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CHAPTER I 
 
 

INTRODUCTION  

Overview 

Harmful use of alcohol has become one of the most important public health issues 

in the world according to the World Health Organization Report (WHO, 2005). Health 

problems associated with alcohol consumption include a wide range of diseases, health 

conditions, and high-risk behaviors, from mental disorders and road traffic injuries 

(especially among young people), to liver diseases and unsafe sexual behavior (WHO, 

2005). Alcohol use and prevalence increase radically during early adolescence, from the 

ages of 12 through 15 years (WHO, 2005). The initiation of these behaviors early in 

adolescence leads to a greater risk of health-related diseases and disorders (Farrington, 

2003; Moffitt, 1993; Sampson & Laub, 2003). 

 According to the “gateway drug theory,” an adolescent who uses any one drug is 

more likely to use another drug. Alcohol and tobacco, followed by marijuana, are 

considered the first “gates” for most adolescents. Under this theory, alcohol or tobacco 

use precedes the use of marijuana, which precedes the use of other illicit drugs. Even 

though there are ongoing debates about this theory, many researchers tend to support it. 

The National Center on Addiction and Substance Abuse (CASA) provides the following  
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information: Among 12-to 17-year-olds with no other problem behaviors, those who drank 

alcohol and smoked cigarettes at least once in the past month are 30 times more likely to 

smoke marijuana than those who didn't, and those who used all three gateway drugs 

(cigarettes, alcohol, marijuana) in the past month are almost 17 times likelier to use another 

illicit drug like cocaine, heroin, or LSD (Cengage, 2002). There is epidemiologic evidence 

relating early use of alcohol with initiation of illegal drugs in Mexican students (Herrera-

Vazquez, Wagner, Velasco-Mondragon, Borges, & Lazcano-Ponce, 2004). A study 

conducted by Wagner, Velasco-Mondragon, Herrera-Vazquez, Borges, and Lazcano-Ponce 

(2005) shows that early onset use of alcohol is associated with excess risk of illegal drug use. 

These findings underscore the importance of targeting alcohol initiation for early intervention 

and prevention strategies. 

Concerning the status of American youth and families, some researchers have 

concluded that the United States is a nation at risk with regard to alcohol and drug abuse 

(Weissberg, Walbergg, Obrien, & Kuster, 2003). Health-risking behaviors including alcohol 

use, tobacco use, and delinquent behavior have large costs to society (Mokdad, Marks, 

Stroup, & Gerberding, 2005; Owings, 2008; Woolf, 2006).  A U.S. national report shows that 

American teenagers who use alcohol and tobacco usually initiate use between 12 to 16 years 

of age. Youthful substance abuse can be defined as the frequent use of alcohol or other drugs 

in a way which leads to a problem that extracts considerable costs on both personal and 

societal levels. Underage drinkers account for nearly 20% of the alcohol consumed in the US 

each year (Foster, Vaughan, Foster, & Califano, 2003). Adolescents between 12 to 16 years 

old who have ever used substances, such as alcohol and drugs are more likely at some point 

to have sold drugs, carried a handgun, or been in a gang than youth who have never used 
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substances (Snyder & Sickmund, 1999). Earlier onset of initial alcohol use often signals 

future deficiencies in social functioning and physical and mental health (Friedman, Terras, & 

Zhu, 2004; Jones, et al., 2004; McGue & Iacono, 2005).  For example, Hingson, Heeren, and 

Winter (2006) found that 45% of adults who began drinking by age 14 became dependent on 

alcohol at some point in their lives versus 9% who began drinking at age 21 or older. 

Studying prevalence and drug dependence among Americans from 15 to 54 years old, it was 

found that about 1 in 7 (14%) had a history of alcohol dependence and about 15% of drinkers 

had become alcohol dependent (Anthony, Warner, & Kessler, 1994). Behavioral signs of 

alcohol dependence may include: alcohol withdrawal symptoms (e.g., nervousness, shaking, 

irritability, and nausea); increased tolerance to alcohol; alcohol consumed in larger amounts 

or over a longer period than was intended; failure of attempts to stop drinking; considerable 

time devoted to activities associated with alcohol use or obtaining alcohol; neglected daily 

activities; and disregard for consequences of negative behaviors (Reyes, 1999). People who 

begin drinking before age 15 are four times more likely to develop alcohol dependence at 

some time in their lives compared with those who have their first drink at age 20 or older 

(Grant & Dawson, 1997). Early substance use by adolescents is important because it 

increases the likelihood of later substance abuse (Spoth, Guyll, & Day, 2002). Most studies 

conclude that earlier initiation of drugs, such as alcohol and marijuana, is associated with 

greater use of that drug, greater probability of involvement in more serious drugs, and greater 

involvement in deviant activities (Brunswick & Boyle, 1979; Margulies, Kessler, & Kandel, 

1977; Kleinman, 1978) 
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Early Alcohol Initiation 

 Exploring a sequence of drug involvement leads not only to early drug initiation, 

which progresses to further drug involvement and abuse, but also to a very first stage of this 

sequence, which is an opportunity to try a drug. The first to draw attention to the first stage of 

drug involvement, referred to as drug exposure opportunity, was Robins (1977). A study 

conducted by Van Etten, Neumark, and Anthony (1997) shows that among persons who were 

given an opportunity to use marijuana, there are increases in the probability of progressing 

from first marijuana opportunity to first marijuana use. Furthermore, the transition from first 

opportunity to eventual marijuana use seems to depend on age at first opportunity.  Wagner 

and Anthony (2002) showed that once the chance of marijuana use had occurred, tobacco 

smokers were more likely to engage in actual marijuana use. A study of youthful drug 

involvement in Chile found that the probability of marijuana use and the conditional 

probability of marijuana use (given an opportunity) are greater for users of alcohol only, 

tobacco only, and alcohol plus tobacco, as compared to non-users of alcohol and tobacco 

(Caris, Wagner, Rios-Bedoyae, & Anthony, 2009).    

While an increasing number of studies have looked at age of first use as an 

independent variable, there are not many studies that model these first stages of alcohol 

involvement as an outcome, despite the obvious importance of exploring this topic. There are 

several reasons that only a few studies have looked at age of first use as an outcome variable, 

which I will briefly explore here. One reason for a lack of studies has been methodological 

concerns about the validity of self-report questionnaires measuring opportunity to use and 

first use of drugs (Van Etten & Anthony, 1999; Van Etten, Neumark, & Anthony, 1997). 

Most surveys looking at these variables use a retrospective design within a questionnaire or 
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interview. There is a concern that users of alcohol, tobacco, and illicit drugs might report 

more or less completely and accurately than nonusers. However, since there is no perfectly 

valid estimation for age at first opportunity or for age at first use, self-report is still the most 

common means of collecting data for almost all studies (Wagner & Anthony, 2002). 

Modeling Alcohol Initiation 

A second, more difficult concern to resolve has been how to model age of first use.  

As occurs with any variable measuring a high-risk behavior in which a sizeable percentage of 

the population has never engaged, the distribution of age of first use tends to be bimodal, one 

mode for those who have engaged in a high-risk behavior and one for those who have never 

engaged. One solution (with attendant problems discussed below) is to eliminate the data for 

the portion of the population who have not engaged in the high risk behavior. In order to 

properly address the bimodal distribution of the outcome, many studies dichotomize the 

outcome and use logistic regression to predict the probability of initiation given the 

predictors included in the study (e.g., Tur, Puig, Pons, & Benito, 2003; Bekman, Cummins, 

& Brown, 2010; MacPherson, Magidson, Reynolds, Kahler, & Lejuez 2010; Carlini-Marlatt, 

Gazal-Carvalho, Gouveria, & Souza, 2003). With logistic regression an outcome variable has 

two possible values: either alcohol initiation or no initiation by the time of the interview.  

 Logistic regression. Because the dependent variable is not a continuous one, the goal 

of logistic regression is the classification of study participants in one of two categories of the 

dependent variable (e.g., alcohol user or no user) predicted by the independent variable. In 

other words, we are predicting the probability that a person will be classified into one as 

opposed to the other of the two categories. Because the probability of being classified into 

the first or lower valued category, P(Y = 0), is equal to 1 minus the probability of being 

classified into the second or higher-valued category, P(Y = 1), if we know one probability, 
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we know the other (Menard, 2002). Interpretation of coefficients in logistic regression 

equation is different from those in linear regression equation. In linear regression the model 

coefficients have a straightforward interpretation where the coefficient of the predictor 

variable estimated the expected amount of change in the dependent variable for any one-unit 

increase in the independent variable (Pedhazur, 1997). Logistic regression reports odds ratios 

(OR) that are interpreted differently. First of all, it is important to understand the concept of 

odds.  For our dichotomous outcome variable, the odds of membership in the alcohol user 

group are equal to the probability of membership in the alcohol user group divided by the 

probability of membership in the non-user group. For example, if the probability of 

membership in alcohol user group is .5, the odds are 1 (.5/.5); if the probability is .8 the odds 

are 4 (.8/.2). Obviously, if the odds ratio is 1 then both memberships are equally likely (e.g., 

as likely to be in the user group as in the non-user group). If the odds are more than 1, the 

probability of being an alcohol user is more likely than being non-user; and if less than 1, 

then alcohol using is less likely. Odds tell us how much more likely it is that participants are 

in the alcohol user group rather than a member of the non-user group (Wright, 2002).  

Odds ratio estimates the multiplicative change in the odds of membership in the 

alcohol user group for a one-unit increase in the predictor and is computed by exponentiating 

the regression coefficient of the predictor variable (Wright, 2002). For example, if the 

regression coefficient is .75, the odds ratio is e.75 = 2.12. This means that the odds that study 

participants are in an alcohol user group (vs. not) is 2.12 times greater when the value of a 

predictor is increased one unit. An odds ratio of .5 indicate that the odds of being in alcohol 

user group (vs. not) decreases by half when predictor increases by one unit, i.e. there is a 

negative relationship between predictor and outcome. Under the null hypothesis of no effect, 
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the odds ratio will be 1.00, meaning that the odds of being in the user group stays the same 

with increases in the corresponding predictor.  

However using logistic regression to model the onset of a behavior can be 

problematic (Singer & Willet, 2003). Dichotomizing discards variation in age of alcohol 

initiation, which represents meaningful information because individuals initiate alcohol at 

different times of their lives. Individuals who started using alcohol at early age of their lives 

are different from those who initiated alcohol much later, but they become indistinguishable 

in a logistic regression analysis. Thus, using this technique does not consider nor provide any 

information about the early stages of alcohol initiation as compared to later initiation and 

therefore is not very useful for investigating age of first alcohol use.  

Missing data. A second option that other researchers have chosen to accommodate 

the bimodal distribution of age of first use variables is to truncate the data and only study 

those who have initiated use. This option usually results in continuous, possibly normal 

distribution and allows for standard regression assumptions, but presents other problems. It is 

well-known that the scientific method involves making structured observations, drawing 

causal inferences based on observations, and generalizing study results beyond the study 

(Cozby, 2007; Dooley, 2001). Truncated data can be interpreted as systematically missing 

data, and can have consequences for all these activities associated with the scientific method. 

There are a wide range of consequences of having missing data as described in McKnight, 

McKnight, Sidani, and Figueredo (2007), but they all require data to be missing in a non-

systematic way, at least after controlling for predictors in the analysis. Missing data can 

affect the reliability and validity of systematic observations. When drawing inferences from 

observations, missing data can affect the strength of the study design and the validity of 
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conclusions about relationships between variables. When generalizing study results, missing 

data can limit the representativeness of the study sample, the strength of interventions, and 

other aspects of the study such as time or place about which we would like to generalize. The 

missing data have the potential to influence the validity of constructs of the study, i.e., how 

accurately the variables or constructs of interest are represented, or how well measures 

capture the variables or constructs. Beyond affecting the construct validity, missing data can 

affect both the reliability (stability and consistency) and validity (accuracy, generalizability) 

of research findings. These aspects are related to the internal validity of a study. If large 

portions of data are missing in a study, e.g., the data set used for analyses represents a 

smaller and potentially biased sample of participants that may lead to inaccurate and unstable 

parameter estimates. Consequently, the reliability and validity of study is jeopardized, which 

leads to weaker causal inferences regarding the relationships between variables and thus 

lower internal validity. Internal validity is often characterized as the extent to which a 

researcher can reasonably claim that a particular predictor is responsible for the observed 

outcome. The influence of other factors, i.e., confounds or alternative explanations for the 

outcome, weakens the inference that the predictor considered in the study caused the 

outcome.  Those other factors are known as threats to internal validity (Shadish, Cook, & 

Campbell, 2002; Campbell & Stanley, 1966). Selection bias which refers to systematic 

differences on some characteristics between groups of individuals included in the study 

(Shadish et al., 2002) is one of the most recognized threats to internal validity. Such 

differences can influence study conclusions. Although the effects of missing data are 

potential problems for reliability and validity of study findings, the adverse effects on 

statistical procedures are almost always expected to be present. For example, statistical 
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power (probability that a null hypothesis will be rejected given that it is false) is directly 

related to sample size. As the sample size decreases, statistical power decreases. Missing data 

also affects data analysis in how they distribute data and error. For example, commonly used 

analyses, like ANOVA and multiple regressions, require errors to be normally distributed. 

Failure to conform to these assumptions produces inaccuracies in the results and affects 

significance tests and parameter estimates. When analyses require multivariate normality, it 

is almost guaranteed that it will be adversely affected by missing data (McKnight et al., 

2007). The most critical problem comes up when data is missing systematically. This always 

leads to a selection bias, which is the one of the most difficult problems in data analysis 

because it leads to wrong estimates and results. In summary, missing data that affect the 

strength, integrity, reliability, and validity of causal inference affect internal validity. Missing 

data can also influence the generalizability of findings. In particular, the observed effects can 

be attributable to the resulting sample that participated in the study. In conclusion, the 

missing data can affect the interpretation of findings in a single study, the synthesis of results 

across studies, and the knowledge and understanding in the field (McKnight et al., 2007).                                

The present study focuses on early stages of alcohol involvement and intends to 

increase understanding of initial opportunity to try alcohol and the transition to initial alcohol 

use. It is a secondary data analysis that draws from and expands on the Cox (2007) study that 

looked at factors associated with age of first use of various substances from a subsample of 

Venezuelan youth who had already initiated use.  Since Cox used a multi-level regression 

analysis he could only study those participants who had initiated drug use due to a bimodal 

distribution of the outcome variable, which, as previously explained, is a violation of the 

normality assumption in regression analysis. The study focused on participants who were 
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deemed at higher risk due to having initiated use and participants who reported no drug use 

were left out of the sample (about 16.1 % of the whole sample). Dropping those participants 

from the sample, as discussed previously, creates difficulties because it represents a selection 

bias problem. This non-trivial portion of the data must be considered systematically missing 

because it is not missing completely at random (MCAR) or even missing at random (MAR). 

MCAR applies when the probability that an observation (e.g., alcohol use) is missing is 

unrelated to the value of this observation or of any other observation. MAR applies when the 

probability that the observation is missing does not depend on the value of this observation 

after controlling for other variables in the statistical analysis. When data is not MCAR or 

MAR it is called nonignorable missing data (Allison, 2002). Ignorability basically means that 

there is no need to model the missing data to obtain unbiased statistical estimates. According 

to Allison (2002), for nonignorable missing data, a careful consideration of the appropriate 

model is necessary because results typically will be very sensitive to the choice of model, 

especially to how well it controls for systematic biases in the missing data.  

Proposed analyses. A statistical technique that combines logistic and multiple 

regressions is survival analysis. Similar to logistic regression analysis, survival analysis 

detects participants with high-risk and no high-risk behaviors (alcohol initiation in this 

study). In addition, survival analysis evaluates early ages of high-risk behavior similar to 

traditional regression analysis but unlike regression analysis it overcomes the missing data 

problem by keeping participants with reported no high-risk behavior in the sample. A more 

thorough discussion of survival analysis will be provided later.  

Another concern when modeling age of initiation of a high-risk behavior that needs to 

be addressed is the potential for non-independence of observations in the data. Much of the 
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data studying adolescent initiation of substances were collected in schools or neighborhoods. 

As such, the data is nested and presents a challenge regarding how to model the dependent 

variable without violating the independence assumption required for regression analysis. 

When nesting occurs and the non-independence in not accounted for, standard errors are 

artificially small resulting in inflated parameter estimates (Pedhazur, 1997).  

A recent methodological development has combined survival analysis with multilevel 

modeling. Multilevel survival analysis incorporates the best features of logistic regression, 

utilizes all of the available information in the data, and accounts for the nested structure of 

the data.  However, there are only a handful of studies that has used survival analysis in a 

multilevel framework to both model onset and account for the nesting (Barber, Murphy, 

Axinn & Maples, 2000; Reardon, Brennan, & Buka, 2002; Steele, Goldstein & Browne, 

2004).  To better understand this method a brief description of the basic tenets of survival 

analysis is required here.   

 Survival analysis is usually used when the research question involves a test of 

“whether and when” as outlined by Singer and Willet (2003). The present study passes this 

test because it investigates whether or not alcohol initiation happened and when it happened, 

e.g., how many years have passed since the age of first opportunity of alcohol use. According 

to Singer and Willet (2003), besides having a research question leading to a survival analysis, 

it is also important to clearly examine methodological features that involve clearly defining a 

target event, such as an alcohol initiation occurrence investigated in this study; beginning of 

time, i.e., a starting point when nobody has yet experienced alcohol initiation, which is the 

age of first opportunity of using alcohol or any arbitrary age; and a metric of clocking time 

(meaningful scale in which event occurrence is recorded), i.e., years from the age of first 
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opportunity of using alcohol or years from the arbitrary age. Event occurrence is a transition 

of an individual from one “state” (never initiating yet) to another “state” (having initiated). 

Survival analysis is another term for event history analysis (the former is usually used 

in biomedical studies and latter in social studies) and both are used interchangeably in the 

research literature. The name comes from studying how long subjects of a study survive 

under different circumstances (Allison, 1984).  In the language of survival analysis, the 

present study investigates how long participants survive until alcohol initiation after either 

having an opportunity of using alcohol or after some arbitrary age. In other words, what is 

the duration of time (survival) from a starting point (opportunity or an early age) until 

initiation?  

The rationale for using survival analysis and not traditional regression-like analysis 

when investigating alcohol initiation lies in realizing the fact that not all participants have 

experienced alcohol use before the time of data collection. In the Cox (2007) data, 16.1% of 

the participants never initiated drugs by the time of the data collection. The problem when 

study participants have unknown event times is called censoring, and participants with 

unknown event times are called censored observations (Allison, 1984; Singer & Willet, 

2003). The amount of censoring is usually related to the rate at which events occur and the 

length of data collection (Singer & Willet, 2003).   

Alcohol initiation, or time of event occurrence, is measured in discrete time intervals 

because we only know the year in which alcohol use was initiated.  A key concept in survival 

analysis is the risk set, which is the set of participants in this study who are at risk of alcohol 

initiation at each discrete time, e.g., year (Allison, 1984). A second key concept is the hazard 

rate. In the present study the hazard rate is the probability of alcohol initiation at a particular 



 

13 
 

year to a particular participant, given that that participant did not initiate alcohol in any 

earlier time (Allison, 1984). The hazard rate is not an observed variable, but it is estimated 

from alcohol initiation and its timing (Allison, 1984). It represents the fundamental 

dependent variable of the event survival analysis in this study.  

Proposed models. About 11.6% of participants of the sample said they never had an 

opportunity to try alcohol and therefore will be excluded from the analysis when we 

investigate alcohol initiation survival after participants have had an opportunity to use it. 

Excluding from the study those participants who have never been exposed to alcohol 

partially reduces the problem with missing data (compared to above mentioned 16.1% of 

participants). However, the excluded participants (11.6%) still represent a significant 

percentage of the sample. The problem can be resolved if the beginning of time is set to be an 

arbitrary age or the reported first use of alcohol. The beginning of time will be set at age 4 

and all earlier reported ages will be discarded. Cox (2007) set the cutoff at age at 4 due to 

memory limitations of very young children (i.e., children in the 1-3 age range) and due to 

anecdotal evidence from focus groups with teachers and parents indicating that children as 

young as 4 years of age were used by others to traffic drugs into schools, and thus could have 

had a chance to use the substance (Cox, 2007). Additionally, self-report data from several 

youth (n=9) indicates that youth began some type of substance use at this age.  This model 

includes all participants, alcohol initiators and non-initiators starting from age 4 and 

represents 99.8% of the whole sample. Four participants who reported age of first use at ages 

2 and 3 are not included in the analysis.  

The multilevel modeling framework allows taking into account the nested structure of 

the data, i.e., the non-independence of observations. For example, persons may be nested 
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within schools, communities or within countries. Additionally, the use of a combination of 

survival analysis and multilevel models allows for the testing of the relationship between 

several risk factors and the time between age of first opportunity to use alcohol and age of 

first use of alcohol for one model and the time between age 4 and age of first use of alcohol 

for another model.  

Due to their salience in the literature, the variables of family attention, adolescent 

externalizing behavior, socioeconomic status, and gender (variables to be defined later) will 

be the independent variables considered in this study. The present study will illustrate how 

those predictors affect the likelihood of alcohol initiation during the time  from the first 

opportunity to use alcohol and from age 4 until its initiation. It needs to be noted that not all 

explanatory variables considered in the present study are exactly time invariant variables. 

Time-varying variables might create problems by leading to inaccurate results if the variables 

were to change over time. Explanatory variables usually are measured only once even in 

longitudinal studies and often are assumed to be time-invariant variables and are treated 

accordingly (Allison, 2002). In the present study, Family Attention and Externalizing 

behavior, while not traditionally considered time-invariant in the strictest sense, have been 

shown in the literature to be very resistant to change and are assumed to be time-invariant for 

the purposes of the present analysis (Loeber, 1982; Murphy, Wickramaratne, & Weissman, 

2010).  Loeber (1982) reviewed studies on the stability of antisocial behavior and showed 

that adolescents who exhibit high rates of antisocial behavior are more likely to persist in this 

behavior than children who initially display low rates of antisocial behavior. Studies showed 

that once high levels of antisocial behavior were established, adolescents tend to maintain 

rather than decrease levels of antisocial behavior. Murphy et al. (2010) explored parental 
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bonding in 20-year follow up study and concluded that parental bonding maintained a non-

significant mean level change over a 20-year period. Even though items that formed parental 

bonding are not exactly the same as items for Family Attention in this study, they are very 

similar. 

The second proposed model will also allow for controlling for the age of first 

opportunity to use alcohol.  In the second model where the beginning time is age 4 and not 

the age of first opportunity per se, controlling for age of first opportunity will eliminate those 

participants who reported no opportunity to try alcohol (due to listwise deletion). This, again, 

will lead to the missing data problem. One way of dealing with missing participants, i.e. with 

those who have never been exposed to alcohol is to recode the age of first opportunity to try 

alcohol, a continuous variable, so that participants with no opportunity to try alcohol are 

assigned the year they were interviewed plus one year (recognizing that they might have an 

opportunity to try alcohol later that year). Another situation that can be considered within this 

model is the one that eliminates the age of first opportunity to try alcohol as a control 

variable. The present study will evaluate this model using survival analysis considering both 

situations: 1) controlling for the age of first opportunity where the age of first opportunity is 

recoded as was described above; 2) without controlling for the age of first opportunity to try 

alcohol. 

The main objective of this study is to compare and contrast three different approaches 

(i.e., survival analysis, multiple, and logistic regressions) to modeling age of first use as an 

outcome variable where predictors in all three of the models are the same but the statistical 

analysis employed for the evaluation of models are different. The first approach will be an 

extension of the Cox study and will estimate survival until alcohol initiation with and without 
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having the opportunity of alcohol initiation. Here, a multilevel version of survival analysis 

will be employed to estimate and (1) early alcohol initiation when participants are observed 

from the age of first opportunity to use alcohol; and (2) early alcohol initiation when the 

beginning of time for observing them starts at age 4 controlling for a recoded age of first 

opportunity with no opportunity set at age of interview plus one year. The second approach 

will be a reanalysis of Cox’s (2007) study which evaluated age of onset of use of all drugs 

with non-using subjects eliminated. In the current study, the outcome is a continuous variable 

- age of first use of alcohol. To examine this approach a standard linear regression analysis 

will be used and, like Cox (2007), cases not reporting alcohol use will be eliminated. 

Contrary to Cox’s study, multilevel analysis will not be employed because multilevel 

survival analysis does not go beyond person-level variables in this study.  The third approach 

will model age of first use as a dichotomous outcome variable (use vs. no use) with the 

logistic regression. 
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 The main purpose of this chapter is to discuss some aspects of survival analysis 

which will be used in this study in combination with multilevel modeling and some 

methodological issues associated with it.  The review of research studies will also 

investigate methods that are used for studying variables of interest to the present study 

and how those variables affect alcohol use. 

Survival Analysis 

As was already mentioned in the previous chapter, survival analysis studies how 

long subjects of a study survive until some event occurrence (e.g., alcohol initiation) 

under different circumstances. Obviously, occurrence of an event assumes a preceding 

time interval, which is its nonoccurrence. More specifically, a certain time period or 

duration of nonoccurrence must exist in order for an occurrence to be considered as an 

event. Survival analysis is used to study duration data, which represents the 

nonoccurrence of a given event (Yamaguchi, 1991).  An event, which is alcohol initiation 

in this study, is defined by specifying a group of end points for duration intervals. . In the 

case of age of alcohol initiation, an event, i.e. alcohol initiation, is defined by the end 

point of the duration interval for having never used alcohol.  
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 Another concept of the duration of the nonoccurrence of a given event is the risk 

period. The time period that represents the nonoccurrence of alcohol initiation can be 

divided into the period at risk and the period not at risk for initiating alcohol. The 

distinction between the risk and nonrisk periods requires assumptions. For example, we 

can assume that alcohol initiation can occur only for those individuals who had an 

opportunity to use alcohol. This assumption is more implicit and in fact, can be backed 

up by several research studies that emphasize the importance of being exposed to drug 

opportunities and then the transition from exposure to actual drug use (Van Etten et al., 

1997; Van Etten & Anthony, 1999; Wagner & Anthony, 2002; Caris et al., 2009; Wilcox, 

Wagner, & Anthony, 2002). Benjet et al. (2007) state that an opportunity to use drugs is 

the first step of drug involvement. Along with other findings, they indicate that drug use 

is only possible given exposure to drug use opportunities. In a study conducted by 

Wagner and Anthony (2002) there is a clear implication that preventive strategies of drug 

use should be aimed at reducing drug use opportunities. Furthermore, many factors found 

to be related to drug use (gender, parental attention, socioeconomic status, etc.) may 

actually only be related to drug use to the extent that they relate to exposure to drug 

opportunities (Chen, Storr, & Anthony, 2005; Van Etten & Anthony, 1999).  

 An alternative would be to assume that all participants enter the risk period at the 

same age, which might be the youngest age observed in the given sample. Even though 

the youngest age of alcohol initiation was reported at age 2 in this data set, it was decided 

to set the earliest age at 4 years based on previous research findings in the Cox (2007) 

study and the high likelihood of errors in retrospective memory for events prior to age 4. 

The particular assumption made in defining the risk period becomes a characteristic for 
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the model. The integrity of assumptions is very important for subsequent analysis. Study 

participants who are at risk, given the definition of the risk period, are considered to be 

the risk set of that time. According to Yamaguchi (1991), taking into consideration the 

distinction between the risk and non-risk periods, survival analysis can be defined either 

as the analysis of the duration for the nonoccurrence of an alcohol initiation during the 

risk period or as the analysis of rate of the alcohol initiation during the risk period.                                                                            

 The rate usually varies with time and among groups, and when it is attached to a 

particular moment in time, it is referred to as a hazard rate or transition rate, which was 

defined above. The term hazard rate comes from biostatistics, where the typical event is 

harmful. The term transition rate is more often used in sociology, where events are 

transitions between distinct states (Yamaguchi, 1991). The hazard rate (or hazard 

function) h(t) can also be defined in mathematical terms as the ratio of the unconditional 

instantaneous probability of having the event f(t) divided by the survival probability S(t), 

which is the probability of not having the event prior to time t:                         

  h(t) =  lim Δt→0 [(P (t+ Δt>T≥ t│T≥t))/Δt] = f(t))/(S(t)      

where T is the total duration of the risk period until an event occurs, and  

P (t + ∆t) > T ≥ t| T ≥ t) indicates that probability that the event occurs during the  time (t, 

t+ Δt) given that the event did not occur prior to time t. The unconditional instantaneous 

probability of having the event at time t, f(t) is also called the probability density function 

of T. 

 It has to be explained how the hazard rate depends on explanatory variables. For 

example, if there are just two explanatory variables, x1 and x2(t) in year t then the first 

approximation of P(t) can be written as a linear function of those variables: h(t) = a + b1x1 
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+ b2x2(t), for t = 1, 2, …n. Because h(t) is a probability, it varies between 0 and 1, while 

the right-hand of the equation can be any real number. This kind of model can produce 

impossible predictions and consequently creates difficulties in computation and 

interpretation. The problem is avoided by taking the most commonly used logit 

transformation of h(t): 

log(h(t) / (1- h(t))) = a + b1x1 + b2x2(t). As h(t) varies between 0 and 1, the left-hand side 

of the equation varies between minus and plus infinity. The coefficients b1 and b2   show 

the change in the logit for each one-unit increase in x1 and x2,  respectively (Allison, 

1984). 

 There are two major methods for analyzing hazard rates: nonparametric methods 

which make few if any assumptions about the distribution of an event time and 

parametric methods which assume that the time until an event comes from a specific 

distribution, the most common being the exponential Weibull, and Gompertz 

distributions (Allison, 1984). Both methods can estimate the effects of covariates on 

hazard rates. Covariates that can be used in analysis may be time invariant, i.e., they do 

not vary throughout the duration of the time (gender, race, etc.) or time-variant (alcohol 

availability, perception of alcohol risk, etc.). Nonparametric methods do not specify the 

nature of the relation between time and hazard rates (Yamaguchi, 1991). Survival 

analysis can refer to an analysis based on either parametric or nonparametric hazard-rate 

models. Nonparametric models are used in this study. 

 Methods that assume that the time of event occurrence is measured exactly are 

known as “continuous-time” methods. In practice, time is almost always measured in 

discrete units (Singer & Willet, 2003). If these discrete units are very small, then time can 
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be treated as a continuous measure. When the time units are large, e.g., years as in the 

present study, it is more appropriate to use discrete-time methods (Allison, 1984).  

 Censoring. One advantage of hazard-rate models for the analysis of duration data 

is its ability to deal with unknown event times, which is called censoring, as described in 

the previous chapter. Censoring exists when incomplete information is available about 

the duration of the risk period because of a limited observation period. Yamaguchi (1991) 

describes six distinct situations regarding censored observations (Fig.1) 

 

 

 E  * 

 

                                      Observation 

Note: * = event occurrence; 0 = occurrence of event other than event of interest. 
Source: Yamaguchi (1991). 
 

Fig. 1. Left and right censored observations. 

All participants are under observation from time T0 (either age of first opportunity 

or age 4 in this study) and time T1 (interview year in this study). Both times are assumed 

to be determined independently of subjects. The solid line indicated the risk period for 

each subject. The solid line with an asterisk (*) represents an occurrence of the event of 

interest (alcohol initiation), and the solid line with an open and end point (0) indicates 

that the risk period is terminated by an event other than alcohol initiation, e.g., the 

participant has been dropped from the sample. Yamaguchi (1991) explains differences 

among three distinct missing-data mechanisms using two variables, X and Y. Variable Y, 

T0 T1 
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which is the duration of the risk period up to the alcohol initiation, is subject to 

nonresponse (i.e. missing data) due to censoring. Variable X represents the timing of 

entry into the risk period, which is either AFO or age 4 in this study (as has been 

discussed above). Generally, three distinct missing-data mechanisms can be identified 

according to whether the probability of nonresponse to Y (1) depends on Y (and possibly 

X as well), (2) depends on X but not on Y, or (3) is independent of X and Y.  

Allison (2002) refers to case (3) as a situation when data are missing completely 

at random (MCAR), which happens when the missing data are not systemically related to 

any variable in the model. A less stringent requirement is missing at random (MAR) 

when the nonresponse to Y (or missing on Y) is unrelated to the value of Y and to any 

predictors of Y after controlling for all X covariates in the model. Thus when there is 

case (2), the missing data are MAR, but the observed data are not observed at random 

(OAR). In this case, the observed missing data are random only within levels of X. The 

data are neither MAR nor OAR when case (1) is observed  

If the missing data are not MAR, it is important to distinguish between situations 

where the data on Y are missing by a known mechanism and the data on Y are missing by 

an unknown mechanism. The most serious problem is when the missing data are not 

MAR and are missing by an unknown mechanism (Yamaguchi, 1991).   

The typology of missing-data mechanisms can be applied to the different types of 

censoring depicted in Fig.1 and are explained in Yamaguchi (1991). For example, the 

entire risk period for Subject A falls within the period of observation, and thus this 

observation is not censored.   
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The risk period of Subject B starts during the period of observation, and this 

participant did not initiate alcohol use when the observation is terminated at T1, i.e., at the 

year of the interview in this study. The subject’s observation is right censored at T1.  This 

type of censoring is typical for survey data. The value of Y is missing because the date of 

exit from the risk period for Subject B is not known, even though there is information 

about the duration of the risk period up to the censoring time.  

The case of Subject B is also called a right-truncated observation. Truncation is a 

special case of censoring that is characterized by a partial observation of the duration 

data. Given that the timing of T1 is determined independently of the hazard rate, survival 

analysis can handle this type of right censoring adequately. Among censored 

observations, right-truncated observations occur most frequently in social studies, and the 

ability of event history analysis to handle them is its major advantage over other analyses, 

such as linear or logit regression analyses. For right-truncated observations the missing 

data are not MAR but are missing by a known mechanism. The missing data are not 

MAR because the occurrence of censoring depends of the value of Y and the mechanism 

is known because we know when and how the observations are right truncated. For 

Subject C, the observation is right censored because an event other than the event of 

interest occurs during the observation period and takes the subject out of the risk set. This 

type of censoring is not under the control of the investigator. If the event that terminated 

the observation happened independently of the hazard rate of the event of interest then it 

is independent censoring. Virtually all survival analysis methods assume that the 

censoring times are independent of the time of event occurrence. It is possible to develop 

models which allow for dependence between censoring and times at which an event 
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occurs but this is rarely done. The main reason for not developing such models is that it is 

impossible to test whether any dependence model is more appropriate than the 

independence model (Allison, 1984). When independent censoring applies, Subject C can 

be treated as an instance of right-censored observation technically in the same way as 

Subject B. Subject D represents a case in which the observation is fully censored on the 

right. Entry into the risk period occurs after the observation period and, the value of Y is 

missing for Subject D. In other words, the occurrence of full right censoring depends only 

on the particular variable X that represents the timing of entry into the risk period and 

does not depend on duration Y. The missing data of Y are MAR but the observed data of 

Y are not OAR.  

The case of Subject E represents a case with full censoring on the left. Generally 

left censoring is much less manageable than right censoring, and the case of Subject E is 

the worst possible situation. The value of Y is missing for subject E. The data are neither 

MAR nor OAR. Besides, the missing-data mechanism is unknown because we do not 

know when and how the event occurred to make the value of Y missing. Unlike the case 

of full right censoring, the sample selection bias occurs as a function of the unknown 

values of the dependent variable Y. Full left censoring creates serious bias in parameter 

estimates unless the number of subjects with full left censoring is small. In this study, 

participants with age of first use younger than 4 are examples of full left censoring. Both 

subjects E and D are not in the risk set during the observation time for different reasons. 

Subject E has already experienced the event and D has not entered the risk set yet. 

The case of Subject F represents a partially left-censored observation, which is 

also called left truncation. Here the data of Subject F cannot be used adequately.  The 
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beginning of the observation period is not equal to the beginning of the risk period for 

left-truncated duration data. This is the situation when the missing data are not MAR and 

are missing by an unknown mechanism.  

Singer and Willet (2003) emphasize that left-censoring creates challenges that are 

not easily addressed even with the most sophisticated of survival methods. The most 

common advice is either redefining the beginning of time to coincide with a precipitating 

event (e.g., age of first opportunity) or eliminating left-censored data through design 

(e.g., starting as young as possible). 

Even though censoring is a complicated issue, it is an advantage of survival 

analysis rather than a disadvantage because survival analysis can handle censored 

observations adequately in many situations. In the present study right censoring is used 

because the duration of time from having opportunity or from age 4 until initiation is not 

known because the event occurrence of alcohol initiation has not been observed. Right 

censoring is the most common situation. In this study left censoring is minimized by 

starting the risk set period at early age or when the opportunity of alcohol use first 

occurred. 

 Thus, in the present study time duration from the age of first opportunity (AFO) 

(in one model) and age 4 (in another model) until alcohol initiation is measured in 

discrete times, i.e. years, and time is censored for those who did not initiate alcohol by 

the end of the observation period. That is why we are using so called discrete-time 

survival model (Allison, 1982; Singer & Willet, 2003). For building this model 

constructing a person-period data set is necessary (Singer & Willet, 2003). Survival 

models usually require longitudinal data (when there are repeated interviews) but in this 
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study we have retrospective data (a single interview) and person-period data set must be 

constructed from retrospective data to make the analysis possible. To obtain the person-

period data set, each person has a period for each year he or she is in the risk set. The first 

period is the first year of risk (age of first opportunity or age 4). The last period is either 

the year of alcohol initiation or the age before the interview, whichever comes earlier. 

Any years in between constitute the other periods for that person in the person-period 

data set (This will be visualized with sample data in Chapter 3). All statistical aspects of 

analysis will be discussed in Chapter 3.  

Review of Research Studies  

  First I will review studies of risk and protective factors in adolescent substance 

use. Reviewing risk and protective factors are relevant for this study since they are 

explanatory variables that potentially affect the outcome. Those factors are Externalizing 

behavior, which reflects participating in high-risk and delinquent behavior; Family 

Attention, which reflects adolescents bonding with parents and parental control; 

Socioeconomic Status, which reflects the type of residence and parental education; and 

Gender. Next I will review studies that address the issue of modeling the Age of Fist Use 

(AFU), which is the main response variable used for studying the hazard rate of alcohol 

initiation. I will also review several studies that address modeling of AFO of substance 

use because together with AFU they represent response variables in the model when we 

evaluate time duration from AFO to AFU of alcohol.  And finally I will cover some of 

the recent studies that combine survival analysis with multilevel modeling methods to 

illustrate opportunities that this technique provides for studying different event 

occurrences in multilevel framework. 
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 Overview of research on risk and protective factors. There are empirically 

identifiable patterns of behavior or contexts that serve as risk or protective factors in the 

development of substance use (Hawkins, Catalano, & Miller, 1992). According to 

Hawkins et al. (1992) certain characteristics of individuals and their personal 

environments are associated with a greater risk of adolescent drug abuse. Among these 

are physiological factors, family alcohol and drug behavior and attitudes, family conflict, 

low bonding to family, early and persistent problem behaviors, academic failure, low 

degree of commitment to school, peer rejection in elementary grades, antisocial behavior, 

association with drug-using peers, alienation and rebelliousness, attitudes favorable to 

drug use, and early onset of drug use. Many studies showed a strong association between 

externalizing behavior and substance abuse (Wells, Graham, Speechley, & Koval, 2004; 

Adalbjarnardottir & Hafsteinsson, 2001; Li & Feigelman, 1994; Jessor, 1993). 

Externalizing behavior is usually associated with aggression toward people and animals, 

damage of property, theft, and serious rule violations. Antisocial behavior during 

childhood predicts substance abuse during adolescence (Clark, Vanyukov, & Comelius, 

2002). Another longitudinal study also shows that childhood externalizing behavior 

increases the likelihood of substance use in later adolescence (Adalbjarnardottir & 

Ranfnsson, 2001). On the other side, a child’s antisocial behavior brings out aversive 

reactions by the parents, which then raise the child’s aggressive behavior (Patterson, 

1997). Parents may respond to adolescent antisocial behavior by raising their tolerance 

level for deviant behavior (Bell & Chapman, 1986) that may result in decreased attempts 

for dealing with problems. As a consequence, parents become less supportive and 

controlling when their adolescent’s behavior becomes more aggressive and hostile. 
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Adolescents, regardless of their antisocial behavior, who characterized their 

parents as being attentive, were more protected against substance use than adolescents 

who perceived their parents as neglectful, both concurrently and longitudinally 

(Adalbjarnardottir & Hafsteinsson, 2001). It has been found that parental influences are 

the strongest and most direct early in the life of children when experimentation with 

substances takes place (Griffin, Botvin, Scheier, Diaz & Miller, 2000; Spooner, 1999). 

The longitudinal research conducted by Stice and Barrera (1992) showed that parental 

social support and control were generally negatively related to adolescent alcohol use and 

illicit substance use. 

Other studies investigated the role of gender in the development of adolescent 

alcohol use. Females were found to have a reduced tendency to develop drinking 

problems across all ethnicities in comparison to males (Griffin et al., 2000). Recent 

research indicates that rates of alcohol use and alcohol dependence or abuse are higher 

among males than females (The NSDUH report, 2006). Wagner et al. (2005) found that 

early onset of alcohol/tobacco use is associated with excess risk of drug use among 

students of Morelos, Mexico, and that the risk is higher for males. A multinational 

collaborative epidemiological research study was conducted to estimate the occurrence 

and school-level clustering of drug involvement among school-attending adolescent 

youths in each of seven countries in Latin America. It was found that in comparison to 

females, males were more likely to use alcohol, tobacco, inhalants, marijuana, and illegal 

drugs; the odds ratio estimates showed high statistical significance and were 1.3, 2.1, 1.6, 

4.1, and 3.2, respectively (Dormitzer et al., 2004). 
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The relationship between adolescents’ SES and substance use has been studied by 

many researchers, but how they are associated remains controversial. A few studies have 

found that adolescents with low SES have more tendencies towards substance use. For 

example, Goodman and Huang (2002) showed that low SES was associated with greater 

alcohol use and greater cigarette and cocaine use among teenagers. When Reinherz, 

Giaconia, Hauf, Wasserman, and Paradis (2000) studied participants from a 3-year 

longitudinal study, they found that low SES and larger family size were associated with 

increased probability of substance abuse disorders in early adulthood. Hamilton, Noah, 

and Adlaf (2009) analyzed the Ontario Student Drug Use Survey and found that 

adolescents of ages between 12 and 19 years old who had parents with college degree 

were less likely to engage in drinking or illicit drug use. On the other hand, in a study of 

British adolescents Bellis et al. (2007) found that adolescents with more spending money 

were more likely to drink frequently, and drink in public. Similar results were obtained in 

a study of US college students where it was found that students with less spending money 

were less likely to drink and get drunk (Martin et al., 2009). Humensky (2010) analyzed 

data from the National Longitudinal Survey of Adolescent Health, a nationally-

representative survey of secondary school students in the US. Results of the study 

indicated that higher parental income was associated with higher rates of drinking and 

marijuana use in early adulthood. Cox et al. (2010) found that youth in higher SES 

schools had an earlier age of onset for substance use than did youth in lower SES schools.  

Overview of research on early onset of substance use. Studying early ages of 

substance use is very important because early initiation leads to several different negative 

outcomes in youth and adults. Grant and Dawson (1997) found that age at first drug use 



 

30 
 

was a powerful predictor of lifetime drug abuse and drug dependence. The likelihood of 

drug abuse and dependence was determined as a function of ages of onset of drug used in 

a large representative sample of the US population. Numerous studies found that the 

earlier a child experiences alcohol or other drugs the greater is the risk of becoming 

involved in various problematic behaviors, which includes school failure, aggression, 

delinquency and later substance use and abuse (Jackson, Henriksen, Dickinson, & 

Levine, 1997; Kandel, 1982; Robins & Przybeck, 1985). The timing of adolescents’ 

substance initiation and use is also of concern because the earlier people initiate 

substance use the greater and more harmful is the later use (Flory, Lynam, Milich, 

Leukefeld, & Clayton, 2004; DeWit, Adlaf,  Offord, & Ogborne, 2000). Early initiation 

of substance appears to be a powerful precursor of later substance abuse, which is why 

exploring factors that contribute to early substance use initiation is the focus of many 

research studies. Kaplow, Curran, and Dodge (2002) examined predictors of early 

substance use in a longitudinal study of 295 children from kindergarten age to grade 6.  

Because of the low rate of substance use in each grade, measures from grades 4, 5, and 6 

were combined to form an overall dichotomized measure of substance use (0 = no use, 1 

= use) at any age. A series of hierarchical linear logistic regressions was used to test 

relations between several predictors and early childhood substance use. Results of the 

study indicated that the most significant predictors of early substance use are parenting 

and child functioning factors as opposed to more distal factors such as the neighborhood 

environment or socioeconomic status. Maternal parenting techniques ranging from 

reasoning to physical punishment were coded by frequencies with which mothers 

mentioned a certain technique. The mean score of verbal reasoning was calculated with 
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higher scores indicating more frequent use of verbal reasoning. Increased verbal 

reasoning was significantly related to decreased likelihood of substance use initiation by 

the sixth grade. Findings of the study also suggest that children with parents who are 

involved in their school activities may be less likely to engage in early substance use. 

Parental abuse of substances when children were in kindergarten was strongly associated 

with an increased likelihood of child substance use by the sixth grade. Other studies 

found that adolescents who are strongly oriented toward their families show lower 

alcohol and illegal drug use than those adolescents who have weaker familial links 

(Andrews et al., 1997; Kuther, 2002).  

As was previously emphasized in a review of research studies, early age of first 

use of substance among adolescents is much more alarming than later substance initiation 

since consequences of early substance involvement lead to greater problems. 

Consequently, studying the age of first use of substances to discover factors that affect 

age of first use is important for the prevention of various types of negative adolescent 

outcome. In order to study event occurrence and its timing (i.e. alcohol initiation in the 

present study), event history analysis needs to be employed (as was discussed above).  

Exploring the age of first opportunity of substance use and understanding it as the 

early stage of substance involvement was emphasizes in a number of research studies 

(Van Etten & Anthony, 1997; Van Etten & Anthony, 1999; Benjet et al., 2007; Chen et 

al., 2005), as was mentioned earlier. When Van Etten and Anthony (2001) studied male-

female differences in transitions from first drug use opportunity to first use in their 

longitudinal study of children 12 years or older, they studied the estimated probability of 

using a drug given that an opportunity to use the drug has been experienced. The reason 



 

32 
 

for exploring AFO was based on results of their previous work where they found that 

male-female differences in the prevalence of drug use were due to different probabilities 

of having initial opportunity to try a drug rather than different probabilities of becoming 

drug user once the opportunity has occurred (Van Etten & Anthony, 1999). The estimates 

were based on the age of first opportunity to try a drug vs. age of first use of a drug. 

When the age of first opportunity to try a drug was equal to age of first use of a drug, it 

was defined as a rapid transition from the initial opportunity to first use. Then the 

estimated prevalence proportions and ratios were used to define the magnitude of male-

female variation. They noted in the study that availability of time-to-event data to analyze 

time duration from first opportunity to first drug use would have been valuable for 

making a more precise definition of rapid transition. In other words, survival analysis was 

suggested for further research.   

A subsequent study was conducted by Wagner and Anthony (2002), where 

retrospective data were reorganized in person-period records prepared for survival 

analysis regression. To estimate the relative risk of having an opportunity to try 

marijuana in relation to prior use of alcohol or tobacco, a discrete-time survival 

regression model was used with covariate adjustments. Onset of tobacco smoking or 

alcohol use and opportunity to try marijuana were coded as time-varying characteristics 

(0 until the event occurrence and 1 after the event occurrence), whereas sex, age at 

interview and ethnicity were time invariant variables. Results showed that once marijuana 

exposure had occurred, the probability of initiating marijuana use depended on prior 

history of using alcohol or tobacco. In another study, Wagner et al. (2005) explored if 

patterns of the transition from early onset use of alcohol/tobacco to excess risk of drug 



 

33 
 

use among students in the Mexican State of Morelos were similar to those observed in 

other countries. Early onset of alcohol or tobacco use was defined as first use by age 14 

years. Then the cross-sectional data were re-organized into person–year records for 

survival analysis. To estimate the risk of drug use associated with early alcohol and 

tobacco use initiation, a Cox model for discrete-time survival analyses was used. Students 

were stratified by school to control for differences, such as different alcohol/tobacco use 

school policies. Results showed that male users of alcohol/tobacco were much more 

likely to use drugs compared with males who did not show early use of alcohol/tobacco. 

Females who did not show early alcohol/tobacco use were more likely to remain non-

drug users.  

Understanding the earliest stages of substance involvement is important primarily 

for prevention strategies that intend to prevent and control substance use and most 

importantly, substance dependence. Thus the first drug opportunity and the transition to 

the first drug use are relevant for prevention strategies. Studies using survival analysis in 

modeling AFO and AFU take into account the reality of early adolescent substance use. 

The advantages of survival analysis over most commonly used regression analyses are 

obvious (as discussed earlier) and important when studying timing (or duration of time) 

of event occurrence.  Very few survival analysis studies have taken into account the 

multi-level structure of the data, which creates the problem of biased estimates of event 

occurrence when the data have a nested structure. 

 Overview of research on combination of survival analysis and hierarchical 

linear modeling. To predict earlier ages of substance use and effects of individual and 

contextual characteristics requires a combination of survival analysis and multi-level 
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modeling methods if data have a nested structure. Survival analysis is traditionally used 

in medical and epidemiological studies where hazard rate is the dependent variable of the 

event history model and sometimes is called a hazard model. Two data analysis tools 

(even history analysis and multi-level modeling) were first combined by Barber, Murphy, 

Axinn, and Maples (2000). They developed a discrete-time multilevel hazard model and 

provide details regarding the assumptions that allow the regression coefficients to be 

estimated in a multilevel hazard analysis framework. There are only a few studies that 

investigate contextual characteristics in predicting early use of substances that employ 

multi-level discrete time hazard models. The Reardon et al. (2002) study was one of the 

first studies that estimated a multi-level discrete time hazard model. The study 

demonstrated a methodological approach to estimating contextual effects on substance 

use initiation using retrospective data. Their study investigated the effects of social 

context, such as neighborhood, on the timing of cigarette initiation. To accomplish this, 

the data were reorganized into a retrospective person-period data set from cross sectional 

data. Each individual record was converted into a number of person-year observations, 

one observation for every year from age 7 (beginning of the observation time) till 

censoring or the initiation of cigarette use. All cases were right-censored on the day of the 

participants’ last birthday prior to the interview (More details about the censoring will be 

discussed in the next chapter). Effects of individual and neighborhood level variables on 

the likelihood of cigarette initiation at each age were examined. First a person-level 

discrete time hazard model was estimated and then a two-level discrete time hazard 

models were estimated. Contextual variables were treated as Level-2 variable and 

personal and age variables were combined together at Level 1. The study illustrated how 
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these models could be estimated by multi-level software packages that are widely 

available (e.g., HLM).   

There is a growing body of research that uses survival analyses in the social 

sciences. Browning, Levanthal, Brooks-Gunn (2005) used recently developed multilevel 

discrete-time event history techniques (Barber et al., 2000; Reardon et al., 2002) to model 

the onset of sexual behavior, where the dependent measure was the respondent’s age at 

first sexual intercourse. The two-level discrete-time logit model was used to assess the 

hazard of sexual onset for every person in a certain neighborhood at a certain age. The 

first set of analyses was focused on individual, family, and peer influences on adolescent 

sexual behavior. In subsequent models family structural background (SES, composition, 

and size), family support and supervision, peer influences and developmental risk factors 

(positive peer attachment, peer deviance, pubertal development, prior problem behavior, 

sociability, and reading ability) were added to assess the extent to which these person-

level factors account for racial and ethnic differences in the timing of first intercourse. In 

a study conducted by Bradshaw, Buckley, and Ialongo (2008) discrete-time survival 

analysis was used to model two service use variables (mental health, special education) in 

Grades 1–9 as a function of early symptom class membership. For this study, the event of 

interest was defined as the first receipt of services (mental health, special education) for 

each student. The timing of the event was recorded in discrete-time intervals (grade of 

first service receipt) so that discrete-time analysis could be used for modeling this event. 

The hazard probability of first service use in a given grade (i.e., the probability of a 

student experiencing a service use in that grade provided that a student had not used a 

service in an earlier grade) was related through a logistic function to early problem class 
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membership. The nine variables that captured each student's grade in which he or she first 

used mental health services (between first and ninth grade) were coded either 1 if the 

service occurred or 0 if it did not. Once service use occurred, the remaining binary 

indicators were coded as missing, because the focus was on the first service use (because 

of its implication for later problems and relevance for school-based preventive 

interventions). The same procedure was used to create the special education service use 

survival variables. Child-level covariates of race, sex, and free or reduced-cost meal 

status (in first grade) were also controlled. Kim and Gray (2008) used three-wave panel 

data from the Domestic Violence Experience in Omaha, Nebraska. This study employed 

a discrete-time hazard model to examine a woman’s decision to leave the situation in 

which violence occurred based on four factors: financial independence, witness of 

parental violence, psychological factors, and the police response to the domestic violence 

call. Before implementing the discrete-time hazard model procedure, the three-wave 

panel data set was rearranged to create a person-period data set for the analyses. Each 

respondent had a separate observation for every wave until the event of interest (i.e., 

leaving). Then a series of discrete-time hazard models were calculated to address the 

hypotheses of that study.  

Hawkins et al. (2008) explored effects of the Community Care intervention on 

initiation of delinquent behavior and substance use. Multilevel discrete-time survival 

analysis was used to assess the effects of the intervention on preventing the initiation of 

delinquent behavior and substance use between grades 5 and 7. Onset of substance use 

was measured by items consisting of the first reported lifetime use of any of four types 

drugs: alcohol, marijuana, cigarettes or other illicit drugs. Onset on delinquent behavior 
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was measured as first occurrence of any one of nine types of delinquent behavior. 

Students who did not initiate delinquent behavior or substance use, respectively, during 

sixth or seventh grades were treated as right-censored observations (i.e., never 

experienced the event). To assess effects on students who had not yet initiated these 

behaviors, students who had already initiated delinquent behavior (22.2%) or substance 

use (27.5%) prior to the intervention were not included in the analyses. The analysis was 

implemented using the logit function for the dichotomous outcomes. Student- and 

community-level variables were included in the model as covariates to control for 

possible community differences; the intervention condition was included in the model as 

a community-level variable; and random effects were included to account for variation 

among students within communities, communities within matched pairs of communities, 

intervention effects across matched pairs of communities, and residual error. The effect 

of the intervention was estimated as the adjusted within-matched pair difference in 

community-level hazard of onset between the intervention and control communities, 

assuming proportional hazards over time, and was tested against the average variation in 

hazard of onset among the matched pairs of the intervention and control communities. In 

the present study time variable and person-level variables are separated at two different 

levels. 

Other studies used survival analysis to model early substance use but not in a 

multi-level framework. Some studies that have not used survival analysis have identified 

parental involvement, monitoring, and support as protective factors that influence alcohol 

use. However, no studies have combined survival analysis with risk and protective factors 

with nested data with a multi-level analysis to provide unbiased estimates of substance 
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initiation the way it is done in this study. Furthermore, to my knowledge no study 

accounted for drug exposure, the importance of which was discussed in several research 

studies, within this approach that combines discrete-time event history analysis with 

multilevel structure. This methodological approach combines the best features of linear 

multiple regression and logistic regression and takes advantage of multilevel modeling 

characteristics that allows for more accurate error estimations and consequently more 

accurate predictions. In addition this method handles unknown events, i.e., missing data, 

the most accurately. 

Different statistical analyses lead to different estimates and results. The present 

study will investigate three different approaches in investigating substance use initiation 

where the major model will be the recently developed multi-level version of survival 

analysis, which combines the best features of logistic and linear regressions within a 

multilevel framework. The main objective of this study is to explore and compare this 

model with the more traditional statistical techniques of linear and logistic regressions.  

In the approach where the combination of survival analysis and hierarchical linear 

modeling is used there are five models that will also be compared with each other. It can 

be hypothesized that in the model where the beginning of the risk period starts at the age 

of first opportunity (AFO) the hazard rate of alcohol initiation will be higher compared to 

the model when the beginning of the risk period is set at age 4 (Based on the research 

studies reviewed about significance of AFO). The present study was more exploratory 

and we did not put much emphasis on formulating precise hypotheses. 
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CHAPTER III 
 
 

METHODS 

 This chapter presents the information about study participants, questionnaires that were 

used, description of how study variables were operationalized and data analysis strategies. The 

data for this study were collected in Venezuela for Dr. Ronald Cox's dissertation in 2007. Thus all 

the information about study participants, schools, and questionnaire used has already been 

reported in his dissertation (Cox, 2007). 

Conceptual Definition of Variables 

Initial opportunity to try alcohol and initial alcohol use are assessed by individual 

level variables, Age of first opportunity of using alcohol (AFO) and Age of first use of 

alcohol (AFU), correspondingly.  

Age of first opportunity of using alcohol (AFO) – is conceptualized 

retrospectively by posing the question about the age when a participant remembered 

having a first opportunity to use alcohol. 

Age of first use of alcohol (AFU) – is conceptualized retrospectively by asking 

questions about the age of first use of alcohol. 

Family Attention (FA) – is conceptualized as the extent to which parents or 

guardians monitor their youth’s behavior and demonstrate positive communication with 

their offspring. 
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 Externalizing Behavior (EXT) – is conceptualized as the extent to which an adolescent 

participates in delinquent behavior and engages in risky behaviors.  

 Socioeconomic Status (SES) – is conceptualized as the positioning of the adolescent in a 

social structure by evaluating a type of neighborhood of residence (housing project, apartment, or 

house), level of parental/guardian education, number of people and bedrooms in their residence, 

and number of vehicles owned by the family. 

Participants 

A total of 1,831 students of ages 11 to 19 from 14 schools were surveyed in two 

school districts in Caracas, Venezuela. To control for false responses, questions on the 

first use of a fake drug (Cadrina) were included in the questionnaire. Among the 1,831 

respondents, only 8 (0.4%) reported use of Cadrina. Under the assumption that mis-

statements about a fake drug may signal for falsely positive reports about other drug 

experiences or general response errors in the completed questionnaires, they were 

excluded from the study. Three students that had more than 50% missing data were 

excluded (Cox, 2007).  Thirty participants reported having age of first use of alcohol 

before they had an opportunity to use it and were excluded from the study. Additionally, 

five participants who reported using every substance once a day or more were considered 

outliers and were excluded. This left a total sample of 1,785 respondents.  

Of the 1,785 students included in the analysis 945 respondents (52.9%) were 

female and 18 (1%) did not report gender. The question about age had students place 

themselves into one of five age cohorts.  The first age cohort was from ages 11 to 12 

(5.9%, n=105). The second age cohort was 13 to 14 (33.0%, n=589). The third age cohort 

was from 15 to 16 (40.1%, n=715). The fourth age cohort was 17 to 18 (19.9%, n=355). 
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The fifth cohort was age 19 or above (1.0%, n=20). Only one person (.1%) did not 

respond to the item regarding age.  

 A total of 828 students (46.4%) were from private schools. High schools in 

Venezuela include five grades, 7th-11th. The sample was approximately equally 

distributed among the five grades with n=336 in 7th, n=334 in 8th, n=373 in 9th, n=367 in 

10th, and n=373 in 11th. The modal response to other demographic questions indicated 

that the most typical participants lived in the poorest housing area (n=1001, 55.4%), their 

families did not own a vehicle (n=706, 39.8%), lived in a home with 2-3 bedrooms 

(n=1096, 61.7%), and had 4-6 people living in their home (n=1090, 61.3%). Many 

respondents reported educational levels of the father and mother as having finished a post 

high school degree (n=540, 30.3% and n=536, 30.2% respectively) and 35.5% of fathers 

and 35.3% of mothers were reported as not having finished high school. 

Measures 

 The PACARDO-V questionnaire. Data for this study were collected using a 

modified version of the PACARDO questionnaire (which stands for PAnama, Central 

America, and Republica Domincana) questionnaire. The PACARDO was developed for 

use in a NIDA-funded grant “Cross-National Research in Clusters of Drug Use” 

(Dormitzer et al., 2004), and is a standardized self-administered questionnaire. It was 

previously administered to nationally representative samples of students in Central 

America, Panama, and the Dominican Republic and has 224 items (see Dormitzer, et al., 

2004; and Dormitzer, 2004, for more information including psychometric properties). 

The primary instrument employed in the present study, the PACARDO-V (with the 

addition of the V for Venezuela) was adapted from the original PACARDO. The final 
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version, PACARDO-V contains 112 items. Additionally, items from the PACARDO 

were modified in the PACARDO-V to reflect idiosyncrasies of the Venezuelan culture 

and language use and then pilot tested on this population (Cox, 2007). 

 Dependent variable in the study. Age of first alcohol use (AFU) was 

conceptualized as having tried alcohol the first time as measured in response to the 

standardized item, “How old were you first drank alcohol?” AFU is a continuous variable 

that ranged from 1 to 18 (0 = never used). Reported Age of AFU is continuous variable 

that ranged from 2 to 18. Frequencies of reported ages are presented in Table 3.1. and 

graphically in Fig. 3.1. 
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Table 3.1.   

Age of First Use of Alcohol 
AFU of Alcohol 

Age Frequency Percent (%) 

0a 333 18.70 

2 1 .10 

3 3 .20 

4 4 .20 

5 7 .40 

6 7 .40 

7 13 .70 

8 34 1.09 

9 47 2.60 

10 143 8.00 

11 124 6.90 

12 270 15.10 

13 280 15.70 

14 247 13.80 

15 186 10.40 

16 46 2.60 

17 29 1.60 

18 2 .10 

Subtotal 1776 99.50 

 Missing 9 .50 

Total 1785 100.00 

Note: a Age of 0 indicates never used alcohol according to the respondent 
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Fig. 3.1. Histogram of Age of First Use of Alcohol 
 
 Independent variables. Independent variables used in the study are: Age of First 

Opportunity (AFO) to use alcohol, Family Attention (FAM), Externalizing Behavior 

(EXT), Socioeconomic Status (SES), and Gender. These variables are chosen based on a 

literature review showing their significance as predictors or control variables of 

adolescence substance use. 

 Age of first opportunity of alcohol use (AFO) was conceptualized as having an 

opportunity to try alcohol as measured in response to the standardized item, “How old 

were you when you first had an opportunity to drink alcohol?” Reported AFO is a 

continuous variable that ranged from 2 to 16. Frequencies of reported ages are presented 

in Table 3.2 and graphically in Fig. 3.2. 
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Table 3.2. 

 Age of First Opportunity of Alcohol Use 

Age of First Opportunity of Alcohol Use 

Age Frequency Percent (%) 

0a 207 11.60 

2 1 .10 

3 3 .20 

4 9 .50 

5 23 1.30 

6 21 1.20 

7 33 1.80 

8 67 3.80 

9 92 5.20 

10 214 12.00 

11 154 8.60 

12 309 17.0 

13 261 14.60 

14 196 11.00 

15 144 8.10 

16 32 1.80 

17 11 .60 

18 1 .10 

Subtotal 1778 99.60 

Missing 7 .40 

Total 1785 100.00 

   
Note: a Age of 0 indicates no opportunity of using alcohol according to the respondent 
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Fig. 3.2.  Histogram of Age of First Opportunity of using Alcohol 

Family Attention, Externalizing Behavior, and Socioeconomic Status are 

operationalized as empirically derived composite scores, or indexes. Items that are 

selected for indexes are purposely selected to correlate to some external criteria and not 

necessarily to each other, in contrast to scales (Cox, 2007; Streiner, 2003). Thus some 

reliability estimates, such as Chronbach’s α coefficient, which measures internal 

consistency, or how items correlate with each other, might be negatively biased, or below 

a recommended reliability estimates, i.e. below .70. (Feldt & Charter, 2003). 

 Family Attention. The Family attention scale was adapted from Capaldi and 

Dishion (1988).  Family Attention is conceptualized as a combination of items reflecting 

parental or guardians monitoring, positive affect and communication. Family Attention is 

measured by the following eight items from the PACARDO-V questionnaire: 
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  V14. Are your parents or guardians aware of what you think or feel about things 

  that are important to you? 

  V15. Are your parents or guardians aware of your likes and /dislikes? 

 V16. I always ask my parents for permission when I go out and have fun. 

  V17. Do you feel that your parents or guardians care about you? 

  V18. Are your parents or guardians often aware of where you are and what you  

  are doing? 

V25. Do you frequently have discussions with your parents/guardian that end in         

  fights? 

V26.   My parents or guardians are always talking to me about how dangerous 

drugs are. 

     V27. My parents or guardians are always talking to me about how dangerous 

alcohol and cigarettes are. 

Each item on the scale is scored as yes/no response (no = 1; yes = 2) such that higher 

scores indicate more family attention (V25 was recoded to be in the same direction as the 

rest of indicators). For each observation, scores on these eight items are summed to create 

an index and then standardized for making it easily interpretable (mean = 0, SD = 1.0). 

Descriptive statistics and reliability coefficient, Chronbach’s α, are presented in  

Table 3.3 and graphically in Fig.3.3. 
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Table 3.3  

Descriptive statistics of Family Attention  

Family Attention 

Frequency   1519 

Missing  296 

Mean  .0000000 

Std. Deviation  1.00000000 

Chronbach's α (8)  .63 

Original reliability α (8)  0.70 

Skewness  -1.274 

SE (skew)   .063 

             Note: (8) indicates 8 items 
                          Original reliability is based on PACARDO (Dormitzer, 2004) 
 

 

Fig.3.3. Histogram of Family Attention 
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In addition confirmatory factor analysis (CFA) was performed to insure an 

adequate relationship between the items and the Family Attention construct defined by 

them. Confirmatory factor analysis was implemented using Mplus v5.1. statistical 

software.  Model fit was determined by four well-known fit indices that assess the 

magnitude of the discrepancy between the sample and fitted covariance matrices: Chi-

Square, Comparative Fix Index (CFI), Tucker-Lewis Index (TLI), and Root Mean Square 

Error of Approximation (RMSEA). With large samples adequate fit is indicated by a 

normed Chi square (χ2 model/df) ≤ 5 (Bollen, 1989), CFI > .95, TLI > .90 (Hu & Bentler, 

1999), and/or a RMSEA ≤ .05 (Kline, 2005) All fit indexes, indicated an adequate model 

fit (RMSEA 0.044, CFI 0.989, TLI 0.980). The Table 3.4 records the factor loading of the 

times on this latent construct. All loadings are above the conventional cut off point of .30. 

Table 3.4 

 CFA for Family Attention 

Construct Observed V Estimates 

Family Attention  

V14 .654 

V15 .589 

V16 .530 

V17 .395 

V18 .490 

V25a .424 

V26 .546 

V27 .560 

a  Reversed scored 
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 Externalizing Behavior. Externalizing behavior (EXT) on the original 

PACARDO was adapted from the Drug Use Screening Inventory (Tarter & Hegedus, 

1991) for use in research on non-clinical samples (as cited in Cox, 2007). EXT is 

operationalized as a composite score on the following items from PACARDO-V 

questionnaire:  

       V38.  Have you ever belonged to a gang? 

V40. Have you intentionally damaged another person’s belongings during the 

last school year? 

V41. Have you stolen anything during the last school year? 

V42. Have you done anything risky or dangerous during the last school year?  

V43. Is it true that the majority of the time you don’t do your homework?  

V47. Have you skipped school two or more days in a single month during the 

last school year? 

V48. Have you ever been suspended from school?  

V49. Have your grades gotten worse during this past year? 

V51. I have seriously thought about dropping out of school. 

 Each item on the scale was scored as a yes/no response (no = 1; yes = 2) such that 

higher scores indicate more externalizing behavior problems. For each participant, 

scores on these nine items are summed up to create an index and then standardized for 

easier interpretation (mean = 0, SD = 1.0). Descriptive statistics and Chronbach’s α, are 

presented in Table 3.5 and graphically in Fig.3.4. 
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Table 3.5  

Descriptive statistics for Externalizing Behavior 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
             

     Note: (9) indicates nine items; 
               Original reliability is based on PACARDO (Dormitzer, 2004) 
 

 

Fig. 3.4. Histogram for Externalizing Behavior 

Externalizing Behavior 
Frequency   1671 
Missing  144 
Mean  .0000000 

Std. Deviation  1.00000000 

Chronbach's α (9)  .64 

Original reliability 
α(19) 

 .83 

Skewness  .816 

SE (skew)   .060 
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A confirmatory factor analysis was employed to test for the fit of the items to the 

Externalizing Behavior construct. CFA revealed an adequate fitting model (χ2 /df < 5). 

Additional fit indexes also suggested a good fit RMSEA (.045), CFI (.981), and TLI 

(.961). CFA showed good factor loadings for the Externalizing Behavior latent construct 

(all above .40), presented in Table 3.6. 

Table 3.6  

CFA for Externalizing Behavior 

Construct Observed V Estimates 

Externalizing 
Behavior  

V38 .653 
V40 .586 

V41 .530 

V42 .398 

V43 .489 

V47 .428 

V48 .541 

V49 .565 

 V51 .418 

 

 Socioeconomic Status. Socioeconomic Status (SES) was measured as a 

composite score of the following five items from PACARDO-V questionnaire: 

V6. What type of neighborhood do you live (ordinal scale scored 1-3). 

V7. How many vehicles does your family have (ordinal scale scored 1-5)? 

V9. How many bedrooms does your house have (ordinal scale scored 1-5)? 
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V12. What academic grade did your father (or the person who is like your 

father) achieve (ordinal scale scored 1-5)?  

V13. What academic grade did your mother (or the person who is like your 

father) achieve (ordinal scale scored 1-5)? 

For each observation, scores on these five items are summed and then the sum 

standardized for interpretability (mean = 0, SD = 1.0). Larger number on scale indicated 

better neighborhood, more vehicles, bedrooms, and higher level of education. Descriptive 

statistics of SES are presented in Table 3.7 and graphically in Fig. 3.5. 

Table 3.7 

 Descriptive Statistics for Socioeconomic Status 

 

 

 

 

 

 

 

SES 
Frequency   1774 

Missing  41 

Mean  .0000000 

Std. Deviation  1.00000000 

Chronbach's α  .64 

Skewness  .116 

SE (skew)   .058 
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Fig. 3.5. Histogram for SES 

A confirmatory factor analysis for SES showed an adequate fitting model (χ2 /df < 

5). Additional fit indexes also suggested a good fit RMSEA (.035), CFI (.978), and TLI 

(.981). CFA showed adequate factor loadings for Socioeconomic Status latent construct, 

as presented in Table 3.8. 

Table 3.8 

 CFA for SES 
Construct Observed 

V 
Estimates 

SES BY 

V6 0.653 

V7 0.589 

V9 0.52 

V12 0.398 

V13 0.49 
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 In this study I considered three different approaches to model the outcome of our 

interest (alcohol initiation), which are: 1) combination of Survival Analysis with 

Hierarchical Linear Modeling; 2) Multiple Regression; and 3) Logistic Regression. 

Before analyzing different statistical models I utilized descriptive analysis to characterize 

the sample. 

Descriptive Statistics 

 Determining age of participants. Exact ages of the participants when they were 

interviewed were not readily available from the data, because they indicated which of 

five age cohorts they belonged to in 2-year age groupings. Which of the two ages in any 

age cohort was estimated by cross tabulating age by their reported school grades.  Table 

3.11 shows the most common ages in each grade, ranging from age 13 for 7th graders to 

17 for 11th graders. Children in each grade were assigned the modal age for that grade or 

the nearest age to that modal age that fell within their reported 2-year age cohort. Table 

3.11 shows the estimated interview age for each combination of grade and age cohort. 

  



 

56 
 

Table 3.9 

 Crosstabulation of Age by School Grade 

  School grade 
Age    7th  8th 9th 10th 11th Total 

11-12 Count 103 4 0 0 0 107 

 %within age 96.3% 3.7% 0.0% 0.0% 0.0% 100.0% 

 Estimated interview age 12 12     

13-14 Count 207 271 114 5 2 599 

 %within age 34.6% 45.3% 19.0% 0.8% 0.3% 100.0% 

 Estimated interview age 13 14 14 14 14  

15-16 Count 28 60 242 280 115 725 

 %within age 3.9% 8.3% 33.4% 38.7% 15.8% 100.0% 

 Estimated interview age 15 15 15 16 16  

17-18 Count 1 9 22 86 243 361 

 %within age 0.3% 2.5% 6.1% 23.7% 67.5% 100.0% 

 Estimated interview age 17 17 17 17 17  

≥19 Count 0 0 0 3 17 20 

 %within age 0.0% 0.0% 0.0% 15.0% 85.0% 100.0% 

 Estimated interview age    19 19  

Total  Count 339 344 378 374 377 1812 

  %within age 18.7% 19.0% 20.8% 20.6% 20.8% 100.0% 

Note. Boldface used to indicate the modal age group for each grade. 

 Descriptive analyses were performed to describe the sample by demographic 

characteristics in different ways: to assess the opportunity to use alcohol and alcohol 

initiation by gender, age cohorts, socioeconomic status, and school type (public vs. 
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private), to calculate the percentage of the sample that reported alcohol initiation before 

the interview year and during the interview year, which shows what part of the sample 

will be dropped (the reasons for discarding some information about the sample is 

discussed later).  

Combination of Survival Analysis and Hierarchical Linear Modeling  

 Three models were constructed when we used this recently developed 

methodology of combining survival analysis and hierarchical linear modeling. The 

models that were developed utilizing this analysis are known in literature as Hazard 

Models because they estimate the hazard rate of event occurrence. The description of 

how models were developed is presented below. 

 Model 1 - Time from first opportunity to first use. A combination of 

hierarchical linear modeling with discrete-time survival analysis will be used to predict 

the time between the age of first opportunity of using alcohol to the first use of alcohol. 

This uses a two-level hierarchical linear model with censored data. 

 First the base model was tested to investigate the hazard rate of alcohol initiation 

by years from the age of first opportunity, which are considered as occasions nested 

within students.  Predictors considered as second level variables are person-related 

variables: family attention, externalizing behavior, socioeconomic status, age of first 

opportunity of using alcohol, and gender. Effects of all these independent variables on the 

hazard rate of alcohol initiation were tested.  

 Combination of survival analysis and HLM. The discrete time event history 

analysis  requires a person-period data set (Singer & Willet, 2003). The construction of 

the data set is adapted from Reardon et al. (2002). For each individual, the data contains a 
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set of dummy variables starting with the AFO year and including each year after the 

AFO, until either the first use of alcohol (AFU) or the year before the interview year, 

whichever comes earlier. This way, each year from AFO until either AFU or their age at 

the interview is given a dummy variable to indicate whether alcohol initiation occurred 

during that year. Dummy variables indicate whether an individual ever initiated alcohol 

and the age at which that occurred, specifically in how many years after AFO.  

Participants who did not initiate alcohol during the observation period are 

censored. According to Singer and Willett (2003), the validity of hazard analysis is based 

on the assumption that censoring is noninformative and right-censored. Censoring is 

noninformative if it is independent of event occurrence. In the present study all 

participants who remained after the censoring date are assumed to be representative of 

everyone who would have remained without censoring because the observation period 

ended. In the present study right censoring is used because the duration of time until 

initiation is not known because the event occurrence of alcohol initiation has not been 

observed. Censoring occurs at the same point in time for all individuals, which is also 

called fixed censoring and making any further assumption about the nature of censoring 

is unnecessary (Allison, 1984). Thus the partial age year they were interviewed, all years 

after their interview year, and all years after the first year of alcohol use (AFU), i.e., 

alcohol initiation, will be dropped. Following Reardon et al. (2002), partial age year was 

dropped so that it would not influence (downward) the hazard rate at that age because 

those individuals who did not report initiating alcohol at the interview year should have 

also remained in the sample and would have been treated as non-initiators when in fact 

they could have initiated alcohol later that year had they been observed for the entire 
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year. Even though some data from the sample would be discarded, it reduces the bias of 

the estimated hazard rate, which leads to a more accurate estimation of the model.  

A sample of the data is presented in Table 3.12 to visualize censoring and timing 

of alcohol initiation, also called event occurrence.  
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Table 3.10 

 Sample Person-Period Data Set 

ID AFO AFU 
Age at 

Interview 

  Years from AFO (dummy variables)   
Alcohol 
Initiation   Year   

1 
Year 

2 
Year 

3 
Year 

4 
Year 

5 
Year 

6   

1 12 13 14  1 0 0 0 0 0  0 

1 12 13 14  0 1 0 0 0 0  1 

             

2 11 15 15  1 0 0 0 0 0  0 

2 11 15 15  0 1 0 0 0 0  0 

2 11 15 15  0 0 1 0 0 0  0 

2 11 15 15  0 0 0 1 0 0  0 

             

3 8 13 16  1 0 0 0 0 0  0 

3 8 13 16  0 1 0 0 0 0  0 

3 8 13 16  0 0 1 0 0 0  0 

3 8 13 16  0 0 0 1 0 0  0 

3 8 13 16  0 0 0 0 1 0  0 

3 8 13 16  0 0 0 0 0 1  1 

             

4 13 0a 19  1 0 0 0 0 0  0 

4 13 0 19  0 1 0 0 0 0  0 

4 13 0 19  0 0 1 0 0 0  0 

4 13 0 19  0 0 0 1 0 0  0 

4 13 0 19  0 0 0 0 1 0  0 

4 13 0 19   0 0 0 0 0 1   0 

aRight-censored (missing) AFU. 
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For each student, the first row represent the year of their AFO. The last row represents 

either the year they initiated alcohol use (AFU) or the year prior to their age at the time of 

the interview (due to right censoring of the data as discussed above). For example, for 

participant 2 the information about his or her alcohol initiation is discarded because AFU, 

or alcohol initiation, happened at the age of the interview and therefore is censored. For 

participant 3, the last year from AFO shows that six years have passed since AFO before 

he or she initiated alcohol. This type of censoring gives unbiased estimate of hazard rates 

as shown by Malacane, Murphy, and Collins (1997). 

 The research objective of the study is to examine the effect of years from the AFO 

of alcohol use and also the effects of person-level variables, such as family attention, 

externalizing behavior, socioeconomic status, and gender (independent variables 

described above) on the likelihood of initiation of alcohol at each age. To accomplish this 

task, event history analysis needs to be combined with multi-level modeling, which is 

also called hierarchical linear modeling (HLM) according to Raudenbush and Bryk 

(2002). Employing hierarchical linear modeling with censored data is considered to be 

the most appropriate method for investigating predictors of the hazard rate of event 

occurrence (Reardon et al., 2002). Again, the rationale for taking a hierarchical linear 

approach is to account for the nested structure of the data. Dummy coded years from 

AFO are nested within persons and all above mentioned independent variables and are 

incorporated as Level-2 variables (distinct from Reardon et al., 2002, who put time- and 

person-level variables at Level-1). By arranging the variables this way we take the full 

advantage of multilevel modeling, which incorporates different error terms for different 

levels resulting in Type 1error rates than nonhierarchical methods (Singer & Willet, 
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2003). In this study two-level hierarchical linear modeling with censored data will be 

used and estimated by the HLM version 6 statistical program.  

First, a discrete-time hazard model would be estimated to observe the hazard rate 

of alcohol initiation based on years from AFO for every year until initiation or censoring. 

The most convenient way to estimate this Level-1 model is the logit link function because 

this model is binary (Raudenbush & Bryk, 2002). Definitions of the logit and link 

function can be found in Raudenbush and Bryk (2002). By definition, the logit function 

in logistic regression is a special case of the link function for a binary outcome variable. 

The link function itself is a transformation and is used to model responses when a 

dependent variable is supposed to be nonlinearly related to the predictors. The Logit link 

function is represented by the equation: 

ηij = log (hij / (1- hij)), where hij is the hazard of alcohol initiation for person i at 

year j from AFO.  

In fact, logit is the log-odds of hij, where odds are the ratio of two probabilities for any 

mutually exclusive binary states (as was defined before).  

Predictors considered as second level variables will be person-related independent 

variables:  AFO of alcohol use, family attention, externalizing behavior, socioeconomic 

status, and gender. Their effect on the hazard rate of alcohol initiation will be analyzed. 

Model 2(a) - Time from age 4 to first use. The differences between this model 

and Model-1 are: 1) the beginning time in Model 2 is set at age 4 and not at AFO of 

alcohol (which is the beginning time in Model-1) and 2) controlling for AFO at level 2 

when AFO is recoded so that participants who reported not having an opportunity of 

having alcohol are estimated to have their first opportunity at the year after the year they 
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were interviewed. This way of recoding for AFO seems to be reasonable because it takes 

into consideration the distribution of AFO. We can see from Fig 3.1 that the mode of the 

distribution is 12 after which the frequency of AFO decreases. Recoding AFO for those 

students reporting no opportunity to the age of the interview plus one year roughly 

mimics the shape of the distribution of AFO and the possibility of having the opportunity 

to try alcohol the year after the interview. Person related variables, family attention, 

externalizing, behavior, gender and socioeconomic status will be covariates at level-2. 

Here also a combination of hierarchical linear modeling with discrete-time survival 

analysis will be used to predict the time from the age of 4 to the first use of alcohol. The 

effect of the same covariates on the hazard rate of alcohol initiation will be also analyzed. 

Model 2(b) – Without controlling for AFO.  This model is analogous to Model-

2(a) with the exception that it does not control for the effect of AFO of alcohol (at level-

2) on the hazard rate of alcohol initiation. Here also a combination of hierarchical linear 

modeling with discrete-time survival analysis will be used to predict the time from the 

age of 4 to the first use of alcohol and possible effects of family attention, externalizing 

behavior, gender, and socioeconomic status on the hazard rate of alcohol initiation. 

Multiple Regression Analysis Model 

The main response variable in this second approach where we used multiple 

regression analysis is the year of first use of alcohol, which was described above. 

According to Cox (2007)  youth reporting first drug use from ages 2-3 would most likely 

need to rely on a third person report due to memory limitations of very young children 

(i.e., 1-3).  There were four cases that reported such a young age of alcohol consumption 

and they will be discarded from the analysis. Due to the high frequency of reporting 
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“never used alcohol” (coded as 0), the distribution of AFU of alcohol is bimodal. 

Therefore, regression analysis cannot be used since bimodal distribution violates the 

assumption of homogeneity of variance and normality. Even more importantly, a valid 

score on a relevant age is missing and thus cannot be included in multiple regression 

analysis of the age of first use. To adjust for this assumption, cases reporting AFU as 0 

will be excluded from the analysis. Therefore multiple regression analysis will 

accommodate the modeling of AFU and make it possible to evaluation the effects of 

independent variables on the age of first use of alcohol. Similar to Model 2, multiple 

regression was done with and without incorporating the age of first opportunity as a 

predictor. I did not take into consideration the fact that students were nested within 

schools as did Cox (2007) in his study, to make it easier to compare multiple regression 

models with previously introduced discrete time hazard models.  

Logistic Regression Analysis Model 

The main response variable, AFU of alcohol was dichotomized when we 

constructed a model using logistic regression analysis. Participants who reported no use 

of alcohol were coded as 0 and all other responses were coded as 1. Logistic regression 

analysis was utilized to evaluate the influence of the age of first opportunity to use 

alcohol, family attention, externalizing behavior, gender, and socioeconomic status on 

alcohol initiation. Again, this approach only allows determining alcohol initiating vs. no-

initiating by the time of the interview. Logistic model is represented by the following 

equation: 

logit(P(Y = 1)) = ln[(P(Y = 1)/P(Y = 0)] = b0 + b1X1 + b2 X2 + …+ bn Xn, 
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where P is the probability of event occurrence (alcohol initiation); Y is the indication of 

alcohol initiation (yes=1, no=0); Xk are independent variables; and bk are logistic 

regression coefficients, i.e., parameter estimates. 

In the present approach covariates are the same as in previous models, i.e., the age 

of first opportunity to use alcohol, family attention, externalizing behavior, gender, and 

socioeconomic status. The same logistic regression model without incorporating the age 

of first opportunity to use alcohol was also estimated. 
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CHAPTER IV 
 
 

RESULTS 

Descriptive Statistics  

The descriptive analyses were conducted to provide more detailed information 

about variability of alcohol use and opportunity to use alcohol by some demographic 

characteristics of the sample.  Among 942 females included in the study, 183 (19.4%) 

reported never having tried alcohol, and out of 816 males, 146 (17.9%) reported never 

having tried alcohol, as shown in Fig. 4.1.  

 

 
 
 

Fig. 4.1. Estimated Percentages of Participants Using Alcohol by Gender 

Out of 942 females who participated in this study 12.5% (118) of them never had 

an opportunity to try alcohol, whereas out of 818 male participants only 10.6% (87) 

males reported having no opportunity to try alcohol as shown in Fig. 4.2. 
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Fig 4.2. Estimated Percentages of Participants Who Had the Opportunity to Use Alcohol 

 The mean age of opportunity to try Alcohol was about 11.7 years old. Table 4.1 

depicts what percentage of the sample had an opportunity to try alcohol in relation to 

gender and other demographic variables such as age cohorts and school type (public vs. 

private). A larger percentage of males and youth in private schools were exposed to 

opportunities to use alcohol. However, chi-square tests of independence did not reveal 

any significant statistical differences between genders and types of school on the 

opportunity to use alcohol (χ² [1] = 1.5, p = 0.21 and χ² [1] = 1.3, p = 0.24 respectively). 
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Table 4.1.  

Demographics by Alcohol Use Opportunity  
   Alcohol Use Opportunity 
   Total Youth  No opportunity   Opportunity 
      N (100%)   N %   N % 
Age in years (mean (SD))     11.74a (2.5)b 

11-12   104  30.0 28.8  74.0 71.2 
13-14   587  104.0 17.7  483.0 82.3 
15-16   712  53.0 7.4  659.0 92.6 
≥17   374  20.0 5.3  354.0 94.7 
Gender          
Female   942  118.0 12.5  824.0 87.5 
Male   818  87.0 10.6  731.0 89.4 
SES          
Low   954  112.0 11.7  842.0 88.3 
High   784  88.0 11.2  696.0 88.8 
Type of School      
Public school  954  119.0 12.5  835.0 87.5 
Private school  824  88.0 10.7  736.0 89.3 

a Mean age.  
 b standard deviation. 
 

Table 4.2 shows the percentage of the sample that initiated alcohol and never 

initiated alcohol (with and without given an opportunity to try it) by gender, age cohorts 

and school type. The average age of first alcohol use was about 12.5 years old. Alcohol 

use seemed to be more common among males than females, though the difference was 

not significant (χ² [1] = 0.7, p = 0.41). There were no significant differences in alcohol 

use by type of school (χ² [1] = 0.6, p = 0.44) or socioeconomic status (SES) (χ² [1] = 0.5, 

p = 0.48). Among those who reported an opportunity to use alcohol, there are no gender 

differences in initiation of alcohol use (92.1% females initiated alcohol compared to 

91.9% of males who initiated alcohol). 
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Table 4.2  

Demographic Differences in Lifetime Prevalence of Alcohol Use 

a Mean age.  
 b standard deviation. 

Model Comparisons 

To model the age of first use of alcohol, three applications of discrete-time hazard 

models were conducted. Alcohol initiation was also analyzed using the more traditional 

statistical analyses of multiple regression and logistic regression for comparative 

purposes. All survival analyses represent modified versions of the Reardon et al. (2002) 

study and were implemented using the HLM software program. In contrast to Reardon et 

al. (2002), the present study implemented a two-level model with time-varying variables 

at Level-1 and person-level variables at Level 2. The advantage of implementing survival 

   Lifetime Prevalence of Alcohol Use 

   
Never 
Used   Used   Total   Never Used   Total (given 

opportunity) 

             100%  (given the 
opportunity)   100% 

      N %   N %  N  N % N 
Age (years) (mean (SD))    12.5a  (2.2)b       
11-12   46 44.2  58 55.8  104  16 21.6 74 
13-14   154 21.2  432 73.7  586  50 10.4 482 
15-16   94 13.2  617 86.8  711  41 6.2 658 
≥17   39 10.4  335 89.6  374  19 5.4 354 
Gender               
 Female   183 19.4  759 80.6  942  65 7.9 824 
 Male   146 17.9  670 82.1  816  59 8.1 729 
SES              
 Low   184 56.6  768 80.7  952  72 8.6 840 
 High   141 18.0  643 82.0  784  53 7.6 696 
School of 
attendance           

 
 

 Public school  185 19.4  768 80.6  953  66 7.9 834 
 Private school  148 18.0  675 82.0  823  60 8.2 735 
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analysis in HLM is that it can handle nested data. In the present sample years are nested 

within students, which are nested within schools. The school level (level-3) is not 

included here to simplify the analyses and to maximize the comparability among all five 

models. Prior to performing a multi-level survival analyses, a person-period data set was 

constructed and data arranged accordingly, as was discussed in details in Chapter Three. 

The three hazard models differ first on whether the analyses started following 

children from the time when they had their first opportunity to use alcohol or from age 

four. There are two versions of survival analysis that observe children by age starting at 

age four, because the results depend upon whether Age of First Opportunity was included 

as a predictor. 

Two-Level Discrete-Time Hazard Model 1. The first survival analysis estimates 

the number of years that children “survive” until they used alcohol starting with their age 

of first opportunity. This was estimated from the year-by-year hazard rate (probability) of 

initiating alcohol use. After estimating a baseline model of how the hazard rates changed 

during these years, person-level variables were added to determine whether they predict 

increased or decreased hazard rates of using alcohol. Person-level variables included 

gender, socioeconomic status (SES), family attention (FAM), externalizing behavior 

(EXT), and age of first opportunity of using alcohol (AFO). As was already mentioned in 

a previous chapter, right censoring is used in this analysis.  For every participant, the last 

possible year in the data is the year prior to the interview year following Reardon et al. 

(2002), because the interview year was only a partial year. In addition, right censoring 

eliminated all years after their interview year. All years after the first use of alcohol were 

also dropped from the analyses. Out of 1774 students, 1248 (70.3%) reported alcohol 
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initiation prior to their interview year, 174 (9.8%) reported alcohol initiation during their 

interview year, and the rest of them did not report alcohol initiation. We found that for 19 

(1.1%) students alcohol initiation supposedly occurred after the estimated age at which 

they were interviewed. This result is impossible, but is due to the approximate estimation 

of interview age.  

  We began by estimating a baseline two-level model in the Hierarchical Linear 

Modeling software package that does not include person-level predictors and includes 

only a random effect on the intercept. Here YRij is a dummy indicator of year j, starting 

from the AFO of alcohol use for person i, which defines the entire hazard curve of 

alcohol initiation. The baseline discrete-time hazard model is represented by the 

following equation at Level 1:   

                                  ηij = ln (hij / (1- hij)) = β0i + [β1YR1  + β2YR2 + … + β8YR8] =                    

β0i + ∑ βji (YRij)                                            (1) 

where ηij is the log odds of alcohol initiation, hij is the hazard rate of probability of 

alcohol initiation, YRij is a dummy indicator of year j from AFO for student i, the 

coefficients β1, β2, … β8 are the intercept parameters indicating the conditional log odds 

that students whose covariate values are all zero will initiate alcohol use in each jth year, 

given that they have not initiated alcohol in prior years. The β0i parameter is the Level-1 

intercept. 

Person-level variations in the log odds will be added at Level 2 in HLM. For the 

baseline model, the Level-2 equations are: 

                                                           β0i = u0i                                                                        

                                                                βji = γi0, for all j years. 

(2) 
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where u0i is the random effect of Level-2 person level variables. Note that β0i is predicted 

only by the random effect, not by the usual Level-2 intercept. This sets the overall mean 

intercept to 0 for the entire sample, which makes the βji coefficient for each dummy code 

an estimate of the log odds of alcohol initiation for that year, which together can be used 

to estimate the baseline hazard curve across those years. The γj0 coefficients set each βji 

coefficient equal to a Level-2 intercept. 

 Variations in the βji coefficients in magnitude and direction over the years 

observed define the shape of the logit hazard function and estimate how the risk of 

alcohol initiation increases, decreases or remains stable over time. Table 4.3 depicts the 

estimated parameters of the baseline model. The results show that the log odds of alcohol 

initiation are the highest at the age of first opportunity to try alcohol and then it declines 

till the 6th year from the age of first opportunity. At the 6th year from AFO the log odds 

of alcohol initiation increases. The statistical tests in Table 4.3 test whether the log odds 

differ significantly from zero, which is equivalent to testing whether the odds differs from 

1 or whether the hazard differs from 0.5. The multivariate hypothesis test option in HLM 

can be used to test whether the log odds vary between two years. For instance, 

differences between the log odds of the hazard of alcohol initiation at the 5th and 6th years 

were tested with one test vector using 1 and -1 for the coefficients being compared and 

zeroes elsewhere. The composite null hypothesis test for β5 = β6 was rejected (χ2 [1] = 

14.2, p < 0.01), which indicated that the log odds of the hazard of alcohol initiation 

significantly differ from each other for those two years.  
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Table 4.3.  

Two-Level Discrete Time Hazard Model 1 

  Model 1 (baseline)  Model 1  

Predictor  Log odds (SE)            Odds ratio   Log odds (SE)   Odds ratio 

Year 1   0.18** (0.05)  1.19   0.02 (0.14)  1.02 

Year 2   -0.44** (0.09)  0.64  -0.45** (0.16)  0.63 

Year 3   -0.39** (0.12)  0.68  -0.20 (0.17)  0.82 

Year 4   -0.59** (0.16)  0.55   -0.27 (0.28)             0.76 

Year 5   -1.12** (0.24)  0.32  -0.69* (0.27)             0.50 

Year 6  0.05 (0.25)  1.05  0.71* (0.29)                                         2.03 

Year 7  -0.54 (0.41)  0.58  0.28 (0.44)  1.31 

Year 8  -1.09 (0.65)  0.34       -0.24 (0.67)  0.78 

AFO                                            0.23**(0.02)  1.27 

FAM      -0.04 (0.04)            0.96 

EXT      0.04 (0.05)  1.04 

SES      0.12**(0.05)  1.12 

Gender      0.11 (0.09)  1.12 

-2LL  
            
3780.88    3797   

SE - Standard Error; LL - Log Likelihood  
*p < 0.05. **p < 0.01.   
       

A graphical picture of the timing of alcohol initiation is provided by the hazard 

function (Fig. 4.3). The shape of the hazard curve is determined by the βj coefficients and 

was obtained by converting the log odds of alcohol initiation for each year to hazard 

probabilities for those years by computing φij = 1/ (1 + exp{-ηij}), where ηij is the log of 

the odds of alcohol initiation. 
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Fig. 4.3. Baseline Hazard Curve of Alcohol Initiation (Model 1) 
 

This hazard curve depicts the overall shape of the hazard of alcohol initiation 

when there are no effects of covariates but nesting of occasions within persons is taken 

into consideration. It shows that more than 50% of the participants in the study were 

likely to initiate alcohol during the first year they had an opportunity to try alcohol. After 

the first year from AFO the hazard curve declines and then increases again at the 6th year 

and then declines again.  

The following figure depicts the survival probabilities until alcohol initiation for 

the baseline model (Fig. 4.4.). Each year shows the estimated proportion of the sample 

that has yet to initiate alcohol use during the observation period up to that year. Note 

that less than 10% of the sample remains in the risk set during the 6th year, which makes 

year-to-year changes in hazard rates less stable due to the smaller n.  
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Fig. 4.4. Baseline Survival Curve of Alcohol initiation (Model 1). 

The next interest in building this model was to investigate the effects of person-level 

covariates on the overall elevation of the hazard curve of the model. According to the 

proportional odds assumption, covariates can increase or decrease the hazard rate by the 

same proportion at all ages, while the overall shape of the hazard curve remains the same. 

The two-level discrete-time hazard model (Model 1) can be expressed in the following 

form, starting with the following equation at Level 1: 

                                                           8 
             ηij = log (hij /(1- hij)) = β0i + ∑ βji (YRij)                                              (3) 
                                                                                       j = 1 
The equations at Level 2 are: 
 
                  5 

                     β0i = ∑ γ0nXin + u0i                             (4) 
               n = 1 

   β ji  = γi0

where Xin  (n = 1, 2,…, 5) are five person-level covariates for person i, β ji are intercept 

parameters, one per year, for eight years in the survival analysis, YRij is a dummy 

indicator  of year j, and u0i is a random effect of person-level variables. This model does 

not include a γ00 intercept on the Level-2 equation for β0i because there is no omitted 

, for all j years 
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dummy variable. By omitting the γ00 intercept, the coefficient for the dummy indicator for 

each year is the log odds of alcohol initiation occurring in that year, conditional on all 

person-level variables equaling zero. 

This model assumes that the effects of all Level-2 covariates on the hazard 

probability are the same for each time interval, i.e., that the log odds difference is 

constant over time. This assumption is referred as the proportional odds assumption 

(Singer & Willet, 2003). Each covariate can only predict changes in the intercept, not in 

distinct changes for specific years. This assumption can be tested for every covariate 

included in the model. The test is whether the effect of a covariate differs for different 

years in the data, i.e., and Xin*Yearij interaction. Following the example from Reardon et 

al. (2002), the level-two proportional odds assumption can be tested by first creating 

cross-product vectors by multiplying each covariate Xin by each dummy- coded year 

vector YRij.  These interaction vectors Xin*YRij were added to the Level-1 model along 

with the main effect of Xn at Level 2 for one covariate at a time. As Reardon et al. (2002) 

indicate, the crucial test is that the coefficients for all of the cross-product terms are equal 

to each other, except for random variations. To test this assumption in the HLM 

multivariate test option, we created k-1 vectors (e.g., 8 - 1 = 7), each with -1 for the 

reference year, 1 for another year, and zeroes elsewhere (Reardon, personal 

communication, July 9, 2011). This is similar to the usual method for testing the main 

effect of a categorical factor in multiple regression with effect coding (Pedhazur, 1997).  

The chi-square test for this interaction was tested for every covariate and did not show 

any significant variations of the effects of a given covariate over the observed years from 
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AFO (χ2 [8] ≤11.78, ps > 0.2). Thus the null hypotheses were not rejected, supporting the 

proportional odds assumption for each covariate. 

Results for the final Two-level Discrete Time Hazard Model (Model 1) are given 

in the right-hand column of Table 4.3. The odds for the years now shows the hazard 

curve when all covariates are 0.  Age of first opportunity was centered at 10 and the rest 

of the predictors were z-scored except for gender.  Only two person-level variables, SES 

and AFO, had significant effects on the elevation of the overall hazard curve of alcohol 

initiation from the age of first opportunity. When the socioeconomic status of students 

increases by one standard deviation, or the AFO increases by one year, the log odds of 

alcohol initiation increases by 0.12 (p < .01) and 0.23 (p < .01), indicating 12% and 27% 

increases in the odds of alcohol initiation respectively.   

Two-Level Discrete-Time Hazard Model 2. Whereas Model 1 investigated the 

hazard rate of initiating alcohol use during years starting with the age of first opportunity, 

Model 2 estimates the hazard rate for chronological ages, starting from age 4. Model 2 

includes those participants who did not report the age of first opportunity to use alcohol, 

who were dropped in the previous Model 1 because there was no age of first opportunity 

for them to start the observation period. This is the main difference between Model 1 and 

Model 2 and all censoring issues that were discussed for Model 1 apply for Model 2. The 

present model includes two versions: the first one, Model 2 (a), controls for age of first 

opportunity and the second one, Model 2 (b), does not control for the age of first 

opportunity. 

The baseline discrete-time hazard model is represented by the following Level-1 

equation:   
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 ηij = log (hij / (1- hij)) = β0ι + [β4AGE4  + β5YR5 + … + β16AGE16]  =            (5)               

                                       β0ι +∑ βij (AGEij)       

where ηij is the log odds of alcohol initiation, AGEij is a dummy indicator of year j from 

age 4 for student i, the coefficients β4, β5, … β16 are the intercept parameters indicating 

the conditional log odds that students whose covariate values are all zero will initiate 

alcohol use in each jth year, given that they have not initiated alcohol in prior years.  

Person-level variations in the log odds will be added at Level 2 in HLM. For the 

baseline model, the Level-2 equations are: 

                                                                    β0i = u0i                                                                                  

                                                                     βij = γi0, for all j years. 

(6) 

where u0i is the random effect of Level-2 person level variables. 

The first data column in Table 4.4 depicts estimated parameters of the baseline 

model. The results show that the log odds of alcohol initiation hazard are very low at 

early ages. The log odds of alcohol initiation are the highest when students reach the age 

of 15, from which it decreases at age 16. Differences between the log odds of alcohol 

initiation at age 15 and 16 were tested utilizing a multivariate hypothesis test for fixed 

effects. The composite null hypothesis test for β15 = β16 was rejected (χ2 [1] = 11.5, p < 

0.01), which indicated that the log odds of alcohol initiation at age 15 and 16 

significantly differ from each other. 
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Table 4.4.  
Two-Level Discrete Time Hazard Model 2 

 

            
   Model 2 (baseline)  Model 2 (a)  Model 2 (b) 

Predictor    Log odds (SE)   Odds    Log odds (SE) 
Odds 
ratio  Log odds (SE)   

Odds 
ratio 

Age 4  -6.35** (0.58)  0.001  -28.53**(7.23) 0.001  -6.17**(0.59)  0.002 
Age 5  -5.65** (0.58)  0.004  -18.85**(4.20) 0.001  -5.47**(0.42)  0.004 
Age 6  -5.49** (0.38)  0.004  -13.25**(2.32) 0.001  -5.31**(0.39)  0.005 
Age  7  -4.86** (0.27)  0.008  -10.04**(1.17) 0.001  -4.68**(0.29)  0.009 
Age 8  -3.94**(0.18)  0.019  -7.63**(0.59) 0.001  -3.75**(0.21)  0.023 
Age 9   -3.55**(0.15)  0.029  -5.67**(0.37) 0.003  -3.35**(0.19)  0.035 
Age 10  -2.37**(0.09)  0.093  -3.89**(0.24) 0.020  -2.16**(0.14)  0.116 
Age 11  -2.39** (0.09)  0.091  -3.06**(0.21) 0.046  -2.15**(0.15)  0.116 
Age 12  -1.39**(0.07)  0.250  -1.32**(0.18) 0.265  -1.11**(0.13)  0.330 
Age 13  -1.04**(0.08)  0.356  -0.29 (0.18) 0.745  -0.72**(0.13)  0.486 
Age 14  -0.59**(0.09)  0.554  0.63**(0.20) 1.886  -0.22 (0.14)  0.799 
Age 15  0.09 (0.12)  1.091  1.82**(0.27) 6.196  0.52**(0.17)  1.691 
Age 16  -0.81**(0.24)  0.444  1.33**(0.42) 3.798  -0.36 (0.27)  0.694 
Fam. Attention      -0.07 (0.05) 0.929  -0.18**(0.04)  0.83 
Ext. Behavior      0.04 (0.05) 1.044  0.15**(0.04)  1.15 
SES      0.17**(0.05) 1.195  0.24**(0.04)  1.28 
Gender      0.07 (0.10) 1.078  -0.17*(0.07)  0.84 
AFO      - 0.19 (0.24) 0.83     
AFO* Age 4      -3.34**(1.00) 0.035     
AFO* Age 5      -2.30**(0.66) 0.100     
AFO* Age 6      -1.59**(0.44) 0.203     
AFO* Age 7      -1.25**(0.32) 0.284     
AFO* Age 8      -1.08**(0.27) 0.337     
AFO* Age 9      -0.82**(0.26) 0.440     
AFO* Age 10      -0.84**(0.25) 0.430     
AFO* Age 11      -0.71**(0.24) 0.491     
AFO* Age 12      -0.66**(0.25) 0.517     
AFO* Age 13      -0.56*(0.25) 0.572     
AFO* Age 14      -0.41 (0.25) 0.666     
AFO* Age 15      -0.34 (0.25) 0.715     

AFO* Age 16      -0.29 (0.26) 0.746     

-LL   22494.7       17118.6     22166.1     
Note. SE - Standard Error; LL - Log Likelihood.  
*p < 0.05. **p < 0.01. 
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The shape of a baseline Hazard Curve is presented in Fig.4.5. 

 

Fig. 4.5. Baseline Hazard Curve of Alcohol Initiation (Model 2) 

The hazard probability graph shows the likelihood of alcohol initiation when there 

are no effects of any covariates on the hazard of alcohol initiation (Fig. 4.5). Note that the 

near-zero hazard rates at young ages correspond to a flat survival curve, whereas the high 

hazard rate at age 15 corresponds to a steep decline in the survival curve (Fig. 4.6). There 

is a minimal risk of alcohol initiation until students become 10 years old, the age when 

the risk started increasing. A multivariate hypothesis test for fixed effects did not indicate 

a significant difference between participants at age 10 and 11 in their hazard of alcohol 

initiation (χ2 [1] = 0.02, p >0.5). Figure 4.5 shows that 52.2% of those who never used 

alcohol prior to age 15 do so during that year.  

The following figure shows the survival probability curve until alcohol initiation 

(Fig. 4.6).  
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Fig. 4.6. Baseline Survival Curve of Alcohol initiation (Model 2). 

 Model 2 (a). The next step in building this model is to explore the fixed effects of 

covariates on the hazard curve of the model, i.e., how its overall elevation varies in 

relation to gender, age of first opportunity, externalizing behavior, family attention and 

socioeconomic status. For this model, missing values for age of first opportunity were 

recoded as one year older than at the age of interview to ensure keeping the most 

participants in the analysis (as discussed in Chapter 2).  Note that the same estimate to 

replace missing values for AFO would not help in Model 1, because they would still have 

never entered the observation period before the interview age. This two-level discrete-

time hazard model (Model 2(a)) can be expressed in the form of the following equation:  

 ηij = log (hij / (1- hij)) = β0i + ∑ βji (AGEij),  j = 4, 5, …, 16        (7) 

The equations at Level 2 are: 
 
                                                                5 

                                                                   β0i = ∑ γ0nXin + u0i                             (8)     
                                                             n = 1 

                                  β ij  = γ
i0

  

, for all j years 
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where Xin  (n = 1, 2,…, 5) are five person-level covariates for person i, γj0 are intercept 

parameters for each year from age 4, AGEij is a dummy indicator  of each year from age 4 

to age 16, and u0i is a random effect of person-level variables. This model does not 

include a γ00 intercept on Level-2 equation for β0 i, because there is no omitted dummy 

variable for any year. By omitting the γ00 intercept, the coefficient for the dummy 

indicator for each year is the log odds of alcohol initiation occurring in that year, 

conditional on all person-level variables equaling zero.  

This model was also tested for the proportional odds assumption for Level-2 

covariates. Chi-square tests for all covariates except for AFO (χ2[12] = 87.636,  p < .01) 

did not show any significant differences between the effects of a given covariate across 

the years of observation  (all other χ2 [13] ≤ 16.80) , ps > 0.20) and thus we failed to 

reject the null hypotheses for the interactions of all covariates with age except for AFO. 

We may conclude that the effect of AFO on the log odds of alcohol initiation was not the 

same for every year starting from age 4. For the final estimation of the model, all 

interaction vectors of AFO*AGE were entered at Level-1 to model the interaction of 

AFO * Age. The results for the final Model 2(a) are presented in the middle data columns 

of Table 4.4.  Main effects for ages from age 4 to age 16 show hazard rates of alcohol 

initiation for males (due to coding them as zeros), when participants are at the grand- 

mean of AFO, Family Attention (FAM), Socioeconomic status (SES), and Externalizing 

behavior (EXT). The coefficients for the interaction vectors (AFO*AGEij) portray how 

the effect of AFO varies across ages. In these results, delaying a child's AFO by one year 

decreases the odds of alcohol initiation by 96.5% at age 4, but only by 25.4% at age 16. 

Only one person-level variable, SES, had a significant effect on the overall hazard of 
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alcohol initiation. Increasing SES by one standard deviation predicts elevation of the log 

odds of alcohol initiation hazard by 0.17, indicating a 19% increase of the odds of alcohol 

initiation for any given year. 

Because this model did not satisfy the proportional odds assumption and yielded 

extreme results for some combinations of age and age of first opportunity, the next model 

simplifies the survival analysis by dropping Age of First Opportunity as a predictor. 

Model 2 (b). This model is the same as previous Model 2(a) except that it does 

not include age of first opportunity as a covariate at Level 2. When the effect of AFO on 

the hazard of alcohol initiation was dropped, all other person-level covariates in the 

model became significant (last columns of Table 4.4). If students are from higher 

socioeconomic level and show more externalizing behavior the logs odd of alcohol 

initiation hazard increases significantly at each age. More precisely, every one standard 

deviation increase in SES and externalizing behavior increases the log odds of the hazard 

by γ = 0.24 (p < .01)  and  γ = 0.15 (p < .01), indicating 28% and 15% increases in the 

odds of alcohol initiation respectively.  If participants experience more family attention, 

e.g., an increase of one standard deviation, the log odds of alcohol initiation hazard 

decreases (γ = - 0.18, p < .01), indicating about a 17% decrease in the odds of alcohol 

initiation.  Gender also had a significant effect on the log odds of alcohol initiation, 

which are less for girls than for boys by γ = − 0.17 (p < .05), meaning that the odds of 

alcohol initiation for females are 16% less than for males.  

Multiple Regression Model. A less adequate analysis would be to use multiple 

regression analysis to predict the age of first use of alcohol (AFU) as a continuous 

dependent variable. Participants who reported not using alcohol were necessarily dropped 
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from this analysis because they had no age of first use. The purpose of using this model is 

to estimate the effects of the same covariates used in the previous hazard models to 

predict age of first alcohol use, i.e., Gender, Family Attention (FAM), Socioeconomic 

Status (SES), Age of First Opportunity (AFO).  This model is represented by the 

following equation: 

AFU = b0 + b 1 Gender + b 2EXT + b 3FAM + b 4AFO + b 5SES                          (9)  

where b0  indicates the intercept of the equation, i.e., the predicted age of alcohol 

initiation when all other predictors are zero including AFO at its centered value of 10. 

Each of b1, b2, b3, b4 and b5  coefficients indicated the predicted effect of that variable, 

controlling for all other predictors in the equation.  

Before implementing the regression analysis, a correlation analysis was conducted 

to check how the predictors are associated with each other and with the outcome. Results 

of the correlation analysis are presented in Table 4.5. 

Table 4.5.  
Intercorrelations of All Variables    
Variables        1 2 3 4    5 6 

1. AFU 1         

2. Gender 0.10** 1     

3. EXT - 0.12** - 0.19** 1    

4. SES - 0.19* - 0.11** 0.10** 1   

5. FAM 0.10** - 0.10** - 0.30** 0.04 1  

6. AFO  0.82** 0.14** - 0.15** - 0.18** 0.13** 1 

Note. AFU – age of first use of alcohol; EXT- externalizing behavior; SES – 
socioeconomic status; FAM – family attention; AFO – age of first opportunity of using 
alcohol; N = 1439; *p < .05, **p < .01 
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The correlation results showed that every predictor is significantly associated with 

the age of first alcohol use. The largest correlation is from age of first opportunity to try 

alcohol (r = 0.82, p < .01). The age of first opportunity is more strongly associated with 

the other predictors in the model than is age of first use, except for essentially equal 

correlations with SES.  

The results of the multiple regression analysis show that all predictors collectively 

account for a statistically significant proportion of the variance in predicting the age of 

first use of alcohol (F (5, 1390) = 562.75, p < .01). The model summary indicates that R2 

= 0.669 meaning that 66.9% of the variance in age of first use of alcohol can be explained 

by all the predictors included in the analysis. The standardized β coefficients show 

significance for AFO (β = 0.81, p < .01) and for SES ( β = - 0.04,  p = .01), which means 

that every standard deviation increase in AFO, will delay the age of first use of alcohol 

by 0.8 of a standard deviation when controlling for all other predictors, and every one 

standard deviation increase of socioeconomic status of participants will result in a 

decrease in the predicted age of first use of alcohol by 0.04 of a standard deviation after 

controlling for all other predictors in the model. 

Next we ran the same multiple regression model without controlling for age of 

first opportunity to compare this model to the survival analysis models. The equation for 

the model is represented by the equation: 

AFU = b 0 + b1 Gender + b2EXT + b3FAM + b4SES                                          (10)  

 The results of the multiple regression analysis show overall significance of 

predictors (F (4, 1391) = 20.37, p < .01) indicating a significant collective effect of the 

independent variables in predicting the age of first use of alcohol. The model summary 
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indicated that only 5.5% of the variance in age of first use of alcohol can be explained by 

the combination of gender, participants' externalizing behavior, family attention, and 

socioeconomic status (i.e., R2 = 0.055). All predictors have a statistically significant 

effect on predicting the age of first use of alcohol except for externalizing behavior (p = 

0.054). More precisely, the standardized β coefficients indicate (when controlling for all 

other predictors in the model) that increasing family attention by one standard deviation 

will delay the age of first use of alcohol by 0.10 standard deviation; a one standard 

deviation increase in externalizing behavior and in socioeconomic status were associated 

with  decreasing the first use of alcohol by 0.05 (β = - 0.054, p = .054) and .17 (β = - 

0.17, p = .01) of a standard deviation of the age of first use of alcohol respectively. The 

age of first use of alcohol for girls is 0.074 of standard deviation older than the age of 

first use for boys (β = 0.074, p < .01).  

 Logistic Regression Model. The last model that is considered in the present 

study predicts alcohol use by participants using a logistic regression analysis. Logistic 

regression analysis is used to analyze a dichotomous outcome. Logistic regression 

accomplishes this by predicting the logit transformation of the dichotomous outcome 

variable. Basically the logistic regression predicts the logit of the outcome from a set of 

multiple predictors while controlling for all other predictors in the model, similar to 

multiple regression. As was discussed earlier, the logit is the natural logarithm of odds of 

the outcome, i.e., P/ (1-P), where P is the probability of the outcome happening. In this 

model alcohol use is the outcome variable, which is obtained from Age of First Use of 

alcohol (AFU) by dichotomizing participant responses as 0 when they did not report an 

age of first use of alcohol and as 1 when they indicated an age of first alcohol use. 
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Among 1776 participants of the study, 333 (18.8%) reported never using alcohol and 

1443 (81.3%) reported using alcohol. We investigated if the likelihood of alcohol use is 

related to the same predictors that were used in previous models, i.e., Gender, Family 

Attention, Externalizing Behavior, and Age of First Opportunity to try alcohol (AFO). 

The equation for the relationship between the alcohol use (AlcUse) and predictors is 

represented by the following equation: 

               Logit (AlcUse) = b0 + b1 Gender + b2EXT + b3FAM + b4AFO + b5SES   (11) 

where b0  is the intercept coefficient, i.e., the log odds of alcohol initiation when all other 

predictors are zero;  and b1,  b2, b3, b4 and b5  indicate the expected change in the log odds 

of alcohol initiation for a one unit increase in the corresponding predictor when 

controlling for all other predictors in the equation. 

 The logistic regression analysis was carried out by the Logistic Regression 

procedure in SPSS v.18. By default the logistic regression analysis output first provides 

an estimate of an intercept-only model, which is also called the null or baseline model. It 

includes no predictors. An improvement over this baseline model is tested by examining 

two inferential omnibus statistical tests: the chi-squared and Score tests. Both tests 

produced the same conclusions for the present data (Table 4.6), namely that the logistic 

regression model with all predictors provides better estimates of who was most likely to 

use alcohol than the null model. For example, the score test indicates that the predictors 

as a group significantly improved the model.  
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Table 4.6 

Logistic Regression Analysis for estimating likelihood of Alcohol Use 

Predictor     b SE b 
Wald's  

χ² df p 
eb  

(odds ratio)   
Age of First Opportunity - 0.01 0.04 0.02 1 0.878     0.99  
Externalizing Behavior    0.26* 0.11 5.14 1 0.023     1.30  
Socioeconomic Status  0.13 0.10 1.57 1 0.210     1.13  
Family Attention  - 0.22+ 0.12 3.43 1 0.064     0.81  
Female Gender  - 0.08 0.20 0.16 1 0.690     0.92  
Constant  2.58** 0.16 253.23 1 0.001 13.16  
Test         χ² df p     

Overall model evaluation        

 Score test       14.45 5 0.013    

Chi-square    15.65 5 0.008   
Note: N = 1776 
*p< .05, **p< .01, +p = 0.06 
 

The statistical significance of each individual regression coefficient was tested 

using a Wald chi-square statistic (Table 4.6). According to Table 4.6 externalizing 

behavior is a significant predictor of alcohol use for participants from the study. The 

model suggests that youth who are higher on externalizing behavior are more likely to 

use alcohol (p = 0.02) In other words, an increase of one standard deviation in 

externalizing behavior increases the log odds of being in the alcohol use group by 0.26, 

which indicates a 30% (e 0.26 = 1.30) increase in the odds of alcohol use, holding all other 

variables constant. Family attention has only marginal significance in predicting having 

used alcohol. Namely, a one standard deviation increase in family attention decreases the 

odds of being in the alcohol user group by 19% (e -0.22 = 0.81). No other variables have a 

significant effect on the odds of being in alcohol users’ group in this model. 
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 Next I ran the same logistic regression without including the age of first 

opportunity in the equation (to follow the same procedures I used before). The equation 

for the model is represented by the equation: 

                             Logit (AlcUse) = b0 + b1 Gender + b2EXT + b3FAM + b4SES   (8) 

The results of the logistic regression showed overall significance of the model above the 

baseline model (Score test = 69.23, df = 4, p < 0.01). The statistical significance of 

individual predictors indicated that only two predictors, Externalizing Behavior and 

Family Attention significantly predicted the likelihood of alcohol initiation. More 

precisely, a one standard deviation increase in externalizing behavior increased the log 

odds initiation alcohol use by 0.43, which corresponds to increasing the odds of alcohol 

initiation by about 54% (e 0.43 = 1.537). A one-unit increase in family attention decreased 

the log odds of alcohol initiation by 0.36, which indicated decreasing the odds of 

initiating alcohol by about 30% (e - 0.36  = 0. 697). Effects of gender and socioeconomic 

status were not found to be significant in predicting odds of alcohol use.  

Comparing Models 

 A summary of the main results obtained from the five models are presented in the 

following table (Table 4.6). 
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Table 4.7 

Main Results of all Models 

  

Age of First 
Opportunity 

(AFO) 
Family 

Attention 
Externalizing 

Behavior 
Socioeconomic 

Status Gender 

Discrete Time Hazard 
Model 1 

γ  = 0.23 **; 
OR = 1.27 

γ = - 0.04 ; 
OR = 0.96 

  γ = 0.04 ;  
  OR = 1.04 

  γ = 0.12 **; 
OR = 1.12 

 γ = 0.11; 
 OR = 1.12 

Discrete Time Hazard 
Model 2      

Model 2 (a) Control for           
AFO 

γ = - 0.19N/A;  
OR = 0.83N/A 

γ = - 0.07; 
OR = 0.93 

 γ = 0.04;  
 OR = 1.04 

 γ = 0.17**; 
OR = 1.19 

 γ = 0.07; 
 OR = 1.08 

Model 2 (b) No control      
for AFO  

γ = - 0.18**; 
OR = 0.83 

 γ = 0.12**;  
 OR = 1.15 

 γ = 0.24**; 
OR = 1.28 

γ = - 0.17*; 
OR = 0.84 

Multiple Regression 
Model      
    Control for AFO β = 0.81** β = - 0.01   β = 0.01 β = - 0.04* β = - 0.02 

    No control for AFO  β = 0.10**   β = - 0.05*   β = - 0.17** β = 0.07** 

Logistic Regression 
Model      

Control for AFO b = - 0.01;  
OR = 0.99 

b = - 0.22+; 
OR = 0.81 

b = 0.26*; 
OR = 1.30 

    b= 0.13; 
       OR = 1.13 

b = - 0.08; 
OR = 0.92 

    No control for AFO  b = - 0.36**; 
OR = 0.70 

b = 0.43**; 
OR = 1.54 

    b = 0.07; 
      OR = 1.08 

b = 0.03; 
 OR = 1.03 

Note: γ -effect on hazard rate of alcohol initiation; β - standardized multiple regression coefficient; b - log 
odds of alcohol use; N/A – not applicable; *p< .05, **p< .01, +p = 0.06 
 

 Several points need to be considered regarding the estimated coefficients. 

Coefficients for discrete-time hazard models estimate the effects of covariates on the 

hazard rate of alcohol initiation equally over the years during which participants were 

observed. In the second hazard model (Model 2 (a)) the age of first opportunity of using 

alcohol did not have similar effects on years during the observation period and those 

estimated coefficients are not presented in the summary table. Due to a violation of 

proportional odds assumption for the age of first opportunity of using alcohol, the 
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coefficient for estimating the hazard rate of alcohol use is not applicable, as depicted in 

the summary table. Standardized regression coefficients from multiple regression predict 

the impact of covariates on the age of alcohol initiation for those participants who initiate 

alcohol use whereas the logistic regression coefficients estimate the likelihood of being in 

either the alcohol user or non-user group.  

Age of first opportunity seems to have the strongest predictive value for the first 

hazard model (Model 1) and for the multiple regression model. When the other predictors 

are significant, they naturally have opposite signs in multiple regression as in the 

corresponding hazard models. For example, higher Socioeconomic status (SES) predicts 

higher hazard rates of alcohol initiation (+γs and OR > 1.00), which results in a younger 

predicted age of alcohol initiation (-βs). SES appears to be a significant predictor in all 

models except for the logistic regression model. Externalizing behavior and family 

attention demonstrate similar patterns of statistically significant effects. In both cases, 

they significantly predict the timing of alcohol initiation only when age of first 

opportunity is not in the model. Similarly gender is a significant predictor of the age of 

first use only when the age of first opportunity is not incorporated in the models. 
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CHAPTER V 
 

 
DISCUSSION 

 The main purpose of this study was to compare different statistical approaches in 

modeling alcohol initiation. We did this by modeling age of first use of alcohol and investigating 

how it was affected by variables that have been shown in the literature to have an impact on 

alcohol initiation. For developing these models we used a recently developed methodological 

approach, which is a combination of survival analysis with multilevel modeling (Reardon et al., 

2002). Two discrete-time hazard models were developed within this methodological framework, 

the second of which has two versions (with and without the Age of First Opportunity (AFO) in 

the model). Two more models were developed to investigate alcohol initiation using more 

commonly used statistical methods: multiple and logistic regressions. Each of the regression 

models also includes two versions (with and without AFO in the model).   

 Several studies emphasized the importance of AFO in studying substance 

use and initiation (e.g., Van Etten & Anthony, 1999; Van Etten and Anthony, 2001; Caris 

et al., 2009), which was included in our models as one of the covariates and was found to 

be the most influential variable in the models leading to interesting results that are 

discussed below.  

 Next I explain how models differ from each other based on different ways 

of modeling the outcome, criteria for inclusion or exclusion of cases, and differences in 

results. Advantages of hazard models and implications for further research will be 

discussed along with some limitations of the present study. 
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Model Comparisons 

Modeling outcome. The main differences among the models are based on how 

the age of first use is modeled as an outcome variable. The most relevant traditional 

analysis is multiple regression, which predicts age of first use as a continuous variable, 

but drops participants who have not used alcohol yet because their age of first use has not 

occurred yet and is thus unknown. Logistic regression predicts users vs. non-users, which 

puts non-users back in the analysis, but ignores distinctions about when alcohol was first 

used. Discrete-time hazard models predict the hazard of initiating alcohol use for every 

year of the observation period. Predicting the hazard rate of initiating use is similar to 

predicting the year of first use in multiple regression, but unlike multiple regression, 

hazard models retain non-users in the analysis for the years in which they delayed 

initiating alcohol use. In this study two hazard models were compared that differed on 

when the observation period began that deals with left-censoring issues. Survival analysis 

relies on the assumption that observation starts at the initial age of interest, which is the 

assumption of left-censoring at random, and that participants are observed until the 

alcohol initiation or until censored at random, which is the assumption of right-censoring 

(Allison, 1984; Yamaguchi, 1991). In the first hazard model (Model 1), when participants 

are observed from the time when they had an opportunity to try alcohol, year 1 is the first 

year in which it is possible for them to initiate alcohol use, which is their first year of 

opportunity. In the second, age-related hazard model (Model 2), year 1 is age 4, which 

was our estimate of the earliest age children could decide whether to initiate alcohol use 

or not.  
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Handling independent variables in models. In multiple regression, the 

independent variables are predicting the actual age of alcohol initiation. In logistic 

regression the independent variables are predicting the log odds of alcohol use vs. non-

use. In survival analysis, the independent variables are predicting changes in the log odds 

of alcohol initiation. These changes are assumed to apply equally over the observation 

period, according to the usual proportional odds assumption, which was satisfied for all 

predictors except for AFO in Model 2 (a). 

Distribution of age of first use. In the multiple regression model the mean age of 

first use of alcohol is predicted whereas in the logistic regression the actual age of alcohol 

use is ignored, because only alcohol use vs. no use is predicted. In hazard models 

baseline models show how the hazard of alcohol initiation varies during the observation 

period. The hazard curve reflects the hazard of alcohol initiation from the first age of 

opportunity in Model 1 and from age 4 in Model 2.  

Exclusion criteria. The way of modeling the outcome determines who is 

excluded or retained in that particular model. The logistic regression model included 

everyone, but it cannot estimate the timing of the alcohol initiation whereas hazard 

models can. Participants who did not report age of first use (AFU) were excluded from 

the multiple regression model but retained in logistic regression model and in both hazard 

models if missing AFO data did not exclude them. Participants who did not report their 

AFO prior to their interview age were generally excluded from Model 1 and all models 

that controlled for AFO. That problem was overcome in Model 2 (a) by providing an 

estimate of a possible age of opportunity, which was the age at the time of interview plus 

1 year. 
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Differences in Results 

The results obtained in the present study varied across the models, depending 

especially on whether the age of first opportunity (AFO) was incorporated or not in that 

particular model. After summarizing the similarities and differences in the results from 

the four substantive predictors the section summarizes the more complicated case of the 

effect of AFO itself. 

Substantive predictors. It should be noted that in the multiple regression and 

hazard models, coefficients of predictors have opposite signs (except for AFO), but they 

explain the variation in alcohol initiation conceptually in the same direction. For 

example, a higher hazard rate in a hazard model is equivalent to a younger age of alcohol 

initiation. 

Gender. Gender predicted early use of alcohol in both analyses where the age of 

first opportunity (AFO) was not included in the model. Gender predicted a later age of 

using alcohol for girls compared to boys, but this is accounted for by the gender 

difference on AFO. Most studies regarding alcohol use have found gender to be one of 

the most significant predictors of alcohol initiation and use (Griffin et al., 2000l; Wagner 

et al., 2005; Dormitzer et al., 2004). The reason that gender was not found to have a 

significant impact in other models that included AFO might be because gender is more 

strongly associated with AFO than with age of first use (Fig. 5.1). 

. 
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Fig. 5.1. Age of First Opportunity of Using Alcohol by Gender 

At early ages boys seem to have more opportunity to try alcohol until they reach 

the age of ten after which girls started having more opportunity to use alcohol. After 

controlling for age of first opportunity, there is no gender difference in the hazard of 

initiating alcohol use in the first multiple regression model, in Hazard Model 1, or in 

Hazard Model 2(a). As was implied by findings from other studies, many factors that are 

associated with drug use may only be due to drug use opportunities. Namely, gender 

differences in drug use are a function of early opportunities to use drugs (Chen et al., 

2005; Van Etten & Anthony, 1999).   

Socioeconomic status. Socioeconomic status (SES) significantly predicts a higher 

hazard of early alcohol initiation in all models except for logistic regression, which 

predicts usage vs. non-usage. When predicting variation in the age of alcohol initiation, 

socioeconomic status seems to explain it to some extent, even after controlling for the age 

of first opportunity. Research that study the influence of socio economic status on alcohol 

use remain controversial. Some studies showed increase substance use for higher 

socioeconomic status (e.g., Humensky, 2010) and some studies have completely opposite 

results (e.g., Reinherz, et al., 2000). Cox (2007) found that SES had a significant inverse 
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effect on age of use of alcohol when SES was incorporated as a contextual variable (i.e., 

at Level-2) and did not have a significant effect on age of first alcohol use when it was 

incorporated at Level-1. Thus the SES of the school but not the individual affected earlier 

versus later initiation of alcohol use. More research is needed to tease out the reasons 

behind the mixed results in the literature.  

 Externalizing behavior.  Externalizing behavior is a significant predictor of age 

of alcohol initiation when the age of first opportunity to use alcohol is not incorporated in 

the model. When age of first opportunity is not controlled for, increased externalizing 

behavior predicts a younger age of alcohol initiation in multiple regression and higher 

hazard rate of alcohol initiation in Hazard Model 2 (b). These results are consistent with 

findings from the research literature regarding the positive relation between externalizing 

behavior and alcohol use that was reviewed in Chapter 2, but the results of the present 

study indicate that the effect of externalizing behavior on age of first alcohol use is 

entirely due to its effect on the opportunity for using alcohol. Externalizing behavior also 

has a significant impact on whether or not study participants are in the alcohol user or 

non-user group regardless of the age of first opportunity before their interview age. Youth 

with higher externalizing behavior most likely will initiate alcohol before the time of 

their interview. In all other models externalizing behavior does not significantly predict 

alcohol initiation beyond what is predicted by the age of first opportunity. 

Family Attention. Family attention has the same impact on alcohol initiation and 

use as externalizing behavior, only in the opposite direction. More family attention delays 

the age of first use of alcohol and predicts a lower hazard rate of alcohol initiation when 

age of first opportunity is not incorporated in multiple regression and hazard models. 
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Similar to externalizing behavior, family attention does not predict variations in alcohol 

initiation beyond what is predicted by the age of first opportunity to use alcohol. 

Increases in family attention predicts significantly less chance to end up in the alcohol 

user group regardless of the age of first opportunity to use alcohol according to logistic 

regression analysis.  

When models do not control for AFO all other independent variables of this study 

become significant predictors of alcohol initiation in all models except for the logistic 

regression model where controlling for AFO did not make statistically significant 

differences in predicting alcohol use.  These findings support a meditational model, 

which accounts for the overall pattern of findings. As discussed in Chapter 2, others have 

also found that many of the factors associated with drug use may only be related to drug 

use to the extent that they predict exposure to drug use opportunities (Chen, et al., 2005; 

Van Etten & Anthony, 1999). In the present study we found that AFO apparently fully 

mediates the effect of family attention, externalizing behavior and gender in predicting 

early alcohol use. This conclusion is true under the assumption that family attention and 

externalizing behavior do not change over time. As was discussed earlier, these variables 

were found to be very resistant to change over time (Loeber, 1982; Murphy, et al., 2010). 

Mediation effect in the Multiple Regression Model is depicted in the following figure 

(Fig. 5.2). Coefficients in parenthesis denote standardized regression coefficients when 

AFO is not incorporated in the Model. 
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Mediation Model 
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    Fig. 5.2. Mediation in the Multiple Regression Model 

Effects of AFO.  The apparent effect of AFO on the alcohol-use outcomes varies 

much more across the models for more complicated reasons. The simplest case is 

multiple regression, in which AFO is strongly correlated with AFU, accounting for over 

66% of the variance in AFU by itself.   That leaves only 34% of the variance to be 

uniquely predicted by the other predictors. Only SES accounted for variance beyond what 

was predicted by AFO. In logistic regression, however, AFO is missing for most of the 

non-user group, decreasing the size of that group from 18.8% to 8.9% of the sample. If 

the other 9.9% are omitted from the logistic regression model, AFO is not associated with 

being in the alcohol-user vs. non-user group. When we substituted an older age for the 

missing AFO, however, (as was done in Hazard Model 2), then a significant negative 

relation between AFO and alcohol use was observed, i.e., a younger age of opportunity 
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was associated with alcohol use. More precisely, a one year increase in AFO decreases 

the odds of alcohol use by about 34% (e -0.42  = 0. 66). 

The age of first opportunity (AFO) is represented in Hazard Model 1 in two ways. First, it 

determines the initial year of the observation period. For example, Year 1 occurs at age 6 if AFO 

= 6, whereas Year 1 occurs at age 16 when AFO = 16 (see Table 5.1). Second, the positive 

coefficient for AFO indicates that the hazard rate of alcohol initiation in the first year of 

opportunity to use alcohol is higher if AFO is older. The association of AFO on the hazard 

rate of initiating alcohol in Model 1 can be explained for three different groups with 

early, middle, and older AFO (AFO of 4-8; 9 – 12; or 13 – 18 years old) in Table 5.1, 

created from a cross-tabulation.  In every column, the hazard rate of initiating alcohol use 

is higher for those with older AFOs in the last row than those with younger AFOs in the 

first row. In the first column, for example, 16-year-olds have a 2/3 chance of initiating 

alcohol use if that is their first opportunity, whereas less than 1/3 of 6-year-olds start 

using alcohol if that is their first opportunity. This explains why AFO has a positive 

coefficient in predicting higher hazard rates when the observation period begins with 

their first year of opportunity. On the other hand, by comparing the same ages (e.g., the 

boldfaced proportions), a larger proportion of those with an earlier age of first 

opportunity have started using alcohol by any age selected. By comparing the cumulative 

use of alcohol for the same ages, the data replicate the usual finding in the literature that 

early opportunities to drink alcohol are associated with a higher cumulative use of 

alcohol at any given age. 
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Table 5.1 

Cumulative Alcohol Use by Year and Age for Early, Middle, and Late Opportunities for 
Alcohol 

  Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 
Pr(Alcohol Use if AFO = 4-8) 0.31 0.43 0.56 0.64 0.70 0.82 0.88 
Mean age 7 8 9 10 11 12 13 
 
Pr(Alcohol Use if AFO= 9-
12) 0.5 0.69 0.82 0.90 0.93 0.97 0.98 
 
Mean age 11.5 12.5 13.5 14.5 15.5 16.5 17.5 
        
Pr(Alcohol Use | AFO=13-18) 0.67 0.86 0.93 0.96       
 
Mean age 16.5 17.5 18.5 19.5    

Note. Pr = Probability of cumulative alcohol use up to that year or age. 

The age-related Hazard Model (Model 2) adds another complication when AFO is 

a predictor. Although age determines entry into the observation period instead of AFO, 

including AFO as a predictor violates the proportional odds assumption. The effect of 

AFO is much larger at younger ages than at older ages (see Table 4.4). When modeling 

the age of first opportunity as an interaction term with years (the way to handle violations 

of the proportional odds assumption), alcohol initiation is impossible by definition for 

some combinations of age and AFO. That is, for any age prior to the age of first 

opportunity, the odds are zero and the log odds of zero are not defined (i.e., minus 

infinity). This may violate an implicit assumption of survival analysis that observed 

participants must be at risk of experiencing the event from the time they enter the 

observation period (Singer & Willett, 2003).  
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Advantages of Hazard Models 

In summary, there are several advantages of hazard models for predicting the age 

of first alcohol use. Hazard models predict not only occurrence of alcohol initiation but 

also its timing. The baseline hazard curve gives the overall picture of the likelihood of 

alcohol initiation at every year over the observed period of time. Another advantage of 

hazard models is their ability to appropriately handle cases with unknown age of alcohol 

initiation. Those who have not initiated alcohol prior to the interview contribute exactly 

what is known about them, i.e., that they have not initiated alcohol yet. They were 

observed for a specified number of years prior to the interview (depending on when they 

entered the risk set), which is known as right-censoring. The ability to handle missing 

information is the most advantageous when studying rarely occurring events. In 

investigating alcohol initiation, only 18.6% reported no alcohol use, but when 

investigating illicit drugs, for example, many more participants do not report drug use 

prior to the interview. For modeling early ages of drug initiation or any other event 

occurrence, when a large percentage of participants have not yet experienced the event, 

hazard models may be the most appropriate statistical approach. 

Contrasts from Multilevel Hazards Model by Reardon et al. (2002). Hazard 

models are even more advanced when it is possible to evaluate them in a multilevel 

framework. Often data on adolescent behaviors are collected from different schools, 

neighborhoods, counties, etc. These sampling techniques create a nested data structure, 

which violates the independence assumption of traditional regression analysis. Therefore, 

a methodological approach that combines survival analysis within a hierarchical linear 

modeling framework is needed to address both the missing data and the possible 
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problems from violations of the assumption of independence of observations. The 

Reardon et al. (2002) study was one of the first to develop a methodological framework 

for employing the combination of survival analysis within a multilevel approach using 

HLM software from which the construction of hazard models of the present study were 

adapted.  In the study conducted by Reardon et al. (2002), the time variable (represented 

by dummy coded observed years) and person-level variables are incorporated at the 

Level-1. In the present study I further developed Reardon and colleagues work by 

conceptualizing observed years as occasions nested within students. Occasions belong to 

Level-1, whereas person-level variables are incorporated at Level-2. I believe that this is 

an advantage of the present model because multilevel modeling incorporates different 

error terms for different levels of the data, which leads to more accurate Type-1 error 

rates (Raudenbush & Bryk, 2002). It is possible, however, that this is a trivial difference 

in this case of modeling binary outcomes, because they include no residual term at Level-

1.In the present study participants were observed not only from age 4 (Model 2), similar 

to the example from Reardon et al. (2002), but also from age of their first opportunity to 

use alcohol (Model 1). After developing two-level discrete time hazard models, it is not 

difficult to take models to the next level by adding contextual variables on Level-3 of a 

multi-level model. 

Limitations 

Some limitations of the study need to be addressed. The first limitation is that the 

data were retrospective. The main limitation of retrospective data is their reliability. 

Participants might have memory limitations about when they first initiated or were 

exposed to alcohol. The second limitation of the study was the absence of the exact ages 
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of participants. To overcome this problem approximate age was calculated based on age 

cohorts and school grades. After the age was estimated, calculations of percentage of the 

sample that initiated alcohol after the interview year showed that for 19 (1.1%) 

participants the age of alcohol initiation happened to be after their interview age (a 

discrepancy due to the imprecise age estimation). Third, in retrospective and cross-

sectional data there is a lack of information about time-varying covariates. The covariates 

are measured only once, which does not create problems with stable characteristics (sex 

or ethnicity), but it becomes a problem in measuring any other changing factors. Lastly, 

more insights should be gained in studying time varying covariates and ways to 

incorporate them in analyses. 

Further Research and Implications 

 In the present study two-level hazard models are developed that can easily be 

extended to the next level to investigate effects of contextual variables, e. g., school-level 

variables, on the timing of first substance use. In Cox’s (2007) study, SES was not a 

significant within-school predictor of age of alcohol initiation, but school differences in 

mean SES did predict earlier alcohol initiation. The present study could not distinguish 

those types of effects from each other, because nesting of students within schools was not 

incorporated into this study. This illustrates the need to consider three-level models to 

differentiate within- and between-school effects on alcohol initiation. 

 Age of First Opportunity plays a significant role in alcohol initiation. Taking into 

account mediation models may provide important information for prevention efforts.  

Variables that predict AFU also seem to predict AFO as well. The same models 
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developed for this study can be used in modeling AFO. Our results suggest that 

interventions targeted at delaying AFO could be very beneficial for prevention efforts.   

 Since approximately a third of the sample did not initiate use during the first year 

they had an opportunity to do so, Age of First Opportunity may also be a moderator for 

the effect of the predictors in this study on the age of first alcohol use. Age of first 

opportunity can be differentiated by a time lag between AFO and AFU. In other words, a 

rapid transition from AFO to AFU (e.g., if alcohol initiation occurs at the same year as 

AFO) can be considered on the one hand and a longer time lag between AFO and AFU 

(e.g., if alcohol initiation occurs after one (or more) years after AFO) on the other hand. 

This will provide insight into which predictors (family attention, externalizing behavior, 

socioeconomic status, and gender) have a significant effect on alcohol initiation 

dependent on the time duration from AFO to AFU. 

Conclusion 

In conclusion, all models considered in the present study have their own 

advantages. The main advantages of hazard models is in their ability to handle a 

particular kind of missing data called right censoring, such as youth who report delaying 

their initiation of alcohol use for all years covered in a given study. In investigating 

alcohol initiation, only about 18% reported no use of alcohol in this study, but when 

investigating illicit drugs, many more participants will be in a no-user group. For 

modeling early ages of drug initiation or any other event occurrence, when a vast 

majority of participants have not yet experienced it, hazard models should be considered. 

If the research interest is not in investigating when an event occurs or how the outcome 

varies by time, then multiple and logistic regressions might be more appropriate.  
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Appendix A 

SYNTAX FOR CREATING PERSON-PERIOD DATA SET IN SPSS 

1. Model 1 where beginning time is AFO 

*Creating person-period data set for Level-1. 

*The loop command adds cases for each of 18 age groups for the children in the study. 

*Keep all variables that might be analyzed in the eventual multilevel modeling analyses. 

*V104 (AFU) 0 needs to be assigned as missing data to keep those you never used 
alcohol (i.e.  V104 = 0 ) in the sample. 

compute age = 1. 
format age (f8.0). 
loop age = 1 to 18. 
.xsave outfile =' FILE DIRECTORY: \FILE NAME sav' 
 
end loop. 
execute. 
 

*Next, get the file that was created, which is now a person-period file. 
 
get file = ‘FILE DIRECTORY: \FILE NAME. sav' 
 
*Creating a new variable indicating number of years (each raw) after AFO. 
*Create dummy codes setting all dummy codes to 0. 
 

compute yrdum0 = 0. 
compute yrdum1 = 0. 
compute yrdum2 = 0. 
compute yrdum3 = 0. 
compute yrdum4 = 0. 
compute yrdum5 = 0. 
compute yrdum6 = 0. 
compute yrdum7 = 0. 
compute yrdum8 = 0. 
compute yrdum9 = 0. 
compute yrdum10 = 0. 
 
compute yrdum11 = 0. 
compute yrdum12 = 0. 
compute yrdum13 = 0. 
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compute yrdum14 = 0. 
compute yrdum15 = 0. 
compute yrdum16 = 0. 
compute yrdum17 = 0. 
compute yrdum18 = 0. 
execute. 
 

Select if (V103 GT 0). 

compute yrsfmAFO = age - V103. 
compute YFU = V104 - V103. 
compute YRINT = ageintv - V103. 
execute. 
 

*Now finalize the dummy codes by changing the correct value to 1 to indicate the child's 
age in that row. 

If (yrsfmAFO = 0) yrdum0 =1. 
if (yrsfmAFO = 1) yrdum1 = 1. 
if (yrsfmAFO = 2) yrdum2 = 1. 
if (yrsfmAFO = 3) yrdum3 = 1. 
if (yrsfmAFO = 4) yrdum4 =1. 
if (yrsfmAFO = 5) yrdum5 =1. 
if (yrsfmAFO = 6) yrdum6 = 1. 
if (yrsfmAFO = 7) yrdum7 = 1. 
if (yrsfmAFO = 8) yrdum8 = 1. 
if (yrsfmAFO = 9) yrdum9 = 1. 
if (yrsfmAFO = 10) yrdum10 =1. 
if (yrsfmAFO = 11) yrdum11 =1. 
if (yrsfmAFO = 12) yrdum12 =1. 
if (yrsfmAFO = 13) yrdum13 = 1. 
if (yrsfmAFO = 14) yrdum14 =1. 
if (yrsfmAFO = 15) yrdum15 = 1. 
if (yrsfmAFO = 16) yrdum16 = 1. 
if (yrsfmAFO = 17) yrdum17 = 1. 
if (yrsfmAFO = 18) yrdum18 = 1. 
execute. 
 

*Next create a drop variable, to indicate which ages will get dropped from the data. 

compute drop=0. 

*This is an example of right sencoring 
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*Right-censored ages need to be dropped for three reasons:  

*    (1) drop the partial age year when they were interviewed 

*    (2) drop all years after their interview year. 

*    (3) drop all years after the first year they used the substance. 

*age1 variable is created to handle the fractional years in these data for AgeIntv. If the 

age of the  interview is an integer representing the latest birthday, we do not need to do 

this, but use age    and ageintv instead. 

*compute age1 = age + 1. 

if (yrsfmAFO lt 0) drop = 1. 
if (yrsfmAFO GE YRINT) drop = 1. 
if (yrsfmAFO GT YFU) drop = 1. 
 

*Then permanently select only those cases (person-years) that were not dropped. 

select if (drop = 0). 

*Now a variable that indicates the year in which each child used the substance need to be 
created. 

*This should always be the last year (row) in that child's data. However, those partial 

years are  

  right-censored, including cases in which the youth reported using the substance for the 

first         time during the last partial year, the one during which they were interviewed. 

 
compute Alcint = 0.  
if age = V104 Alcint =1. 
format Alcint (f8.0). 
execute. 
 
*Save data as FILE NAME.sav. 

*Creating Level2 Data file. 
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   SORT CASES BY ID1. 
  AGGREGATE 
  /OUTFILE='FILE DIRECTORY’ 
  /PRESORTED 
  /BREAK=ID1 
  /V2_mean=MEAN(V2) 
 /Gender_mean=MEAN(Gender)   
  /V103_mean=MEAN(V103) 
 /AFOnew_mean=MEAN(AFOnew) 
  /SESZ_mean=MEAN(ZSESav)  
  /EXTBZ_mean=MEAN(ZEXTBav)  
  /FAMATENZ_mean=MEAN(ZFamAtenav)  
  /AFOc_mean=MEAN(AFOc) 
 /id2=mean(id2). 
 
2. Model 2 where beginning time is Age 4. 

*The loop command adds cases for each of 18 age groups for the children in the study. 

*Here we start from age 4. 

compute age=4. 
format age (f8.0). 
loop age=4 to 18. 
.xsave outfile = 'FILE DIRECTORY: \FILE NAME.sav' 
 
end loop. 
EXECUTE. 

 *Next, we need to get the file we created, which is now a person-period file. 
 
get file =  ‘FILE DIRECTORY: \FILE NAME. sav' 
 
*create dummy codes for all ages starting from age 4, first by setting all dummy codes to 
0. 
 
compute agedum4=0. 
compute agedum5=0. 
compute agedum6=0. 
compute agedum7=0. 
compute agedum8=0. 
compute agedum9=0. 
compute agedum10=0. 
 
compute agedum11 = 0. 
compute agedum12 = 0. 
compute agedum13=0. 
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compute agedum14=0. 
compute agedum15=0. 
compute agedum16=0. 
compute agedum17=0. 
compute agedum18=0. 
 
*Finalizing the dummy codes by changing the correct value to 1 to indicate the child's 
age in that row. 
 
if (age = 4) agedum4=1. 
if (age = 5) agedum5 = 1. 
if (age = 6) agedum6=1. 
if (age = 7) agedum7 = 1. 
if (age = 8) agedum8 = 1. 
if (age = 9) agedum9 = 1. 
if (age = 10)agedum10 = 1. 
 
if (age = 11) agedum11=1. 
if (age = 12) agedum12=1. 
if (age = 13) agedum13=1. 
if (age = 14) agedum14=1. 
if (age =15) agedum15 = 1. 
if (age = 16) agedum16=1. 
if (age = 17) agedum17 = 1. 
if (age = 18) agedum18 = 1. 
execute. 
 
*Next create a drop variable, to indicate which ages will get dropped from the data. 
 
compute drop=0. 
 
*This is an example of right sencoring 
*We drop right-censored ages for three reasons:  
 
*    (1) drop the partial age year when they were interviewed 
*    (2) drop all years after their interview year. 
*    (3) drop all years after the first year they used the substance. 
 
*age1 variable is created to handle the fractional years in these data for AgeIntv. If the 

age of the  

 interview is an integer representing the latest birthday, we do not need to do this, but use 

age and ageintv instead. 
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*compute age1 = age + 1. 
 
if (age ge ageintv) drop=1. 
if (age gt V104) drop=1. 
 
*Then permanently select only those cases (person-years) that were not dropped. 
 
select if (drop = 0). 
*Now  a variable that indicates the year in which each child used the substance need to be 

created. 

 
compute Alcint = 0.  
if age = V104 Alcint =1. 
format Alcint (f8.0). 
execute. 
 
*Creating Level2 Data file. 
 
 SORT CASES BY ID1. 
 AGGREGATE 
  /OUTFILE=‘FILE DIRECTORY: \FILE NAME. sav' 
  /PRESORTED 
  /BREAK=ID1 
  /V2_mean=MEAN(V2)  
  /Gender_mean=MEAN(Gender)  
  /V103_mean=MEAN(V103) 
 /AFOnew_mean=MEAN(AFOnew) 
  /SESZ_mean=MEAN(ZSESav)  
  /EXTBZ_mean=MEAN(ZEXTBav)  
  /FAMATENZ_mean=MEAN(ZFamAtenav) 
  /AFOc_mean=MEAN(AFOc) 
  /id2=mean(id2). 
 
 
Note: All SPSS commands are italicized. 
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