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CHAPTER I 
 

INTRODUCTION 

                           
The nervous system is responsible for receiving, integrating, relaying and 

responding to information from both the internal and external environments. 

Anatomically, the nervous system can be broadly divided into two components, the 

central nervous system (CNS) and the peripheral nervous system (PNS). The CNS is 

comprised of brain and spinal cord, while the PNS contains nerves (afferent and efferent) 

and ganglia which mediate local communication and connect the CNS to the rest of the 

body. The PNS can be further divided into two major parts, the somatic nervous system 

and the autonomic nervous system. The somatic nervous system controls voluntary 

movements through afferent and efferent innervation to and from the muscles and 

sensory organs, whereas the autonomic nervous system regulates internal organ function.  

The autonomic nervous system is comprised of the sympathetic and parasympathetic 

nervous systems, which typically act in an opposing manner to maintain homeostasis. 

The nervous system is made up of different types of cells, the largest group being 

the neurons. Neurons communicate with each other and with other cells primarily 

through the release of neurotransmitters. Our primary interest involves neurotransmission 
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mediated by cholinergic neurons and the neurobiology of the neurotransmitter released 

by these neurons, acetylcholine (ACh). 

Cholinergic neurotransmission 

Cholinergic neurons are abundant in both the CNS and PNS. Within the CNS, six 

cholinergic nuclei (Ch1-Ch6) send axons to innervate different regions of the brain 

(reviewed in Pope, 2005). In the PNS, cholinergic neurons innervate striated muscles, 

heart, viscera, airways and autonomic ganglia. The cholinergic nervous system 

participates in the regulation of many vital processes including memory, learning, 

behavioral arousal, sleep, analgesia, respiration and others (Winkler et al., 1995; 

Kitabatake et al., 2003; reviewed in Sarter and Parikh, 2005;  Zimmermann, 2008).  

Acetylcholine, the transmitter released by all cholinergic neurons, is synthesized 

in the pre-synaptic nerve terminal from the co-factor acetyl coenzyme A and substrate 

choline by the action of synthetic enzyme choline acetyltransferase (Jope and Jenden 

1980; Matsuura et al., 1997). Following synthesis, ACh molecules are transported and 

stored into synaptic vesicles by a vesicular acetylcholine transporter through an energy 

dependent process (Zimmermann, 1987; Parsons, 2000; Rizzoli and Betz, 2004).  

During normal cholinergic neurotransmission (as shown in Figure 1), arrival of an 

action potential at the pre-synaptic terminal leads to membrane depolarization and entry 

of calcium into the cell through voltage-gated calcium channels (Cohen-Cory, 2002). The 

entry of calcium into the cell triggers the fusion of ACh-laden vesicles with the pre-

synaptic plasma membrane, leading to exocytosis and subsequent release of ACh into the 

synapse (reviewed in Sudhof, 2004; Martyn, 2009). Several soluble N-ethylmaleimide-

sensitive-factor attachment receptor (SNARE) proteins, e.g. synaptotagmin, syntaxin and 
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synaptobrevin, are involved in the vesicular fusion process (Heidelberger, 2007; 

Fagerlund and Eriksson, 2009). ACh molecules are released as “quanta” into the synapse 

(Katz, 1971; Wang et al., 2004). The ACh molecules thus released into the synapse act on 

post-synaptically located cholinergic receptors (muscarinic and nicotinic) thereby 

modifying the post-synaptic cell’s activity.   

ACh signaling is effectively terminated by the enzyme acetylcholinesterase 

(AChE, EC 3.1.1.7) (Rosenberry, 1975 and 1979). AChE is a highly conserved enzyme, 

playing a vital role in cholinergic neurotransmission in species from planaria to man 

(Silver, 1974). AChE is abundantly expressed in the CNS and PNS, but is also found in 

blood (primarily in the erythrocytes) (Nigg and Knaak, 2000). A related enzyme, 

butyrylcholinesterase, is also widely distributed but has no known function (Eriksson and 

Augustinsson, 1979; Masson et al., 1996; Nicolet et al., 2003; Giacobini, 2004).  

AChE has an active site which is located at the bottom of a 20Ao aromatic gorge 

(Sussman et al., 1991; Mallender et al., 2000).  The active site is made up of two subsites: 

1) anionic subsite and 2) esteratic subsite. The anionic subsite stabilizes the choline 

moiety of ACh. The esteratic subsite is made up of the catalytic triad (serine200, 

histidine440 and glutamate327). The active site also has an acyl binding site and 

oxyanion hole (Szegletes et al., 1999). The electrophilic oxyanion hole not only attracts 

but also stabilizes the carbonyl oxygen of ACh (Harel et al., 1995). The enzyme also has 

a peripheral anionic binding site. The negative charge of the peripheral anionic site 

attracts the positively charged ACh molecule (i.e., the quaternary nitrogen) leading to the 

formation of a transient enzyme-substrate complex (Johnson et al., 2003). Ligand binding 

at the peripheral anionic site can lead to either activation or inhibition of AChE activity. 
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The serine oxygen of catalytic triad in the active site gorge attacks and forms a covalent 

bond with the ACh molecule. AChE hydrolyses ACh resulting in the formation of an 

acetylated enzyme and free choline. Deacetylation of AChE is rapid and occurs due to a 

nucleophilic attack by a hydroxyl ion of water releasing acetate (reviewed in Zimmerman 

and Soreq, 2006; Colletier et al., 2006). The turnover rate of AChE is 103-104 ACh 

molecules per second, one of the most active enzymes in the body (Lawler, 1961; 

Sultatos, 1994).  

Following ACh hydrolysis, approximately 50% of the choline is cycled back into 

the pre-synaptic terminal by a high affinity choline transporter (HACU) and used for the 

synthesis of new ACh molecules (Collier and Katz, 1974; Happe and Murrin, 1993; 

Ribeiro et al., 2006). The HACU system is an ATP dependent process and is highly 

specific for cholinergic terminals. In contrast, acetate formed by ACh hydrolysis can be 

utilized in intermediary metabolism. The efficient degradation of ACh by AChE is 

essential in the regulation of cholinergic transmission by preventing prolonged activation 

of muscarinic acetylcholine receptors (mAChR) and nicotinic acetylcholine receptors 

(nAChR) throughout the nervous system (Lawler HC, 1961; Downes and Granato, 2004). 
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Figure1. General events that occur at the cholinergic synapse 
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Cholinergic muscarinic receptors 

As noted above, ACh activates two basic types of cholinergic receptors, i.e., 

muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors 

(nAChRs) (Kawashima et al., 1990; Wessler et al., 2001). The mAChRs have been 

classified pharmacologically as M1, M2, M3 and M4 subtypes. Based on molecular 

cloning techniques, five receptor subtypes have been identified, i.e., M1-M5 (Caulfield 

and Birdsall 1998; Bonner, 1989; Wess, 2003). The mAChRs are widely expressed in 

different regions of the brain and in the periphery, and are highly conserved across 

species (Peralta et al., 1987; Bonner, 1989, Dorje et al., 1991). Because of homology 

between the subtypes and due to a lack of highly selective ligands for each receptor 

subtype, it has been difficult to study the role of these receptor subtypes using 

pharmacological agonists or antagonists (Wess, 2004 and 2007). Some examples of 

subtype-preferential receptor antagonists are pirenzipine (M1), methoctramine (M2), 

AFDX 116 (M2), AFDX 384 (for M2 and M4), 4-diphenylacetoxy-N-methylpiperidine 

methiodide (4-DAMP, M3) and himbacine (M4). Examples of some agonists used to 

study muscarinic receptor function are oxotremorine, carbachol and bethanechol (Eglen 

et al., 1985). While these drugs are not entirely selective, they can often be used to study 

mechanisms of receptor-mediated actions of acetylcholine at the different muscarinic 

receptors.  

The mAChRs are G-protein coupled receptors. They are made up of seven 

transmembrane domains that span across the cell membrane and are connected both 

extracellularly and intracellularly by three loops on each side (Wess, 1996; Caulfield and 

Birdsall 1998; Nathanson, 2000). M1, M3 and M5 receptors couple to stimulatory G 



7 
 

proteins (Gs) and act through phospholipase C (PLC) activation (reviewed in Ishii and 

Kurachi, 2006). Stimulation of PLC results in the hydrolysis of phosphotidylinositol bis-

phosphate (PIP2) and production of the signaling molecules inositol triphosphate (IP3) 

and diacylglycerol (DAG). IP3 stimulates the release of Ca2+ from endoplasmic reticulum 

and activates calmodulin whereas DAG activates protein kinase C. Protein kinase C and 

calmodulin can modify the post-synaptic cell’s response through a cascade of 

biochemical reactions (Lanzafame et al., 2003). In contrast, M2 and M4 receptors are 

coupled to the inhibitory type (Gi/Go) G proteins and act through inhibition of adenylyl 

cyclase. M2 receptors are located both pre-synaptically (Saito et al., 1991; Levey et al., 

1991) and post-synaptically (Rouse et al., 1997). A detailed mechanism of M2 receptor 

activation will be discussed in subsequent sections.   

The mAChRs are involved in regulating a variety of physiological functions. M1 

receptor is the major muscarinic receptor subtype in cerebral cortex, thalamus, amygdala, 

caudate putamen and plays an important role in learning and memory (Levey et al., 1991; 

Wolfe and Yasuda, 1995; Anagnostaras et al., 2003; Oki et al., 2005). Studies with M1 

knockout mice have shown that the M1 receptor is responsible for eliciting 

cholinergically-mediated seizures (Hamilton, 1997). The M2 and M3 subtypes participate 

in contraction of smooth muscles in the gastrointestinal tract and glandular tissues 

(Caulfield, 1993; Eglen, 1996; Beroukas et al., 2002; Kitazawa et al., 2007) and are 

involved in contraction of smooth muscles (detrussor) in the urinary bladder (Fetscher et 

al., 2002; Ehlert et al., 2005; Tran et al., 2006). Activation of cardiac M2 receptors 

reduces heart rate, force of contraction and automaticity (Brodde and Michel, 1999; 

Stengel, 2000; Krejci and Tucek, 2002; LaCroix et al., 2008). M2 receptors in the brain 
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are known to play a role in learning, memory, motor coordination, cognition, body 

temperature regulation and analgesia (Gomeza et al., 1999; Bernardini et al., 2002; 

Tzavara et al., 2003(a); Seeger et al., 2004), and appear to be the major muscarinic 

autoreceptor in many brain regions. M4 receptors are abundant in the cerebral cortex, 

corpus striatum and thalamus (Felder et al., 2000). M4 receptors appear to play an 

important role in anti-nociception and are thought to be the primary muscarinic 

autoreceptor in the striatum (Duttaroy et al., 2002; Wess, 2004). 

The nAChRs are ionotropic receptors present at neuromuscular junctions, 

autonomic ganglia and throughout the CNS, primarily at pre-synaptic terminals 

(reviewed in Millar and Denholm, 2007). These receptors are made up of five subunits 

from at least 17 different subunits that have been identified (α1-10, β1-4, γ, δ and ε). For 

each receptor, these subunits form pentamers around a central ion channel (Millar, 2003; 

Wang et al., 2003; Changeux and Edelstein, 2005). Binding of ACh to the nAChR results 

in opening of these ion channels and increased permeability to sodium, potassium and/or 

calcium ions (Harkness and Millar, 2002; Khiroug et al., 2002; Fagerlund and Eriksson, 

2009). Activation of the nAChR at neuromuscular junctions elicits skeletal muscle 

contractions, activation of ganglionic nAChR stimulates parasympathetic and 

sympathetic activity, and activation of CNS nicotinic receptors typically modulates 

neurotransmitter release at a variety of cholinergic and non-cholinergic neuronal synapses 

(Corringer et al., 1999; McKay et al., 2007; Exley and Cragg, 2008).  

In summary, following depolarization of the cholinergic pre-synaptic terminal, the 

ACh released can activate cholinergic muscarinic or nicotinic receptors. The activation of 

these receptors elicits different functions depending on the cell type or organ in which 
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these receptors are located. Continuous activation of these receptors following 

accumulation of ACh in some neurotoxicological conditions (e.g. OP poisoning) can lead 

to cholinergic toxicity.   

Organophosphates  

Organophosphorus (OP) compounds (OPs) are an economically important class of 

chemical compounds with a variety of uses including pesticides, industrial fluids and 

therapeutics. OPs are the most widely used insecticides in the United States (Abou-Donia 

et al., 2003), leading to widespread potential for environmental exposures. Philippe de 

Clermont synthesized the first OP compound, tetraethyl pyrophosphate in 1854. During 

the Second World War, a number of nerve agents such as sarin, soman and tabun were 

synthesized by Gerhard Schrader and his colleagues in Germany (reviewed in Costa, 

2006; Pope et al., 2005). Later a number of different OP compounds were synthesized 

and evaluated as insecticides, subsequently replacing many uses for the organochlorine 

insecticides that were being banned in the 1970’s. Thirty-eight different OP 

anticholinesterases are currently registered for use as pesticides in the United States 

(Pope, 1999). 

OP compounds are generally highly lipophilic and can be easily absorbed from 

skin, respiratory and gastrointestinal tracts (Kamanyire and Karalliedde, 2004). OP 

exposure may occur in occupational settings or around the home. In the general 

population, exposure to OPs may be possible through consumption of residues on fruits 

and vegetables or through the household or garden environment. In some countries, 

intentional (suicidal) poisonings by OPs are relatively common (Eddleston et al., 1998; 

Van der Hoek et al., 1998). According to a recent study, around 200,000 people die each 
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year in developing countries because of self-poisoning with OPs (Eddleston, 2000; 2008). 

According to the World Health Organization, approximately 3 million people are in some 

degree exposed to pesticides each year (Walker and Nidiry, 2002). 

OP insecticides can be broadly classified into three groups based on presence or 

absence of a sulfur atom: 

1) Phosphates (no sulfur atom) 

2) Phosphorothioates (one sulfur atom) 

3) Phosphorodithioates (two sulfur atoms) 

The general structure of OPs and also the chemical structures of OP compounds 

used in our studies are shown in Figure 2. In a prototype OP insecticide, the R group is 

typically either a methyl or ethyl group, and R’ is generally the same but can be one of a 

number of different substituents. The leaving group, X, can be either a cyanide, halide or 

phenoxy moiety. Organophosphorus derivatives are referred to as 1) an organophosphate 

if there is an oxygen bonded to phosphorus at both R and R’, 2) an organophosphonate if 

there is one oxygen bonded to phosphorus at either the R or R’ site, and 3) an 

organophospinate if there is no oxygen bonded to phosphorus at either the R or R’ 

group. Thus, use of the term “organophosphate” to refer to all organophosphorus 

toxicants can be a misnomer, but this term is in general use in the toxicological 

community.  

 
 
 
 
 
 
 
 



 

Figure 2. Chemical Structures of Organophosphorus Anticholinesterases
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Parathion is a prototype OP insecticide (Gaines, 1960). Although its use has been 

banned in the US, it is still used as a pesticide in many developing countries. 

Chlorpyrifos is one of the most commonly used insecticides in the US and worldwide 

(Davis and Ahmed, 1998; Lemus and Abdelghani, 2000). Parathion and chlorpyrifos 

elicited different degrees of cholinergic toxicity at dosages leading to similar levels of 

cholinesterase inhibition, i.e., parathion-treated rats showed more extensive signs of 

toxicity (Pope et al., 1995; Liu and Pope 1998; Liu et al., 2002). The comparative 

absence of overt signs of cholinergic toxicity following dosages of chlorpyrifos that elicit 

extensive cholinesterase inhibition has been the basis for a longterm research project 

within our laboratory.  

Parathion and chlorpyrifos are “parent” compounds which undergo bioactivation 

by cytochrome P450-dependent monooxygenases to their active oxygen metabolites 

(oxons), paraoxon and chlorpyrifos oxon (Sultatos, 1985; Forsyth and Chambers, 1989; 

Murray and Butler, 1994; Furlong, 2007). These metabolites are roughly 1000-fold more 

potent than the parent insecticides at inhibiting cholinesterases (Sultatos, 1994). Paraoxon 

and chlorpyrifos oxon are detoxified by the action of carboxylesterases distributed 

throughout the body. In addition, “A-esterases” such as PON1 are thought to be more 

important in the detoxification of chlorpyrifos oxon. Comparing the toxic effects of 

parent compounds relative to their active metabolites can often provide important 

toxicokinetic and mechanistic insights.  

Anticholinesterases have been used in veterinary medicine for the control of ticks 

and for the treatment of internal parasites such as flukes. Anticholinesterases have also 

been used in human medicine for the treatment of cholinergic disorders such as 
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Alzheimer’s disease and myasthenia gravis (Pope et al., 2005). These compounds have 

also been used for the treatment of glaucoma, incontinence, to stimulate GI peristalis, as 

well as other purposes (Nagabukuro et al., 2004). Unfortunately, OP compounds have 

also been used in chemical terrorism, e.g. sarin use in Japan in the mid 1990’s by the 

Aum Shinrikyo terrorist group (Murata et al., 1997).  

Cholinergic toxicity  

OPs inhibit AChE by phosphorylating the serine hydroxyl group in the active site 

of AChE leading to the formation of a stable, phosphylated enzyme (Radic and Taylor, 

2001; Casida and Quistad, 2005). This covalent modification blocks subsequent substrate 

(ACh) binding and hydrolysis. With extensive AChE inhibition, accumulation of ACh 

leads to persistent activation of post-synaptic cholinergic receptors and signs of 

cholinergic toxicity (Pope et al., 2005). The clinical expression of toxicity depends on the 

types of receptors prominently activated and their location within the body, which can 

also be influenced by the structure of the OP itself (e.g. some anticholinesterases have 

difficulty crossing the blood brain barrier and thus primarily affect the PNS). When 

mAChR in the periphery are activated, autonomic signs including excessive secretions 

(salivation, lacrimation, defecation and urination), nausea, abdominal cramps, 

bronchorrhea, severe respiratory distress, blurred vision, miosis, hypotension, 

conjunctival congestion, nasal discharge, ciliary spasm and bradycardia can be observed 

(Lotti, 1995; Paudyal, 2008). On the other hand, activation of mAChR in the brain can 

lead to anxiety, ataxia, tremors, seizures, hypothermia and depression of respiratory 

centers (Costa, 2006). Activation of the nAChR results in muscle fasciculations, 

diaphragmatic failure and ganglionic stimulation. During later stages of OP poisoning 
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however signaling involving other neurotransmitters such as GABA and glutamate can be 

recruited. Death in severe cases typically occurs due to respiratory failure from increased 

airway secretions, decreased respiratory muscle tone, and depression of central 

respiratory control centers (reviewed in Pope et al., 2005).  

There are four main types of toxicity elicited by OPs: 

1) Acute cholinergic toxicity is due to inhibition of AChE and characterized by signs of 

cholinergic toxicity such as SLUD signs and involuntary movements. This is due to 

prolonged stimulation of post-synaptically located cholinergic receptors by accumulating 

synaptic ACh (Nallapaneni et al., 2006). 

2) Intermediate syndrome is generally seen 24-96 hours after resolution of acute 

cholinergic toxicity following insecticide intoxication. Signs and symptoms include 

paralysis of proximal muscle groups of the face, neck and respiratory muscles and can 

lead to rapid onset respiratory failure and death (De Bleecker, 1995; Samuel, 1995; Senel 

et al., 2001). 

3) Organophosphorous-induced delayed polyneuropathy is seen 2-3 weeks following 

OP exposure. This form of OP toxicity is related to the inhibition of another esterase 

enzyme called neuropathy target esterase, and associated with degeneration of selected 

nerves in the CNS and PNS. This disorder is characterized by distal muscle weakness 

which can progress to paralysis. Recovery is very slow, and some signs may not recover 

at all due to CNS involvement (Johnson, 1993; Pope et al., 1993; Johnson and Glynn, 

1995; Ehrich, 1997; Singh et al., 2004).  

4) Persistent neurological sequelae seen in patients severely intoxicated with OP 

insecticides. Symptoms include confusion, lethargy, irritability, impaired memory and 
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psychosis (Wesseling et al., 2002; Colosio et al., 2003). The molecular basis for such 

persistent neurological consequences following acute intoxication is unknown.  

Other targets of OPs 

The primary target of OP compounds for eliciting acute toxicity is AChE. Several 

studies have reported, however that some OPs can bind to other enzymes in addition to 

AChE, as well as to some cell surface receptors (Pope, 1999). As noted above, some OPs 

can elicit organophosphorous-induced delayed polyneuropathy by inhibiting neuropathy 

target esterase. Many OP compounds can bind to and inhibit other esterases such as 

butyrylcholinesterase (Thiermann et al., 2007; Eddleston et al., 2008; Aurbek et al., 2009) 

and carboxylesterases. As noted before, carboxylesterases play an important role in the 

detoxification of many OP compounds (Chanda et al., 1997; Karanth et al., 2000, 2004). 

Some OPs can interact directly with muscarinic (Silveria et al., 1990; Jett et al., 1991; 

Howard et al., 2002), nicotinic (Eldefrawi and Eldefrawi, 1983; Rao et al., 1987; Ray and 

Richards, 2001) and glutamate receptor subytpes (Idriss et al., 1986; Pope et al., 1999). 

For example, Liu et al (2002) showed that in presence of the carbamate anticholinesterase 

physostigmine and the non-selective muscarinic receptor blocker, atropine, some OPs 

could directly interact with muscarinic autoreceptors in rat striatal slices. Interstingly, 

paraoxon and methyl paraoxon acted as agonists to decrease ACh release while 

chlorpyrifos oxon acted as an antagonist and increased ACh release. Ward et al (1993) 

reported that paraoxon and malaoxon blocked binding to the ligand [3H]cis-

methyldioxolane (CD), an M2 preferential agonist, in rat hippocampal and cortical 

membranes.  
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Quistad and coworkers (2001, 2002 and 2006) reported that some OPs can 

selectively interact with different components of the endocannabinoid signaling pathway, 

a neuromodulatory pathway that is widely distributed in the mammalian nervous system. 

These investigators also showed that some OP compounds can inhibit several other serine 

hydrolases. Knowledge about the interaction of OPs with non-cholinesterase targets 

could lead to better treatment of OP intoxications (Casida et al., 2005; Nomura et al., 

2006). 

Current therapeutic approach to OP intoxication and drawbacks 
 

The traditional therapeutic approach for treating OP poisoning involves three 

drugs: 1) a muscarinic receptor antagonist (typically atropine) to block the activation of 

post-synaptic mAChRs, 2) an enzyme reactivator that dephosphorylates and thereby 

chemically restores AChE activity and 3) a benzodiazepine to block seizures.  

There are several potential weaknesses of this treatment regimen. While atropine 

effectively counteracts some of the muscarinic signs of cholinergic toxicity (e.g. excess 

salivation), it may block the adaptive activation of pre-synaptic autoreceptors that 

mediate feedback inhibition of ACh release. Blockade of the pre-synaptically located 

autoreceptors can lead to increased ACh in the synapse which has the potential to activate 

the nicotinic receptors and can thus exacerbate OP toxicity. In severe cases of OP 

poisoning such as nerve agent poisoning, seizures may develop. These seizures are 

sensitive to atropine treatment only in the early stages of acute intoxication, becoming 

resistant to antimuscarinic therapy later. Although seizures are initiated by accumulating 

ACh, they are thought to be maintained by the recruitment of downstream glutamatergic 

signaling pathways (Shih and McDonough, 1997; Solberg and Belkin, 1997; Weissman 
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and Raveh, 2008). Conventional therapy does not consider the excitotoxic effects of 

glutamatergic signaling. Furthermore, patients treated with atropine to block acute signs 

and symptoms can show persistent neurological deficits (Colosio et al., 2003). Atropine 

could contribute to these persistent neurobehavioral changes by blocking adaptive 

changes in ACh release. Moreover, atropine can lead to ventricular fibrillations in anoxic 

patients, thus exacerbating acute lethality (Bowden and Krenzelok, 1997). Second, the 

enzyme reactivator (e.g. pralidoxime) is useful only before ageing (i.e. spontaneous loss 

of an alkyl group) of the enzyme-inhibitor complex occurs (Worek et al., 1999; Eddleston 

et al., 2002; Buckley et al., 2005; Eyer and Buckley, 2006). Once the enzyme ages, the 

reactivator is ineffective and actually contraindicated as it has anticholinesterase activity 

on its own. Care should be taken while using pralidoxime and other reactivators since 

overdosage can lead to muscle spasms. Another drawback of this treatment regimen is 

that it does not consider effects of nAChR activation throughout the body, leading to 

skeletal muscle fasciculations and incoordinated contractions as well as modulation of 

neurotransmitter release centrally.  

Alternative strategies 

The current pharmacological strategy for OP intoxication emphasizes blockade of 

the effects of accumulating ACh. Drugs that can decrease ACh levels may improve this 

overall strategy. Several neurochemical processes could potentially be manipulated to 

decrease ACh release from the pre-synaptic terminal. Inhibition of HACU, blocking of 

synaptic vesicle fusion, or activating muscarinic autoreceptors could potentially be 

therapeutically advantageous. A number of pre-synaptically located heteroreceptors (e.g. 

adenosine, cannabinoid CB1 receptors) may also be therapeutically useful and in fact, 
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activation of adenosine receptors to decrease ACh release has been previously evaluated 

as a therapeutic strategy (Van Helden et al., 1998; Van helden and Bueters, 1999; Bueters 

et al., 2002). Our studies focused on two pre-synaptic receptors regulating ACh release, 

i.e., muscarinic M2 and cannabinoid CB1 receptors and their role in the expression of OP 

toxicity.  

We hypothesize that drugs that can enhance endocannabinoid levels (e.g. 

inhibitors of enzymes that degrade endocannabinoids) and M2 selective agonists could be 

useful for the treatment of OP poisoning and might negate some of the negative aspects 

of traditional therapy. For example, since eCB signaling can inhibit the release of non-

cholinergic neurotransmitters, cannabinomimimetics may not only inhibit ACh release 

but may also block the effects of other neurotransmitters such as glutamate that are 

thought to be involved in some aspects of cholinergic toxicity. Therefore, utilizing drugs 

that can decrease ACh levels through activation of either pre-synaptic muscarinic M2 or 

cannabinoid CB1 receptors may potentially improve the therapy of OP poisoning. Figure 

3 shows how muscarinic M2 and cannabinoid CB1 receptors may modulate OP toxicity 

by regulating ACh release from the cholinergic terminal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Figure 3. Role of pre-synaptic M2 and CB1 receptors in regulating ACh release in 
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Muscarinic receptor-mediated regulation of ACh release 
 

The mAChR subtypes are involved in a variety of physiological functions 

(Caulfield, 1993). The presence of M2 receptors on pre-synaptic terminals implies a role 

for this receptor in adaptive responses, in particular in feed-back regulation of transmitter 

release (Rouse and Levey, 1997; Hajos et al., 1998). Previous studies using synaptosomal 

preparations, brain slices and microdialysis indicate that M2 receptors indeed play a role 

in inhibiting ACh release from the cholinergic pre-synaptic terminal (Levey et al., 1995; 

Kitaichi et al., 1999; Galli et al., 2001). Zhang and coworkers (Zhang et al., 2002) using 

brain slices from M2, M4 and M2/M4 knockout mice reported that the M2 receptor is the 

primary autoreceptor regulating ACh release in cortex and hippocampus, whereas M4 

appeared to be the prominent autoreceptor in mouse striatum. Moreover, studies have 

also shown that ACh levels can be elevated by blocking M2 autoreceptors using M2 

selective antagonists (Quirion et al., 1995; Stillman et al., 1996). As noted before, ACh 

accumulation following anti-cholinesterase exposure can activate M2 receptors, leading 

to lesser ACh release, potentially minimizing the accumulation of ACh into the synapse 

and thereby the toxicity of anti-cholinesterases. Thus, targeting of the M2 receptor may 

be useful in modulating cholinergic neurotransmission and impairing the expression of 

cholinergic toxicity.  

Binding of ACh to the pre-synaptic M2 receptor activates the Gi protein, which is 

a heterotrimeric molecule (comprised of α, β and γ subunits) associated with the guanine 

nucleotide, GDP. Upon activation, the GDP is exchanged for GTP, and the G protein 

dissociates into αi and βγ subunits. The αi subunit inhibits adenylyl cyclase and thereby 

reduces the synthesis of cAMP (Olianas et al., 1983; reviewed in Krejci et al., 2004). 
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cAMP activates protein kinases which, among other things, phosphorylate voltage-

sensitive calcium channel subunits. Channel subunit phosphorylation enhances channel 

opening allowing more entry of calcium ions into the terminal. Calcium is required for 

the fusion and exocytosis of synaptic vesicles (Beech et al., 1992; Allen and Brown 1993; 

Bajjalieh and Scheller, 1995). Since adenylyl cyclase is inhibited by M2 receptor 

activation, less calcium enters the terminal leading to a net reduction in transmitter 

release. In addition to the αi subunit, the βγ subunits can also regulate ACh release. The 

βγ subunits also directly bind to and inhibit voltage-sensitive calcium channels, leading to 

decreased influx of calcium into the pre-synaptic terminal (Beech et al., 1992; Herlitze et 

al., 1996). The βγ subunits bind to and activate inwardly rectifying potassium channels, 

leading to increased efflux of K+ ions and consequent hyperpolarization of the terminal 

(Logothetis et al., 1987; Yamada et al., 1998). Hyperpolarization thus decreases release 

of ACh by preveting the activation of voltage-sensitive calcium channels. Additionally, 

βγ subunits appear to interact directly with some proteins of the exocytotic machinery, 

preventing the fusion of synaptic vesicles with the plasma membrane and thereby 

blocking ACh release. Hydrolysis of GTP to GDP by the αi subunit which has intrinsic 

GTPase activity results in reassociation of the three subunits to again form the 

heterotrimeric G protein molecule. Thus, the binding of agonist to the M2 receptor results 

in decreased ACh release through multiple mechanisms involving both αi and βγ 

subunits. 

Previous in vitro and ex vivo studies from our lab using rat brain slices suggested 

that selective effects on muscarinic autoreceptor function may play a role in the 

differential toxicity of the OP insecticides parathion and chlorpyrifos. To extend these 



22 
 

studies, we proposed to investigate the role of M2 receptor signaling in OP toxicity using 

a mouse model lacking the M2 receptor. Since the M2 receptor acts as an autoreceptor to 

inhibit ACh release, we hypothesized that deletion of the M2 receptor would exacerbate 

OP toxicity. 

Cannabinoids 

Natural cannabinoids (phytocannabinoids) are bioactive compounds derived from 

the plant Cannabis sativa (Gaoni and Mechoulam, 1971). Cannabis and products from it 

have been used for centuries for their medicinal and psychoactive properties. Cannabis 

has been used for analgesics, antiemetics, antispasmodics and for producing euphoria 

(Pertwee 2000; Kreitzer and Stella, 2009). The major psychoactive component in these 

extracts was identified as delta-9-tetrahydrocannabinol (THC) (Gaoni and Mechoulam, 

1971). These natural cannabinoids bind to a specific receptor to elicit their neurologic 

actions, termed the cannabinoid type 1 (CB1) receptor (Devane et al., 1988; Matsuda et 

al., 1990). The discovery of the specific receptors for phytocannabinoids led to a search 

for endogenous ligands for these receptors. The first endogenous cannabinoid 

(endocannabinoid, eCB) discovered was arachidonylethanolamide from porcine brain, 

referred to as anandamide (Devane et al., 1992). The name “anandamide” was derived 

from the Sanskrit word ananda which means “bliss” or “happiness”, in reference to the 

euphoric effects of Cannabis (Vander Stelt and Di Marzo, 2005). Another eCB 

subsequently isolated from canine gut was 2-arachidonyl glycerol (2-AG) (Mechoulam, 

1995; Sugiura et al., 1995; Pertwee and Ross, 2002). 2-AG is present in higher 

concentrations compared to anandamide in the brain and is also more efficacious 

compared to anandamide (Grotenhermen, 2005). Other endogenous ligands for 
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cannabinoid receptors have also been reported such as 2-arachidonyl glycerol ether 

(noladin ether) and O-arachidonylethanolamine (virodhamine) (Bisogno et al., 2000; 

Kano et al., 2002; Porter et al., 2002). Unlike classical neurotransmitters which are pre-

packaged into synaptic vesicles, eCBs are synthesized “on demand” in post-synaptic cells 

following depolarization and diffuse from the cell into the synapse to bind to pre-synaptic 

receptors, hence eCB signaling is termed “retrograde signaling” (Di Marzo, 1999; 

Piomelli et al., 1998; Hillard and Jarrahian, 2000; Wegener and Koch, 2009). 

Endocannabinoid signaling 

The eCB signaling system consists of eCBs, the enzymes responsible for their 

synthesis and degradation, specific cannabinoid receptors and a putative membrane 

transporter for reuptake into the neuron. Anandamide is synthesized from N-arachidonoyl 

phosphatidyl ethanolamine by the enzyme, N-acyltransferase phosphatidyl ethanolamine- 

phospholipase D (NAPE-PLD, Freund et al., 2003; Di Marzo et al., 2004; Pertwee, 

2005). Like anandamide, 2-AG is also synthesized from membrane phospholipids, but by 

the action of diacylglycerol lipase (DAGL). Endocannabinoid action is thought to be 

terminated by reuptake into either the pre-synaptic terminal or the post-synaptic cell, 

followed by enzymatic degradation. Anandamide is primarily degraded by the enzyme 

fatty acid amide hydrolase (FAAH) while 2-AG is primarily inactivated by the enzyme 

monoacylglycerol lipase (MAGL) (Dinh et al., 2002; Wilson and Nicoll, 2002; 

Hashimotodani et al., 2007).  
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Figure 4. Synthesis and degradation of endocannabinoids 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

Anandamide and 2-AG are formed from lipid precursors by the action of the enzymes NAPE-PLD and 
DAGL and are degraded by the enzymes FAAH and MAGL, respectively. 
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therefore increase eCB signaling. During later stages of OP poisoning, release of other 

neurotransmitters (e.g. glutamate) is also increased. Group I metabotropic glutamate 

receptors are also directly coupled to synthesis of eCBs, again potentially leading to 

enhanced eCB signaling (Maejima et al.,et al., 2001; Ohno-Shosaku et al., 2002). 

Similar to the mAChR, the CB1 receptor is a member of the G-protein coupled 

receptor superfamily (Matsuda et al., 1990; Wiley and Martin, 2002). These receptors are 

made up of seven transmembrane domains, with the extracellular domain containing the 

amino terminal and the intracellular domain the C terminal. A second type of cannabinoid 

receptor referred to as CB2 has also been identified, but it appears primarily associated 

with immune cells/functions (Howlett 1995; Kaminski, 1996; Elphick and Egertova 

2001). CB1 receptors are the most abundant GPCR in the brain (Herkenham et al., 1990; 

Pertwee, 1997 and 2001). In the nervous system, CB1 receptors are primarily located on 

pre-synaptic terminals and act as heteroreceptors, regulating the release of variety of 

neurotransmitters including ACh, GABA, and glutamate (Wilson and Nicoll 2002; 

Takahashi and Castillo 2006). Within the brain, CB1 receptors are abundantly expressed 

in the substantia nigra pars reticulata, globus pallidus, hippocampus and cerebellum 

(Herkenham et al., 1990). CB1 receptors are also present in the periphery in association 

with the neurons in organs such as heart, liver and the gastrointestinal tract. As noted 

above, CB2 receptors are primarily localized in immune-related tissues and cells such as 

spleen, B lymphocytes, monocytes and natural killer cells (reviewed in Howlett et al., 

2002; Pertwee and Ross, 2002; Mackie, 2005). Of interest for CNS function, CB2 

receptors are localized on microglia, the resident macrophages within the brain. CB1 and 

CB2 receptors can be activated by both phytocannbinoids and eCBs. Endocannabinoid 
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signaling is involved in diverse processes including analgesia, thermoregulation, synaptic 

plasticity, food intake, immune function, cognition and a variety of other physiological 

functions (Pacher et al., 2006). Furthermore, more recent evidence suggests that eCBs 

may work through additional though yet defined receptor subtypes (e.g. CB3; Kano et al., 

2009). 

Cannabinoid receptor-mediated regulation of ACh release 

Endocannabinoid signaling modulates neurotransmission throughout the 

mammalian brain by modulating the release of neurotransmitters including acetylcholine 

(ACh) (Misner and Sullivan, 1999; Hajos et al., 2001; Hoffman and Lupica, 2000; Irving 

et al., 2000; Schlicker and Kathmann, 2001; Takahashi and Castillo, 2006). 

Endocannabinoids are the signal molecules controlling depolarization induced 

suppression of excitation (DSE) and depolarization induced suppression of inhibition 

(DSI), two forms of synaptic plasticity. Inhibition of glutamate release is the basis for 

DSE (Sullivan, 1999; Hajos and Freund, 2002), while inhibition of GABA release is 

responsible for DSI. These processes are referred to as “endocannabinoid-mediated 

plasticity” (Mackie, 2008; Herkenham et al., 1990; Kano et al., 2009).  

Once released by a post-synaptic cell, eCBs bind to and inhibit voltage gated N-

P/Q and L-type calcium channels, blocking entry of calcium into the pre-synaptic 

terminal (Caulfield and Brown, 1992; Twitchell et al., 1997; Guo and Ikeda 2004; 

Zhuang et al., 2005). Since calcium is required for vesicular exocytosis and transmitter 

release, decreased calcium influx into the terminal will inhibit further ACh release. 

Cannabinoids also bind to and inhibit inwardly rectifying potassium channels and 

activate voltage sensitive K+ channels (Deadwyler et al., 1993; Henry and Chavkin, 1995; 
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Mackie et al., 1995). These actions result in increased efflux of  K+ ions across the pre-

synaptic membrane, normalizing the membrane potential and thereby inhibiting further 

release of ACh (Elphick and Egertova 2001; Freund et al., 2003; Kim et al., 2002). 

Activation of CB1 receptors also inhibits adenylyl cyclase, leading to decreased cAMP 

formation and reduced activation of protein kinase A (PKA) (Howlet, 1985; Pertwee and 

Ross, 2002). As PKA is important for phosphorylation of a variety of proteins in the cell, 

including A-type potassium channels, a net result is the activation of A-type potassium 

channels, increasing potassium efflux and impairing further depolarization (Mu et al., 

1999; Kulkarni and Ninan, 2001).  

Several in vitro and in vivo studies have suggested the role of CB1 receptor in 

regulating ACh release in hippocampus (Carta et al., 1998; Gessa et al., 1998; Gifford 

and Ashby 1996; Gifford et al., 1997 and 2000). In rats, the synthetic cannabinoid 

receptor agonist WIN 55,212-2 decreased hippocampal ACh release in vivo, whereas 

SR141716A, a CB1 receptor antagonist, increased ACh release (Tzavara et al., 2003(b). 

CB1 receptor antagonists increased extracellular ACh levels in hippocampus, a response 

that was absent in tissues from CB1 knockout mice (Degroot et al., 2006). Previous 

studies from our lab showed that WIN 55,212-2 reduced the acute toxicity of the OPs 

paraoxon and DFP (Nallapaneni et al., 2006, 2008). We hypothesized that eCB signaling 

plays an important role in the expression of OP toxicity. As ACh accumulation can lead 

to increased synthesis and release of endocannabinoids by post-synaptic cells, increased 

activation of CB1 receptors could inhibit further release of ACh (Wilson et al., 2001; 

Yoshida et al., 2002 and Ohno-Shosaku et al., 2003) and decrease expression of 
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cholinergic toxicity. We hypothesize that in the absence of CB1, loss of the inhibition of 

ACh release will increase sensitivity to OP anticholinesterases.  

The pre-synaptic regulation of neurotransmitter release may therefore be a target 

for modulation of anticholinesterase toxicity. In our studies, we focused on two different 

pre-synaptic regulatory signaling pathways for controlling ACh release, i.e., signaling via 

the M2 autoreceptor and the CB1 heteroreceptor. Our overall hypothesis is that genetic 

deletion of either the M2 or the CB1 receptor will enhance the expression of cholinergic 

signs of OP toxicity by disrupting adaptive changes in acetylcholine release following OP 

exposure.  

Specific aims 

We hypothesized that deletion of the M2 or CB1 receptor would increase 

sensitivity to OP toxicity due to loss of the feedback (or retrograde) inhibition of ACh 

release. As OPs lead to excess ACh accumulation, activation of either M2 or CB1 

receptors should decrease functional signs of toxicity associated with OP poisoning. 

Thus, both M2 and CB1 receptor activation can decrease ACh release, with the potential 

to influence expression of anti-ChE toxicity.   

Knockout mice can serve as viable models to study the role of a particular gene. 

We used M2 and CB1 knockout mice to understand the role of cholinergic and 

cannabinergic signaling in modulating OP toxicity as well as the regulatory role of M2 

and CB1 receptors as autoreceptors and heteroreceptors in regulation of acetylcholine 

release. The project was designed as three specific aims.  

Specific Aim 1: To evaluate the effects of M2 receptor deletion on acute sensitivity to 

selected OP compounds. 
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Specific Aim 2: To evaluate the effects of CB1 receptor deletion on acute sensitivity to 

selected OP compounds. 

Specific Aim 3: To evaluate ACh release as affected by OP exposure in vitro and ex vivo 

in slices from M2-/-, CB1-/- mice and their respective wildtype littermates.
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CHAPTER II 
 

METHODS 
 

Chemicals 

Chlorpyrifos (CPF, O,O’-diethyl-O-(3,5,6-trichloro-2-pyridinyl-phosphorothioate, 

99% purity), chlorpyrifos oxon (CPO, O, O’-diethyl-O-(3, 5, 6-trichloro-2-pyridinyl-

phosphate, 99.1% purity), parathion (PS, O, O’-diethyl-O-4-nitrophenyl-

phosphorothioate, 99% purity) and paraoxon (PO, O, O’-diethyl-O-4-nitrophenyl-

phosphate, 99.1% purity) were purchased from Chem Service (West Chester, PA) and 

stored in a desiccator under nitrogen at 4oC.  

Acetylcholine iodide (acetyl-3H; specific activity = 76.0 mCi/mmol), choline 

chloride (methyl- 3H; specific activity = 66.5 Ci/mmol) were purchased from Perkin 

Elmer (Boston, MA) and stored at -70oC. Ethanol, atropine sulfate, Tris (hydroxymethyl 

aminomethane), sodium hydroxide, hydrochloric acid, ethylenediamine tetra acetic acid 

(EDTA), heparin, acetylcholine iodide, polyethylenimine (PEI), sodium chloride, sodium 

sulfate, potassium phosphate (mono and dibasic), triton X-100, chloroacetic acid, sodium 

potassium tartrate, bovine serum albumin (BSA), cupric sulfate, sodium carbonate, Folin 

& Ciocalteu’s phenol reagent, p-nitrophenol, p-nitrophenyl acetate (p-NPA), ethidium 

bromide, agarose, sodium borate dehydrate, boric acid, sodium phosphate (dibasic), 
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potassium chloride, magnesium sulfate, calcium chloride, d-glucose, sodium bicarbonate, 

hemicholinium-3, PPO (2,5-diphenyloxazole), POPOP (1,4-bis[5-phenyl-2-

oxazolyl]benzene) and acetylcholinesterase (Type V-S), WIN 55,212-2 (R(+)-[2,3-

dihydro-5-methyl-3-(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl](1-

napthalenyl)methanone mesylate, oxotremorine (1-[4-(1-Pyrrolidinyl)-2-butynyl]-2-

pyrrolidinone) were all purchased from Sigma-Aldrich (St. Louis, MO). Isoamyl alcohol, 

toluene and acetone were purchased from Fisher Scientific (Houston, TX). Primers for 

genotyping were also purchased from Sigma-Aldrich (St. Louis, MO). For PCR, all 

buffers and enzymes were purchased from Takara (Shiga, Japan).  Reagent grade 

chemicals were used for all studies. 

     Animals 

Maintenance and breeding of knockout and wildtype mice 

M2 knockouts 

A breeding pair of M2 knockout (KO) mice was a generous gift from Dr. Jurgen 

Wess at the National Institute of Diabetes and Digestive and Kidney diseases (NIDDK, 

Bethesda, MD). These M2 knockouts were a cross between CF1 and 129J1 strains 

(50%/50%). The mice were initially produced by replacing a 0.67-kilobase NheI-NsiI 

fragment with PGK-neomycin resistance gene (Gomeza et al., 1999). Crossbred wildtype 

mice (WT) with the same genetic backgrounds (i.e., without littermate controls) were 

used in our initial studies. 
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CB1 knockouts 

Two breeding pairs of homozygous CB1 KO mice were obtained from Dr. Jim 

Pickel at the National Institute of Neurological Disorders and Stroke (NINDS, Bethesda, 

MD). The mice were initially generated by disrupting the coding region of the CB1 gene 

between the amino acids 32 and 448 with PGK-neomycin construct in embryonic stem 

cells. Chimeric mice obtained from these embryonic stem cells were bred to C57Bl/6 

mice. Homozygous CB1 KO mice were then generated by inter-matings of heterozygotes 

(Zimmer et al., 1999). C57Bl/6 (i.e., CB1 WT) mice were purchased from Charles River.  

For breeding purposes, two adult females (8 weeks of age) were kept with one 

male. Nesting squares were kept in each cage to encourage mating. The mice were placed 

in polycarbonate cages and maintained on a 12-h light/dark cycle. The mice were 

provided Mouse Diet 5015 (PMI, Walnut Creek CA) and water ad libitum. Pregnant 

females were separated from cage-mates upon visible evidence of pregnancy. After birth, 

pups remained with the dam until 21 days of age, after which they were sexed and 

weaned. Male mice at 8 weeks of age were used for in vivo studies whereas the females 

were either discarded or used for further breeding. In all cases, genotype was confirmed 

by PCR using tail DNA. All procedures involving animals were in accordance with 

protocols of NIH/NRC “Guide for the Care and Use of Laboratory Animals” and were 

approved by Institutional Laboratory Care and Use Committee (IACUC) of Oklahoma 

State University prior to use. 

Maintenance and breeding of +/+ and -/- littermates   

For obtaining littermate (LM) controls of both M2 and CB1 KO mice, two adult 

WT females (8 weeks of age) were housed with one KO male to obtain heterozygote 
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progeny (HZ). Male and female HZ at 8 weeks of age were then placed together for 

breeding to obtain +/+, +/- and -/- LM mice. WT/LM and KO male mice at 8 weeks of 

age were used for the subsequent studies. HZ male and female mice were either discarded 

or used for further breeding. Confirmation of the genotype was by PCR of tail DNA. 

Mice were ear notched after genotyping for subsequent identification. 

Genotyping 

Extraction of tail DNA 

The distal tail (about 2 cm) was collected for DNA extraction. Tails were cut into 

small pieces to ensure efficient digestion and extraction of DNA. The Qiagen DNeasy 

blood and tissue kit for isolation of genomic DNA was used according to the 

manufacturer’s instructions (Qiagen Inc, Valencia, CA). In brief, 180 µl of ATL buffer 

and 20 µl of proteinase K were added to Eppendorf tubes containing tissues and vortexed. 

The tissues were allowed to lyse in the buffer mixture at 56°C for 6 to 8 hours. Later, 200 

µl of AL buffer and 200 µl of absolute ethanol were added. The mixture was then passed 

through a DNeasy mini spin column and centrifuged at 6000 × g for 1 minute. The flow-

through was discarded. AW1 (500 µl) buffer was added, followed by centrifugation at 

6000 × g for 1 minute. The same process was repeated with AW2 buffer, followed by 

centrifugation at 20,000 × g for 3 minutes. Again, the flow through was discarded. 

Finally, 200 µl of AE buffer was added directly into the DNeasy mini spin column, 

followed by incubation for 1 minute at 37° C and centrifugation at 6000 × g for 1 minute. 

The flow-through was collected for use into sterile Eppendorf tubes. Concentration of 

DNA in the sample was estimated using a spectrophotometer (Nanodrop Products, 

Wilmington, DE). 
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PCR 

M2 KO and WT mice 

The following primers were used for M2 KO mice: 

M2-A6:   5'-GCT ATT ACC AGT CCT TAC AAG ACA- Forward primer 

NEO-1:   5'-CAG CTC ATT CCT CCC ACT CAT GAT –Reverse primer 

The following primers were used for WT mice: 

M2-A6:   5'-GCT ATT ACC AGT CCT TAC AAG ACA-Forward primer 

M2-B5:   5'-CCA GAG GAT GAA GGA AAG AAC C –Reverse primer 

CB1 KO and WT mice 

The following primers were used for CB1 KO mice:  

CTGCTATTGGGCGAAGTG - Forward primer 

TAGCCAACGCTATGTCCTG - Reverse primer  

The following primers were used for WT mice: 

CCCTCTGCTTGCGATCATGGTGTATG – Forward primer 

TATCTAGAGGCTGCGCAGTGCCTTC – Reverse primer  

The following reaction mixture was used for PCR of tail DNA: 

DNA                              5 µl    (10 ng/µl) 

H2O                               5.25 µl 

PCR Buffer (10 X)        2.5 µl 

dNTP (2.5 mM)            2 µl 

Forward primer            5 µl (10 ng/µl) 

Reverse primer             5 µl (10 ng/µl) 

TaKaRa Taq                0.25 µl (5 U/µl) 



 

Total:                           25 µl

 

PCR Conditions: 

95oC for 5 min; 95oC for

for 10 min. Sample were 

PCR was done using DNA isolated from the tail samples. PCR products were

loaded onto a 1.5% agarose gel with 

borate decahydrate and 7.7 mM boric acid for 1L of water; 

the gel. The PCR products were diluted 5

diluted samples being loaded into the wells. For comparison of molecular weights, a 1 kb 

DNA ladder was loaded 

at 100 volts for 30 min. The separated products were visualized using a UV Gel Doc (Gel 

Doc 2000; Bio-Rad Laboratories, Hercules, CA).

The following bands for M2 

1. M2-A6+M2-B5 ---

2. M2-A6+NEO-1---

35 

Total:                           25 µl 

for 30 sec; 55oC for 30 sec; 72oC for 1 min (30 cycles)

. Sample were stored at 4 oC. 

PCR was done using DNA isolated from the tail samples. PCR products were

loaded onto a 1.5% agarose gel with ethidium bromide. 1x SB buffer (19.9 mM sodium 

borate decahydrate and 7.7 mM boric acid for 1L of water; pH = 8.0) was used to prep

the gel. The PCR products were diluted 5 times with loading buffer, with 

loaded into the wells. For comparison of molecular weights, a 1 kb 

 into one lane. PCR products were electrophoretically se

at 100 volts for 30 min. The separated products were visualized using a UV Gel Doc (Gel 

Rad Laboratories, Hercules, CA). 

The following bands for M2 KO and WT mice were obtained (Gomeza et al.,

--- M2 WT band 435 bp and  

--- M2 KO band 476 bp 

Figure 5: Genotyping of 
WT and M2 KO mice.
 
M2 receptor PCR products of 
the expected size were 
observed for both wildtype 
(435 bp) and M2 knockout 
(476 bp) mice
 
 
 
 
 

1 min (30 cycles) and 72oC             

PCR was done using DNA isolated from the tail samples. PCR products were 

buffer (19.9 mM sodium 

was used to prepare 

, with 15 µl of the 

loaded into the wells. For comparison of molecular weights, a 1 kb 

. PCR products were electrophoretically separated 

at 100 volts for 30 min. The separated products were visualized using a UV Gel Doc (Gel 

et al., 1999): 

                                  
Figure 5: Genotyping of 
WT and M2 KO mice. 

M2 receptor PCR products of 
the expected size were 
observed for both wildtype 
(435 bp) and M2 knockout 
(476 bp) mice. 
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The following bands for CB1 KO and WT mice were obtained (Zimmer et al., 1999): 
 
1. WT band 199 bp  

2. CB1 KO band 400 bp 

 

 
Figure 6: Genotyping of WT 
and CB1 KO mice. 
 
CB1 receptor PCR products of the 
expected size were observed for both 
wildtype (199 bp) and CB1 knockout 
(400 bp) mice. 

 

 

 

In vivo studies 

Evaluation of functional signs of OP toxicity 

 Involuntary movements were graded for severity as described by Moser et al. (1988): 

2 = normal quivering of vibrissae, head and limbs; 3 = mild, fine tremor typically seen in 

the forelimbs and head; 4 = whole body tremor; 5 = myoclonic jerks and 6 = clonic 

convulsions. Autonomic signs of cholinergic toxicity (salivation, lacrimation, urination, 

diarrhea commonly called as SLUD) were graded as: 1 = normal, no excessive secretions; 

2 = slight, one SLUD sign or very mild multiple signs; 3 = moderate, multiple overt 

SLUD signs and 4 = severe multiple, extensive SLUD signs.  

Dose determination studies with WT and M2 KO mice 

Research from our laboratory has primarily focused on rat models for evaluating 

toxicity of OP compounds. Since there was relatively little information available in the 

literature for sublethal dosages of parathion in mice, preliminary dose response studies 

Standard 

500  bp
400 bp

300 bp

200 bp

100 bp

WT1     WT2                KO1    KO2                -ve ctrl   

CB1
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were conducted in WT and M2 KO mice. Peanut oil was used as vehicle for all OP 

compounds. Parathion was prepared in peanut oil and administered subcutaneously (15, 

25 or 35 mg/kg, 1 ml/kg) using a 100 µl Hamilton syringe with a 26 gauge needle. 

Control mice were treated with peanut oil only. Mice were evaluated for functional signs 

of toxicity at 2, 4, 8, 12 and 24 hrs after dosing.  Following the final observations, mice 

were sacrificed and tissues were collected for biochemical assays. 

Initial studies using M2 KO without littermate controls 

M2 KO and WT mice (n = 4-6/treatment group) were treated with parathion (35 

mg/kg), chlorpyrifos (300 mg/kg), paraoxon (1 mg/kg) or chlorpyrifos oxon (5 mg/kg). 

All the doses used were based on preliminary dose response studies. Toxicity following 

exposure to the oxons (i.e., paraoxon and chlorpyrifos oxon) is rapid while functional 

toxicity occurs later after exposure to the parent insecticides. Functional signs were 

therefore evaluated for four hrs (paraoxon and chlorpyrifos oxon), 24 hrs (parathion) or 

72 hrs (chlorpyrifos). The onset of cholinergic signs of toxicity was different following 

parathion and chlorpyrifos exposure. Hence different timepoints were selected for studies 

with parathion and chlorpyrifos. Following the final functional observations, body 

weights were recorded, mice were sacrificed by decapitation and tissues were collected 

for biochemical assays.  

Initial studies using CB1 KO without littermate controls 

CB1 KO and WT mice (n = 4-6/treatment group) were treated with vehicle 

(peanut oil), parathion (20 mg/kg) or chlorpyrifos (300 mg/kg) and functional signs of 

toxicity were evaluated for 48 hrs. The dose of parathion was selected based on previous 

studies with FAAH knockout mice (which also has a C57bl/6 genetic background). 
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Following the final functional observations, body weights were recorded, mice were 

sacrificed by decapitation and tissues were collected for biochemical assays. 

M2 KO studies with WT/LM controls 

Subsequent studies comparing toxicity in M2 KO used littermate controls, 

following heterozygote breedings and genotyping of the progeny. M2 KO and WT/LM 

mice (n = 4-6/treatment group) were treated with vehicle (peanut oil), parathion (27.5 or 

35 mg/kg), chlorpyrifos (300 mg/kg) or the muscarinic agonist oxotremorine (0.5 mg/kg). 

Parathion treated mice were evaluated for functional signs of toxicity graded for 24-48 

hrs whereas chlorpyrifos treated mice were evaluated for 72 hrs. For studies with 

oxotremorine, WT/LM and KO mice were treated with either vehicle (deionized water, 1 

ml/kg) or oxotremorine and observed for cholinergic signs of toxicity for 90 minutes. At 

the end of each study, body weights were recorded, mice were sacrificed by decapitation 

and tissues were collected for biochemical assays.  

CB1 KO studies with WT/LM controls 

Our initial studies evaluating toxicity in CB1 KO (without LM controls) 

suggested differences in the extent of cholinesterase inhibition following exposure to 

either parathion or chlorpyrifos (see results). To control properly for such differences, 

WT littermates were used for all subsequent toxicity studies. CB1 KO and WT/LM mice 

(n = 4-6/treatment group) were treated with vehicle (peanut oil), parathion (20 or 27.5 

mg/kg) or chlorpyrifos (300 mg/kg) and functional signs of toxicity evaluated for 24-48 

hrs. At the end of each study, body weights were recorded, mice were sacrificed by 

decapitation and tissues were collected for biochemical assays.  
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Biochemical assays 

Tissue collection and preparation 

Brain, liver, heart, blood (for plasma) and tail were collected. Hippocampus, 

cerebellum and cortex were dissected from whole brain. The heart was rinsed with 10 

mM Tris buffer (pH 7.4) containing 1 mM EDTA and minced before freezing. Liver was 

rinsed in normal saline solution. Blood was collected into heparinized 1.5 ml Eppendorf 

tubes (20 µl heparin; 10,000 units/ml) and immediately centrifuged at 12,000 rpm for 10 

minutes to separate plasma. All tissues were stored at -70°C until assayed. Cholinesterase 

was measured in hippocampus, cortex, cerebellum and heart. The rationale for selecting 

these brain regions was because of the high abundance of cholinergic signaling and also 

due to involvement of these regions in memory, learning and motor control. 

Carboxylesterase activity was measured in plasma and liver. On the day of the assay, 

tissues were thawed on ice, weighed and an appropriate volume of 50 mM potassium 

phosphate buffer, pH 7.0 added based on the specific tissues (hippocampus, 30 volumes; 

cortex, 40 volumes; cerebellum, 40 volumes; heart, 30 volumes and liver, 20 volumes). 

Tissues were homogenized using a Polytron PT 3000 homogenizer (Brinkmann 

Instruments, Westbury, NY) at 28,000 rpm for 20 seconds. For heart, the minced tissues 

were washed with normal saline solution, blotted on tissue paper and then homogenized 

two times for 30 seconds each, with a 20 second between homogenizations. In each case, 

tissue homogenates were used for cholinesterase or carboxylesterase assays. Protein 

content in homogenates was measured using the method of Lowry and coworkers (1951) 

using bovine serum albumin as the standard.  
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Cholinesterase assay 

Cholinesterase activity was measured using a radiometric method (Johnson and 

Russell, 1975). Briefly, twenty µl of tissue homogenate was added to 60 µl of 1% Triton 

X-100 in potassium phosphate buffer (50 mM, pH 7) in 7 ml scintillation vials and 

vortexed. Twenty µl of 5 mM [3H]acetylcholine iodide (1 mM final concentration) was 

added at staggered intervals (10 seconds), vortexed and incubated at room temperature. 

Incubation times were preselected for each tissue based on attaining linear rates of 

substrate hydrolysis. For a positive control in each assay, purified electric eel AChE was 

used in duplicate vials to determine complete substrate hydrolysis. For determining non-

enzymatic hydrolysis of the substrate, paired blank samples were analyzed containing no 

tissue (or other enzyme source). The reaction was stopped by the addition of 100 µl of an 

acidified stop solution, which not only terminates the reaction but also protonates the 

acetate product essential for the analysis of enzymatic activity in this system. Five ml of a 

toluene-based organic scintillation cocktail was then added to the vials followed by 

vortexing to separate aqueous and organic phases, after which radioactivity was measured 

directly in the reaction vial. ChE activity in the samples was then normalized by protein 

content and expressed as nmol ACh hydrolyzed/min/mg protein. 

Preparation of purified AChE (electric eel) 

AChE (electric eel) was purchased as a lyophilized powder (1070 units/mg 

protein). Working stocks of eel AChE were prepared by dissolving 50 units enzyme 

activity in 1 ml of 50 mM potassium phosphate buffer (pH 7.0). Aliquots (50 µl) were 

stored at -70°C. On the day of each assay, twenty µl of eel AChE stock solution was 

added into paired vials and maximal substrate hydrolysis determined.  



41 
 

Preparation of radiolabeled substrate ([3H]acetylcholine iodide)  

The radiolabeled substrate for the cholinesterase assay was prepared by dissolving 

1 mCi of [3H]acetylcholine iodide in 2 ml of 50 mM potassium phosphate buffer (pH 

7.0). An aliquot (150 µl) of this stock radioligand solution was added to 10 ml of 9.90132 

mM non-radiolabelled acetylcholine iodide, and the volume was adjusted to 20 ml by 

adding 9.85 ml of 50 mM potassium phosphate buffer (pH 7.0). Aliquots of substrate 

solutions were then aliquoted (800 µl each) and stored at -70°C until use. 

Preparation of the reaction terminating solution  

Stop solution was prepared from chloroacetic acid (1 M), sodium hydroxide (0.5 

M) and sodium chloride (1.9 M) in deionized water. This solution was stored at 4°C until 

use. 

Preparation of organic scintillation cocktail for the cholinesterase assay 

The scintillation cocktail for the cholinesterase assay was prepared by mixing the 

scintillants 2,5-diphenyloxazole (PPO; 22.6 mM) and 1,4-bis[5-phenyl-2-

oxazolyl]benzene (POPOP; 0.8 mM) in 100 ml of isoamyl alcohol and 900 ml of toluene. 

This cocktail was vortexed until in solution and stored at room temperature. 

Carboxylesterase assay  

The assay for carboxylesterase activity was conducted essentially as described by 

Clement and Erhardt (1990), as modified by Karanth and Pope (2000). In brief, 10 µl of 

tissue homogenate or plasma was added to 240 µl of 0.1 M Tris-HCl buffer (pH 7.8) 

containing 2 mM EDTA. This mixture was then pre-incubated for 5 min at 37°C. The 
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reaction was initiated by the addition of 10 µl of 12.5 mM p-nitrophenyl acetate (NPA) in 

100% acetone (0.5 mM final concentration). The reaction time was selected from 

preliminary time course assays to elicit linear rates of substrate hydrolysis. Absorbance at 

405 nm was recorded against a blank that contained only buffer and substrate. A standard 

curve with p-nitrophenol was used to determine carboxylesterase activity, which was 

expressed as nmoles of p-NPA hydrolyzed/min/mg protein or /ml of plasma.  

Estimation of protein content in tissue samples 

Protein content was estimated using the method of Lowry et al. (1951). A 

standard curve was made for each assay with different concentrations of bovine serum 

albumin (BSA). Paired tubes contained 0, 10, 25, 50, 75 or 100 µg of BSA and were 

processed along with unknown samples. An equal volume of buffer corresponding to that 

amount of buffer in unknown samples was added to each of the BSA standard tubes to 

account for any influence on protein estimation. The volume was adjusted to 200 µl in 

both standard and unknown sample tubes with deionized water. Later, 2 ml of working 

reagent 1 (see below) was added to all tubes including the standards, followed by 

incubation at room temperature for 10 min. After this incubation, 200 µl of working 

reagent 2 (see below) was added to all tubes. The tubes were then vortexed and incubated 

for 30 min at room temperature. Absorbance was read using a UV-Vis 

Spectrophotometer (Beckman-Coulter, Fullerton, CA) at 720 nm. Protein content in the 

unknown samples was then estimated based on absorbance changes in the standard curve. 
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Preparation of BSA  

Working stock solutions of BSA were prepared by dissolving BSA in deionized 

water (1 mg/ml) and these were aliquoted and stored at -20°C until use.   

Preparation of working reagents 1 and 2 for the protein assay 

Working reagents 1 and 2 were prepared fresh on the day of the assay. Working 

reagent 1 was prepared by adding 1 part of 0.5% copper sulfate and 1 part of 1% sodium 

potassium tartrate to 100 parts of 2% sodium carbonate in 0.1N sodium hydroxide. The 

copper sulfate and sodium potassium tartrate solutions were prepared in advance in 

deionized water and stored at 4°C. The sodium carbonate solution in 0.1N sodium 

hydroxide was stored at room temperature. Working Reagent 2 was prepared by adding 

equal parts of Folin & Ciocalteu’s Phenol reagent and deionized water. 

Ex vivo studies  

 M2 KO studies with WT/LM controls 

M2 KO and WT mice (n = 4-6/treatment group) were treated with vehicle (peanut 

oil, 1 ml/kg) or parathion in peanut oil (27.5 mg/kg). Mice were graded for 48 hrs for 

functional signs of OP toxicity. After the final functional observations, mice were 

sacrificed by decapitation and hippocampus, cortex and striatum were rapidly dissected 

on ice and slices were prepared as described below to measure acetylcholine release ex 

vivo.  

CB1 KO studies with WT/LM controls 

CB1 KO and WT mice (n = 4-6/treatment group) were treated with vehicle, 

parathion (27.5 mg/kg) or chlorpyrifos (300 mg/kg) and graded for functional signs of 
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toxicity for 24-48 hrs. Mice were then sacrificed by decapitation and ACh release 

subsequently evaluated in hippocampal and striatal slices prepared as described below  

 Ex vivo acetylcholine release in brain slices 

Brain slices were prepared essentially as described before (Zhang et al., 2002). In 

brief, mice were sacrificed by decapitation and whole brain was immediately removed 

and dissected on ice to separate the different brain regions. Hippocampal, striatal and 

cortical slices (250 µm, unidirectional) were prepared using a McIlwain Tissue Slicer. 

These slices were dispersed by gentle trituration (4-5 x) with a pasteur pipette. The slices 

were first  pre-incubated for 20 min at 33°C under constant oxygenation in Krebs Ringer 

Bicarbonate buffer (KRB: 1.3 mM CaCl2, 1.2 mM KH2PO4, 4.7 mM KCl, , 1.2mM 

MgSO4, 25 mM NaHCO3, 118 mM NaCl, and 11 mM d-glucose). The slices were then 

washed with fresh KRB and then incubated with 2 ml of KRB containing 15 µl of 

[3H]choline (113 nM final concentration, specific activity 66.5 Ci/mmol) for 30 min at 

37°C. Hemicholinium-3 (10 µM) was added to all buffers to block high affinity choline 

uptake (this allows measurement of released acetylcholine even when 

acetylcholinesterase is active; Liu et al., 2002). The slices were then transferred to a 

superfusion apparatus (SF12/Brandel Inc., Gaithersburg, MD) and perfused with KRB 

containing hemicholinium-3 (0.5 ml/min for 60 min, 37°C). ACh release was stimulated 

twice by perfusing the slices for five minutes (i.e., at 20 - 25 [S1] and 60 – 65 [S2] 

minutes) with depolarizing buffer (25 mM NaHCO3, 1.2 mM MgSO4, 1.3 mM CaCl2, 11 

mM d-glucose, 10 µM hemicholinium-3 containing elevated potassium and equivalently 

reduced sodium levels). The concentration of KCl and NaCl in the buffer varied 

depending on the tissue: cortex; 30 mM KCl, 87.7 mM NaCl, hippocampus; 25 mM KCl 
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92.7 mM NaCl, and for striatum; 20 mM KCl, 97.7 mM NaCl. Twenty 5-min fractions 

were collected. At the end of the assay, 250 µl of the each fraction was pipetted into 7 ml 

scintillation vials, 4 ml of scintillation fluid was added, the vials were vortexed and the 

radioactivity in each vial was measured using a liquid scintillation counter. The tissue 

slices from each well were transferred carefully from the chambers to tubes containing 2 

ml of 1N NaOH and allowed to digest for 1 hr at 72°C. After 1 hr, 200 µl of each tissue 

digest was transferred to 7 ml scintillation vials, and the total residual radioactivity in 

tissues was measured using liquid scintillation counting. Although slices were stimulated 

twice with depolarizing buffer, for the ex vivo release studies only data from the S1 peak 

was used to determine OP-related effects. The size of the peak (S1) was related to total 

amount of radioactivity in all fractions and the residual tissue. Effects of in vivo OP 

exposure on release were related to release in the respective vehicle treated controls. 

In vitro studies  

M2 KO studies with WT/LM controls 

The in vitro effects of OPs on ACh release were studied in cortical, hippocampal 

and striatal slices from WT and M2 KO mice. Brain slices (n = 5-8 animals/treatment 

group) were exposed to either vehicle, paraoxon (100 µM) or chlorpyrifos oxon (100 

µM) and changes in acetylcholine release were evaluated. 100 mM stock solutions of 

oxons were prepared in absolute ethanol and then serially diluted to obtain 100 µM 

concentrations.  The muscarinic agonist, oxotremorine (10 µM) was used as a positive 

control. 
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CB1 KO studies with WT/LM controls 

Hippocampal and striatal slices from WT and CB1 KO mice were used to study 

the in vitro effects of OPs on ACh release. Brain slices (n = 6-8 animals/treatment 

condition were exposed to either vehicle, to paraoxon (100 µM) or chlorpyrifos oxon 

(100 µM). The cannabinoid agonist, WIN 55,212-2 (1 µM) was used as a positive 

control. 

In vitro acetylcholine release in brain slices 

The ACh release method for in vitro studies was essentially the same as described 

above for ex vivo studies. To study the effects of an exogenous chemical (e.g. paraoxon) 

on ACh release, either vehicle or the chemical under study was added 20 minutes before 

the second pulse of potassium (S2). The ratio of S2/S1 was then used as a normalized 

index of ACh release under the influence of the exogenous test chemical. 

Statistical Analyses 

The body weight data and biochemical data (acetylcholinesterase, 

carboxylesterase and ACh release) were expressed as mean ± standard error (SE) and 

analyzed using one-way ANOVA and post hoc analysis using Tukey’s test. Functional 

data (IM and SLUD signs) were expressed as median ± interquartile range (IQR). 

Functional data were transformed (square root) and were analyzed for statistical 

significance by two-way ANOVA and post hoc analysis was performed with Bonferroni 

correction. In the absence of normally distributed data such as ranked observations, data 

transformations including the square root transformation can be conducted with 

subsequent statistical analysis by parametric methods (Singer et al., 2004). For all 
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statistical analyses the GraphPad Prism® statistical software was used. Statistical 

differences were considered significant at p < 0.05. 
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CHAPTER III 

RESULTS 

 

Studies with Muscarinic M2 Receptor Knockout Mice 

Specific Aim 1A: To evaluate the effects of M2 receptor deletion on acute sensitivity 

to selected OP compounds: Initial Studies 

We used four different OPs (parathion, chlorpyrifos, paraoxon and chlorpyrifos 

oxon) for these studies. Wildtype and M2 knockout mice of 8 weeks of age were used for 

all studies. Dose determination studies were first conducted.  

A) Parathion toxicity in wildtypes and M2 knockouts  

Preliminary dose-response studies were first conducted with parathion. Mice were treated 

with parathion (0, 15, 25 or 35 mg/kg, sc) and functional signs of toxicity were graded at 

2, 4, 8, 12 and 24 hrs after dosing. Figure 7 shows the dose dependent effects of parathion 

on involuntary movements. Wildtype mice exposed to the lowest dosage (15 mg/kg) 

exhibited tremors at 24 hrs while the same dosage had no effect in M2 knockout mice. 

With 25 mg/kg, parathion elicited tremors in wildtype mice by 8 hrs after treatment and 

significant differences were noted between wildtypes and knockouts at 24 hrs after 

dosing. The highest dosage of parathion (35 mg/kg) elicited more extensive and 
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severe tremors by 12 hrs after dosing, persisting until the end of the observation period. 

The extent of tremors elicited by parathion at 35 mg/kg exposure was significantly 

different in wildtype and M2 knockout mice at both 12 and 24 hrs after dosing. When 

tremors (involuntary movements) were used as the toxicity endpoint, wildtypes exhibited 

more severe responses than M2 knockouts.  

Figure 8 shows the effects of parathion in wildtypes and M2 receptor knockouts 

on autonomic indicators of toxicity (i.e., SLUD signs). All three dosages of parathion 

elicited SLUD signs in wildtype mice at 12 and 24 hrs after exposure. The two higher 

dosages (25 and 35 mg/kg) elicited SLUD signs in the knockout mice at 12 and 24 hrs 

after dosing. A significant difference in the expression of SLUD signs was noted between 

wildtype and knockout mice at 12 hrs following exposure to the highest dosage (35 

mg/kg).  

Figure 9 shows inhibition of hippocampal cholinesterase activity following 

parathion exposure in wildtype and M2 receptor knockout mice. Parathion inhibited 

cholinesterase activity in both wildtypes and knockouts, but more extensive inhibition 

was noted in tissues from wildtypes. Interestingly, all three dosages caused relatively 

similar degrees of cholinesterase inhibition in wildtype mice (15 mg/kg, 85.7 ± 0.4%; 25 

mg/kg, 89.8 ± 0.2%; 35 mg/kg, 91.2 ± 0.8%). In M2 knockouts, significantly lower 

inhibition was noted with the lowest dosage, but the two highest dosages did not elicit 

different degrees of inhibition (15 mg/kg, 47.5 ± 5.6; 25 mg/kg, 76.1 ± 6.9%; 35 mg/kg, 

74.5 ± 7.7%). As both functional and biochemical analyses suggested that wildtype mice 

were more sensitive to the acute toxicity of parathion, further studies were conducted 

with the highest dosage of parathion (35 mg/kg). 
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Figure 7: Dose-related effects of parathion on involuntary movements in wildtype and 

M2 knockout mice.  

Mice (n = 4-7/group) were exposed to either vehicle or parathion (15, 25 or 35 mg/kg, sc) 

and were graded for functional signs of toxicity as described in methods section. 

Functional signs were expressed as median ± interquartile range. An asterisk indicates a 

significant difference between wildtype control and wildtype treatment group. A dollar 

sign indicates a significant difference between knockout control and knockout treatment 

group. A pound sign indicates a significant difference between wildtype and M2 

knockout mice. Mice in wildtype and M2 knockout control group did not show any signs 

throughout the observation period. 
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Figure 8: Dose-related effects of parathion on SLUD signs in wildtype and M2 knockout 

mice.  

Mice (n = 4-7/group) were exposed to either vehicle or parathion (15, 25 or 35 mg/kg, sc) 

and were graded for functional signs as described in methods section. Functional signs 

were expressed as median ± interquartile range. An asterisk indicates a significant 

difference between wildtype control and wildtype treatment group. A dollar sign 

indicates a significant difference between knockout control and knockout treatment 

group. A pound sign indicates a significant difference between wildtype and M2 

knockout mice. Mice in wildtype and M2 knockout control group did not show any signs 

throughout the observation period. 
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Figure 9: Dose-related effects of parathion on hippocampal cholinesterase activity in 

wildtype and M2 knockout mice.  

Mice (n = 4-7/group) were exposed to either vehicle or parathion (15, 25 or 35 mg/kg, sc) 

and were sacrificed 24 hrs after treatment. Hippocampus was collected and subsequently 

analyzed for cholinesterase activity. Data (mean ± standard error) represent enzyme 

activities (nmol of substrate hydrolyzed/minute/mg protein) and are expressed as percent 

of respective control values. An asterisk indicates a significant difference compared to 

controls, a pound sign indicates a significant difference between wildtype and knockout 

treatment groups, and a dollar sign indicates a significant difference with respect to other 

dosing groups within wildtype or knockout mice. Cholinesterase activity in hippocampus 

of control animals was 36.4 ± 1.6 nmol/min/mg protein in wildtypes and 38.7 ± 0.2 

nmol/min/mg protein in M2 knockouts.  
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Effect of parathion (35 mg/kg, sc) on functional signs and esterase activities in wildtype 

and M2 knockouts 

Mice were treated with vehicle or parathion (35 mg/kg, sc) and were observed for 

functional signs of toxicity for 24 hrs. Parathion exposure reduced body weight in both 

wildtype and M2 knockout mice with no significant differences between the treatment 

groups (WT: 14.6 ± 2.2%; KO: 11.1 ± 3.5%).  

Figure 10 shows the effects of parathion on cholinergic signs of toxicity 

(involuntary movements, excessive secretions, i.e. SLUD signs) and cholinesterase 

inhibition in hippocampus.  

Tremors were seen in wildtypes at 8 hrs after dosing, which became progressively 

more severe by 24 hours. Tremors were also seen in M2 knockouts, but only 24 hrs after 

dosing. The extent of involuntary movements in wildtypes was significantly different 

from M2 knockouts at 8, 12 and 24 hrs after parathion treatment.  

  Parathion exposure elicited SLUD signs in wildtypes by 8 hrs after dosing, which 

increased in intensity by 12 hours. Moderate SLUD signs were observed at 24 hrs after 

dosing in wildtypes. In contrast, M2 knockout mice showed relatively few SLUD signs at 

12 hrs but these gradually increased in severity by 24 hrs after dosing. A significant 

difference in SLUD signs between wildtype and M2 knockout mice was observed at both 

8 and 12 hrs after dosing.         

  Basal cholinesterase levels were similar between wildtype and M2 knockout 

mice. Extensive inhibition was observed in both wildtype and knockout mice (WT: 91.2 

± 0.9%, KO: 75.3 ± 7.4%). Table 1 summarizes cholinesterase inhibition in other brain 

regions following parathion exposure in these same animals. Parathion significantly 



 

54 
 

reduced cholinesterase activity in both wildtypes and M2 knockouts in all brain regions 

but a moderately greater reduction was noted in the wildtypes in both hippocampus and 

cortex. In contrast, relatively similar degrees of cerebellar cholinesterase inhibition were 

noted between wildtypes and knockouts. Extensive inhibition was noted in both wildtype 

and M2 knockout mice in heart (WT: 85.5 ± 1.0%, KO: 72.4 ± 6.6%). 

  Again, basal liver carboxylesterase levels were similar in both wildtype and M2 

knockout mice. Parathion inhibited liver carboxylesterase in both wildtype and M2 

knockout mice (WT: 88.6 ± 0.9%, KO: 71.3 ± 2.9%). Interestingly, M2 knockouts had 

significantly higher basal plasma carboxylesterase levels compared to wildtypes. 

Parathion caused relatively similar changes in plasma carboxylesterase activity in both 

wildtype and M2 knockout mice (WT: 30.9 ± 6.1%, KO: 31 ± 10.6%). To summarize, 

parathion exposure elicited severe functional signs and extensive brain regional 

cholinesterase inhibition, with somewhat greater cholinesterase inhibition in wildtype 

mice compared to M2 knockout mice in selected tissues.  
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Figure 10: Effects of parathion treatment on 

a) involuntary movements b) SLUD signs c) 

hippocampal cholinesterase activity in 

wildtype and M2 knockout mice.  

 
Mice (n = 4-7/group) were exposed to either 

vehicle or parathion (35 mg/kg) and were 

graded for functional signs of toxicity for 24 

hrs as described in methods section. At the 

end of 24 hrs mice were sacrificed and 

hippocampus collected and analyzed for 

cholinesterase activity. Functional signs were 

expressed as median ± interquartile range. 

Cholinesterase data (mean ± standard error) 

represent enzyme activities (nmol of 

substrate hydrolyzed/minute/mg protein) and 

are expressed as percent of control values. 

An asterisk indicates significant difference 

compared to respective control and a dollar 

sign indicates a significant difference 

between knockout control and knockout 

treatment group. A pound indicates 

significant difference between wildtype and 

knockout mice. Cholinesterase activity in 

hippocampus of control animals was 36.4 ± 

1.6 nmol/min/mg protein in wildtypes and 

38.7 ± 0.2 nmol/min/mg protein in M2 

knockouts. 
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B) To evaluate comparative sensitivity of wildtypes and M2 knockouts to chlorpyrifos 

  Mice were treated with either vehicle (peanut oil) or chlorpyrifos (300 mg/kg, sc) 

in peanut oil. Mice were graded for functional signs of toxicity for the subsequent 72 

hours. Body weights were monitored before and 72 hrs after treatment. Chlorpyrifos 

produced a significant reduction (21 ± 6%) in body weight in wildtype mice, but had no 

effect on weight in M2 knockouts.    

Figure 11 shows the effects of chlorpyrifos on involuntary movements and 

cholinesterase inhibition in hippocampus. Chlorpyrifos treatment had relatively little 

effect on autonomic signs (SLUD) of toxicity in either wildtypes or knockouts. 

  Mild tremors were observed in wildtype mice, at 48 and 72 hrs, but absent from 

M2 knockout mice during the 72 hrs after dosing.      

  Significant inhibition of hippocampal cholinesterase was observed in both 

wildtype and M2 knockout mice, but markedly greater inhibition was noted in the 

wildtypes (WT: 80.4 ± 4.4%, KO: 37.5 ± 13.7%). Table 1 summarizes cholinesterase 

inhibition following chlorpyrifos exposure in the other brain regions evaluated in 

wildtype and M2 knockout mice. Chlorpyrifos exposure elicited significantly greater 

inhibition in wildtypes compared to knockouts in hippocampus and cerebellum. In cortex, 

chlorpyrifos exposure was associated with significant inhibition only in wildtypes. 

Chlorpyrifos had relatively similar effects on heart cholinesterase activity in wildtypes 

(87.5 ± 2.6%) and M2 knockouts (59.2 ± 6.3%).       

  In contrast to the differing degrees of cholinesterase inhibition noted above, 

relatively similar inhibition of liver carboxylesterase was observed in wildtypes and M2 

knockout mice (WT: 79.1 ± 0.4%, KO: 81.2 ± 2.3%). We also evaluated plasma 
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carboxylesterase inhibition following chlorpyrifos exposure. Chlorpyrifos resulted in 

significant inhibition of plasma carboxylesterase activity in both wildtype and M2 

knockout mice, with greater inhibition observed in M2 knockouts (WT: 29.6 ± 3.7%, 

KO: 46.5 ± 1.6%). Similar to results from the parathion dosing study shown above, 

wildtype mice appeared somewhat more sensitive to chlorpyrifos based on the extent of 

cholinesterase inhibition, but showed either similar or lesser inhibition of 

carboxylesterase activity in liver and plasma.  
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Figure 11: Effects of Chlorpyrifos treatment on a) involuntary movements b) hippocampal 

cholinesterase activity in wildtype and M2 knockout mice.  

Mice (n = 4-7/group) were exposed to either vehicle or chlorpyrifos (300 mg/kg) and were graded 

for functional signs of toxicity for 72 hrs as described in methods section. At the end of 72 hrs 

mice were sacrificed and hippocampus collected and analyzed for cholinesterase activity. 

Functional signs were expressed as median ± interquartile range. Cholinesterase data (mean ± 

standard error) represent enzyme activities (nmol of substrate hydrolyzed/minute/mg protein) and 

are expressed as percent of control values. An asterisk indicates significant difference compared 

to respective control and a dollar sign indicates a significant difference between knockout control 

and knockout treatment group. A pound indicates significant difference between wildtype and 

knockout mice Cholinesterase activity in hippocampus of control animals was 36.4 ± 1.6 

nmol/min/mg protein in wildtypes and 38.7 ± 0.2 nmol/min/mg protein in M2 knockouts. 
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C) Effect of paraoxon and chlorpyrifos oxon in wildtype and M2 knockout mice 
 

As noted above, wildtypes and M2 knockouts appeared differentially sensitive to 

both parathion and chlorpyrifos, based on functional signs of toxicity and/or extent of 

cholinesterase inhibition. As both parathion and chlorpyrifos require bioactivation 

(Sultatos et al., 1985) the differences noted could be due to differences in bioactivation of 

the parent insecticides. We therefore compared the toxicity of the active metabolites of 

these insecticides in wildtype and M2 knockout mice.  

1) Sensitivity of wildtypes and M2 knockouts to paraoxon  

Mice were treated with either vehicle or paraoxon (1 mg/kg, sc) and graded for 

functional signs of toxicity for 4 hours Paraoxon elicited significant body weight 

reductions in both wildtypes and M2 knockouts, with more extensive changes noted in 

M2 knockouts compared to wildtype mice (WT: 4 ± 2%, KO: 11 ± 5%).   

 Figure 12 shows the effects of paraoxon on cholinergic signs of toxicity 

(involuntary movements, excessive secretions, i.e. SLUD signs) and cholinesterase 

inhibition in hippocampus.  

Tremors were observed in both wildtype and M2 knockout mice by 1 hr after 

dosing but differed significantly from controls only in wildtypes. Severe tremors were 

observed at 2 hours and continued throughout the experimental period in both wildtype 

and M2 knockout mice. Moderate SLUD signs were observed in both wildtypes and M2 

knockouts which were significantly different from controls at 2, 3 and 4 hrs after dosing. 

There were, however no differences in the expression of functional signs of toxicity 

between wildtypes and M2 knockouts. 
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Paraoxon markedly inhibited hippocampal cholinesterase activity in both wildtype 

and M2 knockout mice (WT: 75.1 ± 5.8%, KO: 94.2 ± 0.8%). Table 1 summarizes 

cholinesterase inhibition in other brain regions following paraoxon exposure. Paraoxon 

significantly reduced cholinesterase activity in both wildtypes and M2 knockouts in all 

brain regions, with greater reduction in M2 knockouts (Table 1). Paraoxon caused a 

significant reduction in heart cholinesterase activity but no significant differences 

between wildtypes and M2 knockouts (WT: 78.4 ± 3.5%, KO: 83.8 ± 2.9%). 

Paraoxon elicited significant inhibition of liver carboxylesterases in M2 

knockouts (30 ± 6%), but no effect in wildtypes. Relatively similar changes were noted in 

plasma carboxylesterase, i.e., paraoxon reduced plasma carboxylesterase in M2 

knockouts (40 ± 6%) but had no effect on plasma carboxylesterase activity in wildtypes. 

In contrast to our studies with the parent insecticide parathion, wildtype and M2 knockout 

mice exhibited relatively similar signs of cholinergic toxicity following paraoxon 

exposure, although knockouts showed significantly greater body weight reductions. 

Moreover, more extensive brain cholinesterase and carboxylesterase inhibition were 

observed in M2 knockouts compared to wildtype mice, the reverse of what was noted in 

response to parathion. 
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Figure 12: Effects of paraoxon treatment on a) 

involuntary movements b) SLUD signs c) 

hippocampal cholinesterase activity in 

wildtype and M2 knockout mice.  

 

Mice (n = 4-7/group) were exposed to either 

vehicle or paraoxon (1 mg/kg) and were 

graded for functional signs of toxicity for 4 

hrs as described in methods section. At the 

end of 4 hrs mice were sacrificed and 

hippocampus collected and analyzed for 

cholinesterase activity. Functional signs were 

expressed as median ± interquartile range. 

Cholinesterase data (mean ± standard error) 

represent enzyme activities (nmol of substrate 

hydrolyzed/minute/mg protein) and are 

expressed as percent of control values. An 

asterisk indicates significant difference 

compared to respective control and a dollar 

sign indicates a significant difference between 

knockout control and knockout treatment 

group. A pound indicates significant 

difference between wildtype and knockout 

mice. Cholinesterase activity in hippocampus 

of control animals was 36.4 ± 1.6 

nmol/min/mg protein in wildtypes and 38.7 ± 

0.2 nmol/min/mg protein in M2 knockouts. 
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2) Sensitivity of wildtype and M2 knockout mice to chlorpyrifos oxon 

Mice were treated with vehicle or chlorpyrifos oxon (5 mg/kg, sc) and graded for 

functional signs of toxicity for 4 hours. Chlorpyrifos oxon exposure resulted in 

significant body weight reductions in wildtypes (8 ± 2%) but had no effect in M2 

knockouts.  

Figure 13 shows the effects of chlorpyrifos oxon on cholinergic signs of toxicity 

(involuntary movements, excessive secretions, i.e. SLUD signs) and cholinesterase 

inhibition in hippocampus.  

Both wildtype and M2 knockout mice exposed to chlorpyrifos oxon exhibited 

involuntary movements, but the onset of signs was earlier in the wildtypes. The extent of 

involuntary movements was significantly different in wildtypes compared to M2 

knockout mice at 1, 2 and 3 hrs after dosing. Only wildtypes exhibited SLUD signs, the 

extent of which was significantly different from M2 knockout mice at 3 and 4 hrs after 

exposure to chlorpyrifos oxon. Thus based on both involuntary movements and SLUD 

signs, wildtype mice exhibited more extensive functional signs compared to M2 

knockouts following chlorpyrifos oxon exposure. 

Extensive inhibition of hippocampal cholinesterase activity was observed, but 

with no significant differences between wildtypes and M2 knockouts (WT: 93 ± 1.1%, 

KO: 91 ± 2.1%).  Similar findings were also observed in other brain regions (Table 1). 

We also observed a marked and similar degree of inhibition of heart cholinesterase 

activity in both wildtype and M2 knockout mice (WT: 90 ± 2%, KO: 89 ± 2%). 

Chlorpyrifos oxon exposure had relatively little effect in wildtypes, whereas it 

elicited more extensive inhibition in M2 knockouts (WT: 12 ± 7%, KO: 30 ± 5%). In 
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plasma however, there was significant inhibition of carboxylesterase activity in both 

wildtype and M2 knockout mice, with no significant difference between the groups (WT, 

47 ± 2%, KO: 54 ± 1%). Data based on changes in functional signs thus suggested that 

wildtype mice may be more sensitive than knockouts at earlier time points after exposure. 

Wildtype and M2 knockout mice appeared equally sensitive to chlorpyrifos oxon 

exposure at later time points, however.  
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Figure 13: Effects of chlorpyrifos oxon 

treatment on a) involuntary movements b) 

SLUD signs c) hippocampal cholinesterase 

activity in wildtype and M2 knockout mice.  

 
Mice (n = 4-7/group) were exposed to either 

vehicle or chlorpyrifos oxon (5 mg/kg) and 

were graded for functional signs of toxicity 

for 4 hrs as described in methods section. At 

the end of 4 hrs mice were sacrificed and 

hippocampus collected and analyzed for 

cholinesterase activity. Functional signs 

were expressed as median ± interquartile 

range. Cholinesterase data (mean ± standard 

error) represent enzyme activities (nmol of 

substrate hydrolyzed/minute/mg protein) 

and are expressed as percent of control 

values. An asterisk indicates significant 

difference compared to respective control 

and a dollar sign indicates a significant 

difference between knockout control and 

knockout treatment group. A pound 

indicates significant difference between 

wildtype and knockout mice. Cholinesterase 

activity in hippocampus of control animals 

was 36.4 ± 1.6 nmol/min/mg protein in 

wildtypes and 38.7 ± 0.2 nmol/min/mg 

protein in M2 knockouts. 
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Table 1: Effect of selected OPs on cholinesterase activity in cortex and cerebellum from 

wildtype and M2 knockout mice. 

 
 

 
 

 

 

 

 

 

 

 

 

 

Mice (n = 4-7/group) were exposed to either vehicle or selected OPs and were graded for 

functional signs of toxicity as described in methods section. Mice were sacrificed and 

tissues analyzed for cholinesterase assay. Data (mean ± standard error) represent enzyme 

activities in terms of nmol of substrate hydrolyzed/minute/mg protein. Values in 

parentheses indicate percent cholinesterase inhibition with respect to control values. 

a
 indicates a significant difference compared to respective control.  

b
 indicates a significant difference between wildtype and M2 knockout mice. 

 

 

Tissue/ 
genotype 

 
Control 

 

 
Parathion 

 
Chlorpyrifos Paraoxon Chlorpyrifos 

oxon 

Cortex/WT 39.5 ± 2.1  3.8 ± 0.4ab 
(90) 

17.2 ± 3.6 a 
(56) 

7.5 ± 1.1a 
(81) 

3.2 ± 0.4a 
(92)  

Cortex/KO 31.7 ± 1.9 9.8 ± 2.4a 
(69) 

35.6 ± 10.2  
(-12) 

2.9 ± 0.5ab 
(90) 

5.5 ± 0.8a 
(83)  

Cerebellum/WT 12.2 ± 0.5 3.4 ± 0.2a 
(72) 

2.9 ± 0.3ab 

(76) 
2.6 ± 0.3a 
(78) 

7.6 ± 0.6 a 
(37)  

Cerebellum/KO 14.9 ± 0.9 5.6 ± 1.1a 
(62) 

5.3 ± 0.8a  

(64) 
1.5 ± 0.1 ab 
(90) 

7.8 ± 0.7 a 
(48)  
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Specific Aim 1B: To evaluate the effects of M2 receptor deletion on sensitivity to 

different OP compounds: Studies with +/+ and -/- littermates 

Our preliminary studies reported above compared the acute sensitivity of wildtype 

and M2 knockout mice to the OPs parathion and chlorpyrifos. In contrast to our 

hypothesis, wildtype mice exhibited higher sensitivity (based on functional signs) than 

M2 knockouts to both OPs. Interestingly, the more extensive signs of toxicity noted in 

wildtypes were associated with more extensive brain regional cholinesterase inhibition. 

There did not appear to be differences in the extent of carboxylesterase inhibition 

between wildtype and M2 knockout mice, however. Parathion and chlorpyrifos are both 

parent insecticides which require bioactivation by cytochrome P450 (cyp450) enzymes to 

their active oxygen metabolites, paraoxon and chlorpyrifos oxon. Differences in the 

degree of cholinesterase inhibition in this context could therefore be due to differences in 

bioactivation between wildtypes and M2 knockouts.  To evaluate further this possibility, 

relative sensitivity to paraoxon and chlorpyrifos oxon was then studied (see above). Both 

wildtypes and M2 knockouts exhibited relatively similar signs of cholinergic toxicity 

following paraoxon treatment. Interestingly, paraoxon led to significantly higher 

inhibition in M2 knockouts compared to wildtypes. Chlorpyrifos oxon exposure elicited 

cholinergic signs in both wildtype and M2 knockout mice, but the signs were more 

extensive in wildtype mice compared to M2 knockouts in spite of relatively similar 

changes in cholinesterase activity. Such differences in sensitivity could be due to 

differences in liver detoxification since more extensive carboxylesterase inhibition was 

observed in M2 knockouts. These results suggested that continuous inbreeding of non-

littermates could potentially be responsible for changes in bioactivation and/or 
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detoxification between the wildtype and M2 knockout mice used in our initial studies. 

We concluded that additional studies using appropriate littermate controls were required 

to investigate the role of M2 receptor deletion on OP toxicity. A breeding program was 

initiated using heterozygous mice to obtain homozygous wildtype and M2 knockout 

littermates for all further studies reported below.  

A) Comparative effects of parathion (35 mg/kg, sc) on body weight, functional signs and 

esterase activities in wildtype/LM and M2 knockout mice 

Mice were treated with either peanut oil or parathion (35 mg/kg, sc) and 

functional signs of cholinergic toxicity were graded at 8, 12 and 24 hrs after dosing. 

Parathion led to relatively similar body weight reductions in both wildtype/LM and M2 

knockouts (WT/LM: 15 ± 1%; KO: 14 ± 4%). 

Figure 14 shows the effects of parathion on cholinergic signs of toxicity 

(involuntary movements, excessive secretions, i.e. SLUD signs) and cholinesterase 

inhibition in cortex.  

Parathion elicited signs of cholinergic toxicity in both wildtype/LM and M2 

knockout mice. The extent of involuntary movements in wildtype mice was significantly 

different from M2 knockout mice at 12 and 24 hrs after dosing. Parathion exposure 

elicited moderate to severe SLUD signs in both wildtype/LM and M2 knockout mice 

which were significantly different from control mice at 8, 12 and 24 hrs. Differences in 

the degree of SLUD signs between wildtype/LM and M2 knockout mice were observed 

at 12 hrs after exposure to parathion. At this dosage, parathion elicited substantial and 

relatively similar proportionate lethality in both wildtype/LM and knockout mice (WT: 

5/9; KO: 7/13). 
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Extensive inhibition of cortical cholinesterase activity was observed in both 

wildtype/LM and M2 knockouts, but with no significant difference between the groups 

(WT/LM: 96 ± 0.2%, KO: 96 ± 0.8%). Similar findings were also observed in cerebellum 

(Table 2). Marked inhibition of heart cholinesterase activity was also observed in both 

wildtype/LM and M2 knockout mice (WT/LM: 98 ± 0.4%, KO: 98 ± 0.2%).  

Carboxylesterase was extensively inhibited in wildtype/LM and M2 knockouts in 

both liver (WT/LM: 87.4 ± 0.6%; KO:  88 ± 1.4%) and plasma (WT/LM: 80.5 ± 1.1%; 

KO: 78.3 ± 1.1%). There were no differences in the degree of inhibition of either 

cholinesterase or carboxylesterase activities between wildtype/LM and M2 knockout 

mice following parathion exposure. In contrast to studies where littermate controls were 

not used, both WT/LM and M2 knockout mice exhibited similar, severe signs of 

cholinergic toxicity, although the wildtype/LM mice did appear slightly more sensitive 

early after exposure.  
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Figure 14: Effects of parathion treatment on 

a) involuntary movements b) SLUD signs 

c) cortical cholinesterase activity in 

wildtype/LM and M2 knockout mice.  

 
Mice (n = 4-7/group) were exposed to either 

vehicle or parathion (35 mg/kg) and were 

graded for functional signs of toxicity for 

24 hrs as described in methods section. At 

the end of 24 hrs mice were sacrificed and 

cortex collected and analyzed for 

cholinesterase activity. Functional signs 

were expressed as median ± interquartile 

range. Cholinesterase data (mean ± standard 

error) represent enzyme activities (nmol of 

substrate hydrolyzed/minute/mg protein) 

and are expressed as percent of control 

values. An asterisk indicates significant 

difference compared to respective control 

and a dollar sign indicates a significant 

difference between knockout control and 

knockout treatment group. A pound 

indicates significant difference between 

wildtype/LM and knockout mice. 

Cholinesterase activity in cortex of control 

animals was 57 ± 0.9 nmol/min/mg protein 

in wildtype/LM and 67 ± 6 nmol/min/mg 

protein in M2 knockouts.  
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B) Comparative effects of parathion (27.5 mg/kg, sc) on body weight, functional signs 

and esterase activities in wildtype/LM and M2 knockout mice 

The high dosage of parathion used in the studies above (35 mg/kg, sc) led to 

almost complete inhibition of cholinesterase in both wildtype/LM and M2 knockouts, and 

also caused marked lethality in both wildtype/LM and M2 knockouts. One explanation 

for the lack of obvious differences in sensitivity to parathion between wildtype/LM and 

M2 knockouts could be that the M2 receptor only has a protective role in modulating OP 

toxicity when less extensive acetylcholinesterase inhibition occurs, with less extensive 

accumulation of synaptic ACh levels. To evaluate this possibility, we studied the effects 

of M2 receptor deletion in response to a lower parathion dosage.  

Mice were treated with vehicle or parathion (27.5 mg/kg) and observed for 

functional signs of toxicity for 48 hrs. Under these conditions, parathion led to relatively 

similar reductions in body weight in both wildtype/LM and M2 knockouts (WT/LM: 18.5 

± 4.5%; KO: 20 ± 7%).  

Figure 15 shows the effects of parathion on cholinergic signs of toxicity 

(involuntary movements, excessive secretions, i.e. SLUD signs) and cholinesterase 

inhibition in cortex.  

Tremors were noted in both wildtype/LM and M2 knockouts, the extent of which 

was significantly different from controls at 24 and 48 hrs after dosing. Signs of toxicity at 

this dosage were less extensive than noted in studies using the higher dosage of parathion 

(35 mg/kg). There were no differences in involuntary movements between wildtype/LM 

and M2 knockouts following exposure to this lower parathion dosage. SLUD signs were 

significantly different from controls at 12 and 24 hrs in wildtype/LM mice and at 24 hrs 
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in M2 knockout mice. Thus, there appeared to be little difference in functional response 

between wildtype/LM and M2 knockouts at the lower dosage of parathion. There was, 

however, a difference in lethality noted, with wildtypes showing higher lethality than M2 

knockouts (WT/LM: 4/10; KO: 1/7). It should be stressed that if anything, this higher 

lethality in wildtype mice argues against a protective role of M2 receptors in expression 

of OP toxicity.  

Relatively similar degrees of inhibition were seen in both wildtype/LM and M2 

knockout mice in cortex (WT/LM: 81.5 ± 2.6%, KO: 89.5 ± 0.8%) and similar findings 

were also observed in cerebellum (Table 2). Again, relatively similar degrees of 

inhibition were observed in wildtype and M2 knockout mice in heart (WT/LM: 83 ± 

2.5%, KO: 87.7 ± 1.5%)  

Significant inhibition of liver carboxylesterases was observed in both 

wildtype/LM and M2 knockouts, with no differences between the groups (WT/LM: 88 ± 

0.7%, KO: 87 ± 1.3%). Plasma carboxylesterases were also inhibited in both 

wildtype/LM and M2 knockout mice following exposure to parathion (WT/LM: 71 ± 

3.5%, KO: 73 ± 3%). Thus, wildtype/LM and M2 knockout mice appeared similarly 

sensitive to a lower dosage of parathion (27.5 mg/kg). These findings suggest that M2 

receptor deletion has relatively little effect on the expression of classical signs of 

cholinergic toxicity following parathion exposure, but may indeed reduce lethality under 

some dosing conditions.  
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Figure 15: Effects of parathion treatment on 

a) involuntary movements b) SLUD signs c) 

cortical cholinesterase activity in 

wildtype/LM and M2 knockout mice.  

Mice (n = 4-7/group) were exposed to either 

vehicle or parathion (27.5 mg/kg) and were 

graded for functional signs of toxicity for 48 

hrs as described in methods section. At the 

end of 48 hrs mice were sacrificed and 

cortex collected and analyzed for 

cholinesterase activity. Functional signs 

were expressed as median ± interquartile 

range. Cholinesterase data (mean ± standard 

error) represent enzyme activities (nmol of 

substrate hydrolyzed/minute/mg protein) 

and are expressed as percent of control 

values. An asterisk indicates significant 

difference compared to respective control 

and a dollar sign indicates a significant 

difference between knockout control and 

knockout treatment group. A pound 

indicates significant difference between 

wildtype/LM and knockout mice. 

Cholinesterase activity in cortex of control 

animals was 57 ± 0.9 nmol/min/mg protein 

in wildtype/LM and 67 ± 6 nmol/min/mg 

protein in M2 knockouts.  
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C) Comparative effects of chlorpyrifos on body weight, functional signs and esterase 

activities in wildtype/LM and M2 knockout mice 

Wildtype/LM and M2 knockout mice were treated with a high dosage of 

chlorpyrifos (300 mg/kg, sc) and observed for functional signs of toxicity for 72 hrs. 

Chlorpyrifos had no effect on body weight or cholinergic signs of toxicity in any 

treatment groups (data not shown). We did not observe any involuntary movements 

following chlorpyrifos exposure in wildtype/LM and M2 knockout mice. Similarly, no 

SLUD signs were noted following chlorpyrifos exposure in either wildtype/LM or M2 

knockout mice. 

Figure 16 shows cholinesterase inhibition in cortex following exposure to 

chlorpyrifos. Extensive reduction in cortical cholinesterase activity was observed in both 

wildtype/LM and M2 knockout mice (WT/LM: 79 ± 1.7%, KO: 85 ± 4.6%). Similar 

results were obtained in cerebellum (Table 2). Chlorpyrifos also inhibited heart 

cholinesterase activity in both wildtype/LM and M2 knockouts, but with no significant 

differences between groups (WT/LM: 76 ± 4.4%, KO: 80 ± 3.8%).  

Chlorpyrifos caused significant inhibition of liver (WT/LM: 89 ± 0.7%, KO: 87 ± 

4.0%) and plasma (WT/LM: 78 ± 3%, KO: 83 ± 1.2%) carboxylesterases, but again with 

no significant differences between groups. Thus, wildtype/LM and M2 knockout mice 

showed few signs of cholinergic toxicity in spite of extensive brain cholinesterase 

inhibition (~80%). 
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Figure 16: Effect of chlorpyrifos on cortical cholinesterase activity in wildtype/LM and 

M2 knockout mice.  

Mice (n = 4-5/group) were exposed to either vehicle or chlorpyrifos (300 mg/kg, sc) and 

were graded for functional signs for 72 hrs. Mice were sacrificed and cortex collected and 

analyzed for cholinesterase activity. Data (mean ± standard error) represent enzyme 

activities (nmol of substrate hydrolyzed/minute/mg protein) and are expressed as percent 

of control values. An asterisk indicates a significant difference compared to respective 

controls. Cholinesterase activity in cortex of control animlas was 65 ± 1.5 nmol/min/mg 

protein in wildtype/LM and 61 ± 3.8 nmol/min/mg protein in M2 knockouts. 
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Table 2: Effect of selected OPs on cholinesterase activity in cerebellum from 

wildtype/LM and M2 knockout mice. 

 

Tissue/genotype 
Control 

 

 
Parathion 

 
(35 mg/kg) 

 
Parathion 

 
(27.5mg/kg) 

 
Chlorpyrifos 

 
(300 mg/kg) 

Cerebellum 
WT/LM  11.4 ± 0.8 

3.1 ± 0.3a 
(73) 

1.9 ± 0.1
a 

(83) 
4.1 ± 0.5

a
 

(64) 

Cerebellum/KO 12.7 ± 0.6 
2.6 ± 0.5a 
(80) 

1.9 ± 0.3
a  

(85) 
4.1 ± 0.4

 a
 

(68) 

 

 

Mice (n = 4-5/group) were exposed to either vehicle or selected OPs and were graded for 

functional signs of toxicity as described in methods section. Mice were sacrificed and 

tissues analyzed for cholinesterase inhibition. Data (mean ± standard error) represent 

enzyme activities in terms of nmol of substrate hydrolyzed/minute/mg protein. Values in 

parentheses indicate percent cholinesterase inhibition with respect to control values. 

a
 indicates a significant difference compared to respective control.  
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D) Effect of oxotremorine on functional signs and body temperature in wildtype/LM and 

M2 knockout mice 

Parathion (27.5 and 35 mg/kg, sc) elicited involuntary movements (tremors) in 

both wildtype/LM and M2 knockouts (Figures 14 and 15). Interestingly, previous studies 

(Gomeza et al., 1999) reported that the non-selective muscarinic agonist (oxotremorine) 

did not elicit tremors in mice lacking the M2 receptor. To determine whether tremors 

could be elicited by oxotremorine in M2 knockouts in our hands, we evaluated 

involuntary movements in wildtype/LM and M2 knockouts in response to this muscarinic 

agonist.  

Wildtype/LM and M2 knockout mice were challenged with oxotremorine (0.5 

mg/kg, sc) and observed for involuntary movements, SLUD signs and also for changes in 

body temperature. Body temperatures were recorded before treatment and at 30 and 60 

minutes after dosing.  

Figure 17 shows the effects of oxotremorine on cholinergic signs of toxicity 

(involuntary movements, excessive secretions, i.e. SLUD signs) and body temperature in 

wildtype/LM and M2 knockout mice.  

Oxotremorine did elicit severe tremors in wildtype/LM mice, while tremors were 

absent in the M2 knockouts. Oxotremorine also produced moderate SLUD signs in both 

wildtype/LM and M2 knockouts, a response thought to be primarily mediated through 

M3 muscarinic receptors. There was a significantly greater reduction in body temperature 

(another function mediated primarily through M2 receptors) in wildtype/LM compared to 

M2 knockouts at 30 and 60 minutes after treatment. These results were therefore in 

general agreement with those of Gomeza and coworkers (1999) and suggest that the M2 
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receptor is essential for cholinergically-mediated tremors and hypothermia. The basis for 

involuntary movements elicited by anti-cholinesterases is unclear, however, as they were 

elicited in mice lacking the M2 receptor.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

78 
 

 
 
Figure 17: Effects of oxotremorine on A) 

involuntary movements, B) SLUD signs, 

and C) body temperature in wildtype/LM 

and M2 knockout mice.  

 
 
Mice (n = 4/group) were exposed to either 

vehicle or oxotremorine (0.5 mg/kg) and 

were graded for functional signs for 90 

minutes as described in methods section. 

An asterisk indicates significant difference 

between wildtype/LM and knockout mice. 

SLUD signs (Figure B) were significantly 

different when compared to the respective 

controls but M2 receptor deletion had no 

significant effect on them. 
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Specific Aim 3: To evaluate ACh release as affected by OP exposure ex vivo and in 

vitro in slices from M2-/- and their respective wildtype/LM mice. 

A) Effect of parathion on ex vivo ACh release in wildtype and M2 knockout brain slices  

Wildtype/LM and M2 knockout mice were exposed to parathion (27.5 mg/kg, sc) 

and were graded for functional signs of toxicity for 48 hrs. At the end of 48 hrs mice 

were sacrificed and brain was immediately dissected on ice. Brain slices were prepared 

later to measure ACh release ex vivo as described in methods section.  

Table 3 shows that parathion exposure had no apparent effect on ACh release ex 

vivo in cortical, hippocampal or striatal slices from either wildtype/LM or M2 knockout 

mice. 
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Table 3: Effect of parathion exposure on ex vivo ACh release in wildtype/LM and M2 

knockout mice. 

Tissue/genotype 
Control 
 

Parathion 
 

Cortex 
WT/LM 

5.7 ± 0.5 5.9 ± 0.6
 
 

Cortex 
KO 

6.9 ± 0.7 7.8 ± 1.0
 
 

Hippocampus 
WT/LM 

2.6 ± 0.7 2.3 ± 0.3 

Hippocampus 
KO 

2.3 ± 0.4 2.1 ± 0.1
 
 

Striatum 
WT/LM 

8.3 ± 1.1 8.9 ± 0.2
 
 

Striatum 
KO 

8.1 ± 0.9 7.9 ± 0.4
 
 

 

 
Mice (n = 4-6/group) were exposed to either vehicle or parathion (27.5 mg/kg) and were 

graded for functional signs for 48 hrs. Brain slices were incubated with [3H]choline to 

label endogenous acetylcholine. Prelabeled slices were then loaded into a suprafusion 

apparatus. Release was stimulated by exposing the slices once to a depolarizing buffer 

containing a high concentration of KCl as described in methods section. Values (mean ± 

standard error) shown are proportionate (percent) release, i.e., the total amount of 

radioactivity in the peak following depolarization compared to total radioactivity in all 

other fractions and the residual tissue (x 100).  

 

 



 

81 
 

B) Effects of the muscarinic agonist oxotremorine and selected OP compounds on ACh 

release in vitro in brain slices from wildtype/LM and M2 knockout mice  

Mice were sacrificed and brain was immediately removed to prepare slices as 

described in methods section. ACh release was then measured in hippocampal, cortical 

and striatal slices from wildtype/LM and M2 knockout mice. We studied the effects of 

oxotremorine (10 µM), paraoxon (100 µM) and chlorpyrifos oxon (100 µM) on in vitro 

ACh release in wildtype/LM and M2 knockout brain slices. The S1 values did not differ 

between wildtype/LM and M2 knockout brain slices. 

Figure 18 shows the effect of oxotremorine and the two oxons on in vitro ACh 

release in cortical slices. Oxotremorine resulted in a significant decrease in ACh release 

only in wildtype/LM cortical slices (WT/LM: 10.9 ± 2.8%; KO: 8 ± 5.1%). Paraoxon had 

no effect on ACh release in cortical slices while chlorpyrifos oxon caused a significant 

decrease in ACh release in both wildtype/LM and M2 knockout mice (WT/LM: 16.8 ± 

3.4%; KO: 23.8 ± 2.5%).  

Figure 19 shows the effect of oxotremorine and the two oxons on in vitro ACh 

release in hippocampal slices. A significant reduction in release was observed in 

hippocampal slices from wildtype/LM mice following exposure to oxotremorine, while a 

much lesser and statistically insignificant effect was seen in slices from M2 knockouts 

(WT/LM: 29.8 ± 2.4%; KO: 7.7 ± 1.6%). Paraoxon had no effect in slices from either 

wildtype/LM or M2 knockout mice. Surprisingly, chlorpyrifos oxon caused a significant 

increase in ACh release in hippocampal slices from wildtype/LM (WT/LM: 9.1 ± 2.9%). 

In contrast, chlorpyrifos oxon had no effect on release in slices from M2 knockouts. 
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Figure 20 shows the effect of oxotremorine and the two oxons on in vitro ACh 

release in striatal slices. Oxotremorine caused a significant decrease in ACh release in 

slices from both wildtype/LM and M2 knockout mice (WT/LM: 14.4 ± 3.2%; KO: 18.5 ± 

1.8%). Similarly, paraoxon decreased ACh release in slices from both wildtype/LM and 

M2 knockout mice (WT/LM: 12.1 ± 4.5%; KO: 16.8 ± 2.1%). Similar to changes noted 

in hippocampal slices, chlorpyrifos oxon increased ACh release (41.5 ± 8.3%) in striatal 

slices from wildtype/LM mice, but had no effect in tissues from M2 knockouts. 

The muscarinic agonist oxotremorine decreased ACh release in cortical and 

hippocampal slices of wildtype/LM mice; release was unaffected in slices from M2 

knockouts, suggesting that the decrease in ACh release in these tissues is mediated by the 

M2 receptor. These findings are similar to those reported by Zhang et al., (2002). In 

contrast, oxotremorine decreased ACh release in striatal slices from both wildtype and 

M2 knockout mice, suggesting that pre-synpatic modulation of ACh release in this tissue 

is independent of M2 receptors. Again, these findings are similar to those reported by 

Zhang et al., (2002).  Several studies reported that the M4 receptor subtype plays an 

important role in regulating ACh release in striatum. The decrease in striatal ACh release 

seen here is likely mediated by activation of M4 receptors and thus intact in tissues from 

both wildtype and M2 knockout mice.  

Paraoxon affected (decreased) ACh release in vitro only in the striatum, but in 

tissues from both wildtype/LM and M2 knockout mice, i.e., suggesting the M4 receptor 

may be involved in modulating ACh release in this brain region after exposure to 

paraoxon or its parent insecticide (parathion). Chlorpyifos oxon decreased ACh release in 

cortical slices from both wildtype/LM and M2 knockouts. Chlorpyrifos oxon actually 
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increased ACh release in hippocampal and striatal slices of wildtype/LM mice. Thus, the 

effects of these oxons on brain regional ACh release and the qualitative nature of the 

changes themselves suggest a complex interaction between OP compounds and pre-

synaptic control.  
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Figure 18: Effect of oxotremorine, paraoxon and chlorpyrifos oxon on ACh release in 

vitro in cortical slices from wildtype/LM and M2 knockout mice.  

Cortical slices (n = 4-7) were incubated with [3H]choline to label endogenous 

acetylcholine. Prelabelled slices were then loaded into a suprafusion apparatus and 

perfused with physiological buffer. Release was stimulated twice (S1 and S2) by 

exposing the slices to a depolarizing buffer containing high concentration of KCl (30 

mM). Drugs were added 20 minutes before the second pulse of potassium. The ratio of 

S2/S1 is a normalized index of ACh release. Data (mean ± standard error) represent ACh 

release expressed as percent of control values. An asterisk indicates a significant 

difference compared to respective control. ACh release (S2/S1) in control animals was 

0.79 ± 0.02 in wildtype/LM and 0.85 ± 0.02 in M2 knockouts. 
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Figure 19: Effect of oxotremorine, paraoxon and chlorpyrifos oxon on ACh release in 

vitro in hippocampal slices from wildtype/LM and M2 knockout mice.  

Hippocampal slices (n = 4-7) were incubated with [3H]choline to label endogenous 

acetylcholine. Prelabelled slices were then loaded into a suprafusion apparatus and 

perfused with physiological buffer. Release was stimulated twice (S1 and S2) by 

exposing the slices to a depolarizing buffer containing high concentration of KCl (25 

mM). Drugs were added 20 minutes before the second pulse of potassium. The ratio of 

S2/S1 is a normalized index of ACh release. Data (mean ± standard error) represent ACh 

release expressed as percent of control values. An asterisk indicates a significant 

difference compared to respective control and a pound indicates a significant difference 

between wildtype and M2 knockout hippocampal slices. ACh release (S2/S1) in control 

animals was 0.83 ± 0.1 in wildtype/LM and 0.82 ± 0.1 in M2 knockouts. 
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Figure 20: Effect of oxotremorine, paraoxon and chlorpyrifos oxon on ACh release in 

vitro in in striatal slices from wildtype/LM and M2 knockout mice.  

Striatal slices (n = 4-7) were incubated with [3H]choline to label endogenous 

acetylcholine. Prelabelled slices were then loaded into a suprafusion apparatus and 

perfused with physiological buffer. Release was stimulated twice (S1 and S2) by 

exposing the slices to a depolarizing buffer containing high concentration of KCl (20 

mM). Drugs were added 20 minutes before the second pulse of potassium. The ratio of 

S2/S1 is a normalized index of ACh release. Data (mean ± standard error) represent ACh 

release expressed as percent of control values. An asterisk indicates a significant 

difference compared to respective control and a pound indicates a significant difference 

between wildtype and M2 knockout striatal slices. ACh release (S2/S1) in control 

animals was 0.8 ± 0.03 in wildtype/LM and 0.8 ± 0.05 in M2 knockouts. 
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Studies using CB1 receptor knockout mice 

Specific Aim 2A: To evaluate the effects of CB1 receptor deletion on acute 

sensitivity to selected OP compounds: Preliminary studies 

 A) Parathion toxicity in wildtypes and CB1 knockouts  

Wildtype and CB1 knockout mice were treated with parathion (20 mg/kg, sc) and 

observed for functional signs of cholinergic toxicity for the following 48 hrs. Parathion 

treatment led to a significant reduction (27 ± 3%) in body weight in the CB1 knockouts 

but no significant effect in the wildtype mice.  

Figure 21 shows the effect of parathion on involuntary movements, SLUD signs 

and hippocampal cholinesterase activity in these same mice. CB1 knockouts exhibited 

significantly more severe tremors than wildtypes at 24 and 48 hrs after dosing, with 

essentially no sign of tremors in the wildtypes. Detectable SLUD signs were noted only 

in the CB1 knockouts.  

Extensive hippocampal cholinesterase inhibition was noted in both wildtypes and 

CB1 knockouts (WT: 64 ± 6.9%, KO: 78.4 ± 0.6%). Surprisingly, significantly greater 

inhibition was noted wildtypes despite similar basal cholinesterase levels. Relatively 

similar findings were also observed in other brain regions (cortex and cerebellum) as 

shown in Table 4. Parathion also inhibited heart cholinesterase activity in both wildtype 

and CB1 knockout mice. While a trend towards greater inhibition of heart cholinesterase 

activity was also noted in the knockouts, there was no significant difference between the 

groups (WT: 69.3 ± 5.2%, KO: 80.1 ± 1.1%). 

Basal liver and plasma carboxylesterase levels were similar wildtype and CB1 

knockout mice. Parathion exposure led to extensive inhibition of liver carboxylesterases 
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in both wildtype and CB1 knockouts (WT: 70 ± 3.9%, KO: 84 ± 1.2%). Significant 

inhibition of plasma carboxylesterase activity was observed following parathion exposure 

in both wildtype and CB1 knockout mice (WT: 56 ± 4.2%, KO: 62.5 ± 1.8%). Together 

these data suggest that CB1 knockout mice were more sensitive compared to wildtype 

mice to both functional and biochemical indicators of toxicity. 
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Figure 21: Effects of parathion on A) 

involuntary movements, B) SLUD signs, C) 

hippocampal cholinesterase activity in 

wildtype and CB1 knockouts.  

 
Mice (n = 4-6/group) were exposed to either 

vehicle or parathion (20mg/kg) and were 

graded for functional signs for 48 hrs as 

described in methods section. At the end of 

48 hrs mice were sacrificed and 

hippocampus collected to measure 

cholinesterase activity. Functional signs 

were expressed as median ± interquartile 

range. Cholinesterase data (mean ± standard 

error) represent enzyme activities (nmol of 

substrate hydrolyzed/minute/mg protein) and 

are expressed as percent of control values. 

An asterisk indicates significant difference 

compared to respective control and a dollar 

sign indicates a significant difference 

between knockout control and knockout 

treatment group. A pound indicates 

significant difference between wildtype and 

knockout mice. Cholinesterase activity in 

hippocampus of control animals was 30.5 ± 

0.5 nmol/min/mg protein in wildtypes and 

26.7 ± 1.4 nmol/min/mg protein in CB1 

knockouts. 
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B) Effect of chlorpyrifos on functional signs and esterase activities in wildtype and CB1 

knockout mice 

Wildtype and CB1 knockout mice were exposed to chlorpyrifos (300 mg/kg, sc) and 

observed for functional signs of cholinergic toxicity for 48 hrs.  

Figure 22 shows the effect of chlorpyrifos on involuntary movements, SLUD 

signs and cholinesterase inhibition in hippocampus in the different treatment groups. CB1 

knockouts showed marked tremor activity following chlorpyrifos exposure, with 

substantial lethality (5 of 7) occurring by 24 hours after treatment. However, in wildtypes 

treated with chlorpyrifos only mild tremors were noted. Severe SLUD signs were 

observed in CB1 knockout mice, while wildtype mice exhibited few SLUD signs. A 

statistical analysis was not performed on these data however, due to the low number of 

survivors (2 of 7) in the knockout group exposed to chlorpyrifos. 

Extensive inhibition of hippocampal cholinesterase activity was observed (WT: 

78.4 ± 4.9%, KO: 88%). Cholinesterase inhibition was also observed in other brain 

regions as shown in Table 4. There was a trend towards more extensive cholinesterase 

inhibition in the CB1 knockouts in hippocampus and cerebellum. However degrees of 

cholinesterase inhibition did not seem to be different between wildtype and CB1 

knockout mice in cortex (Table 4). Extensive inhibition was noted in heart in both 

treatment groups (WT: 76.1 ± 3.9%; KO: 82%). 

Chlorpyrifos exposure resulted in marked inhibition of liver (WT: 87 ± 0.5%; 

KO: 87.7%) and plasma (WT: 70 ± 2.2%; KO: 67%) carboxylesterases in both treatment 

groups. Again, statistical analysis was not possible as only 2 knockouts survived this 

initial study. Similar to findings in animals treated with parathion, CB1 knockout mice 
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appeared more sensitive to chlorpyrifos, although biochemical assays were only possible 

in limited numbers of survivors.  
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Figure 22: Effects of chlorpyrifos on A) 

involuntary movements, B) SLUD signs, 

C) hippocampal cholinesterase activity in 

wildtype and CB1 knockouts.  

 
Mice (n = 2-6/group) were exposed to 

either vehicle or chlorpyrifos (300mg/kg) 

and were graded for functional signs for 48 

hrs as described in methods section. At the 

end of 48 hrs mice were sacrificed and 

hippocampus collected to measure 

cholinesterase activity. Functional signs 

were expressed as median ± interquartile 

range. Cholinesterase data (mean ± 

standard error) represent enzyme activities 

(nmol of substrate hydrolyzed/minute/mg 

protein) and are expressed as percent of 

control values. Cholinesterase activity in 

hippocampus of control animals was 30.5 

± 0.5 nmol/min/mg protein in wildtypes 

and 26.7 ± 1.4 nmol/min/mg protein in 

CB1 knockouts. Statistical analysis was 

not performed owing to the less number of 

survivors in knockout treatment group. 
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Table 4: Effect of parathion and chlorpyrifos on cholinesterase activity in cortex and 

cerebellum from wildtype and CB1 knockout mice. 

 

 

 

 

 

 

 

 

 

 

Mice (n = 4-6/group) were exposed to either vehicle or parathion (20 mg/kg) or 

chlorpyrifos (300 mg/kg, sc) and were graded for functional signs for 48 hrs. Mice were 

sacrificed and tissues collected for cholinesterase assay. Data (mean ± standard error) 

represent enzyme activities in terms of nmol of substrate hydrolyzed/minute/mg protein. 

Values in parentheses indicate percent cholinesterase inhibition with respect to control 

values. 

a
 indicates a significant difference compared to respective control.  

b
 indicates a significant difference between wildtype and CB1 knockout mice.  

 

 

Tissue/genotype 
 

Control 
 

 
Parathion 

 
Chlorpyrifos 

Cortex/WT 38.1 ± 4.3 11.7 ± 1.6
a
 

(69) 

4.4 ± 1.02 

(88) 

Cortex/KO 39.3 ± 2.5 2.9 ± 0.4
ab

 
(93) 

4.6 (88) 

Cerebellum/WT 21.4 ± 1.8 5.8 ± 0.8
 a

 
(73) 

3.95 ± 0.88 

(82) 

Cerebellum/KO 17.2 ± 0.8 1.7 ± 0.2
 ab

 
(90) 

1.42 (92) 
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Specific Aim 2B: To evaluate the effects of CB1 receptor deletion on sensitivity to 

different OP compounds: Studies using +/+ and -/- littermates 

Similar to our initial studies in M2 receptor knockouts, the initial studies with 

CB1 knockouts compared acute sensitivity to OPs in homozygous CB1 knockout mice 

and control C57Bl/6 mice (obtained from Charles River, the vendor from which the 

knockout was derived). CB1 knockouts appeared more sensitive to both OPs but the 

degree of cholinesterase inhibition was different compared to the control intact mice. 

Additional studies using appropriate LM controls therefore appeared essential to model 

the role of CB1 receptor in sensitivity to OPs. Littermates of wildtype (+/+) and CB1 

knockout (-/-) mice were used in all subsequent studies. 

A) Effect of parathion on body weight, functional signs and esterase activities in 

wildtype/LM and CB1 knockouts. 

Wildtype/LM and CB1 knockout mice were treated with vehicle or parathion (20 

mg/kg, sc) and observed for functional signs of cholinergic toxicity for the following 24 

hrs. Parathion similarly decreased body weight in both wildtype/LM and CB1 knockout 

mice (WT/LM: 16.8 ± 3.3%; KO: 16.9 ± 6.1%).  

Figure 23 shows the effect of parathion on cholinergic signs of toxicity 

(involuntary movements and SLUD signs) and cholinesterase inhibition in cortex 

following parathion exposure in these same mice. Wildtype/LM and CB1 knockout mice 

exhibited increased involuntary movements at both 12 and 24 hrs after dosing. Parathion 

elicited moderate SLUD signs in both wildtype/LM and CB1 knockout mice at 12 and 24 

hrs after exposure. 
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Similar, marked inhibition of cortical cholinesterase activity was observed in both 

wildtype/LM and CB1 knockout mice (83 ± 4%). Relatively similar reductions in activity 

were also noted in both groups in the cerebellum as shown in Table 5 (WT/LM: 78.8 ± 

2.7%; KO: 83.7 ± 2.1%). Parathion also had essentially the same effect on heart 

cholinesterase activity in both wildtype and CB1 knockout mice (WT/LM: 75 ± 2%; KO: 

75 ± 13%). 

Similar, extensive degrees of liver carboxylesterase (WT/LM: 93.6 ± 0.5%; KO: 

92 ± 0.7%) and plasma carboxylesterase (WT/LM: 67.5 ± 4.6%; KO: 72.9 ± 3.8%) 

activities were also observed in wildtype/LM and CB1 knockout mice. Thus, in contrast 

to our previous studies without littermate controls, wildtype/LM and CB1 knockout mice 

appeared remarkably similar in sensitivity to parathion, with similar changes in esterase 

activities as well as functional signs of toxicity. 
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Figure 23: Effects of parathion on A) 

involuntary movements, B) SLUD signs, 

C) cortical cholinesterase activity in 

wildtype/LM and CB1 knockouts.  

Mice (n = 4-5/group) were exposed to 

either vehicle or parathion (20 mg/kg) and 

were graded for functional signs for 24 

hrs as described in methods section. At 

the end of 24 hrs mice were sacrificed and 

cortex collected to measure cholinesterase 

activity. Functional signs were expressed 

as median ± interquartile range. 

Cholinesterase data (mean ± standard 

error) represent enzyme activities (nmol 

of substrate hydrolyzed/minute/mg 

protein) and are expressed as percent of 

control values. An asterisk indicates 

significant difference compared to 

respective control and a dollar sign 

indicates a significant difference between 

knockout control and knockout treatment 

group. Cholinesterase activity in cortex of 

control animals was 35.5 ± 1.9 

nmol/min/mg protein in wildtype/LM and 

40.6 ± 2.3 nmol/min/mg protein in CB1 

knockouts. 
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B) Effect of parathion on body weight, functional signs and esterase activities in 

wildtype/LM and CB1 knockouts. 

In contrast to our earlier studies without littermate controls, we did not note 

significant differences in sensitivity to parathion (20 mg/kg, sc) with deletion of CB1 

receptor. One explanation for lack of differences in sensitivity in CB1 knockouts could be 

that endocannabinoid signaling only influences cholinergic transmission when there is 

more extensive acetylcholine accumulation. To evaluate this possibility, we increased the 

parathion dosage to 27.5 mg/kg in subsequent studies, a dosage that increases the extent 

of cholinergic toxicity and thus presumably leads to more extensive acetylcholine 

accumulation. Mice in these studies were exposed to this higher dosage of parathion 

(27.5 mg/kg) and observed for functional signs of toxicity for 24 hrs. 

Parathion caused relatively similar body weight reductions in both wildtype/LM 

and CB1 knockouts, with no significant difference between the groups (WT: 15 ± 3%; 

KO: 18 ± 1%). Figure 24 shows the effect of parathion on cholinergic signs of toxicity 

(involuntary movements and SLUD signs) and cholinesterase inhibition in cortex 

following parathion exposure in these same mice. Parathion elicited more severe tremors 

(compared to the lower dosage of 20 mg/kg) at 12 and 24 hrs after dosing. The extent of 

involuntary movements was significantly higher in the wildtype/LM, but only at the 12 hr 

timepoint. Parathion also elicited SLUD signs in both wildtype/LM and CB1 knockout 

mice at 12 and 24 hrs. Thus, both wildtype/LM and CB1 knockout mice showed more 

severe signs of cholinergic toxicity with this higher dosage of parathion, but their 

functional responses were relatively similar. The difference at the earliest timepoint (12 
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hrs) suggests there may be a difference in onset, but in general the expression of 

functional signs was similar in the presence and absence of CB1.   

Extensive, similar degrees of inhibition of cortical cholinesterase activity were 

observed in both wildtype/LM and CB1 knockouts (WT/LM: 94 ± 1%; KO: 93 ± 2%). 

Similar results were also found in cerebellum (Table 5) and heart (WT/LM: 92 ± 0.6%; 

KO: 91 ± 1.5%).   

Similar group-related effects were noted with carboxylesterase inhibition in liver 

(WT/LM: 94 ± 0.6%, KO: 92 ± 0.7%) and plasma (WT/LM: 74 ± 5%, KO: 73 ± 3%). 

Thus, as with the studies using the lower dosage of parathion (20 mg/kg), wildtype/LM 

and CB1 knockout mice treated with the higher dosage (27.5 mg/kg) exhibited relatively 

comparable signs of cholinergic toxicity and similar degrees of esterase inhibition.  
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Figure 24: Effects of parathion on A) 

involuntary movements, B) SLUD signs, C) 

cortical cholinesterase activity in 

wildtype/LM and CB1 knockouts.  

 
Mice (n = 4-5/group) were exposed to either 

vehicle or parathion (27.5 mg/kg) and were 

graded for functional signs for 24 hrs as 

described in methods section. At the end of 

24 hrs mice were sacrificed and cortex 

collected to measure cholinesterase activity. 

Functional signs were expressed as median ± 

interquartile range. Cholinesterase data 

(mean ± standard error) represent enzyme 

activities (nmol of substrate 

hydrolyzed/minute/mg protein) and are 

expressed as percent of control values. An 

asterisk indicates significant difference 

compared to respective control and a dollar 

sign indicates a significant difference 

between knockout control and knockout 

treatment group. A pound indicates 

significant difference between wildtype/LM 

and knockout mice. Cholinesterase activity 

in cortex of control animals was 35.5 ± 1.9 

nmol/min/mg protein in wildtype/LM and 

40.6 ± 2.3 nmol/min/mg protein in CB1 

knockouts. 
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C) Effect of chlorpyrifos on body weight, functional signs and esterase activities in 

wildtype/LM and CB1 knockout mice 

Mice were treated with a high dosage (300 mg/kg, sc) of chlorpyrifos and 

observed for functional signs of cholinergic toxicity for 48 hrs. A significant reduction in 

body weight (WT/LM: 21 ± 2%, KO: 26 ± 3%) was observed in both wildtype/LM and 

CB1 knockout mice, but no significant difference was noted between the groups.  

Figure 25 shows the effect of chlorpyrifos on involuntary movements, SLUD 

signs and cortical cholinesterase activity in wildtype/LM and CB1 knockout mice. 

Tremors in wildtype/LM mice following chlorpyrifos exposure were significantly 

different from control at 12, 24 and 48 hrs. However, the onset of tremors in CB1 

knockout mice appeared somewhat delayed and was significantly different from control 

only at 24 and 48 hrs. Similar findings were also observed with SLUD signs as shown in 

Figure 25b.  

Chlorpyrifos elicited extensive, similar degrees of cortical cholinesterase 

inhibition in both wildtype/LM and CB1 knockout mice (WT/LM: 92 ± 1%; KO: 95 ± 

1%). Similar findings were also observed in cerebellum (Table 5) and heart (WT/LM: 88 

± 1%; KO: 88 ± 2%) 

Chlorpyrifos also elicited extensive inhibition of liver (WT/LM: 88 ± 0%; KO: 91 

± 0.5%) and plasma (WT/LM: 70 ± 3%; KO: 63 ± 8%) carboxylesterase activities, with 

no significant differences between the groups. Thus at this dosage, chlorpyrifos elicited 

severe signs of cholinergic toxicity (both involuntary movements and SLUD signs) in 

both wildtype/LM and CB1 knockout mice, with very similar degrees of esterase 

inhibition. While similar degrees of esterase inhibition were noted at the end of the 
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observation period, CB1 knockouts appeared to have a somewhat delayed expression of 

functional signs of toxicity. This could suggest that cholinesterase inhibition was also 

delayed within the timeframe of the study, or that neurochemical responses to 

cholinesterase inhibition were different between the groups, leading to an altered 

functional response. Cholinesterase was only measured at the end of the observation 

period however, and thus it is unclear whether this may have contributed.  
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Figure 25: Effects of chlorpyrifos on 

A) involuntary movements, B) SLUD 

signs, C) cortical cholinesterase 

activity in wildtype/LM and CB1 

knockouts.  

 

Mice (n = 4-5/group) were exposed to 

either vehicle or chlorpyrifos (300 

mg/kg) and were graded for functional 

signs for 48 hrs as described in 

methods section. At the end of 48 hrs 

mice were sacrificed and cortex 

collected to measure cholinesterase 

activity. Functional signs were 

expressed as median ± interquartile 

range. Cholinesterase data (mean ± 

standard error) represent enzyme 

activities (nmol of substrate 

hydrolyzed/minute/mg protein) and are 

expressed as percent of control values. 

An asterisk indicates significant 

difference compared to respective 

control and a dollar sign indicates a 

significant difference between 

knockout control and knockout 

treatment group. A pound indicates 

significant difference between 

wildtype/LM and knockout mice. 

Cholinesterase activity in cortex of control animals was 35.5 ± 1.9 nmol/min/mg protein in 

wildtype/LM and 40.6 ± 2.3 nmol/min/mg protein in CB1 knockouts. 
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Table 5: Effect of parathion and chlorpyrifos on cholinesterase activity in cerebellum 

from wildtype/LM and CB1 knockout mice. 

 

 

 

 

 

 

 

Mice (n = 4-5/group) were exposed to either vehicle or parathion (20 or 27.5 mg/kg) or 

chlorpyrifos (300 mg/kg, sc) and were graded for functional signs. Mice were sacrificed 

and tissues collected for cholinesterase assay. Data (mean ± standard error) represent 

enzyme activities in terms of nmol of substrate hydrolyzed/minute/mg protein. Values in 

parentheses indicate percent cholinesterase inhibition with respect to control values. 

a
 indicates a significant difference compared to respective control.  

 

 

 

 

 

 

 

 

 

 

Tissue/genotype 
 

Control 
 

 
Parathion 

(20 mg/kg) 

 
Parathion 
(27.5mg/kg) 

 
Chlorpyrifos 
(300 mg/kg) 

Cerebellum 
WT/LM 

22.7 ± 1.8 4.8 ± 0.6
 a

 
(79) 

1.4 ± 0.2
 a

 
(94) 

2.4 ± 0.3 
 a

 
(89) 

Cerebellum 
KO 

25 ± 2.0 4.4 ± 0.6
 a

 
(82) 

1.9 ± 0.4
 a

 
(92) 

2.7 ± 0.7
 a

  
(89) 
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Specific Aim 3: To evaluate ACh release as affected by OP exposure ex vivo and in 

vitro in slices from CB1-/- and respective wildtype/LM mice. 

A) To evaluate effects of parathion and chlorpyrifos on ACh release ex vivo in wildtype 

and CB1 knockout mice 

 Mice were exposed to a high dosage of parathion (27.5 mg/kg, sc) or chlorpryrifos 

(300 mg/kg) and tissues were collected 24 hrs later (for parathion) or 48 hrs later (for 

chlorpyrifos) to measure ACh release ex vivo. Figure 26 shows ex vivo ACh release in 

hippocampal slices from wildtype/LM and CB1 knockout mice following treatment with 

parathion or chlorpyrifos. Parathion markedly decreased hippocampal ACh release in 

both wildtype/LM and CB1 knockout mice (WT/LM: 54 ± 3%, KO: 49 ± 4%), with no 

significant differences between the treatment groups. Chlorpyrifos also significantly 

decreased hippocampal ACh release in both wildtype/LM and CB1 knockouts (WT/LM: 

52 ± 5%, KO: 36 ± 7%), but in this case a significantly greater reduction in release was 

observed in tissues from wildtype/LM mice.  

Figure 27 illustrates ex vivo ACh release in striatum following exposure to 

parathion or chlorpyrifos. Parathion caused a significant reduction in ACh release in both 

wildtype/LM and CB1 knockouts (WT/LM: 12 ± 3%, KO: 25 ± 8%). Chlorpyrifos also 

elicited a significant and similar reduction in ACh release in tissues from both 

wildtype/LM and CB1 knockouts (24 ± 6%).   
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Figure 26: Effects of parathion and chlorpyrifos on ACh release ex vivo in hippocampal 

slices from wildtype/LM and CB1 knockout mice.  

Mice (n = 4-6/group) were exposed to either vehicle or OP and were graded for 

functional signs. Hippocampal slices were incubated with [3H]choline to label 

endogenous acetylcholine. Prelabelled slices were then loaded into a suprafusion 

apparatus and perfused with physiological buffer. Release was stimulated by exposing the 

slices to a depolarizing buffer containing high concentration of KCl (25 mM) as 

described in methods section. Data (mean ± standard error) represent peak ACh release 

(S1) and are expressed as percent of control values. An asterisk indicates a significant 

difference compared to respective control. A pound signs indicates a significant 

difference between wildtype/LM and knockout treatment groups. ACh release (S1) in 

hippocampus of control animals was 3.8 ± 0.3 in wildtype/LM and 3.5 ± 0.2 in CB1 

knockouts (calculated as a percentage of the total radioactivity).  
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Figure 27: Effects of parathion and chlorpyrifos on ACh release ex vivo in striatal slices 

in wildtype/LM and CB1 knockout mice.  

Mice (n = 4-6/group) were exposed to either vehicle or OP and were graded for 

functional signs. Striatal slices were incubated with [3H]choline to label endogenous 

acetylcholine. Prelabelled slices were then loaded into a suprafusion apparatus and 

perfused with physiological buffer. Release was stimulated by exposing the slices to a 

depolarizing buffer containing a high concentration of KCl (20 mM) as described in 

methods section. Data (mean ± standard error) represent ACh release (S1) expressed as 

percent of control. An asterisk indicates a significant difference compared to respective 

control. ACh release (S1) in striatum of control animals was 7.2 ± 0.5 in wildtype/LM 

and 8.1 ± 0.7 in CB1 knockouts.  
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B) To evaluate the effects of the cannabinoid receptor agonist WIN 55,212-2 and selected 

OPs on ACh release in vitro in tissues from wildtype/LM and CB1 knockout mice 

Mice were sacrificed by decapitation and brain was immediately removed. Slices 

were prepared as described earlier in methods section and ACh release measured in 

hippocampal and striatal slices as described above. The comparative effects of WIN 

55,212-2 (WIN, 1 µM), paraoxon (100 µM) and chlorpyrifos oxon (100 µM) on ACh 

release in vitro were evaluated. WIN was used as a positive control. 

Figure 28 shows the in vitro effects of WIN, paraoxon and chlorpyrifos oxon on 

ACh release in vitro in hippocampal slices. WIN can reduce ACh release in hippocampus 

but has no effect on ACh release in striatum (Gifford et al., 1997; Kathmann et al., 2001). 

In our hands, WIN reduced hippocampal ACh release in slices from wildtype mice, but 

had no effect on release in tissues from CB1 knockouts. Paraoxon significantly reduced 

ACh release in hippocampal slices from wildtype/LM mice (15.7 ± 3.1%), while it had 

essentially no effect in slices from CB1 knockouts. Chlorpyrifos oxon significantly 

reduced release in hippocampal slices from both groups (WT/LM: 20.3 ± 3.4%; KO: 10.3 

± 2.4%). It should be noted, however, that the magnitude of the reduction was 

significantly greater in slices from wildtype/LM mice. Thus in vitro, paraoxon appeared 

to have a greater effect on hippocampal ACh release in tissues from the wildtype mice, 

suggesting a possible role of CB1 in these comparative neurochemical responses.  

Figure 29 shows the in vitro effects of WIN and both oxons on ACh release in 

striatal slices. As expected, WIN did not influence striatal ACh release in tissues from 

either wiltypes or knockouts. In contrast, paraoxon significantly reduced ACh release in 

tissues from both wildtype/LM and CB1 knockout mice (WT/LM: 14.1 ± 2.9%; KO: 8.7 
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± 3.8%). Interestingly, chlorpyrifos oxon significantly increased ACh release in tissues 

from both groups (WT/LM: 10.7% ± 5.6; KO: 10.2 ± 6.4%). In striatum, there was 

therefore no suggestion of a differential effect of chorpyrifos oxon on ACh release, 

mediated in some way by CB1.  
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Figure 28: In vitro effects of paraoxon and chlorpyrifos oxon on hippocampal ACh 

release in slices from wildtype/LM and CB1 knockout mice.  

Hippocampal slices were incubated with [3H]choline to label endogenous acetylcholine. 

Prelabelled slices were then loaded into a suprafusion apparatus and perfused with 

physiological buffer. Release was stimulated twice (S1 and S2) by exposing the slices to 

a depolarizing buffer containing high concentration of KCl (25 mM). Drugs were added 

20 minutes before the second pulse of potassium. The ratio of S2/S1 is a normalized 

index of ACh release. Data (mean ± standard error) represent ACh release expressed as 

percent control. An asterisk indicates a significant difference compared to respective 

control. A pound sign indicates a significant difference between wildtype/LM and CB1 

knockout brain slices. ACh release (S2/S1) in hippocampus of control animals was 0.8 ± 

0.1 in wildtype/LM and 0.9 ± 0.1 in CB1 knockouts.  

 
 



 

110 
 

Ctrl
W

IN PO
CPO

Ctrl
W

IN PO
CPO

70

80

90

100

110

120

WT KO

*

*

*

*

A
C

h 
re

le
as

e 
(S

2/
S1

, %
 c

on
tr

ol
)

 
 
 

Figure 29: In vitro effects of WIN, paraoxon and chlorpyrifos oxon on striatal ACh 

release in tissues from wildtype/LM and CB1 knockout mice.  

Striatal slices were incubated with [3H]choline to label endogenous acetylcholine. 

Prelabelled slices were then loaded into a suprafusion apparatus and perfused with 

physiological buffer. Release was stimulated twice (S1 and S2) by exposing the slices to 

a depolarizing buffer containing high concentration of KCl (25 mM). Drugs were added 

20 minutes before the second pulse of potassium. The ratio of S2/S1 is a normalized 

index of ACh release. Data (mean ± standard error) represent ACh release expressed as 

percent control. An asterisk indicates a significant difference compared to respective 

control. ACh release (S2/S1) in striatum of control animals was 0.8 ± 0.01 in both 

wildtype/LM and CB1 knockouts.  
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CHAPTER IV 

DISCUSSION 

 

EVALUATION OF THE ROLE OF M2 MUSCARINIC RECEPTOR FUNCTION 

IN OP TOXICITY 

Effects of acute parathion and chlorpyrifos in wildtype and M2 knockout mice 

OPs typically elicit cholinergic toxicity by inhibiting acetylcholinesterase, leading 

to accumulation of the neurotransmitter ACh in neuronal synapses and neuromuscular 

junctions throughout the body. ACh activates post-synaptic cholinergic receptors to 

mediate neurotransmission, and can also activate pre-synaptically located autoreceptors 

to modulate ACh release. Typically, activation of M2 autoreceptors on the pre-synaptic 

cholinergic terminal leads to decreased ACh release (Quirion et al., 1995; Stillman et al., 

1996; Galli et al., 2001; Zhang et al., 2002). We hypothesized that genetic deletion of the 

M2 receptor would increase sensitivity to OP toxicity by blocking the adaptive inhibition 

of ACh release during conditions of ACh accumulation. Genetic deletion of the M2 

receptor had little effect on overt phenotype in mice (Gomeza et al., 1999; Tzavara et al., 

2004). We thus proposed that this model would be appropriate for evaluating the 

receptor’s role in neurochemical and neurotoxicological responses to OP challenge.  
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A considerable number of studies from multiple laboratories have evaluated many 

aspects of OP toxicity in rats (Eells and Brown, 2009; Lassiter et al., 2008; Nallapaneni et 

al., 2008; Karasova et al., 2009; Masoud et al., 2009; Ray et al., 2009). In contrast, 

relatively few studies on OP toxicity have been conducted in mice. Thus, preliminary 

studies were necessary to determine appropriate dosing conditions. The dosages we 

selected for further study were in some cases (e.g. paraoxon and parathion) relatively 

high compared to those used in rats. Rats showed higher acute sensitivity and 

cholinesterase inhibition than mice following exposure to the OP toxicant 

diisopropylphosphorofluoridate (Kamp and Collins, 1992). Several species of fish were 

less sensitive than rats to both paraoxon and parathion but similarly sensitive to 

chlorpyrifos oxon (Murphy et al., 1968; Benke et al., 1974; Johnson and Wallace, 1987).   

With rats, 27 mg/kg has been reported to be the maximum tolerated dosage of 

parathion in our laboratory (Karanth et al., 2007). Dose-response studies in mice were 

initially conducted with parathion dosages bracketing this exposure level (0, 15, 25 or 35 

mg/kg, sc). We observed a dose-related increase in involuntary movements, a classical 

sign of OP toxicity, in wildtype mice (Figure 7). In contrast, the M2 knockouts exhibited 

involuntary movements only at the highest dosage evaluated, and the extent of tremors 

was lower than noted in WT with either 25 or 35 mg/kg parathion exposure (Figure 7). 

Relatively similar findings were also observed with SLUD signs (Figure 8). All three 

dosages elicited relatively similar degrees of cholinesterase inhibition (~85-90%) in 

wildtype mice. In contrast, lesser inhibition was noted in M2 knockouts with the lowest 

dosage (15 mg/kg, ~50% inhibition) and with higher dosages (25 and 35 mg/kg, ~75% 

inhibition; Figure 9). Thus, these initial findings suggested that wildtypes were more 
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sensitive than M2 knockouts to parathion, but possibly due to differential cholinesterase 

inhibition. Based on these pilot studies, we selected 35 mg/kg parathion for subsequent 

evaluations.  

 Comparative sensitivity of wildtype and M2 knockout mice to the parent 

insecticides parathion (35 mg/kg, sc) and chlorpyrifos (300 mg/kg) were then evaluated. 

Numerous studies from our laboratory have studied the effects of high dosages (250-280 

mg/kg, sc) of chlorpyrifos in rats (Pope et al., 1991, 1992; Chaudhuri et al., 1993; Liu and 

Pope, 1998; Karanth and Pope, 2003; Karanth et al., 2006). Mice were observed for 

cholinergic signs of toxicity for either 24 hrs (parathion) or 72 hrs (chlorpyrifos), based 

on differences in functional recovery between the two pesticides.  

Studies by Churchill et al., (1985) suggested that body weight reduction can be a 

sensitive indicator of organophosphate toxicity in rats. Parathion exposure led to 

relatively similar body weight reductions in both wildtype and M2 knockout mice; 

however wildtype mice exhibited more functional signs of toxicity (both involuntary 

movements and tremors) compared to the M2 knockout mice (Figure 10). These data 

provided further evidence of higher sensitivity to the acute toxicity of parathion in 

wildtype mice compared to M2 knockouts. 

 Cholinesterase activity was extensively inhibited in all brain regions evaluated 

(hippocampus, cortex and cerebellum, Figure 10 and Table 1) and in heart, in both 

wildtype and M2 knockout mice. There were no differences in basal cholinesterase levels 

between wildtype and M2 knockout mice. Surprisingly, as seen in our initial pilot study, 

more extensive cholinesterase inhibition was noted in wildtype mice in most tissues 

(hippocampus and cortex) following parathion exposure.  



 

114 
 

Soranno and Sultatos (1992) reported that mouse liver had remarkably high 

detoxification capacity against parathion. A number of studies have shown that 

carboxylesterase plays an important role in the detoxification of some organophosphate 

compounds, including paraoxon (Fonnum et al., 1985; Dettbarn et al., 1999; Karanth and 

Pope, 2000; Li et al., 2000). Basal carboxylesterase levels were similar in liver of both 

wildtype and M2 knockout mice. Parathion had relatively similar effects on liver 

carboxylesterase in both wildtype and M2 knockout mice. Interestingly, basal levels of 

plasma carboxylesterase were significantly higher in tissues from M2 knockouts 

compared to wildtype mice. The relative degree of inhibition plasma carboxylesterase 

following parathion exposure was similar between wildtype and M2 knockout mice, 

however. As plasma carboxylesterase levels have been negatively correlated with age-

related sensitivity to parathion (Karanth and Pope, 2000), this difference in plasma 

carboxylesterase activity in M2 knockouts could have toxicological relevance.  

Chlorpyrifos elicited a significant reduction in body weight in wildtype mice but had 

no effect on body weight in M2 knockout mice. The degree of body weight reduction in 

these mice was relatively similar to reductions noted in adult rats following exposure to 

279 mg/kg chlorpyrifos (Karanth et al., 2006). Chlorpyrifos elicited mild tremors in 

wildtype mice, but tremors were completely absent in the M2 knockouts (Figure 11). 

Exposure to chlorpyrifos had no effect on SLUD signs in either wildtype or M2 knockout 

mice. Chlorpyrifos elicited few signs of cholinergic toxicity in either wildtype or M2 

knockout mice. Previous studies from our laboratory using rats have reported similar 

findings (Pope et al., 1991, 1992; Chaudhuri et al., 1993; Liu and Pope, 1998; Karanth 

and Pope, 2003; Karanth et al., 2006). As noted before, this relative absence of typical 
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signs of cholinergic toxicity in rats following chlorpyrifos exposure, in the presence of 

extensive brain cholinesterase inhibition, has been the basis for a long-term research 

project in our laboratory. It was previously hypothesized that these differences in toxicity 

could be due to differential direct effects on autoreceptor function following exposure to 

these OPs. 

Similar to results in mice treated with parathion, chlorpyrifos exposure elicited 

greater brain cholinesterase inhibition in both hippocampus and cerebellum in wildtype 

mice compared to M2 knockout mice (Figure 11, Table 1). Surprisingly, we did not see 

any cholinesterase inhibition in the cortex of M2 knockout mice while inhibition was 

noted in the cortex of wildtype mice. We have relatively little information on the time 

course of inhibition and recovery of cholinesterase following chlorpyrifos exposure in 

mice. It could be that greater inhibition would have been detected at earlier timepoints 

after exposure. In general, however, this dosage of chlorpyrifos did cause extensive 

inhibition of brain regional cholinesterase activity at the time-points evaluated. 

Wildtype mice also exhibited more extensive cholinesterase inhibition in the heart 

compared to M2 knockout mice. Relatively similar degrees of liver and plasma 

carboxylesterase inhibition were observed in both wildtype and M2 knockout mice. Thus, 

similar to findings in mice treated with parathion, the wildtypes appeared more sensitive 

to the functional toxicity of chlorpyrifos, and these differences appeared to correlate with 

differential cholinesterase inhibition.  

In contrast to our hypothesis, wildtype mice exhibited higher sensitivity than M2 

knockouts to both parathion and chlorpyrifos. Although basal tissue cholinesterase levels 

appeared similar between wildtypes and M2 knockouts, more extensive inhibition of 
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brain regional and heart cholinesterase activity was noted in wildtypes following 

exposure to either parathion or chlorpyrifos. Differential cholinesterase inhibition 

between wildtypes and knockouts could be due to a strain-related change in 

biotransformation (bioactivation and/or detoxification). For example, if the M2 receptor 

gene deletion was in some way associated with a change in P450-mediated oxidative 

desulfuration, paraoxon production could be affected, leading to differential degrees of 

cholinesterase inhibition. On the other hand, if expression of detoxification enzymes (e.g. 

carboxylesterases) was altered, paraoxon could circulate longer, allowing more extensive 

tissue cholinesterase inhibition.  

Carboxylesterases are important in the detoxification of many OPs including 

parathion, but have relatively little influence on chlorpyrifos toxicity (Karanth et al., 

2001). Studies from our laboratory have shown that carboxylesterases appear to play an 

important role in the detoxification of paraoxon (and thus in parathion toxicity) (Karanth 

and Pope, 2000; Karanth et al., 2001). We therefore evaluated the effect of these OP 

toxicants on tissue carboxylesterase levels to determine if they may be differentially 

affected. The degree of carboxylesterase inhibition did not differ between wildtypes and 

M2 knockouts following exposure to either parathion or chlorpyrifos. Thus, these data 

suggest that the differences in cholinesterase inhibition noted between wildtypes and M2 

knockouts were not likely based on differences in detoxification (at least via 

carboxylesterase) capacities. Differences in bioactivation of the parent compounds 

between wildtype and M2 knockouts could play a role, however. Several studies have 

shown that cytochrome P450 enzymes mediate the bioactivation of phosphorothioate 

compounds such as parathion and chlorpyrifos to the respective oxons (Sultatos, 1985; 
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Forsyth and Chambers, 1989; Murray and Butler, 1994; Chambers and Carr, 1995; 

Furlong, 2007). Differences in cholinesterase inhibition between wildtype and M2 

knockout mice noted herein could therefore be due to strain-related differences in 

bioactivation. Toxicity studies with the direct acting oxons were therefore conducted to 

determine if similar differences in toxicity would also be noted following exposure to the 

active metabolites of these insecticides.  

Comparative effects of paraoxon and chlorpyrifos oxon in wildtype and M2 

knockout mice 

Based on the findings from our toxicity studies we hypothesized that strain 

differences between the wildtypes and M2 receptors knockouts led to differential 

biotransformation of the parent insecticides. If these differences in response were due to 

differences in bioactivation, comparative toxicological responses of the oxons would be 

devoid of this confound and the role of the M2 receptor in OP toxicity under these 

conditions may be more clearly evident. Sensitivity of wildtype and M2 knockout mice to 

the metabolites of both parent compounds, i.e., paraoxon and chlorpyrifos oxon, was 

studied.  

Paraoxon (1 mg/kg, sc) led to significant body weight reductions in both wildtype 

and M2 knockout mice, but the degree of reduction was greater in the knockouts. 

Paraoxon elicited relatively similar signs of toxicity (severe tremors and SLUD signs) in 

wildtype and M2 knockout mice (Figure 12). Thus, wildtype and M2 knockout mice 

appeared similarly sensitive to paraoxon-induced cholinergic toxicity. Paraoxon inhibited 

cholinesterase activity in all brain regions evaluated (Figure 12 and Table 1) and in the 

heart of both wildtype and M2 knockout mice. Interestingly, the degree of brain 
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cholinesterase inhibition was now significantly higher (90 vs 80% inhibition) in tissues 

from the M2 knockouts compared to wildtype mice.  

Paraoxon inhibited liver and plasma carboxylesterase activity in M2 knockout 

mice, but had no effect in wildtypes. As carboxylesterases represent stoichometric 

binding sites for these OPs, their inhibition suggests that fewer oxon molecules would be 

available for binding to cholinesterase molecules. This would lead to less inhibition of 

cholinesterase in the M2 knockout tissues, but in fact, the reverse was noted. Thus, these 

findings suggested that the higher sensitivity to parathion in wildtypes was not reflected 

in higher sensitivity to paraoxon. In contrast to the above studies with parathion wherein 

wildtype mice exhibited more extensive signs of toxicity and higher brain cholinesterase 

inhibition, relatively similar signs of cholinergic toxicity were observed in wildtype and 

M2 knockout mice following paraoxon dosing and if anything, more esterase inhibition 

was noted in the knockouts suggesting that the differences in toxicity seen earlier with 

parathion could be at least partially due to strain-dependent differences in bioactivation.  

Chlorpyrifos oxon treatment elicited a significant decrease in body weight in 

wildtype mice but no effect in the M2 knockouts. Involuntary movements were also seen 

in both groups following chlorpyrifos oxon exposure. In this case, the onset of signs was 

somewhat earlier in the wildtypes compared to M2 knockouts (Figure 13). There were 

relatively few SLUD signs in wildtype mice and no SLUD signs in the M2 knockouts 

(Figure 13). Together, these results suggested that wildtype mice were more sensitive 

than the M2 knockouts to chlorpyrifos oxon, with a delay in onset of functional signs and 

a significant reduction in body weight in wildtypes but not in knockouts. 
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Chlorpyrifos oxon significantly inhibited brain (Figure 13 and Table 1) and heart 

cholinesterase activity, with essentially no difference between the groups. Interestingly, 

while wildtypes and M2 knockouts showed differences in the extent of functional signs 

following chlorpyrifos oxon exposure, there were no differences in brain cholinesterase 

inhibition between the groups. Significant liver carboxylesterase inhibition was seen in 

M2 knockout mice with no effect in wildtype mice. In contrast, plasma carboxylesterase 

was inhibited similarly in both wildtype and M2 knockout mice. Again, although liver 

carboxylesterases were inhibited in the knockouts, potentially removing oxon molecules 

from possible interaction with cholinesterase molecules, similar degrees of cholinesterase 

inhibition were generally noted between wildtype and M2 knockout mice. These results 

suggest that differences in toxic response could be elicited between these two groups 

under conditions of similar changes in cholinesterase activity. The studies with both 

oxons revealed that the differences in toxicity seen with parent compounds could be due 

to differences in bioactivation. As the M2 receptor (in the CNS) is primarily considered 

an autoreceptor, there could be differences in ACh release between these groups that 

contribute to these functional differences.  

We hypothesized that mice lacking the muscarinic M2 receptor would be more 

sensitive to OP anticholinesterases. Surprisingly, wildtype mice appeared more sensitive 

to parathion and chlorpyrifos, while both groups appeared similarly sensitive to 

paraoxon, and the wildtypes appeared only slightly more sensitive to chlorpyrifos oxon. 

There were, however, differences in esterase inhibition between wildtypes and knockouts 

that confounded interpretations of relative responses to the toxicants. Together, the 

studies with parent compounds and the oxon metabolites suggested that continuous 
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inbreeding of the M2 knockouts may have led to genetic variation resulting in changes in 

biotransformation that could contribute to differential responses. Further studies using 

control animals that were littermates of the knockouts were needed to investigate further 

the role of M2 receptor in OP toxicity. Wildtype/LM and M2 knockout mice were 

obtained by breeding of heterozygous mice, and confirmed by subsequent genotyping. 

Effects of acute parathion and chlorpyrifos exposure in wildtype and M2 knockout 

mice: studies with +/+ and -/- littermate controls 

Comparative sensitivity of wildtype/LM and M2 knockouts following selection of 

+/+ and -/- mice was evaluated using the same dosages of OPs that were used in our 

preliminary studies above. Wildtype/LM and M2 knockouts appeared phenotypically 

similar (body weight, color, fur, etc) at the time of initiating studies (eight weeks of age). 

Parathion (35 mg/kg) led to relatively similar reductions in body weight in both wildtypes 

and M2 knockouts, with no significant differences between the groups. Previous studies 

suggested that adult rats lost approximately 15% of their pre-treatment body weight 

following exposure to 27 mg/kg dose of parathion (Karanth et al., 2007), very similar to 

the degree of reduction we observed here. Severe signs of cholinergic toxicity 

(involuntary movements and SLUD signs) were observed in both wildtype and M2 

knockout mice following treatment with parathion, but with no significant difference 

between the groups (Figure 14). Relatively similar signs of cholinergic toxicity were 

observed in adult rats exposed to 27 mg/kg parathion (Karanth et al., 2007). Marked 

lethality was observed in both wildtype/LM and M2 knockout mice following parathion 

dosing (WT: 5/9; KO: 7/13), again with no significant difference between the groups. 

The reason for lethality seen in the knockouts here as opposed to the initial studies with 
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non-littermates could be due to increased cholinergic signs of toxicity and higher 

cholinesterase inhibition. These data suggested that mice lacking the M2 receptor, when 

compared to wildtype littermates, exhibited relatively similar sensitivity to parathion 

toxicity.  

Extensive cholinesterase inhibition in brain (Figures 14 and Table 2) and heart 

was observed in both wildtype/LM and M2 knockouts following parathion dosing, again 

with no significant differences between the groups. It appeared that while M2 -/- and +/+ 

littermates exhibited relatively similar degrees of cholinesterase inhibition in brain and 

heart, the extent of inhibition was somewhat higher compared to the previous studies 

lacking littermate controls. This degree of brain cholinesterase inhibition is relatively 

similar, however to that reported by Karanth and coworkers (2007) in rats treated with 

parathion (27 mg/kg, sc).  

In contrast to our initial studies, there was little evidence of differences in acute 

sensitivity to parathion between wildtype/LM and M2 knockouts. Wildtype/LM and M2 

knockouts exhibited relatively similar signs of cholinergic toxicity, similar degrees of 

brain and heart cholinesterase inhibition, and relatively similar inhibition of 

carboxylesterases. In these studies, parathion (35 mg/kg) elicited very high (>95%) 

inhibition of brain regional cholinesterase activity. We postulated that M2 autoreceptor 

function may not sufficiently counteract cholinergic toxicity if excessive 

acetylcholinesterase inhibition and consequent ACh accumulation occurs. We therefore 

conducted subsequent studies using a lower dosage of parathion (27.5 mg/kg, sc). The 

lower dosage of parathion (27.5 mg/kg, sc) elicited a significant decrease in body weight 

(~19%) in both wildtype/LM and M2 knockouts. Moderate signs of cholinergic toxicity 
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were observed in both wildtype/LM and M2 knockout mice with no differences in the 

degree of signs between the groups (Figure 15). Lethality appeared higher in 

wildtype/LM mice (4/10), however than in M2 knockouts (1/7).  

Marked inhibition of brain (Figure 15 and Table 2) and heart (Figure 51) 

cholinesterase was observed in both wildtype/LM and M2 knockouts, with no differences 

between the groups. Inhibition of liver and plasma carboxylesterase was noted in both 

wildtype/LM and M2 knockouts, again with no differences between the groups. From 

these studies, it is relatively clear that deletion of the muscarinic M2 receptor had little 

influence on acute sensitivity to parathion, but may actually decrease lethality following 

exposure to lower dosages. This is in contrast to our hypothesis, i.e., that loss of M2 

autoreceptor function would increase sensitivity to OP toxicity. It should also be noted 

that these results are different than findings from our initial studies that did not include 

M2+/+ littermate controls for comparison. In those studies, differential inhibition of 

cholinesterase was noted, while in the studies with appropriate littermate controls, we 

noted very similar changes in esterase activities. Thus, the later studies with better control 

conditions provides the strongest evidence that the M2 receptor appears to have relatively 

little influence on cholinergic toxicity elicited by parathion in mice.  

Mice treated with chlorpyrifos showed essentially no signs of cholinergic toxicity 

or any effects on body weight, regardless of the genetic status of the M2 receptor. There 

was marked inhibition of cortical, cerebellar (Figure 16 and Table 2) and heart 

cholinesterase activity, however, in both wildtype and M2 knockout mice. Liver and 

plasma carboxylesterase was also inhibited similarly between groups. Similar to findings 

following parathion exposure, there were no statistical differences in the degree of 
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inhibition of either tissue cholinesterase or carboxylesterase activities between the 

treatments groups. Again, as noted above, these findings were in contrast to those studies 

evaluating chlorpyrifos toxicity without M2+/+ littermate controls. It should be noted that 

the dosage of chlorpyrifos used herein was the same as used in our studies with CB1 

knockouts, where extensive, typical signs of cholinergic toxicity, significant body weight 

reductions and extensive cholinesterase inhibition were noted. It is apparent that the 

genetic background of the mice can dramatically influence the expression of cholinergic 

toxicity following chlopyrifos exposure.  

The M2 knockouts were a cross between CF1 and 129J1 mice, whereas the CB1 

knockout mice had a C57Bl/6 background. Several studies have shown that genetic strain 

differences can contribute to differences in toxicity following exposure to cholinergic 

compounds (Van Abeelen, 1972; Marks et al., 1981; 1983). Out of three different strains 

of mice exposed to the same dosage of the organophosphate anti-cholinesterase 

diisopropylphosphorofluoridate, C57Bl/6 mice were the most sensitive (Smolen et al., 

1985, 1986). Previous studies in outbred rats have noted relatively few signs of toxicity 

following high subcutaneous dosages (280 mg/kg) of chlorpyrifos (Pope et al., 1991, 

Chaudhuri et al., 1993; Karanth and Pope, 2003). It was previously hypothesized that 

selective, enhanced activation of M2 autoreceptor function by chlorpyrifos impaired the 

expression of toxicity in the presence of extensive acetylcholinesterase inhibition (Pope 

et al., 1995). Earlier studies suggested that chlorpyrifos oxon directly bound to M2 

receptors (Huff and Abou-Donia, 1994; Bomser and Casida, 2001; Howard and Pope, 

2002), had qualitatively different effects on striatal ACh release in vitro compared to 

paraoxon (Liu et al., 2002), and selectively blocked M2 receptor internalization and 
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phosphorylation (by G-protein receptor kinase 2) in in vitro cell models (Zamora et al. 

2008). Our findings reported herein with M2 knockouts suggest that the relative absence 

of signs of cholinergic toxicity following chlorpyrifos exposure is not based on selective 

effects on the M2 autoreceptor and mediated by lesser ACh release.  

Comparative effects of the tremorigenic muscarinic agonist oxotremorine in 

wildtype/LM and M2 knockouts  

Both wildtype/LM and M2 knockouts exhibited marked tremors following 

parathion exposure (Figures 14 and 15). Studies by Gomeza and coworkers (1999) 

reported that tremors were absent in M2 knockout mice exposed to the muscarinic 

agonist oxotremorine. As the involuntary movements following parathion are considered 

to be mediated by prolonged/excessive stimulation of muscarinic receptors as a 

consequence of acetylcholinesterase inhibition, we wanted to confirm the comparative 

effects of oxotremorine in wildtype/LM and M2 knockouts. Wildtype/LM and M2 

knockout mice were given a tremorigenic dosage of oxotremorine (0.5 mg/kg) and 

subsequently evaluated for tremors.  

A marked tremor response was seen consistently in all wildtype/LM mice, while 

no tremors were noted in the M2 knockouts (Figure 17). These findings agree with those 

of Gomeza et al (1999) suggesting that the M2 receptor is essentially for expression of 

muscarinic receptor-mediated tremors in mice. Together these data indicate that the 

tremors seen in M2 knockouts following parathion exposure were mediated either 

through nicotinic receptor activation or through other non-cholinergic signaling 

pathways. Previous studies have reported the involvement of serotonergic signaling in 

addition to cholinergic receptors in the expression of tremors following exposure to an 
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anti-cholinesterase compound (Kumar et al., 1989, 1990; Sarkar et al., 2000; Mehta et al., 

2005). Acetylcholinesterase inhibition may initially selectively affect cholinergic 

signaling, but recruitment of other transmitter systems, e.g. glutamatergic signaling, has 

been reported (Shih and McDonough, 1997; Solberg and Belkin, 1997; Weissman and 

Raveh, 2008). Some studies have also reported glutamate receptor involvement in 

tremors elicited in mice following exposure to the muscarinic agonist, arecoline 

(Lukomskaya et al 2008). Future studies could characterize the neurochemical basis of 

tremors in M2 knockouts following OP exposure that might lead to better therapeutic 

strategies for treating OP intoxications.  

Mild SLUD signs were observed in both wildtype/LM and M2 knockout mice 

following exposure to oxotremorine, with no significant differences between the groups 

(Figure 17). The muscarinic M3 receptor is widely involved in parasympathetic actions, 

including some responses measured in the assessment of SLUD signs, while the M1 

receptor subtype may also play a role. It is well known that M3 receptors are involved in 

the contraction of smooth muscles in the gastric fundus, urinary bladder and ileum (Eglen 

et al., 2001; Stengel et al., 2002; Uchiyama and Chess-Williams, 2004; Tran et al., 2006; 

Unno et al., 2006; Kitazawa et al., 2007). Using M1/M3 receptor double knockout mice, 

it was shown that both are important for salivary secretion (Matsui et al., 2000; Gautam 

et al., 2004; Yamada et al., 2006). A greater reduction in body temperature was noted in 

wildtype compared to M2 knockout mice (Figure 17). The central M2 subtype plays an 

important role in the regulation of body temperature, although other muscarinic receptors 

participate (Spencer et al., 1965; Gomeza et al., 1999; Schwarz et al., 1999).  



 

126 
 

With appropriate littermate controls, parathion elicited relatively similar degrees 

of functional toxicity in both wildtype/LM and M2 knockouts as well as similar degrees 

of esterase inhibition. There was no suggestion of possible differences in bioactivation of 

the parent insecticides (as opposed to our preliminary studies). We anticipated that lack 

of M2 receptors and their associated feedback control of ACh release would allow greater 

ACh accumulation following extensive cholinesterase inhibition, leading to more 

extensive signs of cholinergic toxicity: little evidence for this was found. The toxicity 

results indicated that ACh release following OP exposure may not be substantially 

different in mice lacking the M2 receptor. The relative lack of effects of M2 deletion on 

cholinergic signs following either parathion or chlorpyrifos exposure could be due to a 

developmental adaptation elicited by the absence of the receptor. To investigate this 

possibility, we studied the effects of parathion (27.5 mg/kg) on ACh release ex vivo as 

well as in vitro effects of both paraoxon and chlorpyrifos oxon in brain slices from 

wildtype/LM and M2 knockouts.  

Comparative effect of parathion on acetylcholine release ex vivo in slices from 

wildtype/LM and M2 knockouts 

Parathion (27.5 mg/kg) elicited moderate signs of toxicity and extensive 

cholinesterase and carboxylesterase inhibition with no significant difference between 

wildtype/LM and M2 knockout mice (Figure 15, Table 2). Surprisingly, there was no 

reduction in brain regional ACh release ex vivo following parathion exposure (Table 3). 

The dosage of parathion used was the same as that used in studies with CB1 knockouts, 

where a reduction in release was noted in hippocampus and striatum from both 

wildtype/LM and CB1 knockout mice (Figures 26 and 27). Previous studies have 
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reported that both parathion and chlorpyrifos affect striatal acetylcholine release ex vivo 

in rats (Pope et al., 1995; Liu and Pope, 1996). The basis for the absence of ex vivo 

effects of parathion on brain regional ACh release in these studies is therefore unclear. 

Comparative in vitro effects of paraoxon and chlorpyrifos oxon on acetylcholine 

release in slices from wildtype/LM and M2 knockouts 

Douglas and coworkers (2001) reported that the M2 receptor is the major 

autoreceptor regulating ACh release in the prefrontal cortex of C57Bl/6 mice. Several 

other researchers had a similar conclusion (Mash et al., 1985; Quirion et al., 1989; 1994). 

Using cortical, hippocampal and striatal slices from wildtype, M2, M4 and M2/M4 

receptor knockout mice, it was shown that M2 receptor is the major autoreceptor in 

cortex and hippocampus while the M4 receptor appears to be the major autoreceptor in 

striatum (Zhang et al., 2002). Activation of autoreceptors leads to adenylate cyclase 

inhibition and decreased cAMP formation, incluencing further release of ACh into the 

synapse (Olivier et al., 2001). The muscarinic antagonist atropine increased ACh release 

whereas muscarinic agonists (carbachol and cis-dioxalane) decreased ACh release in 

striatal slices from adult rats (Pope et al., 1995). As noted above, the M4 receptor is 

thought to be the predominant autoreceptor in striatum (Olianas et al., 1997; Zhang et al., 

2002; Tzavara et al., 2004). The decrease in ACh release seen here in cortical and 

hippocampal slices could be due to effects at the M2 receptor since such effect was 

absent in slices from M2 knockouts. In contrast, reductions in ACh release seen in 

striatum could be due to increased activation of the M4 receptor, present in both 

wildtype/LM and M2 knockout mice.  
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Pilot studies evaluated concentration-related effects of both paraoxon and 

chlorpyrifos oxon on ACh release in slices from the different brain regions. We 

determined that a high concentration (100 µM) of either paraoxon or chlorpyrifos was 

maximally effective for influencing ACh release. This was also an effective concentration 

in studies evaluating OP effects on ACh release in rat striatal slices (Liu et al., 2002). 

Oxotremorine was used as a positive control in all assays. Paraoxon had no significant 

effect on ACh release in cortical (Figure 18) or hippocampal (Figure 19) slices from 

either wildtype/LM or M2 knockout mice. Paraoxon did however decrease ACh release 

in striatal slices from both groups (Figure 20). Relatively few studies have evaluated ACh 

release following OP exposure either in vivo, ex vivo or in vitro, and the majority of those 

studies have been conducted in rat striatum (Sims et al., 1982; Whalley and Shih, 1989; 

Pope et al., 1995; Jacobsson et al., 1997; Liu and Pope, 1998; Karanth et al., 2006, 2007). 

As noted before, paraoxon decreased ACh release in vitro in striatal slices from adult rats 

(Liu et al., 2002). Since several studies have reported that the M4 receptor subtype is 

likely the primary muscarinic autoreceptor in striatum (Zhang et al., 2002; Tzavara et al., 

2004), we conclude that the paraoxon-induced decrease in ACh release in striatal slices 

from wildtype and M2 knockout mice is mediated through activation of M4 receptors, 

and thus the M4 receptor may play a role in modulating ACh release following paraoxon 

(or parathion) exposure. As both wildtype/LM and M2 knockout mice have intact M4 

receptors, and the effect of paraoxon on ACh release was similar, the absence of the M2 

receptor appeared to have little influence on either ACh release or cholinergic toxicity 

following parathion. 
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 In contrast, chlorpyrifos oxon (100 µM) decreased ACh release in cortical slices 

from both wildtype/LM and M2 knockout mice (Figure 18). While chlopyrifos oxon 

appeared to have a differential effect on cortical ACh release compared to paraoxon, 

these results suggest that this differential effect was not related to M2 receptor activity. 

Several studies have reported that chlorpyrifos oxon can interact directly with muscarinic 

autoreceptors and affect cAMP levels in cortical slices from rats and cell models (Ward 

and Mundy, 1996; Olivier et al., 2001; Liu et al., 2002; Zamora et al., 2008). A number 

of studies have also shown that although the M1 receptor subtype is the predominant 

muscarinic receptor subtype in cortex, M2 and M4 receptors are present in this region 

(Lapchak et al., 1989; Waelbroeck et al., 1990; Onali and Olianas, 1998; Iannazo and 

Majewski, 2000). The reduction in cortical ACh release in vitro following chlorpyrifos 

oxon exposure in tissues from both wildtype/LM and M2 knockouts could also be due to 

direct interaction with M4 receptors, as proposed above with striatal effects of paraoxon.  

Interestingly, chlorpyrifos oxon increased ACh release in hippocampal and striatal 

slices in tissues from wildtype/LM, but had no effect on release in slices from the 

knockouts (Figures 19 and 20). Similar findings were also obtained in striatal slices from 

both CB1+/+ and CB1-/- mice following exposure to chlorpyrifos oxon in vitro. Liu and 

coworkers (2002) reported that while chlorpyrifos oxon appeared to act as a muscarinic 

agonist at low concentrations, decreasing ACh release in striatal slices from adult rats, at 

high concentrations (100-300 µM; when cholinesterase was preinhibited and in the 

presence of atropine to competitively block the autoreceptor) chlorpyrifos oxon acted as 

an antagonist, increasing ACh release. In mouse tissues, this enhancement of ACh release 

by chlorpyrifos oxon appears possible in the absence of physostigmine and atropine. 
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Several studies have shown that the striatum also expresses M2 receptors (Levey et al., 

1991; Zhang et al., 2002; Warren et al., 2007). Chlorpyrifos decreased ACh release ex 

vivo in rats early after exposrue, but increased release at later timepints (Won et al., 

2001). Chlorpyrifos oxon may decrease ACh release in one brain region yet increase 

release in another brain region, depending on the relative contribution of different 

muscarinic receptor subtypes to ACh release. The increase in ACh release observed here 

could be due to the antagonism of M2 autoreceptors in slices from wildtype mice.  

As noted above, oxotremorine was used as a positive control in the in vitro release 

studies. Oxotremorine decreased ACh release in cortical and hippocampal slices from 

wildtype/LM mice, but had no effect in tissues from M2 knockouts (Figures 18 and 19). 

However, significant reductions in ACh release were observed in striatal slices from both 

wildtype/LM and M2 knockouts, with no difference between the groups (Figure 20). 

There is some suggestion that oxotremorine has selectivity for M2 over M4 receptors. 

These results thus generally agree with previous reports (Mash et al., 1985; Quirion et al., 

1989; 1994; Douglas et al 2001; Zhang et al., 2002), suggesting the M2 receptor is the 

primary muscarinic autoreceptor in cortex and hippocampus, while the M4 is the primary 

autoreceptor in striatum. These findings also demonstrate that if chlorpyrifos or parathion 

(or chlorpyrifos oxon or paraoxon) had an effect on M2 autoreceptor function, our assay 

should have detected that modulatory action.  

Our initial studies evaluating OP toxicity in wildtype and M2 knockouts 

suggested that wildtypes may be more sensitivity. These studies were confounded by lack 

of +/+ littermate controls and differential degrees of cholinesterase inhibition between the 

groups following exposure to either parathion or chlorpyrifos. These differences were not 



 

131 
 

noted with paraoxon or chlorpyrifos oxon, suggesting that strain differences in 

bioactivation could have been responsible for differences in sensitivity instead of any 

difference related to M2 receptor function. We therefore used M2+/+ and M2-/- littermate 

controls for further studies. In contrast to the initial studies, we observed few differences 

in sensitivity or in the extent of cholinesterase inhibition between wildtype/LM and 

knockout mice under these conditions. Both wildtype/LM and knockout mice appeared 

relatively similar in sensitivity to both parent insecticides, i.e., M2 receptor deletion 

appeared to have relatively little effect on sensitivity to either OP.  Parathion (ex vivo) 

and paraoxon (in vitro) had relatively little effect on brain regional ACh release in cortex 

or hippocampus from either wildtype/LM or M2 knockout mice, but did reduce release in 

striatum, possibly through M4 receptor interactions. Chlorpyrifos oxon decreased ACh 

release in cortical slices from both wildtype/LM and knockouts, but increased ACh 

release in hippocampal and striatal slices, but only in tissues from wildtype/LM mice. 

Overall, these findings suggest that the M2 receptor has generally little influence on 

expression of classical signs of cholinergic toxicity in mice following OP exposure. The 

differential effects of paraoxon and chlopyrifos oxon on ACh release and its modulation 

through M2 and M4 receptors may however be important in other neurobehavioral 

consequences of OP intoxication.  

 

EVALUATION OF THE ROLE OF CB1 RECEPTOR FUNCTION IN OP 

TOXICITY 

The classic mechanism of OP toxicity is initiated by inhibition of 

acetylcholinesterase, leading to accumulation of ACh, prolonged/excessive activation of 
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cholinergic receptors, and subsequent signs of cholinergic toxicity. A number of studies 

suggest that activation of post-synaptic muscarinic receptors can increase synthesis and 

release of endocannabinoids (Kim et al., 2002; Ohno-Shosaku et al., 2003). Activation of 

pre-synaptic CB1 receptors on the cholinergic terminal can decrease ACh release in 

selected brain regions (Gessa et al., 1998; Gifford et al., 1997, 2000; Kathmann et al., 

2001b. We therefore hypothesized that deletion of the CB1 receptor would increase 

sensitivity to OP toxicity by disrupting the endocannabinoid-mediated inhibition of ACh 

release in mice lacking this neuromodulatory signaling pathway.  

CB1 receptor knockout mice used in these studies were generated from the 

C57Bl/6 strain (Charles River) and appeared relatively similar in phenotype to wildtype 

C57Bl/6 mice. Wildtypes obtained from Charles River were slightly but significantly 

heavier (~3 grams) than CB1 knockouts. Differences in body weight with CB1 deletion 

were previously reported by Trillou and coworkers (2004). CB1 knockout mice exhibit 

reduced food intake when compared to wildtypes (Wiley et al., 2005). It appears that 

deletion of the CB1 receptor can affect food intake and in turn body weight. It should be 

stressed here that the wildtype C57Bl/6 mice used in our initial studies were purchased 

from Charles River, i.e., they were not CB1+/+ littermates.  

 We evaluated the comparative sensitivity of wildtypes and CB1 knockouts to 

both parathion and chlorpyrifos. Parathion (20 mg/kg, sc) significantly reduced body 

weight in the CB1 knockout mice while having no effect in wildtypes. Based merely on 

body weight changes, these initial results suggested higher sensitivity in mice lacking 

CB1 receptor signaling. Parathion also elicited tremors and SLUD signs (Figure 21) in 

CB1 knockout mice, while there was no effect in wildtype mice. Thus, CB1 receptor 
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deletion appeared to increase the extent of functional signs of cholinergic toxicity 

following parathion exposure, as hypothesized.  

There were no differences between wildtype and CB1 knockout mice in basal 

cholinesterase levels in any of the brain regions evaluated.  Parathion exposure led to 

significant inhibition of cholinesterase activity in all brain regions (Figure 21, Table 4) 

and in heart in both wildtype and CB1 knockout mice. Surprisingly, the degree of 

cholinesterase inhibition was significantly higher in CB1 knockout mice compared to 

wildtypes in all brain regions evaluated (Figure 21, Table 4). Thus, similar to initial 

studies using M2 knockouts, these initial findings suggested differential degrees of target 

enzyme inhibition between the mouse strains, confounding the interpretation of the role 

of CB1 receptor in expression of OP toxicity.  

We also measured liver and plasma carboxylesterase activities to determine if the 

CB1 knockouts also exhibited different degrees of non-target enzyme inhibition. 

Parathion significantly inhibited liver and plasma carboxylesterases. The degree of 

inhibition was relatively similar to findings in previous studies on parathion toxicity in 

rats (Karanth and Pope, 2000). There were no significant differences noted in 

carboxylesterase inhibition, however, between the groups. These findings suggested that 

the two strains of mice likely did not have differences in OP biotransformation as 

originally considered between M2 knockouts and separately-bred wildtypes purchased 

from Charles River. As paraoxon is the active metabolite of parathion, responsible for 

inhibition of both cholinesterases and carboxylesterases, the lack of differential 

carboxylesterase inhibition between wildtypes and CB1 knockouts argues against a net 
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difference in metabolism of parathion and/or paraoxon. The basis for differences in 

cholinesterase inhibition between the groups was unclear, however.  

Chlorpyrifos (300 mg/kg) elicited tremors and SLUD signs (Figure 22) in CB1 

knockout mice and marked lethality (5/7). Less extensive signs were noted in wildtype 

mice. Extensive cholinesterase inhibition in brain (Figure 22 and Table 4) and heart were 

noted following chlopyrifos exposure. The degree of brain cholinesterase inhibition was 

relatively similar to that noted in adult rats exposed to chlorpyrifos (280 mg/kg; Karanth 

et al., 2006). Extensive inhibition of liver and plasma carboxylesterase was also noted in 

both wildtype and CB1 knockout mice following exposure to chlorpyrifos. The extent of 

carboxylesterase inhibition was also relatively similar to previous findings with 

chlorpyrifos exposure in rats (Karanth and Pope 2000).   

Thus, CB1 knockout mice generally appeared more sensitive to OP toxicity 

(parathion and chlorpyrifos). Both OPs elicited more extensive brain regional 

cholinesterase inhibition in CB1 knockouts, however. With more extensive brain 

cholinesterase inhibition, one would expect more extensive signs of toxicity. We 

anticipated more severe signs of toxicity in the CB1 knockouts, but with similar changes 

in cholinesterase activity. A possible explanation for differences in cholinesterase 

inhibition between groups following exposure to the same dosage of an OP is that 

biotransformation (either activation or inactivation) is different between these groups. In 

contrast to our findings in the initial studies on M2 receptor knockouts, however, no 

differences in carboxylesterase inhibition were noted in tissues from these same animals. 

This suggested that the same amount of oxon was at least reaching the peripheral tissues, 

and thus a difference in biotransformation between wildtypes and knockouts was unlikely 
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a contributing factor. The results suggested, however that strain differences were in some 

way modifying the extent of target enzyme inhibition and thus confounding the 

evaluation of the role of CB1 receptor in OP toxicity. Similar to our studies with M2 

knockouts, we concluded that subsequent studies using CB1+/+ and CB1-/- littermates 

would be needed to evaluate better the role of CB1 receptor in expression of OP toxicity. 

We therefore began a breeding program to produce littermate wildtype, heterozygous and 

homozygous mice in order to minimize confounding factors that could influence the 

study outcome and its interpretations.  

Comparative effects of acute parathion and chlorpyrifos exposure in wildtype/LM 

and CB1 knockouts 

CB1-/- males were bred to C57Bl/6 (CB1+/+) mice obtained from Charles River to 

derive heterozygotes. These heterozygotes were then bred to obtain homozygous 

wildtype and knockouts. Under these conditions, wildtype/LM and CB1 knockout mice 

did not differ in body weight at the time of the experiments (eight weeks of age). Mice 

were exposed to parathion (20 mg/kg, sc) and graded for functional signs of cholinergic 

toxicity as before.  

Parathion elicited a significant reduction in body weight in both wildtype/LM and 

CB1 knockout mice, with no difference in degree of reduction between the treatment 

groups. Parathion elicited tremors in both wildtype/LM and CB1 knockout mice and 

SLUD signs (Figure 23), but again there were no differences in the degree of toxicity 

between wildtype/LM and CB1 knockouts. Thus, when +/+ and -/- littermates were used to 

evaluate parathion toxicity, no influence of CB1 receptor in the expression of toxicity 

was noted.  
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Parathion caused extensive inhibition of brain (Figures 23 and Table 5) and heart 

cholinesterase activity, with no significant differences between the treatment groups. 

Significant inhibition of liver and plasma carboxylesterase was also observed in both 

wildtype/LM and CB1 knockout mice following exposure to parathion, with no 

differences between treatment groups. Thus, in contrast to our earlier studies without 

littermate CB1+/+ controls, there was little suggestion of a role for CB1 receptor signaling 

in the expression of parathion toxicity. One explanation for these findings could be that 

endocannabinoid signaling only plays a prominent role in the expression of cholinergic 

toxicity when acetylcholine accumulation is extensive, i.e., with higher dosages of 

parathion. To evaluate this possibility, we increased the parathion dosage to 27.5 mg/kg 

in subsequent studies, a dosage that markedly increases the extent of cholinergic signs.  

At this higher dosage, parathion elicited relatively similar body weight reductions 

in both wildtype/LM and CB1 knockouts, with no significant difference between the two 

groups. Both wildtype/LM and CB1 knockout mice showed more severe signs of 

cholinergic toxicity than with 20 mg/kg dosing, but again no significant differences were 

noted between the treatment groups (Figure 24). More extensive inhibition of brain 

(Figure 24 and Table 5) and heart cholinesterase activity was observed in both 

wildtype/LM and CB1 knockouts compared to the lower dosage, but no differences were 

noted between groups. Similarly, carboxylesterases were inhibited to similar degrees in 

both groups. Together, these results suggested that CB1 deletion has little influence on 

either esterase inhibition or functional signs of toxicity in response to parathion exposure 

in mice.  
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We then evaluated the comparative sensitivity of CB1 knockouts to chlorpyrifos. 

Body weight was reduced in both groups, with no significant difference. Chlorpyrifos 

elicited severe signs of cholinergic toxicity (both SLUD signs and involuntary 

movements) in both wildtype/LM and knockouts (Figure 25). In this case, however, there 

was a statistical difference in the onset of signs, with CB1 knockouts showing 

significantly lesser toxicity at the earliest timepoint (12 hours after dosing). This was 

evident with both involuntary movements and SLUD signs. Chlorpyrifos elicited 

extensive inhibition of brain (Figure 25 and and Table 5) and heart cholinesterase 

activities and carboxylesterase activities, but no differences between groups. Thus, in 

contrast to our initial studies without littermate controls, wildtype/LM and CB1 knockout 

mice appeared relatively similar in sensitivity to chlorpyrifos except that the onset of 

functional signs was delayed in the CB1 knockouts. Similar degrees of brain regional and 

heart cholinesterase inhibition as well as tissue carboxylesterase inhibition were also 

noted between the groups.  

Studies from our laboratory have reported that endocannabinoid signaling can 

play an important role in reducing cholinergic toxicity in rats (Nallapaneni et al., 2006, 

2008). Our studies with CB1 knockout mice suggested little role for CB1 in the 

expression of OP toxicity, however. Parathion and chlorpyrifos elicited similar signs of 

cholinergic toxicity in both wildtype/LM and CB1 knockouts with similar levels of 

cholinesterase inhibition. The differences between these studies could be based on 

different species used (rats vs. mice) between the two sets of studies. The OPs used in the 

previous studies involving rats were paraoxon and diisopropylphophorofluoridate (DFP). 

Paraoxon and DFP are both direct-acting anti-cholinesterases and elicit rapid onset of 
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cholinergic signs, whereas the studies herein used parathion and chlorpyrifos, which 

require bioactivation and thus lead to relatively slower onset expression of toxicity. In 

addition, studies with rats used either direct or indirect cannabinomimetics (administered 

at the same time as the OP) to activate the intact endocannabinoid signaling pathway, 

while our studies reported here used CB1 receptor gene knockout mice to block 

endocannabinoid signaling.  

Both wildtype/LM and CB1 knockout mice exhibited similar signs of toxicity. 

This suggested that ACh release (and in turn ACh accumulation following OP exposure) 

may not be influenced by deletion of the CB1 receptor, and thus its loss would have no 

influence on OP toxicity. We therefore evaluated the effects of OP exposure on ACh 

release in tissues from wildtype/LM and CB1 knockout mice.  

 

Comparative effects of parathion and chlorpyrifos exposure on acetylcholine release 

ex vivo in slices from CB1 knockout mice and wildtype/LM mice 

Wildtype/LM and CB1 knockout mice were exposed to parathion (27.5 mg/kg) or 

chlorpyrifos (300 mg/kg) and tissues subsequently collected to measure ACh release ex 

vivo. ACh release was measured in slices from hippocampus (where ACh release has 

been shown to be modulated by endocannabinoids) and striatum (where ACh release does 

not appear to be modulated by endocannabinoids) (Kathmann et al., 2001a.  

Depolarization-induced release of ACh in hippocampal slices was not 

significantly different between wildtype/LM and CB1 knockout mice. This suggests that 

endocannabinoids do not constitutively modulate ACh release in our system. Kathmann 

et al (2001a) reported however a 2-fold increase in depolarization-induced ACh release in 
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hippocampal slices from CB1 knockout mice compared to tissues from wildtypes, and 

these investigators concluded that endocannabinoids tonically inhibited ACh release in 

hippocampus. The basis for the discrepancy in results between these studies is unclear.  

Parathion decreased depolarization-induced hippocampal ACh release ex vivo in 

both wildtype/LM and CB1 knockout mice, but no significant differences were noted 

between the groups (Figure 26). Chlorpyrifos also significantly reduced depolarization-

induced hippocampal ACh release in both wildtype/LM and CB1 knockouts, but in this 

case the extent of reduction was significantly greater in the wildtypes (Figure 26). This 

provides the first evidence that CB1 deletion indeed may influence cholinergic signaling 

in an OP-selective manner.  

 Activation of postsynaptic muscarinic (M1 and M3) as well as metabotropic 

glutamate receptors during OP intoxication can trigger the “on demand” synthesis of 

endocannabinoids in cholinergically innervated cells. OP exposure in both wildtype/LM 

and CB1 knockout mice should therefore lead to enhanced endocannabinoid synthesis 

and release, regardless of the presence or absence of the CB1 receptor. Recent studies 

(Pope et al., in press) suggest that extracellular 2-arachidonyl glycerol (2-AG, but not 

anandamide) increases in rat hippocampus following exposure to chlorpyrifos (279 

mg/kg), while parathion failed to elicit changes in extracellular levels of either 

endocannabinoid, even though cholinesterase inhibition was marked and similar between 

the two treatment groups. Increased 2-AG levels could more effectively activate CB1 

receptors, leading to reduced hippocampal ACh release. Such a neuromodulatory 

response could not occur in CB1 knockouts, however because of the absence of CB1. 

There is uncertainty in this extrapolation however, because the studies demonstrating 
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selective changes in extracellular endocannabinoid levels were conducted in rats while 

the studies evaluating CB1 receptor deletion involved mice.  

All of our studies have been based on the premise that without the CB1 receptor, 

endocannabinoid signaling could not modulate ACh release and thereby influence OP 

toxicity. Several studies have shown, however that endocannabinoids may directly 

interact with pre-synaptic voltage gated calcium channels and potassium channels, 

potentially regulating the release of neurotransmitters in a receptor-independent manner. 

Kofalvi and coworkers (2007) reported that the cannabinoid receptor agonist WIN 

55,212-2, at low micromolar concentrations, was capable of inhibiting neurotransmitter 

release by directly acting on calcium channels, i.e., independent of the CB1 or CB2 

receptor. Similar findings were also reported by Nemeth et al (2008), in this case low 

micromolar concentrations of WIN 55,212-2 reduced glutamate release from 

hippocampus by blocking of N-type voltage gated calcium channels. As noted before, 

increased intracellular calcium is required for exocytosis and thus the release of 

neurotransmitters from the pre-synaptic terminal. It may be that WIN 55,212-2 and 

possibly other cannabinoids/endocannabinoids, at lower concentrations, inhibit 

transmitter release through CB1 receptor activation whereas at higher concentrations, 

both through direct interaction with CB1 and by direct modification of voltage-gated 

calcium channels. Thus, reductions in ACh release ex vivo seen in hippocampal slices 

from CB1 knockouts following exposure to parathion and chlorpyrifos could be due to 

direct modification of calcium channels in the absence of any interaction with the CB1 

receptor. 
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With chlorpyrifos, CB1 deletion did appear to influence ACh release in the 

hippocampus, but this effect was not associated with an obvious change in sensitivity to 

chlorpyrifos-induced cholinergic toxicity. On the other hand, the hippocampus is likely to 

play little role in the expression of either SLUD signs or involuntary movements (the 

functional endpoints of cholinergic toxicity evaluated herein). Thus, other 

functional/neurobehavioral endpoints that are thought to be dependent on hippocampal 

cholinergic signaling (e.g. cognition) may be differentially affected in wildtype/LM and 

CB1 knockout mice exposed to OPs, and thus such effects may be sensitive to 

modulation by endocannabinoid-active drugs under normal conditions. Studies by 

Reibaud et al (1999) reported that CB1 knockout mice performed better in a two-trial 

object recognition cognitive test. Several studies evaluated the role of CB1 receptor in 

memory using various behavioral tests such as the Morris water maze and radial maze 

(Terranova et al., 1996; Chaperon and Thiebot, 1999; Castellano et al., 2003). The role of 

CB1 and endocannabinoid signaling in persistent neurobehavioral consequences of OP 

intoxication obviously requires different experimental approaches than used here. Such 

neurochemical interactions could be important, however in long-term neurological 

consequences of OP exposures.  

In the striatum, a significant reduction in ACh release was observed following 

parathion and chlorpyrifos exposure in both wildtype/LM and CB1 knockouts (Figure 

27). Extensive accumulation of extracellular ACh was observed in rat striatum following 

exposure to parathion or chlorpyrifos (Karanth et al., 2006, 2007).  As noted before, 

studies using striatal slices from M2 knockout, M4 knockout, or double M2/M4 knockout 

mice suggested that the M4 receptor is the primary muscarinic autoreceptor in striatum 
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(Zhang et al., 2002).  Dolezal and Tucek (1998) reported that M4 acts as an autoreceptor 

and decreases ACh release in rat striatum. The cannabinoid receptor agonist WIN 55,212-

2 a) had no effect on ACh release in striatal slices from either wildtype or CB1 knockout 

mice, b) reduced ACh release in hippocampal slices from wildtypes, but c) had no effect 

in slices from CB1 knockouts.  Thus CB1 appears to have little role in regulating ACh 

release in striatum (Kathamnn et al., 2001a). We observed a decrease in striatal ACh 

release ex vivo following parathion or chlorpyrifos exposure. Accumulation of ACh in 

striatum may have activated M4 receptors, resulting in further reduction in release of 

ACh into the synapse in both wildtype/LM and CB1 knockout mice.  

 

Comparative in vitro effects of paraoxon and chlorpyrifos oxon on  acetylcholine 

release in slices from CB1 knockouts and wildtype/LM mice 

Hippocampal and striatal slices from wildtype/LM and CB1 knockout mice were 

exposed to paraoxon (100 µM) or chlorpyrifos oxon (100 µM) prior to depolarization and 

effects on ACh release subsequently evaluated. WIN was used as a positive control. WIN 

reduced release in hippocampal slices from wiltype mice, but had no effect on release in 

tissues from the CB1 knockouts. As expected, WIN had no effect on ACh release in 

striatum from either wildtypes or knockouts. These findings provided support for intact 

endocannabinoid signaling in the hippocampus of wildtype mice coupled to ACh release 

regulation. Paraoxon decreased ACh release in hippocampal slices from wildtype/LM 

(Figure 28), but there was no effect in slices from CB1 knockouts. With chlorpyrifos 

oxon, a significant reduction was noted in both wildtype/LM and knockouts, but the 

degree of reduction was greater in tissues from wildtype/LM mice (Figure 28). These 
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findings with chlorpyrifos oxon were generally similar to results obtained in hippocampal 

slices ex vivo following chlorpyrifos exposure (Figure 26).  

Both paraoxon and chlorpyrifos oxon reduced hippocampal ACh release to a 

greater degree in slices from wildtype/LM compared to CB1 knockout mice, suggesting 

such differences could be due to the presence or absence of the CB1 receptor. Several 

studies from other laboratories have shown that cannabinoids modulate the release of 

ACh from the pre-synaptic cholinergic terminal (Gifford and Ashby, 1996; Steffens et al., 

2003; Tzavara et al., 2003b; Degroot et al., 2006). Thus, in the presence of CB1, 

acetylcholinesterase inhibition can lead to ACh accumulation, stimulation of M1/M3 

receptors, enhanced release of endocannabinoids, and finally activation of CB1 to reduce 

ACh release.  

ACh release was reduced in striatal slices from both wildtype/LM and CB1 

knockout mice by paraoxon in vitro (Figure 29). Interestingly, chlorpyrifos oxon 

significantly increased ACh release in striatal slices from both wildtype/LM and CB1 

knockout mice, with no significant differences between the groups (Figure 29). As noted 

before, the striatum expresses an abundance of M4 and lesser M2 receptors (Olianas et 

al., 1997; Zhang et al., 2002; Tzavara et al., 2004). Studies by Liu et al (2002) reported 

that paraoxon and chlorpyrifos oxon interact differentially with the striatal autoreceptor. 

Under some conditions, paraoxon acted as a cholinomimetic to decrease ACh release 

while chlorpyrifos oxon acted as an antagonist to increase ACh release. Similar actions 

may occur here, where paraoxon activated the M4 receptor while chlorpyrifos oxon 

blocked the M4 receptor. As CB1 is thought to play a minimal role in ACh release in 

striatum, the primary response may be mediated by M4.  
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Together, these results suggest that genetic deletion of the CB1 receptor in mice 

has relatively little influence on classical signs of OP toxicity. The CB1 receptor is the 

primary receptor involved in endocannabinoid signaling in the nervous system 

(Herkenham et al., 1990; Matsuda et al., 1993; Tsou et al., 1998; Coutts et al., 2001). The 

second identified cannabinoid receptor (CB2) appears primarily involved in immune 

regulation and located on immune cells. In addition to these two receptors, emerging 

evidence suggests the presence of another cannabinoid receptor sometimes referred to as 

non-CB1/non-CB2 or the CB3 receptor. The identity of this receptor has not been 

confirmed, however. Kofalvi and coworkers (2003) reported that glutamate release was 

similarly reduced in hippocampal slices from both wildtype and CB1 knockout mice 

exposed to WIN 55,212-2. Similarly, WIN 55,212-2 reduced glutamatergic transmission 

in hippocampal pyramidal neurons from both wildtype and CB1 knockout mice (Hajos et 

al., 2001; Hajos and Freund, 2002). Some behavioral responses sensitive to 

endocannabinoids, e.g. an analgesic response and immobility, were similarly affected in 

both wildtype and CB1 knockout mice (Di Marzo et al., 2000). Using the [35S]GTPγS 

binding technique to identify agonist action, Breivogel and coworkers (2001) reported 

that WIN 55,212-2 stimulated [35S]GTPγS binding in tissues similarly from both 

wildtype and CB1 knockout mice. All of these findings suggest that some actions of 

endocannabinoids (primarily based on studies using WIN 55,212-2) may be mediated by 

a novel cannabinoid receptor (Monory et al., 2002), or as noted before direct binding to 

ion channels. If WIN 55,212-2 can modify functional signs of cholinergic toxicity by 

binding to a novel (non CB1) receptor, this could explain the ability of WIN 55,212-2 to 

reduce cholinergic toxicity in rats (Nallapaneni et al., 2006, 2008) but the lack of any 
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substantial effect of CB1 deletion on OP toxicity in mice. Future in vivo studies with 

WIN 55,212-2 and OPs in mice could provide more evidence for the role of a novel 

cannabinoid receptor in modulating OP toxicity. 

Our in vitro release studies suggest that the CB1 receptor does have a role in 

regulating hippocampal ACh release following OP exposure. Our studies focused on the 

hippocampus because of substantial endocannabinoid signaling in this region (Maejima et 

al., 2001; Kathmann et al., 2001a; Ohno-Shosaku et al., 2002, 2003). In studies 

performed in vivo, however, extensive acetylcholinesterase inhibition will likely lead to 

recruitment of other neurotransmitter systems and signaling pathways in different regions 

of the brain. The nervous system is an incredibly complicated organ with numerous 

different types of neurotransmitters and neuronal circuits. This complexity leaves the 

evaluation of selective transmitter signaling pathways difficult to study in context. 

Moroever, endocannabinoids are known to act as global neuromodulators regulating the 

release of a variety of neurotransmitters including ACh, dopamine, glutamate, GABA and 

others. Understanding the interactions between cholinergic and cannabinergic signaling 

may be important not only for improving the treatment strategies for OP poisoning but 

also in other neurological disorders such as Alzheimer’s disease or Parkinson disease.  

The neuroprotective role of endocannabinoids in neurological disorders is 

currently receiving considerable research attention. Some studies suggest a protective 

role for endocannabinoids in Alzheimer’s disease (Pazos et al., 2004; Ramirez et al., 

2005; Benito et al., 2007; Campbell and Gowran, 2007). While endocannabinoids are 

typically associated with inhibiting pre-synaptic neurotransmitter release, some studies 

suggest they enhance dopamine release in some pathways. In a C6 glioma-PC12 co-
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culture system, the dopaminergic neurotoxicant MPTP led to PC12 cell cytotoxicity that 

was blocked by pharmacological CB1 receptor activation (Iuvone et al. 2007). Kreitzer 

and Malenka (2007) reported that in animal models of Parkinson's disease, long-term 

depression was absent but rescued by inhibitors of endocannabinoid degradation. Further, 

administration of a dopamine D2 receptor agonist and a FAAH inhibitor together reduced 

motor deficits in these models, suggesting that endocannabinoid signaling has a critical 

role in the control of nigrostriatal coordinated movement. In contrast, van der Steldt and 

coworkers (2005) reported that endocannabinoid signaling may actually play a role in the 

development of Parkinson’s disease and in levodopa-induced dyskinesias. Obviously, a 

role for CB1 receptor signaling in disorders such as these could lead to improved therapy 

and possibly even prevention.  

Pre-synaptic modulation of cholinergic toxicity in M2 and CB1 knockout mice 

We hypothesized that deletion of either muscarinic M2 or cannabinoid CB1 

receptors would increase anticholinesterase toxicity by removing an adaptive 

neuromodulatory process that inhibits ACh release. In contrast to our hypothesis, we 

observed few differences in sensitivity between wildtype mice and either M2 or CB1 

knockouts. With knockout models, there is always a possibility for developmental 

compensation for the missing gene product. Although knockout mice can serve as viable 

models, several studies have shown that knockout mice can often “find a way” to 

compensate for the loss of a particular gene by modulation of related pathways. Godecke 

et al (1999) reported that myoglobin knockout mice compensated for the loss of 

myoglobin by increasing blood hemoglobin and blood flow. Similar findings were also 

observed with loricrin knockout mice where knockdown of this protein was compensated 
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for by upregulation of other related proteins (Koch et al., 2000). AChE knockout mice 

compensate for the loss of the enzyme by downregulating cholinergic muscarinic 

receptors, thus decreasing the responses to accumulated ACh (Volpicelli-Daley et al., 

2003; Li et al., 2003). Also, in the absence of AChE the other cholinesterase enzyme 

(butyrylcholinesterase) compensates for it and hydrolyzes ACh in AChE knockout mice 

(Hartmann et al., 2007). Studies by Myslivecek and Duysen (2007) have shown that 

AChE knockout mice adapt to increased levels of ACh in the lung by downregulating 

muscarinic and adrenergic receptors in the airways. Tai and coworkers (2004) reported 

that µ opioid receptor knockouts have increased levels of AChE and a decreased density 

of M2 receptors in striatum. Such compensatory mechanisms could occur in M2 and/or 

CB1 knockouts, and those alterations could potentially confound interpretations of the 

role of the respective receptor in OP toxicity.  

There are several aspects of the current project which can be investigated further. 

The logical extension of this project would be to do the in vivo studies in wildtype/LM 

and CB1 knockout mice with both OPs and challenge them with WIN to check if WIN 

could offer similar protection in both wildtype/LM and CB1 kncokut mice. If this 

happens, then the protective actions of WIN could explained by its activation of non CB1 

cannabinoid receptors. It would also be interesting to evaluate whether greater effects on 

ACh release seen following oxon exposure in WT/LM mice compared to CB1 knockout 

mice are sensitive to cannabinoid receptor antagonists. Tremors were not seen in M2 

knockout mice following oxotremorine treatment, but were evident in OP treated mice. 

Future studies using nicotinic, serotonergic or glutamatergic antagonists could reveal the 

role of these signaling pathways in OP-induced tremors. As differential changes in 
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hippocampal ACh release were noted following chlorpyrifos exposure in CB1 knockouts, 

it would be interesting to study the long-term neurobehavioral effects of chlorpyrifos on 

higher order processing using selected neurobehavioral tests. In fact, ongoing studies in 

our laboratory (Wright et al., under revision) suggest that affective (depressive-like) 

behaviors may be elicited by OPs, and that these long-term behavioral changes are 

sensitive to modulation by cannabinomimetics. All studies reported herein were acute 

studies, thus repeated dosing studies may reveal differences in sensitivity based on 

genotype for either M2 or the CB1 receptor. As acute OP intoxications are getting less 

common (in the US) while potential long-term effects of low level OP exposures are of 

increasing concern, study of the role of pre-synaptic control mechanisms in modulating 

cholinergic signaling with long-term OP exposures would be a logical extension of this 

project.  
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

1. Studies of the comparative toxicity of organophosphorus cholinesterase inhibitors 

(OPs) in mice lacking one of two presynaptic receptors (muscarinic M2 receptors 

and cannabinoid CB1 receptors), with and without littermate controls, reinforced 

the importance of littermates in the experimental design for gene knockout 

studies.  

2. Initial studies without littermate controls suggested differential sensitivity to OP 

toxicity in mice lacking either the M2 receptor or the CB1 receptor. 

3. In both cases, however, different degrees of cholinesterase inhibition confounded 

the interpretation of the roles of each receptor in expression of toxicity and 

prompted studies with littermate controls. 

4. Using +/+ and -/- littermates, wildtype and M2 knockouts exhibited relatively 

similar acute sensitivity (based on functional signs of toxicity and cholinesterase 

inhibition) to both parathion and chlorpyrifos. 
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5. M2 receptor deletion may be associated with reduced lethality following 

parathion exposure. 

6. Parathion elicited tremors in M2 knockout mice, but these appeared to be 

mediated via a non-muscarinic mechanism as the M2 receptor appears essential 

for tremorigenic response to muscarinic agonists. 

7. Parathion had little effect on acetylcholine release ex vivo in tissues from either 

wildtype or M2 knockout mice, paraoxon had no apparent effect on acetylcholine 

release in vitro in hippocampal or cortical slices, but paraoxon decreased release 

in vitro in striatal slices. As the muscarinic agonist oxotremorine inhibited release 

in all tissues, these findings suggest that neither parathion nor paraoxon 

substantially modify muscarinic autoreceptor function in cortex or hippocampus.  

8. Chlorpyrifos oxon decreased acetylcholine release in vitro in cortical slices from 

both wildtype and M2 knockout mice, suggesting M2 receptor-independent 

modulation of ACh release. 

9. In contrast, chlorpyrifos oxon increased acetylcholine release in hippocampal and 

striatal slices from wildtype mice while having no effect in tissues from M2 

knockouts. These results suggest that chlorpyrifos oxon blocks M2 autoreceptor 

function in these tissues.  

10. Without +/+ and -/- littermates in the design, CB1 knockouts appeared more 

sensitive than wildtypes to both OPs (parathion and chlorpyrifos), but greater 

cholinesterase inhibition was observed in CB1 knockouts compared to wildtypes 

following either parathion or chlorpyrifos. Using CB1 +/+ and -/- littermates, 
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however, little difference in sensitivity to either parathion or chlorpyrifos was 

noted. 

11. Parathion decreased ex vivo acetylcholine release in hippocampal and striatal 

slices from wildtype and CB1 knockout mice suggesting decreased acetylcholine 

release was not CB1 dependent. 

12. In contrast, chlorpyrifos decreased acetylcholine release ex vivo in hippocampal 

and striatal slices but a significantly greater reduction was observed in wildtypes 

compared to CB1 knockouts in hippocampus. This difference in hippocampal 

acetylcholine release in wildtypes compared to CB1 knockouts following 

chlorpyrifos exposure appears due to endocannabinoid signaling. 

13. Paraoxon and chlorpyrifos oxon exposure resulted in a greater reduction in in 

vitro acetylcholine release in tissues from wildtype mice compared to CB1 

knockouts suggesting a role for the CB1 receptor in regulating acetylcholine 

release in vitro in response to these OPs. 

14. A significant decrease in acetylcholine release was observed in striatum of both 

wildtype and CB1 knockout mice following exposure to paraoxon suggesting a 

role for the M4 receptor in modulating ACh release in vitro following paraoxon. 

15. Chlorpyrifos oxon increased acetylcholine release in striatal slices of both 

wildtype and CB1 knockout mice presumably by directly blocking M4 

autoreceptors in striatum. 

16. Overall, deletion of either M2 or CB1 receptor had relatively little influence on 

expression of cholinergic signs of OP toxicity, but influenced some 

neurochemical responses in an OP-selective and brain regional manner.  
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Scope and Method of Study: Organophosphorus toxicants (OPs) inhibit 
acetylcholinesterase (AChE) leading to acetylcholine (ACh) accumulation and 
cholinergic toxicity. The current approach for treating OP intoxication has several 
shortcomings, thus there continues to be a need for alternative treatment strategies. One 
approach could be to decrease ACh release from the pre-synaptic cholinergic terminal, 
potentially leading to less ACh accumulation and decreased signs of cholinergic toxicity. 
Activation of pre-synaptic muscarinic M2 and cannabinergic CB1 receptors can decrease 
ACh release. Pharmacological activation of these receptors could prove beneficial in OP 
poisoning. We hypothesized that genetic deletion of M2 and CB1 receptors would lead to 
loss of inhibitory control over ACh release and in turn increase cholinergic toxicity. We 
therefore systematically evaluated the sensitivity of M2 and CB1 receptor knockout mice 
to selected OP compounds in vivo. We also studied the effects of different OP 
compounds on ex vivo and in vitro ACh release in tissues from wildtype (WT), M2 and 
CB1 knockout (KO) mice. 
 
Findings and Conclusions:  Initial studies suggested that loss of either M2 or CB1 could 
affect sensitivity to OP toxicity. Surprisingly, both knockouts exhibited different degrees 
of AChE inhibition compared to the wildtypes, confounding interpretations. Subsequent 
studies using M2 +/+ and -/- littermates provided little evidence of altered sensitivity, 
however. Both WT and M2 KO showed tremors, a functional response considered to be 
mediated by M2 receptors, following exposure to parathion, suggesting non-muscarinic 
signaling in the expression of this sign of toxicity. ACh release following parathion 
exposure was not significantly different while paraoxon and chlorpyrifos oxon had 
differential effects on ACh release in vitro in tissues from WT and M2 KO mice. Similar 
to findings with M2 deletion, CB1 +/+ and -/- mice showed little difference in sensitivity to 
cholinergic toxicity following OP exposure. ACh release ex vivo was differentially 
affected following PS and CPF exposure in WT and CB1 KO mice, however. Paraoxon 
and chlorpyrifos oxon had differential effects on ACh release in hippocampal slices of 
WT and KO mice. Together, these findings suggest that presynaptic muscarinic M2 and 
cannabinergic CB1-mediated signaling pathways have relatively little influence on 
expression of cholinergic toxicity, but may influence neurochemical responses elicited by 
OPs that affect other neurobehavioral/neuropsychological consequences of intoxication.  
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