5×4 km3 
Grid 50×50×200 (100×100×200) also used for 

testing 
Surface temperature flux Qs=0.3 Km/s (Bs=9.8×10-3 m2s-2) 

 
Temperature stratification above the CBL /v zθ∂ ∂  varying in 0.001 K/m increments, 

ranging from 0.001 K/m to 0.010 K/m. (N 
ranging from 6×10-3 s-1 to 1.8×10-2 s-1) 

Time step Determined from a numerical stability 
constrant and was typical about 2 s.  

Lateral boundary conditions Periodic for all prognostic variables and 
pressure 

Upper boundary conditions Neumann with zero gradient.  A sponge 
layer was imposed on the upper 20% of the 
model domain 

Lower boundary conditions No slip for velocity with local application 
of Monin-Obukhov similarity functions 
according to Fedorovich et al. (2001a), 
Neumann conditions for pressure, subgrid 
energy, and temperature. 

Subgrid turbulence closure 1.5-order, TKE-based as per Deardorff 
(1980) 

 

 The simulation was started with a constant temperature flux through the bottom 

boundary, and the CBL was allowed to grow until the depth reached 2400 meters, or 60 

percent of the model domain, at which point it was terminated in order to avoid effects 

from the entrainment zone impinging upon the sponge layer.  Turbulence statistics were 

calculated every 200 time steps, with averaging performed over horizontal planes and 

over 100 time steps.  Table 4.2 lists the statistics that were calculated in LES.  These 

statistics were used to derive the ZOM and GSM parameters of entrainment. 
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Table 4.2.  Statistics Calculated in LES 
Order of Statistics Quantities calculated 
First order , , ,u v Eθ  (subgrid energy) 
Second order 2 2 2 2 2' , ' , ' , ' , ' , ' ', ' ', ' 'u v w E w w u w vθ θ  
Third order ' ' ', ' ' 'w w w θ θ θ  

4.1.2 Retrieval of Parameters of Entrainment from LES 

In order to make comparisons between LES data and the ZOM and GSM, the parameters 

of entrainment must be retrieved from LES in a manner consistent with their definitions 

within the model of study.  In particular, the ZOM entrainment zone thickness is zero and, 

therefore, the jumps of buoyancy across the entrainment zone will be different from the 

full buoyancy change across the LES entrainment zone, which has a finite depth.  This 

difference is a result of the smoothing of the upper interface, which could be due to the 

variability of the interface height or turbulent diffusion of the interface.  Lilly (2002a) 

addressed the variability of the upper interface height, and his proposed coordinate 

transformation will be discussed further in Chapter 5. 

 Examples of LES profiles of potential temperature and heat flux, as well as the 

method of deriving the ZOM buoyancy jumps from them, are shown in Figure 4.1.  The 

ZOM jump in potential temperature, vθ∆  is smaller than the change in potential 

temperature across the whole entrainment zone, vδθ .  In order to retrieve vθ∆  from the 

LES data, the lower limit of the entrainment zone was identified by finding the lowest 

level at which the heat flux profile crosses zero (this height is defined as the lower limit 

of the entrainment zone, ilz ), and the temperature at this level was taken as the mixed 

layer temperature.  Then, the linear free atmosphere profile of vθ  was extrapolated down 
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to the level iz  to identify the potential temperature at the upper edge of the interface.  The 

difference between these two temperatures was defined as vθ∆ , and b∆  is related to vθ∆  

by the relation ( )0/ v vb g θ θ∆ = ∆ . 
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Figure 4.1:  Examples of the turbulent heat flux and virtual potential temperature profiles 
obtained with LES for the cases of weak (a, -1/ 0.001 K mvd dzθ = ) and strong (b, 

-1/ 0.01 K mvd dzθ = ) free-atmosphere stratification. The order of profiles in time: dotted, 
dashed, and solid. Upper and lower interfaces of the entrainment zones are shown for 
each CBL evolution stage by straight lines of the corresponding style. The elapsed time 
between the profiles is of the order of 500 s in (a) and 25000 s in (b). Evaluation of bulk 
model variables from the simulated temperature and heat flux distributions is illustrated 
in (b) for profiles given by solid curves. See the text for notation. 
 

 The CBL depth iz  is defined as the vertical distance between the surface and the 

height at which the buoyancy flux reaches its minimum.  Other methods also exist for 

finding iz , such as finding the maximum temperature gradient at the top of the CBL, or 

lifting a parcel from the surface layer to its level of neutral buoyancy.  However, 

Fedorovich et al. (2004a) find that the minimum heat flux is the most dynamically 
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relevant parameter, and it is consistent with the definition of CBL depth in the ZOM.  

The disadvantage of using the heat flux minimum is that it is highly variable in time for 

any finite LES domain.  The maximum potential temperature gradient might be a suitable 

alternative definition, since its height varies much less, and it would also correspond with 

the level of the potential temperature jump in the ZOM (which is the same as the heat 

flux minimum), but the minimum heat flux and maximum temperature gradient do not 

correspond in LES.  It also is inconsistent with the FOM.  Although the FOM is not being 

evaluated here, the models can be evaluated in the most consistent manner by using a 

definition of iz  that works equally well within all models.   

With the ZOM jumps and CBL depth defined in such a manner, the ZOM 

Richardson numbers can be calculated as 2
*/b iRi bz w∆ = ∆  and 2 2 2

*/N iRi N z w= .  Also, the 

CBL depth and the buoyancy jump can be put in their dimensionless forms ˆiz  and b̂∆  

using the definitions defined in Chapter 3 (Equations 3.45 and 3.46).  Finally, the ZOM 

heat flux of entrainment was obtained by extrapolating the linear LES mixed layer heat 

flux profile upward from ilz  to iz .  This was done because the LES profile curved 

smoothly in the entrainment zone, whereas the ZOM profile is linear between ilz  and iz , 

then jumps back to zero. 

The GSM parameters of entrainment were retrieved using the full depth of the 

entrainment zone.  The upper limit of the entrainment zone is typically defined as the 

level, above iz , at which the heat flux profile first returns to zero or becomes reasonably 

close to zero.  Because the value of zero was not always reached within the LES domain, 

the upper limit of the entrainment zone iuz  was defined as the level at which the heat flux 
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increased back to 10 percent of its minimum in the entrainment zone.  For the GSM, the 

entrainment zone thickness was defined as i iu ilz z zδ = − , the potential temperature jump 

was defined as ( ) ( )v v iu v ilz zδθ θ θ= − , and the buoyancy jump was defined as 

( )0/ v vb gδ θ δθ= .  The GSM Richardson number bRiδ  was defined as 2
*/b iRi bz wδ δ= . 

4.2 Results of LES Shear-free Entrainment Experiments 

Figure 4.2 shows the time dependency of the CBL depth.  For ˆ 100t > , the ˆiz  values 

collapse to the predicted 1/ 2t̂  relationship.  Before ˆ 100t = , the relationship is slightly 

different because the CBL is still sensitive to the initial conditions, such as the absence of 

TKE in the 400 meter mixed layer at the start of the run.  Once these conditions are 

forgotten and the TKE has spun up, the values of CBL depth collapse to the ½ power law 

curve.  

The value of 1C  is determined using (3.47), resulting in 1 0.17C = , which is quite 

close to the commonly accepted value of 0.2.  1C  can also be determined using (3.44), 

which involves a direct estimation of ( )/ /i sb dz dt B∆  directly from LES data.  

Fedorovich and Conzemius (2001) obtained the same value using this method.  It should 

be noted that there is a significant scatter in the estimates of b∆  because of the variability 

of the CBL depth with time.  These two methods provide the best estimate of the ZOM 

entrainment flux ratio, which, according to the LES data, is independent of N.  This 

confirms the predicted constancy of the entrainment flux ratio in the simulated range of 

free atmospheric stratification. 
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Figure 4.2:  Dimensionless CBL depth as a function of dimensionless time. Different 
symbols correspond to different thermal stratifications in the free atmosphere: 

-1/ 0.002 K mvd dzθ = (N=0.008s-1) - filled circles, -1/ 0.004 K mvd dzθ = (N=0.011s-1) - 
open circles, -1/ 0.006 K mvd dzθ = (N=0.014s-1) - filled squares, 

-1/ 0.008 K mvd dzθ = (N=0.016s-1) - open squares,  -1/ 0.01 K mvd dzθ = (N=0.018s-1) - 
crosses. The dashed straight line indicates the universal ZOM solution for the constant-
ratio entrainment regime, 1/2

1
ˆˆ [2(1 2 ) ]iz C t= + . 

 
The actual ratio /i sB Bδ  from LES data, as seen in Figure 4.3, is somewhat 

different from the ZOM ratio and is dependent on N.  For weaker stratification, the ratio 

is smaller, and for the strongest stratification studied, the ratio approaches the ZOM 

entrainment flux ratio of 0.2.  These results are similar to those of Sorbjan (1996), who 

also performed an LES study on the effects of stratification on the parameters of 

entrainment, using a larger range of stratification than in the current study.  Sorbjan found 

that the heat flux profiles were sharper when the stratification was stronger, and as is seen 

in the current study, the shapes of the heat flux profiles resemble the ZOM profile (see 

Fig. 3.1) more closely at stronger stratification.  The differences between the ZOM 
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profile and the actual LES profiles have important implications for studying the effects of 

shear on CBL entrainment.  Since entrainment of heat is common to both sheared and 

non-sheared CBLs, measuring the heat flux of entrainment may be the best way to 

compare the two.  Therefore, it is critical to measure the heat flux of entrainment 

precisely and to fully understand its meaning with the framework of the model that is 

used for comparison.  In particular, the discrepancy between the ZOM and LES 

entrainment flux ratios needs to be understood fully before a meaningful comparison can 

be made.  This topic will be discussed further in Chapter 5. 
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Figure 4.3:  Ratio of the buoyancy flux, ' 'w b , at z= iz  to the surface buoyancy flux, sB , 
as function of dimensionless time t̂ tN=  for two stratifications in the free atmosphere: 
weak, -1/ 0.001 K mvd dzθ = (N=0.006 s-1), crosses, and strong, 

-1/ 0.01 K mvd dzθ = (N=0.018 s-1), circles. The straight line corresponds to the ZOM 
estimate of the entrainment ratio 1 ( / ) /i sBC b dz dt∆= , (see Fig. 3.1). 
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The ZOM Richardson numbers bRi∆  and NRi  can be written in terms of their 

dependence on time.  Given the definition of ( )1/3
* s iw B z= and the dependencies for iz  

and b∆  (3.47 and 3.48),  it is easy to find that 2/3ˆ
b NRi Ri t∆ ∼ ∼ .  These Richardson 

numbers then allow for an additional comparison between the ZOM predictions and the 

LES data. 
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Figure 4.4:  Richardson numbers Ri b∆  (circles), Ri bδ (crosses), and RiN  (triangles) as 
functions of dimensionless time t̂ tN=  for 0.006 s-1≤N≤0.018 s-1 
( -1 -10.001 K m / 0.01 K mvd dzθ≤ ≤ ) retrieved using approximated iz (t) curves (a) and 
original iz (t) data (b, only Ri b∆  and Ri bδ  are shown). The dashed lines depict ZOM 
power-law predictions for Ri b∆ ( t̂ ) and RiN ( t̂ ). The solid lines correspond to the 0.39 
exponent, which is the best fit for the Ri bδ ( t̂ ) data in (b). 

 

Additionally, the GSM Richardson number, bRiδ , allows for easy comparison 

with the water tank data of Deardorff et al. (1969, 1980) and Deardorff and Willis (1985) 

since bRiδ  calculations were also performed on those data.  All three Richardson numbers 

retrieved from LES data are shown in Figure 4.4.  Because of the large scatter of the iz , 
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b∆ , and bδ  estimates (due to the variability of the heat flux profile) that are used for the 

Richardson number determinations, the plots of these variables as a function of time were 

subjected to a polynomial fit before being presented in Figure 4.4a.  These fitted data 

correspond very well to the 2/3 power law predicted by the ZOM for bRi∆  and NRi .  The 

raw, unfitted data are shown in Figure 4.4b for comparison, and these data also roughly 

follow the 2/3 power law. 

The GSM Richardson number is dependent on the determination of the upper and 

lower limits of the entrainment zone as well as the CBL top, and the ZOM Richardson 

numbers are dependent on the determination of CBL top and the lower limit of the 

entrainment zone.  The time dependencies of ilz , iz , and iuz  are plotted Figure 4.5.  It is 

remarkable that both ilz  and iz  vary quite synchronously in time.  The zero crossing and 

the minimum of the heat flux both grow according to 1/ 2t̂ , as would be expected for a 

ZOM profile that remains linear with a constant entrainment flux ratio.  It is not 

necessarily expected for the more curved entrainment zone heat flux profiles of LES.  

Unlike ilz  and iz , the upper entrainment zone limit iuz  grows a little more slowly than 

1/ 2t̂ .  In many of the simulations, the heat flux profile is seen to start out with a very deep 

area of weakly negative heat flux, but it becomes more ZOM-like in time.  In order for 

this to happen, iuz  must grow more slowly than iz  and ilz , as seen in the data.  As the 

CBL grows, the strengthening stratification in the entrainment zone appears to retard the 

penetration of thermals into the upper limits of the entrainment zone.  When the free 

atmospheric stratification is stronger, the entrainment zone is also shallower with a more 

ZOM-like heat flux profile.  This result implies that the buoyancy profile in the 

entrainment zone is not always self-similar, as is assumed in the GSM, but it depends on 
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N and t.  Since the ZOM bRi∆  is independent of iuz , it has exactly the predicted 2/3t̂  

dependence.  Because iuz  grows more slowly, bRiδ  has a smaller exponent in its time 

dependence of 0.39ˆ
bRi tδ ∼ . 
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Figure 4.5:  Normalized heights of the lower ( 1/ 2 3/ 2ˆil il sz z B N−= , triangles) and upper 

( 1/ 2 3/ 2ˆiu iu sz z B N−= , crosses) interfaces of the entrainment zone, and the CBL depths 
1/ 2 3/ 2ˆi i sz z B N−=  (circles) as functions of dimensionless time t̂ tN=  for 

0.006 s-1≤N≤0.018 s-1 ( -1 -10.001 K m / 0.01 K mvd dzθ≤ ≤ ). Straight lines correspond to 
1/2 power laws. 
 

If the entrainment rate /idz dt  is scaled by *w , we have the nondimensional 

entrainment rate: 

*

1 idzE
w dt

=  (4.1) 

Direct comparisons with the water tank data of Deardorff et al. (1980) and the 

atmospheric data of Nelson et al. (1989) can be made if E and bRiδ  are calculated.  
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Additionally, the data from LES runs with different free atmosphere stratification and 

surface heat flux can be put on the same curve when the nondimensional numbers E and 

bRiδ  are found.  The GSM-based dependencies /i iz zδ  versus E, /i iz zδ  versus bRiδ , and 

E versus bRiδ  can be found and compared to water tank and atmospheric data.  

Additionally, the dependences E versus NRi  and bRi∆  can be tested against their ZOM-

predicted relationships. 

 Using the definitions of the Richardson numbers and the dimensionless 

entrainment rate, we have: 

1/3 2/3

*

ˆ1 ˆˆi i
i

dz dzE z t
w dt dt

− −= = ∝  (4.2) 

1/3 2 /3
2
*

ˆ ˆˆi
b i

bzRi bz t
w∆

∆
= = ∆ ∝  (4.3) 

2 2
4/3 2 /3

2
*

ˆˆi
N i

N zRi z t
w

= = ∝  (4.4) 

Given these relationships, we have the following ZOM-predicted relationships: 

1 1
b NE Ri Ri− −

∆∝ ∝  (4.5) 

Figure 4.6 shows the dependencies of E on the three Richardson numbers.   E has the 

ZOM-predicted dependency on bRi∆  and NRi .  Some noise appears in the dependency on 

bRi∆  since the relationship requires the retrieval of b∆ and iz , both of which exhibit some 

scatter.  The E dependency on bRiδ  is somewhat different because of the aforementioned 

departure of iuz  from the 1/ 2t̂  curve. 
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Figure 4.6:  Relationships between the dimensionless entrainment rate E and Richardson 
numbers Ri b∆ (circles), Ri bδ (crosses), and RiN  (triangles) derived from LES for 
0.006 s-1≤N≤0.018 s-1 ( -1 -10.001 K m / 0.01 K mvd dzθ≤ ≤ ). The -1 power-law lines show 
ZOM relationships (see Equation 4.5) between E, Ri b∆ , and RiN . 
 

 The relationship between E and bRiδ  in all ten LES cases is explored further and 

compared with the water tank data of Deardorff et al. (1980) in Figure 4.7.  In doing so, 

the parameters izδ  and bδ  have been defined in this study as closely as possible to their 

definitions in Deardorff et al. (1980).  The GSM predictions of this dependency are also 

plotted on Fig. 4.7 for five different values of the free atmospheric buoyancy gradient 

used in LES: 10.008N s−= , 10.011N s−= , 10.014N s−= , 10.016N s−= , and 

10.018N s−= .   All five GSM predictions collapse onto the same curve for 4bRiδ > .  The 

LES data also show quite good agreement with the GSM predictions, showing an 

approximate 3/ 2
bE Riδ

−∝  relationship. 
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Figure 4.7:  Dimensionless entrainment rate E as a function of Ri bδ . Curves present 
calculations based on the GSM model of Fedorovich and Mironov (1995) with NC =0.007 
for different N values in the free atmosphere: N=0.008s-1 - dashed and dotted line, 
N=0.011s-1 - long-dash line, N=0.014s-1 - short-dash line, N=0.016s-1 - dashed and double 
dotted lone, and N=0.018s-1 - solid line. The LES data for the stratification range 
0.006 s-1≤N≤0.018 s-1 ( -1 -10.001 K m / 0.01 K mvd dzθ≤ ≤ ) are shown by circles. Water 
tank data of Deardorff et al. (1980) are presented by crosses. Short-dash straight lines 
present the 1−  and 3 / 2−  power laws discussed in Deardorff et al. (1980) and 
Zilitinkevich (1991). 
 
 

In the GSM, a parameterization is included to model the effects of energy loss due 

to gravity waves radiating from the CBL top.  In particular, the parameterization of 

Zilitinkevitch ( ) ( )33/ 22 / /i s i N N i ilB z C Ri z zδΦ =  was used.  It must be noted with regard to 

this figure that the value of NC  had to be taken unrealistically small for the GSM to fit 

the LES data as shown in the figure.  This suggests a weakness in the GSM. 

Although the LES-derived relationship between E and bRiδ  is 3/ 2
bE Riδ

−∝ , the 

water tank data appears to match the 1
bE Riδ

−∝  relationship more closely.  Interestingly 

Deardorff et al. (1980) also considered the 3/ 2
bE Riδ

−∝  relationship, and the same 
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relationship was also observed and discussed by Turner (1968, 1973).  Zilitinkevitch 

(1991) suggested that the relationship follows 1
bE Riδ

−∝  in more weakly stratified fluids 

and is closer to 2
bE Riδ

−∝  in very strongly stratified fluids.  Given the LES results are in 

this range, and given the scatter that exists in both the LES and water tank data, it can be 

said that LES and water tank data agree reasonably well in general, although the apparent 

power law discrepancy is of some concern.  It may be mostly due to the scatter in the 

estimates of these dimensionless quantities. 

An additional comparison between LES, the GSM, and atmospheric data can be 

found by plotting /i iz zδ  versus E and /i iz zδ  versus bRiδ  (Fig. 4.8).  The GSM shows a 

dependence that changes with time and ends up between the -1/2 and -1 power law.  The 

LES and water tank data overlap to a considerable extent and show a dependence 

somewhere between the -1/2 power law suggested by Boers (1989), based on 

atmospheric data, and the -1 dependence suggested by Deardorff et al. (1980) and 

predicted by the Zilitinkevitch and Mironov (1992) model.  The most significant 

difference between the LES and laboratory data is that the laboratory /i iz zδ  values are a 

little smaller than those of LES.  It is likely that this difference is due to the uncertainty in 

the estimate of the upper limit of the entrainment zone.  In the water tank study of 

Deardorff (1980), the upper limit was defined as the level “beyond which the buoyancy 

flux and its vertical derivative remain vanishingly small”.  In the LES data, we took the 

upper limit to be the level at which the heat flux dropped to 10 percent of the heat flux 

minimum.  Given that the heat flux minimum returned very slowly to zero in some cases, 

it is evident that the determination of /i iz zδ  vs highly sensitive to the precise definition 
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of the upper interface height.  In this particular case, there is a fair bit of room for 

subjectivity between the LES and Deardorff et al. (1980) definitions. 

The same discrepancy is noted in Figure 4.9.  Both the LES and water tank data, 

however, follow the same trend and are follow a / m
i iz z Eδ ∝  relationship, where m is 

fairly close to ¼.  This lies within the range of m values considered by Nelson et al. 

(1989) in their analysis of atmospheric lidar data.  Thus, within the range of uncertainty, 

the agreement among LES, atmospheric, and laboratory data seems to be reasonably good. 

0.1 1 10 100
Riδb

0.1
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δz
i / 

z i
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Figure 4.8:  Relative entrainment layer depth / ( ) /i i iu il iz z z z zδ = −  as a function of Ri bδ . 
For notation, see Fig. 4.7. Short-dash straight lines present the 1/ 2−  power law obtained 
by Boers (1989) from the analysis of atmospheric data and the 1−  power law suggested 
by Deardorff et al. (1980) based on the laboratory data and predicted by the Zilitinkevich 
and Mironov (1992) model. 
 

Finally, one important GSM parameter that may be of potential use in the analysis 

of sheared CBL data is the relative stratification, defined as 

2 izG N
b

δ
δ

= , 
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or, the ratio of the free atmospheric buoyancy gradient to the entrainment zone bulk 

buoyancy gradient.  Evaluation of this parameter from LES data show that for the 

equilibrium entrainment regime, the value of the parameter approaches 1.2G =  at large t̂ . 
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δz
i / 
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Figure 4.9:  Relative entrainment layer depth / ( ) /i i iu il iz z z z zδ = −  as a function of the 
dimensionless entrainment rate E. For notation, see Fig. 4.7. Short-dash straight lines 
correspond to the smallest, 1/ 4 , and largest, 1, values from the exponent range 
considered in Nelson et al. (1989) for conditions of equilibrium entrainment in the 
atmosphere. 

4.3 Summary of Shear-Free LES Experiments 

In summary, the study of Fedorovich et al. (2004a) reached several important conclusions 

with regard to the current study, which will look more specifically at sheared CBLs: 

1) Fedorovich et al. established LES as a reasonable tool for the study of entrainment, 

as the LES results are generally comparable with water tank and atmospheric data. 

2) The ZOM-based entrainment equations work reasonably well to predict the 

b∆ and iz  dependencies on time in the entraining, shear-free CBL, despite the 

differences between LES and ZOM profiles of heat flux.  The time-dependency of 
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b∆  was seen via the bRi∆  dependency that was analyzed.  The analyzed 

dependencies are a rather interesting result and a testament to the robustness of 

the ZOM in the shear-free case, making it a potential tool for the study of the 

sheared CBL. 

3) The GSM entrainment predictions also work reasonably well, but for the GSM, 

some discrepancies are encountered in the upper portion of the entrainment zone 

between LES data and the GSM.  The upper limit of the LES entrainment zone 

iuz  grows more slowly, relative to the CBL depth iz  and the lower limit of the 

entrainment zone ilz , as time proceeds in the simulations, and the buoyancy flux 

profile becomes more ZOM-like as the simulation proceeds.  This contradicts the 

assertion of Haegeli et al. (2000), which states that / /(2 )i s i i iB B z z zδ δ− = − .  

Since the value of NC  in the gravity wave loss parameterization had to be taken 

very small for the GSM to be agreeable with the LES results, it appears the slow 

growth of iuz  relative to iz  may be more the result of damping of entrainment 

zone growth by the strong stratification later in any LES run rather than being the 

result of a loss of energy due to the radiation by gravity waves.  In this regard, the 

CBL entrainment may be slower to forget initial conditions than earlier thought.  

The simpler ZOM does not include iuz  and is therefore unaffected by this 

problem.  However, because of the need to be very careful about evaluating the 

ZOM-defined buoyancy jump at the CBL top ( b∆ ), the ZOM does not lend itself 

as easily to comparison with water tank and atmospheric data as does the GSM. 
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4) Finally, the study of Fedorovich et al. (2004a) established a solid reference for the 

values and dependencies of parameters of entrainment in the shear-free case and 

can serve as a good basis for comparison with LES of sheared CBLs.  In 

particular, the ZOM-defined entrainment flux ratio is consistently around 0.2, 

regardless of atmospheric stratification.  This ratio may therefore provide the most 

direct comparison between sheared and shear-free CBLs, since the entrainment of 

heat, unlike the entrainment of momentum, is common to both CBL types.  Also, 

the interdependencies of the Richardson numbers bRiδ , bRi∆ ,  and NRi , the 

relative entrainment zone thickness /i iz zδ ,  dimensionless entrainment E, and 

dimensionless time t̂ may serve as a basis for comparison with sheared CBLs, 

although there is some uncertainty with the exact interdependencies among 

/i iz zδ , bRiδ , and t̂  (GSM).  The most direct comparison is with the entrainment 

flux ratio. 

Since the entrainment flux ratio is most critical to the comparison between 

sheared and shear-free CBLs, it is necessary to examine its meaning a bit further since the 

reasons for its difference between ZOM and LES are still not perfectly clear.  Chapter 5 

will make further efforts to resolve this issue. 
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Chapter 5  

Entrainment Flux Ratios 

5.1 ZOM versus LES Entrainment Flux Ratios 

The entrainment flux ratio was defined in Chapter 1 as the ratio of the negative of the 

buoyancy flux minimum in the entrainment zone to the surface buoyancy flux.  As 

discussed in Chapter 4 and in Lilly (2002a), the entrainment flux ratio is a bit different 

between the ZOM and LES.  In the ZOM, (3.36) and (3.46) show that 

1 ( / ) /i sC b dz dt B= ∆ , but if the ratio is evaluated directly from the LES profiles, it is 

/i sB Bδ− .  These differences are shown in Fig. 3.1. 

Chapter 4 also noted that there are two methods for retrieving the ZOM 

entrainment flux ratio from LES data, one of which is to directly evaluate ( / ) /i sb dz dt B∆ , 

with b∆  retrieved from LES data in a manner consistent with its definition in the ZOM 

and /idz dt  estimated from the plots of iz  versus t from LES, and the other was to use 

(3.47).  Another method evaluated in that study, but not mentioned in Chapter 4 or 

Fedorovich (2004a), is to extrapolate the LES buoyancy flux profile from the surface, 

through its heat flux zero-crossing, to the level of the buoyancy flux minimum. 

The first of these two retrievals is the most consistent with (3.36) and (3.46), but it 

is complicated by the variability of the heat flux profile, which makes a direct estimate of 
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the CBL growth rate ( /idz dt ) from LES data rather difficult.  (This can be seen by 

looking ahead to Figure 5.4, which shows that / 0idz dt <  locally.)  In order to separate 

the effects of this variability from the CBL growth, it is usually necessary to perform a 

local linear least squares fit on the iz  versus t plot from LES, particularly when statistics 

are calculated on time intervals less than the convective time scale (on the order of 1000s 

for typical CBLs).  If the CBL is not in an equilibrium entrainment regime, which may 

well be the case with shear, it is important to see how the entrainment flux ratio varies 

during the simulation, but the least squares technique filters some of this variability.  This 

fact provides motivation for finding another technique to retrieve the ZOM entrainment 

flux ratio from LES data, and it also makes it tempting to define iz  by some other method, 

such as the maximum temperature gradient. 

The extrapolation technique of finding 1C  seems to work rather well, but the 

direct relationship between the extrapolated buoyancy flux profile and ( / ) /i sb dz dt B∆  is 

more tenuous.  Indeed, the technique retrieves a sharp, ZOM-like entrainment heat flux 

from LES, but it seems to be more graphical than quantitative.  Quantitative and more 

defendable methods are needed to compare sheared CBLs with shear-free CBLs. 

Using the ZOM to analyze shear-free CBLs places them in a framework that 

allows them to be more easily compared with sheared CBLs, precisely because it shows 

the entrainment flux ratio to consistently be 0.2 for entraining shear-free CBLs, 

regardless of atmospheric stratification.  This provides motivation for remaining within 

the ZOM framework.  However, the difference between the ZOM and LES entrainment 

flux ratios raises the following questions: 

1) What is the meaning of the entrainment flux ratio of 0.2? 
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2) If the entrainment flux ratio, evaluated directly from the heat flux minimum 

and surface heat flux in LES, is almost always less than 0.2, then how does the 

ZOM solution with 1 0.2C =  work so well for modeling shear-free CBL 

growth in LES?  It seems that it should overpredict the entrainment rate of 

simulated CBLs. 

3) Can either of these be considered the better entrainment flux ratio (i.e. which 

is more relevant with regard to the fate of TKE in terms of dissipation versus 

consumption by entrainment)? 

4) Can the same ratio be retrieved when using a smoother method of iz  retrieval, 

such as the maximum temperature gradient? 

These questions have been around for some time (e.g. Manins and Turner 1978).  

Lilly (2002a) has tried to explain the ZOM/LES discrepancy by proposing that the 

horizontally averaged heat flux profiles from LES and atmospheric data are actually a 

result of the local variability of the height of the interface between the CBL and the free 

atmosphere.  Locally, this interface should be sharp, and the profiles of buoyancy and 

buoyancy flux should resemble their ZOM counterparts.  If this is true, the profiles of 

LES can then be modeled using the ZOM profile, combined with a probability 

distribution function of the upper interface height, assuming the level of the interface 

height has a Gaussian distribution.  Within any CBL with this type of variable interface 

height, the ZOM profiles should be retrievable if a coordinate transformation is first 

performed by normalizing the height coordinate by the local interface height and then 

performing the horizontal averaging in this new coordinate system, which he uses in a 

new CBL closure (Lilly 2002b). 
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Unfortunately, testing these ideas with the LES data was not terribly fruitful.  

When the coordinate transformation was attempted, the heat flux profile appeared to 

sharpen slightly for LES runs with the largest stratification in the free atmosphere, but the 

profiles were still not very ZOM-like, and some numerical artifacts were also seen in the 

heat flux profile.  Lilly (personal communication) suggested that the inability of LES to 

reproduce the ZOM profiles might have to do with numerical artifacts of LES: the finite 

grid cell size and the mixing effects of the subgrid model limit the ability of LES to 

resolve a sharp interface.  Lilly (2002a) mentions the idea of performing LES within the 

normalized coordinate system, but this would require a considerable modification of the 

current code.  Additionally, atmospheric lidar data (Kiemle et al. 1995; Davis et al. 2000) 

show that the upper interface height isn’t necessarily sharp everywhere.  At the tops of 

plumes, where local deformation enhances gradients of water vapor, potential 

temperature, and aerosols, the interface appears sharp on the lidar data, but in between 

rising plumes, where the air is slowly descending, the interface becomes considerably 

more diffuse.  Additionally, one might not expect such a sharp interface in the presence 

of shear, which would likely generate Kelvin-Helmholtz type instabilities that would 

turbulently diffuse the interface. 

It seems worthwhile to test some other ideas to retrieve the ZOM entrainment heat 

flux from LES data.  One idea is to use the ratio of the negative and positive areas of the 

heat flux profile.  For the ZOM with an entrainment flux ratio of 1C , the zero crossing 

height of the heat flux profile occurs at 1/(1 )iz z C= + .  Therefore, the zi-normalized heat 

flux profile is: 
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( )1
( ) 1 1 1

i

s i s i i

dzbw b z z z zdt C
B z B z z

∆ ′ ′
= − − = − + 

 
. (5.1) 

Integrating this over the depth of positive heat flux yields the positive area: 

( ) ( )
1/(1 )

1
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1 1
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z C

+  
= − + =  + 

∫ . (5.2) 

The negative area is 

( ) ( )
1
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1

1
1/(1 )

1 1
2 1

i

i

z
i

N
iz C

C zzA C dz
z C+

 
= − − + =  + 

∫ . (5.3) 

Taking the ratio and solving for 1C  yields: 

1
N

P

AC
A

=  (5.4) 

The same can be done with the LES profiles.  If the integral heat flux is the same in the 

LES profile as it is in the ZOM, one can then retrieve the ZOM entrainment flux ratio 

( )/ /i sbdz dt B∆  from a single, horizontally averaged, LES heat flux profile.  Using this 

ratio follows the Eulerian partitioning ideas of Van Zanten et al. (1999). 

Tests show that 1C  is about 10 percent higher using this method than when using 

the direct estimate ( )/ /i sbdz dt B∆  from LES.  Nevertheless, 1C  evaluated from (5.4) is 

essentially constant with time when the equilibrium entrainment regime is reached in the 

shear-free CBL, and it is independent of N.  Thinking about this further, there really is no 

physical reason for the actual negative and positive areas in the heat flux profile to be 

exactly the same as they are the ZOM profile, but if the ideas presented in Lilly (2002a) 

are exactly true, then they should be. 
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 The alternative method of estimating 1C  is the heat flux extrapolation technique 

mentioned above.  This may seem like a less quantitative method, but it provides a closer 

match to ( )/ /i sbdz dt B∆ .  This 1C  estimate is also constant with time and independent of 

N in entraining CBLs, suggesting it may be the best estimate of ( )/ /i sbdz dt B∆  that one 

can obtain from an individual profile.  Figure 5-1 shows the results of using these two 

methods of estimating 1C  from the individual profile and compares them to the direct 

estimate of ( )1 / /i sC bdz dt B= ∆ .  As can be seen in this figure, the heat flux 

extrapolation matches ( )/ /i sbdz dt B∆  more closely.  However, given the relative noise in 

both these estimates, they are, for most practical purposes, essentially the same. 

5.2 Bulk Model Experiments 

These results still do not explain whether the difference between the ZOM and LES 

entrainment flux ratios is due to the variability of the upper interface height as in Lilly 

(2002a) or if the ZOM entrainment flux ratio simply does not apply to the real CBL, 

making the LES ratio the best to use.  This matter might be settled by performing some 

experiments with higher order analytic profiles of heat flux and buoyancy and relating 

them to the ZOM profiles.  After performing these experiments, one might be able to 

understand why the extrapolation method works as well as it does (compared to a more 

quantitative method such as the Eulerian partitioning method), and why the LES 

entrainment flux ratio is different from the ZOM ratio, despite the fact that the latter 

predicts zi(t) in LES so well. 
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Figure 5.1:  Comparison of the methods to determine the ZOM entrainment flux ratio 
from LES.  The red line shows the area integral method, the blue line refers to the heat 
flux extrapolation method, and the black dots show the direct estimate. 

 

The experiment is designed to quantify the differences among the profiles of 

buoyancy and buoyancy flux in the ZOM, higher order analytic models, and LES, 

requiring the equality of integral heat content between the ZOM profile and any higher 

order profile.  The underlying base CBL growth rate is assumed to be the ZOM growth 

rate for all cases, with the CBL depth defined by the minimum of heat flux.  For the basic 

case, we use an entrainment regime with a surface potential temperature flux of 0.3 Km/s, 

a potential temperature stratification of 0.010 K/m, and a ZOM entrainment flux ratio of 

0.2.  The actual values of N and Bs are not important in the models because the equations 
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are scaled, but they are important for direct comparisons with the simulations.  We will 

start with the simplest models and proceed upward in complexity until a model is found 

that has a smaller entrainment flux ratio than the ZOM, but dzi/dt is the same. 

The unscaled ZOM equations for iz  versus t and b∆ versus t in the equilibrium 

regime are: 

( ) 1/ 21/ 2 1
12 1 2i sz B N C t−= +    (5.5) 

( ) 1/ 21/ 2
12 / 1 2sb B N t C∆ = +    (5.6) 

These serve as the basic equations for iz  and b∆ , against which the higher order models 

will be compared. 

5.2.1 First Order Model 

For the higher order models, we begin with the FOM.  For the comparison to be 

quantitative, we require the integral heat content to be the same between the ZOM and 

FOM.  In the FOM, the entrainment zone is a layer of finite depth with a linear buoyancy 

profile.  The heat flux divergence in this layer is positive, which removes buoyancy from 

the base state profile.  This loss must be compensated by a buoyancy gain in the mixed 

layer in order for the integral of buoyancy to be conserved.  This condition can be stated 

mathematically: 

( ) ( )
0

i i

i

z z z

FOM ZOM FOM ZOM
z

b b dz b b dz
+∆

− − = −∫ ∫  (5.7) 
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Integrating these expressions using the linear buoyancy profile of the FOM provides the 

following expression relating the FOM buoyancy change across the entrainment zone to 

the ZOM buoyancy jump: 

1
2

1 0 1
2 i

zb b N z
z

−
 ∆

∆ = ∆ + + ∆ 
 

, (5.8) 

where the first term on the right hand side represents a decrease in 1b∆  (relative to 0b∆ ) 

due to the warmer mixed layer, and the second term represents the increase due to a 

deeper entrainment zone.  The expression for FOM mixed layer buoyancy, which, as in 

the ZOM, is constant with height, is: 

( )
1

2 2
1 1 0 1

2m s i s i
i

zb b N z z b b N z b
z

−
 ∆

= + + ∆ − ∆ = + − ∆ + 
 

, (5.9) 

where 0b∆ and 1b∆  are the ZOM and FOM values for buoyancy jump across the 

entrainment zone, z∆  is the finite entrainment zone depth, and sb  is a constant surface 

base state buoyancy that would result from the extrapolation of the free atmospheric 

profile to the surface.  Equation (5.9) is similar to the ZOM condition for mixed layer 

buoyancy, but because the last term on the right hand side is smaller than 0b∆ , the mixed 

layer buoyancy is greater than it is in the ZOM. In the entrainment zone, the buoyancy as 

a function of height is: 

2 1
1 0 1i

s
z zb b N z b X

z
− − = + + ∆ − ∆ 

, (5.10) 

where 
1

1 1
2 i

zX
z

−

−  ∆
= + 
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The buoyancy flux profiles can be calculated by taking the time derivative of 

(5.10) and integrating the buoyancy balance equation, / /b t B z∂ ∂ = −∂ ∂ , upward from the 

surface to the top of the mixed layer, keeping in mind that the quantities iz , 0b∆ , and z∆  

are time-dependent.  The profile is linear in the mixed layer and extends to its minimum, 

which is located at iz  and has the value 

( )2 1
0( ) i

i s i
dz dB z B z N b X
dt dt

− = − − ∆  
. (5.11) 

The buoyancy flux profile in the entrainment zone is: 

( ) ( )

( )
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b X dzdB z z B z b X z z
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−
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−

 ∆
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− ∆
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 (5.12) 

These FOM equations for buoyancy and buoyancy flux are now written in terms of their 

ZOM counterparts and the finite entrainment zone thickness z∆ .  The only remaining 

item is to make some assumption about the finite entrainment zone depth as a function of 

time. To avoid making the analysis more complicated than is absolutely necessary, we 

assume 0.2 iz z∆ = , giving the following expression for the heat flux minimum: 

1
2 0( ) 1

2
i

i s i
i

dz d bzB z B z N
dt z dt

−   ∆∆
 = − − + 
   

 (5.13) 

This produces an entrainment flux ratio, /i sB B− , of 0.22, which is constant in time but 

10% greater than the ZOM ratio.  Because the mixed layer temperature is warmer in the 

FOM than in the ZOM, more heat must be mixed downward to achieve the higher 

temperature. Therefore, the FOM cannot explain the smaller entrainment flux ratio in the 

LES profiles. 
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5.2.2 Second Order Model 

We next shift to a second order model (SOM) in the entrainment zone and relate the 

SOM equations to the ZOM equations. Where the SOM parameters of entrainment differ 

from their counterparts in the ZOM or FOM, they are denoted by the subscript “2” to 

show they are specific to the SOM.  The following conditions exist for buoyancy: 

( )
( )

2
2 2

2
2 2

2

s i

s i

i

b b N z z b z z
b b N z z z z z

b N z z
z

= + + ∆ − ∆ =
= + + ∆ = + ∆

∂
= =

∂

 (5.14) 

The third condition prevents the heat flux minimum from occurring at a level above iz . 

The buoyancy profile in the entrainment zone is 

( ) ( )
2

22 2 2
2 2 2 2

2
s i

b N zb b b N z z z z
z

∆ − ∆
= − ∆ + + ∆ + −

∆
, (5.15) 

and the buoyancy in the mixed layer (below iz ) is 

( )2
2 2 2m s ib b N z z b= + + ∆ − ∆ . (5.16) 

Using the constraint on the integral heat content (5.7), the profile in the entrainment zone 

can be written in terms of ZOM quantities: 

( )2
2 1

0 2
2

1i
s

z z
b b N z b Y

z
−

 −
= + + ∆ − 

∆  
, (5.17) 

where 

1
1 221

3 i

zY
z

−

−  ∆
= + 

 
, (5.18) 

and 

1 2
2 0 2b b Y N z−∆ = ∆ + ∆ . (5.19) 
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The buoyancy balance equation is again integrated up to iz : 

( )2 1
0( ) i

i s i
dz dB z B z N b Y
dt dt

− = − − ∆  
, (5.20) 

and the buoyancy flux profile in the entrainment zone is 

( ) ( ) ( )3 2( )
3 2i i i i
S UB B z z z z z V z z= − − − − + − , (5.21) 

where S, U, and V are defined as follows: 

 
1

0
2
2

b YdS
dt z

− ∆
=  ∆ 

, 
1

0
2
2

2 ib Y dzU
z dt

−∆
= −

∆
, and ( )1

0
dV b Y
dt

−= ∆ . (5.22) 

The only way to reduce the integral heat content below zi is to allow the curved 

part of the buoyancy profile to extend below zi.  We therefore allow the buoyancy profile 

to curve slowly back to / 0b z∂ ∂ =  below iz  while still holding to 2/b z N∂ ∂ =  at iz .  In 

order to conserve heat, it is necessary to shift the entrainment zone profile rightward (to 

higher temperatures) by a constant amount shb . This slightly reduces the thickness of the 

entrainment zone above iz , and the actual difference between the upper limit of the 

entrainment zone and iz  is: 

2 1
0

1 sh
rev

bz z
b Y −∆ = ∆ −

∆
. (5.23) 

The thickness of the layer between iz , where 2/b z N∂ ∂ = , and the mixed layer, where 

/ 0b z∂ ∂ = , is: 

( )
2 2 2 2

2 2
12

02 2 22l
N z N zz

b Yb N z −

∆ ∆
∆ = =

∆∆ − ∆
. (5.24) 

The expression for shb is derived by requiring the conservation of heat and reads 
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The expressions for lz∆ and shb  must be solved iteratively. Then, the buoyancy flux at the 

top of the mixed layer can be calculated by integrating the buoyancy balance equation, 

resulting in 

( )
2

2 1
0( )

2
l

i l s i l i sh
N zdB z z B z z N z b Y b

dt
− ∆

− ∆ = − − ∆ − ∆ − + 
 

, (5.26) 

where 

4 4 2
02 2 2

1 2 1
0 02 4

ld z d bN z d z N z
dt b Y dt b Y dt− −

∆ ∆∆ ∆ ∆
= −

∆ ∆
. (5.27) 

The integration can be continued into the entrainment zone, where the general buoyancy 

flux expression becomes 

( ) ( ) ( )

( )

3 23 2( )
3 2

.

i l i l i l

sh
i l

S UB z B z z z z z z z z

dbV z z z
dt

   = − ∆ − − + ∆ − − − ∆   

 + − − + ∆ 
 

 (5.28) 

Evaluating this at iz z=  simplifies the expression somewhat: 

( )3 2 22( )
3

sh
i s l i l l i l i

dbB z B S z z z U z z z z V
dt

  = + ∆ − ∆ + ∆ − ∆ + −   
   

. (5.29) 

Making the same assumption 0.2 iz z∆ =  yields a constant entrainment flux ratio of 0.10, 

which is half what it is in the ZOM (the assumption of 2 iz z∆ ∼  causes 0/ /shdb dt b dt∆∼ , 

avoiding the evaluation of a very complicated expression for /shdb dt ). The last term in 

the above expression for ( )B z causes the heat flux minimum to occur at a level about 1% 
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below iz .  In hindsight, the condition / / 0b t B z∂ ∂ = −∂ ∂ =  should have been used, but 

the equations would have been more complex to derive.  

We can understand these results by analyzing them graphically.  The buoyancy 

profiles from this exercise using 2 0.18 iz z z∆ = ∆ =  are compared with LES data in Figure 

5-2.  The LES data, taken at t=10,000s, have smooth profiles and fit the SOM model 

more closely than the others.  In the mixed layer, the buoyancy profiles of LES, ZOM, 

and SOM agree rather closely.  The ZOM and FOM both have a sharp interface at iz .  

The ZOM interface is between the CBL and the free atmosphere, and the FOM interfaces 

are between the mixed layer and the entrainment zone, but the basic point is that the 

buoyancy flux profile at iz  is sharp. 

 In order for the buoyancy balance equation / /b t B z∂ ∂ = −∂ ∂  to hold, the 

buoyancy flux profile must also be sharp.  The buoyancy flux profiles for t=10,000s are 

plotted in Figure 5-3.  Again, the LES data most closely resemble the SOM profiles.  The 

ZOM and FOM profiles are both sharp. 

We find that the differences between the ZOM and SOM entrainment flux ratios 

( ) /i sB z B−  are mainly due to the lack of sharpness of the interface in the SOM profiles.  

Only when the interface was made diffuse analytically did the entrainment flux ratio 

become less than its ZOM counterpart.  Considering these results in terms of the 

horizontally averaged CBLs in LES, it is difficult to say whether the result is due to the 

variability of the upper interface height as in Lilly (2002a) or if the interface becomes 

truly diffuse locally.  The CBL turbulence structure, which will be discussed in Chapter 8, 

shows the interface definitely becomes diffuse, but both mechanisms appear to play a role.  

If the departure of /i sB Bδ  in LES from the ZOM /i sB B−  (see Fig. 3.1) is due to either 



 

 128

of these mechanisms, then the integrals of buoyancy and buoyancy flux should be 

conserved.  By the way we defined the FOM and SOM models here, the buoyancy is 

definitely conserved.  Analysis of LES results (see Section 5.1) shows that the buoyancy 

flux integral is definitely conserved.  Calculating (5.4) from the SOM profiles shows that 

the buoyancy flux integral matches the ZOM integral very closely. 

The final portion of the experiment was to vary the entrainment zone thickness, to 

the extent possible, to test the sensitivity of the heat flux profile to the entrainment zone 

thickness to try to reproduce the results of Chapter 4 (Fedorovich et al. 2004).  The 

results of this test for the range of entrainment zone thickness over which a solution 

exists are shown in Table 5.1.  The entrainment flux ratio ( ) /i sB z B−  approaches its 

ZOM shear-free counterpart 1C  as the entrainment zone thickness goes to zero, and it 

approaches zero as the entrainment zone thickness becomes larger.  The results are 

consistent with the differences between the LES entrainment flux ratios in strongly versus 

weakly stratified environments as seen in Chapter 4.  Weaker background buoyancy 

stratification means a deeper entrainment zone, and, according to the results here and in 

Chapter 4, that means the LES entrainment flux ratio will be much smaller than it is in 

the ZOM.  Also, Table 5.1 shows the ratio /N PA A  departs from 0.2 much less than 

( ) /i sB z B−  does, suggesting the integral buoyancy flux should remain approximately the 

same (actually this can be expected anyway for a square root funtion like /N PA A ), and 

the diffuse interface does not necessarily change the overall meaning behind 1 0.2C = .  

That is, the integral production and destruction of TKE by buoyancy flux remains about 

the same if the flux profile is made more diffuse.  Using the ZOM simply allows the 
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differing heat flux profiles to be placed within a simplified framework in which their 

entrainment heat fluxes can be directly compared.  These results are more robust for the 

LES profiles than they are here.  /N PA A  retrieved from LES varies much less than it 

does in the SOM experiments, and it is essentially constant for shear-free CBLs. 

Since we are interested in learning the overall fate of shear- or buoyancy flux-

produced TKE, the most direct way to discover this fate is to calculate the integral 

production and destruction of TKE.  The results of Section 5.1 show that the 

extrapolation method or the integral method (Eqn. 5.4) produce very similar results. 
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Figure 5-2:  Buoyancy profiles in the respective model integrations for 2 0.18 iz z z∆ = ∆ = . 
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Figure 5-3:  Buoyancy flux profiles in the respective model integrations for 

2 0.18 iz z z∆ = ∆ = . 

 

Table 1.  Entrainment Flux Ratio of SOM for Given 2z∆  Values 

2 / iz z∆  /i iz zδ  /i sB B−  /N PA A  Extrapolated 
Linear 

0.05 0.06 0.200 0.219 0.206 
0.10 0.13 0.185 0.232 0.210 
0.15 0.21 0.153 0.231 0.209 
0.18 0.26 0.125 0.221 0.206 
0.20 0.30 0.103 0.211 0.202 
0.21 0.32 0.092 0.204 0.200 
0.25 0.37 0.039 0.168 0.187 
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5.3 Comparison of Methods of Defining CBL Depth 

With the previous analyses in mind, we attempt to answer the fourth question listed at the 

beginning of this chapter.  Since the height of maximum potential temperature gradient 

produces a much less variable CBL depth than does the minimum heat flux level, we want 

to make sure it is fully evaluated before ruling it out as the method of choice for 

determining iz .  To answer this question, we can perform tests to distinguish which 

method of determining iz  might be the best and most consistent with the ZOM-based 

entrainment equations.  We will determine the constant 1C  using both the maximum 

potential temperature gradient and minimum heat flux methods and compare their 

respective equilibrium entrainment solutions (3.47) with LES data. 

For these tests, we take the actual LES profiles and work with them in a way to 

retrieve ZOM-based parameters in a manner most consistent with their definitions in the 

ZOM.  We do this in a slightly different manner than Chapter 4.  We identify iz  using 

either the heat flux minimum or the maximum buoyancy gradient (note that these are at 

exactly the same height in the ZOM but not in LES).  Then, all levels below iz  are 

defined to be part of the mixed layer, and the buoyancy is averaged over this depth.  The 

free atmospheric buoyancy profile is extrapolated down to iz  to find the value of 

buoyancy at the upper edge of the interface.  Finally, the net cooling between iz  and the 

top of the entrainment zone is integrated, and this integrated heat deficit is subtracted 

from the CBL heat integral to find the mixed layer buoyancy.  The ZOM buoyancy jump 

b∆  is then defined as the difference between the buoyancy at the upper edge of the 

interface and the mean mixed layer buoyancy after the heat removal.  This entire process 
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is done in parallel, using the heat flux minimum and buoyancy gradient maximum 

methods to define iz  and b∆ . 

 From these two separate estimates of iz  and b∆ , estimates of the constant 1C  are 

made using (3.44).  Then, the respective 1C  estimates are used in (5.5), and the resulting 

ZOM equilibrium entrainment solutions are plotted against the LES data.  Whichever 

method produces the closest match with LES data will be deemed the better of the two. 

Figure 5-4 shows the results.  The LES 1C  was determined using the definition of 

the entrainment flux ratio ( )/ /i sbdz dt B∆  with iz  and b∆ determined in a manner 

consistent with the respective method and /idz dt  determined using local least squares 

fits.  The black lines show the result of deriving 1C  from the minimum of buoyancy flux.  

For all times, the analytic solution is very comparable with the LES iz .  Indeed, there is a 

bit of scatter in the iz  estimates using this method, but the analytic solution stays 

generally within this scatter from very early to very late in the LES run. 

 If the maximum of the potential temperature gradient is used (see the red lines in 

Fig. 5-4), the scatter in iz  estimates is very small.  However, the analytic solution drifts 

from the LES-determined iz  during the simulation, and overall, it does not match the 

LES iz  versus t plot as well as in the case using the minimum heat flux method. 
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Figure 5.4:  Comparisons between CBL depth estimates using the maximum potential 
temperature gradient and heat flux minimum methods.  Red lines refer to the maximum 
potential temperature gradient method, and the black lines refer to the heat flux minimum 
method.  Dashed lines show the analytic solution using these respective methods. 
 

In the maximum temperature gradient case, the analytic solution for iz  (see Eqn. 

5.5) seems to grow faster than the LES iz  during most of the run.  The estimate of 1C  

using the maximum temperature gradient method is approximately 0.3, whereas it is 0.2 

using the buoyancy flux minimum.  The high estimate using the maximum gradient 

seems to affect the performance of the analytic solution relative to the LES iz .  This 

overestimate occurs because both iz  and b∆  are estimated larger using the maximum 

temperature gradient method (compared to the minimum heat flux method), and the 
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inconsistency between the analytic and LES plots indicates the maximum temperature 

gradient is not the most dynamically relevant method to use, at least within the ZOM.  

The inconsistency is really not all that bad, but the data show that the minimum of heat 

flux works better than the maximum temperature gradient. 

Regardless of the results of this exercise, the maximum potential temperature 

gradient is still the only way to determine iz  from balloon-borne soundings of the 

atmosphere, so it is necessary to calculate CBL depths using both methods before 

comparing them to atmospheric data. 

5.4 Summary 

Two main conclusions are reached in this chapter.  The first is that the height of 

the minimum heat flux in the entrainment zone is the most dynamically meaningful 

definition of the CBL depth.  Secondly, the LES heat flux minimum does not have to be 

the same as the ZOM heat flux minimum in order for the framework of the ZOM to apply 

to LES data.  The LES-derived entrainment flux ratio can be less than that predicted by 

the ZOM-based entrainment equations, but the integral production and destruction of 

TKE by buoyancy flux remains essentially the same as it is in the ZOM, as was seen in 

Section 5.1.  The model experiments of Section 5.2 have shown that the differences 

between the ZOM entrainment flux ratio /i sB B−  and the LES entrainment flux ratio 

/i sB Bδ−  can be reproduced when the interface is made less sharp in the analytic model.  

This result can apply to LES, regardless of whether the reduced sharpness is due to the 

variability in the height of the interface or if it is due to the interface becoming more 
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diffuse locally.  Either way, the integral production and destruction of TKE by buoyancy 

flux is the same.  The main advantage of analyzing LES data within the ZOM framework 

remains: the entrainment flux ratio of the shear-free CBL is brought to a common value 

of 0.2 regardless of stratification and buoyancy flux at the surface, and this provides the 

most convenient framework for comparing sheared CBLs to shear-free CBLs. 
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Chapter 6  

Methodology 

6.1 Large Eddy Simulation Setup 

The LES code used in this study has already been described in Chapter 4, so this section 

will concentrate on the selection of the LES domain and the parameters of shear, surface 

buoyancy flux, and free atmospheric stratification that will be used for the sheared CBL 

experiments. 

6.1.1 LES Domain 

Within the context of the horizontal averaging of the CBL turbulence, as has been 

described in Chapter 3, it is important to take into account the sampling of the CBL 

structure in order to construct a representative estimate of turbulence statistics, as well as 

the computer processor speed and memory limitations.  For sufficient statistical sampling, 

the width of the LES domain must be significantly wider than the depth of the CBL in 

order to sample the largest number of possible turbulence structures to construct 

turbulence statistics.  On the other hand, the domain must also be sufficiently deep to 

resolve the vertical structure of turbulence within the CBL.  Because of the isotropy 
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assumptions of the subgrid turbulence closure, horizontal grid cell dimensions should be 

approximately equal to the vertical dimensions. 

 It is important also to resolve structures in the interfacial layer that are the most 

important contributors to entrainment.  General consensus in the boundary layer 

community to date is that 20 meters is the maximum grid spacing that should be used in 

this layer for dry CBLs.  The grid spacing is most critical for CBLs growing through 

strong stratification, in which case the entrainment zone is shallower. 

 With these considerations in mind—grid cell size, CBL aspect ratio, vertical 

resolution, for a computer with 2 Gigabytes of memory and a 2.8GHz processor, a grid of 

256×256×80 is the optimal to use.  With 20-meter grid cells, this makes the LES domain 

X×Y×Z = 5.12×5.12×1.6 km3. 

6.1.2 Selection of the Parameter Space for Sheared CBLs 

The study of Fedorovich et al. (2004a), described in Chapter 4, provides groundwork for 

much of this study.  It used a LES parameter space of free atmospheric stratification of 

0.001 K/m to 0.010 K/m, which is roughly representative of its range in the atmosphere.  

That same range is adopted here, but in order to allow more computer time for 

investigation of the shear parameter space, only three gradations of stratification are used: 

/ zθ∂ ∂ =0.001 K/m, 0.003 K/m, and 0.010 K/m (N=0.006, 0.010, and 0.018 s-1).  

Fedorovich et al. (2004a) and Sorbjan (1996a) performed a more thorough investigation 

of the effects of stratification on entrainment, so it is not necessary to investigate a large 

number of different free atmospheric stratifications in this study. 
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If we want to study the effects of shear on CBL entrainment, the best way to 

choose the parameter space to be investigated by LES is to perform a scale analysis on 

the entrainment equations themselves.  In reality, the method of selecting the particular 

combinations of shear and buoyancy forcing in this study had to do a bit with trial and 

error.  Preliminary simulations showed little noticeable enhancement of CBL growth 

(Conzemius and Fedorovich 2002), so the shear in the runs was increased and the surface 

buoyancy flux decreased until significant effects on CBL growth could be seen.  

Nevertheless, a scale analysis can be used to more fully elucidate the conditions under 

which the buoyancy and shear forcings for entrainment might be expected to be of nearly 

equal magnitude. 

The easiest way to do this is with the ZOM entrainment equations developed in 

Chapter 3.  We focus on the TKE equation (3.38), which is repeated below, and estimate 

the values of each of the terms with various forcings of surface buoyancy flux, 

stratification, and shear. 

( )2 2

0

0

1' ' ' '
2

1 ' '
2

i

i

z
i

s sm m

z
i

s i i

dze dz u w u v w v u v
t dt

dzw b b z dz
dt

ε

∂
= − − + ∆ + ∆

∂

 + − ∆ − Φ − 
 

∫

∫
 (6.1) 

Because we are currently interested in the relative differences between shear-forced 

turbulence and buoyancy-forced turbulence, we concentrate on the terms that describe 

shear and buoyancy forcings. 

For a typical value of free atmospheric stratification, we adopt the / zθ∂ ∂ =0.003 

K/m for this scale analysis.  For the surface shear terms, we can assume a typical mixed 

layer momentum of 10 m/s, and a surface friction velocity of 0.5 m/s.  This provides an 
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estimate of the surface shear contribution to the integral TKE of 2.5 m3/s3.  For the 

entrainment zone shear term, we can assume a typical thermal wind component 

associated with a horizontal temperature gradient of 10 K per 1000 km.  This provides a 

shear magnitude of 0.003 s-1.  If the CBL is 1000 meters deep, and assuming the shear 

across this layer accumulates at the top of the CBL, the velocity jump would be 3 m/s.  

Squaring this would yield approximately 10 m2/s2.  For the CBL growth rates, we use the 

values from the Fedorovich et al. (2004a) study, which occurred with a surface heat flux 

of 0.3 Km/s, which is typical for a day with relatively strong sensible heating.  /idz dt  

would be 0.15 m/s with this heating rate.  This yields an entrainment zone shear term of 

approximately 0.8 m3/s3. 

Next, the buoyancy flux term can be split into two parts—the surface flux and the 

entrainment flux.  The former is 0.01 m2/s3 times the boundary layer depth, iz , yielding 5 

m3/s3 for the surface buoyancy flux term.  Since the entrainment flux ratio is 0.2 in the 

ZOM for the shear-free CBL, we can say that /ibdz dt∆  is 0.2 times w b′ ′  and therefore, 

the entrainment zone heat flux term would be -1 m3/s3.  Combined, these two terms 

amount to 4 m3/s3. 

 From this scale analysis, the buoyancy flux terms are nearly an order of 

magnitude greater than the entrainment zone shear term.  Additionally, the surface shear 

term may or may not be an important contributor to the generation of TKE that might 

enhance entrainment, since previous analyses of TKE budgets near the surface shows that 

dissipation largely balances the surface shear generation (Deardorff and Willis 1982; 

Moeng and Sullivan 1994). 
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 Since the CBL runs in the domain are terminated when iz  is approximately 1000 

meters deep, a more typical iz  for the LES run might be closer to 500 meters.  

Considering this shallower CBL depth in the scale analysis results in no change in the 

surface shear term, and the entrainment zone shear term and buoyancy terms are 0.4 m3/s3 

and 2 m3/s3 respectively.  Thus the surface shear may be relatively more important for a 

shallower CBL, but the effects of entrainment zone shear and buoyancy are still the same 

relative to one another. 

Based on this analysis, one of two things is necessary for the effects of shear to be 

nearly equal to the effects of buoyancy in the LES runs.  The first is for the shear to be 

stronger.  An initial momentum of 20 m/s in the flow provides a strong surface shear that 

is not unrealistic for atmospheric cases, so that value is adopted here.  For the 

entrainment zone shear term to become comparable in magnitude to the buoyancy flux 

term, the geostrophic shear would need to be increased to a value several times its typical 

value.  One must keep in mind that such levels of shear in the geostrophic wind would 

also require horizontal temperature gradients that are more than three times the typical 

value of 10 K per 1000 km and that these temperature gradients cannot be represented 

using the periodic boundary conditions of LES.  The setup therefore does not represent 

the atmospheric thermal wind—neither in terms of its magnitude nor in terms of its 

temperature gradients.   If the temperature gradients were represented, they would not be 

as large as the local temperature gradients associated with thermals, and they would also 

not generate thermally direct circulations whose vertical velocity scales would compete 

with the velocity scales of convective elements within the CBL.  It must also be noted 

that where such a strong thermal wind exists, the conditions are possibly favorable for 
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baroclinic instability, and in the real atmosphere, the relatively pristine conditions of LES 

(with zero mean upward vertical motion over a horizontal domain of 5 km width) are 

unlikely to be seen. 

However, despite all these apparent problems, the strong values of shear 

mentioned above can be found in the atmosphere—they are just not geostrophic.  

Assuming geostrophic balance in the initial simulation wind profiles provides an easy 

method for keeping the forcing constant with time as the CBL grows in the simulations.  

Also, the idealized setup allows for a more detailed analysis of the dependence of CBL 

growth on shear, as the shear values should change slowly and smoothly during the 

simulations.  LES is therefore being used in a manner to isolate the effects of shear on 

entrainment.  The use of actual atmospheric profiles in LES will be addressed in Chapter 

9. 

 The other way to allow the relative effects of shear to be seen is to decrease the 

surface buoyancy flux.  If the surface buoyancy flux is decreased by a factor of ten from 

what it is in the scale analysis above, the entrainment shear term and the buoyancy terms 

become nearly equal in magnitude.  Since Fedorovich et al. (2004a) used Qs=0.3 Km/s, 

we adopt this value as the upper limit of the range of Qs used in this study.  The lower 

limit will be one tenth this value, and a value of Qs=0.1 Km/s will also be added to 

explore the middle portion of this parameter space. 

6.1.3 LES Parameters 

   The setup of the shear cases is also designed to elucidate the effects of surface 

shear versus shear across the CBL top.  With this in mind, the shear cases were divided 
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into a set that has a constant geostrophic wind, in which all the initial shear is 

concentrated at the surface, and other cases in which the surface geostrophic wind is zero, 

but the shear in the geostrophic wind is strong, so the growing boundary layer encounters 

changing wind with height, focusing most of the shear at the CBL top.  The runs with 

height-constant geostrophic wind are denoted as GC cases, and the runs with shear in the 

geostrophic wind are called GS.  They will be compared against a shear-free case, 

designated NS. 

The wind is initialized in geostrophic balance throughout the model domain, and 

the initial CBL depth is zero. The initial profiles of momentum and buoyancy for the GS 

and GC cases are shown in Figure 6.1.  The surface heat flux is kept constant at its 

prescribed value during the run, and the model run is allowed to proceed until the CBL 

depth reaches approximately 60 percent of the model domain depth.  At this point, to 

avoid spurious effects associated with the entrainment zone impinging upon the sponge 

layer, the simulation is stopped. 
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Figure 6.1: Initial profiles of the virtual potential temperature θ and the x-component of 
the geostrophic wind velocity, ug, for the simulated CBL cases. 
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The general settings used in the LES for this study are found in Table 6.1.  The 

combination of LES cases is shown in Table 6.2.  There are a total of 27 possible runs 

covering all values of surface buoyancy flux, atmospheric stratification, and shear 

proposed.  The three simulations (NS, GS, GC) with the strongest stratification and 

weakest surface buoyancy flux were not run because of the excessive time necessary to 

bring the simulations to completion (approximately three weeks per simulation) and 

because the entrainment zone in these three cases might not be too shallow for the grid to 

resolve the energy-containing motions of turbulence there.  Therefore, the total number of 

simulations was 24. 

 

Table 6.1  Parameters of Conducted LES 

Parameter Setting 
Domain size 5.12×5.12×1.6km3 
Grid 256×256×80 
Surface kinematic temperature flux 0.03, 0.1, and 0.3 Km/s 
Temperature stratification above 
CBL 0.001, 0.003, and 0.010 K/m 

Geostrophic wind 
0 m/s throughout domain (NS) 
20 m/s throughout domain (GC) 
0 m/s at lower boundary, 20 m/s at top (GS) 

Time step 0.5 s (to synchronize NS, GS, and GC cases) 
Lateral boundary conditions Periodic for all prognostic variables and pressure 
Upper boundary conditions 
 

Neumann with zero gradient; a sponge layer 
imposed in the upper 20% of simulation domain 

Lower boundary conditions 
 
 

No-slip for velocity, Neumann for temperature, 
pressure and subgrid TKE, Monin-Obukhov 
similarity functions as in Fedorovich et al. 
(2001a) 

Subgrid turbulence closure Subgrid TKE-based after Deardorff (1980) 
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Table 6.2  List of LES Runs 

Surface kinematic temperature flux (Km/s)  
0.03 0.10 0.30 

0.010  NS,GS,GC NS,GS,GC 
0.003 NS,GS,GC NS,GS,GC NS,GS,GC 

Potential 
temperature 
gradient (K/m) 0.001 NS,GS,GC NS,GS,GC NS,GS,GC 

6.1.4 LES Output Evaluation 

Model output statistics are formed by averaging across horizontal planes in LES.  The 

statistics are calculated every 100 seconds in the simulation, which, in most cases, is 

much less than the convective time scale (defined by */iz w ) in the simulations.  The 

statistics calculated are listed in Table 6.3.  Because a staggered grid is used, all variables 

were interpolated to the center of the grid cell, if necessary, before calculating their 

statistics.  The spectra and cospectra were calculated across horizontal planes at all model 

levels.  TKE transport and the dissipation rate calculations were added to the LES code 

after most of the simulations were completed.  For this reason, some of the cases were re-

simulated: dθ/dz=0.010 K/m with Qs=0.30 Km/s and dθ/dz=0.003 with Qs=0.03 K/m. 

 
Table 6.3  Statistics Calculated in LES 

Statistics Quantities calculated 
First order , , ,u v Eθ  (subgrid energy), ε** 
Second order* 2 2 2 2 2' , ' , ' , ' , ' , ' ', ' ', ' 'u v w E w w u w vθ θ , ' 'w e **, ' 'w p ** 
Third order ' ' ', ' ' 'w w w θ θ θ  
Spectra 2 2 2 2' , ' , ' , 'u v w θ  
Cospectra ' ', ' ', ' 'w w u w vθ  

* For the statistics 2 2 2' , ' , ' , ' ', ' ',u v w w w uθ  and ' 'w v , both resolved and total (resolved 
plus subgrid) components were calculated.  Overbars represent horizontal averages in 
LES, which are intended to be representative of ensemble averages. 
** Not available for all cases. 
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6.1.5 Methods for Finding zi and Parameters of Entrainment 

There are numerous definitions of the CBL depth based on LES [e.g. Moeng and Sullivan 

(1994); Lewellen and Lewellen (1998)].  Based on the analyses presented in Chapters 4 

and 5, the level of the heat flux minimum in the entrainment zone will be used to define 

the CBL depth, iz . 

Compared to Chapter 4, some refinements were made in the determination of the 

CBL depth and the upper and lower limits of the entrainment zone.  Because LES 

statistics are located at discrete model levels, the time series of iz  sometimes shows a 

stair-step appearance, and this structure can affect the calculations of other parameters of 

entrainment.  To avoid this, an interpolation procedure was used to refine iz  estimates.  

The grid level with the minimum heat flux was identified, and a perfect quadratic fit was 

calculated using the heat flux from that grid level and the surrounding two grid levels.  

The heat flux minimum on the quadratic curve was then used to define iz .  The iz  

determined using the quadratic fit was never more than a half grid point above or below 

the grid point with the discrete heat flux minimum. 

The lower boundary of the entrainment zone ilz  was defined as the level at which 

the heat flux profile crossed zero.  In order to refine this estimate as much as possible, a 

linear interpolation was used between the last grid level (in the mixed layer) with a 

positive heat flux and the first grid level with a negative heat flux.  The upper boundary 

of the entrainment zone iuz  was defined in exactly the same manner as Chapter 4. 

The potential temperature and momentum at the lower limit of the entrainment 

zone were determined by taking their value exactly at ilz .  This required a linear 
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interpolation between surrounding grid values.  The potential temperature and 

momentum at iuz  were simply taken to be their grid point values. 

The ZOM parameters of entrainment must be taken from LES in a manner that is 

consistent with their definition.  Following Chapter 5, we define ( )i mb b z b∆ = − , where 

bm is the mixed layer value of buoyancy, but unlike Chapter 4, the approximation 

( )m ilb b z≈  is not used here.  Rather, the mixed layer buoyancy bm is calculated from 

averaging the buoyancy between iz  and the surface.  The buoyancy at the ZOM CBL top, 

( )ib z , is defined as the buoyancy of the free atmospheric profile extrapolated down to iz .  

To further restore the ZOM profile, the integrated buoyancy deficit between iz  and iuz  

(due to the accumulated buoyancy flux divergence there) is subtracted from the integrated 

mixed layer buoyancy when calculating bm.  The same procedure is used to retrieve u∆  

and v∆ . 

Early in the LES run, when the CBL is not yet entraining heat, iz  is defined as the 

level at which the heat flux approaches zero.  Because there is no significantly negative 

heat flux with which to define an entrainment zone, the entrainment zone depth is set 

equal to zero.  In this manner, the corresponding values of buoyancy and momentum at 

the upper and lower limits of the entrainment zone become their values at iz .  The mixed 

layer averaging (below iz ) is still performed to determine the ZOM parameters b∆ , u∆ , 

v∆ , which are always defined to be ( )i mzφ φ φ∆ = − .  Early in the run, this can result in 

negative values of b∆  before the CBL has reached an entraining regime.  Physically, the 

negative b∆  has sense because when the convection is initiating in the CBL, the plumes 

are just beginning to rise from the surface layer and have not yet reached their point of 
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neutral buoyancy.  Thus the buoyancy in the convectively mixing portion of the domain 

is greater than the buoyancy just above the tops of the plumes. 

The FOM jumps of buoyancy and momentum are defined as 1 ( )iu mzφ φ φ∆ = − , 

where the mixed layer quantities are calculated in the same manner as with the ZOM, 

except that the entrainment zone deficits are not subtracted from the mixed layer values 

as they are in the ZOM. 

The ZOM-based constant 1C  was determined by linearly extrapolating the 

buoyancy flux profile through its zero crossing height to iz  and dividing by Bs.  The 

analysis in Chapter 5 has shown that using the extrapolated heat flux as a proxy for 

( )/ /i sbdz dt B∆  is the easiest way to estimate 1C , which may become time-dependent 

with shear. 

6.2 Tests of RANS-based Turbulence Closures in NWP 

The TKE-based turbulence closures of Xue et al. (2001) (ARPS) and Fiedler and Kong 

(F&K) were tested against LES data for the same 24 combinations of surface buoyancy 

flux, free atmosphere stratification, and shear in Table 6.2.  The ARPS and F&K closures 

were described in Chapter 3. 

The evaluation of the RANS-based NWP turbulence closures was carried out in a 

similar manner as in Moeng and Wyngaard (1989) and Ayotte et al. (1996).  The LES 

code was reduced to a one-dimensional form, and the turbulence closure scheme was 

modified according to the corresponding RANS-based descriptions in Chapter 3.  

Vertical profiles of turbulence statistics were calculated in the same manner as in LES, 
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and the parameters of entrainment were determined from the vertical profiles of 

turbulence statistics in the same manner as in LES. 

6.3 Tests of Integral Budget Methods 

6.3.1 Tests of ZOM and FOM Parameterizations 

The evaluation of the various schemes within the integral budget approach was done by 

retrieving the parameters sB , iz , b∆ , u∆ , v∆ , 1b∆ , 1u∆ , and 1v∆  from LES data and 

using them in the respective formulations for the entrainment flux ratio, with the 

constants indicated in Table 3.1.  Unfortunately, the evaluation of the above parameters 

was not very straightforward.  The definitions of parameters of entrainment were 

dependent on the author evaluating them, regardless of whether the evaluation was made 

based on atmospheric or LES data.  For example, in the ZOM, the buoyancy jump across 

the entrainment zone can be evaluated in the strict sense of the ZOM, in which case the 

linear free atmospheric profile of buoyancy is extrapolated downward from the upper 

edge of the entrainment zone to the defined CBL depth iz , but many authors [e.g. Boers 

et al. (1984)] used the full change across the entire depth of the entrainment zone. 

In most cases, the actual value of the parameterized heat flux at the inversion is 

highly sensitive to the size of the jumps used, suggesting an inherent weakness in the 

parameterizations.  Additionally, there is usually a difference between the actual 

entrainment heat flux, iBδ  (the minimum of heat flux in the entrainment zone), and the 

ZOM-parameterized heat flux, /ibdz dt∆ .  To the extent possible, this study tries to use 
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the parameterizations in a manner consistent with the way they were originally evaluated 

by their respective authors. 

6.3.2 Numerical Integration of the ZOM and FOM Entrainment Equations 

The Newton-Ralphson method was used to numerically integrate the ZOM and FOM 

equations for entrainment [(3.31)-(3.33), (3.38), (3.63)-(3.65), and (3.74)-(3.77)] derived 

in Chapter 3.  Before this can be done, estimates of the integrals of turbulence kinetic 

energy and dissipation were made.  For the shear-free case, the constants eC  and Cε  

were accepted to be 0.5 and 0.4 respectively (see Chapter 3). 

When shear contributes to the TKE, the appropriate parameters for scaling will be 

different.  The assumption will be made that the TKE and dissipation are a linear 

combination of the mechanisms that contribute to them: buoyancy-generated (the shear-

free case), surface shear-generated, and entrainment zone shear-generated.  The actual 

determination of scaling parameters must be made on a trial and error basis from LES 

data, and the resulting values of the constants representing the scaled integrals of TKE 

and dissipation will be addressed in Chapter 10.  For now, the initial hypotheses are that 

the integrals of surface shear-generated TKE and its dissipation can be scaled by the 

friction velocity *u  and iz , and the integrals of entrainment zone shear-generated TKE 

and its dissipation can be scaled by u∆  and iz .  In the FOM, 1u∆  will be used as the 

scaling parameter for entrainment zone shear, and z∆  is also available as a scaling 

parameter. 
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Chapter 7  

Simulated Convective Boundary Layer Cases 

7.1 CBL Depth and Velocity Profiles 

Figure 7.1 shows the plots of the CBL depth versus time for the 24 conducted simulations, 

and Figure 7.2 shows the profiles of the x-component of momentum at late stages in the 

simulations.  The figures are organized according to the surface buoyancy flux and the 

free atmospheric stratification.  Cases with weaker stratification are shown on the bottom 

of the figures (g,h,i), and the strongest stratification cases appear on top (b,c).  The cases 

with the weakest surface buoyancy flux (d,g) appear on the left, and those with the 

strongest flux (c,f,i) are on the right.  This same orientation will be used for all remaining 

figures in which all LES results are presented together. 

The effects of shear on the CBL growth rate are heavily dependent on the 

combination of stratification and surface buoyancy flux.  In general, the effects of shear 

stand out the most when the surface buoyancy flux is weakest, but they also stand out a 

bit more when the free atmospheric stratification is weak.  The strongest enhancements of 

CBL growth in the sheared CBLs versus the NS case are seen in Figs. 7.1d and g.  Fig. 

7.1c shows no enhancement, and Fig. 7.1i shows decreased CBL growth with shear.  

Some discussion is needed to elucidate the effects that are seen in each individual case 

and to understand why they are different. 



 

 151

The first cases studied were those with the strongest buoyancy flux, and these 

cases provided the motivation to perform simulations with weaker surface buoyancy flux 

and stronger stratification.  As seen in the scale analysis presented in Chapter 6, the 

integral buoyancy production of turbulence is much stronger than the integral shear 

production of turbulence for these cases.  In Fig. 7.1c, the NS, GS, and GC cases 

experience very similar rates of CBL growth, although the CBL growth in the GS and GC 

cases is slightly faster.  If the maximum temperature gradient is used as the definition of 

the CBL top, the sheared cases stand out more clearly from the shear-free case.  An LES 

comparison study (Fedorovich et al. 2004c) shows differences in iz  between sheared and 

shear-free CBLs increase when using the maximum potential temperature gradient to 

define iz . 

Figure 7.1f shows no consistently meaningful differences among the three cases 

except that the CBL in the GC case grows more slowly than in the other cases early in the 

simulation and the GS case CBL appears to grow slightly faster at the end.  The 

difference among these three cases is the least among all the stratification and heat flux 

combinations simulated.  In Fig. 7.1i, we find that the sheared CBLs have smaller growth 

rates than shear-free CBLs; the NS CBL grows the fastest initially, but once the 

convection initiates in the GC case, the GC CBL growth rate is fastest.  The GS CBL 

seems to grow relatively slowly throughout the simulation.  If there is any evidence in the 

simulations that supports the theory of the shear sheltering of turbulence (Hunt and 

Durbin 1999), it is found here.  Animations of this particular case show that the shear 

deforms the thermals rising from the surface, and this appears to weaken their ability to 
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organize into vertically coherent structures that would efficiently transport heat upward 

from the surface. 
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Figure 7.1:  CBL depth, zi (m), as a function of time (s) for the LES cases simulated: (a) 
legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  K/m, 

0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) / 0.003zθ∂ ∂ =  K/m, 
0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) / 0.001zθ∂ ∂ =  K/m, 
0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) / 0.001zθ∂ ∂ =  K/m, 
0.30sQ = Km/s. 
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Figure 7.2:  Profiles of the x-component of momentum at selected times during the 
simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) 

/ 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) 
/ 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) 
/ 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) 
/ 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 

 

 However, the entire simulation in Fig 7.1i is too short to draw any conclusions 

about this effect.  In fact, the simulation is so short that the turbulence structure is still 

dependent on the characteristics of the onset of turbulence, which, in the simulations, is 

dependent on the manner in which the initializing disturbances are supplied to the flow at 

t=0. 
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Fig 7.2i shows that the momentum in these simulations is not well-mixed, and 

there is no layer of accumulated shear except at the surface.  The turbulent vertical 

motions associated with buoyantly forced convection have not had sufficient time to mix 

the momentum in this case. 

 With increasing stratification, the CBL grows more slowly, allowing more time 

for turbulence to mix the momentum within the interior of the CBL and for shear to 

accumulate at the CBL top.  The CBL depth in the cases with the moderate stratification 

(Figs. 7.1f and 7.2f) still grows quickly enough that momentum is not well-mixed, but 

with the strongest stratification (Figs. 7.1c and 7.2c), the momentum in the CBL is much 

better mixed, and the shear is concentrated at the CBL top.  In the GC case, the 

momentum throughout the depth of the CBL has decreased from its geostrophic value, 

resulting in the development of shear at the CBL top, despite the fact that the case was 

designed to investigate the effects of shear in the surface layer.  The stronger shear at the 

CBL top in both the GS and GC cases has a better chance to generate TKE there and to 

enhance entrainment.  In general, the most well-mixed momentum profiles appear when 

the CBL growth rate is small, decreasing the entrainment of momentum, and the 

turbulence is intense enough to mix the momentum in the interior of the CBL.  This tends 

to occur under conditions of strong stratification and moderate to strong surface 

buoyancy flux (Figs. 7.1b,c and Figs. 7.2b,c). 

 The simulations in the center column of Figure 7.1 were motivated by the relative 

insensitivity of the CBL growth to wind shear in the simulations with the strongest heat 

flux.  With a more moderate heat flux, CBL growth under the conditions with weakest 

potential temperature gradient (Fig 7.1h) still appears to be unaffected by shear.  The 
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CBL growth is rapid in these cases, and the momentum fields (Fig 7.2h) are about as 

well-mixed as they are in Figs. 7.2i and 7.2f.  Strong surface shear exists in the GC case, 

but this does not seem to enhance the CBL growth relative to the NS and GS cases.  In 

neither the GS nor the GC case is there a layer of intense shear at the CBL top.  This 

changes, however, as the free atmospheric vertical buoyancy gradient increases. 

In Fig. 7.1e, the GS case exhibits the fastest CBL growth of all three shear 

configurations, and the GC case is in-between.  Despite the stronger surface shear in the 

GC case (see Fig 7.2e), the CBL growth is slower than in the GS case.  Comparing the 

GC cases of Figs. 7.1c and 7.1e, the entrainment zone shear appears a little weaker in Fig. 

7.2e than in Fig. 7.2c, but the stratification is also weaker, and faster growth is seen.  In 

Fig 7.1e, the GS case has stronger shear across the entrainment layer (Fig 7.2e) and also 

has the fastest CBL growth. 

 Although Figure 7.1e shows that the GS CBL grows more quickly than the GC 

CBL, this relationship is essentially reversed in conditions of stronger stratification (Fig. 

7.1b), although the overall enhancement of CBL growth in the sheared cases is not as 

strong.  The stability in the free atmosphere appears to prevent it.  Some interesting 

features of the CBL momentum profiles for these cases are seen in Fig. 7.2b.  Both the 

GS and GC cases have similar momentum profiles in the entrainment zone (near z = 

800m), which suggests the entrainment zone shear may be similarly strong between the 

two cases.  The GC interior CBL momentum (below 800m) is well-mixed and is weaker 

than any of the other GC cases.  Since the runs are initialized in geostrophic balance, this 

slowing of the x-component of momentum can only be accomplished by surface friction 

and the resultant transport of weaker momentum upward through the mixed layer.  The 
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decrease of momentum throughout the CBL interior causes shear to develop at the CBL 

top.  Because of the accumulated effects of surface friction, slowing of mixed layer flow, 

and resulting accumulation of shear at the CBL top, the entrainment zone shear in Fig 

7.2b is the strongest of all the GC cases.  This GC case also has the fastest CBL growth 

relative to that of the corresponding GS case.  In fact, it is much faster early in the run 

and then slower during the latter stages, when the GS case catches up.  As will be seen 

later in this chapter, GC case CBLs such as these (with slower growth) develop 

entrainment zone shear much more rapidly than the GS CBLs do, but GS entrainment 

zone shear grows and eventually becomes larger, and the GS CBLs grow faster in the 

middle of the simulation, catching up to the GC CBL by the end.  The evidence therefore 

suggests the entrainment zone shear plays a more dominant role than surface shear in 

enhancing CBL growth.  Additionally, the mixed layer momentum is weaker, so the 

surface layer shear in this case, although it is still pretty strong, is the weakest among all 

the GC simulations, but only by a small amount.  Despite the fact that the GC surface 

shear is stronger than GS surface shear in the latter part of the simulation, the CBL 

growth is slower. 

 Finally, we come to the leftmost column.  In the bottom row, we find the case in 

which shear provides the largest enhancement of entrainment.  It is also the case in which 

the buoyancy forcing is smallest, both in terms of the surface buoyancy flux and the 

stratification in the free atmosphere.  With this particular combination of buoyancy 

forcing, the GS case exhibits the fastest CBL growth, but the GC CBL growth is also 

significantly faster than it is in the NS case.  One note of caution must be made when 

analyzing these particular GS cases: the gradient Richardson number of the free 
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atmosphere is only 0.21, a value less than the critical Richardson number for the onset of 

Kelvin-Helmholtz (K-H) instability in a continuously stratified laminar flow (Kundu 

1990).  The critical value of Ri=0.25 is a necessary but not sufficient condition for the 

onset of K-H instability, so even though Ri<0.25 in this case, the presence of a solid 

underlying surface or the sponge layer probably prevents the development of K-H 

instabilities for the Ri values and CBL depths in this case.  Regardless, in many 

laboratory flows, the Richardson number at the onset of K-H instability is much less than 

0.25 (Kundu 1990).  Additionally, the K-H instability analysis is technically only valid 

for non-turbulent flow, which is roughly applicable to the atmosphere above the CBL in 

these simulations. 

To see if the sponge layer affected the development of K-H instabilities, a test 

simulation was performed with the sponge layer removed from the top of the domain.  In 

these conditions, the CBL initially grew at the same rate as in the original simulation, but 

by the end, the growth was faster than in the original simulation, and it was increasing, 

suggesting that the background profile in the weakly stratified GS cases may, in fact, be 

unstable at some distance above the underlying surface. 

The momentum in these weakly stratified GS cases is not well-mixed, and there 

are no layers with shear much greater than in the free atmosphere.  The inherent 

background instability of these cases, in the K-H sense, probably prevents any additional 

shear from accumulating before turbulence generation occurs.  In Fig. 7.1g, the surface 

shear in the GC case is very large, but the CBL growth slower than in the GS case, which 

has more of its shear across the entrainment zone (the depth of the entrainment zone will 

be seen in Figure 7.3). 
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 Finally, we come to the case with weak buoyancy flux and moderate free 

atmospheric stratification (Fig. 7.1d).  The GS and GC cases exhibit essentially the same 

rate of CBL growth in this situation, and in both cases, CBL growth is quite a bit faster 

than in the NS case.  Looking at the momentum profiles, one sees, perhaps, slightly larger 

shear in the entrainment zone of the GS case than in that of the GC case, but the exact 

location and depth of the entrainment zone cannot be defined until looking at the heat 

flux profiles.  We have come to this set of cases last, but it may be the most 

representative of conditions that might occur in the atmosphere, particularly for the GC 

case.  The strong geostrophic wind and moderate stratification provide conditions most 

typical of situations when shear enhancement of entrainment might become significant in 

the atmosphere.  This set of cases, therefore, will be the ones most often chosen for more 

detailed analyses presented later in this chapter, as well as in other chapters.  It is the 

single set of cases where shear effects on entrainment are strongest for CBLs growing 

against a background profile guaranteed to be stable in the K-H sense. 

 Overall, a couple of general comments can be made about the enhancement of 

CBL growth in the GS and GC cases.  First, the entrainment zone shear definitely appears 

to be more important than surface shear in determining the CBL growth rate.  This point 

is exhibited by the fact that the GS cases, overall, have the fastest CBL growth and the 

strongest shear at the CBL top, but when GC cases have relatively rapid CBL growth, 

they also have strong shear at the CBL top—qualitatively similar to that of the GS cases.  

Second, the GC case CBLs also accumulate entrainment zone shear in more slowly 

growing CBL cases (weaker heat flux or stronger stratification), when the surface friction 

has the longest time to slow the momentum in the mixed layer.  The CBLs in the GC 
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cases, which consistently have strong surface layer shear, never exhibit more rapid 

growth than in the GS cases, except when the entrainment zone shear is stronger.  This 

suggests that surface layer shear does not play a direct role in increasing the CBL growth 

rate, but indirectly, the slower CBL flow, in general, causes shear to develop at the CBL 

top. 

Finally, it must be emphasized that all the NS cases follow the ZOM equilibrium 

entrainment CBL growth rate (see Equations 3.47 and 5.5) very closely, supporting the 

results of Chapter 4. 

 Another couple of general comments can be made regarding the momentum 

profiles in Figure 7.2.  Rapid CBL growth does not allow sufficient time for turbulence to 

thoroughly mix momentum in the CBL.  This is not a surprising result, since the turbulent 

diffusivities for heat are often three times greater than the turbulent diffusivities of 

momentum in the CBL.  For the cases with the fastest CBL growth, which are in the 

lower right portion of Fig. 7.2, the concept of a mixed layer, at least as far as momentum 

is concerned, does not seem to apply, and this may be evidence that the mixed layer 

models such as the ZOM and FOM may not describe the momentum profiles (and 

therefore shear-enhanced entrainment) particularly well.  The momentum profiles 

definitely do not look ZOM-like or FOM-like.  Nevertheless, integral shear production 

may still be similar.  The ability of the ZOM and FOM to model sheared CBL 

entrainment will be assessed in Chapter 10. 

The momentum-mixing effects of turbulence seem to be stronger in more stably 

stratified environments, where the CBL growth rate is slower, but it’s not just the CBL 

growth rate that influences the mixing of momentum.  Fedorovich and Conzemius (2004) 
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have shown that the turbulence in the upper portion of the CBL is greater when the 

stratification is stronger, and the mixing effects of this turbulence may explain the more 

well-mixed momentum profiles in the more stably stratified media. 

7.2 Entrainment of Heat in Relation to Entrainment Zone 

Depth 

The entrainment zone depths and dynamics of entrainment can be revealed by looking at 

the heat flux profiles in Figure 7.3.  We define the entrainment zone depth izδ , as 

i iu ilz z zδ = − , with iuz  and ilz  defined in Chapter 6 (see also Chapter 4 and Fig. 3.1)  

Basically, this is the layer where the heat flux is negative and the boundary layer is 

entraining heat from the free atmosphere. 

 In Fig. 7.3i, there is no layer of significantly negative heat flux.  These simulated 

CBLs cannot be considered entraining CBLs, and in most respects, they can probably be 

considered encroaching CBLs.  The convective plumes in this case have not passed their 

equilibrium level—that is—the level where their potential temperature is equal to the 

temperature of the surrounding air.  Had the simulation continued further in time, the 

CBLs in this set of cases likely would have become entraining CBLs.  All other CBLs in 

Fig. 7.3 are entraining. 

 The heat flux profiles typically show the same behavior as described in 

Fedorovich et al. (2004a) and also described to some extent in Sorbjan (1996b).  The heat 

flux profiles in the cases with strongest stratification (0.010 K/m) are the most ZOM-like 

of any of the profiles, and with the weakest stratification (0.001 K/m), the profiles do not 
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look very ZOM-like at all.  Rather, the heat flux reaches a minimum in the lower portion 

of the entrainment zone then decreases very slowly back to zero.  In addition to this 

dependence on free atmosphere stratification, there also appears to be some dependence 

on the surface heat flux.  For example, looking at all cases with a stratification of 0.003 

K/m, the profiles with 0.03sQ =  Km/s (Fig. 7.3d) look the most ZOM-like, and the 

profiles with stronger heat flux (Fig. 7.3f) deviate most significantly from the ZOM 

profile, with the heat flux returning more slowly to zero from its minimum.  Weaker heat 

flux evidently causes the profiles to bear stronger resemblance to the ZOM, much like 

stronger stratification does.  This effect can be noted for the NS cases, and the GS and 

GC cases seem to be subject to this effect as well. 

In the cases with shear, the entrainment zone depth increases, and the heat flux 

minimum becomes stronger, meaning the sheared CBLs are entraining more heat than the 

shear-free CBLs are.  The heat flux profile is significantly more variable in time than 

mean profiles of temperature or momentum, so the details of the heat flux profiles within 

the entrainment zone are more related to the time variability of the profile than they are to 

the dynamics of entrainment.  However, the general features are still relevant to the 

entrainment dynamics.  The deepening of the entrainment zone is associated with both 

the lowering of ilz  (the lower limit of the entrainment zone) and the increase of iuz  (the 

upper limit).  The most dramatic deepening of the entrainment zone is seen in Fig. 7.3g.  

In this GS case, the mixed-layer and entrainment zone are almost of the same depth—

about 660 meters, and the heat flux minimum is more than five times its value in the NS 

case. 
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Figure 7.3: Profiles of heat flux at selected times during the simulation for the LES 
cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  K/m, 

0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) / 0.003zθ∂ ∂ =  K/m, 
0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) / 0.001zθ∂ ∂ =  K/m, 
0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) / 0.001zθ∂ ∂ =  K/m, 
0.30sQ = Km/s. 

 

 Fig 7.3d shows a similarly strong enhancement of entrainment heat flux in the 

sheared cases.  Because the stratification is stronger, the minimum of heat flux is a little 

sharper, and the heat flux returns more quickly to zero in the upper portion of the 

entrainment zone.  In the cases with strongest stratification (Figs. 7.3b and c), the shear 

does not enhance the negative heat flux as strongly, nor does it deepen the entrainment 

zone as much as in Figs. 7.3d and g.  Figs. 7.3f and h show weaker heat flux, but the 
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weaker heat flux in these cases is a symptom of the short duration of these simulations.  

They do not cover a time period long enough for the CBL to become strongly entraining. 

7.3 Potential Temperature Profiles 

Figure 7.4 shows the potential temperature profiles for all the simulated cases.  Within 

each panel, the NS, GS, and GC profiles are all taken at the same time during the 

simulation to highlight the accumulated effects of the entrainment of heat.  The heat 

(temperature) is better mixed than the momentum, but some of the same differences 

among the cases are seen in the interior of the CBL: some temperature fields are better 

mixed than others, but the differences among the cases are not as large as they are with 

the momentum fields.  The fields in (b), (c), (d), and (e) are all well-mixed.  Those in (i) 

are not. 

 When looking at the differences between sheared and shear-free CBLs, the 

profiles in (d) stand out, by far, the most clearly.  In both the GS and GC cases, 

considerable heat has been transported from the z=800-900m layer into the CBL interior.  

The effects are felt all the way to the surface, but the net temperature change is only 

about 0.25 K.  This particular CBL case will be studied in detail later in this chapter as 

well as in Chapter 8. 
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7.4 Entrainment of Momentum 

The entrainment of momentum is not directly proportional to the entrainment of 

heat.  Figure 7.5 illustrates the vertical turbulent flux of the x-component of momentum.  
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Figure 7.4: Potential temperature profiles at selected times during the simulation for the 
LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  
K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) / 0.003zθ∂ ∂ =  
K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) / 0.001zθ∂ ∂ =  
K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) / 0.001zθ∂ ∂ =  
K/m, 0.30sQ = Km/s. 
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Since the x-component of momentum per unit volume contains density, these profiles of 

w u′ ′  are formally momentum flux profiles normalized by density.  The same applies to 

the other momentum fluxes and the mean profiles of momentum.  
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Figure 7.5:  Profiles of the x-component of momentum flux at selected times during 
the simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; 
(c) / 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; 
(e) / 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; 
(g) / 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) 

/ 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 
 

 Unlike the lack of heat entrainment in Fig. 7.3i, Fig 7.5i shows the momentum 

entrainment to be strongest in these most rapidly growing CBLs. The shape of the 
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momentum flux profiles is significantly different between the GC and the GS cases.  In 

the former, the profile has a fairly typical shape observed in the atmosphere.  Momentum 

in the surface layer is decreased by contact with the ground, and turbulence carries this 

weaker momentum upward.  The momentum flux is therefore is of opposite sign to the 

momentum throughout the whole depth of the CBL.  The GC case momentum flux 

profile is typically characterized by a minimum near the surface, with the flux slowly 

increasing throughout much of the CBL interior, and then increasing more rapidly to zero 

in the upper portion of the CBL.  The vertical flux divergence ( /w u z′ ′∂ ∂ ) is positive, 

indicating the loss of momentum in the CBL.  /w u z′ ′∂ ∂  is more strongly positive in the 

upper portion of the CBL, indicating the strong entrainment of momentum at the CBL top. 

The momentum flux is significantly stronger in the most rapidly growing CBLs, 

but the stronger flux is insufficient to counter the effects of more rapid CBL growth, so 

the momentum fields are decidedly less well-mixed in Fig 7.2i compared to Figs. 7.2b 

and d.  If the sheared CBL growth rate is about the same order of magnitude as the shear-

free CBL growth rate, which appears to be the case in Fig. 7.1i, then one can derive some 

conclusions about the relationships among the CBL growth rate, momentum, and 

momentum flux profiles, using the ZOM entrainment equation (5.5).  We see that 

1/ 2( ) ~i sz t B  and also, ( ) 1/ 21( ) ~ ~ /iz t N dzθ −− ∂ , where N and / dzθ∂ are their free 

atmospheric values.  If the temperature gradient increases by a factor of ten, we would 

expect the CBL growth rate to be about one third as fast.  Looking at Equation 3.35, we 

expect the entrainment of momentum at the CBL top to be proportional to /idz dt .  We 

would therefore expect, for momentum profiles to remain well-mixed, that the 

momentum flux should triple if the potential temperature gradient in the free atmosphere 
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decreases by a factor of ten.  Comparing Fig 7.5i with Fig 7.5c, we see that the 

momentum flux for the GC case increases only about 50 percent.  This is far short of 

what would be required for the momentum in Fig. 7.2i to be as well mixed as in Fig. 7.2c.  

For the GS case, there is at least a doubling of the momentum flux (see Fig. 7.5i versus 

Fig. 7.5c), but this is also insufficient for the momentum fields to remain well-mixed.  So, 

in general, although the momentum flux is weaker in situations with more slowly 

growing CBLs (Figs. 7.5b,d), its magnitude, relative to the CBL growth rate, makes it 

more capable of mixing momentum in the interior of those CBLs than in more quickly 

growing CBLs. 

 The momentum flux profiles in the GS cases show some fairly interesting 

characteristics.  The flux starts close to zero at the ground, decreases to a minimum value 

in the middle or upper portion of the CBL, then increases again, returning to zero.  The 

flux divergence is negative in the lower portion of the CBL, indicating the turbulent flux 

is increasing the momentum in the lower portion of the CBL.  In the upper portion of the 

CBL, the momentum flux is strongly divergent, and there is momentum loss, which is 

similar to the GC case.  Thus, the CBL turbulence is removing momentum from the CBL 

top and transporting it downward into the lower portion of the CBL. This feature of 

momentum flux profiles is consistent with the GS momentum profiles shown in Figure 

7.2.  The momentum in the lower portion of the CBL is greater than its initial geostrophic 

value, and the momentum in the upper portion of the CBL has become less than its initial 

value.  The momentum flux profile is not exactly ZOM-like.  Looking at Equation 3.31, 

we expect a roughly linear profile of momentum flux in this CBL (if the Coriolis terms 
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are small).  This seems to be the case; however the flux does not jump back to zero very 

quickly at the CBL top. 

 The time series of momentum and momentum flux in the GC cases can be 

fictitiously visualized by considering a fixed level that is initially in the free atmosphere 

above the CBL.  When the CBL reaches this level, the momentum flux divergence 

increases rapidly, and the momentum experiences a rather sudden drop to its value in the 

interior of the CBL.  After this initial rapid drop, the rate of change is smaller, as stronger 

momentum continues mixing downward from above, but weaker momentum, due to the 

effects of surface friction, continues to be mixed upward.  The latter effect seems to be 

slightly stronger. 

In the GS case, as the CBL reaches the selected level, the momentum experiences 

the same initially rapid decrease as in the GC case.  However, since the initial near-

surface momentum is very small, the effects of surface friction are weaker, and the 

upward flux of weaker momentum is smaller than what it would be in the GC case.  As 

the CBL continues to grow, it entrains ever stronger momentum from aloft and the effects 

of momentum entrainment exceed the effects of surface friction.  The momentum flux 

becomes convergent, and momentum slowly increases again. 

7.5 Ageostrophic Momentum 

 As the CBL grows, the vertical turbulent flux of momentum causes the 

momentum to deviate from its geostrophic value, resulting in the increase of the y-

component of momentum due to the combined effects of the large scale pressure gradient 

and Coriolis forces.  Figure 7.6 shows the profiles of the mean y-component of 
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momentum.  The mean y-component of momentum v  becomes significant only if the 

simulation time is long and the Coriolis force has time to act.  In the most rapidly 

growing CBLs (Figs. 7.6f,h,i), the simulations are not long enough for this to happen.  

For the more slowly growing CBLs (Figs 7.6b,c), gu u<  in the GC cases, resulting in an 

increase in v  (see Equation 3.11). 
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Figure 7.6: Profiles of the y-component of momentum at selected times during the 
simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) 

/ 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) 
/ 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) 
/ 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) 
/ 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 
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The same does not hold for the GS cases.  In the upper portion of the CBL, gu u< , 

so v  increases, but in the lower portion of the CBL, gu u> , so v  is negative there.  These 

changes in v  are not symmetric.  There is more of an increase in v  in the upper portion 

of the CBL than a decrease in the lower portion.  In Fig. 7.6b, v  is positive throughout 

the depth of the CBL for the GS case, whereas the remaining GS cases have some layer 

of 0v < .  The momentum flux in the interior of the CBL may be large enough to 

overcome the effects of the pressure gradient and Coriolis forces in this case. 

 One might gain a better understanding of this difference by performing a quick 

scale analysis of the Coriolis force versus the momentum flux divergence.  Fig. 7.7 shows 

the turbulent vertical flux of the lateral component of momentum for the two cases with 

the strongest v .  In Figure 7.7b, the flux changes 0.1 m2/s2 over a depth of approximately 

500 meters, making for a flux convergence of 42 10−× m/s2 over this layer.  With a 

Coriolis parameter of 41 10−× s-1 and a departure in u  from its geostrophic value ranging 

from 3 m/s to about -1 m/s over this layer, the combined Coriolis and pressure gradient 

forces, ( )gf u u− − , are  43 10−− × m/s2  to 41 10−× m/s2 over this layer, which is similarly 

strong to the turbulent flux convergence, so either term can become dominant.  In Fig. 

7.7b, the flux convergence is just a little stronger than the Coriolis or pressure gradient 

terms, and in Fig. 7.7c, it is a little weaker.  In summary, as the simulation proceeds, the 

Coriolis force increases v∆  because of its actions on the ageostrophic component of 

momentum (Figs. 7.6b,d) in the CBL interior (subgeostrophic u ), enhancing the shear at 

the CBL top. 
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Figure 7.7:  Profiles of the turbulent vertical flux of the y-component of momentum at 
selected times during the simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  
K/m, 0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  K/m. 

7.6 Velocity Variance Profiles 

 Figure 7.8 shows the u variance profiles at the selected times during the 

simulations.  The profiles reflect the effects of surface buoyancy flux, free atmosphere 

stratification, and shear.  For the NS cases (except for Fig. 7.8i, which is not an 

entrainment regime), if the scaling considerations of Deardorff (1980) and Zilitinkevitch 

(1991) are to apply, the profiles should generally be self-similar and retain the same 

shape in all the cases.  However, there is some dependence on stratification.  In Chapter 3, 

it was stated that, according the Deardorff (1980) and Zilitinkevitch (1991), the profiles 

of TKE were expected to be self-similar and integrate to a constant when appropriately 

scaled.  However, it is well known (Sorbjan 1996b) that the TKE profiles are dependent 

on N.  The dependence of the TKE profiles on the free atmospheric stratification is also 

discussed in Fedorovich et al. (2004b).  This dependence does not greatly affect the 

equilibrium shear-free entrainment regime, since iz  vs. t in the NS simulations matches 

the theoretical curve (3.47) very closely for all values of stratification and buoyancy flux 

tested (see Chapters 4 and 5). 



 

 172

In Figs. 7.8g and h, the NS case u variance starts out large at the surface, 

decreases gradually through the interior of the CBL, then decreases a little more quickly 

in the entrainment zone.  Where the stratification is stronger (Figs. 7.8b,c), the profiles 

have a maximum at the surface, followed by a decrease through most of the CBL, then a 

secondary maximum at the CBL top, owing to the thermals impinging on the strong 

inversion there. 

 The variance in the GC cases has a very pronounced maximum in the surface 

layer, and it decreases in the CBL interior.  In Fig. 7.8i, it decreases gradually to zero 

without encountering a secondary maximum—a characteristic that is most likely due to 

the non-entraining regime.  All other profiles have a secondary maximum near the CBL 

top.  The secondary maximum is generally sharper in cases with stronger stratification, 

except for Fig. 7.8d, where there is no sharp maximum.  The reason behind the lack of a 

sharp maximum in this GC profile may be associated with the time variability of the 

second order statistic.  Another peculiar characteristic of the GC u-variance profiles is the 

apparent stratification-dependence of the surface layer maximum.  The maximum is 

largest for cases with the weakest stratification and decreases with stronger stratification.  

A buoyancy flux-dependence is less obvious in the profiles.  The variance is weaker 

when the mixed layer velocity (u ) is weaker, as occurs in more slowly growing CBLs in 

stronger N and weaker Bs. 

 For the GS cases, the maximum variance is located in the entrainment 

zone.  In general, the maxima are sharper when stratification is stronger and larger when 

the surface buoyancy flux is stronger, but this is not true in all cases.  The u-variance 

does not drop off so fast with more slowly growing CBLs, particularly those in strong 
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stratification, because the effects of plumes impinging up the strongly stratified 

entrainment zone are seen.  The stronger stratification causes a narrower entrainment 

zone and suppresses the vertical velocity there.  The horizontal velocity variance then 

increases due to the sideward transport of air from squashed thermals as they crash 

against the strong inversion.  In essence, the vertical velocity variance is converted to 

horizontal velocity variance by the effects of pressure. 
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Figure 7.8:  Profiles of the variance of the x-component of momentum at selected times 
during the simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 

0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 
0.03sQ = Km/s; (e) / 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 
0.30sQ = Km/s; (g) / 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 
0.10sQ = Km/s; (i) / 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 
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 Figure 7.9 shows the profiles of v-variance.  For the NS cases, the profiles are 

essentially the same as those for the u-variance and are caused by the same effects. 

For the GC cases, some rather interesting behavior is seen.  The two GC cases 

with the largest vertical gradients of v  (Figs. 7.6b,d) do not have the largest v-variance 

(Figs. 7.9b,d).  This can be explained by the fact that these CBLs are slowly growing and 

have weaker entrainment of momentum.  The surface variance is still large and appears to 

be largest when the surface buoyancy flux is strongest.  This can be explained by the 

stronger downward transport of u in these cases, accompanied by pressure forces working 

at the surface and converting it to lateral velocity variance.  Essentially, this is the 

transverse circulation of the CBL horizontal convective rolls.  In the GS cases, the 

entrainment zone v-variance is largest when the CBL grows the fastest, which seems 

consistent with the higher x-component momentum flux in those cases.  Again, pressure 

forces would have to work to convert some of this x-component velocity variance into the 

variance of the y-component. 

 Finally, the w-variance is shown in Figure 7.10.  The profiles are generally 

consistent with what might be expected if shear is enhancing entrainment.  In the GS and 

GC simulations with faster CBL growth, the vertical velocity variance is larger at the 

CBL top.  In Fig. 7.10i, the GC case shows a bit of a sharper maximum in the lower-

middle portion of the CBL, and in fact, a majority of the GC cases show this enhanced 

maximum.  Otherwise, the GS, NS, and GC profiles in Fig. 7.10i have qualitatively the 

same shape.  All three profiles diminish smoothly to zero at the CBL top in much the 

same manner. 
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Figure 7.9:  Profiles of the variance of the y-component of momentum at selected times 
during the simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 

0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 
0.03sQ = Km/s; (e) / 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 
0.30sQ = Km/s; (g) / 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 
0.10sQ = Km/s; (i) / 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 
 

Outside Fig. 7.10i, however, the similarity among the NS, GS, and GC w-variance 

profiles disappears.  In Figs. 7.10f and h, the GS cases show greater w-variance than the 

others in the upper CBL, but the shape of the profile remains much the same as in the NS 

and GC cases. 
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Figure 7.10:  Profiles of the vertical velocity variance at selected times during the 
simulation for the LES cases: (a) legend; (b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) 

/ 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) / 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) 
/ 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) / 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) 
/ 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) / 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) 
/ 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 

 

It is in Fig. 7.10(g) where the shapes of the profiles really start to differ.  The NS 

profile has a lower-CBL maximum and returns slowly to zero above that maximum, but 

the GS profile has its maximum much higher in the CBL.  The GC profile has its 

maximum in about the same spot as in the NS case, but the variance returns much more 
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slowly to zero above that point.  In the remaining cases, sheared CBLs have larger 

variance in the upper CBL, and the GS and GC profiles have an additional bulge in 

variance at the CBL top, where there is, in some cases, a secondary maximum.  So far, no 

explanation has been found for this secondary maximum, but it is seen in these results as 

well as in simulations using other LES codes (Fedorovich et al. 2004b).  One would 

expect larger variance but not necessarily a maximum.  It could be that some turbulence 

generation occurs in a stable layer there, or it could be due to some particular feature of 

convective roll geometry.  Regardless of the reasons for these maxima, the variance at the 

top of the sheared CBLs exceeds that at the top of the shear-free CBL.  This supports the 

idea of shear-generation of TKE at the CBL top and generally refutes the theory of shear 

sheltering (Hunt and Durbin 1999). 

7.7 Entrainment Flux Ratios  

An understanding of the dynamics of entrainment in sheared CBLs can be seen by 

plotting the entrainment flux ratio as a function of time.  Also, plotting the time series of 

the entrainment flux ratio might reveal whether or not the sheared CBLs reach some sort 

of an equilibrium entrainment regime.  If they do, deriving analytic relationships among 

the parameters of entrainment might become much easier. 
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Figure 7.11: Time series of the ZOM entrainment flux ratio 0 /i sB B− : (a) legend; 
(b) / 0.010zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (c) / 0.010zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (d) 

/ 0.003zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (e) / 0.003zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (f) 
/ 0.003zθ∂ ∂ =  K/m, 0.30sQ = Km/s; (g) / 0.001zθ∂ ∂ =  K/m, 0.03sQ = Km/s; (h) 
/ 0.001zθ∂ ∂ =  K/m, 0.10sQ = Km/s; (i) / 0.001zθ∂ ∂ =  K/m, 0.30sQ = Km/s. 

 

The time series of the ZOM entrainment flux ratio 0 /i sB B−  is shown in Figure 

7.11.  As expected, the sheared CBLs show greater entrainment flux ratios (provided 

entrainment of heat is occurring).  Conceptually, the shear-generated TKE at the CBL top 

is immediately available to drive the entrainment process, and indeed, enhanced 

entrainment zone heat flux is observed when there is entrainment zone shear (see Fig. 

7.2).  Also, the ratio increases as the surface heat flux decreases.  This result is intuitively 
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obvious from a mathematical standpoint, but it is also an affirmation that the shear-

generation of TKE does not require the buoyancy generation of TKE.  That is, shear-

generated turbulence at the CBL top is not necessarily stronger when the surface heat flux 

is stronger.  In fact, the rapid CBL growth when the heat flux is stronger prevents the 

accumulation of shear at the CBL top, as was discussed in Section 7.1. 

 In the GS cases, the entrainment flux ratio starts out rather small because shear is 

initially weak.  However, once the CBL becomes more developed, the entrainment flux 

ratio increases and continues to increase throughout the duration of the simulation.  This 

is true whether the ratio is viewed in terms of its direct LES value or the ZOM value. 

The GS case entrainment flux ratio also appears to be dependent on the free-

atmosphere stratification.  When the stratification is stronger, the entrainment flux ratio 

grows relatively slowly, and it approaches a nearly constant value that only slightly 

exceeds its NS value (Fig. 7.11e).  With weaker outer stratification, the ratio climbs 

rapidly and continues to increase throughout the duration of the simulation (Fig. 7.11g).  

With moderate outer stratification, the ratio climbs somewhat rapidly at first and begins 

to level off but still is slowly increasing at the end of the simulation.  In most of the shear 

cases, an equilibrium entrainment regime does not become established; the entrainment 

flux ratio, whether taken directly from LES ( /i sB Bδ− ) or interpreted within the ZOM 

context (see Fig. 3.1; /i sB Bδ ), never reaches a constant, except, perhaps, for the cases 

with the strongest stratification.  An equilibrium regime was not necessarily expected, 

and it does not occur in the sheared CBLs. 

 Some surface buoyancy flux dependence of the GS entrainment flux ratio is seen 

as well.  Comparing Figs. 7.11d-f and b-c, one sees that the ratio increases the most when 
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the surface buoyancy flux is weakest.  When all GS simulations are viewed on the same 

time axis (not shown), the differences among their entrainment flux ratios mostly 

disappear.  The CBLs with the stronger surface buoyancy flux grow more quickly, and 

for any given real time in the simulation, they are deeper and experience stronger shear, 

despite the fact that these faster-growing CBLs are not as effective at concentrating shear 

at their tops. 

 In the GC cases, the entrainment flux ratio behaves quite differently from the GS 

ratios.  The GC ratios increase much more rapidly near the beginning of the simulation 

then decrease slowly or remain fairly constant thereafter.  The initial jump is associated 

with the onset of turbulence in the simulated CBL.  In this initial stage of its development, 

the CBL is so shallow that the surface shear is essentially indistinguishable from the 

entrainment zone shear, and the shear-generated TKE causes very strong entrainment at 

the onset of resolved turbulence.  Also, the proximity of the entrainment zone to the 

surface layer during these early stages may make it easier for the surface shear-generated 

TKE to be transported to the entrainment zone where it can be used available for 

entrainment.  This may explain some of the behavior seen in Figs. 7.11b and d in which 

case the entrainment flux ratio slowly decreases with time. 

The decrease with time is not observed in many of the other cases, such as in Figs. 

7.11e, but in some situations (e.g. Fig 7.11d), the entrainment flux ratio experiences 

rather explosive growth during the onset of turbulence.  However, characteristics of the 

immediate onset should be regarded to be dependent on the method of initialization and 

the numerical scheme in the simulations and not necessarily reflective of the true nature 

of the transition to turbulence in the atmosphere.  Regardless of the onset characteristics, 
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the gradual decrease of entrainment flux ratio with time during the simulations (Figs. 

7.11b,d) is smooth and long enough that the CBL has probably forgotten about these 

initial conditions.  Stronger stratification may act to damp the explosive onset of 

entrainment in the GC cases of Fig. 7.11b, and weaker stratification might make it easier 

for the initial random temperature perturbations to initiate convection (Fig. 7.11g). 

A look at the TKE budgets might help explain the behavior of the time series of 

entrainment flux ratio seen above.  In particular, the budgets might reveal whether or not 

the proximity of the entrainment zone to the surface layer during these early stages allows 

the surface shear-generated TKE to be transported to the entrainment zone. 

7.8 Turbulence Kinetic Energy Budgets 

7.8.1 Profiles of Terms in the Turbulence Kinetic Energy Equation 

The TKE budgets for the simulations with / 0.003zθ∂ ∂ =  K/m and Qs=0.03 Km/s are 

compared in Figure 7.12.  These profiles were chosen at moments when the CBL depth in 

all cases was nearly 800 m, so that the resolution was the same.  The NS case is shown in 

the center so that the sheared CBLs can most easily be compared to the shear-free CBL. 

The effects of shear stand out quite vividly.  As is shown in Figs. 7.4 and 7.12, the 

heat flux minimum is larger in both the sheared cases than in the shear-free case, and the 

entrainment zone is considerably deeper.  The shear production terms in the entrainment 

zone are of comparable magnitude in the GS and GC cases, although at this late time in 

the simulation, the GS case shear production has become a little larger.  Consistent with 

the work of Price et al. (1978), it is evident that a significant portion of the shear-
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generated TKE in the entrainment zone is dissipated, but the dissipated fraction appears 

to be more than suggested by Price (1978), who indicated that roughly 30 percent of the 

shear-generated TKE was dissipated.  The entrainment zone TKE dissipation is a bit 

larger in the GS case than in the GC case, but so is the shear generation of TKE.  In the 

upper portion of the entrainment zone, the buoyancy flux and dissipation become roughly 

equal. 
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Figure 7.12:  TKE budgets, in the RANS sense, for the simulations with a stratification of 
dθ/dz=0.010 K/m and a surface heat flux of Qs=0.3 Km/s for (a) GS, (b) NS, and (c) GC 
cases.  The green lines denote the shear production term, solid black lines the buoyancy 
term, dashed black line the vertical transport term, blue line the dissipation, and yellow 
the residual. 

 

The transport in the NS case is strongly related to the buoyancy production of 

turbulence.  The transport move moves TKE from the lower portion to the upper portion 

of the CBL, and it has roughly a linear profile (see also Moeng and Sullivan 1994), much 

like the buoyancy flux profile, but opposite in sign.  In the GS and GC cases, the 

transport term is smaller in the vicinity of the entrainment zone and becomes slightly 

negative where the shear term is largest.  This does not necessarily mean there is less 

upward transport of the buoyancy-produced TKE.  Rather, there is probably some 



 

 183

compensating downward transport of shear-generated TKE from the entrainment zone 

into the interior of the CBL. 

Essentially, wherever there is shear, the dissipation of TKE is enhanced.  This is 

seen particularly well in the GC case, where the shear production of TKE and dissipation 

in the surface layer are both particularly strong.  The GC transport of TKE is enhanced 

right at the surface, but the profile does not differ much from the NS transport above that, 

suggesting that nearly all the shear-generated TKE near the surface is dissipated locally 

or transported into the middle of the CBL, where it is dissipated.  In the GS surface layer, 

where the shear is weak, the transport profile more closely matches the NS transport 

profile. 

7.8.2 Evolution of the TKE Budgets 

We now examine the evolution of some of the mean wind profiles, turbulent moments, 

and TKE budgets in order to understand the evolution of the entrainment flux ratios in the 

GC and GS cases.  In the GC case, the rapid onset of very high entrainment flux ratios, 

especially in Fig. 7.11b, d, and g, followed by a gradual decrease, needs to be analyzed to 

understand if it is a result of the upward transport of surface shear-generated TKE or if it 

is related to some other phenomenon.  The cases with / zθ∂ ∂ =0.003 K/m and Qs=0.03 

Km/s will be examined.  Because the entrainment rate in this particular GC case is 

strongest relative to that in the GS case. 

 We start by looking at the evolution of the GC momentum profiles, which are 

displayed in Fig 7.13.  The evolution of the x- and y-components of the mean wind 

proceeds in quite a different manner.  The value of u  in the interior of the CBL decreases 
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very quickly early in the simulation, due to the effects of surface friction, but decreases 

rather slowly thereafter.  The overall jump in u  across the entrainment zone changes very 

little between t=2500s and t=20,000s, maintaining a value of about 4 m/s.  In terms of u  

alone, the shear across the entrainment zone, relative to the CBL depth, is very large early 

in the simulation and smaller later on, suggesting the entrainment zone shear drives the 

CBL evolution early in the simulation (generating TKE) but does not have as large an 

influence when the CBL becomes deeper.  This alone may explain the decrease in the 

entrainment flux ratio with time. 

 Meanwhile, the v  profiles show a substantial increase in the v  jump across the 

entrainment zone as the simulation proceeds, increasing to over 4 m/s late in the 

simulation.  Shear in v  seems to become more important with time, suggesting the 

importance of entrainment zone shear in the CBL evolution may not decrease so much.  

The magnitude of the velocity jump vector increases from roughly 4 m/s at t=2500s to 

just over 6 m/s at t=20,000s, which is about a 50 percent increase.  Since the ZOM-

parameterized shear production takes the square of this velocity jump, the shear 

production can be considered doubled based on the velocity jump alone, yet dzi/dt 

decreases, so it really does not become that large.  Meanwhile, the CBL depth nearly 

triples over this same time interval. 
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Figure 7.13:  Evolution of the mean wind profiles for the GC case with dθ/dz=0.003 K/m 
and Qs=0.03 Km/s: (a) x-component, and (b) y-component.  The profiles are labeled 
according to the elapsed times into the simulation, and the upper and lower limits of the 
entrainment zone (defined as the region of negative heat flux) are marked by horizontal 
lines.  
 

 Figure 7.14 shows the evolution of the vertical momentum flux profiles.  First of 

all, the flux of u is a fair bit stronger than the flux of v (the profiles are plotted with 

different x-axes to illustrate the evolution of the profiles).  The fluxes exhibit a substantial 

change across the entrainment zone, approaching zero near the top of the entrainment 

zone, as turbulence diminishes.  For u, the largest fluxes are between the surface and the 

lower limit of the entrainment zone.  In general, the magnitude of the flux in the 

entrainment zone shows a gradual decrease with time.  At t=2500s, the flux is -0.37 m2/s2 

at the bottom of the entrainment zone, and at t=20,000s, it is about -0.21 m2/s2.  The v 

fluxes in the entrainment zone increase a bit over the same time interval, but not enough 

to compensate for the decrease in the magnitude of w u′ ′ .  As time proceeds in the 

simulation, the CBL growth rate, /idz dt  becomes smaller, and this decreases the 

entrainment of momentum. 



 

 186

-0.5 -0.4 -0.3 -0.2 -0.1 0
w'u' (m2/s2)

0

400

800

1200

z 
(m

)

2500

5k10k

20k

 
(a) 

-0.15 -0.1 -0.05 0 0.05 0.1
w'v' (m2/s2)

0

400

800

1200

z 
(m

)

25005k

10k
20k

2500

5k

10k
20k

 
(b) 

Figure 7.14:  Evolution of the vertical momentum flux profiles for the GC case with 
dθ/dz=0.003 K/m and Qs=0.03 Km/s: (a) x-component, and (b) y-component.  The 
profiles are labeled according to the elapsed times into the simulation, and the upper and 
lower limits of the entrainment zone (defined as the region of negative heat flux) are 
marked by horizontal lines. 
 

 The decreasing momentum entrainment also leads to a weaker shear production of 

turbulence as is shown in Figure 7.15.  The profiles are plotted in zi-normalized vertical 

coordinates in order to show the location of the production relative to zi, and the surface 

shear generation of TKE is truncated in order to highlight the TKE production by 

entrainment zone shear (surface shear production does not change much during the 

simulation).  The decrease in shear production with time in the entrainment zone is very 

obvious.  Consequently, the buoyancy consumption of TKE in the entrainment zone also 

decreases with time, but not in as dramatic a fashion as the shear term decreases.  One 

can also see that the largest shear production of TKE occurs in the lower portion of the 

entrainment zone, with the maximum below zi, where the shear is a little weaker but the 

momentum flux is much stronger. 

 The evolution of the transport of TKE (not shown) during the simulation is rather 

unrevealing.  One might have expected the upward transport of surface shear-generated 

TKE into the entrainment zone to be more efficient in the shallower CBL at the 
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beginning of the simulation, but the profiles of the transport of TKE all look similar to 

Fig. 7.12c, shortly after the onset of turbulence. 
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Figure 7.15:  Evolution of the TKE budget profiles for the GC case with dθ/dz=0.003 
K/m and Qs=0.03 Km/s: (a) shear term, and (b) buoyancy term.  The profiles are labeled 
according to the elapsed times into the simulation. 
 

 Based on this analysis, one can conclude that the evolution of the entrainment flux 

ratio in the GC case is directly tied to the entrainment zone shear—not to the upward 

transport of surface shear-generated TKE as originally believed. 

The simulations do have some differences from real atmospheric boundary layers 

in that the initial simulated momentum profiles are in geostrophic balance right down to 

the surface.  In the atmosphere, the effects of surface shear would slow the flow there 

below 20 m/s, so the LES initial profile is not in balance with the combined surface 

friction, pressure gradient, and Coriolis forces, forcing the simulated CBL to adjust to 

these a bit more rapidly early in the simulation than might be the case for an early 

morning boundary layer undergoing transition from a nocturnal (stable) boundary layer to 

a CBL.  On the other hand, the depth of the layer in which friction plays a role in 
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decreasing the momentum in the nocturnal boundary layer is pretty small, and it would 

not be well-resolved anyway.  Such a shallow layer may be relatively unimportant after 

the initial onset of CBL buoyancy-produced turbulence.  Simulations based on data from 

field experiments can be conducted to see if onset is any different when the ageostrophic 

component of the wind is used in the initial profile.  This will be a focus of Chapter 9. 

Meanwhile, we continue the analysis for the GS cases.  Figure 7.16 shows the 

profiles of u  and v .  The net change of u  across the entrainment zone increases 

dramatically during the simulation, climbing from 3.5 m/s at t=2500s to 9 m/s at 

t=20,000s.  The v  profile also shows shear across the entrainment zone, but it is not 

nearly as large (the x-axis in Fig. 7.16b covers a much smaller range). 
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Figure 7.16:  Evolution of the mean wind profiles for the GS case with dθ/dz=0.003 
K/m and Qs=0.03 Km/s: (a) x-component, and (b) y-component.  The profiles are 
labeled according to the elapsed times into the simulation, and the upper and lower 
limits of the entrainment zone (defined as the region of negative heat flux) are marked 
by horizontal lines.  The labels point to the lower limit of the entrainment zone. 
 

  



 

 189

-0.16 -0.12 -0.08 -0.04 0
w'u' (m/s)

0

400

800

1200

z 
(m

)

2500s
5000s

10000s
20000s

 
(a) 

-0.06 -0.04 -0.02 0 0.02
w'v' (m/s)

0

400

800

1200

z 
(m

)

2500s
5000s

10k
20000s

 
(b) 

Figure 7.17:  Evolution of the momentum flux profiles for the GS case with dθ/dz=0.003 
K/m and Qs=0.03 Km/s: (a) x-component, and (b) y-component.  The profiles are 
labeled according to the elapsed times into the simulation, and the upper and lower 
limits of the entrainment zone (defined as the region of negative heat flux) are marked 
by horizontal lines.  The labels point to the lower limit of the entrainment zone. 
 

Figure 7.17 shows the momentum flux profiles.  The x-component flux dominates, 

and its magnitude increases throughout the simulation as the growing CBL encounters 

ever greater momentum at its top. 

 With both the magnitude of the momentum flux and the momentum change across 

the entrainment zone increasing during the simulation, it would be rather intuitive to 

expect the shear generation of TKE to increase as well.  Figure 7.18 shows exactly that.  

Both the shear generation and buoyancy consumption of TKE increase during the GS 

simulation.  With due regard to the variability of the statistics, the location of the 

maximum shear production appears to be a little closer to zi, and a bit more symmetric 

about zi, compared to the GC case. 
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Figure 7.18:  Evolution of the TKE budget profiles for the GC case with dθ/dz=0.003 
K/m and Qs=0.03 Km/s: (a) shear term, and (b) buoyancy term. 
 

 Certainly, the increasing entrainment flux ratio in the GS cases appears to be 

driven by the shear production of turbulence, which is a result of the increasing shear 

across the entrainment zone as the CBL grows.  In contrast, the GC case’s entrainment 

zone shear (as seen earlier) increases only very slowly during the course of the simulation, 

while the momentum flux decreases due to the slowing CBL growth, and the shear 

production of turbulence decreases, leaving relatively less TKE to be consumed by 

entrainment.  Furthermore, the analysis shows that in the GC case, it is the shear 

production of TKE resulting from entrainment zone shear, not the upward transport of 

surface shear-generated TKE, which drives the enhanced entrainment.  The entrainment 

zone shear appears in the GC case as soon as the CBL becomes established because the 

surface friction rapidly slows the CBL momentum.  In the GS case, entrainment zone 

shear is initially zero, and it grows with time, increasing the entrainment flux ratio 

gradually over the course of the simulation.  In typical atmospheric CBLs, one would 

probably not expect this large increase because the GS case has abnormally strong 
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geostrophic shear, but whenever there is any shear, whether geostrophic or not, one 

would expect that entrainment zone shear exerts the primary influence on entrainment. 

7.9 Bulk Richardson Numbers 

 The shear generation of TKE in the entrainment zone occurs simultaneously with 

K-H type instabilities at the CBL top.  Kim et al. (2003) performed a detailed analysis of 

the K-H billow structures at the top of the CBL and presented the gradient Richardson 

number profiles in the entrainment zone.  The gradient Richardson number used here is 

defined in the following manner: 

2

2 2

NRi
u v
z z

=
   ∂ ∂

+   ∂ ∂   

, (7.1) 

where N, /u z∂ ∂ , and /v z∂ ∂ are evaluated locally.  If the entrainment zone shear is 

driven by K-H instabilities, one might expect Ri to fall between 0 and 0.25, with 0.25 

being the necessary but not sufficient condition for the onset of K-H instability in laminar 

flow.  Since the entrainment zone is at least weakly turbulent, one would not necessarily 

expect the flow to behave as it would if it were laminar.  Nevertheless, we expect Ri<1 in 

any layer with dθ/dz>0 where shear-driven turbulence is being generated. 

 An analysis of Ri can be done by at least two different methods.  Ri can be 

evaluated separately at each grid point in order to understand the local generation of K-H 

type instabilities.  Since turbulence is largely episodic and intermittent in the stable 

nocturnal boundary layer, and making an analogy between the stable nocturnal boundary 

layer and the entrainment zone at the top of a sheared CBL, a local analysis of Ri might 
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provide particularly useful information.  Such an analysis can easily become quite 

cumbersome, because there are over five million grid points in the LES domain. 

 A much easier analysis would be to evaluate Ri from the horizontally averaged 

profiles.  The horizontal averaging in this analysis would mask areas where Ri is locally 

small, but it would reveal layers where K-H instabilities might exist in a bulk sense.  We 

apply this analysis to the sheared CBL simulations with dθ/dz=0.003 K/m and Qs=0.03 

Km/s.  Figure 7.19 shows the profiles of u , θ , wθ′ ′ , and Ri at t=15,000s in the GS case.  

Figure 7.20 shows the same for the GC case.  All profiles are plotted together in order to 

show some of the basic relationships among Ri, u , and θ .  The heat flux profile is 

plotted to illustrate the locations of features relative to zi (the heat flux minimum) and the 

upper and lower limits of the entrainment zone. 

The most striking feature in these plots is the layer of nearly constant Ri over 

much of the entrainment zone [see Kim et al. (2003) for comparison].  In fact, 0.25Ri ≅  

over this layer even though the potential temperature and momentum profiles are 

changing with height.  The layer of constant Ri extends from around z=600 m to a point 

just above zi.  Above that level, it returns to its background value of 0.63 over the top 

quarter of the entrainment zone.  The depth of the 0.25Ri ≅  layer is approximately 300 

m, which means that it should be reasonably well-resolved on the LES grid. 

The GC simulation also features a layer with 0.25Ri ≅ .  The layer covers most of the 

lower two thirds of the entrainment zone, and Ri climbs rapidly above that point (Ri is 

infinitely large in the initial background profile).  Likewise, the relationships among the 

momentum, heat flux, and momentum profiles appear qualitatively similar to their 

relationships in the GS case. 
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Figure 7.19:  Profiles of Richardson number, heat flux, potential temperature, and the x-
component of momentum at t=15,000s in the GS simulation with dθ/dz=0.003 K/m and 
Qs=0.03 Km/s.  The colors of the x-axis labels correspond to the colors of the profiles, 
and the black dots on the Ri profile mark the locations of grid points in order to indicate 
grid resolution. 
 

 Given the existence of a 0.25Ri ≅  layer in these two cases, I looked through the 

other cases in search of similar layers.  Not all simulations contain such layers with 

constant Ri.  In many of these cases, the entrainment zone may be too narrow for the grid 

to resolve such a layer.  In other cases, the CBL growth is too fast to allow the 

development of a layer in which the shear at the CBL top achieves a balance with the 
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potential temperature and turbulence structure there.  The penetration of thermals and 

resulting contortion of the interface when buoyancy flux is strong may also obscure the 

Ri in the horizontally averaged profiles. 
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Figure 7.20:  Profiles of Richardson number, heat flux, potential temperature, and the x-
component of momentum at t=15,000s in the GC simulation with dθ/dz=0.003 K/m and 
Qs=0.03 Km/s. 
 

Figure 7.21 shows the time series of Ri at zi for all of the GS simulations, and 

Figure 7.22 shows the same for the GC simulations.  Within the set of GS simulations, 
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the results are dependent on the free atmosphere stratification.  For the cases with 

moderate stratification (dθ/dz=0.003 K/m), the values approach Ri=0.25 rather quickly 

and then stay there.  For the cases with weakest stratification, the free atmospheric profile 

has Ri=0.22, so the time series cannot be expected to approach Ri=0.25.  Rather, it 

decreases rather quickly from Ri=0.22 and then climbs slowly back in that direction.  For 

the strongest stratification, Ri starts out large and asymptotically approaches Ri=0.25 over 

the course of the simulation.  For the Qs=0.3 Km/s case, the simulation finishes long 

before this value is approached. 

 

0 10000 20000 30000
Time (s)

0

0.4

0.8

1.2

1.6

2

R
i

dθ/dz (K/m), Qs (Km/s)
0.010, 0.3
0.003, 0.03
0.010, 0.1
0.003, 0.1
0.003, 0.3
0.001, 0.3
0.001, 0.1
0.001, 0.03

Env.
Ri=2.1

Env.
   Ri=0.63

Env. Ri=0.21

 

Figure 7.21:  Bulk Richardson number Ri at zi as a function of time for all the GS cases.  
“Env. Ri” on the plots refers to Ri of the free atmospheric profile. 
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Figure 7.22:  Bulk Richardson number Ri at zi as a function of time for all the GC cases. 
 

 For the GC cases, the results do not group according to stratification.  Rather, 

there appears to be a weak grouping based on the rate of CBL growth.  The two most 

slowly growing cases have Ri<0.4, and these are the same cases in which the shear 

accumulates at the top, and enhancement of CBL growth is greatest compared to the GS 

and NS cases.  In fact, in all cases in which shear has a substantial impact on entrainment, 

these low Ri layers are seen in the simulations.  The absence of such a layer does not 

necessarily mean shear does not have an impact on the CBL structure or entrainment.  

For example, the 0.010 K/m, 0.1 Km/s GS case has a larger Ri initially, but its CBL still 

entrains faster than its NS case counterpart.  In these cases with strong stratification, the 
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entrainment zone may be too shallow for the grid to resolve a layer with Ri=0.25.  It may 

also be that local patches with 0.25Ri ≤  may exist in the entrainment zone, but the 

horizontal averaging in the mean profiles does not allow them to be seen.  In either case, 

when the shear contribution to entrainment becomes large enough, such patches may 

become more ubiquitous and spread to the point where they are seen everywhere on the 

horizontal plane and thereby appear in the mean profiles.  Also, Ri<1 in most GC cases, 

which means it is generally in a range of values that supports turbulence. 

 Since the thickest of these layers is still only about 20 grid cells deep, the subgrid 

model may still have some impact on the simulations.  When shear is strong there is also 

greater potential for artifacts of the numerical scheme to impact turbulence structures in 

the entrainment zone.  These impacts can be assessed by looking directly at the simulated 

turbulence structures and spectra, which is the focus of the next chapter.  Additionally, 

some comparison with atmospheric data would be particularly beneficial, but temporal 

and spatial resolution in the atmospheric data may be too coarse, especially in data on 

thermodynamic properties of the mean flow. 

7.10 Summarizing Remarks 

The LES results clearly show shear has an impact on entraining CBLs.  For all cases in 

which the simulated CBLs spent a significant amount of time in some sort of an 

entrainment regime, the results of the simulations indicated that shear enhanced the 

entrainment in these CBLs. 

 Some arguments have been made that the sheared CBLs really can be considered 

as two separate layers (Lewellen 2000), which consist of a stable boundary layer above a 
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more classic CBL.  Such structure should be borne out in the turbulence statistics in the 

simulations, and if this is the case, the structure of the CBL interior should be essentially 

unaffected by the shear at the CBL top.  The shear may cause the interface at the top of 

the CBL to become a bit more diffuse, but since the entrainment zone has significant 

density stratification and limited TKE, the effects of shear in the entrainment zone should 

only be able to mix downward into the CBL to a limited extent, and the structure of the 

lower CBL should be unaffected. 

 The results of these simulations suggest that the entrainment zone shear affects 

the whole structure of the CBL.  Figure 7.4 in particular shows that when shear leads to a 

deeper CBL, the temperature of the entire CBL is affected; it is warmer than in shear-free 

CBLs, indicating the shear-enhanced entrainment of heat is felt throughout the entire 

CBL and not just at the top.  Additionally, the entrainment of momentum affects the 

structure of the turbulent momentum transport throughout the depth of the CBL and not 

just at the top.  Based on these results, the sheared CBL would best be considered as a 

single entity rather than as two separate, overlying CBLs. 

 The results of the simulation also have implications regarding the applicability of 

mixed layer models such as the ZOM and FOM to sheared CBLs.  In some sense, the 

self-similarity of temperature structure observed in the simulations is not dramatically 

affected by shear.  The vertical potential temperature gradient is negative in the lower 

CBL, changes sign somewhere in the middle CBL, and becomes increasingly positive 

towards the CBL top.  This is the case whether shear is present or not.  Use of a mixed 

layer with this type of structure has worked well in the past, and there is no reason to 
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believe that it would not work for the temperature structure observed in sheared CBLs as 

well. 

The case may be different for the momentum profiles.  The vertical gradient of u  

is always positive in these simulations, and in many of the simulations, the momentum 

fields in the interior of the CBL do not look well-mixed.  Additionally, it is rather well 

established that the eddy diffusivities of momentum and heat are different, as heat is 

vertically transported more efficiently than momentum, the latter being subject to 

dynamics pressure effects that impart some of the “environmental” momentum on any 

rising air parcel (Stull 1988).  In this case, the use of a mixed layer model assuming a 

constant momentum with height in the interior of the CBL may concentrate too much 

shear at the CBL top and thereby overestimate the shear generation of turbulence there.  

Perhaps the assumption of a linearly varying profile of u  in the CBL interior would work 

better.  However, in a bulk model, the shear production of TKE may be insensitive to the 

distribution of shear.  Chapter 10 will evaluate the performance of mixed layer models 

for the simulated CBLs in this study. 

Finally, the analysis presented in this chapter has provided strong evidence that 

surface shear has relatively little effect on entrainment.  In all strongly entraining GC 

cases examined, the entrainment zone shear was seen as the primary driver of enhanced 

entrainment.  Analysis of Ri in the entrainment zone and within individual profiles of 

velocity and potential temperature shows that if the shear becomes strong enough in a 

background that is stable in the K-H sense, a well-resolved layer of constant Ri develops 

in the simulations.  This may have implications for application of the FOM to sheared 

CBLs. 
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Chapter 8  

Turbulence Structure in Sheared Convective 

Boundary Layers 

8.1 Motivation 

This chapter is focused on the analysis of turbulence structure in sheared and shear-free 

CBLs.  The purpose of the analysis is twofold: 1) to see what differences exist in 

turbulence structure between sheared CBLs and shear-free CBLs, and 2) to evaluate the 

length scales of the turbulence structures that are important for entrainment in both the 

sheared and shear-free CBL simulations to assess whether a change in l might improve 

the predicted entrainment rate in e-l models and to assess the resolution of entraining 

turbulence structures on the LES grid.  Greater confidence can be placed in the LES 

results with regard to entrainment if the entraining structures are well-resolved, but if it 

appears that poorly resolved structures are the main contributors to the entrainment of 

heat and momentum, the results might be much more sensitive to the subgrid model and 

to artifacts of the numerical scheme. 
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8.2 Cross Sections of Temperature and Velocity 

We begin by showing flow fields over several cross-sections throughout the CBL, 

oriented horizontally and vertically, normal and parallel to the mean wind direction.  

Figure 8.1 shows potential temperature and velocity patterns in an x-z cross section of the 

shear-free CBL with dθ/dz=0.003 K/m and Qs=0.1 Km/s.  The coloring in the figure 

corresponds to the potential temperature, and the arrows show the projection of the 

velocity vectors onto the x-z plane.  The cross section shows some well-known features 

of the CBL that have been discussed in a number of references such as Deardorff (1974a), 

Moeng and Sullivan (1994), and Stull (1988).  In the shear-free CBL (Fig. 8.1a), the 

warm updrafts are rather narrow and intense and are surrounded by larger areas of weakly 

subsiding motion.  At the top of the CBL are areas of rather sharp gradients, mostly at the 

tops of plumes that penetrate into the free atmospheric layer.  In these areas, the interface 

between the CBL air and overlying free-atmospheric air is rather well-defined.  

Surrounding these plume tops are areas with much weaker gradients where it is much 

harder to find the interface.  Qualitatively, the picture is similar to CBL structure shown 

by the lidar measurements of Kiemle et al. (1995) and Davis et al. (2000) in the dry 

atmospheric CBL.  This structure of the dry CBL has implications for the application of 

the coordinate transformations suggested in Lilly (2002a).  A sharp interface can be 

identified at the tops of plumes, but not everywhere.  The sharpness of the upper interface 

is also pretty variable in Figs. 8.1b and 8.1c.  
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Figure 8.1:  x-z cross section showing temperature and velocity structure in the 
simulations with dθ/dz=0.003 K/m and Qs=0.3 Km/s: (a) NS, (b) GS, and (c) GC.  In (c), 
because the momentum is dominated by the x-component, vertical velocity contours 
(contour interval 0.4 m/s) are added to identify areas of upward and downward motion.  
The negative countours are denoted by dashed lines, and the bold contour represents 0 
m/s. 
  

 In the GS case (Fig. 8.1b), it can be seen that the shear has a large impact on the 

structure of the CBL.  Fig. 8.1b is marked by the absence of the narrow, columnar type 

updrafts that are found in Fig. 8.1a.  While the updrafts may still be narrower than the 

downdrafts, they are no longer vertically upright.  One example of such updraft structure 

is located between x=500m and x=1000m.  The base of this area of upward vertical 

motion is located near x=500m, but its top is located closer to x=1000m.  Also, this 

updraft carries much weaker horizontal momentum than the surrounding downdrafts. 
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Figure 8.2:  y-z cross section showing temperature and velocity structure in the 
simulations with dθ/dz=0.003 K/m and Qs=0.3 Km/s: (a) NS, (b) GS, and (c) GC. 
 

 In the GC case (Fig. 8.1c), the updrafts and downdrafts are obscured by the fact 

that the vector components are dominated by the horizontal flow u .  However, it is 

immediately obvious that the CBL turbulence structure looks very horizontally elongated 

on this cross section compared to the others.  The vertical velocity contours show that, for 

this cross section, downward vertical motion occupies a much larger area than upward 

vertical motion.  This is due to the placement of the cross section.  The CBL structure in 

the GC case is dominated by horizontal convective rolls, and the cross section in Fig. 8.1c 

is oriented nearly parallel to the rolls and samples a region mostly within the downdraft 

of a roll. 
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Figure 8.2 shows the y-z cross sections, and Fig 8.2c shows them for the GC case.  The 

GC y-z cross section is oriented perpendicular to the rolls.  In this plane, the updrafts and 

downdrafts look a bit more similar to those in the NS case, with more isolated regions of 

warm updrafts surrounded by broader regions of downward vertical motion.  As 

discussed in Chapter 5, the interface between the CBL air and the free atmospheric air 

looks sharper at the tops of the areas of ascent and is much less defined in between, 

where the motion is downward.  It is quite evident that the stretching deformation, at least 

as seen within this particular cross-section, acts to intensify gradients at the tops of 

updrafts and to weaken them at the tops of downdrafts. The structure in the NS case (Fig. 

8.2a) looks qualitatively the same as it does in Fig. 8.1a, which should be expected in the 

shear-free case, and in the y-z plane, there is relatively little visual information to 

distinguish between the NS case and the GS case (Fig. 8.2b).  The GS updrafts may look 

a little less vertically coherent than the NS ones, as they are tilted through the y-z plane. 

 Figure 8.3 shows a horizontal (x-y) cross section near the surface for the NS case.  

As is discussed in Moeng and Sullivan (1994) and Kanna and Brasseur (1998), the CBL 

structure forms into quasi-hexagonal cells in the absence of mean shear.  The horizontal 

motions push air outward from the downdrafts at the centers of the cells.  Along its 

motion near the surface, the air acquires heat due to the surface heat flux, and this heated 

air then accumulates at the vertices of the cells, where it then begins its ascending motion 

at the base of the plume.  The upward vertical motion (not shown) is most intense at the 

corners of the cells.  In Figure 8.3, the warmest temperatures are found at these locations. 
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Figure 8.3:  x-y cross section near the surface showing temperature and velocity structure 
for the NS simulation with dθ/dz=0.003 K/m and Qs=0.3 Km/s. 

 

Figure 8.4 shows the corresponding horizontal cross section for the GS case.  

There is not a very large difference in the shape of the thermal structures, but there does 

appear to be somewhat of a loss of hexagonal structure.  The areas of cooler air appear 

more in bowing type structures, with the narrower hot zones located at the leading edge 

of these structures as they are pushed rightward by the momentum.  Horizontal motion 

has a positive x-component everywhere in the picture, being faster in some areas and 

having a y-component of either sign, depending on location. 
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Figure 8.4:  x-y cross section near the surface showing temperature and velocity structure 
for the GS simulation with dθ/dz=0.003 K/m and Qs=0.3 Km/s. 

 

The biggest difference in structure is seen in the GC case, shown in Figure 8.5.  

The alignment of the turbulent structures into horizontal roll shapes is very obvious in 

this picture.  This is a feature common to CBLs with strong surface wind and has been 

discussed by Lilly (1966), Lemone (1973), Moeng and Sullivan (1994), Kanna and 

Brasseur (1998) and others.  The surface shear definitely plays a larger role in organizing 

the CBL turbulence into horizontal convective rolls. 
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Figure 8.5:  x-y cross section near the surface showing temperature and velocity structure 
for the GC simulation with dθ/dz=0.003 K/m and Qs=0.3 Km/s. 

 

One additional feature that is seen in the sheared CBLs, especially in the GC case, 

is that the structures appear to be a bit smoother than in the NS case, particularly in Fig. 

8.5.  It will be necessary to see if the smoothness is reflected in the LES turbulence 

spectra and to see if it is consistent with observed atmospheric spectra.  It will also be 

interesting to see how the structural differences between the hexagonal cells in the NS 

case and the rolls in the GC case affect the spectra. 
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8.3 Spectra of Turbulence 

The one-dimensional vertical velocity spectra for these cases are shown in Figure 8.6.  

These spectra were calculated across horizontal planes.  Figure 8.6a shows the spectra 

halfway between the surface and the CBL top (z/zi=0.5), and Figure 8.6b shows the 

spectra at the CBL top.  For the middle CBL, in all cases, the peak in the spectrum is near 

z/zi=2π, and this fact is consistent with the dominant length scale (and turbulence 

production scale) of CBL turbulence being approximately equal to the CBL depth (Stull 

1988). 
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(b) 
Figure 8.6:  Vertical velocity spectra for the simulations with dθ/dz=0.003 K/m and 
Qs=0.3 Km/s.  The spectra are calculated across horizontal planes at the following levels 
with respect to zi: (a) z/zi=0.5, and (b) z/zi=1.0. 
 

 The spectra for the NS and GS cases also suggest the presence of a Kolmogorov 

inertial subrange, with the simulation resolving approximately one decade of this range.  

The k-5/3 line is shown as a reference.  If the simulation resolved all turbulence, the k-5/3 

range would extend at least another six decades, but at kzi=40, the combined damping 
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effects of the subgrid eddy viscosity and the numerical scheme become rather 

pronounced, and the energy drops off more rapidly than k-5/3. 

 For the sheared CBLs, there are two notable differences in the spectra.  First is the 

larger energy density at the lowest wavenumbers, which is most noticeable for the GC 

case.  Second is the decrease in the energy density in the highest wavenumbers, and this 

is most dramatic in the GC case, both in the middle CBL (Fig. 8.6a) and at the CBL top 

(Fig. 8.6b).  For the GC case, there appears to be no k-5/3 range, and the energy density 

falls off rapidly immediately beyond the production range.  The rapid drop-off is 

consistent with the smoother structure shown in Fig. 8.5, but there are no atmospheric 

data suggesting the dropoff in energy should be so rapid.  Atmospheric data 

characteristically have a k-5/3 range (e.g. Kaimal 1978). 

We look further at the integral length scales of turbulence, defined as: 
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These are shown in Figure 8.7.  The integral length scale in the GC case is more than 

50% larger than it is in the NS and GS cases. 

Figure 8.8 shows the heat flux cospectra in the entrainment zone for the same 

simulations at the same times shown in Figs. 8.1 through 8.7.  These spectra indicate that 

the smallest wavenumber (largest length scale) structures are the primary contributors to 

the heat flux of entrainment into the growing CBL.  For the GC case, there is no 

appreciable flux at wavenumbers larger than about kzi=20, which is consistent with the 

lack of energy in the higher wavenumbers of the vertical velocity spectrum and the longer 

integral length scales.  These characteristics are qualitatively consistent with the 

cospectra displayed in Schmidt and Schumann (1989) and Kaiser and Fedorovich (1998). 
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Figure 8.7:  Integral length scales for the vertical velocity spectra for the simulations with 
dθ/dz=0.003 K/m and Qs=0.3 Km/s. 
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Figure 8.8:  Heat flux cospectra at z/zi=1.0 for the simulations with dθ/dz=0.003 K/m and 
Qs=0.3 Km/s. 

 

Specially conducted numerical experiments have shown that the primary cause of 

the smooth structures and the rapid dropoff in the higher wavenumber energy density in 

the GC case is the Asselin (1972) filter, which is used with the leapfrog time-stepping 

scheme to prevent splitting of the numerical solution and to damp numerical modes.  

Unfortunately, it also damps high wavenumber features.  Formally, the leapfrog scheme 
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is a centered, second order accurate scheme in time, but the Asselin filter, which must be 

used to prevent time-splitting of the solution and to damp artificial numerical modes, 

reduces the scheme to first order accuracy, meaning that it is highly dissipative.  Since 

this filter acts in time and not in space, it can only act on structures that change rapidly or 

move rapidly through the grid, and this occurs when advection is strong.  If the 

turbulence structure remains relatively stationary, the filter does not affect it so 

dramatically. 

One can derive an equation describing the damping as a function of wavenumber, 

and this is done in Appendix B.  The damping is most severe at / 2k π= ∆ , which is the 

4∆x wave.  At infinitely small wavenumbers and at /k π= ∆ , there is no damping.  The 

lack of damping at /k π= ∆  occurs because 2∆x waves have zero phase velocity on the 

grid (due to numerical phase speed errors), and because they do not move, they are 

immune to the effects of the filter.  The subgrid turbulent viscosity dissipates the 2∆x 

features. 

 To minimize the damping, the simulations are now run in a frame of references 

that moves with the turbulent flow, which minimizes the grid-relative advection.  Several 

of the GS and GC simulations were rerun to test the effects of the frame of reference on 

the spectra and to see if the numerical damping had an effect on the entrainment.  For the 

GC cases, the grid is typically set in a frame of reference that moves at a ground-relative 

speed approximately 80 percent of the geostrophic wind speed.  The Monin-Obukhov 

similarity condition at the surface has been revised to comply.  Since the lower boundary 

condition is u=v=w=0 at the surface, this might imply that the moving grid would damp 

turbulence features at the surface more than the stationary grid would.  However, the flow 
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at the lowest grid level (10 meters above the surface) is approximately 12 m/s with 

respect to the surface at rest, so the grid-relative flow is only 4 m/s with the moving grid. 

Figure 8.9 shows the results of the simulations performed in the flow-relative 

frame of reference.  One can immediately see that the GC spectra in the flow-relative 

simulations match the NS spectra much more closely.  An inertial subrange is seen, and 

the energy at the lower wavenumbers, including the peak of the spectrum, is reduced and 

matches the NS spectrum more closely.  At the CBL top, the change in the frame of 

reference does not affect the energy at the lowest wavenumber in the spectrum, but the 

GC spectrum is brought much closer to the NS spectrum elsewhere. 
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(b) 
Figure 8.9:  Vertical velocity spectra for the simulations with dθ/dz=0.010 K/m and 
Qs=0.3 Km/s.  The spectra are calculated across horizontal planes at the following levels 
with respect to zi: (a) z/zi=0.5, and (b) z/zi=1.0.  The dashed green lines are spectra from 
a simulation performed with the grid frame of reference moving with the mean flow in 
the CBL, which was approximately 16 m/s. 

 

As a further test of the numerical damping, the NS spectrum can be modified 

using the equation from Appendix B that describes the damping as a function of 

wavenumber.  When the equation is iterated 20 times with the NS spectrum, the output 

spectrum matches the original GC spectrum almost identically between the energy 
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production range and k=4∆x, as illustrated in Figure 8.10.  Again, the major difference 

between the NS and GC cases (without the moving grid) is the advection term, which is 

much stronger in the GC case, so if the affects of the filter damping of advected 

turbulence, quantified in Appendix B, are applied to the NS spectra, the NS spectra are 

brought to match the GC spectra. 

For the simulations that were repeated, there were no noticeable differences in the 

CBL growth rate between the simulations performed in the ground-relative and CBL-

relative frames of reference.  Because the heat flux cospectra show the entraining 

structures are at the lowest wavenumbers, it is reasonable to expect that the grid frame of 

reference should not have a large overall effect on simulated entrainment.  Additionally, 

LES comparison exercises among codes using different numerical schemes (Fedorovich 

et al. 2004c), some of which have considerably less damping, show that the simulated 

CBL growth rates compare favorably between the code used in this study and codes using 

higher order schemes (Moeng 1984; Sullivan et al. 1994).  In the comparison exercises, 

three cases (NS, GS, and GC) with a surface heat flux of sQ =0.2 Km/s and stratification 

of / zθ∂ ∂ =0.003 K/m were simulated using six different LES codes.  The horizontally 

averaged vertical profiles of first and second order turbulence statistics were very similar 

among most of the codes participating in the comparison. 

Additional simulations were performed, as described at the end of Chapter 7, to 

investigate whether the 0.25Ri ≅ layer seen in the GS and GC simulations in Figs. 7-22 

and 7-23 could be duplicated under slightly different conditions of shear and buoyancy.  

These most recent simulations were carefully designed to minimize the effects of 
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numerical damping in the entrainment zone and to see what effects the primarily shear-

generated turbulence in the 0.25Ri ≅  layer had on the integral length scale of turbulence. 
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Figure 8.10:  Vertical velocity spectra for the NS and GC simulations with dθ/dz=0.010 
K/m and Qs=0.3 Km/s along with the NS spectra, damped according to the amplitude 
error, as a function of wavenumber, of the leapfrog scheme with the Asselin filter. 

 

Figure 8.11 shows the vertical velocity spectra from these simulations at z/zi=0.9, 

1.0 and 1.1.  These locations fall within the entrainment zone, which covers 

0.82<z/zi<1.11 for the NS case, 0.71< z/zi<1.21 for the GS case, and 0.67<z/zi<1.14 for 

the GC case.  Fig. 8.11a shows the comparison between the NS and GS spectra, and Fig. 

8.11b is a comparison between the NS and GC cases.  Far and away the most striking 

feature separating the sheared CBL spectra from the shear-free spectra is the greater 

energy density in the upper portions of the entrainment zone of the sheared CBLs.  In the 

spectrum from the shear-free CBL, energy decreases with height, and in the sheared 

CBLs there is no substantial decrease.  These differences can be compared with the 

profiles of vertical velocity variance that were shown in Figure 7.10. 
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In the lower portion of the entrainment zone (z/zi=0.9), where the flow should be 

mostly turbulent, there is almost no difference among the NS, GS, and GC spectra, and 

they fall almost on top of one another.  At z=zi, some differences begin to appear.  The 

GC case spectral energy density in the lower wavenumber portion of the energy 

production range is somewhat larger than in the NS case.  At higher wavenumbers, 

though, the spectra are nearly identical.  For the GC case (Fig. 8.11b), the spectral energy 

density is larger over most of the energy production range and into the inertial subrange.  

The tails of the spectra in the NS case show the effect of insufficient damping of high 

wavenumber energy by the Deardorff (1980) subgrid model, which reduces subgrid 

energy in stably stratified layers (Otte and Wyngaard 2001).  At z/zi=1.1, the NS energy 

is significantly reduced from what it was in the middle and lower portions of the 

entrainment zone, but the effects of shear keep the GS and GC energy density rather high. 
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(b) 
Figure 8.11:  Vertical velocity spectra for simulations with dθ/dz=0.003 K/m and 
Qs=0.03 Km/s at times in the simulation when the CBL depth was 800m.  The 
comparisons are made between the NS case and: (a) a GS case with geostrophic wind 
changing linearly with height at a rate of 14 m/s per 1600 meters, (b) GC case with a 
geostrophic wind of 14 m/s. 
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The peak of the NS spectrum shifts toward lower wavenumbers as one moves 

upward through the entrainment zone, whereas in the GS and GC cases, the peak remains 

in about the same spot.  All the spectra roughly follow the k-5/3 line in the resolved 

portion of the inertial subrange, except for the NS spectra in the middle and upper 

portions of the entrainment zone, where the motions may not be truly turbulent, and the 

turbulent viscosity is too small to remove these motions. 

 Figure 8.12 shows the integral length scales of the fluctuating motions as a 

function of height.  The most remarkable feature of this figure is that when the 

simulations are run in a CBL or entrainment zone flow-relative framework, the integral 

length scales in the interior portion of the CBL are nearly identical among all three cases.  

The main differences appear in the entrainment zone, where the NS case integral length 

scale decreases rapidly, but the GC and GS length scales, affected by the shear-generated 

turbulence, do not, but above the CBL top, these results cannot be easily interpreted 

because the analysis technique cannot distinguish between fully turbulent and wavy, non-

turbulent motions.  It is possible that the K-H type instabilities associated with the shear 

generation of turbulence are of a relatively large length scale, and according to the 

analysis done by Kim et al. (2003), this seems to be the case.  However, Fig. 8.12 does 

show a small decrease in the GS length scale for 0.5 / 0.9iz z< < . 

Figure 8.13 shows the heat flux cospectra at z/zi=1.0 for the new simulations.  In 

all cases, most of the negative area is at kzi<20.  Compared to Figure 8.8, there is little 

qualitative difference in the shape of the cospectra.  Essentially all the entrainment of 

heat is occurring on spatial scales that are well-resolved on the LES grid.  This is a very 

important requirement for the validity of the simulation results. 
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Figure 8.12:  Integral length scales as a function of height for the vertical velocity spectra 
shown in Fig. 8.10. 
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Figure 8.13:  Heat flux cospectra for the simulations described in Figs. 8.11 and 8.12. 

8.4 Vertical Velocity Skewness 

Finally, we present a feature of the simulated CBLs for which some quantitative 

comparison with atmospheric data can be made.  According to the results of the 
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simulations in this study, the presence of shear changes the skewness of the vertical 

velocity in the CBL.  Plotted in Fig. 8.14 are the vertical velocity skewness profiles for 

the cases with dθ/dz=0.003 K/m and Qs=0.03 Km/s.  As discussed in Moeng and Rotunno 

(1990), the vertical velocity skewness profile in LES of shear-free CBLs does not match 

atmospheric data very closely.  Indeed, our NS LES data show much the same thing, with 

large positive skewness peaking in the upper portion of the CBL.  However, in the GS 

and GC cases, the vertical velocity skewness is much lower, with values of about 0.5 in 

the middle of the CBL, matching the atmospheric data quite closely.  The geostrophic 

shear in the GS case is much stronger than would typically occur in the atmosphere, but 

the conditions of the GC case are a bit more representative, although the winds speeds are 

still rather strong.  For simulations with a stronger heat flux, the differences between the 

vertical velocity skewness profiles of the sheared and shear-free CBLs are not as distinct, 

and the skewness in the sheared CBLs becomes larger.  This behavior is generally 

expected when considering the simulated CBLs within a range of CBL types.  Skewness 

is large and positive in purely buoyancy-driven CBLs (upward vertical velocity is 

concentrated in tall, narrow plumes) and small when surface buoyancy flux is weak and 

shear is a significant factor in CBL growth. 

The relationship between the structures in Figs. 8.1 through 8.3 and the skewness 

profile (Fig. 8.14) can be understood with some qualitative reasoning.  In the NS case, the 

updrafts are fed primarily at the intersections of hexagonal cells (see Fig. 8.3), which are 

essentially isolated structures.  The updrafts are therefore rather narrow, as seen in Fig. 

8.1.  In the GC case, the intense surface shear deforms the temperature perturbations near 

the surface and causes them to elongate.  As a result, the updrafts in the GC case form 
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along lines, and when combined with the mass-compensating downdrafts, form the 

horizontal convective rolls in the GC case (Kanna and Brasseur 1998).  Since the updrafts 

are not as isolated and intense as in the NS case, the skewness drops.  Even in the GS 

case, the plumes of warmer air are tilted by the shear relative to the more vertically erect 

structures seen in the NS case.  Also, the shear-generated turbulence would not be 

expected to have a directional preference for transport, unlike the NS case, where warm 

air rises. 
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Figure 8.14:  Vertical velocity skewness for (a) the simulations with dθ/dz=0.003 K/m 
and Qs=0.03 Km/s, (b) Moeng and Rotunno (1990) 
 

 These overall results are consistent with the effects of shear on the TKE budgets 

presented in Chapter 7.  Since one component of the TKE transport is w w w′ ′ ′ , smaller 

skewness implies that the upward transport of energy is reduced in sheared CBLs or that 

it is compensated by the downward transport of shear-produced TKE from the 

entrainment zone. 



 

 220

8.5 Chapter Summary 

The results of this chapter can be summarized within the framework of the goals that 

were stated at the beginning of the chapter.  The shear has rather significant effects on the 

turbulence structure within the CBL.  In the GC case, it aligns turbulent motions into 

horizontal convective rolls (as has been simulated by others and observed in the 

atmosphere), and in the GS case, the shear tilts the thermals out of the vertically upright 

orientation they have in the NS case.  Relative to the NS case, the resulting updrafts are 

not as narrow, and the upward transport of TKE that is seen in the NS case is reduced in 

the GS and GC cases, particularly in the middle and upper portions of the CBL.  This is 

reflected in both the TKE budgets and skewness profiles.  There could also be some 

compensating downward transport of energy from the entrainment zone. 

 Aside from differences in total variance, the vertical velocity spectra in the 

interior of the CBL and in the lower portion of the entrainment zone are not greatly 

changed in the presence of shear.  Although there is some greater energy in the lower 

wavenumber portion of the production range when shear is present, the rest of the energy 

production range and inertial subrange look similar to the shear-free spectra.  The 

differences among the GS, GC, and NS spectra in the initial simulations (Fig. 8.6) are 

mostly due to the damping effects of the numerical scheme, which are more severe at 

higher wavenumbers (except for / 2 /kπ π∆ ≤ ≤ ∆ ), and when the simulations are 

conducted in a frame of reference moving with the CBL mean flow, most of these 

differences disappear. 

The integral length scales of turbulence are largest in the middle of the CBL, and 

they do not depend much on shear there; the integral length scales of the NS, GS, and GC 
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cases are nearly identical.  At the CBL top, the GS and GC integral length scales are 

larger than they are in the NS case, which indicates the structures associated with the K-H 

type instabilities that have been documented in other studies (Kim et al. 2003), are 

probably well-resolved on the LES grid.  However, it is difficult to distinguish between 

turbulent and wavy motions there, so the results must be interpreted with some caution. 

The heat flux cospectra in the entrainment zone (z/zi=1.0) show that the turbulent 

motions responsible for entrainment are well-resolved on the LES grid.  This result lends 

greater confidence to the results of Chapter 7.  It remains to be seen, however, what the 

evolution of the CBL would be like in the simulations, given the input of atmospheric 

data as an initial condition.  This is the focus of the next chapter. 



 

 222

Chapter 9  

Comparison of LES with Atmospheric Data 

9.1 Introduction 

This chapter considers measurement techniques to estimate the entrainment rate of 

sheared CBLs.  After considering the variety of methods and data available, a case study 

of CBL development, simulated by LES and observed in the atmosphere, will be 

examined and the LES and atmospheric data compared. 

As mentioned in Chapters 1 and 2, the effects of horizontal heterogeneity, 

mesoscale and synoptic scale forcing for vertical motion, and advection are at least as 

large as the effects of shear on the convective boundary layer depth.  Therefore, it would 

seem more feasible to measure not the CBL depth as a function of time (although lidar 

CBL depth measurements do seem fairly robust), but to directly measure entrainment 

velocity in terms of the heat flux in the entrainment zone iBδ  (see Fig. 3.1 and Chapter 

5).  Entrainment zone heat flux measurements in the atmosphere are difficult and 

expensive to make so they are not conducted on a routine basis. 



 

 223

9.2 Atmospheric Boundary Layer Measurement Methods 

9.2.1 Discussion of Selected Previous Studies 

Direct measurements of heat flux in the entrainment zone are limited to a few select field 

experiments, from which there is a limited quantity of data.  A number of studies such as 

Lenschow (1970), Davis et al. (1997), Flamant et al. (1997), and Young et al. (2000) 

have measured entrainment zone heat flux using aircraft, but it is very difficult to identify 

and fly exactly at the level where the horizontally averaged heat flux is at its minimum.  

Flamant et al. (1997) therefore relied on the extrapolation of the heat flux profile from 

three measurement levels within the CBL, using a linear best fit, up to the CBL top zi, 

which was determined by lidar.  LES data certainly support the idea that the heat flux 

profile is linear, at least below the level where the heat flux crosses zero.  The lidar-

determined zi, is likely to be higher than that from the heat flux minimum because it relies 

on maximum gradients, which place iz  higher than the height of the heat flux minimum, 

but the same methods can be applied to LES data, so a direct comparison is possible.  

Flamant et al. (1997) have relatively modest values of entrainment zone shear, with 

generally 3 m/s or less velocity change across the entrainment zone.  At these values, 

LES results do not show significant effects of shear, and their data, plotted as 0iB−  versus 

u∆ , do not show a significant trend either. 

Another study involving aircraft measurements is the Dynamics and Chemistry of 

Marine Stratocumulus (DYCOMS-II) experiment (Stevens et al. 2003).  Aircraft were 

flown in circular patterns over marine stratocumulus layer off the California coast, and a 
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divergence technique was used to accurately estimate the entrainment rate in the 

stratocumulus-topped CBL: 

0

iz
i

e
dz u vw dz
dt x y

 ∂ ∂
= + + ∂ ∂ 

∫ , (9.1) 

where ew  is the entrainment velocity, which is distinct from the CBL growth rate, dzi/dt, 

when divergence is nonzero.  In the DYCOMS-II flights, it was thought that the 

divergence could be accurately estimated by integrating the track-normal component of 

the horizontal velocity around a closed flight track (Lenschow 1996; Lenschow et al. 

1999), however, analysis of the data showed that the divergence estimates were not as 

good as expected (Douglas Lilly and Bjorn Stevens, personal communication). 

Entrainment estimates were also constrained by the use of a tracer method, which 

employs the ZOM parameterization of fluxes at the CBL top: 

i
e

w cw
c

′ ′
=

∆
 (9.2) 

The tracer method worked well for the stratocumulus-topped marine CBL, which has a 

sharply defined top, but it might not do well over land, where the CBL top is not so sharp.  

Dimethyl sulfide works as a good tracer over the ocean, but a different tracer would have 

to be chosen over land. 

Angevine et al. (2001) infer the entrainment heat flux from sequential profiles of 

temperature measured at the 200-meter tall Cabauw tower in the Netherlands during the 

morning transition from a nocturnal boundary layer to a convective boundary layer.  The 

sequential profiles of temperature during the transition were used as a proxy for heat flux 

and showed that the entrainment flux ratio in such transitioning CBLs is large.  During 

the transition, surface heat flux is relatively modest, and winds at the top of the nocturnal 
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boundary layer are relatively strong, allowing the effects of shear to stand out.  The tower 

is only tall enough to observe the transition itself and not the evolution of the CBL once it 

is established. 

The Boulder Atmospheric Observatory (BAO) in Colorado is another tall (300m) 

tower that has been designed for atmospheric experiments.  Television transmission 

towers can be even taller (up to 500 meters), but access to them is limited, and the 

proximity of high-powered transmitters may increase the likelihood of electromagnetic 

interference.  Even the tallest towers are still shorter than the typical CBL depth, so in 

most CBLs, in-situ measurements of the entrainment zone are only possible with aircraft.  

Nevertheless, shear tends to be most important during the morning transition when the 

CBLs are shallower, and towers are able to measure the transition relatively effectively. 

LES and atmospheric data indicate the heat flux profiles are generally linear 

between the surface layer and the zero crossing height, so if measurements are made over 

a sufficient depth of the CBL to establish a linear profile, then this profile could be 

extrapolated to a lidar-determined zi, and the ZOM-equivalent heat flux of entrainment 

could be established (Flamant et al. 1997, Angevine et al. 2001).  The biggest limitation 

of retrieval of second order statistics from a stationary platform is that a long sampling 

time is necessary for the average profiles to converge to an ensemble mean, which itself 

is difficult to define.  When the winds are very light, the use of the Taylor frozen 

turbulence hypothesis becomes problematic, making it difficult to relate time averages to 

spatial averages.  Despite these problems, Angevine et al. (2001) shows that it is possible 

to use tower measurements during the morning transition period, when shear is expected 

to be the most important in the CBL development. 
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Pino et al. (2003) compared LES with radiosonde measurements taken at an 

Atmospheric Radiation Measurement (ARM) Program site.  ARM is funded by the 

United States Department of Energy and is aimed at improving the understanding of the 

effects of clouds and their radiative feedback on global climate change.  The ARM 

Southern Great Plains Facility (SGP) consists of a central facility near Lamont, 

Oklahoma and several surrounding facilities in other parts of Oklahoma and southern 

Kansas.  The data collected at the sites include balloon-borne atmospheric soundings, 

Atmospheric Emitted Radiance Interferometer (AERI) measurements, measurements of 

surface energy balance and fluxes, 915 MHz profiler winds, and Raman lidar aerosol 

backscatter and water vapor data (Goldsmith et al. 1998; Whiteman et al. 1992; Turner 

and Goldsmith 1999; and Turner et al. 2000).  When balloon-borne atmospheric 

soundings cannot be collected, AERI data (Feltz et al. 1998, 2003; Smith et al. 1999) can 

substitute.  Comparison studies indicate the difference between the AERI and radiosonde 

measurements is typically about 1 K. 

9.2.2 Additional Platforms 

Additional platforms are available for measuring CBL turbulence.  Tethered balloon-

borne systems (Frehlich et al. 2003) can measure wind and temperature continuously at 

several levels along the tether that ties the system to the ground.  Such systems can 

operate in the nocturnal boundary layer or in the CBL under light wind conditions 

(generally 10 m/s or less).  During stronger wind conditions, when shear plays a larger 

role in entrainment, it becomes much more difficult to operate these systems.  Garcia et al. 
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(2002) have done a case study of the morning evolution of the CBL depth using a 

tethered measurement system.  

 Lidar measurements have been used in LES-atmospheric dataset comparisons 

(Mayor et al. 2003).  High resolution Doppler lidar (HRDL—Grund et al. 2001) can be 

used to measure turbulence structures in the CBL using range gates as low as 30m.  

HRDL was used in the Cooperative Atmosphere Surface Exchange Study in 1999 

(CASES-99), which took place in the Walnut Creek watershed in southeastern Kansas to 

study the structure of intermittent turbulence in the nocturnal boundary layer.  During the 

2002 International H2O Project (IHOP), HRDL was to be operated from aircraft flying 

above the CBL, but a number of technical difficulties prevented the collection of a large 

amount of data.  With its range resolution of only 30 meters, it has the capability of 

resolving turbulence structure in the entrainment zone, particularly if it can be used in a 

downward-pointing position in aircraft flying just above the CBL.  Ground-based 

Doppler lidar measurements of the entrainment zone are also possible, but this requires 

the beam to penetrate the entire depth of the CBL, worsening the attenuation of the signal 

from the entrainment zone.  Nevertheless, it has been used to retrieve vertical velocity in 

the CBL using an adjoint technique (Chai et al. 2004) in a domain about a quarter of the 

area of the LES domain in Chapters 6 and 7.  This may allow some further comparison 

between LES and atmospheric measurements. 

Profiler measurements of the vertical structure of the mean horizontal wind have 

improved remarkably over the past several years.  915-MHz profilers can be operated to 

retrieve data with 60-meter vertical resolution (Grimsdell and Angevine 1998; Mead et al. 

1998; White and Senff 1999; Pollard et al. 2000).  A multiple antenna profiler (MAPR—
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Cohn et al. 1997, 2001) was operated during the IHOP experiment and provided data on 

mean winds and vertical velocity at the Homestead site in the Oklahoma panhandle.  

Additionally, the use of interferometry shows potential to further increase the resolution 

of wind profilers. Sound detection and ranging (SODAR) can also provide some wind 

and temperature data closer to the ground or in particularly shallow CBLs, where 

profilers may be less effective (Seibert and Langer 1996; Beyrich and Gryning 1998). 

Some attempts have been made to estimate the CBL depth from 915 MHz 

profilers (Grimsdell and Angevine 1998; White and Senff 1999; Bianco and Wilczak 

2002).  With a wavelength of approximately 30 cm, the radiation is scattered by large 

gradients in density, which are relatively common in the turbulent CBL and especially at 

the CBL top.  Therefore, looking for regions of high signal to noise ratio can help identify 

the CBL top.  Because the ratio reaches a maximum at the CBL top as opposed to lidar 

backscatter, which decreases rapidly at the CBL top, the same Haar wavelet techniques 

(Davis et al. 2000; Brooks 2003) that are used on lidar data may not be easily used on 

profiler data.  Additionally (Guiliano, personal communication), some efforts have been 

made to retrieve profiles of vertical velocity variances from the 915-MHz profiler data, 

but there have been problems with these retrievals.  Lambert et al. (2003) have recently 

discussed the performance and quality control of 915-MHz profilers. 

Finally, the use of mobile radar systems needs to be mentioned.  Gal-Chen and 

Kropfli (1984) developed a technique to retrieve buoyancy fields from dual-Doppler 

observations of the atmospheric CBL.  During the IHOP experiment, mobile Doppler 

radars were deployed to observe the CBL structure on days when boundary layer-based 

deep convection was expected to develop or when observing the evolution of the CBL 
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from its initial development in the morning to its mid-afternoon state.  For these 

experiments, four mobile Doppler radars were deployed at the corners of a box usually 

about 20 km on a side.  Using range gates on the order of 100 meters, these deployments 

were capable of resolving temporally and spatially coherent CBL structures when the 

CBL was well-developed from late morning into the evening (Markowski, personal 

communication).  During the early morning transition from a nocturnal to convective 

boundary layer, radar returns were weaker, and it was much more difficult to detect these 

CBL structures. 

The mobile radars deployed in these boxes were C-band (5-cm wavelength) and 

X-band (3-cm wavelength) radars.  More extensive radar datasets are available from the 

operational network of S-band Doppler radars across the United States.  These radar 

systems have 250-meter range gates for velocity data and 1 km range gates for 

reflectivity.  This resolution may be a bit too coarse to provide details about the boundary 

layer structure, but horizontal convective rolls and other zi-scale structures can be 

routinely identified in the afternoon and evening in reflectivity and velocity images from 

these radars during the warm season.  The velocity azimuth display (VAD) technique can 

also be used to retrieve the vertical structure of the mean winds.  When an optimal 

scanning strategy is used, this technique can provide vertical resolution well less than 

100m (Martin, 2003) at a height 250 meters above the surface for just about any radar 

configuration.  Plans exist to evaluate the usefulness of this data, but how useful it will be 

remains to be seen.  Already, Schneider and Lilly (1999) have analyzed dual-Doppler 

radar data for the CBL.  One clear advantage of using radar data is that the scanning 

techniques cover a fairly extensive horizontal area (greater than the LES domain), so 
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undersampling is much less of an issue when calculating turbulence statistics.  Although 

methods are being developed to automate the process of data retrieval from radar, it 

usually requires considerable effort to process the data and retrieve full three-dimensional 

velocity vectors and temperature from them. 

9.2.3 Data Comparability Issues 

The differences between the time-averaging used in many stationary atmospheric 

observation platforms and horizontal averaging used in LES need to be considered when 

making comparisons between the two.  Mayor et al. (2003) made a comparison between 

LES and atmospheric data for a horizontally evolving atmospheric boundary layer and 

consider these differences. 

Perhaps the bigger issue for intercomparison between atmospheric data and LES 

is the heterogeneity of the atmospheric CBL.  The heterogeneity presents problems when 

performing horizontal averages, because the land surface elevation and vegetative cover 

vary, and so do the sensible and latent heat fluxes.  The concept of a horizontally 

homogeneous CBL, easily simulated in LES, may be not directly applicable to 

atmospheric CBLs, which are affected by spatial variability in the underlying buoyancy 

forcing, and it cannot be expected that boundary layer scale motions would be well 

separated from mesoscale motions (Schneider and Lilly 1999).  The current LES setup 

simulates only horizontally homogeneous CBLs because of its periodic boundary 

conditions.  Atmospheric measurements (Caughy and Palmer 1979; Caughy et al. 1979) 

show that the principal energy-containing length scales of turbulence in the CBL are 

approximately equal to the CBL depth, meaning larger length scales are not large 
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contributors to the TKE.  This does not mean that the CBL depth won’t still be highly 

variable on the mesoscale.  The IHOP experiment was designed to measure the 

heterogeneity of the CBL over land, and it found exactly that, even under atmospheric 

conditions that might be considered favorable for a more homogeneous CBL, such as 

extensive areas of clear skies and light winds that occur under an anticyclone.  This 

inherent heterogeneity remains a primary concern for the comparison of LES results with 

atmospheric observations for shear-driven CBLs. 

9.3 Proposed Comparison 

9.3.1 Methods 

If a suitable tracer can be found to provide a constraint on the aircraft-measured 

entrainment rate over land, then the DYCOMS-II techniques (Stevens et al. 2003) would 

be the most preferable for estimating the entrainment velocity.  For the time being, it 

appears best to make use of boundary layer measurements that are made on a more or less 

routine basis.  The study of Pino et al. (2003) is limited to a single case, but it 

demonstrates the feasibility of making comparisons between LES and atmospheric data 

and takes advantage of routine measurements made at the ARM SGP site.  Repeating 

such LES/data comparisons for a larger number of cases would make these comparisons 

more complete and defendable.  On some days, the effects of surface heat flux 

heterogeneity and larger scale atmospheric vertical motion may be the dominant effects 

on the CBL depth.  On other days, when the fetch of mean flow covers areas with 

relatively little variation in land surface, and large scale forcing for vertical motion is 
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weak, the effects of wind shear may be detectable.  However, it may require several 

detailed case studies to show this. 

The study of Pino et al. (2003) provides a basis for the proposed comparison 

between atmospheric and LES data.  The measurements at the ARM SGP site in northern 

Oklahoma provide enough data to make a fairly detailed comparison between the 

atmospheric data and LES.  The initial temperature and wind data for LES can be taken 

from a variety of measurements.  Soundings are launched at somewhat regular intervals 

from the site, sometimes as often as every three hours during intensive operations periods 

such as IHOP.  AERI profiles of temperature and moisture are taken every eight minutes 

and the profiles are available at least once per hour.  They can be compared with 

radiosonde data or used as the sole temperature data source when radiosonde data are not 

available.  The AERI resolution ranges from 100 meters near the surface to 250 meters at 

z=3km. 

In addition to radiosonde data, wind data can be taken from the 50 MHz and 915 

MHz profilers at the SGP site.  The 50 MHz profiler (Nastrom and Eaton 1995; Angevine 

and MacPherson 1995) has range gates varying from 0.3 km to 1 km, and profiles cover a 

range of z=2 km to z=12 km.  The profiler also has a radio acoustic sounding system 

(RASS), which can take virtual temperature measurements between 2 and 4 km.  The 915 

MHz profiler samples from 0.1 km up to 5 km and has range gates as small as 60 m.  It 

also has a RASS and can take virtual temperature measurements between 0.1 and 1.5 km. 

The CBL depth measurements can be made with the Raman lidar, which 

measures water vapor, aerosol backscatter, and backscatter depolarization ratio 

(Goldsmith et al. 1998; Whiteman et al. 1992; Turner and Goldsmith 1999; and Turner et 
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al. 2000).  The wavelet techniques of Davis et al. (2000) or Brooks (2003) can be applied 

on the backscatter and water vapor profiles to identify the CBL top and perhaps the 

entrainment zone thickness (Boers and Eloranta 1986; Cohn and Angevine 2000).  The 

CBL depth estimates can also be made from the AERI soundings if necessary. 

The surface flux data can come from systems that use the eddy correlation method 

(these use a sonic anemometer) (Hart et al. 1998) or the energy balance Bowen ratio 

(EBBR) method (Field et al. 1992).  The EBBR method relies on in-situ sensors and 

radiation measurements to make estimates of the surface energy balance.  The eddy 

correlation technique measures the correlation between temperature and vertical velocity 

measured by a sonic anemometer.  These measurements can be checked against each 

other, as well as against data from other ARM SGP facilities.  During IHOP, there were 

also several integrated surface flux facilities located within about 100 km. 

During the IHOP experiment, intensive measurements were also taken at a site 

about 30 km southwest of Beaver, Oklahoma.  This measurement facility, designated the 

Homestead site, had the same quantity of flux and profiler measurements but a greater 

variety of lidar measurements.  Because of the greater variety of available lidar data, 

atmospheric measurements from the Homestead site became slightly preferable to those 

from the ARM SGP site during IHOP. 

The main effort involved in the comparisons would be to run the LES with 

surface heat flux measurements and initial temperature and wind profiles from the 

atmospheric data.  The simulation would then be carried out and compared with 

subsequent atmospheric profiles of wind and temperature and lidar estimates of CBL 



 

 234

depth.  If desired, separate, shear-free simulations can also be performed using the same 

surface heat flux data and initial temperature profiles. 

9.3.2 Selected days for analysis 

Data from May 22, June 3, June 9, and June 14, 2002 have preliminarily been selected for 

comparison between LES and atmospheric data.  The first three of these days had a 

strong wind, and the third was a boundary layer evolution mission that had relatively 

light winds and clear skies.  The IHOP project ran from the middle of May until late June 

and was an intensive operation period for the ARM SGP site.  Radiosonde launches were 

made every three hours, and a 404 MHz profiler was also deployed at the site.  However, 

more intensive measurements were made at a site in the Oklahoma Panhandle (designated 

the Homestead site) during IHOP.  Data from the Homestead site were also used. 

9.4 Simulation of May 22, 2002 Case 

9.4.1 Motivation 

This section summarizes the efforts to simulate the CBL development for a particular 

atmospheric case in which the wind shear was strong.  For this case, some atmospheric 

data are available, which allows comparison between LES predictions and atmospheric 

observations of CBL evolution.  The immediate motivation for studying this case was to 

simulate turbulence structures comparable to observed structures to assist in the testing of 

the radar data assimilation of scheme (Weiss 2004).  Unfortunately, the comparison is 
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conceptually not completely adequate, since the radar was performing transects of the 

dryline, which can be considered a boundary between two different CBL types.  The LES 

code is designed to study horizontally homogeneous CBLs and, in its current 

configuration (which has periodic boundary conditions), is unable to simulate 

heterogeneous CBLs.  Considerable modification of the code and much greater computer 

power (i.e. much larger grid) would be required to simulate heterogeneous CBLs 

associated with dryline type circulation patterns. 

The goals of the study in this chapter became threefold.  First, simulate the 

structure of the shallower CBL east of the dryline.  The simulation should then be able to 

provide some turbulence patterns that are qualitatively comparable with the patterns that 

are observed in the atmosphere next to the dryline.  Second, the simulated CBL depth can 

be compared with the CBL depth determined from lidar data obtained for this particular 

case.  This will additionally allow the ability of the code to simulate atmospheric sheared 

CBLs to be tested.  The third and perhaps most significant goal of this study is to 

discover where difficulties may be encountered when making comparisons between LES 

predictions and atmospheric observations of sheared CBLs. 

9.4.2 Data and Methods 

The case to be studied is the May 22, 2002 convection initiation experiment that formed a 

part of IHOP.  Numerous CBL measurements were taken in the vicinity of a north-south 

oriented dryline that moved slowly eastward across the Oklahoma and Texas panhandles.  

The data available for input to the simulation consisted of balloon-borne sounding data 

from National Weather Service launch sites at Amarillo, Texas (AMA) and Dodge City, 
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Kansas (DDC), wind profiler and radiometer data from the National Center for 

Atmospheric Research (NCAR) Integrated Sounding System (ISS), which was located at 

the Homestead site, and surface flux measurements from the Integrated Surface Flux 

Facility (ISFF), which included three sites in the Oklahoma panhandle and the northern 

Texas panhandle.  CBL depth determinations were available from several lidars that were 

collocated with the ISS.  The IHOP field campaign is described in greater detail in 

Weckwerth et al. (2004). 

The wind data in the initial profiles were taken from a combination of the AMA 

and DDC soundings.  Since the measurement sites are about midway between AMA and 

DDC, the wind data were interpolated approximately in a linear fashion between the two 

soundings.  Additionally, the geostrophic wind was estimated by finding the geopotential 

height gradients by triangulating between the AMA, DDC, and Norman, Oklahoma 

(OUN) soundings.  With the initial geostrophic wind estimate, the surface wind in LES 

veered with time much more than in the atmospheric data, so the profiles were adjusted to 

increase Vg a bit near the surface. 

The initial mean wind configurations can be considered representative of the 

actual conditions of May 22, 2002.  The initial profiles of actual and geostrophic wind 

and the AMA and DDC sounding wind data are shown in Figure 9.1.  The geostrophic 

wind was taken to be constant in time during the simulation.  The sounding data showed 

that the geopotential height gradients changed relatively little during the day on May 22, 

2002, so this seems to be a reasonable assumption. 
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Figure 9.1:  Initial wind profiles for the May 22, 2002 case: (a) x-component (u ), and 
(b) y-component ( v ).  The yellow profile indicates the initial LES wind, the blue profile 
is the initial geostrophic wind, the red profile is from the Amarillo, Texas 1200 UTC 
sounding, and the pink profile is from the Dodge City, Kansas 1200 UTC sounding. 

 

The initial profiles indicate wind speeds up to 30 m/s, and although the 

geostrophic wind shear was not particularly strong, the shear in the measured wind was 

even stronger than in the LES cases described in Chapters 6 and 7.  The x-component 

alone changes by 20 m/s over the lowest kilometer, and the overall wind speed changes 

by 20 m/s in less than 1 km. 

A 1200 UTC radiosonde launch directly from the measurement site would have 

been very helpful in setting the initial LES profiles, but onsite launches were not 

conducted until midday during this phase of the field campaign.  Therefore, the initial 

LES potential temperature profile was taken from a combination of AMA and DDC 

sounding data and ISS radiometer data as shown in Figure 9.2.  The radiosonde data 

showed higher temperatures than the radiometer data did, but since the radiosonde data 

come from in-situ measurements of the atmosphere, the LES initial temperature profile 

was adjusted slightly toward the AMA and DDC data.  Above z=2km, the radiosonde 

data were used.  The data indicate the potential temperature stratification is roughly 0.010 
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K/m in the lowest kilometer, which corresponds to the strongest stratification in the 

simulations of Chapter 7. 

Flux data are presented in Figure 9.3.  Half-hourly averages of sensible heat flux 

from all three ISFF measurement stations were averaged to produce the LES input flux 

data.  The flux data are indicative of the strong insolation and absence of cloud cover that 

occurred during this particular case.  The variability of fluxes among stations was 

relatively small. 

The LES settings were mostly the same as those listed in Table 6.1.  Those 

parameters that differed are listed in Table 9.1.  The domain size and grid cell dimensions 

were chosen to best meet the data requirements of the data assimilation algorithm tests.   

The grid cells had to be 30 m in order to match the range gates of the radar (Weiss 2004). 

The domain needed to be deep enough to simulate the 2.5-km deep CBL that was present 

during this particular case, and it needed to be as wide as possible to most closely match 

the radar scanning range.  The domain width was limited to 7.68 km because of 

computational  memory constraints.  In order to minimize numerical damping of large 

wavenumber turbulence and to maximize the time step, the grid frame of reference was 

chosen to be u=10 m/s and v=14 m/s.  

 

Table 9.1  Parameters of LES Conducted for May 22, 2002 IHOP Case 

Parameter Setting 
Domain size 7.68×7.68×3.99km3 
Grid 256×256×133  (30-meter cells) 

Initiation Random temperature perturbation with standard 
deviation of 2K. 

Grid frame of reference Moved at u=10 m/s and v=14 m/s relative to the 
ground. 

Time step size Dynamically determined at each time step 
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Figure 9.2:  Initial potential temperature profiles for the May 22, 2002 case.  The black 
profile indicates the initial LES wind, the blue profile is from the ISS radiometer data, the 
solid red profile is from the Amarillo, Texas 1200 UTC sounding, and the dashed red 
profile is from the Dodge City, Kansas 1200 UTC sounding.  The green profile is from 
the ISS 1944 UTC sounding and is plotted to illustrate the change in the measured 
temperature profile over the course of the simulation. 
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Figure 9.3:  Surface sensible heat flux (W/m2) as a function of time in the simulation of 
the May 22, 2002 case obtained from ISFF data. 
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The atmospheric CBL depths were determined from the Holographic Airborne 

Rotating Lidar Instrument Experiment (HARLIE) data.  HARLIE is a 1-micron 

wavelength aerosol backscatter lidar that was deployed during the IHOP experiment at 

the Homestead measurement site south-southwest of Beaver, OK.  It scans at a constant 

elevation angle of 45 degrees and rotates continuously in azimuth at a rate of 30 degrees 

per second.  This provides five scans per minute.  A more detailed description of 

HARLIE can be found in Guerra et al. (1999).  There are some sampling issues when 

comparing HARLIE data to LES data.  The HARLIE scanning lidar only samples a cone-

shaped surface, the interior of which is not sampled.  Nevertheless, the scanning strategy 

covers a circle whose diameter is at least 2 km for the CBL considered here, making its 

CBL estimates comparable to those from LES. 

The CBL depth was determined using a wavelet technique described in Davis et 

al. (2000).  A wavelet dilation of 10 was used, and the transform was applied to the one-

minute averaged vertical profiles of lidar backscatter (five scans).  The same wavelet 

technique was also applied to the LES potential temperature profiles in order to compare 

CBL depth estimates from the buoyancy flux minimum with those from the wavelet 

technique.  Although the wavelet analysis is applied to aerosol backscatter data from 

HARLIE versus potential temperature data from LES, the Haar wavelet transform used 

in this technique reaches its maximum in areas of large gradients, both of which should 

be located at roughly the same height, as long as the interface is sharp.  The wavelet 

technique provides CBL depth estimates that are consistent with those from the 

maximum temperature gradient technique that was discussed in Chapter 5. 
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9.4.3 Results 

9.4.3.1 Evolution of the Entrainment Flux Ratio 

Although the free atmospheric stratification and surface heat flux in the described LES 

runs are comparable to those from the GS and GC simulations of Fig 7-1c (shear had 

little effect on entrainment in those simulations), the shear in this case appears to have a 

rather substantial effect on entrainment.  About one hour into the simulation, when 

resolved turbulence develops, the entrainment flux ratio becomes extremely large, 

reaching a peak much larger than was seen in any of the GS or GC simulations discussed 

in Chapter 7.  After this initial burst of entrainment, the entrainment flux ratio rapidly 

decreases to around 1, where it fluctuates for about 30 minutes.  Then, between t=7000s 

and t=15,000s, it gradually diminishes to values typical of the NS simulations (see 

Chapter 7).  Towards the end of the simulation, it increases again. 

The strong variation in entrainment flux ratio shows that the CBL is far from the 

equilibrium regime of entrainment discussed in Chapters 3 and 4.  This is no surprise 

given the variability of all the parameters that were held constant in Chapter 4.  The free 

atmospheric stratification is heterogeneous, requiring the CBL to adjust to the changing 

stratification, and the surface buoyancy flux also changes, requiring additional adjustment.  

As the CBL grows, it also encounters layers of different shears.  All these factors strongly 

suppress the establishment of an equilibrium regime during much of the simulation. 
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Figure 9.4:  Entrainment flux ratio as a function of time for the simulation of the May 
22, 2002 case with the entrainment zone heat flux taken directly from LES (black dots) 
and linearly extrapolated through the zero crossing height to find the ZOM heat flux of 
entrainment (blue dots).  The y-axes are scaled differently in order to highlight the 
evolution of the entrainment flux ratio. 

 

The transition and onset of resolved turbulence in LES is highly dependent on the 

numerical setup, and the extremely strong entrainment around t=3600s may be an artifact 

of the LES resolved turbulence onset.  The characteristics of the CBL are best be 

analyzed by looking at simulated data after the resolved turbulence has become fully 

established.  The entrainment flux ratio is still rather large at t=7000s, so a look at 

momentum profiles at this time may elucidate what is happening during the early portion 

of the simulation.  Other interesting time-dependent features of entrainment are observed 

at t=25,000s, when the entrainment flux is at its minimum, and also around t=40,000s, 

when it increases again. 

9.4.3.2 Evolution of Mean Profiles 

The potential temperature profiles at these selected times are plotted in Figure 9.5, and 

the momentum profiles are shown in Figure 9.6.  Also plotted on these profiles are the 

upper and lower limits of the entrainment zone and the CBL top zi.  At the early time 
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period, despite the CBL growing against a very stably stratified potential temperature 

profile, the entrainment zone is rather deep because of the strong shear production of 

turbulence in this layer.  There is more than 12 m/s velocity change across the 

entrainment zone at this time. 

At about t=25,000s, the CBL is still growing through a rather strong inversion, 

but the shear has diminished substantially.  The layer of very strong momentum seen 

below z=1500m at about t=7000s has largely disappeared due a combination of the 

entrainment of this momentum into the growing CBL and the effects of the Coriolis and 

large scale pressure gradient forces (accelerations due to the deviation of the wind from 

geostrophic balance).  The entrainment zone, rather than growing as it typically would in 

conditions of uniform stratification and shear, has not deepened during this time interval.  

By about t=40,000s, both the CBL and the entrainment zone become much deeper, 

influenced by a combination of the weaker stratification aloft and the increasing shear at 

the CBL top. 

Unlike the LES cases examined in Chapter 7, a substantial component of the shear 

in the entrainment zone is forced by the ageostrophic component of the initial wind in the 

simulation.  If the momentum is not in geostrophic balance, the wind field undergoes an 

inertial oscillation, and the amplitude and phase of this oscillation is heavily dependent 

on the initial conditions of the simulation.  Therefore, the simulation results, at least with 

regard to the influence of shear on entrainment, appear highly sensitive to the initialized 

values of the actual and geostrophic wind.  Perhaps the initial profiles of wind would be 

better taken from NWP model grids, since these models have data assimilation 
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algorithms considerably more sophisticated than the interpolation techniques used here.  

Future studies might use NWP model wind profiles if they prove to be beneficial. 

9.4.3.3 Turbulence Kinetic Energy Budgets 

The TKE budgets at the selected times are displayed in Figure 9.7.  The shear production 

of turbulence in the early portion of the simulation dominates all the other terms in the 

TKE budget.  The shear production and dissipation in the surface layer are very large, but 

the profiles have been truncated near the surface in order to highlight their features in the 

entrainment zone.  The entrainment zone shear production of TKE is nearly four times 

the buoyancy production of TKE at the surface.  The dominance of the entrainment zone 

shear production is so strong that the transport term becomes negative in the lower 

portion of the entrainment zone and positive near z/zi=0.3, indicating some of the shear-

generated turbulence may be transported downward.  The positive transport at z/zi=0.3 

could also be due to the upward transport of shear- or buoyancy-produced turbulence 

from the surface. 
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Figure 9.5:  Potential temperature profiles (K) at selected times during the simulation of 
the May 22, 2002 case. 
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Figure 9.6:  Momentum profiles at selected times during the simulation of the May 22, 
2002 case.  Thick horizontal lines crossing the profiles indicate the CBL depth (zi), and 
the thin horizontal lines mark the lower and upper limits of the entrainment zone. 
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Figure 9.7:  TKE budgets from simulation data at selected times during the simulation: 
(a) t=7068s, (b) t=25,049s, (c) t=39,960s.  The line coloring corresponds to the 
individual terms in the TKE budget: buoyancy (red), shear (green), transport (black 
dashed), dissipation (blue), and residual (yellow). 

 

Also of particular note in Fig. 9.7a is the residual term, which is rather large in the 

entrainment zone.  A significant portion of the shear-produced TKE is, in essence, 

entering the reservoir of turbulence in the growing CBL (Zilitinkevitch 1975) rather than 

being dissipated or spent for the entrainment of heat.  It should be noted that the surface 

buoyancy flux at this time in the simulation is not terribly strong (see Fig. 9.3), so the 

relative effects of shear are very significant.  Despite the strong stratification, the 

entrainment zone is nearly as deep as the so-called mixed-layer. 



 

 246

By t=25,049s (see Fig. 9.7b), the shear production of turbulence has become 

almost negligible in the entrainment zone.  This is due to both the weakening of the 

entrainment zone shear and the strengthening of the surface buoyancy flux, both of which 

act to diminish the relative importance of shear on entrainment.  In fact, the surface 

buoyancy flux is stronger than in any of the simulations in Chapter 7.  Despite the strong 

flux, the strong inversion keeps the CBL growth very slow, and this decreases the 

momentum entrainment contribution to the shear production of TKE.  Because of these 

changes, the CBL appears to enter more of an equilibrium regime in which the buoyancy 

production of turbulence in the CBL is balanced by dissipation and the negative 

buoyancy flux of entrainment.  Also, the transport profile bears a stronger resemblance to 

that of the NS case in Fig 7-13b.  Despite this, the shear production and dissipation in the 

surface layer are very strong, but they appear to balance each other and do not seem to 

affect entrainment (it is unclear why the residual term is so large at the surface).  The 

entrainment zone is rather shallow, which is characteristic of the other simulations with 

strong stratification. 

By the end of the simulation (t=39,960s, see Fig. 9.7c), the entrainment zone 

shear production of turbulence has once again become about as strong as the buoyancy 

production at the surface.  The entrainment zone becomes deeper as the growing CBL 

encounters a layer of much weaker buoyancy stratification, and its depth may be 

influenced by shear as well.  Once again, it should be noted that the relative effects of 

shear appear large because the surface buoyancy flux has weakened considerably from its 

maximum value that occured in the middle of the simulation.  There may be an artifact of 

this in the buoyancy flux profile, which departs from its typically linear shape near the 



 

 247

surface.  The surface buoyancy flux in the simulation undergoes a series of step changes 

as shown in Fig. 9.3, and the profiles shown in Fig. 9.7c occur only 360 seconds after one 

of these step changes. 

9.4.3.4 Convective Boundary Layer Depth Compared to Observations 

The CBL depths determined from HARLIE data are compared with the simulated CBL 

depths in Figure 9.8.  Unfortunately, the lidar data are missing during the portion of the 

simulation that might be considered the most interesting—that is, when shear dominates 

the production of turbulence.  In the simulation, the CBL initially undergoes very rapid 

growth until about t=10,000s, after which the shear at the CBL top diminishes and the 

entrainment flux ratio settles down a bit.  The surface buoyancy flux compensates for this 

a bit, and the CBL continues to undergo steady but slow growth (very roughly according 

to the t1/2 dependence discussed in Chapter 4) between t=10,000s and t=25,000s.  After 

that point, the growth is a bit more rapid as the weaker stratification is encountered aloft 

[see Fedorovich et al. (2004b) for a discussion on the effects of heterogeneous 

stratification on entrainment]. 
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Figure 9.8:  CBL depth zi (m) as a function of time (s) for the May 22, 2002 simulation 
and concurrent lidar (HARLIE) data. 
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As expected, the wavelet-determined CBL depths in the simulation are a bit 

higher than those determined from the minimum of buoyancy flux.  Before t=10,000s, the 

technique identifies the inversion at z=1200m as the CBL top because the temperature 

gradient is sharpest there during the early part of the simulation.  Atmospheric lidar data 

often have the same problems when the wavelet technique is applied to them.  Once the 

CBL depth comes close to this level and the entrainment zone inversion strengthens, the 

wavelet technique performs a bit more reliably. 

The HARLIE CBL depths overlap the simulated CBL depths between t=15,000s 

and t=25,000s.  This overlap could be taken as evidence that the simulations accurately 

predicted the effects of shear and buoyancy forcing on the CBL growth.  However, the 

inversion at the CBL top is very strong at this point, and it constrains the CBL to a depth 

of 1000-1200m until the surface heating has allowed the potential temperature profile to 

fill the area under the inversion (see Fig. 9.5).  During that time, the CBL experiences 

relatively little growth until it finds the weaker stratification aloft.  Also, the CBL growth 

rates in the atmospheric data are much greater than in the simulation.  Clearly, there are 

processes occurring in the atmosphere that are not accounted for in the simulation.  The 

differences could also be due to differences between the LES initial temperature profile 

and the true state of the atmosphere at t=0.  These differences are not precisely known.  

The initial temperature profile must be determined with very high resolution compared to 

the resolution typical of available atmospheric measurements.  For example, radiosonde 

data (such as the DDC and AMA data used in this exercise) are typically taken every six 

seconds during a balloon flight, but these are vertically averaged to a considerable degree, 

smoothing out sharp gradients that may exist in the nocturnal boundary layer at sunrise.  
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Radiosonde data were not available at the measurement site at 1200 UTC, and even if the 

initial temperature profile were known exactly at the measurement site, temperature 

advection might also be an important effect. 

Between t=25,000s and t=35,000s, the lidar CBL depth undergoes a very dramatic 

jump as a dryline passage occurs.  The initial CBL is shallow, moist, and capped by a 

strong inversion.  After the dryline passage, the CBL is very deep and dry and lies 

underneath a layer of somewhat weaker stratification.  The LES code is not structured to 

deal with the types of CBL heterogeneity occurring in this case.  It also does not account 

for the mechanisms responsible for this heterogeneity, such as variations in the land 

surface elevation, surface sensible heat flux, moisture flux, and potential temperature 

advection.  Although the dryline is a rather extreme example of CBL heterogeneity, there 

are really no land areas where the CBL can be considered to be completely free of from 

the effects of land surface heterogeneity.  Kimmel et al. (2002) estimated that up to 25% 

of the observed temperature variance in the mid-CBL may be due to mesoscale variations.  

Schneider and Lilly (1999) also address issues of heterogeneity in their analysis of radar 

data and tower measurements in the CBL at the Boulder Atmospheric Observatory.  

Larger scale atmospheric phenomena, such as baroclinic processes or deep, moist 

convection, impart additional heterogeneity on the CBL. 

Another factor not accounted for in these simulations is the interaction between 

the two CBL types.  If there is a significant westerly wind component (wind blowing 

from the west and wind vectors pointing east), as is usually true in the vicinity of the 

dryline, some turbulence from the deeper CBL on the west side of the dryline may be 

advected above the CBL to the east of the dryline, and although this turbulence probably 
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decays quite rapidly, they layer above the eastern CBL can no longer be assumed to be 

free of turbulence, especially for locations close to the dryline.  Fochesatto et al. (2001) 

have found evidence of dynamical coupling between the residual layer and the 

developing CBL, analogous to the “overrunning” interactions between the two CBLs east 

of the dryline. 

9.4.3.5 Turbulence Structure in Simulations Compared to Observations 

To wrap up this chapter, we look at two cross sections showing the turbulence structure 

from the simulations and compare them to a time-height cross section from FM-CW S-

band radar, which was located next to HARLIE in the IHOP experiment.  Figure 9.9 

shows the y-z cross section at t=43,000s, when the CBL was experiencing more rapid 

growth as it developed through a layer of relatively weak stratification and encountered 

increasing shear.  The temperature structure at the CBL top does show some evidence of 

the effects of shear.  It most strongly resembles temperature patterns from the GS cases in 

Chapter 8.  There are no large, well-resolved K-H type billows at the CBL top, however, 

unlike some of the GC cases in Chapters 7 and 8.  

The time-height cross section of signal-to-noise ratio from the FM-CW radar is 

displayed and compared to the simulated potential temperature field in Figure 9.10.  

Assuming a mean motion of 17 m/s in the CBL (from LES data) and using the Taylor 

frozen turbulence hypothesis (Stull 1988), the time span of one hour in Fig. 9.10b would 

correspond to a horizontal domain width of 61 km in Fig. 9.9.  Likewise the CBL domain 

in Fig. 9.9 corresponds to roughly the first seven minutes of Fig. 9.10b. 
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Figure 9.9:  The y-z cross section showing potential temperature (K) at t=43,131s into the 
simulation, when the data were output for the radar data assimilation algorithm test.  

 

The FM-CW cross section refers to the moment of time when the observed CBL 

had the same depth as the simulated CBL.  At this point, the transition was occurring 

from the rather shallow CBL found east of the dryline to a deeper CBL as the dryline 

moved through (the dryline moved from west to east).  Likewise, in LES, the CBL was 

making a transition from a strongly stratified environment to a more weakly stratified one.  

The UTC times listed in the FM-CW data correspond to t=27,000 through t=30,600 in the 

simulation, but the CBL cross section was not taken at these same times because the 

simulated CBL did not reach the measured depths of 2200 to 3000m (seen in Figure 

9.10b), until the end of the simulation. 

In the FM-CW data, the CBL top is marked by the large gradient in signal-to-

noise ratio where the interface between the CBL air and the free atmospheric air is most 

sharp.  The variability of the upper interface height in FM-CW is a bit larger than it is in 

LES.  The increased variability in the FM-CW data may also be due to the earlier 

occurrence of transition, when the surface heat flux was still strong, forcing the 

apparently more vigorous plume-like structures. 
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(a) 
 

 
(b) 

Figure 9.10:  Cross sections of the CBL at times when the CBL was approximately 2 km 
deep: (a) the simulated potential temperature cross section at t=43,000s with its aspect 
ratio changed to match that of (b), the time-height cross section of signal to noise ratio 
(dB) from the University of Massachusetts FM-CW S-band radar.  The times (UTC) in 
(b) correspond to t=27,000 to t=30,600 in the simulation. 

 

One particular feature to note is the variation of the sharpness of the interface 

height.  When the tops of tall plumes penetrate into the free atmosphere, the interface is 

sharper.  In between, during times of what is most likely downward motion, the interface 

is much less sharp and harder to define, resembling the LES cross sections that were 

discussed in Chapter 8.  The FM-CW signal can come either from scatterers such as 

insects or aerosols or from strong density gradients, the latter of which are more intense 

at the CBL top where potential temperature gradients are also large.  
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Figure 9.11:  The x-y cross section showing potential temperature (K) and horizontal 
wind vectors (m/s) at t=43,000s in the simulation, when the data were output for use in 
the radar data assimilation algorithm test. 

 

Finally, Figure 9.11 shows the x-y cross section of potential temperature and 

horizontal wind from LES.  The figure shows that roll-type structures are present.  Moeng 

and Sullivan (1994) indicate that roll structures are present when the negative of the ratio 

of the CBL depth to the Obukhov length is / 2iz L− < and that quasi-hexagonal cells 

dominate when / 2iz L− .  The Obukhov length is defined as: 

3
*

s

uL
Bκ

= −  (9.1) 

where κ  is the von-Karman constant.  For the simulation at t=43,000s, 

3 3
* */ / 2.1iz L w u− = = , which is close to the transition range.  The ratio /iz L−  varies 

from 0.5 at the beginning of the simulation, when heat flux is weak and the CBL depth is 
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small, to 3.6 in the middle, when the heat flux is strong and the CBL depth is large.  The 

estimated friction velocity, taken from the point closest to the ground in the momentum 

flux profiles, changes relatively little during the simulation. 

Given the range in /iz L−  during the simulation, one should expect the turbulence 

structures to change.  Indeed, at the beginning, the structures appear more like the streaks 

that were simulated by Kanna and Brasseur (1998) for shear-dominated boundary layers.  

The streaks evolve into horizontal convective roll structures and become much less 

streaky in appearance.  However, a complete transition to cellular structures never occurs.  

Apparently, /iz L−  is not far enough away from 2 for this to happen. 

Figure 9.11 shows the wind vectors are roughly parallel to the convective rolls.  

The strongest wind speeds are found in the cooler air that has descended from the middle 

of the CBL (yellow colors in Fig. 9.11), and the weakest winds are generally found in the 

narrower rows of warmer temperatures, which are rising from the surface and carrying 

near-surface heat and momentum with them. 

The wind direction in Fig. 9.11 is not characteristic of the near surface winds at 

the measurement site at the same time on May 22, 2002, where the winds had begun to 

acquire a negative x-component after having had a positive x-component for much of that 

afternoon.  The simulated near-surface wind velocity has a much larger x-component and 

smaller y-component than the measured near-surface wind vectors did. The velocity 

vectors have a similar direction at locations west of the dryline, but there, the CBL is at 

least 1 km deeper than it is in the simulations, as indicated in the AMA sounding at about 

the same time (not shown).  The lack of agreement may be due to the poor initialization 

of the large scale pressure gradients in the simulation.  However, the simulated CBL 
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depth is not representative of locations well east of the dryline or well west of the dryline.  

The initial data in LES are representative of locations very close to the later afternoon 

dryline location, so the CBL depth at the end of the simulation is representative of what it 

might have been had there been no dryline (i.e. if there were no heterogeneity in land 

elevation or surface fluxes).  However, a periodic LES on a 7-km domain is unable to 

simulate the dryline.  It cannot take into account the effect of its solenoidal circulation on 

the CBL wind structure, and it cannot simulated the heterogeneity of the CBL.  

Unfortunately, the IHOP experiment was designed to study CBL heterogeneity, so its 

measurement sites were concentrated in areas where heterogeneous features like the 

dryline might be more likely located.  Because of the shortcomings of horizontally 

homogeneous LES in its utility in studying atmospheric cases, and because the dryline 

represents an example of a larger scale atmospheric flow that is strongly associated with 

CBL heterogeneity, we are motivated to study the dryline in greater detail.  Plans are to 

modify the LES code so that it can be used to simulate heterogeneous CBLs using larger 

LES domains.  If the two interacting CBL types can be simulated simultaneously, it may 

elucidate the dynamics that drive dryline processes.  It is an interesting topic for further 

study. 

9.5 Summary and Conclusions 

The results of this chapter can be summarized in terms of the stated goals at the 

beginning of the chapter.  The results of the study show that, using initial conditions from 

atmospheric data, CBL entrainment can be influenced by shear to at least as large a 

degree as seen in the simulations of Chapter 7.  Simulations based on May 22, 2002 data 
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have shown the shear-enhanced entrainment can be greater than in the simulations 

starting with the idealized, linear profiles.  Grid-resolvable turbulence that might have 

been present at t=0 was not taken into account in the simulation and consequently, the 

transition from a nocturnal to a convective boundary layer in the simulation is probably 

not representative of the actual transition in the atmosphere.  Once the resolved 

turbulence is fully developed, the simulated data can be trusted a bit more. 

Additional care must be taken to ensure that the large scale pressure gradients are 

initialized accurately.  In the nocturnal boundary layer, the assumption of geostrophic 

balance does not hold like it does in the idealized initial profiles in Chapters 6 and 7, so it 

is necessary to appropriately initialize the strength and direction of the ageostrophic wind 

so that the LES wind mean profiles remain consistent with those of the atmosphere. 

Despite these problems, the evolution of the entrainment process during the 

simulation was rather indicative of how it might occur in the atmosphere.  During the 

early stages of the simulation, shear enhancement of entrainment was fairly large.  

During the middle stages, shear had little influence on entrainment, but by the end, the 

effects of shear were seen again.  This partially mirrors the change in surface buoyancy 

flux, which allows the relative effect of shear to be more protuberant early and late in the 

simulation.  The entrainment zone shear was also changing accordingly.  It was strong 

early in the simulation, weak in the middle, then a little stronger at the end.  When the 

shear was strong, its effects were seen in the entrainment zone depth, the entrainment flux 

ratio, and the TKE budgets. 

From a qualitative perspective, the resolved turbulence structures appear similar 

to the measured turbulence structures, as was seen in Fig. 9.10.  As long as differences in 
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the measurement methods are accounted for, some useful qualitative comparisons can be 

made between observed and simulated features of the CBL turbulence structure. 

Some useful CBL depth comparisons have been made between lidar and 

simulation data.  Depth determinations from the HARLIE lidar data show approximately 

the same scatter as the LES CBL depth.  The scanning strategies used by such 

instruments seem to measure a large enough area of the CBL to avoid problems with zi 

estimates that are associated with undersampling. 

As a result of the CBL depth comparisons between LES and atmospheric data, it 

is obvious that other factors not accounted for in LES have a significant influence on the 

CBL depth, making it difficult to isolate the effects of shear.  The most significant effect 

on CBL depth for the May 22, 2002 case was the dryline passage, which could not be 

simulated in the present version of LES.  Large scale advection was also taken into 

account, and variability in land surface conditions was also not simulated.  Given these 

problems, it cannot be expected that a perfectly horizontally homogeneous CBL would 

develop anywhere and that the influences on heterogeneity would not exceed those of 

shear on the CBL depth.  In many cases, however, there are conditions that are more 

horizontally quasi-homogeneous than those that existed during this case study.  The fact 

that the IHOP field experiment was focused on finding heterogeneity makes it difficult to 

compare its data with the horizontally homogeneous CBLs reproduced by LES.  This 

provides motivation for studying data from the ARM SGP site. 
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Chapter 10  

Evaluations of Numerical Models of Entrainment 

10.1 RANS-Based Closures in NWP 

The RANS-based turbulence models, which form the middle of the hierarchy of 

numerical methods described in Chapter 3, are commonly used in NWP.  One commonly 

used RANS-based model is the e-l model, which contains a prognostic equation for TKE 

(e)and a master length scale (l).  One example of an e-l model is used in the Advanced 

Regional Prediction System (ARPS), a regional NWP model described by Xue et al. 

(2001).  The ARPS e-l scheme will be referred to as ARPS for the remainder of this 

chapter.  Another example is the model used by Fiedler and Kong (2003).  It will be 

denoted F&K.  Details of both these models have already been described in Chapter 3, 

and the methods for evaluating them against LES have been outlined in Chapter 6.  This 

section presents the results of the comparisons between LES and the ARPS and F&K e-l 

models.  The cases with a heat flux of 0.03 Km/s and a free atmospheric stratification of 

0.003 K/m were used to study the differences between the various numerical models of 

entrainment and LES.  With this particular combination of surface heat flux and free 

atmospheric stratification, the shear promotes a significant deepening of the CBL in the 

GS and GC cases, relative to the shear-free (NS) case.  These results have also been 

presented in Conzemius and Fedorovich (2004). 
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10.1.1 ARPS 

The CBL depth versus time for the ARPS e-l closure is compared with LES in Fig. 10.1.  

The CBL depth for the NS case grows more slowly with the ARPS e-l model than with 

LES.  For the GC case, and particularly in the GS case, the relationship is reversed, and 

the e-l model predicts faster CBL growth than is seen in LES. 

Figure 10.2 compares the heat flux profiles in LES against those from the ARPS 

e-l closure.  In the LES, the heat flux profiles are generally smoother than in the ARPS 

closure, and it is obvious that, in the cases with shear, the RANS-based entrainment heat 

flux is much larger than in LES. Figure 10.3 shows the overall effect on the potential 

temperature profiles.  If a different definition of the CBL depth, such as the height of the 

maximum temperature gradient, were used, the results would qualitatively be the same. 
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Figure 10.1: Comparison of the CBL depth evolution predicted by the ARPS e-l closure 
versus LES. 
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Figure 10.2:  Comparison of the heat flux profiles predicted by ARPS e-l closure versus 
LES at t=10000s. 
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Figure 10.3:  Comparison of the potential temperature profiles predicted by ARPS e-l 
closure versus LES at t=10000s. 
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The considered RANS-based closures predict much faster CBL growth compared 

to LES when shear is present.  Figure 10.4 shows the TKE profiles.  Surprisingly, the 

TKE in the ARPS e-l closure is less than in LES, despite the greater entrainment of heat.  

Looking at the profile for the GS case more carefully, it can be seen that the TKE at the 

top of the CBL is greater in the ARPS e-l closure than in LES.  For the GC case, the 

energy from LES is greater.  However, one should keep in mind that the energy 

calculations in LES do not distinguish between truly turbulent motions associated with 

entrainment and wave-like motions that do not mix heat.  The calculation of heat flux can 

still be too large if the length scales (l) and constants ( Kα ) are too large in (3.17) or if the 

turbulent Prandtl number (3.21) is too small. 
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Figure 10.4:  Comparison of the TKE profiles of ARPS e-l closure versus LES at 
t=10000s. 
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10.1.2 F&K 

The F&K closure predictions of the CBL depth are compared with LES data in 

Fig. 10.5.  Basically, the results, in a relative sense, are similar to those in the ARPS case.  

The CBL depths agree very closely with LES for the NS case, but in the GS and GC 

cases, the entrainment is remarkably faster than in LES. 

The heat flux profiles calculated according to the F&K closure are shown in Fig. 

10.6.  If the maximum temperature gradient height is used for the definition of the CBL 

depth, the results are very similar, as can be seen in Fig. 10.7.  In Fig. 10.8, the TKE is 

shown.  Unlike the ARPS closure (Fig. 10.4), the F&K closure leads to greater TKE in 

the cases with shear when compared to LES data, and the TKE in the NS case is very 

comparable to the LES TKE.  In sheared CBLs, the TKE values in the interior of the 

CBL are actually rather similar to the LES predictions, but at the top of the CBL (where 

shear is fairly large), there is much more TKE predicted by F&K than by LES. 
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Figure 10.5:  Comparison of the CBL depth evolution predicted by F&K e-l closure and 
LES. 
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Figure 10.6:  Comparison of the heat flux profiles obtained with F&K e-l closure and 
LES at t=10000s. 
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Figure 10.7: The potential temperature profiles from F&K e-l closure and LES at 
t=10000s. 
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Figure 10.8:  The TKE profiles from F&K e-l closure and LES at t=10000s. 
 

Finally, the momentum profiles from the ARPS F&K models and LES are 

compared in Figure 10.9.  Between the two e-l models, the momentum gradients from 

F&K more closely match the LES momentum gradients than do those from ARPS, but 

the values of momentum are greater in the F&K data for the GS case because of the 

enhanced entrainment of momentum.  The GC momentum from F&K is less than 

predicted by LES in the CBL interior, perhaps due to the enhanced upward mixing of 

weaker momentum from the surface.  Note that because the dissipation is not enhanced at 

the surface in F&K, the TKE is larger there, and frictional effects are thereby enhanced.  

In ARPS, the TKE is much smaller in the lowest model grid level because of the greater 

dissipation there.  This causes less frictional slowing of the flow, and momentum 

throughout most of the CBL in ARPS is greater than the LES momentum for the GC case. 
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Figure 10.9:  The profiles of the x-component of wind velocity from the F&K and ARPS 
e-l models and LES at t=10000s. 

 

The primary conclusion regarding the performance of the two considered e-l 

closures is that for CBL cases with shear, they predict faster entrainment than LES does.  

This overestimation is not as large with ARPS as it is with F&K, but the ARPS-predicted 

CBL growth for the NS case is also slower than in LES.  Another common feature of the 

two closures is the larger relative difference in CBL entrainment between shear-free and 

sheared CBL cases than is predicted by LES.  One more disadvantage of e-l closures, 

earlier noted in Moeng and Wyngaard (1989), is their inability to directly account for 

counter-gradient turbulent flux in the upper portion of the CBL.  However, adding a 

counter-gradient term in the e-l closures here does not reduce the exaggerated differences 

between sheared and shear-free CBLs relative to LES.  The closures still have problems 

with entrainment.  The problems seem mostly related to the development of TKE as the 

CBL grows into nonturbulent air at the CBL top. 
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10.2 Integral Budget Parameterizations 

Prognostic entrainment equations are formulated by integrating the buoyancy, momentum, 

and TKE balance equations over the depth of the CBL and making some assumptions 

about the scaling of the TKE and dissipation integrals.  The integration is performed over 

a simplified representation of the CBL vertical structure, and the integral budget-based 

models are classified roughly according to the degree of polynomial that is used to 

represent the CBL profiles of momentum and buoyancy.  The derivation of these closures 

is provided in Chapter 3, an evaluation of these methods for shear-free CBLs has been 

made in Chapters 4 and 5, and the methods for evaluating them from LES data for 

sheared CBLs are described in Chapter 6.  We present here the results of the evaluations 

of the ZOM and hybrid parameterizations for the entrainment flux ratio in sheared CBLs.  

They are listed below according to their authors. 

10.2.1 ZOM and Hybrid Parameterizations 

The results of the integral budget methods are grouped according to the type of method.  

The parameterizations of Tennekes (1973), Driedonks (1982), and Batchvarova and 

Gryning (1990, 1994) take into account only the surface shear through their friction 

velocity terms and are presented together as Group I.  The parameterizations of Zeman 

and Tennekes (1977), Tennekes and Driedonks (1981), Boers et al. (1984), and Pino et al. 

(2003) include the friction velocity and also take into account either the spin-up term, 

velocity jump across the entrainment zone (although some may use the full jumps rather 

than the ZOM jumps), or both and are thus assigned to Group II.  Finally, the 
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parameterizations of Stull (1976a,b) and Sorbjan (2004) deviate from the typical ZOM 

methodology and constitute Group III. 

10.2.1.1 GS Cases 

Figure 10.10 shows results obtained with the parameterizations of Group I for the GS 

case.  The parameters of entrainment were retrieved from LES data and input to the 

respective expressions for /i sB B−  as they are defined in Chapter 3.  The black dots 

denote the ZOM entrainment flux ratio 0 /i sB B−  retrieved from LES using the method 

described in Chapters 5 and 6.  The blue dots denote the entrainment flux ratio defined 

from the actual minimum of buoyancy flux in the LES entrainment zone (i.e. /i sB Bδ ). 
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Figure 10.10:  Entrainment flux ratio predictions of Group I closures (surface shear only) 
compared with LES for the GS case with free atmospheric stratification of 

/ 0.003zθ∂ ∂ =  K/m and 0.03sQ = K m/s. 
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Since the parameterizations in Fig. 10.10 take into account only the surface shear, 

which is initially zero, they underestimate the entrainment flux ratio in the GS case and 

predict values consistent with commonly accepted shear-free value of about 0.2. 

Figure 10.11 shows results for parameterizations from Group II (see Equations 

3.57 and 3.62).  The entrainment parameterization of Zeman and Tennekes (1977) does 

not take entrainment zone shear into account and fortuitously performs better than the 

others when compared to LES data.  Among those that do take the entrainment zone 

shear into account, the parameterization of Pino et al. (2003) performs the best.  However, 

all parameterizations of Group II suffer from problems with the denominator going to 

zero (see Equation 3.54) and the entrainment rate becoming unbounded. 

Figure 10.12 shows the comparisons with the Group III parameterizations.  Since 

these parameterizations do not include negative-sign shear terms in the denominator, the 

parameterized entrainment flux ratio does not become unbounded.  The Stull (1976a,b) 

parameterization (3.59) predicts an entrainment flux ratio that climbs steadily with time, 

while LES data show a fairly constant value.  The Sorbjan (2004) entrainment flux ratio 

(3.86) also increases with time. 
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Figure 10.11:  Entrainment flux ratio predictions by Group II closures (surface and 
entrainment zone shear and/or TKE spin-up) compared to LES for the GS case with free 
atmospheric stratification of / 0.003zθ∂ ∂ =  K/m and 0.03sQ = K m/s. 
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Figure 10.12:  Entrainment flux ratio predictions by Group III closures compared to LES 
for the GS case with free atmospheric stratification of / 0.003zθ∂ ∂ =  K/m and 

0.03sQ = K m/s. 
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10.2.1.2 GC Cases 

Figure 10.13 shows the entrainment flux ratios by the Group I parameterizations 

for the GC case. All methods predict higher entrainment flux ratios than LES.  The 

predicted ratios decrease with time, and the LES data show this decrease to some extent 

as well. 

The initial value of surface shear is very large, and so the shear-generated TKE at 

the surface should be very large as well.  As friction decreases the momentum in the CBL, 

the surface shear-generated TKE also decreases, resulting in a decrease in the predicted 

entrainment flux ratio. 
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Figure 10.13:  Entrainment flux ratio predictions of Group I closures (surface shear only) 
compared to LES for the GC case with free atmospheric stratification of / 0.003zθ∂ ∂ =  
K/m and 0.03sQ = K m/s. 
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Figure 10.14 shows entrainment predictions for the GC case by the Group II 

parameterizations.  Again, all of them overpredict the entrainment flux ratio, but the Pino 

(2003) parameterization performs the best.  The denominator goes to zero in these 

expressions for the GC case just like it does for the GS case. 

Figure 10.15 shows performance of the Group III parameterizations for the GC 

case.  These perform the best of all the groups of parameterizations.  The 

parameterization of Stull (1976a,b), which takes both surface and elevated shears into 

account, performs better than the Sorbjan (2004) parameterization, which only uses 

entrainment zone shear.  This does not necessarily mean that the surface shear is equally 

important to the entrainment zone shear. It merely means that the Stull parameterization 

is better tuned for this particular case.  Certainly, LES results (see Chapter 7) indicate that 

it is primarily the entrainment zone shear that drives the enhancement of entrainment 

relative to the shear-free cases.  Even the GC cases, which start without entrainment zone 

shear, eventually develop strong shear at the CBL top that is comparable to the 

entrainment zone shear of the GS cases. 
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Figure 10.14:  Entrainment flux ratio predictions of Group II closures (surface and 
entrainment zone shear and/or TKE spin-up) compared to LES for the GC case with free 
atmospheric stratification of / 0.003zθ∂ ∂ =  K/m and surface heat flux of 0.03 K m/s. 
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Figure 10.15:  Entrainment flux ratio predictions of Group III closures compared to LES 
for the GC case with dθ/dz=0.003 K/m and surface heat flux of 0.03 K m/s. 
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In order to illustrate a situation in which the parameterizations perform reasonably 

well, we show in Fig. 10.16 the Group II parameterizations for the GS case with a surface 

kinematic heat flux of 0.10 K m/s and a free atmospheric stratification of 0.010 K/m. 

All parameterizations perform reasonably well, but the entrainment flux ratio is 

close to the shear-free value of 0.2 anyway.  Of those methods that take entrainment zone 

shear into account, the Pino et al. (2003) parameterization is closest to the LES 

entrainment flux ratio.  Overall, the Zeman and Tennekes (1977) parameterization is the 

closest to the LES results, but it does not specifically take the entrainment zone shear into 

account. 
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Figure 10.16:  Entrainment flux ratio predictions by the Group II parameterizations 
compared to LES for the GS case with dθ/dz=0.010 K/m and surface heat flux of 0.10 
K m/s. 
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10.2.2 FOM-Based Parameterizations 

The first order parameterizations based on Mahrt and Lenschow (1976) and Kim (2001) 

were tested, retrieving the parameters of entrainment from LES in a manner consistent 

with their definition in the FOM (see Chapter 6).  Since these parameterizations take a 

finite entrainment zone thickness into account, which seems to be necessary in the 

presence of shear, they might be expected to perform better than the ZOM entrainment 

parameterizations.  The results indicated just the opposite.  The drawbacks of the 

parameterizations are the same, in that a critical value of shear is reached at which the 

denominator in the parameterizations goes to zero, and the entrainment flux ratio 

becomes unbounded.  This should not happen when the surface heat flux is positive. 

Since these FOM-based parameterizations make some simplifying assumptions, it 

might be a good idea to test the validity of these assumptions.  Mahrt and Lenschow 

(1976) assume iz z∆ , and that z∆  can be neglected in all equations except for the TKE 

budget equation.  A quick look at Figure 7.4 shows that z∆ , even when retrieved in a 

manner consistent with the FOM (i.e., z∆  was take as the thickness between the heat flux 

minimum and the level where the heat flux approaches zero), is not small relative to iz , 

particularly in cases where shear plays a significant role in entrainment.  Thus, the 

iz z∆  assumption fails. 

Kim (2001) assumes that /d z dt∆  can be neglected and that the equation for z∆  

is merely a diagnostic one.  If z∆  and iz  both start at zero and reach similar magnitudes 

at the end of the run, then there are two possibilities: 1) /d z dt∆  cannot be neglected, and 
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2) /idz dt  can be neglected along with /d z dt∆ .  Since the whole basis of the integral 

budget methods is to derive prognostic equations for iz , the latter certainly cannot be true. 

Based on these results, the full FOM-based TKE equation (3.74-3.77) was then 

subjected to a scale analysis to see which terms could be neglected for all simulations 

performed in this study.  The FOM parameters of entrainment were retrieved from the 

LES cases, and the range of values seen in the LES cases were tested in (3.74-3.77).  In 

some situations, a small group of terms could be neglected, but in other situations, the 

negligible terms were an entirely different group.  The outcome of the scale analysis was 

that none of the terms could be neglected in all situations studied in LES, and the major 

reason was that z∆ ,  /d z dt∆ , or both were significant in many situations. 

10.3 Numerical Integration of Full ZOM and FOM Equations 

As a last attempt to apply the integral budget equations to the sheared CBL, one can start 

from scratch, without any assumptions about the values of A , FC , TC , or PC  in the 

ZOM parameterizations or the values of eC  or Cε  in the equations developed by 

Zilitinkevitch (1991) (see Equation 3.41). 

For the ZOM equations, the vertical structure of the simulated CBL (see Chapter 

7) can be compared with the simplified CBL vertical structure assumed in the ZOM 

(Figure 3.1). One thing stands out immediately: the simulated entrainment zone thickness 

can become rather large, whereas there is no real entrainment zone depth defined in the 

ZOM [except for the geometric relation of Stull (1976a), which is not representative of 

the entrainment zone depth (Fedorovich et al. 2004a)].  For the shear-free CBL, the 
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entrainment zone thickness does not cause any problems when applying the ZOM-

derived entrainment equations to the simulated CBL, as long as the parameters of 

entrainment are retrieved from the simulations in a manner consistent with their 

definition in the ZOM.  Lilly (2002a) made one attempt to resolve the discrepancy 

between the finite entrainment zone thickness analyzed in CBL simulations and the ZOM 

sharp-edged CBL top, and Chapter 5 examines this issue further. 

However, for the shear-driven CBL, some rather significant assumptions leading 

to the ZOM entrainment equations are violated.  In particular, the left hand side of (3.39) 

can be expanded, using Leibniz’ rule: 

0 0

( )
i iz z

i
i

dzd eedz dz e z
dt t dt

+ + ∂
= + +

∂∫ ∫ , (10.1) 

where iz +  indicates that the integration is take an infinitesimally small distance past iz . 

The second term on the right is neglected in the ZOM because turbulence is assumed to 

vanish at the top of the interface.  Figure 10.17 indicates that, under realistic conditions, 

the second term cannot be neglected.  At that point, in order to remain within the 

framework of the ZOM, the second term must be parameterized and grouped with the 

loss term in Equation (3.22).  However, exactly how one should go about doing this is 

unclear.  Since TKE is significant at iz , it becomes pointless to stop the integration there 

to stay within the simplified framework of the ZOM.  It is necessary to look at higher 

order models. 
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Figure 10.17:  Profile of TKE at t=1000s in the simulation with dθ/dz=0.001 K/m and 
Qs=0.03 Km/s. 

 

The next step up in bulk model complexity is the FOM.  The FOM equations 

allow the entrainment zone thickness to become large, and the integration is carried to the 

top of the entrainment zone.  The FOM integral budget equations for iz , 1b∆ , 1u∆ , and 

1v∆  are derived in Chapter 3, but there are only four equations, and z∆  is an additional 

dependent variable.  Before the set of equations can be closed, a fifth equation is needed 

to relate the FOM entrainment zone thickness z∆  to the other parameters of entrainment. 

In light of the need for such an equation, one can consider the LES results from 

Chapter 7.  Many of the simulations had a finite, reasonably well-resolved layer, in which 

the Richardson number was nearly constant, with 0.25 0.5Ri< < .  Other simulations did 

not have such a layer, but in those cases, it may be possible that the variability of the 

interface height obscured the layer of low Ri, and if this variability in the interface height 

were somehow removed or accounted for, as suggested by Lilly (2002a), then the 

constant Ri layer might be revealed.  Exactly how to do this with the simulation data is 
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not clear, but based on the evidence seen in the simulations in which the entrainment 

zone was well-resolved, the most reasonable constraint on ∆z would be to require it to 

change in a manner such that the entrainment zone Ri approaches a constant, critical 

value. 

For the FOM, Ri1 is constant with height in the entrainment zone, and its value is 

1 2 2 2
*

z bRi
u v w

∆ ∆
=

∆ + ∆ +
. (10.2) 

There are two possible constraints on Ri1.  The first is to require it to be constant 

at some critical value, which we define as critRi .  The entrainment zone thickness ∆z is 

then 

( )2 2 2
*critRi u v w

z
b

∆ + ∆ +
∆ =

∆
 (10.3) 

One can also relax this constraint slightly, and specify that the Richardson number 

returns to its critical value over some specified time scale t∆ : 

11 critRi RidRi
dt t

−
= −

∆
 (10.4) 

The behavior of the entrainment zone thickness z∆  is basically the same. 

Before the set of equations can be solved, one must make estimates of the surface 

friction velocity and the integrals of TKE and dissipation.  We handle the surface 

momentum flux by using a surface drag coefficient parameterization. 

2
1s D mw u C u′ ′− =  (10.5) 

2
1s D mw v C v′ ′− =  (10.6) 
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Based on the LES data, a value of 0.002DC =  was estimated.  For the GC cases, the 

value of 0.002DC =  was a good estimate throughout the run.  For the GS cases, the value 

of 0.002DC =  was approached asymptotically during the run. 

Next, some assumptions need to be made regarding the integrals of TKE and 

dissipation and their appropriate scaling.  Recall the Deardorff (1980) scaling hypothesis 

for the integrals of TKE and dissipation in the shear-free CBL: 

3
2 *
* ( ), ( ),e

i i

w ze w
z zεϕ ζ ε ϕ ζ ζ= = =  (10.7) 

The velocity scale used was the convective velocity scale, and the length scale used was 

the CBL depth.  Applying the same logic here and making the assumption that the TKE is 

a linear combination of several production mechanisms, the TKE integral takes on the 

form: 

2 2 2
* *

0 0 0 0

2 2 2
* * ,

i i i iz z z z z z z z

i e i eSS eES
i i i i i i

i e i eSS eES

z z z z z zedz w z d u z d u z d
z z z z z z

w z C u z C u zC

ϕ ϕ ϕ
+∆ +∆ +∆ +∆     

= + + ∆ ∆     
     

= + + ∆ ∆

∫ ∫ ∫ ∫ (10.8) 

where eSSϕ  and eESϕ  are the functions, which are assumed to be universal, describing the 

profiles of surface shear-generated TKE and entrainment zone shear-generated TKE, 

respectively.  eESC  is the constant for the entrainment zone shear-generated TKE, and 

eSSC  is the constant for the surface shear-generated TKE. 

The method to find the scaling is to rely on the assumption of the self-similarity 

of the TKE profile.  If the profile is self-similar, its shape will remain essentially 

unchanged with time and the function ( )eϕ ζ  can be estimated from LES data for the 

shear-free CBLs.  The function is integrated over the depth of the turbulent layer (from 
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the surface to the point where TKE disappears) to find Ce.  For the sheared CBLs, we find 

the residual between the actual TKE integral and the de-scaled self-similar shear-free 

integral (from Ce) and rescale the residual by length and velocity scales appropriate for 

the shear forcing.  This is done separately to find eESC  and eSSC .  It is tough to treat the 

surface and entrainment zone shears separately, since all LES cases have at least some of 

both, but some have much more of one than the other. 

Because the GS cases have very little surface shear and strong entrainment zone 

shear, we made the assumption that the residual TKE in the GS case can be fully 

attributed to entrainment zone shear.  The residual integral was scaled by 2 2
1 1z u v∆ ∆ + ∆  

to find eESC .  For the GC cases, a second residual was calculated (actual TKE minus the 

first residual minus the shear-free TKE), and the scaling 2
* iu z  was used to find eSSC . 

The same basic method can be used to find the dissipation scaling.  The 

assumptions regarding the dissipation integral are essentially the same: 

3 3 3
* *

0 0 0 0

3 3 3
* *

i i i iz z z z z z z z

SS ES
i i i i i i

SS ES

z z z z z zdz w d u d u d
z z z z z z

w C u C u C

ε ε ε

ε ε ε

ε ϕ ϕ ϕ
+∆ +∆ +∆ +∆     

= + + ∆     
     

= + + ∆

∫ ∫ ∫ ∫  (10.9) 

As it turns out, this assumption works well for the shear-free CBL, but for the shear-

driven CBL, the assumption causes some highly undesirable mathematical consequences 

in the resulting entrainment equations.  The mathematical effects are best understood by 

looking at the ZOM TKE equation (3.38) and the entrainment parameterizations (3.54) 

presented in Chapter 3.  The FOM equations are structurally similar, so the arguments 

apply to them as well.  Treating the integral shear-production of turbulence separately 

from the integral dissipation of shear-produced turbulence does not allow these two 
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opposing effects to balance each other in the equations.  Because shear-produced 

turbulence depends on dzi/dt, the shear production term ends up in the denominator of the 

entrainment equation, and it has a negative sign.  However, the dissipation term, using the 

above scaling, ends up as a term of negative sign in the numerator.  Obviously, this is not 

a configuration that allows these two terms to balance each other.  The denominator can 

easily go to zero if the shear term is large enough, and the solution becomes unbounded.  

Alternatively, the dissipation integral in the numerator may dominate the other terms 

there, and the entrainment rate would become negative. 

The alternative is to change the scaling of the dissipation integral to 2
1 /iu dz dt∆ , 

allowing it to be placed in the numerator as an opposite sign term to the shear-production 

term.  Essentially, this is equivalent to assuming that a constant fraction of the 

entrainment zone shear-produced TKE is dissipated, as the authors of the entrainment 

parameterizations have done.  The two terms can then be combined into one, and this is 

exactly what most authors did with their respective ZOM-based entrainment 

parameterizations, but the assumption was not stated in terms of the scaling of the 

integral. 

Also, the LES results indicate that the integral surface layer shear production and 

dissipation largely balance each other and do not exert a substantial influence over the 

entrainment rate.  Deriving scalings for surface shear production and dissipation terms 

from LES data causes additional uncertainties in the entrainment equations that are really 

unnecessary and, since these terms are large, errors in those terms can dominate the other 

terms, so it is best to leave them out.  Nevertheless, the surface shear strongly influences 
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the mixed layer momentum, so its effects are retained in the momentum equations using 

the drag coefficient parameterization. 
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Figure 10.18:  Determinations of the constant eESC based on LES data for the GS cases. 
 

The value for the scaled integral of the shear-produced TKE is 0.04eESC = .  

Figure 10.18 shows the values of this eESC   for all the GS cases. 

The integration of the equations was performed using the Newton-Ralphson 

method, which is described in Press et al. (1992).  The ZOM equations and the FOM 

equations were integrated for the same CBL cases.  Based on the FOM-based analysis of 

the LES data, a critical value of Ri=0.15 was selected for the constraint on z∆  

The final integrated FOM equations are (3.63)-(3.65), (3.74), and (10.4).  For the 

ZOM, the equations are (3.31)-(3.33) and (3.38). 

Results of the calculations show that for the shear-free cases, zi from the FOM and 

ZOM equations matched the simulated CBL depth as well as can be expected.  The most 

important results can be summarized by looking at the integrations for the dθ/dz=0.003 
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K/m and 0.001 K/m cases with Qs=0.03 Km/s.  In the shear-free case (not shown), both 

models predict nearly identical CBL growth but are slightly slower than the CBL growth 

in the simulations.  The differences between the simulations and the models in the NS 

case can be attributed to the TKE spin-up term in the models.  Removing this term allows 

their predictions of CBL depth to match those from LES much more closely. 

Figure 10.19 shows the CBL evolution for the CBL cases with / 0.003zθ∂ ∂ =  

K/m and  0.03sQ =  Km/s integrations.  In the GS case, the ZOM matches the LES CBL 

growth much more closely than does the FOM, but these differences are not really 

indicative.  In both the FOM and ZOM, the dissipation scaling can be tuned to allow 

either to match the simulated CBL growth rate more closely.  In the GC case, the FOM 

slightly overestimates the CBL growth rate (especially in its early stages), and the ZOM 

solution does not exist because the denominator in (3.53) goes to zero.  It appears the use 

of a finite thickness entrainment zone using a critical Ri value is important in these cases, 

but this does not appear to be the answer to all the problems of the integral budget 

methods.  

Figure 10.20 shows the GS and GC CBL growth curves from LES, the FOM, and 

the ZOM for the / 0.001zθ∂ ∂ =  K/m and 0.03sQ =  Km/s cases.  In the GS case, the 

FOM integration fails completely, suggesting the ZOM might be a better model to use, 

but the ZOM does not provide a very reasonable solution either, at least in terms of 

comparison with the LES results.  2 2/id z dt  in the ZOM solution is definitely positive, 

and the solution appears to be headed for unboundedness.  In the GC cases, the ZOM 

numerical solution does not exist because it immediately becomes unbounded.  The GC 

cases have very strong shear production of turbulence early in the simulation, and the 
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ZOM cannot handle this strong shear.  The FOM, on the other hand, is able to handle the 

strong shear in the early portion of the GC cases because it can regulate the balance 

between shear production and buoyancy destruction of turbulence through the finite 

entrainment zone thickness it allows.  In the GS cases with the weakest stratification, the 

model fails, but this may be a sign that those GS cases are inherently unstable anyway.  

Ri<0.25 in the free atmosphere in those cases, and even though the ZOM can be 

integrated for those cases, neither the ZOM or FOM produces a solution that behaves 

well.  It may simply be that these GS cases are inherently unstable, and expecting 

bounded growth of turbulence may be unrealistic.  Indeed, running this case without a 

sponge layer in LES shows that the CBL growth rate increases at the end of the run. 
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Figure 10.19:  Comparison among LES, FOM, and ZOM predictions of CBL depth zi 
versus time for simulations with / 0.003zθ∂ ∂ =  K/m and  0.03sQ =  Km/s: (a) GS case, 
and (b) GC case. 
 

Adding the entrainment zone thickness into a bulk model of the CBL adds a 

considerable amount of complexity to the equations.  To see if this provides any benefit, 
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it is necessary to examine the sensitivity of the solutions to perturbations in ∆z to see if, 

in fact, if ∆z acts to regulate the shear-production of turbulence by balancing it with 

dissipation and buoyancy destruction of TKE. 
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Figure 10.20:  Comparison among LES, FOM, and ZOM predictions of CBL depth zi 
versus time for simulations with dθ/dz=0.001 K/m and Qs=0.03 Km/s: (a) GS case, and 
(b) GC case. 
 

Figure 10.21 shows the behavior of the various terms in the FOM TKE equation 

(3.74-3.77) given perturbations in ∆z.  The solution is shown at t=5000s for the 

dθ/dz=0.003 K/m and Qs=0.03 K/m GS and GC cases.  The entrainment zone thickness 

was varied from 0z∆ = , as it would be in the ZOM, to five times its value in the FOM 

integration.  The figure clearly shows that ∆z has a beneficial effect.  In the GS case, the 

shear term increases as ∆z is increased, but the increase in integral shear production is 

offset by decreases in the integral buoyancy production and integral dissipation terms.  

The residual shows that an increase in ∆z results in a decrease in TKE, so ∆z acts to 

regulate TKE production when shear is present.  In the GC case, the increase of ∆z is 
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more beneficial because the shear in the background profile is zero, so an increase in ∆z 

more rapidly favors a decrease in TKE. 

The general behavior of the TKE equation with respect to perturbations in z∆  in 

the GS case is seen when comparing the dθ/dz=0.003 K/m case with the 0.001 K/m case.  

For the dθ/dz=0.001 K/m GS cases, the shear term increases rapidly, and the buoyancy 

stratification in the background profile is so weak that the buoyancy term cannot 

compensate for the increase in the shear term, and increasing ∆z only makes things worse.  

In essence, ∆z reaches into a background environment, with strong shear, that may be 

inherently unstable in the K-H sense.  In these cases, it is reasonable to expect any CBL 

growth to become unbounded.  Leaving these aside and focusing on the cases in which 

the background profile can be considered stable (i.e. Ri>0.25), it seems to be important to 

use ∆z.  Whether ∆z is used in the ZOM sense or in the framework of a higher order 

model is essentially immaterial.  LES data (see Chapter 7) show that Ri is constant in the 

entrainment zone when the buoyancy and velocity profiles are not linear as they would be 

in the FOM, but the FOM is the lowest order model that can represent an entrainment 

zone with constant Ri. Since its equations, although complex, are simpler than those of 

the higher order models, it can model the effect of the constant Ri layer in the least 

computationally expensive manner. 
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Figure 10.21:  Sensitivity of the terms in the integral TKE budget (3.74-3.77) to 
perturbations in z∆  in the FOM for the integrations with dθ/dz=0.003 K/m and Qs=0.03 
Km/s: (a) GS case, and (b) GC case. 

10.4 Chapter Summary 

This chapter has examined the behavior of the numerical models of entrainment in 

sheared CBLs by comparing their predictions with LES.  The first comparison evaluated 

the RANS-based e-l closures described in Xue et al. (2001) (ARPS) and Fiedler and 

Kong (2003) (F&K).  The parameterizations based on integral budget methods were 

evaluated.  Finally, the full set of ZOM and FOM equations, with the minimum number 

of parameterizations, were integrated to show how these models behaved in their full 

form (without neglecting any terms). 

The e-l closures of Xue et al. (2001) and Fielder and Kong (2003) both predict a 

greater difference in the CBL growth rate between shear-free CBLs and sheared CBLs 

than is predicted by LES, with CBL growth for sheared CBLs being too fast.  At the same 

time, the F&K closure predicts CBL growth very close to the LES predictions for the NS 

case.  The more rapid entrainment in e-l closures for sheared CBLs seems to occur 
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regardless of the TKE values in the parameterized CBL.  The ARPS scheme produces 

less TKE than LES but still predicts too rapid CBL growth when shear is present.  The 

F&K scheme generally produces TKE values that are comparable to those of LES, but 

the TKE in the entrainment zone of sheared CBLS is significantly greater than the LES-

predicted TKE.  It is possible that the shear production of TKE in such schemes is 

overestimated, perhaps because the appropriate length scales for shear-generated 

turbulence in the CBL are different from the length scales for buoyancy-generated 

turbulence, and it is possible that the formulation of the master length scale l for CBL 

turbulence needs to be revised to account for the effects of shear.  The LES data do not 

seem to provide much help in this regard, because the integral length scales derived from 

LES of sheared CBLs are not consistently smaller than they are for shear-free CBLs, and 

the velocity variance calculations are unable to distinguish turbulent motions from non-

turbulent ones.  Numerical artifacts of LES may obscure some of the true differences in 

integral length scales, damping motions with a smaller length scale and shifting the 

integral length scale towards larger scales.  When simulations are performed in a CBL-

relative frame of reference, the integral length scales decrease (see Chapter 8). 

The analysis here may be somewhat limited by the fact that the initial momentum 

profiles used in the simulations do not necessarily reflect real atmospheric profiles, as has 

been discussed in Chapter 7.  The surface winds in the GC case would probably have a 

significant ageostrophic component, so any NWP model initialization would probably 

differ from the simulations.  Likewise, the GS case has very large geostrophic shear, 

probably three or four times greater than its typical atmospheric value.  Nevertheless, 

similar magnitudes of total shear (between 10 meters above ground level and a kilometer 
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or so above ground level) are pretty common (see Chapter 9).  In this manner, the cases 

with strong shear serve as a critical test of how an e-l scheme in NWP might perform 

with respect to the development of the CBL.  It is particularly important for NWP and air 

quality model schemes to correctly predict boundary layer depth, because this affects the 

concentration of moisture in the lower atmosphere as well as the concentration of air 

pollutants.  Additionally, the e-l schemes may behave differently in the NWP model 

where they are implemented, due to either an interaction with other parameterizations or 

by having a larger amount of TKE above the CBL. 

The tests of the integral budget-based entrainment parameterizations here show 

they also overestimate entrainment in situations when strong shear is present.  Again, it 

must be stated that the shear in the LES cases is rather strong, but the cases were 

designed in this manner so that the relative effects of shear could be more easily seen.  

Adhering to the strict mathematical form of the ZOM provides entrainment equations that 

contain the entrainment zone shear as a negative sign term in the denominator.  This 

results in a denominator that drops to zero, and the entrainment flux ratio becomes 

unbounded well before the surface heat flux goes to zero.  Entrainment equations by Stull 

(1976a,b) and Sorbjan (2004), which deviate from the traditional ZOM methodology in 

this respect, avoid this problem and therefore produce more realistic entrainment flux 

ratios for the strong shear conditions.  The success of these two parameterizations 

suggests the importance of accounting for the finiteness of the entrainment zone thickness 

in any entrainment equation for the sheared CBL. 

Additionally, integration of the complete FOM entrainment equations shows that 

taking the entrainment zone thickness into account is beneficial, but only if the full FOM 
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equations, without simplifications, are integrated.  The FOM equations are also not fail-

proof, and for a majority of simulated cases, the full ZOM equations can be also be 

integrated without problems.  Nevertheless, the FOM works in many GC cases where the 

ZOM fails, and its success is primarily due to the inclusion of entrainment zone thickness 

as a dependent variable.  If the background stability is too weak, however, z∆  does not 

help, and the equations are subject to the same mathematical problems as the ZOM 

equations. 

Given that Kelvin-Helmholtz instabilities appear to be an inherent feature of 

convective entrainment in the presence of wind shears, as our and other LES show (see, 

e.g., Kim et al. 2003), any Ri-limited entrainment equation would seem to be most suited 

to model the growth dynamics of sheared CBL.  The FOM is the simplest framework in 

which to do this. 
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Chapter 11 Summary and Conclusions 

11.1 Summary of Activities 

The entrainment rate in convective boundary layers (CBLs) developing in shear-free 

conditions has been thoroughly studied using laboratory water tanks, wind tunnels, 

atmospheric measurements, and LES, and the entrainment equations developed for the 

shear-free CBLs have been well-tested.  However, relatively few studies have focused on 

the influence of shear on CBL entrainment.  The goal of the present study was to 

thoroughly investigate the effects of shear on CBL entrainment and to closely examine 

the dynamics of entrainment when wind shear is present in the CBL.  Given the scarcity 

of atmospheric observations that can be used for such a purpose, this study has been 

focused on simulating sheared CBLs and comparing the simulations with models of 

entrainment.  Some comparisons were also made with available atmospheric data. 

A series of large eddy simulations (LES) has been conducted to investigate the 

effects of shear on convective boundary layer (CBL) entrainment.  The series of 

simulations had different combinations of atmospheric stratification, surface buoyancy 

flux, and shear.  Within any given simulation, the atmospheric stratification had values of 

/ zθ∂ ∂ = 0.001, 0.003, or 0.010 K/m, and the surface heat flux had values of sQ =0.03, 

0.10, and 0.30 Km/s.  The shear had three different configurations.  In the no shear (NS) 

case, the initial mean profile had zero flow throughout the simulation domain.  The two 
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shear cases were a case with a height-constant geostrophic wind (GC) and a case with a 

shear in the geostrophic wind of 0.0125 s-1 (GS), starting with 0 m/s at the surface.  The 

momentum profiles were initialized in geostrophic balance.  The LES domain was 

5.12×5.12×1.6 km3 on a 256×256×80 grid.  The combination of all possible 

configurations of shear, stratification, and surface buoyancy flux would result in 27 

simulations, but the cases with the combined strongest stratification and weakest 

buoyancy flux were not run because of the excessive computer time required to bring 

these simulations to completion, so the total number of simulations was 24. 

First and second order turbulence statistics were calculated for all simulations, 

and turbulence spectra and dissipation were calculated for a subset of runs whose results 

were considered to be most representative of the simulations as a group and the 

atmosphere in general.  Horizontal and vertical cross sections of potential temperature 

and momentum were also output in order to study the turbulence structures.  The 

parameters of entrainment were retrieved from the mean profiles of first and second order 

statistics in a manner consistent with the definitions of those parameters within respective 

bulk CBL models.  These bulk models were the zero order model (ZOM) and first order 

model (FOM—see below).  

Two turbulence closure schemes based on the Reynolds-averaged Navier-Stokes 

(RANS) approach, typically used in numerical weather prediction (NWP) models, were 

compared with the simulation results to test their representation of entrainment in sheared 

CBLs against LES.  The tested schemes had the turbulence kinetic energy e (TKE) 

equation at their core, combined with an integral turbulence length scale l, and are 

therefore known as e-l closures.  The two schemes differed in their specification of l.  
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Since the subgrid TKE equation in the LES code is also a 1.5-order, TKE-based 

turbulence closure, the LES subgrid model can be easily modified into a RANS-based e-l 

model.  The main change to the subgrid model was to replace the length scale with the 

respective length scale formulations of either Xue et al. (2001) (ARPS) or Fiedler and 

Kong (2003) (F&K) and to use the proper coefficients in their respective expressions for 

eddy diffusivities, turbulent Prandtl number, and dissipation.  The vertical equation of 

motion and horizontal gradient calculations were removed from the LES code, and the 

resulting column model was integrated for the same initial conditions as in LES.  To the 

extent possible, the same first and second order turbulence statistics were output and 

compared to the statistics from LES to reveal the reasons behind the differences in 

entrainment rate predictions by LES and e-l models. 

The RANS-based equations for momentum, buoyancy, and TKE can be integrated 

over the CBL depth to derive entrainment equations based on the integral budgets of 

these quantities.  To facilitate the integrations, a simplified CBL structure is assumed.  

For the zero order model (ZOM), the CBL is represented by a mixed layer with height-

constant momentum and buoyancy, with zero-order discontinuities at the CBL top, and in 

the first order model (FOM), a finite entrainment zone depth is included in the CBL 

structure.  The entrainment rates in sheared CBLs, predicted by these two integral 

budget-based (bulk) models, were compared with LES entrainment rates.  Several 

entrainment parameterizations based on the ZOM or FOM were tested: Tennekes (1973), 

Mahrt and Lenschow (1976), Stull (1976a), Zeman and Tennekes (1977), Tennekes and 

Driedonks (1981), Driedonks (1982), Boers et al. (1984), Batchvarova and Gryning 

(1991,1994), Kim (2001), Pino et al. (2003), and Sorbjan (2004).  These 
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parameterizations were tested using retrieved parameters of entrainment from LES.  Then, 

the full zero order model (ZOM) and first order model (FOM) entrainment equations 

were integrated for the same initial conditions as in LES, with the intention of revealing 

whether or not the entrainment zone thickness was an important parameter to include in 

the integral budget-based models. 

Finally, an assessment of the uncertainty of LES results, with respect to 

atmospheric data, needed to be made.  Taking direct entrainment measurements at the top 

of the CBL is a very difficult and expensive task, so the best way to test the LES results is 

to compare LES-predicted entrainment rates with the CBL growth observed in 

atmospheric measurements, accounting for CBL horizontal wind divergence and 

temperature advection as accurately as possible.  A basic method for comparing LES and 

atmospheric data has been proposed, and a particular case of a developing sheared CBL 

has been studied.  The atmospheric measurements of sensible heat flux and the initial 

temperature and momentum profiles were input to LES, and the simulation was 

performed from sunrise to sunset to test the simulated entrainment rates against the 

observed CBL growth rates. 

11.2 Findings of the Study 

From the conducted large eddy simulations, there are two fundamental findings.  

The first is that the entrainment zone shear is much more important than the surface shear 

in enhancing CBL entrainment.  The other is the discovery of a layer of constant Ri that 

forms within the entrainment zone when the relative effects of shear stand out strongly 

enough. 
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It cannot be definitively argued that the surface shear has no influence on CBL 

entrainment, but the level of influence is definitely secondary compared to the effect of 

the entrainment zone shear.  In particular GC simulations with strong surface shear, the 

entrainment rate was roughly equal, in some cases, to the entrainment rate in the GS 

cases, but in those GC cases, the entrainment zone shear was comparably large to that of 

the GS cases. 

These results can be analyzed with respect to the regions of generation, direction 

of transport, and the dissipation of the CBL turbulence.  In the shear-free CBL, the 

buoyancy production occurs throughout most of the mixed layer, and the rising plumes of 

surface-heated air ascend into the entrainment zone.  Most of the TKE is dissipated in this 

process, but the nature of the process (rising warm air) means that the TKE is transported 

preferentially upward.  In the sheared CBL, the main role of surface shear-generated 

turbulence is to smooth out surface momentum gradients, and once this turbulence leaves 

the surface layer and enters the mixed layer, where the mean shear is generally much 

weaker, the capability of turbulence to sustain itself against dissipation is reduced.  The 

TKE generation region (the surface layer in this case) is well-separated from the 

entrainment zone, so there is an additional delay in energy transport across the mixed 

layer, allowing more dissipation to occur. 

The TKE generated in the entrainment zone, on the other hand, is immediately in 

a position to promote entrainment, so despite the fact that roughly half the TKE is 

dissipated in place, such shear is able to strongly affect entrainment.  The mixing process 

in the interior of the CBL places the shear primarily in the entrainment zone and allows it 

to accumulate to the point where Kelvin-Helmholtz (K-H) type instabilities ensue.  These 
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instabilities generate additional turbulence that mixes the accumulated shear to the point 

that it no longer supports the growth of TKE in the entrainment zone. 

When the relative effects of shear become strong enough, and the entrainment 

zone structure is less dominated by wave-like motions along the interface, a well-

resolved layer of nearly constant Ri forms in the entrainment zone of the simulations.  

This layer manifests a balance between the turbulence generation mechanism of shear 

and the destruction mechanisms of negative buoyancy flux and dissipation.  If enough 

shear accumulates in this layer that the balance is disrupted (Ri<0.25), the shear-

generated TKE works to increases the depth of the layer to the point where the integral 

negative buoyancy flux (entrainment) and dissipation increase to restore the balance.  If 

the layer deepens to the point that Ri>0.25, or the shear decreases, the turbulence 

intensity fades, and the layer collapses so that the balance is restored.  The conducted 

simulation using an initial setup based on May 22, 2002 data has provided evidence for 

this.  The relative entrainment zone thickness / iz zδ  (where zδ  is the entrainment zone 

thickness and iz  is the CBL depth) is large early in this simulation, but it decreases 

substantially during the middle of the simulation, when entrainment zone shear decreases. 

Any model of entrainment based on the integral budget (bulk) approach does well 

in sheared CBLs if it takes the entrainment layer into account.  Although the ZOM 

incorporates the basic concept of balance between buoyancy destruction and shear 

generation of TKE in the entrainment zone, it does not consider how the entrainment 

zone depth acts to regulate this balance.  The FOM and higher order models, with their 

inclusion of the entrainment zone depth as a dependent variable, are able to model this 

process and are then able to reproduce shear effects on entrainment in many cases where 
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the ZOM fails.  Analysis of the response of the FOM integral TKE equation to 

perturbations in ∆z (the FOM entrainment zone thickness) shows that ∆z acts to restore 

the balance between these terms whenever the background stability is not too weak. 

The usefulness of the FOM comes at a price.  The full FOM equations are much 

more cumbersome than the ZOM equations for sheared CBLs, and the results of the 

model integrations, scale analysis, and parameterization tests show that it is necessary to 

include all terms in the TKE equation.  Simplifications resulting from assumptions such 

as iz z∆  and / 0d z dt∆ ≈  do not work for the CBL cases considered in this study. 

The FOM, despite its superior performance to the ZOM for sheared CBLs, 

happens to fail in the cases with geostrophic shear (GS) and weak background 

stratification.  This underscores the basic weakness in the mathematical formulation of 

the FOM, which it shares with the ZOM, and might suggest that the FOM is still not 

sufficient to model sheared CBLs within their broad variety, but it might also mean that 

the GS cases in which it fails have background profiles of potential temperature and 

momentum that are inherently unstable to perturbations.  Because the free atmosphere Ri 

value in these simulations is 0.21, this may indeed be the case, but one cannot say so for 

certain.  For uniformly stratified and sheared layers above a solid surface, the value of Ri 

that is sufficient for K-H instability may well be dependent on the distance from the solid 

surface, which limits vertical motions.  The FOM integral budget equations are not 

designed to model the growth of these instabilities or the propagation of the turbulent 

layer through an unstable background profile. 

The momentum and potential temperature profiles in the entrainment zones of 

simulated CBLs are still not linear as they are in the FOM, suggesting a higher order 
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model may be more appropriate for modeling sheared CBLs.  However, FOM equations 

are already quite cumbersome, and going to higher order models will make the equations 

even more cumbersome.  The increasing complexity of the equations will require 

additional assumptions to be made, based on less well-known relationships.  At some 

point, the utility of increasing the complexity of the bulk model is lost, and it becomes 

more worthwhile just to integrate the RANS-based e-l equations.  For shear-free CBLs, 

the ZOM models the CBL growth rate almost perfectly, but for sheared CBLs, any Ri-

limited entrainment equation seems much better suited to model entrainment.  The lowest 

order model that does this is the FOM.  Other ZOM/FOM hybrid parameterizations, such 

as Stull (1976a,c) and Sorbjan (2004) take entrainment zone Ri into account, either 

implicitly or explicitly, and also model the entrainment flux ratio reasonably well. 

 Some arguments have been made that the sheared CBL can, in fact, be considered 

as two separate layers (Lewellen 2000): a stable boundary layer above a more classic 

CBL, with the effects of entrainment zone shear not penetrating into the interior of the 

CBL.  To some extent, this is a reasonably accurate statement, since the entrainment zone 

atop a sheared CBL does behave in a similar fashion to the stable nocturnal CBL, and 

animations of the simulated temperature and velocity cross-sections show an intermittent 

nature to the turbulence at the CBL top (Otte and Wyngaard 2001).  Nevertheless, unlike 

the nocturnal boundary layer, the entrainment zone has no rigid underlying surface, and 

the effects of the shear-generated turbulence do extend downward into the CBL.  The 

entrainment zone becomes thicker and encroaches upon the mixed layer while the 

potential temperature increases throughout the depth of the mixed layer.  Additionally, 
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the entrainment of momentum affects the structure of the velocity profiles.  If the shear is 

strong and entrainment is rapid, the mixed layer does not really appear so well-mixed. 

Overall, the features of simulated turbulence structure in the CBL are consistent 

with those described in other studies (e.g. Kanna and Brasseur 1998).  In the GC case, the 

surface shear aligns the convection into horizontal rolls (as has been simulated by others 

and observed in the atmosphere), and in the GS case, the thermals are tilted with respect 

to their vertically upright orientation in the NS case.  In sheared CBLs, the upward 

transport of TKE is reduced, particularly in the middle and upper portions of the CBL, 

and this is reflected in both the TKE budgets and skewness profiles. 

 Despite the large qualitative differences between the flow observed in sheared and 

shear-free CBLs, the vertical velocity spectra in the interior of the CBL and in the lower 

portion of the entrainment zone are not greatly changed in the presence of shear.  Any 

differences among the GS, GC, and NS spectra in the initial simulations (Fig. 8-6) were 

mostly due to the damping effects of the numerical scheme.  It appears the numerical 

artifacts have notable effects only on the high wavenumber portions of the spectra, where 

the energy density is pretty low.  It was shown by numerical experiments that the effects 

of these artifacts can be minimized by conducting the simulations in a frame of reference 

moving with the CBL mean flow. 

The heat flux cospectra in the middle of the entrainment zone (around z/zi=1) 

show that the turbulent motions responsible for entrainment are well-resolved on the LES 

grid.  Additionally, the entrainment rate appears insensitive to whether the simulation is 

run in the ground-relative or CBL-relative frame of reference.  These two facts lend 

greater confidence to the overall simulation results. 
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The comparisons between LES and the lidar data for the May 22, 2002 sheared 

CBL case show that CBL depth comparisons can be made relatively easily when the 

appropriate lidar scanning strategy is used.  Because lidar relies on first order statistics 

(aerosol concentrations) rather than second order statistics (e.g. heat flux), a reasonable 

mean can be constructed with a relatively small sample.  The May 22, 2002 comparison 

shows that even well before the dryline passage, the simulated CBL growth rate differs 

from the observed growth rate rather significantly.  It is apparent that factors not taken 

into account in LES have a significant influence on the CBL depth.  These could include 

differences between the real potential temperature profile and the LES-initialized 

potential temperature profile, but the most significant and worrisome difference may be 

due to CBL heterogeneity, advection, and mean CBL divergence, which may make 

suitable comparisons between atmospheric data and simulations very difficult for sheared 

CBLs. 

Tests of RANS-based e-l closures against the LES data show that the e-l closures 

exaggerate the differences between the entrainment rates of shear-free CBLs and sheared 

CBLs.  Generally, the entrainment predicted by e-l closures for sheared CBLs is too large, 

regardless of whether the modeled entrainment zone TKE is larger (F&K) or smaller 

(ARPS) than that in LES.  The TKE levels do seem to affect the momentum and potential 

temperature profiles, however.  The fields are less well-mixed in the ARPS output than 

they are in LES.  The degree of mixing with the F&K closure, which predicts larger TKE, 

seems to match the simulations more closely. 

It is possible that the shear production of TKE and resulting entrainment in the 

considered closure schemes are too large because the length scales for shear-generated 
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turbulence are overestimated.  It is possible that the formulation of the master length 

scale l for CBL turbulence needs to include a parameterized reduction in scale when 

shear is the dominant production mechanism.  The LES data, in some cases, support the 

idea of a decrease in l, but the results are inconsistent, and in a majority of simulated 

sheared CBLs, the integral length scales are not really smaller than they are for shear-free 

CBLs.  Additionally, the integral length scale calculations are unable to distinguish 

turbulent motions from non-turbulent ones.  The non-turbulent, wave-type motions 

(especially above the entrainment zone) do appear biased toward larger length scales. 

The e-l schemes tested are among many interacting parameterizations in NWP 

models, so their behavior in this study, which tested them in isolation, may differ to some 

extent from their behavior in NWP.  However, the results do suggest entrainment and 

associated CBL mixing may become too strong in NWP models using TKE-based 

closures when strong shear is present. 

11.3 Suggestions for Further Research 

The analysis presented here by no means constitutes an exhaustive study of 

sheared CBLs.  The conclusions above need to be tested more fully against atmospheric 

data.  The relatively low resolution of routine measurements and the expense of higher-

resolution experimental measurements have prevented a large number of atmospheric 

sheared CBL studies from being conducted to date.  One must nevertheless consider the 

motivation for conducting atmospheric CBL experiments specifically to address the 

effects of shear on CBL entrainment.  Regardless of the strength of the shear, the surface 

buoyancy flux still dominates the CBL evolution during the middle of the day, and shear 
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is typically weaker than in the conducted numerical simulations.  In the simulations, the 

differences between dzi/dt of shear-free and sheared CBLs in all but a few cases may be 

within the error of estimates due to mesoscale heterogeneity of the CBL and uncertainties 

in the estimates of divergence. 

There are two motivations to make such studies in spite of these problems.  First, 

the technology for remote sensing of temperature and wind in the CBL is rapidly 

advancing.  For instance, the existing 915-MHz profiler technology is allowing vertical 

resolution down to 60 meters or less, and the use of velocity-azimuth display (VAD) 

techniques with routinely gathered 10-cm radar data may permit similar resolution of the 

vertical structure of the mean horizontal winds.  Radiometer technology is allowing 

vertical resolution as low as 100 meters for temperature.  In the Dynamics and Chemistry 

of Marine Stratocumulus (DYCOMS-II) experiment, the dual constraints of the 

divergence and scalar flux methods on the entrainment velocity estimates allowed those 

estimates to be made with higher precision than in the past.  Although the relatively 

diffuse nature of the interface makes application of these techniques for dry, sheared 

CBLs less certain, the utility of these methods probably needs to be examined in greater 

detail, as they could provide very useful data for testing the simulation results.  Because 

of the uncertainties in entrainment velocity estimates, comparisons between LES and 

atmospheric data need to utilize a reasonably large set of cases, and the comparisons 

should rely on first order statistics as much as possible. 

Alternatively, the LES code could be modified so that it represents the 

heterogeneity and consequent mesoscale flows observed in the atmosphere.  With the 

May 22, 2002 case in particular, if the LES code can be modified to simulate two CBL 
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types within a single domain, the effects of the dryline circulation can be included in the 

simulated CBLs that are compared with the atmospheric data from that day.  Specifically, 

the domain could be split into three areas—two of them being homogeneous CBLs and 

the center portion of the domain containing the interacting CBLs.  There is a plethora of 

data available, so modification of LES may open opportunities for more comprehensive 

comparisons between LES and atmospheric data. 

The turbulence closure schemes in NWP need to be further tested to measure their 

ability to model entrainment in sheared CBLs.  Both e-l closure schemes tested in the 

current study overestimate the entrainment rate into sheared CBLs, and their behavior 

needs to be examined more closely.  In particular, the evolution of the shear generation, 

transport, and dissipation of TKE needs to be compared with LES and atmospheric 

measurements to see how these terms are affected by the assumptions of RANS-based 

closures.  Doing so may yield clues about where those assumptions fail with respect to 

entraining, sheared CBLs.  For example, the length scales may be shorter in the 

entrainment zone of sheared CBLs than in shear-free CBLs, and new length scale 

formulations may need to be developed and tested.  Alternatively, constraints on 

entrainment zone Ri, based on LES results, may help to solve the problem, but neither of 

these questions can be answered without further study of the problem.  Also, a larger 

variety of schemes, such as the Mellor and Yamada (1974, 1982) closure, which also 

employs a TKE equation, need to be tested as well to see if these effects are characteristic 

of other turbulence closures commonly employed in NWP models. 

Finally, LES has shown some rather interesting vortical structures in the 

entrainment zone of sheared CBLs in this study as well as others (Kim et al. 2003).  Kim 
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and Park (2003) also found vortical structures in the surface layer.  LES served as a very 

useful tool to explore the parameter space for sheared CBLs, and the interaction between 

shear and vorticity in the entrainment zone was simulated.  Therefore, LES may serve as 

an equally useful tool for exploring the parameter space for other interactions between 

vorticity and shear.  In particular, the development of vertical vorticity in regions of 

strong horizontal velocity gradients should be studied numerically to further understand 

the development of intense vortices in regions of shear and strong vertical velocity. 
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Appendix A 

Large Eddy Simulation model equations 

Basic Model Equations 

The large eddy simulation (LES) equations can be derived by starting with a 

generalized form of the Navier-Stokes equations as in Kundu (1990) but in a rotating 

reference frame: 

( ) ( )3
22 2
3

i
i k j ijk ij

i i j

Du pg u u S
Dt x x x

ρ ρ δ ρ ε µ µ∂ ∂ ∂
= − − + Ω − ∇ ⋅ +

∂ ∂ ∂
, (A1) 

1 0i
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uD
Dt x

ρ
ρ

∂
+ =

∂
. (A2) 

where 1
2

ji
ij

j i

uuS
x x

 ∂∂
= +  ∂ ∂ 

 is the strain tensor. We apply the Boussinesq approximation to 

the fluid: 

1) The continuity equation is replaced by 0u∇ ⋅ = . 

2) Density is constant everywhere except when it is coupled with gravity. 

3) The viscosity, thermal diffusivity, and specific heat of the fluid are regarded as 

constants. 

Dividing by the constant density, 0ρ , and defining 2 sinf φ= Ω  (only a vertical 

component), we arrive at the following: 
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We then allow for the cancellation of terms that occurs for hydrostatic and geostrophic 

balance. These states are defined as follows: 
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where ghp is the pressure that corresponds to the geostrophic and hydrostatic balance. 

Then, defining 
0

ghp p
π

ρ
−

= , and approximating ( )0

0

ρ ρ
ρ
−

−  by 0

0

v v

v

θ θ
θ
− , the equations 

change to the following form: 
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LES does not have the resolution to solve the equation in this particular form.  Instead, 

the equation must be filtered to be consistent with the grid spacing. The filter has the 

following form: 

2
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1( ) ( ') ( ') ',

xx

i i x
xx

u x u x B x x dx
x
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+

∆
∆

−

= −
∆ ∫   (A7) 

where overbars represent filtered quantities, x∆ is the grid cell size, and xB∆  is the filter 

function. In LES used in the present study, xB∆  is the top hat filter: 

1 '
2 2

0 ' ; '
2 2

x

x xx x x
x

B
x xx x x x

∆

 ∆ ∆ − ≤ ≤ + ∆  = 
∆ ∆  < − > +   
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As such, the filter does not specifically appear in the LES code. After filtering, the 

equations are: 

 ( )0
3 , 3

0

i j ji v v i
i j g j ij

j v i j j i

u u uu ug f u u
t x x x x x

θ θ πδ ε ν
θ

  ∂ ∂∂ − ∂∂ ∂
= − + − + − + +   ∂ ∂ ∂ ∂ ∂ ∂   

 (A9) 

The nonlinear term is problematic, as it cannot be represented as a filtered product of two 

unfiltered variables, but rather, it can only be represented as a product of two filtered 

variables. The problem is handled in LES by splitting the filtered product into a product 

of filtered variables and a subgrid stress term. 

s
ij i j i ju u u uτ = −  

( )0
3 , 3
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ν τ
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  (A10) 

The reader is referred to Piomelli and Chasnov (1996) for a detailed discussion of subgrid 

modeling as it is used in LES. The subgrid stress term is assumed to have the same form 

as it has when deriving the Navier-Stokes equations from the Cauchy equation: 

s s s
ij ij ijpτ δ σ= − + , (A12) 

where the superscript s designates the term as a subgrid term. The filtering operation 

above is assumed to be analogous to the averaging operation in the RANS, in which 

' '
i j i j i ju u u u u u= + .  In this case, the subgrid stress term, τs, is analogous to ' '

i ju u .  The sum 

of the i=j terms, ' '
i iu u , is exactly twice the subgrid turbulence kinetic energy (STKE), E.  
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Using 1 2
3 3

p Eαατ= − = −  (analogous to the equality specified in deriving the Navier-

Stokes equations), we have:  

2 ,
3

s s
ij ij ijEτ δ σ= +   (A13) 

Since the E term is analogous to pressure, it is grouped with the pressure term, and we 

redefine pressure as 2
3

EπΠ = + . Finally, the subgrid deviatoric stress tensor is assumed 

to have the form: 

,js i
ij m

j i

uuK
x x

σ
 ∂∂

= − +  ∂ ∂ 
  (A14) 

where Km is the subgrid momentum exchange coefficient. With these assumptions, the 

LES momentum equations become: 
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 (A15) 

For most practical purposes, ,mK ν>> but ν is retained in the code for modeling small 

scale flows, in which  mK ν>>  may no longer hold. Everything in the equation is in a 

resolved form, except for Km, which is the final subgrid term that must be parameterized 

to close the problem. 

 The derivation of the thermodynamic equation proceeds in an analogous manner, 

but only with advection and diffusion terms with fewer terms. The thermodynamic 

equation is: 
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( ) .v i v v
h H

i i i

u K
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= − + + ∂ ∂ ∂ ∂ 
  (A16) 

The resolved continuity equation is of the form: 

0.i

i

u
x

∂
=

∂
  (A17) 

Subgrid closure 

Subgrid closure is based on the balance of subgrid scale turbulence kinetic energy, 

hereafter denoted as STKE.  The STKE equation, as written by Piomelli and Chasnov 

(1996), is as follows: 

( ) ( ) ( )3
1
2

s
j ij ij i i j i i j j j

j j j
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t x x x

τ β∂ ∂ ∂ ∂
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(A18)

,i i i i

j j j j

u u u u
x x x x

ν
 ∂ ∂ ∂ ∂

− −  ∂ ∂ ∂ ∂ 
 

                 (VII) 

 

where 
0

g
T

β =  and 3Q  is the vertical potential temperature flux.  Term I is the local rate 

of change and term II is advection.  Terms III and IV are the major source terms, with III 

being the mechanical production of STKE that occurs as energy cascades from larger 

scales into the subgrid scale.  Term IV is the buoyancy production of turbulence.  This 

term can be a source in the convective boundary layer but diminishes STKE in stable 

conditions.  Terms V and VI are transport due to subgrid turbulent motions and subgrid 

pressure fluctuations, respectively.  Finally, term VII is the dissipation of STKE.   
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Lilly-Smagorinsky closure 

The Lilly-Smagorinsky subgrid closure scheme (Smagorinsky 1963; Lilly 1967) 

is based on an equilibrium assumption.  Subgrid scale motions are assumed to have a 

time scale much smaller than resolved motions, and they adjust to perturbations much 

more rapidly than do resolved motions.  Therefore, with respect to the time scales of 

resolved motions, the adjustment of subgrid motions is considered instantaneous.  Under 

this assumption, all terms in the subgrid energy equation drop out except for III and VII.  

These terms are assumed to be in balance, with cascade of energy from the smallest 

resolved scales to the subgrid scale (III) instantly being converted to viscous dissipation 

(VII) within the subgrid domain. 

The quantity inside the parentheses of Term VII is an unknown, but since VII is a 

viscous dissipation term, the relation of Batchelor (1953) is applied.  Under this relation, 

viscous dissipation scales to the cube of the velocity scale divided by the length scale of 

the motions: 

3

~ .i i i i l

j j j j

u u u u u
x x x x lνν ε

 ∂ ∂ ∂ ∂
− =  ∂ ∂ ∂ ∂ 

  (A19) 

The subgrid stress in term III takes on the form 

2 js i
ij m ij m

j i

uuK S K
x x

σ
 ∂∂

= − = − +  ∂ ∂ 
. (A20) 

Substituting this expression for s
ijτ  into Term III of the subgrid energy balance equation 

(A18), and with the assumption in (A19) above, we have: 

( )
3

2 ~ l
m ij ij

uK S S
l

. (A21) 
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Finally, eddy viscosity can be thought of as the product of a length scale and a velocity 

scale, so that it can be written in the form m lK u l= , and therefore, /mK l can be 

substituted for lu .  The only remaining unknowns in the equation are then the eddy 

viscosity, Km (for which we are solving the equation), and the length scale, l.  Since the 

greatest energy-containing motions within the subgrid volume are at the largest scales, 

and these largest scales are approximately the size of the grid cell, it can be assumed that 

l is proportional to the local grid cell dimension, defined as ( )1/3x y z∆ = ∆ ∆ ∆  (the LES 

code in this study has constant ∆ ).  Finally, to turn these proportionalities into equalities, 

the Smagorinsky coefficient, Cs, is introduced.  The proportionality constant is chosen 

such that l=Cs∆, and with these substitutions, the solution for eddy viscosity becomes 

( )2 2 .m s ij ijK C S S= ∆   (A22) 

Cs can be evaluated using the technique in Lilly (1967).  Although many LES studies use 

different values for this coefficient, its value is close to Cs=0.18, which is used in this 

study. 

In the convective boundary layer, the turbulent heat exchange coefficient has a 

value approximately three times the turbulent exchange coefficient for momentum.  In 

stable atmospheric layers, the heat exchange coefficient is approximately the same as the 

momentum exchange coefficient.  The subgrid heat exchange coefficient in LES is 

therefore parameterized as, Kh =3Km. when 0
z
θ∂

≤
∂

, and and Kh =Km when 0
z
θ∂

>
∂

.  
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Deardorff Closure 

Deardorff (1980) closure involves the calculation of subgrid energy at each time 

step in the model run.  The STKE equation used is: 

32 2 .i
m ij ij m

i i i

u EE EK S S Q K
t x x x

β ε∂∂ ∂ ∂
+ = + + −

∂ ∂ ∂ ∂
 

  I         II             III           IV             V            VI 

(A23)

As in the general STKE equation above, term I is the local rate of change and term II is 

advection by the resolved flow.  Term III is the shear production term rewritten in terms 

of strain tensor, as in the derivation of the Smagorinsky closure.  Term IV is the same 

form of the buoyancy production in the general STKE equation.  In Deardorff closure, the 

pressure and turbulent redistribution of turbulence are combined into a single distribution 

term (V), and term VI is dissipation. 

The subgrid exchange coefficients for heat and momentum are: 

0.12mK l E=  and  21 .h m
lK K = + ∆ 

 (A24) 

The relationship between l and ∆ is a little more complicated than with Smagorinsky 

closure: 

, 0;

0.5min , 0.
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l
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z
z

θ
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θβ

 ∂
∆ ≤ ∂

  =    ∂  ∆ >  ∂∂   ∂  

  (A25) 

Finally, the dissipation term is parameterized as: 
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3/ 2

0.19 0.51 ,c
l Ef

l
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  (A26) 

where fc is a correction multiplier that varies with distance zw from a wall according to: 

2
21 ,

1.5 3.3
c

w

w

f
z
z

= +
 

+ − ∆ 

  (A27) 

where ∆zw is the size of the first near-wall grid cell. 

We now have a complete set of equations for LES, as well as two choices of 

subgrid closure. 

Procedure for Integrating the Equations 

The integration of the equations of motion begins with evaluation of the advection terms 

on the staggered grid. This follows with the evaluation of the buoyancy, Coriolis, and 

diffusion terms. The integration appears as follows (time is in differential form): 

 ( ) ( )

, ,

0
3 , 3
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  (A28) 

Only the terms in the large brackets have been evaluated to this point, and the pressure 

term remains uncalculated. The time integration is next carried forward, and then the 

divergence is taken, so that 
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The ,i mu  term has dropped out because it is non-divergent (its non-divergence was 

enforced during the previous time step). At this point, the continuity equation, , 0i p

i

u
x

∂
=

∂
, 

is enforced, so (z) becomes 
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3 , 32
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. (A30) 

This equation is then solved with a Fast Fourier Transform in the horizontal direction and 

a tridiagonal matrix solver in the vertical. The resulting pressure is then used to correct 

the velocity. 

 , , 2i p i p
i

u u t
x

∂Π
= − ∆

∂
. (A31) 

The integration then proceeds to the next time step. 
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Appendix B 

Effect of the Asselin Filter on Spectra 

Amplitude Errors 

The Asselin filter reduces the second-order leapfrog time-differencing scheme to first 

order in time, which makes it significantly dissipative. The filter acts in time, so the 

damping occurs as the local velocity changes from one time step to the next. The more 

sudden the change, the more the filter damps the change. Thus, in order for any wave or 

eddy to be affected by the filter, it must be moving through the grid, since local time 

derivatives for a stationary wave are zero. Also, for the same phase speed and amplitude, 

shorter waves are affected more than larger waves, since shorter waves will have larger 

local time derivatives. 

 The derivation of the equations in this section follows the techniques described in 

Durran (1996). The analysis begins with a stability analysis of the advection equation 

using the leapfrog scheme with the Asselin filter. The resulting amplitude errors are then 

used to calculate phase speed errors in the finite difference form of the advection 

equation. The advection equation is written 

 ( )1 1
1 1

n n n n
i i i iu u u uµ+ −

+ −= − − , (B1) 
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where /c t xµ = ∆ ∆  (c is the phase speed of the advected wave). The superscripts refer to 

the time step in the finite difference equation, and the subscripts refer to grid points. 

Overbars denote filtered quantities. The filter is applied in the following form: 

 ( )1 12n n n n n
i i i i iu u u u uε + −= + − + . (B2) 

ε  is typically chosen to be 0.25. We convert (B2) to be written in terms of 1n
iu − , using λ 

as an amplitude error that occurs during the time integration: 

 ( )1 1 2 1 1 12n n n n n
i i i i iu u u u uλ λ ε λ λ− − − − −= + − + . (B3) 

Unfortunately, (B3) does not fully separate filtered and non-filtered quantities, and this 

makes the derivation very difficult. Fortunately, it can be shown that [see Durran (1996) 

for details] that at sufficiently large n (number of time steps) and sufficiently small ε,  

 1 1n n
i iu uλ λ− −≅ , 

so we can rearrange (B3) into the following form: 

 ( ) ( )1 11 2n n
i iu uλ ε λ ε λε− −+ = − +   . (B4) 

With 1n n
i iu uλ −= and 1 2 1n n

i iu uλ+ −= (amplitude errors associated with each time step), we 

can rearrange (B1) to the following form: 

 ( )1 1 1 1
1 1

n n n n
i i i iu u u uλ λ µ− − − −

+ −
 = + −    (B5) 

Substituting (B5) into (B4), we have 

 ( ) ( ) ( )2 2 2 sin 2 1 2 sin 0i k x i k xλ ε µ λ ε ε µ+ − + ∆ + − − ∆ =       , (B6) 

whose solutions are 

 ( )2 21ia aλ ε ε± = − + ± − − , (B7) 
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where sin( )a k xµ= ∆ . The stability requirement is 1µ ε≤ − , meaning the time step is 

more restrictive than the leapfrog equation without the Asselin filter. The absolute value 

of the amplitude error is (provided the stability constraint is met) 

 ( ) ( ) ( )( )2
22 2 2 2sin 1 sink x k xλ µ ε ε µ+ = ∆ + + − − ∆ . (B8) 

This solution as a function of wavenumber is plotted in Figure B.1. The solution is 

calculated for several different µ (~time step), ranging from a maximum stable time step 

to a time step one quarter of the maximum stable time step. Note that the error is worst 

for the 4∆x wave, and no amplitude error occurs for the 2∆x wave. This is because, as 

shown next, the phase speed of the 2∆x wave is zero. 

Phase Speed Errors 

 The phase speed errors can be calculated from the amplitude errors (B7) for the 

equation. We define aω as the frequency of the analytical solution to the advection 

equation and dω as the frequency of the finite-difference form of the advection equation 

and dRω  and aIω  as the real and imaginary components of dω  ( aω  only has a real 

component). Assuming the analytical wave at a local point behaves over a single time 

step as  

 , 1a ai t i t
a a ae eω θλ λ λ− ∆ ∆= = ≡ , (B9) 

and the finite difference wave behaves as 

 ( )dR dI dI dR di i t t i t i t
d de e e eω ω ω ω θλ λ− + ∆ ∆ − ∆ ∆= = = , (B10) 

the phase change over one time step is therefore defined as 
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 1 Im( )tan
Re( )

d
d

d

λθ
λ

−  
≡  

 
. (B11) 

Thus, for a given wavenumber, k, the phase speeds of the analytical and finite difference 

waves can be compared: 

 d dR d d

a a a a

t kc c
t kc c

θ ω
θ ω

− ∆
= = =

− ∆
. (B12) 

For the analytical solution, the phase angle only has a real component: 

 a a at c k t k xθ ω µ= − ∆ = − ∆ = − ∆ . (B13) 

The finite difference solution has a physical and a computational mode. It can be shown 

that the solution pertaining to λ−  is the computational mode and is 100% damped by the 

Asselin filter when 0.25ε = . Thus, to look at the phase speed errors of the physical 

solution, we use 

 
( )

1

2 2
tan

1
d

a

a
θ

ε ε
−

 − =
 + − − 

, (B14) 

with the square root term always being real if the stability constraint is met. Therefore, 

the phase speed of the finite difference solution relative to the analytical solution is 

 
( )

1

2 2
tan

1
d d

a a

a

ac
c k x

ε εθ
θ µ

−
 − 
 + − − = =

− ∆
. (B15) 

This solution is plotted in Figure B.2 along with the phase speed errors for the unfiltered 

leapfrog scheme. One sees that the 2∆x wave is stationary, and the best resolved waves 

have phase speeds that are nearly equal to the phase speed of the analytical solution. 

Looking at Figure B.1, a smaller time step increases the phase speed error, and if the time 
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step is right at its maximum, the phase speed can be slightly greater than the analytical 

phase speed. One does occasionally observe stationary 2∆x disturbances in LES, but 

these are generally limited to situations, in which the subgrid eddy viscosity does not 

damp them well (in non-turbulent regions) or if there is reflection (in local areas with 

w<0 close to the bottom surface). 

LES Tests 

To test the results presented in (B8) and (B15), experiments can be performed on the 

spectra output from LES. In LES, the time step is limited by a stability constraint, which 

is a combination of the stability constraints for the advection and diffusion finite 

difference equations. This constraint is more restrictive than the constraint of either 

equation alone. Additionally, the time step is determined by picking the grid point that 

has the most restrictive combined stability constraint. Therefore, in most locations in the 

LES grid, µ (~time step) is less than its maximum stable value. In fully turbulent NS 

regimes, the diffusion term (with eddy viscosity) becomes the dominant term in the LES 

equations and determines the time step, which is small compared to the maximum stable 

time step of the advection equation. Therefore, in most places in the grid, the amplitude 

error of the Asselin-filtered leapfrog scheme for the advection equation is not severe, and 

the spectra are relatively well simulated. In the GC case, the advection term is much 

larger if the grid is in the same frame of reference as the ground. Thus, the LES time step 

is mostly limited by the stability constraints of the advection equation, and the actual time 

step used is much closer to the maximum stable time step. The amplitude errors are, 

therefore, more severe, and the errors are worst for the 4∆x disturbance. 
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In the experiment, vertical velocity spectra output from the NS case was taken and 

“hit” a number of times with the amplitude error (B8) as a function of the wavenumber to 

see how it looked compared to the GC spectra. Figure 8.10 shows the results of this 

experiment, which was performed on spectra from the NS cases with / 0.010zθ∂ ∂ =  

K/m and 0.30sQ =  Km/s. The NS spectra are shown with a thick black line, and the thin 

black lines indicate the GC spectra. The NS spectra were taken and “hit” 20 times with 

the amplitude error in (B8). The resulting “hit NS” spectra are plotted in blue. They line 

up extremely well with the GC spectra, providing strong evidence that the Asselin filter is 

responsible for the much of the deviation of the GC spectra from the k–5/3 law. In the 

range between 4∆x and 2∆x, the “hit NS” does not match the GC spectrum. The thinking 

is that, in this wavenumber range, the subgrid eddy viscosity takes care of the remaining 

small portion of energy in this wavenumber range. The effect of subgrid closure was not 

included when calculating the “hit NS” spectrum. Such tails in the spectra are sensitive to 

the subgrid scheme, and they are discussed at greater length in Otte and Wyngaard (2001). 

 The grid in the GC cases can then be run in the frame of reference of the mean CBL 

flow, reducing the grid-relative advection to a level comparible with that of the NS case. 

As is shown in Figure 8.9, this resulted in a GC vertical velocity spectrum that matched 

the NS vertical velocity spectrum in the high wavenumber range. This essentially 

provides a smoking gun regarding the effects of the Asselin filter on spectra. 

 The GC case was also run with a much smaller time step to see if some improvement 

in spectra occurred.  Results (not shown) indicate some return to the k–5/3 law, but the 

relatively small improvement is not worth the extra computational time required. 
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Figure B.1:  Relative amplitude, versus the analytical equation (λd/λa), for the advection 
equation using the Leapfrog scheme with an Asselin filter, ε=0.25. 
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Figure B.2:  Relative phase speed, versus the analytical equation (cd/ca), for the advection 
equation using the Leapfrog scheme with an Asselin filter, ε=0.25. 
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