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CHAPTER I

INTRODUCTION
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Abiotic stresses pose the greatest challenge to scientists and farmers alike in their efforts 

to improve agricultural productivity. Increasing human population coupled with demand 

for shrinking resources has fueled interest in the scientific community to elucidate the 

mechanisms by which plants respond to stress and in manipulating these mechanisms to 

increase plant productivity under adverse conditions. Analysis of major crops in the 

United States has shown that there is a large genetic potential for yield that is unrealized 

(Boyer, 1982) and drought alone accounts for 25% of the loss in crop yields (Kramer and 

Boyer, 1995). In 2003, drought related crop insurance indemnity payments accounted for 

45% of total crop insurance payments. Since 1989 the Federal Crop Insurance 

Corporation (FCIC) has paid on an average US $500 million for drought related losses

annually (http://www.usda.gov/Newsroom/fs0199.04.html). 

Wheat (Triticum aestivum L.) is one of the World’s most important cereal crops, 

contributing one fifth of the World’s total food calories (Zohary and Hopf, 2000). Wheat 

production is severely limited by environmental stress. Wheat production in the United 

States showed a continuous downward trend for five years preceding 2002 hitting an all 

time low harvest of 43.9 MT in 2002 (FAO Stat Databases, 2004). One of the major 

abiotic factors contributing to this alarming scenario of decreasing wheat yields is water-

deficit stress. Water is indispensable to maximize crop production and shortage of water

has serious consequences. Water deficit at various degrees may lead to temporary 

reduction in growth rate, reduced yields, or even permanent wilting and death by

dehydration. Therefore, in order to survive as well as thrive under water-deficit 

conditions, plants have to develop mechanisms to cope with this stress. Water deficit 
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elicits complex responses that are manifested in changes at cellular, physiological and 

developmental levels (Bray, 1993).

Breeding for tolerance in crop plants has given some very good results but involves some 

failures as well. This is mainly because the response to water deficit is a very complex 

phenomenon that is affected by several genes. Recently, scientific efforts to improve 

plant productivity have focused on reducing the gap between farm yields and the genetic 

potentials for yield by modifying physiological processes (Boyer, 1982). One of the most 

promising approaches is to engineer plants with novel genes and induce new biosynthetic 

pathways hitherto not present in those plants to improve their tolerance to stress. Several 

studies suggested and demonstrated that plants genetically engineered for the 

accumulation of compatible solutes hold promise of increased drought tolerance 

(Holmberg and Bulow, 1998; Bajaj et al., 1999; Rathinasabapathi, 2000). Some of the 

compatible solutes studied so far include amino acids, tertiary sulfonium compounds, 

quaternary ammonium compounds and polyhydric sugar alcohols (Pilon-Smits et al., 

1995; Shen et al., 1997; Rontein et al., 2002; Chen and Murata, 2002). In tune with the 

above views, a bacterial mtlD gene encoding for mannitol-1-phosphate dehydrogenase 

was transformed into spring wheat (cv. Bobwhite) for accumulation of mannitol (Abebe 

et al., 2003). Two gene constructs were used during transformation to induce mannitol 

biosynthesis in the cytosol or the chloroplasts in different transgenic events. A negative

control was generated with a construct containing only the selectable-marker bar gene.
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Mannitol, a sugar alcohol is known to be involved in osmotic adjustment (OA) and 

osmoprotection in plants like celery in which it is naturally produced (Zamski et al., 

2001). Members of the polyol family, to which mannitol belongs, are known to minimize 

the reduction in cell turgor under water stress when they accumulate to high levels (Popp 

and Smirnoff, 1995). Bray (1997) suggested that the improved stress tolerance in 

transgenic plants accumulating mannitol might be due to maintenance of water potential 

gradients at the whole plant level even in the absence of OA. 

Mannitol is known to be a free radical scavenger, specifically of hydroxyl radicals (Shen 

et al., 1997). Reactive oxygen species (ROS) accumulate rapidly during stress and have 

to be detoxified instantaneously to reduce cell membrane and organelle damage 

(Grassmann et al., 2002). 

Several studies have reported an unpredictable behavior in transgene inheritance and 

expression. Bourdon et al. (2002) reported that initially high levels of transgene 

expression was not maintained in subsequent generations, and Iyer et al. (2000) suggested 

the occurrence of transgene silencing due to high copy number of transgenes present in 

the genome. Previous experiments conducted by Abebe et al. (2003) confirmed the 

integration and expression of the mtlD gene in the wheat genome of T 0 transformants. In 

this study we used real-time PCR to determine the transgene copy number and its 

expression in the T3 and T4 generations.
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CHAPTER II

REVIEW OF LITERATURE



6

Water Stress Physiology

Availability of adequate water during the season is very important to attain maximum 

crop productivity, because much of the resource exchanges that occur between the plant 

and its environment occur through this medium. Low precipitation, low water holding 

capacity of the soil, salinity, and low/ high temperatures or a combination of these factors 

can limit water availability to plants. The maintenance of turgor is necessary to allow 

many metabolic processes to function normally and contribute to growth. The study of 

water potential and its components provides us with information about the water status of 

the plant.

Water Relations:

Water contained in plants is divided into two components: apoplastic and symplastic. The 

movement of water in the plant and across these two compartments depends upon the 

water potential. Under normal conditions the water potential of the cell and its 

surroundings will create a gradient along which water moves from high to low potential. 

When the plants are exposed to water stress due to high transpiration losses or low water 

uptake by roots, the cells start losing water leading to loss of turgor. As a result of the 

volume reduction cells concentrate solutes, thereby lowering the osmotic potential. 

Accumulation of new solutes tends to minimize volume loss and turgor reduction

(Kramer and Boyer, 1995).

Four main classes of osmotically active solutes can affect the osmotic potentials in the 

cells. Simple carbohydrates such as sugars (sucrose, glucose, fructose), sugar alcohols 
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(sorbitol, mannitol), and amino acids (proline and glycine-betaine), known as compatible 

solutes, accumulate mainly in the cytosol. Inorganic ions (K+, Na+, Ca+, Cl-, NO3
-, and 

HPO4-) and organic acids (citric acid and malic acid in CAM plants) accumulate 

primarily in the vacuole. All of these lower the osmotic potential of the cell. 

Resistance of some plants to water-deficit stress derives from the ability to maintain high 

turgor potential during conditions of stress in the environment. Many drought tolerant 

plants reduce the osmotic potential, and as a consequence water potential. This guards

against water loss and thus minimizes the loss of turgor during stress. The response is

called osmotic adjustment and is discussed in greater detail below.

Osmotic Adjustment:

Osmotic adjustment (OA) in higher plants refers to the lowering of osmotic potential 

arising from the net accumulation of solutes in response to water deficits or salinity. OA 

occurs in leaves, hypocotyls, roots, and reproductive organs. The degree of adjustment is 

influenced by factors such as the rate of development of water stress, degree of water 

deficit, genotypes and environmental conditions (Turner and Jones, 1980). OA, unlike 

stomatal closure and reduction in leaf area, provides the potential for maintaining 

photosynthesis and growth under increasing water deficit stress. OA has contributed to 

stabilization of grain yields in wheat (Moinuddin et al., 2005) and varieties with greater 

capacity to adjust osmotically have performed better in the field (Morgan et al., 1986). 

OA in response to water deficit is considered a beneficial drought tolerance mechanism 

in several crops (Morgan, 1984) including wheat (Johnson et al., 1984). Flagella et al. 
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(1996) reported that OA arises only under severe stress and is of greatest degree when the 

rate of stress development is low. Furthermore, it is known that the extent of OA is also 

dependent on the developmental stage and environmental factors (Johnson et al., 1984). 

Shangguan et al. (1999) reported that a high degree of OA was observed in wheat when 

drought stress was applied in early stages and at a low drought development rate.

Solutes contributing to OA:

Major contribution to OA comes from the accumulation of inorganic ions in the vacuole. 

K+ and Cl- are the two ions that contribute the most to OA (Hu and Schmidhalter, 1998). 

The source of inorganic ions is from the external medium and is more energy efficient for 

the cell compared to the synthesis of organic solutes (Yeo, 1983). But high 

concentrations of inorganic ions can lead to ion imbalance, nutrient ion deficiency, and 

ion toxicity disrupting normal metabolism in the cell when the stress periods are 

prolonged (Nabil and Coudret, 1995). An alternative but energy dependent way available 

to the plant is to accumulate organic solutes (osmolytes) like sugars, sugar alcohols, 

amino acids, and organic acids in the cell (Greenway and Munns, 1980). Osmolytes are 

compatible organic solutes that can accumulate in the cell without disrupting metabolic 

functions (Bartels and Nelson, 1994). Some of the osmolytes accumulating in the cells 

due to stress include amino acids (proline), sugar alcohols (mannitol), soluble sugars 

(fructans) and quaternary ammonium compounds (glycine-betaine). Accumulation of 

osmolytes occurs through de novo synthesis or through a combination of synthesis and 

catabolism.
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The selective advantage of organic osmolytes over inorganic ions is due to their 

compatibility with macromolecular structure and function even at high concentrations. 

Osmolyte compatibility is proposed to result from the absence of osmolyte interaction 

with substrates and cofactors, and the non-perturbing effects of macromolecular 

interactions (Yancey et al., 1982). Sugars are known to be the major contributors of OA 

among osmolytes. Both reducing sugars (Kameli and Losel, 1995) and non-reducing 

sugars (Johnson et al., 1984) have been reported to play a major part in OA of wheat 

under water stress. Compatible organic solutes increase tolerance to water deficit stress 

through several mechanisms; osmotic adjustment, reactive oxygen species (ROS) 

scavenging, acting as a sink for reducing power thereby lowering the rate of ROS 

production, and storage of carbon and nitrogen.

Polyols with their OH groups can effectively replace water in establishing hydrogen

bonds in case of limited water availability and therefore protect enzyme activities and 

membrane structures (Popp and Smirnoff, 1995). Mannitol, a sugar alcohol is known to 

be involved in osmotic adjustment and osmoprotection in celery among other plants. 

Mannitol and glycerol are common cell osmolytes in salt tolerant plants and aid in cell 

water retention also when exposed to freezing conditions (Yancey et al., 1982). Mannitol 

accumulation increases with an increase in salinity in celery, which showed substantial 

tolerance to increased levels of NaCl (Everard et al., 1994). Modest increases in levels of 

fructans (Pilon-Smits et al., 1995), trehalose (Garg et al., 2002), proline (Hare and Cress, 

1997) and glycine-betaine occurred in plants that showed increased tolerance to stress, 

but the solute levels appeared too low to contribute substantially to OA. 
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Photosynthesis and other growth parameters under water stress:

All aspects of plant growth and metabolism are affected by water stress at all stages of 

growth. Water stress severely reduces net photosynthesis in flag leaf, top internode and 

ear of wheat (Wardlaw, 1971). The photosynthetic responses to water stress are both 

stomatal and non-stomatal. The initial response of the plant to drought is stomatal 

closure, and later inhibition of chloroplast activity, both eventually leading to reduced 

photosynthesis (Matthews and Boyer, 1984). Closed stomata and inhibition of chloroplast 

activity at low leaf water potentials decrease the leaf capacity to fix available CO2 (Boese 

et al., 1997). Chloroplast inhibition cannot be overcome by an increase in the 

concentration of CO2. Along with net photosynthesis, the transpiration rate also shows a 

reduction due to closure of stomata. The existence of a vapor pressure gradient from leaf 

to air commonly keeps the transpiration going even though at smaller rates when the 

photosynthesis is severely inhibited (Morant- Manceau et al., 2004).

Reduced intracellular CO2 concentration (Ci) due to closed stomata leads to increased 

photorespiration. When coupled with high light conditions, the potential free radical 

formation and photoinhibition increases greatly in the chloroplast (Bjorkman and Powles, 

1984). The capacity of carbon assimilation and utilization is reduced due to reduced 

activity of the enzymes involved such as rubisco (Parry et al., 2002), phosphoribulo 

kinase, and fructose-1, 6- bisphosphatase (Haupt-Hertig and Fock, 2002). Water stress 

causes changes in the pH in the chloroplast. Acidification of stroma and reduction in ATP 

synthesis are thought to cause enzyme inactivity and reduced RuBP turnover (Tezara et 

al., 1999). Increase in the rate of degradation of chlorophyll and the resultant decrease in 
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chlorophyll concentrations have been observed under prolonged water deficit stress 

(Bjorkman and Powles, 1984). Chlorophyll fluorescence is used as an indicator of stress 

in plants. However the electron transport chain is rather resistant to water deficit stress 

(Cornic and Massacci, 1996). Use of fluorescence data with gas exchange measurements 

can provide us with a good understanding of the stress response of the plant.

Water stress leads to reduced apical growth and spikelet formation, lower biomass 

accumulation (Wardlaw, 1971) and suppress tillering in wheat (Keim and Kronstad, 

1981) ultimately resulting in loss of grain yield. Grain yield loss in wheat during water 

stress is also due to smaller number of grains per spike resulting from male sterility (Saini 

and Aspinall, 1981).

Mannitol in Higher Plants:

Sugar alcohols (acyclic polyols or alditols) are widely distributed in higher plants with 

mannitol being the most common member found in over 70 families (Lewis and Smith, 

1967). Celery (Apium graveolens L.) has been used as a model system to study mannitol 

metabolism in higher plants. Pulse chase experiments in celery have shown that mannitol 

and sucrose are two major products of photosynthesis produced in roughly equal 

quantities (Loescher et al., 1992). In celery mannitol accounts for 10 to 60% of the 

carbon exported from mature leaves (Daie, 1986), and it is the predominant substrate 

translocated in the dark when sucrose pools are low (Davis and Loescher, 1990). The 

proposed mannitol biosynthesis pathway in higher plants is given below:
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Fructose 6-phosphate -���� Mannose 6-phosphate-���� Mannitol 1-phosphate-����

Mannitol

A NADPH dependant mannose-6 phosphate reductase, mannose 6-phosphate isomerase, 

and mannitol 1-phosphate phosphatase are involved in the process (Loescher et al., 

1992). All the enzymes involved in mannitol biosynthesis in plants are localized in the 

cytosol (Rumpho et al., 1983).

The above pathway differs from the mannitol biosynthesis of lower organisms like 

bacteria and brown algae (Ikawa et al., 1972):

Fructose 6-phosphate -���� Mannitol 1-phosphate -���� Mannitol

A NAD dependant mannitol 1-phosphate dehydrogenase (mtlD) and mannitol 1 -

phosphate phosphatase are the enzymes catalyzing the biosynthesis. The proposed 

pathway in the transgenic wheat lines under study is similar to the latter pathway. 

Mannitol biosynthesis in plants occurs simultaneously with other sugars and so far no 

plant has been reported to exclusively synthesize mannitol (Stoop et al., 1996).

Mannitol is translocated from source to sink organs in higher plants. The presence of 

mannitol in phloem sap and detection of mannitol in the sink organs where it is not 

synthesized provides support for long distance transport (Loescher, 1987; Moing et al., 

1992). Sorbitol biosynthesis and phloem concentrations increased in peach tree seedlings 
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under stress suggesting its transport (Escobar-Gutierrez et al., 1998). A similar 

phenomenon was observed in soybean with pinitol under high temperature stress (Guo 

and Oosterhuis, 1995). Hu et al. (1997) have reported mannitol-boron complexes in the 

phloem sap of celery. Boron mobility is thought to increase by forming such complexes 

with polyols. The presence of a mannitol transporter (AgMaT1) in celery  phloem was 

reported recently by Noiraud et al. (2001) but the mechanisms involved in phloem 

loading and unloading are yet to be fully characterized. Mannitol dehydrogenase (MTD) 

is involved in the catabolism of mannitol in higher plants converting mannitol to 

mannose. MTD in higher plants is a 1-oxidoreductase which differs from microbial MTD 

(2-oxidoreductase) which converts mannitol back to M1P (Zamski et al., 2001). The 

activity of MTD is known to be suppressed under stress allowing the accumulation of 

mannitol, which can act as an osmoprotectant, antioxidant and a source of carbon (Prata 

et al., 1997).

Transgenic Approach: Pathway for a Second Green Revolution!

Breeding for water deficit stress takes a long time and yet has given limited success 

because the response to water deficit stress is a quantitative trait influenced by several 

genes whose individual effects are difficult to identify in pedigrees (Flowers et al., 2000). 

Besides, the fear of introducing undesirable genes into the breeding program is ever 

present. Transgenic approaches offer new opportunities to improve dehydration-stress 

tolerance in crops by incorporating genes involved in stress protection into species that 

lack them (Bajaj et al., 1999). Genetic engineering is also a faster and precise means of 



14

achieving improved resistance to water stress because it avoids the transfer of unwanted 

chromosomal regions (Cushman and Bohnert, 2000).

A bacterial mtlD gene encoding for mannitol -1-phosphate dehydrogenase has been 

cloned into wheat (Abebe et al., 2003) for synthesis of mannitol either in the cytosol or in 

the chloroplasts. These transgenic wheat plants showed increased tolerance to water 

deficit and salinity, but the amount of mannitol accumulating in the mature leaf cells was 

too low to contribute significantly to osmotic adjustment in leaf tissues. Improvement in 

stress tolerance may have been due to maintenance of water potential gradients at the 

whole plant level because of a role of osmolytes in the roots (Bray, 1997). Similar studies 

were carried out on tobacco and Arabidopsis (Tarczynski et al., 1993; Thomas et al., 

1995). Tobacco roots accumulated greater amounts of mannitol suggesting that mannitol 

was involved in OA, whereas Arabidopsis showed very low mannitol content. But 

transgenic Arabidopsis plants were able to germinate in solutions containing up to 400 

mM NaCl whereas the wild types ceased to germinate at 100 mM NaCl. The protection 

conferred by mannitol accumulation was attributed to other osmoprotectant functions and 

free radical scavenging. Chaturvedi et al. (1997) reported that mtlD gene expression and 

subsequent mannitol accumulation increased osmotolerance in yeast. Photosynthetic 

carbon partititioning showed a shift from sucrose to mannitol in celery under stress 

(Everard et al., 1994) leading to lower sucrose levels under saline conditions. Similar 

lowering of sucrose levels was observed in transgenic tobacco accumulating trehalose 

under water deficit stress (Romero et al., 1997) 
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Though mannitol is termed a compatible solute, its accumulation in the cells affects 

growth and phenotype of the transgenic plants. Reported results do not always agree with 

each other. Transgenic tobacco plants that accumulated mannitol were 20 to 25% smaller 

than wild type plants in both salinity and drought experiments (Karakas et al., 1997). 

Karakas et al. (1997) observed that +mtlD tobacco plants exhibited a slower growth rat e 

when compared to wildtype  plants under no stress conditions, which contradicts the 

report of Tarczynski et al. (1993) that there is no difference in growth of +mtlD and –

mtlD plants in the absence of stress. However mtlD-transformed wheat exhibited slower 

growth and growth abnormalities. Interestingly, the transgenic wheat plants that 

synthesized the highest amounts of mannitol were sterile and phenotypically abnormal 

(Abebe et al., 2003). In some other studies involving transgenic plants the results were as 

diverse and different. Fructan accumulating transgenic tobacco showed higher biomass 

accumulation during drought stress whereas no significant difference was seen under 

non-stresses conditions (Pilon-Smits et al., 1995). Trehalose accumulating transgenic 

plants showed improved drought tolerance but exhibited multiple phenotypic alterations 

such as stunted growth (Romero et al., 1997).

Oxidative stress:

Generation of ROS:

Oxygen exists in nature as a diatomic molecule (O2) and amounts to 21% of dry air. O2 

contains two unpaired electrons in separate orbitals with parallel spins. The enormous 
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oxidative potential of O2 is expressed when this spin restriction is overcome by either 

energy transfer or electron transfer reactions (Halliwell and Gutteridge, 1990).

Oxidative stress occurs in plants due to the accumulation of ROS in the plant tissues 

during stress. ROS are species of oxygen, which are more reactive than molecular 

oxygen. The primary ROS, superoxide is formed by one electron reduction of molecular 

oxygen. Further reduction of superoxide produces hydrogen peroxide (H2O2) and later 

hydroxyl radicals through Fenton and Haber-Weiss reactions. Therefore, under stress 

conditions, once superoxide is formed the subsequent production of H2O2 and hydroxyl 

radicals are almost inevitable (Hancock et al., 2001). ROS are continuously produced in 

various metabolic pathways and in different cellular compartments. The primary center of 

the generation of ROS in plants is the chloroplast. The photosynthetic electron transport 

system is the major source of ROS (Baker and Orlandi, 1999).

Singlet oxygen is formed due to the energy transfer reactions involving the chlorophyll 

antennae of Photosystem II (PSII) and the oxygen molecule under high light intensities. 

When the chlorophyll molecule remains in an excited state for a long period of time, it 

converts to a triplet state and subsequently transfers the excitation energy to oxygen 

molecule resulting in the production of singlet oxygen (Hideg et al., 2002).

Direct reduction of O2 in Photosystem I (PS I) due to limitations in the availability of 

NADP+ leads to the formation of the superoxide radical. High light intensities lead to 

excess reduction of PS I so that the CO2 fixation cannot keep pace and NADP+ pools are 
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reduced to NADPH. Under these conditions O2 competes with the low amount of NADP+

for electrons from PS I leading to free radical formation (Allen, 1995). Kaiser (1979) 

reported that when CO2 fixation is limited due to environmental stress conditions, PS I 

reduction and ROS production can occur even under moderate light intensities. The 

oxygenation reaction of rubisco and the photorespiratory pathway results in the 

generation of H2O2 in the peroxisomes. H2O2 is also generated in the cells due to the 

dismutation of the superoxide radical by the superoxide dismutase (SOD) enzyme family. 

Further reduction of H2O2 in the presence of transition metal ions leads to the formation of 

the hydroxyl radical. The hydroxyl radical is the most reactive of all the ROS and is 

thought to react immediately at the site of its formation with little selectivity (Samuni et 

al., 1983). Under physiological conditions the estimated mean life time and the mean 

diffusion distance of the hydroxyl radical are 10-7 s, and 4.5 nm respectively (Asada, 

1994). Other sources of ROS in plants include NADPH oxidases, cell wall bound 

peroxidases, amine oxidases of the apoplast and respiration (Mittler, 2002).

Role of ROS:

The dual role played by ROS in plants has become obvious in recent years: either 

exacerbate damage during stress or signaling the activation of defense responses (Dat et 

al., 2000). The ROS generating systems like NADPH oxidases, cell wall bound 

peroxidases and amine oxidases are known to play a central role in the activation of 

defense mechanisms against insects and pathogens (Grant and Loake, 2000). ROS are 

also implicated to play a vital role in lignification of plant cell walls and induction of 

senescence (Apel and Hirt, 2004). O2 also plays an important role as an alternative 
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electron acceptor during photosynthesis, thus protecting the photosynthetic machinery 

from photoinhibition and inactivation. Takahashi and Asada (1988) showed the presence 

of a ‘pseudocyclic’ electron transport where the superoxide radical formed when oxygen 

accepts an electron from PSI, donates the electron to components of cytochrome complex 

or plastocyanin electron carriers.

However, when high amounts of ROS are generated under adverse environmental 

conditions, unrestricted oxidation of various cellular components can lead to the 

destruction of the cell (Dat et al., 2000; Asada, 1999). ROS induced cell damage can 

result from membrane lipid peroxidation (Selote et al., 2004; Zhao et al., 2005), protein 

oxidation (Stadman and Levine, 2003; Cervantes-Cervantes et al., 2005), enzyme 

inhibition (Shen et. al., 1997) and DNA damage (Wiseman and Halliwell, 1996; 

Balasubramaniam et al., 1998). Nishiyama et al. (2001) reported that ROS inhibits repair 

of photo damage to photosystem II (PS II) in vivo by inactivation of H2O2 scavenging 

enzymes in cyanobacteria.

ROS scavenging mechanisms in plants:

Cells have evolved sophisticated strategies to keep the concentrations of ROS under 

control. The detoxification of ROS in plants can be broadly classified into two groups: 

enzymatic and non-enzymatic. Enzymatic scavenging mechanisms include superoxide 

dismutase (SOD), ascorbate peroxidase (APX), glutathione peroxidase (GPX), and 

catalase (CAT). SOD acts by catalyzing the disproportionation of superoxide radicals. 

Thus, the steady state levels of superoxide are reduced but the byproduct of this reaction 
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is H2O2, another species of reactive oxygen. There are three types of SODs that differ in 

their prosthetic metals. CuZn-SOD is the major type of SOD in plants and is present in 

both chloroplasts and the cytosol, Mn-SOD is localized in mitochondria and Fe-SOD, if 

present, is found in the stroma of the chloroplasts (Kanematsu and Asada, 1990).

APX, GPX, and CAT act in concert to detoxify H2O2 produced in the cells. APX is found 

in both chloroplasts and the cytosol. The ascorbate-glutathione cycle regenerates the 

ascorbate and reduced glutathione (GSH) used up in the H2O2 scavenging process. GPX 

also scavenges H2O2 but uses GSH as the reducing agent. GPX activity is localized to the 

cytosol whereas CAT is found mainly in the peroxisomes. CAT catalyses the conversion 

of H2O2   to water in the peroxisomes. 

In the presence of methyl viologen PS I produces superoxide. Overexpression of a pea 

chloroplast SOD in tobacco increased the resistance to methyl viologen induced 

membrane damage (Allen, 1995). Similar results were observed in Arabidopsis (Wang et 

al., 2004). The levels of ROS scavenging enzymes in the cell depend on the levels of 

respective ROS produced, and are tightly controlled. Studies involving transgenic plants 

where one or more of the above enzymes were overexpressed/ suppressed showed that 

the scavenging mechanisms are compensatory. 

Apart from ascorbate and glutathione, which are involved in scavenging with APX and 

GPX, several non-enzymatic components to detoxify the ROS exist. Carotenoids (Young, 

1991), tocopherol (Munne-Bosch, 2005), flavonoids, phenolics and terpenoids 
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(Grassmann et al., 2002), and sugars and sugar alcohols (Shen et al., 1997) are known to 

play an important role in ROS scavenging. Overexpression of a single component of the 

antioxidant system has given mixed results so far with some studies showing increased 

tolerance and some reporting increased damage in the presence of oxidative stress (Allen, 

1995).

Role of sugar alcohols in ROS scavenging:

Besides being osmolytes, compatible solutes are suggested to have other protective 

functions. In vitro studies have shown that accumulation of compatible solutes can 

stabilize membranes and protect enzymes against some forms of chemical denaturation 

(Yancey et al., 1982). Smirnoff and Cumbes (1989) evaluated the hydroxyl radical 

scavenging capacity of compatible solutes and confirmed that sorbitol, mannitol and 

myo-inositol were effective in free radical scavenging. ROS are toxic at higher 

concentrations and have the potential to damage membrane lipids (lipid peroxidation), 

proteins (proteolysis and fragmentation) and DNA (deletions and mutations) (Halliwell 

and Gutteridge, 1990; Asada, 1994; McKersie and Leshem, 1994).

Several studies on accumulating polyols in plant cells point to their role as scavengers of 

ROS and stabilizers of membranes and proteins (Galinski, 1993; Papageorgieu and 

Murata, 1995; Bohnert and Jensen, 1996). Mannitol is known to possess free radical 

scavenging properties and was reported to scavenge hydroxyl radicals in vitro but the 

products of the reactions between mannitol and hydroxyl radical are still unknown 

(Franzini, 1994). 
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The most susceptible targets of ROS are biomembranes and subcellular organelles due to 

their content of polyunsaturated fatty acids in membrane phospholipids and galactolipids 

in the thylakoid membranes. As a consequence of lipid peroxidation, membrane fluidity 

may be impaired, activity of membrane proteins affected, and finally the membrane will 

be completely disrupted and ion homeostasis lost (Grassmann et al., 2002). To avoid 

possible damage to plant tissues the ROS should be kept under control continuously at 

the cellular level. Scavenging of the excess ROS produced in the cells by engineering 

synthesis of compatible solutes in the cells have given some promising results. Targeting 

mannitol biosynthesis to chloroplasts in transgenic tobacco resulted in accumulation of 

mannitol under stress and increased tolerance to methyl viologen (MV) induced oxidative 

stress (Shen et al., 1997). The increased tolerance was due to the protection of dark 

reaction enzymes by mannitol. Shen et al. (1997) suggested that the stress-protective role 

of mannitol might be to shield inactivation of thiol-regulated enzymes like 

phosphoribulokinase, thioredoxin, ferrodoxin and glutathione by hydroxyl radicals. 

Mannitol biosynthesis is thought to be an important nonenzymatic pathway to scavenge 

excess free radicals.

ROS formation and regulation is a complex cellular event and oxidative damage is often 

associated with plant stress. Abiotic stress conditions are exacerbated by the effect of 

ROS accumulation (Foyer et al., 1997; Smirnoff, 1993). Drought stress results in

inhibition of photosynthesis, thus leading to production of ROS (Smirnoff, 1998). Several 

studies have reported induction of oxidative stress during water deficient conditions 

(Sgherri et al., 1995; Loggini et al., 1999; Boo and Jung, 1999). Lipid peroxidation, a 
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commonly used indicator of oxidative stress increases in various tissues during drought 

(Moran et al., 1994; Gogorcema et al., 1995; Iturbe-Ormaetxe et al., 1998). Most of the 

above damage to cellular machinery is attributed to the activity of the hydroxyl radical. 

Membrane systems of the cells suffer extensive damage through the process of lipid 

peroxidation. Lipid peroxidation occurs due to the hydrogen abstraction reaction from the 

methylene (-CH2-) group resulting in formation of the carbon radical. The reaction of the 

carbon radical with oxygen gives rise to a peroxy radical, which in turn can attack a lipid 

molecule and abstract a hydrogen atom thereby starting a chain reaction. Studies 

conducted in vitro have shown that lipid peroxidation increases in the presence of iron 

and copper salts suggesting the role of the hydroxyl radical.

Molecular Characterization of the mtlD Gene:

Estimation of transgene copy number:

Development of transgenic lines with genes of economic importance opens new 

possibilities for their utilization. Plant breeders can use the transgenic material to move 

the gene of interest to commercial varieties. For this purpose, the transgene must be 

integrated into the host genome and must be inherited in a stable manner. Direct DNA 

delivery methods like particle bombardment, often result in complex patterns of 

transgene integration along with multiple copy number (Kohli et al., 1998; Srivastava et 

al., 1996) affecting the inheritance and the expression of the transgene. Less than 20% of 

the transgenic events generated by direct delivery methods display low copy number. 

Transgenic plants with multiple copy number are more likely to exhibit transgene 
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silencing (Cluster et al., 1996; Iyer et al., 2000). Similar observations were made by 

Bourden et al. (2002) wherein the high luciferase activity of the transgene was not 

maintained in subsequent generations of wheat. The site of integration in the host genome 

(Iglesias et al., 1997) and the configuration (copy number and arrangement) of the 

integrated transgene contribute to silencing. Configuration of the transgene results in 

silencing at the transcriptional (Ye and Singer, 1996) and post-transcriptional level 

(Elmayan and Vaucheret, 1996). Transgenic pathogenesis-related (PR) proteins 

introduced by particle bombardment showed expression in T0 but were silenced in T1 and 

T2 generations (Anand et al., 2003). The suitability of transgenic material for successful 

breeding programs can be evaluated by estimating the transgene copy number as a first 

step. 

Southern blot analysis is the traditional method for copy number estimation. Southern 

blot experiments done on the T0 lines of wheat in our experiments have shown copy 

numbers of mtlD and bar genes ranging from five to more than ten per haploid genome 

(Abebe et al., 2003). In recent years, quantitative real-time PCR (qRT-PCR) has emerged 

as a robust and accurate method for estimating transgene copy number (Ingham et al., 

2001; Schmidt and Parrot, 2001; Song et al., 2002). qRT-PCR relies on the ability to 

progressively monitor fluorescence emitted from specific ds-DNA binding dyes or 

fluorophore labeled probes that hybridize with target sequences during the exponential 

phase of the PCR reaction (Chiang et al., 1996). Traditional PCR depends on end point 

quantitation which has certain limitations like reagent limitation at later stages, inhibitors, 

pyrophosphate accumulation, and reduced activity of Taq polymerase. The above 
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limitations are overcome in the qRT-PCR by collecting data during the exponential phase 

(Ginzinger, 2002). The number of cycles required to generate enough fluorescent signal 

to cross the threshold level is called the threshold cycle (Ct). These Ct values are 

proportional to the amount of starting template and serve as the basis for calculating copy 

number.

Relative quantification and absolute quantification are the two methods available for 

copy number estimation. The absolute method utilizes known concentrations of the 

plasmid containing the transgene and its dilution series to come up with the standard 

curve. This standard curve is used to estimate the copy numbers in the samples (Schmidt 

and Parrot, 2001). The relative quantification method utilizes an endogenous reference 

gene whose copy number is known to estimate the transgene copy number (Ingham et al., 

2001, Li et al., 2004, Weng et al., 2004). The relative method is more popular because of 

the availability of well characterized reference genes as well as being less prone to errors 

than the standard curve method (Ginzinger, 2002). The copy numbers estimated by qRT-

PCR have shown very high correlation with the results of Southern blot results and hence 

stands validated (Ingham et al., 2001; Song et al., 2002; Li et al., 2004).

Quantification of transgenic expression:

Northern blots and RNA protection assays have been used for quantification of RNA 

expression but are highly labor intensive. Quantitative RT-PCR has recently emerged as 

the technique of choice for studying mRNA expression levels (Ginzinger, 2002; Wong 

and Medrano, 2005). Availability of good fluorescent detection chemistries and 
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sophisticated instruments that allow us to follow the reaction in real time has made the 

quantification more precise, high throughput and less labor intensive. The expression 

level of the transgene may vary within different transgenic plant lines due to position 

effect and copy number (Bajaj et al., 1999). Since transgene silencing is commonly 

noticed in plants with high copy number, it is necessary to monitor the expression of the 

transgene beyond the T0 generation. 

Relative quantification of transgene expression utilizes an endogenous reference gene 

(housekeeping gene) for normalization of gene expression. It is necessary to select a 

reference gene that is constitutively expressed and does not fluctuate under stress 

conditions for normalizing the data. There are several genes available for use as reference 

genes such as β-, γ-actins, albumin, α-,β-tubulins, cyclophilin, G3PDH, L32 ribisomal 

protein etc. (Thellin et al., 1999). Recent studies have suggested that each of the reference 

genes mentioned above may vary in expression levels under different conditions (Thellin

et al., 1999). So, it is necessary to screen several housekeeping genes and select the one 

which shows the least variation or use the geometric mean of several housekeeping genes 

for normalization (Vandesompele et al., 2002).  

Objectives:

Transgenic wheat lines with the mtlD gene encoding for mannitol-1-phosphate 

dehydrogenase were evaluated at the biochemical, physiological, and molecular levels for 

responses to water deficit stress. Several protective responses are thought to be provided
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by mannitol such as osmoregulation, osmoprotection and ROS scavenging at the cellular, 

tissue and whole plant levels. Wheat transformed with the bar selective marker gene (-

mtlD) and wild type bobwhite were used as controls during the experiment. The T3 and 

T4 progenies from four transformation events were used for this research.

The specific objectives were:

1. To evaluate the physiological effects of mannitol accumulation in transgenic 

wheat under water deficit stress and non-stress conditions.

2. To estimate the levels of sugar and sugar alcohol accumulation in leaf tissue of 

the transgenic plants in response to water deficit stress.

3. To study the role of mannitol in oxidative stress protection of the transgenic 

wheat under water deficit stress.

4. To quantify mtlD gene expres sion and copy number in transgenic wheat using 

quantitative real-time PCR (qRT-PCR).
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CHAPTER III

METHODOLOGY
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Plant materials:

Seeds were surface sterilized using a modified procedure described previously by 

Speakman and Kruger (1983). Seeds were surface sterilized in 1% silver nitrate (Sigma, 

St. Louis) in a sonicator for 30 s. The seeds were immediately transferred to deionized 

water and rinsed thoroughly for 5 min by replacing the water at least three times. Seeds 

were placed on autoclaved filter paper saturated with 100 mg Kg-1 piperacillin in 1% 

DMSO solution. The petri dishes were wrapped in aluminium foil to keep the seeds in 

darkness. The seeds were allowed to imbibe the solution at room temperature for 24 h. 

Seeds were then moved to 4°C for 48 h to overcome seed dormancy. The seeds were next

soaked in 0.4 % Terrachlor 75% WP (Pentachloronitrobenzene) (Uni Royal Chemical 

Company, CT, USA) and allowed to germinate. After 4 d, 5-8 cm long seedlings were 

planted in conetainers in the growth chamber. The seedlings were screened for the 

transgene by PCR at the two to three leaf stage and positive plants were transplanted into 

pots approximately 2 wk later.

Polymerase chain reaction (PCR):

Multiplex PCR analysis was performed on the leaf tissue when the plants were at the two 

to three leaf stage to confirm the presence of the bar and mtlD genes in the transgenic 

wheat plants. The DNA extraction and PCR analysis for the screening of plants was done 

using the REDExtract-N-Amp plant PCR kit (Sigma, St. Louis). DNA was extracted 

from ~50 mg leaf tissue by incubation in 100 µl of extraction buffer for 10 min at 95°C 
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and adding an equal quantity of dilution buffer. This extract was used as template for 

PCR reactions. The sequences for the mtlD primers were 5’-CGG GTA TCC AAC TGA 

CGT TT-3’; 5’-CCG TGT TCA GGG TGA AGA GT-3’, and the sequence for the bar 

gene primers were 5’-CAT CGA GAC AAG CAC GGT CAA CTT C-3’; 5’-CTC TTG 

AAG CCC TGT GCC TCC AG-3’. The sizes of the amplified fragments were 600 bp for 

mtlD and 300 bp for the bar gene. The master mix for PCR was provided with the Sigma 

kit. The initial denaturation step for 3 min at 95°C was followed by repeated cycles of 

95°C for 1 min, 52°C for 1 min and 72°C for 1 min. A final extension was done at 72°C 

for 5 min. The final product was separated electrophoretically on a 1.2% agarose gel.

Southern blot analysis:

Genomic DNA was extracted from leaf tissue using DNeasy plant mini kit (Qiagen Inc., 

Valencia, CA). Ten micrograms of DNA for each sample was digested with EcoRI, and 

BamHI in separate centrifuge tubes overnight at 37°C. Later the digested DNA was 

precipitated in phenol:chloroform and resuspended in 20 µl sterile water. The digested 

and concentrated DNA samples were loaded into a 0.8% agarose gel and electrophoresed 

for 14 h at 30 volts. The DNA was depurinated by incubating the gel in 0.25 M HCl for 5 

min and rinsed in sterile water. The gel was placed in denaturing buffer on a rotary 

shaker for 30 min and rinsed in sterile water. Then the gel was placed in neutralization 

solution for 15 min. The DNA was transferred from the gel to HybondN+ nylon 

membrane (Amersham LifeSciences, Arlington Heights, IL) by upward capillary transfer 

in 20X SSC by leaving it overnight. The membrane was briefly rinsed in 2X SSC to 

remove any agarose sticking to it and the DNA was fixed to the membrane by UV 



30

crosslinking. The probe was a 600 bp long PCR product of the mtlD gene labeled with 

α[32P]-dCTP using the RediPrime labeling systen (Invitrogen, Carlsbad, CA). The probe 

was hybridized in a cylindrical glass container in a rotisserie overnight. The membrane 

was rinsed in different concentrations of 2X SSC/SDS solutions to the required level of 

stringency to remove any non-specific radioactivity. The membrane was 

autoradiographed for one to two days on a photographic film at –80°C. 

 

Objective 1: To evaluate the physiological effects of mannitol accumulation in 

transgenic wheat under water deficit stress and nonstress conditions.

A thorough study of several physiological parameters thought to be influenced by 

mannitol accumulation in the transgenic plants was carried out. Water deficit stress was 

imposed on the experimental plants with some modifications to the method used in the 

study by Abebe et al. (2003). Time domain reflectometry (TDR) was used to assess the 

volumetric water content (VWC) of the soil.  Plants were grown in pots in a greenhouse 

at 22°C/ 18°C, day night temperatures with a 14 hour photoperiod. The pots were 

22.9x21.6x17.8 cm in size with a capacity of 7.8 L. The pots were filled with Redi-earth 

plug and seedling mix (Sun-Gro Horticulture, Bellevue, WA) and fertilized with Peters 

Professional 20:20:20 water soluble fertilizer and Osmocote 14:14:14 slow release 

fertilizer (The Scotts Company, Marysville, OH). Peters Professional 20:20:20 water 

soluble fertilizer was used during the first 2 wk after transplanting and discontinued a few 

days after application of Osmocote 14:14:14 slow release fertilizer. According to the 

manufacturer the slow release fertilizer will supply nutrients to the plants for 3 mo.
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Water Potential Parameters: 

Water potential is widely accepted as a fundamental measure of a plant’s water status and 

a sensitive indicator of plant water stress. Solute potential and turgor potential are the two 

major components of water potential. Water potentials and solute potentials were 

measured in the leaf tissues using the HR-33T dew point microvoltmeter and C-30 

psychrometers (Wescor Inc., Logan, UT). Water potentials and osmotic potentials were 

measured using the dew point mode because it is less affected by changes in ambient 

temperatures than the psychrometric mode. Standard curves were developed for all the 

psychrometers using different concentrations of NaCl. Water potentials for NaCl 

solutions ranging from 0.1-0.6 molal concentrations at 30°C (Lang et al., 1967) were used 

for the standard curves.

Water potentials and osmotic potentials were measured at two different time points, i.e. 

15 days and 30 days after the imposition of water stress. Measurements were taken from 

the base and the middle portion of the youngest leaf other than the flag leaf. A leaf 

fragment approximately 5 cm long was loaded into the psychrometer chamber and 

allowed to equilibrate at 30°C for 1.5 h. Then, the psychrometers were connected to the 

HR33-T dew point microvoltmeter and the voltage generated due to the cooling of the 

thermocouple was measured. For determining the osmotic potentials the psychrometers 

were frozen in liquid nitrogen for 15 min and thawed to room temperature before 

measuring the voltage again. Freezing the samples in liquid nitrogen results in the 

breakdown of cellular membranes causing loss of turgor and therefore allowing us to 
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determine the osmotic potentials. The microvolt measurements were converted to water 

potentials and osmotic potentials (MPa) using the standard curves and the equation 

Y= mx+b     

where Y is the water/osmotic potential in MPa, m is the slope, b is the Y-intercept and x 

is the microvolt values measured on the microvoltmeter.

Osmotic adjustment (OA):

OA involves the net accumulation of solutes in a cell measured at full turgidity in 

response to a fall in the water potential of the cell’s environment. As a consequence of 

this net accumulation, the osmotic potential of the cell is lowered, which attracts water 

into the cell and tends to maintain turgor (Blum et al., 1996). OA was calculated as the 

difference in measured osmotic potential at full turgor between nonstressed and stressed 

leaves after rehydration (Blum, 1989; Chandrababu et al., 1999). Leaf fragments of 

approximately 5 cm were floated on distilled water in petri dishes for 2 h immediately 

after harvest. Later the leaf tissue was blotted dry, loaded into the psychrometer chamber 

and frozen in liquid nitrogen for 15 min to breakdown cellular membranes. The leaf 

chamber was allowed to equilibrate for 1.5 h at 30°C before the microvolt measurements 

were taken with an HR33-T dewpoint microvoltmeter. The osmotic potentials were 

calculated from the microvolt measurements using the standard curves for the individual 

psychrometer. Data were collected from three replications for each treatment for the 

water potentials, osmotic potentials and OA.
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Relative water content: 

Relative water content (RWC) of the leaf was measured following the procedure 

modified from Sharp et al. (1990). Approximately 2 cm long leaf segments were used for 

this experiment. Leaf tissue was transported on ice in sealed plastic bags to the laboratory 

and the fresh weights taken immediately. Then the leaf tissue was transferred to 

centrifuge tubes filled with cold deionized water and placed on ice for 4 h. Later the leaf 

tissue was removed, blotted with tissue paper to remove excess water from the surface 

and the turgid fresh weight was taken. The leaf tissue was next placed in different 

centrifuge tubes and dried in a hot air oven at 70°C for 48 hours and the dry weight taken. 

The RWC was calculated by using the formula:

RWC= (FW-DW)/(TFW-DW)*100

The RWC is expressed as a percentage at a given time of the water content at full turgor. 

RWC data was collected from three replications for each treatment and collected along 

with OA samples.

Gas exchange measurements:

CO2 assimilation rate or net photosynthesis (A), stomatal conductance and transpiration 

rate were measured using a LI-6400 portable photosynthesis system (LI-COR Inc, 

Lincoln, NE).  The LI-6400 is an open system, wherein the CO2 concentration, humidity 

and temperatures can be conditioned. The LI-6400 mixes CO2 with the air going into the 

chamber so that it is at a set CO2 concentration and measures the CO2 coming out of the 
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chamber and then calculates the A from the difference in the two CO2 concentrations and 

the air flow rate. The CO2 concentrations in the reference and the sample chambers are 

measured by infrared gas analyzers present in the sensor head. A humidity sensor in the 

sensor head is used to measure the concentration of H2O. Light intensity of 1000 µmol m-

1 s-1, 380 µmol mol-1 of CO2, 50% relative humidity and 22°C temperature were 

maintained in the chamber.

Net photosynthesis (A), transpiration rate, and stomatal conductance were measured at 

weekly intervals after the imposition of water stress. Measurements were taken at noon 

three times (7, 14, 21 days after the beginning of stress) in the T3 and 4 times (7, 14, 21, 

28 days after the beginning of stress) in the T4 generation. Water stress was imposed on 

the plants starting from stage 5 on the Feeke’s scale. Data shown is from four replications 

for each treatment.

Chlorophyll fluorescence: 

Chlorophyll fluorescence at room temperature is almost exclusively emitted by PS II. As 

an indicator of stress, fluorescence measurements are appropriate because PS II is one of 

the most susceptible processes to stress. Furthermore, chlorophyll fluorescence can be 

taken as an indicator of oxidative stress as free radicals are known to cause as well as 

inhibit repair of photo damage to PS II (Nishiyama et al., 2000). An OS-500 modulated 

fluorometer (Opti-Sciences, Haverhill, MA) was used to measure the fluorescence 

parameters (Fv/Fm) at 14 and 28 days after stress. The leaves were dark adapted with 
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dark adaption cuvettes for approximately 30 min before the fluorescence was measured. 

Fo, Fm, Fv, and the ratio Fv/Fm were collected. 

Phenotype measurements: 

Height (cm) and number of effective tillers per plant were taken from all the treatments to 

verify the effect of mannitol accumulation on the phenotype of the transgenic plants. 

Fresh and dry weights of the above ground biomass were measured on the T4 plants.

Objective 2: To estimate the levels of sugar and sugar alcohol accumulation in leaf tissue

of transgenic plants in response to water deficit stress.

Sugar alcohols (mannitol, and sorbitol) and sugars (fructose, glucose, and sucrose) in the 

leaf tissue were determined following the method described by Adams et al. (1993). 

Sugar and sugar alcohol contents were estimated in leaf tissue both under stress and 

nonstress conditions. Two hundred milligrams of tissue were frozen in liquid nitrogen 

and ground to a fine powder using a mortar and pestle. Two volumes of 

ethanol/chloroform/water (12:5:3) were added to the powder and mixed thoroughly by 

vortexing. An equal volume of water was added and centrifuged at 10000xg for 5 min. 

The upper aqueous phase was transferred to a new tube and the pellet reextracted twice 

with water at 60°C for 30 min. Then the extracts were pooled and dried in a speedvac for 

approximately 4 h. The pellet was resuspended in 300 µl water and passed through a 

preconditioned C18 solid phase extraction column (Alltech Associates, Inc., IL) to remove 

hydrophobic substances. Later 700 µl of water was passed through the column to collect 
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the whole sample. The sample was then diluted five-fold for carbohydrate determination. 

A high performance anion exchange chromatography (HPAE) system coupled with a 

pulsed amperometric detector (PAD) was used for carbohydrate separation. A CarboPac 

PA1 ion exchange column (Dionex Corporation, Sunnyvale, CA) was employed in the 

experiment. Fifty microliters of the diluted sample was injected into the sample loop 

connected to the ion exchange column that was maintained at room temperature. Samples 

were separated isocratically in 40 mM degassed NaOH at a 2.0 ml min-1 flow rate. 

Authentic carbohydrate reagents (sorbitol, mannitol, glucose, fructose and sucrose) 

purchased from Sigma (St. Louis, MO) were used as standards. The data shown is the 

average of two replicates. The carbohydrate content of the unknown samples was 

determined based on the peak areas produced by the known concentrations of the 

standards.

Objective 3: To study the role of mannitol in oxidative stress protection of the transgenic 

wheat under water deficit stress.

Lipid peroxidation assay: 

Lipid peroxidation is considered to be the most important mechanism of cellular 

membrane deterioration and is induced by reactive oxygen species. The level of lipid 

peroxidation in the leaf tissue was measured in terms of malondialdehyde (MDA) content 

determined by the thiobarbituric acid (TBA) reaction according to Dhindsa et al. (1981). 

Leaf sample (250 mg) was homogenized in 5 ml 0.1% trichloroacetic acid (TCA) and 

centrifuged at 10000x g for 5 min. One milliliter of the supernatant was aliquoted into a 
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fresh tube to which 4 ml of 20% TCA containing 0.5% TBA was added. The mixture was 

heated at 95°C for 30 min and quickly cooled on ice. The samples were centrifuged again 

at 10000x g for 10 min and the absorbance measured at 532 nm. Non-specific absorbance 

measured at 600 nm was subtracted to remove the background. The concentration of the 

MDA in the samples was determined using an extinction coefficient of 155 mM-1 cm-1. 

Chemiluminescence Test for Hydroxyl Radicals:

The ABEL® antioxidant test kit (Knight Scientific Limited, Plymouth, UK) for hydroxyl 

radicals with pholasin was used to measure the antioxidant capacity of plant samples. 

Hydroxyl radicals are generated instantaneously when solution A and solution B are 

mixed. Pholasin, a photoprotein, reacts with reactive oxygen species to emit light 

(Dunstan et al., 2000; Swindle et al., 2002). Mannitol, a known scavenger of hydroxyl 

radicals competes with pholasin for hydroxyl radicals. Leaf extract samples prepared for 

total soluble sugars determination were used for measuring the antioxidant capacity. Five 

microliters of sample, 20 ul of the assay buffer, 50 ul of pholasin, and 100 ul of solution 

A were mixed in a cuvette and loaded into the luminometer. Then 20 ul of solution B was 

added and the luminometer read the peak luminescence (measured as relative light units)

for the next 20 seconds. A no-sample control was run along with the samples to calculate 

the percentage inhibition of luminescence using the formula:

[(Peak, control) – (Peak, sample)] x 100/ (peak, control)
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The antioxidant capacity of the sample is expressed as the percentage inhibition of 

luminescence of pholasin compared to the no-sample control. Mannitol standards 

provided along with the kit was used to derive a standard curve.

Objective 4: To quantify mtlD gene expression and copy number in transgenic wheat 

using quantitative real-time PCR (qRT-PCR).

Determination of Transgene Copy Number:

Relative quantification method was used to determine the copy number of transgenes 

integrated in the wheat genome of the transformed plants. Genomic DNA was extracted 

from the leaf tissue of transgenic plants using the DNeasy plant mini kit (Qiagen Inc., 

Valencia, CA) according to the manufacturer’s instructions. One hundred milligrams of 

leaf tissue were used for the DNA extraction and the pellet was resuspended in 100 µl of 

sterile water. The quality of DNA was ascertained by running the samples on a 1.0% 

agarose gel and quantified using a Nanodrop spectrophotometer for use in further 

downstream applications.

Primers and probes for the mtlD and puroindoline-b (Pin-b) genes to determine transgene 

copy number were designed using the PrimerQuest software (Integrated DNA 

Technologies, Coralville, IA). The primers were obtained from Integrated DNA 

Technologies (Coralville, IA) and the probes from Biosearch Technologies (Novato, 

CA). Both the probes were labeled at the 5’- end with FAM (6-carboxy-fluorescein) as 

the reporter and at the 3’- end with BHQ-1 (Black hole quencher-1) as the quencher. 
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Unlike other quencher molecules, the BHQ does not show native fluorescence, hence 

eliminating background fluorescence. The sequences of the primers and probes are 

provided in the table below:

Target gene Sequences (5’- 3’) Amplicon 
Size (bp)

mtlD Primer1

Primer2

Probe

aaa ggc cat gtg atg aac gc

tcg ctg aag gtt tct acc gt

agc gtg ggt aga aga aca cgt tgg ctt tgt

152

Pin b Primer1

Primer2

Probe

cgt gat gga gcg atg ttt ca

gcg aca ttg tgg tgc tat ct

tga gca tga ggt tcg gga gaa gtg ctg caa

134

IQ supermix (Bio-Rad Laboratories, Hercules, CA), an optimized PCR mastermix was 

used for the real-time PCR. The master mix (Cat No: 170-8860) contained 100 mM KCl, 

40 mM Tris-HCl pH 8.4, 1.6 mM dNTP’s, iTaq DNA polymerase (50 units/ml), 6 mM 

MgCl2, and stabilizers. 

Real-time PCR reactions were performed in 48/96 well plates using the iCycler IQ Real-

time PCR detection system (Bio-Rad Laboratories, Hercules, CA). The mtlD and 

puroindoline-b genes were amplified in separate wells and all the reactions were run in 

triplicate. The total reaction volume was 20 µl. Ten microliters of the IQ supermix was 

added to each reaction along with 250 nano moles of each primer and 125 nano moles of 
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the probe. Since the gene of interest and the endogenous reference genes were amplified 

in separate wells, equal amounts of genomic DNA were added to all the wells after 

spectrometric quantification. Sterile water made up the rest of the reaction volume. The 

PCR reaction was performed as follows: 5 min at 95°C, followed by 40 cycles of 30 sec 

at 95°C and 1 min at 60°C that allowed completion of both the annealing and extension 

steps. Post-run analysis was done according to the manufacturers instructions and run on 

the instrument’s software.

The cycle number at which the amount of amplified target gene reaches a fixed threshold 

is called the threshold cycle (Ct). This value is representative of the starting copy number 

in the original template and is used in the calculation of the number of transgene copies 

per genome. Amplification efficiency of the reaction is the most important consideration 

when using the relative method of quantification. The amplification efficiencies of the 

mtlD and puroindoline-b were determined by using a two fold dilution series of genomic 

DNA samples and a standard curve obtained. Then the copy number of the transgene in 

the samples was calculated using the formula:

X0/R0= 10 [(Ct,x-Ix)/Sx]- [(Ct,r-Ir)/Sr] 

Where Ix and Ir are the intercepts of the standard curves of the gene of interest and the 

reference genes, Sx and Sr are the slopes of the standard curves of the gene of interest 

and the reference genes, and Ct,x and Ct,r are the threshold cycles of the gene of interest 
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and reference genes upon amplification of the samples. The copy number of the gene of 

interest (X0) can be calculated when the copy number of the endogenous reference (R0) is 

known (Weng et al., 2004; Livak and Schmittgen, 2001). 

The puroindoline-b gene, which was used as the endogenous reference in this experiment 

encodes for a protein by the same name affecting grain softness in wheat (Giroux and 

Morris, 1998). Puroindoline-b is located on chromosome 5D, and exists as two copies in 

the hexaploid wheat genome (Gautier et al., 1994; Tranquilli et al., 1999) and was 

previously used to calculate transgene copy number in wheat (Li et al., 2004).

Transgene expression profiling:

Real-Time RT-PCR has emerged as a precise and robust molecular biology technique to 

quantify mRNA expression levels (Ginzinger, 2002). A PCR master mix containing

SYBR Green1 (Molecular Probes, Carlsbad, CA), a dsDNA binding fluorescent dye, was 

used for quantification experiments. Relative quantification of transgene expression was 

studied using the wheat β-actin gene as the endogenous control. 

Total RNA was extracted from the transgenic plants using Fenozol reagent (Active Motif, 

Carlsbad, CA) following the procedure suggested by the manufacturer. Three hundred 

milligrams of leaf tissue was used for the total RNA extraction. RNA pellets were 

resuspended in sterile water and stored at –80°C for further applications. RNA samples 

were run on a 1% agarose gel to ascertain the quality and was quantified using the 

Nanodrop spectrophotometer (Nanodrop Technologies, Wilmimgton, DE).
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Total RNA samples were treated with DNase prior to cDNA synthesis. 

Deoxyribonuclease I, Amplification grade (Invitrogen) was used according to the 

manufacturers instructions to remove all traces of DNA contamination from the total 

RNA samples. SuperScript II reverse transcriptase (Invitrogen) was used for the cDNA 

synthesis and the procedure recommended by the manufacturer was followed. Three 

micrograms of total RNA was added to the 20 µl reverse transcription (RT) reaction for 

all samples. One microliter of RNaseOUT was added to remove RNases from the 

samples. cDNA samples were stored at –20°C and subsequently used in the real-time 

PCR.

Relative quantification of gene expression was performed with β-actin of wheat as the 

endogenous reference to normalize the gene expression data. Real-time PCR was 

performed on an iCycler IQ real-time detection system (Bio-Rad Laboratories, Hercules, 

CA) and the IQ SybrgreenPCR master mix supplied by the same manufacturer was used. 

The primers were designed using the PrimerQuest software and obtained from Integrated 

DNA Technologies (Coralville, IA). The mtlD primers were 5’ -AAA GGC CAT GTG 

ATG AAC GC-3’ and 5’-TCG CTG AAG GTT TCT ACC GT-3’ and the primers used 

for the β-actin gene were 5’-CCT TCC ACA TGC CAT CCT TC-3’ and 5’-TGC TTC 

TCC TTG ATG TCC CT-3’. Standard curves were obtained for both the gene of interest 

and the reference gene using a two- fold dilution series to ascertain the amplification 

efficiencies. The mtlD and the β-actin genes were amplified in separate wells for the 

same samples and compared. The transgene expression was determined using the 

comparative Ct (2-∆∆Ct) method (Livak and Schmittgen, 2001). One of the experimental 
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samples serves as the calibrator and is used to generate the relative expression levels. 

Melt-curve analysis was performed along with every PCR run to make sure that primer 

dimers and other nonspecific products are not contributing to the gene expression. 

Statistical analysis:

The experiment was a completely randomized design with six wheat lines and two 

treatments. The proc glm procedure for one way analysis of variance in SAS (Statistical 

Analysis System, SAS Institute Inc., Cary, NC) was used.
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CHAPTER IV

RESULTS
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Water stress imposition:

Water deficit stress was imposed on experimental plants by withholding water and 

measuring the volumetric water content of the potted soil with TDR. Nonstressed 

treatments had approximately 30% VWC or above whereas the stressed treatments were 

maintained around 10-12% VWC throughout the period of stress (Fig 4.1).

PCR screening for the transgene:

Multiplex PCR analysis was performed on all the plants prior to their use in stress 

experiments to test for the presence of the bar and mtlD genes  (Fig 4.2). Plants that were 

positive for the bar and mtlD genes were selected for further experiments. The amplicon 

sizes were approximately 300 bp and 600 bp for the bar gene and the mtlD gene 

respectively. All plants negative for the transgenes were discarded.

Southern analysis: 

Southern blot analysis was performed on the transgenic plants after PCR screening. 

Pooled DNA from several plants of the T3 generation was digested using EcoR I, and 

BamH I restriction endonucleases (New England Biolabs, Ipswich, MA). Southern 

analysis confirmed the inheritance of the mtlD gene into the T3 generation in all the four 

lines used in the experiments (Fig 4.3).  

 

Growth parameters: Fresh weights and dry weights of plants were determined in T4 at 30 

d after stress (Table 4.1). There was no difference in either fresh weights or dry weights 

among all the lines in the stressed treatment. Significant differences among lines were

observed in the nonstressed treatment. TA2-118 and TA5-108 recorded the highest and 
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lowest biomass, respectively, in the unstressed treatment. Plant height and number of 

effective tillers (tillers with a spike) per plant were collected at 30 d after stress (Table 

4.2) in T4. TA2-118 and TA2-110 were consistently taller than other lines. There was no 

difference among lines in the number of tillers.

Water relations:

There was no difference in RWC among the lines under unstressed conditions in both the 

generations (Tables 4.3 and 4.4). In the stress treatment, RWC showed a decrease in all 

the lines. TA2-110 and TA2-118 showed significantly higher RWC than other lines in T3. 

A similar trend continued in T4 but the difference was not significant. 

There was no difference in Ψw among different lines in nonstressed treatment in both the 

generations (Tables 4.5 and 4.6). Water stress resulted in decrease in Ψw in all the lines 

and there was no pattern among the lines. All the wheat lines adjusted osmotically at both 

time points. Wheat lines showed higher OA values at 15 d after stress compared to 30 d

after stress. 

Gas exchange parameters:

Net photosynthesis rates, transpiration rates and stomatal conductance were measured at 

7, 14, 21 days in T3 and 7, 14, 21, and 28 days in T4 after stress imposition (Figs 4.4 to 

4.9). In both the generations transgenic plants showed higher net photosynthesis rates 

during the last time point. Transgenic lines showed higher transpiration rates in general 

but this was not significant at most time points. There was no difference in stomatal 

conductance in both the generations under nonstressed conditions. There were significant 



47

differences among lines in the stressed treatment in both generations but there was no 

pattern.

Chlorophyll fluorescence:

Fv/Fm measurements were measured at 14 and 28 d after stress imposition in both 

generations (Tables 4.7 and 4.8). No difference among lines or between treatments was 

noticed in the Fv/Fm data.

Lipid peroxidation under water deficit stress:

Higher levels of MDA were observed in the stressed plants as compared to the well 

watered plants (Tables 4.9 and 4.10). Data collected 30 d after stress imposition showed 

that stressed plants accumulated three times higher MDA than well watered plants in both 

T3 and T4 generations. Among stressed plants, transgenic lines TA5-104 and TA5-108 

showed consistently lower MDA content compared to TA2-110, TA2-118 and the 

controls. The data were statistically significant in the T3 but not in the T4 generation.

Antioxidant capacity of leaf extracts:

Leaf extracts prepared for the determination of carbohydrates were used to determine the 

antioxidant capacity. Transgenic line TA2-110 and TA2-118 showed higher capacity to 

inhibit the luminescence of pholasin followed by TA5-104 and TA5-108 and controls. 

The inhibition of luminescence was significantly higher in the TA2 lines in both the 

generations (Tables 4.11 and 4.12).
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Carbohydrate analysis:

Water deficit stress increased the concentrations of soluble carbohydrates in both the

control and transgenic lines. Sucrose and glucose contributed to most of the increase 

among sugars in response to water deficit stress. Mannitol was detected in both the well 

watered and stressed transgenic plants at both 15 and 30 d after stress imposition except 

in two instances. The T4 of TA2-118 at 15 DAS and TA5-104 at 30 DAS did not show 

any mannitol. Furthermore mannitol did not show a consistent increase due to water 

deficit stress. The increase in total soluble carbohydrates due to water stress ranged from 

31-48% in T3 and 30-40% in T4 generations. There was no difference in the total soluble 

carbohydrates between 15 DAS and 30 DAS time points and between transgenic and 

control lines (Tables 4.13 to 4.16).

Transgene expression:

Ubi-1, the maize Ubiquitin promoter was used in the construct along with the mtlD gene. 

Since it is a constitutive promoter (Christensen and Quail, 1996), gene expression was

observed in both stressed and nonstressed treatments, but stress resulted in an increased 

expression of the mtlD gen e. The cytoplasmic lines (TA2-110, TA2-118) showed higher 

expression levels under stress than the chloroplastic lines (TA5-104, TA5-108). A 

general decrease in mtlD expression level was noticed from T3 to T4 generation across all 

the treatments. Expression was completely absent in two treatments of T4 plants at 30 d

after stress (Figs 4.10 and 4.11). 
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Transgene copy number:

The transgene copy number was estimated according to Weng et al. (2004). 

Puroindoline-b, was used as the endogenous reference gene because it exists as a single 

copy per haploid genome in wheat (Gautier et al., 1994). All the transgenic lines showed 

multiple copy number integration. TA2 lines had lower copy number than TA5 lines. 

TA2-110 (eight copies) and TA5-104 (14 copies) had the lowest and highest number of 

copies respectively per haploid genome (Fig 4.12). 
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CHAPTER V

DISCUSSION
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Sugars are the major organic osmolytes that accumulate during drought stress in wheat 

(Munns and Weir, 1981). Several researchers have reported an increase in total sugar 

content in wheat due to drought stress (Kerepesi and Galiba, 2000; Abebe et al., 2003; 

and Nayyar and Walia, 2004), however Hanson and Hitz (1982) reported a decrease in 

total sugars. Our data demonstrate that water deficit stress increased total soluble sugar 

content in all the lines. Mannitol accumulation did not necessarily increase with stress. 

Abebe et al. (2003) reported that water stress increased the mannitol content by 150% in 

the leaves, but that data was obtained from the line TA2-115 and at only one time point 

(30 DAS). Furthermore, we did not see any reduction in sucrose content due to mannitol 

accumulation in either treatment as reported by Abebe et al. (2003). The mannitol content 

in the T3 and T4 plants in our experiment ranged from 0.10 to 0.40 µmol g-1 fwt which 

was far less than reported in tobacco (Tarczynski et al., 1993; Shen et al., 1997) and 

wheat (Abebe et al. 2003) where the mannitol in T2 plants ranged from 0.6 to 2.0 µmol g-

1 fwt. Data shows a decrease in mannitol accumulation over three generations and entire 

absence in two treatments in the T4. Either there was no mannitol accumulation at that 

time point or it was below the detection limit of the HPAE chromatography. 

Both shoot fresh weight and dry weight decreased in stressed treatments, but no 

difference in biomass accumulation was observed between the controls and transgenic 

lines as reported by Abebe et al. (2003). Mannitol accumulation did not show any effect 

on biomass, plant height and number of tillers under stressed conditions (Tables: 4.1 and 

4.2). TA2-110 and TA2-118 were consistently taller than the controls and the TA5 lines 

under nonstressed conditions but the link to mannitol is not clear. Karakas et al. (1997) 
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reported slower growth rates in transgenic tobacco with mtlD than the control, but we did 

not notice any such differences in our experiments.

In monocot leaves the youngest cells are at the base of the leaf and the oldest cells are at 

the tip (Langer, 1972). Abebe et al. (2003) suggested the possibility of osmotic effects of 

mannitol in the growing regions of the transgenic plants during stress. Hence we used the 

base of the youngest leaf of the plant other than the flag leaf for measuring the Ψw and 

its components at 15 and 30 d after stress imposition.  Ψw is a good indicator of plant 

health because Ψw and its components influence cell growth, photosynthesis and crop 

productivity (Pardossi et al., 1998). Our results did not show any difference in Ψw and 

OA between the controls and the transgenic lines. Under stress, plants adjusted better 

osmotically at earlier stage (15 DAS) than the later (30 DAS), but the amount of mannitol 

present in the tissue was too low to make a significant contribution to OA (Tarczynski et 

al., 1993; Karakas et al., 1997; Abebe et al., 2003). Though some treatments showed 

differences in Ψw, there was no difference in the Ψs between these treatments suggesting 

the differences were not due to more solute accumulation. 

RWC expresses water content in percentage at a given time as related to water content at 

full turgor. All lines showed an expected decrease in RWC due to water stress. 

Transgenic lines, TA2-110, and TA2-118 showed higher RWC than other lines in T3 and 

T4, but the difference was significant in T3 only. The above lines were taller than the rest 

of the lines and showed consistently greater biomass accumulation even though the 

difference was not significant on a dry weight basis. 
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Water is one of the most important limiting factors of photosynthesis in higher plants 

(Nilsen and Orcutt, 1996) and prolonged water deficit affects virtually all metabolic 

processes including the plant’s capacity to fix carbon. Our data shows that the transgenic 

plants have higher net photosynthesis rates than the controls. Though the differences 

were not significant throughout the stress period, the controls had lower net 

photosynthesis rates at the last time point in both the generations. The initial decrease in 

photosynthesis can be attributed to stomatal closure but continued stress reduces 

photosynthesis due to nonstomatal effects (Reddy et al., 2004). The nonstomatal effects 

include loss of rubisco activity (Medrano et al., 1997), RUBP regeneration (Lawlor, 

2002) and loss of activity of thiol regulated enzymes of the Calvin cycle like 

phosphoribulokinase (PRK) (Shen et al., 1997). Presence of mannitol in the chloroplasts 

during stress in tobacco prevented the loss of activity of PRK (Shen et al., 1997). The 

higher net photosynthesis rates observed in the transgenic plants may be due to the 

presence of mannitol in the cytosol and chloroplasts protecting enzyme activities and 

stabilizing macromolecules (Stoop et al., 1996; Shen et al., 1997). Water stress reduced 

the stomatal conductance and transpiration rate in all the lines. Stomatal conductance 

varied among the lines during stress but the differences were not significant. 

Transpiration rates followed a similar trend as net photosynthesis with the transgenic 

plants showing higher rates even as stress progressed. The difference was significant in 

T4 at later stages.

Though prolonged water deficit stress inhibits photosynthesis and other metabolic 

processes, it did not have any influence on Fv/Fm. No change in the dark adapted 
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chlorophyll fluorescence due to water stress suggests that the maximum photochemistry 

of photosystem II is very resistant to drought (Cornic and Massacci, 1996) especially 

under low light intensities (~500 µmol m-2 s-1) that prevailed in the greenhouse.

Measuring Fv/Fm under high light intensities (~1500 µmol m-2 s-1 or above) and water 

deficit stress can help to understand the role of mannitol accumulation in the protection of 

the electron transport machinery. 

ROS are formed in plants as a response to environmental stimuli and as byproducts of 

several metabolic pathways. However under stress conditions their formation is 

exacerbated resulting in oxidative stress (Mundree et al., 2002). Among compatible 

solutes mannitol, sorbitol, and inositol were found to be effective in scavenging hydroxyl 

radicals (Smirnoff and Cumbes, 1989). Formation of superoxide and H2O2 will finally 

lead to hydroxyl radical production by the Fenton reaction or the Haber-Weiss reaction in 

the presence of free metal ions (Hancock et al., 2001). The hydroxyl radical is the most 

reactive of all ROS (Halliwell and Gutteridge, 1990). In our experiment hydroxyl radicals 

were generated in vitro and their reaction with a photoprotein (Pholasin) was measured in 

the presence of leaf extracts as percentage inhibition of luminescence. Transgenic plants 

showed greater inhibition of luminescence than controls and the TA2 lines predictably 

showed the greatest inhibition because of their higher mannitol contents in the leaf 

extracts. The leaf extracts used in this experiment were prepared for carbohydrate 

analysis by HPAE chromatography and hence can be assumed to be free of most 

compounds that react with hydroxyl radicals other than the carbohydrates. There was a 

significant difference between the transgenic and control plants under both stressed and 
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nonstressed treatments. The in vitro radical generation system was tested by using 

mannitol standards and developing a standard curve. The results Tables: 4.9, 4.10, 4.11 

and 4.12) demonstrate that the presence of mannitol in the cells in fact reduce the adverse 

effect of hydroxyl radicals. Along with mannitol, all other polyols and sugars are known 

to react with hydroxyl radicals though the reaction rate constants differ (Buxton et al. 

1988, Smirnoff and Cumbes, 1989). So, it can be assumed that the additional amount of 

mannitol acts as an added advantage to the plants when the levels of other sugars and 

sugar alcohols are not affected. 

Membranes in the cells are the most susceptible parts to damage by hydroxyl radicals due 

to the presence of large amounts of poly unsaturated fatty acids and the thylakoids are the 

major centers of ROS production (Wise, 1995; Grassman et al., 2002). MDA levels 

estimated in the leaf tissues after 30 days of stress showed that the transgenic lines had 

lower levels of MDA accumulation than the controls. The lowest levels of MDA were 

seen in the TA5 lines where mannitol biosynthesis was targeted to the chloroplasts. The 

results are in agreement with those of Shen et al. (1997) who reported that chloroplast 

localization of mannitol in tobacco protects the plant from oxidative stress. Samuni et al. 

(1983) reported that hydroxyl radicals react immediately at the site of formation with 

little or no selectivity. Even though the amount of mannitol in chloroplast lines was lower 

than that of the cytosol lines, it conferred greater protection to plants from lipid 

peroxidation suggesting that location is more important than amount. The reaction 

products of mannitol and hydroxyl radical are not known, but hydroxyl radicals react 

with alcohols by abstracting hydrogen and forming water (Baker and Orlandi, 1999). Hu 
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et al. (1997) reported that boron forms complexes with mannitol and other polyols which 

helps it in phloem translocation. Since the formation of hydroxyl radicals by Fenton and 

Haber-Weiss reactions occur in the presence of transition metal ions like Fe+2 (Halliwell 

and Gutteridge, 1990), there is also a possibility that mannitol reduces hydroxyl radical 

formation by binding the metal ions instead of scavenging the radical itself. 

Shen et al. (1997) demonstrated that mannitol in the chloroplasts protects tobacco from 

oxidative damage and our results are in agreement with their findings. However, reports 

on lipid peroxidation due to drought stress do not seem to agree. Loggini et al. (1999) did 

not see any increase in lipid peroxides when wheat plants were exposed to drought stress 

whereas Selote et al. (2004) reported that wheat seedlings that were acclimated to drought

showed less lipid peroxides than those that were not acclimated when exposed to severe 

drought stress. Our data shows accumulation of MDA at 30 d of stress in the leaves. 

However the smaller amount of MDA accumulation due to drought stress suggests less 

damage to cell membranes than in the case of senescence (Dhindsa et al., 1981).

An array of antioxidant enzymes and non-enzymatic compounds are activated in the plant 

cells to keep the ROS from causing damage (Apel and Hirt, 2004). The activity of these 

antioxidants depends on the ROS levels and was found to be tightly controlled and 

sometimes compensate for each other (Allen, 1995). A detailed study of the activity of 

common antioxidant enzymes like superoxide dismutase, ascorbate peroxidase and 

catalase in the transgenic plants may provide further information on the utility of 

mannitol as an antioxidant in the plant system.
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Mannitol accumulation in the T3 and T4 generations measured by us was lower than in the 

T2 generation reported by Abebe et al. (2003). Other researchers have reported the loss of 

transgene expression over time due to several reasons (Cluster et al., 1996; Iyer et al., 

2000; Anand et al., 2003). Real-time reverse transcription PCR was used to study the 

mtlD gene expression. The expression was normalized using the β-actin as the reference 

gene with the comparative Ct method (Livak and Schmittgen, 2001). TA2 lines showed 

higher expression levels than the TA5 lines in both T3 and T4 generations, but the 

expression was conspicuously absent in two stressed treatments at 30 d after stress in the 

T4 generation. A general decrease in the level of mtlD expression was observed from the 

T3 to the T4 generation. Since the maize Ubi-1, which is a constitutive promoter, was 

used in the gene constructs used in plant transformation, expression is expected in both 

the treatments. The total absence of gene expression in some treatments in the T4

generation raises the possibility of transgene silencing in later generations as reported by 

Bourden et al. (2002) and Anand et al. (2003). Mannitol accumulation and gene 

expression data presented here could not be compared because the data was collected 

from different sets of plants. 

Direct DNA delivery methods often lead to multiple transgene copy number and complex 

integration patterns in the host genome (Kohli et al., 1998; Srivastava et al., 1999). 

Southern analyses performed by Abebe (2001) revealed the presence of multiple copy 

numbers in the T0 transformants genome. The result from our real time quantitative PCR 

experiments for transgene copy number was in agreement with his findings. In all future 
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experiments the expression of the transgene needs to be confirmed to ensure that the 

plants have mtlD expression.
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Table 4.1: Fresh weight and dry weight of the above ground biomass in T4 at 30 DAS

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Fresh 
wt (g)

42.9±1.1abc 40.6±1.2c 44.5±1.7ab 45.7±1.0a 41.0±1.3bc 40.5±1.0cUnstressed

Dry wt
(g)

8.3±0.1ab 8.1±0.1b 8.6±0.2a 8.6±0.1a 8.1±0.1b 8.1±0.1b

Fresh 
wt (g)

20.4±1.0a 19.5±1.5a 22.4±0.7a 22.6±1.0a 20.9±1.0a 21.8±1.3aStressed

Dry wt
(g)

3.9±0.1a 3.9±0.1a 4.2±0.1a 4.3±0.1a 4.1±0.2a 4.2±0.2a

Means followed by the same letter in a row are not significantly different at p<0.05
Data are means±SE from three replications

Table 4.2: Plant height and number of tillers in T4 at 30 DAS

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Height 
(cm)

59.7±1.9bc 61.7±2.5abc 67.3±1.8ab 69.7±1.3a 60.0±3.2bc 57.3±2.6cUnstressed

No. of 
tillers

5.3±0.3a 6.0±0.6a 5.7±0.3a 5.0±0.6a 5.3±0.3a 6.0±0.6a

Height 
(cm)

42.0±2.3a 41.6±1.5a 45.6±2.3a 46.7±1.5a 42.0±1.7a 42.3±1.8aStressed

No. of 
tillers

3.3±0.3a 2.7±0.3a 3.7±0.3a 3.3±0.4a 3.3±0.3a 3.7±0.3a

Means followed by the same letter in a row are not significantly different at p<0.05
Data are means±SE from three replications 
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Table 4.3: Relative water content (%) of leaf tissue in T3. Data measured on the mid section of the same leaf from which the Ψw data 
were obtained.

Stress level Days 
after 
stress

Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

15 95.2±0.5a 94.7±0.1a 95.1±0.2a 95.5±0.4a 95.2±0.6a 95.6±0.3aUnstressed

30 94.6±0.3a 94.9±0.2a 94.9±0.4a 95.2±0.5a 95.1±0.6a 94.9±0.5a
15 80.4±0.4c 81.8±0.3b 84.0±0.4a 84.3±0.4a 81.8±0.5b 81.9±0.4bStressed

30 79.5±0.3b 79.6±0.4b 83.1±0.2a 83.0±0.3a 80.4±0.5b 80.2±0.5b
Means followed by the same letter in a row are not significantly different at p<0.05
Data are means±SE from three replications

Table 4.4: Relative water content (%) of leaf tissue in T4. Data measured on the mid section of the same leaf from which the Ψw data
were obtained.

Stress level Days 
after 
stress

Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

15 94.2±0.4a 94.3±0.3a 94.2±0.5a 94.4±0.4a 93.8±1.0a 94.1±0.9aUnstressed

30 93.7±0.8a 93.6±0.9a 93.8±0.8a 93.3±0.7a 93.8±0.6a 94.0±0.7a
15 79.5±0.8b 80.4±0.9ab 82.1±0.6a 82.4±0.4a 80.9±0.5ab 81.5±1.1abStressed

30 80.2±0.7b 80.1±0.6b 81.7±0.4ab 82.3±0.5a 82.4±0.4a 82.2±0.6a
Means followed by the same letter in a row are not significantly different at p<0.05
Data are means±SE from three replications 
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Table 4.5: Water potentials (Ψw, MPa) and osmotic adjustment (OA, MPa) in T3. Data measured from basal part of the youngest leaf.

Stress level Days after 
stress

Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

15 -0.65±0.02a -0.62±0.12a -0.61±0.03a -0.58±0.03a -0.62±0.02a -0.59±0.03aUnstressed (Ψw)

30 -0.63±0.04a -0.61±0.03a -0.59±0.02a -0.58±0.02a -0.61 ±0.02a -0.60 ±0.03a

15 -1.93±0.02ab -1.98 ±0.04b -1.96±0.04ab -1.97 ±0.02b -1.98 ±0.04b -1.86 ±0.03aStressed (Ψw)

30 -1.88±0.01a -1.87±0.06a -1.87 ±0.04a -1.89 ±0.02a -1.89 ±0.04a -1.81 ±0.04a

15 0.48 0.50 0.51 0.49 0.46 0.51OA
30 0.23 0.24 0.23 0.19 0.22 0.18

Values of Ψw are means ± SE. OA was calculated as the difference between mean values of Ψs at full turgor in control and stressed 
leaves. Means followed by the same letter in a row are not significantly different at p<0.05
Data are from three replications 
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Table 4.6: Water potentials (Ψw, MPa) and osmotic adjustment (OA, MPa) in T4. Data measured from basal part of the youngest leaf.

Stress level Days after 
stress

Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

15 -0.58  ±0.01a -0.61±0.02ab -0.62±0.01ab -0.61±0.02ab -0.65±0.03b  0.64±0.02abUnstressed (Ψw)

30 -0.58 ±0.02a -0.60 ±0.03a -0.62 ±0.02a -0.59 ±0.02a -0.66±0.03a -0.66±0.04a

15 -1.86±0.03a -1.90 ±0.05a -1.86 ±0.02a -1.86 ±0.02a -1.85 ±0.03a -1.83 ±0.02aStressed (Ψw)

30 -1.81 ±0.03ab -1.87 ±0.02b -1.79 ±0.02a -1.82±0.03ab -1.81 0.03ab -1.80±0.03ab

15 0.52 0.49 0.48 0.53 0.50 0.48OA
30 0.19 0.23 0.20 0.15 0.18 0.21

Values of Ψw are means ± SE. OA was calculated as the difference between mean values of Ψs at full turgor in control and stressed 
leaves. Means followed by the same letter in a row are not significantly different at p<0.05
Data are from three replications 

81



Table 4.7: Chlorophyll fluorescence (Fv/Fm) measured on the flag leaf after 30 min of dark adoption in T3

Values are means±SE from four replications
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Stress level

Days
after
stress Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

14 DAS 0.84±0.004 0.83±0.002 0.83±0.004 0.84±0.002 0.84±0.003 0.82±0.003

Unstressed
28 DAS 0.83±0.005 0.82±0.005 0.82±0.002 0.82±0.004 0.83±0.004 0.82±0.003

14 DAS 0.82±0.003 0.82±0.009 0.82±0.005 0.82±0.007 0.83±0.003 0.82±0.004

Stressed
28 DAS 0.82±0.013 0.81±0.010 0.82±0.001 0.81±0.006 0.82±0.005 0.83±0.007



Table 4.8: Chlorophyll fluorescence (Fv/Fm) measured on the flag leaf after 30 min of dark adoption in T4 

Stress level

Days
After
stress Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

14 DAS 0.82±0.005 0.83±0.003 0.83±0.006 0.84±0.007 0.83±0.003 0.83±0.006

Unstressed
28 DAS 0.82±0.001 0.83±0.001 0.82±0.005 0.83±0.006 0.84±0.001 0.83±0.003

14 DAS 0.82±0.002 0.82±0.003 0.83±0.002 0.83±0.004 0.82±0.006 0.83±0.003

Stressed
28 DAS 0.82±0.001 0.82±0.003 0.81±0.010 0.82±0.005 0.82±0.006 0.83±0.005

Values are means±SE from four replications
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Table 4.9: Malondialdehyde content of the leaf tissue in T3 at 30 DAS (nmol g-1 fwt)

Means followed by the same letter in a row are not significantly different at p<0.05
Data are from three replications

Table 4.10: Malondialdehyde content of the leaf tissue in T4 at 30 DAS (nmol g-1 fwt)

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Unstressed 112.9 ± 4.5a 115.5 ± 7.0a 118.1 ± 8.1a 113.4 ± 6.5a 111.5 ± 2.3a 116.1 ± 5.7a
Stressed 324.2 ± 7.5a 318.1 ± 5.3a 321.7 ± 9.7a 317.6 ± 4.0a 302.7 ± 8.3a 305.8 ± 7.6a

Means followed by the same letter in a row are not significantly different at p<0.05
Data are from three replications

84

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Unstressed 119.9 ±3.2a 120.5 ±4.8a 115.8 ±5.9a 112.6 ±5.9a 108.9 ±5.7a 112.6 ±3.8a
Stressed 321.8 ±8.6a 317.3 ±4.2a 312.0 ±5.1a 304.7 ±4.1a 279.3 ±6.7b 283.9 ±3.8b



Table 4.11: Antioxidant capacity of leaf extracts in T3 at 30 DAS (% inhibition of pholasin luminescence)

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

Unstressed 37.1±1.6d 36.6±1.9d 44.7±0.5ab 45.7±1.1a 41.6±1.1bc 39.5±0.9cd

Stressed 38.5±1.1c 38.7±1.3c 53.1±1.1a 51.8±2.3a 43.4±1.7bc 45.9±1.0b

Means followed by the same letter in a row are not significantly different at p<0.05
Data are from three replications

Table 4.12: Antioxidant capacity of leaf extracts in T4 at 30 DAS (% inhibition of pholasin luminescence)

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108

Unstressed 32.4±1.3b 33.8±2.4b 40.1±1.9a 41.3±1.1a 39.4±1.5a 37.3±1.8ab

Stressed 34.5±0.9c 34.6±2.2c 50.7±0.9a 49.4±2.2a 44.5±0.9b 43.2±1.6b

Means followed by the same letter in a row are not significantly different at p<0.05
Data are from three replications
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Table 4.13: Carbohydrate concentration in leaf tissue in T3 at 15 DAS (µmol g-1 fwt)

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Mannitol 0.00 0.00 0.31 0.25 0.17 0.18
Sucrose 13.06 12.05 12.69 13.04 11.61 12.62Unstressed
TSC 23.65 22.64 23.94 22.05 23.95 24.20
Mannitol 0.00 0.00 0.40 0.25 0.20 0.16
Sucrose 18.68 19.09 21.00 18.29 21.31 20.69Stressed
TSC 30.73 31.07 33.78 28.45 33.56 36.59

Table 4.14: Carbohydrate concentration in leaf tissue in T4 at 15 DAS (µmol g-1 fwt)

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Mannitol 0.00 0.00 0.31 0.20 0.15 0.17
Sucrose 12.97 12.03 12.75 12.92 11.63 12.16Unstressed
TSC 23.20 21.64 23.62 22.93 23.85 23.91
Mannitol 0.00 0.00 0.35 0.00 0.24 0.16
Sucrose 18.56 19.30 18.39 19.45 20.20 19.13Stressed
TSC 31.47 32.59 31.90 32.89 32.73 33.73
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Table 4.15: Carbohydrate concentration in leaf tissue in T3 at 30 DAS (µmol g-1 fwt) 

Table 4.16: Carbohydrate concentration in leaf tissue in T4 at 30 DAS (µmol g-1 fwt)

Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Mannitol 0.00 0.00 0.26 0.25 0.13 0.15
Sucrose 12.90 12.01 12.42 12.79 11.94 12.05Unstressed
TSC 22.85 22.87 24.04 22.97 23.65 23.08
Mannitol 0.00 0.00 0.24 0.25 0.00 0.16
Sucrose 18.50 18.09 19.12 18.88 19.55 19.80Stressed
TSC 29.64 30.80 31.65 30.77 31.25 32.07
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Stress level Bobwhite pAHC20 TA2-110 TA2-118 TA5-104 TA5-108
Mannitol 0.00 0.00 0.27 0.22 0.16 0.16
Sucrose 13.05 12.19 12.55 12.81 11.98 12.07Unstressed
TSC 22.08 22.92 23.09 22.79 23.40 23.20
Mannitol 0.00 0.00 0.26 0.20 0.12 0.10
Sucrose 18.55 18.87 20.10 19.24 20.69 20.43Stressed
TSC 28.94 30.39 33.14 29.95 32.77 34.35
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Fig 4.2: PCR screening of TA2-118 transgenic wheat line for presence of the mtlD
(600 bp) and the bar (300 bp) genes

Fig 4.3: Southern blot analysis for the mtlD  gene in T3 generation. Genomic DNA 
from four transgenic lines, TA2-110, TA2-118, TA5-104, and TA5-108 were 
hybridized with a 600 bp mtlD radiolabelled probe. The probe was prepared by 
PCR amplification of a section of the coding sequence of the mtlD gene

mtlD
bar
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Note: 2-110, 2-118 are transgenic lines with mannitol biosynthesis in cytosol and 5-104, 

5-108 are transgenic lines with mannitol biosynthesis in chloroplasts; ‘s’ denotes the 

stressed treatment. Data are means±SE of three replications.
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Note: 2-110, 2-118 are transgenic lines with mannitol biosynthesis in cytosol and 5-104, 

5-108 are transgenic lines with mannitol biosynthesis in chloroplasts; ‘s’ denotes the 

stressed treatment. Data are means±SE of three replications.
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Note: 2-110, 2-118 are transgenic lines with mannitol biosynthesis in cytosol and 5-104, 

5-108 are transgenic lines with mannitol biosynthesis in chloroplasts. Data from two 

individual samples from each line is presented and denoted as ‘a’ and ‘b’.  Transgene 

copy number was calculated using the formula X0/R0= 10 [(Ct,x-Ix)/Sx]- [(Ct,r-Ir)/Sr]
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