
MOLECULAR EPIDEMIOLOGY OF PASTEURELLA 

MULTOCIDA RESPIRATORY DISEASE IN BEEF 

CATTLE 

 
 
 
 

By 
 

JARED D. TAYLOR 
 

Doctor of Veterinary Medicine 
Virginia Polytechnic Institute and State University 

Blacksburg, VA 
2002 

 
   Master of Public Health 

University of Iowa 
   Iowa City, IA 

   2004 
 
 
 
 

   Submitted to the Faculty of the 
   Graduate College of the 

   Oklahoma State University 
   in partial fulfillment of 

   the requirements for 
   the Degree of 

   DOCTOR OF PHILOSOPHY  
   December, 2008 



   MOLECULAR EPIDEMIOLOGY OF PASTEURELLA 

MULTOCIDA RESPIRATORY DISEASE IN BEEF 

CATTLE 

 
 
 

   Dissertation Approved: 
 

 
Dr. Anthony W. Confer 

   Dissertation Adviser 
 

Dr. S. Mady Dabo  
 

   Dr. Robert W. Fulton 

 
Dr. Clinton R. Krehbiel 

 
Dr. Terry W. Lehenbauer 

 
Dr. A. Gordon Emslie 

 
   Dean of the Graduate College 

 
 
 
 

 ii



ACKNOWLEDGMENTS 

I owe a deep gratitude to Dr. Tony Confer, who welcomed me into his program despite 
my limited research experience. He instructed me on what a doctoral program is 
supposed to be, and enabled me to be successful in his. He was able to see a legitimate 
scientific question which was counter to traditional dogma. More importantly, he helped 
me to eventually see the same question, and make it my own. I further want to thank Drs. 
Michael Lorenz, Jerry Malayer and Charles MacAllister, who created an opportunity for 
me to be at Oklahoma State.  My committee members were also integral to my training 
and success. Each brought experience, knowledge and insight that shaped my abilities 
and understanding, and will continue to do so throughout my career.  

I am greatly indebted to Marie Montelongo, Josh Wray, Ruenette Boyette, Jason Thorne, 
Clayton Smith and Jesse Holyoak for assistance in the laboratory, and for keeping life 
interesting in what could otherwise be a boring environment. 

Dr. Sahlu Ayalew has served as a friend and mentor, for which I am very appreciative. 
He welcomed me into his laboratory space and fostered questioning and healthy 
skepticism. Moreover, his technical and intellectual guidance greatly limited the 
frustrations inherent in laboratory research that I encountered. 

I also want to thank all of the clinicians in the food animal service for being supportive 
and understanding of the demands of my unique position. Without their support and 
accommodation, I could not have achieved nor learned nearly as much. Just as 
importantly, I want to thank all of the students that I had the opportunity to work with. 
They not only pushed me to learn more but also taught me much on a daily basis. They 
also made a demanding position enjoyable.   

Great appreciation is due to Dr. D. L. Step and the crew at Willard Sparks Beef Research 
Center. Their diligence and attention to detail made this study successful. This is 
particularly true of Ben Holland, who compiled a tremendous amount of information into 
a usable format, and patiently answered all of my questions regarding the study and data. 

 Finally, but most importantly, I want to thank my family for their patience and support. 
Wendy accompanied me dutifully to many places to which she never envisioned going, 
always encouraging me to do what I wanted to do. It has been her love and support that 
has made so much possible. Alex and Beth have tolerated me being gone much more than 
a father should be, yet have made the most of our time together. My brother has kept me 
grounded, helping me to appreciate that there is much to life outside of veterinary 
medicine. My father instilled in me an appreciation of hard work and determination that 
has served me well throughout this process. And my mother inspired a curiosity and thirst 
for knowledge that has led me to places I never imagined. I know that I will never be able 
to repay them for all they have done. I simply hope that I can make them proud, and 
inspire similar attributes in my students and children.  

 iii



TABLE OF CONTENTS 

Chapter  Page 

Chapter I.  INTRODUCTION ......................................................................................... 1 
Chapter II.  THE EPIDEMIOLOGY OF BOVINE RESPIRATORY DISEASE:   

A REVIEW OF THE LITERATURE ............................................................ 4 
Proposed Predisposing Factors ....................................................................................... 7 

Viral infections............................................................................................................ 7 
Environmental factors ................................................................................................. 9 

Shipping .................................................................................................................. 9 
Weather ................................................................................................................. 11 

Management factors .................................................................................................. 14 
Source: Ranch vs. salebarn ................................................................................... 14 
Age & weight ........................................................................................................ 16 
Gender ................................................................................................................... 18 
Covariates with gender ......................................................................................... 19 
Castration and dehorning ...................................................................................... 20 

Interventions ................................................................................................................. 22 
Processing ................................................................................................................. 22 

Timing of processing ............................................................................................ 25 
Vaccination ........................................................................................................... 26 

Preconditioning ......................................................................................................... 27 
Nutritional Factors .................................................................................................... 32 

Receiving ration .................................................................................................... 32 
Increasing intake ................................................................................................... 35 

Prophylaxis/Metaphylaxis......................................................................................... 35 
Parenteral antimicrobials ...................................................................................... 35 
Oral antimicrobials ................................................................................................ 37 

Other Considerations .................................................................................................... 38 
Impact of Cattle Characteristics ................................................................................ 38 

Disposition ............................................................................................................ 38 
Genetics................................................................................................................. 39 

 
 
 

 iv



Chapter  Page 

Study Considerations ................................................................................................ 40 
Confounders .......................................................................................................... 40 
Nature of BRD: Contagious, clustered, or random? ............................................. 42 
Diagnosis of BRD ................................................................................................. 44 

Conclusion .................................................................................................................... 48 
Reference List ............................................................................................................... 50 

Chapter III.  MOLECULAR CHARACTERIZATION OF PASTEURELLA 
MULTOCIDA ISOLATES FROM FATAL CASES OF BOVINE 
RESPIRATORY DISEASE ......................................................................... 68 

Materials and Methods .................................................................................................. 71 
Cattle ..................................................................................................................... 71 
Bacterial strains and growth conditions ................................................................ 71 
DNA isolation and PCR analyses ......................................................................... 72 
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS PAGE)  of 
WCP and OMP ..................................................................................................... 73 
Serotyping ............................................................................................................. 75 
Data interpretation and statistical analysis ............................................................ 75 

Results ........................................................................................................................... 77 
Discussion ..................................................................................................................... 81 
Footnotes ....................................................................................................................... 89 
Reference List ............................................................................................................... 90 

Chapter IV.  MOLECULAR CHARACTERIZATION OF PASTEURELLA 
MULTOCIDA ISOLATES FROM NASAL PASSAGES OF  
HEALTHY AND BRD-AFFECTED CATTLE ........................................ 102 

Materials and Methods ................................................................................................ 104 
Cattle ................................................................................................................... 104 
Bacterial strains and growth conditions .............................................................. 106 
DNA isolation and PCR analyses ....................................................................... 106 
Data interpretation and statistical analysis .......................................................... 108 

Results ......................................................................................................................... 109 
Discussion ................................................................................................................... 112 
Conclusion .................................................................................................................. 117 
Footnotes ..................................................................................................................... 118 
Reference List ............................................................................................................. 119 

 v



LIST OF TABLES 

Table    Page 

Table 1-1: Comparison of number of groups formed by characterization technique ..... 94 

Table 1-2: Adjusted Rand correlation coefficients. ........................................................ 95 

Table 1-3:  Wallace coefficients. ..................................................................................... 96 

Table 1-4:  Simpson’s Index of Diversity values for varying stringency ........................ 97 

Table 2-1:  DART clinical scoring system and treatment protocol used for  

BRD cases. .................................................................................................. 122 

Table 2-2:  Sequences of PCR primers used. ................................................................. 123 

Table 2-3:  Classification results for RAPD PCR primers ............................................ 124 

Table 2-4:  Classification results for RAPD PCR primer cross-tabulations. ................. 125 

Table 2-5:  Significant associations identified between RAPD PCR results and 

epidemiologic data. ..................................................................................... 126 

Table 2-6:  Significant associations identified between RAPD PCR results and  

sub-sets of epidemiologic data .................................................................... 127 

 
 

 vi



 vii

LIST OF FIGURES 

Figure  Page 

Figure 1-1:  Picture of PCR gel GTG 08-31 #1. .............................................................. 98 

Figure 1-2:  Picture of SDS-PAGE of whole cell proteins, gel 10-4 #1. ......................... 99 

Figure 1-3:  Picture of SDS-PAGE of outer membrane proteins, gel 4-3 #7-17. .......... 100 

Figure 1-4:  Dendrogram produced by results of (GTG)5 primer ................................. 101 

Figure 2-1:  Picture of RAPD PCR primer gel, 7-30, GTG #107, #165-193. ............... 128 

Figure 2-2:  Dendrogram produced from RAPD PCR gel, using modified  

core M13 primer. ....................................................................................... 129 

Figure 2-3: Flow chart of all P. multocida isolates ......................................................... 130 



CHAPTER I.  

INTRODUCTION 

 

Bovine respiratory disease (BRD) complex is the most costly disease of beef cattle in 

North America.(Church and Radostits, 1981; Griffin, 1997) A variety of infectious agents 

have been linked to BRD, but Mannheimia haemolytica and Pasteurella multocida are 

generally considered the most consistent and significant agents.(Welsh et al., 2004) Yet, 

researchers are unable to replicate the common clinical presentation through experimental 

exposure to the bacterium alone.(Jericho and Langford, 1978; Yates, 1982)  Additionally, 

these bacterial species can readily be isolated from the upper respiratory tract of normal 

cattle.(Allen et al., 1992; Barbour et al., 1997; Fulton et al., 2002a; Hamdy and Trapp, 

1967; Hoerlein et al., 1961; Thomson et al., 1969; Yates et al., 1983) Therefore, BRD is 

considered a multi-factorial syndrome, with various predisposing factors being necessary 

to induce natural disease. Viral agents (Czuprynski et al., 2004; Martin and Bohac, 1986; 

Yates, 1982) and numerous other components, generally termed “stressors”, have been 

postulated to be among the factors impacting BRD occurence. The intuitive nature of 

these suggestions is appealing, and they are widely accepted and repeated throughout the 

literature. However, epidemiologic investigation of these proposed factors has failed to 

identify steps that can consistently reduce morbidity and mortality associated with BRD. 

It would therefore seem prudent to examine the epidemiology of the bacterial agents
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involved in BRD, to determine if variability within the bacterial population may account 

for some of the difficulty in predicting and mitigating disease. 

 

Most authors consider P. multocida an opportunistic pathogen in cattle. It is a commensal 

of the upper respiratory tract and the presence or absence of P. multocida in the nasal 

pharynx does not predict lower respiratory disease.(Allen et al., 1991; Fulton et al., 

2002b) However, studies in other host species have suggested that there are a limited 

number of strains associated with disease, with these strains clearly transmitted 

horizontally.(Blackall et al., 2000; Bowles et al., 2000; Davies et al., 2003; Zhao et al., 

1992; Zhao et al., 1993) These strains of P. multocida may therefore be more pathogenic 

than others.(Davies et al., 2003) Similar strain differences may also exist in cattle.  

 

A variety of molecular techniques have been employed to characterize P. multocida from 

several host species. Random amplified polymorphic DNA polymerization chain reaction 

(RAPD PCR) fingerprinting has been found to be effective in discriminating among 

isolates of P. multocida from rabbits(Dabo et al., 2000) and has been employed by 

numerous researchers for swine, poultry and rabbit isolates.(Chaslus-Dancla et al., 1996; 

Dabo et al., 1999a; Dabo et al., 2000; Dabo et al., 1999b; Dziva et al., 2001; Dziva et al., 

2004; Shivachandra et al., 2007; Zucker et al., 1996)  Due to the relative low cost and 

ease of conducting RAPD PCR, as well as the repeatability and effectiveness 

demonstrated by the above studies, it would appear to be a technique that could prove 

useful in epidemiologic studies of bovine respiratory pasteurellosis. Nonetheless, it has 

not been validated in bovine isolates of P. multocida.  
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This dissertation describes two studies employing RAPD PCR in the investigation of P. 

multocida isolated from cattle. The first study examined the diversity of P. multocida 

isolates, as determined by RAPD PCR using three different primers, as well as through 

examination of whole cell proteins (WCP), outer membrane proteins (OMP) and 

serotyping. The concordance between the various typing methods was examined, and the 

results of each method were compared with epidemiologic data. In the second study, the 

same primers were used as in the first study for RAPD PCR examination of 213 P. 

multocida isolates. These isolates were obtained from the upper respiratory tract of calves 

purchased from commercial salebarns and shipped to the Willard Sparks Beef Research 

Center. Nasal swabs were collected from all calves at time of arrival. Any calf that was 

diagnosed with clinical BRD was sampled again at time of treatment, as was a clinically 

health control calf. The results of the three RAPD PCR primers were then used to 

examine the diversity and epidemiology of P. multocida isolates obtained from the nares 

of healthy calves, as well as those clinically affected by BRD.  

 



CHAP  TER II.  

THE EPIDEMIOLOGY OF BOVINE RESPIRATORY DISEASE:  

A REVIEW OF THE LITERATURE 

Bovine respiratory disease complex is the most costly disease of beef cattle in North 

America.(Church and Radostits, 1981; Griffin, 1997) It is also one of the most 

extensively studied diseases, with research that began with its description in the late 

1800s continuing even today. One of the principal agents implicated in severe, often fatal 

bovine respiratory disease (BRD) is Mannheimia haemolytica. This causal association is 

based upon a variety of criteria, including: 

• The bacterium is associated with clinical occurrences of BRD or “shipping 

fever”(Collier, 1968; Jensen et al., 1976; Thomson et al., 1969)  

• The bacterium is isolated more frequently from sick calves than from well calves 

(Barbour et al., 1997; Hoerlein et al., 1961; Thomson et al., 1969) 

• M. haemolytica is the most common bacterial isolate from BRD cases (Fulton et al., 

2002a; Reggiardo, 2005)  

 

Secondary support for associating M. haemolytica with BRD can also be found in 

vaccination (O'Connor et al., 2001) and serological (Booker et al., 1999; Martin et al., 

1989) studies, although these data are less consistent and reliable in identifying the 

infectious agent involved.(Virtala et al., 2000) 

 4



Other bacteria have also been implicated in BRD. Most commonly cited are Pasteurella 

multocida, Histophilus somni and Mycoplasma bovis. These organisms may be isolated 

alone or in conjunction with M. haemolytica as well as each other. Confirmation of their 

involvement has been demonstrated through isolation (Gagea et al., 2006; Haines et al., 

2001; Janzen, 1997; Shahriar et al., 2002; Welsh et al., 2004), serologic methods (Booker 

et al., 1999), or reduction in morbidity and/or mortality through vaccination.(Ribble et al., 

1988) While involvement of these pathogens has long been suspected, the apparent 

increase in prevalence may suggest new emerging patterns of pathogens (Gagea et al., 

2006; Welsh et al., 2004) or may simply be the result of increased effort to detect the 

agents.(Shahriar et al., 2002) Efforts have been made to distinguish between the primary 

bacterial pathogen based upon gross necropsy and histopathological lesions.(Gagea et al., 

2006; Schiefer et al., 1978; Tegtmeier et al., 1999) However, the clinical significance of 

this is questionable, as the clinical presentation and proper case management would not 

differ based upon the etiologic agent. Others have suggested that a presumptive diagnosis 

of involvement of certain organisms may be possible ante-mortem. For example, animals 

infected with M. bovis are described as “chronically ill and fail to thrive…lack of weight 

gain and failure to respond to treatment.”(Shahriar et al., 2002) Studies examining feedlot 

cattle with chronic, non-responsive respiratory disease corroborated this description 

although other organisms were also identified, either alone or in combination with M. 

bovis. (Haines et al., 2001; Shahriar et al., 2002)  Animals infected with H. somni show 

little distinguishing features unless other systems are affected.(Janzen, 1997) Because of 

the difficulty in determining the etiology of individual cases of respiratory disease in 
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cattle, most research makes no distinction among the various pathogens and relies upon 

clinical signs to diagnose undifferentiated BRD.(Yates, 1982)  

 

Despite overwhelming evidence that various bacterial species are at least associated with, 

if not the principal cause of BRD, researchers are generally unable to replicate the most 

common clinical presentation through experimental exposure to the bacterium alone. 

(Jericho and Langford, 1978; Yates, 1982) Additionally, these bacterial species can 

readily be isolated from the upper respiratory tract of normal cattle.(Allen et al., 1992b; 

Barbour et al., 1997; Fulton et al., 2002b; Hamdy and Trapp, 1967; Hoerlein et al., 1961; 

Thomson et al., 1969; Yates et al., 1983) Therefore, BRD is considered a multi-factorial 

syndrome, with various predisposing factors being necessary to induce natural disease. 

Viral agents are frequently cited predisposing factors which are proposed to cause direct 

damage to respiratory clearance mechanisms or interfere with the immune system’s 

ability to respond to bacterial infection.(Czuprynski et al., 2004; Martin and Bohac, 1986; 

Yates, 1982) In addition, numerous other components, generally termed “stressors”, have 

been postulated to play a role in BRD. These include transportation, commingling with 

other cattle, dust, cold, sudden and extreme changes of temperature and humidity, 

dehydration, hypoxia, endotoxin, cold coupled with wetness, and acute metabolic 

disturbances.(Irwin et al., 1979; Lillie, 1974) These are thought to alter the respiratory 

mucosa or hinder cattle’s immune system, either directly or through the effects of 

endogenous agents such as cortisol, making the animals more susceptible to opportunistic 

infections. The intuitive nature of these suggestions is appealing, and they are widely 

accepted and repeated throughout the literature. However, relatively little epidemiologic 
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investigation has been done to confirm or refute the significance of these factors, and 

studies done thus far have been inconclusive. The purpose of this review is to critically 

assess these investigations to identify which factors have been confirmed to be significant 

as well as to highlight equivocal findings and gaps in research relative to BRD. 

Principally, epidemiologic studies are included, although a few experimental studies are 

referenced. Commentary is also made on the unique challenges that make investigation of 

natural BRD difficult.   

Proposed Predisposing Factors 

Viral infections 
 
 Preceding or concurrent viral infection is perhaps the most clearly linked biological 

influence on BRD. Experimentally, a syndrome resembling BRD can be induced with 

exposure to M. haemolytica following infection by bovine herpesvirus-1 (BHV-1) virus. 

(Collier, 1968; Jericho and Langford, 1978) Similar results were obtained with endo-

bronchial instillation of bovine viral diarrhea virus (BVDV) followed five days later by 

M. haemolytica.(Potgieter et al., 1984) Natural outbreaks of BRD also demonstrated 

these synergisms.(Booker et al., 2008b; Jensen et al., 1976) Other viruses that are 

commonly implicated with BRD include bovine respiratory syncytial virus (BRSV) and 

parainfluenza three virus (PI3V). (Cusack et al., 2003; Gagea et al., 2006) BRSV and 

PI3V antigens were identified in over 50% of clinically diseased lungs in a study in 

Mexico,(Juarez Barranco et al., 2003) while BVDV was identified in naturally affected 

calves in numerous studies.(Booker et al., 2008a; Booker et al., 2008b; Fulton et al., 

2000; Gagea et al., 2006; Haines et al., 2001; Reggiardo, 2005; Shahriar et al., 2002) 

Serological data has linked BRD outbreaks to BRSV(Durham et al., 1991; Hagglund et 
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al., 2007; Lehmkuhl and Gough, 1977), PI3V and BVDV (Fulton et al., 2000), as well as 

multiple concurrent viral infections.(Martin and Bohac, 1986; Richer et al., 1988) Recent 

work suggested that bovine respiratory coronavirus may be related to BRD, although it 

has received considerably less attention than other viral agents.(Lathrop et al., 2000; 

Martin et al., 1998; Plummer et al., 2004; Storz et al., 2000)  

Unique among theses viral agents is BVDV, in that intrauterine infection can produce 

cattle that are persistently infected (PI). Cattle that were PI were found to be over-

represented among cattle chronically ill or dying in feedlots.(Loneragan et al., 2005) In a 

Canadian feedlot study(Booker et al., 2008a), 61.5% (8 of 13) of PI calves died, whereas 

in a Kansas feedlot study (Fulton et al., 2006) 25% (22 of 86) of PI cattle died within 60 

days of arrival. Both of these rates are presumably much higher than for non-PI 

herdmates. Unfortunately, no statistical comparisons were reported for morbidity and 

mortality of PI vs. non-PI cattle in either study. Persistently infected cattle also shed large 

quantities of the virus, potentially increasing the risk of cohorts becoming infected and 

being at risk for BRD. This is potentially significant, since 30% or more of pens may 

contain a PI calf (Booker et al., 2008a; Fulton et al., 2006) and Loneragan et al. found 

that exposure to PI cattle increased risk of treatment for BRD(Loneragan et al., 2005). 

This conclusion was supported by Stevens et al., who showed short-term exposure (13 to 

18 days) to PI calves increased morbidity.(Stevens et al., 2007)  Neither study identified 

an increased mortality risk attributable to exposure to PI cattle. However, because of the 

relatively low prevalence of mortality, a very large study is required to have adequate 

power to detect a difference in mortality attributable to treatments or 

exposures.(Loneragan et al., 2005) Other reports examining the effects of PI calves have 
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reached different conclusions. A controlled experiment also found no effect of exposure 

to BVDV PI calves on morbidity, mortality or performance.(Elam et al., 2008) Similarly, 

two epidemiologic studies found there was no difference in morbidity between pens with 

PI calves versus pens with no PI calves.(Booker et al., 2008a; O'Connor et al., 2003) The 

different conclusions among these studies may in part be due to definition of exposure- 

Loneragan considered cattle as exposed if they were housed in pens containing PI cattle 

or in pens adjacent to those containing PI cattle. Others considered only calves in pens 

with PI cattle as exposed. Regardless, the prevalence of PI cattle is quite low (estimates 

including 0.3%(Loneragan et al., 2005); 0.26%(O'Connor et al., 2003); <0.1% (Taylor et 

al., 1995); 0.18% (Booker et al., 2008a)and 0.4% (Fulton et al., 2006)), and thus they 

likely do not account for, nor contribute to, the majority of clinical disease.(Booker et al., 

2008a) 

Environmental factors 

Shipping 
Transportation of cattle is the most universally accepted non-infectious risk factor for 

BRD and led to the commonly used laymen’s term of “shipping fever.” The segmented 

nature of cattle production in the United States guarantees virtually all beef calves will be 

transported at least once in their lifetime. Therefore, most researchers have attempted to 

identify what component of transportation has the greatest effect on incidence of BRD. 

The distance and/or time in transit have been examined by several investigators, with 

conflicting conclusions. Ribble et al. found that the distance from point of purchase 

(auction barn) to destination (feedlot) had no effect on incidence of BRD.(Ribble et al., 

1995d) This analysis may be confounded by effects other than transport, such as farm(s) 
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of origin, the auction barn of purchase and amount of commingling, among other 

variables. However, consistent association between “shrink” (weight loss occurring 

during handling and marketing) and distance traveled was interpreted by the authors to 

suggest such confounders had minimal significance.(Ribble et al., 1995d)  In contrast, a 

large survey found a positive association between distance transported and 

morbidity.(Sanderson et al., 2008) In a controlled experimental study, calves transported 

12 hours had higher morbidity levels than those transported 24 hours, whereas there was 

no difference between those transported 24 hours and control calves that were fasted but 

not transported.(Cole et al., 1988) The authors concluded that sorting, loading and early 

transit are likely the most stressful components of transportation, which is supported by 

other studies(Phillips et al., 1986; Stermer et al., 1982; Tennessen et al., 1984; Warriss et 

al., 1995). In one study, an association was found between disease and distance traveled, 

(Pinchak et al., 2004) but other factors were not considered that may impact morbidity 

such as weight of calf, bulls that required castration, and other confounders. Other 

investigators found that calves transported less than 150 miles had less morbidity than 

those transported 150 to 200 miles.(Schake et al., 1980) Interestingly, this was not a 

linear relationship; calves hauled less than 50 miles had numerically higher (although not 

statistically significant) incidence of clinical BRD than those transported 100-150 miles. 

Another trial by these same researchers found no relationship between distance 

transported (ranging from less than 50 to greater than 1000 miles) and mortality.(Schake 

et al., 1980) It was suggested in a comparison of US and Australian production systems 

that mode of transportation may account for differing rates of BRD. The Australian cattle 

industry relies more heavily on trains which have more open ventilation while the US 
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relies on double deck tractor trailers with more complete enclosure.(Irwin et al., 1979) 

This theory was not supported in a 1982 study, wherein Canadian cattle were compared 

according to transport via truck or train(Martin et al., 1982). The potential effect of 

location of a calf within a transport trailer on BRD was examined in one study. It was 

theorized that proximity to exhaust may influence subsequent illness, but no difference 

was found in BRD incidence attributable to location in the trailer compartment.(Camp et 

al., 1981)  

 

Dehydration is a frequent sequela to transportation and has been suggested as a 

mechanism through which transport influences disease. As mentioned above, Ribble 

found a positive correlation between shrink and transportation time. However, neither 

shrink nor transportation time were significantly correlated with BRD in several 

studies.(Camp et al., 1981; Cole et al., 1988; Ribble et al., 1995d) A positive association 

between shrink and BRD was demonstrated in one study.(Woods et al., 1973b) However, 

failure to account for several confounding factors precluded reaching a definitive 

conclusion; the most important confounder was that “preconditioned” calves had less 

shrink and less morbidity. Thus, it is unclear whether less disease was attributable to less 

shrink or to the preconditioning.    

Weather 
Weather conditions have long been implicated in occurrence of BRD because the highest 

incidence is observed in the fall.(Jensen et al., 1976; Loneragan et al., 2001; Ribble et al., 

1995a) Nevertheless, one cannot conclude that the predominating weather conditions at 

that time are the cause of increased incidence of BRD. Fall is the traditional time for 
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marketing beef cattle, resulting in more at-risk calves being congregated at marketing 

points at that time of year. Therefore, a higher density of disease organisms is likely 

present at sale barns, order buyer operations and feedlots. There is also the potential for 

more stress upon the calves as crowding, commingling and competition for feed and 

water are exacerbated. Human factors have also been proposed to be involved in the 

seasonality of BRD. Specifically, high cattle traffic and long work hours lead to fatigue 

among stockyard and feedlot workers at this time of year. Additionally, potential delays 

in loading, unloading, transporting and processing of all calves, as well as identifying and 

treating sick ones, could worsen disease occurrence.(Ribble et al., 1995a) Nevertheless, 

higher incidence of BRD was found in the fall in a bull performance center, which would 

not face the same human factors and logistical issues as feedlots.(Andrews, 1976) Many 

authors have suggested that the sudden and extreme changes in weather conditions, rather 

than simply cold or inclement weather, predispose cattle to BRD. Attempts to examine 

this hypothesis have been modestly successful in demonstrating such a link. Ribble et al. 

found that BRD mortality peaked at approximately the same time as the largest decrease 

in mean daily ambient temperature.(Ribble et al., 1995a) However, the annual differences 

seen in BRD occurrence did not correspond with annual variation in weather. In that four 

year study, one of the two years had the most severe weather while the other year with 

greatest BRD risk had the mildest weather. Two other studies found opposite correlations 

between BRD and the maximum range in temperature within a 24 hour period; in the 

first, increased variation in ambient temperature corresponded with increased 

disease(MacVean et al., 1986), whereas in the second study increased temperature range 

correlated with a decrease in BRD.(Alexander et al., 1989; MacVean et al., 1986) 
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Recently, the relationship of temperature measurements (daily mean, minimum and 

range) with morbidity and mortality was examined.(Cusack et al., 2007) These 

researchers found that minimum temperature had a higher correlation with BRD 

morbidity than did temperature range or mean. There was no relationship among climate 

variables and mortality. Interestingly, there was a zero day lag between minimum 

temperature and morbidity; that is, more calves were treated on cold days. If it is assumed 

that BRD has an incubation period, it would seem improbable that the infection would be 

immediately apparent. Instead, this finding may be attributable to signs of disease 

becoming more notable during severe weather rather than a true increased risk.  

 

Other environmental variables have also been investigated, including relative 

humidity(MacVean et al., 1986), wind speed(Cusack et al., 2007) and 

precipitation,(Alexander et al., 1989; Cusack et al., 2007) none of which appear to 

influence disease occurrence. MacVean et al. also included the effect of dust in the 

feedlot on respiratory morbidity.(MacVean et al., 1986) While the conclusions of that 

study suggest that dust particles are associated with BRD, significant challenges in data 

collection and analysis were described. Airborne dust was collected and separated by 

particle size over a period of months in 2 consecutive years. These data were then plotted 

parallel to morbidity data, and subjectively assessed to determine what temporal 

relationship may have existed. Based upon their visual appraisal, the authors determined 

that cattle on feed 16 to 30 days had the closest correlation between disease and presence 

of dust. Regression analysis was then performed, which determined that a 15-day lag 

time from peak exposure to peak disease yielded the closest correlation. The investigators 
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ultimately concluded that particles between 2.0 to 3.3 micrometers in diameter impacted 

BRD incidence. This conclusion was the same for each of the two years; however, the 

magnitude of the relationship was different, such that the data from both years could not 

be combined into a single equation. Other variables believed to impact BRD occurrence 

(age, weight, history or source of cattle) were not included in the analysis. In contrast to 

the implications of the study above, a controlled experiment failed to identify an impact 

of dust on respiratory tract clearance of pathogens in a goat model.(Purdy et al., 2003) 

Two limitations of this study were that the dust used had an average size much larger 

than that found by McVean’s epidemiologic study to be associated with BRD, and the 

measured outcomes did not include treatment or morbidity.   

Management factors 

Source: Ranch vs. salebarn  
While environmental factors may impact BRD incidence, it is more important to identify 

predisposing factors within the control of the producer. Therefore, study of these subjects 

has received more attention, although the results are often no more conclusive. It has 

been repeatedly demonstrated that newly received cattle are at greatest risk for 

BRD.(Alexander et al., 1989; Jensen et al., 1976; Kelly and Janzen, 1986; MacVean et 

al., 1986; Martin and Meek, 1986; Ribble et al., 1995b; Sanderson et al., 2008) As a 

result, actions taken at or around the time of receiving in the feedlot or 

stocker/backgrounder operation have been scrutinized. Calves purchased through a sale 

barn are more at risk than those arriving directly from farm sources.(Gummow and 

Mapham, 2000; Hansen et al., 1992; Step et al., 2008; Wilson et al., 1985) This has 

generally been considered to result from greater exposure to pathogens as well as 
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increased stress during multiple episodes of transit, marketing, commingling, etc. As 

such, a common recommendation is to avoid purchasing sale barn cattle and preferably 

buy directly from the farm or ranch of origin.(Radostits, 2001; Woods et al., 1973b) 

However, other factors commonly associated with sale barn calves may be responsible 

for the increased risk, rather than the sale barn process itself. For example, BRD 

incidence increases when cattle from multiple sources are commingled.(Sanderson et al., 

2008) This most commonly results from buying calves from one or more sale barns and 

combining through an order buyer. However, commingling by other means also increases 

BRD risk. One example is introduction of new arrivals into a group over the course of 

several days to weeks, which has been shown to increase BRD incidence compared to 

filling the pen in a shorter period of time.(Alexander et al., 1989; Martin et al., 1982; 

Ribble et al., 1995c) Hence, commingling, rather than sale barn exposure, may play the 

greater role in BRD incidence. This idea was supported by Ribble et al.(Ribble et al., 

1998)  In that study, all calves were purchased through sale barns; however, some groups 

or pens of cattle came from fewer sources (more calves per farm) and therefore had less 

commingling, while other groups came from a larger number of farms, meaning there 

was more commingling. Incidence of BRD was higher in groups of calves put together 

from more sources than those created from fewer sources. Unfortunately, there was no 

opportunity to compare commingled versus non-commingled calves that had not gone 

through a sale barn. Step, et al. compared morbidity among ranch-direct calves, market 

calves, and commingled calves (calves from ranch and market, penned together after 

arrival).(Step et al., 2008) The study found commingled steers to be intermediate in 

respiratory disease rates (higher than ranch, but lower than market). However, it was not 
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reported if ranch calves had higher rates of illness due to commingling, or whether the 

higher rates in the commingled pens were strictly attributable to the increased disease 

among market calves.  

Age & weight 
Feedlot cattle are arbitrarily categorized as “calves” or “yearlings”, usually based upon 

weight and phenotype at the time of entry. Yearling cattle are reported to have lower 

incidence of morbidity and mortality, (Jensen and Mackey, 1979; Radostits, 2001) 

although no data were provided to support the claim. This assumption was considered a 

potential explanatory factor for variations in morbidity from year to year.(Loneragan et 

al., 2001) However, the relationship has not been uniformly apparent when investigated. 

Only one study reviewed provided the actual age of animals, and it related to bulls in a 

test station rather than feedlot cattle. That investigation found age to be associated with 

fever, a classification that was largely intended as a proxy for BRD. The youngest calf 

was found to be 5 times more likely to be diagnosed with fever when compared to the 

oldest calf, wherein there was a difference of 100 days in age.(Townsend et al., 1989) 

Several studies suggested that lighter-weight calves were at greater risk than heavier 

ones.(Bateman et al., 1990; Gummow and Mapham, 2000; Martin et al., 1989; Sanderson 

et al., 2008; Taylor et al., 1999) Gummow and Maphem dichotomized cattle based upon 

being above or below the mean weight of the group. It was determined that calves 

weighing less than the mean were 1.4 times more likely to develop BRD than those 

weighing more than the mean.(Gummow and Mapham, 2000) Bateman et al. compared 

the average arrival weight of calves later classified as sick to that of calves remaining 

healthy, and found a 7 kg difference between those groups.(Bateman et al., 1990) 
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Although this difference was statistically significant, it is clinically irrelevant (it reflected 

a 3% difference of arrival weight, a value well within the expected variability of weight 

of calves within a lot). Interestingly, re-analysis of the data in a later study found that 

weight at entry was not predictive of BRD at a group level.(Martin et al., 1990) 

Sanderson et al. categorized calves as less than 250 kg, between 250 and 318 kg and 

greater than 318 kg. It was found that calves weighing more than 318 kg were less likely 

to develop BRD than calves weighing less than 250 kg (relative risk of 0.18, p<0.00). 

There was a trend (p=0.09), although not statistically significant, for mid-range calves to 

also have less respiratory events than those in the lighter classification.(Sanderson et al., 

2008) Other studies have contradicted these findings. In multivariate analysis, Thompson 

et al. found no difference in arrival weight among animals that did not suffer from BRD, 

those that developed subclinical BRD (never treated but had lung lesions at slaughter), 

and those that were treated for BRD.(Thompson et al., 2006) This study primarily utilized 

lighter weight calves, with mean body weight of 233.4 kg at arrival; no weight range was 

reported, but cattle weighing between 150 and 300 kg were eligible for inclusion in the 

study. It is possible that this inclusion criteria skewed the study population toward high 

risk calves, preventing adequate comparison to what would typically be considered 

yearling cattle. Indeed, age at entry was listed as ranging from 5 to 10 months. 

Additionally, since the study was conducted in South Africa, cattle and/or management 

factors may have been significantly different from those typical for North America. 

Therefore, conclusions may be less applicable to US and Canadian cattle industries, 

although other findings (percent morbidity, percent with lung lesions, reduction in 

average daily gain attributable to morbidity and lung lesions) were consistent with those 
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detected in North American studies. Studies conducted at commercial US feedlots have 

also failed to find a relationship between arrival weight and BRD.  The mean and 

standard deviation for arrival weight in one study was 335 ± 59 kg(Alexander et al., 

1989) These cattle may have been too heavy to demonstrate a weight effect on disease, 

because the majority of calves may have been old enough to be considered yearlings. 

This seems unlikely, however, since the weight ranged from 217 to 530 kg; assuming the 

cattle were normally distributed across this weight range, such a range would seem large 

enough to identify weigh- related effects, if they existed. Another study found no 

difference in arrival weight between calves later treated for BRD compared to non-treated 

cattle. Interestingly, cattle with lung lesions identified at slaughter actually had heavier 

entry weights than those without lesions.(Gardner et al., 1999) It is possible that the 

lesions were present at entry and did not reflect disease incidence in the feedlot. This 

seems unlikely, however, since the cattle with lesions had lower average daily gain in the 

feedlot, a finding consistent with active disease. Finally, stocker calves from the 

southeastern US had an association between weight and BRD in some, but not all, groups 

of calves examined, with lighter calves having increased incidence of BRD.(Pinchak et 

al., 2004)  

Gender 
Gender of calf has been investigated in relation to BRD, with, once again, conflicting 

results. In two separate studies analyzing disease from birth through feedlot, male calves 

were at higher risk for BRD than female calves.(Muggli-Cockett et al., 1992; Wittum and 

Perino, 1995) Two studies that examined only cattle after feedlot arrival also found that 

males were at a greater risk than females for developing respiratory disease after entering 
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the feedlot.(Alexander et al., 1989; Gallo and Berg, 1995) An Australian study found 

steers were at slightly higher mortality risk than heifers.(Cusack et al., 2007) This was 

reported as crude mortality and was thus not exclusive to BRD. While BRD was the 

greatest single risk factor for death, it is unclear what effect conditions unique to males 

(i.e. urolithiasis) may have had on crude mortality, and it was not reported whether BRD 

mortality was higher in steers. In contrast to the above studies, Loneragan’s retrospective 

study examining records on over 21 million feedlot cattle found a higher incidence of 

BRD-associated mortality in heifers than in steers for the time period from 1997 to 1999. 

No difference was observed, however, for cattle from 1994 to 1996.(Loneragan et al., 

2001)  In a 1988 Canadian study, heifers were also at a greater risk of fatal BRD 

compared to steers.(Ribble et al., 1988) However, heifers were purchased in smaller 

groups and combined over a longer period of time than were steers; as previously 

discussed, such practice is associated with increased BRD. Terefore, extended 

commingling may account for the difference in respiratory disease mortality between 

genders in this study. Other studies have found no difference in respiratory disease 

between males and females, although one survey found cattle in mixed-gender pens were 

at higher risk than those in either exclusively steer or exclusively heifer pens.(Sanderson 

et al., 2008)   

Covariates with gender  
Numerous factors have been investigated in attempts to explain why one gender may be 

more commonly affected by respiratory disease. The three feedlot studies that found 

males at greater risk for BRD all categorized calves either as heifers and steers with no 

mention of bulls.(Alexander et al., 1989; Cusack et al., 2007; Gallo and Berg, 1995) 
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However, many calves arrive at the feedlot as bulls and must be castrated. This may 

explain at least part of the increased risk of BRD in steers, because calves castrated after 

purchase are at increased risk of BRD compared to calves castrated prior to arrival.(Berry 

et al., 2001; Pinchak et al., 2004) Increased morbidity in steers may also be partly 

attributable to the so-called “buller” syndrome, wherein a steer is repeatedly mounted and 

ridden by penmates. One study found “bullers” have an increased risk of BRD when 

compared to other steers,(Taylor et al., 1999) while another study did not find such an 

association.(Meyer et al., 2002) Riding behavior can also occur among heifers, in 

association with estrus. To prevent risk of injury and decreased weight gain, 

melengesterol acetate (MGA, a synthetic progesterone) is frequently fed to heifers to 

inhibit estrus. It has been suggested that the anti-inflammatory effects of MGA may also 

reduce chronicity of respiratory disease, possibly resulting in disparity of disease between 

heifers and steers. However, morbidity and mortality were unaffected by MGA 

supplementation,(Sulpizio et al., 3 A.D.)  and a subsequent study found that lesions were 

worse in MGA supplemented heifers following experimental challenge with M. 

haemolytica.(Corrigan et al., 2007)  

 

Castration and dehorning 
As alluded to above, castration after arrival has been proposed as a risk factor for BRD. 

Like most other risk factors examined in relation to BRD, the association has not been 

consistent. Several studies regarding castration did not analyze morbidity as an outcome 

of interest. Instead average daily gain (ADG), or plasma concentrations of acute phase 

proteins or cortisol were reported(Chase, Jr. et al., 1995; Fisher et al., 2001; Pinchak et 
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al., 2004). Therefore, any association between castration and BRD is merely by 

extrapolation. Nevertheless, delayed castration has repeatedly been found to reduce 

ADG,(Berry et al., 2001; Brazle, 1992; Chase, Jr. et al., 1995; Faulkner et al., 1992; 

Fisher et al., 2001; Pinchak et al., 2004; Zweiacher et al., 1979) a result that was not 

influenced by analgesia during castration.(Faulkner et al., 1992) This suggests that 

castration is a stressful event. Indeed, castration of large bulls increased plasma cortisol 

concentrations.(Chase, Jr. et al., 1995) Given the immunosuppressive nature of increased 

cortisol levels, castration of older animals may put them at greater risk of BRD than non-

castrated animals or those castrated at a younger age. This supposition was supported by 

several studies,(Berry et al., 2001; Brazle, 1992; Zweiacher et al., 1979) whereas others 

found no association or inconsistent findings between delayed castration and BRD.(Berry 

et al., 2001; Brazle, 1992; Faulkner et al., 1992) It is possible that failure to castrate at an 

early age is indicative of poor management in general, and the cumulative effects of poor 

management result in increased disease. Such a postulation would be difficult to assess. 

 

Dehorning is similar to castration in that it is a painful procedure that is generally 

recommended to be performed early in life. Substantial research has been done regarding 

the immediate responses to dehorning, but few studies have evaluated longer term 

morbidity associated with this procedure. Martin et al. found increased BRD in groups 

where greater than 30% of the calves were dehorned.(Martin et al., 1982) Others found 

inconsistent effect of age at dehorning on weight gain,(Loxton et al., 1982) although 

calves dehorned in the feedlot had lower average daily gain.(Goonewardene and Hand, 

1991; Hand and Goonewardene, 1989) This effect was accentuated if calves were 
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castrated at the same time. However, BRD morbidity was not measured in any of these 

latter studies.  

  

Regardless of the negative effects that may result from dehorning and castration, if calves 

arrive at the feedlot with horns and/or testicles the procedures should be performed to 

meet current industry standards. The only questions would be how and when the 

measures should be performed. Most studies comparing castration methods examine 

surgical (knife) castration to banding. Results have not been unanimous; however, the 

trend has been for surgical technique to be preferred,(Berry et al., 2001; Fisher et al., 

2001) with none of the reviewed studies identifying an advantage to banding. It is 

important to note that this statement is in regards to castration of older calves and 

yearlings, not pre-weaning castration. Studies examining young calves do not often 

measure association with BRD and thus were not reviewed for this paper. One study 

compared two different methods of surgical castration- emasculation versus ligation of 

the spermatic cord. No significant difference in morbidity was attributable to method. An 

advantage in ADG was found for castrating at arrival but no significant difference in 

morbidity was detected due to delaying the procedure one or two weeks. (Zweiacher et 

al., 1979) 

Interventions 

Processing 
In most cases, castration and dehorning are done at the same time as other “processing” 

procedures. These procedures include administration of vaccines, growth promotant 

implants, anthelmintics and parenteral vitamins, as well as pregnancy examination of 
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heifers with abortion of those found to be pregnant. Unfortunately, these activities have 

received relatively little research in their relation to BRD. The metabolic effects of 

growth-promotant implants are well known. Phillips, et al. hypothesized that the 

improved protein efficiency induced by zeranol would be beneficial for stressed calves. 

Based upon blood glucose and urea nitrogen levels, their study supported that 

implantation of zeranol conserved energy reserves during transit, but morbidity was not 

affected.(Phillips et al., 1986) Martin found that deworming in the first two weeks after 

arrival had a negative impact on health.(Martin et al., 1982) However, this association 

may have simply been co-linear with other processing procedures, including vaccination, 

which were associated with increased BRD. Another study found pre-conditioned calves 

dewormed with thiabendazole had lower fecal egg counts and also lower disease 

incidence compared to calves not preconditioned and dewormed.(Woods et al., 1973b) 

But again, the possibility for co-linearity with other, more important factors must be 

considered. Two studies found no difference in BRD morbidity in calves treated with an 

anthelmintic compared to those not treated.(MacGregor et al., 2001; Morter et al., 1984) 

Similarly, comparison of anthelmintic products found no difference in BRD incidence 

between cattle treated with various products(Guichon et al., 2000; Schunicht et al., 2000) 

or detected modest differences that were deemed economically unimportant.(Jim et al., 

1992) Many other studies have examined the use of deworming in stocker and feedlot 

cattle, but did not assess whether treatment impacts respiratory morbidity; such studies 

were not reviewed for this paper. Relationship of parenteral administration of vitamins A, 

C, D and E to BRD was examined in an Australian study. Vitamins A, D and E had no 

impact on disease reduction. Vitamin C, administered at the time of treatment, reduced 
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mortality.(Cusack et al., 2008) In another study, vitamin E and selenium administration 

had no effect on BRD incidence, although antibody production in response to vaccination 

was enhanced.(Droke and Loerch, 1989)  

 

Only one study was found that examined the relationship between pregnancy evaluation 

and respiratory disease, with pregnancy examination being associated with increased 

morbidity.(Alexander et al., 1989) No attempt was made to explain such an association, 

although it could be speculated that calves that were poorly managed prior to arrival were 

most likely to be examined for pregnancy. Therefore, this may merely be an indicator for 

other factors considered to put calves at risk for disease (similar to castration). Heifers 

that are found to be pregnant in the feedlot are typically aborted, and it has been 

hypothesized that the abortion would be a stressful event that may contribute to 

BRD.(Edwards, 1989) While various recommendations have been made to manage such 

heifers to reduce stress and disease,(Edwards and Laudert, 1984; MacGregor and Falkner, 

1997) few studies have examined the significance of such a relationship. One study 

examining open, aborted and pregnant heifers observed “no significant health problems 

or mortality in any of the groups,” but no data or statistical analysis was provided.(Jim et 

al., 1991) A model designed to assess cost of various management options assumed a 5% 

increase in BRD morbidity associated with aborting heifers,(Buhman et al., 2003) but this 

figure was based upon a study documenting immunosuppression associated with dystocia 

rather than documented effects of abortion on respiratory disease.  
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Timing of processing 
It has been theorized that the added stress of the various processing procedures may 

contribute to morbidity. This has occasionally led to the recommendation to delay 

processing until cattle have acclimated to the new environment or to perform some 

procedures at arrival while delaying others. Empirical evidence indicates that most people 

in the industry do not consider processing at or shortly after arrival to be detrimental; a 

large percentage of feedlots employ this practice, and many of the studies reviewed 

(regardless of variables of interest examined) also describe prompt processing of 

calves.(Alexander et al., 1989; Bagley et al., 2003; Bechtol et al., 1991; Berry et al., 

2001; Berry et al., 2004b; Booker et al., 1999; Buhman et al., 2000; Duff et al., 2000; 

Fluharty and Loerch, 1996; Frank and Duff, 2000; Gibb et al., 2000; Lofgreen, 1983; 

Ribble et al., 1988; Roeber et al., 2001; Wildman et al., 2008). A trend toward higher 

morbidity was reported in calves for whom processing was delayed when compared to 

calves processed at arrival. An extended period of time during which initial BRD cases 

occurred was also noted when processing was delayed two to three weeks.(Lofgreen et 

al., 1978) These trends were minor, and significance cannot be assigned because 

statistical analysis was not performed. Kreikemeier found no difference in morbidity or 

mortality but improved performance associated with processing at arrival compared to 

waiting three weeks.(Kreikemeier K et al., 1996) In contrast, Martin et al. found that 

processing calves in the first two weeks after arrival increased disease compared to 

waiting two to four weeks for processing.(Martin et al., 1982) Others have examined 

delaying some (but not all) components of processing. For example, one study 

administered anti-parasitic treatments and clostridial vaccines to all cattle at arrival 

(dehorning and castration were done, as needed, at this time as well). A modified live 
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viral vaccine was either given at arrival, delayed for one week, or not given at all.(Duff et 

al., 2000) No difference attributable to vaccine administration was noted in morbidity or 

mortality. However, the power of this study to detect differences due to treatment was 

quite low. In another study, administration of a modified live viral vaccine was delayed 

two weeks, whereas other processing activities (castration, deworming and vaccination 

with a clostridial bacterin) were performed at arrival.(Richeson et al., 2008)  This resulted 

in increased ADG, with no difference in morbidity or mortality compared to inclusion of 

the modified live viral vaccine at arrival.  

Vaccination  
Vaccination for viral agents, and to a lesser extent bacterial pathogens, associated with 

BRD is widespread in the industry. Surprisingly, there is little scientific support for the 

practice. One of the first large epidemiologic studies regarding BRD found that 

vaccinating for respiratory pathogens in the feedlot was associated with increased risk of 

BRD.(Martin et al., 1982) In fact, it appeared to be one of the most detrimental practices 

employed by feedlots. In interpreting these data, it would appear feasible that calves 

considered at high risk for BRD were more likely to be vaccinated, thus creating a 

spurious association. This idea was disputed by the authors, who stated “Owners rarely 

vaccinate sick groups of calves and thus the increase of risk of death… is attributed to the 

vaccines.”(Martin et al., 1983) Even accepting the authors’ interpretations, the data for 

this analysis were collected from 1978 to 1980; thus it could be asserted that much has 

changed in vaccinology in the past three decades and findings would likely be different 

today. Indeed, there are numerous studies which have found a protective factor from 

vaccinating.(Bechtol et al., 1991; Hansen et al., 1992; Knight et al., 1972; Loan et al., 
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1998; Macartney et al., 2003; MacGregor and Wray, 2004; O'Connor et al., 2001; 

Schunicht et al., 2003) There are similar numbers of studies in which vaccination was 

found to be ineffective or inconclusive.(Duff et al., 2000; Frank et al., 1996; Kiesel et al., 

1972; MacGregor et al., 2003; Sanderson et al., 2008) When a rigorous critique is done of 

the entire body of work regarding respiratory vaccines the evidence of vaccine efficacy in 

real-world situations is equivocal, at best.(Mosier et al., 1989; Perino and Hunsaker, 

1997) The presence of antibodies against various pathogens has been found to be 

protective, (Booker et al., 1999; Fulton et al., 2002b) so it would seem intuitive that 

immunization against those pathogens would be beneficial. But while vaccination is 

consistently shown to result in antibody production, vaccination induced titers are not 

always correlated with protection against disease.(Kiesel et al., 1972; Loan et al., 1998) 

The failure to identify the specific characteristics of a vaccine program that will 

consistently protect against disease is one of the more frustrating areas of research related 

to BRD. 

 

Preconditioning 
Since no combination of receiving/processing practices has been found to eliminate BRD, 

significant effort has been extended in identifying pre-shipment practices that would 

reduce disease. Such measures, typically referred to as “preconditioning,” were proposed 

as early as 1967.(Lalman and Smith, 2004) While variation exists in defining what should 

be done for calves to be considered “preconditioned”, the most common components are: 
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• Vaccination, most commonly for respiratory viruses and clostridial diseases; some 

programs include M. haemolytica, P. multocida and H. somni biologicals in some 

combination.  

• Dehorning and castration, with adequate time allowed for healing prior to sale  

• Weaning prior to sale, with suggested time frames varying from several days to 

several weeks 

• Training of calves to eat from a bunk and drink from a trough 

 

The intent is to spread the various sources of stress (weaning, surgeries, transport, feed 

changes) over multiple episodes rather than all at once. Additionally, vaccination should 

permit development of immunity prior to time of maximum stress and exposure to 

pathogens.  

 

While many in the beef industry advocate adoption of a preconditioning program, 

disappointment is frequently expressed that the practice has failed to become widespread. 

This is often blamed upon a variety of reasons, yet only rarely is the validity of the idea 

questioned. Many reports that demonstrate positive results from preconditioning are 

restricted to lay publications and are not subjected to peer review. Such articles are often 

biased, demonstrating a desire to convince producers to adopt preconditioning practices. 

These studies frequently do not report on-farm morbidity that may occur during the 

preconditioning phase. Thus it is possible that disease is not reduced, it is just shifted 

from the stocker or feedlot operator to the cow-calf producer. Frequently, preconditioned 

calves may benefit from being older and heavier at time of selling, which, as discussed 
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above, may in and of itself reduce disease. Finally, some of these calves are delivered 

directly to the feedlot or backgrounding operation, bypassing the commingling and stress 

typically associated with the sale barns from which control calves may be derived. 

Reduction in disease therefore cannot be ascribed solely to preconditioning. To truly 

assess the effect of preconditioning, control calves should also bypass the sale barns, but 

without the weaning, vaccination and other processing activities that define 

preconditioning; alternatively, preconditioned calves should also be sold through the sale 

barn and order buyer process through which controls are obtained. The latter option has 

been employed in recent studies, discussed below.  

 

Peer-reviewed field trials evaluating the effectiveness of preconditioning since at least the 

1970s have been less than definitive in its benefit. Several studies found inconsistent 

results when multiple years are evaluated, such that morbidity was reduced in one year 

but not others.(Woods et al., 1973b) Other studies have demonstrated no reduction of 

disease attributable to preconditioning, (Kiesel et al., 1972; Pritchard and Mendez, 1990; 

Wieringa et al., 1976) whereas other research found reduction in disease but no overall 

economic advantage associated with preconditioning.(Kadel et al., 1985) A 1985 review 

of the research available at that time verified the equivocal findings of many studies 

regarding preconditioning.(Cole, 1985) On an aggregate basis, Cole found a slight 

reduction in disease attributable to preconditioning, although the economic benefits were 

deemed questionable.  
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Many recent studies have demonstrated more positive results attributable to 

preconditioning.(Hansen et al., 1992; Karren et al., 1987; Lalman and Ward, 2005; Lynch 

et al., 1997; Macartney et al., 2003; Roeber et al., 2001; Step et al., 2008) While these 

studies typically feature better design and analysis than previous research, most still have 

significant limitations. One major challenge in assessing these studies is a lack of 

uniformity in defining and implementing preconditioning. For example, the study by 

Lynch, et al. was more accurately a vaccination trial, as calves “were considered 

preconditioned if they had received both viral and Pasteurella vaccines 14 to 21 days 

prior to weaning.” In the study by Karren, et al., preconditioning included weaning in a 

drylot and acclimating to a concentrate ration in addition to vaccination. The Macartney, 

et al. and Roeber, et al. studies required calves to be vaccinated and weaned to be called 

preconditioned. However, the Macartney, et al. study had no requirement for “bunk 

breaking” or diet composition, whereas the Roeber et al. study required calves to be 

acclimated to feed and water troughs. Hansen et al. offered no description of what was 

required for calves to have been considered pre-conditioned. Such varied and vague 

definitions of “preconditioning” make across-study comparison difficult and results 

challenging to interpret. This potential confusion is further exemplified in a large survey 

study that found no benefit to preconditioning.(Sanderson et al., 2008) The survey nature 

of the study meant that the preconditioning status of the calves was defined by the feedlot 

managers who reported the data; therefore, the definition was likely inconsistent and may 

have influenced the findings. 
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How the calves are marketed can also impact the relevance of preconditioning studies. In 

one study(Karren et al., 1987), control and treatment calves came from one source and 

were sent directly to the feedlot. This processing eliminated much potential for variation 

but also reduced external validity, because most purchasers of preconditioned cattle must 

acquire them from multiple sources and commingle them. The studies by Macartney, et 

al.(Macartney et al., 2003) and Roeber et al.(Roeber et al., 2001) compared 

preconditioned calves to vaccinated calves and those sold through conventional sales (no 

vaccination or treatment requirements). Both preconditioned and vaccinated calves 

underwent vaccination, castration and dehorning defined time periods prior to sale; in 

addition, calves in the preconditioned group were weaned at least one month prior to sale. 

In each study, calves from the three groups were marketed through the same sale barn (on 

different dates). These protocols are most consistent with industry definitions and 

practices, and make these studies arguably the most effective in assessing 

preconditioning. Macartney et al. found that both treatment groups (vaccination and 

preconditioning) had lower incidence of morbidity compared to calves obtained through 

conventional auction. Indeed, the benefit attributable to preconditioning was quite large: 

conventionally sold calves were 4.5 times more likely to be treated than were 

preconditioned calves. However, the fact that those who made treatment decisions 

(owners) were not blinded to the origin of the cattle introduces substantial bias. Owners 

who purchased non-vaccinated calves may have expected more disease and therefore 

treated more aggressively. This concern is arguably bolstered by the absence of 

difference in mortality between groups. It is conceivable that the more aggressive 

treatment was necessary to prevent mortality in the conventional calves, but it is possible 
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that this group of calves were over-treated due to the owners’ expectations of risk. In the 

Roeber, et al. study, pen riders were blinded to vaccination status, reducing bias. Results 

indicated that non-preconditioned calves experienced higher morbidity than either calves 

vaccinated and weaned 30 days prior to sale or those vaccinated but not weaned; 

mortality was not reported. Paradoxically, ADG was highest in non-preconditioned 

calves.(Roeber et al., 2001)  

 

A recent study provided further evidence of the benefits of preconditioning, and also 

helped define what components are most important for success. Specifically, the authors 

reported that weaning alone had similar benefits to weaning and vaccination.(Step et al., 

2008) Both treatments resulted in lower morbidity compared to shipping calves directly 

to the feedlot or purchasing calves from a salebarn. Since calves from both treatment 

groups were sent directly to the feedlot, it remains possible that vaccination at weaning 

would benefit calves marketed through more typical avenues, including special sales at 

salebarns.  

Nutritional Factors 

Receiving ration 
Because the feedstuffs consumed in a feedlot are often quite different from those 

consumed by calves prior to feedlot entry, several studies have examined the effect that 

nutritional factors may have on respiratory disease. Martin et al. found that calves fed 

corn silage had higher morbidity than those fed hay; however, this negative result could 

be mitigated somewhat by adding grain to the diet.(Martin et al., 1982) In contrast, 

Wilson et al. found that high grain levels were associated with increased BRD.(Wilson et 
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al., 1985) This assessment of the impact of dietary differences may have been 

confounded by other variables, including the source of the cattle and time between arrival 

and processing. In a more controlled study, concentrates were fed at relatively high levels 

(72% of ration) without impacting BRD incidence, whereas higher levels (90%) 

increased morbidity.(Lofgreen et al., 1975) Addition of free choice hay provided no 

benefit. Fluharty and Loerch found no significant differences in morbidity associated 

with variation of feedstuffs, varying levels of concentrate (up to 85%), or percentage of 

protein.(Fluharty and Loerch, 1996) Their findings, however, indicated that the number 

of treatments required for sick calves increased as the percentage of concentrate 

increased. Other studies have demonstrated a trend for increasing morbidity with 

increasing levels of concentrate, typically becoming apparent at varying points above 

50% of the diet.(Galyean et al., 1999) Berry et al. maintained a narrow range of 

concentrate: roughage ratio to assess the impact of varying levels of energy and starch 

with minimal confounding. This study failed to identify a significant association between 

energy and starch levels within the ration and development of disease.(Berry et al., 

2004b) A comprehensive review concluded that diets with increased energy density 

(concentrates) can be employed for improved ADG without altering incidence of 

BRD.(Duff and Galyean, 2006) Crude protein (CP) content is another area frequently 

investigated to determine ideal levels to include in receiving rations. As mentioned 

above, Fluharty and Loerch found no association between CP levels and BRD. In other 

studies, however, CP appeared similar to concentrate percentage in that increased 

morbidity occurred as levels increased, with the preferred inclusion level being 

approximately 14%.(Galyean et al., 1999)  
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Various other nutritional factors have been proposed to reduce morbidity, including 

elevated potassium in the receiving ration, thiamine and other B-vitamins and rumen 

bypass protein.(Brethour and Duitsman, 1972; Hutcheson et al., 1984; Phillips et al., 

1986)  None of these consistently reduced disease.(Cole et al., 1979; Phillips et al., 1986) 

Vitamin E may be beneficial when included at increased levels in the ration (although as 

discussed above, injectable products may not be beneficial).(Carter et al., 2002; Galyean 

et al., 1999)  

 

Micromineral status is another nutritional topic that has received attention. Researchers 

have studied the relationship between BRD and varying mineral levels as well as the 

form in which the nutrients are supplied. In one study, reduced treatment rates were noted 

in calves supplemented with metal-complex minerals compared to calves offered no 

mineral supplement or those receiving inorganic sources (sulfate-

complexed).(Grotelueschen et al., 2001) However, another study found no difference 

when comparing organic complexes and sulfate-bound minerals in non-stressed 

calves.(Salyer et al., 2004) Disparity in results of such studies may be due to differences 

in the mineral status of the calf at the time of enrollment in the study. However, this 

assertion was not supported by a study which found no correlation between mineral 

deficiency at arrival and treatment for BRD.(Bagley et al., 2003) Other studies have 

examined copper, zinc, vitamin E and selenium, chromium and various combinations of 

these, evaluating immune function and/or calf performance (ADG, feed/gain ratio, etc.). 

Reviews of the interaction between nutrition and immunity concluded that the 

 34



inconsistencies in trial results preclude any definitive link between BRD and most 

specific nutritional factors, (Galyean et al., 1999) and “after decades of research, our 

ability to modify the incidence of BRD through nutritional manipulations seems 

limited.”(Duff and Galyean, 2006)  

 

Increasing intake 
Finally, in considering nutrition’s role in BRD, maintaining adequate feed intake may be 

more important than what is included in the ration. Weaned calves may not be 

accustomed to prepared feeds, eating from feed bunks and drinking from waterers; 

therefore, the use of trainer animals has been suggested to acclimate calves to these 

activities. Such trainers would be older cattle, acclimated to the feedlot environment and 

familiar with the facilities for eating and drinking. A study found that use of cull cows as 

trainers improved calf health in several, but not all, trials. The same investigators found 

that use of trainer steers was not beneficial, and led to increased disease in the trainer 

steers.(Loerch and Fluharty, 2000) Similarly, Gibb et al. found the presence of trainer 

cows had no effects on morbidity for newly received calves but did reduce ADG for 

calves in early feeding period.(Gibb et al., 2000) 

 

Prophylaxis/Metaphylaxis 

Parenteral antimicrobials 
The involvement of M. haemolytica and other bacterial pathogens in BRD suggests that 

antimicrobials would be beneficial in controlling disease. Indeed, treatment of affected 

calves almost invariably involves antimicrobials. It has also been hypothesized that mass 
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treatment of at-risk populations could reduce disease. Such mass treatment can be 

accomplished in one of three ways- parenterally, in feed, or in water. Administration of 

parenteral products to calves that are at high risk for BRD (termed metaphylaxis) has 

consistently been found to reduce morbidity.(Cusack, 2004; Donkersgoed, 1992; Frank et 

al., 2002; Frank and Duff, 2000; Macartney et al., 2003; Step et al., 2007; Wellman and 

O'Connor, 2007) Products found to be successful include ceftiofur crystalline free acid, 

florfenicol, tilmicosin and tulathromycin, with conflicting results for 

oxytetracycline.(Cusack, 2004; Schunicht et al., 2002) Most studies examined 

administration of these products at feedlot arrival, but pre-shipment treatment was also 

found to be effective.(Frank and Duff, 2000; McClary and Vogel, 1999) Despite the 

effectiveness of metaphylaxis, cost and labeling restrictions preclude mass treatment of 

calves not considered at high risk for BRD.(Young, 1995) It has been found that calves 

that have an increased pre-transit body temperature are at greater risk of disease;(Chirase 

et al., 2004) therefore febrile calves may be considered prime candidates for targeted 

treatment without administering antimicrobials to the entire group. However, Lofgreen 

concluded that a treatment system based upon arrival temperatures was not 

reliable.(Lofgreen, 1979) Vogel et al. found selectively treating calves based upon 

presence of fever reduced subsequent morbidity compared to no prophylactic treatment. 

However, it was less effective than metaphylactic treatment of the entire group.(Vogel et 

al., 1998)   
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Oral antimicrobials 
The benefits of mass administration of oral antibiotics are less certain. Martin et al. found 

that antimicrobials delivered in water were associated with increased mortality (no 

distinction was made between which antimicrobials were used).(Martin et al., 1982) This 

relevance of this is debatable, however, as results may have been confounded by several 

factors. First, cattle that had greater early morbidity were more likely to be given 

antimicrobials in the water. Such groups were at greater risk of having higher overall 

mortality, which may have been due to other factors and unrelated to administration of 

the antimicrobials. Second, increased mortality may have resulted in the treated calves 

because the number of water sources was reduced so that only those sources with 

antimicrobials were available. Thus, death may have been related to limited water supply 

and subsequent dehydration rather than to the inclusion of antimicrobials. Another 

hypothesis for the relationship between antimicrobials in water and mortality include 

decreased palatability of the water, thereby reducing intake. Alternatively, some 

producers may demonstrate decreased attentiveness in promptly treating sick calves when 

antimicrobials are used in the water, because the owner assumes that providing treatment 

in the water decreases the need to treat parenterally.(Martin, 1985) In the same study, 

administration of antimicrobials in feed reduced morbidity. This is in agreement with a 

study that suggested an association between chlortetracycline and sulfamethazine in feed 

and reduced morbidity at the time of weaning; the results appear convincing but 

statistical analysis was not performed.(Woods et al., 1973a) The limited evidence of 

efficacy of antimicrobial administration though feed and water was exemplified in a 

meta-analysis that found only ten well-designed, executed and analyzed studies 

examining use of mass medication of antimicrobials in any manner, and all ten related 
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solely to parenteral use.(Donkersgoed, 1992) A study reported after the meta-analysis 

found that chlortetracycline and sulfamethazine in the ration significantly reduced 

treatment and mortality in feedlot calves.(Gallo and Berg, 1995) A Kansas study reported 

that chlortetracycline in the feed was as effective as parenteral tilmicosin in preventing 

BRD.(Kreikemeier K et al., 1996) That finding was disputed in a different study, where 

parenteral administration of tilmicosin was preferable to inclusion of chlortetracycline in 

feed for reducing morbidity;(Hellwig et al., 1999) no control group was included to 

determine if chlortetracycline provided any benefit. A similar study also found tilmicosin 

to be preferable to including chlortetracycline in the feed.(Frank and Duff, 2000) 

Moreover, that study showed that calves receiving chlortetracycline in the feed from days 

five to nine had similar occurrence of BRD when compared to calves not receiving 

chlortetracycline.   

 

Other Considerations 

Impact of Cattle Characteristics 

Disposition 
A variety of other factors have been examined as to their relation to BRD. Fell, et al. 

assembled two groups of cattle deemed “nervous” and “calm” based upon behavioral 

scores under defined conditions. The study found that nervous calves were more likely to 

be treated for disease in the feedlot than were calm calves, although their assessment was 

not confined to BRD.(Fell et al., 1999)  
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Genetics 
Heritability of BRD susceptibility appears to be low,(Muggli-Cockett et al., 1992; 

Snowder et al., 2005) but breed differences have been found to exist. Braunvieh cattle 

appear to be the most susceptible, and animals of composite breeding have greatest 

resistance.(Muggli-Cockett et al., 1992; Snowder et al., 2005) Other studies have reported 

varied findings of breed and BRD susceptibility. A Swedish bull test study reported 

Angus and Hereford bulls to be at higher risk of disease compared to other 

breeds.(Hagglund et al., 2007) However, the study was not designed to assess breed 

effects, and the authors cautioned about the validity of this finding. Another study found 

Herefords to be at higher risk, but in contrast to Hagglund et al., Durham et al. found 

Angus to have decreased susceptibility compared to other breeds.(Durham et al., 1991) 

An Australian study compared Bos taurus (represented by several breeds) vs. Bos indicus 

(represented by Santa Gertrudis and Santa Gertrudis cross) cattle for BRD incidence and 

found Bos taurus to be at greater risk for BRD than Bos indicus.(Cusack et al., 2007) 

Given the evolutionary origin of these types of cattle (Bos indicus being from hotter, drier 

climates), disease susceptibility could be expected to be affected by geographic location 

and climate factors, and may not apply universally. As BRD resistance is poorly 

heritable, it may be expected that hybrid vigor is beneficial in reducing respiratory 

disease. This was confirmed in a study that found crossbred cattle had a lower 

incidence.(Snowder et al., 2005) Interestingly, a report published later by the same 

researchers found no benefits of heterosis among composite cattle compared to 

purebreds.(Snowder et al., 2006)  
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Parental factors may play a role in BRD occurrence. One study found that calves from 

younger dams had higher pre-weaning incidence of BRD but lower post-weaning BRD 

rates.(Muggli-Cockett et al., 1992) Surprisingly, it was found that dams that appear to be 

resistant to BRD are more likely to have calves that are susceptible.(Snowder et al., 2005) 

Both of these findings may relate to strong and persisting passive immunity preventing 

development of active immunity. Heifers have lower antibody levels in colostrum, thus 

their calves would be susceptible at a younger age. Cows with greater resistance would 

provide longer lasting passive immunity, possibly interfering with development of 

acquired immunity.(Snowder et al., 2005) The importance of maternal transfer of 

immune factors was further bolstered by a study that found vaccination of dams for IBR 

and BVD prior to calving decreased BRD in pre-weaned calves(Ganaba et al., 1995) 

Benefits of passive immunity appear to extend beyond weaning. Calves diagnosed with 

failure of passive transfer (assessed with plasma protein) continued to be at higher risk 

for respiratory disease even in the feedlot.(Wittum and Perino, 1995)  

 

Study Considerations 

Confounders 
Despite the myriad of potential factors studied and associations found, none can provide 

more than a minor accounting for the incidence of BRD that plagues the cattle industry. 

Regardless of the design of the study or factors being explored, it is common to find that 

one of the largest associations of BRD is related to the farm of origin, the destination 

operation or both.(Bagley et al., 2003; Frank et al., 1996; Fulton et al., 2002b; Macartney 

et al., 2003; Martin and Bohac, 1986) These ill-defined associations not only conceal 
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specific risk factors, they can distort interpretation of those that are identified. Examples 

of this were alluded to earlier, when discussing castration and pregnancy checking. 

Certain operations may consistently send bulls or pregnant heifers to a feedlot. These 

operations may also engage in unidentified management practices that impact the 

incidence of BRD morbidity. This may result in an apparent association, for example, 

between castration and BRD when one does not truly exist. Methods exist to attempt to 

account for potential clustering of disease due to herd effects, but they have not 

historically been employed in veterinary literature.(McDermott and Schukken, 1994) 

Even when adjustments are attempted, they can be difficult to apply and interpret. 

Nevertheless, when the study population is composed of animals from different sources 

or groupings, the potential “herd” effect should always be considered and perhaps 

controlled through one of a variety of techniques.(McDermott et al., 1994) One way to 

avoid this issue is to consider the herd or group as the unit of interest, rather than the 

individual animal. This approach has been advocated by Martin, et al., who noted that 

most management measures are implemented at the group, not individual level.(Martin et 

al., 1990) Such a technique would be most meaningful in comparing groups that were 

maintained from birth through feedlot but could potentially be used for shorter periods of 

time. Unfortunately, biologically plausible and perhaps real associations that are found at 

the animal level may not be found at the herd level. For example, Pasteurella species 

were isolated more commonly from nasal secretions of sick calves than from healthy 

calves,(Hoerlein et al., 1961) but morbidity was not higher in herds with a greater 

frequency of Pasteurella isolates.(Magwood et al., 1969) Additionally, caution must be 

exercised in drawing conclusions from ecological or group level studies. For instance, 
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what recommendation can be made if there is higher morbidity in a group of calves that 

included bulls that were castrated, but the castrated calves were not the ones that are sick? 

 

Nature of BRD: Contagious, clustered, or random? 
Another challenge frequently encountered in researching BRD is difficulty in replicating 

results due to large variability in outcomes. This can occur even when the same people 

execute the same processes using cattle from the same operation(s) in different 

years.(Bechtol et al., 1991; Karren et al., 1987; Muggli-Cockett et al., 1992; Snowder et 

al., 2005) This variability begs the question as to whether BRD is contagious, if it clusters 

due to risk factors, or if it occurs randomly. A small-scale study by Martin found that risk 

of disease is not increased by housing calves in a pen with sick cattle.(Martin et al., 1988) 

This may be interpreted as BRD not being contagious in the classic sense. A large, multi-

year study concluded that temporal and spatial clustering effects were small.(Snowder et 

al., 2005) This would suggest that, not only is BRD not contagious, but that risk factors 

would be hard to identify or may not be important, at least in that study population. 

However, another study found a spike of BRD in bulls already acclimated at a test station 

when new bulls were introduced.(Andrews, 1976) The authors interpreted this to suggest 

that the newly introduced animals exposed the acclimated bulls to new pathogens, thus 

supporting the idea of transmissibility. A larger study found cases of respiratory disease 

often clustered according to transport truck (a proxy for source) and less frequently by 

pen.(Ribble et al., 1994) This would suggest that BRD is not a random event, and thus is 

suitable for epidemiologic study. Unfortunately, the investigators were unable to 

conclude whether contagious or non-contagious factors were more important in 
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determining disease occurrence. Frank et al. used a leukotoxin deficient, live attenuated 

M. haemolytica strain as an intranasal vaccine. This unique organism was subsequently 

cultured from non-vaccinated calves, suggesting these calves contracted it from 

vaccinated cattle, albeit at a low and inconsistent rate.(Frank et al., 2002) This was not 

the case in a similarly designed study completed at a later date, where no transmission to 

non-vaccinated calves occurred.(Frank et al., 2003) Further clouding the issue of 

transmissibility was the finding that antimicrobial resistant strains of bacteria emerged in 

calves treated for BRD, but there was no evidence of these strains being transmitted to 

other calves in the feedlot.(Allen et al., 1992b)  

 

Molecular techniques have been developed to distinguish among both M. haemolytica 

(Katsuda et al., 2003; Murphy et al., 1993) and P. multocida isolates.(Dabo et al., 2000; 

Davies et al., 2004; Davies, 2004) These would appear to be perfect tools in assessing 

whether there is significant lateral transmission, but no studies have been reported to 

date. DeRosa et al. used ribotyping, serotyping and antimicrobial susceptibility testing on 

isolates from nasal and tracheal swabs. The limited number of ribotypes found was 

suggestive of lateral transmission, although the study was not designed to explore this 

possibility. Their findings also suggested nasal swab culture can be predictive of the 

bacterial pathogen within the lung.(DeRosa et al., 2000) This idea was supported by work 

reported by Godinho et al.(Godinho et al., 2007) Using post-mortem lung lavage as the 

gold standard, nasal swabs were found to have 100% positive predictive value for 

presence of M. haemolytica and M. bovis in the lung (there were too few P. multocida 

isolates for analysis). Further, random amplified polymorphic DNA polymerase chain 
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reaction (RAPD-PCR) found excellent correlation between lung and nasal isolates, 

suggesting that culture of nasal passages of sick calves may provide clues as to what 

strain is present in the lungs. A different conclusion was reached by Allen, et al., who 

found only moderate correlation between organisms isolated from nasopharyngeal swabs 

and those obtained by bronchoalveolar lavage(Allen et al., 1991). This conclusion was 

made in regards to all pathogens examined; nonetheless, good correlation was present 

between nasopharyngeal and lung isolation when analysis was restricted to P. multocida. 

Further investigation is warranted to determine if application of molecular techniques to 

isolates obtained from nasal swabs of clinical cases could provide insight into patterns of 

transmission of BRD pathogens.  

 

Diagnosis of BRD 
Perhaps the greatest hindrance to better elucidating the factors associated with BRD is 

difficulty in defining and/or identifying the disease. Post-mortem diagnosis, in the 

absence of prior treatment, with culture and/or histopathology is the most definitive 

means. It also is an objective parameter that could be more readily compared across 

multiple studies, years or feedlots. However, withholding treatment is unacceptable on 

animal welfare and economic considerations. Post-mortem examination following 

treatment failure has many merits, but due to selective pressures exerted by the immune 

system and antimicrobials, findings in such cases may not reflect etiologies involved in 

initiating the disease process. Necropsy is also insensitive in detecting those affected, 

particularly in outbreaks with low case fatality. Thus, when mortality is used as the 

outcome of interest most studies have relatively low power to detect treatment 
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differences. It could also be biased by management decisions of how to manage 

chronically affected cattle, which may be salvaged, euthanized or retained but provided 

no further treatment. Subsequently, morbidity is more commonly used as a measure of 

respiratory incidence than is mortality.  

 

It has been lamented that the case definition for BRD varies greatly within the 

literature.(Kelly and Janzen, 1986) Some investigators have established specific criteria 

for classifying calves as suffering from BRD. These criteria include elevated body 

temperature,(Bateman et al., 1990; Berry et al., 2004b; Chirase et al., 2004; Frank and 

Duff, 2000) respiratory signs (nasal discharge, cough, dyspnea or tachypnea),(Andrews, 

1976; Barbour et al., 1997) decreased appetite, depression, or some combination of these 

and other secondary signs.(Allen et al., 1991; Bechtol et al., 1991; Berry et al., 2001; 

Fulton et al., 2000; Gibb et al., 2000; Lofgreen, 1983) Some investigators have used a 

clinical scoring technique that incorporates several parameters into a semi-objective score 

that guides treatment decisions and increases consistency within a trial.(Allen et al., 

1991; Bateman et al., 1990; Buhman et al., 2000; Step et al., 2007; Step et al., 2008) For 

example, one point is scored for presence of each of the previously listed clinical signs, 

and all animals with a score greater than 3 are treated. However, even if the same criteria 

are used in multiple studies, their application may vary or are used in differing 

combinations. For example, temperature cutoff points range from 103°F(Duff et al., 

2000; Fluharty and Loerch, 1996) to 104.5°F (Booker et al., 1999) or 105°F.(Gallo and 

Berg, 1995) Many researchers simply accept the judgment of feedlot 

personnel.(Alexander et al., 1989; Buhman et al., 2000; Camp et al., 1981; Cole et al., 
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1979) Thus a calf is said to suffer from BRD if it is pulled for treatment and found to 

have no signs referable to a system other than the respiratory tract.(Bagley et al., 2003; 

Cusack, 2004) This approach has been refined slightly by some researchers, who classify 

treated calves as having “undifferentiated fever/BRD” or “BRD with no fever” depending 

upon body temperature at time of treatment.(Wildman et al., 2008) It is unclear if this 

broad classification affords any improvement over the use of more specific criteria. The 

accuracy of using treatment as a proxy for morbidity is highly questionable. No 

correlation was found between treatment and respiratory mortality(Griffin et al., 1995; 

Ribble et al., 1995b), which as mentioned above, is an insensitive but specific indicator of 

BRD. Other researchers have found good to limited correlation between treatment and 

serological changes(Allen et al., 1992a; Martin et al., 1989; Martin and Bohac, 1986),  

poor correlation of treatment with bronchoalveolar lavage cytology(Allen et al., 1992a; 

Allen et al., 1992c), and no or poor correlation between treatment and lung lesions found 

at slaughter.(Bryant et al., 1999; Wittum et al., 1996)  In fact, lung lesions are often found 

in nearly as many calves that were considered healthy as in those deemed ill.(Bryant et 

al., 1999; Gardner et al., 1999; Thompson et al., 2006; Wittum et al., 1996) Thompson et 

al. found calves treated for BRD were 1.5 times more likely to have lung lesions than 

those not treated, but 69% of those with lesions were never treated.(Thompson et al., 

2006) A high prevalence of lung lesions among treated and non-treated cattle at slaughter 

was also noted by Buhman, et al.(Buhman et al., 2000) However, these researchers 

further classified lesions as either severe or minor. This led to the determination that, 

although there was poor diagnostic agreement between previous treatment and presence 
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of any lesion (minor or severe), treated calves were more likely to have severe lesions 

than non-treated calves.(Buhman et al., 2000)   

 

Several studies found that treated calves have decreased ADG compared to non-treated 

calves.(Gardner et al., 1999; Lalman and Smith, 2004; Thompson et al., 2006; Wittum 

and Perino, 1995)  This would seem intuitive and suggests that those treated were 

actually ill. But other studies have not corroborated this association.(Griffin et al., 1995; 

Jim et al., 1993; Martin and Bohac, 1986; Roeber et al., 2001; Wittum et al., 1996) The 

presence of lung lesions at slaughter were correlated with decreased ADG. (Bryant et al., 

1999; Griffin et al., 1995; Thompson et al., 2006; Wittum et al., 1996) Two studies found 

a correlation between both treatment and lung lesions and decreased ADG, with lesions 

showing a stronger association.(Gardner et al., 1999; Thompson et al., 2006)  These 

findings have led some to suggest that ADG would be a better barometer of respiratory 

disease than is field-diagnosis.(Martin et al., 1990; Ribble et al., 1995b) Because ADG 

can be impacted by things other than BRD, however, using ADG as the primary indicator 

of respiratory disease would open studies to many new potential confounders.  

 

Other methods of diagnosis and/or classification of BRD are actively being researched, 

including ancillary testing(Coghe et al., 1999), metabolic profiling,(Aich et al., 2007; 

Chirase et al., 2004; Step et al., 2008) and improved field diagnostics.(Schaefer et al., 

2007) Attempts to identify a single criterion as an indicator of disease have generally 

been disappointing. Cortisol has been frequently measured in BRD studies, but cortisol 

concentration does not distinguish between disease and stress, and is difficult to interpret 
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due to its diurnal variation and rapid changes in circulating levels.(Aich et al., 2007) 

Similarly, acute phase proteins have generally been unreliable for identifying cattle 

suffering from BRD, although haptoglobin has shown some promise.(Berry et al., 2004a; 

Carter et al., 2002) Multi-modal approaches appear to offer some potential for 

improvement in diagnosis of BRD. For example, a panel of analytes, including acute 

phase proteins, metabolites and microminerals was able to differentiate between stress, 

infection, and stress combined with infection.(Aich et al., 2007) However, it was not 

possible to establish a baseline value for any of the analytes that could distinguish 

between ‘normal’ and ‘diseased’ animals. It remains to be seen whether such approaches 

are viable for use in epidemiologic studies. 

 

Conclusion 
 It is evident that BRD is, and will continue to be, an extremely costly condition. 

Although much research has been done regarding its determinants, there are only a few 

conclusive findings. Calves are clearly at highest risk shortly after transport/ arrival. 

Consistent risk factors include being purchased from sale barns and commingling with 

cattle from multiple sources. It is unclear whether these practices increase susceptibility 

to disease, increase exposure, or are proxies for other poor management decisions. It 

seems likely that lighter-weight calves, which are presumably younger, are at greater risk 

for BRD than are larger cattle, although the association has not been consistent. Persistent 

infection with BVDV increases BRD occurrence, but it is unclear if the presence of PI 

calves have a major impact on other cattle in the feedlot. Preconditioning appears to have 

some benefit (at least to the purchaser), but efficacy is variable. Weaning prior to sale is 
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perhaps the most important component of preconditioning. This is bolstered by the fact 

that vaccination alone appears to have limited value. The practice with the clearest 

benefit in reducing BRD morbidity and mortality is metaphylaxis. And yet the costs, both 

monetarily and in terms of potential antimicrobial overuse, preclude its inclusion as 

routine practice for all cattle. Other factors certainly play a role in development and 

prevention of BRD, but the complexity of the disease complex has made it difficult to 

define their role. These stressors may play a role as “necessary, but not sufficient” 

components, thus requiring an additive effect to manifest as disease. Identifying reasons 

for tremendous variability in research results may improve our ability to more accurately 

identify the contributions each of these factors make to disease occurrence.  

 

 

 It is imperative that researchers and practitioners recognize the limitations of the current 

knowledge, even while attempting to do all possible to reduce the impact of BRD on the 

beef industry. It would appear that the question warranting the greatest attention would be 

improved diagnosis of BRD. Until an objective, consistent criterion can be established, it 

is unlikely that universal findings will be identified. A second question worthy of 

consideration is heterogeneity within the agents associated with BRD. Given the 

variability in BRD morbidity and mortality that cannot be readily ascribed to host or 

environmental factors, it seems reasonable to investigate whether some strains within a 

given bacterial species are more capable of causing disease than others. Such research 

may also provide insight into virulence mechanisms, thus improving prevention and 

treatment options.  
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CHAPTER III.  

MOLECULAR CHARACTERIZATION OF PASTEURELLA MULTOCIDA ISOLATES 

FROM FATAL CASES OF BOVINE RESPIRATORY DISEASE 

Bovine respiratory disease (BRD) complex is the most costly disease of beef cattle in 

North America.(Church and Radostits, 1981; Griffin, 1997) Mannheimia haemolytica is 

the most common bacterial isolate from BRD cases (Fulton et al., 2002; Reggiardo, 

2005), but other species frequently implicated include Pasteurella multocida, Histophilus 

somni and Mycoplasma species. (Gagea et al., 2006; Haines et al., 2001; Janzen, 1997; 

Shahriar et al., 2002; Welsh et al., 2004) Recent work has suggested that the proportion 

of fatal cases of respiratory disease in feedlot cattle attributable to P. multocida appears 

to be increasing.(Lundeen, 2008; Welsh et al., 2004) Potential causes for this shift 

include changes in virulence among the pathogens, efficacy of antimicrobial agents, and 

changes in identification and/or management of sick cattle.(Welsh et al., 2004) Despite 

this possible shift, little research has been done to examine the role of P. multocida in 

BRD. In contrast, P. multocida isolates from other species (including swine, poultry and 

rabbits) have been relatively well characterized.(Bowles et al., 2000; Dabo et al., 1999a; 

Dabo et al., 2000; Davies et al., 2003a; Davies et al., 2003b; Dziva et al., 2004; 

Shivachandra et al., 2007; Zhao et al., 1993; Zucker et al., 1996)   

 

P. multocida is a commensal of the upper respiratory tract of cattle and the presence or 

absence of P. multocida in the nasal pharynx does not predict lower respiratory 
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disease.(Allen et al., 1991; Fulton et al., 2002) Thus, most authors consider it to be an 

opportunistic pathogen, believing that it can cause disease only in immunocompromised 

cattle. However, studies in swine have suggested that there are a limited number of 

strains associated with disease, with these strains clearly transmitted 

horizontally.(Blackall et al., 2000; Bowles et al., 2000; Davies et al., 2003a; Zhao et al., 

1992; Zhao et al., 1993) These strains of P. multocida may therefore be more pathogenic 

than others.(Davies et al., 2003a) Similar strain differences may also exist in cattle and 

could correlate with unidentified virulence factors. This contention is supported by the 

finding that multi-locus sequence analysis, outer membrane protein characterization, 

ribotyping and serogrouping all found limited diversity among isolates of P. multocida 

from bovine pneumonia, even when those isolates were from diverse geographic 

regions.(Davies et al., 2004; Davies, 2004) Ribotyping detected moderate variation in 

isolates obtained from lungs compared to those from nasal swabs,(Dabo et al., 1999b) 

which could be consistent with differences existing between commensal and pathogenic 

isolates. However, no background information was available for these isolates, and it is 

likely that they were obtained from numerous cattle. In contrast, DeRosa (DeRosa et al., 

2000) compared P. multocida isolates obtained from both the lower (via trans-tracheal 

washes) and upper (via nasopharyngeal swabs) respiratory tract of sick calves. They 

found only a single ribotype and concluded that this method is not sensitive enough to 

discern relatedness. However, it is possible that all isolates in DeRosa’s population were 

clonal in origin.  
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A variety of molecular techniques have been employed to characterize P. multocida from 

several host species. This not only makes it difficult to compare across studies but also 

limits the usefulness of some of the investigations, as many of the techniques employed 

have been found to be inadequate for epidemiologic purposes.(Blackall et al., 1998; 

Davies, 2004; Dziva et al., 2004)  Polymerization chain reaction (PCR) fingerprinting has 

been found to be effective in discriminating among isolates of P. multocida from 

rabbits(Dabo et al., 2000) and has been employed by numerous researchers for swine, 

poultry and rabbit isolates.(Chaslus-Dancla et al., 1996; Dabo et al., 1999a; Dabo et al., 

2000; Dabo et al., 1999b; Dziva et al., 2001; Dziva et al., 2004; Shivachandra et al., 

2007; Zucker et al., 1996)  Due to the relative low cost and ease of conducting PCR 

fingerprinting, as well as the repeatability and effectiveness demonstrated by the above 

studies, it would appear to be a technique that could prove useful in epidemiologic 

studies of bovine respiratory pasteurellosis. Nonetheless, it has not been validated in 

bovine isolates of P. multocida.  

 

The purpose of this study was to compare the effectiveness of PCR fingerprinting at 

typing P. multocida isolates from cases of bovine pneumonia to more traditional 

approaches, including characterization of whole cell protein (WCP) profiles, outer 

membrane protein (OMP) profiles and serotyping (collectively, WCP, OMP and 

serotyping will be referred to as antigenic or phenotypic methods). We hypothesized that 

PCR fingerprinting using microsatellite and minisatellite primers would permit repeatable 

discernment among isolates of P. multocida associated with BRD. Given the multi-

factorial nature of BRD and the heterogeneity of cattle shipped to feedlots, we further 
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hypothesized that P. multocida isolates associated with BRD would consist of a diverse 

population of strains. This would be consistent with the widely held view of P. multocida 

as an opportunistic pathogen. 

 

To test these hypotheses, we assessed discriminatory power and concordance of 

microsatellite and minisatellite PCR to classical protein and serotyping characterization 

techniques. The information obtained was then used to examine the diversity of isolates 

to determine if disease was primarily attributable to a limited number of strains. Finally, 

the groupings produced by the various techniques were compared to epidemiologic 

evidence to identify which approach(es) would be most useful for future epidemiologic 

investigations.  

 

Materials and Methods 
Cattle 

 All calves at a commercial feedlot between March 2002 and March 2003 that died from 

fatal fibrinous pleuropneumonia were necropsied. Tissues were submitted to the 

Oklahoma Animal Disease Diagnostic Laboratory for bacteriologic, virologic, and 

histopathologic examination.  Data available for these cattle included date of arrival at the 

feedlot, whether the animal was treated, and date of death. 

 

Bacterial strains and growth conditions 
 Following routine bacteriologic culture and identification, all isolates were stored at -80◦ 

C in 30% (v/v) glycerol in brain heart infusion broth (BHIB; Oxoid). Forty three P. 

multocida isolates were recovered from -80◦ C stock cultures and were streaked onto 
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blood agar [brain heart infusion agar containing 5% (v/v) defibrinated sheep’s blood] for 

aerobic overnight incubation at 37◦ C.  

 

DNA isolation and PCR analyses 

Overnight seed cultures were used to inoculate BHI broth which was grown to mid-

logarithmic phase (OD600 of 0.5-0.6) at 37◦ C with shaking. Approximately four 1 ml 

aliquots from each isolate were centrifuged at 13,500 x g for 5 minutes to pellet cells. The 

DNA was extracted using a commercial kita according to the manufacturer’s instructions. 

The DNA was rehydrated with 10mM tris HCl (pH 8.0) and stored at -20◦ C until used 

for PCR.  

 

Prior to PCR, all DNA samples were quantified spectrophotometricallyb and diluted in 10 

mM Tris to a final concentration of approximately 20 ng/μl. Each sample was examined 

on a 1% agarose gel to confirm quality and purity of genomic DNA. Three primers were 

used for PCR, two that detect minisatellite DNA sequences (M13 core: 5’ 

GAGGGTGGCGGTTCT-3’ and modified M13 core: 5’ GAGGGTGGNGGNTCT-3’) 

and one that detects microsatellite sequences ((GTG)5). The oligonucleotide primers were 

obtained from a commercial source.c A unique master mix and time- temperature PCR 

protocol was made for each primer and optimized for maximum discernment of banding 

patterns and reproducibility. Each master mix was made as a 2x solution, then diluted 

with sterile water for a final volume of 100 μl per reaction. Final component 

concentrations were 1x commercial PCR buffer (20 mM Tris-HCl, pH 8.4, 50 mM KCl), 

0.2mM of each dNTP, 1µM primer, 2.5u Taq and 40ng template DNA. Magnesium 
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concentration was 3.5mM for M13 core, 3mM for modified M13 core, and 2.5mM for 

(GTG)5. All protocols initiated with a 3 minute denaturation at 95°C for 3 minutes, 

followed by 30 amplification cycles and concluding with a 7 minute extension at 72°C. 

Each amplification cycle included an initial 30 second denaturation step at 95° followed 

by a 58 second annealing stage and then a 70 second extension stage at 72°C. Annealing 

temperature varied for each primer: 44°C for core M13, 43°C for modified core M13 and 

42°C for (GTG)5.  

 

PCR products were subjected to horizontal electrophoresis at 65 volts in 1.5% agarose gel 

made in TAE with incorporation of 0.5µg/ml of ethidium bromide. Gels were de-stained 

in ddH2O for 2 to 6 hours following electrophoresis. Digital photographs were taken of 

each gel under UV light and images were imported into commercial software.d The 

software was used to crop the image, subtract background and filter artifacts from the 

image. Lanes were framed and software was used to detect bands. Sensitivity was 

adjusted for each gel and each lane was manually curated as needed to ensure consistency 

across gels. All positions were identified where at least one band was present in any lane. 

Each sample was examined for presence/absence of a band (regardless of intensity) at 

this location. This was recorded as binary data (band present=1, absent=0). Most samples 

were analyzed using multiple gels. In these cases, each gel was examined for 

confirmation that banding patterns were identical for a given sample on all gels. 

 

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS PAGE)  

of WCP and OMP 

 73



 Five ml of overnight growth in BHI broth were used for WCP collection. Cells were 

collected through centrifugation (13,500 x g for 5 minutes), resuspended in a small 

volume of PBS, mixed with an equal volume of 2x SDS-bromophenol sample buffer and 

boiled for 5 minutes. Forty µl of combined solution per lane was used in SDS-PAGE. 

 

The OMP were extracted following envelope preparation via sonication and 

centrifugation to separate non-lysed cells. The sarcosyl insoluble method, which is based 

on the differential solubility of cytoplasmic and outer membranes in N-lauroyl sarcosine, 

was used.(Dabo et al., 1997) Briefly, this involved disruption of cells followed by cell 

envelope isolation through solubilization in a HEPES-sucrose solution subjected to 

centrifugation (5,850xg, 4°C for 20 minutes). The supernatant was then ultracentrifuged 

(280,000xg, 4°C for 70 minutes) to pellet membranes, which were washed by 3 

additional ultracentrifugation cycles in ddH2O. The envelope material was then incubated 

in N-lauroyl sarcosine for 45 minutes and subjected to ultracentrifugation (280,000xg, 

4°C for 70 minutes). The remaining pellet was again washed and ultracentrifuged 3 times 

in ddH2O. The outer membrane proteins were then re-suspended in a minimum amount of 

ddH2O and stored at -80° C. Protein concentration was determined by the modified 

Lowry technique, using a commercial kit.e Samples were adjusted to a final protein 

concentration of 2µg/µl and mixed with an equal volume of 2x SDS-bromophenol sample 

buffer and boiled for 5 minutes. Five µg of each sample was then used for SDS-PAGE.  

 

Whole cell and outer membrane proteins were analyzed by SDS-PAGE (4.5% stacking, 

12.5% separating gel) using the discontinuous buffer system of Laemmli.(Laemmli, 
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1970) For visualization of protein bands, gels were stained with Coomassie Brilliant Blue 

(Fisher Scientific, Fair Lawn, NJ).  

 

Whole cell and OMP gels were assessed visually. For OMP preparations, OMP A and 

OMP H were confirmed by heat modifiability, and used as primary criterion for 

grouping, as described previously.(Davies et al., 2004) Samples deemed similar were re-

run together to permit comparison on the same gel.  

 

Serotyping 

 Somatic antigen serotyping was performed by USDA NVSL, using agar gel diffusion of 

chicken antisera against the 16 serotypes, as previously described.(Heddleston et al., )  

 

Data interpretation and statistical analysis 

 Samples for which all results were not available were excluded from all analyses. This 

resulted in inclusion of 41 isolates. For PCR primers, commercial softwaref was used to 

calculate Dice’s coefficient of similarity (S) and the resulting distance (D, where D=1-S) 

for all pairwise comparisons of binary data. The software was then used to create an 

unweighted pair group method using arithmetic averages (UPGMA) dendrogram from 

the distance coefficients. This resulted in a unique dendrogram for each primer. 

Dendrograms were used to create groupings based upon a 92.5% cluster-difference cutoff 

value.  
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The groups resulting from visual assessment of OMP and WCP profiles, as well as the 

serotype results and PCR dendrograms (Figure 1-4) were used to assess the effectiveness 

of the various typing approaches. This was done by use of Simpson’s index of 

diversity(Simpson, 1949) to calculate the discrimination index (D, the probability that 

two unrelated strains randomly selected from the test population would fall into different 

typing groups) (Table 1-1). A D value ≥0.9 has been deemed as necessary for confidence 

in typing results.(Hunter and Gaston, 1988) Because no typing method achieved this 

threshold, results obtained from genotypic techniques (PCR) were combined in 2- and 3-

way cross-tabulations. This sub-divided most large groups into multiple smaller types, 

increasing discrimination power. Phenotypic characterization techniques were similarly 

combined. Confidence intervals were calculated(Grundmann et al., 2001) for each value 

of D permitting objective comparison between the discriminatory power of various 

typing methods (Table 1-1). Adjusted Rand and Wallace coefficients were calculated as 

described previously(Miragaia et al., 2008) to measure agreement between typing 

methods (Tables 1-2 and 1-3). The adjusted Rand coefficient calculation assesses the 

overall concordance of two methods while taking into account that those partitions could 

arise by chance alone. The Wallace coefficient calculates the ability to predict the results 

generated from a dataset by a typing method, given the results from the same dataset 

analyzed by a second typing method. Simpson’s index and confidence intervals and 

similarity coefficients were calculated by software available online.g Simpson’s index of 

diversity estimates the discriminatory ability of typing systems (i.e., how effective is a 

typing method at distinguishing between unrelated strains).  
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Groupings produced by RAPD PCR, WCP, OMP and serotyping were compared to 

available epidemiologic data for cattle from which samples were collected. Data available 

included date of arrival (28 of 41 samples), number of times treated for BRD (41 

samples), number of days from onset of disease until death (41 samples) and other 

bacteria isolated from the calf (41 samples). These variables were converted to 

categorical or ordinal data: date of arrival was classified into 1 month periods; days of 

illness was categorized as acute (>6 days), subacute (7-20 days) and chronic (≥21 days); 

number of treatments were classified into 3 categories (no treatment prior to death, 1 or 2 

treatments, and 3 or more); categories for concurrently isolated bacteria included none, 

normal flora, M. haemolytica, H. somni, A pyogenes and multiple types of Pasteurella. 

Commercial softwaref was used to create contingency tables and calculate contingency 

coefficients between each grouping and each epidemiologic variable. Association was 

considered significant at p<0.05.   

 

 

Results 
All three primers successfully amplified variable DNA fragments from all 41 isolates 

(100% typability). These products varied with altered PCR substituents and conditions 

but were repeatable under identical conditions. A fourth primer, (GACA)4, which had 

been used previously for rabbit and swine isolates, failed to yield reproducible results and 

was therefore not included in analysis and interpretation. Complexity of banding ranged 

from a low of 12 bands (M13 core) to high of 18 bands ((GTG)5 and Modified core M13). 

Whole cell protein and OMP profiles also yielded 100% typability. Whole cell protein 
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electrophoresis resulted in very complex banding patterns with 25 to 30 bands being 

individually identifiable between 25 and 150 kiloDaltons (kDa). Proteins smaller than 20 

kDa were smeared and therefore not used in analysis. OMP gels were less complex, 

featuring 10 to 15 bands varying from 29 to 115 kDa. Two samples were non-typeable 

using serotyping (95% typability). Eighteen samples belonged to only serotype 3. The 

remainder of the isolates cross-reacted with serum indicative of multiple serotypes with 

14 belonging to both serotypes 3 and 4, six samples belonging to 3, 4 and 7, and one 

sample belonging to 4 and 7.    

 

Both the M13 core and the modified M13 core mini-satellites yielded 13 groups each 

while the (GTG)5 micro-satellite yielded 9 groups. The largest group generated by the 

M13 core primer included 13 isolates (32%), the largest group from modified core 

contained 14 (34%), and the largest group from (GTG)5 primer contained 14 isolates 

(34%). Serotyping resulted in only 5 groups, with the largest group containing 18 

samples (44%). The WCP produced 14 groups (largest group containing 12 samples or 

29%) and OMP had 12 groups (largest containing 8 samples or 20%).  

 

When considered alone, the characterization techniques produced a D value ranging from 

0.68 (serotyping) to 0.89 (WCP and OMP) (Table 1-1). As expected, combinations of 

results produced more groups and improved D-value. All two-way combinations yielded 

a D>0.9, with 20 to 28 groups. Combining the results from all three primers resulted in 

34 groups and a D of 0.99 (95% CI 0.98-1.00). Combining results from all 3 antigenic 

techniques produced 31 groups and a D value of 0.98 (95% CI of 0.95-1.00). The 
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discriminatory index, D, was typically improved by recognition of additional groups but 

was also dependent upon the size of the groups created (Table 1-1). For example, WCP 

and OMP both produced a D=0.89, despite creating differing numbers of groups (14 and 

12, respectively). This is because WCP resulted in one very large group (12 samples), 

while OMP produced fewer groups of more equal size. 

 

The adjusted Rand coefficient showed poor correlation between the various genotypic 

and phenotypic characterization approaches (Table 1-2). Comparing the results of the 3-

way cross-tabulation results from RAPD PCR with those of the 3-way cross-tabulation of 

WCP-OMP-serotyping yielded an adjusted Rand value of 0.203. The highest correlation 

was found between the combined results of M13-(GTG)5 and OMP-WCP (0.284). The 

highest concordance between individual genotypic and phenotypic approaches was 

(GTG)5-WCP at 0.249. Of the individual primers, (GTG)5 had the best overall correlation 

with the phenotypic techniques while the modified core primer had the worst. Of the 

antigenic approaches, OMP had the best overall correlation with the PCR approaches, but 

many of these were <0.10. There was also poor correlation between results from various 

primers (no 2-way comparison yielded a coefficient >0.20) as well as between the 

antigenic techniques (no 2-way comparison yielded a coefficient >0.31). As expected, 

highest correlation values were found when comparing a method to a conjugation of itself 

with another method; even in these circumstances correlation values rarely exceeded 0.6, 

with the highest being 0.73 (WCP-OMP and 3-way antigenic cross-tabulations).  

 

 79



The Wallace coefficient showed better correlation between the various genotypic and 

phenotypic characterization approaches than did the adjusted Rand, although values were 

still typically low (Table 1-3). By definition of the Wallace coefficient, conjugated results 

are perfectly predictive of the results of their constituents (i.e., (GTG)5-M13 is 100% 

predictive of the results for both (GTG)5 and M13); thus, these will not be discussed. The 

ability of the 3-way cross-tabulated RAPD PCR results to predict results of 3-way cross-

tabulated antigenic approach was estimated at 0.375. In contrast, the 3-way antigenic 

results had a 0.15 Wallace value for predicting the results of 3-way RAPD PCR. Of the 

individual primers, (GTG)5 had the best ability to predict phenotypic results. Similarly, 

the phenotypic techniques were most predictive of results from the (GTG)5 primer, 

including a 0.700 predictive value from the 3-way antigenic cross-tabulation results. The 

modified core M13 primer again showed the poorest overall correlation, being ineffective 

in predicting results of the protein techniques and poorly predicted by them. Combined 

results of M13 core and (GTG)5 yielded increased Wallace values, as did the 3-way 

cross-tabulated PCR results. The OMP groupings were better able to predict results of the 

PCR primers than either WCP or serotyping. Similarly, OMP was predicted more 

accurately by PCR results. The combination of WCP-OMP results were more effective 

than either alone, with fair to good predictive ability for results from M13, (GTG)5 and 

M13-(GTG)5. This includes the highest predictive value found between any genetic and 

phenotypic approach (0.706 predictability of (GTG)5, given results from WCP-OMP). 

However, predictive value of results from 3-way cross-tabulated RAPD PCR analysis by 

WCP-OMP was poor (0.088). Serotyping was least effective at predicting PCR 
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classification, but was the most predictable protein approach. This is due to the small 

number of divisions that were created by serotyping.  

 

Contingency coefficient analysis found there was no grouping method with a significant 

association with numbers of treatment. Duration of illness was associated with serotyping 

results (p<0.031). Other bacteria concurrently isolated was associated with OMP and 

WCP-OMP classification results (p<0.021 and p<0.05, respectively). Month of arrival 

was associated with modified core M13 primer results (p<0.039).  

 

Discussion 
Numerous studies have employed RAPD PCR to characterize P. multocida. (Chaslus-

Dancla et al., 1996; Dabo et al., 1999a; Dabo et al., 2000; Dabo et al., 1999b; Dziva et al., 

2001; Dziva et al., 2004; Shivachandra et al., 2007; Zucker et al., 1996) Most of these 

required perfect agreement for isolates to be grouped together. Such an approach 

precludes quantitative assessment of the relationship between isolates, potentially 

concealing relationships between strains. This is particularly important when using 

multiple primers that result in varying numbers of bands. For example, 1 band difference 

between 2 isolates is more significant if only 8 bands are generated than if 16 are 

produced. Use of the similarity index permits consistency in establishing these 

relationships without requiring 100% similarity. The hypervariability of the target regions 

for micro-satellite and mini-satellite primers increases the likelihood of relatively rapid 

change in banding patterns, justifying a threshold lower than 100%. A 92.5% combined 

cluster similarity coefficient was chosen as a relatively stringent initial criterion. Such 
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stringency would serve to increase the apparent discriminatory capability (Simpson D-

value) of this approach but would also increase the confidence that can be placed in 

epidemiologic relationships detected, if any. Computer programsd can also quantify 

intensity of banding and take this information into consideration in calculating 

comparisons. While use of this approach has been advocated for PCR techniques (Carrico 

et al., 2005), the appropriateness and utility of this has not been proven for RAPD PCR. 

In the absence of real-time data, PCR is generally not considered reliable for 

quantification purposes.(Jung et al., 2000; Kubista et al., 2006) It is impossible to 

determine what factor(s) contribute to variation in banding intensity (concentration of 

template, fidelity of annealing and degradation of product by Taq’s 5’-3’ exonuclease 

activity). Thus, it was decided to restrict analysis to consideration of similarity in 

presence or absence of bands.  

 

The use of OMP for characterization of P. multocida was reported previously,(Arora et 

al., 2007; Dabo et al., 1999a; Dabo et al., 1997; Davies et al., 2003a; Davies et al., 2003b; 

Davies et al., 2003c; Davies et al., 2004; Davies, 2004) as has WCP, to a lesser 

extent.(Dabo et al., 1999a; Ireland et al., 1991; Nawaz et al., 2006) Interpretive criteria 

described for protein profiles is more vague and subjective than that reported for RAPD. 

We sought to apply methods similar to those reported previously for OMP analysis; 

namely, focusing primarily upon the heat-modifiable OMP A and H with other bands 

being a secondary criterion. Nonetheless, our method yielded greater discrimination than 

reported by others. Our results produced 12 groups out of 41 isolates for a D value of 

0.89. This compared with 5 groups from 35 isolates,(Davies et al., 2003c) 10 groups from 
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158 isolates,(Davies et al., 2003a) 13 groups out of 153 isolates,(Davies et al., 2004) 19 

groups from 100 isolates,(Davies et al., 2003b) and 10 groups from 50 isolates (resulting 

in a D=0.81).(Dabo et al., 1999a) This may represent truly increased diversity or simply 

be due to variation in interpretation. Diversity discerned by WCP profiling appears 

similar to the result of Dabo et al.(Dabo et al., 1999a) who found 10 types and 1 sub-type 

from 50 isolates for a D=0.88, compared with 14 groups from 41 isolates for a D=0.88 in 

our study. In contrast, Nawaz et al.(Nawaz et al., 2006) found no significant differences 

among 8 isolates. However, all of these were from hemorrhagic septicemia-associated 

isolates, which may demonstrate less diversity than those associated with BRD.            

 

It was necessary to combine results from multiple primers to meet the previously 

established Simpson’s index of diversity criterion of D ≥0.9. Nonetheless, the resulting D 

values demonstrated that RAPD PCR using micro-satellites and mini-satellites was 

adequate for discriminating between strains of P. multocida from respiratory disease in 

cattle. It should be noted that Simpson’s approach requires making 2 assumptions:  

1) That samples are randomly selected from the population of interest; and 2) All groups 

are equally represented in the population. The validity of these assumptions in this study 

is questionable. Collection of samples was restricted to fatal cases of respiratory disease 

in a limited geographical region over a 12 month period. They were not randomly 

selected from the entire range of P. multocida population associated with beef cattle 

respiratory disease, and likely do not represent that population. Secondly, it is not clear if 

all possible groups are expected to be represented in fatal disease cases, or if certain 

strains may be over-represented as a result of increased pathogenicity. However, 
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violation of these assumptions in this manner would be expected to decrease the 

discriminatory capability; thus, the fact RAPD PCR was still adequate to discern 

differences amongst these strains speaks to its robust capabilities. Similar results were 

obtained by phenotypic characterization techniques as well. Considering the limited 

information provided by serotyping and the additional labor involved in collecting, 

processing and analyzing WCP and OMP, it would appear that RAPD PCR is a preferred 

method.  

 

The low correlation found by adjusted Rand and Wallace coefficients between genotypic 

and phenotypic approaches suggests that these approaches provide different information. 

The adjusted Rand coefficient calculation assesses the overall concordance of two 

methods while taking into account that those partitions could arise by chance alone. Thus, 

in the current study the low concordance states that genotypic and phenotypic 

characterization approaches identified different relationships among the isolates. It has 

been suggestedg that the adjusted Rand coefficient can be used to determine cut-off 

values for dendrograms where it maximizes the congruence between the method used to 

create the dendrogram and any other method. Thus, subsequent analyses were done using 

both more and less stringent similarity values from the UPGMA dendrograms of PCR 

results (0.95 and 0.90). As expected, the more stringent criteria resulted in more groups 

with fewer samples per group thus increasing the D value, while reducing stringency had 

the opposite effect (Table 1-4). The impact on adjusted Rand and Wallace coefficients is 

less consistent (data not shown). While some values improved with decreased stringency, 

overall outcomes were improved by increasing stringency (which resulted in more groups 
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with fewer samples per group). When stringency was reduced, the adjusted Rand 

coefficient showed improved concordance within primers. It also improved correlation 

between some genotypic-phenotypic groupings. However, concordance of more 

genotypic-phenotypic groupings (including all 3-way RAPD PCR results with various 

antigenic groupings) was decreased. In contrast, when stringency was increased (which 

created more groups with fewer samples per group), there was a mixed but overall 

positive effect on concordance between results obtained from the PCR primers. There 

was also mixed but overall positive effect on concordance between genotypic and 

phenotypic results. This was particularly the case for WCP and OMP, which are more 

reliable for epidemiologic purposes than is serotyping. Nonetheless, compared to the 

original cutoff value, increased stringency reduced concordance of cross-tabulation 

results from RAPD PCR with all phenotypic approaches. Variation in stringency had a 

predictable effect on Wallace coefficients. By reducing stringency of the PCR approach 

and thus lowering the number of groups, there was an improved ability to use phenotypic 

results to predict PCR groupings. In contrast, increasing the number of groups by 

increasing stringency improved the ability to use PCR results to predict antigenic 

groupings. Nonetheless, overall Wallace values were improved more by use of less 

stringent PCR cutoff values.  Higher and lower cutoff points (0.975 and 0.875) were also 

examined; neither of these offered an advantage over other cutoff points. 

  

In spite of the improvement in correlation between antigenic and phenotypic groupings 

achieved by increasing stringency, it is still apparent that the two approaches provide 

different information. It is impossible to determine which one would be more reliable in 
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epidemiologic investigation. The best way to assess this would be through comparison 

with epidemiologic data on the cattle from which the isolates were obtained. 

Unfortunately, few significant associations were identified between groupings and 

epidemiologic data and those that were found were not consistent. The association of 

serotype and duration of illness was likely spurious, as previous studies have shown 

serotyping to be of no epidemiologic value.(Blackall et al., 1998; Wilson et al., 1992) 

The relevance of OMP and WCP-OMP with isolation of other bacteria is also 

questionable; it is likely that presence of other bacteria is influenced by multiple factors, 

including previous treatment and duration of disease, which may be more important than 

strain of P. multocida present. The association of month of arrival at the feedlot and 

modified M13 core primer could potentially be meaningful evidence of temporal 

clustering of strains. Ironically, the results for that primer showed poorest correlation 

with all phenotypic techniques.    

 

The epidemiologic analysis was greatly hindered by tremendous dispersion of data 

points, not only among typing schemes but also within epidemiologic data. For example, 

many of the types created by 2-way grouping methods contained a single sample. From 

the host-related data, arrival dates were available for 28 of the 41 calves from which the 

samples were obtained. These 28 head arrived on 20 different dates, with most dates 

being represented by a single calf. Similarly, the 41 calves were housed in 35 different 

pens. We attempted to overcome some of this dispersion by grouping dates into 

categorical variables; duration of illness was similarly categorized. However, the validity 

 86



of the groupings used in this approach is uncertain. There was no means to overcome 

dispersion of data for pens of origin.  

 

The samples examined in this study demonstrated significant diversity. The number of 

groups resulting from OMP analysis was greater than reported by others.(Dabo et al., 

1999a; Davies et al., 2003a; Davies et al., 2003b; Davies et al., 2003c; Davies et al., 

2004) Other techniques found at least 5 groups (serotyping) and up to 34 groups (3-way 

cross-tabulation of RAPD PCR results). The application of less stringent cutoff points 

could reduce these numbers in many cases, but no specific criteria have been validated as 

most effective. Indeed, adjusted Rand correlation coefficient suggests that more stringent 

similarity values may be justified. Most other studies have examined P. multocida from 

swine, poultry or rabbits. Thus, the increased diversity of our study may reflect diversity 

of P. multocida isolates in cattle in general, or be reflective of these isolates in particular. 

One factor that may have served to increase diversity among these isolates is that many 

of the cases were chronically ill prior to death. Given the selective pressure exerted by the 

host’s response, it is impossible to determine what relationship, if any, may exist between 

the pathogen recovered at time of death and those which incited the disease. Similarly, 

many of the calves had received antimicrobial treatment prior to death, which is another 

selective pressure. Other potential contributors to bacterial diversity include the diversity 

of calves arriving at commercial feedlots, including genetic variation, source, vaccination 

and treatment history, and commingling and marketing exposure. Given the limited 

information available regarding the epidemiology of P. multocida in cattle, it is 

impossible to determine whether the diversity in disease-associated strains seen in this 
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study reflects the diversity of commensal strains found in the upper respiratory tract of 

healthy cattle. Further epidemiologic investigation is needed to assess this relationship 

and elucidate whether there exists evidence of increased virulence amongst P. multocida 

isolated from cattle.    

 

Given the limited usefulness of serotyping and previous use of OMP and WCP for 

epidemiologic purposes, it would seem most beneficial to seek a PCR method that 

coincides more closely with WCP, OMP and WCP-OMP results. It would therefore 

appear that best results may be obtained by use of (GTG)5 and M13 primers (and a 

combination of both, if necessary). Nonetheless, considering the modified M13 core 

primer generated the only meaningful association found between epidemiologic data and 

classification method it would seem prudent to include this primer, as well. A similarity 

cutoff of approximately 95% offered maximum concordance with phenotypic methods. 

This is significantly higher than those chosen by others using RAPD.(Shivachandra et al., 

2007; Shivachandra et al., 2008) However, the investigators did not report the effect of 

varying similarity cutoffs, nor explain why their criteria were selected. Adopting an 80% 

similarity cutoff in the current study, as Shivachandra employed, would have resulted in 

very few groups and a greatly reduced discriminatory index. Future studies would benefit 

from the opportunity to utilize results from all 3 PCR primers, with varying cutoff 

criteria, for comparison with more complete epidemiologic data.        

 

In conclusion, this study validates RAPD PCR using micro-satellite and mini-satellite 

primers as being a repeatable and reliable means of discriminating between P. multocida 
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isolates obtained from cattle. Isolates obtained from fatal cases of BRD in calves in a 

commercial feedlot demonstrated significant diversity, potentially supporting the 

hypothesis that P. multocida is a strictly opportunistic pathogen in cattle. However, 

additional work is needed to characterize the diversity of commensal strains found in 

healthy cattle. It is possible that this population would offer even greater diversity, 

suggesting that some strains possess virulence factors that influence the occurrence of 

disease. Moreover, larger numbers of isolates are needed with more complete 

epidemiologic data to examine the possibility of horizontal transmission and temporal 

and spatial clustering.  

Footnotes 
a Promega Wizard Genomic DNA Purification Kit, Promega Corp., Madison, WI 
b Nano Drop Spectrophotometer, ND-1000, Thermo FisherScientific, Waltham, MA 
cIntegrated DNA Technologies, Coralville, IA 
dQuantity One, Biorad, Hercules, CA   
eRC DC Protein Assay, Bio-Rad Laboratories, Hercules, CA 

fSPSS 16.0 for Windows, SPSS Inc., Chicago, IL 
g http://www.comparingpartitions.info 
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Characterization 
Method 

# of 
groups 

Simpson's 
Index of 
Diversity 

C.I. (95%) 
# of 

samples in 
largest 
group 

M13 13 86.71 (80.19-93.23) 12 

CM 13 86.1 (77.84-94.35) 14 

GTG 9 80 (73.10-86.90) 14 

M13-CM 27 96.34 (93.08-99.61) 7 

M13-GTG 23 95.61 (92.94-98.28) 5 (2 groups) 

CM-GTG 23 95.73 (93.14-98.32) 6 

3-way PCR 34 99.02 (98.08-99.97) 3 

WCP 14 88.66 (82.16-95.16) 12 

OMP 12 89.39 (85.95-92.83) 8 

Serotyping 5 68.29 (60.31-76.27) 18 

WCP-OMP 28 95.85 (91.79-99.91) 8 

WCP-Serotyping 24 93.41 (87.84-98.99) 10 

OMP-Serotyping 20 95.24 (92.75-97.74) 6 

3-way Antigen 31 97.56 (94.94-100.18) 6 

Table 1-1: Comparison of number of groups formed by characterization technique 
Results of various characterization techniques with the respective Simpson’s Index of 
Diversity value, 95% confidence interval, and the number of samples in the largest group 
produced by this technique. 



 

Table 1-2: Adjusted Rand correlation coefficients 
The values reflect overall concordance of two methods, taking into account those agreements that could arise by chance alone. 
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M13
CM 0.1541
GTG 0.1238 0.105
M13-CM 0.3971 0.3808 0.022
M13-GTG 0.461 0.0428 0.3103 0.2109
CM-GTG 0.0497 0.4327 0.3027 0.2152 0.1903
3-way PCR 0.1208 0.115 0.0758 0.412 0.3533 0.362
WCP 0.1764 0.0118 0.2493 0.0275 0.1476 0.0338 0.0422
OMP 0.1439 0.0894 0.2368 0.069 0.1765 0.0748 0.0675 0.3012
Sero. 0.0363 0.0123 0.0688 0.0036 -0.003 0.0066 0.0111 0.1667 0.0782
WCP-OMP 0.1714 -0.0105 0.1866 0.0571 0.2837 0.0469 0.1291 0.5054 0.5342 0.0677
WCP-Sero. 0.0918 0.0064 0.165 0.0506 0.0851 0.0639 0.0812 0.7106 0.2203 0.2636 0.4253
OMP-Sero. 0.07 0.0222 0.1515 0.0476 0.1198 0.0944 0.1133 0.253 0.5923 0.1942 0.527 0.3968
3-way Antigen 0.0864 0.0034 0.1136 0.0935 0.152 0.0805 0.2032 0.327 0.348 0.1022 0.7325 0.5236 0.6672

M13 CM  GTG
M13- 
CM

M13-
GTG

CM- 
GTG

3-way 
PCR

WCP OMP Sero.
WCP-
OMP

WCP-
Sero.

OMP-
Sero.

3-way 
Antigen



 

Table 1-3: Wallace coefficients 
The values reflect directional agreement of groupings formed by two methods- the number in each cell reflects the ability of the row 
technique to predict results from the column technique.  

M13 CM
Con. 
GTG

M13-
CM

M13- 
GTG

CM- GTG
3-way 
PCR

WCP OMP Sero.
WCP-
OMP

WCP-
Sero.

OMP-
Sero.

3-way 
Antigen

M13 0.2752 0.3303 0.2752 0.3303 0.0734 0.0734 0.2569 0.2202 0.3670 0.1468 0.1284 0.0917 0.0734
CM 0.2632 0.3070 0.2632 0.0702 0.3070 0.0702 0.1228 0.1754 0.3333 0.0351 0.0702 0.0614 0.0263

Con. GTG 0.2195 0.2134 0.0488 0.2195 0.2134 0.0488 0.2805 0.2622 0.3841 0.1463 0.1646 0.1341 0.0854
M13-CM 1.0000 1.0000 0.2667 0.2667 0.2667 0.2667 0.1667 0.2333 0.3333 0.1000 0.1333 0.1000 0.1000

M13-GTG 1.0000 0.2222 1.0000 0.2222 0.2222 0.2222 0.3611 0.3889 0.3056 0.3056 0.1667 0.1667 0.1389
CM-GTG 0.2286 1.0000 1.0000 0.2286 0.2286 0.2286 0.1714 0.2286 0.3429 0.0857 0.1429 0.1429 0.0857

3-way PCR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.3750 0.5000 0.5000 0.3750 0.3750 0.3750 0.3750
WCP 0.3011 0.1505 0.4946 0.0538 0.1398 0.0645 0.0323 0.3656 0.5806 0.3656 0.5806 0.2151 0.2151
OMP 0.2759 0.2299 0.4943 0.0805 0.1609 0.0920 0.0460 0.3908 0.4483 0.3908 0.2299 0.4483 0.2299
Sero. 0.1538 0.1462 0.2423 0.0385 0.0423 0.0462 0.0154 0.2077 0.1500 0.0769 0.2077 0.1500 0.0769

WCP-OMP 0.4706 0.1176 0.7059 0.0882 0.3235 0.0882 0.0882 1.0000 1.0000 0.5882 0.5882 0.5882 0.5882
WCP-Sero. 0.2593 0.1481 0.5000 0.0741 0.1111 0.0926 0.0556 1.0000 0.3704 1.0000 0.3704 0.3704 0.3704
OMP-Sero. 0.2564 0.1795 0.5641 0.0769 0.1538 0.1282 0.0769 0.5128 1.0000 1.0000 0.5128 0.5128 0.5128

3-way Antigen 0.4000 0.1500 0.7000 0.1500 0.2500 0.1500 0.1500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 1-4: Simpson’s Index of Diversity values for varying stringency 
Simpson’s Index of Diversity values for increased (left) and decreased (right) stringency requirements, based upon UPGMA 
dendrogram. Note: because the sensitivity analysis was performed only on the primer results, no change is seen in values for 
phenotypic methods. 

 97  

Simpson’s Index of Diversity values and 95% confidence 
interval produced from increased stringency  

(95% combined cluster similarity) 

 
Simpson’s Index of Diversity values and 95% confidence 

interval produced from decreased stringency  
(90% combined cluster similarity)  

         

Characterization 
method  

# of 
groups 

Simpson's 
Index of 
Diversity 

C.I. (95%) 
 

Characterization 
method  

# of 
groups 

Simpson's 
Index of 
Diversity 

C.I. (95%) 

M13 16 90.98 (86.59-95.36)  M13 10 83.05 (76.96-89.14) 

CM 17 88.05 (80.39-95.70)  CM 10 78.05 (66.83-89.26) 

GTG 13 84.63 (77.87-91.40)  GTG 7 79.39 (73.03-85.75) 

M13-CM 29 97.2 (94.58-99.81)  M13-CM 20 92.44 (87.73-97.14) 

M13-GTG 31 97.8 (95.73-99.88)  M13-GTG 18 93.78 (91.00-96.56) 

CM-GTG 27 96.71 (94.09-99.32)  CM-GTG 18 92.2 (87.77-96.62) 

3-way PCR 36 99.27 (98.36-100.17)  3-way PCR 27 97.56 (96.00-99.12) 

WCP 14 88.66 (82.16-95.16)  WCP 14 88.66 (82.16-95.16) 

OMP 12 89.39 (85.95-92.83)  OMP 12 89.39 (85.95-92.83) 

Serotyping 5 68.29 (60.31-76.27)  Serotyping 5 68.29 (60.31-76.27) 

WCP-OMP 28 95.85 (91.79-99.91)  WCP-OMP 28 95.85 (91.79-99.91) 

WCP-Serotyping 24 93.41 (87.84-98.99)  WCP-Serotyping 24 93.41 (87.84-98.99) 

OMP-Serotyping 20 95.24 (92.75-97.74)  OMP-Serotyping 20 95.24 (92.75-97.74) 

3-way Antigen 31 97.56 (94.94-100.18)  3-way Antigen 31 97.56 (94.94-100.18) 



 

 

Figure 1-1: Picture of PCR gel GTG 08-31 #1.  
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Figure 1-2: Picture of SDS-PAGE of whole cell proteins, gel 10-4 #1.Figure 1-2: Picture of SDS-PAGE of whole cell proteins, gel 10-4 #1. 
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Figure 1-3: Picture of SDS-PAGE of outer membrane proteins, gel 4-3 #7-17. 
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Figure 1-4: Dendrogram produced by results of (GTG)5 primer  
Figure was generated by SPSS using the UPGMA approach. Dashed line indicates 92.5% 
combined cluster similarity. Colors indicate groupings established by 92.5% cutoff: light 
blue is group B; purple is group C; yellow is group A; light pink is group H; light green is 
group G; orange is group D; lime is group F; cyan is group E; bright pink is group I.   
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CHAPTER IV.  

MOLECULAR CHARACTERIZATION OF PASTEURELLA MULTOCIDA ISOLATES 

FROM NASAL PASSAGES OF HEALTHY AND BRD-AFFECTED CATTLE 

Bovine respiratory disease complex is the most costly disease of beef cattle in North 

America.(Church and Radostits, 1981; Griffin, 1997) Mannheimia haemolytica is the 

most common bacterial isolate from BRD cases (Fulton et al., 2002; Reggiardo, 2005), 

but other species frequently implicated include Pasteurella multocida, Histophilus somni 

and Mycoplasma species. (Gagea et al., 2006; Haines et al., 2001; Janzen, 1997; Shahriar 

et al., 2002; Welsh et al., 2004) Recent work has suggested that the proportion of fatal 

cases of respiratory disease in feedlot cattle attributable to P. multocida appears to be 

increasing.(Lundeen, 2008; Welsh et al., 2004) Potential causes for this shift include 

changes in virulence among the pathogens, efficacy of antimicrobial agents, and changes 

in identification and/or management of sick cattle.(Welsh et al., 2004) Despite this 

possible shift, little research has been done to examine the role of P. multocida in BRD. 

In contrast, P. multocida isolates from other species (including swine, poultry and 

rabbits) have been relatively well characterized.(Bowles et al., 2000; Dabo et al., 1999a; 

Dabo et al., 2000; Davies et al., 2003a; Davies et al., 2003b; Dziva et al., 2004; 

Shivachandra et al., 2007; Zhao et al., 1993; Zucker et al., 1996)   

P. multocida is a commensal of the upper respiratory tract of cattle and the presence or 

absence of P. multocida in the nasal pharynx does not predict lower respiratory 

disease.(Allen et al., 1991; Fulton et al., 2002) Thus, most authors consider it to be an 
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opportunistic pathogen, believing that it can cause disease only in immunocompromised 

cattle. However, studies in swine have suggested that there are a limited number of 

strains associated with disease, with these strains clearly transmitted 

horizontally.(Blackall et al., 2000; Bowles et al., 2000; Davies et al., 2003a; Zhao et al., 

1992; Zhao et al., 1993) These strains of P. multocida may therefore be more pathogenic 

than others.(Davies et al., 2003a) Similar strain differences may also exist in cattle, and 

could correlate with unidentified virulence factors. Research done on cattle isolates thus 

far have found conflicting results. This contention is supported by the finding that multi-

locus sequence analysis, outer membrane protein characterization, ribotyping and 

serogrouping all found limited diversity among isolates of P. multocida from bovine 

pneumonia, even when those isolates were from diverse geographic regions.(Davies et 

al., 2004; Davies, 2004) Ribotyping found moderate variation in isolates obtained from 

lungs compared to those from nasal swabs,(Dabo et al., 1999b) which could be consistent 

with differences existing between commensal and pathogenic isolates. However, no 

background information was available for these isolates, and it is likely that they were 

obtained from numerous cattle. In contrast, DeRosa (DeRosa et al., 2000) compared P. 

multocida isolates obtained from both the lower (via trans-tracheal washes) and upper 

(via nasopharyngeal swabs) respiratory tract of sick calves. They found only a single 

ribotype and concluded that this method is not sensitive enough to discern relatedness. 

However, it is possible that all isolates in DeRosa’s population were clonally related. 

Recent work found significant diversity in P. multocida isolates obtained from fatal cases 

of respiratory disease.(Taylor et al., 2008) However, many factors identified in that study 

may have led to those isolates not being representative of strains that initiate disease. 
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Moreover, it is uncertain how the apparent diversity in those isolates compares with the 

diversity found in commensal populations. To determine if strains associated with disease 

are distinct from those typically found in the upper respiratory tract of healthy cattle, a 

survey of commensals is needed.     

   

The purpose of this study was to examine the diversity of P. multocida isolates obtained 

from nasal swabs of calves at time of arrival at a research feedlot and to compare these to 

isolates collected from clinically ill calves as well as from healthy cohorts throughout the 

feeding. Given the multi-factorial nature of BRD and the heterogeneity of cattle shipped 

to feedlots, we hypothesized that P. multocida isolates found in the nasal passage of 

calves at arrival would consist of a diverse population of strains. We further hypothesized 

that disease occurrence during the feeding period would bear no apparent relationship 

with the presence of P. multocida in the nares at time of arrival, or the strain present. This 

would be consistent with the premise that any strain of P. multocida is capable of causing 

disease, supporting the widely held view that this bacterial species is an opportunistic 

pathogen.  

Materials and Methods 
Cattle 

395 steer and bull calves (mean initial body weight of 218.6 ± 22.4 kg) were obtained 

through order buyers from two auction markets in central Oklahoma between September 

12th and 23rd, 2005. They were delivered to the Oklahoma State University Willard 

Sparks Beef Research Center feedlot and allowed to rest approximately 12 hours after 

arrival before undergoing initial weighing, individual identification, and sample 
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collection, including collection of nasal swabs from all calves. This entailed use of sterile 

cotton swabs inserted deep into one nares of each animal. Swabs were then placed in a 

holder containing charcoal-free transport media and transported to the Oklahoma Animal 

Disease Diagnostic Laboratory, where they were used to inoculate aerobic and 

Mycoplasma cultures. Bacterial species were confirmed through standard laboratory 

techniques. Cattle were processed approximately 36 (loads 1-3) or 72 (load 4) hours after 

arrival. This included administering a viral respiratory vaccine,a clostridial 

bacterin/toxoid,b and anthelmentic.c Castration and dehorning were also done at this time, 

as necessary. Cattle were blocked by weight and assigned into 25 open air, dirt pens. 

Calves were monitored by trained personnel throughout the feeding period and identified 

as potentially suffering from BRD based upon a clinical scoring technique (Table 2-1). 

When a calf was suspected to be clinically ill, the calf and a clinically healthy cohort 

(used as a control) were removed from the pen and taken to the treatment area. Calves 

used for control sampling were from the same arrival and pen as treated calves and had 

never been treated for respiratory disease prior to use as a control. Rectal temperature 

was measured for both suspect and control calves, and suspect calves with rectal 

temperature greater than 40ºC were treated. Treatment was administered according to 

typical feedlot protocol, and consisted of tilmicosind for first treatment, enrofloxacine for 

second treatment, and ceftiofur hydrochloridef for third or later treatments. Each product 

was administered at label dose. Nasal swabs were collected and processed from treated 

and control calves in the same manner as at time of arrival. Records were maintained 

throughout the study period documenting for each animal: sale barn and date of purchase; 

arrival group at the feedlot; arrival weight; whether a bull or steer at arrival; pen number; 
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date and reason for all samplings (at arrival, for clinical signs consistent with BRD or as a 

clinically healthy control); when treated and what antimicrobial was used; and date of 

death.  

 

Bacterial strains and growth conditions 

After initial identification by standard microbiological methods, bacterial isolates were 

stored at -80◦ C in 30% (v/v) glycerol in brain heart infusion broth (BHIB; Oxoid). All P. 

multocida isolates that could be identified were taken from -80◦ C stock cultures and 

streaked onto blood agar [brain heart infusion agar containing 5% (v/v) defibrinated 

sheep’s blood] and incubated aerobically overnight at 37◦ C. Growth was assumed to be 

P. multocida if colonies possessed typical morphology and characteristics. In the case of 

contaminated growth, if a colony that appeared consistent with P. multocida was 

identified it was re-plated to obtain purity. If no such colony could be found the sample 

was discarded.  

 

DNA isolation and PCR analyses 

DNA was harvested by using overnight seed cultures to inoculate BHI broth which was 

grown to mid-logarithmic phase at 37◦ C with shaking. Approximately four 1 ml aliquots 

from each isolate were centrifuged at 13,500 x g for 5 minutes to pellet cells. Cells were 

resuspended in lysis solution and combined for processing with a commercial kitg 

according to the manufacturer’s instructions. The DNA was rehydrated with 10 mM tris-

EDTA (pH 8.0) and stored at -20◦ C until used for PCR.  
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Prior to PCR, all DNA samples were quantified spectrophotemetricallyh and diluted in 10 

mM Tris-EDTA to a final concentration of approximately 20 ng/μl. Each sample was 

examined on a 1% agarose gel to confirm quality and purity of genomic DNA. Five sets 

of primers were used for PCR (Table 2-2).  The first two sets of primers identified 

sequences previously shown to be unique to P. multocida. Targets for these primers were 

Pm0762 and Pm1231, transcriptional regulator genes with no apparent homology to 

published DNA sequences.(Liu et al., 2004)  The products of these reactions were 

examined on agarose gels. Only those samples that demonstrated distinct bands 

consistent with the intended products of these primers (single band of appropriate size) 

were subjected to polymerization with the remaining three primers. The remaining three 

primers are considered random amplified polymorphic DNA PCR (RAPD-PCR) primers, 

and include two that detect minisatellite DNA sequences and one that detects 

microsatellite sequences. All oligonucleotide primers were obtained from a commercial 

source.i A unique master mix and time- temperature PCR protocol was made for each 

primer and optimized for maximum discernment of banding patterns and reproducibility. 

Each master mix was made as a 2x solution, then diluted with sterile water for a final 

volume of 100 μl per reaction. Final component concentrations were 1x commercial PCR 

buffer (20 mM Tris-HCl, pH 8.4, 50 mM KCl), 0.2mM of each dNTP, 1µM primer, 2.5u 

Taq and 80ng template DNA. Magnesium concentration was 3.5mM for M13 core, 3mM 

for modified M13 core, and 2.5mM for (GTG)5. All protocols initiated with a 3 minute 

denaturation at 95°C for 3 minutes, followed by 30 amplification cycles and concluding 

with a 7 minute extension at 72°C. Each amplification cycle included an initial 30 second 

denaturation step at 95° followed by a 58 second annealing stage and then a 70 second 
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extension stage at 72°C. Annealing temperature varied for each primer: 44°C for core 

M13, 43°C for modified core M13 and 42°C for GTG.  

 

PCR products were subjected to horizontal electrophoresis at 65 volts in 1.5% agarose gel 

made in TAE with incorporation of 0.5µg/ml of ethidium bromide. Gels were de-stained 

in ddH2O for 2 to 6 hours following electrophoresis. Digital photographs were taken of 

each gel under UV light and images were imported into commercial software.j For RAPD 

PCR gels, the software was also used to crop the image, subtract background and filter 

artifacts from the image. Lanes were framed and software was used to detect bands. 

Sensitivity was adjusted for each gel and each lane was manually curated as needed to 

ensure consistency across gels. All positions were identified where at least one band was 

present in any lane. Each sample was examined for presence/absence of a band 

(regardless of intensity) at this location. This was recorded as binary data (band 

present=1, absent=0).  

 

Data interpretation and statistical analysis 

Commercial softwarek was used to calculate Dice’s coefficient of similarity (S) and the 

resulting distance (D, where D=1-S) for all pair-wise comparisons of binary data obtained 

from RAPD PCR gels. The software was then used to create an unweighted pair group 

method using arithmetic averages (UPGMA) dendrogram from the distance coefficients. 

This resulted in a unique dendrogram for each primer. Dendrograms were used to create 

groupings based upon a 92.5% cluster-difference cutoff value (Figure 2-2). The 

groupings obtained from dendrograms of the three RAPD primers were combined in 2- 
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and 3-way cross-tabulations. This sub-divided most large groups into multiple smaller 

types, increasing discrimination power. Commercial softwarek was used to generate 

descriptive statistics and to calculate contingency coefficients comparing RAPD PCR 

grouping results to epidemiologic data for cattle from which samples were collected. 

 

Results 
Approximately 800 samples were collected between September 13th and September 30th, 

2005. A total of 257 samples yielded a P. multocida isolate (Figure 1-3). One hundred 

ninety five calves had at least one sample positive for P. multocida. Five hundred twenty 

three samples were collected on weigh days (either at time of arrival or 14 days after 

arrival). From these, 100 P. multocida samples were obtained from 99 different calves. 

One hundred twenty six samples were collected from 124 different calves used as 

control; these yielded 80 P. multocida samples from 78 different calves. One hundred 

fifty eight treatments were administered to 135 calves. P. multocida samples were 

obtained at the time of treatment 77 times, from 69 different calves. Nearly half of the 

cattle from which a P. multocida sample was obtained (112 of 257) had at least one 

sample that was negative for P. multocida prior to having a positive sample collected.  

 

DNA was collected and subjected to RAPD PCR for 215 P. multocida isolates, from 168 

head of cattle. Two DNA samples did not produce the expected product from the 

confirmatory primers, and were excluded from all analysis. The remaining 213 samples 

included: 
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• 111 samples that were the only P. multocida sample recovered from each calf 

•  87 that were isolated from calves with two samples positive for P. multocida 

•  15 samples from five calves with three P. multocida isolates each 

The number of isolates obtained from each collection point included: 

• 86 at arrival or time of re-weigh 

• 67 at time of treatment 

• 60 from control calves 

 

 There were 41 calves that had more than one sample typed. Thirty six calves had both of 

two samples typed and 5 calves had three isolates for each calf typed. Eighty nine 

samples were from 78 calves that were negative for P. multocida on the first sample 

collected from them (typically at arrival/processing), while 124 samples were from 89 

calves for whom the first sample was positive. Sixty eight of the cattle from whom these 

samples were collected were eventually treated; 99 were not. Calves positive for P. 

multocida on nasal swabs taken at or before treatment were at increased risk of being 

treated for BRD compared to calves negative for the bacterium (RR=1.36, 95% CI 1.03, 

1.80), while calves that had multiple samples positive for P. multocida were more likely 

to be treated than those with a single positive culture (RR=1.46, 95% CI 1.04, 2.06). 

Moreover, P. multocida was more likely to be isolated at time of treatment than from 

samples obtained at non-treatment collections (arrival/weigh and control) (RR=2.03, 95% 

CI 1.54-2.67).  
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All RAPD PCR primers successfully typed all 213 isolates. However, for all three 

primers, a large majority of the samples fell into a single dominant strain type (Table 2-

3). The M13 core primer analysis produced four strain types, with 200 samples contained 

within type A, 11 in type B, and one each in C and D. The modified core M13 produced 

six strain types, with 194 in type D, 10 in type B, six in type C and one each in types A, E 

and F. The (GTG)5 microsatellite produced five strain types, with C containing 203 

samples, B containing seven, and one sample in each of groups A, D and E. Cross-

tabulation produced greater discrimination (more groups, with fewer samples per group); 

however, a single strain was still dominant in all cases (Table 2-4). For the combined 

results of M13 and the modified M13 core, eight groups were created, with the largest 

one representing 186 samples. The modified core*(GTG)5 also produced eight groups, 

again with 186 samples in the largest group. The combined M13*(GTG)5 produced six 

groups, with 192 samples in the largest type. A three-way cross-tabulation of all primers 

yielded 10 types, with 178 samples in the largest group.  

 

Contingency coefficient analysis found no association between any RAPD PCR strain 

type and reason for sample collection (treatment, control or arrival/weigh). There was 

also no association between results of any primer or cross-tabulation and whether or not 

the calf was ever treated.  However, results from several typing methods were correlated 

with arrival group and pen (Table 2-5). Specifically, results from the (GTG)5 micro-

satellite were correlated with both arrival group and pen. Cross-tabulation results from 

M13*(GTG)5 and Modified core*(GTG)5, as well as the results of the 3-way cross-

tabulation were associated with arrival group, and M13*(GTG)5 was associated with pen  
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Discussion 
Conflicting results have been reported regarding the usefulness of nasal swabs for 

diagnosing pathogens involved in BRD. Some studies have suggested that identifying P. 

multocida in the nares of a clinically ill calf suggests involvement of the bacterium in the 

lower tract. For example, Allen, et al. found clinically ill cattle from which P. multocida 

was isolated from nasopharyngeal swabs were likely to also have the bacterium recovered 

from the lung via bronchoalveolar lavage.(Allen et al., 1991). No molecular 

characterization was done to determine the relatedness of the isolates from the nares and 

lung. Additional evidence was provided by DeRosa et al., who used ribotyping, 

serotyping and antimicrobial susceptibility testing on isolates from nasal and tracheal 

swabs of cattle suffering from BRD. Their findings also suggested nasal swab culture can 

be predictive of the bacterial pathogen within the lung.(DeRosa et al., 2000) Finally, 

Godhino et al. found 100% positive predictive value of nasal swabs for retrieval of M. 

haemolytica and M. bovis from post-mortem lung lavage (there were too few P. 

multocida isolates for analysis).(Godinho et al., 2007)  Further, RAPD-PCR found 

excellent correlation between lung and nasal isolates, suggesting that culture of nasal 

passages of sick calves may provide clues as to what strain is present in the 

lungs.(Godinho et al., 2007) 

 

 We were unable to obtain samples from lower respiratory tract of the calves examined in 

this study; however, the association between presence of P. multocida and treatment 

suggest the upper respiratory tract samples were representative of lower tract 
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colonization. This applied not only to samples collected at time of treatment, but also 

prior to being diagnosed ill. This is in contrast to a previous report, where presence or 

absence of P. multocida in the nasal pharynx at processing did not predict lower 

respiratory disease during the feeding period.(Fulton et al., 2002) Reasons for this 

difference are unclear, although Fulton, et al. only acquired samples at arrival and when 

treated; perhaps the increased sampling employed in our study permitted identification of 

P. multocida colonization that occurred after arrival but prior to disease onset. Indeed, 

nearly half of the P. multocida isolates were obtained after a previously negative sample. 

Of these 112, 69 were eventually treated. P. multocida was also detected more frequently 

in our study than in the study by Fulton et al. In our study, 195/395 (49.4%) calves had a 

positive P. multocida isolate, including 98/395 (24.8%) at arrival and 69/135 (51.1%) 

treated calves; Fulton et al. reported only 35/417 (8.4%) to have P. multocida at arrival 

and 4/107 (3.7%) treated calves. It is unclear whether this is attributable to different 

prevalence, different sensitivity in detection, or some other cause.   

 

 The groups produced by (GTG)5 shared the most significant associations with 

epidemiologic data (Tables 2-5 and 2-6), both alone (six significant associations, 

including analysis conducted on the complete data set and various sub-sets) and in cross-

tabulations (nine 2-way combinations and three 3-way). Core M13 primer was next, with 

seven 2-way cross-tabulations and three 3-way associations. This is consistent with other 

work using these primers with P. multocida isolates from cattle, which found (GTG)5 and 

core M13 results to have the greatest concordance with other characterization 

techniques(Taylor et al., 2008). 
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Contingency analysis found arrival group and pen to be associated with the results of a 

number of RAPD PCR primer groupings (Table 2-5). This supports the validity of this 

analytical approach as being capable of identifying epidemiologically related isolates. 

Further refinement of data helped strengthen some of the conclusions. For example, in 

examining only cattle that had a negative culture for P. multocida prior to the first 

isolation, results of the (GTG)5 primer showed a stronger association with pen (Table 2-

6). This is consistent with horizontal transmission after arrival. In another refinement, 

samples were reduced to include only one typed sample from each calf (always including 

the first sample isolated). In this reduced data set, groupings produced by the modified 

core M13 primer became significantly associated with arrival, as did the groupings 

produced by cross-tabulation of core M13*modified core M13 (Table 2-6). Previously 

shown associations remained significant. This is consistent with the primers successfully 

detecting strains common to calves from each source group; this homogeneity within a 

source was weakened as calves acquired different strains after arrival at the feedlot.  

 

There were 41 calves that had more than one sample typed (36 had two isolates typed and 

5 had three). This permitted 51 pair-wise comparisons between two isolates obtained 

from the same calf. Twenty seven calves had no difference in the multiple strains isolated 

at different time whereas 14 animals had 2 or more different strains isolated at different 

times (13 had 2 different strains, 1 had 3 different strains).  Thus, 15 comparisons had at 

least one difference in grouping among results from the 3 primers. This rate of 

disagreement in pair-wise comparisons (29.4%, 95% confidence interval 28.6-30.2%) 
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was significantly greater than the variation observed amongst all samples, where only 

12.5% of pair-wise comparisons found two samples classified differently. Of the 15 pairs 

of samples with differences, ten pairs had a different result for only one primer, four 

differed in groupings produced by two of the primers, and one pair had different results 

from all three primers. There was no difference in percent morbidity based upon whether 

a calf had a single strain cultured multiple times, or different strains detected at different 

times.  There was also no discernable trend in disease occurrence associated with a 

specific change, i.e., calves switching from a dominant strain to an uncommon strain 

were no more likely to get sick than calves switching from an uncommon strain to a 

dominant one. This would support the widely held view that P. multocida is an 

opportunistic pathogen, and no strain-associated virulence factors exist. 

 

The absence of association between any RAPD PCR grouping method and apparent 

ability to cause disease also appears to support the opportunistic pathogen hypothesis. 

Alternatively, it is also possible that no particularly virulent strains were circulating in 

this group of cattle. While morbidity was typical of industry standards (34%), mortality 

was extremely low (only one BRD-related death occurred). Additional research 

examining isolates obtained during severe outbreaks of BRD is warranted to further 

clarify the presence or absence of strains with increased virulence. A final possible 

explanation for failure to identify variations in virulence is that nasal isolates may not be 

representative of invasive strains that are contributing to lower respiratory tract disease. 

Previous research has suggested that nasal swabs are beneficial in determining what 

pathogens are present in the lungs.(Allen et al., 1991; DeRosa et al., 2000; Godinho et al., 
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2007) However, Allen et al. did not attempt to characterize the isolates beyond species, 

DeRosa used techniques (antibiogram and ribotyping) that appear to lack adequate 

sensitivity for molecular epidemiology, and Godinho obtained too few P. multocida 

isolates for meaningful analysis. Thus, additional work is needed to compare P. 

multocida isolates obtained from both the upper and lower airways at time of clinical 

illness to determine if isolates obtained from nasal swabs are indicative of agents causing 

clinical BRD.  

 

Relatively little diversity was found among the 213 isolates of P. multocida examined in 

this study. This is in contrast to other work involving these primers and P. multocida, 

where a high level of diversity was found among isolates obtained from fatal cases of 

BRD.(Taylor et al., 2008) A number of reasons may exist for this discrepancy. Most of 

the cases used in the previous study were chronic and had been treated with 

antimicrobials. The isolates collected at death had been under significant selective 

pressure by host immune response and treatment, and may not reflect strain(s) present at 

initiation of the disease. In contrast, many of the isolates in this study were collected prior 

to any known administration of antimicrobials. Samples used by Taylor et al. were also 

collected over the course of a year, in a commercial feedlot receiving cattle from a large 

number of sources, further contributing to diversity in bacterial isolates. The current 

study utilized cattle acquired at two large auction markets, and were purchased on one of 

four days. Source data did not extend beyond the point of purchase, so it is impossible to 

determine how many source and intermediary herds were represented by the 395 head. It 

is possible that the limited diversity was attributable to the calves originating from very 
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few source herds. Indeed, contingency analysis confirmed the association of RAPD PCR 

results with arrival group. However, if the cattle were representative of the majority of 

cattle purchased by order buyers at these sale barns, it would be expected they originated 

from at least 12 to 20 herds.l It is impossible to estimate how much transmission could 

have occurred between arrival at the sale barn and collection of initial samples at the 

feedlot. One of the four groups was purchased and held at a private property for nearly a 

week prior to delivery to the feedlot; however, others were delivered directly from the 

sale. Calves were permitted very limited time to mingle at the feedlot prior to sample 

collection, making widespread transmission at that time unlikely. It is also possible that 

relatively little diversity exists in all P. multocida strains populating the upper respiratory 

tract of cattle. Investigation of cattle from a larger number of sources would be required 

to confirm or refute such a possibility.    

 

Conclusion 
This study offers further support for the use of RAPD PCR in epidemiologic 

investigation of P. multocida associated with BRD. The primers used were able to type 

all isolates and resulted in groupings that corresponded with logical epidemiologic 

associations. The limited diversity observed in these isolates is not indicative of lack of 

sensitivity of the approach, as the same primers demonstrated satisfactory discriminatory 

power previously.(Taylor et al., 2008) Rather, it suggests either a limited diversity among 

nasal isolates in general, or in this population in particular. Further research is required to 

distinguish between these possibilities. The findings of this study support the hypothesis 

that P. multocida is an opportunistic pathogen of cattle.  No relationship was detected 
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between strain identified at various sampling times and likelihood of being treated, 

suggesting most or all strains can cause disease in a compromised host. However, this 

conclusion should be confirmed in relation to a more severe BRD outbreak. Perhaps most 

importantly, additional research is required to confirm nasal isolates are clonally related 

to those found in the lungs. If nasal isolates are an unreliable predictor of strains 

associated with disease, the findings of this study would not negate the possibility that 

some strains of P. multocida are more virulent than others.    

Footnotes 
aBovishield Gold 5, Pfizer Animal Health, Exton, PA 
 bUltrachoice 7, Pfizer Animal Health, Kalamazoo, MI 
cIvomec Plus, Merial, Duluth, GA 
dMicotil, Elanco Animal Health, Indianapolis, IN  

eBaytril 100, Bayer Animal Health, Shawnee Mission, KS 
f Excenel RTU, Pfizer Animal Health, Kalamazoo, MI 
gPromega Wizard Genomic DNA Purification Kit, Promega Corp., Madison, WI 
h Nano Drop Spectrophotometer, ND-1000, Thermo FisherScientific, Waltham, MA 
iIntegrated DNA Technologies, Coralville, IA 
jQuantity One, Biorad, Hercules, CA   
kSPSS 16.0 for Windows, SPSS Inc., Chicago, IL 
lPersonal communication, Jerry Alexander USDA AMS. 
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System Monitored  Signs Observed 
Depression Attitude, head carriage, posture, eyes (glazed or sunken), 

ability/willingness to rise and ambulate. 
Appetite Interest in feed, willingness to eat, amount eaten, pace of 

consumption, rumen fill, obvious weight loss. 
Respiratory system Breathing character and effort, auditory breath sounds, extension of 

head and neck.  
Temperature Taken and recorded in the morning, after being deemed a candidate 

for treatment. 
A score is assigned for each calf based upon evaluation of the first three categories. 0 is assigned for 
normal, 1 for mildly abnormal, 2 for moderate, 3 for severe and 4 for moribund. The following 
protocol is then followed. 

 

Primer   Primer  ID Primer sequence 
PM0762-f Forward primer for UlaRa  5’-ttg tgc agt tcc gca aat aa-3’ 
PM0762-r Reverse primer for UlaRa  5’-ttc acc tgc aac agc aag ac-3’ 
PM1231-f Forward primer for gntR_2b   5’-aga aag cac atg acc aaa gg-3’ 
PM1231-r Reverse primer for  gntR_2b     5’-gca gct act cgc aga agg tt-3’ 
M13 core Minisatellite 5’-gag ggt ggc ggt tct-3’  
Modified M13 core Degenerate minisatellite 5’-gag ggt ggn ggn tct-3’ 
(GTG)5 Microsatellite 5’-gtg gtg gtg gtg gtg-3’ 
Primer   Primer  ID Primer sequence 
PM0762-f Forward primer for UlaRa  5’-ttg tgc agt tcc gca aat aa-3’ 
PM0762-r Reverse primer for UlaRa  5’-ttc acc tgc aac agc aag ac-3’ 
PM1231-f Forward primer for gntR_2b   5’-aga aag cac atg acc aaa gg-3’ 
PM1231-r Reverse primer for  gntR_2b     5’-gca gct act cgc aga agg tt-3’ 
M13 core Minisatellite 5’-gag ggt ggc ggt tct-3’  
Modified M13 core Degenerate minisatellite 5’-gag ggt ggn ggn tct-3’ 
(GTG)5 Microsatellite 5’-gtg gtg gtg gtg gtg-3’ 
Primer   Primer  ID Primer sequence 
PM0762-f Forward primer for UlaRa  5’-ttg tgc agt tcc gca aat aa-3’ 
PM0762-r Reverse primer for UlaRa  5’-ttc acc tgc aac agc aag ac-3’ 
PM1231-f Forward primer for gntR_2b   5’-aga aag cac atg acc aaa gg-3’ 
PM1231-r Reverse primer for  gntR_2b     5’-gca gct act cgc aga agg tt-3’ 
M13 core Minisatellite 5’-gag ggt ggc ggt tct-3’  
Modified M13 core Degenerate minisatellite 5’-gag ggt ggn ggn tct-3’ 
(GTG)5 Microsatellite 5’-gtg gtg gtg gtg gtg-3’ 
 

Table 2-1: DART clinical scoring system and treatment protocol used for BRD cases 

First Pull:   
1. Severity score mild or moderate (score 1 or 2)   
2. Temperature of 104°F or higher   
3. If meets above:   

a. Treat with antimicrobial A according to label  
b. Record on health card   

4. In not ≥ 104°F, return to pen – record on health card   
5. If treated, re-evaluate at 7 days  

Second Pull:   
1. At least 72 hours since treated (with the first pull treatment protocol)   
2. Severity score mild or moderate (score 1 or 2)   
3. Temperature 104°F or higher   
4. If meets above:   

a. Treat with antimicrobial B (may require 2nd dose in 24 to 48 hours,  
depending on product) 

b. Record each treatment on health card   
5. In not ≥ 104°F, return to pen – record on health card   
6. If treated, re-evaluate at 48 hours   

Third Pull:   
1. At least 48 hours since treated (with the second pull treatment protocol)   
2. Severity score mild or moderate (score 1 or 2)   
3. Temperature 104°F or higher   
4. If meets above:   

a. Treat with antimicrobial C (may require additional treatments on subsequent 
days, depending on product) 

b. Record each treatment on health card   
5. If not ≥ 104°F, return to pen – record on health card   

*If severity score is a “3 or 4” (severe or moribund); treat regardless of temperature.  This 
should be a rare occasion!   

All products are to be administered following Beef Quality Assurance Guidelines
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Primer Primer ID Sequence
Pm0762-f Forward primer for UlaRa 5’-ttg tgc agt tcc gca aat aa-3’
Pm0762-r Reverse primer for UlaRa 5’-ttc acc tgc aac agc aag ac-3’
Pm1231-f Forward primer for gntR_2b 5’-aga aag cac atg acc aaa gg-3’
Pm1231-r Reverse primer for gntR_2b 5’-gca gct act cgc aga agg tt-3’
M13 core Mini-satellite 5’-gag ggt ggc ggt tct-3’

Modified M13 core Degenerate mini-satellite 5’-gag ggt ggn ggn tct-3’
(GTG)5 Micro-satellite 5’-gtg gtg gtg gtg gtg-3’

List of PCR Primers Employed

 
a Transcriptional repressor protein (DeoR family)  
b Transcriptional repressor protein (GntR family)   
 
Table 2-2: Sequences of PCR primers used 
Pm 0762 and Pm 1231 are genes unique to P. multocida, and were used to confirm the 
DNA used for RAPD PCR was from P. multocida isolates. Core M13, modified core 
M13 and (GTG)5 were used to generate banding patterns used for classifying isolates.



 

Table 2-3: Classification results for RAPD PCR primers 
Each primer has a listing of groups created and number of isolates contained in each group. 

Strain type    # of 
isolates Strain type    # of 

isolates Strain type   # of 
isolates 

A 200 A 1 A 1
B 11 B 10 B 7
C 1 C 6 C 203
D 1 D 194 D 1

E 1 E 1
F 1

RAPD PCR Primer Results
Core M13 Modified  Core M13 (GTG)5
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Table 2-4: Classification results for RAPD PCR primer cross-tabulations 
Cross-tabulation tables were created by using results from two or three primers to increase discriminatory ability. 
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Strain type    # of 
isolates Strain type    # of 

isolates Strain type   # of 
isolates 

Strain 
type      

  # of 
isolates 

AD 186 AC 192 DC 186 ABC 10
AB 10 BC 11 BC 10 ACC 4
BD 8 AB 7 DB 7 ADB 7
AC 4 DA 1 CC 6 ADC 178
BC 2 AD 1 AA 1 ADD 1
DA 1 CE 1 FE 1 BCC 2
CF 1 DD 1 BDC 8
BE 1 EC 1 BEC 1

CFE 1
DAA 1

3-way M13 & CM M13& GTG CM & GTG
Cross‐Tabulations



 

Table 2-5: Significant associations identified between RAPD PCR results and epidemiologic data 
Listing of all associations identified by contingency coefficient analysis as meeting the α=0.05 level of significance. This includes 
analysis of the complete data set. 
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Primer or cross-
tabulation

Epidemiologic 
variable 

association
p-value

GTG Arrival 0.000
M13*GTG Arrival 0.000

Modified M13*GTG Arrival 0.000
Three-way Arrival 0.000

GTG Pen 0.010
M13*GTG Pen 0.011

RAPD PCR associations with all typed 
samples 



 

Table 2-6: Significant associations identified between RAPD PCR results and sub-sets of epidemiologic data 
Listing of all associations identified by contingency coefficient analysis as meeting the α=0.05 level of significance. This includes 
analysis of examined sub-sets of typed samples. 
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Primer or cross-
tabulation

Epidemiologic 
variable 

association
p-value

Modified M13 Arrival 0.027
M13*Modified M13 Arrival 0.050

GTG Arrival 0.000
Modified core*GTG Arrival 0.000

M13*GTG Arrival 0.000
Three-way Arrival 0.000

GTG Pen 0.002
M13*GTG Pen 0.004

RAPD PCR associations with the 1st 
sample to be typed from each calf 

Primer or cross-
tabulation

Epidemiologic 
variable 

association
p-value

GTG Arrival 0.000
M13*GTG Arrival 0.000

Modified M13*GTG Arrival 0.000
Three-way Arrival 0.000

GTG Pen 0.003
M13*GTG Pen 0.030

RAPD PCR associations with samples 
from calves whose first sample was 

negative for P. multocida



 

 
 

 
Figure 2-1: Picture of RAPD PCR primer gel, 7-30, GTG #107, #165-193 
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Figure 2-2: Dendrogram produced from RAPD PCR gel, using modified core M13 
primer 
Figure was generated by SPSS using the UPGMA approach. Dashed line indicates 92.5% 
combined cluster similarity. The numbers to the left are the number of samples 
composing each branch. Colors indicate groupings using the 92.5% cutoff: light blue is 
group D; pink is group E; purple is group C; yellow is group B; light green is group A; 
cyan is group F.  
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257 P. multocida isolates 
from 195 head 

104 isolates from 52 cattle which were positive on two occasions 

37 calves 
with 1st on 

9 calves 
with 1st as 

6 calves 
with 1st at 

15 isolates from 5 
cattle which were 
positive on three 

occasions 

5 calves 
with 1st at 

5 
 later 
treated 

4 
treated 
again 
later 

2  
Previ‐
ously  
treated 

5 
later 

treated 

8  
with 2nd 
on treat 

1  
with 2nd 

as 
control 

5  
with 2nd 
on treat 

1  
with 2nd 

on 
reweigh 

26  
with 2nd 

as 
controls 

10  
with 2nd 
on treat 

1  
with 2nd 

on 
reweigh 

1  
treated 
again 
later 

1  
treated 
later 

3  
treated  
again 
later 

3  
with 3rd 

on 
treat 

1  
with 3rd 

on 
treat 

1  
with 3rd 

as 
control 

1  
treated 
later 

138 isolates from cattle which were positive on only one 
occasion 

56 arrival or 
weigh 

41 as 
controls 

41 at treat 41 at treat 

3  
with 2nd 
on treat 

2  
with 2nd 

as 
control 

51  
never 
treated 

Any calves without further description were not treated after the last incident 
described. Calves described as “treated later” or “treated again later” had nasal swabs 
collected at time of treatment, but were negative for P. multocida at that time.  

Figure 2-3: Flow chart of all P. multocida isolates 
The chart details what sampling time each isolate was collected, as well as information about the calf from which the sample was 
collected (whether P. multocida samples were collected at other times, was the calf treated, etc.).  
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Two studies were performed to investigate the epidemiology of P. multocida isolated 
from the respiratory tracts of cattle. The first study used 41 P. multocida isolates obtained 
from fatal cases of bovine respiratory disease (BRD). These isolates were subjected to 
random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) 
fingerprinting using three different primers, as well as characterized through examination 
of whole cell proteins (WCP), outer membrane proteins (OMP) and serotyping. 
Simpson’s index of diversity was used to assess the ability of the various typing methods 
to discriminate between strains. All typing methods were able to discern differences 
amongst the isolates, but cross-tabulation of typing results was needed to attain adequate 
discriminatory ability. Adjusted Rand and Wallace correlation coefficients found poor 
concordance between the groupings produced by the various typing techniques.  
 
In the second study, the same primers were used as in the first study for RAPD PCR 
examination of 213 P. multocida isolates. These isolates were obtained from the upper 
respiratory tract of calves purchased from commercial salebarns and shipped to the 
Willard Sparks Beef Research Center. Nasal swabs were collected from all calves at time 
of arrival. Any calf that was diagnosed with clinical BRD was sampled again at time of 
treatment, as was a clinically health control calf. Little diversity was observed among the 
isolates, and no association was detected between typing results and treatment. However, 
significant associations were detected between typing results and arrival group and pen. 
These findings support the traditional hypothesis that P. multocida is an opportunistic 
pathogen, but provide evidence of horizontal transmission from colonized to naïve cattle. 
Further research is warranted to confirm that strains obtained from the nares are 
indicative of strains associated with lower respiratory tract disease.     
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