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CHAPTER I 
 

 

INTRODUCTION 
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Yersinia pestis is a Gram-negative coccobacillary bacterium which causes the 

disease plague in a variety of animal species. Of these, rodents such as mouse, rat, guinea 

pig, and prairie dog are considered natural hosts for the infection. These natural host 

species experience high morbidity and mortality due to septicemia occurring within a few 

days of infection.  Within these rodent populations, fleas act as biological vectors. In the 

rodent-plague cycle, rodent predators such as coyotes, ferrets, and occasionally domestic 

dogs and cats intrude and influence the dynamics of rodent plague epizootics. During this 

intrusion, rodent predators can also acquire the infection, primarily by ingestion of 

infected prey. However, in contrast to rodents, rodent predators vary in their 

susceptibility to infection; cats and ferrets suffer severe disease, while dogs and coyotes 

show mild to inapparent disease.  

During the initial phase of flea bite transmitted plague, Y. pestis inoculated into 

subcutaneous tissues infects local macrophages where the bacterium multiplies 

intracellularly before causing septicemia and severe disease. Host macrophages employ a 

variety of antimicrobial activities to eliminate intracellular bacterial infections such as Y. 

pestis during the initial phase of infection. Therefore, the ability of Y. pestis to overcome 

the antimicrobial activities of host macrophages during the initial stage of infection may 

influence the subsequent disease outcomes (severe or mild disease). Limited information 

is available as it relates to the role of host macrophages in the severity of Y. pestis 

infections. In an effort to better understand the role of macrophages in disease severity, 

we observed Y. pestis intracellular infection dynamics in macrophages from hosts 

exhibiting severe disease such as mice and those exhibiting less severe disease such as 

dogs. Further, we conducted a proteomics study on intracellular Y. pestis to identify 
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possible virulence factors involved in the bacterial stress responses to macrophage 

parasitism.  
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LITERATURE REVIEW 
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Abstract 

The Gram-negative bacterium Yersinia pestis is the etiologic agent of plague, 

causing disease in wide variety of animal species. Y. pestis is a systemic pathogen 

recently evolved from its close relative, Yersinia pseudotuberculosis, an enteric pathogen. 

Comparative genomics of these bacteria reveals that Y. pestis emerged by acquiring two 

new plasmids (pPCP and pMT) while preserving the common plasmid, pCD, and by 

reducing and rearranging its genome. Y. pestis is naturally transmitted by flea bites, 

causing high morbidity and mortality in natural rodent hosts. Epizootics can lead to 

extinction of entire local rodent populations. Similarly, rodent predators such as cats, 

dogs, coyotes and ferrets, which intrude into the rodent-flea-rodent plague infection cycle 

can also acquire the infection, but the severity of these infections in different predator 

species varies. Dogs and coyotes exhibit mild or inapparent disease, whereas cats and 

ferrets suffer severe disease with high mortality. In rodents, Y. pestis acquired through 

infected flea bites causes inflammatory swelling and necrosis of local lymph nodes within 

few days of infection. Subsequently, the bacterium disseminates to various internal 

organs, leading to septicemia and death of the infected rodents. During the progression of 

the infection in rodent hosts, various virulence factors of Y. pestis play an indispensable 

role in overcoming host immune defenses. At the early stage of infection, Y. pestis 

inoculated subcutaneously by infected flea bites into the susceptible host are 

phagocytized by local macrophages in which Y. pestis survives and multiplies for a short 

period before being released into the extracellular space. During this intracellular 

infection stage, expression of specific virulence genes, primarily encoded on its plasmids, 

is induced by host phagolysosomal stimuli. These virulence factors prepare Y. pestis to 



6 
 

adapt to the macrophage niche as well as the subsequent systemic infection. Therefore, it 

is likely that the pathogenic events at the macrophage stage of Y. pestis infection play a 

critical role in the subsequent progress and outcome of the infection. An improved 

understanding of Y. pestis infection dynamics in macrophages from high and low 

susceptibility hosts, the factors expressed by Y. pestis to adapt to macrophage infections, 

and mechanisms of these Y. pestis factors in adaptation to intracellular stress regulation 

are pivotal to understanding the early stages of Y. pestis pathogenesis.  

 

 

Introduction 

The Gram-negative coccobacillus Yersinia pestis causes severe disease in natural 

rodent hosts (81). The extent to which Y. pestis shares DNA homology with other 

bacteria indicates that Y. pestis is a mutant clone of Y. pseudotuberculosis serotype O:1b, 

having diverged 1,500 to 20,000 years ago (2). During this evolution, Y. pestis acquired 

two new plasmids, namely pPCP and pMT, while maintaining the common plasmid, 

pCD, intact. In addition, Y. pestis has completely or partially eliminated many 

chromosomal encoded genes which are either redundant or a disadvantage for its current 

pathogenic life cycle as a flea borne, acute systemic pathogen (24, 80, 84).  

This recent evolution of Y. pestis from a facultative enteric pathogen to a systemic 

pathogen is associated with an increased range of animal species that are susceptible to 

infection (81). Rodents are considered a natural host for Y. pestis infection and suffer 

high morbidity and mortality. Under natural circumstances, fleas associated with rodents 

serve as biological vectors for transmission of the agent from animal to animal (7, 81). In 
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contrast to plague transmission in rodents, rodent predators such as dogs and coyotes 

most commonly acquire infection by ingestion of Y. pestis infected prey or occasionally 

by flea bite. Canine rodent predators normally develop only mild or inapparent clinical 

disease (78, 94). The mechanism(s) underlying the relative resistance of canine rodent 

predators to infection by Y. pestis is not known. The different routes of infection, flea-bite 

for rodents and ingestion for canines, may be attributed to the difference in disease 

severity between them; however, feline rodent predators are highly susceptible to plague 

by ingestion of infected rodents (94, 96). Another alternative hypothesis that is proposed 

herein is that the macrophages of canine rodent predators interact with Y. pestis in a 

different way than do rodent macrophages, the former limiting infection, whereas the 

latter facilitating infection. Under this circumstance, as an effort to gather more 

information about the role of host macrophages in Y. pestis infection severity and Y. 

pestis virulence factors involved during intracellular infection, various relevant scientific 

papers have been reviewed in the following sections. 

 

 

A. Y. pestis general description 

 

A1. Morphology, staining properties and growth characteristics  

Y. pestis grows slowly on agar plates yielding grey-white circular, umbonate 

colonies measuring 1-2 mm. The colonies are γ-hemolytic on blood agar plates, and a 

majority of the virulence strains produce pigment on Congo-red nutrient agar (115). 

Failure to synthesize O-antigen of lipopolysaccharide gives an uneven or rough colony 
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morphology to Y. pestis on agar plates (106). The bacterium is a non-spore forming 

coccobacillus measuring 0.5-0.8 x 1-2.5 µm under light microscopy. It has a bipolar rod 

appearance when stained by Wright-Giemsa stain for clinical samples but not for 

laboratory cultures (19, 86). Distinguishing features of Y. pestis from other related 

bacterial species are its non-motility and production of a prominent capsule at higher 

growth temperature (86). The bacterium grows optimally at 28
o
C with 5% CO2 

concentration in a nutrient rich neutral pH media (7.0-7.5) containing essential amino 

acids including methionine, phenylalanine, isoleucine, valine, glycine and threonine. In 

addition to these amino acids, at higher growth temperature Y. pestis requires vitamin B 

components such as thiamine (B1), pantothenic acid (B5) and biotin (B7) and the amino 

acid aspartate for optimal growth (20, 81).  Irrespective of growth temperature, adequate 

concentrations of calcium, iron, and magnesium are important for Y. pestis to maintain 

virulence under laboratory conditions (81).  

 

A2. Biochemical properties  

Y. pestis carries mutational changes in many genes associated with varying 

metabolic pathways that are functional in other Yersinia species and Enterobacteriaceae 

members. Except for a positive catalase reactivity, Y. pestis colonies are negative for 

most routine diagnostic biochemical tests such as oxidase, urease and ornithine 

decarboxylase and are also unable to ferment lactose and reduce tryptophan to indole 

(56). In addition, Y. pestis lacks glucose-6-phosphate dehydrogenase, and therefore, 

cannot use the pentose phosphate pathway for the synthesis of ribose sugars. This 

deficiency is compensated by an increased activity of transketolase and transaldolase 
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enzymes. Similarly, absence of α-ketoglutarate dehydrogenase involved in the 

tricarboxylic acid (TCA) cycle is balanced by isocitrate lyase, which diverts TCA 

intermediates to the glyoxylate pathway. When compared with Y. pseudotuberculosis, Y. 

pestis varies in the catalytic activities of enzymes involved in amino acid metabolism 

such as γ-glutamyltransferase, aspartase, glutamase and serine deaminase (threonine 

dehydratase) (18-20, 51). Unlike many other bacterial species including Y. 

pseudotuberculosis and Y. enterocolitica, Y. pestis lacks a methionine salvage pathway 

that recycles sulfur ions from metabolic waste products (93). 

  

A3. Classification  

Y. pestis is classified under the family Enterobacteriaceae in genus Yersinia, 

which has 14 species in total. Of those, Y. pestis, Y. pseudotuberculosis and Y. 

enterocolitica are pathogenic to various animal species and human beings. Recently, Y. 

ruckeri, which exhibits high 16s rDNA sequence homology with Y. pestis, has been 

reported to cause disease in certain fish (113). Y. pestis is subdivided into four biovars; 

namely antiqua, mediaevalis, orientalis and microtus, based on the differential ability of 

these biovars to reduce nitrate and utilize the nutrients glycerol and arabinose. Biovars 

antiqua and microtus are likely sub-clones of a common ancestral Y. pestis strain which 

metabolized nitrate, glycerol and arabinose. During this subspeciation, biovar antiqua has 

maintained the genomic content for all these pathways intact, but microtus has lost the 

capability to reduce nitrate and ferment glycerol (129, 130). The biovars mediaevalis and 

orientalis are considered to have evolved from biovar antiqua with mutations in genes 

encoding nitrate reductase catalytic subunit (NapA) and aerobic glycerol-3-phosphate 
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dehydrogenase (GlpD), respectively (23, 74, 129, 130). Within each biovar, different 

strains of Y. pestis are further identified by employing rare metabolic profiles such as 

fermentation of rhamnose, mellbiose and melezitose; sensitivity to pesticin; requirement 

of different amino acids for optimal growth; infectivity to laboratory rodents; or 

combinations of these traits (4). However, nucleic acid based classification such as 

ribotyping, variable-number tandem repeats (VNTR), multilocus sequence typing 

(MLST) and restriction fragment length polymorphism (RFLP) are more definitive for Y. 

pestis classification, especially to identify strains of different geographic origin (27, 28, 

48, 61).  

 

 

B. Y. pestis genome and evolution 

 

B1. Chromosome   

The rich knowledge about the Y. pestis genome obtained through sequencing of 

different isolates representing four biovars allows us to better understand the molecular 

nature of Y. pestis evolution and the acquisition of various virulence factors involved in 

pathogenesis. The various biovars of Y. pestis have a single circular chromosome of 4.5 

to 5.1Mbp with a 47.64% G+C content. Y. pestis biovar antiqua strain angloa, likely an 

immediate divergent of Y. pseudotuberculosis, and Y. pestis biovar orientalis strain 

IP275, a recent isolate of human plague from Madagascar, have shorter and longer 

chromosomes, respectively (34). Irrespective of biovars, all Y. pestis strains have 

functional genes encoded on both leading and lagging strands of the chromosome. The 



11 
 

chromosome has been extensively remodelled by insertion sequences and pseudogenes 

(23, 31, 34, 80). From Y. pestis genome sequence information, an average of 4,000 open 

reading frames (ORFs) have been identified as possible coding sequences, which 

represents 80 to 85% of the total genome (31, 80). These ORFs are present more often on 

the leading strand of DNA replication than on the lagging strand. Apart from these ORFs, 

150 small non-coding RNA (sRNA) have also recently been identified through in silico 

analysis (59). These sRNAs may play an essential role in regulation of transcriptional, 

translational or post-translational activities of various genes (123). Depending on the 

strain, Y. pestis has 6 or 7 copies of rDNA sequences located very close to the origin of 

replication (31, 80). Y. pestis and Escherichia coli strain K-12 genomes share 

approximately 53.7% genes between them, and these shared genes form the back bone of 

the Y. pestis chromosome. When comparing these shared core genes, Y. pestis specific 

genes differ noticeably in their codon usage, indicating different level of translation 

between the back bone and specific genes of Y. pestis (31). A notable feature observed in 

the Y. pestis genome is that the bacterial chromosome has numerous insertion sequences 

and pro-phages, which have led to many pseudogenes and extensive segmental 

rearrangement of the Y. pestis genome among various strains (23).  

          

B2. Plasmids 

Y. pestis has three plasmids important for pathogenesis: pCD, pPCP and pMT. Of 

these, the pCD plasmid is highly conserved among Y. pestis, Y. pseudotuberculosis and Y. 

enterocolitica, but the pPCP and pMT plasmids are specific to Y. pestis. However, Y. 

pestis strain angola carries a fusion pMT-pPCP plasmid with a separate pPCP plasmid 
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(Table 1) (34). Similarly, Y. pestis strain pestoides-F lacks the pPCP plasmid altogether 

but has a larger pMT plasmid containing 137kbp in place of the 100kbp pMT plasmid 

presents in other strains (http://www.ncbi.nlm.nih.gov/nuccore/NC_009381). Y. pestis 

biovar microtus strain 91001, an isolate from China, has a fourth 21.7kbp pCRY plasmid 

encoding genes likely involved in DNA homologous recombination and type-IV 

secretion systems (108). Various KIM (Kurdistan Iran man) strains belong to biovar 

mediaevalis lack as natural isolates or have been cured of one or more of the above noted 

plasmids as well as pigmentation locus (pgm) from chromosomal insertion sequence 

IS100 (Table 1). These KIM strains are commonly being used for various in vitro studies 

related with Y. pestis infections (14, 45, 81).  

The pCD plasmid is approximately 70kbp in size and encodes 60 ORFs involved 

in the formation of the various structural and functional components of type-III secretion 

system (TTSS). These ORFs are tightly regulated by environmental temperature and 

calcium concentration; 37
o
C and low calcium favor the active expression of these genes 

(84). The plasmid has an incFIIA based origin of replication and a sopABC partitioning 

system. The plasmid copy number is controlled by RNA-RNA interaction between genes 

repA and copA in incFIIA replication locus. In sopABC partitioning system, sopC acts 

like a centromere for plasmid sharing between the daughter cells. It has three intact and 

many partial insertion sequences throughout the plasmid (84). The 9.6kbp pPCP plasmid 

is the smallest of the three Y. pestis plasmids and encodes three virulence genes; 

plasminogen activator-coagulase (pla), pesticin (pst) and pesticin immunity (pim). This 

plasmid was likely acquired by Y. pestis from Salmonella enterica serovar Typhi at the 

later stage of evolution, prior to Y. pestis becoming a systemic pathogen (80, 101). In 

http://www.ncbi.nlm.nih.gov/nuccore/NC_009381
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spite of its proposed late acquisition, pla gene expression is regulated by a 

chromosomally encoded cAMP receptor protein (Crp) (57). pMT is a low copy number 

100kbp plasmid that has integrated into the chromosome of some strains. The plasmid 

carries genes for F1-antigen, murine toxin and numerous other hypothetical proteins (67, 

89).  

  

B3. Y. pestis evolution 

Analysis of 16S rDNA sequences among 14 species of Yersinia reveals that Y. 

pestis is more closely related to Y. pseudotuberculosis than to any other Yersinia species, 

sharing 100% homology (109). In contrast to the rDNA sequence homology, Y. pestis 

varies drastically from Y. pseudotuberculosis with respect to the nature of disease 

produced in and the mode of infection transmitted to susceptible hosts. In natural rodent 

and incidental human hosts, Y. pestis causes severe acute systemic disease as a flea borne 

infection, but Y. pseudotuberculosis causes only mild gastroenteritis in human beings 

through an oral route of acquisition (81). (81, 119). Comparative analysis of DNA 

homology of six housekeeping genes involved in various metabolic pathways and LPS 

biosynthesis for Y. pestis, Y. pseudotuberculosis and Y. enterocolitica indicates that Y. 

pestis is a descendant of Y. pseudotuberculosis serotype O:1b. This divergence is thought 

to have occurred between 1,500 to 20,000 years ago (2). During early stages of this 

pathogenic speciation, it is likely that a free living non-pathogenic Yersinia species 

acquired plasmid pVY (homolog of pCD plasmid) and the chromosomal pigmentation 

locus through horizontal gene transfer and became Y. pseudotuberculosis. Subsequently, 

Y. pestis arose from Y. pseudotuberculosis through sequential genomic changes including 
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reductive evolution and the acquisition of plasmids pPCP and pMT (33). However, the 

transition from Y. pseudotuberculosis to Y. pestis is expected to have happened through 

an intermediate pro-Y. pestis species which is thought to have caused systemic infections 

less frequently and lacked the plasmid pPCP altogether. In accordance with this 

speculation, Y. pestis pestoides-F is considered the oldest Y. pestis strain. It is less 

virulent, lacks the pPCP plasmid and has intermediary metabolic profiles between 

modern Y. pestis and Y. pseudotuberculosis strains. Later, this pestoides-F or pro-Y. pestis 

species became virulence Y. pestis by obtaining the pPCP plasmid and a few new genes 

in the chromosome, as well as by losing many chromosomal genes as pseudogenes (24, 

53, 80, 129). Y. pestis genome based DNA-microarray analysis of all Yersinia species 

reveals that approximately 292 genes are Yersinia genus-specific, and beyond these, Y. 

pestis has only 16 new genes in its chromosome (122). Comparative analysis of genomes 

of Y. pestis strains KIM10 and CO92 with Y. pseudotuberculosis strain IP32953 shows 

that the Y. pestis chromosome has 32 unique genes and 149 pseudogenes. Y. pestis also 

lacks 317 genes which are present in Y. pseudotuberculosis (24). Particularly, Y. pestis 

markedly varies from Y. pseudotuberculosis in relation with the genes encoding surface 

antigens such as adhesins, invasins, flagella and LPS components. Beyond these 

variations, Y. pestis also has some novel insect toxin encoding genes in the chromosome 

(52).  
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C. Plague in rodents and rodent predators–nature of infection and epidemiology 

During the Modern plague outbreak in 1894, Alexander Yersin, a French 

bacteriologist and physician who successfully isolated the organism, suggested the 

involvement of rats in the plague infection cycle. Later, Paul Louis Simond successor of 

Alexander Yersin determined that the Oriental rat flea (Xenopsylla cheopis) could serve 

as the biological vector for transmission of Y. pestis among rodent populations and also to 

humans (81, 105). Thereafter, Guthier and Raybaud in 1903 and A.W. Bacot and C.J. 

Martin in 1914 repeated and extended Simond‘s work using experimental studies (81, 

105). Since then, various epidemiological surveys and experimental approaches have 

been undertaken to understand the dynamics of the plague infection cycle in various 

rodent populations, specifically among mice, rats, guinea pigs, prairie dogs and squirrels. 

   

C1. Epidemiology of plague in rodents  

Within rodent populations the disease is still wide spread, and epizootics occur 

periodically, particularly where the rodent populations are high such as in the tropical 

steppes (81). Enzootic plague foci that maintain an infective reservoir are likely to 

support epidemiologically distinctive epizootic and enzootic rodent populations. The 

epizootic populations such as rat, mouse, guinea pig and prairie dog are highly 

susceptible to the infection and experience high mortality from the disease (7, 29). A few 

infected individuals within this group may occasionally survive the outbreak and develop 

partial immunity to plague (7, 95). Subsequently, those partially protected individuals 

may serve as reservoir hosts for the extension of plague to newly colonizing naïve rodent 

colonies, but the conclusive evidence supporting this conjecture is lacking. The enzootic 
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populations, for example gerbils, voles, chipmunks, squirrels and grasshopper mice, are 

relatively resistant to the infection and can harbor the infective agent for  extended 

periods of time, especially during the inter-epizootic period (12, 73). When these two 

populations overlap, spread of the disease from the enzootic to epizootic populations can 

occur with subsequent outbreaks in the latter population (7). A recent study carried out to 

understand the relationship between prairie dog and grasshopper mouse population 

dynamics and plague outbreaks in the former group explicitly explains this assumption. 

Among prairie dog populations, grasshopper mice, which prey on dead prairie dog 

carcasses and are moderately resistant to Y. pestis infection, can transport the disease 

from colony to colony through either mechanically carrying Y. pestis infected prairie dog 

fleas on them or maintaining the agent as a subclinical infection and thus transmitting it 

to susceptible prairie dogs. Increasing the population size of grasshopper mice and the 

resultant increased frequency of contacts with prairie dogs positively influence the 

occurrence of outbreaks in prairie dog colonies (97).  

After acquisition of the disease, subsequent spread within the epizootic 

populations is influenced by many factors. Primarily, density of the flea vectors 

influences the course of epizootic; a higher flea load causes more widespread occurrence 

of the disease within a short time frame. Progression of the infection in flea vectors 

causes Y. pestis to form a biofilm that causes occlusion of the flea‘s mouthpart, leading to 

a sharp increase in the number of rodents being bitten by infected fleas. Apart from this 

remarkable transmission capability, fleas infected with Y. pestis can also maintain the 

bacteria through the inter-epizootic period in a dormant stage, and later, when suitable 

rodent hosts become available, these fleas can successfully transmit the disease (9). 
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Occasionally, under heavy infestation, ingestion of infected fleas can also cause 

gastrointestinal plague in rats and mice (22, 95). In this flea mediated plague infection 

cycle, intervention by other infectious agents changes the disease transmission dynamics. 

For example, concurrent infection of a rodent population with Y. pestis and either 

Salmonella typhimurium or Listeria monocytogenes can negatively influence the 

efficiency of flea-mediated plague transmission (35, 128).  

Apart from fleas, other factors such as rodents‘ social behavior, cannibalism, and 

habitat can also influence the dynamics of the plague outbreak within a given epizootic 

population. Social rodents have a higher risk of acquiring the infection from their colony-

mates. This can occur either directly through contact with infected individuals or 

carcasses, or indirectly through exposure to Y. pestis contaminated soil (8, 60). In 

particular, high moisture content, richness of soil iron and calcium, and the presence of 

soil protozoans such as Tetrahymena pyriformis and cysts of soil amoeba may positively 

influence Y. pestis survival in soil and its related outbreaks in rodent populations (17, 76).  

 

C2. Epidemiology of plague in rodent predators  

In the rodent-flea-rodent plague infection cycle, rodent predators such as dogs, 

coyotes, cats and ferrets occasionally intrude and extend the radius of plague epizootic 

foci by mechanically carrying infected rodent fleas on their bodies or by transporting the 

infected carcasses from place to place (117). These predators typically acquire the 

infection through ingestion of infected rodents but occasionally through the bite of 

infected rodent fleas. In the United States, dogs and cats typically acquire the disease 

from Y. pestis infected prairie dogs, ground squirrels or rabbits (77, 78). These Y. pestis 
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infected rodents and rabbits are less active and more vulnerable to predation, resulting in 

significantly increased probability of Y. pestis transmission to the predator hosts. In cats 

and ferrets, the disease is similar to that of rodents or human beings, causing high 

mortality. In an experimental infection, 42% of cats infected through an oral route and 

50% of cats injected subcutaneously with virulence Y. pestis succumb to the disease (78, 

94). In cats, shortly after ingestion of Y. pestis infected rodents, enlargement of oro-

pharyngeal lymph nodes is evident which on necropsy reveals multiple foci of necrosis 

(77, 78, 94).  Subsequently, the disease progresses into septicemic form with a poor 

prognosis, similar to plague progression in human beings. Occasionally, the systemic 

infection in cats leads to the pneumonic form of the plague, which is potentially 

dangerous for aerosolized transmission to other cats and human beings (42, 78, 94).  

  In contrast to cats, dogs and coyotes, which also prey upon infected rodents, 

typically exhibit clinically inapparent disease. Dogs fed with Y. pestis infected guinea pig 

carcasses showed mild fever, anorexia and lethargy at the initial stage of infection with 

only 30% of the infected dogs exhibiting clinical sign of enlargement of oro-pharyngeal 

lymph nodes; however, none of those dogs developed severe disease. All of the infected 

dogs developed antibodies to F1-antigen as early as 8 days post-infection, which 

gradually increased to the peak at 3 weeks and then were maintained at the same level for 

upto 3 months post-exposure. Thereafter, positive serum titers to F1-antigen were present 

for a year post-infection (77, 94).  
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D. Y. pestis pathogenesis and virulence factors  

 

D1. Early stage of Y. pestis pathogenesis and virulence factors 

D1a. Intracellular Y. pestis pathodynamics  

Rodents are considered the natural hosts for Y. pestis infection and suffer severe 

disease with high mortality (100). After the bite of infected fleas, most Y. pestis 

inoculated subcutaneously are phagocytized and killed by neutrophils (81). At the same 

time, small numbers of Y. pestis are also engulfed by macrophages present in the lesion. 

In contrast to Y. pestis in neutrophils, the bacteria phagocytized by the macrophages 

multiply inside the phagolysosome by presumably evading macrophage antimicrobial 

activity (45, 81). Subsequently, these Y. pestis parasitized macrophages migrate to the 

local lymph nodes, where the bacteria continuously multiply inside the macrophages until 

they are released into the extracellular space by cell lysis (112).  

Although macrophages have been identified as an important focus of infection 

during the early stage of the disease, no research has been done specifically focusing on 

macrophage surface receptors which participate in Y. pestis phagocytosis. Based on a 

recent study by Noel et al. (2009), macrophage Fcγ and complement receptors were 

shown to play a role in Y. pestis uptake; however, Y. pestis uptake was not completely 

blocked in the absence of both opsonizing antibody and serum complements in the 

infection media, indicating that in addition to Fcγ and complement receptors, an as yet 

unidentified macrophage receptor(s) likely participates in the process of Y. pestis 

phagocytosis (13). Even within Fcγ and complement receptors, sub-types involved in Y. 

pestis phagocytosis have not been identified. During flea bite infection, phagocytosis of 
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Y. pestis by the local macrophages may not involve either Fcγ or complement receptors 

because phagocytosis occurs almost instantaneously without Y. pestis inducing a 

significant inflammatory reaction in order to access the serum components for efficient 

phagocytosis by macrophages. Following the uptake by macrophages, Y. pestis 

containing vacuoles are believed to pass through the regular endocytic pathway and to 

mature to phagolysosome (45, 92). But a recent study suggests that, by an as yet unclear 

molecular mechanism, Y. pestis may block phagolysosomal acidification, which allows 

intracellular survival and multiplication (14). In addition to these Y. pestis specific events, 

other macrophage specific innate immune processes are assumed to take place. 

Particularly, upregulation of genes related to cytokines TNF-α, IFN-γ, macrophage 

inflammatory protein-1α (MIP-1α), MIP-1β, IL-1α, IL-6 and chemokines IL-8, but down 

regulation of genes associated with apoptosis was observed in macrophages infected with 

Y. pestis (30, 125).  

 

D1b. Y. pestis virulence factors in macrophage infections  

During intracellular multiplication in macrophages, Y. pestis utilizes various 

virulence factors to overcome the host antimicrobial activities; the majority of those are 

chromosomally encoded. A notable insertion sequence present on the Y. pestis 

chromosome that confers a virulence status to pathogenic Yersinia species is IS100, 

which is a 102kbp DNA-fragment named as a pigmentation (pgm) locus in Y. pestis. 

Functionally, the pigmentation locus is further divided into pigmentation segment and 

high pathogenic island (HPI), possessing genes for heme storage system (hmsHFRS and 

hmsT) and genes for siderophore dependant iron transport system (yersiniabactin) and 
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pesticin receptor, respectively (92). Depending on Y. pestis strains, the pigmentation 

locus is flanked by approximately 28-nucleotide direct repeats and carries sequence 

information to transcribe a functional transposase (37, 92). Particularly, genes ripA and 

ripB from pigmentation segment encoding, respectively, a putative acetyl-CoA 

transferase and a monoamine oxidase allow Y. pestis to suppress nitric oxide 

accumulation in the phagolysosome and ensure better survival and multiplication inside 

macrophages (92). The two-component transcriptional regulator phoP-phoQ and its 

downstream regulated genes, magnesium transporter gene cluster (mgtC) and UDP-D-

glucose dehydrogenase (ugd), are also necessary for Y. pestis to maintain viability in a 

mouse macrophage-like cell line, J774A.1. Y. pestis strains with these genes intact are 

associated with an extension of macrophage phagolysosomes to form spacious vacuoles 

that may diminish macrophage-mediated antimicrobial activity by diluting the 

phagolysosomal content. Consistent with this idea, Y. pestis mutants for these genes 

failed to form spacious vacuoles and were defective for intracellular survival in 

macrophages (45). Similarly, Hfq a chaperon protein stabilizing small, non-coding RNAs 

(sRNAs) on their target sequences in Y. pestis mRNAs is also necessary for Y. pestis to 

survive in a mouse macrophage cell line and to cause infection in mice through 

subcutaneous or intravenous routes of infection (43). Further, while Y. pestis resides 

inside the phagolysosomes, Braun‘s lipoprotein in Y. pestis outer membrane helps the 

bacteria to maintain its viability in RAW264.7 cells presumably through facilitating 

bacterial iron acquisition and transport processes (103). In addition, iron transport 

systems YfeABC, YfeD, and FeoABC are also thought to facilitate Y. pestis iron 
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acquisition in the phagolysosomal environment. Mutational inactivation of either of these 

systems significantly decreases bacterial viability inside macrophages (83).  

Apart from the virulence genes that ensure Y. pestis survival in macrophages, 

some other Y. pestis genes which may not be directly involved in the macrophage 

infection, but are indispensable for subsequent systemic infection are also activated by 

intracellular stimuli. The genes encoding the type-III secretion system, F1-capsular 

antigen and pH6-antigen are notable examples (81). The type-III secretion system is a 

well studied pathogenic system of Y. pestis, which consists of structural components 

making the needle complex on the surface of the bacteria and of effector proteins 

delivered through those needles known as Yersinia Outer Proteins (YOPs). Expression of 

this system is tightly regulated by the environmental calcium concentration; low calcium 

concentration in the phagolysosomal compartments favors the active expression of this 

system (84, 85). YOPs are preferentially injected into professional phagocytic cells, such 

as macrophages and dendritic cells, and neutrophils and there interfere with various host 

cell signaling mechanisms, causing the host cells to undergo a range of physio-

morphological changes from decreasing phagocytic activity to apoptosis (65, 72).  

The F1-capsular antigens transcribed from the pMT plasmid are extremely thin 

fimbrial structures which cover the Y. pestis surface as a capsule when expressed. Each of 

these fimbiral structures is a polymer of monomeric proteins called CaF-1 subunits which 

are 15.6kDa proteins, made up of multiple beta-strands similar to IL-1 and transported 

across the plasma membrane by a periplasmic chaperon. The F1-antigen is highly 

expressed at 37
o
C, especially in the macrophage phagolysosomal environment (1, 26). 

The presence of F1-antigen on Y. pestis surface can mask outward exposure of other Y. 
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pestis surface molecules and hence prevent bacteria-host cell interaction, thereby 

blocking the phagocytosis of Y. pestis by macrophages and neutrophils (70). In contrast 

to this description, peritoneal macrophages from guinea pig have uptake and subsequent 

intracellular parasitism of Y. pestis expressing F1-antigen (46). This finding in guinea pig 

suggests that virulence of Y. pestis F1-capsular antigen is host specific; the guinea pig 

macrophages may have subtle changes in the phagocytic receptors, providing for better Y. 

pestis uptake. The other virulence factor, the pH6-antigen, is encoded from Y. pestis 

chromosomal loci psaA, which consist of genes psaEFABC. This antigen is merely a 

structural analog of plasmid encoded F1-capsular antigen, and its expression is induced 

by the acidic environment of macrophage phagolysosomes (66, 87). Protein interaction 

studies reveal that by mimicking the Fc-receptor for human IgG, pH6-antigen can bind 

and mask the constant region of IgG molecules attached on Y. pestis and thus prevent the 

antibody mediated phagocytosis of Y. pestis by macrophages (127).  

The role of Y. pestis lipooligosaccharide (LOS) on macrophage infection has also 

been analyzed in various immunobiology related studies. LOS of Y. pestis is anticipated 

to act through macrophage TLR-4 and CD14 receptor complexes to initiate host 

chemokine and cytokine responses to infection (120). However, this does not appear to 

be the case, as mutational inactivation of an essential gene, ipxM, involved in lipid A 

synthesis did not alter the pathogenic process or infection severity in mouse models (5). 

Similarly, expression of exogenous functional O-antigen in Y. pestis incapable of 

synthesizing its own also did not influence virulence significantly in mouse infections 

(79). These latter findings question the role of Y. pestis LOS in macrophage infection; 

further research is necessary to understand its role. 
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D2. Y. pestis pathodynamics in local lymph nodes and virulence factors  

Y. pestis disseminated via macrophages to local lymph nodes continue to multiply 

both intra- and extracellularly causing edematous swelling and necrosis of these nodes, 

which are recognized clinically as buboes (81). During this stage of infection, the 

extracellular Y. pestis expresses a nitric oxide deoxygenase flavohemoglobin which 

detoxifies nitric oxide which is produced by damaged neutrophils and macrophages. In 

addition, Y. pestis prevents neutrophilic infiltration into the lymph nodes by an unknown 

mechanism (47, 102). Blockage of the neutrophilic infiltration may benefit Y. pestis by 

controlling the degree of host inflammatory reaction and its negative effects on the 

progression of the infection. 

 

D3. Systemic dissemination of Y. pestis infections and virulence factors  

From the local lymph nodes, Y. pestis spreads through either lymphatics or blood 

vessels to various internal organs such as liver, spleen and lung. This spread almost 

certainly leads to septicemia, disseminated intravascular coagulation (DIC) and death of 

infected rodents (100). During the systemic dissemination, Y. pestis virulence factor 

plasminogen activator from the pPCP plasmid plays a pivotal role in the disease 

progression. Y. pestis mutant strains for plasminogen activator gene pla are severely 

attenuated for systemic infection in mouse models. However, direct intravenous injection 

of these mutants cause fatal disease similar to those of wild strains of Y. pestis (101). 

However, Y. pestis strains cured of or naturally lacking the pPCP plasmid are fully 

virulent through aerosolized route in mice and guinea pigs (98), suggesting that the 

plasminogen activator is predominantly used by Y. pestis during the transition of local 
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infection into the systemic disease and if this stage is bypassed then the virulence factor 

is unnecessary. Apart from the systemic spread, protease function of the plasminogen 

activator helps Y. pestis degrade residual YOPs in the interstitium during bubonic plague 

and inactivates various host complement factors and respiratory antimicrobial peptides, 

respectively, during septicemic and pneumonic infections (40, 107).  

 

 D4. Systemic plague and virulence factors  

After systemic dissemination, Y. pestis bacilli colonize various internal organs, 

preferentially, liver, spleen and lung. During this stage of infection, Y. pestis uses various 

virulence factors in order to obtain sufficient iron from the infected host and to avoid host 

immune attacks. Y. pestis enzymes phospholipase A and D are used by the bacteria to 

disrupt the host RBCs in order to acquire iron from the hemoglobin released (36). 

Further, this process is complemented by upregulation of Y. pestis genes associated with 

iron scavenging, uptake and storage (25). A primary virulence locus involving in this Y. 

pestis iron acquisition process during septicemic plague is the pigmentation (pgm) locus. 

This locus is deleted spontaneously from the chromosome when Y. pestis is cultured in an 

iron rich media (49). Consistent with this in vitro observation, pigmentation mutants of Y. 

pestis in animals having abnormally high concentration of iron cause severe disease 

equivalent to wild type Y. pestis infection (21). Similarly, a human patient with hereditary 

hemochromatosis and resulting high iron load in tissues succumbed to a laboratory-

acquired infection of Y. pestis mutant strain for the major iron acquisition system (6). 

However, under normal physiological range of iron concentration, deletion of this locus 

is detrimental and leads to loss of virulence in many infection models (21). But in 
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aerosolized exposure, the pigmentation locus is dispensable for Y. pestis virulence, as 

evidenced by the pigmentation locus mutants being equally lethal as wild type Y. pestis in 

normal African green monkeys through respiratory exposure (124). This iron acquisition 

property of the pigmentation locus is mainly contributed by siderophore dependent iron 

transport system (yersiniabactin) locating on high pathogenic island of pgm locus (92). 

Yersiniabactin plays an important role in scavenging iron molecules for Y. pestis in iron 

deplete environments (99). Mutation of the whole yersiniabactin operon or part of the 

coding region (rip2 gene) leads to loss of virulence in mouse models by subcutaneous 

route of infection (10). In addition to yersiniabactin, three other ATP-dependent iron 

transport systems Yiu, Yfe and Yfu have also been reported from this locus (58). Yiu 

system transcribed from yiuABCR operon does not have any detect negative impact on 

virulence in mouse infections when the system is rendered inactive, but interfering with 

Yfe system yfeABCD and yfeE leads to attenuation of virulence (11, 58). Yfu system 

from yfuABC is a ―Fur‖ regulated iron acquisition system, which also acts as a 

magnesium uptake and utilization system, but the pathogenic role of this system in 

mammalian host is not yet clear (44). All these iron acquisition systems from HPI are 

primarily important for Y. pestis to acquire sufficient iron for metabolic needs, 

inactivation of one or more of these systems can decrease the likelihood of Y. pestis 

survival inside the mammalian host. 

Hemin storage system is the well studied protein complex transcribed from 

pigmentation segment of pgm locus (92). This system is critical for flea vector life cycle 

of Y. pestis, but is dispensable for mammalian host infection (54). In flea vectors, hemin 

storage system helps Y. pestis form biofilm mass in the flea proventriculus region by the 
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exopolysaccharide synthetic action of protein HmsT from this system (54, 82). In turn, 

the protein HmsT is regulated by various co-transcriptors from hmsHFRS and hmsT 

operon as well as phoP-phoQ transcriptional regulator and quorum sensing molecules 

such as luxI, luxR, and luxS (15, 16, 114). In addition to this hemin locus, the 

pigmentation segment has a nutritive iron acquisition system (hmuRSTUV), which 

transports various types of iron sources such as hemin, hemin-albumin and myoglobin 

into the bacterial cytoplasm. However, mutational inactivation of this locus did not show 

any significant negative effect on either bacterial growth or infection severity in mouse 

models (118).  

Other major virulence factors involved in the extracellular infection phase of Y. 

pestis are YOPs and a type-III secretion system structural component LcrV from pCD 

plasmid. The expression of these factors is tightly regulated by environmental Ca++ 

concentration. Mutational inactivation of regulator genes of YOPs and LcrH leads to 

attenuation of virulence in mouse infection models (32, 88). YOPs are the primary 

pathogenic elements of pCD plasmid which disrupt host immune function preferentially 

targeting antigen presenting cells, such as macrophages and dendritic cells, and 

neutrophils (72). Among the secretory proteins, YopB and YopD act as a translocon, 

helping other proteins cross the eukaryotic plasma membrane, especially into the host 

macrophages (39). Among 14 YOPs reported so far, YopJ is the one studied most widely 

with respect to its interfering effects on immune cell signaling mechanisms. YopJ blocks 

toll-like receptor (TLR)-mediated IFN-γ production in human embryonic kidney 293 

(HEK293) cells by acting as acetyltransferase to acetylate Ser/Thr residues of MAPK-

kinase (MAPKK), which is phosphorylated under normal physiological condition (75, 



28 
 

116). In addition, YopJ also interferes in maturation of dendritic cells by down regulating 

the vital MAPK/ERK pathway, resulting in inefficient communication between innate 

and acquired immune systems (50, 69). In rat infections, YopJ was noted to lower the 

host TNF-α production by depleting the immune cells through induction of caspase-1 

mediated apoptosis. Although it plays multiple roles during systemic infection, YopJ 

mutants were not attenuated with respect to the pathogenic process or infection severity 

in rats (62, 65). 

Other YOPs, YopE, YopK and YopL, likely enhance virulence during the 

systemic infection, as the triple mutant (YopE, YopK and YopL) failed to colonize the 

internal organs in mouse infections (110). Similarly, Y. pseudotuberculosis  YopK, which 

is highly homologous to Y. pestis YopK, also failed to colonize the mouse spleen through 

either oral or intraperitoneal route of infection when the gene is interrupted (55).  The 

other protein, YopE which is transferred into the eukaryotic cytoplasm through YopB and 

YopD disrupts Rho-GTPase mediated signaling mechanisms controlling various cellular 

functions. Sometimes this action is synergistically amplified by protease YopT and 

Ser/Thr kinase YopO (121).  YopM, a leucine rich protein having considerable homology 

to platelet surface glycoprotein von Willebrand factor shows significant loss of virulence 

in mouse models when the gene is mutated, likely due to failure of the mutant strains to 

cause platelet aggregation and its related pathogenic process during the systemic 

infection (63, 64). YopH plays a role in suppression of adaptive immunity against Y. 

pestis by means of interfering with T-lymphocyte signaling mechanism (3).  
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E. Y. pestis infection of macrophages and disease severity 

As explained in the previous sections, host macrophages are the target cells of 

preference for Y. pestis parasitism during the initial stage of flea bite infection. The host 

macrophages provide a conducive intracellular environment for Y. pestis to survive and 

multiply away from the host innate immune mechanisms (45, 90-92, 112). Based on what 

is known about Y. pestis pathodynamics, infection of rodents depleted of macrophages 

would suffer diminished severity of Y. pestis infection. In this condition, the neutrophils 

may completely eliminate all the bacilli injected by fleas, and Y. pestis may not be able to 

progress efficiently to the next stage of infection, septicemic plague. Thus, it is 

reasonable to conjecture that Y. pestis infection of host macrophages is a deciding factor 

for the progression and severity of the infection. In support of this contention, 

experimental mice depleted of their phagocytic cells by treating with liposomes 

containing clodronate had fewer number of colony forming units (CFUs) from liver and 

spleen and resulted in mild or no lesions in these organs for Y. pestis infection when 

compared with that of normal mice (126). Likewise, Y. pestis strain CO92 mutants for 

Braun‘s lipoprotein gene lpp, which failed to survive in in vitro macrophage studies, was 

significantly attenuated for its virulence in mouse infections (103). Further support for 

the role of host macrophages for Y. pestis infection was demonstrated by a study in which 

infection of mice through peripheral route of inoculation showed that Y. pestis 

predominantly localized in macrophages during the first few days of infection before 

causing septicemia and death of the infected animals (71). 

Although the compelling evidences on involvement of host macrophages in 

establishment of Y. pestis infection are present, no research has been done to examine 
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whether Y. pestis responds differently in macrophages from hosts with varying degrees of 

severity of infection. One approach to studying this problem would be to compare Y. 

pestis pathodynamics in macrophages from hosts suffering severe disease such as mice 

and rats with macrophages from hosts only experiencing inapparent or no disease such as 

dogs or coyotes. To this end, we observed Y. pestis infection parameters in primary and 

tissue culture macrophages originated from mouse and dog. The resulting observations 

are explained in detail in Chapter 3.  

Another aspect of early pathogenesis that needs to be studied further is how Y. 

pestis survives intracellularly in macrophages. It is certain that the host macrophages are 

used by Y. pestis for its benefit as evidenced by various previously published studies (45, 

90-92, 112). Further, observation of the intracellular trafficking of Y. pestis in 

macrophages suggests that the vacuoles carrying the bacterium can mature into 

phagolysosome (45, 92). Macrophages possess a wide spectrum of antimicrobial 

activities such as phagolysosomal acidic pH; enzymes cathepsins, lipase, nuclease and 

glycosidase; oxidizing agent; reactive oxygen species; cationic peptides; nitric oxide; and 

reactive intermediates of nitric oxide (38, 120). In addition, phagolysosomal 

compartments are low in calcium, iron, magnesium, and manganese concentration, which 

make the organelle very hostile for the intracellular Y. pestis (38, 120). In order to survive 

in this harsh intracellular environment, Y. pestis has to be equipped with various adaptive 

strategies. Recently, a few of these intracellular adaptive strategies of Y. pestis have been 

explored by various researchers as explained in previous sections (43, 45, 92). However, 

even within the Y. pestis virulence factors reported, some of them such as type-III 

secretion system, plasminogen activator and pH-6 antigen which have been thought to be 
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important for macrophage infections may not be required for Y. pestis intracellular 

survival and multiplication (68, 90, 111). Under this circumstance, it is pivotal to know 

which virulence factors Y. pestis relies on to adapt to the macrophage phagolysosomal 

niche. As an effort to explore this area, we compared intracellular Y. pestis protein 

profiles with those of microbial culture grown Y. pestis. This study is presented in 

Chapter 4. This study was extended to examine expression of Y. pestis tellurite resistance 

genes associated with macrophage infection and presented in Chapter 5.  

 

 

F. Summary 

Y. pestis is a recently evolved pathogen from Y. pseudotuberculosis through 

acquiring of new plasmids and rearranging and reducing the genome. These plasmids are 

critical for Y. pestis pathogenesis and encode various virulence factors necessary for 

mammalian host infection. The bacterium causes severe infection in the natural rodent 

host with high mortality; however, in some rodent predators, the disease is mild or 

inapparent. In natural infection, Y. pestis inoculated subcutaneously by the infected flea 

bite initially multiplies inside the macrophages in the local lymph node and subsequently 

spreads to various internal organs, resulting in septicemia. Thus, the host macrophages 

are considered important innate immune cells utilized by Y. pestis to establish infection in 

susceptible hosts. Therefore, to better explain the role of host macrophages for the Y. 

pestis infection severity and to understand the Y. pestis virulence factors involved during 

the macrophage infection, we tested the following hypothesis and made a series of 

observations and conclusions.   
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Hypothesis: Differences in Y. pestis infection severity between hosts suffering severe 

disease such as rodents and less severe disease such as dogs may be related to how well 

Y. pestis overcomes the macrophage associated stress during the initial phase of 

intracellular parasitism.  

Conclusion: A study conducted using mouse and dog macrophages supports the 

hypothesis proposed that, in mouse macrophages, Y. pestis can overcome the 

macrophage associated stress but not in dog macrophages; these findings are 

presented and discussed in detail in Chapter 3. 

Observation: Y. pestis intracellular multiplication and survival in macrophages are likely 

achieved through use of various Y. pestis intracellular virulence factors. While many of 

these virulence factors have been identified, some remain unexplored. As an effort to 

discover additional intracellularly employed virulence factors, we conducted a 

comparative proteomics study on Y. pestis residing intracellularly in macrophages versus 

microbial culture grown extracellular Y. pestis.  

Conclusion: (1) The study revealed that during the macrophage parasitism phase 

Y. pestis employs various bacterial general stress regulator mechanisms to adapt 

and survive the intracellular niche including newly identified tellurite resistance 

proteins. Results and discussion pertaining to this area of research are presented in 

Chapter 4. 

(2) As a part of this general stress response, expression of Y. pestis tellurite 

resistance operon was studied and the association of proteins with filamentous 

cellular morphology related to Y. pestis infection of macrophages was examined. 

These experimental results are presented and discussed in Chapter 5.  
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Table 1. Y. pestis biovars and strains, and their genomic properties 

Biovars 
Historical 

perspective 
Strains pgm locus

†
 

Plasmids 
Reference 

pCD pPCP pMT pCRY
*
 

Antiqua Justinian plague Angola + + + +
¥
 - (34) 

Antiqua + + + + - (23) 

Nepal516 + + + + - (23) 

Z176003 + + + + - (104) 

Pestoides F
§
 + + - +

ψ
 - (41) 

 

Mediaevalis Black Death KIM5 - + + + - (126) 

KIM5+ + + + + - (81) 

KIM6 - - + + - (14) 

KIM6+ + - + + - (45) 

KIM10 - - - + - (14) 

KIM10+ + - - + - (45) 

 

Orientalis Modern plague CO92 + + + + - (80) 

 

 

Microtus - 91001
#
 + + + + + (108) 

         
†
, pigmentation locus; *, cryptic plasmid; 

¥
, integrated pMT-pPCP plasmid; 

ψ
, larger pMT plasmid (137kbp);

 §
,
 
pathogenic to humans 

through aerosolized route of infection; 
#
, non

 
pathogenic to humans.    
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CHAPTER III 
 

 

YERSINIA PESTIS FILAMENTOUS MORPHOLOGY DURING 

INTRACELLULAR PARASITISM OF MACROPHAGES FROM HOSTS WITH 

HIGH AND LOW SUSCEPTIBILITY 
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Abstract 

Yersinia pestis, the etiological agent of plague, causes severe disease in natural 

rodent hosts but mild to inapparent disease in certain rodent predators such as dogs. Y. 

pestis initiates infection in susceptible hosts by accessing subcutaneous tissue in which it 

parasitizes and multiplies intracellularly in macrophages during the early stage of 

infection. Therefore, it was hypothesized that Y. pestis infection severity may be related 

to the extent to which the bacterium overcomes the initial host macrophage associated 

stress. To test this hypothesis, Y. pestis infection progress was observed in mouse splenic 

and dog peripheral blood derived macrophages, and various parameters associated with 

this infection were measured in mouse and dog macrophage-like tissue culture cells 

RAW264.7 and DH82, respectively. In all macrophages, at 2.5 h post infection (p.i.), a 

fraction of intracellular Y. pestis assumed filamentous morphology with filaments 

containing multiple genomes per colony forming unit (CFU). On progress of the 

infection, filamentous Y. pestis transitioned back to coccobacilli in mouse splenic and 

RAW264.7 macrophages. This change in Y. pestis morphology was associated with 

spacious extension of the Yersinia containing vacuole (YCV) in mouse splenic and 

RAW264.7 macrophages, and a more rapid increase of CFUs than the respective genomic 

equivalences (GEs) and of lysis of RAW264.7 cells. In dog peripheral blood 

macrophages, filamentous Y. pestis became coccobacilli at 7.5 h p.i., similar to what was 

observed in mouse macrophage infections. However, in dog macrophages these 

coccobacilli were in tight YCV and were killed by 27.5 h p.i. In DH82 cells, filamentous 

Y. pestis were present throughout the infection without noticeable structural change in 

YCV or significant host cell death. This observation was supported by a static GE to CFU 
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ratio of ≈ 4 in DH82 cell from 2.5 to 27.5 h p.i. Overall, these results support the 

hypothesis that Y. pestis in mouse or other similar highly susceptible host macrophages 

survive and replicate, which may aid in the development of severe systemic infection. 

However, in dog or other low susceptible hosts, macrophages appear to restrict the 

growth of Y. pestis at the intracellular parasitism phase, resulting in mild to inapparent 

disease.   

 

 

Introduction 

The Gram-negative bacterium Yersinia pestis, the etiological agent of  plague, 

causes severe disease in natural rodents hosts such as mice, ground squirrels and prairie 

dogs, but mild to inapparent disease in some rodent predators such as domestic dogs and 

coyotes (1, 10, 25, 34). Y. pestis is maintained in rodent populations in the endemic areas 

as a flea transmitted disease (1, 34). Rodent predators acquire the infection by either 

ingestion of infected rodents or via bite of Y. pestis infected rodent fleas (5, 18, 33, 48). 

The mechanism underlying the difference in susceptibility of rodents and canines to 

infection by Y. pestis is not understood. 

The high lethality of Y. pestis infection in rodents is demonstrated by the periodic 

extinction of local rodent populations during seasonal epizootics as well as by high 

mortality rates in experimental infection studies in rodents. In brown Norway rats, 

intradermal inoculation of 5 × 10
2
 CFU per animal, to mimic the natural flea bite 

transmission, caused 100% mortality within 3 to 15 days depending on the site of 

inoculation (50). Shortly after the intradermal injection, reddish papular eruptions occur 
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at the site, followed by enlargement of the local lymph nodes, septicemia and death of 

infected animals (50). Similar disease progression and mortality was observed for 

infection by parenteral inoculation or infected flea bites in mouse models, with infected 

animals succumbing to the disease within 2 to 8 days post-infection depending on the 

inoculation dose (51, 52). Following the bite of an infected flea or experimental injection, 

subcutaneous Y. pestis are phagocytized by tissue neutrophils and macrophages (26, 29, 

34). Y. pestis are readily killed by neutrophils, but this initial neutrophilic restriction of Y. 

pestis  is only effective for the first few hours post-infection; thereafter, expression of 

anti-phagocytic factor F1-antigen reduces this process (11, 34, 53). In contrast to killing 

by neutrophils, Y. pestis survives inside rodent macrophages during the early stage of 

infection (34). Phagosomes containing Y. pestis mature from early endosomes to 

phagolysosomes, but the bacteria are able to survive and multiply, thereby allowing 

dissemination while evading host innate immunity (6, 19, 39-41, 55, 56). While residing 

in phagolysosomes, Y. pestis expresses various stress response and virulence genes such 

as type-III secretion system, and F1- and pH6-antigens; and modifies the phagolysosomes 

into spacious vacuoles to adapt for progression of the infection by systemic dissemination 

(15, 27, 28, 36). Depletion of macrophages in mice by treatment with clodronate-

liposomes diminished the severity of infection by Y. pestis as indicated by a marked 

reduction in lesions in spleens and livers of inoculated animals (62). Overall, infection 

studies support the role of Y. pestis  infection of host macrophages in establishing local 

infection and systemic dissemination of infection following introduction of  Y. pestis into 

the host through  flea bites (53).  
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In contrast to flea transmission in natural rodent hosts, rodent predators acquire Y. 

pestis primarily by ingestion of infected rodents (33, 48). Some rodent predators such as 

ferrets and cats are highly susceptible to infection by Y. pestis, developing 

lymphadenopathy of the lymph nodes of the head or neck and subsequent systemic 

dissemination similar to the disease progression observed in rodents (16). In experimental 

infection studies in which cats ingested infected rodents, 80 to 100% of exposed cats 

developed clinical illness with 38 to 42% mortality (12, 16). Although domestic cats and 

dogs in endemic regions likely have similar rates of exposure to Y. pestis infected 

rodents, there are many more case reports in the literature of clinical disease in cats than 

in dogs, suggesting that the latter are less susceptible (12, 16, 42, 60).  In one of the few 

case reports of plague in dogs, the clinical signs of mild fever, malaise, stomatitis, and 

transient submandibular lymph node swelling were observed (33). Unlike experimentally 

infected cats, dogs infected experimentally with Y. pestis through either oral or 

subcutaneous route exhibited only mild clinical signs of short duration with no mortality 

(46).  The mechanism by which some species are less susceptible to infection by Y. pestis 

than others may be related to how well Y. pestis overcomes stress associated with 

intracellular parasitism of host macrophages. Although natural rodent hosts and canid 

rodent predators are infected via different routes, it appears likely that Y. pestis utilizes 

the same mechanism of evasion of the host innate immunity by intracellular parasitism of 

host macrophages and subsequent systemic dissemination in hosts with both high and low 

susceptibility.  

During Y. pestis infection, macrophages can employ a wide spectrum of 

antimicrobial defenses including phagolysosomal acidification; enzymatic actions from 
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cathepsins, lipase, nuclease and glycosidase; reactions of oxidizing agents and reactive 

oxygen species; and effects of cationic peptides, nitric oxide and reactive intermediates of 

nitric oxide. Further, by the action of natural resistance-associated macrophage protein 

(NRAMP), many phagolysosomal metal ions such as iron, calcium, magnesium and 

manganese are sequestered, making the organelle very hostile for the intracellular Y. 

pestis (13, 58). In order to adapt to this harsh intracellular environment, Y. pestis relies on 

various general stress regulators, mechanisms helping Y. pestis to reduce the 

phagolysosomal nitric oxide level, and various ion utilization systems (19, 35, 38, 41).           

Based on these observations, we hypothesized that differences in host 

susceptibility to Y. pestis infection between highly susceptible rodents and less 

susceptible dogs may be related to whether Y. pestis is able to overcome macrophage 

imposed stress during the intracellular parasitism phase of infection. In agreement with 

our hypothesis, Y. pestis in mouse macrophages showed intracellular survival for the 

experimental period of 27.5h, and the intracellular Y. pestis mediated morphological 

changes and cell lysis of the infected macrophages. However, in dog macrophages, 

intracellular Y. pestis was either killed by or at least restricted from inflicting damages to 

the macrophages.  
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Materials and methods 

 

Bacterial strains and culture conditions 

Y. pestis strain KIM62053.1+ hms
+
 psn

+
 psa

-
 ( psa2053.1) Ybt

+
 Lcr

-
 derived from 

KIM62053.1 (2) provided by Dr. Robert Perry, University of Kentucky was used in all 

experiments except where noted. For fluorescent imaging experiments, KIM62053.1+ 

was transformed with a modified green fluorescent protein expression plasmid (pGFPuv, 

Clontech, Mountain View, CA, USA) by electroporation as described elsewhere (9, 61). 

Isolated colonies on Brain Heart Infusion (BHI) (Difco, Becton Dickinson Company, 

Franklin Lakes, NJ, USA) agar plates grown for 36 h at 26
o
C were inoculated into BHI 

broth (Difco) and cultured overnight at 26
o
C with 160 rpm shaking. 

 

Isolation of mouse splenic macrophages 

Splenic macrophages were used as an appropriate alternate to blood macrophages 

due to the difficulty of collecting a sufficient volume of blood to isolate a sufficient 

minimum number of macrophages. Splenic macrophages were isolated from 7 to 11 week 

old, female C57BL/6J mice (The Jackson Laboratory, Maine, USA). Briefly, spleens 

from mice euthanized with 70% CO2 were collected sterilely in 10-15 mL of Dulbecco‘s 

Modified Eagle‘s Medium (DMEM) (Invitrogen, USA) supplemented with 20% fetal 

bovine serum (FBS) (Hyclone laboratories) and 50 µg/mL of gentamicin sulfate (Sigma-

Aldrich), and therein the same media, spleens were thoroughly minced using a sterile 

scalpel blade. The resulting cell suspension was passed successively through sterile nylon 

mesh of 160, 75, 15 µm sizes to get a cell debris free homogenous cell suspension, and 
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thereafter, the cell concentration was adjusted to 2 x 10
6
 viable cells/mL in the same 

media. Finally, each 6 mL of this cell suspension was cultured overnight in a 25 cm
2
, 

poly-D-lysine coated tissue culture flask (Becton Dickinson labware, MA, USA) at 37
o
C 

with 5% CO2, followed by single removal of non-adherent cells by washing with sterile 

PBS. The attached cells were further cultured for 3 days in a fresh batch of the same 

DMEM media. Subsequently, the cell layers were changed into RPMI-1640 media 

(Sigma-Aldrich, USA) supplemented with 20% FBS, 2 g/L sodium bicarbonate and no 

antibiotic for 2 days prior to use. 

 

Isolation of mouse bone marrow derived macrophages 

Adherent macrophages of bone marrow origin were isolated from femurs and 

tibias of 7 to 11 week old, female C57BL/6J mice (The Jackson Laboratory, Maine 

04609, USA). Briefly, femurs and tibias from mice euthanized with 70% CO2 were 

collected sterilely by blunt dissection, both ends of each bone removed, and the bone 

marrow cavity flushed into DMEM (Invitrogen) supplemented with 20% fetal bovine 

serum (FBS) (Hyclone laboratories) and 50 µg/mL of gentamicin sulfate (Sigma-Aldrich) 

with 3-5 mL of the same media per bone using 10 cc syringe and 23 gauge (0.6 x 19.0 

mm) needles. The resulting cells were washed thrice with 30-50 mL of sterile PBS 

containing 50 µg/mL of gentamicin and collected by centrifugation at 250xg for 10 min 

at room temperature, and the cell concentration was adjusted to 2x10
6
 viable cells/mL in 

DMEM with 20% FBS and 50 µg/mL gentamicin. Finally, each 6 mL of this cell 

suspension was cultured in a 25 cm
2
, poly-D-lysine coated tissue culture flask (Becton 

Dickinson labware, MA, USA) at 37
o
C with 5% CO2 for 3 days. Afterwards, the cell 



61 
 

layers were changed into RPMI-1640 media (Sigma-Aldrich) supplemented with 20% 

FBS, 2 g/L sodium bicarbonate and no antibiotic for 2 days. 

 

Isolation of dog peripheral blood derived macrophages 

Blood was collected from healthy adult dogs via venipuncture and anticoagulated 

with 10% sodium citrate (Sigma-Aldrich). Anticoagulant peripheral blood was diluted 2-

fold with PBS containing 50 µg/mL gentamicin, and the diluted blood was gently 

overlaid on sterile Histopaque®-1083 (Sigma-Aldrich) at the ratio of 2:1 and centrifuged 

at 800xg for 15 min at room temperature. From the multilayer separation, buffycoat was 

collected by aspiration and washed thrice with sterile PBS containing 50 µg/mL 

gentamicin and collected each time by centrifugation at 250xg for 10 min at room 

temperature.  The resulting cell pellet was resuspended in DMEM with 20% FBS and 50 

µg/mL gentamicin at the rate of 2 X 10
6
 viable cells/mL, and then 6 mL/25 cm

2
 poly-D-

lysine coated flask was cultured overnight at 37
o
C with 5% CO2 tension, followed by 

washing out the non-adherent cells once with sterile PBS. The cell layers were further 

cultured for 3 days in fresh batch of the same Dulbecco‘s media. Subsequently, 

gentamicin was removed and the cells were kept in RPMI-1640 media with 20% FBS 

with no antibiotic for another 2 days prior to use. 

 

Tissue culture cells and growth conditions 

Mouse macrophage cell line RAW264.7 was provided by Dr. Guolong Zhang, 

Department of Animal Science, Oklahoma State University, and dog macrophage cell 

line DH82 was provided by Dr. Susan E. Little, Department of Veterinary Pathobiology, 
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Oklahoma State University. Both cell lines were cultured at 37
o
C with 5% CO2 tension in 

RPMI-1640 media with 10% FBS. 

 

Infection of primary macrophage isolates 

For infection of primary macrophage isolates, Y. pestis strain KIM6-2053.1+ was 

grown in BHI broth at 26°C as described above, and the inocula quantified by OD600nm as 

compared with a standard curve for CFU/OD600nm. At the time of infection, 6 mL of an 

inocula of 4.0-8.3 X 10
6
 Y. pestis in RPMI-1640 with 10% FBS media was added to each 

25 cm
2
 flask containing 0.81-1.7 X 10

6
 macrophages, yielding a multiplicity of infection 

of 5:1. To initiate the infection, the flasks were centrifuged at 800×g for 3 min to enhance 

macrophage-bacteria contact and then incubated at 37
o
C under 5% CO2 concentration for 

30 min.  Subsequently, adherent macrophages were washed gently thrice with 6 to 7 mL 

of sterile PBS and treated with 6 mL of RPMI-1640 with 10% FBS media containing 50 

µg/mL gentamicin for 2 h under the  same incubation conditions to kill extracellular 

bacteria. At the end of gentamicin exposure, macrophages were once again washed gently 

thrice with 6 to 7 mL of PBS and then 6 mL of antibiotic-free RPMI-1640 with 10% FBS 

media were added. From the resulting infection, samples were collected for light and 

transmission electron microscopic studies at various post-infection intervals. At 2.5 h 

post infection (p.i.), samples were collected following removal of the gentamicin media 

and PBS washes by treating with 0.05% trypsin-EDTA (Mediatech Inc., Manassas, VA 

20109, USA) at 37
o
C for 1 to 3 min; however, at 7.5 and 27.5 h p.i., 2 h prior to 

sampling, the infected adherent macrophages were treated with RPMI-1640 with 10% 

FBS media and 50 µg/mL of gentamicin for 2 h to kill any extracellular Y. pestis.  
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Infection of tissue culture cells 

To prepare tissue culture cells for infection, RAW264.7 and DH82 cell 

monolayers grown in 75 cm
2 

tissue culture flasks were released into the fresh RPMI-1640 

with 10% FBS media using cell scraper (BD Falcon, Biosciences discovery labware, 

Bedfor, MA01730, USA) and number of cells per unit volume were counted by using 

hemocytometer. Prior to use in assays, tissue culture cell viability was assessed by trypan 

blue exclusion assay with >95% viability required for subsequent use. Infection of 

RAW264.7 and DH82 macrophage cell lines with Y. pestis KIM6+ were carried out in 

96-well flat-bottom plates (FALCON flat bottom polystyrene plate, Becton Dickinson 

Company, NJ, USA). Prior to infection, 100 µL of cell suspensions containing 1x10
6
 

RAW264.7 viable cells/mL of RPMI-1640 with 10% FBS were sub-cultured in wells A1 

to A3 of the top row of 96-well flat-bottom tissue culture plates and in the same way 

DH82 cells were sub-cultured in wells A7 to A9. These plates were incubated at 37
o
C 

with 5% CO2 concentration for 12 to 16 h. For infection, 100 µL of RPMI-1640 with 

10% FBS media containing 5×10
6
 Y. pestis KIM6+ cultured overnight at 26

o
C was added 

to each well of A1-3 and A7-9 of all plates yielding a MOI of 5:1. The resulting infection 

was carried out at 37
o
C with 5% CO2 for 30 min and then treated with 50 µg/mL 

gentamicin for 2 h as above mentioned for primary macrophage infections. At 0 h p.i., 

replica of inocula and tissue culture cells with which the infection had started were taken 

as such for analysis. For 0.5 and 2.5 h p.i., samples were obtained immediately before 

adding gentamicin and antibiotic-free media, respectively. At 1.25 and 2.0 h p.i., samples 

were obtained after removal of the gentamicin media and washing thrice with PBS. Prior 

to 5.0, 7.5, 12.5, 18.5 and 27.5 h p.i. sampling, the tissue layers were treated for a second 
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time with RPMI-1640 with 10% FBS media contained 50 µg/mL of gentamicin for 2 h as 

mentioned above.  

 

Determination of colony forming units 

CFUs were determined using a novel high-throughput assay developed by Nizet 

and colleagues in which infected tissue culture cells in 96-well plates are lyzed, serial 

dilution, and microcolonies of intracellular bacteria are grown in soft agar in the 96-well 

plates and counted to determine the CFUs (31, 61). At the time of sampling, media from 

wells was aspirated, adherent tissue culture cells washed gently thrice with 100 µL of 

PBS, and the final wash transferred laterally to wells in the A row of the plate. Following 

washing and transfer of the final wash, 100 µL of 0.1% Triton X-100 in sterile PBS was 

added to wells A1-3 and A7-9, and the plates were incubated for 10 min at 37
o
C with 160 

rpm on an oscillating shaker to allow lysis and release of intracellular Y. pestis into the 

media. Eighty µL of PBS were added to wells B1 to H12, and the cell lysates and wash 

solutions in row A were serially diluted 5-fold in PBS by transferring 20 µL from each 

row to the next from row A to row H. Subsequently, 80 µL of bacterial suspension left in 

each well of 96-well plate was overlaid gently with 120 µL of 0.83% Bacto-agar (Becton 

Dickinson and company, MD, USA) maintained at 45 to 48
o
C. Finally, the plates were 

incubated at 26
o
C for 16 to 24 h, and the resulting micro-colonies were counted using an 

inverted light microscope. Before adopting this micro-plate based colony counting, 

accuracy of the method was compared with conventional CFU determinations using a 10 

cm agar plate method, which is described in detail by Wendte et. al., 2011 (61).   
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Determination of genomic equivalences 

To determine the total number of Y. pestis comprised of culturable, viable but 

non-culturable, and dead bacteria in samples at various post-infection time points, GEs 

were determined using PCR. A 90 bp fragment from the single copy Y. pestis specific 

‗fur‘ gene was amplified using forward primer 5‘-TCT GGA AGT GTT GCA AAA TCC 

TG-3‘ and reverse primer, 5‘-  AAG CCA ATC TCT TCA CCA ATA TCG-3‘. PCR 

reactions were carried out with 300 nM of each primer at 20 µL volume using the Fast 

SYBR green master mix (Applied Biosystems) according to the manufacture‘s instruction 

(initial enzyme activation at 95
o
C for 20 sec, followed by 40 cycles of denaturation at 

95
o
C for 3 sec and annealing/extension at 60

o
C for 30 sec). Standard curves of threshold 

cycle (ct) values versus bacterial number were prepared by spiking known CFUs of Y. 

pestis strain KIM6+ into samples containing 1x10
6
 RAW264.7 or DH82 cells/mL. The 

assay was initiated  immediately after adding the bacteria into the cell suspension by first 

heat bursting at 95
o
C for 10 min, and after centrifugation at 1,000×g for 1 min,  2 µL of 

supernatant was used to determine the ct-value using a 7500 Fast Real-Time PCR system 

(Applied Biosystems). For samples containing infected macrophages, the assay was 

initiated by heat burst, and the resulting samples were assayed as described above.  

 

Determination of infected macrophage counts 

To determine the number of macrophages at a particular infection interval, counts 

of macrophages were conducted. At each sampling period, infected RAW264.7 and 

DH82 cells in wells of replica plates were released by gentle pipetting and dilution in 
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0.4% trypan blue-PBS dye. Using a hemocytometer and microscope, the number of 

viable and non-viable macrophages was determined.  

 

Determination of the percent infectivity 

At each infection interval, samples of Y. pestis infected RAW264.7 and DH82 

cells were cytospun (Statspin Cytofuge, Norwood, MA02062, USA) onto glass 

microscope slides at low speed for 5 min and stained with Wright Giemsa stain. Using a 

light microscope at 1,000x magnification, approximately 400 macrophages per sample 

were examined to count the number of macrophages which had at least one detectable 

intracellular bacterium, and from these values, the percent infectivity was calculated.    

 

Calculation of CFUs and GEs per macrophage 

At each infection interval, number of CFUs and GEs per macrophage was 

calculated from the CFUs, GEs and macrophage number per mL and percent infectivity 

of the corresponding interval using the formulas: 

                                                   CFUs/mL 

CFUs per macrophage = [-----------------------------------------] x percent infectivity as a ---

-                                                                                                     fraction 

                                               Total macrophages/mL 

  

                                                   GEs/mL 

GEs per macrophage =   [-----------------------------------------] x percent infectivity as a ----

-                                                                                                    fraction 

                                               Total macrophages/mL  

Here, total macrophages/mL represents the sum of trypan blue positive and negative cells 

per mL at each infection interval. 
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Macrophage cytotoxicity assay 

Replica samples of RAW264.7 and DH82 cells infected with Y. pestis were used 

for the cytotoxicity assay. At each infection interval, the activity of the eukaryotic 

cytoplasmic enzyme lactate dehydrogenase (LDH) in the extracellular media was 

measured as an indicator of macrophage cell lysis. The LDH activity was measured using 

the CytoTox-ONE
TM

 Homogenous Membrane Integrity Assay kit (Promega) in a POLAR 

star OPTIMA (BMG labtechnologies Inc.) at excitation and emission of 560 and 590 nm, 

respectively. From these values, percent cytotoxicity was calculated using the formula:  

                        (LDH release from infected cells - release from uninfected cells) 

% Cytotoxicity =  [----------------------------------------------------------------------------] × 100  

                        (LDH release from positive control - release from uninfected cells) 

  

Positive control release is the maximum LDH release from uninfected macrophages 

induced by cell lysis with 0.1% Triton X-100. 

 

Infection of tissue culture macrophages in antibiotic free condition 

In our standard infection protocol, co-occurrence of filamentous Y. pestis 

intracellularly and the presence of gentamicin in the extracellular media as part of the 

infection procedure raised concern that gentamicin may play a role in this filamentation 

process. To assess this concern, RAW264.7 and DH82 cells were infected in the same 

manner as the standard protocol for 30 min at 37
o
C, however, in place of gentamicin 

containing RPMI with 10% FBS media, Hank‘s balanced salt solution (HBSS) with 10% 

FBS was used for the remaining period of the experiment. From the infection, samples 

for light microscopic studies were conducted at 2.5 and 5 h p.i. 
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Microscopic studies 

Morphological features of intracellular Y. pestis and of infected macrophages 

were examined using microscopy.  

(i) Fluorescent microscopy 

RAW264.7 and DH82 cells infected with Y. pestis strain KIM6+ GFPuv as 

described above were sampled between 3 to 4 h p.i. At the time of sampling, infected 

macrophages from 96-well tissue culture plates were directly released by using pipetting 

force into PBS supplemented with 10% FBS. From the suspension, a thin layer of wet 

films were prepared between microscopic glass slide and cover slip, and the wet mount 

preparations were observed directly under fluorescent microscope (Eclipse 80i, Nikon 

Instruments Inc., Melville, NY, U.S.A.) using a UV-filter.  

(ii) Light microscopy 

Y. pestis infected macrophage cell lines, RAW264.7 and DH82, and primary 

macrophage isolates from mouse spleen and bone marrow and dog peripheral blood were 

spun onto microscopic slides at slow speed for 5 min using a cytocentrifuge (Statspin 

Cytofuge, Norwood, MA, USA), and the slides stained with Wright Giemsa stain. The 

stained slides were examined at 1,000x magnification using light microscopy. 

(iii) Transmission electron microscopy (TEM) 

Primary macrophage isolates from mouse spleen and dog peripheral blood and 

tissue culture cell lines RAW264.7 and DH82 were infected as described above and 

sampled at 2.5, 7.5 and 27.5 h p.i. During sampling, infected primary macrophage 

isolates were released into RPMI-1640 with 10% FBS media at the intended sampling 

intervals by using trypsin as explained elsewhere, then collected at 250xg for 10 min, and 
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finally fixed with 2.5% (Vol/Vol) glutaraldehyde in PBS for 1 h at room temperature. 

After fixing, the cells were changed into PBS as noted above and kept at 4
o
C until 

processing. In case of tissue culture macrophages, infected cells in 25 cm
2
 flasks were 

fixed therein for 15 min on ice with 2.5% (Vol/Vol) glutaraldehyde in PBS. 

Subsequently, the fixed cells were transferred using a CytoOne
®
 cell scraper (USA 

Scientific Inc., Ocala, FL34478, USA) into the above noted glutaraldehyde solution to fix 

further for 45 min at room temperature. Thereafter, the fixed cells were collected by 

centrifuging at 250xg for 10 min at room temperature, suspended in PBS and maintained 

at 4
o
C for further processing. For this processing, cells were postfixed with 1% osmium 

tetroxide (Polysciences Inc., Warrington, PA) in PBS for 1 h. Subsequently, cells washed 

thrice with PBS were en bloc stained with 1% aqueous uranyl acetate (Ted Pella Inc., 

Redding, CA) for 1 h, dehydrated in ascending grades of ethanol and then embedded in 

Eponate resin (Ted Pella Inc., Redding, CA). Ultra-thin sections of 90 nm were prepared 

using a Leica Ultracut UCT ultramicrotome (Leica Microsystems Inc., Bannock-burn, IL, 

USA) and stained with uranyl acetate and lead citrate (Sigma, St Louis, MO). Finally 

these sections were examined in a JEOL 1,200 EX transmission electron microscopy 

(JEOL USA Inc., Peabody, MA, USA).  

 

Morphometric analysis of TEM images 

Electron microscopic images were assessed using gimp
® 

photo-editing software 

version 2.6. Based on 1 µm measure bar provided on the image, bacterial length was 

measured. The bacteria longer than 5 µm, double the size of maximum length of normal 

Y. pestis (0.5-08 x 1-2.5 µm), were considered to be filamentous Y. pestis. In addition, 
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intracellular Y. pestis with irregular morphology such as vacuoles or unevenly distributed 

electron dense aggregates on cross section were scored as dead bacteria. For infected 

macrophages, the percentage of cells which had spacious extension of YCV and normal 

nuclear and mitochondrial morphological features were quantified. 

 

Statistical analysis 

Wherever applicable, data were compared for statistical significance through 

student‘s t-test. The resulting analysis was reported as significant difference at p-value 

0.01 or 0.05 for a given parameter. For the analysis, mean value of a particular parameter 

at a given p.i. from mouse splenic macrophage infection was statistically compared with 

the corresponding value from dog peripheral blood derived macrophage infection. 

Similarly, the analysis was carried out between RAW264.7 and DH2 cell infections.  

 

 

Results 

 

Intracellular parasitism of mouse and dog macrophages by Y. pestis 

We hypothesized that differences in host susceptibility to Y. pestis infection 

between highly susceptible rodents and less susceptible dogs may be related to whether Y. 

pestis is able to overcome macrophage imposed stress during the intracellular parasitism 

phase of infection. To this end, morphological changes of Y. pestis in primary 

macrophages derived from mouse spleen and bone marrow and dog peripheral blood 

were monitored. These cells were infected with Y. pestis strain KIM6+, and macrophage 
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and bacterial morphology observed over a 27.5 h infection period by light and electron 

microscopy. Y. pestis infections of mouse macrophages have been previously reported, 

but infections of dog macrophages have not. As has been previously reported for mouse 

macrophages (4), intracellular Y. pestis in splenic macrophages appeared primarily as 

coccobacilli in tight YCV at 2.5 h p.i. (Fig. 1). In addition, some of the intracellular Y. 

pestis were filamentous in structure, having partial or no visible septation along the 

bacterial length under light microscope. Morphology at 7.5 h p.i. was similar, but many 

macrophages exhibited spacious YCVs. At 27.5 h p.i., many of the splenic macrophages 

appeared larger with foamy cytoplasm, and Y. pestis had bipolar rod appearance. In 

agreement with the light microscopic observations, morphometric analysis on TEM 

images showed the similar sequence of morphological changes in both intracellular Y. 

pestis and splenic macrophages (Fig. 2) (Table 1A).  At 2.5 h p.i., on an average 11% of 

the intracellular Y. pestis per macrophage was filamentous in shape with a mean length of 

6.8 µm. The number of filamentous Y. pestis quantified by transmission electron 

microscopy may under estimate the actual number because only those filamentous 

bacteria in a longitudinal axis can be observed in the planar sections. These intracellular 

bacteria were morphologically intact and contained within tight YCV. At 7.5 h p.i., no 

filamentous Y. pestis were observed, but the number of intact coccobacilli per 

macrophage increased noticeably. This increase was also accompanied with spacious 

extension of YCV in 82% of the infected macrophages. At 27.5 h p.i., few splenic 

macrophages were observed, suggesting that macrophages lost viability between 7.5 and 

27.5 h p.i. Those remaining macrophages had only low number of intact coccobacilli in 

tight YCVs. Overall, microscopic examinations of mouse splenic macrophages infected 
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with Y. pestis indicates that the bacteria in the macrophages assume filamentous 

morphology at the initial stage of infection as an adaptation to the stressful intracellular 

environment. Subsequently by extending YCVs into spacious compartments at 7.5 h p.i., 

intracellular Y. pestis return to normal coccobacillary shape, continue intracellular 

multiplication and may have been released from non-viable macrophages at 27.5 h p.i.. 

In contrast to Y. pestis infection of splenic macrophages, Y. pestis in mouse bone 

marrow macrophages did not exhibit stress morphology. Throughout 27.5 h of infection, 

morphological features of intracellular Y. pestis did not change appreciably, maintaining 

bipolar coccobacillary morphology (Fig. 3). In addition, bone marrow macrophages 

exhibited no obvious extension of YCV. These observations are compatible with the 

naïve bone marrow macrophages being less efficient in exerting antibacterial defense 

against Y. pestis, resulting in no stress related structural changes in the intracellular 

bacteria (30, 57).       

Intracellular Y. pestis in dog macrophages underwent a distinctive sequence of 

morphological alteration during 27.5 h of infection. Similar to mouse splenic macrophage 

infections, a fraction of the intracellular Y. pestis exhibited filamentous morphology, and 

Y. pestis were contained within tight YCVs (Fig. 1). At 7.5 h p.i., most intracellular Y. 

pestis exhibited coccobacillary morphology with only a few filamentous forms present. 

By 27.5 h p.i., intracellular Y. pestis appeared poorly stained by Wright Giemsa stain and 

granular with inconspicuous coccobacillary morphology, suggesting that these bacteria 

had been killed. In contrast to the marked changes in morphology of intracellular Y. 

pestis, changes in the morphological features of the dog macrophages were restricted to 

increased foamy cytoplasm at 7.5 and 27.5 h p.i. The TEM images from samples at 2.5 
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and 7.5 h p.i. mirrored the corresponding pictures of light microscopy (Fig. 2) (Table 

1A). At 2.5 h p.i., a majority of the intracellular Y. pestis were intact, having evenly 

distributed electron dense materials on cross sections typical of normal bacterial 

morphology. At 7.5 h p.i., coccobacilli appeared to be enclosed in individual tight YCVs, 

but the number of intact coccobacilli per macrophage increased significantly from 2.5 h 

p.i., compatible with transition of filamentous Y. pestis to coccobacilli. At 27.5 h p.i., 

intracellular Y. pestis appeared to be housed in YCV with double membranes in 80% of 

the infected macrophages; however, most of these intracellular coccobacilli exhibited 

irregular morphology consisting of vacuolation and uneven distribution of electron dense 

aggregates on cross sections, compatible with killing of the bacteria by the dog 

macrophages. Particularly, these disfigured bacteria were either partially or completely 

digested by the macrophages to condensed electron dense remnants inside the expanded 

periplasmic space. These findings suggest that in dog peripheral blood macrophages, 

although intracellular Y. pestis exhibit similar stress morphology as in mouse splenic 

macrophages, Y. pestis in dog macrophages failed to extend YCV at 7.5 h p.i., possibly 

facilitating killing of Y. pestis by the macrophages.  

 

Intracellular Y. pestis parasitism of mouse and dog macrophage-like cell lines 

In order to better quantify and compare intracellular parasitism of Y. pestis in 

macrophages from hosts having different susceptibility to infection, CFUs and GEs per 

macrophage were measured and light and electron microscopic images obtained for Y. 

pestis infection of mouse and dog macrophage-like RAW264.7 and DH82 cell lines. 

Further, under light microscope a number of macrophages which had observable 
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intracellular Y. pestis were counted as percentage of infectivity. Throughout the infection, 

approximately 90 to 100% of RAW264.7 and 90 to 95% of DH82 cells had at least one 

detectable Y. pestis per macrophage (Fig. 4). During the initiation of infection from 0 to 

2.5 h, Y. pestis CFUs per macrophage decreased, but GEs increased for both RAW264.7 

and DH82 cells (Fig. 5). Both Wright Giemsa stained light and transmission electron 

microscopic images at 2.5 h p.i., showed numerous filamentous Y. pestis present (Figs. 6 

and 7) (Table 1B), suggesting that the decrease in CFUs and accompanying increase in 

GEs reflected filamentous growth of Y. pestis in both macrophage-like cell lines.  This 

filamentous change was also evidenced under UV-fluorescent microscope in Y. pestis 

strain KIM6+ GFPuv infection of RAW264.7 and DH82 cells at 3 to 4 h p.i. (Fig. 8). 

From 2.5 to 7.5 h p.i., in RAW264.7 cells, some filamentous intracellular Y. pestis 

reverted to coccobacilli, but still an average of 6.4% of intracellular Y. pestis per 

macrophage were filamentous (Table 1B). YCV in infected RAW264.7 cells had 

gradually increased into spacious compartments and at 7.5 h p.i., 64% of the total 

infected cells had moderate extension of YCV in electron micrographs (Table 1B, Fig. 7). 

Between 7.5 to 12.5 h p.i., the spacious extension of YCV induced by intracellular Y. 

pestis was very prominent; furthermore, this extension was accompanied with conversion 

of filamentous Y. pestis into coccobacilli. In agreement with these microscopic 

observations, CFUs per RAW264.7 cell increased at a rapid rate and finally equalled the 

corresponding GEs by 18.5 h p.i. (Fig. 5A).  

In DH82 cells, light and transmission electron microscopic images showed 

presence of filamentous Y. pestis throughout the experiment (Figs. 6B and 7) (Table 1B). 

Supporting this observation, CFUs per DH82 cell also lagged significantly behind the 
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respective GEs for 27.5 h of infection (Fig. 5B). Furthermore, at 27.5 h p.i. in DH82 

cells, 29% of intracellular Y. pestis showed loss of viable bacterial morphology in TEM 

images (Fig. 7). These results suggest that Y. pestis in RAW264.7 cells experienced and 

then likely overcame the macrophage stress. But in DH82 cells, Y. pestis likely failed to 

overcome the intracellular stress resulting in loss of viability as evidenced in TEM 

images at 27.5 h p.i. Further, the filamentous morphology of Y. pestis in RAW264.7 and 

DH82 cells is most likely an adaptive strategy for retaining viability in the intracellular 

environment. This change was not caused by gentamicin that was used to kill the 

extracellular bacteria as part of the experimental procedure explained in materials and 

methods. At 2.5 and 5.0 h p.i., RAW264.7 and DH82 cells infected and maintained in 

antibiotic free condition also had the filamentous Y. pestis similar to other experiments as 

noted above (Fig. 9).             

 

Morphology and cytotoxicity of Y. pestis infected RAW264.7 and DH82 cells 

At 2.5 h p.i., Y. pestis inside the macrophages appeared to be contained in tight 

YCVs (Figs. 6 and 7) for both RAW264.7 and DH82 cells, but by 7.5 h p.i., YCV were 

spacious containing multiple bacteria for RAW264.7 cells, but YCV in DH82 cells 

appeared unchanged morphologically from the 2.5 h p.i. time interval. In RAW264.7 

cells, this spacious extension of YCV was very prominent at 12.5 h p.i. and persisted 

throughout the remaining period of the experiment. At later p.i. times, the number of 

RAW264.7 cells decreased suggesting infection associated macrophage death; whereas, 

DH82 cell numbers declined only slightly (Fig. 10).    
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As previously reported in mouse J774A.1 macrophage-like cell lines (54), Y. 

pestis infection is associated with loss of macrophage viability. Using the trypan blue dye 

exclusion method with RAW264.7 cells revealed approximately 50% loss of cell 

viability, but only approximately 20% loss of cell viability in Y. pestis infected DH82 

cells (Fig. 10A).  To further characterize this cell death, lactate dehydrogenase leakage 

was determined. As shown in Figure 11, RAW264.7 cells infected with Y. pestis 

experience rapid cell lysis as indicated by specific LDH leakage during the initial 2.5 h 

p.i. period, and then slower, steady lysis through 27.5 h p.i. resulting in 45% lysis of 

infected cells as compared with uninfected control RAW264.7 cells exhibiting 0% cell 

lysis. In contrast, Y. pestis infection of DH82 cells exhibited cell lysis of approximately 

10% for the entire infection period, which was not statistically significantly higher than 

was that of uninfected control groups. These results show that Y. pestis infection of 

RAW264.7 cells causes cell lysis, which may release Y. pestis to the extracellular space 

in infected animals potentially initiating septicemic plague.      

 

 

Discussion 

Although Y. pestis infects various animal species, infection severity differs from 

species to species. Rodents are the natural hosts and suffer severe disease with high 

mortality, but some rodent predators such as dogs and coyotes experience only mild or 

inapparent disease (1, 10, 25, 34, 46, 47, 59). This variation in infection severity among 

susceptible hosts may be related to the extent to which Y. pestis overcomes the initial host 

macrophage mediated stress. The host macrophages are the primary cells used by Y. 
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pestis entering through peripheral route of infection to evade the host immune mechanism 

and to multiply intracellularly during the early stage of infection (6, 19, 29, 34, 39-41, 53, 

56, 62). The goal of our experimental study was to better understand Y. pestis responses 

to macrophages from mice and dogs, as high and low susceptible hosts, respectively. We 

hypothesized that Y. pestis in macrophages of highly susceptible hosts likely overcomes 

the intracellular antimicrobial stresses and multiplies intracellularly. Whereas, in 

macrophages of low susceptible hosts, Y. pestis fails to overcome the intracellular defense 

mechanisms and are eventually killed by the macrophages.   

In this experimental study, we found that a fraction of intracellular Y. pestis in 

host macrophages assumes filamentous morphology with multiple copies of genome per 

bacterium likely induced as a result of macrophage associated stress. This filamentation 

of Y. pestis was frequently noticed during the early stage of infection in both primary and 

tissue culture macrophages (Figs. 1, 2, 6 and 7). Similar filamentous stress response have 

been observed for uropathogenic E. coli in mouse urinary bladder epithelial cells, 

Legionella spp. in Vero cell line, Mycobacterium tuberculosis in human macrophage cell 

line THP-1, and Salmonella enterica serovar Typhimurium in mouse bone marrow and 

RAW264.7 macrophages (7, 21, 24, 32, 44, 45). The antibiotic gentamicin used in our 

infection protocol is also known to induce filamentous changes in exposed bacteria (17). 

However, in our study, when gentamicin was omitted from the infection protocol, 

filamentous Y. pestis were still observed supporting intracellular stress as the cause rather 

than gentamicin (Fig. 9).  

Y. pestis filamentation response in macrophages may be an adaptive strategy to 

cope with intracellular antibacterial defense mechanisms in addition to stress relievers 
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such as general stress regulation and inhibition of acidification of YCV (4, 19, 38). 

Evidently, for Salmonella typhimurium filamentous changes in primary mouse bone 

marrow macrophages or in RAW264.7 cell line are associated with exposure to NADPH 

oxidase, reactive oxygen species, nitric oxide or proteases associated with phagosome, 

and further, this structural change is positively influenced by IFN-gamma priming of 

macrophages or presence of cationic antimicrobial peptides during the infection (44, 45, 

49).  In support of filamentation as a specific adaptive change induced by intracellular 

stress, Y. pestis in naïve bone marrow macrophages, which are considered to be less 

efficient in their antimicrobial defense mechanisms (30, 57), did not change into 

filamentous shape during 27.5 h of infection (Fig. 3). In addition, Y. pestis SOS response 

to DNA damage occurring intracellularly is also known to cause the bacterium to 

undergo filamentous shape by interfering with cell division process as observed in other 

bacteria (3, 7, 43). Presumably, filamentation by Y. pestis is an adaptive strategy to 

survive the hostile intracellular environment; this structural alteration prevents the 

passing of damaged genomic copies to the daughter cells, by extending the time frame for 

DNA repair (22, 23). 

In addition to antimicrobial intracellular stressors, insufficiency of essential 

nutrients in the macrophage phagolysosomal environment may also trigger the 

filamentation process in Y. pestis; particularly, low calcium in YCV may favor the 

filamentation of Y. pestis in macrophages (20, 37, 63). Further research will need to be 

done on this area to better understand the molecular-bridging machinery connects the 

external stimuli to the bacterial cell division process. Although filamentous stress 

response has been reported for other bacteria, filamentation of Y. pestis in macrophages is 
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new to this field of study; furthermore, we conclude that Y. pestis filamentous response to 

intracellular parasitism employs same type of molecular mechanism in mouse and dog 

macrophages.  

The filamentous morphology of Y. pestis reverted to coccobacillary form both in 

mouse splenic and tissue culture macrophages at later stages of infection (Figs.1, 2, 6A 

and 7). However, the progression of Y. pestis morphologic change occurred more rapidly 

in splenic macrophages than in tissue culture cells (Figs. 1 and 2). For splenic 

macrophages, by 7.5 h p.i., the majority of intracellular Y. pestis converted back to 

coccobacilli, which were loosely confined within the spacious YCV. Based on the 

scarcity of splenic macrophages in samples at 27.5 h p.i., it is believed that most of these 

infected macrophages may have been lysed, thereby releasing intracellular Y. pestis. Most 

splenic macrophages in these samples had Y. pestis with morphology similar to early 

infection suggesting that these macrophages may have been previously uninfected cells 

which were re-infected by the released Y. pestis. Whereas in case of RAW264.7 cells, 

increasing number of coccobacilli were noticed after 7.5 h p.i., as indicated between 7.5 

to 18.5 h p.i. by increased CFUs with the same GEs (Figs. 5A, 6A and 7). This difference 

between mouse primary and tissue culture macrophage may be due to subtle difference in 

the gene repertoire for the bacterial defense mechanisms (30). In accordance with the 

microscopic observation, after 7.5 h p.i., CFUs per RAW264.7 cell increased at a rapid 

rate and equalled the corresponding GEs likely as the result of cell division of filaments 

having multiple copies of genome into many single GE copy coccobacilli (Fig. 5A). 

Reversion of Y. pestis from filaments to coccobacilli in mouse macrophages reflects 

release of bacteria from the intracellular stresses. The molecular machinery which 
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mediates the transition from filamentous Y. pestis to the normal coccobacillary 

morphology is largely unknown; nevertheless, products of Y. pestis genes y2313, y2315 

and y2316 are believed to play a role in this process. These genes are expressed in mouse 

macrophage cell line J774A.1 at 4 h p.i, and mutational inactivation was associated with 

retention of filamentous intracellular Y. pestis for at least 24 h of infection (14).  

In addition to conversion from filamentous to coccobacillary morphology as an 

indication of overcoming macrophage imposed stress, Y. pestis in mouse splenic and 

tissue culture macrophages also cause spacious vacuolar extension of YCV (Figs. 1, 2, 

6A and 7). This vacuolar extension is consistent with previous report in J774A.1 

macrophages infected with Y. pestis KIM6. After 8 h p.i., YCVs were actively extended 

by the intracellular Y. pestis, and this extension process was dependent on presence of 

intact copies of PhoP-PhoQ transcriptional regulator (19). However, the precise 

molecular mechanism governing this process is unknown. Y. pestis mediated extension of 

YCV would likely benefit the bacterium by dilution of phagolysosomal content thereby 

reducing their antimicrobial activity. 

In contrast to these changes in mouse macrophages, Y. pestis in dog tissue culture 

macrophages retained filamentous shape throughout 27.5 h of infection, which also 

observed by CFUs and GEs per macrophage with 4-fold less CFUs per DH82 cell than 

the respective GEs for the entire period of infection (Figs. 5B, 6B and 7). This suggests 

that Y. pestis in DH82 cells may not efficiently overcome the intracellular stress, and 

consequently, the bacterium is susceptible to macrophage killing as evidenced by 

presence of disintegrating coccobacilli in YCV at 27.5 h p.i. (Fig. 7). In dog peripheral 

blood mononuclear cells, Y. pestis converted from filamentous forms to coccobacilli at 
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7.5 h p.i. but failed to modify YCV and remained in tight YCV, suggesting that 

intracellular Y. pestis are still controlled by macrophage defense mechanisms (Figs. 1 and 

2). These coccobacilli eventually died within YCVs due to macrophage killing. This 

initial failure of intracellular parasitism phase by Y. pestis likely leads to less severe 

disease in dogs and certain other carnivores such as coyotes (34, 46, 47, 59).   

Apart from the vacuolar extension of YCV, mouse and dog tissue culture 

macrophages markedly differed in the loss of viability from Y. pestis infection for the 

period of 27.5 h p.i. (Figs. 10 and 11). For the infection, RAW264.7 cells exhibited upto 

45% cell lysis in contrast to approximately 10% for DH82 cells (Fig. 11). High 

percentage of LDH leakage in RAW264.7 cells may be associated with spacious 

extension of YCV leading to lysis of infected macrophages. Furthermore, this finding in 

RAW264.7 cells agrees with the prevailing speculation that cell lysis is the primary mean 

of Y. pestis release from the infected macrophages (40). In contrast, restriction of 

intracellular Y. pestis to retention of filamentous shape in tight, unmodified YCV for the 

entire infection may account for the failure of Y. pestis to induce lysis of DH82 cells. 

Similar observations have been made for filamentous Burkholderia pseudomallei in THP-

1 cells (8).      

In conclusion, our results clearly demonstrate that Y. pestis in host macrophages 

assume filamentous morphology during initial stage of exposure to intracellular stress 

likely as a structural adaptation used by the bacterium to prolong the survivability under 

harsh conditions. These filamentous Y. pestis in mouse macrophages eventually returned 

into regular coccobacillary form, which was associated with actively extending YCV into 

spacious compartment and also causing extensive macrophage cell lysis. However, in dog 
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macrophages, Y. pestis was either restricted to remain in filamentous structure for an 

extended period of time and then were killed by the macrophages or changed into 

coccobacilli but eventually killed by the macrophages due to failure to form spacious 

extension of YCV. Therefore, severity of infections and fatal outcomes thereof in rodents 

and other highly susceptible hosts may be the consequence of failure to restricting Y. 

pestis growth at the macrophage parasitism phase. In contrast, superior control of the 

progress of Y. pestis intracellular parasitism in dog macrophages is associated with mild 

disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



83 
 

References 

1. Anonymous. 1999. Plague manual--epidemiology, distribution, surveillance and 

control. Wkly Epidemiol Rec 74:447-481. 

2. Bearden, S. W., J. D. Fetherston, and R. D. Perry. 1997. Genetic organization 

of the yersiniabactin biosynthetic region and construction of avirulence mutants in 

Yersinia pestis. Infect Immun 65:1659-1668. 

3. Bi, E., and J. Lutkenhaus. 1993. Cell division inhibitors SulA and MinCD 

prevent formation of the FtsZ ring. J Bacteriol 175:1118-1125. 

4. Bliska, J. B., C. Pujol, K. A. Klein, G. A. Romanov, L. E. Palmer, C. Cirota, 

and Z. J. Zhao. 2009. Yersinia pestis can reside in autophagosomes and avoid 

xenophagy in murine macrophages by preventing vacuole acidification. Infect 

Immun 77:2251-2261. 

5. Boone, A., J. P. Kraft, and P. Stapp. 2009. Scavenging by mammalian 

carnivores on prairie dog colonies: implications for the spread of plague. Vector 

Borne Zoonotic Dis 9:185-190. 

6. Cavanaugh, D. C., and R. Randall. 1959. The role of multiplication of 

Pasteurella pestis in mononuclear phagocytes in the pathogenesis of flea-borne 

plague. J Immunol 83:348-363. 

7. Chauhan, A., M. V. Madiraju, M. Fol, H. Lofton, E. Maloney, R. Reynolds, 

and M. Rajagopalan. 2006. Mycobacterium tuberculosis cells growing in 

macrophages are filamentous and deficient in FtsZ rings. J Bacteriol 188:1856-

1865. 



84 
 

8. Chen, K., G. W. Sun, K. L. Chua, and Y. H. Gan. 2005. Modified virulence of 

antibiotic-induced Burkholderia pseudomallei filaments. Antimicrob Agents 

Chemother 49:1002-1009. 

9. Conchas, R. F., and E. Carniel. 1990. A highly efficient electroporation system 

for transformation of Yersinia. Gene 87:133-137. 

10. Cully, J. F., Jr., T. L. Johnson, S. K. Collinge, and C. Ray. 2010. Disease 

limits populations: plague and black-tailed prairie dogs. Vector Borne Zoonotic 

Dis 10:7-15. 

11. Du, Y., R. Rosqvist, and A. Forsberg. 2002. Role of fraction 1 antigen of 

Yersinia pestis in inhibition of phagocytosis. Infect Immun 70:1453-1460. 

12. Eidson, M., J. P. Thilsted, and O. J. Rollag. 1991. Clinical, clinicopathologic, 

and pathologic features of plague in cats: 119 cases (1977-1988). J Am Vet Med 

Assoc 199:1191-1197. 

13. Flannagan, R. S., V. Jaumouille, and S. Grinstein. 2011. The cell biology of 

phagocytosis. Annu Rev Pathol 7:49-86. 

14. Fukuto, H. S., A. Svetlanov, L. E. Palmer, A. W. Karzai, and J. B. Bliska. 

2010. Global gene expression profiling of Yersinia pestis replicating inside 

macrophages reveals the roles of a putative stress-induced operon in regulating 

type III secretion and intracellular cell division. Infect Immun 78:3700-3715. 

15. Galyov, E. E., O. Smirnov, A. V. Karlishev, K. I. Volkovoy, A. I. Denesyuk, I. 

V. Nazimov, K. S. Rubtsov, V. M. Abramov, S. M. Dalvadyanz, and V. P. 

Zav'yalov. 1990. Nucleotide sequence of the Yersinia pestis gene encoding F1 



85 
 

antigen and the primary structure of the protein. Putative T and B cell epitopes. 

FEBS Lett 277:230-232. 

16. Gasper, P. W., A. M. Barnes, T. J. Quan, J. P. Benziger, L. G. Carter, M. L. 

Beard, and G. O. Maupin. 1993. Plague (Yersinia pestis) in cats: description of 

experimentally induced disease. J Med Entomol 30:20-26. 

17. Gilleland, L. B., H. E. Gilleland, J. A. Gibson, and F. R. Champlin. 1989. 

Adaptive resistance to aminoglycoside antibiotics in Pseudomonas aeruginosa. J 

Med Microbiol 29:41-50. 

18. Gould, L. H., J. Pape, P. Ettestad, K. S. Griffith, and P. S. Mead. 2008. Dog-

associated risk factors for human plague. Zoonoses Public Health 55:448-454. 

19. Grabenstein, J. P., H. S. Fukuto, L. E. Palmer, and J. B. Bliska. 2006. 

Characterization of phagosome trafficking and identification of PhoP-regulated 

genes important for survival of Yersinia pestis in macrophages. Infect Immun 

74:3727-3741. 

20. Hall, P. J., G. C. Yang, R. V. Little, and R. R. Brubaker. 1974. Effect of Ca
2+

 

on morphology and division of Yersinia pestis. Infect Immun 9:1105-1113. 

21. Henry, T., F. Garcia-del Portillo, and J. P. Gorvel. 2005. Identification of 

Salmonella functions critical for bacterial cell division within eukaryotic cells. 

Mol Microbiol 56:252-267. 

22. Imlay, J. A., and S. Linn. 1987. Mutagenesis and stress responses induced in 

Escherichia coli by hydrogen peroxide. J Bacteriol 169:2967-2976. 



86 
 

23. Justice, S. S., D. A. Hunstad, L. Cegelski, and S. J. Hultgren. 2008. 

Morphological plasticity as a bacterial survival strategy. Nat Rev Microbiol 

6:162-168. 

24. Justice, S. S., D. A. Hunstad, P. C. Seed, and S. J. Hultgren. 2006. 

Filamentation by Escherichia coli subverts innate defenses during urinary tract 

infection. Proc Natl Acad Sci USA 103:19884-19889. 

25. Kartman, L., F. M. Prince, S. F. Quan, and H. E. Stark. 1958. New knowledge 

on the ecology of sylvatic plague. Ann NY Acad Sci 70:668-711. 

26. Laws, T. R., M. S. Davey, R. W. Titball, and R. Lukaszewski. 2010. 

Neutrophils are important in early control of lung infection by Yersinia pestis. 

Microbes Infect 12:331-335. 

27. Lindler, L. E., and B. D. Tall. 1993. Yersinia pestis pH 6 antigen forms fimbriae 

and is induced by intracellular association with macrophages. Mol Microbiol 

8:311-324. 

28. Liu, F., H. Chen, E. M. Galvan, M. A. Lasaro, and D. M. Schifferli. 2006. 

Effects of Psa and F1 on the adhesive and invasive interactions of Yersinia pestis 

with human respiratory tract epithelial cells. Infect Immun 74:5636-5644. 

29. Lukaszewski, R. A., D. J. Kenny, R. Taylor, D. G. Rees, M. G. Hartley, and 

P. C. Oyston. 2005. Pathogenesis of Yersinia pestis infection in BALB/c mice: 

effects on host macrophages and neutrophils. Infect Immun 73:7142-7150. 

30. Marim, F. M., T. N. Silveira, D. S. Lima, Jr., and D. S. Zamboni. 2010. A 

method for generation of bone marrow-derived macrophages from cryopreserved 

mouse bone marrow cells. PLoS One 5: 15263-15271. 



87 
 

31. Nizet, V., A. L. Smith, a. P. M. Sullam, and C. E. Rubens. 1998. A simple 

microtiter plate screening assay for bacterial invasion or adherence. Methods Cell 

Sci. 20:107-111. 

32. Ogawa, M., A. Takade, H. Miyamoto, H. Taniguchi, and S. Yoshida. 2001. 

Morphological variety of intracellular microcolonies of Legionella species in 

Vero cells. Microbiol Immunol 45:557-562. 

33. Orloski, K. A., and M. Eidson. 1995. Yersinia pestis infection in three dogs. J 

Am Vet Med Assoc 207:316-318. 

34. Perry, R. D., and J. D. Fetherston. 1997. Yersinia pestis--etiologic agent of 

plague. Clin Microbiol Rev 10:35-66. 

35. Perry, R. D., I. Mier, Jr., and J. D. Fetherston. 2007. Roles of the Yfe and Feo 

transporters of Yersinia pestis in iron uptake and intracellular growth. Biometals 

20:699-703. 

36. Perry, R. D., S. C. Straley, J. D. Fetherston, D. J. Rose, J. Gregor, and F. R. 

Blattner. 1998. DNA sequencing and analysis of the low-Ca
2+

-response plasmid 

pCD1 of Yersinia pestis KIM5. Infect Immun 66:4611-4623. 

37. Pollack, C., S. C. Straley, and M. S. Klempner. 1986. Probing the 

phagolysosomal environment of human macrophages with a Ca
2+

-responsive 

operon fusion in Yersinia pestis. Nature 322:834-836. 

38. Ponnusamy, D., S. D. Hartson, and K. D. Clinkenbeard. 2011. Intracellular 

Yersinia pestis expresses general stress response and tellurite resistance proteins 

in mouse macrophages. Vet Microbiol 150:146-151. 



88 
 

39. Pujol, C., and J. B. Bliska. 2003. The ability to replicate in macrophages is 

conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun 

71:5892-5899. 

40. Pujol, C., and J. B. Bliska. 2005. Turning Yersinia pathogenesis outside in: 

subversion of macrophage function by intracellular Yersiniae. Clin Immunol 

114:216-226. 

41. Pujol, C., J. P. Grabenstein, R. D. Perry, and J. B. Bliska. 2005. Replication of 

Yersinia pestis in interferon gamma-activated macrophages requires ripA, a gene 

encoded in the pigmentation locus. Proc Natl Acad Sci USA 102:12909-12914. 

42. Rollag, O. J., M. R. Skeels, L. J. Nims, J. P. Thilsted, and J. M. Mann. 1981. 

Feline plague in New Mexico: report of five cases. J Am Vet Med Assoc 

179:1381-1383. 

43. Romberg, L., and P. A. Levin. 2003. Assembly dynamics of the bacterial cell 

division protein FTSZ: poised at the edge of stability. Annu Rev Microbiol 

57:125-154. 

44. Rosenberger, C. M., and B. B. Finlay. 2002. Macrophages inhibit Salmonella 

typhimurium replication through MEK/ERK kinase and phagocyte NADPH 

oxidase activities. J Biol Chem 277:18753-18762. 

45. Rosenberger, C. M., R. L. Gallo, and B. B. Finlay. 2004. Interplay between 

antibacterial effectors: A macrophage antimicrobial peptide impairs intracellular 

Salmonella replication. Proc Natl Acad Sci USA 101:2422-2427. 



89 
 

46. Rust, J. H., Jr., D. C. Cavanaugh, R. O'Shita, and J. D. Marshall, Jr. 1971. 

The role of domestic animals in the epidemiology of plague. I. Experimental 

infection of dogs and cats. J Infect Dis 124:522-526. 

47. Rust, J. H., Jr., B. E. Miller, M. Bahmanyar, J. D. Marshall, Jr., S. 

Purnaveja, D. C. Cavanaugh, and U. S. Hla. 1971. The role of domestic 

animals in the epidemiology of plague. II. Antibody to Yersinia pestis in sera of 

dogs and cats. J Infect Dis 124:527-531. 

48. Salkeld, D. J., and P. Stapp. 2006. Seroprevalence rates and transmission of 

plague (Yersinia pestis) in mammalian carnivores. Vector Borne Zoonotic Dis 

6:231-239. 

49. Schapiro, J. M., S. J. Libby, and F. C. Fang. 2003. Inhibition of bacterial DNA 

replication by zinc mobilization during nitrosative stress. Proc Natl Acad Sci USA 

100:8496-8501. 

50. Sebbane, F., D. Gardner, D. Long, B. B. Gowen, and B. J. Hinnebusch. 2005. 

Kinetics of disease progression and host response in a rat model of bubonic 

plague. Am J Pathol 166:1427-1439. 

51. Sebbane, F., C. O. Jarrett, D. Gardner, D. Long, and B. J. Hinnebusch. 2006. 

Role of the Yersinia pestis plasminogen activator in the incidence of distinct 

septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci USA 

103:5526-5530. 

52. Sha, J., J. J. Endsley, M. L. Kirtley, S. M. Foltz, M. B. Huante, T. E. Erova, 

E. V. Kozlova, V. L. Popov, L. A. Yeager, I. V. Zudina, V. L. Motin, J. W. 

Peterson, K. L. DeBord, and A. K. Chopra. 2011. Characterization of an F1 



90 
 

deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic 

and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen 

capture-based dipsticks. J Clin Microbiol 49:1708-1715. 

53. Smiley, S. T. 2008. Immune defense against pneumonic plague. Immunol Rev 

225:256-271. 

54. Spinner, J. L., K. S. Seo, J. L. O'Loughlin, J. A. Cundiff, S. A. Minnich, G. A. 

Bohach, and S. D. Kobayashi. 2010. Neutrophils are resistant to Yersinia 

YopJ/P-induced apoptosis and are protected from ROS-mediated cell death by the 

type III secretion system. PLoS One 5:9279-9288. 

55. Straley, S. C., and P. A. Harmon. 1984. Growth in mouse peritoneal 

macrophages of Yersinia pestis lacking established virulence determinants. Infect 

Immun 45:649-654. 

56. Straley, S. C., and P. A. Harmon. 1984. Yersinia pestis grows within 

phagolysosomes in mouse peritoneal macrophages. Infect Immun 45:655-659. 

57. Tsang, A. W., K. Oestergaard, J. T. Myers, and J. A. Swanson. 2000. Altered 

membrane trafficking in activated bone marrow-derived macrophages. J Leukoc 

Biol 68:487-494. 

58. Underhill, D. M., and A. Ozinsky. 2002. Phagocytosis of microbes: complexity 

in action. Annu Rev Immunol 20:825-852. 

59. Vernati, G., W. H. Edwards, T. E. Rocke, S. F. Little, and G. P. Andrews. 

2011. Antigenic profiling of Yersinia pestis infection in the Wyoming coyote 

(Canis latrans). J Wildl Dis 47:21-29. 



91 
 

60. Watson, R. P., T. W. Blanchard, M. G. Mense, and P. W. Gasper. 2001. 

Histopathology of experimental plague in cats. Vet Pathol 38:165-172. 

61. Wendte, J. M., D. Ponnusamy, D. Reiber, J. L. Blair, and K. D. 

Clinkenbeard. 2011. In vitro efficacy of antibiotics commonly used to treat 

human plague against intracellular Yersinia pestis. Antimicrob Agents Chemother 

55:3752-3757. 

62. Ye, Z., E. J. Kerschen, D. A. Cohen, A. M. Kaplan, N. van Rooijen, and S. C. 

Straley. 2009. Gr1+ cells control growth of YopM-negative Yersinia pestis 

during systemic plague. Infect Immun 77:3791-3806. 

63. Young, K. D. 2006. The selective value of bacterial shape. Microbiol Mol Biol 

Rev 70:660-703. 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

Table 1A. Morphometric analysis of intracellular Y. pestis and primary macrophages from TEM images 

Parameter Mouse splenic macrophages Dog peripheral blood derived macrophages 

Hours post infection  2.5 7.5 27.5  2.5  7.5  27.5  

Filamentous Y. 

pestis 

% filamentous Y. 

pestis / macrophage
*
 

10.8 ± 11.1 0 0 8.5 ± 8.8 0 0.4 ± 1.7 

Length (in µM) 6.8 ± 1.6 - - 8.4 ± 2.5 - 5.8 

Range (in µM) 5.1 - 10.5 - - 5.1 - 12.5 - 5.8 

Intact Y. pestis / macrophage 18 ± 13.2  38.7 ± 13.9  7.6 ± 3.6
## 

 23.9 ± 13.9  33 ± 12.5  2.3 ± 2.1
## 

  

Disfigured Y. pestis / macrophage 2 ± 2.2
¥
  2.8 ± 2.1  0.6 ± 0.7

$$ 
 0.9 ± 1

¥
   3 ± 2.2  16.7 ± 6.4

$$
 

YCV Spacious extension (in 

% of macrophages) 

33 82 0 20 5 80 

Morphology of macrophage nucleus Normal
#
 Normal Normal Normal Normal Normal 

Morphology of macrophage mitochondria Normal
@

 Normal Normal Normal Normal Normal 

Note: Mean value of a particular parameter at 2.5, 7.5 or 27.5 h p.i. from mouse splenic macrophage infection was statistically 

compared with the corresponding value from dog peripheral blood derived macrophage infection  

*, Y. pestis longer than 5µM   

#, Heterochromatin at the periphery and euchromatin at the center 

@, Sharp and visible cristae   

¥, p<0.05; ##, $$, p<0.01   
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    Table 1B. Morphometric analysis of intracellular Y. pestis and tissue culture macrophage cell lines from TEM images 
 

Parameter RAW264.7 cells DH82 cells 

Hours post infection  2.5 7.5 27.5  2.5  7.5  27.5  

Filamentous Y. 

pestis 

% filamentous Y. pestis / 

macrophage 

22.6 ±  33.1  6.4 ± 9.7
ψ
 2.5 ± 4.2  17.5 ± 28.8 27.6 ± 26.6

 ψ
 26.3 ± 33.2 

Length (in µM) 6.9 ± 1.9  5.6 ± 0.6
$ 
 5.8 ± 0.7 7.2 ± 3.1 6.5 ± 1.4

$
 6.9 ± 1.5 

Range (in µM) 5.2 - 11.1 5 - 6.8 5.1 - 6.6 5 - 14.9 5 - 9.3 5 - 9.3 

Intact Y. pestis / macrophage 13.8 ± 9.1  16.5 ± 9.7
§§

 14.3 ± 7.8
†
 10.1 ± 5.8 7.7 ± 6.7

§§
 7.2 ± 6.1

†
  

Disfigured Y. pestis / macrophage 0.8 ± 1.1
 
 0.6 ± 0.9

 
 2.1 ± 1.4  0.7 ± 0.8   0.8 ± 1.1  2.1 ± 1.9  

YCV Spacious extension (in % of 

macrophages) 

13 64 73 18 23 18 

Morphology of macrophage nucleus Normal Normal Normal Normal Normal Normal 

Morphology of macrophage mitochondria Normal Normal Normal Normal Normal Normal 

Note: Mean value of a particular parameter at 2.5, 7.5 or 27.5 h p.i. from RAW264.7 cell infection was statistically compared 

with the corresponding value from DH82 cell infection 

ψ, $, †, p<0.05; §§, p<0.01   
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Fig. 1. Intracellular Y. pestis in primary macrophages. Y. pestis strain KIM6+ infected 

primary macrophages from mouse spleen (top row) and dog peripheral blood (bottom 

row) were sampled at 2.5, 7.5 and 27.5 h p.i. and observed under light microscope by 

staining with Wright Giemsa. Long arrows, short arrows and arrow heads represent 

filamentous, coccobacillary and degraded coccobacillary Y. pestis, respectively. Asterisk 

indicates spacious vacuolar extension of phagolysosomes. Images are at 1,000x 

magnification. 
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Fig. 2. Ultrastructural features of intracellular Y. pestis and infected primary 

macrophages. Primary macrophages from mouse spleen (top row) and dog peripheral 

blood (bottom row) infected with Y. pestis strain KIM6+ were glutaraldehyde fixed at 

2.5, 7.5 and 27.5 h p.i. and examined in transmission electron microscopy. Long arrows, 

short arrows and arrow heads represent filamentous, coccobacillary and degraded 

coccobacillary Y. pestis, respectively. Asterisks indicate spacious vacuolar extension of 

phagolysosomes. The images are at 6,000x magnification and cross bars represent 1µm.  
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Fig. 3. Intracellular Y. pestis in mouse bone marrow macrophages. Macrophages cultured 

for 5 days were infected with Y. pestis strain KIM6+ and sampled at 2.5, 7.5 and 27.5 h 

p.i. The samples were prepared for the light microscopic examination by staining with 

Wright Giemsa stain. Arrows indicate the actively dividing normal sized coccobacillus of 

intracellular Y. pestis. Images are at 1,000x magnification. 
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Fig. 4. Percent of infectivity for tissue culture macrophages to Y. pestis infection. Y. 

pestis strain KIM6+ infected RAW264.7  and DH82 cells were sampled at 

various p.i. intervals to examine under light microscope for the presence of intracellular 

bacteria. Approximately 400 cells per replicate were randomly counted to calculate the 

percentage of infectivity (n=3).  The values are reported as mean ± SEM. 
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Fig. 5. Intracellular CFUs and GEs per tissue culture macrophage. CFUs and GEs

as, respectively, culturable and total Y. pestis per RAW264.7 (A) and DH82 (B) 

were calculated for various intervals from 0 to 27.5 h p.i. using microplate based colony 

counting and qPCR described in materials and methods section (n=3). The results are 
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expressed as mean ± SEM. Asterisks on error bars represent, at the respective interval, 

statistical difference (*, p <0.05; **, p <0.01) between the mean values of GEs and CFUs.  
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Fig. 6A. Morphological features of intracellular Y. pestis and infected RAW264.7 cells. 

Y. pestis strain KIM6+ infected RAW264.7 cells were sampled from 2.5 to 27.5 h p.i. and 

observed under light microscope by staining with Wright Giemsa. Filamentous and 

coccobacillary forms of intracellular Y. pestis and spacious phagolysosomal extensions 

were determined at 1,000x magnification. Long and short arrows indicate filamentous 

and coccobacillary form of intracellular Y. pestis, respectively. Asterisk indicates 

spacious vacuolar extension of phagolysosome.  
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Fig. 6B. Morphological features of intracellular Y. pestis and infected DH82 cells. Y. 

pestis strain KIM6+ infected DH82 cells were sampled from 2.5 to 27.5 h p.i. and 

observed under light microscope by staining with Wright Giemsa. Filamentous 

intracellular (long arrows) Y. pestis were determined at 1,000x magnification.  
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Fig. 7. Ultrastructural features of intracellular Y. pestis and infected tissue culture cells. Y. 

pestis strain KIM6+ infected RAW264.7 (top row) and DH82 (bottom row) cells were 

sampled at 2.5, 7.5 and 27.5 h p.i. and examined in transmission electron microscope. 

Long and short arrows indicate filamentous and coccobacillary form of intracellular Y. 

pestis, respectively. Arrow heads point out the degraded intracellular Y. pestis. Asterisks 

indicate spacious vacuolar extension of phagolysosomes. The images are at 6,000x 

magnification and cross bars represent 1µm.   
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Fig. 8. Morphological features of Y. pestis strain KIM6+ GFPuv in tissue culture cells. Y. 

pestis strain KIM6+ GFPuv infected RAW264.7 (1
st
 column) and DH82 (2

nd
 column) 

cells collected at 3 to 4 h p.i. were observed under fluorescent microscope as wet mount 

preparations. 
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Fig. 9. Morphological features of intracellular Y. pestis in antibiotic-free media. 

RAW264.7 and DH82 cells were infected with Y. pestis strain KIM6+ for 30 min in 

RPMI-1640 with 10% FBS media and then changed to HBSS with 10% FBS. Infected 

macrophages were sampled at 2.5 and 5 h p.i. to light microscopic examination. Arrows 

indicate filamentous Y. pestis. Images are presented at 1,000x magnification.  
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Fig. 10. Tissue culture macrophage counts for Y. pestis infection in trypan blue assay.  

(A): Y. pestis strain KIM6+ infected tissue culture macrophages were sampled at different 

p.i. to enumerate a number of trypan blue positive (dead) and negative (viable) cells. The 
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resulting viable RAW264.7  and DH82 , and dead RAW264.7  and 

DH82  cells are reported here (n=3). The values are represented as mean ± SEM. 

Statistically significant difference (p <0.01) was indicated for viable counts of 

RAW264.7 vs. DH82 cells (**), and dead counts of RAW264.7 vs. DH82 cells (##) at 

each infection interval. (B): A number of macrophages per mL of infective material at 

different p.i. were also calculated for RAW264.7  and DH82 cells by adding a 

number of viable and dead counts at each infection interval (n=3). The data are shown as 

mean ± SEM. Asterisks on error bars represent, at the respective interval, statistical 

difference (*, p <0.05; **, p <0.01) between the total macrophage counts of RAW264.7 

and DH82 cells per mL.  
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Fig. 11. Cytotoxicity assay of tissue culture cells to Y. pestis infection. Concentration of 

macrophage cytoplasmic enzyme LDH in the extracellular media as the consequence of 

cell lysis to Y. pestis infection was measured for RAW264.7  and DH82  cells 

(n=3). The data are shown as mean ± SEM. Asterisks on error bars represent, at the 

respective interval, statistical difference (*, p <0.05; **, p <0.01) between the means 

percentage specific LDH leakage of RAW264.7 and DH82 cells.   
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CHAPTER IV 
 

 

INTRACELLULAR YERSINIA PESTIS EXPRESSES GENERAL STRESS 

RESPONSE AND TELLURITE RESISTANCE PROTEINS IN MOUSE 

MACROPHAGES 

(This chapter was published in a peer reviewed journal as: Ponnusamy, D., S. D. 

Hartson, and K. D. Clinkenbeard. 2011. Intracellular Yersinia pestis expresses general 

stress response and tellurite resistance proteins in mouse macrophages. Vet Microbiol 

150:146-151. The related copyright agreement is attached in the appendix) 
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Abstract 

Yersinia pestis inoculated subcutaneously via fleabite or experimental injection in 

natural rodent hosts multiply initially in macrophage phagolysosomes. Survival and 

multiplication of Y. pestis in this acidic low [Ca
2+

] and [Mg
2+

] environment likely 

necessitates compensatory mechanisms involving expression of specific proteins 

compared to those expressed during extracellular growth. A proteomics approach was 

used to identify these proteins using mouse macrophage RAW264.7 cells infected with Y. 

pestis strain KIM6-2053.1+ for 8 h. Intracellular Y. pestis protein samples were prepared 

by detergent lysis of infected RAW264.7 cells, isolation of intracellular Y. pestis by 

differential centrifugation, and sonication of isolated Y. pestis. Protein samples were 

similarly prepared from Y. pestis grown extracellularly in tissue culture media. Two 

intracellular and extracellular Y. pestis protein samples were analyzed by two-

dimensional polyacrylamide gel electrophoresis and compared in silico identifying 12 

protein spots present in both intracellular samples but absent in extracellularly grown Y. 

pestis. Mass spectrometry analysis of these identified nine proteins at a high level of 

confidence in the Y. pestis genome: superoxide dismutase-A (SodA), inorganic 

pyrophosphatase, autonomous glycyl radical cofactor GrcA, molecular chaperone DnaK, 

serine endoprotease GsrA, global DNA-binding transcriptional dual regulator H-NS, 

urease subunit gamma UreA, and tellurite resistance proteins TerD and TerE. These 

results support the involvement of various general stress response regulators of Y. pestis 

during the intracellular parasitism of host macrophages as well as identification of UreA, 

TerD and TerE with as yet unknown roles in the process of intracellular survival of Y. 

pestis. 
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Introduction 

Yersinia pestis causes flea-transmitted natural epizootics in rodents (10). Y. pestis 

inoculated via flea bite into the host subcutis persists locally or is phagocytized by 

neutrophils and tissue macrophages. Neutrophils effectively kill phagocytized Y. pestis, 

but Y. pestis is able to survive and multiply in macrophage phagolysosomes in which it 

evades host innate immunity and disseminate systemically (5, 7, 10, 16). 

In order to survive and multiply intracellularly in host macrophage 

phagolysosomes, Y. pestis must withstand the harsh antimicrobial environment. In vitro 

simulation of phagolysosomal environment by lowering culture media [Mg
2+

] revealed 

up-regulation of various genes from the pCD1 plasmid, F1- and pH6-antigens loci and 

Mg
2+

 and iron transporting systems (24). Similarly, Y. pestis recovered from buboes 

exhibited differential expression of genes related with oxidative and nitrosative stresses 

and iron transport and storage systems (17).  However, although transcripts for these 

virulence genes were detected in phagolysosomes, Y. pestis mutants for plasmids pCD1 

and pPCP1 and chromosomal loci for various genes including pH6-antigen and 

chromosomal type-III secretion system did not markedly influence survival of these 

mutants inside macrophages (8, 11, 19). Studies to identify virulence factors critical for 

the intracellular lifestyle of Y. pestis have identified transcriptional regulator PhoP, 

possible nitric oxide repressors ripA and ripB genes from pigmentation locus, and RNA-

binding protein Hfq as potentially important (6, 7, 13).  Apart from these virulence 

factors, it is likely that many of the factors involved in the intracellular lifestyle of Y. 

pestis have yet to be identified. A proteomics approach to identification such proteins 

specifically expressed in host macrophages compared to bacteria grown in microbial 
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culture is reported. Nine proteins expressed in intracellular Y. pestis were identified and 

consisted primarily of general stress response proteins anticipated to be involved in 

intracellular survival, but additional proteins for tellurite resistance TerD and TerE were 

identified with as yet unknown roles in the process of intracellular survival and 

proliferation of Y. pestis. 

 

 

Materials and methods 

 

Bacterial strain and growth conditions  

Y. pestis strain KIM62053.1+ hms
+
 psn

+
 psa

- 
(∆psa2053.1) ybt

+
 lcr

-, generous gift 

from Dr. Robert Perry, University of Kentucky (2), was grown on 10 cm Brain Heart 

Infusion (BHI) (Difco, Becton Dickinson company, USA) agar plates, and following 36 h 

culture at 26
o
C, single colonies were used to inoculate 25 mL BHI broth for overnight 

culture at 26
o
C with 160 rpm. 

 

Tissue culture cell and growth conditions 

  Mouse macrophage cell line RAW264.7 (American Type Culture Collection) (23) 

was cultured at 37°C with 5% CO2 in RMPI 1640 media (Sigma-Aldrich) supplemented 

with 2 g/L sodium bicarbonate and 10% fetal bovine serum (Hyclone laboratories). 
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Infection of tissue culture cells  

To prepare RAW264.7 cells for infection with Y. pestis, 300x10
6
 RAW264.7 cells 

were infected with 1,500x 10
6
 CFU Y. pestis, yielding a multiplicity of infection (MOI) 

of 5. The RAW264.7 cells were dispensed equally into six 225 cm
2
 tissue culture flasks 

(50x10
6
 cells per flask) and incubated at 37°C with 5% CO2 overnight to form 

monolayers. Following aspiration of tissue culture media from flasks, monolayers were 

infected by addition of 50 mL per flask of 5x10
6
 CFU/mL Y. pestis KIM62053.1+ 

(250x10
6
 CFU per flask) grown as described above and incubated 30 min at 37°C with 

5% CO2. Infection was terminated by removal of the bacteria containing media from the 

flasks followed by washing the RAW264.7 cells thrice with sterile phosphate buffer 

saline (PBS) and then adding 50 mL/flask of RPMI 1640 media containing 50 µg/mL 

gentamicin and incubated for an additional 2 h under the same incubation conditions. An 

8 h intracellular growth period was initiated by removal of gentamicin containing media, 

washing flasks three times with sterile PBS, replacement of media with RPMI 1640 

media without gentamicin and incubation at 37°C with 5% CO2.  

 

Isolation of intracellular Y. pestis  

Following 8 h incubation, RPMI 1640 media were removed from flasks, and the 

infected RAW264.7 cells were washed three times with sterile PBS to remove any 

extracellular bacteria. RAW264.7 cells were then lysed by addition of 20 ml of PBS 

containing 0.1% Triton X-100 to each flask and gentle agitation for 10 min at 37
o
C. 

Lysates were pooled in ice-cooled centrifuge tubes and centrifuged at 600xg for 10 min 

in 4
o
C; the resulting supernatant was carefully decanted; the pellet discarded; and 
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centrifugation of supernatant repeated twice at the same centrifugal force to completely 

as possible remove all eukaryotic cellular debris. Finally, the intracellular Y. pestis were 

collected by centrifugation at 8,000xg for 15 min in 4
o
C. 

 

Preparation of extracellular Y. pestis 

Y. pestis KIM62053.1+ grown overnight at 26
o
C in BHI broth was diluted 100-

fold in 50 mL of RPMI 1640 media and grown for 8 h at 37
o
C. Bacteria were collected 

by centrifugation at 8,000xg for 15 min in 4
o
C. 

 

Preparation of protein samples  

Bacterial pellets for intracellular and extracellular Y. pestis KIM62053.1+ were 

individually washed three times in ice cold 40 mL of 10 mM Tris, 250 mM sucrose, pH 

7.0 and were resuspended in 2 mL of 20 mM Tris, pH 8.0. 

Phenylmethanesulfonylfluoride (PMSF, Calbiochem) was added to the resuspended 

bacteria to a final concentration of 2 mM, and the suspensions sonicated on ice for 60 

bursts with the setting of 1 sec on and off at moderate power (10pts/20pts) in Misonix
 

Microson XL2000 Ultrasonic Cell Disruptor
TM

 (Misonix, Inc; USA). The sonicated 

bacterial lysates were treated with 125 U/mL of benzonase (Sigma-Aldrich) for 1 h at 

37
o
C with gentile agitation. To prepare the samples for two-dimensional separation, 

sample buffer was added to all the samples to a final concentration of 0.5% Triton X-100, 

20 mM Tris, 7 M urea, 2 M thiourea, 4% CHAPS (w/v), 30 mM DTT, 2 mM TBP and 

2% Bio-lyte 3/10 (Ampholyte, Bio-Rad Laboratories) and shaken at every 10 min 

intervals for 30 min at 4
o
C. To remove any insoluble materials, the samples were 
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subjected to centrifugation at 16,000xg for 20 min at 20
o
C, and the resulting debris-free 

protein samples cleaned with ReadyPrep 2-D Cleanup Kit (Bio-Rad Laboratories) 

according to the manufacturer‘s instructions. Subsequently, the protein pellets were 

redissolved in rehydration buffer consisting of 7 M urea, 2 M thiourea, 4% CHAPS, 30 

mM DTT, 2 mM TBP, 0.5% Bio-lyte and 0.002% bromophenol blue (w/v), and the 

protein concentration of each sample was measured by a Bradford assay (Bradford assay 

kit, Thermo-scientific, Pierce Biotechnology).  

 

Two- dimensional electrophoresis and gel image analysis 

Proteins from intracellular and extracellular Y. pesitis (200 µg bacterial protein 

per fraction) were focused individually in pH 3-10, 11 cm ReadyStrips IPG strips (Bio-

Rad Laboratories), followed by a second-dimension SDS-PAGE electrophoresis on 

Criterion precast 8-16% gradient gels (Bio-Rad Laboratories) using a standard 

protocol.  The resulting gels were stained with Coomassie brilliant blue G-250 and 

imaged with a VersaDoc Imaging System (Bio-Rad Laboratories). Using PDQuest 2-

D Analysis Software (Bio-Rad Laboratories), a master gel image of extracellular protein 

spots was created by merging the images of the two extracellular-derived Y. pestis 

samples, and then, this master gel image was compared individually with the images of 

two intracellular-derived Y. pestis samples. The protein spots present on both gels of 

intracellular-derived Y. pestis, but absent from the master image of extracellular-derived 

Y. pestis, were selected for further analysis. 
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Tryptic digestion and MALDI-TOF analysis  

Those protein spots identified to be reproducibly present in samples from 

intracellular Y. pestis, but absent in extracellular-derived Y. pestis, were excised.  Gel 

plugs were washed three times in 50% v/v acetonitrile (ACN)/50 mM ammonium 

bicarbonate, then dehydrated in 100% ACN and dried at room temperature. The dried gel 

plugs were rehydrated with ice-cold trypsin (8 µg/mL) in 50 mM ammonium bicarbonate, 

and digested overnight at 37
o
C. The resulting peptide fragments were extracted in 50% 

ACN /0.1% trifluoroacetic acid (TFA).  Peptide extracts were dried to reduce their 

volume to ≈ 10 µL and were then mixed with one volume of 10 mg/mL α-cyano-4-

hydroxycinnamic acid (CHCN) freshly dissolved in 50% ACN/0.1% TFA. Peptide ions 

were analyzed using a Voyager DE-PRO mass spectrometer (Applied Biosystems) 

operated in positive-ion, reflectron mode, and calibrated using a known mixture of 

synthetic peptides (external calibation). For each spectrum, Data Explorer v4.0 was used 

to extract the five most intense mono-isotopic m/z's within each 100-m/z interval. 

Alternatively, weaker spectra enjoyed manually optimized peak detection windows that 

were set slightly above the baseline noise threshold. Monoisotopic peptide masses were 

searched using MASCOT v2.2 (MatrixScience) in a local protein sequences database, 

consisting of 64,322 mouse sequences (taxonomy ID 10090) downloaded from 

UniProtKP database on June 30, 2010, and 8,265 Yersinia pestis CO92 sequence 

(txid214092) downloaded from NCBInr on June 30, 2010. Search were conducted stating 

cleavage with trypsin (allowing one missed cleavage), a stated mass accuracy of 100 

ppm, and included the following variable peptide modifications: acetylation of protein N-

termini, formylation of protein N-termini, cyclization of N-terminal Gln to 



116 
 

pyroglutamate, oxidation of Met, and acrylamide modifications of Cys (propionamide-

Cys). Protein identifications were accepted if their MASCOT probability based MOWSE 

scores (PBM) were statistically significant, if the PBM of the top-ranked candidate was 

markedly superior to that of the next-ranked candidate, and if experimental peptide 

masses showed systematic discrepancies vs. hypothetical calculated peptide masses. 

 

 

Results 

 

Preparation of protein samples from Y. pestis grown in mouse macrophage 

RAW264.7 cells and in tissue culture media  

In order to generate protein samples for intracellular Y. pestis with sufficient 

material to allow detection and identification of proteins present at low concentrations, 

3.0x10
8
 RAW264.7 cells were infected with Y. pestis strain KIM6-2053.1+ for 8 h which 

yielded approximately 2x10
9
 CFUs for analysis. Infected RAW264.7 cells were lysed 

with 0.1% Triton X-100, intracellular Y. pestis isolated by differential centrifugation and 

subjected to sonication to prepare the intracellular protein samples. Two samples 

prepared for intracellularly grown Y. pestis yielded 291 and 332 µg protein and two 

samples of extracellularly grown Y. pestis yielded 1780 and 2070 µg protein. To identify 

proteins differentially expressed by intracellular Y. pestis, the four protein samples were 

subjected to two-dimensional gel electrophoresis. A master gel image of extracellular 

protein spots was created in silico by merging the images of the two extracellular protein 

images. In silico comparison of the two images for intracellular protein samples 
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identified 21 and 37 protein spots present in the intracellular but not in the extracellular 

protein samples. Out of these, 12 protein spots were common to both of the intracellular 

protein samples (Fig 1). 

  

Protein profiles of Y. pestis grown in mouse macrophage cell line 

Proteins unique to the intracellular Y. pestis protein samples were identified by 

searching their experimental peptide mass fingerprints against a database of known 

proteins.  This approach is an accepted technique for protein identifications, particularly 

when analyzing proteins separated on two-dimensional gels (3). This resulted in the 

confident identification of nine Y. pestis proteins specific to intracellular growth, and 

three contaminating RAW264.7 proteins (Table 1).   

After searching experimental peptide fingerprints with Mascot, superoxide 

dismutase SodA, inorganic pyrophosphatase, autonomous glycyl radical cofactor GrcA, 

molecular chaperone DnaK, serine endoprotease GsrA, global DNA-binding 

transcriptional dual regulator H-NS, urease subunit gamma UreA, and tellurite resistance 

proteins TerD and TerE were identified as yielding significant Mascot scores (p<0.05), 

indicating a non-random identification of these candidates.  Moreover, Mascot scores for 

all these candidates were notably higher than those of the next-ranked candidates, 

indicating that there were no reasonable alternative identifications for these proteins. In 

addition, these experimental peptides represented a high percentage of each candidates' 

sequence (from 29 to 81%), further supporting arguments for valid identifications.  

Deviations between calculated vs. experimental peptide m/z's (mass error) were 

systematic with respect to peptide mass, consistent with minor imperfections in 
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instrument's calibration. These systematic mass error further argued for the validity of 

these identifications, because random matches between experimental vs. calculated 

peptides typically generate random mass errors.  

In addition, RAW264.7 host cell contaminants, mitochondrial aldehyde 

dehydrogenase, ribonuclease inhibitor and ADP/ATP translocase were also identified as a 

strong candidate with favorable parameters (Table 1). 

 

 

Discussion 

In the rodent hosts, Y. pestis initially multiplies inside the macrophage 

phagolysosomes to escape host innate immunity prior to initiation of systemic infection 

(7, 16). The physiological mechanisms by which Y. pestis manages to survive and 

multiply inside phagolysosomes are not completely understood. Hence, studying 

intracellular grown Y. pestis protein profiles with reference to the protein profiles of Y. 

pestis cultured extracellularly may help to identify the proteins involving in the 

intracellular lifestyle of Y. pestis. Using two-dimensional electrophoresis and peptide 

mass fingerprinting, we identified nine Y. pestis proteins specific to intracellular growth 

(Table 1). While multiplying inside the macrophages, Y. pestis expressed a battery of 

proteins related with various aspects of stress ameliorators such as enzymes SodA, 

inorganic pyrophosphatase, and GrcA; proteins mediating responses to abnormally folded 

proteins such as chaperon DnaK and GsrA; transcriptional regulator such as DNA 

binding protein H-NS; as well as proteins not previously implicated in intracellular 
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survival such as urease subunit gamma UreA and tellurite resistance proteins TerD and 

TerE.   

As a facultative intracellular pathogen at the initial stage of infection (12), it is 

reasonable to suppose that Y. pestis might induce expression of stress regulators to 

mediate survival and multiplication inside phagolysosomes. Concordant with this 

supposition, transcriptome analysis of Y. pestis residing in the buboes of experimentally 

infected rat revealed the expression of various genes related with oxidative and nitric 

oxide stresses and iron metabolisms including SodA and GrcA genes (17). Similarly, 

mRNAs corresponding to the proteins identified reported herein TerD, TerE, DnaK, 

inorganic pyrophosphatase and UreA were up regulated between 2- to 5.5-fold during 

chloramphenicol treatment of Y. pestis culturing at 37
o
C, and in the same manner, 

polymyxin treatment at 26
o
C induced 3.3-fold increased expression of DnaK (14, 24).  

UreA is a product of polycistronic operon UreABCEFGD which forms a 

functional tri-heterotrimeric complex UreABC with the help of accessory proteins UreE, 

UreF, UreG, and UreD (15, 18). However, in Y. pestis insertion of an extra guanine 

residue in poly-G stretch of the open reading frame for UreD produces a truncated 

version of the protein resulting in failure to form an active urease in this species. 

Spontaneous deletion of this inserted G and subsequent reactivation of urease can occur 

at high frequency, especially in the presence of urea in the media (4, 15). Irrespective of 

its functional status, urease does not appear to have significant influence on Y. pestis 

experimental infection dynamics in a mouse model (15); however, under certain as yet 

undefined conditions of intracellular Y. pestis growth, UreA expression reported herein 

may be important for the intracellular lifestyle of Y. pestis.  
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Perhaps the most novel of the intracellular Y. pestis proteins identified herein 

were tellurite resistance proteins TerD and TerE. Tellurite sensitivity is common in 

Gram-negative bacteria, and tellurite resistance (Te
R
) loci which also confer phage 

incompatibility are commonly carried on large R-plasmids (R478), but the Te
R
 loci in Y. 

pestis is chromosomal (9, 20). The R478 type Te
R
 loci consist of a terZABCDE operon, 

although the ter operon of some other Gram-negative bacteria lack terD and terE. 

Transposon insertion in terZ, terC and terD in Escherichia coli render mutants phage-

compatible and sensitive to tellurite (22). The TerD and TerE proteins have extensive 

amino acid homology with the carboxy terminus of a cyclic AMP binding protein 

(CABP1) of the eukaryotic slime mold Dictyostelium discoideum (20). CABP1 is a 

cytoplasmic protein consisting of two subunits differing only by a 37 amino acid 

truncation in N-terminus of subunit-2 (1). Although the functional activities of TerD and 

TerE in Te
R
 are unknown, some have speculated that these proteins may have a primary 

function other than tellurite resistance, possibly by detoxifying antimicrobial compounds 

produced by host macrophages (20). Some evidence exists to support this contention in 

Proteus mirabilis in which expression of the ter operon is associated with oxidative stress 

as well as tellurite exposure (21).  

It is unlikely that the proteomic screen presented here identified all of the factors 

involved in the intracellular lifestyle of Y. pestis. There are almost certainly some 

proteins that were either lost during processing or present at concentrations too low to 

detect.  Nevertheless, the proteomics screen did identify several proteins previously 

implicated in intracellular residence of Y. pestis as detected by DNA microarrays or 

mutant screens in animal models. These proteins likely allow the bacteria to survive and 
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proliferate in the harsh phagolysosomal environment by down-regulating the expressions 

of unnecessary genes, controlling various metabolic process, renaturing or facilitating 

degradation of denatured proteins, and detoxifying host antimicrobial compounds.  

Furthermore, identification of tellurite resistance proteins TerD and TerE expression in Y. 

pestis infected macrophages suggests that these proteins may be previously 

underappreciated as potential virulence factors. 
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Table 1. Mascot search summary of Y. pestis proteins expressed inside a mouse macrophage cell line 

Spot 

No 

ID Gene 

locus tag 

in Y. 

pestis 

CO92 

genome 

Mascot
R 

PBM    

score/ 

Mascot
R
 

threshold  

(p > 0.05) 

PBM 

score of 

next 

ranked 

candidate 

 

No  of 

peptides 

matched 

/ 

Searched 

 

% of 

sequence 

coverage 

 

Calculated 

MW / 

Apparent 

MW 

(kDa) 

Calculated 

pI / 

Apparent 

pI 

e-value 

1 Superoxide dismutase-A    

(SOD-A) 

YPO4061 99/61 58 9/31 37 23.223/25  5.89/5.7 8.3e-006   

2 Inorganic diphosphatase YPO3521 81/61 62 6/15 29 19.602/25 4.91/5.2 0.00056 

3 Autonomous glycyl radical 

cofactor GrcA 

YPO2705 95/61 58 9/54 81 14.344/15 4.72/4.0 0.000025 

4 Molecular chaperone DnaK YPO0468 306/61 64 30/43 55 68.982/75 4.86/4.8 1.8e-026   

5 Serine endoprotease (GsrA) YPO3382 85/61 42 21/110 45 49.836/53 8.81/8.2 0.00022 

6 Global DNA-binding 

transcriptional dual 

regulator    H-NS 

YPO2175 126/61 44 12/42 65 15.009/15 5.26/4.1 1.8e-008   

7 Urease gamma subunit 

(UreA) 

YPO2339 76/61 54 7/16 71 11.042/10 5.35/4.2 0.002 

8 Tellurite resistance protein-

D (TerD) 

YPO0298 78/61 50 8/28 48 20.563/22 4.77/4.5 0.0012 

9 Tellurite resistance protein-

E (TerE) 

YPO0299 92/61 45 13/74 64 20.663/24 4.65/4.3 0.000048 

10 Mitochondrial-  

Aldehyde dehydrogenase  

Mouse 90/61 50 13/39 25 56.502/80 7.53/6.1 0.000066 

11 Ribonuclease inhibitor Mouse 76/61 58 12/54 38 49.784/34 4.69/4.1 0.002 

12 ADP/ATP translocase Mouse 63/61 54 9/44 22 35.235/32 9.62/8.7 0.033 
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Fig.1. Coomassie brilliant blue G-250 stained two-dimensional gels of intracellular 

macrophage grown (A) and extracellular lab cultured (B) Y. pestis KIM62053.1+ protein 

samples. Protein spots marked (O) in KIM62053.1+ intracellular bacteria (A) are absent 

in corresponding location (□) in KIM62053.1+ extracellularly cultured (B) protein 

samples. The identity of protein spots marked (O) in KIM62053.1+ intracellular bacteria 

(A) is in Table 1.  
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CHAPTER V 
 

 

EXPRESSION OF YERSINIA PESTIS TELLURITE RESISTANCE OPERON 

DURING MOUSE MACROPHAGE INFECTION 
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Abstract 

The etiologic agent of plague Yersinia pestis causes severe disease in natural 

rodent hosts as a flea borne infection.  In rodents, Y. pestis inoculated subcutaneously is 

phagocytized by local tissue macrophages in which the bacterium subsequently multiplies 

during the initial stage of infection before causing septicemic plague. In our previous 

experiments, intracellular Y. pestis in macrophages exhibited stress induced filamentous 

cellular morphology with 4-fold higher genomic equivalences (GEs) per colony forming 

unit (CFU) ratio. Further, during macrophage infections, Y. pestis proteins TerD and TerE 

were observed in protein samples from intracellular but not from extracellular Y. pestis. 

In laboratory adapted E. coli, expression of ter operon genes terZ, -A, -B, and -C from 

pathogenic E. coli caused the bacterium to assume filamentous cellular morphology 

similar to Y. pestis during macrophage infections (37). Based on these observations and 

the high DNA sequence homology of E. coli and Y. pestis ter operons, we speculated that 

filamentous morphologic stress response of Y. pestis in macrophage infections may be a 

consequence of expression of Y. pestis ter operon. To better understand the possible 

association of ter expression and Y. pestis filamentous stress response, the relationship 

between Y. pestis ter operon expression, resistance to tellurite toxicity, and the bacterial 

morphological changes were studied. These  experiments revealed that Y. pestis ter 

operon genes terC, -D and -E were upregulated 3 to 4-fold for mouse macrophage 

infection during the initial period of experiment, and thereafter, the expression levels 

returned to those of PBS treated control groups. Similar to this expression pattern, all 

these genes were induced by sodium tellurite to increase expression by 2 to 4-fold. In 

addition, Y. pestis cultured in the presence of sodium tellurite showed resistance upto 
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312.5 µg/mL and assumed filamentous cellular morphology similar to that observed 

during mouse macrophage infection. Overall, these experiments support a possible role 

for the proteins of the Y. pestis ter operon in a stress response of Y. pestis involving 

filamentous cellular morphology during the early stage of macrophage infection.  

 

  

Introduction  

The causative agent of plague, the Gram-negative bacterium Y. pestis, has evolved 

as a systemic pathogen from its close relative the enteric pathogen Yersinia 

pseudotuberculosis (1, 19, 31). Y. pestis causes severe disease in natural rodent hosts, in 

which outbreaks can cause the loss of entire local populations (3, 8, 13, 19). Transmission 

between rodents is primarily by fleas which act as biological vectors (3, 19). After 

inoculation of rodents by the bite of infected fleas, Y. pestis is phagocytized by both the 

local neutrophils and macrophages (14, 16, 19). Subsequently, neutrophils kill the 

bacteria; whereas, in contrast, Y. pestis survives and multiplies intracellularly in 

macrophages for a short period before disseminating to initiate severe systemic infection 

(7, 11, 19, 21-23, 28, 29). From our previous experiment, Y. pestis strain KIM6+ 

infection of mouse and dog primary and tissue culture macrophages showed the presence 

of intracellular stress induced filamentous Y. pestis in macrophages, especially during the 

initial stage of infection. These filaments were either partially or fully non-septated and 

confined within tight Yersinia containing vacuoles (YCV). Further, these filaments had 

multiple genomes per bacterium as evidenced by approximately 4-fold higher GE per 

CFU ratio in macrophages during the early stage of infection (Chapter 3). 
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In addition to the filamentous cellular morphology observed in mouse 

macrophage infections, Y. pestis proteins TerD and TerE from tellurite resistance ter 

operons terZABCDE  were detected by proteomics in intracellular Y. pestis in RAW2647 

cell infection but not in Y. pestis grown in extracellular culture at 8 h post infection (p.i.) 

(9, 18, 20). Similarly, the expression of Y. pestis ter operon genes terZABC, terZAB, or 

terDE was observed by others to be upregulated by exposure to stressors such as 

streptomycin, polymyxin or chloramphenicol, respectively (24, 25, 38). Intact 

terZABCDE gene cluster is also indispensable for the survival of uropathogenic  E. coli in 

the presence of hydrogen peroxide in culture media and in mouse peritoneal macrophages 

(33). Exposure of Proteus mirabilis culture to hydrogen peroxide induced expression of 

the terZABCDE operon (32). Apart from these potential roles in bacterial stress 

regulation, terZABCDE operon has also been associated with bacterial resistance to 

certain phage attack and pore-forming colicins (37). It is noteworthy to mention here that 

the ter operons from Y. pestis, pathogenic E. coli and P. mirabilis exhibit significant 

sequence homology to one another (30). Interestingly, laboratory E. coli strain DH5α 

transformed with and actively expressing ter operon genes terZ, -A, -B and -C from 

pathogenic E. coli exhibited filamentous cellular morphology similar to that observed for 

Y. pestis in macrophage infections (37). Based on these observations, we speculate that 

filamentous cellular morphology of Y. pestis in macrophage infections may be associated 

with expression of proteins from Y. pestis ter operon which are induced by the 

intracellular stress. To investigate this possibility further, we examined the temporal 

expression profiles of Y. pestis ter operon genes terC, -D and -E during mouse 

macrophage infection and compared these expression profiles to those for Y. pestis 
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cultures exposed to tellurite or chloramphenicol. Also, we determined minimum 

inhibitory concentration (MIC) for and bacterial cellular morphology of Y. pestis to 

sodium tellurite exposure. The resulting experiment supports the proposed speculation, as 

Y. pestis ter operon expression was induced during the macrophage infections and the 

expression caused Y. pestis to exhibit filamentous cellular morphology.   

 

 

Materials and methods 

 

Bacterial strain and growth conditions 

Y. pestis strain KIM62053.1+ reported in Chapter 3 was used for this study. 

Briefly, isolated colonies on Brain Heart Infusion (BHI) (Difco, Becton Dickinson 

Company, USA) agar plates were inoculated into BHI broth and cultured overnight at 

26
o
C with 160 rpm shaking. 

 

Tissue culture cell and growth conditions 

Mouse macrophage-like cell line RAW264.7 provided by Dr. Guolong Zhang, 

Department of Animal Science, Oklahoma State University was cultured in RPMI-1640 

media containing 10% FBS at 37
o
C with 5% CO2 tension. 

 

 

 

 



133 
 

Light and electron microscopic examinations of Y. pestis infected RAW264.7 cells 

Y. pestis strain KIM6+ infected RAW264.7 cells were sampled at 2.5 h p.i., 

processed and examined under light and transmission electron microscopes as mentioned 

in Chapter 3.   

 

Preparation of Y. pestis infected RAW264.7 cell samples for quantification of ter 

operon expression in macrophage infections 

RAW264.7 cells infected with Y. pestis strain KIM6+ as described in Chapter 3 

were sampled at 0.5, 1.0, 2.0, 4.0 and 8.0 h p.i. At the time of sampling, 75 cm
2
 tissue 

culture flasks having infected RAW264.7 cells were washed thrice with sterile PBS, 2 

mL of RNAlater
®
 solution (Applied Biosystems, USA) was added to each flask, and 

finally, these infected cells were fixed in the same solution at 4
o
C for overnight and 

stored at -20
o
C. The stored samples were processed for RNA isolation as described 

below.   

 

Induction of Y. pestis ter operon with sodium tellurite, chloramphenicol, or PBS 

Y. pestis strain KIM6+ cultured in BHI broth at 26
o
C for overnight was 

appropriately diluted in RPMI-1640 media with 10% FBS to yield 1 X 10
7
 CFUs/mL. 

Subsequently, this inoculum was dispensed into three conical flasks at 30 mL/flask. To 

each of these flasks, an additional 30 mL of RPMI-1640 media with 10% FBS contained 

sodium tellurite, chloramphenicol or PBS (control) was added to the final concentrations 

of 3.125 µg/mL sodium tellurite, 320 µg/mL chloramphenicol, or equivalent volume of 

PBS, respectively. The flasks were incubated at 37
o
C with 220 rpm shaking, and 10 mL 
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samples were collected at 0.5, 1.0, 2.0, 4.0, and 8.0 hours of culturing. From these 

samples, Y. pestis was pelleted at 1,500xg for 10 min at 4
o
C, resuspended in 2 mL of 

RNAlater and fixed at 4
o
C for overnight and then stored at -20

0
C. At the same time, 

uninfected RAW264.7 cells grown in 75 cm
2
 flasks were washed thrice with and then 

released into sterile PBS. Subsequently, the cell concentration was measured, and cells 

were centrifuged at 250xg for 10 min and resuspended in RNAlater solution such that 

every 2 mL containing 10
7 

RAW264.7 cells. Finally, these cells were fixed at 4
o
C for 

overnight and stored at -20
0
C until processed further. At the time of RNA isolation, for 

every 2 mL of above fixed Y. pestis culture from tellurite, chloramphenicol or PBS 

treatment, 2 mL of RNAlater fixed RAW264.7 cells was added, and then the cells were 

pelleted at 5,000xg for 10 min at 4
o
C. Subsequently, these pellets were subjected 

sequentially to total RNA isolation, reverse transcription reaction and quantification of 

expressions of genes, terC, -D and -E as mentioned below. 

 

Isolation of total RNA from Y. pestis infected RAW264.7 cells and Y. pestis cultures 

treated with sodium tellurite, chloramphenicol or PBS 

For RNA isolation, the RNAlater fixed infected RAW264.7 cells and Y. pestis 

pellets obtained from sodium tellurite, chloramphenicol or PBS treatment were 

thoroughly resuspended each in 1 mL of TRI reagent
®
 (Applied Biosystems) by brief 

vertexing. Thereafter, bromochloropropane (BCP) (Sigma Aldrich) at 1/10
th

 volume of 

TRI reagent was added to the TRI reagent resuspensions, vertexed briefly, incubated at 

room temperature for 5 min, and then centrifuged at 12,000xg for 15 min at 4
o
C.  The 

resulting aqueous phase (top transparent layer) was transferred into new microcentrifuge 
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tube, mixed briefly with isoprophenol (Sigma Aldrich) at 1/2 volume of TRI reagent,  

incubated at room temperature for 10 min and finally centrifuging at 12,000xg for 10 min 

at 20
o
C to pellet out the total RNA from the solution. Subsequently, the RNA pellets 

were washed once with 75% ethanol (Sigma Aldrich) at 12,000xg for 10 min at 4
o
C, air 

dried completely, and resuspended in Tris-EDTA buffer pH8.0. From this preparation, 10 

µg of total RNA was treated with 4 units of DNase-I (New England Biolabs Inc.) in 100 

µL volume at 37
o
C for 20 min, and by adding of EDTA to a final concentration of 5 mM, 

the DNase-I was inactivated at 75
o
C for 10 min. From this preparation, 500 ng of total 

RNA was subjected to reverse transcription reaction in 20 µL volume by using the 

mixture of all the reverse primers noted in Table 1 at the final concentration of 10 pM of 

each primer. The reaction was performed using a DyNAmo
TM

 cDNA synthesis kit 

(Finnzymes, Thermo Fisher Scientific). Briefly, from the total RNA isolated, cDNA was 

synthesized at 37
o
C for 60 min and the reaction was terminated by heating at 85

o
C for 5 

min. Then the samples were cooled at 4
o
C and stored at -20

o
C or processed further. These 

cDNA samples were subsequently used to quantify the relative mRNA concentrations of 

Y. pestis genes terC, terD, terE and tmK. The Y. pestis gene tmK was used as the 

reference gene. For the quantification, 2 µL of above synthesized cDNA was transferred 

into 20 µL of fast SYBR
®
 green master mix (Applied Biosystems) contained 300 nM 

final concentrations of each forward and reverse primers of gene terC, terD, terE, or tmK. 

The reaction was performed in a 7500 Fast Real-Time PCR system (Applied Biosystem) 

with the following settings: one cycle of initial enzyme activation at 95
o
C for 20 sec and 

then 40 cycles of denaturation at 95
o
C for 3 sec and annealing/extension at 60

o
C for 30 

sec. The resulting ct-values obtained were used to calculate the relative expression rates 
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of Y. pestis genes terC, -D and -E in RAW264.7 cell infections or exposure to sodium 

tellurite or chloramphenicol compared to those of PBS treated control groups. 

Comparative ΔΔct method explained by Bustin (4-6) was used for the calculation as 

described below. 

Δct(experimental terC, -D or -E) = ct(experimental terC, -D or -E) –  

                                                                             ct(experimental tmK) 

Δct(control terC, -D or -E) = ct(control terC, -D or -E) – ct(control tmK) 

ΔΔct = Δct(experimental terC, -D or -E) – Δct(control terC, -D or -E) 

Relative expression (fold change) of Y. pestis gene terC, -D or -E in test samples to that 

of control groups = 2
-ΔΔct  

 

Determination of minimum inhibitory concentration (MIC) of sodium tellurite for 

Y. pestis  

For this experiment, BBL
TM

 Prompt
TM

 system (Becton, Dickinson and Company, 

NJ, USA) was used according to the manufacturer‘s instruction to prepare Y. pestis test 

inoculum of 1x10
8
 CFU/mL in saline. Subsequently, the stock inoculum was 50-fold 

diluted in Luria-Bertani (LB) (Sigma) broth to prepare the working inoculum, 2x10
6  

CFU/mL.
  

In a 96-well U-bottom plate, two-fold serially diluted sodium tellurite in LB broth 

contained maximum concentration of 10 mg/mL was dispensed at 50 µL/well in an 

orderly manner starting with column A1-G1 to down A12-G12. As a control, 50 µL 

normal LB broth contained PBS was added to each well in H1 to H12. Finally, 50 

µL/well of Y. pestis working inoculum described above was added to all the wells on the 

plate, yielding 1x10
6
 CFUs/mL. The plate was incubated at 28

o
C for overnight and then 
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the minimum concentration of sodium tellurite at which no visible growth of Y. pestis 

observed was recorded as MIC. 

 

Colony morphology of Y. pestis on tellurite agar plates 

Isolated colonies from BHI agar plates were streaked directly on fresh LB agar 

plates containing 100 µg/mL of sodium tellurite or PBS as the replacement to sodium 

tellurite. These plates were incubated at 28
o
C for 2 to 3 days, and the resulting colony 

morphologies were visualized. 

    

Light microscopic examination of Y. pestis cultures treated with sodium tellurite, 

chloramphenicol or PBS 

Y. pestis strain KIM6+ was cultured in RPMI -1640 media with 10% FBS 

containing 30 µg/mL sodium tellurite, 320 µg/mL chloramphenicol, or equivalent volume 

sterile PBS for 2.5 h at 37
o
C with 220 rpm shaking. Subsequently, samples from each of 

these cultures were spun onto the microscopic slides at moderate speed for 5 min using a 

cytocentrifuge (Statspin Cytofuge, Norwood, MA, USA). Later, the slides were stained 

with Wright Giemsa stain and examined via light microscopy at 1,000x magnification.  

 

Statistical analysis 

Mean fold changes of expression of genes terC, -D and -E from the experimental 

groups were compared with their respective controls through two tailed student‘s t-test. 

The same analysis was made on the changes of expression of gene terC, -D or -E 

between different sampling intervals. Furthermore, in a given sampling interval, the 
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genes terC, -D and -E, expressions were compared with one another within them. 

Significant difference in the mean fold changes of expression of terC, -D and -E was 

reported at p-value < 0.01 or < 0.05 wherever appropriate.  

 

     

Results 

 

Cellular filamentous morphology of Y. pestis in mouse macrophage infections 

Light and electron microscopic examinations of Y. pestis strain KIM6+ infected 

mouse macrophage cell line RAW264.7 revealed the presence of filamentous Y. pestis in 

tightly confining intracellular vacuoles at 2.5 h p.i. (Fig. 1). These filamentous Y. pestis 

were on an average 6.9 ± 1.9 µm long with the range from 5.2 to 11.1 µm and either 

partially or fully non-septated. Further, comparing the GEs with CFUs for intracellular Y. 

pestis in macrophage at 2.5 h p.i. indicated that the intracellular filamentous Y. pestis 

possessed multiple genomes per bacterium (data shown in Chapter 3). 

  

Expression of Y. pestis genes terC, terD and terE during mouse macrophage 

infections and exposure to tellurite or chloramphenicol 

Besides filamentous cellular morphology, Y. pestis residing in macrophages had 

increased levels of ter operon proteins TerD and TerE compared with culture grown Y. 

pestis at 8 h p.i. (20). In order to confirm the intracellular expression of Y. pestis ter 

operon during mouse macrophage infections and to examine further the temporal 

expression patterns of this operon during infection, the relative quantification of 
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transcripts of Y. pestis genes terC, terD and terE were measured. In addition, the same 

measurement was made for Y. pestis cultures exposed to tellurite or chloramphenicol for 

comparison of the magnitude of the response as well as to serve as positive controls. For 

the macrophage infection, Y. pestis terC, terD, and terE genes were 2.5 to 3-fold 

upregulated at 0.5 h p.i. with further modest increase at 1 h p.i. for terD and terE to 3 to 

3.5-fold compared with culture grown control groups (Fig. 2A, Table 2A). However, terC 

expression at 1 h p.i. dropped slightly from the level at 0.5 h p.i. and was significantly 

less than that of terD or terE expression.  After 1 h p.i., the expression rates began to 

decrease; at 4 and 8 h p.i, the magnitudes of expressions either did not vary or was 

slightly down regulated from the respective negative controls. Y. pestis exposed to 

tellurite also upregulated the expression of all the three genes at varying levels similar to 

in macrophage infection (Fig. 2B, Table 2B). After 30 min post-exposure (p.e.), except 

for slight upregulation of terD, there were no noticeable changes with the expressions of 

genes terC and terD. But after 1 h p.e., all the three genes were significantly upregulated 

upto 3 to 4-fold (Fig. 2B). At 2 h p.e., the expression of terC, terD and terE was still 

above the control levels, but the fold changes were lower at 2 h than they were at 1 h p.e., 

especially concerning with terD and terE genes. At 4 and 8 h p.e., the genes either were 

down regulated slightly or did not vary from the respective control groups.  

As a positive control, chloramphenicol at the concentration of 10 x MIC (320 

µg/mL) was used as determined by Wendte et al. (2011), to induce ter operon of Y. pestis 

(25, 36). During the first 2 h p.e., upregulation of genes terC, terD and terE to various 

extent was noticed (Fig. 2C, Table 2C). Subsequently, the overall expressions dropped at 

4 h p.e.; however, terC and terD mRNA concentrations were still marginally higher than 
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those of control groups. At 8 h p.e., terC and terD expressions did not vary from the 

respective controls, but terE was noticeably down regulated. As a whole, these results 

indicate that when Y. pestis resides inside the macrophages, the bacterial ter operon 

expression is likely induced by intracellular stress similar to stress elicited by exposure of 

Y. pestis to tellurite or chloramphenicol.  

 

Y. pestis resistance to sodium tellurite 

The experimental results for expression of Y. pestis ter operon in macrophage 

infections and various in vitro stimuli indicated that  Y. pestis tellurite operon is intact as 

shown by genomic sequencing studies and is actively expressed (9, 18). To confirm that 

Y. pestis exhibits resistance to tellurite metal similar to E. coli, the minimum inhibitory 

concentration (MIC) for sodium tellurite for Y. pestis strain KIM6+ was determined. 

When Y. pestis was grown overnight at 28
o
C in LB broth containing various 

concentration of sodium tellurite, no growth was observed at the tellurite concentration ≥ 

312.5 µg/mL. Below this specific concentration, the bacterial growth associated with 

blackish precipitation at the bottom of 96-well plate was observed. Further, Y. pestis 

strain KIM6+ streaked on LB agar contained 100 µg/mL sodium tellurite also produced 

black colonies measuring 1 to 3 mm size (Fig. 3). These observations indicate that Y. 

pestis strain KIM6+ is capable of growing in the presence of tellurite metal and of 

converting soluble tellurite into insoluble tellurium. 
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Cellular filamentous morphology of Y. pestis to the exposure of tellurite or 

chloramphenicol 

Presence of tellurite or chloramphenicol in the culture media upregulated the 

expression of Y. pestis ter operon genes. Hence, under the influence of ter operon 

expression, Y. pestis may assume the filamentous cellular morphology as noticed in 

laboratory E. coli expressing ter operon from pathogenic E. coli.  To this end, 

morphological features of Y. pestis grown in RPMI-1640 media with 10% FBS 

containing sodium tellurite, chloramphenicol or PBS were observed under light 

microscopy. As with E. coli, Y. pestis exposed to sodium tellurite exhibited filamentous 

cellular morphology (Fig. 4B). Comparing with PBS treated cultures, tellurite exposed Y. 

pestis cultures were extensively filamentous in shape, and some of those filaments had 

multiple darkly stained probable nuclear materials (nucleoids) along the length (Inset 

from Fig. 4B). Interestingly, this filamentous morphology in in vitro culture is 

comparable to that of Y. pestis in macrophage infections. Chloramphenicol treated Y. 

pestis cultures were predominantly coccobacilli in form similar to PBS treated controls, 

but some filaments were also observed (Fig. 4C). Overall, the filamentous cellular 

morphology of Y. pestis in tellurite containing in vitro culture is compatible with that in 

mouse macrophage infections, which may be related to effects of the proteins from 

tellurite resistance operon induced to expression by the exposure of Y. pestis to tellurite 

metal. 
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Discussion 

Y. pestis inoculated subcutaneously in rodent hosts is phagocytized by local 

macrophages, in which the bacterium survives and multiplies intracellularly before 

causing systemic infection (7, 11, 21-23, 28, 29). In our experiment, intracellular Y. pestis 

in infected mouse macrophages assumed filamentous cellular morphology at 2.5 h p.i. 

(Fig. 1), which later returned to normal coccobacillary form (Chapter 3). These 

filamentous Y. pestis had either partial or no septation and more than one genomic 

equivalence per bacterium. Appearance of this filamentous cellular morphology mirrored 

the filamentous structure of laboratory E. coli transformed with and actively expressing 

ter operon genes terZ, -A, -B and -C from pathogenic E. coli (37). Consistent with these 

observations in E. coli, Y. pestis residing in macrophages also expressed ter operon 

proteins TerD and TerE at 8 h p.i. (20). Further, the expression of genes from Y. pestis ter 

operon has been shown to be upregulated by various stressful stimuli including some 

which mimic the intracellular environment in macrophage infections (24, 25, 38). 

Therefore, it is plausible that the filamentous cellular morphology of intracellular Y. 

pestis in macrophage infections is associated with expression of ter operon proteins 

induced by bacterial stress. In support of this speculation, we observed that Y. pestis ter 

operon genes terC, -D and -E were upregulated upto 2.5 to 3.5 fold after 0.5 to 1 h p.i. in 

RAW264.7 cells as a response to the intracellular stress (Fig. 2A). Importantly, these 

changes in expression closely correlated with the presence of filamentous Y. pestis in 

macrophages. In addition, Y. pestis exposed to tellurite stress also showed upregulation of 

expression of all three genes at different levels from 0.5 to 2 h p.i. (Fig. 2B). These 

tellurite treated Y. pestis exhibited long filamentous forms similar to those observed 
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intracellularly in mouse macrophages (Fig. 4B). Close examination of each of these 

filaments revealed the presence of multiple nucleoid along the length of the filaments. 

Considering these observations together they support the potential role of Y. pestis ter 

operon in the intracellular environment as a part of Y. pestis stress regulation. 

Although proteins from ter operon may be associated with the filamentous 

cellular morphology of intracellular Y. pestis in macrophages, the molecular mechanism 

involved in this filamentation process is not clear. Likely, proteins from Y. pestis ter 

operon may act as signal transducers connecting cell surface recognition of stress to the 

bacterial cell division machinery.  In support of this hypothesis, TerD and TerE proteins 

have significant amino acid sequence homology to the C-terminus of cyclic AMP-

binding protein-1 (CAMP-1) from Dictyostelium discoideum which is likely involved in 

cellular signaling mechanisms (30, 35). In addition, Y. pestis ter proteins TerA, TerD and 

TerE are, respectively, 34.2%, 87.9% and 64.5% homologous to Klebsiella pneumoniae 

protein TerD which belongs to von Willebrand factor domain-A (vWFA) super family 

which exhibits strong calcium binding capacity, providing a strong probability that the ter 

operon proteins may be signaling molecules for an unknown bacterial physiological 

process (17). Beyond these associations, none of Y. pestis ter operon proteins has striking 

amino acid homology to any bacterial protein known for involvement in the process of 

cell division (2, 10, 12, 15, 27).  

 Y. pestis ter operon gene map derived from genomic sequencing studies shows 

that genes terZ, -A, -B, -C, -D and -E are presumably transcribed in an unidirectional 

pattern from terZ to terE by promoter sequence located 5‘ to terZ gene. Thus, the 

mRNAs concentrations of the genes terC, -D and -E would be anticipated to be present at 
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nearly an equal proportion for any given sampling time. However, in our experiments, Y. 

pestis genes terC, -D, and -E were not expressed in proportion to one another; as the 

expression of gene terC, -D, or -E varied significantly from the other two at 1 h p.i. in 

macrophage infections (Fig 2A), at 2 and 8 h p.e. in tellurite exposure (Fig 2B), and all 

the time points in chloramphenicol exposure. This disproportional expression is possible 

if Y. pestis ter operon has more than one functional transcription start site. Using the 1999 

Neural Network Promoter Prediction (NNPP) version 2.2 program from Berkeley 

Drosophila Genome Project (http://www.fruitfly.org/seq_tools/promoter.html) (26) to 

search for the possible prokaryotic RNA polymerase-II binding sites on the whole operon 

including 200bp upstream of 5‘ end of terZ translation start site revealed that there are 

twelve strong candidates for promoter sequences with probabilities of 95 to 100%. Of 

these twelve promoter sequences, six are clustered in front of terZ translation start site, 

and the remaining are scattered throughout the operon. Particularly, there are promoter 

sequences in front of genes terC, -D and -E with the probability of 98, 97 and 99%, 

respectively. In contrast to multiple promoter sequences, the entire operon has only one 

well recognizable intrinsic transcription terminator, positioning 18bp downstream to 3‘ 

end of terE. Thus, it is possible to have different lengths of transcripts from Y. pestis ter 

operon. Specifically, transcript terCDE, terDE or terE can be present in the test samples 

we measured.      

Conversion of tellurite into black crystals by Y. pestis indicates that the bacterium 

is capable of reducing water soluble, toxic tellurite (TeO3
2-

) into water insoluble, non 

toxic tellurium (Te
0
)  (30, 34). Although precise mechanism by which tellurite 

detoxification occurs in Y. pestis is not known, for E. coli, P. mirabilis,  Pseudomonas 



145 
 

pseudoalcaligenes, and Xanthomonas campestris, it is thought that tellurite likely enters 

into the bacterium through phosphate channels and is reduced to Te
0
 by various 

cytoplasmic reductases (34). Subsequently, Te
0
 is either deposited on the cytoplasmic 

membrane or effluxed into the media. Te
0
 also has the capability to induce bacterial 

reactive oxygen species (ROS) production by reacting with molecular O2, the induction of 

which can prepare the bacterium for various other external stresses (34). In this sequence 

of events, ter operon proteins are believed to be beneficial for the bacterium to replenish 

the cytoplasmic reductase enzymes concentration especially NADPH reductase (34).  

Although ter operon confers resistance to tellurite ion, Y. pestis is not exposed to 

tellurite in its normal ecological niche. In the absence of selection pressure by tellurite, Y. 

pestis ter operon is more vulnerable to mutational changes, particularly when the 

plasticity of Y. pestis genome highly favors this change (9, 18). However, various strains 

of Y. pestis isolated from distant geographical locations and Y. pseudotuberculosis strain 

IP32953 share completely identical copies of ter operon with 100% sequence homology. 

This unexpected DNA homology suggests that the proteins from Y. pestis ter operon are 

not primarily involved in the process of conferring resistance against tellurite metal; 

whereas, this tellurite resistance property may be a secondary function or side effect to an 

unknown metabolic and/or regulatory function of ter operon.  

In conclusion, the results of this study demonstrate that although Y. pestis ter 

operon confers resistance to tellurite metal when the metal is present, the proteins from 

this operon are induced by intracellular stress in macrophage infections and may cause Y. 

pestis to assume a filamentous cellular morphology as an adaptive cellular change to 

withstand the harsh intracellular environment.   
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Table 1. Sequence information of primers used in Y. pestis ter operon expression 

study  

Gene targeted  Primer sequence  

 

terC Forward(F): 5‘-TCCATCTCGAAAAAGCCGTT-3‘ 

Reverse(R): 5‘-TCGCCAGTACACCAATGACC-3‘ 

 

terD F: 5‘- TTCGAAAGGCGGTAATGTCTCC-3‘ 

R: 5‘- GAAATCCTGACCATCTGTAGAACGG-3‘ 

 

terE F: 5‘- GCTCCAACCATGAACATTGCTGTCG-3‘ 

R: 5‘-CGTTTTCACCGACCATAAATACCGA-3‘ 

 

tmK F: 5‘-ACGATATCGTTTTTACCCGTGAGCC-3‘ 

R: 5‘-TTATCCGTCAGGACCTCACCGTCAA-3‘ 
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Table 2A. Comparative statistical analysis of Y. pestis genes terC, -D and -E expression levels for macrophage infection between sampling 

intervals 

 Exp. terC terD terE 

Exp. p.i. (hr) 0.5 1.0 2.0 4.0 8.0  0.5 1.0 2.0 4.0 8.0 0.5 1.0 2.0 4.0 8.0 

terC  

0.5 

 

 

- - * ** 

          

1.0 

 

  - - -           

2.0 

 

   - *           

4.0 

 

    -           

8.0 

 

 

               

terD 0.5 

 

      - - * **      

1.0 

 

       * * **      

2.0 

 

        - *      

4.0 

 

         -      

8.0 

 

 

               

terE 0.5 

 

           - - * ** 

1.0 

 

            * * ** 

2.0 

 

             - - 

4.0 

 

              - 

8.0 

 

               

Note: *, p < 0.05; **, p <0.01 
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Table 2B. Comparative statistical analysis of Y. pestis genes terC, -D and -E expression levels for sodium tellurite exposure between 

sampling intervals 

 Exp. terC terD terE 

Exp. p.i. (hr) 0.5 1.0 2.0 4.0 8.0  0.5 1.0 2.0 4.0 8.0 0.5 1.0 2.0 4.0 8.0 

terC  

0.5 

 

 

** * - - 

          

1.0 

 

  - ** **           

2.0 

 

   ** **           

4.0 

 

    -           

8.0 

 

 

               

terD 0.5 

 

      ** ** - -      

1.0 

 

       * ** **      

2.0 

 

        ** **      

4.0 

 

         -      

8.0 

 

 

               

terE 0.5 

 

           - - * - 

1.0 

 

            * ** ** 

2.0 

 

             ** ** 

4.0 

 

              - 

8.0 

 

               

Note: *, p < 0.05; **, p <0.01 
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Table 2C. Comparative statistical analysis of Y. pestis genes terC, -D and -E expression levels for chloramphenicol exposure between 

sampling intervals. 

 Exp. terC terD terE 

Exp. p.i. (hr) 0.5 1.0 2.0 4.0 8.0  0.5 1.0 2.0 4.0 8.0 0.5 1.0 2.0 4.0 8.0 

terC  

0.5 

 

 ** ** - * 

          

1.0 

 

  - ** **           

2.0 

 

   ** **           

4.0 

 

    **           

8.0 

 

 

               

terD 0.5 

 

      ** ** - **      

1.0 

 

       ** ** **      

2.0 

 

        ** **      

4.0 

 

         **      

8.0 

 

 

               

terE 0.5 

 

           - - ** ** 

1.0 

 

            ** ** ** 

2.0 

 

             ** ** 

4.0 

 

              ** 

8.0 

 

               

Note: *, p < 0.05; **, p <0.01 
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Fig. 1. Filamentous Y. pestis in mouse macrophage infection. Mouse macrophage-like 

cell line RAW264.7 was infected with Y. pestis strain KIM6+ for 30 min and 

subsequently the extracellular bacteria were killed by 50 µg/mL gentamicin for 2 hrs. The 

infected macrophages were affixed onto slides using a cytospin centrifuge and stained 

with Wright Giemsa for light microscopic examination (A). At the same time, replica 

samples were fixed in 2.5% (v/v) glutaraldehyde in PBS for 1 h and processed for 

transmission electron microscopic examination (B). Arrows indicate filamentous Y. 

pestis. Images A and B are at 1,000 and 6,000x magnification, respectively, and 

measuring bar on image B is 1µm long.   

 

 

 



156 
 

 

Fig. 2. Expression patterns of Y. pestis genes terC, terD and terE. Graphs represent 

expression profiles of Y. pestis strain KIM6+ ter operon genes terC, terD and terE for 

mouse macrophage infection (A) and exposure to sodium tellurite (B) or chloramphenicol 

(C). Shaded and white bars are, respectively, control and experimental groups (n=3). 

Genes terC, terD and terE are represented by bars filled with cross lines, dots or nothing, 

respectively. The results are expressed as means ± SEM. For the experimental samples, in 

a given sampling interval the genes terC, -D and -E, expressions were compared one 

another within them and the resulting statistical difference between the two 

measurements was marked by a symbol in pair as following: #, $, ψ, p<0.05; $$, ψψ, δδ, 

ΔΔ, ††, §§, ΦΦ, ¥¥, ᴎᴎ, **, p<0.01. Significant difference between the experimental 
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terC, -D or -E and the respective control was noted by dashed line and asterisk (*, p < 

0.05; **, p < 0.01).      
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Fig. 3. Y. pestis colonies on sodium tellurite agar plates. Y. pestis strain KIM6+ was 

streaked on LB-agar plates containing PBS (A) or 100 µg/mL of sodium tellurite (B) and 

incubated at 37
o
C for 3 days.  
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Fig. 4. Filamentous Y. pestis in in vitro cultures. Y. pestis strain KIM6+ was cultured at 

37
o
C in RPMI-1640 media with 10% FBS containing PBS (A), 30 µg/mL sodium 

tellurite (B), or 320 µg/mL chloramphenicol (C). After 2.5 h of culture, samples were 

prepared by staining with Wright Giemsa stain for light microscopic examination. Inset 

from image B represents multi-nucleoids appearance of a filamentous Y. pestis. Images 

are presented at 1,000x magnification. 
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CONCLUSIONS 
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Y. pestis infection of macrophages and disease severity 

Y. pestis, an obligatory intracellular pathogen during the initial stage of infection, 

causes severe disease plague in natural rodent hosts (1, 32). Rodents are highly 

susceptible to plague and suffer severe disease with high mortality as demonstrated by Y. 

pestis infected mice and rats which die within 3 to 15 days post-infection in experimental 

infections (46, 47, 50). Infected animals show enlargement of local lymph nodes as the 

initial clinical sign which is followed by septicemia, disseminated intravascular 

coagulation and death of the animals (46). Under natural conditions, Y. pestis is 

transmitted among susceptible rodent hosts by feeding fleas (1, 32). Before being 

transmitted to a new host, Y. pestis multiplies in the flea mid-gut region and forms a 

biofilm, which maximizes the efficiency of vector mediated plague transmission (32). 

  In this rodent-flea-rodent plague infection cycle, rodent predators such as dogs, 

coyotes, ferrets and cats occasionally intrude and extend the rodent epizootic foci, as 

these predators can carry the infected rodent carcasses and infected rodent fleas from 

place to place (54). During this intrusion, rodent predators can also contract the infection 

mainly by ingestion of infected carcasses or occasionally by bite of Y. pestis infected 

rodent fleas (27, 28). For the Y. pestis infection, unlike rodents, some rodent predators 

such as dogs and coyotes exhibit only mild or inapparent clinical disease. In an 

experimental exposure, dogs fed Y. pestis infected guinea pig carcasses were anorectic 

and lethargic for few days post-exposure, and thereafter, all of the exposed dogs 

recovered completely without succumbed to severe disease or mortalities (27, 42).  

During flea bite infection in rodents, Y. pestis inoculated into subcutaneous tissues 

are mainly killed by the neutrophils present in the subcutis (32). At the same time, the 



162 
 

macrophages also phagocytize Y. pestis; but in contrast to neutrophils, Y. pestis taken up 

by macrophages survive and multiply intracellularly for 24 to 36 h during the initial stage 

of infection (15, 37). Later, these intracellular Y. pestis are released from the 

macrophages probably by cell lysis and initiate the septicemic infection (52). Therefore, 

it is possible that Y. pestis infection dynamics in host macrophages may determine the 

subsequent disease progression and severity. In particular, Y. pestis in macrophages from 

host suffering severe disease may overcome macrophage induced stress, whereas Y. 

pestis may not escape host antimicrobial activity of macrophages from hosts with less 

severe disease. 

   

Y. pestis filamentous cellular morphology during macrophage infections 

In an in vitro experimental model, we compared Y. pestis infection progress in 

mouse and dog macrophages which represent the hosts experiencing severe and less 

severe disease, respectively. In primary macrophages from mouse spleen and dog 

peripheral blood and tissue culture cells RAW264.7 from mouse and DH82 from dog, Y. 

pestis assumed filamentous cellular morphology, especially at the early stage of infection. 

These filamentous Y. pestis had multiple genomes per bacterium, as shown by genomic 

equivalences (GEs) per colony forming unit (CFU), which was approximately 4-fold high 

during the initial phase of infection in RAW264.7 cells and throughout the experiment in 

DH82 cells. These filaments were twice or greater the maximum length of normal Y. 

pestis bacilli and were confined within tight Yersinia containing vacuoles (YCV). These 

intracellular filamentous Y. pestis appeared similar to the filamentous forms of 

uropathogenic E. coli in mouse urinary bladder epithelial cells, Legionella spp. in Vero 
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cell line, Mycobacterium tuberculosis in human macrophage cell line THP-1, and 

Salmonella enterica serovar Typhimurium in mouse bone marrow and RAW264.7 

macrophages (5, 18, 21, 26, 40, 41). 

Although the exact beneficial nature of filamentous cellular morphology for 

intracellular Y. pestis is not known, this morphologic change is considered to be a 

bacterial adaptive strategy to cope with the harsh intracellular environment (61). 

Assumption of a filamentous cellular morphology may provide sufficient time for the Y. 

pestis DNA repair system to restore the damage done to its genome by various 

phagolysosomal stressors such as nitric oxide, reactive oxygen species, proteases and 

cationic antimicrobial peptides (19, 20, 40, 41, 43). In addition to these intracellular 

stressors, low calcium concentration in the phagolysosomal niche may also trigger the 

filamentation process in Y. pestis (17, 35). Further, Y. pestis had filamentous structure in 

all macrophages irrespective of host origin, indicating that a conserved macrophage 

lineage specific stressor may exert this intracellular filamentation process in Y. pestis. 

Although the assertion is made herein that intracellular filamentous Y. pestis is due to the 

macrophage associated stress, the molecular pathway which communicates this stressor 

cue to the bacterial cell division machinery is yet to be identified. In addition, studies 

focusing on the role of filamentous Y. pestis in mitigating intracellular stress need to be 

addressed to better understand the early pathodynamics of Y. pestis infection in 

macrophages. 
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Liberation of Y. pestis from stress in mouse and dog macrophages 

During progress of the infection, the filamentous Y. pestis reverted to normal 

coccobacillary form both in primary and tissue culture macrophages from mouse, and 

later these intracellular coccobacilli were released from the macrophages by cell lysis. 

However, in dog peripheral blood derived macrophages, Y. pestis return to coccobacilli at 

7.5 h p.i., but towards end of the experiment, these coccobacilli were killed by the 

macrophages. In dog tissue culture macrophages, the filamentous Y. pestis formed during 

the early stage of infection was continuously retained in the same adaptive cellular 

morphology for the entire experiment of 27.5 h as evidenced by 4-fold higher GEs per 

CFU ratio and the presence of filamentous Y. pestis in DH82 cells throughout the 

experiment. Overall, these findings clearly support the hypothesis that Y. pestis in mouse 

macrophages can successfully overcome the intracellular stresses, resulting in survival 

and multiplication of Y. pestis in these macrophages. But in dog macrophages, Y. pestis 

may not overcome the macrophage associates stress and thus are killed by the 

macrophages. A predicted outcome of this conclusion is that failure to control Y. pestis 

infection progress at the macrophage infection stage in mice or in other similarly highly 

susceptible rodents leads to acute, severe disease with high mortality (1, 32, 46, 47, 50). 

Whereas, restriction of Y. pestis growth by dog macrophages limits the disease to either 

mild or inapparent form (42). To advance this area of research, an animal study using 

mouse models having normal levels or depletion of macrophages is necessary to confirm 

the role the host macrophages play on Y. pestis infection severity and the resulting 

outcome of the disease. Particularly, the mice which lack any mononuclear phagocytic 

system might be expected to develop less severe disease through flea bite infection but 
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may be fully vulnerable for intravenous route of injection of or aerosolized exposure to Y. 

pestis which have been cultured at mammalian body temperature. Similarly, dogs 

injected intravenously with Y. pestis culture grown at 37
o
C might be expected to succumb 

to severe disease. Experiments of these types may further our understanding of the 

contributions of host macrophages for Y. pestis infection progression during the early 

stage of the disease.   

 

Intracellular Y. pestis in mouse macrophages causes spacious extension of YCV 

During the conversion of filamentous Y. pestis to normal coccobacilli in mouse 

primary and tissue culture macrophages, the YCV were remodelled into spacious 

vacuoles. In contrast, such changes were not noticed in either primary or tissue culture 

macrophages from dog. These spacious YCV in mouse macrophages appeared similar to 

those in Y. pestis strain KIM6 infected mouse macrophage-like cell line J774A.1 (15). 

Inactivation of Y. pestis transcriptional regulator PhoP-PhoQ led to a failure to form any 

such vacuoles (15), indicating that genes under the control of PhoP-PhoQ regulator are 

involved in this YCV extension process. In addition, we propose that Y. pestis enzyme 

urease may also play a role in YCV remodelling, which is further explained in the 

intracellular stress response proteins section.  

 

Macrophage cell lysis from Y. pestis infections 

In addition to differences in vacuolar extension of YCV, mouse and dog tissue 

culture macrophages also varied between Y. pestis induced cell lysis of macrophages. 

RAW264.7 cells showed upto 45% cell lysis to Y. pestis infection in contrast to 
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approximately 10% cell lysis in DH82 cells, which did not differ significantly from the 

uninfected control cells. This high percentage of macrophage cell lysis in mouse 

macrophages indicates the nature of vulnerability of these macrophages to Y. pestis 

infection as previously reported for mouse J774A.1 cell line infections (51). This Y. pestis 

infection mediated macrophage cell lysis was comparable with that observed in E. coli 

infection of RAW264.7 cells or mouse bone marrow derived macrophages, and in 

Salmonella typhi infection of RAW264.7 cells (13, 16). Likely, restriction of intracellular 

Y. pestis to its stress-responsive filamentous cellular morphology throughout the 

experiment by dog macrophages results in negligible cell lysis as observed in antibiotic-

induced Burkholderia pseudomallei filament infection of THP-1 cells (7). However, 

failure to limit the intracellular growth and modulation of YCV by Y. pestis in mouse 

macrophages may cause extensive cell lysis.  

 

Intracellular Y. pestis expresses general stress response proteins 

For successful survival during the initial macrophage parasitism phase, Y. pestis 

has to adapt to or overcome the various intracellular antimicrobial defense mechanisms 

such as acidic pH; hydrolytic enzymes such as lipase, nuclease, glycosidase; reactive 

oxygen species; oxidizing agent; cationic peptides; nitric oxide and reactive nitric oxide 

intermediates (11, 56). Further, phagolysosomal compartments contain very low 

concentration of calcium, iron, magnesium and manganese; these ions are essential for 

many intracellular pathogens including Y. pestis (11, 32). In order to survive in this 

hostile environment Y. pestis can employ a wide spectrum of stress responders; many of 

these have been reported, but some have to be identified. In particular, Y. pestis virulence 
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factors ripA and ripB genes from pigmentation locus help Y. pestis to reduce nitric oxide 

concentration during macrophage infections (37). Similarly, genes associated with metal 

ion transportation systems such as mgtC for magnesium; and yfeABC and yfeD, and 

feoABC for iron are also indispensable for the macrophage infection of Y. pestis (15, 33). 

Other Y. pestis virulence factors for which a clear role in macrophage infection have not 

yet been confirmed are Hfq chaperon and Braun‘s lipoprotein synthesizing gene lpp (14, 

49). Under these circumstances, as an effort to search for additional Y. pestis virulence 

factors involved in the macrophage life cycle, a proteomic study was carried out to 

explore the Y. pestis proteins which are expressed in the intracellular environment but not 

in extracellular culture condition. The resulting study revealed that in the intracellular 

environment, Y. pestis expressed proteins such as superoxide dismutase-A, inorganic 

diphosphatase, autonomous glycycl radical cofactor GrcA, molecular chaperone DnaK, 

serine endoprotease GsrA, global DNA-binding transcriptional dual regulator H-NS, 

urease gamma subunit, and tellurite resistance protein-D and -E.  

Y. pestis superoxide dismutase, a metalloenzyme which detoxifies macrophage 

respiratory burst superoxides into less harmful hydrogen peroxide and molecular oxygen, 

has previously been implicated for intracellular survival of Bordetella pertussis Tohama I 

and E. coli GC4468 in J774A.1  macrophages and E. coli GC4468, S. typhimurium 

ATCC 14028s, S. flexneri M90T and Mycobacterium tuberculosis in mouse peritoneal 

macrophages (4, 9, 12, 22, 25, 34). Two other enzymatic proteins inorganic 

pyrophosphatase and GrcA may be important for the metabolic activities of intracellular 

Y. pestis. Inorganic pyrophosphatase hydrolyses pyrophosphate to monophosphate to 

recycle phosphate and to avoid accumulation of pyrophosphates (6). GrcA is likely 
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involved in pyruvate metabolism and is expressed under acidic and anaerobic conditions 

such as those present in phagolysosomes (8, 30).  

DnaK chaperone of Y. pestis is a critical stress responsive protein supporting 

proper folding of misfolded proteins which accumulate when Y. pestis resides in the 

hostile macrophage phagolysosomal compartments. Further, DnaK also functions to 

facilitate degradation of abnormally folded proteins (24, 31). Similarly, GsrA, a 

periplasmic-serine protease, protects the periplasmic space from the accumulation of 

abnormally folded proteins during the stress conditions (60).   

DNA binding protein H-NS is a negative transcriptional regulator of various 

genes which recognizes environmental cues and is highly conserved in the 

Enterobacteriaceae family (2, 3). H-NS expression by intracellular Y. pestis may repress 

genes which might interfere with intracellular life phase of Y. pestis (2, 23).  

Urease gamma subunit (UreA) is a part of tri-heterotrimeric (UreABC)3 functional 

urease, which may play an important role in the spacious extension of YCV (45, 48). 

From studies on Helicobacter pylori urease, it is conceivable that Y. pestis urease may 

increase the osmotic concentration of YCV, and thus causes water influx and swelling of 

YCV (44). As support for this contention, during Y. pestis infection of RAW264.7 cells, a 

functional subunit of active urease UreA is expressed exclusively in the intracellular 

niche (36). However, the role of Y. pestis urease in the spacious remodelling of YCV is in 

question because the Y. pestis gene ureD which encodes an accessory protein needed for 

active urease assembly carries an insertion mutation (45). Therefore, Y. pestis urease may 

not be active. However, if urease were inactive and not necessary for intracellular 

survival of Y. pestis, then it would be expected to accumulate mutations in the Y. pestis 
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urease enzyme encoding locus. But in contrast to this assumption, Y. pestis ure locus 

including adjacent nickel transporters is highly conserved among various strains of Y. 

pestis from distant geographical origins (45), suggesting high level of selection pressure 

on this locus likely due to dependency of Y. pestis on this locus for an unknown but an 

essential bacterial physiological activity. Furthermore, there is also a possibility that Y. 

pestis can revert between non-urolytic and urolytic status at high frequency rate (45). 

These latter observations support the potential role of Y. pestis urease in the process of 

spacious extension of YCV. To prove this assumption, the relationship between Y. pestis 

urease and YCV extension will need to be further explored.  

Finally, the possible role of Y. pestis protein TerD and TerE from the terZABCDE 

operon are further examined in the context of macrophage stress mediated Y. pestis 

filamentous structure formation in the following section. 

    

Expression of tellurite resistance operon causes filamentous cellular morphology of 

Y. pestis in mouse macrophage infections 

  The filamentous cellular morphology of intracellular Y. pestis in macrophages 

resembled laboratory E. coli strain DH5α expressing genes terZ, -A, -B, and -C from 

pathogenic E. coli tellulrite resistance operon terZABCDEF. Expression of the ter operon 

has been purposed to be beneficial for E. coli to survive inside the mouse peritoneal 

macrophages and to resist hydrogen peroxide mediated stress (57, 59). Further, Y. pestis 

ter operon proteins TerD and TerE were observed in protein samples prepared from 

intracellular Y. pestis in macrophages but not in culture grown Y. pestis (36). Various 

genes from Y. pestis ter operon were noticed to be upregulated by various in vitro stimuli 
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which may mimic the intracellular environmental stresses in macrophage infections (38, 

39, 62). All these findings strongly indicate the possible association between macrophage 

induced stress, ter operon expression, and Y. pestis filamentous cellular morphology in 

macrophage infections. 

 Quantification of mRNA concentration of Y. pestis genes terC, -D and -E during 

RAW264.7 cell infections agreed with proteomics data for expression of TerD and TerE 

proteins in macrophages. These studies revealed upregulation of expressions of all these 

genes upto 2.5 to 3.5 fold at 1 h p.i. as a response to intracellular stress. Further, similar 

type of upregulations was noticed in Y. pestis culture exposed to sodium tellurite or 

chloramphenicol. Notably, the upregulations of expression of terC, -D and -E in 

macrophages closely correlated with the time of presence of intracellular filamentous Y. 

pestis. In addition to this correlation, Y. pestis culture exposed to sodium tellurite 

exhibited bacterial filamentous cellular morphology similar to those presented in 

RAW264.7 cell infections. Considering these observations together, there are two 

possible conclusions which can be made. First, Y. pestis ter operon expression is induced 

as a part of bacterial intracellular stress regulatory mechanism. Second, the resulting 

expression leads Y. pestis to assume filamentous cellular morphology as a morphologic 

adaptation to manage the hostile intracellular environment in macrophages. Likely, Y. 

pestis ter operon proteins function as a signal transducer to communicate the macrophage 

associated stresses to the bacterial cell division machinery. A growing body of evidence 

supports this conjecture. Proteins TerD and TerE share high percentage of amino acid 

homology to a cyclic AMP-binding protein of Dictyostelium discoideum slime mold (53, 

58), indicating the possibility that the proteins TerD and TerE may be involved in a 
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bacterial cell signaling process. This conjecture is further supported by observations that 

Y. pestis proteins TerA, TerD, and TerE are also highly homologous to Klebsiella 

pneumoniae ter operon protein TerD which exhibits a strong calcium binding property 

(29). To better understand the role Y. pestis ter operon proteins may play during 

macrophage infection, it will be necessary to observe the infection progress of Y. pestis 

strains which are mutated for the various ter operon genes. In particular, Y. pestis ter gene 

mutants are anticipated to be less competent for responding to the macrophage associated 

stress, such as filamentation process and survivability of intracellular stress.  

    

Y. pestis tellurite resistance and ter operon DNA sequence homology 

Apart from playing a role in the filamentation process, Y. pestis ter operon 

provides the capability for the bacteria to grow in the presence of < 312.5µg/ mL of 

sodium tellurite in the culture media, showing that the tellurite resistance property of Y. 

pestis is similar to that exhibited by Proteus mirabilis (55). However, although Y. pestis 

showed tellurite resistance, in its ecological niche the bacterium is not exposed to toxic 

tellurite metal. In the absence of selection pressure, it is expected that mutations would be 

accumulated in the Y. pestis ter operon locus. However, in contrast to this expectation, 

sequence comparison of various Y. pestis strains from different geographic origins and 

Yersinia pseudotuberculosis strain IP32953 showed identical ter operons (10, 30). This 

unexpected observation suggests that Y. pestis ter operon proteins are likely involved in 

an unknown bacterial physiological process, to which the tellurite resistance properties 

are a secondary enzymatic activity. The role of the Y. pestis ter operon proteins in stress 
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related cell signaling mechanisms may be explored by identifying other proteins with 

which these proteins interact.  

 

Summary 

Overall, the results of our study indicate that Y. pestis in macrophages from 

mouse or from other similarly high susceptible hosts can overcome the initial 

macrophage induced stress during the flea bite infection and resulting in subsequent 

severe systemic disease. But in dog or other low susceptible hosts, macrophages likely 

restrict the infection progress at the intracellular parasitism phase, and thus Y. pestis 

infections are mild to inapparent. During the intracellular parasitism phase, Y. pestis 

applies various general stress regulatory mechanisms to better adapt the harsh 

macrophage phagolysosomal environment. As a part of this stress regulation, Y. pestis ter 

operon expression which is induced likely results in adaptation to a filamentous cellular 

morphology in macrophages as a response to the stress stimuli.  
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Yersinia pestis causes severe disease in natural rodent hosts but mild to inapparent 

disease in rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts 

by parasitizing and multiplying intracellularly in local macrophages during the early 

stage of infection. Thus, we hypothesized that Y. pestis infection severity may depend on 

how well the intracellular bacterium overcomes the initial host macrophage associated 

stress. To test this hypothesis, Y. pestis infection progress was studied in mouse splenic 

and dog peripheral blood macrophages, and various parameters of this infection were 

measured in mouse and dog tissue culture macrophages RAW264.7 and DH82, 

respectively. The study showed that during the early stage of infection, intracellular Y. 

pestis assumed filamentous cellular morphology with multiple genomes per bacterium in 

both mouse and dog macrophages. Later, in mouse macrophages, these filamentous Y. 

pestis returned to coccobacilli with spacious vacuolar extension of Yersinia containing 

vacuoles (YCV) and extensive macrophage lysis. However, in dog macrophages, 

intracellular Y. pestis were either retained in the same filamentous cellular morphology 

for the entire experiment in tissue culture cells or killed eventually in blood macrophages. 

In addition, Y. pestis infected dog macrophages did not show noticeable extension of 

YCV and macrophage lysis. To further understand the Y. pestis virulence factors in 

macrophage parasitism, protein profiles of Y. pestis residing in RAW264.7 cells were 

compared with those of culture grown Y. pestis. The experiment showed the expression 

of various general stress response and tellurite resistance proteins of Y. pestis. Tellurite 

resistance genes were analyzed for their possible role in Y. pestis intracellular stress 

regulation. This analysis indicated that Y. pestis tellurite resistance (ter) operon 

expression was induced as a response to the macrophage stress and expression of these 

proteins associated with conversion to a filamentous cellular morphology by Y. pestis 

similar to that observed in macrophage infections. These studies indicate that Y. pestis in 

mouse macrophages can overcome the initial intracellular stress and cause systemic 

infection. But failure to overcome the dog macrophage induced stress by Y. pestis may 

result in mild disease in these animals. During this intracellular parasitism, Y. pestis 

employs various general stress regulatory mechanisms to survive in macrophages. As a 

part of this stress response, expression of Y. pestis ter operon likely causes filamentous 

cellular morphology response in order to adapt to the macrophage associated stress. 


