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ABSTRACT 

Land cover is changing dramatically worldwide from both anthropogenic and 

natural drivers. In the United States, the rates and types of land cover change have 

varied temporally due to government policy, environmental regulation, global and 

national economic conditions, and regional weather and climate variability. Land cover 

changes can cause environmental degradation that affects long-term sustainability of 

human societies. Therefore, balancing the human need and environmental degradation 

requires explicit knowledge about environmental changes over multiple scales and 

perspectives. Remote sensing has been used as an effective tool to assess land changes 

across broad scales with multiple resolutions. However, the extraction of information 

from remotely sensed images is still challenged by the complex interaction between 

land cover heterogeneity and spatial as well as temporal resolutions. This dissertation 

aims at exploring such interaction in data classification and data fusion to better extract 

useful information about land cover. To achieve such goal, this dissertation first 

analyzes the impact of land cover heterogeneity in per-pixel and subpixel classification. 

Furthermore, this study also analyzes and proposes a data fusion method to better detect 

forest disturbances with high spatial and temporal resolutions. Using a high spatio-

temporal resolution map of forest disturbances, this study suggests the use of temporal 

characteristics of disturbances to identify disturbance types. This study uses the South-

Central United States as a case study for all experiments.
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CHAPTER 1. INTRODUCTION 

Land cover is changing dramatically worldwide from both anthropogenic and 

natural drivers (Lambin et al. 2001; Meyer and Turner II 1996; Sterling et al. 2012). In 

the United States, the rates and types of land cover change have varied temporally due 

to government policy, environmental regulation, global and national economic 

conditions, and regional weather and climate variability (Sleeter et al. 2013). Most of 

those changes, however, have taken place in forests as a result of forest harvest, 

urbanization, and wildfire (Sleeter et al. 2013). These land cover changes can cause 

environmental degradation that affects long-term sustainability of human societies 

(Foley et al. 2005). Balancing the human need and environmental degradation requires 

explicit knowledge about environmental changes over multiple scales and perspectives.  

Remote sensing has been used as an effective tool to assess land changes across 

broad scales with multiple resolutions (Turner et al. 2007). The twenty-first century has 

seen over a hundred of satellite platforms carrying Earth observation sensors launched 

in addition to many airborne and terrestrial sensors deployed (Boyd and Foody 2011). 

Remote sensing provides a systematic observation of the Earth’s surface, which has no 

sampling bias problem traditionally seen in the use of survey data to investigate land 

cover change for a large area (Jensen 2005). In addition, as they are images remotely 

taken from the space (e.g. Landsat 7 altitude being 705 kilometers), remote sensing 

imagery data increase the opportunities to do land research for areas that are not 

accessible due to hazardous conditions (Kennedy et al. 2009). Moreover, with the 

capability of revisiting the same place (e.g. 16 days with Landsat sensor), remote 

sensors have produced archives of data that are useful to characterize the spatiotemporal 
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patterns of land cover types for a long-term period across large areas (Turner et al. 

2007). For instance, time-series of Landsat images have been used to map forest 

disturbances in North American for the period of 1990 and 2000 (Masek et al. 2008) or 

to document changes in spatial patterns of land covers in southern Chile (Echeverría et 

al. 2012). However, users of remote sensing should consider limitations regarding the 

spatial and temporal resolutions of imagery data. 

Spatial resolution of remotely sensed images refers to the size of an area (often 

square or rectangle) on the ground within which the intensity of reflected 

electromagnetic radiation of all land covers are measured by a sensor (Strahler et al. 

1986; Woodcock and Strahler 1987). When the images are unprocessed (e.g. 

smoothing), their spatial resolution is often equivalent to their pixel size (Atkinson 

2004). With a wide range of the currently available spatial resolutions ranging from 

meters (e.g. GEOEYE-1 multispectral sensor with a resolution of 1.65 meters) to 

kilometers (e.g. Advanced Very High Resolution Radiometer sensor with a resolution 

of roughly one kilometer), a selection of an appropriate resolution for a land change 

study is important because spatial resolution may impact the understanding of the 

spatial patterns, and thus processes, of a landscape under investigation (Turner et al. 

1989). Indeed, a landscape may be homogeneous at one resolution but may become 

heterogeneous at another resolution (Walsh et al. 1999; Wu 2004). 

In addition to the impact on spatial patterns, another impact of spatial resolution 

is on the accuracy of a classification performed to thematically map land cover types. 

Traditional image classification (or per-pixel classification) is a process of assigning 

categorical values (e.g. water, artificial surface, barren, forest, or grass) to pixels based 
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on their values of the intensity of reflected electromagnetic radiation. The accuracy of 

this assignment is driven by the spatial resolution. Technically, the coarser the 

resolution is the lower the accuracy (Aplin 2006). The reason is that as the resolution 

becomes coarser, there are more land cover types coexisting within pixels. As a result, 

the pixel values are representative of multiple land cover types rather than one. 

Consequently, the assignment of land cover types to pixels is compromised due to the 

uncertainty of what land cover type assigned to each pixel. Therefore, an alternative to 

this per-pixel approach is the subpixel approach that assigns fractions of land cover 

types to pixels (Foody 2006). This subpixel classification has been applied successfully 

for a variety of sensors including Landsat and MODIS (Moderate Resolution Imaging 

Spectroradiometer) (Shao and Lunetta 2011; Small 2001; Weng and Lu 2009). 

However, the accuracy of subpixel classification is still not perfect (Foody and Doan 

2007). Indeed, the accuracy of subpixel classification is driven by the level of land 

cover heterogeneity, which is positively related to the intra-class variation, and thus, the 

classification accuracy (Foody and Doan 2007; Ngigi et al. 2009). 

Beside spatial pattern, land change studies have also been analyzing changes of 

land cover. Recent studies in this area have gone beyond detecting changes between two 

time points to identify temporal trends and times of changes. In the latter case, while the 

temporal trends help to reveal the trajectories of changes, the times of changes help to 

answer questions regarding land cover compositions and configurations before and after 

the changes (Gillanders et al. 2008; Powell et al. 2010). To identify temporal trends and 

times of changes, a time-series of images needs to be used. The temporal resolution of 
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the time-series is important because it affects the results of trend analyses as well as 

time detections.  

Temporal resolution of a time-series refers to the time interval between any two 

consecutive images in the time-series. Theoretically, temporal resolution of a time-

series is equivalent to the revisit time of a sensor, which refers to the time period 

between repeat passes of the sensor over the same place on the Earth’s surface. 

However, the temporal resolution is often longer than the revisit time due to cloud 

contamination or to satellite malfunction (e.g. the scan-line-corrector problem of 

Landsat 7) (Ju and Roy 2008; Turner et al. 2007). As the temporal resolution becomes 

longer, it reduces the opportunity to detect land cover change rate and timing (Lunetta 

et al. 2004). However, high temporal resolution data are often compromised by low 

spatial resolution (Townshend and Justice 1988). For instance, a time-series of MODIS 

has high temporal resolution (two days) but low spatial resolution (500 meters). As the 

spatial resolution becomes coarser, the time-series may not be able to effectively detect 

land cover changes of a heterogeneous landscape because there may be multiple 

changing processes (e.g. no change and clearcut harvest) occurring within the same 

pixels (Rindfuss et al. 2004; Townshend and Justice 1988). Therefore, since the last 

decade, there have been a few data fusion methods proposed to balance the advantages 

and disadvantages of high spatial resolution (e.g. Landsat) and high temporal resolution 

(e.g. MODIS) data by blending them together (Gao et al. 2006; Hilker et al. 2009; Zhu 

et al. 2010). For instance, the Spatial Temporal Adaptive Algorithm for mapping 

Reflectance Change (STAARCH) has been proposed since 2009 by (Hilker et al. 2009). 

The purpose of this algorithm is to blend Landsat and MODIS imagery together to 
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create a high spatial and temporal resolution time-series to detect forest disturbances. 

The algorithm requires a reference set representative of undisturbed forests against 

which other pixels are compared to determine their disturbance conditions (i.e. 

disturbed or undisturbed). However, testing and modifying this STAARCH algorithm 

and other algorithms for a variety of landscapes, especially those that are 

heterogeneous, are still in progress (eg. Emelyanova et al. 2013). 

In general, both the spatial and temporal resolutions affect the analyses of land 

cover change. While the spatial resolution affects the accuracy of allocating land cover 

proportions to pixels during a classification process, the temporal resolution affects the 

accuracy of detecting the trend and time of changes based on a high temporal time-

series of images. In either case, land cover heterogeneity plays an important role in 

diminishing those accuracies. It is because coarse spatial resolution coupled with high 

land cover heterogeneity results in high intra-class variation that may reduce the 

accuracies of both per-pixel and subpixel classification. Furthermore, the couple of 

coarse spatial resolution and high land cover heterogeneity also affects the performance 

of a data fusion method (e.g. the STAARCH) used to create the time-series for detecting 

the trend and time of changes. Therefore, the purpose of this dissertation is to explore 

and document the impact of land cover heterogeneity on both per-pixel and subpixel 

classification at a medium spatial resolution of Landsat (30 meters) as well as to test the 

STAARCH method and based on which to propose another data fusion method that 

accounts for land cover heterogeneity.  
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1.1 RESEARCH OBJECTIVES 

The overall research goal of this dissertation is to document the impact of land 

cover heterogeneity on both per-pixel and subpixel classification at a medium spatial 

resolution of Landsat (30 meters) as well as to propose a data fusion method that 

accounts for land cover heterogeneity in the South-Central US. In order to pursue this 

study goal, three specific research objectives were formulated: 

1. To explore the impact of land cover heterogeneity on image classification 

approaches including per-pixel and subpixel classifications with a case study 

area of 10,000 square kilometers centered at Little Rock (Arkansas); 

2. To propose a data fusion method that is able to produce high spatial (30 

meters) and temporal resolution (8 days) time-series for a disturbance 

detection that takes into account the heterogeneity of a forest landscape in 

southeast Oklahoma; and, 

3. To determine whether the temporal characteristics of disturbances are 

sufficient to distinguish disturbance types (e.g. fire and harvest) across the 

study area of southeast Oklahoma within the study period from 7/19/2000 to 

8/5/2011. 

The two study areas (i.e. Little Rock and southeast Oklahoma) were selected 

because of their land cover heterogeneity. Little Rock was selected as a case study for 

the first study objective because there were a variety of land cover types (e.g. cropland, 

artificial surface, barren, tree, grassland/shrub, and water) in this study area. Southeast 

Oklahoma was selected as a typical study area to analyze forest disturbances for the 

second and third study objectives because it was dominated by forests (both deciduous 
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and evergreen). Southeast Oklahoma was also selected as a typical study area in other 

forest studies (Masek et al. 2008; Schleeweis et al. 2013). 

1.2 ORGANIZATION OF DISSERTATION 

This first chapter briefly introduces the effect of spatial and temporal resolutions 

on studies of land cover change and highlights research needs. It also gives an overview 

of the research objectives to be addressed in this dissertation. The pursuit of these 

objectives is presented in three self-contained research manuscripts. Chapter two 

investigates the impact of land cover heterogeneity on both per-pixel and subpixel 

classifications (objective one). Using statistical tests, this research documents the 

dependence of both classifications on land cover heterogeneity for each of the six land 

cover classes (cropland, artificial surface, barren land, tree, grassland/shrub, and water). 

This chapter will be submitted to the International Journal of Remote Sensing. Chapter 

three proposes a data fusion method based on an existing fusion algorithm (i.e., the 

STAARCH) to better monitor forest disturbances in a heterogeneous forest landscape 

(objective two). This chapter will be submitted to the Remote Sensing of Environment 

journal. Chapter four utilizes the disturbance map created in Chapter three to determine 

whether the temporal characteristics of disturbances are sufficient to classify 

disturbance types. This research classifies disturbance types by using a rule set of 

temporal characteristics of disturbances. Classification errors and potential solutions are 

also discussed in this chapter. This chapter will be submitted to the Forest Ecology and 

Management journal. Chapter five summarizes the conclusions of this dissertation and 

suggests potential directions for future research. 
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CHAPTER 2. LAND COVER HETEROGENEITY EFFECT ON 

SUBPIXEL CLASSIFICATION 

2.1 ABSTRACT 

Land cover maps play an important role in identifying the spatial and temporal 

patterns of land cover types to facilitate the understanding about the coupled human-

environment system. With its capability of systematically capturing the Earth’s surface 

over a large area, remote sensing is being used widely in land cover mapping. 

However, due to land cover heterogeneity, the accuracy of land cover maps created by 

classifying remotely sensed imagery data may not be high. Compared to the traditional 

per-pixel classification, the subpixel classification is expected to better mitigate the 

effect of land cover heterogeneity. However, in practice, the accuracy of subpixel 

classification is still not so high. Therefore, the objective of this chapter is to analyze 

the impact of land cover heterogeneity on a subpixel classification as well as a per-pixel 

classification for a highly heterogeneous region in central Arkansas, United States. The 

results demonstrate that both per-pixel and subpixel classifications successfully classify 

land cover types in the study area with high accuracy (81.87 percent for per-pixel and 

82.28 percent for subpixel). Additionally, this study shows that land cover heterogeneity 

not only negatively affect the accuracy of the per-pixel classification but also the 

accuracy of the subpixel classification. Furthermore, this study points out that subpixel 

classification is not necessary always better than per-pixel classification. The use of 

subpixel classification is dependent on the degree of land cover heterogeneity of a study 

area and on the imagery data used because land cover may be heterogeneous at one 

resolution but may become homogeneous at another resolution. 
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2.2 INTRODUCTION 

Land cover maps derived from remotely sensed images have been playing a key 

role in studies of the coupled human-environment system (Turner et al. 2007). 

Consequently, concern about the accuracy of these maps has grown. If accuracy refers 

to “the degree of ‘correctness’ of a map”  (Foody 2002), accuracy assessment is a 

process of quantifying the degree to which the derived map agrees with reality or 

conforms to the ‘truth’ (Foody 2002). Currently, the confusion matrix is a key means 

for accuracy assessment because it quantifies not only the overall accuracy but also the 

errors of omission and commission associated with individual map class (Congalton 

1994; Foody 2002). However, the confusion matrix provides no information about the 

spatial distribution of errors and thus, is inappropriate to validate the accuracy for sub-

regions where local error rates may be much larger or smaller than the global measures 

performed on an entire dataset (McGwire and Fisher 2001). 

Since the last decade, there has been a call to move beyond the confusion matrix 

to include the spatial pattern of classification errors when documenting the accuracy of 

land cover maps (Comber et al. 2012; Foody 2005; McGwire and Fisher 2001). 

Understanding the spatial variation of these errors helps scientists to identify whether 

regions of interest have sufficient accuracy (McGwire and Fisher 2001) or to pin point 

regions of low accuracy for further classification enhancement procedure (Foody 2005; 

Hubert-Moy et al. 2001). In order to reveal the spatial pattern of these errors, it is 

necessary to recognize their sources. 

Besides the sensor’s characteristics (e.g., instantaneous field of view, spectral 

and temporal response functions), the atmosphere (e.g., the scattering, absorption, and 
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emission that occur in the atmosphere between the radiation source and scene, and the 

scene and sensor), landscape characteristics (i.e. the spatial arrangement and properties 

of the covers) are also source of errors (Strahler et al. 1986). Elevation, for example, has 

been found to have an impact on classification accuracy in either positive or negative 

ways. In the former case, vegetated regions at higher elevation may have higher 

classification accuracy because phenology at higher elevation may be more 

homogeneous (Yu et al. 2008). In the latter case, change in elevation causes variation in 

brightness values between a horizontal surface and a sloped surface of the same cover 

class and therefore reduces classification accuracy (Fahsi et al. 2000). 

Patch size and land cover heterogeneity (i.e. the number of classes found within 

a region) are also found to have an impact on classification accuracy. The larger the 

patch is the higher the accuracy and the higher the heterogeneity is the lower the 

accuracy (Lechner et al. 2009; Smith et al. 2003). For example, the probability of 

correct classification for a Landsat pixel will be greater than 0.5 if it is contained in a 

patch of 56x56 pixels or if the heterogeneity equals one (Smith et al. 2002). Depending 

on the image resolution and classification method used, the mechanism that patch size 

and heterogeneity influence the accuracy may be different. In per-pixel classification, 

when the image resolution is fine, heterogeneity results in high intra-class variation and 

thus, classification accuracy may be reduced (Aplin 2006). When the image resolution 

is coarse, heterogeneity results in mixed pixels representing areas comprising a mixture 

of more than one land cover type or areas at the boundaries of two or more land cover 

types and thus, classification accuracy is also reduced (Aplin 2006). For example, 

deforestation may be overestimated 50 percent if an one-kilometer-resolution imagery is 
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used (Skole and Compton 1993).  However, the mixed-pixel problem may be resolved 

by applying subpixel classification to unmix the pixels to land cover proportions (Foody 

and Doan 2007; Lo and Choi 2004; Weng and Lu 2009). Although subpixel 

classification has potential in a variety of applications (Cross et al. 1991; Shao and 

Lunetta 2011; Weng et al. 2011), its accuracy is still affected by land cover 

heterogeneity with the mechanism similar to per-pixel classification applied to high 

resolution imagery. In other words, the increase of heterogeneity results in the increase 

of intra-class variation and thus, reduces subpixel classification accuracy (Foody and 

Doan 2007; Ngigi et al. 2009). Neither per-pixel nor subpixel classification is, therefore, 

appropriate for heterogeneous landscape (Mather 1999; Weng and Lu 2009). 

Statistical analysis has been done to quantitatively examine the significance of 

the impact of land cover heterogeneity on per-pixel classification (Smith et al. 2003; 

Smith et al. 2002; van Oort et al. 2004) but not on subpixel classification. Therefore, the 

objective of this study is to systematically analyze the impact of land cover 

heterogeneity on subpixel classification as well as per-pixel classification for a highly 

heterogeneous region in central Arkansas, United States. 

2.3 STUDY AREA 

This study assesses a 10,000-square-kilometer area in central Arkansas (USA), 

centered around the capital of Little Rock (Figure 2.1). This area is selected for its 

heterogeneity in physiography and land cover. Little Rock is situated at the intersection 

of four Omernik Level III ecoregions (Omernik 1987). The Arkansas Valley ecoregion 

north of Little Rock is characterized by forested hills (31 percent forest in 2006) that 

bound large valleys covered in a mixture of agricultural activities (9 percent cropland). 
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The Mississippi Alluvial Plains to the east is a relatively flat ecoregion historically 

covered by forested wetlands and several large grasslands, but is now agriculturally 

dominated (54 percent cropland). South of Little Rock lays the South Central Plains 

ecoregion, composed of rolling forested plains (54 percent forest) with many small 

patches of urban (14 percent), agriculture (0.4 percent), and barren (0.3 percent) lands. 

The Ouachita Mountains ecoregion to the west is mostly forested (68 percent), with 

steep slopes along east-west trending ridges. Commercial logging is the major land use 

in these latter two ecoregions. More details of land cover composition within this study 

area, as well as temporal changes and their drivers, can be found in a study by Jawarneh 

and Julian (2012). In summary, land cover is most heterogeneous in the Arkansas 

Valley, followed by the South Coastal Plains, the Mississippi Alluvial Plain, and lastly 

the Ouachita Mountains.  
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Figure 2.1. The study area centered around Little Rock, Arkansas, USA. Base layer is 

the land cover map (2010; 30-meter resolution) generated by the per-pixel classification 

in this study. The four Omernik level III ecoregions are outlined in black lines. 
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2.4 DATA 

To analyze the impact of land cover heterogeneity on per-pixel classification 

and subpixel classification, Landsat imagery data were used as a primary input for the 

classification of land cover types in the study area. Land cover types were classified by 

a per-pixel classification using the supervised Maximum Likelihood Classification 

(MLC; Richards and Jia 1999) and by a subpixel classification using the supervised 

Fuzzy Maximum Likelihood Classification (FMLC; Wang 1990). Training and 

validation data for these classifications were developed based on the National Land 

Cover Database 2006 (NLCD 2006; Fry et al. 2011) and the National Agriculture 

Imagery Program (NAIP) aerial photos (U.S. Department of Agriculture 2010). 

Landsat 5 TM images (path 24, row 36) at level 1T with six bands (excluding 

thermal band) were downloaded from USGS Earth Explorer. To reduce confusion 

between cropland and other land covers (e.g. barren and grassland/shrub), this study 

used images acquired on 12 April 2010, 19 September 2010, and 6 November 2010. 

These images were cloud-free and closest to the acquisition date of the NAIP photos. 

The Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) 

(ENVI 2009) was used to convert these Landsat images from top-of-atmosphere 

radiance to surface reflectance. Ultimately, all images were layer-stacked and subset to 

the predefined 100x100 kilometer study area. 

The training and validation data were developed using the stratified random 

sampling technique. There were seven land cover strata delineated based on the NLCD 

2006 downloaded from the web interface of the Multi-Resolution Land Characteristics 

Consortium (www.mrlc.gov) (Fry et al. 2011). This NLCD 2006 after downloaded was 

http://www.mrlc.gov/
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reprojected to the Universal Transverse Mercator (UTM) zone 15N projection and 

clipped to the extent of the study area. Although the NLCD 2006 had 29 classes 

covering water, forest, shrub, herbaceous, and wetland (Fry et al. 2011), they were 

grouped to seven classes: water (NLCD class 11), artificial surface (21, 22, 23, 24), 

barren land (31), tree (41, 42, 43), grassland/shrub (52, 71, 81), cropland (82), and 

wetland (90, 95). The areas delineated by these classes then became land cover strata 

for the selection of training and validation samples. 

As soon as the land cover strata were delineated, training and validation samples 

were randomly selected within these strata. For each sample, its land cover proportions 

were determined by visually interpreting the 2009 NAIP aerial photos obtained from the 

Arkansas' Official GIS Platform GeoStor. These one-meter-resolution natural-color 

photos were acquired during the agricultural growing seasons and were administered by 

the U.S. Department of Agriculture’s Farm Service Agency through the Aerial 

Photography Field Office in Salt Lake City. NAIP photos were available as 

orthorectified photos with a reported horizontal accuracy of six meters (Adkins 2009; 

U.S. Department of Agriculture 2010). 

2.5 METHODOLOGY 

2.5.1 Classification 

Training samples were suggested to be homogeneous (i.e. samples composing of 

only one land cover type) to make sure that the histogram of radiance data of a class 

was unimodal to facilitate the calculation of statistical measures (e.g. mean and 

covariance matrix) (Campbell and Wynne 2011). However, in a heterogeneous 

landscape, selecting homogeneous samples could be problematic because it was 
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difficult to have enough homogeneous samples located in all parts of the study area. 

Moreover, as the landscape became more heterogeneous with more mixed pixels, the 

radiance data extracted from homogeneous samples for a class might not be 

representative of other mixed pixels for the same class. It was because pixel radiance 

was a function of radiance from all classes within the pixel and its neighboring pixels 

(Wang 1990). Therefore, heterogeneous samples (i.e. samples composing of more than 

one land cover types) were used for subpixel classification (Foody 1999; Wang 1990). 

When used for per-pixel classification, these heterogeneous samples were hardened 

using the dominant rule. This study used 225 training samples per sampling class (i.e. a 

total of 1,575 samples). The size of training samples was one Landsat pixel. For each 

sample, its land cover proportions were estimated by visually interpreting the NAIP 

photos at the scale of 1:2,000.  

As soon as the training samples were developed, six land cover types defined in 

Table 2.1 were identified from the Landsat imagery data by a per-pixel classification 

using the supervised Maximum Likelihood Classification (MLC; Richards and Jia 

1999) and by a subpixel classification using the supervised Fuzzy Maximum Likelihood 

Classification (FMLC; Wang 1990). While the output of the Maximum Likelihood 

Classification was a categorical map with six classes color coded, the output of the 

Fuzzy Maximum Likelihood Classification was a fractional map that was actually a set 

of six proportional images, each of which represented proportions of a land cover type. 
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Table 2.1. Land cover classes used in the classifications. 

Class Definition 

Cropland (CR) Areas used for the production of crops such as corn, 

soybeans, vegetables, tobacco, and cotton. This 

class also includes fallow cropland. 

Artificial surface (AR) Construction materials such as asphalt, concrete, 

and rooftops. 

Barren (BA) Areas of bedrock, bare soil, quarries,  and any 

accumulation of earthen material. 

Tree (TR) All trees over 5 m, including low-density trees in 

urban areas. 

Grassland/Shrub (GR) Areas with > 80% coverage of gramanoid or 

herbaceous vegetation; or areas with > 20% 

coverage of  shrubs less than 5 m high 

Water (WA) Areas of open water with < 25% coverage of any 

other class. 

 

2.5.2 Validation 

This study used 100 validation samples per sampling class (i.e. a total of 700 

samples). While the size of the training samples was one Landsat pixel, the size of 

validation samples was a block of 3x3 pixels to reduce the effect of misregistration 

between the referenced (i.e. NAIP photos) and the Landsat data (Powell et al. 2007; 

Song 2005). For each sample, its reference land cover proportions were estimated by 

visually interpreting the NAIP photos at the scale of 1:2,000. The cross tabulation 

matrix (Pontius and Cheuk 2006) proposed as a customization of the conventional 

confusion matrix (Congalton 1991) for a subpixel classification was used to validate the 

performances of the two classifications. An individual cross tabulation matrix was 

developed for each of the validation samples. For a given validation sample, while 

entries on the diagonal of the matrix were the overlaps of the reference proportions and 

the estimated proportions derived from a classification, entries off the diagonal were the 

non-overlaps of the reference proportions and the estimated proportions for every class. 
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The total of the diagonal entries was the overall accuracy whereas the ratios between 

each diagonal entry and its column total and row were the producer’s and user’s 

accuracies, respectively, of a given class for the given validation sample. To calculate 

the overall accuracy as well as the producer’s and user’s accuracies for the entire study 

area, a cross tabulation matrix was calculated for an average sample. The average 

sample was the sample whose reference proportion of each class was the average of the 

reference proportions of that class across all validation samples. Similarly, the estimated 

proportion of each class of the average sample was the average of the estimated 

proportions of that class across all validation samples. In this study, the cross tabulation 

matrix for the average sample provided information about the overall accuracy and a 

general understanding about the misclassifications between classes. Furthermore, the 

individual matrices provided information about the producer’s and user’s accuracies for 

validation samples and thus facilitated the statistical analysis of the impact of 

heterogeneity on the classification accuracies of the two classifications. Beside the cross 

tabulation matrices, multiple scatter plots were used to investigate the agreements 

between the referenced and estimated proportions for each of the land cover classes. 

2.5.3 Statistical analysis 

Statistical analysis was conducted to test the impact of heterogeneity on the 

classification accuracies of the two classifications. Samples used in this statistical 

analysis were the 700 validation samples. The overall accuracy as well as the producer’s 

and user’s accuracies of the validation samples were obtained from the individual cross 

tabulation matrices discussed above. 
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Two statistical tests were performed. First, the Wilcoxon Signed-Rank test was 

conducted to test whether the differences in the producer’s and user’s accuracies 

between the two classifications were significant. The null hypothesis for this test was 

that in the same area and using the same samples, there was no significant difference in 

the accuracies between per-pixel and subpixel classifications. Second, the Steel-Dwass 

test was conducted to test the impact of heterogeneity on the overall accuracy as well as 

the producer’s and user’s accuracies of both classifications. The null hypothesis of this 

test was that the classification accuracies of either the per-pixel or subpixel 

classification were not significantly different between groups of land cover 

heterogeneity. Land cover heterogeneity referred to the number of land cover types 

coexisting within samples. For instance, a sample occupied by two land cover types had 

its land cover heterogeneity of two. Samples having the same heterogeneity ranging 

from one to six were grouped into six groups (from one to six) of land cover 

heterogeneity. However, because there were too few (less than five) samples in group 

five and group six, these groups were excluded from the statistical analysis. 

2.6 RESULTS AND DISCUSSION 

2.6.1 Land cover map and accuracy 

The results of per-pixel and subpixel classifications were presented as a 

categorical map and a fractional map in Figure 2.1 and 2.2, respectively. Visually, the 

overall distributions of land cover types obtained from these two maps were similar. 

The two maps demonstrated that while cropland was dominant in the Mississippi 

Alluvial Plain ecoregion, forest was dominant in both the Ouachita Mountains and 

South Central Plains ecoregions. Cropland was also found in the Arkansas Valley along 
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the Arkansas River. Beside cropland, the Arkansas Valley ecoregion was a mixture of 

forest and grassland/shrub. Urban areas characterized by artificial surfaces were mostly 

found at the intersection of the four ecoregions and along Interstate 30 running 

southwest-northeast. This land cover pattern was also identified and analyzed in another 

study (Jawarneh and Julian 2012). In this study chapter, it was found that both per-pixel 

and subpixel classification worked well on this particular study area. Typically, the 

overall accuracies of the two classifications were higher than 80 percent (81.87 percent 

for per-pixel and 82.28 percent for subpixel; Table 2). Although these overall accuracies 

were slightly lower than the common threshold of 85 percent (Thomlinson et al. 1999), 

they were high and acceptable because: (1) they were in a range of the accuracies 

published during the last decade (Wilkinson 2005), (2) they exceeded the level of 75 

percent suggested by Goodchild et al. (1994), and (3) they were higher than the regional 

accuracy of NLCD 2001 – level I (79 percent for region 7; Wickham et al. 2010). 
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Figure 2.2. Land cover percentages (2010; 30-meter resolution) generated by the 

subpixel classification. 

 

Among all classes, cropland was found to have highest producer’s and user’s 

accuracies (Figure 2.3). This supported the advantage of using multi-date Landsat data 

to identify cropland. However, the misclassification between fallow cropland and barren 

was still not completely avoided. Additionally, barren and artificial surface were easily 

confused with each other (Table 2.2). In fact, in the case of per-pixel classification, 27 

percent of artificial surface was misclassified as barren and 9 percent of barren was 

misclassified as artificial surface. In the case of subpixel classification, 21 percent of 

artificial surface was misclassified as barren and 14 percent of barren was misclassified 

as artificial surface. 
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Table 2.2. The cross tabulation matrix of the average sample for the two classifications: 

per-pixel (normal text) and subpixel (bold italicized text). Values in this matrix were 

calculated for the average sample, of which the class proportions were averages of the 

class proportions across all 700 validation samples. 

 

Referenced percentage 

Cropland Artificial  Barren  
Grassland 
/ Shrub 

Tree Water Total 

E
st

im
at

ed
 p

er
ce

n
ta

g
e 

 

Cropland 12.65 0.05 0.78 0.91 0.44 0.18 15.00 

  12.40 0.04 0.73 0.88 0.38 0.08 14.51 

Artificial  0.01 4.87 0.78 0.62 0.37 0.04 6.68 

  0.06 5.87 1.15 1.09 0.51 0.07 8.75 

Barren  0.38 2.33 6.01 1.17 0.61 0.31 10.81 

  0.50 1.80 5.78 0.90 0.58 0.33 9.88 

Grassland / 

Shrub 
1.61 0.65 0.37 17.93 1.58 0.19 22.33 

  1.67 0.25 0.22 17.56 1.35 0.21 21.24 

Tree 0.09 0.59 0.25 2.94 29.11 0.24 33.22 

  0.11 0.52 0.29 3.13 29.29 0.21 33.54 

Water 0.04 0.00 0.13 0.28 0.21 11.30 11.95 

  0.04 0.01 0.15 0.28 0.22 11.37 12.07 

Total 14.78 8.48 8.32 23.84 32.32 12.26 100.00 

  14.78 8.48 8.32 23.84 32.32 12.26 100.00 

  
Overall 

accuracy 
(%) 

81.87   Kappa 

(%) 

76.99       

82.28 
 

77.54 
   

 

An exploration of these classification errors pointed out that the 

misclassifications between artificial surface and barren were mostly found for rooftops 

and parking lots in the Central Business District. These misclassifications were, 

therefore, due to two reasons. First, this study did not discriminate high-albedo (e.g., 

rooftop) from low-albedo (e.g., asphalt, roads) in the artificial surface class. Also, this 

study considered sand, dry soil, and gravel all belong to the barren class. Second, high-

albedo artificial surfaces have been found to be spectrally confused with sand and dry 

soil (Hu and Weng 2011; Weng et al. 2009; Wu and Murray 2003) whereas low-albedo 

artificial surfaces have been found to be confused with gravel (Stefanov et al. 2001). 
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Additionally, artificial surface was also misclassified with grassland/shrub 

(nearly eight percent for per-pixel and three percent for subpixel) and tree (seven 

percent for per-pixel and six percent for subpixel). The reason was due to the spectral 

similarity in the near-infrared band between high-albedo artificial surface and 

vegetation (Wu and Murray 2003). Furthermore, barren was also found to be commonly 

misclassified with cropland, grassland/shrub, and tree. These misclassifications took 

place along class boundaries (e.g. narrow and/or linear farm paths, forest paths, or dirt 

shoulders along tree-lined roads). These misclassifications implied that not only was 

per-pixel classification not effective in identifying narrow and/or linear features 

(Lechner et al. 2009) but subpixel classification was not very improved as well. 

Furthermore, the misclassifications between tree and grassland/shrub were commonly 

found in low-intensity residence, forest regrown areas, and sparse forests. These 

misclassifications were attributed to the incapability of the classifications to identify 

narrow and/or linear features. Besides, these misclassifications were also due to the 

spectral confusion between them (Lu and Weng 2004). 

Among all classes, barren and artificial surface were the two classes having 

lowest producer’s and user’s accuracies, except the producer’s accuracy of subpixel 

classification for artificial surface (Figure 2.3). This was an expected result because on 

one hand, compared to other classes, pixels of barren and artificial surface were more 

heterogeneous (Figure 2.3). On the other hand, the accuracy of per-pixel classification 

was expected to be reduced as pixels became more heterogeneous (Smith et al. 2003; 

Smith et al. 2002). 
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Multiple Wilcoxon Signed-Rank tests were conducted to test the differences 

between the producer’s accuracies of per-pixel and subpixel classification as well as the 

differences between the user’s accuracies of per-pixel and subpixel classifications for 

each land cover class (Figure 2.3). The results demonstrated that the producer’s 

accuracy of subpixel classification was significantly higher (p<0.05) than that of per-

pixel classification for artificial surface, tree, and water classes (Figure 2.3). Notably, 

while the difference between the producer’s accuracy of subpixel classification and 

producer’s accuracy of per-pixel classification for most classes was small (less than five 

percent), such difference for artificial surface was over 20 percent for which the 

producer’s accuracy of subpixel classification was higher (Figure 2.3). This finding was 

expected given that subpixel classification has been claimed to be more advantageous 

than per-pixel classification because subpixel classification relaxed the assumption that 

pixels were homogenous (Foody 2006; Foody and Cox 1994). In addition, many 

studies, especially urban studies characterizing artificial surface by using remote 

sensing data, have been successful in using subpixel classification to develop fractional 

maps of land cover types (Nichol et al. 2010; Shao and Lunetta 2011; Weng 2012). 

However, the conclusion that subpixel classification was more advantageous than per-

pixel classification for artificial surface in this particular study area could be 

questionable because the user’s accuracy of the subpixel classification for this class was 

significantly (p<0.01) lower than that of the per-pixel classification although the 

difference of the user’s accuracy (nearly three percent) was only one-to-seventh of the 

difference (about 20 percent) of the producer’s accuracy (Figure 2.3). Furthermore, for 

other classes, the conclusion that either the subpixel or the per-pixel classification was 
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more advantageous could not be drawn because not both of the producer’s and user’s 

accuracies of either the subpixel or the per-pixel classification were significantly 

different (Figure 2.3). 

 
Figure 2.3. Mean producer’s and user’s accuracies of per-pixel and subpixel 

classifications together with mean heterogeneity by classes. The means of producer’s 

and user’s accuracies were calculated as the averages of all producer’s and user’s 

accuracies taken from the individual cross tabulation matrices developed for all 

validation samplesThe asterisks indicate * p<0.05, ** p<0.01, and *** p<0.001 in 

Wilcoxon Signed-Rank test. 

 

To further assess the output of subpixel classification, multiple scatter plots 

representing the class agreements between the referenced and estimated proportions 

were used (Figure 2.4). In these plots, the high diffusion of land cover proportions 

around the y=x line of most classes, except water, implied that there were high intra-

class variations of proportions and thus surface reflectance of these classes. These intra-
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class variations were expected to affect the classification accuracies of the subpixel 

classification as mentioned by Foody and Doan (2007). 

 

Figure 2.4. Scatterplots of estimated versus referenced land cover proportions for the 

six classes. The solid line is the y=x line. 

 

2.6.2 Impact of heterogeneity on classification accuracies 

Among the six classes, barren pixels were most heterogeneous with an average 

heterogeneity of 3.02 (Figure 2.3). In contrast, cropland pixels were least heterogeneous 

with an average heterogeneity of 2.1. Given that barren and artificial surface were 

mostly found in urban areas while grassland/shrub and cropland were found in rural 

areas, the trend of heterogeneity decreasing from barren to cropland implied that the 

urban landscape was much more heterogeneous than the rural landscape in this study 

area (Figure 2.1, 2.3). This trend of heterogeneity reflected the reversed trend of the 

producer’s and user’s accuracies of the per-pixel classification. In other words, as land 
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cover was less heterogeneous, the accuracies of per-pixel classification were higher. 

This result was similar to the findings from other scholars for per-pixel classification 

(Smith et al. 2003; Smith et al. 2002; van Oort et al. 2004). Interestingly, we found that 

this rule was also applicable to the subpixel classification, except artificial surface. For 

this class, although the accuracies of per-pixel classification were low, the accuracies of 

subpixel classification were much higher (e.g. 20 percent higher for the producer’s 

accuracy; Figure 2.3). This could be the reason for many urban studies using subpixel 

classification to characterize the urban landscape dominated by artificial surfaces (e.g. 

Berezowski et al. 2012; Small 2001). 

The impact of heterogeneity on classification accuracies was further analyzed by 

testing the differences in mean rank of the overall accuracy as well as the producer’s 

and user’s accuracies between groups of heterogeneity using the Steel-Dwass non-

parametric test (Figure 2.5). The result demonstrated that while the accuracies of pixels 

having one class (i.e. heterogeneity being one) were the highest, these accuracies were 

reduced significantly when the pixels were occupied by more than one class. Besides, in 

most cases, the accuracies were not significantly different between the second group 

and groups of heterogeneity greater than two. These findings implied that land cover 

heterogeneity negatively influenced the accuracies of both the per-pixel and subpixel 

classifications. Subsequently, when there was more than one class coexisting in pixels, 

the classification accuracies were reduced. However, the accuracies of pixels having 

two or more classes were not significantly different. 

In summary, with Landsat data, both per-pixel and subpixel classifications well 

performed on the study area centered at Little Rock with high accuracy. However, 
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apparent misclassifications were still identified between classes. One of the reasons of 

the misclassifications was due to the small size and linear shape of land cover features 

within pixels. Another reason was attributed to the heterogeneity of land cover. In 

concert with other studies, this study found that as the land cover became more 

heterogeneous, the classification accuracy was reduced significantly. The comparisons 

of classification accuracies between per-pixel and subpixel classifications pointed out 

that for this particular study area, it was not clear to conclude which classification was 

more advantageous. It was because while the producer’s accuracies of the subpixel 

classification for some classes were higher than those of the per-pixel classification, the 

user’s accuracies of the subpixel classification for those classes were not higher than 

those of the per-pixel classification. Artificial surface, however, was the most potential 

class that demonstrated the advantage of the subpixel classification over the per-pixel 

classification. It was because the producer’s accuracy of the subpixel classification for 

artificial surface was twenty percent higher than that of the per-pixel classification. 

However, the user’s accuracy of the subpixel classification for artificial surface was 

three percent lower than that of the per-pixel classification. As a result, the conclusion 

that the subpixel classification was better than per-pixel classification for artificial 

surface could be questionable. It was mentioned in other studies that neither per-pixel 

nor subpixel classifications would be good for a heterogeneous landscape (Mather 

1999; Weng and Lu 2009). The reason was because as the landscape became 

heterogeneous, the intra-class variation of surface reflectance increased and thus 

reduced the classification accuracies of both per-pixel and subpixel classifications. 

Another reason particularly for this study could be due to the resolution of Landsat, 
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which was not coarse enough to weaken the performance of the per-pixel classification 

so that the contrast between the per-pixel and subpixel classifications would have been 

more apparent. 

 
Figure 2.5. Mean overall, producer’s and user’s accuracies of per-pixel (a) and subpixel 

(b) classifications by groups of heterogeneity. Error bar indicates +1 standard error 

(s.t.e). Numbers at the top of bars of a group of heterogeneity indicate the groups of 

heterogeneity from which it was statistically different (p<0.05) according to the Steel-

Dwass test. P-CR / U-CR = producer’s / user’s accuracy of cropland, artificial surface 

(AR), barren (BA), grassland/shrub (GR), tree (TR), and water (WA).  
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2.7 CONCLUSION 

In this study, Landsat data was used to classify land cover types using a per-

pixel classification and a subpixel classification. Although the classification accuracies 

were high (81.87 percent for the per-pixel and 82.28 percent for subpixel 

classifications) apparent misclassifications still existed. Land cover heterogeneity was 

found to have negative influence on the classification accuracies. Indeed, the 

classification accuracies decreased significantly when pixels were occupied by more 

than one class. In addition, the comparisons between the accuracies of the per-pixel 

classification and those of the subpixel classification for each class demonstrated that 

for this particular study area, it was not clear to conclude which classification was more 

advantageous. It could be because the land cover heterogeneity of this study area was 

high and thus resulted in the high intra-class variation that reduced the classification 

accuracies of both per-pixel and subpixel classifications. Another reason could be 

related to the resolution of Landsat data. With a resolution of 30 meters, Landsat data 

might not be coarse enough to produce enough mixed pixels for the subpixel 

classification to weaken the per-pixel classification. Findings from this study had 

several meanings. First, it systematically confirmed that the accuracies of both per-pixel 

and subpixel classifications were negatively influenced by land cover heterogeneity. 

Second, the use of per-pixel classification or subpixel classification was dependent on 

the study area and on the imagery data used because a study area could be 

heterogeneous at one resolution but could become homogeneous at another resolution. 

 

  



31 

CHAPTER 3. ACCOUNTING FOR LAND COVER 

HETEROGENEITY IN A SPATIAL TEMPORAL ADAPTIVE 

ALGORITHM FOR MAPPING REFLECTANCE CHANGE: A 

CASE STUDY IN SOUTHEAST OKLAHOMA 2000-2011 

3.1 ABSTRACT 

Monitoring forest disturbances using remote sensing data with high spatial and 

temporal resolutions is an important requirement for revealing the relationship between 

forest disturbances and the dynamics of terrestrial carbon stock as well as ecosystem 

dynamics. Landsat and MODIS are the two most common imagery data source for 

monitoring forest disturbances. Therefore, to have imagery data with high spatial and 

temporal resolutions, it is necessary to perform a data fusion procedure to blend a 

Landsat imagery time-series with a MODIS time-series. The Spatial Temporal Adaptive 

Algorithm for mapping Reflectance Change is one of the popular fusion methods. 

However, it does not explicitly account for land cover heterogeneity. In this study I not 

only test the STAARCH but also propose the MSTAARCH framework, which is a 

modification of the STAARCH, to account for land cover heterogeneity. The results 

show that the MSTAARCH produces a fusion imagery with much higher accuracy than 

the STAARCH. 

3.2 INTRODUCTION 

Forest disturbance has received significant attentions from scientists because of 

its impact on the source/sink dynamics of the aboveground terrestrial carbon (Williams 

et al. 2012) as well as ecosystem dynamics (Turner 2010). On the global scale, Hansen 

et al. (2010) reported that between 2000 and 2005 the global rate of gross forest cover 
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loss was 0.6 percent per year, which made up an area of 1,011,100 square kilometers, 

about 3.1 percent of the estimated forest area in 2000. Of the countries with more than a 

million square kilometers of forest cover, the United States had the highest rate of gross 

forest cover loss (1.2 percent per year) mostly due to fire in the western states and 

logging in the southeastern states, west coast, and in the upper Midwest (Hansen et al. 

2010; Masek et al. 2008). However, the loss of US national forest cover has been 

surpassed by the gain from agricultural abandonment, fire suppression, and logging 

reduction (King et al. 2007). This may be the reason that the conterminous US forest net 

carbon uptake from the atmosphere increased 20 times in the last two decades 

(Williams et al. 2012).  

At the regional and global scales, studies related to time since disturbance have 

been conducted based on a time-series of remotely sensed imagery data, such as 

Landsat or MODIS (Moderate Resolution Imaging Spectroradiometer) (Frolking et al. 

2009). For instance, using a time-series of annual Landsat TM and ETM+ images, 

Masek et al. (2008) developed the wall-to-wall maps of extent and rate of stand-clearing 

disturbances (clear-cut harvest and fire) for the conterminous US and Canada between 

1990 and 2000. Huang et al. (2010) proposed the Vegetation Change Tracker (VCT) 

procedure to map forest disturbances using a time-series of biennial Landsat images. 

The primary advantage of Landsat data was its spatial resolution (30 meters), which was 

good enough to differentiate features that might have different disturbance regimes 

(Townshend and Justice 1988; Turner 2010).  

However, Landsat time-series might not be useful in the detection of time since 

disturbance because of its 16-day temporal resolution, which could be markedly 
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extended to years due to cloud contamination (Ju and Roy 2008). This has become a 

major concern in geographic areas that undergo rapid regeneration, such as those with 

high temperature and high levels of precipitation (Lunetta et al. 2004; Misson et al. 

2005) or those where only partial harvesting occurred (Asner et al. 2004). It was found 

that the coarser the temporal resolution (e.g. greater than two years) was, the lower the 

accuracy of disturbance detection was (Lunetta et al. 2004; Masek et al. 2008). To 

overcome the limitation of temporal resolution, some studies tested the use of MODIS 

data because of its high temporal resolution (e.g. 8 days) (Mildrexler et al. 2009; Pape 

and Franklin 2008). However, due to its moderate spatial resolution (about 500 meters) 

MODIS might not be reliable to locate much land conversion and logging activity 

(Hansen et al. 2008; Pape and Franklin 2008). 

Solutions have been devised to use both Landsat and MODIS data in detection 

of forest disturbances. One approach was to blend Landsat and MODIS data together to 

create a high spatial (30 meters) and temporal (8 days) data (Gao et al. 2006; Hilker et 

al. 2009). Gao et al. (2006) introduced the Spatial and Temporal Adaptive Reflectance 

Fusion Model (STARFM) to predict surface reflectance of 30-meter pixels at a point in 

time (T2) based on known reflectance of a reference Landsat imagery at another point in 

time (T1) and known reflectance of reference MODIS images at both (T1 and T2) points 

in time using a spatial moving window technique. However, this approach suffered 

from a couple of disadvantages that could make it inappropriate for disturbance 

detection of a heterogeneous area.  

One of the disadvantages was that STARFM assumed that MODIS pixels were 

relatively homogeneous and thus, their surface reflectance was proportional to surface 



34 

reflectance of corresponding Landsat pixels (Zhu et al. 2010). As such, changes in 

surface reflectance of MODIS pixels could be used to predict surface reflectance of 

corresponding Landsat pixels. This assumption of pixel homogeneity might not hold in 

such forest landscapes that often had mixtures of needle-leaf-evergreen (e.g. pine) and 

broad-leaf-deciduous (e.g. hickory) forests, which were different in spectral sensitivity 

(Asner 1998). The second disadvantage of STARFM was its choice of reference images 

(i.e. Landsat image at T1 and MODIS images at T1 and T2) (Hilker et al. 2009). 

Originally, STARFM chose reference images independently from disturbances. As a 

result, reference images before disturbances might be used to predict surface reflectance 

values after disturbances. This method of prediction might not be effective if MODIS 

pixels were a mixture of forest types and disturbances happened to the types of which 

Landsat pixels were not representative. 

In order to solve the first limitation of STARFM, Zhu et al. (2010) proposed the 

Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) by 

introducing the spectral unmixing theory into the algorithm. A comparison between 

STARFM and ESTARFM, however, showed that ESTARFM was not always better 

than STARFM but rather dependent on the level of heterogeneity of a study area 

(Emelyanova et al. 2013).  

Beside STARFM, the algorithm Spatial Temporal Adaptive Algorithm for 

mapping Reflectance Change (STAARCH) was introduced by Hilker et al. (2009). 

Unlike STARFM predicting surface reflectance, STAARCH predicts disturbance 

conditions (undisturbed or disturbed). To do so, STAARCH first determines disturbance 

conditions of Landsat and MODIS pixels independently and then perform a rule-based 
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fusion based on the disturbance conditions of Landsat and MODIS pixels to develop a 

binary fused time-series of disturbances. Disturbance conditions of Landsat and MODIS 

pixels are identified by a disturbance index (DI; Healey et al. 2005) measuring the 

spectral disturbance from the pixels to reference sets representative of unchanged and 

mature, and thus undisturbed forests.  

Although STAARCH fusion framework was successfully used to detect forest 

disturbances for a boreal forest dominated by evergreen trees in west central Alberta, 

Canada (Hilker et al. 2009), its capability was limited due to the use of one single 

reference set to detect disturbance conditions of MODIS pixels. STAARCH, therefore, 

did not account for the fact that at the resolution of 500 meters, surface reflectance of 

MODIS pure pixels (i.e. pixels occupied by only one forest type) might be significantly 

different from surface reflectance of MODIS mixed pixels (i.e. pixels occupied by more 

than one forest types and/or other land cover types such as water, rangeland, and 

artificial surface). As a result, STAARCH might overestimate disturbance duration of 

broad-leaf-deciduous forests or underestimate disturbance duration of needle-leaf-

evergreen forests because broad-leaf-deciduous forests have had higher spectral 

sensitivity, especially in infrared bands (Asner 1998). 

The goal of this dissertation chapter was to propose an effective fusion 

framework to detect forest disturbances in southeast Oklahoma where (1) forests were 

highly mixed between deciduous and evergreen (Fry et al. 2011) and (2) forests have 

been disturbed due to both natural (e.g. fire) and anthropogenic (e.g. logging) forces 

(Harper and Johnson 2012; Ouachita Ecoregional Assessment Team 2003). To do so, I 
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modified STAARCH by proposing the MSTAARCH (modified STAARCH) framework 

to better develop reference sets for MODIS data. 

3.3 STUDY AREA 

The study area (approximately 185 x 185 km
2
) covering primarily southeast 

Oklahoma and part of Arkansas and Texas is of a Landsat scene path 26 and row 36 

(Figure 3.1). Most of this area (96 percent) is situated across three Level III ecoregions 

(Omernik, 1987): Arkansas Valley, Ouachita Mountains, and South Central Plains. The 

Arkansas Valley ecoregion is characterized by a mosaic of land cover types across 

plains, hills, floodplains, terraces and scattered mountains, with most of its forests 

occurring on steep slopes (Oklahoma Forestry Services 2010). Pasture and hay are 

found on gently sloping uplands while croplands mostly occur in bottomlands. The 

South Central Plains are dominated by agriculture (Figure 3.1), but have many large 

areas of medium-tall to tall mixed forests. Compared to the other two ecoregions, 

forests dominate the Ouachita Mountains (75 percent), which are characterized by steep 

slopes along east-west trending ridges. Over the entire study area, forests cover 56 

percent of the land, of which 59 percent is deciduous, 30 percent evergreen, and 11 

percent mixed forests (Figure 2.1; Fry et al. 2011). Forests in the study area are 

primarily used for logging and recreation (Oklahoma Forestry Services 2010). 

3.4 DATA AND PRE-PROCESSING 

3.4.1 Landsat data 

Twenty-one cloud-free (cloud cover ≤ 5 percent) Landsat images (path 26, row 

36) acquired in summer months (June-September; Table 3.1) were derived from the 

Landsat Climate Data Record (CDR) Surface Reflectance images downloaded from the 
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US Geological Survey Earth Explorer portal (http://earthexplorer.usgs.gov). These CDR 

images, projected to the Universal Transverse Mercator (UTM) zone 15N, included 17 

bands, six of which represented surface reflectance of the six Landsat reflectance bands 

(excluding the thermal infrared) and two of which represented flags of clouds and cloud 

shadows (Masek et al. 2006). Surface reflectance data of the CDR images were 

produced by the 6S approach and the cloud and cloud shadow flags were produced by 

the Automatic Cloud-cover Assessment (ACCA) algorithm (Department of the Interior 

2013; Masek et al. 2006). In this study, the cloud and cloud shadow flags were used as 

masks to remove cloud and cloud shadow pixels from the six reflectance bands. These 

cloud and cloud shadow pixels were then filled by using a temporally linear 

interpolation method suggested in (Huang et al. 2010). A Landsat time-series (i.e. a 

temporal sequence of Landsat images) was then created by layer stacking all twenty-one 

Landsat images in a temporal sequence manner. 

Table 3.1. Landsat acquisition dates. 

Sensor Date of acquisition  Sensor Date of acquisition 

Landsat 5 TM 2000-07-19  Landsat 5 TM 2004-07-14 

Landsat 7 ETM+ 2000-08-12  Landsat 5 TM 2004-08-31 

Landsat 5 TM 2000-08-20  Landsat 5 TM 2005-06-15 

Landsat 7 ETM+ 2000-08-28  Landsat 5 TM 2005-08-18 

Landsat 7 ETM+ 2000-09-29  Landsat 5 TM 2005-09-19 

Landsat 5 TM 2001-07-22  Landsat 5 TM 2008-09-27 

Landsat 7 ETM+ 2002-06-15  Landsat 5 TM 2009-06-26 

Landsat 7 ETM+ 2002-08-18  Landsat 5 TM 2010-07-31 

Landsat 5 TM 2002-09-11  Landsat 5 TM 2011-07-02 

Landsat 5 TM 2002-09-27  Landsat 5 TM 2011-08-03 

Landsat 5 TM 2003-07-28    

 

3.4.2 MODIS data 

Another study showed that the Nadir BRDF-Adjusted Reflectance (NBAR) 16-

day MODIS composites (MCD43A4) provided the most accurate synthetic imagery 

http://earthexplorer.usgs.gov/
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when fused with Landsat imagery (Walker et al. 2012). Therefore, NBAR composites 

were used in this study. A total of 604 NBAR composites (tile h10v05; 8-day temporal 

resolution; 500-meter spatial resolution) between 5/24/2000 and 9/30/2011 were 

obtained from the Land Processes Distributed Active Archive Center (LP DAAC; 

https://lpdaac.usgs.gov). These composites were presented as eight-day composites 

based on 16-days of data (Lucht et al. 2000). The temporal extent of these composites 

was seven time steps before and seven time steps after the first and last images, 

respectively, in the Landsat time-series. Using additional MODIS composites before 

and after the study period was necessary for the Savitzky-Golay algorithm (Savitzky 

and Golay 1964) used to smooth the time-series of MODIS disturbance index (detail in 

section 3.4.3). All of these composites were reprojected to the UTM zone 15N and 

clipped to the extent of the Landsat time-series. These composites were then layer 

stacked by date to form a MODIS time-series. 

https://lpdaac.usgs.gov/
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Figure 3.1. The study area (185 km x 185 km; Landsat scene path 26, row 36) in 

southeast Oklahoma. The background shows land-cover according to the 2006 NLCD. 

The most dominant land-cover type is forest including deciduous, evergreen, and mixed 

forests (56%), followed by grassland, shrub and pasture hay (35%). Wetland occupies 

1.3%, cultivated land 0.6%, non-vegetated surface (e.g. urban and barren land) 4.4%, 

and water 2.7%. 



40 

3.4.3 Land cover data 

The National Land Cover Databases (NLCDs) 2001 and 2006 (Fry et al. 2011; 

Homer et al. 2004) were used in this study for two purposes: to identify input forest 

pixels for the disturbance detection and to develop reference sets for the disturbance 

detection. The reference sets included pixels spectrally defined as unchanged and 

mature forests against which all other pixels were spectrally compared for the 

determination of their disturbance conditions (i.e. disturbed or undisturbed; section 

3.4.3). Both NLCDs were downloaded from the web interface of the Multi-Resolution 

Land Characteristics Consortium (www.mrlc.gov). NLCDs after downloaded were 

reprojected to the UTM zone 15N and clipped to the extent of the Landsat time-series. 

Although these NLCDs had 29 classes covering water, forest, shrub, herbaceous, and 

wetland (Homer et al. 2004), only forest classes (deciduous 41 and evergreen 42) were 

used for this study. 

3.4.4 Validation data 

Field-trip photos  

Georeferenced field-trip photos were used to validate locations of disturbances. 

Beside the existing photos taken in June and July 2011 (Julian 2011), I conducted a 

couple field trips to southeast Oklahoma in October 2012 and June 2013 to gain 

knowledge about the dynamics and spatial patterns of disturbed and undisturbed forests. 

During the field trips, I used a Casio EX-H20G GPS enabled camera to photograph 

disturbance conditions resulting from forest harvests, urban development, and road 

clearing. Because forest was dominant in the Ouachita Mountains ecoregion, I mainly 

explored this ecoregion during the field trips. The explored area was generally enclosed 

http://www.mrlc.gov/
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by the Talimena Scenic Drive in the north, Highway 259 in the east, and Highway 3 in 

the south (Figure 3.2). Besides those roads, I also explored highway 144 and a couple of 

forest paths. 

 

Figure 3.2. Field-trip routes and locations. The background shows land cover types 

according to the NLCD 2006. 

 

The Talimena Scenic Drive going east-west has been a National Scenic Byway 

in southeastern Oklahoma. Along this drive was dominated by deciduous trees. Unlike 

the Talimena Scenic Drive, Highway 259 going north-south and cutting across multiple 
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mountains has had both deciduous and evergreen forests, some of which were clear-cut 

areas. Highway 3 was dominated by evergreen forests. I found this route interesting 

because it had many new clear-cut areas. In fact, Google Earth™ showed that along 

Highway 3, more evergreen forests have recently been cut compared to 2003. Along 

Highway 144 was dominant with evergreen. These evergreen areas are harvested or 

replaced by agricultural fields. Driving into the forests through forest trails, I found that 

there have been urban and/or agricultural expansions going on, proven by areas cleared 

for artificial surfaces. 

Besides the knowledge of the dynamics and spatial patterns of disturbances, the 

other achievement of these field trips was 206 georeferenced photos used for validation. 

Photos were taken at least 30 meters apart so that they would not fall into the same 

Landsat pixel. In addition, because the locations of these photos were used for 

validation, I estimated the distances from the camera positions to the sites captured by 

the camera. These distances were then used to offset the photo locations so that they 

represented the disturbance conditions in the photos. Disturbance conditions of forests 

in the photos were determined based on the NLCD definitions of shrub and 

grassland/herbaceous. Therefore, areas that were occupied by trees less than five meters 

tall or by more than 80 percent of gramanoid or herbaceous vegetation were considered 

as disturbed (Figure 3.3). 
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Figure 3.3. Field-trip photos taken in different years, showing disturbance conditions 

and their initial dates of disturbance detected by the proposed MSTAARCH algorithm. 

 

 

(c) Disturbed due to harvesting, detected on 

7/4/2011 (taken on 7/13/2011) 

(d) Disturbed due to harvesting, detected on 

7/4/2011 (taken on 10/7/2012) 

(e) Regeneration of an evergreen forest from a 

harvest detected on 6/26/2009 (taken on 6/22/2013) 

(a) Closed-canopy deciduous forest, detected as 

persistently undisturbed (photo taken on 

6/22/2013) 

(b) Open-canopy evergreen forest, detected as 

persistently undisturbed (taken on 6/22/2013) 
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Aerial photos 

Time-stamped NAIP photos were used to validate changes in spatial extent of 

areas disturbed. These photos in county-mosaic format were ordered through the U.S. 

Department of Agriculture Geospatial Data Gateway 

(http://datagateway.nrcs.usda.gov/) for the sixteen counties in Oklahoma in six years 

(2003, 2004, 2005, 2006, 2008, and 2010). These one-meter-resolution natural-color 

photos were acquired during the agricultural growing seasons in the continental U.S 

(U.S. Department of Agriculture 2010). The actual dates of acquisition of these 

orthorectified NAIP photos were derived from their metadata shapefiles representing 

digital-ortho-quarter-quad-tiles (DOQQs) or flying paths. To create the NAIP validation 

dataset, I randomly digitized a total of 350 clear-cut areas (i.e. NAIP patches) from 

NAIP photos. For each NAIP patch, the dates that it was disturbed were recorded by 

comparing its location with the NAIP metadata shapefiles. These vector-based NAIP 

patches were converted to raster-based (30 meters) NAIP patches for the validation. 

Thematic burn severity dataset 

The thematic burn severity dataset was used to validate the spatial extents of 

areas disturbed due to fire at a yearly time scale. This 30-meter raster-based thematic 

burn severity dataset was obtained from the Monitoring Trends in Burn Severity 

Geospatial Database (http://www.mtbs.gov). The dataset represented large (over two 

square kilometers in East and four square kilometers in West) fires in the conterminous 

US (Schwind 2007). Each pixel in this dataset was classified as (1) unburned to very 

low, (2) low, (3) moderate, (4) high, (5) increased greenness, or (6) non-processing 

mask (Schwind 2007). In this study, only pixels of class 3 (moderate) and class 4 (high) 

http://datagateway.nrcs.usda.gov/
http://www.mtbs.gov/
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were labeled as burnt pixels and used for the validation because they captured most 

severe fires. 

3.5 METHODS 

3.5.1 Spatial pattern analysis of NLCDs 

Because of the effect of land cover heterogeneity on the disturbance detection, 

especially when it was performed based on the moderate-resolution MODIS imagery, 

land cover heterogeneity in southeast Oklahoma was investigated. The investigation 

was conducted based on both the NLCD 2001 and 2006. FRAGSTATS software 

(McGarigal et al. 2012) was used to calculate the landscape-level Shannon’s Diversity 

Index (SHDI) for the entire region with all fifteen NLCD land cover types. This 

diversity index has been widely used to measure the heterogeneity (the higher 

Shannon’s index, the more heterogeneous) of a landscape through its proportions of all 

land cover types. Additionally, FRAGSTATS was also used to calculate the class-level 

number of patch (NP) index for the deciduous and evergreen classes within 300 

randomly selected MODIS pixels using both NLCD 2001 and 2006 to better understand 

the degree of heterogeneity of MODIS pixels in the study area. The smaller the number 

of patches within MODIS pixels was, the less heterogeneous they were. 

3.5.2 Statistical test of tasseled cap indices 

To better understand the variability of tasseled cap indices due to different 

compositions of forest types within MODIS pixels, the Mann-Whitney test was 

performed for ten MODIS tasseled cap images (Brightness, Greenness, Wetness) 

randomly selected from the MODIS tasseled cap time-series. This non-parametric test 

was used to relax the assumption of data normality. The significance of the test was 
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assessed at α=0.05. For each tasseled cap image, the test was perform for three groups 

of pixels (pure deciduous, pure evergreen, and combination) with the hypothesis that the 

tasseled cap indices of these groups of pixels were not significantly different. The 

developments of the tasseled cap time-series and the three testing groups were presented 

in section 3.5.3 below. 

3.5.3 Data fusion 

In this study, the MSTAARCH fusion framework was developed as a 

modification of the original STAARCH. The modification focused on the selection of 

reference sets used to develop MODIS time-series of disturbance index. Similarly to 

STAARCH, the MSTAARCH included three main steps: tasseled cap transformation, 

disturbance index calculation, and data fusion (Figure 3.4; Hilker et al. 2009). 

Tasseled cap transformation 

The purpose of this step was to transform the Landsat time-series and MODIS 

time-series to multiple time-series of tasseled cap indices (Brightness, Greenness, and 

Wetness; Kauth and Thomas 1976). Separate transformation coefficients were used for 

Landsat TM and Landsat ETM+ (Crist 1985) and for MODIS (Lobser and Cohen 2007). 

These transformed time-series were then used as inputs to the calculation of disturbance 

index. 
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Figure 3.4. Overview of the methodology with three primary steps (tasseled cap 

transformation, disturbance index calculation, and data fusion) and their corresponding 

outputs. (a) and (b) are Landsat and MODIS tasseled cap time-series; (c) and (d) are 

Landsat and MODIS DI profiles of the selected pixel in (a) and (b); note that in (c), a 

threshold of 2 is applied to the Landsat DI profile to convert it to a binary profile 

representing disturbance conditions; and (e) is the final fused binary DI time-series 

overlapped with the MODIS DI time-series of the selected pixel, for which the initial 

and final dates of a disturbance are 7/19/2004 and 9/29/2008, respectively. 
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Development of reference sets and calculation of disturbance index 

The purpose of this step was to create a Landsat time-series of disturbance index 

(i.e. Landsat DI time-series) and a MODIS time-series of disturbance index (i.e. 

MODIS DI time-series). These time-series were created by calculating disturbance 

index (DI; Healey et al. 2005) for every pixel on the scene-by-scene basis using 

equation (1). 

DI = Brightnessn – (Greennessn + Wetnessn) (1) 

DI was developed in the form of equation (1) to identify stand-replacing 

disturbances which often resulted in large contrast between the brightness and the total 

of greenness and wetness indices (Healey et al. 2005). For each scene (either Landsat or 

MODIS), DI was calculated for every pixel as a linear function of its three tasseled cap 

indices normalized by the scene mean and standard deviation of the tasseled cap indices 

of a reference set composing of pixels representing unchanged and mature forest 

(Masek et al. 2008). This normalization was expected to reduce the effects of solar 

geometry and vegetation phenologic variability on the change of tasseled cap indices so 

that this change would be strongly associated with disturbances (Healey et al. 2005; 

Masek et al. 2008). Because of the normalization, DI actually represented a spectral 

distance of a given pixel to an undisturbed forest represented by the reference set. The 

larger the distance was the more likely the given pixel became disturbed. A threshold 

suggested to be 2 could be applied across time for every pixel to determine its temporal 

disturbance conditions (i.e. when it was disturbed with DI ≥ the threshold or 

undisturbed; Healey et al. 2005; Masek et al. 2008). 
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Similarly to STAARCH, in MSTAARCH, DI was calculated separately for 

Landsat and MODIS time-series and based on separate approaches of developing 

reference sets. For the Landsat time-series, multiple reference sets were developed, each 

of which represented a forest type. Because there were primarily two forest types 

(deciduous and evergreen) in the study area, two Landsat reference sets were developed 

to normalize deciduous and evergreen pixels identified by the NLCD 2001. The Landsat 

deciduous reference set was created by extracting pixels labeled as deciduous on both 

NLCD 2001 and NLCD 2006. Similarly, the Landsat evergreen reference set was 

created by extracting pixels labeled as evergreen on both NLCD 2001 and NLCD 2006. 

These Landsat reference sets were used to normalize the Landsat tasseled cap time-

series to create a Landsat DI time-series. 

For the MODIS time-series, STAARCH used only one reference set, named 

here as STAARCH reference set. This reference set represented all MODIS pixels 

assumed to be unchanged without accounting for their variability in forest 

compositions. However, because of the heterogeneity of the study area, most MODIS 

pixels often composed of multiple forest types and/or other land cover types that could 

change from time to time with different frequency and intensity, and thus without 

careful selection, MODIS pixels could hardly become a good reference set of 

undisturbed forest. In addition, STAARCH reference set could include MODIS pixels 

(especially those in the South Central Plains) that composed of a little amount of forest 

but almost a full amount of rangeland. This situation would result in the STAARCH 

reference set being similar to a disturbed pixel having very high brightness and low 

greenness and wetness. Consequently, STAARCH reference set might not be able to 
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effectively detect disturbances. Therefore, I argued that using one reference set to 

normalize MODIS time-series would be inappropriate for a heterogeneous landscape.  

In a heterogeneous landscape, MODIS pixels would be mixtures of forest types 

and/or other land cover types (e.g. water, grass, artificial surface). This mixed-pixel 

problem has been a challenge of not only land cover classification (Foody 2006) but 

also data fusion (Gao et al. 2006). For instance, normalizing a disturbed evergreen pixel 

(i.e. an evergreen pixel partly covered by evergreen forest) to a reference undisturbed 

evergreen pixel (i.e. an evergreen pixel fully covered by evergreen forest) would 

produce a DI higher (Figure 3.6, green line) than if the disturbed pixel was normalized 

by a reference pixel partly covered by evergreen forest (Figure 3.6, purple line) or by a 

reference deciduous undisturbed pixel (Figure 3.6, blue line). This was because of the 

higher brightness and lower wetness of the reference pixel partly covered by evergreen 

forest or of the reference undisturbed deciduous pixel compared to the reference 

evergreen pixel. Consequently, the disturbance condition, and thus the beginning and 

ending dates of a disturbance of the disturbed pixel might not be effectively detected by 

applying a threshold (e.g. 2; Figure 3.6, red line) to the pixel’s DI if the reference pixel 

partly covered by evergreen forest or if the reference undisturbed deciduous pixel was 

used in the normalization. 

In another instance, normalizing an undisturbed deciduous pixel (i.e. a 

deciduous pixel fully covered by deciduous forest) to a reference undisturbed evergreen 

pixel would produce a DI higher than if the undisturbed deciduous pixel was 

normalized by a reference undisturbed deciduous pixel. Consequently, the undisturbed 

deciduous pixel might be detected as disturbed even though in fact, it was not. 
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Therefore, I suggested that it was necessary to (1) use multiple reference sets 

representative of forest types and their combinations and (2) use pixels fully covered 

rather than partly covered by forests for the reference sets. In MSTAARCH, I proposed 

to have three reference sets: pure deciduous, pure evergreen, and a combination of 

deciduous and evergreen. The pure deciduous reference set composed of unchanged 

pixels fully covered by deciduous forest. It was used to normalize pixels fully covered 

by deciduous forests at the beginning of the study period. Similarly, the pure evergreen 

reference set was used to normalize pixels fully covered by evergreen forests at the 

beginning of the study period. The combination class included pixels that were fully 

covered by a combination of both deciduous and evergreen forests and was used to 

normalize any pixels that were not fully covered by either deciduous or evergreen 

forests at the beginning of the study period. 

MODIS pixels to be normalized were identified by first aggregating deciduous 

and evergreen pixels extracted from the NLCD 2001 to 500 meters. Those 500-meter 

pixels having 100 percent of deciduous were normalized by the pure deciduous 

reference set. Similarly, those 500-meter pixels having 100 percent of evergreen were 

normalized by the pure evergreen reference set. All other pixels were normalized by the 

combination reference set. The three MODIS reference sets were created by first 

aggregating the Landsat deciduous and evergreen reference sets to 500 meters. Among 

these 500-meter pixels, those having 100 percent of deciduous were used as the MODIS 

pure deciduous reference set. Similarly, those having 100 percent of evergreen were 

used as the MODIS pure evergreen reference set. Among the rest of these 500-meter 

pixels, those having a sum of deciduous and evergreen proportions greater than or equal 
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to 99 percent were used as the MODIS combination reference set. The proportion of 99 

percent was used instead of 100 percent because in the latter case, there were too few 

pixels. All these three reference sets were then used to normalize the MODIS tasseled 

cap time-series to create a MSTAARCH MODIS DI time-series. 

In addition to the three proposed reference sets, the STAARCH reference set 

was also created by merging all three reference sets (pure deciduous, pure evergreen, 

and combination) together. This STAARCH reference set was used to create a 

STAARCH MODIS DI time-series for comparison purpose. 

All MODIS DI time-series after created was run for the Savitzky-Golay filter 

(Savitzky and Golay 1964) to reduce noises caused by cloud contamination, 

atmospheric variability, and bi-directional effects (Chen et al. 2004; Hird and 

McDermid 2009). This Savitzky-Golay filter used a polynomial function to average 

data within a moving temporal window. The filter had two important parameters 

including the window size and the degree of the polynomial function. The appropriate 

window size was recommended between 9 and 15 and the degree between 2 and 4 

(Chen et al. 2004). In this study, I used the window size of 15 and the degree of 2 to 

maximize the smoothing capability of the filter. After being filtered, the MODIS DI 

time-series was temporally subset to represent the period of 7/19/2000 and 8/5/2011, 

which was closest to the Landsat period. The MODIS DI time-series was then resized to 

30 meters using the cubic convolution resampling method. 

Image fusion 

This image fusion steps composed of two procedures. The first procedure was to 

apply a MODIS DI threshold to a MODIS DI time-series to produce a MODIS binary 
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DI time series. In the original STAARCH framework, the DI threshold was not constant 

but rather varied from pixel to pixel because this STAARCH DI threshold was a linear 

function of a pixel’s DImin and DImax, which were the minimum and maximum, 

respectively, of the pixel’s DI across time. This threshold was applied to the STAARCH 

MODIS DI time-series to create a STAARCH MODIS binary DI time-series. Because 

the use of DImin and DImax as a threshold could be affected by DI outliers caused by 

noises, in MSTAARCH, I used a more common threshold of 2 (Healey et al. 2005; 

Hilker et al. 2009). To understand the effect of this threshold on the final result, I 

applied this threshold 2 to the STAARCH MODIS binary DI time-series to produce a 

Threshold-2 MODIS binary DI time-series for comparison purpose. The threshold 2 

was also applied to the MSTAARCH MODIS DI time-series to produce a MSTAARCH 

MODIS binary DI time-series. These three binary DI time-series were then used for the 

fusion procedure. 

In each case of the binary DI time-series, a fused binary DI time-series was 

initially created with null images. This time-series had a spatial resolution of 30 meters 

and temporal resolution of eight days from 7/19/2000 to 8/5/2011. Every Landsat image 

from the binary Landsat DI time-series was copied to replace a null image that was 

temporally closest to the date of the Landsat image. As a result, there were multiple 

sub-periods whose beginning and ending images had binary values taken from the 

Landsat binary DI time-series. Values for images within the sub-periods were 

determined as following. 

For every sub-period, pixels identified as disturbed (or undisturbed) by both the 

beginning and ending images of the sub-period was considered as disturbed (or 
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undisturbed) for the entire sub-period and thus, their entire sub-period temporal profile 

was assigned with a value of one (or zero if undisturbed). In another case, pixels 

identified as undisturbed by the beginning image but disturbed by the ending image of 

the sub-period were considered as changed pixels. Their beginning time of disturbance 

was the date that they were first detected as disturbed by the binary MODIS DI time-

series within the sub-period. Similarly, the ending time of disturbance of pixels 

identified as disturbed by the beginning image but undisturbed by the ending image of a 

sub-period was the date that they were first detected as undisturbed by the binary 

MODIS DI time-series within the sub-period. At the end of the image fusion step, three 

binary DI time-series were created: STAARCH binary DI time-series, Threshold-2 

binary DI time-series, and MSTAARCH binary DI time-series corresponding to the 

three MODIS binary DI time-series created above. 

3.5.4 Validation 

The validations were performed on a pixel-by-pixel basis for (1) the Landsat 

binary DI time series, (2) the STAARCH binary DI time-series, (3) the Threshold-2 

binary DI time series, and (4) the MSTAARCH fused binary DI time-series using field-

trip photos, NAIP aerial photos, and the thematic burn severity dataset. 

Field-trip photos were used to validate locations of areas disturbed and 

undisturbed, which were detected by the last image in each of the four binary DI time-

series to be validated. The disturbance conditions of pixels were compared with those of 

the photos at the same locations. Pixels having the same disturbance conditions as the 

photos were considered as agreed pixels. The ratio between the number of agreed pixels 

and the total number of photos was the overall accuracy. 
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Digitized NAIP patches were used to validate the locations and extents of areas 

disturbed for every of the 50 NAIP dates. To do this, the raster-based NAIP patches 

were used to validate images in each of the four binary DI time-series on the dates that 

were closest to the NAIP dates. For instance, if a NAIP patch was observed on 

6/7/2003, it would be used to validate the image on 6/10/2003. In the case of the 

Landsat binary DI time-series, because there was no Landsat image in 2006 and 2007, 

these years were excluded from the validation of Landsat binary DI time-series. 

Producer’s accuracies were calculated for each NAIP date and for each binary DI time-

series. These accuracies were also summarized by year and presented in a color matrix, 

in which each cell represented the accuracy of a given time-series in a given year. 

Summary of the accuracies in this manner allowed for a synoptic assessment of the four 

time-series over time and between the methods used to create them. 

The annual thematic burn severity dataset was used to validate the locations and 

extents of areas disturbed due to fire at a yearly time scale. To do this, each of the four 

time-series to be validated was accumulated by year to create a yearly time-series. 

Consequently, each image of these yearly time-series represented all disturbances 

happening between January 1
st
 and December 31

st
 of a given year (except the year 2000 

from 7/19/2000 to 12/31/2000 and the year 2011 from 1/1/2011 to 8/5/2011). The data 

accumulation process was done by copying all disturbed pixels from all dates within a 

year into one image representative of that year. These yearly time-series, which would 

include twelve images for twelve years (from 2000 to 2011) were then validated against 

the thematic burn severity dataset. In this validation, the producer’s accuracy was 
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calculated as a ratio between the number of pixels in a yearly time-series matched with 

the burnt pixels and the total of burnt pixels. 

3.5.5 Mapping disturbances 

To understand the spatio-temporal distribution of disturbances in southeast 

Oklahoma, the beginning time of disturbances were mapped. Because there could be 

multiple disturbances happing at the same location within the twelve-year period, for 

each pixel, its beginning time of the disturbance having longest duration was mapped. It 

was assumed that disturbances having longer duration were more severe.  

3.6 RESULTS 

3.6.1 Land cover heterogeneity in the study area 

Land cover in southeast Oklahoma was heterogeneous (Shannon’s Index over 

1.8) in both 2001 and 2006. This heterogeneity resulted in highly heterogeneous 

MODIS pixels (average of Shannon’s Index over 0.8; Figure 3.5) all over the landscape 

of southeast Oklahoma spreading across the Arkansas Valley, Ouachita Mountains, and 

South Central Plains ecoregions. As a result, forest patches within MODIS pixels was, 

on average, as small as 28 percent of the size of a MODIS pixel (Figure 3.5). 
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Figure 3.5. Ecoregional average (N=100 MODIS pixels per ecoregion) of MODIS 

pixel-based mean patch size and Shannon’s diversity index calculated based on NLCD 

2001. Error bars represent standard errors. 

 

3.6.2 Variability of tasseled cap indices due to different compositions of forest types 

The Mann-Whitney test showed that there were significant differences (p<0.05) 

in MODIS tasseled cap indices between the three MODIS reference sets (pure 

deciduous, pure evergreen, and combination) proposed by this study (Figure 3.7). The 

brightness of pure deciduous reference set was significantly higher than that of pure 

evergreen reference set because reflectance values of deciduous forests were higher than 

those of evergreen forests in infrared bands. Unlike brightness, the difference in 

greenness between the two reference sets was seasonally dependent. Typically, 

greenness of pure deciduous reference set was higher than that of pure evergreen 

reference set during leaf-on (e.g. summer) season but became lower during leaf-off (e.g. 

winter) season. In contrast with brightness, wetness of pure deciduous reference set was 

lower than that of pure evergreen reference set (Figure 3.6) typically because pure 
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deciduous forests were more sensitive to the infrared bands. The tasseled cap indices of 

the combination reference set were generally between those of the evergreen and 

deciduous reference sets. 

 

Figure 3.6. Multiple disturbance index time-series of a MODIS disturbed evergreen 

pixel located at the red dot in NAIP photos at the top row. Each of these time-series was 

normalized by different reference sets: MODIS pure deciduous (blue), MODIS pure 

evergreen (green), and MODIS STAARCH (purple). Please see text for explanation of 

these reference sets. The red line represents the threshold of 2 used to determine 

disturbance condition, represented by the black line, of the analyzed pixel. Gray dots 

represent available Landsat images identifying the analyzed pixel as undisturbed 

whereas red dots represent available Landsat images identifying the analyzed pixel as 

disturbed. 

 

The tasseled cap indices of the STAARCH reference set were also presented in 

Figure 3.7 for comparison purpose. In general, the tasseled cap indices of the 

STAARCH reference set were in between those of the combination and pure deciduous 

2004-09-05 2006-10-16 2009-06-26 
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reference sets. Indeed, while brightness and wetness of STAARCH reference set were 

as high as those of the pure deciduous reference set, greenness of STAARCH reference 

set was similar to that of combination reference set. 

3.6.3 Method validation and comparison 

Field-trip photos were first used to validate locations of disturbances on the last 

date (8/3/2011) of the Landsat binary DI time-series. Note that the last Landsat binary 

DI image in this time-series was used as the last binary DI image in all other binary DI 

time-series produced by the three fusion methods. Of the 206 photos, 198 of them (141 

undisturbed and 57 disturbed) were correctly detected. The overall accuracy, therefore, 

was 96 percent. To further investigate the capability of the Landsat binary DI time-

series and the other three fused binary DI time-series NAIP photos and the burn severity 

dataset were used. 
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Figure 3.7. Time-series of scene averages of tasseled cap indices for MODIS reference 

sets: pure deciduous (N=685), pure evergreen (N=274), and their combination 

(N=1,774). Red vertical lines represent the time steps used for the Mann-Whitney test. 

 

The four binary DI time-series of disturbances were first compared visually 

against NAIP photos and against each other (Figure 3.8). While the Landsat binary DI 

time-series (Figure 3.8 b,g) was created by using only the Landsat time-series, the other 

three fused binary time series were created by using both the Landsat time-series and 

MODIS time-series based on a fusion algorithm. Recall that the Threshold-2 binary DI 

time-series (Figure 3.8 d,i) was created by modifying the STAARCH (Figure 3.8 c,h) 

with the use of a MODIS DI threshold 2. This threshold was expected to reduce the 
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impact of noises causing extremes in MODIS DI and therefore, to be improved from the 

original STAARCH. The MSTAARCH binary DI time-series (Figure 3.7 e,j) was 

created by modifying the STAARCH with not only the use of the MODIS DI threshold 

2 but also the use of multiple MODIS reference sets. Because of these modifications, 

MSTAARCH was expected to be significantly improved from STAARCH.  

 

Figure 3.8. Changes in area disturbed (30-meter resolution) detected by different 

methods for a typical evergreen forest heavily harvested since 2000. In this figure, the 

first column (NAIP) represents NAIP aerial photos in 2005 and 2008 and the second to 

the fifth columns represent the four binary DI time-series: Landsat DI, STAARCH DI, 

Threshold-2 DI, and MSTAARCH DI. Please see text for explanation on the binary 

time-series. 

 

In Figure 3.8, NAIP aerial photos (Figure 3.8 a,f) were presented as a base line 

for comparison. The four binary DI time-series were presented on two dates in 2005 and 

2008. In general, with its high spatial resolution, the Landsat binary DI time-series well 

captured the locations and extents of disturbances (Figure 3.8 b). However, its moderate 

temporal resolution avoided it from being a perfect time-series capturing disturbances 

over time (Figure 3.8 g). For instance, the Landsat binary DI image on 9/27/2008 was 

not capable of capturing disturbed patches found five months before (i.e. on 4/28/2008). 
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It was because forests in these patches, which could have become disturbed well before 

4/28/2008, grew to a level that was not able to be spectrally detected by a Landsat 

sensor. 

A fusion of Landsat time-series with such a high temporal resolution data as the 

MODIS time-series was expected to solve this problem. However, it was found that 

both the STAARCH binary DI time-series and the Threshold-2 binary DI time-series 

were much worse (Figure 3.8 h,i). In contrast, the MSTAARCH binary DI time-series 

was much better (Figure 3.8 j). It was able to not only detect disturbances on the date 

close to the Landsat date (Figure 3.8 e) but also on the date that was further from the 

Landsat date (Figure 3.8 j). 

 

Figure 3.9. Producer’s accuracies represented as color matrices over time and between 

methods of disturbance detection when validated against NAIP photos (A) and thematic 

burn severity dataset (B). Please see text for explanation on the binary time-series. 

Blank cells in the matrices represent no data. 
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Using NAIP to validate the four time-series revealed that the Landsat binary DI 

time-series had highest total producer’s accuracy (77 percent), followed by the 

MSTAARCH binary DI time-series (4.2 percent lower than that of the Landsat; Figure 

3.9 A). The producer’s accuracies of the STAARCH and Threshold-2 binary DI time-

series were lowest (18 percent lower than that of the Landsat). This same pattern of 

producer’s accuracy among the four time-series was found for the yearly producer’s 

accuracy as well. For example, in 2003, the producer’s accuracy of the Landsat binary 

DI time-series was highest (83.7 percent), followed by the MSTAARCH binary DI 

time-series (73.7 percent) and the STAARCH binary DI time series (66.3 percent). It 

was also found that among the six years of NAIP availability, the years of 2005 and 

2010 had higher producer’s accuracies than other years for all four binary DI time-

series. Conversely, the producer’s accuracies of all four binary DI time-series were low 

in 2006 and 2008.  

Specifically to fire, all four binary DI time-series did not demonstrate high 

producer’s accuracies when they were validated against the thematic burn severity 

dataset. Among the four binary time-series, the Landsat binary DI time-series had the 

highest (40 percent) total producer’s accuracy (Figure 3.8 B). For all time-series, the 

produce’s accuracy was highest (66 percent) in 2000 while lowest (0.9 percent) in 2003. 

In 2001, compared to other time-series, the MSTAARCH binary DI time-series had the 

lowest producer’s accuracy. In the years that did not have Landsat images (2006 and 

2007) the producer’s accuracies were low for all three fused time-series (i.e. 

STAARCH, Threshold-2, and MSTAARCH binary DI time-series), but those 

accuracies in 2006 were much higher than those in 2007. 
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3.6.4 Trends of area disturbed 

The trends of yearly cumulative area disturbed derived from the four binary DI 

time-series were presented in Figure 3.10. In general, the cumulative area disturbed in 

southeast Oklahoma dropped in 2001 but then gradually increased from 2002 to 2005. 

In 2006 and 2007, there was again a large drop of cumulative area disturbed. Beginning 

in 2008, this cumulative area disturbed increased gradually.  

 

Figure 3.10. Trends of yearly cumulative area disturbed derived from the four binary 

DI time-series: Landsat DI, STAARCH DI, Threshold-2 DI, and MSTAARCH DI. 

Please see text for explanation on these binary time-series. 

 

It was shown that the yearly cumulative areas disturbed detected by the Landsat 

binary DI time-series were lowest whereas those detected by the MSTAARCH binary 

DI time-series was highest. This was because compared to the fused binary DI time-

series, the temporal resolution of the Landsat binary DI time-series was the lowest (a 

maximum of five images found in 2000; Table 1). Consequently, when accumulated, 

the areas disturbed derived from the Landsat binary DI time-series was not as much as 

the one derived from the fused binary time-series. Furthermore, because of its moderate 

temporal resolution, the Landsat binary DI time-series was not able to account for 

disturbed patches being undisturbed before the next Landsat image in the time-series. 
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Consequently, the trend line of the Landsat binary DI time-series was more jagged than 

the one of the MSTAARCH binary DI time-series. The moderate temporal resolution of 

the Landsat binary DI time-series also resulted in data gaps in 2006 and 2007. 

Compared to the other two fused time-series, the areas disturbed obtained from the 

MSTAARCH binary DI time-series was higher (Figure 3.10). Additionally, its trend 

line was also smoother, typically between 2005 and 2008, when there were no Landsat 

images. 

3.6.5 Spatio-temporal distribution disturbances 

Over the twelve-year study period, a majority of disturbances occurred in the 

evergreen forest in middle of the Ouachita Mountains and in the evergreen forest 

southeast of the South Central Plains (Figure 3.11 A). These disturbances resulted in 

large and homogeneous disturbed patches having regular shape (i.e. shape similar to a 

square; Figure 3.11 D). These disturbed patches tended to be extended from year to 

year. At the same time, small, elongated and heterogeneous disturbed patches were 

found in the deciduous forest in the Arkansas Valley and western of the South Central 

Plains where cultivated land and rangeland were dominated (Figure 3.11 A,C). These 

edge disturbed patches were primarily found at forest edges along roads, tree lines on 

rangeland, or riparian forests (Figure 3.11 C). In 2000, a large fire in northeast of the 

Arkansas Valley caused a largely disturbed patch northeast of the ecoregion. Besides, 

many oil sites were also found as small disturbed patches in the Arkansas Valley. 

Compared to disturbed patches at forest edges, disturbed patches in evergreen forests 

exhibited a homogeneous temporal pattern with one or two disturbed periods (Figure 
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3.11 F). In contrast, disturbed patches at forest edges exhibited a more heterogeneous 

temporal pattern with multiple disturbed periods (Figure 3.11 E). 

3.7 DISCUSSION 

This study found that the forest landscape in southeast Oklahoma has been 

heterogeneous with small forest patch size. This heterogeneity has resulted in the 

challenge of the mixed-pixel problem at the MODIS resolution (500 meters) when 

applying the STAARCH framework to fuse Landsat and MODIS time-series together to 

detect forest disturbances. Indeed, the core component of the STAARCH fusion 

framework was the calculation of disturbance index (DI; Healey et al. 2005) used to 

determine disturbance conditions of a given MODIS pixel. Accordingly, disturbance 

conditions of the MODIS pixel was determined by its spectral distance to a MODIS 

reference set composing of undisturbed pixels. In STAARCH, these reference 

undisturbed pixels were not separated by forest types as well as by forest compositions. 
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Figure 3.11. The spatio-temporal distribution of disturbances over the period of 2000-

2011 in southeast Oklahoma. The beginning dates of disturbances in southeast 

Oklahoma (B) are represented as a color scheme ranging from yellow (2000) to blue 

(2011). The three map insets (A, C, D) represents disturbances around the Eufaula 
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Lake, west of the South Central Plains and middle of the Ouachita Mountains 

ecoregions, respectively. The MODIS DI time-series and MSTAARCH binary DI time-

series of a forest-edge disturbance and a clear-cut disturbance are represented in chart E 

and F. In these charts, the blue lines represent the MODIS DI normalized by the 

combination reference set; the black line represent the MSTAARCH binary DI time-

series; gray dots represents available Landsat images identifying the analyzed pixel as 

undisturbed whereas red dots represents available Landsat images identifying the 

analyzed pixel as disturbed. 

 

However, I found that the spectral variability of different forest types was 

significantly different (e.g. tasseled cap indices of the MODIS pure deciduous reference 

set being significantly higher than those of the MODIS pure evergreen reference set). 

Consequently, the spectral distance of the MODIS pixel to different reference sets of 

various forest types was expected to be different. For instance, spectral distance of a 

disturbed evergreen pixel to the pure evergreen reference set was higher than to the pure 

deciduous reference set. In addition, the spectral distance was also affected by forest 

composition. Indeed, it was found by this study that the tasseled cap indices of the 

MODIS combination reference set, which composed of MODIS pixels having both 

deciduous and evergreen forests, were significantly higher and lower than those of the 

MODIS pure evergreen and MODIS pure deciduous reference sets, respectively. This 

mixed-pixel problem was mentioned by Healey et al. in their paper (2005). 

To go over this mixed-pixel problem, I proposed the MSTAARCH framework 

to use multiple reference sets. I suggested the number of reference sets to be (2
n
-1) with 

n to be the number of forest types. Among these reference sets, there were n pure 

reference sets composing of pixels covered by 100 percent of a given forest type. The 

other sets were combinations of forest types. In addition, pixels of these combination 
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reference sets were covered by 100 percent of forests even though they were 

combinations of multiple forest types. 

The use of this approach was successfully tested for southeast Oklahoma to 

produce the MSTAARCH fused binary DI time-series having its accuracy of 13 percent 

higher than the original STAARCH approach using only one MODIS reference set. The 

high accuracy of the MSTAARCH fused binary DI time-series implied that the 

disturbance index (DI) and its common threshold of 2 first proposed by Healey et al. to 

detect disturbances from Landsat data could be used for MODIS data with high 

accuracy as well. However, this usage needed to account for land cover heterogeneity 

especially at the MODIS resolution. 

It was apparent from Figure 3.6 that the capability of MSTAARCH might be 

reduced when detecting small disturbed patches. The reason was that when a disturbed 

patch was small and was surrounded by undisturbed forest, the MODIS pixel covering 

this disturbed patch was more likely to represent the undisturbed forest around the 

patch. As a result, its disturbance index was not high enough to be detected as disturbed, 

especially when the patch was in a regeneration process. In this case, the use of 

appropriate reference set was important to mitigate the problem. Therefore, compared to 

STAARCH, MSTAARCH was still able to detect part of the disturbed period of the 

patch in Figure 3.6. The problem may be profound if there were not enough Landsat 

images to help adjust the detection from MODIS. 

Validating disturbance events at eight-day interval has been difficult due to the 

lack of high temporal resolution validation data (Hilker et al. 2009; Thomas et al. 2011). 

In this study, I utilized the available time-stamped NAIP aerial photos to validate the 
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fused binary time-series for specific dates. The accuracy results of this validation, 

therefore, were useful to not only evaluate the extent but also the time of disturbances. 

The total producer’s accuracies provided by this validation were highest (> 75 percent) 

in 2005 and 2010 for all of the binary DI time-series. This could be because in these 

years, there were more of new disturbed patches having high contrast in reflectance 

between the area disturbed inside the patches and the area undisturbed outside the 

patches. This contrast reduced the uncertainty of the disturbance detection. In addition, 

the high accuracies of the three fused binary time-series were also attributed to the 

availability of Landsat images in 2004 and 2009. In 2006 and 2008, however, those 

total producer’s accuracies were lowest, especially for the STAARCH and Threshold-2 

binary DI time-series. This was, perhaps, because of the regeneration of disturbed 

patches, which resulted in low contrast between area disturbed and area undisturbed. 

Furthermore, the low accuracies of the three fused binary DI time-series in 2008 were 

also attributed to the unavailability of Landsat images in 2006 and 2007. 

The NAIP total producer’s accuracy of the Landsat binary DI time-series (77 

percent) was within the range of previous studies relating to the detection of 

disturbances from Landsat (Masek et al. 2008; Thomas et al. 2011). The accuracy found 

by Hilker et al. (2009) when detecting disturbances from Landsat using the original 

STAARCH was between 87 percent and 89 percent. This high accuracy was perhaps 

due to the fact that Hilker et al. validated each Landsat image against a yearly 

cumulative disturbances data. Consequently, this validation protocol ignored the 

mismatches in the times of disturbances (i.e. the beginning and ending times of 

disturbances) due to data accumulation. Indeed, when exploring their results against 
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Landsat images by dates, they found that there were disturbed patches not captured by 

STAARCH (Hilker et al. 2009). 

The use of thematic burn severity dataset for validation was quite problematic.   

There were a couple reasons to the problem. First, given that burnt pixels were often 

scattered with small patches and that there could be misregistrations between the time-

series and the thematic burn severity dataset due to its projection transformation, 

thematic disagreements between pixels from the time-series and those from the thematic 

burn severity dataset were expected. Second, because the burn conditions of pixels in 

the thematic burn severity dataset were subjectively interpreted, there could be 

interpretation errors that accidently interpreted no-burnt (or low burnt) pixels as burnt 

(or high burnt) pixels. Even though the total producer’s accuracy of the Landsat binary 

DI time-series (40.1 percent) in this case was not high, it was slightly higher than the 

findings from a relevant study (from 31.9 percent to 36.9 percent; He et al. 2011). In 

fact, in this study, there were years (2000, 2001, and 2010) when the producer’s 

accuracies of the time-series went over 60 percent. 

The accuracy results presented in Figure 3.9 and the trends of area disturbed 

presented in Figure 3.10 further confirmed the advantage of the MSTAARCH fusion 

framework. Compared to the STAARCH and Threshold-2 binary DI time-series, the 

MSTAARCH binary DI time-series had higher accuracies. In addition, compared to the 

Landsat binary DI time-series, the MSTAARCH binary DI time-series provided data of 

area disturbed for a long time period without interruption due to data lacking. 

Furthermore, the high temporal resolution of the MSTAARCH binary DI time-series 

allowed it to capture disturbances not at one specific time point but rather from the 
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beginning to the end of the disturbances. Subsequently, the trend of area disturbed 

derived from the MSTAARCH binary DI time-series was smoother and more realistic. 

Accordingly, both of the drops in area disturbed in 2001 and 2006 was due to the 

economic recessions (Hodges et al. 2011; Masek et al. 2013). The drop in 2006, 

however, might also be due partly to the error in disturbance detection (Figure 3.6) as a 

result of lacking Landsat imagery. In addition, while large disturbed patches, which was 

often detected as being disturbed one or two times during the study period, found in the 

Ouachita Mountains and southeast of the South Central Plains were due to harvesting, 

edge disturbed patches, which was often detected as being disturbed more than two 

times during the study period, found in the Arkansas Valley and western South Central 

Plains were due to natural disturbance agents. For instance, trees near forest edges, 

especially those facing south or southwest, were more prone to damage due to high 

wind speed and shallow soil (Harper et al. 2005). Additionally, trees in riparian forests 

might be killed by floods, bank erosion, or avulsions (Moore and Richardson 2012). 

The fact that these edge disturbed patches were often detected as being disturbed 

multiple times during the study period could be due to canopy shadow. For instance, 

forest trails should have been detected as being disturbed persistently during the entire 

study period. However, due to the shadows of trees along these trails, the detected 

disturbance conditions of these trails changed over time as shadows would be detected 

as undisturbed due to its low brightness. 

Land cover heterogeneity has been a problem of the STAARCH fusion 

framework. It was because on one hand, land cover heterogeneity results in mixed 

MODIS pixels which might not be spectrally representative of a reference set of 



73 

undisturbed pixels. On the other hand, the STAARCH fusion framework did not 

propose a procedure to select MODIS pixels for a reference set. Rather, STAARCH 

uses all forest pixels as a reference set. This resulted in low accuracy in detecting 

disturbances for a heterogeneous landscape. Therefore, in this study, I proposed the 

MSTAARCH framework with details on developing multiple MODIS reference sets. 

The number of reference sets was suggested to be (2
n
-1) to include both pure reference 

sets and combination reference sets. The MSTAARCH proved to be much more 

improved than the original STAARCH in detecting disturbance in southeast Oklahoma. 

3.8 CONCLUSIONS 

In this study, a Landsat time-series and a MODIS time-series were fused using 

the proposed fusion framework, MSTAARCH, which was a modification of the original 

STAARCH proposed by Hilker et al. (2009). The primary advantage of MSTAARCH 

was its capability of accounting for land cover heterogeneity at the MODIS resolution 

by using multiple MODIS reference sets to detect disturbances. Through this study I 

suggested the number of reference sets to be (2
n
-1) where n was the number of forest 

types whose tasseled cap indices were significantly different from each other. Among 

these (2
n
-1) reference sets, n of them were pure reference sets and the rest of them were 

combinations of the pure reference sets. This framework was successfully used for 

southeast Oklahoma to detect its forest disturbances between 2000 and 2011. In general, 

the accuracy of MSTAARCH was 77.8 percent and was 13 percent higher than the 

accuracy of the original STAARCH. In addition, with the advantage of high temporal 

resolution inherited from the MODIS time-series, the MSTAARCH binary DI time-

series, unlike the Landsat binary DI time-series, did not have data gap. Consequently, 
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the MSTAARCH binary DI time-series would be more useful than the Landsat time-

series in temporal analyses regarding disturbances at multiple temporal resolutions 

ranging from week to year. The success of MSTAARCH encouraged the next step of 

classifying disturbances into different disturbance types, such as fire and harvest, given 

that they have had different impacts on wildlife habitat as well as biodiversity. 
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CHAPTER 4. MAPPING FIRE AND TIMBER HARVESTING 

DISTURBANCES USING HIGH TEMPORAL RESOLUTION 

TIME-SERIES 

4.1 ABSTRACT 

Mapping disturbance types at high spatial and temporal resolution is necessary 

to help forest managers and planners in developing informative forest management 

plans to balance the economic and ecological benefits of a forest ecosystem. Fire and 

clearcut timber harvesting have been the two most common disturbance agents 

occurring in the forests of the United States. This study uses the temporal 

characteristics (i.e. beginning time, ending time, and duration) of disturbances to 

classify them into fire, harvest, and other. Given that the temporal characteristics of 

fires, clearcuts, and other disturbance types were relatively distinct, the time-series 

maps of disturbance types were created with high overall accuracies (75.5 percent). 

4.2 INTRODUCTION 

Forest disturbances are discrete events causing abrupt changes in the structure of 

forest, and include fire, drought, disease, insect defoliation, land use change, and timber 

harvesting, with clearcut being the most common technique of harvesting  (Turner 

2010). Between 2000 and 2005, global forests lost 3.1 percent (over one million square 

kilometer) due mainly to the disturbances of fire, clearcut, and land use change (Hansen 

et al. 2010). During this same period, both temperate and boreal forests in the US lost 

6.0 percent (120,000 square kilometers), with most of the losses attributed to fire in the 

western United States and timber harvesting clearcuts in the eastern US (Hansen et al. 

2010; Masek et al. 2008). Fire has been the main cause of forest losses in western US 
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because of the increase in forest areas together with increase in droughts of the region 

(Westerling et al. 2006). Conversely, forests in eastern US have been used for 

commercial timber production in several decades (Drummond and Loveland 2010). 

Satellite images have been widely used to monitor forest disturbances due to 

their capability of providing information about disturbances over a large area and during 

a long time period. Landsat time-series, for instance, have been often used   because the 

images are available at no-cost for large areas (185x185 square kilometers), and at high 

spatial resolution (30 meters) (Main-Knorn et al. 2013; Masek et al. 2008; Vogelmann 

et al. 2009; Woodcock et al. 2008). The high spatial resolution of Landsat makes it a 

reliable data source to detect locations and extents of disturbances (Hansen et al. 2010; 

Masek et al. 2011). However, its moderate temporal resolution (16 days), which can be 

markedly extended to years due to cloud contamination, prevents Landsat from 

accurately detecting temporal characteristics of disturbances such as beginning time, 

ending time, duration, and frequency (Frolking et al. 2009; Ju and Roy 2008; Reynolds-

Hogland and Mitchell 2007; Turner 2010). These temporal characteristics are important 

for characterizing disturbance types and impacts (Gillanders et al. 2008; Turner and 

Dale 1998).   

Recently, image processing algorithms have been proposed to blend Landsat 

time-series with MODIS (Moderate Resolution Imaging Spectroradiometer) time-series 

(temporal resolution is daily, with 8-day and 16-day composites) to improve the 

capability of Landsat in detecting land cover changes as well as forest disturbances 

(Gao et al. 2006; Hilker et al. 2009). Tests and modifications of these algorithms have 

also been proposed and recommended (Chapter 3 of this study; Emelyanova et al. 2013; 
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Walker et al. 2012; Zhu et al. 2010). Despite the progress of automating the detection of 

forest disturbances using the blended high spatial (30 meters) and temporal (8 days) 

resolution time-series, little work has been done with respect to the application of these 

high spatio-temporal resolution time-series to classify disturbance types; most 

classification studies still use Landsat time-series. Therefore, there has been a need of 

an approach that is able to classify disturbance types based on the high spatio-temporal 

resolution time-series. Given that the MSTAARCH binary DI time-series can provide 

information about the beginning time, ending time, and duration of all disturbances 

within the study period over the entire study area, this study aims at determining 

whether the temporal characteristics (i.e. the beginning time, ending time, and duration) 

of disturbances are sufficient to classify disturbance types across the study area of 

southeast Oklahoma within the study period from 7/19/2000 to 8/5/2011. 

4.3 STUDY AREA 

The study area (185x185 square kilometers) comprises a Landsat scene (path 26 

and row 36) that covers most of southeast Oklahoma and parts of western Arkansas and 

northern Texas (Figure 4.1). The area contains six Omernik level III ecoregions 

(Omernik 1987): the Arkansas Valley, Ouachita Mountains, South Central Plains, Cross 

Timbers, Central Irregular Plains, and East Central Texas Plains. Deciduous and 

evergreen forests cover most of the study area at 16,098 square kilometers (National 

Landcover Dataset; Homer et al. 2004). The area receives an average annual 

precipitation of 1,219 millimeters and an average annual temperature of 16.4 degree 

Celsius (Oklahoma Climatological Survey 2013).  
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Figure 4.1. Extent and context of the 185x185 km
2
 study area located in southeast 

Oklahoma. The two map insets on the right show the cumulative (in 12 years from 2000 

to 2011) disturbed (orange) and undisturbed (green) areas within (top inset) and outside 

(bottom inset) of a protected area in the Ouachita National Forest. Cumulative areas are 

created by spatially accumulate all disturbed/undisturbed pixels across all time steps. 

 

The dominant evergreen species in southeast Oklahoma have been shortleaf pine 

(Pinus echinata), but loblolly pine (Pinus taeda) has become more common with the 

widespread introduction of plantation forests (Harper 2010; Oklahoma Forestry 

Services 2010). Deciduous forests have been composed mostly of oak (Quercus alba, 

Quercus stellata, Quercus rubra) and hickory (Carya texana, Carya tomentosa) (Harper 

2010; Oklahoma Forestry Services 2010; Rice and Penfound 1959). Forests in southeast 

Oklahoma has long been disturbed due to harvesting for commercial timber production 
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(Harper and Johnson 2012; Johnson 2011). Trees have been harvested on a 28-32 year 

rotation (Ouachita Ecoregional Assessment Team 2003). As of 2009, nearly 100 percent 

(46,519 thousand cubic feet) of Oklahoma roundwood products were from evergreen 

forests and 82 percent (29,743 thousand cubic feet) from deciduous forests in southeast 

Oklahoma (Johnson 2011). 

It has been found that forests in the east Oklahoma region including both the 

northeast and southeast Oklahoma regions have been disturbed not only due to timber 

harvesting but also due to natural disturbance agents (i.e. disease, insect defoliation, and 

weather events), fire, and land use change (Harper and Johnson 2012). Of these 

disturbance agents, weather events especially ice storms have resulted in the highest (48 

percent) area of forest land disturbed annually; fire 36.5 percent; land use change 10.2 

percent, and other natural disturbances 5.3 percent. Because more than 73 percent of 

forests in the east Oklahoma region have situated in southeast Oklahoma (Harper and 

Johnson 2012), this study has assumed that the area of forest land disturbed by 

disturbance types in southeast Oklahoma have followed the pattern of area of forest 

land disturbed by disturbance type in the east Oklahoma region. Subsequently, beside 

timber harvesting, weather events and fires have been the most common disturbance 

agents in southeast Oklahoma. Additionally, forests in southeast Oklahoma could be 

disturbed due to tourism and/or oil and gas industries (Boyd 2002; Oil and Gas 

Conservation Division 2011; Oklahoma Forestry Services 2010). 

4.4 DATA 

The main input of this study was the MSTAARCH binary DI time-series 

developed in Chapter 3. This time-series was able to detect disturbances with an overall 
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accuracy of 96 percent when comparing with field-trip photos and a total producer’s 

accuracy of 72.8 percent when comparing against the National Agriculture Imagery 

Program (NAIP) aerial photos (Chapter 3). The time-series was used in this study 

chapter to classify disturbances into three classes: fire, harvest, and other based on their 

temporal characteristics.  

The fire class included both wildfires and prescribed-fires. The harvest class 

included all timber harvesting types (i.e. clearcut harvest, partial harvest, and 

commercial thinning) as defined by the US Department of Agriculture (US Department 

of Agriculture Forest Service 2013a). This was because as inherited from the original 

STAARCH, MSTAARCH detected disturbances resulting in removals of almost all 

forest canopy without discriminating tree qualities used to define timber harvesting 

types (Healey et al. 2005; Hilker et al. 2009). The other class represented all other 

possible disturbances including disease, insect defoliation, weather events, land use 

change, and forest-edge disturbances (Chapter 3; Harper and Johnson 2012). Forest-

edge disturbances were mainly found at forest edges, such as those along roads, tree 

lines on rangeland, rivers, and lake shores. 

A supervised decision tree classification was used in this study to classify 

disturbances into fire, harvest, and other. Therefore, it was necessary to develop 

reference disturbances including training and validation disturbances for each class. For 

fire, the reference disturbances (including training and validation disturbances) were 

identified based on a thematic burn severity dataset obtained from the Monitoring 

Trends in Burn Severity Geospatial Database (http://www.mtbs.gov). This yearly 

dataset available from 2000 to 2011 represented large (over two square kilometers in 

http://www.mtbs.gov/
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the East and four square kilometers in the West) fires in the conterminous U.S (Schwind 

2007). Because only moderate and high severity fires were considered in this study, 

other classes (unburned to very low, low, increased greenness, and non-processing mask 

classes) were masked out from the thematic burn severity dataset. For the harvest class, 

a shapefile of time-stamped clearcut patches digitized from NAIP aerial photos was 

used. Details about this digitizing process were presented in Chapter 3. 

For the other class, because it was unknown about locations of weather events 

and land use changes, these disturbances were not accounted during the process of 

identifying reference disturbances. To identify reference disturbances for disease and 

insect defoliation, the Insect and Disease Detection Survey data (IDS) was used. This 

data was downloaded from the IDS explorer (US Department of Agriculture Forest 

Service 2013b) as a state-wide geodatabase about forest health of Oklahoma. Locations 

and extents of tree mortalities due to disease or insect defoliation were represented as 

polygons associated with their damage type and survey year from 2002 to 2012. 

Additionally, because forest-edge disturbances could be found along roads, tree 

lines on rangeland, rivers, and lake shores, these features were initially considered to 

inform the selection of reference disturbances taking place at forest edges. However, 

because from the field trips, I am only certain that forests along Highway 70 (Figure 

3.1) were either not disturbed or disturbed neither due to fire nor to harvest, this 

highway was used to inform the selection of reference disturbances taking place at 

forest edges. The 2013 TIGER road shapefile (US Census Bureau 2013) was used to 

extract this Highway 70 for the selection of reference disturbances. 



82 

4.5 METHODS 

4.5.1 Disturbance temporal characteristics 

The objective of this study was to classify disturbances into three classes (fire, 

harvest, and other) based on their temporal characteristics. Therefore, it was necessary 

to analyze the temporal characteristics of the three disturbance types before 

classification. Temporal characteristics of a disturbance included its beginning time, 

ending time, and duration derived from the MSTAARCH binary DI time-series (Figure 

4.2). The beginning time was the date a given pixel switched from undisturbed to 

disturbed whereas the ending time was the date the pixel switched from disturbed back 

to undisturbed. Duration was the difference of the beginning and ending times. 

The analysis of temporal characteristics of disturbances was conducted using 

their reference data. Fire reference data were selected based on yearly fire strata. A fire 

stratum of a given year included all fire pixels taken from the thematic burn severity 

dataset for that year. For instance, the fire stratum of 2000 included all fire pixels taken 

from the 2000-thematic burn severity dataset. For each of these fire strata, ten percent of 

the fire pixels were randomly selected as reference fire pixels. The temporal 

characteristics of these reference fire pixels were then extracted from the MSTAARCH 

binary DI time-series and used as a reference for fire disturbances. A total of 3,363 

reference fire disturbances were identified through this selection process.  

To create reference harvest disturbances, the time-stamped NAIP patches were 

first grouped by year and then used as yearly strata for the selection of reference 

clearcut pixels. Using the same selection process as selecting reference fire 

disturbances, a total of 4,114 reference clearcut disturbances were identified. These 
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reference disturbances included those starting before and ending after the study period. 

Although it was uncertain about the durations of these reference disturbances, they were 

included to classify disturbances, especially those in 2000 and 2011, either starting 

before or ending after the study period. 

Reference data for the class of other type included reference data of disease and 

insect defoliation as well as reference data of forest-edge disturbances. The reference 

data of disease and insect defoliation was developed from the Insect and Disease 

Detection Survey data (IDS). Polygons representing the extents of yearly tree 

mortalities were used as yearly strata to select reference pixels. Because the number of 

reference pixels in this case was too small (20 pixels), all of them were used as 

reference pixels for the identification of reference disturbances. Additionally, the 

reference data of forest-edge disturbances were created by first creating a 300-meter 

buffer around Highway 70 as a stratum to select reference pixels. Using this buffer as a 

stratum, twenty percent of all disturbed pixels in this stratum were randomly selected 

for the identification of reference disturbances. Using twenty percent in this case was to 

make sure that the number of reference disturbances in this class was close to the 

number of reference disturbances in the other two classes. A total of 2,743 reference 

disturbances was identified for the class of other disturbance types. Again, these 

disturbances included those starting before and ending after the study period. 

The three temporal characteristics of disturbances were then statistically tested 

between classes to determine whether they were significantly different. The Mann-

Whitney U test was used because (1) the beginning and ending times of disturbances 

were ordinal data and (2) duration of disturbances was not normally distributed. The 



84 

hypothesis for this test was that there was no difference in each of the temporal 

characteristics between any two classes. 

4.5.2 Disturbance type mapping and validation 

To map disturbance types, a classification was performed for every disturbance 

of all pixels across the study area based on a rule set constructed by a classification tree. 

In this study, the CHAID (CHi-squared Automatic Interaction Detection; Kass 1980) 

classification tree method available in the SPSS
®
 software package was used to build 

the rule set. CHAID was used to automatically partition the independent variables (i.e. 

beginning time, ending time, and duration) into mutually exclusive groups that best 

described the dependent variable (i.e. classification type). 

I used 70 percent of the reference dataset as training data for each disturbance 

type.  Thus, the number of training disturbance pixels for the fire class was 2,354; 2,879 

for clearcut; and 1,920 for other disturbance types. The other 30 percent of the reference 

data were used to validate the disturbance type maps. To validate the disturbance type 

maps, this study used the error matrix (Congalton 1991). The overall accuracy, kappa, 

producer’s and user’s accuracies were calculated based on the agreements and 

disagreements between the reference and classified disturbances. 

4.6 RESULTS 

4.6.1 Temporal characteristics of disturbances 

Temporal characteristics of fire, clearcut, and other disturbance types were 

found to be visually and statistically different (Figures 4.2 and 4.3). It was found that 

durations of disturbances as a result of fires were often shorter than those of 

harvestings, although there were exceptions when fires were large enough to destroy a 
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wide area (e.g. 12 square kilometers) or when fires were followed by clearcuts (Figure 

4.2 A). Although fires and harvestings often occurred at the same pixels one or two 

times during the study period, other disturbances could happen more than two times and 

thus could result in shorter durations (Figure 4.2 C). These findings were confirmed by 

the temporal distribution presented in Figure 4.3. 

This study found that there were 75 percent of fires ended in 200 eight-day time 

steps (about four years) and  18 percent of fires ended between 240-300 eight-day time 

steps (about five to five-and-a-half years) (Figure 4.3 A). Besides, there were 99.7 

percent of harvest disturbances ended in 340 eight-day time steps (about seven-and-a-

half years; Figure 4.3 B). Other disturbances, such as forest-edge disturbances, often 

occurred several times at the same pixels during the study period. Thus, most (78.5 

percent) of their durations were short and less than 100 eight-day time steps (about two 

years; Figure 4.4 C). Furthermore, there were 34 percent of all three types of 

disturbances happened in July (Figure 4.3 D, E, F). Fires, however, were also found 

frequently in August (Figure 4.3 D). While not many fires occurred in winter months, 

most (91 percent) harvest disturbances occurred between March and July (Figure 4.3 E). 

Other disturbances, in contrast, were found regularly between June and October (Figure 

4.3 F). 
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Figure 4.2. Example profiles of fire (A) and harvest (B) disturbances as well as other 

disturbances (C). Red solid lines represent the threshold of 2 used to determine 

disturbance conditions of a given pixel at a given time step. Solid blue lines represent 

MODIS DI profiles of the given pixel. Dotted blue lines represent disturbance 

conditions detected by MSTAARCH of the given pixel. Gray dots represent available 

Landsat images identifying the given pixel as undisturbed whereas red dots represent 

available Landsat images identifying the given pixel as disturbed. 

 

beginning time 
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Of the twelve months, August was the most common time all types of 

disturbances ended (Figure 4.3 G, H, I). September was also the time when areas 

disturbed due to harvesting became undisturbed (Figure 4.3 H). The Mann-Whitney U 

tests were performed for each temporal characteristic between classes and showed that 

these characteristics were significantly different between classes (Table 4.2). 

 

Figure 4.3. Histograms of duration (top row) as well as beginning (middle row) and 

ending (bottom row) times of disturbances for fires (left column), harvest (center 

column), and other disturbances (right column). 
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Table 4.1. Summary of the Mann-Whitney U test. This table shows that the temporal 

characteristics are significantly different between classes. 

 

Temporal 

character-

istics 

Descriptive statistics 

Mean (standard deviation) 

 

 

 

Mann-Whitney U test results 

Fire 

n = 3,364 

Harvest 

n = 4,114 

Other 

n = 2,743 

 

 

Fire vs. 

Harvest 

Harvest 

vs. Other 

Fire vs. 

Other 

Beginning 

time 

6.9 (1.7) 5.6 (1.8) 7.6 (1.3)  U = 3.9 x 10-6 

Z = -33.4 

p<0.001 

U = 2.4 x 10-6 

Z = -42.0 

p<0.001 

U = 4.0 x 10-6 

Z = -9.4 

p<0.001 

 
Ending 

time 

7.5 (1.3) 8.2 (1.3) 8.0 (1.2)  U = 4.4 x 10-6 

Z = -27.9 

p<0.001 

U = 4.9 x 10-6 

Z = -9.7 

p<0.001 

U = 3.5 x 10-6 

Z = -17.2 

p<0.001 

 
Duration 104.1 (99.4) 134.6 (81.3) 94.5 (109.1)  U = 4.8 x 10-6 

Z = -22.3 

p<0.001 

U = 3.3 x 10-6 

Z = -29.7 

p<0.001 

U = 4.4 x 10-6 

Z = -2.7 

p=0.006 
 

4.6.2 Map of disturbance types 

The map of disturbance types was created by classifying the temporal 

characteristics of disturbances (Figure 4.4). The overall accuracy of the classification 

was high (75.5 percent, kappa = 62.7 percent; Table 4.1). Among the three classes, 

harvest disturbances were best classified (producer’s accuracy = 85.9 percent; user’s 

accuracy = 81.4 percent). However, harvest disturbances were frequently misclassified 

with fires. The classes of fire and other were often misclassified with each other and 

resulted in their low producer’s accuracies (66.7 percent for fire and 70.8 percent for 

other; Table 4.1). 

Table 4.2. Error matrix. 

 Reference User’s accuracy 

 Fire Harvest Other  

Fire 1,570 239 287 74.9% 

Harvest 291 2,472 273 81.4% 

Other 493 168 1,360 67.3% 

Producer’s accuracy 66.7% 85.9% 70.8%  

Overall accuracy 75.5%   

Kappa 62.7%   
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A visual analysis between the classification result and NAIP aerial photos was 

also conducted to better understand the classification performance (Figure 4.5). In 

Figure 4.5, three typical landscapes of fire (Figure 4.5 A, D), clearcut harvest (Figure 

4.5 B, E), and riparian forest (Figure 4.5 C, F) representing the three classes, 

respectively, were presented. Figure 4.5 D showed the misclassification between fire 

and harvesting for a fire on 8/5/2006 (black arrow in Figure 4.5 D). Figure 4.5 E 

demonstrated that although there were misclassifications between harvest disturbances 

and other disturbances (black arrow in Figure 4.5 E), harvest disturbances were still 

well identified by the classification (blue arrow in Figure 4.5 E). Additionally, the 

classification was also useful in detecting forest edges of clearcut patches (yellow arrow 

in Figure 4.5 E). Figure 4.5 F pointed out that the classification well identified 

disturbances along riparian forests and correctly considered them as other disturbances. 

 



90 

 

Figure 4.4. Map of disturbance types on 8/29/2005. 
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Figure 4.5. Classification results for fire, harvest, and other-disturbance landscapes. 

The first row represents NAIP aerial photos showing a 2006-fire, 2005-harvest, and 

2005-other disturbances. The second row represents the classification results. Black 

arrow points out a misclassification of a clearcut harvest; blue arrow for correct 

classification of a clearcut harvest; yellow arrow for a correct classification of a clearcut 

harvest and its edge. The MTBS moderately or highly burned areas are taken from the 

thematic burn severity dataset. 

 

4.7 DISCUSSIONS 

This study aimed at classifying disturbance types based on their temporal 

characteristics, extracted from the MSTAARCH binary DI time-series developed in 

Chapter 3. The high accuracies of the classification (Table 4.1) demonstrated that with 

high temporal resolution (i.e. 8 days) it was possible to distinguish disturbance types 

(i.e. fire, harvest, and other disturbances) using their temporal characteristics. That the 
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temporal resolution was high was important and required in this study because at high 

temporal resolution, variations in temporal characteristics between disturbance types 

were better detected and used to classify disturbance types. 

The histogram in Figure 4.3 showed that there were very small amounts of 

disturbances in winter months (from November to February; Figure 4.3 D, E, F). One of 

the reasons was because of the artifact of the MSTAARCH method used to detect 

disturbances. Indeed, the MSTAARCH as inherited from STAARCH (Hilker et al. 

2009) was not able to detect disturbances during winter months when all leaves were off 

across the entire study area. When this happened, the reference sets against which other 

pixels were compared in order to determine their disturbance conditions would have the 

same disturbance index as the index of disturbed pixels. This issue was expected to be 

prominent in deciduous forests where fires and other disturbances often occurred 

because they were more sensitive to seasonal effect than evergreen forests. In evergreen 

forests this issue could also happen although evergreen trees were not supposed to be as 

sensitive to seasonal effect. The reason was that there were cases where evergreen trees 

were mixed with deciduous trees in areas delineated as evergreen forests. Because 

evergreen forests where most clearcuts occurred were less sensitive to seasonal effect, 

harvest disturbances were still well captured in March (Figure 4.3 E). I also found that 

many disturbances occurred in summer months especially in July and August (Figure 

4.3 D, F). This was partly because these months often had lowest precipitation 

(Oklahoma Climatological Survey 2012) leading to droughts and thus, resulting in 

mortalities of deciduous forests. Furthermore, droughts in these months could also 
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result in high chance of fires, insects and diseases in deciduous forests (Zhang et al. 

2013). 

Because the temporal characteristics of fire, harvest, and other disturbances were 

significantly different from each other, the classifications were successfully conducted 

to produce maps of disturbance types with high accuracies (Table 4.1, Figure 4.5). In 

other words, this study found that fire, harvest, and forest-edge disturbances could be 

successfully recognized using their temporal characteristics. Indeed, the overall 

accuracy of the classification was 75.5 percent, which satisfied the accuracy threshold 

proposed by (Goodchild et al. 1994). However, this accuracy could have been improved 

if ancillary data had been used. For instance, other studies showed that clearcut 

disturbances were larger and more irregularly shaped than fire disturbances (Cohen and 

Goward 2004; Gluck and Rempel 1996). In addition, clearcut patches were also 

suggested to be close to roads providing access to logging areas (Market Segment 

Specialization Program 2013; Potapov et al. 2008). It was also found that locations of 

fires could be a function of slope, aspect, and valley orientation (McRae et al. 2001). 

Although the accuracies were high (Table 4.1), there were apparent 

classification errors in Figure 4.4 and 4.5. First, part of these classification errors was 

expected to be from a portion of the 39 percent of disturbances starting before or ending 

after the study period. Classification of these disturbances was expected to be confusing 

because their temporal characteristics were uncertain. Second, in this study area, beside 

fires and harvests, other disturbance types often included forest-edge disturbances 

mainly found along roads, tree lines on rangeland, rivers, and lake shores (Chapter 3). 

These disturbances could be real disturbances due to high wind speed or shallow soil 
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often found at the edge of forests or due to floods, bank erosion, or avulsions along 

riparian forests (Harper et al. 2005; Moore and Richardson 2012). However, other 

disturbance types could also be false changes resulting from tree shadows or fluctuation 

of water level in wetland areas (Schroeder et al. 2011). Therefore, it was expected that 

other disturbance types would be misclassified as either fires or harvests and thus, 

resulted in classification errors. Although other disturbance types caused omission and 

commission errors of fire and harvest classes, those other disturbance types mainly 

representing forest-edge disturbances were well detected along forest edges such as 

those along riparian forests in the South Central Plains ecoregion (Figure 4.5 F). This 

finding suggested that the classification accuracy could have been improved if the 

classification had been applied to multiple subregions, such as ecoregions, that had been 

relatively homogeneous of a disturbance type to reduce possible confusions between 

disturbance types during a classification. 

The success of using the temporal characteristics of disturbances to classify 

fires, harvests, and other disturbance types indicates that the MSTAARCH binary DI 

time-series is useful to detect not only the spatial properties (location and extent) and 

temporal properties (beginning time, ending time, and duration) of disturbances but also 

type of disturbances. This success recommends that a fused time-series can be used 

beside a Landsat time-series in monitoring and modeling forest disturbances. In fact, the 

advantage of high temporal resolution of the fused time-series is helpful in determining 

the right temporal extent and grain of an ecological process (Reynolds-Hogland and 

Mitchell 2007). Additionally, the advantage of high temporal resolution of a time-series 

of disturbance types may be useful for forest models, especially processed based models 
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(Fontes et al. 2010). Although the accuracy is high, the use of temporal characteristics 

to classify disturbance types is still challenged by the uncertainly in determining the 

beginning time and ending time of disturbances starting before or ending after the study 

period. The challenge also exists due to the overlaps of temporal characteristics between 

classes. However, these challenges can be mitigated by using ancillary data and/or by 

conducting the multiple classifications for multiple subregions relatively homogeneous 

in disturbance type. 

4.8 CONCLUSION 

In this study, the differences in temporal characteristics (i.e. beginning time, 

ending time, and duration) of fire, harvest, and other disturbance types were 

investigated. It was found that their temporal characteristics were significantly different 

and thus could be used as inputs of a classification to discriminate disturbance types 

based on the time-series of disturbances developed in the previous chapter. The 

classification result demonstrated that the temporal characteristics of disturbances could 

be used to classify disturbances into fires, harvests, and other types with high accuracy. 

Forest disturbances have caused forest landscapes to be fragmented into multiple 

smaller undisturbed patches disconnected by those disturbed. Subsequently, 

disturbances have resulted in habitat degradation as well as biodiversity decline and 

have increased potential of insect outbreak as well as fire (Gillanders et al. 2008; 

Nepstad et al. 1999; Sharitz et al. 1992). Fire and clearcut, however, have had different 

impacts on both the carbon dynamics and wildlife habitat as well as biodiversity (Taylor 

et al. 2013; Williams et al. 2012). Because this study pointed out that disturbance types 

could be mapped with high spatial and temporal resolutions, future studies would be 
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suggested to identify the spatial and temporal patterns of disturbance types and to 

quantify the environmental consequences of those patterns. 
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CHAPTER 5. CONCLUSIONS 

Land cover and land use are changing due to both natural and anthropogenic 

forces. Changes in both land cover and land use cause changes in global and regional 

climate, losses of biodiversity, degradations of water and air quality, and increases of 

infectious disease. Remote sensing plays a critical role in long-term monitoring of land 

cover over a large area but our strategies for handling remote sensing data are not yet 

fully developed. Typically, although there are many land cover classification methods 

currently available, their accuracy is still not perfect due to the impact of land cover 

heterogeneity. The higher the heterogeneity is, the less accuracy the classification is. 

Land cover heterogeneity may also diminish the accuracy of a data fusion algorithm 

used to create a high spatio-temporal resolution time-series of images to monitor land 

cover change. It is because the data fusion requires a selection of reference pixels 

representative of unchanged land cover types. However, due to land cover 

heterogeneity, multiple land cover types having different changing regimes may coexist 

within pixels leading to the uncertainty in the selection of unchanged pixels.  

Prior to this research, a systematically quantitative analysis of the impact of land 

cover heterogeneity on both per-pixel and subpixel classification for a large area 

consisting of multiple land cover types had yet to be done. In addition, there was no 

study testing and modifying the Spatial Temporal Adaptive Algorithm for mapping 

Reflectance Change (STAARCH) fusion method for a heterogeneous forest landscape 

where both deciduous and evergreen forests could be intermixed. The overall goal of 

this dissertation, therefore, included a documentation of the impact of land cover 

heterogeneity on both per-pixel and subpixel classifications at a medium spatial 
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resolution of Landsat (30 meters) as well as a proposal of a data fusion method that 

accounts for land cover heterogeneity in the South-Central US. Three research 

objectives were formulated to address this goal: 

 To explore the impact of land cover heterogeneity on image classification 

approaches including per-pixel and subpixel classifications with a case study area of 

10,000 square kilometers centered at Little Rock (Arkansas); 

 To propose a data fusion method that is able to produce high spatial (30 meters) and 

temporal resolution (8 days) time-series for a disturbance detection that takes into 

account the heterogeneity of a forest landscape in southeast Oklahoma; and 

 To determine whether the temporal characteristics of disturbances are sufficient to 

distinguish disturbance types (e.g. fire and harvest) across the study area of 

southeast Oklahoma within the study period from 7/19/2000 to 8/5/2011. 

This PhD research has successfully accomplished each of these three objectives. 

The first objective is presented in the second chapter of this dissertation. In this chapter, 

both per-pixel and subpixel classifications were performed for a 10,000 square 

kilometer study area centered at Little Rock (Arkansas) to create land cover maps of 

cropland, artificial surface, barren, tree, grassland/shrub, and water. While the output 

land cover map of the per-pixel classification was a categorical map, the output land 

cover map of the subpixel classification was a fractional map. The accuracies of these 

land cover maps were both high (81.87 percent and 82.28 percent for per-pixel and 

subpixel, respectively). Further statistical comparisons between the producer’s 

accuracies of per-pixel and the producer’s accuracies of subpixel classifications as well 

as the comparisons between the user’s accuracies of per-pixel and the user’s accuracies 
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of subpixel classifications demonstrated that it was not clear to conclude whether per-

pixel or subpixel classification was better for the study area. Moreover, the analysis of 

producer’s and user’s accuracies for each classification by degrees of heterogeneity 

revealed that the accuracies decreased significantly when the degree of heterogeneity 

increased from one to two. However, the differences in accuracies between the degrees 

of three, four, and five were not significant. 

The concern about land cover heterogeneity learnt from Chapter 2 was carried 

over to the third chapter when solving the second objective. In this third chapter, a test 

of the STAARCH fusion method was conducted for a forest landscape in southeast 

Oklahoma. Because this STAARCH method used only one reference set to determine 

the disturbance conditions of MODIS pixels, the method was not successful to fuse 

Landsat and MODIS time-series for a detection of forest disturbances in southeast 

Oklahoma. Therefore, another framework of selecting reference sets for STAARCH 

was introduced in this chapter. As a result, a new fusion method (MSTAARCH) was 

proposed. In this MSTAARCH method, instead of using one reference set, it was 

suggested to use multiple reference sets to represent undisturbed pure and undisturbed 

mixed pixels. 

With a time-series of disturbance maps created in Chapter 3 through the 

MSTAARCH fusion method, this fourth chapter solved the third objective by analyzing 

the temporal characteristics of a variety of disturbance types including fire, harvest, and 

other types. The analysis demonstrated that the temporal characteristics were 

significantly different and thus could be used to create a time-series of disturbance type 

maps. Disturbance type maps were created by classifying disturbances based on their 
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temporal characteristics using a classification tree method. The high classification 

accuracy (75.5 percent) indicated that the temporal characteristics were sufficient for a 

classification of disturbance types. However, solutions, such as using ancillary data to 

inform the classification, could be applied to even improve the classification accuracy.   

In conclusion, this dissertation demonstrates that when the spatial resolution is 

coarse, classification accuracy is easy to be affected by land cover heterogeneity. 

Furthermore, land cover heterogeneity may also diminish the accuracy of a data fusion 

method if it does not separate pure pixels and mixed pixels during the fusion process. 

Moreover, using a high temporal resolution time-series of disturbances, a classification 

of disturbance types can be performed well with high accuracy using their temporal 

characteristics derived from the time-series. 

SUGGESTIONS FOR FUTURE RESEARCH 

While this dissertation has a number of research contributions, some specific 

research issues require further study as well as a large number of potential research 

applications exist. The research issues and applications most relevant are suggested 

below. 

Subpixel classification has been claimed to be more advantageous than per-pixel 

classification because subpixel classification is able to solve the mixed-pixel problem 

(DeFries et al. 2000; Foody 2006). However, the analysis in the second chapter about 

the impact of heterogeneity on per-pixel and subpixel classifications demonstrated that 

it was not clear to conclude which classification was better for the 10,000-square-

kilometer study area around Little Rock (Arkansas). This could be because of two 

reasons. First, the study area was too heterogeneous and thus resulted in a reduction of 
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classification accuracy for both per-pixel and subpixel classifications. Second, the 

Landsat resolution was perhaps fine enough to weaken the mixed-pixels problem and 

thus the contrast between per-pixel and subpixel classifications were not very high. A 

follow-up question was that whether per-pixel or subpixel classification would be better 

to characterize land cover changes for a larger area, such as the Arkansas Red River 

Basin. 

The Arkansas Red River Basin occupies an area of about 583,660 square 

kilometers going across the Arkansas, Colorado, Kansas, Louisiana, Missouri, New 

Mexico, Oklahoma, and Texas states (Figure 5.1). It goes across different land cover 

conditions including the one specifically to the Rocky Mountain environment in the 

West to the one specifically to the flood plain of the Mississippi River in the East. This 

basin is expected to include a large variety of land cover types. In addition, creating 

historical maps of land cover types for this basin using Landsat data is necessary given 

that its land cover is changing due to the westward movement of population. 

 

Figure 5.1. The Arkansas Red River Basin and its land cover distribution according to 

the National Land Cover Database 2006. 
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In the fourth chapter, although the classification of disturbance types was 

successful with high accuracy, apparent classification errors still existed. These errors 

were mostly due to the confusion between fire or harvest and other disturbance types. 

Further study should consider using spatial characteristics of disturbances, such as patch 

size, shape, and location together with temporal characteristics to better classify 

disturbance types. Moreover, a specifically well-suited application for the MSTAARCH 

method proposed in the third chapter and the disturbance classification in the fourth 

chapter is to investigate the spatial pattern (i.e. composition and configuration) of 

disturbance types in southeast Oklahoma. This investigation helps to understand the 

causes and consequences of each disturbance type and thus contributes to the Oklahoma 

forest resource assessment (Oklahoma Forestry Services 2010). 

In summary, based on the findings of this research, a variety of future 

applications may be developed. One of them can be a development of historical maps of 

land cover types for the Arkansas Red River Basin, an area highly dynamic in terms of 

land cover. These historical maps may be created by either per-pixel or subpixel 

classifications. A test to determine which one of them is better may be conducted given 

that subpixel classification is claimed to be more advantageous than per-pixel 

classification for a heterogeneous landscape. Another application is the use of 

MSTAARCH and the disturbance classification proposed in the fourth chapters to 

investigate the spatial pattern of forest disturbance types in southeast Oklahoma. The 

result of this investigation helps to better assess forest resources in Oklahoma. 
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