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CHAPTER I 
 

 

INTRODUCTION 

 

 Francisella tularensis is a highly infectious, gram-negative, coccobacillus and 

causative agent of the disease tularemia in wild rodents and rabbits. The disease is 

occasionally transmitted to incidental hosts including humans. The genus Francisella has 

two species, F. tularensis and F. philomiragia. It has been recently proposed that 

Francisella-like endosymbionts of ticks and certain fish pathogens also be included in the 

genus Francisella. Francisella philomiragia is an opportunistic pathogen and is reported 

to cause pneumonia and systemic disease in immunocompromised individuals. 

Francisella tularensis has two main subspecies, type A (ssp. tularensis) and type B (ssp. 

holarctica). Type A is the more virulent form and is seen exclusively in North America, 

whereas the less virulent type B is found in North America and Eurasia. Francisella 

tularensis type A has a terrestrial life cycle; the bacterium is enzootic in wild rodents and 

rabbits. This transmission cycle is vectored by arthropods, mainly ticks and biting flies, 

and accounts for 90% of human tularemia cases in North America. Francisella tularensis 

type B has a waterborne life cycle in which the bacterium is enzootic in water-associated 

rodents and beavers and accounts for 10% of human tularemia cases in North America.
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 Francisella tularensis can be easily aerosolized and is highly infectious; 

therefore, the Centers for Disease Control and Prevention has classified F. tularensis as a 

category A Select Agent. Much of the research in recent years has focused on 

pathogenesis and vaccine development. Over the last 10 years, our understanding of the 

immune response to the bacterium as well as the genetic aspects of the pathogenesis of F. 

tularensis has improved considerably. However, our understanding of the ecology of this 

bacterium, its persistence in nature as well as the biology in the vector is still lacking.  

 The first two studies reported herein describe the systematic study of F. tularensis 

colonization in the tick vectors Dermacentor variabilis and Amblyomma americanum as 

well as describing the capillary feeding method of colonizing the different stages of these 

ticks with F. tularensis. The role of these ticks as a possible reservoir of F. tularensis is 

also discussed. The final chapter of this dissertation addresses the possible role of chitin 

as a nutrient source for F. tularensis in the tick life cycle.
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CHAPTER II 

 

 

LITERATURE REVIEW
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Abstract 

 

 Francisella tularensis is a highly infectious pathogen that causes the disease 

tularemia. Francisella tularensis is susceptible to more than 300 different species 

including mammals, birds, amphibians and invertebrates. The animals which are 

important in maintaining the natural infection in enzootic foci are wild rodents and 

rabbits along with their arthropod vectors including ticks and flies. In this chapter the 

history and epidemiology of F. tularensis, ecology of vector borne transmission of F. 

tularensis, and artificial feeding methods for infecting ticks are reviewed.  

 

 

Introduction 

 

 Francisella tularensis is non-motile, non-sporulating, facultative intracellular 

gram-negative bacteria that cause the disease tularemia in a wide variety of animals 

including wild and domestic animals and humans (Ellis et al., 2002; Goodman et al., 

2005; Sjostedt, 2007). However, the environmental persistence of F. tularensis is mainly 

due to the tick transmitted enzootic cycle of tularemia in wildlife including rabbits and 

rodents (Eisen, 2007; Eisen et al., 2008; Jellison, 1974). 
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 In the first half of the 20th century, human tularemia cases in the United States 

were relatively high, and the disease was transmitted mainly through contact with 

infected rabbits. In the latter half of the 20th century the number of human cases declined 

and the major mode of disease transmission was by tick bites (Eisen, 2007). In the last 50 

years, the south-central United States comprised of Arkansas, Missouri, Oklahoma, and 

Kansas, has become the focal point of human tularemia outbreaks with 60% to 70% of 

these cases being attributed to infection from tick bites (Eisen, 2007). 

 The forest/shrub land ecology of the south-central tularemia endemic region is 

well suited for abundant tick populations (Eisen, 2007; Eisen et al., 2008; Sonenshine, 

1991). Dermacentor variabilis and Amblyomma americanum are the main vectors for F. 

tularensis in this region. Experimental studies have shown that ticks may serve as 

biological vectors of F. tularensis, and that it can be transstadially transmitted from one 

tick stage to the other (Bell, 1945; Francis, 1927; Hopla, 1953). Although experiments 

done in the 1930s and 1940s have shown transovarial transmission in D. variabilis, D. 

andersoni, and Hemophysalis leporipalustris, more recent studies have failed to confirm 

this result (Burgdorfer and Varma, 1967; Bell, 1945). Francisella-like endosymbionts 

(FLE) have been shown to colonize the reproductive tissues of Dermacentor species, and 

this association indicates an ancient link between Francisella and ticks (Baldridge et al., 

2009; de Carvalho et al., 2011; Machado-Ferreira et al., 2009; Niebylski et al., 1997; Sun 

et al., 2000).  

 Host seeking activity of D. variabilis and A. americanum ticks peaks in early 

spring and summer in the south-central tularemia endemic region coinciding with the 
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annual seasonal tularemia outbreaks in humans. A tick-small mammalian hosts enzootic 

cycle is major reason for the persistence of tularemia in this region. Field studies have 

shown that D. variabilis adults and larvae can survive the winter and resume host seeking 

activity in the following spring, whereas the nymphs are not known to survive the winter 

months (Burg, 2001; Kollars et al., 2000a; Sonenshine, 1972; Sonenshine, 1991). In 

contrast for A. americanum, it is the nymphs and adults that are known to overwinter 

(Brown et al., 2011; Eisen, 2007; Kollars et al., 2000a; Sonenshine, 1991). Francisella 

tularensis infected ticks that overwinter may carry over the infection from one enzootic 

cycle to the next and thus maintain the persistence of this bacterium in nature. 

 In recent decades, much progress has been made in our understanding of the 

pathogenesis and virulence of F. tularensis especially in regard to mouse infection 

models and vaccine development (Clinton et al., 2010; Lindgren et al., 2011; Meibom 

and Charbit, 2009; Santic et al., 2009); however, with regard to the biology of F. 

tularensis in the tick vectors and the molecular level interactions at the vector-pathogen 

interface very little is known (Eisen, 2007; Petersen et al., 2009). Francisella tularensis 

was shown to disseminate from the gut to the hemolymph in D. andersoni, but evidence 

of bacterium in the salivary gland or in the saliva has not been reported for any tick 

species (Francis, 1927; Petersen et al., 2009). The glass capillary tube method of feeding 

ticks with pathogens has been shown to be an excellent method of infecting various tick 

species with pathogens (Broadwater et al., 2002; Kocan et al., 2005; Young et al., 1996). 

Environmental persistence of F. tularensis has been reported especially for F. tularensis 

ssp. holarctica and F. tularensis ssp. novicida in aquatic environments, and in addition, 
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the latter was shown to form biofilms in the presence of chitin (Berrada and Telford III, 

2011; Hazlett and Cirillo, 2009; Margolis et al., 2009). 

 

 

History and Epidemiology of Tularemia 

 

 Tularemia was first described by G. W. McCoy in ground squirrels in Tulare 

County in California, and a year later the bacterium was isolated by McCoy and Chapin 

(McCoy and Chapin, 1912). Two years later the first human case of tularemia was 

described in Ohio (Wherry and Lamb, 1914). However, a disease of similar nature had 

been described in Utah in 1908, and even earlier, there were reports of similar disease 

description from Norway called lemming fever and also from Japan called Yato byo 

(wild hare’s disease) (Morner, 1992; Ohara, 1954; Pearse, 1911). The bacterium was 

initially designated as Bacterium tularense, the term coined after Tulare County, 

California where McCoy first described the disease. In 1921, Edward Francis showed the 

experimental transmission of the bacterium in deerfly (Chrysops discalis) and later in 

several arthropod vectors including ticks (Francis, 1927; Francis and Mayne, 1921). The 

bacterium was briefly classified under the genus Brucella and Pasteurella because of the 

serological similarity (Topley and Wilson, 1937). In 1947, the name Francisella was 

given to the genus in recognition of the extensive work of Edward Francis on this 
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bacterium, and in 1961 Philip and Owen proposed the name Francisella tularensis as the 

type species for this genus (Olsufjev, 1970; Philip and Owen, 1961).  

 After the initial description of the disease in the 1920s, numerous tularemia cases 

were reported from North America, Europe, Russia and Japan. A distinct difference in the 

virulence of the isolates seen in North American outbreaks from those seen in Europe and 

Asia was reported. In 1961, Olsufiev and colleagues suggested F. tularensis biovar 

tularensis for the more virulent North American isolates and F. tularensis biovar 

palaearctica for the less virulent European and Asian isolates. Later the two biovars were 

designated as F. tularensis ssp. tularensis and F. tularensis ssp. holarctica, respectively 

(Olsufiev et al., 1959; Olsufjev, 1970). In another classification based on the 

susceptibility of the holarctica subspecies for erythromycin, biovar I EryS and biovar I 

EryR  was proposed (Olsufjev and Meshcheryakova, 1982). W. L. Jellison used the 

designation type A for ssp. tularensis and type B for ssp. holarctica. Owing to its 

simplicity, this nomenclature is still used today (Jellison, 1974; Olsufjev and 

Meshcheryakova, 1982). In 1950 a new bacterium similar to Francisella was isolated 

from water samples from Ogden Bay, Utah. This new bacterium was distinct from F. 

tularensis in that it could ferment sucrose, and the name Pastuerella novicida sp. nov. 

was designated and later categorized as a ssp. of F. tularensis (Larson et al., 1955; 

Olsufjev and Meshcheryakova, 1982). Another Francisella isolate was reported from 

Central Asia and was included as ssp. mediasiatica. Currently, there are four ssp. of F. 

tularensis namely tularensis, holarctica, novicida and mediasiatica (Olsufjev and 

Meshcheryakova, 1982). 
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 Johansen and colleagues in 2004, reported two subdivisions within the virulent 

tularensis ssp. by analyzing 25 variable number of tandem repeat (VNTR) loci using the 

multi locus VNTR analysis (MLVA) method and designated them as A1 and A2 

(Johansson et al., 2004). Following this VNTR analysis, Staples and colleagues found 

similar genetic diversity among the type A isolates in the United States by analyzing 

pulsed field gel electrophoresis (PFGE) subtyping and the geographic location of the 

isolates (Staples et al., 2006). They gave the designation type A East and type A West to 

the A1 and A2 subtypes and reported that the A1 isolates were more virulent and mainly 

found in the south-central States and along the Atlantic Coast, whereas the less virulent 

A2 subtype was seen in the arid regions of the Rocky Mountains west to the Sierra 

Nevada Mountains of California (Staples et al., 2006). Kugeler and colleagues in 2009 

identified four distinct genotypes of type A, namely A1a, A1b, A2a, A2b and also type B 

in the United States using PFGE, and they also identified the case fatality rates of these 

genotypes as 4%, 24%, 0%, 0%, and 7%, respectively (Kugeler et al., 2009). 

 In the 1940s and 1950s, Russian researchers were able to develop several 

attenuated vaccine strains of F. tularensis using several methods including repeated 

culture in artificial media (Tigertt, 1962). In 1956, a mixture of these attenuated strains 

were transferred to the United States, and from this mixed culture, a type B strain was 

selected based on intradermal vaccine safety and efficacy (Eigelsbach and Downs, 1961; 

Tigertt, 1962). This strain was called the Live Vaccine Stain (LVS); although less 

virulent in humans, it still retained virulence in mice (Conlan et al., 2002). The molecular 

mechanism by which the LVS is attenuated is not known, and the vaccine is not fully 

effective against higher inocula of virulent F. tularensis. Therefore, it has been approved 
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only for use in people who are at high risk of exposure, particularly research workers 

(Burke, 1977; Friend, 2006; Conlan and Oyston, 2007). Recent progress in identifying 

the possible genes responsible for the attenuation may lead to the development of a stable 

and effective vaccine (Salomonsson et al., 2009). 

 Following the initial description of the disease in 1911, more than 35,000 human 

tularemia cases have been reported in the United States of which 90% are caused by the 

ssp. tularensis (Choi, 2002). Francisella tularensis have long been considered as a 

potential biological warfare agent because of the highly infectious nature of this 

bacterium and the ease of aerosolization (Dennis et al., 2001). This pathogen was one of 

the biological agents used by the Japanese Imperial Army at Unit 731 during the Second 

World War and is also one of the biological agents developed by the United States and 

former Soviet Union as part of their biological weapons development program (Dennis et 

al., 2001). The primary disease presentation for human tularemia include 

ulceroglandular, glandular, oculoglandular, oropharyngeal, pneumonic, typhoidal, and 

septicemic forms (Dennis et al., 2001). The different presentations of the disease depend 

mainly on the route of entry of the bacterium. The most common form, the 

ulceroglandular presentation, occurs due to the entry of F. tularensis through the bite of 

an arthropod vector or through cuts or abrasions of the skin while handling infected 

animals (Ellis et al., 2002). The oculoglandular form is rare and can develop when 

bacteria comes in contact with the conjunctiva. The ingestion of contaminated food or 

water leads to oropharyngeal presentation. The virulent F. tularensis ssp. tularensis can 

often lead to typhoidal or septicemic forms of the disease because of the invasive nature 

of the bacteria, and this presentation can be fatal. The most acute form of the disease is 
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the pneumonic form, which can sometimes occur as a secondary complication of any of 

the above presentations.  

 The unusually high number of cases of tularemia in the first half of the 20th 

century in the United States was most likely due to the exposure to infected animals, 

particularly infected rabbits. Most of these cases were ulceroglandular in presentation 

(Jellison, 1974). The increased awareness of the disease and urbanization may have 

caused the number of tularemia cases to decline after 1950s, and this decline was more 

pronounced, especially in the number of winter cases of tularemia that accompanied the 

rabbit hunting season (Evans et al., 1985). Tularemia in eastern and central States 

including Illinois, Kentucky, Ohio, Tennessee and Virginia continued to decline whereas 

the cases in the south-central States comprised of Arkansas, Missouri, Oklahoma and 

Kansas remained constant (Eisen, 2007; Jellison, 1974). Subtyping of the genotypes seen 

in the south-central endemic region has indicated that these infections are due to the 

virulent A1 subtype (Eisen, 2007; Kugeler et al., 2009). Another focus of recent 

tularemia outbreaks is on Martha’s Vineyard, an island off the coast of Massachusetts 

(Feldman et al., 2001; Teutsch et al., 1979). Francisella tularensis is believed to have 

been introduced to the island in the 1930s by the importation of infected rabbits for game 

hunting from the endemic areas of Arkansas and Missouri. Consistent with this 

conjecture, it is the A1 subtype that is found on the island (Kugeler et al., 2009; Matyas 

et al., 2007b). The first case of pneumonic tularemia on Martha’s Vineyard was in 1978, 

and in the following years, cases have been continuously reported (Feldman et al., 2001; 

Matyas et al., 2007b). This unusual route of transmission is thought to occur due to 
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landscaping activity, especially due to the aerosolization of tularemia infected rabbit 

carcasses or rabbit nests by lawn mowing (Agger et al., 2005; Matyas et al., 2007b).  

 

 

Ecology of Vector-Borne Transmission of F. tularensis 

 

 Tularemia is often described as a disease seen exclusively in the Northern 

Hemisphere (Sjostedt, 2003). Outbreaks of the disease in humans and other mammals 

have occurred in a variety of geographical locations. In the former Soviet Union, 

investigators had identified several endemic areas of tularemia which encompassed a 

large variety of natural foci including swamp-floodland, grassland- meadowland, 

woodland, steppe, cisalpine-stream and desert flood land (Olsufiev, 1966). In these 

various ecotones, F. tularensis was isolated from several ixodid ticks, rodents (Arvicola 

terrestrius, Micotus spp., Mus musculus and Clethrionomys spp.), Arctic hare (Lepus 

timidus), mosquitoes (Aedes cinereus and Ochlerotatus excrucians), and flies 

(Tabanidae) (Olsufiev, 1966). Olsufiev and colleagues have also demonstrated that F. 

tularensis can survive in tabanid fly gut for up to 56 hours (Olsufevn and Golovd, 1936). 

Although arthropods including tabanids, deer-flies and mosquitoes have been associated 

with F. tularensis transmission, they have not been shown to be biological vectors of F. 

tularensis, and this bacterium has never been isolated from their salivary glands (Keim et 

al., 2007; Sjostedt, 2007). Flies can act as mechanical vectors, and it is suggested that the 
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proximity of watershed areas in tularemia outbreaks may indicate water contaminated 

with F. tularensis, which may serve as a potential reservoir of infection for flies and 

mosquitoes, likely infecting them at the larval stage (Lundstrom, 2011; Olsufiev, 1966; 

Palo et al., 2005; Sjostedt, 2007; Svensson et al., 2009). These observations in Russia 

along with reports of tularemia in Scandinavia and other parts of Europe indicate that F. 

tularensis type B in Europe and Russia follows an aquatic life cycle, where F. tularensis 

infects semi-aquatic rodents, ticks, and flies, with human and animal transmission 

occurring via contact with infected rodents or by tick and fly bites (Keim et al., 2007). 

The number of human tularemia cases in Russia has greatly decreased after the Second 

World War. This has been correlated to the decrease in rodent populations, particularly 

water rat populations (Efimov et al., 2003). 

 In the United States there are distinct differences between F. tularensis type A 

and type B based on the geographic distribution, host association and vectors involved. In 

the United States F. tularensis type B has a similar aquatic life cycle as that seen in 

Europe and human tularemia cases caused by F. tularensis type B are concentrated along 

the upper Mississippi River and in areas of high rainfall including the Pacific Northwest. 

The major animal hosts involved in the enzootic cycle are the semi-aquatic rodents 

including muskrats (Ondatra zibethicus) beavers (Castor canadensis), and voles 

(Microtus sp.) (Jellison, 1974; Staples et al., 2006). 

 Based on the genotyping data on the F. tularensis isolates, the geographical 

location of the isolates, and based on case histories, Staples and colleagues have 

speculated that the A2 subtype of F. tularensis has a terrestrial life cycle, which can 
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infect rabbits via ticks (D. andersoni) and flies functioning as arthropod vectors. Human 

cases involving the F. tularensis A2 subtype are seen in the arid regions to the west of 

Rocky Mountains to the Sierra Nevada Mountains (Staples et al., 2006). Deer fly 

(Chrysops discalis) was one of the first vector linked to the transmission of F. tularensis, 

and the term “deer fly fever” has often been associated with tularemia (Jellison, 1974). 

These flies function as mechanical vectors of F. tularensis, and they transmit mainly the 

type A West (A2) subtype of F. tularensis which is seen to the west of Rocky Mountains 

primarily Idaho, Wyoming, Utah, and Nevada, with recent outbreaks in Utah (Petersen et 

al., 2009; Staples et al., 2006).  

 Francisella tularensis type A1 has a terrestrial transmission and is seen 

predominantly in the south-central States of Arkansas, Missouri, and Oklahoma and also 

along the Atlantic Coast. Rabbits and hares, including cottontail rabbits (Sylavilagus sp.) 

are the major hosts associated with F. tularensis type A1. However, these lagomorphs are 

not considered a stable reservoir host of F. tularensis because their populations are highly 

susceptible to the disease during epizootic outbreaks which result in high death rates 

(Jellison, 1974; Keim et al., 2007; Shoemaker et al., 1997). Ticks are the major vectors 

involved in the transmission of F. tularensis type A1 in humans and may also play a 

important role in maintaining the enzootic cycle in nature.  

Dermacentor species. 

 The importance of ticks as vectors for F. tularensis were perhaps know even 

during the initial discoveries of the bacterium in California ground squirrels. One of the 

infected squirrels collected during a study had an engorged tick and was a possible 
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contributor to the disease in that animal (Jellison, 1974). Several Dermacentor ticks are 

known to be vectors of F. tularensis. The two Dermacentor species that are important for 

tularemia infections in humans and animals in the United States are D. variabilis and D. 

andersoni. The first case of D. andersoni (Rocky Mountain Wood tick) transmitted 

glandular type of tick fever was later shown to be tularemia, and F. tularensis was 

subsequently isolated from D. andersoni ticks in nature (Jellison, 1974; Parker et al., 

1924). These ticks are known for their vector role in epizootics of tularemia in sheep in 

Idaho and Montana where during the first half of the 20th century, large number of D. 

andersoni infestations on sheep especially during the lambing season caused high 

mortality in sheep due to tularemia (Bell et al., 1978; Jellison, 1974). 

 Dermacentor variabilis is one of the principle vectors of F. tularensis in the 

United States and the bacterium was first discovered in this tick by R. G. Green (Eisen, 

2007; Goodman et al., 2005; Green, 1931). During an investigation of an ulceroglandular 

tularemia outbreak in the Crow Indian Reservation in south-central Montana, it was 

found that tick bites were one of the causes of infection, and 8 out of 15 pools of D. 

variabilis ticks collected from dogs in this area were positive for F. tularensis (Schmid et 

al., 1983). In another outbreak of glandular tularemia on the lower Brule and Crow Creek 

Indian Reservation in South Dakota, D. variabilis ticks were identified as the vector, and 

8 out of 46 pools of D. variabilis ticks collected from dogs were positive for either type A  

or type B subspecies of F. tularensis (Markowitz et al., 1985). 

 Dermacentor variabilis also plays a key role in transmission of F. tularensis in 

the south-central United States and is cited as a primary reason for the tularemia 

persistence in this region. High incidence of tularemia in people involved in outdoor 
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activities is thought to be due to the high risk of tick exposure in this region (Assal et al., 

1968; Eisen, 2007; Scofield et al., 1992; Taylor et al., 1991). The seasonal distribution of 

human tularemia cases in this region is mostly during spring and summer months, which 

also coincides with the high D. variabilis tick activity (Eisen, 2007). Dermacentor 

variabilis ticks are identified as an amplifying host and vector of F. tularensis in 

Martha’s Vineyard, and the genetic diversity seen among the F. tularensis isolates from 

these ticks indicate long standing enzootic cycle of tularemia on the island (Goethert et 

al., 2004). In a PCR done on host seeking ticks on the island, less than 1% to 5% of the 

ticks were reported positive depending on site and year of tick collection (Matyas et al., 

2007a). In 2010, Goethert and Telford reported a high concentration of F. tularensis in 

infected ticks on the island with a median of 3.3 x 108 genome equivalents per tick 

(Goethert and Telford, 2010).  

In the United States, D. andersoni is distributed throughout the Rocky Mountains 

at elevations above 1000m (Goodman et al., 2005). Both larvae and nymphs of this tick 

species feed on a variety of small mammals including rodents and rabbits, and the adult 

ticks feed on larger mammals including humans, carnivores, game animals, cattle, sheep 

and horses (Burgdorfer, 1969; Jellison, 1974). 

In the United States D. variabilis ticks are widely distributed in the Great Plains 

and Eastern States (Burgdorfer, 1969; Sonenshine, 1972; Sonenshine, 1991). The habitat 

range is restricted by a lack of suitable deciduous forest, brushy habitat and lack of 

adequate rainfall (Sonenshine, 1991). The prairie, sagebrush, and semidesert habitats to 

the west, the boreal forests to the north, and the narrow forested areas along the drainage 

basins of the Missouri, Arkansas, and Mississippi Rivers support abundant populations of 
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this tick species (Burgdorfer, 1969; Sonenshine, 1991). The immature stages of D. 

variabilis including larvae and nymph exclusively feed on smaller mammals including 

meadow mice (Microtus sp.) and white footed mice (Peromyscus sp.) and to a much 

lesser extent on rabbits, rats, squirrels and cats. These immature stages are usually seen 

questing at the ground level, while adult ticks quest higher in the vegetation and have a 

broader host range. The principle hosts include dogs and other larger mammals such as 

cattle, coyotes, wild cats, raccoons, foxes, skunks, deer and humans (Sonenshine, 1991). 

Kollar and colleagues, in a study to determine the host utilization of D. variabilis in 

Missouri, found that raccoons followed by opossums were the most preferred hosts for 

adult ticks, whereas voles and chipmunks were the hosts for nymphal ticks (Kollars et al., 

2000b). Marsh rice rats, white footed mice, and voles were the preferred hosts for the 

larval stages (Kollars et al., 2000b).  

Tick activity studies in Missouri showed that adult D. variabilis ticks continue 

their host seeking behavior from March through August, with peak activity from June to 

July (Kollars et al., 2000b). The early year activity is from the spring cohort, which 

overwintered from the previous year, and the late year activity is usually from the 

summer cohort which molted from nymphs, that fed during the current year (Burg, 2001; 

Kollars et al., 2000b; Sonenshine, 1972). In Missouri, D. variabilis nymphal activity is 

from April to October with the highest activity during May and June. Larval populations 

in Missouri have a bimodal activity, with one peak in late summer (September) and 

another during early spring (Kollars et al., 2000b). Unfed larvae survive long periods of 

exposure in the environment and usually overwinter. Adults are also known to 
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overwinter; in contrast, overwintering of nymphs is rare (Burgdorfer, 1969; Sonenshine, 

1972; Sonenshine, 1991). 

Parker and Spencer showed in 1926 the transovarial transmission of Bacterium 

tularense in D. andersoni ticks. In this study, eight of the fifteen female ticks that 

engorged on infected hosts transmitted the infection to progeny. Two out of these eight 

positive ticks, had infection in eggs only, while in the other six infection was recovered 

form larvae or nymphs or both (Parker and Spencer, 1926). Parker concluded that 

transstadial transmission of Bacterium tularense does occur in D. andersoni and 

transovarial transmission can also occur, but not in all infected females. However, 

investigations in the 1950s and 60s failed to demonstrate the transovarial transmission in 

D. andersoni (Burgdorfer and Varma, 1967). Edward Francis reported detailed 

microscopic changes including bacterial multiplication in gut and dissemination into 

hemolymph in D. andersoni ticks infected with Bacterium tularense (Francis, 1927). He 

concluded that D. andersoni is a true biological host of tularemia, and the bacteria were 

seen in the feces, epithelial cells of the digestive tract, Malpighian tubes and the celomic 

fluid of these ticks. However, the bacterium was not observed in the salivary glands or 

the ovaries, and this observation led him to believe that the transmission was due to fecal 

contamination at the bite site (Francis, 1927).  

Philip and Jellison demonstrated the experimental transmission of the bacterium 

to guinea pigs by infected D. variabilis (Philip and Jellison, 1934). The same authors 

confirmed the transovarial transmission in these ticks by demonstrating the infection of 

mice parasitized by larvae which hatched from eggs of an infected adult tick. However, 

larvae from the same lot failed to infect rabbits or guinea pigs. They also reported on the 
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evidence of transovarial transmission by injection of washed eggs of two infected female 

ticks intraperitoneally into guinea pigs; these animals later succumbed to tularemia. In the 

same article the authors observed that Bacterium tularense was not completely adapted 

for continuous colonization in D. variabilis, because of the mortality seen in heavily 

infected ticks, especially in ticks which fed on host during the peak of bacteremia (Philip 

and Jellison, 1934). In a detailed study in 1945, Bell reported the transmission of 

Pasteurella tularensis in D. variabilis ticks. He observed that certain ticks in the lot were 

more resistant to infection than the others. He also reported that vitality of the ticks were 

not affected by infection and reaffirmed the knowledge that bacteremia in the host 

(usually just occurring prior to the death of the animal) was required for ticks to become 

infected (Bell, 1945). During his study, Bell did not observe any mortality in ticks 

feeding at the time of death of the host, as observed by Philip and Jellison (Bell, 1945; 

Philip and Jellison, 1934). He did not observe any difference in fecundity between 

infected and uninfected ticks and also did not observe the transovarial transmission in 

these ticks (Bell, 1945). Higher (37°C) or lower (15°C) holding temperatures for up to 9 

days of the infected nymphal ticks also did not affect their infectivity (Bell, 1945). 

Recently, Reese and coworkers evaluated the ability of the nymphal D. variabilis ticks to 

transmit A1b, A2 and type B stains of F. tularensis (Reese et al., 2010). Transstadial 

transmission from larva to nymph was observed with all three strains, but there were 

significant decrease in feeding success and significantly higher mortality in infected 

nymphs. Low transmission rates to mice were also seen in A2 and type B infected ticks, 

and infection of mice with the A1b infected ticks were not observed (Reese et al., 2010).  
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A number of Dermacentor species are known to be principle tick vectors of F. 

tularensis in the former Soviet Union including D. pictus and D. marginatus (Hopla, 

1974). In 1960, Petrov showed that F. tularensis infected D. marginatus larvae were 

capable of transmitting the bacterium and observed that feeding of ticks is accompanied 

by an increase in the number of bacteria, but the process of molting decreases bacterial 

numbers in ticks. In addition, Petrov observed that ticks had to be adequately infected for 

transmission from one stage to the other (Petrov, 1960). In 1966, Petrov showed that 

bacteria could penetrate the gut of the tick into hemolymph and the salivary gland of D. 

marginatus and also reported the transovarial transmission in this tick (Hopla, 1974). 

However, he could not reproduce the transovarial transmission in D. marginatus during 

later repetition of his experiments (Hopla, 1974).  

In recent years, a D. variabilis associated endosymbiont has been discovered and 

phylogenetic analysis shows that it is closely related to pathogenic Francisella species 

(Goethert et al., 2004; Matyas et al., 2007a). The Francisella-like endosymbionts (FLE) 

and Dermacentor ticks show little sign of co-speciation owing to the less degree of 

phylogenetic divergence between FLEs of different Dermacentor species, indicating the 

relation between the endosymbiont and Dermacentor ticks is of recent origin (Niebylski 

et al., 1997; Scoles, 2004). It is speculated that a broad host permissible tick transmitted a 

FLE ancestor similar to F. tularensis, which may have spread among other ticks by a 

common infection pathway and secondarily adapted to a symbiotic life style (Niebylski et 

al., 1997; Scoles, 2004). Another closely related Francisella-like symbiont, different 

from FLE, was found in 50% of D. variabilis ticks tested on the Martha’s Vineyard 

Island (Goethert and Telford, 2005). These D. variabilis Francisella (DVF) demonstrated 
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transovarial transmission, and co-infection of FLE with DVF did not interfere with the 

transmission of either bacteria in these ticks (Goethert and Telford, 2005). In1997, 

Niebylski and coworkers characterized a D. andersoni symbiont as belonging to the 

genus Francisella based on 16s rDNA sequence data (Niebylski et al., 1997). The 

symbiont was found to inhabit the ovarial tissues, especially in the phagocytic vesicles 

and was vertically transmitting in 95.6% of the female progeny of D. andersoni ticks 

(Niebylski et al., 1997). 

Amblyomma americanum. 

Amblyomma americanum, the lone star tick, was first identified as a vector for F. 

tularensis in 1943 when Warring and Ruffin reported an outbreak of tularemia among 

soldiers in a maneuver area in Tennessee (Jellison, 1974; Warring and Ruffin, 1946). Of 

the 50 cases reported, 32 had history of tick bite prior to the onset of the disease. The area 

was heavily infested with ticks, the primary lesions indicated tick bite in 42 of these 

cases, and A. americanum was the only tick discovered in the vicinity (Warring and 

Ruffin, 1946). In a survey of ticks in Arkansas, Calhoun found that one pool of lone star 

tick taken from four dogs in Marion County was infected with Pasteurella tularensis 

(Calhoun, 1954). In a following survey of ticks in high tularemia incidence counties in 

Arkansas, five pools of A. americanum ticks were found positive for tularemia infection, 

while none of the dog ticks, rabbit ticks or the black legged ticks were found to be 

positive (Calhoun, 1954). One of the positive pool from a drag collection included adult 

female ticks and a nymph. The other positive pools had adults, nymphs and larvae 

collected from cows and dogs. Calhoun and Alford reported the finding of infected A. 

americanum larvae in nature, which indicates the possible transovarial transmission of F. 
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tularensis in these ticks (Calhoun and Alford, 1955). However, an investigation to study 

the possibility of the transovarial route in A. americanum has not been performed (Eisen, 

2007). 

In a review on the “Transmission of tularemia organisms by ticks in the Southern 

States”, Hopla states that among the three tick species that are known to bite humans in 

this region, A. americanum and D. variabilis are the most important vectors of F. 

tularensis because of the peak host seeking activity of these ticks coinciding with 

tularemia outbreaks in these states (Hopla, 1960). The one other tick species found in this 

region, Ixodes scapularis may not be a good candidate as a F. tularensis vector, because 

the human biting stage of these ticks has a peak activity during the winter season, which 

does not correlate with tularemia outbreaks in this region. He also suggests that among 

the two possible F. tularensis vector species in this region, A americanum may be the 

most important because of its activity during the summer months, abundance, and broad 

host range among all three stages of the tick (Hopla, 1960). 

Along with being a vector for F. tularensis, A. americanum is also a reported 

vector of other infectious agents of both humans and animals. Extensive studies have 

been done over the years to better understand the activity and habitat of this tick species 

(Bowman and Nuttall, 2008; Goodman et al., 2005; Jellison, 1974). Amblyomma 

americanum is distributed from central Texas, eastern Oklahoma, southeastern United 

States and along the Atlantic Sea Coast (Burgdorfer, 1969). This tick is predominantly 

found in forested habitats, and an example of an ideal habitat is the scrub-brush 

dominated hills of the Ozark region of eastern Oklahoma (Sonenshine, 1991). Larvae and 
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nymphs usually feed on rabbits, squirrels, foxes, raccoons, skunks, and on a variety of 

ground dwelling birds particularly quail, turkey, and poultry, whereas adult ticks feeds on 

larger and medium sized animals. All stages of A. americanum are known to attack 

humans, deer, cattle, horse, and dogs (Sonenshine, 1991). 

H. G. Koch in a study about the survivability of lone star ticks in southeastern 

Oklahoma reported that these ticks are fairly tolerant to the extremes of high temperature 

and low humidity, and the best environment for survival was the bottomland oak-hickory 

habitat (Koch, 1984). The study also found that all three stages of the tick could survive 

the winter. Larvae that feed to engorgement as well as unfed larvae only occasionally 

overwinter, whereas nymphs and adults overwinter in large numbers. However, 

Burgdorfer reported that larvae that take a blood meal usually overwinter, but those 

larvae which fail to find a host die (Burgdorfer, 1969). In southeastern Missouri, adult 

lone star tick questing activity was highest in May with a gradual decline through 

September (Kollars et al., 2000a). A dual spring and midsummer peak of adult ticks in 

eastern Oklahoma was reported by Patrick and Hair (Patrick and Hair, 1977). Kollar and 

colleagues found that in Missouri, nymphal ticks were mostly active from April through 

September with peak activity in June, while larval activity continued from July through 

October with peak activity in September (Kollars et al., 2000a). The authors also studied 

the host preference for the different stages of the lone star tick and found that the white 

tailed deer was the most important host for adult A. americanum ticks, whereas in areas 

were white tailed deer abundance is rare, foxes and raccoons can be the primary host for 

adult ticks (Cohen et al., 2010). White tailed deer, raccoons, rabbits, and bobwhite quail 

were all important host for nymphs. For larval ticks, rabbits were the most infested host 
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(Kollars et al., 2000a). In order to determine the potential risk of human exposure to 

human biting ticks in Missouri, Brown and coworkers studied the habitat association of 

different ticks and found that A. americanum was the most abundant tick species in the 

area, and also reported that adults and nymphs preferred forested habitat to grassland 

(Brown et al., 2011). The same authors also found that 20% and 30% of the State had 

elevated risk of human exposure to nymphal and adult A. americanum respectively and 

this data positively correlated with the reporting of tularemia cases in these areas. 

Hopla had reported the experimental transmission of Bacterium tularense in lone 

star ticks, and the ability of infected larvae to retain infection though nymphal and adult 

stage (Hopla, 1953). This observation was previously reported by C. B. Philip (Philip and 

Parker, 1934). Hopla also reported that no difference in mortality of ticks was observed at 

any stage of infection of the ticks, when compared to control ticks, and reported large 

variations in the amount of bacteria per tick (Hopla, 1953). Infected adult ticks which 

were fasted for six months contained Bacterium tularensis although at reduced numbers, 

but were still able to infect guinea pigs. The same author also reported that feeding 

infected ticks on Bacterium tularense-immunized rabbits did not reduce the infection of 

ticks after subsequent molting to adult stage, and this result was also true for infected 

ticks on resistant hosts including dogs and Bacterium tularense-immunized mice (Hopla, 

1953). Although on a different tick vector, this finding contradicts the conclusion of Bell, 

who reported D. variabilis ticks cleared the bacteria upon feeding on an immunized host 

(Bell, 1945). In repeat experiments, Hopla also demonstrated the stage to stage 

transmission of Bacterium tularense in A. americanum and showed that the bacterium 

persisted in the adult tick even after five months of fasting, although mean bacterial 
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counts per tick was reduced when compared to that of recently molted adult ticks. He also 

suggests that these results indicate the possibility of these ticks overwintering and 

carrying over the infection to the next year (Hopla, 1960). He reasoned that the decrease 

seen during long starvation period may be due to bacteria being evacuated from the gut of 

these ticks during defecation (Hopla, 1955).  

 

 

Artificial feeding methods for infecting ticks 

 

         Ticks can be infected with pathogens by a variety of artificial in vitro methods. 

These include feeding chambers with natural or artificial membrane infusion, enema 

infusion, hemocelic injection, and glass capillary feeding (Broadwater et al., 2002; 

Burgdorfer, 1957; Sonenshine, 1991). Membrane feeding chambers have been used to 

infect a number of ixodid ticks including Ixodes, Amblyomma and Dermacentor (Barre et 

al., 1998; Howarth and Hokama, 1983; Waladde et al., 1995; Young et al., 1996). These 

membranes are expensive to prepare and often undergo decomposition and contamination 

(Broadwater et al., 2002). Enema infusion technique has been used to introduce 

pathogens in adult ticks, but this technique often lead to tick injury and mortality 

(Broadwater et al., 2002; Turell et al., 1997). Intra-hemocel injection of pathogens into 

ticks has been employed to infect ticks with Borrelia burgdorferi and Venezuelan equine 

encephalitis virus in D. variabilis and Amblyomma cajennese, respectively (Johns et al., 
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2000; Turell et al., 1997). This method is not the most suitable method of infecting ticks, 

as the natural route of entry of pathogens in most cases is through the mouth and into the 

gut lumen (Burgdorfer and Varma, 1967).  

         Capillary feeding of ticks was originally reported by Chabaud in 1950, and later in 

1954, Burgdorfer described the method in detail for infecting D. andersoni and 

Amblyomma maculatum with Leptospira Pomona and D. andersoni with rabies virus 

(Burgdorfer, 1957). In this method the glass tubes were pushed over the hypostome and 

chelicera of the ticks under a microscope and plasticine blocks were used to hold the 

capillaries in position. Several other researchers have recently used this method of 

infecting various tick species with pathogens (Bouwknegt et al., 2010; Inokuma and 

Kemp, 1998; Rechav et al., 1999; Willadsen et al., 1984). Broadwater and coworkers 

successfully used this method for feeding Ixodes scapularis ticks with Borrelia 

burgdorferi (Broadwater et al., 2002). In 2001, Maculoso and colleagues used glass 

micro-capillary tube feeding for colonizing D. variabilis ticks with Rickettsia species and 

showed the transovarial transmission of these Rickettsial organisms in ticks upon feeding 

to repletion on rabbits (Macaluso et al., 2001). Kocan and colleagues were able to 

capillary feed D. variabilis ticks with Anaplasma marginale and suggested the potential 

of this feeding method for identifying aspects of pathogen-vector interactions that are not 

readily recognized in naturally feeding ticks (Kocan et al., 2005). The advantages of this 

feeding method is to introduce uniform inocula to ticks and the elimination of expense 

and mortality in laboratory animals, which is the standard method for feeding ticks 

(Broadwater et al., 2002; Burgdorfer, 1957).  
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Saliva induction in ticks 

           Previous literature cites three methods of inducing salivary secretions in ixodid 

ticks. They are application of pilocarpine, intra-hemocelomic injection of dopamine, and 

tactile stimulation of the mouth parts of the ticks. In 1960, J. D. Gregson demonstrated 

the collection of saliva in D. andersoni ticks by appropriate tactile stimulation to the 

chelicerae and by fitting a capillary tube of critical diameter over the mouth parts 

(Gregson, 1960).  

           In 1967, R. J. Tatchell, reported that hypodermic injections of pilocarpine in saline 

into the hemocel of Boophilus microplus ticks produced six times more saliva than from 

tactile stimulation alone (Tatchell, 1967). Ribeiro and coworkers showed that pilocarpine 

induced saliva of adult female Ixodes dammini ticks inhibits the function of peritoneal-

derived rat neutrophils (Ribeiro et al., 1990). Pilocarpine application was also used to 

detect pathogens in tick saliva (Ewing et al., 1994; Gage et al., 1992). Gage and 

colleagues detected rickettsial organisms in tick saliva, which was induced by topical 

application of 5% pilocarpine solution resulting in collection of as much as 1-5 µL of 

saliva from partially engorged D. andersoni ticks (Gage et al., 1992). Borrelia 

burgdorferi was detected from saliva of partially engorged Ixodes scapularis ticks by 

application of 2µL of pilocarpine (50mg/mL in 95% alcohol) to the scutum of these ticks 

(Ewing et al., 1994).  

           The neurotransmitter dopamine is released from the salivary nerve exerts of ticks, 

which results in activation of adenylate cyclase and formation of cyclic AMP (Sauer et 

al., 1995). Certain drugs and neurotransmitters have been known to induce salivary 
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secretions in ticks (Needham and Sauer, 1979). Treatment of dopamine or cyclic AMP 

and theophylline significantly increases saliva production in ticks (Sauer et al., 1995). 

Jaworski and colleagues used dopamine and theophylline to induce saliva in Amblyomma 

and Dermacentor; 1mM dopamine, 1mM theophylline and 3% dimethyl sulfoxide in 

saline injected intracelomically every 15 minutes could induce saliva in these engorged 

ticks (Jaworski et al., 1995). This method was also used on A. americanum to induce 

saliva for studying its characteristics (Madden et al., 2004). Detection of pathogens in 

saliva is essential to confirm whether the pathogen is present in the saliva or is restricted 

to other tissues of the tick. (Gage et al., 1992).  

 

 

Utilization of chitin by bacteria 

 

          Chitin is one of the most abundant biopolymers in nature, second only to cellulose. 

In nature chitin is produced by fungi, arthropods, and nematodes. Chitin is composed of 

monomers of N-acetyl-D-glucosamine (NAG) linked together by β-(1-4)-glycosidic 

bonds (Merzendorfer and Zimoch, 2003). Chitinase enzymes hydrolyze chitin polymer to 

chitobiosan (dimer) and then to NAG. Many marine bacteria utilize this abundant source 

of chitin. Marine bacteria depolymerize chitin with cell surface hydrolases to NAG 

(Zobell and Rittenberg, 1938). Both gram-positive and negative bacteria have NAG as a 

main constituent of their peptidoglycan cell wall, and it has been shown to be an excellent 
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source of nitrogen and energy. NAG has also been shown to be preferentially taken up by 

marine α-proteobacteria (Cottrell and Kirchman, 2000). Among non-marine bacteria, the 

studies on NAG transport have been performed in E. coli, Bacillus subtilis, 

Staphylococcus aureus and Vibrio furnissii (Bassler et al., 1991; Imada et al., 1977; 

Plumbridge, 1990). B. subtilis was found to utilize 90% of the NAG intake for producing 

cell wall precursors, and possesses a high affinity transport system for NAG (Freese et 

al., 1970; Mobley et al., 1982).  

          Chitin functions as a structural scaffold in arthropods, and supports the cuticle, 

trachea, and peritrophic membrane lining the gut epithelium (Merzendorfer and Zimoch, 

2003). Insect growth and molting depends on chitin production and remodeling. In ticks 

chitin is one of the important components of the cuticle, which provides physical 

strength, muscle attachment sites, and protection from dehydration, and plays an essential 

role in molting (Sonenshine, 1991). Tilly and coworkers have shown that chitin mutants 

of Borrelia burgdorferi were unable to utilize chitobiose due to dysfunctional chitobiosan 

transporter genes (Tilly et al., 2001; Tilly et al., 2004). Piesman and colleagues, based on 

their observation of Borrelia growth in Ixodes scapularis ticks speculated that the 

unusual decline in the spirochete number in molting ticks may be due to the depletion of 

chitin by ticks, making it unavailable for bacterial growth within these ticks (Piesman et 

al., 1990). Heavy infections of B. burgdorferi in tick eggs may affects normal growth of 

the developing eggs and interfere with chitin deposition on the eggs (Burgdorfer et al., 

1988; Piesman et al., 1990). 
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        Francisella sp. have been shown to form biofilms (Hassett et al., 2003; Verhoeven 

et al., 2010). Biofilm formed by bacteria play an important role in environmental 

persistence and disease transmission. Francisella tularensis subspecies encode two 

conserved putative chitinase genes, ChiA and ChiB (http://www.patricbrc.org/) (Snyder et 

al., 2007). Margolis and colleagues have shown that biofilm formation and chitin 

utilization in F. tularensis ssp. novicida is diminished in ChiA or ChiB mutants when 

chitin was the sole source of available carbon (Margolis et al., 2009). A number of F. 

tularensis strains have been isolated from different tick species, and chitin utilization may 

be important during the tick infection stage of this bacterium. 

 

 

References 

 

Agger, W.A., Goethert, H.K., Telford, S.R., III, 2005, Tularemia, lawn mowers, and 

rabbits' nests. J. Clin. Microbiol. 43, 4304-4305. 

Assal, N.R., Lindeman, R.D., Carpenter, R.L., 1968, Epidemiologic study on reported 

human tularemia in Oklahoma, 1944-65. J. Okla. State Med. Assoc. 61, 120-124. 

Baldridge, G.D., Scoles, G.A., Burkhardt, N.Y., Schloeder, B., Kurtti, T.J., Munderloh, 

U.G., 2009, Transovarial transmission of Francisella-like endosymbionts and 

Anaplasma phagocytophilum variants in Dermacentor albipictus (Acari: Ixodidae). J 

Med Entomol 46, 625-632. 



31 

 

Barre, N., Aprelon, R., Eugene, M., 1998, Attempts to feed Amblyomma variegatum ticks 

on artificial membranes. Ann N Y Acad Sci 849, 384-390. 

Bassler, B.L., Yu, C., Lee, Y.C., Roseman, S., 1991, Chitin utilization by marine 

bacteria. Degradation and catabolism of chitin oligosaccharides by Vibrio furnissii. J 

Biol Chem 266, 24276-24286. 

Bell, J.F., 1945, Infection of ticks (Dermacentor variabilis) with Pasteurella tularensis. J. 

Infect. Dis. 76, 83-95. 

Bell, J.F., Wikel, S.K., Hawkins, W.W., Owen, C.R., 1978, Enigmatic resistance of sheep 

(Ovis aries) to infection by virulent Francisella tularensis. Can J Comp Med 42, 

310-315. 

Berrada, Z.L., Telford III, S.R., 2011, Survival of Francisella tularensis Type A in 

brackish-water. Arch Microbiol 193, 223-226. 

Bouwknegt, C., van Rijn, P.A., Schipper, J.J., Holzel, D., Boonstra, J., Nijhof, A.M., van 

Rooij, E.M., Jongejan, F., 2010, Potential role of ticks as vectors of bluetongue virus. 

Exp Appl Acarol 52, 183-192. 

Bowman, A.S., Nuttall, P., 2008, Ticks biology, disease and control. Cambridge 

University Press, New York. 

Broadwater, A.H., Sonenshine, D.E., Hynes, W.L., Ceraul, S., De, S.A., 2002, Glass 

capillary tube feeding: a method for infecting nymphal Ixodes scapularis (Acari: 

Ixodidae) with the lyme disease spirochete Borrelia burgdorferi. J. Med. Entomol. 

39, 285-292. 

Brown, H.E., Yates, K.F., Dietrich, G., Macmillan, K., Graham, C.B., Reese, S.M., 

Helterbrand, W.S., Nicholson, W.L., Blount, K., Mead, P.S., Patrick, S.L., Eisen, 



32 

 

R.J., 2011, An acarologic survey and Amblyomma americanum distribution map with 

implications for tularemia risk in Missouri. Am J Trop Med Hyg 84, 411-419. 

Burg, J.G., 2001, Seasonal activity and spatial distribution of host-seeking adults of the 

tick Dermacentor variabilis. Med. Vet. Entomol. 15, 413-421. 

Burgdorfer, W., 1957, Artificial feeding of ixodid ticks for studies on the transmission of 

disease agents. J. Infect. Dis. 100, 212-214. 

Burgdorfer, W., 1969, Ecology of tick vectors of American spotted fever. Bull World 

Health Organ 40, 375-381. 

Burgdorfer, W., Hayes, S.F., Benach, J.L., 1988, Development of Borrelia burgdorferi in 

ixodid tick vectors. Ann N Y Acad Sci 539, 172-179. 

Burgdorfer, W., Varma, M.G., 1967, Trans-stadial and transovarial development of 

disease agents in arthropods. Annu Rev Entomol 12, 347-376. 

Burke, D.S., 1977, Immunization against tularemia: analysis of the effectiveness of live 

Francisella tularensis vaccine in prevention of laboratory-acquired tularemia. J 

Infect Dis 135, 55-60. 

Calhoun, E.L., 1954, Natural occurrence of tularemia in the lone star tick, Amblyomma 

americanus (Linn.), and in dogs in Arkansas. Am J Trop Med Hyg 3, 360-366. 

Calhoun, E.L., Alford, H.I., Jr., 1955, Incidence of tularemia and Rocky Mountain 

spotted fever among common ticks of Arkansas. Am J Trop Med Hyg 4, 310-317. 

Chamberlain, R.E., 1965, Evaluation of live tularemia vaccine prepared in a chemically 

defined medium. Appl Microbiol 13, 232-235. 

Choi, E., 2002, Tularemia and Q fever. Med. Clin. N. Am. 85, 393-416. 



33 

 

Clinton, S.R., Bina, J.E., Hatch, T.P., Whitt, M.A., Miller, M.A., 2010, Binding and 

activation of host plasminogen on the surface of Francisella tularensis. BMC 

Microbiol 10, 76. 

Cohen, S.B., Freye, J.D., Dunlap, B.G., Dunn, J.R., Jones, T.F., Moncayo, A.C., 2010, 

Host associations of Dermacentor, Amblyomma, and Ixodes (Acari: Ixodidae) ticks 

in Tennessee. J Med Entomol 47, 415-420. 

Conlan, J.W., Oyston, P.C., 2007, Vaccines against Francisella tularensis. Ann N Y 

Acad Sci 1105, 325-350. 

Conlan, J.W., KuoLee, R., Shen, H., Webb, A., 2002, Different host defences are 

required to protect mice from primary systemic vs pulmonary infection with the 

facultative intracellular bacterial pathogen, Francisella tularensis LVS. Microb 

Pathog 32, 127-134. 

Cottrell, M.T., Kirchman, D.L., 2000, Natural assemblages of marine proteobacteria and 

members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-

weight dissolved organic matter. Appl Environ Microbiol 66, 1692-1697. 

de Carvalho, I.L., Santos, N., Soares, T., Ze-Ze, L., Nuncio, M.S., 2011, Francisella-like 

endosymbiont in Dermacentor reticulatus collected in Portugal. Vector Borne 

Zoonotic Dis 11, 185-188. 

Dennis, D.T., Inglesby, T.V., Henderson, D.A., Bartlett, J.G., Ascher, M.S., Eitzen, E., 

Fine, A.D., Friedlander, A.M., Hauer, J., Layton, M., Lillibridge, S.R., McDade, J.E., 

Osterholm, M.T., O'Toole, T., Parker, G., Perl, T.M., Russell, P.K., Tonat, K., 

Biodefense, f.t.W.G.o.C., 2001, Tularemia as a biological weapon. JAMA: The 

Journal of the American Medical Association 285, 2763-2773. 



34 

 

Efimov, V.M., Galaktionov, Y., Galaktionova, T.A., 2003, Reconstruction and prognosis 

of water vole population dynamics on the basis of tularemia morbidity among 

Novosibirsk oblast residents. Dokl Biol Sci 388, 59-61. 

Eigelsbach, H.T., Downs, C.M., 1961, Prophylactic effectiveness of live and killed 

tularemia vaccines. I. Production of vaccine and evaluation in the white mouse and 

guinea pig. J Immunol 87, 415-425. 

Eisen, L., 2007, A call for renewed research on tick-borne Francisella tularensis in the 

Arkansas-Missouri primary national focus of tularemia in humans. J. Med. Entomol. 

44, 389-397. 

Eisen, R.J., Mead, P.S., Meyer, A.M., Pfaff, L.E., Bradley, K.K., Eisen, L., 2008, 

Ecoepidemiology of tularemia in the southcentral United States. Am. J. Trop. Med. 

Hyg. 78, 586-594. 

Ellis, J., Oyston, P.C., Green, M., Titball, R.W., 2002, Tularemia. Clin Microbiol Rev 15, 

631-646. 

Evans, M.E., Gregory, D.W., Schaffner, W., McGee, Z.A., 1985, Tularemia: a 30-year 

experience with 88 cases. Medicine (Baltimore) 64, 251-269. 

Ewing, C., Scorpio, A., Nelson, D.R., Mather, T.N., 1994, Isolation of Borrelia 

burgdorferi from saliva of the tick vector, Ixodes scapularis. J Clin Microbiol 32, 

755-758. 

Feldman, K.A., Enscore, R.E., Lathrop, S.L., Matyas, B.T., McGuill, M., Schriefer, M.E., 

Stiles-Enos, D., Dennis, D.T., Petersen, L.R., Hayes, E.B., 2001, An outbreak of 

primary pneumonic tularemia on Martha's Vineyard. N Engl J Med 345, 1601-1606. 



35 

 

Francis, E., 1927, Microscopic cahanges of tularaemia in the tick Dermacentor andersoni 

and the bedbug Cimex lectularius. Public Health Reports 42, 2763-2772. 

Francis, E., Mayne, B., 1921, Experimental transmission of tularemia by flies of the 

species Chrysops discalis. Public Health Reports 36, 1738-1746. 

Freese, E.B., Cole, R.M., Klofat, W., Freese, E., 1970, Growth, sporulation, and enzyme 

defects of glucosamine mutants of Bacillus subtilis. J Bacteriol 101, 1046-1062. 

Friend, M. 2006. Tularemia, U.S. Department of the Interior, U.S.G.S., ed. (Reston, 

Virginia, USGS). 

Gage, K.L., Gilmore, R.D., Karstens, R.H., Schwan, T.G., 1992, Detection of Rickettsia 

rickettsii in saliva, hemolymph and triturated tissues of infected Dermacentor 

andersoni ticks by polymerase chain reaction. Mol Cell Probes 6, 333-341. 

Goethert, H.K., Shani, I., Telford, S.R., 3rd, 2004, Genotypic diversity of Francisella 

tularensis infecting Dermacentor variabilis ticks on Martha's Vineyard, 

Massachusetts. J Clin Microbiol 42, 4968-4973. 

Goethert, H.K., Telford, S.R., 2005, A new Francisella (Beggiatiales: Francisellaceae) 

Inquiline within Dermacentor variabilis Say (Acari: Ixodidae). Journal of Medical 

Entomology 42, 502-505. 

Goethert, H.K., Telford, S.R., 2010, Quantum of infection of Francisella tularensis 

tularensis in host-seeking Dermacentor variabilis. Ticks Tick Borne Dis 1, 66-68. 

Goodman, J.L., Dennis, D.T., Sonenshine, D.E., 2005, Tick-borne diseases of humans. 

ASM press, Washington, D.C. 

Green, R.G., 1931, The occurence of Bacterium tularense in the eastern wood tick, 

Dermacntor variabilis. American Journal of Epidemiology 14, 600-613. 



36 

 

Gregson, J.D., 1960, Morphology and functioning of the mouthparts of Dermacentor 

andersoni Stiles. Acta Tropica 17, 48-79 pp. 

Hassett, D.J., Limbach, P.A., Hennigan, R.F., Klose, K.E., Hancock, R.E., Platt, M.D., 

Hunt, D.F., 2003, Bacterial biofilms of importance to medicine and bioterrorism: 

proteomic techniques to identify novel vaccine components and drug targets. Expert 

Opin Biol Ther 3, 1201-1207. 

Hazlett, K.R., Cirillo, K.A., 2009, Environmental adaptation of Francisella tularensis. 

Microbes Infect 11, 828-834. 

Hopla, C.E., 1953, Experimental studies on tick transmission of tularemia organisms. 

Am. J. Hyg. 58, 101-118. 

Hopla, C.E., 1955, The multiplication of tularemia organisms in the lone star tick. 

American Journal of Epidemiology 61, 371-380. 

Hopla, C.E., 1960, The transmission of tularemia organisms by ticks in the southern 

states. South Med J 53, 92-97. 

Hopla, C.E., 1974, The ecology of tularemia. Adv. Vet. Sci. Comp. Med. 18, 25-53. 

Howarth, J.A., Hokama, Y., 1983, Artificial fedding of adult and nymphal Dermacentor 

andersoni (Acari: Ixodidae) during studies on bovine anaplasmosis. Journal of 

Medical Entomology 20, 248-256. 

Imada, A., Nozaki, Y., Kawashima, F., Yoneda, M., 1977, Regulation of glucosamine 

utilization in Staphylococcus aureus and Escherichia coli. J Gen Microbiol 100, 329-

337. 



37 

 

Inokuma, H., Kemp, D.H., 1998, Establishment of Boophilus microplus infected with 

Babesia bigemina by using in vitro tube feeding technique. J Vet Med Sci 60, 509-

512. 

Jaworski, D.C., Simmen, F.A., Lamoreaux, W., Coons, L.B., Muller, M.T., Needham, 

G.R., 1995, A secreted calreticulin protein in ixodid tick (Amblyomma americanum) 

saliva J. Insect Physiol. 41, 369-375. 

Jellison, W.L., 1974, Tularemia in North America. University of Montana, Missoula, 

Montana. 

Johansson, A., Farlow, J., Larsson, P., Dukerich, M., Chambers, E., Bystrom, M., Fox, J., 

Chu, M., Forsman, M., Sjostedt, A., Keim, P., 2004, Worldwide genetic relationships 

among Francisella tularensis isolates determined by multiple-locus variable-number 

tandem repeat analysis. J. Bacteriol. 186, 5808-5818. 

Johns, R., Sonenshine, D.E., Hynes, W.L., 2000, Response of the tick Dermacentor 

variabilis (Acari: Ixodidae) to hemocoelic inoculation of Borrelia burgdorferi 

(Spirochetales). J Med Entomol 37, 265-270. 

Keim, P., Johansson, A., Wagner, D.M., 2007, Molecular epidemiology, evolution, and 

ecology of Francisella. Ann N Y Acad Sci 1105, 30-66. 

Kocan, K.M., Yoshioka, J., Sonenshine, D.E., de la Fuente, J., Ceraul, S.M., Blouin, E.F., 

Almazan, C., 2005, Capillary tube feeding system for studying tick-pathogen 

interactions of Dermacentor variabilis (Acari: Ixodidae) and Anaplasma marginale 

(Rickettsiales: Anaplasmataceae). J. Med. Entomol. 42, 864-874. 



38 

 

Koch, H.G., 1984, Survival of the lone star tick, Amblyomma Americanum (Acari: 

Ixodidae), in contrasting habitats and different years in Southeastern Oklahoma, 

USA. Journal of Medical Entomology 21, 69-79. 

Kollars, T.M., Jr., Oliver, J.H., Jr., Durden, L.A., Kollars, P.G., 2000a, Host association 

and seasonal activity of Amblyomma americanum (Acari: Ixodidae) in Missouri. J. 

Parasitol. 86, 1156-1159. 

Kollars, T.M., Jr., Oliver, J.H., Jr., Masters, E.J., Kollars, P.G., Durden, L.A., 2000b, 

Host utilization and seasonal occurrence of Dermacentor species (Acari:Ixodidae) in 

Missouri, USA. Exp Appl Acarol 24, 631-643. 

Kugeler, K.J., Mead, P.S., Janusz, A.M., Staples, J.E., Kubota, K.A., Chalcraft, L.G., 

Petersen, J.M., 2009, Molecular epidemiology of Francisella tularensis in the United 

States. Clin Infect Dis 48, 863-870. 

Larson, C.L., Wicht, W., Jellison, W.L., 1955, A new organism resembling P. tularensis 

isolated from water. Public Health Rep 70, 253-258. 

Lindgren, H., Honn, M., Salomonsson, E., Kuoppa, K., Forsberg, A., Sjostedt, A., 2011, 

Iron content differs between Francisella tularensis subspecies tularensis and 

subspecies holarctica strains and correlates to their susceptibility to H2O2-induced 

killing. Infect Immun 79, 1218-1224. 

Lundstrom, J. O., Anderson A. C., Backman, S., Schafer, M. L., Forsman, M., Thelaus J., 

2011, Transstadial transmission of Francisella tularensis holarctica in mosquitoes, 

Sweden. Emerg Infect Dis 17, 794-799. 



39 

 

Macaluso, K.R., Sonenshine, D.E., Ceraul, S.M., Azad, A.F., 2001, Infection and 

transovarial transmission of rickettsiae in Dermacentor variabilis ticks acquired by 

artificial feeding. Vector Borne Zoonotic Dis. 1, 45-53. 

Machado-Ferreira, E., Piesman, J., Zeidner, N.S., Soares, C.A., 2009, Francisella-like 

endosymbiont DNA and Francisella tularensis virulence-related genes in Brazilian 

ticks (Acari: Ixodidae). J Med Entomol 46, 369-374. 

Madden, R.D., Sauer, J.R., Dillwith, J.W., 2004, A proteomics approach to characterizing 

tick salivary secretions. Exp Appl Acarol 32, 77-87. 

Margolis, J.J., El-Etr, S., Joubert, L.M., Moore, E., Robison, R., Rasley, A., Spormann, 

A.M., Monack, D.M., 2009, Contributions of Francisella tularensis subsp. novicida 

chitinases and Sec secretion system to biofilm formation on chitin. Appl Environ 

Microbiol 76, 596-608. 

Markowitz, L.E., Hynes, N.A., de la Cruz, P., Campos, E., Barbaree, J.M., Plikaytis, 

B.D., Mosier, D., Kaufmann, A.F., 1985, Tick-borne tularemia. An outbreak of 

lymphadenopathy in children. JAMA 254, 2922-2925. 

Matyas, B.T., Nieder, H.S., Telford, S.R., 2007a, Pneumonic tularemia on Martha's 

Vineyard. Annals of the New York Academy of Sciences 1105, 351-377. 

Matyas, B.T., Nieder, H.S., Telford, S.R., 3rd, 2007b, Pneumonic tularemia on Martha's 

Vineyard: clinical, epidemiologic, and ecological characteristics. Ann N Y Acad Sci 

1105, 351-377. 

McCoy, G.W., Chapin, C.W., 1912, Further observations on a plague-like disease of 

rodents with a preliminary note on the causative agent, Bacterium tularense. The 

Journal of Infectious Diseases 10, 61-72. 



40 

 

Meibom, K.L., Charbit, A., 2009, The unraveling panoply of Francisella tularensis 

virulence attributes. Curr Opin Microbiol 13, 11-17. 

Merzendorfer, H., Zimoch, L., 2003, Chitin metabolism in insects: structure, function and 

regulation of chitin synthases and chitinases. J Exp Biol 206, 4393-4412. 

Mobley, H.L., Doyle, R.J., Streips, U.N., Langemeier, S.O., 1982, Transport and 

incorporation of N-acetyl-D-glucosamine in Bacillus subtilis. J Bacteriol 150, 8-15. 

Morner, T., 1992, The ecology of tularaemia. Rev Sci Tech 11, 1123-1130. 

Needham, G.R., Sauer, J.R., 1979, Involvement of calcium and cyclic AMP in 

controlling ixodid tick salivary fluid secretion. The Journal of Parasitology 65, 531-

542. 

Niebylski, M.L., Peacock, M.G., Fischer, E.R., Porcella, S.F., Schwan, T.G., 1997, 

Characterization of an endosymbiont infecting wood ticks, Dermacentor andersoni, 

as a member of the genus Francisella. Appl. Environ. Microbiol. 63, 3933-3940. 

Ohara, S., 1954, Studies on yato-byo (Ohara's disease, tularemia in Japan). I. Jpn J Exp 

Med 24, 69-79. 

Olsuf'evn, G., Golovd, A., 1936, Horse flies as transmitters and conservators of 

Tularaemia. Moscow, Inst. Med. exp. USSR M. Gorki, 187-226 pp. pp. 

Olsufiev, N.G., 1966, Tularemia. In Human diseases with natural foci, Vol 2. Foreign 

Languages Publishing House, Moscow. 

Olsufiev, N.G., Emelyanova, O.S., Dunayeva, T.N., 1959, Comparative study of strains 

of B. tularense in the old and new world and their taxonomy. J Hyg Epidemiol 

Microbiol Immunol 3, 138-149. 



41 

 

Olsufjev, N.G., 1970, Taxonomy and characteristic of the genus Francisella Dorofeev, 

1947. J Hyg Epidemiol Microbiol Immunol 14, 67-74. 

Olsufjev, N.G., Meshcheryakova, I.S., 1982, Infraspecific taxonomy of tularemia agent 

Francisella tularensis McCoy et Chapin. J Hyg Epidemiol Microbiol Immunol 26, 

291-299. 

Palo, T.R., Ahlm, C., Tarnvik, A., 2005, Climate variability reveals complex events for 

tularemia dynamics in man and mammals. Ecology and Society 10. 

Parker, R.R., Spencer, R.R., 1926, Heriditary transmission of tularemia Infection by the 

wood tick, Dermacentor andersoni Stiles. Public Health Reports 41, 1403-1407. 

Parker, R.R., Spencer, R.R., Francis, E., 1924, Tularaemia- Tulariemia infection in ticks 

of the species Dermacentor andersoni Stiles in the Bitterroot Valley, Mont. Public 

Health Reports 39, 1057-1073. 

Patrick, C.D., Hair, J.A., 1977, Seasonal abundance of lone star ticks on white-tailed 

deer. Environmental Entomology 6, 263-269. 

Pearse, R.A., 1911, Insect bites. Northwest Med., 81-82. 

Petersen, J.M., Carlson, J.K., Dietrich, G., Eisen, R.J., Coombs, J., Janusz, A.M., 

Summers, J., Beard, C.B., Mead, P.S., 2008, Multiple Francisella tularensis 

subspecies and clades, tularemia outbreak, Utah. Emerg Infect Dis 14, 1928-1930. 

Petersen, J.M., Mead, P.S., Schriefer, M.E., 2009, Francisella tularensis: an arthropod-

borne pathogen. Vet. Res. 40, 7. 

Petrov, V.G., 1960, Experimental study of Dermacentor marginatus Sulz. and 

Rhipicephalus rossicus Jak. et K. Jak. ticks as vectors of tularemia. J. Parasitol. 46, 

877-884. 



42 

 

Philip, C.B., Jellison, W.L., 1934, The American dog tick, Dermacentor variabilis as a 

host of Bacterium tularense. Public Health Rep 49, 386-392. 

Philip, C.B., Owen, C.R., 1961, Comments on the nomenclature of the causative agent of 

tularemia. Int Bull Bacteriol Nomencl Taxon 11, 67-72. 

Philip, C.B., Parker, R.R., 1934. Recent studies of tick borne diseases made at the Unites 

Staes Public Health Service Laboratory at Hamilton, Montana. In:  Fifth Pacific 

Science Congress, pp. 3370-3373. 

Piesman, J., Oliver, J.R., Sinsky, R.J., 1990, Growth kinetics of the Lyme disease 

spirochete (Borrelia burgdorferi) in vector ticks (Ixodes dammini). Am J Trop Med 

Hyg 42, 352-357. 

Plumbridge, J.A., 1990, Induction of the nag regulon of Escherichia coli by N-

acetylglucosamine and glucosamine: role of the cyclic AMP-catabolite activator 

protein complex in expression of the regulon. J Bacteriol 172, 2728-2735. 

Rechav, Y., Zyzak, M., Fielden, L.J., Childs, J.E., 1999, Comparison of methods for 

introducing and producing artificial infection of ixodid ticks (Acari: Ixodidae) with 

Ehrlichia chaffeensis. J. Med. Entomol. 36, 414-419. 

Reese, S.M., Dietrich, G., Dolan, M.C., Sheldon, S.W., Piesman, J., Petersen, J.M., 

Eisen, R.J., 2010, Transmission dynamics of Francisella tularensis subspecies and 

clades by nymphal Dermacentor variabilis (Acari: Ixodidae). Am J Trop Med Hyg 

83, 645-652. 

Ribeiro, J.M., Weis, J.J., Telford, S.R., 3rd, 1990, Saliva of the tick Ixodes dammini 

inhibits neutrophil function. Exp Parasitol 70, 382-388. 



43 

 

Salomonsson, E., Kuoppa, K., Forslund, A.-L., Zingmark, C., Golovliov, I., Sjostedt, A., 

Noppa, L., Forsberg, A., 2009, Reintroduction of two deleted virulence loci restores 

full virulence to the live vaccine strain of Francisella tularensis. Infect. Immun. 77, 

3424-3431. 

Santic, M., Al-Khodor, S., Abu Kwaik, Y., 2009, Cell biology and molecular ecology of 

Francisella tularensis. Cell Microbiol 12, 129-139. 

Sauer, J.R., McSwain, J.L., Bowman, A.S., Essenberg, R.C., 1995, Tick salivary gland 

physiology. Annu Rev Entomol 40, 245-267. 

Schmid, G.P., Kornblatt, A.N., Connors, C.A., Patton, C., Carney, J., Hobbs, J., 

Kaufmann, A.F., 1983, Clinically mild tularemia associated with tick-borne 

Francisella tularensis. J Infect Dis 148, 63-67. 

Scofield, R.H., Lopez, E.J., McNabb, S.J., 1992, Tularemia pneumonia in Oklahoma, 

1982-1987. J. Okla. State Med. Assoc. 85, 165-170. 

Scoles, G.A., 2004, Phylogenetic analysis of the Francisella-like endosymbionts of 

Dermacentor ticks. J. Med. Entomol. 41, 277-286. 

Shoemaker, D., Woolf, A., Kirkpatrick, R., Cooper, M., 1997, Humoral immune response 

of cottontail rabbits naturally infected with Francisella tularensis in southern Illinois. 

J Wildl Dis 33, 733-737. 

Sjostedt, A., 2003, Family XVII, Francisellaceae. Genus I, Francisella, In:  G.M. Garrity 

(Ed.) Bergey's manual of systematic bacteriology, . Springer-Verlag, New York, 

N.Y. 

Sjostedt, A., 2007, Tularemia: history, epidemiology, pathogen physiology, and clinical 

manifestations. Ann. N. Y. Acad. Sci. 1105, 1-29. 



44 

 

Snyder, E.E., Kampanya, N., Lu, J., Nordberg, E.K., Karur, H.R., Shukla, M., Soneja, J., 

Tian, Y., Xue, T., Yoo, H., Zhang, F., Dharmanolla, C., Dongre, N.V., Gillespie, J.J., 

Hamelius, J., Hance, M., Huntington, K.I., Jukneliene, D., Koziski, J., Mackasmiel, 

L., Mane, S.P., Nguyen, V., Purkayastha, A., Shallom, J., Yu, G., Guo, Y., Gabbard, 

J., Hix, D., Azad, A.F., Baker, S.C., Boyle, S.M., Khudyakov, Y., Meng, X.J., 

Rupprecht, C., Vinje, J., Crasta, O.R., Czar, M.J., Dickerman, A., Eckart, J.D., 

Kenyon, R., Will, R., Setubal, J.C., Sobral, B.W., 2007, PATRIC: the VBI 

PathoSystems Resource Integration Center. Nucleic Acids Res 35, D401-406. 

Sonenshine, D.E., 1972, Ecology of the American Dog Tick, Dermacentor variabilis in a 

study area in Virginia. 1. studies on population dynamics using radioecological 

methods. Ann. Entomol. Soc. Am. 65, 1164-1175. 

Sonenshine, D.E., 1991, Biology of Ticks, Vol 1. Oxford University Press, New York. 

Staples, J.E., Kubota, K.A., Chalcraft, L.G., Mead, P.S., Petersen, J.M., 2006, 

Epidemiologic and molecular analysis of human tularemia, United States, 1964-

2004. Emerg. Infect. Dis. 12, 1113-1118. 

Sun, L.V., Scoles, G.A., Fish, D., O'Neill, S.L., 2000, Francisella-like endosymbionts of 

ticks. J. Invertebr. Pathol. 76, 301-303. 

Svensson, K., Back, E., Eliasson, H., Berglund, L., Granberg, M., Karlsson, L., Larsson, 

P., Forsman, M., Johansson, A., 2009, Landscape epidemiology of tularemia 

outbreaks in Sweden. Emerg Infect Dis 15, 1937-1947. 

Tatchell, R.J., 1967, A modified method for obtaining tick oral secretion. J Parasitol 53, 

1106-1107. 



45 

 

Taylor, J.P., Istre, G.R., McChesney, T.C., Satalowich, F.T., Parker, R.L., McFarland, 

L.M., 1991, Epidemiologic characteristics of human tularemia in the southwest-

central states, 1981-1987. Am. J. Epidemiol. 133, 1032-1038. 

Teutsch, S.M., Martone, W.J., Brink, E.W., Potter, M.E., Eliot, G., Hoxsie, R., Craven, 

R.B., Kaufmann, A.F., 1979, Pneumonic tularemia on Martha's Vineyard. N Engl J 

Med 301, 826-828. 

Tigertt, W.D., 1962, Soviet viable Pasteurella tularensis vaccines. A review of selected 

articles. Bacteriol Rev 26, 354-373. 

Tilly, K., Elias, A.F., Errett, J., Fischer, E., Iyer, R., Schwartz, I., Bono, J.L., Rosa, P., 

2001, Genetics and regulation of chitobiose utilization in Borrelia burgdorferi. J 

Bacteriol 183, 5544-5553. 

Tilly, K., Grimm, D., Bueschel, D.M., Krum, J.G., Rosa, P., 2004, Infectious cycle 

analysis of a Borrelia burgdorferi mutant defective in transport of chitobiose, a tick 

cuticle component. Vector Borne Zoonotic Dis 4, 159-168. 

Topley, W.W.C., Wilson, G.S., 1937, The principles of bacteriology and immunity. Soil 

Science 43, 480. 

Turell, M.J., Pollack, R.J., Spielman, A., 1997, Enema infusion technique inappropriate 

for evaluating viral competence of ticks. J Med Entomol 34, 298-300. 

Verhoeven, A.B., Durham-colleran, M.W., Pierson, T., Boswell, W.T., Van Hoek, M.L., 

2010, Francisella philomiragia biofilm formation and interaction with the aquatic 

protist Acanthamoeba castellanii. Biol Bull 219, 178-188. 



46 

 

Waladde, S.M., Young, A.S., Mwaura, S.N., Njihia, G.N., Mwakima, F.N., 1995, 

Optimization of the in vitro feeding of Rhipicephalus appendiculatus nymphae for 

the transmission of Theileria parva. Parasitology 111 ( Pt 4), 463-468. 

Warring, W.B., Ruffin, J.S., 1946, A tick-borne epidemic of tularemia. New England 

Journal of Medicine 234, 137-140. 

Wherry, W.B., Lamb, B.H., 1914, Infection of man with Bacterium tularense. . J Infect 

Dis 189, 1321-1329. 

Willadsen, P., Kemp, D.H., McKenna, R.V., 1984, Bloodmeal ingestion and utilization as 

a component of host specificity in the tick, Boophilus microplus. Parasitology 

Research 70, 415-420. 

Young, A.S., Waladde, S.M., Morzaria, S.P., 1996, Artificial feeding systems for ixodid 

ticks as a tool for study of pathogen transmission. Ann N Y Acad Sci 791, 211-218. 

Zobell, C.E., Rittenberg, S.C., 1938, The occurence and characteristics of chitinoclastic 

bacteria in the sea. J Bacteriol 35, 275-287.



47 

 

 
 

 
 
 
 
 

CHAPTER III 
 
 
 
 
 
 
 
 

BIOLOGY OF FRANCISELLA TULARENSIS SUBSPECIES HOLARCTICA 

STRAIN LVS IN THE TICK VECTOR DERMACENTOR VARIABILIS
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Abstract 

 

 The γ-proteobacterium Francisella tularensis causes seasonal tick-transmitted 

tularemia epizootics in rodents and rabbits and incidental infection in humans. To study 

the biology of Francisella tularensis in the tick vectors, colony-reared larva, nymph, and 

adult Dermacentor variabilis were artificially capillary fed (CF) a meal containing 107 

CFU/mL F. tularensis subspecies holarctica strain LVS (live vaccine strain) via fine bore 

capillaries tubes fitted over the tick mouthparts. After the feeding period, the level of 

colonization and distribution in tick tissue were determined. CF larva and nymph were 

initially colonized with 8.8±0.8x101and 1.1±0.03x103 CFU/tick, respectively, followed 

by a decline in colonization to less than 102 CFU per tick at molting. After molting, the 

colonization increased to 5.2 ± 0.01 x104 and 1.02±0.39x104 CFU per molted nymph and 

adult tick, respectively, and persisted in 60% of molted adult ticks at three months post-

CF (PCF). In the CF adult ticks, F. tularensis initially colonized the gut and disseminated 

to hemolymph and salivary glands by three weeks PCF and was found to persist up to 6 

months PCF. When F. tularensis was introduced via intra-hemocelic (i.h.) injection in 

adult ticks, a minimum of one CFU per tick was required to establish colonization, and F. 

tularensis was detected in saliva four days post i.h. injection. Francisella tularensis in 

tick salivary glands was infectious to mice with an infectious dose 50% (ID50) of 2 CFU 

via i.p. injection. In gravid female ticks infected with F. tularensis via the i.h. route, the 

bacteria disseminated to the ovaries and subsequently to the ova, but the pathogen was 

not recovered from hatched larvae. Dermacentor variabilis is a potential vector for F. 
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tularensis in the south-central tularemia endemic region of the United States, and the 

reason for the persistence of this disease is due to the maintenance of F. tularensis in 

nature by the annual enzootic cycle of tularemia in ticks and small mammalian species. 

This study demonstrated that D. variabilis is an experimental vector for F. tularensis. The 

long-term persistence of F. tularensis in D. variabilis adults suggests bacteria can 

potentially overwinter in the tick and may carryover the infection from one year to the 

next maintaining the persistence of tularemia in the region.  

 

 

Introduction 

 

 Francisella tularensis is a highly infectious, gram-negative, coccobacillus that 

causes tularemia epizootics in small mammals and incidental infections in humans 

(Goodman et al., 2005; Jellison, 1974; Sjostedt, 2007). Although F. tularensis can infect 

a wide range of animal hosts, including reptiles and birds, maintenance of the agent in a 

particular endemic region involves small mammalian hosts, which maintain a significant 

tick or biting insect parasitic cycle acting as transmission vectors for F. tularensis 

(Goodman et al., 2005; Jellison, 1974). Ticks have been implicated as the primary vector 

for F. tularensis in many endemic regions, but biting flies and mosquitoes also can serve 

as primary vectors. Flies and mosquitoes are mechanical vectors of F. tularensis, but F. 

tularensis colonizes and persists in ticks, and can therefore serve as biological vectors 

(Jellison, 1950; Staples et al., 2006). Francisella tularensis have co-evolved with ticks as 
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demonstrated by the presence of Francisella-like endosymbionts in many tick species. 

These Francisella-like endosymbionts have a 100% penetrance in symbiotic tick 

populations, reproductive tissue predilection and vertical transmission (Baldridge et al., 

2009; Niebylski et al., 1997; Scoles, 2004; Sun et al., 2000). Although ticks and their 

hosts are reported to maintain tularemia enzootic cycle in nature, little is known about the 

biology of F. tularensis in ticks.  

 Rodent and lagomorphs serve as primary hosts and their associated tick species 

act as vectors in the endemic foci of tularemia in the United States comprised of 

Arkansas, Missouri, and Oklahoma (Calhoun, 1954; Hopla, 1960). In Oklahoma, human 

tularemia occurs in a summer seasonal pattern likely mirroring the seasonality of 

tularemia in small mammals. The peaks of this seasonality are concurrent with tick 

questing activity of adult Dermacentor variabilis and nymphal and adult Amblyomma 

americanum. These tick species are thought to be the primary tick vectors for human F. 

tularensis in this region (Assal et al., 1968; Eisen, 2007; Scofield et al., 1992). The cross 

timbers and prairie-forest ecosystems in this hyper-endemic region are especially suitable 

habitats for these ticks and 60-70% of human tularemia cases have been attributed to tick 

bites (Eisen, 2007; Eisen et al., 2008). Both Dermacentor and Amblyomma species have 

been shown to be experimental vectors for F. tularensis with transstadial transmission 

from larva to nymph and nymph to adult (Bell, 1945; Hopla, 1953). Although 

Francisella-like endosymbionts are transmitted transovarially in ticks, studies examining 

transovarial transmission of F. tularensis in ticks have reported conflicting results (Eisen, 

2007; Hopla, 1953, 1974; Philip and Jellison, 1934). Detailed studies regarding vector 

competency, tissue localization and F. tularensis multiplication inside the tick has not 
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been reported. Ticks can be experimentally infected with infectious agents by allowing 

them to feed on an appropriate host animal or by use of a variety of artificial feeding 

methods (Burgdorfer, 1957; Johns et al., 2000; Turell et al., 1997; Young et al., 1996). In 

the current study capillary tube feeding (CF) was used to colonize D. variabilis with F. 

tularensis ssp. holarctica strain LVS. This method provides a uniform dose for ticks and 

reduces the variability encountered when ticks are fed on infected animals (Broadwater et 

al., 2002; Kocan et al., 2005). In addition, it is often difficult to synchronize tick feeding 

with the bacteremia when using animals to establish colonization in ticks and thus insure 

the optimum acquisition of the pathogen (Bell, 1945; Eisen et al., 2009). In the current 

study, the artificial method of chemically-induced salivation was also used to detect the 

presence of F. tularensis in tick saliva. Although this is the first report of the use of tick 

oral secretions for detection of F. tularensis, this technique has been reported previously 

for detection of other pathogens (Ewing et al., 1994; Gage et al., 1992).  

 The present study was designed to determine the colonizing efficiency of F. 

tularensis for D. variabilis ticks infected by the CF method and to determine the tissue 

localization and transstadial transmission of F. tularensis in this tick vector. The results 

presented in this study indicate that D. variabilis is an experimental vector for F. 

tularensis and may play a role as an inter-epizootic reservoir for tularemia in nature. 
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Materials and Methods 

 

Ticks, bacterial strain and growth conditions 

 Dermacentor variabilis larvae, nymphs, and adults were obtained from the Tick 

Rearing Facility, Department of Entomology and Plant Pathology, Oklahoma State 

University (Stillwater, OK). Larvae were collected following feeding to repletion on 

rabbits. Nymphs used were partially fed on sheep to approximately 4.5 mg/nymph. Adult 

ticks used were unfed (flat adults), and those used for saliva induction experiments were 

allowed to feed on sheep for five to six days (partially fed adults). Females used for the 

transovarial transmission studies were fed to repletion. Flat adult and partially fed 

nymphs were weighed before and after CF to assess the CF success, and only those with 

0.4 mg weight gain were used.  

 Francisella tularensis ssp. holarctica strain LVS (ATCC 29684) was supplied by 

the Oklahoma State Department of Health. Green fluorescent protein (GFP) expressing 

pFNLTP6 gro-gfp plasmid (Maier et al., 2004) was a gift of Thomas C. Zhart (Medical 

College Wisconsin, Milwaukee, Wisconsin), and electroporated into F. tularensis. For 

making electrocompetent F. tularensis, Mueller-Hinton broth (Becton Dickinson, 

Cockeysville, MD, USA) cultures supplemented with 2% IsoVitaleX (Becton Dickinson) 

were grown to early-log phase (optical density at 550 nm, 0.5 to 0.6 or 1x1010 CFU/mL), 

washed two times with 0.5 M sucrose, and suspended in 1 ml of 0.5 M sucrose. For 

electroporation, 1 µl of plasmid DNA (100 µg/ml) was mixed with 200 µL of 

electrocompetent cells, incubated at room temperature for 10 min and electroporated 
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using a MicroPulser electroporation apparatus (BioRad, Richmond, California) at 2.9 kV, 

25 µF capacitance and 600 Ω resistance for 5.3 msec. After electroporation the cells were 

suspended in 1mL of Mueller-Hinton broth supplemented with 2% IsoVitaleX and 

incubated at 37°C for 4 h. Transformed colonies were selected by plating on brain-heart 

infusion agar (Difco, BD Diagnostic Systems, Sparks, MD) supplemented with 1% 

hemoglobin and ampicillin (60 µg/mL) and kanamycin (25 µg/mL) for selection. The 

transformation efficiency was 1.3x103 transformants/µg of plasmid DNA. The 

transformed F. tularensis was used to infect ticks and to visualize F. tularensis in tick 

hemolymph. Francisella tularensis was grown on chocolate agar plates (Hardy 

diagnostics, Santa Monica, CA.) at 37°C in 5% CO2 for 72 h. The BBL Prompt 

Inoculation System (BD Diagnostics, Franklin Lakes, NJ) was used to prepare F. 

tularensis suspensions in the tick inoculum. All chemicals used in the study were 

purchased from Sigma (St. Louise, MO) unless indicated otherwise.  

Capillary feeding of larvae, nymphs, and adult ticks 

 The ticks were surface disinfected by washing in 30% hydrogen peroxide, 

distilled water, and 70% isopropyl alcohol for 5 seconds each. After washing, the adult 

ticks were immobilized dorsal sides up on double-sided tape in a 100 mm x 15 mm Petri 

dish base. The ticks were then further immobilized by applying single sided tape over 

1/4th of their caudal portion. The larvae and nymphs were immobilized with their dorsal 

side down on double sided tape on a Petri dish base. For CF, 10 µL (internal diameter of 

0.0219 inch), 9 µL (internal diameter of 0.0189 inch) and 35 µL (internal diameter of 

0.0314 inch) glass capillary tubes (Drummond Scientific Company, Broomall, PA) were 
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used for larvae, nymphs and the adult ticks, respectively. The ends of the tubes were 

positioned over the hypostome of the tick while the other end rested on the edge of the 

Petri dish attached with a double sided tape (Broadwater et al., 2002). The feeding media 

for larvae, nymphs, and adult ticks was Minimum Essential Media (MEM) (GIBCO 

Grand Island, NY) with 10% fetal bovine serum (Hyclone, Logan, UT.). The feeding 

medium was spiked with F. tularensis ssp. holarctica strain LVS at approximately 107 

CFU/ ml. The tick meal was then introduced into the capillary tubes, and the ticks were 

allowed to feed for 12 to 24 hours at 30°C and 90% relative humidity. After feeding the 

ticks were either surface disinfected by washing as above and minced for determinations 

of CFUs or were maintained in microcentrifuge tubes capped with moistened cotton 

plugs for varying periods of time in a humidity chamber (relative humidity of > 90%) at 

room temperature (23°C) (unless specified otherwise) with automated artificial lighting 

to simulate a 12 h day night cycle. To determine the bacterial number in tick gut, salivary 

glands, and ovaries, these tissues were dissected under sterile conditions under a 

dissecting microscope. Hemolymph was collected from the cut ends of tick leg using 

sterile glass capillary tubes. The minced whole tick or the tick tissues were incubated in 

PBS containing 64 µg/mL ampicillin for 2 h at room temperature on a rotor platform 

mixer (Boekel Scientific, Feasterville, PA.), serially diluted in PBS/ampicillin solution 

and plated on chocolate agar plates. CFUs were determined following incubation at 37°C 

in 5% CO2 for 72 h.  
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Immunohistochemistry and real-time quantitative PCR  

 For immunohistochemical analysis, both infected and uninfected (ticks CF with 

meal without F. tularensis) ticks were cut longitudinally in half on a median plane and 

ovaries from gravid females were fixed in Carsons fixative, embedded with paraffin, and 

sectioned and affixed to glass slides. After deparaffinizing, the sections were incubated 

with phosphate buffered saline with 0.05% Tween 20 (PBST) at RT for 15 min. and then 

incubated at 37°C for 1 h with F. tularensis antiserum (Beckton Dickinson, Sparks, 

Maryland) at 1:60 dilution in PBST. Adsorbed antiserum was used as negative control. 

After washing the slides with PBST five times followed by a final washing with distilled 

water, the sections were incubated with FITC conjugated secondary antibody in PBST at 

37°C for 30 min (KPL, Gaithersburg, Maryland) at 1:60 dilution. The sections were then 

washed in PBST twice, PBS once and finally washed with distilled water. The slides 

were dried and visualized using Nikon Eclipse 50i epi-fluorescence microscope and a 

Nikon digital sight DS-5M-L1 digital camera. For visualizing F. tularensis in tick 

hemolymph, ticks were CF with GFP-expressing F. tularensis, hemolymph was collected 

and placed directly on glass slide with coverslip and visualized using the epi-fluorescent 

microscope at 1, 2, 3, and 4 weeks PCF. For RT-qPCR reactions a 97 bp product of F. 

tularensis insertion sequence-2 was amplified with the primers ISFtu2F and ISFtu2R 

(Versage et al., 2003). Each sample was analyzed using Fast SYBR green master mix on 

an AB 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA.). 

During each analysis a negative control (no template) was processed and the 

amplification product was confirmed by analyzing the dissociation curve. RT-PCR 

reaction (20 µL) had 10µL Fast SYBR green master mix, 6µl DNase RNase free water, 
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1µL forward primer (ISFtu2F), 1µL reverse primer (ISFtu2R) and 2µL template. Cycling 

conditions were 95°C for 20 seconds, followed by 34 cycles of 95°C for 10 seconds and 

60°C for 30 seconds. Genome equivalents (GE) were calculated based on standard curves 

obtained by plotting threshold cycle value and different concentrations of F. tularensis 

DNA. The final value for each sample is calculated by multiplying with the dilution 

factor. The samples used for PCR were total DNA from ticks (tick minceate in 100ul 

PBS) extracted using DNeasy Tissue Kit (Qiagen, Valencia, CA.), with a final elution 

volume of 50µL. 

Intra-hemocelic injection and saliva induction in ticks 

 To determine the lowest infectious dose for ticks and to colonize gravid females 

and partially fed adult ticks, 1µL of the inoculum containing approximately 107 CFU/mL 

of F. tularensis ssp. holarctica strain LVS in PBS was injected i.h. in the ventral region 

of the tick, medial to the caudal most coxa using a 10µL custom made Hamilton syringe 

with a 0.5 inch, 33 gauge needle (Hamilton Company, Reno, NV.). Injection of gravid 

females was done in the left or right spiracles. For the detection of F. tularensis in tick 

saliva, partially fed adult ticks were injected i.h. with F. tularensis, and the ticks were 

held in a humidity chamber at 27°C. For collecting the saliva, partially fed F. tularensis 

infected adult ticks were immobilized dorsal side up on double sided tape. Ticks were 

then injected with approximately 4 µL of 1 mM dopamine, 1 mM theophilline and 3% 

dimethyl sulfoxid in PBS (pH 7.3) (Jaworski et al., 1995) every 15 min. for 1 h (at 

RT=23°C). Saliva was collected in 10 µL glass capillary tubes (Drummond Scientific 
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Company, Broomall, PA) placed over the hypostome of the tick. The capillary tube for 

collecting the saliva was held in place using modeling clay (Fig. 1). 

Infective dose 50 in BALB/c mice 

 To determine the infectivity of F. tularensis recovered from ticks, salivary glands 

from four partially fed adult ticks (infected with F. tularensis four days previously via i.h. 

route) were excised by dissection under sterile conditions and minced in 200 µL PBS 

containing 64µg/mL ampicillin at four days post injection (PI). The salivary glands were 

diluted in PBS-ampicillin to make the appropriate inoculum size. Five experimental 

groups of BALB/c mice (six mice in each group) were injected i.p. with 0.05 CFU, 0.5 

CFU, 5 CFU, 71.3 CFU, and 493 CFU respectively. Control group of five mice was 

injected with uninfected tick salivary gland in PBS-ampicillin.To determine the infective 

dose 50 of laboratory cultured F. tularensis, four experimental groups of BALB/c mice 

(six mice in each group) were injected i.p. with 1.3 CFU, 12.9 CFU, 64 CFU, and 129 

CFU, respectively. Control group of four mice was injected with PBS alone. PI, mice 

were observed twice daily, and mice showing clinical symptoms (ruffled haircoat, 

huddling, lethargy, and decreased mobility) were euthanized. The liver and spleen were 

aseptically removed from the mice, weighed and homogenized. Blood was collected from 

the heart immediately after ethanization and serial 10-fold dilutions were made and plated 

on chocolate agar plates. CFUs were counted after 72 h of incubation at 37°C and 5% 

CO2. The data from the experiment was used to calculate ID50 using the Reed-Muench 

method (Lennette and Schmidt, 1964). 
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 Statistical analysis 

 Francisella tularensis colonization in different groups of D. variabilis ticks 

during adult colonization, transstadial transmission from larva to nymphs, and nymph to 

adult were compared by using 1-way analysis of variance on log-transformed data 

followed by pairwise multiple comparison of mean CFU values using Holm-Sidak tests. 

Overall significance level for Holm-Sidak tests was P = 0.05. The same method was also 

used to compare F. tularensis tissue colonization of two months PCF adult ticks. Mann-

Whitney Rank Sum test was performed to determine the statistical difference in the mean 

CFU/infected tick between molted adult male and female D. variabilis. All statistical 

analyses were performed with SigmaPlot v11.0 software package (Systat Software Inc., 

Chicago, IL). 

 

 

Results 

 

Francisella tularensis colonization of D. variabilis larvae and transstadial 

transmission to nymphs. 

 Significant difference in the colonization of F. tularensis at different days PCF 

was observed (ANOVA: F = 7.96, degrees of freedom (df) = 6, 69, P < 0.001). The 

degree to which larvae took in the capillary fed meal was not ascertainable by weight 

change in larvae, so only the ticks which were positive for F. tularensis was used for the 

experimental analysis. At one-day PCF, 15.8% of larvae exhibited colonization with a 
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mean colonization level of 8.8±0.8x101 CFU/larva. This % colonization by capillary 

feeding was the lowest among the various stages of ticks used in this study. This low 

percent colonization may reflect a technical difficulty for larvae to acquire colonization 

by F. tularensis rather than a biological factor. At our experimental holding conditions 

(RH=95% and mean room temperature of 20˚C), the larvae molted to adults in 18 days 

PCF. Post molting, F. tularensis CFU/tick increased, reaching 5.2 ± 0.01 x104 CFU/tick 

after five weeks, demonstrating the transstadial transmission of F. tularensis (Fig. 2). 

Significant difference in the mean colonization levels between two weeks and five weeks 

PCF (unadjusted P < 0.001) was observed indicating bacterial multiplication within the 

ticks after molting. When the ticks were held at 23˚C, mortality of larvae was 

approximately 50% irrespective of F. tularensis colonization, and the number of F. 

tularensis colonized (molted) nymphs was extremely small. However, when the holding 

temperature was reduced to 20˚C, the percentage mortality was decreased and the number 

of F. tularensis colonized (molted) nymphs was higher (data not shown). 

Francisella tularensis colonization of D. variabilis nymphs and transstadial 

transmission to adults.  

 No significant difference in the colonization of F. tularensis at different days PCF 

was observed (ANOVA: F =1.2, df = 12, 194, P = 0.29). The degree to which nymphs 

fed was ascertained by comparison of pre-feeding and post-feeding weights. 

Approximately 30% (>3mg/nymph weight gain post-feeding) of CF ticks were colonized 

with a mean level of 1.1 ± 0.03 x103 CFU/nymph at one day PCF. Considering only those 

nymphs that ingested the initial inoculum, 100% remained colonized for 14 days, but the 
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infections declined towards molting to adults at 28 days, at which time 7/15 were 

negative for F. tularensis by culture indicating either the colonization was too low to be 

detected or these ticks may have cleared the infection. Interestingly, 7/9 nymphs molting 

at 28 days had cleared F. tularensis colonization and only 2/8 colonized nymphs molted 

by 28 days, suggesting that colonization may prolong the time to molting. A progressive 

decline in the level of colonization between day 1 PCF and molting at day 28 was seen. 

Following molting to adults, the percent of molted colonized adults remained relatively 

constant at 60% for PCF between days 42 to 84, and the mean colonization level was 34 

± 45 at PCF day 28 and changed to 1.02±0.39x104 CFU/molted adult at day 49 PCF. The 

level of colonization varied considerably in molted adults and ranged from 101 to 109 

CFU/tick (Fig. 3 A & B). No correlation between weight gain in nymphs after capillary 

feeding and F. tularensis colonization level in nymphs up to 7 days PCF was observed. 

The majority of the nymphs were colonized with an average value of 104 CFU/nymph 

irrespective of the weight gain (Fig. 4). Correlation between weight gain in nymphs and 

F. tularensis colonization level in molted adult ticks after 2 months PCF was also not 

observed (Fig. 5). Among the molted adults, the number of female ticks colonized (60%) 

was more than males (48%), however, the average CFU/tick in both males and females 

were similar (P = 0.94) (Table 1). 

Francisella tularensis colonization of D. variabilis adults and lack of transovarial 

transmission to hatched larvae. 

 For unfed adults, CF resulted in 57% becoming colonized with F. tularensis at 

102 to 104 CFU/tick for 28 days PCF (Fig. 6). Those ticks not colonized appeared to have 
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not ingested the inoculum, because their weights did not increase after feeding. No 

significant differences were observed in the overall mean colonization levels for adult 

male versus female ticks at time up to 28 days PCF  and difference in colonization levels 

in ticks at different days PCF (ANOVA: F = 2.7, df = 4, 74, P = 0.07) was also not 

observed. Tick mortality of approximately 10% was observed in both colonized and non-

colonized adult ticks (data not shown). In order to examine persistence of colonization, 

one batch of 30 unfed adults were CF F. tularensis and held in a humidity chamber for 

182 days PCF. Of these 12/30 survived to 182 days PCF of which only 3 were colonized 

with 103 to 106 CFU/tick. The survival rate of adult ticks CF F. tularensis was similar to 

that for ticks CF meal lacking F. tularensis. 

 To test whether transovarial transmission of F. tularensis to larvae occurs, adult 

female D. variabilis ticks were allowed to feed to repletion on sheep and subsequently 

inoculated i.h. with approximately 105 CFU/tick. The ticks were held in a humidity 

chamber until oviposition was completed, and the eggs hatched into larvae. After 

dissection of the infected gravid female ticks at 14 days PI, F. tularensis was detected in 

hemolymph, gut, Malpighian tubules, and ovaries (Fig. 7); but only 1/11 egg masses were 

positive for F. tularensis by culture or RT-qPCR. However, in a second experiment in 

which the ambient holding temperature of the colonized female ticks was changed from 

23°C to 27°C, 7/8 of the egg masses  were colonized at 3.20 ± 0.02 x103 CFU/egg mass 

and the female ticks post-ovipositing were colonized at 3.98 x 1010 CFU/tick. Francisella 

tularensis was not detected in ova deposited during the initial five days of oviposition, 

but became positive for F. tularensis from around 7 days after the start of egg laying 

(Table 2). Eggs hatched to larvae between 20 and 30 days post-ovipositing, but 
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transovarial transmission of F. tularensis to larvae was not detected by either culture or 

RT-qPCR in these larvae. At high levels of colonization, F. tularensis infection may 

interfere with hatching as demonstrated by one egg mass colonized with 107 CFU/100 

eggs from which no larvae hatched (Table 3). To better understand how ova were 

colonized, but hatched larvae were not, ova were examined microscopically using 

immunohistochemical technique for detection of F. tularensis. The bacteria were 

demonstrated in the outer tunica propria and shell of ova, but not in the ova cytoplasm 

(Fig. 8 A-D). The fecundity of ticks was not affected by F. tularensis infection when 

ticks were held at 23˚C as compared to uninfected ticks. However, the mean egg mass 

weight of F. tularensis from infected ticks was lower (164mg) when compared to 

uninfected ticks (320mg) when ticks were held at 27˚C (Table 3). 

Determination of inoculum dose of F. tularensis necessary to establish colonization 

in adult D. variabilis ticks.  

 As shown in Table 4, an inoculum dose of only 1.5 CFU/tick (n = 5) was 

sufficient to establish colonization in ticks by day 14 PI compared to higher inoculation 

doses which established colonization in 100% of the ticks at day one PI. The level of 

colonization in ticks inoculated with 1.5CFU/ tick was 4.36 ± 13 CFU/tick. Mortality was 

similar to that of the controls up to 14 days post i.h. for tick inoculated with 106 CFU F. 

tularensis/tick (data not shown).  

Tissue localization of F. tularensis in adult D. variabilis ticks. 

 To determine the tissue dissemination in capillary fed adult D. variabilis ticks, 

ticks were dissected at various times PCF and the level of F. tularensis present in gut, 
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hemolymph, and salivary glands determined. As shown in Fig. 9, the primary site of        

F. tularensis colonization was the tick gut through day 14 PCF. By day 21 PCF,             

F. tularensis colonization extended to the hemolymph and salivary glands. Microscopic 

examination of these tissues using immunohistochemical staining showed hemocytes in 

the hemolymph were heavily colonized by F. tularensis (Fig. 10 A-D). The bacteria were 

observed free in hemolymph and also seen colonizing the granulocytes and 

plasmatocytes. Adult ticks colonized as nymphs exhibited colonization primarily of gut 

tissue (8.9x105CFU/tissue/tick) and salivary glands (1.6x103CFU/tissue/tick) with only 

low levels of colonization of hemolymph (1.9x101CFU/tick) at 2 to 3 months PCF 

(ANOVA: F = 11.12, df = 2, 29, P = < 0.001) (Fig. 11).  

Infectivity of mice from F. tularensis colonized in tick salivary glands.  

 As shown in Fig. 12, dissemination of F. tularensis from the hemolymph into gut 

and the salivary gland occurred within two days PI, and F. tularensis was secreted into 

the saliva of 2/5 ticks after four days PI with a mean level of 1.0 ± 0.04x104 CFU/µL 

saliva/tick and 3/5 ticks with a mean level of 1.12 ± 0.1x103 CFU/µL saliva/tick after 6 

days PI respectively. The ID50 for F. tularensis in tick salivary gland in BALB/c mice by 

IP injection was 2 CFU as compared to 43 CFU for laboratory cultured F. tularensis 

(Table 4 & 5). Liver, spleen and blood of the euthanized mice at their clinical end point 

was harvested and mean bacterial counts determined which were 1.8x107CFU/g, 

1.6x107CFU/g, and 2.8x105CFU/ml, respectively (Fig. 13 A). Immunostained sections of 

diseased mice liver and spleen showed that liver hepatocytes and splenic cells were 

heavily colonized by F. tularensis (Fig. 13 B & C). 
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Discussion 

 

 Colonization of both D. variabilis larvae and nymphs with F. tularensis by CF 

was demonstrated. The efficiency of CF for partially fed nymphs was 30%, whereas the 

feeding efficiency of engorged D. variabilis larvae and nymphs was less than 10%. The 

higher percentage of feeding and subsequent colonization of partially fed nymphs as 

compared to engorged larvae and nymphs could be due to the fact that the partially fed 

nymphs were not fed to repletion on sheep making them more responsive to CF, whereas 

the engorged larvae and nymphs were fed to repletion on rabbit and sheep, respectively, 

making them less accepting of CF. We did not observe any increase in mortality for 

infected nymphs or larvae. We also observed F. tularensis transstadial transmission from 

larva to nymph as well as from nymph to adult. Although the transstadial route of 

transmission was reported previously in D. variabilis ticks by feeding on F. tularensis 

infected lab animals (Bell, 1945; Philip and Jellison, 1934), this is the first report of this 

mode of transmission after infecting the tick by CF.  

 Long term maintenance of F. tularensis in D. variabilis ticks was also explored to 

determine whether ticks could maintain infection throughout the overwintering period. 

The overwintering periods in ticks will vary with latitude, but in eastern and central 

United States this period may last up to 5-6 months (Burg, 2001; Kollars et al., 2000; 
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Sonenshine and Mather, 1994). The life stages of D. variabilis ticks which overwinter in 

the natural environment are the larvae and the adults (Burg, 2001; Sonenshine, 1972). 

Molted adults which were infected with F. tularensis as partially fed nymphs were shown 

to maintain F. tularensis for 3 months (time at which study was discontinued), while 

unfed adults infected with F. tularensis maintained the colonization for 5.5 months. The 

high level of F. tularensis colonization per molted adults was also reported in naturally 

infected D. variabilis ticks collected from Martha’s Vineyard, Massachusetts (Goethert 

and Telford, 2010). These results suggest that adult D. variabilis ticks could maintain the 

bacteria through the winter period, and therefore may be an important inter-epizootic 

reservoir for tularemia in its enzootic area. Although we did not hold the ticks under 

extreme cold conditions simulating natural overwintering period, ticks survivability and 

F. tularensis maintenance was higher at colder temperatures (data not shown). This 

higher level of infection based on the holding temperature has also been reported by Bell 

and colleagues (Bell, 1945).  

 Transovarial transmission of F. tularensis in D. variabilis ticks was first reported 

in 1936, but could not be replicated in later experiments (Bell, 1945; Francis, 1927). We 

have demonstrated temperature dependent transmission of F. tularensis to the tick egg 

shell and the tunica propria, but not to the cytoplasm of the ova which may explain the 

lack of infection in any of the hatched larvae. Negative results on RT-qPCR also 

confirmed that the hatched larvae were not infected with F. tularensis. The failure of 

hatching of one of the heavily infected egg masses also suggests that the high number of 

F. tularensis may harm egg development, a phenomenon also seen in Borrelia infected 

ixodid ticks (Burgdorfer et al., 1988). Further studies on transovarial transmission in ticks 
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using recently characterized subpopulations among F. tularensis (Petersen and Molins, 

2010), by holding the infected gravid females at different temperatures, and by infesting 

the hatched larvae on ecologically relevant host may shed more light in the matter.   

 The infective dose of F. tularensis for D. variabilis by CF method was not 

determined because it was not practical to determine the exact amount of tick meal taken 

in by each tick. Even though i.h. is not a natural route of infection, the low infective dose 

for this route would indicate that these ticks could be susceptible to infection by feeding 

on infective blood which has been reported to reach high levels of bacteremia (Eisen et 

al., 2009). 

 Quantitative determination of F. tularensis dissemination in tick tissues suggested 

that after the initial multiplication of F. tularensis in the gut of tick, bacteria disseminated 

into the hemocel, infecting hemocytes and other tissues including Malpighian tubules, 

ovary and salivary glands. However, the long term association of F. tularensis was 

primarily in the gut tissues. The current study is the first report of the systematic 

quantification of F. tularensis infection in tick tissues. Edward Francis in 1927 described 

the qualitative microscopic changes in D. andersoni ticks after F. tularensis infection and 

found that F. tularensis was not disseminated to the ovary and salivary glands (Francis, 

1927), which may be due to differences in tick species or subspecies or subpopulation of 

F. tularensis used in that experiment. Although F. tularensis is known to be transmitted 

via tick bites, this is the first report of F. tularensis in the saliva of a tick vector. The 

chemically-induced saliva secretion technique used herein to demonstrate F. tularensis in 

saliva of D. variabilis ticks has been used previously to study physiological components 
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of tick saliva and also for detection of other tick borne pathogens (Ewing et al., 1994; 

Gage et al., 1992; Jaworski et al., 1995; Madden et al., 2004). Finally, the virulence of F. 

tularensis recovered from the tick salivary gland was also determined by calculating the 

ID50 which was found to be one log less than for laboratory cultured F. tularensis. 

Components of tick saliva have been shown to increase the virulence of various tick 

pathogens including F. tularensis by suppressing host immune response (Bowman et al., 

1997; Horka et al., 2009; Krocova et al., 2003).    

 The CF method of infecting the ticks is an efficient method of colonizing ticks 

with their pathogens and is useful in understanding the basic biology and molecular 

interactions involved in the tick-pathogen interaction. This method was especially useful 

with F. tularensis which is highly pathogenic to laboratory animals used as host for 

feeding the ticks. The data herein suggests that D. variabilis is a biological vector for F. 

tularensis. Bacterial multiplication was clearly demonstrated within these ticks, and the 

bacterium was transmitted to a susceptible host via bite/saliva of the tick. For ticks to be 

considered a natural reservoir of a causative agent, the agent has to be maintained in the 

tick population permanently, and in ticks this means it has to transmit the agent 

transovarially. Transovarial transmission was not seen in our experiments; however, these 

studies demonstrated that the adult stage of this tick species was able to carry F. 

tularensis for long periods, thus suggesting that this tick may be an inter-epizootic 

reservoir in which infected adult ticks survive the winter and initiate another enzootic 

cycle in the spring. D. variabilis adults often feed on large mammals, including dogs and 

humans (Eisen, 2007; Markowitz et al., 1985; Schmid et al., 1983; Sonenshine, 1991). 

Adult infected ticks with high number of bacteria/tick could likely function as a bridging 
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vector for F. tularensis, transmitting F. tularensis from the enzootic cycle to incidental 

hosts. Further research is needed to define the biology of virulent subpopulations of type 

A and type B F. tularensis in D. variabilis ticks as well as in other relevant tick vectors.  
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D. variabilis         Number of       Number of            Percentage of       Mean Log* 
 ticks                     ticks                infected ticks         infected ticks       CFU±SD/tick 

Male ticks               66                        32                         48.5%                 4.9±2.3 
 
Female ticks            62                        37                         59.7%                 4.9±2.1 

Table 1.  Francisella tularensis colonization in molted adult D. variabilis. 

*Mean Log CFU ± standard deviation/tick in infected D. variabilis ticks. 
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Tick              Inoculum                      CFUs/100 eggs*        CFUs/100 eggs† 
                   CFUs/gravid tick 
         1                    3x105                                                     0                             1x101    

         2                    6x105   
                                  0                             1x104    

         3                    6x105                                          2                             1x103 

         4                    3x105                                                     0                              3x102 

         5                    3x105                                                     0                              6x103    

         6                    3x105                                                     0                              6x104  

Table 2. Transmission of F. tularensis to D. variabilis eggs. 
  

*Egg masses oviposited between day 1 to day 7 of oviposition. 
†Egg masses oviposited between day 8 to day 15 of oviposition. 
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Days PI     
% Colonized per inoculum dose 

1.5 CFU/tick          12.5 CFU/tick           140 CFU/tick 

Day 1 

Day 7 

Day 14 

0% (n=5)              40% (n=10)             100% (n=10) 

0% (n=5)              80% (n=10)             100% (n=10) 

  40% (n=5)                   ND*                            ND* 

* Data not collected  

Table 4. Determination of infectious dose of F. tularensis 
necessary to establish colonization of adult D. variabilis ticks.  
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Group         Inoculum (CFUs         Fraction of dead        Percentage of  
                   of F. tularensis            or sick mice               dead/sick mice 
    A                      1.3                             0/6                               0% 

    B                    12.9                             0/6                               0% 

    C                    64.3                             5/6                             83.3% 

    D                  129.0                             6/6                           100% 

Control                Nil*                            0/4                               0% 

 

 

Table 5. ID
50

 of laboratory cultured F. tularensis via i.p. inoculation in BALB/c mice.  

* Control group was inoculated with sterile phosphate buffered saline. 
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Group         Inoculum (CFUs         Fraction of dead        Percentage of  
                   of F. tularensis            or sick mice              dead/sick mice 
    A                     0.05                             0/6                             0% 

    B                     0.5                               2/6                            33.3% 

    C                      5                                 5/6                            83.3% 

    D                    71.3                              6/6                          100% 

    E                   493                                 6/6                          100% 

Control               Nil*                              0/5                              0% 

 

 

Table 6. ID50 of F. tularensis from D. variabilis salivary glands via i.p.  
inoculation in BALB/c mice. 

* Control group was injected with uninfected D. variabilis salivary glands. 
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Figure 1. Saliva induction in D. variabilis ticks. The black arrows with brackets  

indicates the saliva collected in the capillary tubes.  
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Figure 2. Francisella tularensis is transmitted transstadialy from larvae to  

nymphs. Open circles are infected larvae and filled circles are the molted  

nymphs. x = mean CFU/tick for each time point. For each time point the n  

was 10. 
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Figure 3.  (A) Francisella tularensis is transmitted transstadially from nymphs to 

adults. Open circles are capillary fed nymphs and filled circles are molted adults 

For each time point the n was 15. x = mean CFU/tick for each time point. 

(B) Percentage of infected ticks in the same experiment. 

A 
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Figure. 4. Correlation between weight gain after capillary feeding of  

D. variabilis nymphs and F. tularensis colonization in nymphs up to 7 

days PCF. Filled circles represent individual CF nymphs (R
2
 = 0.13) 

(n=25).  
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Figure 5. Correlation between weight gain after capillary feeding of  

D. variabilis nymphs and F. tularensis colonization in molted adult  

ticks after 2 months PCF. Filled circles represent individual CF adults. 

(R
2
 = 0.16) (n=25).  
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Figure 6. Francisella tularensis colonization of adult D. variabilis ticks.  

The filled circles are capillary fed adults. For each time point the n was 15.  

x = mean CFU/tick for each time point. 
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Figure 7. Francisella tularensis colonization of gravid  female D. variabilis 

ticks PI. For each time point the n was 5. Error bars indicate standard 

 deviation. 
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Figure 8. Immunostained sections of infected tick ova. F. tularensis colonizing 

the tunic propria and shell of D. variabilis ova. (A & B) 400x magnification. 

(C&D) 500x magnification. 
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Figure 9. Tissue dissemination of F. tularensis in adult D. variabilis ticks PCF.  

Solid black bar- gut, white bar with diagonal lines- salivary gland, white bar  

with dots- hemolymph. For each time point the n was 5. Error bars indicate 

standard deviation. 
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Figure 10. (A) Immunostained sections of infected adult tick gut infected with  

F. tularensis. (B) Immunostained sections of infected adult tick salivary gland  

acini. (C) Overlapped image of tick hemocytes infected with GFP expressing F. 

tularensis. (D) Fluorescent image of the same tick hemocytes. (400x magnification) 
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Figure 11. Tissue dissemination of F. tularensis in adult D. variabilis  

2-3 months PCF. Solid black bar - gut, white bar with diagonal lines - salivary  

glands, white bar with dots - hemolymph. For each time point the n was 10.  

Error bars indicate standard deviation. * Unadjusted P = 0.008, 

 * * unadjusted P < 0.001. 
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Figure 12. Tissue dissemination of F. tularensis in adult D. variabilis 

ticks PI. Solid black bar - gut, white bar with diagonal lines - salivary  

glands, white bar with dots – hemolymph and white bars with cross  

marks – saliva. For each time point the n was 5. Error bars indicate 

standard deviation. 
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Figure 13. (A) Francisella tularensis in infected mice tissues. For each tissue n  

was 5. Error bars indicate standard deviation. (B) Liver hepatocyte filled with F. 

tularensis. (C) Spleen section filled with F. tularensis (immunostained liver and spleen 

 section, 400x magnification). 
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BIOLOGY OF FRANCISELLA TULARENSIS SUBSPECIES HOLARCTICA 

STRAIN LVS IN THE TICK VECTOR AMBLYOMMA AMERICANUM
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Abstract 

 

 Francisella tularensis is the causative agent of tularemia, a tick transmitted 

disease of rodents and rabbits in its natural habitat and also causes occasional outbreaks 

of the disease in higher mammals including humans. The current the focus of human 

tularemia outbreaks in the United States is mainly seen in certain endemic areas of which 

the major one is located in the south-central United States comprised of Arkansas, 

Missouri, eastern Oklahoma and southeastern Kansas. All of the factors responsible for 

the persistence of F. tularensis in this highly endemic area are not known. Amblyomma 

americanum is the most abundant tick species in this tularemia endemic region, and it is 

known to be a vector for F. tularensis. The objective of this research is to investigate the 

persistence, dissemination and stage to stage transmission of F. tularensis in the tick 

vector A. americanum. For this study, colony-reared larva, nymph, and adult A. 

americanum ticks were artificially capillary fed (CF) a tick meal containing 

approximately 107 CFU/mL F. tularensis via fine bore capillaries tubes fitted over the 

tick mouthparts. After the feeding period the level of colonization and tick tissue 

distribution were determined. CF larva and nymph were initially colonized with 1.5x104 

and 1.3±0.01x104 CFU/tick, respectively. For larval ticks colonization of F. tularensis 

declined to less than 102 CFU per tick at molting. After molting F. tularensis colonization 

per tick continued at approximately 102 CFU/nymph and then at two months post-CF 

(PCF) increased to 1x105 CFU/ nymph. Francisella tularensis persisted in 50% of molted 

nymphs after 168 days PCF with 1.0±1.9x103 CFU/nymph. For nymphal ticks PCF, F. 
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tularensis colonization continued to decline after molting, and F. tularensis was 

recovered from only one adult tick out of 25 live ticks at 84 days PCF. In the CF adult 

ticks, F. tularensis initially colonized the gut and disseminated to hemolymph and 

salivary glands by 24 h PCF. When F. tularensis was introduced via intra-hemocelic 

injection (i.h.) in adult ticks, a minimum of one CFU per tick was required to establish 

colonization, and F. tularensis was detected in saliva after 48 h post i.h. injection. 

Injection of F. tularensis via i.h. route into gravid females resulted in recovery of bacteria 

from the ovaries. However, transmission of F. tularensis to eggs was infrequent and the 

level of colonization was low. Transovarial transmission to hatched larvae was not 

observed. This study demonstrated that A. americanum is an efficient experimental vector 

for F. tularensis, and the long term persistence of F. tularensis in A. americanum nymphs 

suggests that infected nymphs could potentially overwinter and carryover the infection to 

the following spring in the endemic area.  

 

 

Introduction 

 

 The epidemiology of human tularemia in the United Sates has changed in terms of 

both the transmission route as well as the geographical distribution in the last 100 years 

(Eisen, 2007; Hopla, 1974; Jellison, 1974). In the first half of the twentieth century 

tularemia was mainly seen as a disease of rabbit hunters or in people who came in contact 
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with infected rabbits by other means. The prevalence of tularemia was high in eastern and 

central States including Virginia, Tennessee, Georgia, Kentucky, Ohio, Mississippi and 

Louisiana (Jellison, 1974). The current focus of human tularemia is mainly in the south-

central United States comprised of Arkansas, Missouri, eastern Oklahoma, and the 

southeastern Kansas. The primary mode of transmission of human F. tularensis in this 

region is by tick vectors rather than through contact with infected rabbits (Eisen, 2007).  

 A number of ixodid and argasid ticks have been shown to transmit F. tularensis, 

and stage to stage transmission has also been reported. However, demonstration of 

experimental transovarial transmission of F. tularensis in these ticks has been 

inconclusive (Bell, 1945; Francis, 1927; Parker and Spencer, 1926; Petrov, 1960; Philip 

and Jellison, 1934). Among the common tick species seen in this south-central tularemia 

endemic region, A. americanum is by far the most abundant (Brown et al., 2011; Eisen, 

2007; Hopla, 1960). Amblyomma americanum is a three-host tick with the larval stage 

feeding on small rodents and rabbits, whereas nymphs and adults feed on larger mammals 

mostly deer, raccoon, and fox (Koch, 1984; Kollars et al., 2000; Patrick and Hair, 1977). 

Amblyomma americanum ticks are not strictly host specific at any stage of its life cycle. 

All three stages of the tick can feed on larger mammals including humans (Hopla, 1960). 

Amblyomma americanum ticks have been found naturally infected with F. tularensis in 

the south-central tularemia endemic region (Calhoun, 1954; Hopla and Downs, 1953). 

The reports of infected larvae in nature also raise the possibility of transovarial 

transmission in these ticks (Calhoun and Alford, 1955). C. E. Hopla studied experimental 

transmission of F. tularensis in A. americanum and reported that F. tularensis can be 

transstadially transmitted in A. americanum from larvae to nymph and from nymph to 
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adult. In addition F. tularensis were shown to persist in the ticks after six months of 

starvation (Hopla, 1953; Hopla, 1955). 

 Francisella tularensis has four subspecies of which type A (ssp. tularensis) and 

type B (ssp. holarctica) are most frequently associated with tularemia outbreaks in the 

United States. Francisella tularensis ssp. holarctica is moderately virulent and is often 

associated with water-borne tularemia outbreaks, while F. tularensis ssp. tularensis is 

highly virulent and follows a terrestrial transmission. The major F. tularensis spp. seen in 

the south-central tularemia endemic region is ssp. tularensis. With the recent findings of 

several subpopulations within F. tularensis subspecies and their possible different 

relationship with various hosts and vectors along with recent improvements in molecular 

level studies of F. tularensis, provide a favorable research environment to study tick 

vector-F. tularensis interactions at a molecular level. (Staples et al., 2006; Bina et al., 

2010; Rodriguez et al., 2009). In view of this a model for colonizing F. tularensis ssp. 

holarctica stain LVS (live vaccine strain) in A. americanum ticks was developed to 

characterize the biology of the bacteria in the tick vector. 

 The aim of this study was to systematically characterize the biology of CF A. 

americanum ticks and to determine the vector capacity of this tick to transmit F. 

tularensis. We conclude that A. americanum nymphs are able to maintain F. tularensis 

for longer time and this stage in the life cycle of the tick may play a role in the 

transferring the infection from one year to the next and help in maintaining the enzootic 

cycle in the nature. The capillary feeding model of colonizing ticks with F. tularensis 
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appear to be an excellent platform to study the molecular level interactions of F. 

tularensis and the tick vectors. 

 

 

Materials and Methods 

 

Ticks, bacterial strain and growth conditions 

 Amblyomma americanum larvae, nymphs, and adults were obtained from the Tick 

Rearing Facility, Department of Entomology and Plant Pathology, Oklahoma State 

University. Larvae were collected following feeding to repletion on rabbits.  Nymphs 

used were partially fed on sheep to approximately 4.5 mg/nymph. Adult ticks used were 

unfed (flat adults) and those used for saliva induction experiments were allowed to feed 

on sheep for five to six days (partially fed adults). Females ticks used for the transovarial 

transmission studies were fed to repletion. Flat adult and partially fed nymphs were 

weighed before and after CF to assess the CF success and only those with 0.4 mg weight 

gain were used for the experiments.  

 Francisella tularensis ssp. holarctica strain LVS (ATCC 29684) was supplied by 

the Oklahoma State Department of Health. Green fluorescent protein (GFP) expressing 

pFNLTP6 gro-gfp plasmid (Maier et al., 2004) was a gift by Thomas C. Zhart (Medical 

College Wisconsin, Milwaukee, Wisconsin), and electroporated into F. tularensis. For 

making electrocompetent F. tularensis, Mueller-Hinton broth (Becton Dickinson, 
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Cockeysville, MD, USA) cultures supplemented with 2% IsoVitaleX (Becton Dickinson) 

were grown to early-log phase (optical density at 550 nm, 0.5 to 0.6 or 1x1010 CFU/mL), 

washed two times with 0.5 M sucrose, and suspended in 1 ml of 0.5 M sucrose. For 

electroporation, 1 µl of plasmid DNA (100 µg/ml) was mixed with 200 µL of 

electrocompetent cells, incubated at room temperature for 10 min and electroporated 

using a MicroPulser electroporation apparatus (BioRad, Richmond, California) at 2.9 kV, 

25 µF capacitance and 600 Ω resistance for 5.3 msec. After electroporation, the cells 

were suspended in 1mL of Mueller-Hinton broth supplemented with 2% IsoVitaleX and 

incubated at 37°C for 4 h. Transformed colonies were selected by plating on brain-heart 

infusion agar (Difco, BD Diagnostic Systems, Sparks, MD) supplemented with 1% 

hemoglobin and ampicillin (60 µg/mL) and kanamycin (25 µg/mL) for selection. The 

transformation efficiency was 1.3x103 transformants/µg of plasmid DNA. The 

transformed F. tularensis was used to infect ticks and to visualize F. tularensis in tick 

hemolymph. Francisella tularensis was grown on chocolate agar plates (Hardy 

Diagnostics, Santa Monica, CA.) at 37°C in 5% CO2 for 72 h. The BBL Prompt 

Inoculation System (BD Diagnostics, Franklin Lakes, NJ) was used to prepare F. 

tularensis inocula. All chemicals used in the study were purchased from Sigma (St. 

Louise, MO) unless indicated otherwise.  

Capillary feeding of larvae, nymphs and adult ticks 

 The ticks were surface disinfected by washing in 30% hydrogen peroxide, 

distilled water and 70% isopropyl alcohol for 5 seconds each. After washing, the adult 

ticks were immobilized dorsal side up on double sided tape in a 100 mm x 15 mm Petri 



100 

 

dish base. The ticks were then further immobilized by applying single sided tape over 

1/4th of their caudal portion (Fig. 14 A). The larvae were immobilized with their dorsal 

side down on a double-sided tape on a dental pad, and the nymphs were similarly placed 

on pipette tip box cover cut at one end (Fig. 14 B & C). For CF, 10 µL (internal diameter 

of 0.0219 inch), 9 µL (internal diameter of 0.0189 inch) and 35 µL (internal diameter of 

0.0314 inch) glass capillary tubes (Drummond Scientific Company, Broomall, PA) were 

used for larvae, nymphs and the adult ticks, respectively. The ends of the tubes were 

positioned over the hypostome of the tick while the other end rested on the edge of the 

Petri dish attached with a double sided tape (Broadwater et al., 2002). The feeding media 

for larvae, nymphs, and adult ticks was Minimum Essential Media (MEM) (GIBCO 

Grand Island, NY) with 10% fetal bovine serum (Hyclone, Logan, UT.). The feeding 

medium was spiked with F. tularensis at approximately 107 CFU/ ml. The tick meal was 

then introduced into the capillary tubes, and the ticks were allowed to feed for 12 to 24 

hours at 30°C and 90% relative humidity. After feeding, the ticks were either surface 

disinfected by washing as above and minced for determinations of CFUs or were 

maintained in microcentrifuge tubes capped with moistened cotton plugs for varying 

periods of time in a humidity chamber (relative humidity of > 90%) at 23°C (unless 

specified otherwise) with automated artificial lighting to simulate a 12 h day night cycle. 

To determine the bacterial number in tick gut, salivary glands, and ovaries, these tissues 

were dissected under sterile conditions using a dissecting microscope. Hemolymph was 

collected from the cut ends of a tick leg using sterile glass capillary tubes. The minced 

whole tick or the tick tissues were incubated in PBS containing 64 µg/mL ampicillin for 2 

h at room temperature on a rotor platform mixer (Boekel Scientific, Feasterville, PA.), 
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serially diluted in PBS/ampicillin solution and plated on chocolate agar plates. CFUs 

were determined following incubation at 37°C in 5% CO2 for 72 h.  

Immunohistochemistry and real-time quantitative PCR  

       For immunohistochemical analysis, both infected and uninfected ticks were cut 

longitudinally in half and ovaries from gravid females were fixed in Carsons fixative, 

embedded with paraffin, and sectioned and affixed to glass slides.  After deparaffinizing, 

the sections were incubated with phosphate buffered saline with 0.05% Tween 20 (PBST) 

at RT for 15 min. and then incubated at 37 °C for 1 h with F. tularensis antiserum 

(Beckton Dickinson, Sparks, Maryland) at 1:60 dilution in PBST. Adsorbed antiserum 

was used as negative control. After washing the slides with PBST five times followed by 

a final washing with distilled water, the sections were incubated with FITC conjugated 

secondary antibody in PBST at 37 °C for 30 min (KPL, Gaithersburg, Maryland) at 1:60 

dilution. The sections were then washed in PBST twice, PBS once and finally washed 

with distilled water. The slides were dried and visualized using a Nikon Eclipse 50i epi-

fluorescence microscope and Nikon digital sight DS-5M-L1 digital camera. For 

visualizing the bacteria in tick hemolymph, ticks were CF with GFP expressing F. 

tularensis, hemolymph was collected and placed directly on glass slide with coverslip, 

and visualized using the epi-fluorescent microscope 1 and 4 weeks PCF. For RT-qPCR 

reactions a 97 bp product of F. tularensis insertion sequence-2 was amplified with the 

primers ISFtu2F and ISFtu2R (Versage et al., 2003). Each sample was analyzed using 

Fast SYBR green master mix on an AB 7500 Fast Real-Time PCR System (Applied 

Biosystems, Foster City, CA.). During each analysis a negative control (no template) was 
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processed and the amplification product was confirmed by analyzing the dissociation 

curve. RT-PCR reaction (20 µL) - 10µL Fast SYBR green master mix, 6µl DNase RNase 

free water, 1µL forward primer (ISFtu2F), 1µL reverse primer(ISFtu2R) and 2µL 

template. Cycling conditions were 95 °C for 20 seconds, followed by 34 cycles of 95 °C 

for 10 seconds and 60 °C for 30 seconds. Genome equivalents (GE) were calculated 

based on standard curves obtained by plotting threshold cycle value and different 

concentrations of F. tularensis DNA. The final value for each sample is calculated by 

multiplying with the dilution factor. The sample used for PCR was total DNA from tick 

(tick minceate in 100ul PBS) extracted using DNeasy Tissue Kit (Qiagen, Valencia, 

CA.), with a final elution volume of 50µL. 

Intra-hemocelic injection and saliva induction in ticks 

 To determine the lowest infectious dose for ticks and to colonize gravid females 

and partially fed adult ticks, 1µL of the inoculum containing 107 CFU/mL of F. 

tularensis in PBS or appropriate dilutions were injected i.h. in the ventral region of the 

tick, medial to the caudal most coxa using a 10µL custom made Hamilton syringe with a 

0.5 inch, 33 gauge needle (Hamilton Company, Reno, NV.). Injection of gravid females 

was done in the left or right spiracles. For the detection of F. tularensis in tick saliva, 

partially fed adult ticks were injected i.h. with F. tularensis, and the ticks were held in a 

humidity chamber at 25°C. For collecting the saliva, partially fed F. tularensis infected 

adult ticks were immobilized dorsal side up on double sided tape. Ticks were then 

injected with approximately 4 µL of 1 mM dopamine, 1 mM theophilline and 3% 

dimethyl sulfoxide in PBS (pH 7.3) (22) every 15 min. for 1 h (at RT= 23°C). Saliva was 
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collected in 10 µL glass capillary tubes (Drummond Scientific Company, Broomall, PA) 

placed over the hypostome of the tick. The capillary tube for collecting the saliva was 

held in place using modeling clay.  

Statistical analysis 

 Francisella tularensis colonization in different groups of A. americanum ticks 

during adult colonization, transstadial transmission from larva to nymphs, and nymph to 

adult were compared by using 1-way analysis of variance on log-transformed data 

followed by pairwise multiple comparison of mean CFU value using Holm-Sidak tests. 

Overall significance level for Holm-Sidak tests was P = 0.05. Student's t-test was 

performed to determine the statistical difference in the mean CFU/infected tick between 

molted adult male and female A. americanum. All statistical analyses were performed 

with SigmaPlot v11.0 software package (Systat Software Inc., Chicago, IL). 

 

 

Results 

 

Francisella tularensis colonization of A. americanum larvae and transstadial 

transmission to nymphs. 

 Significant difference in the colonization of F. tularensis at different days PCF 

(ANOVA: F = 4.1, degrees of freedom (df) = 14, 224, P < 0.001) was observed. The 

degree to which larvae took in the capillary fed meal was not ascertainable by weight 

change in larvae, but at one-day PCF, 100% of larvae exhibited colonization with a mean 
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colonization level of 1.5x104 CFU/larva (Fig. 15 A & B). This high efficiency of capillary 

feeding was better than the nymphal or the adult tick feeding. At our experimental 

holding conditions (RH=95% and mean room temperature of 20˚C), the larvae molted to 

nymphs in 21 days PCF. Around the time of molting the bacterial count declined to < 50 

CFU (2.5±1.8x101)/tick (Fig. 15 A). Francisella tularensis colonization of molted 

nymphs were at approximately 102 to 103 CFU/nymph for up to 70 days PCF and then 

increased in level to reach 1x105 CFU/nymph at 84 days PCF, and colonization was 

maintained for 168 days PCF, which was the longest time period in the study (Fig. 15 A). 

Significant difference in the mean colonization levels between three weeks and 12 weeks 

PCF (unadjusted P < 0.001) was observed. The percentage of colonization declined from 

100% at one day PCF to reach 50% colonized nymphs by 50 days PCF. The number of F. 

tularensis colonized nymphs increased to 80-90% by 77 and 84 days PCF (Fig. 15 B), 

which indicate that some of the nymphs that seemed to clear the infection during days 21 

to 70 may still be colonized with extremely low number of bacteria which may be below 

the sensitivity of the colony plating assay. 

 Francisella tularensis colonization of A. americanum nymphs and transstadial 

transmission to adults.   

 Significant difference in the colonization of F. tularensis at different days PCF 

(ANOVA: F = 7.07, df = 12, 194, P < 0.001) was observed. The degree to which nymphs 

fed was ascertained by comparison of pre-feeding and post-feeding weights in fed nymph 

which increased in approximately 65% (>3mg/nymph weight gain post-feeding) of ticks. 

Nymphs were colonized with a mean level of 1.3±0.01x104 CFU/nymph (Fig. 16). 
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Considering only those nymphs that ingested the initial inoculum, 100% remained 

colonized for 14 days, but the infections continued to decline toward molting to adults at 

35 days, at which time 7/15 were negative for F. tularensis by culture. However the 

remaining 8 molted ticks were still infected demonstrating the transstadial transmission 

of F. tularensis from nymphs to adults in A. americanum ticks (Fig. 16). The progressive 

decline in the level of colonization continued and by 84 days PCF only 1/15 tick was still 

infected with F. tularensis (Fig. 16). No correlation between weight gain in nymphs after 

capillary feeding and F. tularensis colonization in nymphs up to 7 days PCF was 

observed (Fig. 17). Correlation between weight gain in nymphs after capillary feeding 

and F. tularensis colonization in molted adult ticks after two months PCF was also not 

observed (Fig. 18). Difference in the number of F. tularensis colonized male and female 

ticks was not observed; however, the average level of coonization in female ticks 

(6.3±2.4 Log CFU/tick) was more than that for males (3.6±1.6 Log CFU/tick) (P = 

0.007) (Table 7).  

Francisella tularensis colonization of A. americanum adults and lack of transovarial 

transmission to hatched larvae. 

 For unfed adults, CF resulted in 60% becoming colonized with F. tularensis at 

102 to 104 CFU/tick for 28 days PCF (Fig. 19). Significant difference in the colonization 

of F. tularensis at different days PCF (ANOVA: F = 5.7, df = 4, 54, P < 0.001) and 

between one day PCF and three weeks PCF (unadjusted P < 0.001) was observed. Those 

ticks not colonized appeared to have not ingested the inoculum, because their weights did 

not increase after CF.  Significant differences were not observed in either mean 
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colonization levels for adult male and female ticks at time up to 28 days PCF and tick 

mortality of approximately10% was observed for both colonized and non-colonized adult 

ticks (data not shown).  

 After dissection of some of the infected gravid ticks at 14 days PI, F. tularensis 

was detected in hemolymph, gut, Malpighian tubules, and ovaries (data not shown); but 

only 3/11 egg masses were positive for F. tularensis by culture or PCR. Of the 3 positive 

egg masses the number of F. tularensis counted were 45, 8.3, and 0.4 CFU (values 

normalized to CFUs/100eggs). In a second experiment in which the ambient holding 

temperature of the colonized female ticks was changed from 23˚C to 27˚C, 2/7 of the egg 

masses were positive for F. tularensis by culture or PCR. Of the 2 positive egg masses 

the number of F. tularensis detected was 12.5 and 0.5 CFU (values normalized to 

CFUs/100eggs). Eggs hatched to larvae between 30 and 40 days post-ovipositing, but 

transovarial transmission of F. tularensis to larvae was not detected by either microbial 

culture or PCR in these larvae. The fecundity of ticks was not affected by F. tularensis 

infection when ticks were held at 23˚C as compared to uninfected ticks (Table 8). 

However the fecundity of F. tularensis infected ticks was decreased (P = 0.04, n=3) when 

held at 27˚C (mean egg mass weight = 193mg) as compared to at 23˚C (mean egg mass 

weight = 345mg).This decrease in fecundity may have resulted from higher holding 

temperature rather than due to F. tularensis infection as one of the uninfected ticks also 

had low egg mass weight when held at 27˚C (Table 8). 
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Determination of infectious dose of F. tularensis necessary to establish colonization 

in adult A. americanum ticks.  

 As shown in Table 9, an inoculum dose of only 1.5 CFU/tick was sufficient to 

establish colonization in some ticks by day 14 PI compared to higher inoculation doses 

which established colonization in 100% of the ticks at day one PI. The level of 

colonization in ticks inoculated with 1.5 CFU/ tick was 10 ± 26 CFU/tick. Mortality of 

inoculated ticks was similar to that of the controls up to 14 days PI for ticks injected with 

106 CFU F. tularensis/tick (data not shown). 

Tissue localization of F. tularensis in adult A. americanum ticks and presence of F. 

tularensis in A. americanum saliva 

 As shown in Fig. 20, F. tularensis penetrated the gut and disseminated to the 

hemolymph and salivary glands within 24 hour of CF. Microscopic examination of these 

tissues using immunohistochemical staining showed hemocytes in the hemolymph were 

heavily colonized by F. tularensis, and the bacteria were also observed in hemolymph, 

granulocytes and plasmatocytes. For the detection of F. tularensis in tick saliva partially 

fed A. americanum females were injected with F. tularensis via the i.h. route. Two days 

PI, F. tularensis could be detected in the saliva of 4/5 ticks with a mean value of 

1.0±0.1x103CFU/µl of saliva (Fig. 21). 
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Discussion 

 

 The persistence of tick borne type A F. tularensis in the south-central United 

States is perpetuated by a tick-small mammalian host enzootic cycle of F. tularensis in 

the region (Hopla, 1960; Petersen et al., 2009). The most abundant tick species found in 

this region is A. americanum and consistently accounted for more than 90 % of the total 

ticks in a number of tick surveys done in this region (Brown et al., 2011; Calhoun, 1954; 

Calhoun and Alford, 1955; Hopla, 1960). Adult A. americanum start host-seeking activity 

in April which peaks during May and July. Nymphal and larval questing activity starts 

slightly earlier in the spring and can continue through September and October (Kollars et 

al., 2000). Although all three stages have been shown to overwinter in the south-central 

region, adults and nymphs have been known to overwinter in large numbers (Hopla, 

1960; Kollars et al., 2000). All the three stages are to known to parasitize humans, and as 

reported from history of tularemia outbreaks, the incidence of human tularemia in this 

endemic region coincides with peak tick questing activity in May, June, and July with 60 

to 70% of the cases reported having a history of tick bites (Assal et al., 1968; Eisen, 

2007).  

 The results reported in the current study indicates that F. tularensis can maintain 

colonization in all three stages of A. americanum. The adult ticks cleared F. tularensis in 

three months PCF. This finding differs from that of an earlier report, in which F. 

tularensis maintained colonization in adult A. americanum ticks for up to six months post 

infection (Hopla, 1953). The reason for this difference is not clear, but one difference 
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between the two studies is that we colonized the A. americanum ticks with LVS strain 

(type B) of F. tularensis, whereas the earlier study reports of using the virulent F. 

tularensis (type A). Another factor which also may have influenced the result is the 

holding temperature of the ticks. Tick immune system can clear infections by bacteria 

that it encounters, and previous reports also indicate that at higher temperatures the tick 

immune system and the phagocytic activity of hemocyte are more active (Bell, 1945; 

Goodman et al., 2005; Johns et al., 2000; Sonenshine, 1991).  

 We were able to colonize A. americanum larvae and nymphs by CF with an 

efficiency of feeding of 100% and 70%, respectively. The infected larvae which molted 

to nymphs were able to maintain the F. tularensis colonization for 168 day PCF, which 

was the longest time point in the study. In the natural habitat the nymphs are known to 

overwinter in large numbers, and this stage is also known to parasitize on larger 

mammals including humans (Eisen, 2007; Hopla, 1960; Kollars et al., 2000). Based on 

this information it can be inferred that the nymphal stage of A. americanum can be an 

inter-epizootic reservoir of F. tularensis carrying over the infection from one year to the 

next and a potential bridging vector transmitting the bacterium to incidental hosts  

 We also demonstrated the vector competency of A. americanum for F. tularensis. 

The bacteria penetrated the gut and reached the salivary glands within 24 hours post CF. 

The extrinsic incubation period, demonstrated by the presence of F. tularensis in the 

saliva of the infected A. americanum adult ticks was found to be as low as 48 hours post-

injection via the i.h. route. This is the first report of presence of F. tularensis in saliva of 

A. americanum ticks. The chemically-induced salivation method, although used for the 
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first time to detect F. tularensis in tick saliva, has been used previously for detection of 

other pathogens (Ewing et al., 1994; Gage et al., 1992). We have also shown that an 

inoculum dose of approximately 1 CFU F. tularensis/tick is required for colonizing A. 

americanum adults via the i.h. route.  

 All three stages of A. americanum including adults, nymphs, and larvae have been 

found naturally infected with F. tularensis in nature (Calhoun, 1954; Calhoun and Alford, 

1955). The presence of F. tularensis in unfed larvae raised the possibility of transovarial 

route of transmission in this tick species. We examined the possible transovarial 

transmission of F. tularensis in A. americanum and found that occasional transmission to 

eggs could occur although with much less numbers of F. tularensis per egg masses. 

However, the transmission of F. tularensis from eggs to the freshly hatched larvae could 

not be detected. The lack of finding of large number of infected larvae in nature also 

leads to the conclusion reached by previous researchers that transovarial transmission of 

F. tularensis in ticks is the exception rather than the rule in nature (Bell, 1945; Hopla, 

1974).  

 We have demonstrated a highly effective capillary feeding method for infecting 

all three stages of A. americanum with F. tularensis. This method enables one to infect 

ticks with a uniform dose of inoculum and avoids the use of lab animals as host for 

feeding ticks with F. tularensis. Based on the observation of high abundance of nymphal 

and adult ticks in the south-central tularemia endemic region and associated tularemia 

risk, and based on the findings reported here it can be concluded that these tick stages are 
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efficient vectors of F. tularensis in this region and the nymphal stage can potentially 

serve as inter-epizootic reservoir of F. tularensis.  
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A. americanum        Number      Number of          Percentage of     Avg Log* 
ticks                         of ticks       infected ticks      infected ticks      CFU±SD/tick 

Male ticks                  60                   8                          13.3%              3.6±1.6 
 
Female ticks             108                 15                          13.9%              6.3±2.4 

Table 7. Francisella tularensis colonization in molted adult A. americanum. 

*Mean Log CFU ± standard deviation/tick in infected A. americanum ticks. 
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Days PI      
% Colonized per inoculum dose 

1.5CFU/tick          12.5CFU/tick           140 CFU/tick 

Day 1 

Day 7 

Day 14 

       0% (n=5)              40% (n=10)             100% (n=10) 

       0% (n=5)              80% (n=10)             100% (n=10) 

     60% (n=5)                   ND*                            ND* 

* Data not collected  

Table 9. Determination of infectious dose of F. tularensis necessary to 
establish colonization of adult A. americanum ticks.  
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Figure 14. (A) Capillary feeding of adult A. americanum ticks. (B) Capillary feeding 

of A. americanum larvae. (C) Capillary feeding of A. americanum nymphs. 
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Figure 15. (A) Francisella tularensis is transmitted transstadially from larvae to 

nymphs. Open circles are capillary fed larvae and filled circles are molted nymphs. 

For each time point the n was 15. x = mean CFU/tick for each time point.   

(B) Percentage of infected ticks in the same experiment. 
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Figure 16. (A) Francisella tularensis is transmitted transstadially from nymphs to 

adults. Open circles are capillary fed nymph and filled circles are molted adults. For  

each time point the n was 15. x = mean CFU/tick for each time point. 

 (B) Percentage of infected ticks in the same experiment. 
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Figure 17. Correlation between weight gain after capillary feeding of  

A. americanum nymphs and F. tularensis colonization in nymphs up to  

7 days PCF. Filled circles represent individual infected nymphs (R
2
 

=0.01) (n=25).  
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Figure 18. Correlation between weight gain after capillary feeding of  

A. americanum nymphs and F. tularensis colonization in molted 

adult ticks after two months PCF. Filled circles represent individual 

infected adults (R
2
 = 0.001) (n=25).  

Gain in weight (in mg) after capillary feeding
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Figure 19. Francisella tularensis colonization of adult A. americanum ticks. 

 Filled circles are capillary fed adults. For each time point the n was 11. 

 x = mean CFU/tick for each time point. 
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Figure 20. Tissue dissemination of F. tularensis in adult A. americanum 

ticks PCF. Solid black bar - gut, white bar with diagonal lines - salivary  

gland, white bar with dots - hemolymph. For each time point the n was 5. 

Error bars indicate standard deviation. 
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Figure 21. Tissue dissemination of F. tularensis in adult A. americanum  

ticks PI. Solid black bar - gut, white bar with diagonal lines - salivary  

gland, white bar with dots - hemolymph and white bar with cross 

marks - saliva (CFU/µl of saliva). For each time point the n was 5. 

Error bars indicate standard deviation 
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POSSIBLE ROLE OF CHITIN CATABOLISM IN  

FRANCISELLA TULARENSIS COLONIZATION OF TICK VECTORS
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Abstract 

 

 Francisella tularensis is a facultative intracellular, non-spore forming, non-motile 

gram-negative bacterium that causes the disease tularemia in a number of vertebrates and 

invertebrates. Francisella tularensis ssp. holarctica is speculated to survive and persist in 

aquatic environments possibility in association with aquatic protists. In the United States, 

F. tularensis ssp. tularensis follows a tick-rabbit enzootic cycle and the previous study 

have demonstrated that F. tularensis can survive in Dermacentor variabilis and 

Amblyomma americanum ticks up to six months. This study explores whether F. 

tularensis can utilize chitin, a polymer of N-acetyl-D-glucosamine (NAG), abundant in 

the exoskeleton of ticks and aquatic protists as a nutrient. To accomplish this, we 

compared in vitro growth of F. tularensis ssp. holarctica strain LVS (live vaccine strain) 

in nutrient media and chemically-defined media supplemented with NAG, chitobiosan or 

chitin. We found that F. tularensis could utilize NAG, but not chitobiosan or chitin for 

enhanced growth. Francisella tularensis may utilize NAG at some phases of tick 

development as a nutrient.
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Introduction 

 

 A number of bacteria have been shown to utilize chitin as a nutrient for 

extracellular as well as intracellular growth (Bassler et al., 1991; Svitil et al., 1997). 

Some of these bacterial species including Bacillus subtilis have specialized chitin uptake 

mechanisms as well as chitinase enzymes (Imada et al., 1977; Plumbridge, 1990). Chitin 

is one of the most abundant biopolymers on earth, and utilization of this abundant source 

of nitrogen as well as energy gives a selective advantage to chitin-utilizing bacteria 

(Merzendorfer and Zimoch, 2003).  

 The genus Francisella is classified as a gamma-proteobacterium consisting of two 

species, F. tularensis and F. philomiragia. In addition, Francisella-like pathogens of fish 

and endosymbionts of ticks are now considered to be in this genus (Salomonsson et al., 

2009; Scoles, 2004; Sjostedt, 2007). Francisella tularensis has four subspecies namely, 

tularensis, holarctica, mediasiatica and novicida (Sjostedt, 2007). The various species 

and subspecies of Francisella have adapted to unique ecological niches (Hazlett and 

Cirillo, 2009). Francisella tularensis ssp. holarctica can persist in fresh water and is 

thought to survive in water-associated unicellular organisms (Abd et al., 2003; Hazlett 

and Cirillo, 2009). Availability of chitin may be a common factor in F. tularensis 

persistence in fresh water as well as during its colonization in tick vectors.  

 Planktonic bacteria can initiate biofilm in response to environmental stress. 

Biofilms help bacteria to survive and persist in harsh environmental conditions (Davey 

and O'Toole G, 2000). Francisella tularensis subspecies encodes two conserved putative 
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chitinase genes. Subspecies novicida form biofilms on chitin surfaces, and it has been 

shown that chitinase genes in F. tularensis ssp. novicida are needed for the chitin 

association and subsequent biofilm formation (Margolis et al., 2009). Subspecies. 

holarctica can also form biofilms in a static environment (Hassett et al., 2003). 

Francisella tularensis may form biofilms during the prolonged nutrient starved 

conditions which it encounters during its colonization in tick vectors.  

 Francisella-like endosymbionts have been isolated from various tick species, and 

this symbiotic association between bacteria and ticks supports an evolutionary adaptation 

of F. tularensis to a tick associated life-style (Noda et al., 1997; Sun et al., 2000). The 

tick cuticle, tracheal lining, and peritrophic membrane lining the gut are composed of 

chitin (Sonenshine, 1991).One of the most studied tick-pathogen interaction is the 

association between the Lyme disease agent Borrelia burgdorferi and its tick vector 

Ixodes scapularis. In in vitro experiments, Borrelia spirochete was shown to utilizes 

NAG and chitobiosan (Tilly et al., 2001; Tilly et al., 2004). Researchers have speculated 

that the spirochetes ability to utilize chitin in the Ixodes scapularis ticks would have 

positive impact on the spirochete in that it can utilize chitin as a nutrient source, but at the 

same time it could negatively influence the tick development if bacteria multiply inside 

the tick uncontrollably (Burgdorfer et al., 1988; Piesman et al., 1990).  

 We have previously demonstrated the ability of F. tularensis to survive in ticks 

through the extended periods of starvation of ticks. In the current study we report the 

utilization of chitin precursor NAG by F. tularensis in nutrient and chemically-defined 

media when supplemented with NAG. Future research on chitin catabolism of F. 
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tularensis may better inform the role of chitin in the colonization of tick vectors by F. 

tularensis during its extended association with ticks.  

 

 

Materials and Methods 

 

 Bacterial strain and growth conditions 

 Francisella tularensis ssp. holarctica strain LVS (ATCC 29684) was supplied by 

the Oklahoma State Department of Health. Francisella tularensis was grown on 

chocolate agar plates (Hardy diagnostics, Santa Monica, CA.) at 37°C in 5% CO2 for 72 

h. The BBL Prompt Inoculation System (BD Diagnostic Systems, Sparks, MD) was used 

for preparing inocula of F. tularensis. Initial F. tularensis inocula of 4x105 CFU/mL was 

used to infect growth media. The nutrient media used were Mueller Hinton Broth (Becton 

Dickinson, Cockeysville, MD, USA) with or without IsoVitaleX (Becton Dickinson, 

Cockeysville, MD, USA) and Nutrient Broth (Difco, BD Diagnostic Systems, Sparks, 

MD), supplemented with Casitone (Becton Dickinson, Cockeysville, MD, USA). The 

ingredients for the chemically-defined media were purchased from Sigma-Aldrich (St. 

Louise, MO), except the MEM Essential Amino Acids Solution and MEM Non-Essential 

Amino Acids Solution which were purchased from Gibco (Gibco-Invitrogen, Rockville, 

Maryland) (Table 10). For the in vitro growth culture assay, F. tularensis was grown at 

23, 27, 30, or 32°C at 180 rpm in an incubator shaker. Innova 4000 shaker incubator 

(New Brunswick Scientific Co., New Brunswick, NJ) was used for the cultures at 23°C, 

whereas Orbital Shaker incubator (Thermo Forma, Marietta, OH, USA ) was used for the 
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growth of F. tularensis at 27 and 30°C. N-acetyl-D-glucosamine, chitobiosan and shrimp 

chitin were purchased from Sigma. The increase in growth of F. tularensis in culture was 

detected by OD550 reading on an Ultrospec 2100 pro spectrophotometer (Amersham 

Biosciences) or by CFU counting on chocolate agar plates. 

 Growth of F. tularensis in media supplemented with NAG, Chitin or Chitobiosan 

 For growth of F. tularensis in Mueller Hinton broth (MH), 2% IsoVitaleX was 

added. For the Nutrient Broth (NB) culture studies F. tularensis was grown on either 

0.72% (w/v) NB alone or with the addition of 1.76% (w/v) Casitone (pancreatic digest of 

casein) (NBC). The ingredients for the chemically-defined medium (CDM) were added to 

the buffer (0.25M NaCl, 0.8mM MgSO
4
, 0.01mM FeSO

4
, 10mM KH

2
PO

4
 and 

8mMK2HPO4, pH 6.5) shown in Table 10. After adjusting the pH of the medium, all 

media were filtered using 0.2-µm pore size 75-mm Nalgene Fast PES filters (Nalgene, 

Thermo Fisher Scientific, Waltham, MA). NAG was added to the media at 10mM or 

0.4mM concentration and chitobiosan was added at 0.2mM. Chitin was added to the 

media at a concentration of 0.4% (w/v). 

Statistical analysis 

 Student's t-test was performed to determine the statistical difference between F. 

tularensis growth in NB and on addition of NAG to NB. The same test was also done to 

determine the difference in growth at 27°C versus 32°C. Statistical analyses were 

performed with SigmaPlot v11.0 software package (Systat Software Inc., Chicago, IL). 
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Results 

 

Growth of F. tularensis in Mueller Hinton Broth and Nutrient Broth on 
supplementation of NAG, chitobiosan and chitin.  

 Growth advantage for F. tularensis when NAG, chitobiosan or chitin was 

supplemented to MH was not observed (Fig. 22 & 23). When F. tularensis was grown in 

NB alone or on addition of 10mM NAG there was no growth as detected by comparison 

of OD readings or CFU determinations. However, when casein was added to Nutrient 

Broth F. tularensis was able to use this media for growth (Fig. 24). Further addition of 

NAG to the Nutrient Broth resulted in significant increase in growth of F. tularensis by 

three days of culture at 27°C (P = 0.003) (Fig. 25). When either chitobiosan or chitin was 

added to NBC, no growth advantage was observed (Fig. 26). The increase in growth of F. 

tularensis on addition of NAG was seen when the culture conditions were at 27°C as well 

as 32°C and the growth advantage for F. tularensis on addition of NAG was more at 

32°C when compared to 27°C with a P < 0.001 at two days of culture (Fig. 27). 

Growth of F. tularensis in chemically-defined media on supplementation of NAG 
and chitobiosan.  

 Increase in growth of F. tularensis was not observed in the CDM in the absence 

of calcium pantothenate or spermine, but when these two nutrients were added and the 

pH of the medium was decreased from 7.3 to 6.5, F. tularensis was able to use the media 

for growth. Higher growth of F. tularensis was observed in the CDM on addition of 

10mM NAG, but addition of chitobiosan had no growth advantage for F. tularensis (Fig. 

28).  
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Discussion 

 

 In this study we report the significantly higher growth of F. tularensis in Nutrient 

Broth and chemically-defined media supplemented with NAG. Margolis and colleagues 

have reported the colonization of F. tularensis ssp. novicida on chitin surfaces and 

subsequent biofilm formation in carbohydrate starved environment (Margolis et al., 

2009). The lack of increased growth of F. tularensis in Mueller Hinton broth 

supplemented with IsoVitaleX may be due to the high amount of starch in the broth and 

additional glucose in the IsoVitaleX enrichment, which may create a carbohydrate 

enriched environment making NAG supplementation NAG inconsequential. We also 

observed the higher growth of F. tularensis when the pH was of the chemically-defined 

media was decreased and on supplementation with calcium pantothenate as have been 

reported by Chamberlain (Chamberlain, 1965).  

 We have shown in previous studies that F. tularensis can persist in tick vectors 

for up to six months during starvation of these ticks. During this long term association, F. 

tularensis was primarily localized in the gut tissue. The ticks would be devoid of any 

blood-derived carbohydrate source during this period of starvation. This would be 

especially true with bacteria that survive the nutrient-depleted environment in ticks that 

overwinter in nature, which usually involve 5 to 6 months of tick diapause. Francisella 

tularensis can possibly utilize tick chitin as a nutrient source under these conditions. In 

addition, it was shown that F. tularensis colonization levels decline during molting. 

Remodeling of chitin during tick molting may make chitin less available for F. tularensis. 

Also, F. tularensis colonization of the tick ova suggests that F. tularensis may use chitin 
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for colonization of the ova surface. Whether the ability of F. tularensis to utilize NAG is 

beneficial during the tick life cycle and whether it could form biofilm in the tick gut 

could be answered in future studies.  
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Ingredients for making 100mL of chemically-defined media 

 
  Buffer                                                                           70mL 

  MEM EssentialAmino Acids                                       10mL 

  MEM Non-Essential Amino Acids                              20mL 

  Proline                                                                        160mg 

 Threnine                                                                      160mg 

 Cysteine                                                                        30mg 

 Thiamine                                                                         0.4mg 

 Ca pantothenate                                                              0.2mg 

 Spermine                                                                         4mg 

 

 

 

 

 

 

 

 

 

 

 

   Table 10.  
 



138 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Francisella tularensis growth at 27°C  in Mueller Hinton broth. 
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Figure 23. Francisella tularensis growth at 27°C in Mueller Hinton broth. 
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Figure 24. Francisella tularensis growth at 30°C in Nutrient Broth with 

addition of Casitone to the media.  
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Figure 25. Significant increase in growth of F. tularensis growth at 27°C in  

Nutrient Broth plus Casitone. Error bars indicate standard deviation. 

* P = 0.007. 

* 
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Figure 26. F. tularensis growth at 32°C in Nutrient Broth plus Casitone. 
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Figure 27. Francisella tularensis growth at 27°C and 32°C in Nutrient Broth plus  

Casitone. Error bars indicate standard deviation. * P < 0.001. 
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Figure 28. Francisella tularensis growth at 32°C in CDM. 
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Environmental persistence of F. tularensis in tick vectors 

 

 Francisella tularensis is one of the most infectious bacteria known and exhibits a 

broad host range. Francisella tularensis has been recovered from more than 250 different 

species, including vertebrates and invertebrates (Keim et al., 2007). More than 400 

different of F. tularensis have been identified as important for this high infectivity in 

mammalian species (Ellis et al., 2002; Friend, 2006). These genes include the ones that 

regulate intracellular growth, immune evasion, and dissemination (Meibom and Charbit, 

2009). Among invertebrates, F. tularensis can infect a variety of tick, lice, bedbugs, fleas, 

mosquitoes, and flies (Steinhaus, 1946). In ticks, it can infect Dermacentor species 

including D. occidentalis, D. variabilis, D. albipictus, D. marginatus, D. andersoni, and 

other tick species including Hemophysalis leporispalustris, H. cinnabarina, Ixodes 

pacificus, Rhipicephalus sanguineus and Amblyomma americanum among ixodid ticks 

and Ornithodoros parkeri, and O. lahorenis among argasid ticks (Steinhaus, 1946). 

However, not much is known about infectivity and adaptation of this bacterium in 

arthropods hosts. The results presented here shows that all three stages, including larva, 

nymph and adult of both D. variabilis and A. americanum, can be colonized by F. 

tularensis. Based on the knowledge of longevity and host seeking behavior of these two 

tick species (Kollars et al., 2000a; Kollars et al., 2000b; Sonenshine, 1991), and also the 

results that we have presented here, it can be concluded that A. americanum nymphs and 

D. variabilis adults are likely the most suitable stages of these tick species that can 

maintain F. tularensis for extended periods of time. 
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Quantum of infection in capillary fed ticks 

 Ticks are obligate hematophagus arthropods, in which a bloodmeal is required for 

development and molting to the subsequent stage. Amblyomma americanum and D. 

variabilis are three host ticks with the larva, nymph and the adult taking blood meals on 

different host animals at each stage to complete its life cycle. The time period between 

feeding on one host, molting and initiation of feeding on the next host can vary from one 

month to more than one year in these tick species (Bowman and Nuttall, 2008; 

Sonenshine, 1991). Therefore, for F. tularensis to use ticks as a biological vector, it must 

be able to survive for extended periods of time in the tick for it to successfully transmit to 

the next host. The ability of F. tularensis to survive in A. americanum nymphs and D. 

variabilis adults may make them excellent vectors. During the transstadial transmission 

of F. tularensis in D. variabilis and A. americanum ticks, it was observed that soon after 

molting the level of F. tularensis/tick increases. This peak in F. tularensis colonization in 

molted nymph of A. americanum and molted nymphs and adults of D. variabilis may 

correlate with the host-seeking activity of these tick stages facilitating transmission of F. 

tularensis to new hosts. However, the advantage of the high F. tularensis numbers per 

tick is not clear since only low amount of bacteria is needed for infection in susceptible 

hosts. High number of bacteria per tick, especially in the gut and hemolymph, is likely to 

be required for F. tularensis to disseminate into the salivary glands and subsequent 

transmission through the saliva of the tick. 
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Effect of temperature on F. tularensis colonization in ticks   

 Ticks are poikilotherms in which ambient temperature may have a significant 

impact on the growth and transmission of tick-borne pathogens. Results from this study 

indicate that temperature can have an effect on F. tularensis growth inside the tick. In 

these experiments, infected ticks that were held at higher temperatures had decreased 

colonization of F. tularensis. This decreased survival of F. tularensis inside the tick at 

higher temperatures may be due to increased antimicrobial activity of ticks at higher 

temperatures or to F. tularensis general ability to better survive at low temperatures 

(Friend, 2006). Francisella tularensis can survive in cold conditions, and it is possible 

that colder temperatures may aid bacterial survival for longer periods of time in ticks. 

Therefore, cold winter temperatures may help F. tularensis to persist in the ticks during 

the long five to six months of winter rather than diminish the survival.  

 A significant decrease in colonization of F. tularensis was observed during the 

molting stage in both tick species. This decrease was pronounced at the molting of 

infected D. variabilis nymphs to adults and also during the molting of infected A. 

americanum larvae to nymphs. It is not known whether a decline in the availability of 

nutrients for bacterial growth or the unfavorable environment within the ticks during the 

ecdysial process may be the cause for this reduction. In nature, at lower temperatures the 

molting stage of the ticks are prolonged (Bowman and Nuttall, 2008), and this was also 

seen in our experimental holding conditions of the ticks. The increased molting period in 

ticks may result in reduced F. tularensis within ticks and may eventually lead to 

permanent clearing of the bacterium from these ticks. This may be one of the reasons 

why most of the A. americanum adults cleared the infection after molting. The molting 
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period of A. americanum nymph was more than 30 days which was the longest period 

seen in any stage of molting in both tick species. The most favorable environment for F. 

tularensis within ticks would be for the ticks to molt reasonably fast and subsequently to 

encounter a lower environmental temperature. These favorable conditions may occur in 

nature for the ticks colonized by F. tularensis in September and October. Molting of 

these ticks would then undergo a behavioral diapause as a resulting from a decreased 

temperature in November, enabling F. tularensis colonized ticks to overwinter and 

carryover the infection to the next spring. Future experiments, in which the infected ticks 

could be kept at controlled temperature conditions thus altering their duration of molting 

and the effect of this variation of molting period on F. tularensis, may further our 

understanding of this reduced colonization at molting. 

Francisella tularensis dissemination in tick tissues 

 Another interesting difference between the two tick species was the longer time 

required for tissue dissemination in D. variabilis adults. More than two weeks PCF were 

required for dissemination of F. tularensis from gut to hemolymph and salivary glands in 

D. variabilis adults. In contrast, bacterial dissemination was seen within 24 hours PCF in 

A. americanum adults. When analyzing vector competency, this rapid dissemination of F. 

tularensis in A. americanum ticks may not be an advantage, because once the ticks 

become colonized by taking blood meal from an infected animal, the tick must detach, 

molt, and then feed on another susceptible animal to transmit the pathogen, a process that 

can take up to a month to complete. The rapid dissemination of F. tularensis in A. 

americanum ticks may have an advantage in male ticks which are often known to feed 

intermittently on hosts and thus can transmit the bacterium from one host to another 
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(Kocan et al., 2010). Ticks which become infected at the near death of the host animal 

(which has been shown to be the case with F. tularensis infection), feeding to 

engorgement may not be complete, and the rapid dissemination of F. tularensis from gut 

to saliva can be advantageous in bacterial transmission when these ticks feed on another 

host. Francisella tularensis was also observed to localize mostly in the gut of the ticks 

during long term persistence. Therefore, for the ticks which become colonized by F. 

tularensis in summer and fall and undergo overwintering, the bacterium might be most 

likely in the gut tissue. In these ticks which again start host seeking in the following 

spring it may take longer for F. tularensis to migrate from the gut to salivary glands. It 

would be interesting to study the dissemination of F. tularensis from the gut of these ticks 

to the saliva, including the time taken and the factors influencing the dissemination.  

Host species and tick-borne tularemia 

 Availability of competent hosts is important for maintenance of the disease agent 

in tick vectors. This is especially true in F. tularensis transmission in ticks, because the 

transovarial transmission may not play a major role and the disease has to be maintained 

through repeated transstadial transmission. In such a scenario, the dilution effect of 

feeding on a non-competent host might reduce the F. tularensis infection rates in the tick 

population (Sonenshine and Mather, 1994). In the south-central tularemia endemic region 

of the United States comprised of Arkansas, Missouri, eastern Oklahoma and southeast 

Kansas, there are abundant deer populations which in turn support large populations of 

ticks. Francisella tularensis has not been recovered from deer in this region (Castellaw et 

al.) and deer may probably be resistant to tularemia infection and could be a non-

competent host of F. tularensis. But this region also supports a variety of small 
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mammalian species including cotton tail rabbits and other small rodents which can 

function as competent hosts for tularemia (Brown et al., 2011; Kollars et al., 2000a; 

Kollars et al., 2000b). This wide range of host species, with deer population as tick 

amplifiers and small mammals as tularemia infected host, might be the reason for the 

persistence of tularemia in this region.  

Effect of F. tularensis colonization on tick life cycle 

 In these experiments an increase in tick mortality during the infected adult stages 

of both species of ticks was not observed when compared to control ticks which were fed 

with tick-meal without F. tularensis. In addition, the high level of bacteria at 107 to 109 

per tick was remarkable. In the face of this high colonization level, the ticks seemed to 

suffer no ill effects. Dermacentor variabilis ticks naturally infected with high number of 

F. tularensis/tick have been reported (Goethert and Telford, 2010). It would be 

interesting to see if these apparently healthy, heavily infected ticks would be affected in 

their feeding behavior. In contrast, increase in mortality in immature stages of F. 

tularensis infected ticks was observed, and this increase in mortality was reduced, when 

the holding temperature of the ticks was lowered. The wide variation in the level of F. 

tularensis colonization during different stages of development of the tick, including low 

numbers seen during molting and high numbers soon after molting can be either tick 

mediated or may be controlled by the bacterium itself. The recent developments in 

sequencing of tick genomes, availability of new techniques including gene silencing in 

ticks (Kocan et al., 2011; Nene, 2009), and with the recently reported improvements in 

genetic manipulations of F. tularensis (Barker and Klose, 2007; Bina et al., 2010; 
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Rodriguez et al., 2009), it may be possible to study the tick vector-F. tularensis 

interactions in greater detail in the future. 

Francisella tularensis strains and tick-borne tularemia 

 The type A1 genotype of F. tularensis is the major genotype associated with 

human tularemia cases in south-central region of the United States. In this study F. 

tularensis type B LVS strain was used, and it is possible that these two strains can have 

different developmental patterns in tick vectors. Petrosino and colleagues compared the 

two strains and have found remarkable similarity gene content between their genomes 

(Petrosino et al., 2006). However, certain genes in type B were observed to be 

pseudogenes due to insertion and deletion events when compared to type A. Salomonsson 

and colleges have demonstrated that a type IV pilin gene and an outer membrane protein 

gene, which was active in type A and not in type B, was important for the infectivity of 

type A stains (Salomonsson et al., 2009). Most of the research involving tick vectors and 

F. tularensis were conducted almost 50 years ago, and it is not known which subspecies 

or strains of F. tularensis these researchers might have used. The capillary feeding model 

presents an excellent platform to study the interaction between different tick vectors and 

F. tularensis strains and would also be an ideal system to study the molecular 

epidemiology of these strains in the tick vectors.  

 Finally, these studies also demonstrated that F. tularensis can retain infectivity 

after it grow in inside the tick vector. The ID50 for F. tularensis recovered from salivary 

glands of D. variabilis ticks was one log lower than for culture grown F. tularensis, when 

bacteria was injected intraperitoneally in BALB/c mice. Results from our lab 
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(unpublished data) and others have shown that LD50 for LVS strain via intradermal (i.d.) 

route, which simulates the natural route of entry of bacteria by tick bite, is very high; 

however, i.d. LD50 for virulent type B and type A strains are less than 10 CFU in mice 

and humans (Saslaw et al., 1961a; Saslaw et al., 1961b; Conlan et al., 2005). Korocova 

and colleagues have shown that when LVS is mixed with salivary extracts of Ixodes 

scapularis, and introduced via i.d. route in mice, the proliferation and dissemination of 

LVS was increased (Krocova et al., 2003). They have also shown that the increased 

infectivity seen in this saliva-assisted transmission (SAT) was due to the 

immunosuppression of the host by the tick saliva. SAT studies with D. variabilis or A. 

americanum has not been done. Based on these results, it is reasonable to assume that the 

infective dose for virulent strains of F. tularensis in susceptible hosts via tick bite could 

be extremely low.  

Ecology of tick-borne tularemia 

 Based on the low infective dose required for colonizing the tick, and the high F. 

tularensis colonization per tick, one would hope to find large number of infected ticks in 

the enzootic area; contrarily, the percentage of infected ticks in the enzootic area is 

extremely low, often less than 1% (Hopla, 1974; Matyas et al., 2007). Assuming that 

infective dose in susceptible vertebrate hosts is also quite low, epizootic outbreaks in the 

small mammalian population should also be expected throughout the tick activity season 

from spring to early fall. Such constant outbreaks in small mammals are also not seen. 

Small animal hosts may gradually acquire resistance to the infection, and the epizootics 

of tularemia seen in the fall, is probably due to infection of immunologically naïve 

juvenile cohorts of these animals. A thorough knowledge of the vertebrate hosts and 
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vector population dynamics is required to understand the persistence of the disease in 

enzootic regions (Sonenshine and Mather, 1994). Francisella tularensis is infective to 

multiple tick vectors and small mammalian hosts, so the disease dynamics in nature 

would probably involve multiple tick vectors and small mammalian species. However, 

with respect to transmission of F. tularensis to humans in the south-central tularemia 

endemic region, only three tick species maintain sufficiently high populations to be 

potential vectors for F. tularensis, namely D. variabilis and Ixodes scapularis adults, and 

nymphal and adult stages of A. americanum. Since the peak adult tick activity of I. 

scapularis is seen in the fall and winter months, which does not correlate with the human 

tularemia outbreaks, the D. variabilis and A. americanum ticks are the most likely vectors 

of human F. tularensis in the south-central United States. Dermacentor variabilis adults 

and A. americanum nymphs and adults were shown to be the vectors of F. tularensis. 

Although the percentage of infected A. americanum adults decreased over time, the 

infection of adult D. variabilis and nymphal A. americanum ticks persisted for longer 

duration. 

 Better understanding of the ecology, population dynamics of the tick vectors, 

susceptible vertebrate hosts, and resistant or dilution hosts in the endemic area, along 

with controlled experimental transmission studies to find the influence of abiotic and 

genetic factors influencing the transmission and persistence, will help to enhance 

predictive modeling of tularemia and also will enable development of control measures to 

reduce the risk of disease transmission.  
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Utilization of chitin and growth of F. tularensis in carbohydrate deficient media 

 

 Francisella tularensis subspecies have been shown to be associated with chitin-

containing crustaceans (Anda et al., 2001; Diaz de Tuesta et al., 2001). The abundant 

source of chitin within ticks could be a source of nutrient for intra-tick F. tularensis 

growth during the prolonged association with the tick. Additional evidence for the 

possible chitin utilization of F. tularensis is the putative chitinase genes found in these 

bacteria (Margolis et al., 2009). The unusually lower B. burgdorferi colonization during 

the molting stages of infected I. scapularis ticks, and the morphological abnormality in 

seen in heavily infected tick eggs are thought to be the result of chitin catabolism by B. 

burgdorferi (Burgdorfer et al., 1988; Piesman et al., 1990). In our experiments with F. 

tularensis and tick vectors, it was observed that a similar decline in bacterial colonization 

occurred during tick molting. Francisella tularensis colonization on the chitinous outer 

shell of D. variabilis tick eggs was also observed. Based on these data it was 

hypothesized that F. tularensis could utilize chitin as a nutrient source for its growth. In 

the in vitro culture experiments, we have shown that F. tularensis can utilize NAG, the 

monomer of chitin, for its growth in Nutrient Broth as well as in Chamberlain’s 

chemically-defined broth. However, the growth advantage was not seen when a 

carbohydrate saturated broth was used, indicating F. tularensis has an advantage in 

utilizing NAG only in a carbohydrate deficient environment. Growth advantage of F. 

tularensis in carbohydrate deficient broth was not observed when either chitin or 

chitobiosan was supplemented. Bacteria usually form biofilm in stagnant environments. 
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Francisella tularensis may attach to chitin and form a biofilm in a sessile state and 

subsequently utilize the chitin as opposed to in a freely moving culture condition.  

 While visualizing immunostained D. variabilis gut tissues, we could observe 

certain highly concentrated bacterial colonies in the gut epithelium. Francisella 

tularensis could possibility form biofilms during the extended association in the tick 

vectors. Several environmental and marine bacteria can form biofilms (Svitil et al., 1997; 

Verhoeven et al., 2010), and F. tularensis ssp. novicida was shown to be deficient in 

biofilm formations when the chitinase genes were knocked out (Margolis et al., 2009). 

Francisella tularensis ssp. holarctica has also been shown to form biofilms in stagnant 

conditions (Hassett et al., 2003). The biofilms enable these bacteria to survive harsh 

environmental conditions and can also aid in disease transmission in some pathogenic 

bacteria (Hinnebusch and Erickson, 2008). During the long starvation periods of tick 

vector, F. tularensis could possibly utilize chitin and form biofilms inside the tick. With 

the recent advances in genetic manipulations in F. tularensis, it would be interesting to 

study the growth of chitinase mutant strains of F. tularensis in the tick vectors. Another 

interesting study would be to investigate the formation of F. tularensis biofilms in tick 

vectors. 
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 Francisella tularensis causes tick-transmitted tularemia epizootics in rodent and 
rabbit hosts and incidental infections in humans. The objective of this study was to 
develop a F. tularensis tick colonization model for elucidating the salient features of its 
biology in tick vectors. The first two studies reported herein describe the systematic study 
of F. tularensis ssp. holarctica strain LVS colonization in the tick vectors Dermacentor 
variabilis and Amblyomma americanum as well as describing the capillary feeding (CF) 
method of colonizing the different stages of these ticks. Post capillary feeding (PCF), 
level of colonization was determined by CFU determinations of tick minceate. 
Transmission of F. tularensis from larvae to nymph was seen in both tick species, but 
only A. americanum nymphs maintained F. tularensis for longer periods of time (168 
days PCF). Transstadial transmission from nymph to adult was also demonstrated in both 
the tick species, but only D. variabilis ticks maintained F. tularensis colonization after 
molting from nymphs to adults. For CF adults, F. tularensis initial colonization of the gut 
disseminated to hemolymph and salivary glands in three weeks and 24 h PCF for 
D.variabilis and A. americanum respectively. Colonization of adult D. variabilis ticks 
persisted up to 6 months PCF (longest time point in study). Transovarial transmission 
was not observed in either tick species. However, colonized D. variabilis adult females 
transferred F. tularensis to surface layer of eggs but not to hatched larvae. The extrinsic 
incubation period (time to secretion in saliva), determined by intra-hemocel injection of 
F. tularensis in D. variabilis and A. americanum was 4 and 2 days, respectively. The ID50 
for mice for intraperitoneal injection of F. tularensis from adult D. variabilis salivary 
glands versus laboratory culture F. tularensis were 2 and 43 CFU, respectively. Both tick 
species appear competent as experimental vectors for F. tularensis with D. variabilis 
adults and A. americanum nymphs better adapted for long term persistence of F. 
tularensis. The role of these ticks as a possible inter-epizootic reservoir of F. tularensis is 
also discussed. The final chapter of this dissertation addresses the possible role of chitin 
as a nutrient source for F. tularensis in the tick life cycle. 

 


