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CHAPTER ONE 
 

INTRODUCTION 
 

In the educational and social behavioral sciences, the two-sample statistical comparison is 

one of the most important procedures in hypothesis testing.  Based on the difference in the 

nature of the population distributions, many different parametric and nonparametric 

statistical tests are available to use under different assumptions (Buning, 2001).  Most of the 

data related to research questions in the educational, social, and behavioral sciences are 

primarily ordinal in nature and distribution-free (Cliff & Keats, 2003; Keselman & Cribbie, 

1997). Micerri (1989) investigated more than 400 large-sample data sets by performing 

parametric tests. He concluded that only 28.4% of the distributions in the educational or 

educational psychological fields were relatively symmetric, and that 30.7% were extremely 

asymmetric. Most of population distributions in those studies did not meet the assumption of 

normality. Authors of textbooks in education, psychology, and other related fields also 

recommend the use of nonparametric statistical tests when assumptions are violated, 

particularly, normality and homogeneity of variance (Zimmerman, 1998).  Nonparametric 

statistics are more powerful than parametric statistics when the data are not normally 

distributed. Among various nonparametric statistical tests for comparing two populations, the 

Kolmogorov-Simirnov two-sample test (KS-2) and the Mann-Whitney test (MW) are the 

most often cited in nonparametric statistics textbooks published since 1956  (Fahoome & 
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Sawilowsky, 2000). The two tests are often in direct competition when a researcher is 

choosing an analytic technique for data analyses. 

Research data are measured mostly with scales in the educational and behavioral 

sciences. Response options for the items for instruments are usually rank-ordered. Thus, 

these scores are at least ordinal in nature (Cliff & Keats, 2003).  Both the KS-2 test and the 

MW test utilize ranks to analyze ordinal data (Conover, 1999; Daniel, 1990; Higgins, 2004; 

Krishnaiah & Sen, 1984; Pratt & Gibbons, 1981; Sheskin, 2000; Siegel & Castellan, 1988).  

They are both used to detect whether two independent samples are from the same population 

(Siegel & Castellan, 1988), or whether two populations for two independent samples are 

identical (Conover, 1999).  

 
Problem Statement 

When educational and social-behavioral researchers perform the MW test and the KS-2 

test for the same data sets, the results for these two methods may remain the same under one 

condition. However, results may differ due to different shapes of the two population 

distributions, unequal population variances,  or unequal sizes between two samples (Lee, 

2005). However, there are limited studies that compare the MW test and the KS-2 test to 

determine the scenario of applying either one of these two nonparametric statistical 

techniques. Studies focusing on the conditions of population distributions, unequal 

population variances, and unequal sizes between two samples to evaluate Type I error rates 

and statistical power are in demand. 
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Purpose of Study 

Even though both the KS-2 test and the MW test detect group differences, they may 

produce significantly different results with the same data sets.  This may be due to 

differences in sizes between two samples, heterogeneity of variance, or skewness and 

kurtosis of population distributions. Therefore, the main purpose of this study was to 

compare the MW test with the KS-2 test through a Monte Carlo simulation.  This study 

investigated conditions when these two tests produce different results, and thus different 

interpretations of the same data. The following considerations were assessed (Table 1):  

1. Both equal and unequal sizes in large and small samples,  

2. Heterogeneity of variance between two samples, 

3. Different skewness between two samples, 

4. Different kurtosis between two samples. 

Similarities in Type I error rate and power were explored under these considerations, and 

overlapping characteristics were reported. Guidelines were developed to aid researchers’ data 

analysis in applied educational settings. 

Table 1: Table of Simulation Combinations 

Sample Size Equal Unequal 

Condition Unequal population variance 

Difference in Skewness only 

Difference in Kurtosis only 

Equal population variance 

Unequal population variance 

Simulation Statistical power Type I error rates 

Statistical power 
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Research Questions 

This study compared the Type I rates and power estimates of the KS-2 test and the MW 

test when performing a test under an alternative hypothesis that there were differences 

between two sampled population distributions. Thus, there were several research questions to 

guide the considerations of the research: 

Question 1:  If only sample sizes differ between two samples,  

a.  Is there any difference in Type I error rate for these two nonparametric 

techniques?  

b.  Is there any difference in power for these two nonparametric techniques?  

Question 2: If only the heterogeneity of variance between two populations exists, is there any  

 difference in power for these two nonparametric techniques?  

Question 3: If the nature of the underlying population distributions varies in skewness only,  

  is there any difference in power for these two nonparametric techniques?  

Question 4: If the nature of the underlying population distributions varies in kurtosis only, is  

  there any difference in power for these two nonparametric techniques?  

 
Significance of the Study 

This study was developed in order to provide guidelines for educational and social-

behavioral researchers as they perform nonparametric data analyses.  These results can help 

researchers to determine the nonparametric statistical methods they should adopt when 

choosing between the KS-2 test and the MW test under the specific conditions of concern. 
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Definition of Terms 

1. Monte Carlo simulation: A procedure using random samples from known populations 

of simulated data to track a statistic’s behavior (Mooney, 1997) 

2. Nonparametric test:  Defined as inferential statistical test that evaluates 

categorical/nominal data and ordinal/rank-order data (Sheskin, 2000). 

3. Kolmogorov-Smirnov two sample test: A nonparametric statistical test that is 

employed with ordinal (rank-order) data in a hypothesis testing situation involving 

two independent samples (Sheskin, 2000)  

4. Mann-Whitney test: A nonparametric statistical test that is employed with ordinal 

(rank-order) data in a hypothesis testing situation involving independent samples 

(Sheskin, 2000). 

5. Type I error: The likelihood of rejecting a true null hypothesis (Sheskin, 2000). 

6. Ties (in Rank): Equal values that are resolved by assigning each of the items which 

are ties the mean of the ranks they jointly occupy (Freund & Williams, 1966). 

7. Power: Also called statistical power; a measure of the sensitivity of a statistical test; it 

is used to detect effects of a specific size by providing variance and sample size of a 

study. It is 1- β (β is the Type II error rate) (Vogt, 2005). 

8. Sample Size: The number of observations in a sample (Freund & Williams, 1966). 

9. Variance:  A measure of dispersion or the spread of scores in a distribution of scores 

(Vogt, 1993).   

10. Skewness: The degree to which scores are clustered on one side of the central 

tendency and trail out on the other (Vogt, 2005). 

11. Kurtosis: The relative peakedness or flatness of a distribution of scores (Vogt, 2005).  
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Assumptions 

Both the KS-2 test and the MW test were used to assess general differences for two 

independent samples.  It was assumed that samples for performing these two nonparametric 

statistical tests met their general assumptions (presented in CHAPTER TWO along with their 

formulas and test statistics).  Furthermore, the tests performed one determined condition at a 

time (both equal and unequal sizes for large and small samples, heterogeneous variance, 

skewness, and kurtosis).The condition of ties was ignored in this study. 

 
Restrictions 

The following were identified restrictions of this research: 

1.This research assessed only two independent sample comparisons using the MW test 

and the KS-2 test. 

2.The simulations of this study were limited to  

(1) Specific formulas of generating types of population distributions, 

(2) The nominal Type I error rates (α) for comparisons at 0.5,  

(3) Specific sizes for selecting samples from population distributions, 

(4)  Selected coefficients of skewness and kurtosis for generating population 

distributions,  

(5) Ratios of variances between two simulated sample distributions, 

(6) Formulas of test statistics for the KS-2 test and the MW test, 

(7) Tied scores within and between sample distributions were ignored. 
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Organization of the Study 

In summary, Chapter One provided an introduction of this study including statement of 

purpose, research questions, significance of the study, definition of terms, assumptions, as 

well as restrictions. Chapter Two introduces the review of literature, historical framework, 

theoretical developments including assumptions, data arrangement, and formulas related to 

the KS-2 test and the MW test. There were two examples used to demonstrate different 

methods of calculating test statistics of the MW test and the KS-2 test. The chapter also 

presents introductions of heterogeneity of variance, skewness, and kurtosis. Lastly, the 

method of selecting population distributions is described. Chapter Three proposes the 

research method and develops the statistical framework used in this study.  Chapter Four 

presents the findings and results of the Monte Carlo simulations.  Finally, Chapter Five 

summarizes the findings and discusses conclusions and implications. Recommendations are 

also described for both statistical theory and practice.  
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CHAPTER TWO 

REVIEW OF LITERATURE 

Overview 

This chapter presents a review of literature related to this study.  It includs: (1) historical 

framework of the tests: the Mann-Whitney test (MW test) and the Kolmogorov-Simirnov 

two-sample test (KS-2 test); (2) theoretical development of the tests: the Mann-Whitney test 

(MW test) and the Kolmogorov-Simirnov two-sample test (KS-2 test) which includes data 

definition, assumptions, hypotheses, and test statistics, sample size selection, and the issue of 

ties for both the MW test and the KS-2 test; (3) homogeneity of variance, skewness and 

kurtosis; (4) methods of selecting population distributions; (5) issues related to the MW test; 

(6) issues related to the KS-2; and (7) comparisons between the MW test and the KS-2 test. 

  
Historical Framework of the Tests 

Introduction 

The Mann-Whitney test and the Kolmogorov-Smirnov two-sample tests are two of the 

nonparametric statistical techniques described in most nonparametric statistical and 

distribution-free textbooks.  In order to have a better understanding of these two 

nonparametric techniques, the historical framework of the MW test and the KS-2 test is 

discussed in the next two sections. Lastly, the use of nonparametric statistical techniques 

including the MW and the KS-2 tests from 1995 to 2006 is summarized and tabulated to help 

readers observe how the MW and the KS-2 tests apply in current research.  
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The Mann-Whitney Test 

Wilcoxon used a popular rank sum as a group test statistic under the condition of equal 

sample sizes in 1945 (Daniel, 1990). In 1947, Mann and Whitney proposed a slightly 

different version of the test that would apply to both equal and unequal sample sizes and 

provided tables for small sample sizes (Conover, 1999). Researchers (e.g., Gibbsons & 

Chakraborti, 2003) mentioned that Mann-Whitney test is equivalent to the Wilcoxon rank-

sum test since both tests employ ordinal data (rank-order) from independent and continuous 

population distributions.  Siegel and Castellan (1988) called the test the Wilcoxon-Mann-

Whitney test because Wilcoxon, Mann, and Whitney independently presented a 

nonparametric test with similar principles. Daniel (1990) referred to it as the Mann-Whitney 

–Wilcoxon test due to the equivalent statistical procedures between the Mann-Whitney and 

the Wilcoxon tests. Thus, the Mann-Whitney test was an improvement to the Wilcoxon test.  

Although the MW test is one of the nonparametric techniques used to detect differences 

with the general two-sample problem under a null hypothesis of identical populations, 

Gibbons and Chajraborti (2003) as well as Neave and Worthington (1988) concluded that the 

MW test is most effective when testing the alternative hypothesis that the two populations are 

the same except for a difference between two location parameters. Freund and Williams 

(1966) defined location parameters as the parameters ones that attempt to locate the center of 

a population or a sample. 

The Mann-Whitney (MW) test was explored in this study since Mann and Whitney 

offered similar versions of the test for both equal and unequal sample sizes and provided 

tables for small sample sizes. 
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The Kolmogorov-Smirnov Two-Sample Test 

In 1933, Kolmogorov developed a one-sample goodness-of-fit test for ordinal data 

(Conover, 1999). A goodness-of-fit test is a statistical test to detect whether a model fits a 

data set or matches a theoretical expectation (Vogt, 2005).  Sprent and Smeeton (2001) 

suggested that researchers should completely specify the underlying continuous distribution 

when performing the Kolmogorov goodness-of-fit test. Conover pointed out that the 

Kolmogorov one-sample test works well for goodness of fit when the sample size is small. In 

1939, Smirnov modified the Kolmogorov’s test and developed a nonparametric test for a 

two-sample scenario (Marascuilo & McSweeney, 1977). Conover referred to the KS-2 test as 

the Smirnov test even though it was an application of the Kolmogorov one-sample test. 

Daniel (1990) pointed out that the KS-2 test was developed by Smirnov but carried the name 

of Kolmogorov because of its similarities to the Kolmogorov one-sample test.  Daniel (1990) 

proposed the KS-2 test as a general or omnibus test since “it is sensitive to differences of all 

types that may exist between two distributions.” (p. 330) Higgins (2004) also proposed the 

KS-2 test as an omnibus test that is used to detect differences among sample groups despite 

the nature the differences. Siegel and Castellan (1988) defined the Kolmogorov-Smirnov 

two-sample test as: 

A test of whether two independent samples have been drawn from the same population 

(or from populations with the same distribution). The two-tailed test is sensitive to any 

kind of difference in the distributions from which the two samples were drawn-

difference in location (central tendency), in dispersion, in skewness, etc.  The one-tailed 

test is used to decide whether or not the data values in the population from which one of 
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the samples was drawn are stochastically larger than the values of the population from 

which the other sample was drawn (p.144).  

The Kolmogorov-Smirnov two-sample (KS-2) test was explored in this study since it is a 

well known nonparametric statistical technique. 

In summary, both the MW test and the KS-2 test work in a similar way with the 

alternative hypothesis that there are differences between two sampled population 

distributions.  The MW test seems to work efficiently when testing two populations with 

different locations. The KS-2 test is sensitive to general differences not only in location but 

also in variations and shapes of the distributions. 

 
Current Use of the MW test and the KS-2 Test in Research 

To explore how researchers have applied the MW test and the KS-2 test in their research, 

EBSCO Host Research Databases were assessed for five areas. Areas of reference included 

educational, psychological, educational psychology, social and behavioral, and health and 

medical related fields. The researcher selected these fields to examine articles that applied 

nonparametric statistical techniques.  As shown in Table 1, the number of articles that used 

nonparametric statistical technique for analysis is extensive. Two thousand eight hundred 

twenty-eight full-text articles from peer-reviewed journals analyzed data with nonparametric 

statistical techniques from January 1995 to August 2006.  Overall, 121 articles were located 

where researchers analyzed their data with the MW test, while the KS-2 test was used in 47 

articles. Other nonparametric techniques were used in 2660 articles with analytical 

techniques for one-sample, two-sample, and multiple-sample situations. Examples of other 

nonparametric statistical techniques used in these studies were Chi-Square, the Sign test, the 

Spearman rank-order, and the Kruskal-Wallis. Over this eleven-year period, the MW test was 
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applied more often than the KS-2 test in those studies utilizing nonparametric statistical 

techniques. It should be noted that the MW and the KS-2 combined were used by researchers 

in these fields more often than all other nonparametric statistics.  

 
Table 2:  The Use of the Mann-Whitney (MW) and the Kolmogorov-Simirnov Two-sample  

   (KS-2) Tests and Other Nonparametric Statistical Techniques, 1995-2006 

Area of Interest MW KS-2 Other Total 

Educational 16 6 37 59 

Psychological 10 0 8 18 

Education   

   Psychological 
2 0 15 17 

Social Behavioral 10 5 6 21 

Health & Medical        83 36 2594 2713 

Total (without   

   Health & Medical) 
38 11 66 115 

Total (including 

   Health & Medical) 
121 47 2660 2828 

*Examples of journals:  
Educational - Journal of Research in Music Education  

 Journal of Higher Education Policy and Management 
Psychological - Psychological Reports  
  Psychological Sciences & Social Sciences 
Education Psychological - British of Journal Educational Psychology 
  Applied Measurement in Education 
Social Behavioral - Humanities and Social Science 
  Sociological Methods and Research 
Health & Medical - American Journal of Health Promotion  

  Brain Research 
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When considering area of interest, Table 2 revealed that the MW test was applied more 

frequently in health and medical or medically related fields than in any other area. In other 

words, 83 out of 2713 health and medical articles utilized Mann-Whitney test.  Thirty-eight 

articles that employed the MW test were from educational, psychological, education 

psychological, and social behavioral areas. Similarly, the KS-2 test was utilized in 36 articles 

from the health and medical journals.  Only six articles applied the KS-2 technique in the 

educational field.  There was no article using the KS-2 test in the psychological or 

educational psychological fields between winter 1995 and summer 2006.  Overall, 11 journal 

articles using the KS-2 test are from the educational, psychological, educational 

psychological, and the social behavioral areas. Once again, when nonparametric statistics 

were used for statistical analyses, researchers in health and medical related fields applied 

these techniques more often than researches in the educational, psychological, education 

psychological, and social behavioral fields.  As noted in the table, the choice of a 

nonparametric statistical technique appeared to depend on the area of research.   

Most of the research articles reviewed here utilized the MW test by comparing the 

medians of two samples to detect whether there was any difference between two populations. 

Some articles applied the MW test to test group differences without specifying whether the 

median was used for the comparisons.  There were some articles applying the MW test for 

simulations to test predetermined conditions for their hypotheses.  Several articles used the 

KS-2 test to examine whether there was any general difference between two populations.  

The KS-2 test was utilized to assess whether or not there were differences in the shape of two 

population distributions.  The KS-2 test was further applied to check whether two 

populations fitted each other. Simulation studies using the KS-2 test for evaluating 
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hypotheses were employed in some of the articles. One of the simulation studies modified the 

KS-2 test for multiple populations (two or more), while the other study was fully explored in 

a later section in this chapter, as it was directly related to this study.     

The main similarities of the reviewed articles that applied either the MW test or the KS-2 

test included small sample sizes in their data. Most of the sample sizes used for these two 

techniques were less than 30.  Especially in the health and medical related articles, there were 

some articles with sample sizes of 10 or less.   It has been suggested (Siegel & Castellan, 

1988) that sample size be somehow the main consideration for using these two 

nonparametric techniques.  When comparing two-group differences in locations, researchers 

tend to use the MW test. The KS-2 test is typically employed when making general 

difference comparisons when researchers want to see whether there is any difference between 

two populations in general. 

In summary, Table 2 represented the occurrence of the MW test and the KS-2 test in 

current research using nonparametric statistical techniques. When examining the peer-

reviewed journal articles in the educational, psychological, education psychological, and 

social behavioral areas, 38 out of 115 reviewed articles applied the MW test. However, only 

11 out of these 115 peer-reviewed articles applied the KS-2 test in these fields. This raised 

the question why researchers seemed to favor employing the MW test rather than the KS-2 

test.  Furthermore, how do researchers chose between these two tests?  When researchers 

decided to use a nonparametric statistical analysis, did they look at the nature of their 

research questions? Or did researchers think of the nature of their data?  To explore these 

issues, it was necessary to explore the theoretical backgrounds of these two nonparametric 
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statistical techniques. Also of concern were the assumptions about the use of the MW test 

and the KS-2 test, and data definitions for applying these two techniques. 

 
Theoretical Development of the Tests 

Introduction 

When performing a Monte Carlo simulation, the null model from which the random 

samples are drawn should be correctly specified. Further, formulas of test statistics should 

also be specified for the simulation. By examining several nonparametric statistics text books 

(Bradley, 1968; Conover, 1999; Daniel, 1990; Gibbons & Chakraborti, 2003; Higgins, 2004; 

Krishnaiah & Sen, 1984; Marascuilo & McSweeney, 1977; Pratt & Gibbons, 1981; Sheskin, 

2000; Siegel & Castellan, 1988), formulas of statistics for both the MW test and the KS-2 test 

were reviewed. These are presented in the following sections, and they provide the 

parameters needed to conduct the Monte Carlo simulation.   

 
The Mann-Whitney Test 

The Mann-Whitney test may be applied to detect whether the two independent samples 

are drawn from two different populations when researchers measure their variables on at 

least ordinal scales.  When applying the MW test, researchers should understand: 1) the 

assumptions about this test and the procedures of setting up data sets, 2) the types of 

hypotheses applicable, 3) the formulas for calculating test statistics, the definitions of sample 

sizes, and the decision rules for performing the test.  This section presents various approaches 

from different textbook authors in order to help the researcher gain more in-depth 

understanding about the MW test.  A further consideration includes 4) two examples (one 

small-sample and one large-sample example) to be presented to calculate test statistics 
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introduced by various textbook authors.  The researcher also recommends 5) the Mann-

Whitney test used in this study. Finally, discussions on 6) selecting sample sizes discussed by 

various textbook authors and 7) issues on ties related to the MW test are shown in this 

section too.    

 
1) Assumptions and Data Arrangements 

There are several assumptions that researchers should be aware of in order to perform the 

MW test. Based upon suggestions from Bradley (1968), Daniel (1990) and Conover (1999), 

they are as follows:  First, each sample score is randomly selected from the population it 

represents. Then, two sample score sets are mutually independent or independent of one 

another. Lastly, the measurement employed is at least an ordinal scale. 

Sheskin (2000) and Daniel (1990) proposed another assumption, that the originally 

observed variable is a continuous variable. In addition, Sheskin (2000) suggested, “the 

underlying populations from which the samples are derived are identical in shape” (p. 289). 

Daniel (1990) also pointed out that “the distributions of the two populations differ only with 

respect to location, if they differ at all” (p. 90). This study will adapt the suggestions from 

these previous researchers as assumptions for performing a Monte Carlo simulation on the 

MW test. 

After developing data to meet the assumptions for performing the MW test, researchers 

should start to arrange the data set in order to calculate the test statistic of the statistical 

analysis.  Daniel (1990) provided a way to configure the data set:  

Let X1, X2, …,Xn1 denote the random sample scores size n1 with unknown median 

Mx from population 1; let Y1, Y2, …,Yn2 denote the random sample scores size n2  
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with unknown median My from population 2; assign the ranks 1 to n1 + n2 to the 

observations from the smallest to the largest; let N= n1 + n2. 

Conover (1999) used a slightly different presentation of data arrangement by removing 

the medians in each group.  He specified the following:  

Let X1, X2, …, Xn1 denote the random sample scores size n from population 1; let Y1, 

Y2, …,Yn2 m denote the random sample scores size m from population 2; assign the 

ranks 1 to n1 + n2 to the observations from the smallest to the largest; let N= n1 + n2. 

Also, R(Xi) and R(Yj) are the ranks assigned to Xi and Yj, where i is equal to 1, 2, …, 

n1 and j is equal to 1, 2, …,n2. 

Sheskin (2000), Marascuilo and McSweeney (1977), and Pratt and Gibbons (1981) 

provided a method similar to Conover’s (1999), and specified using the sum ranks:   

Let X1, X2, …,Xn1 denote the random sample scores size n1 from population 1; let Y1, 

Y2, …,Yn2 denote the random sample scores size n2 from population 2; where the 

number of X’s is larger than the number of Y’s; assign the ranks 1 to n1 + n2 to the 

observations from the smallest to the largest; let N= n1 + n2 where: 

  1R∑  is the sum of the ranks of the sample of the first sample group. 

  2R∑  is the sum of the ranks of the sample of the second sample group. 

From the assumptions and data arrangements provided by various researchers, this 

researcher found that Daniel (1990) focused the MW test on detecting location differences 

between two populations since he provided medians for both sample groups.  Other 

researchers were more likely to use the MW test to determine whether the two samples were 

drawn from the different populations.  
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This study will use the method of data arrangement by Sheskin (2000), Marascuilo and 

McSweeney (1977), and Pratt and Gibbons (1981) which specified using the sum ranks.   

 
2) Applicable Hypotheses 

Vogt (2005) defined hypothesis as “a tentative answer to a research question” (p.146). 

This means that there is a statement of the relationship between the variables that are studied 

in a research question.  There are two parts of any hypothesis: the null and alternative 

hypotheses.  The null hypothesis is a statement to describe that there is no relationship 

between the populations or variables that researchers intend to compare. The alternative 

hypothesis is a statement to point out that there is a relationship between the populations or 

variables.  If researchers do not specify the type or direction of difference between the 

populations or variables, the alternative hypothesis is a non-directional or two-tailed 

hypothesis.  Since this study will detect general differences between two samples, a non-

directional hypothesis is applied for the comparison. 

When researchers set up their research questions and decide to apply the MW test for 

statistical analysis, they should state their null and alternative hypothesis in order to perform 

the statistical test.  Various textbook authors propose different formats of null and alternative 

hypotheses based upon the way of arranging the data. For example, Daniel (1990), 

Marascuilo and McSweeney (1977), Siegel and Castellan (1988), and Sheskin (2000) used 

population medians to represent the relationship between two tested populations.  As a 

consequence, the null and alternative hypotheses are: 

Non-directional hypotheses: 

Null hypothesis Ho: Mx = My; or there is no difference between the medians of two 

populations. 
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Alternative hypothesis Ha: Mx ≠ My; or there is a difference between the medians of 

two populations. 

Where Mx is the median of the population associated with the variable X and My is 

the median of the population associated with the variable Y.  

Conover (1999) and Gibbons and Chakraborti (2003) used the population distributions to 

express the hypothesis statements. Bradley (1968) also proposed similar hypothesis 

statements: 

Non-directional hypotheses: 

Null hypothesis Ho: F(x) = G(x) for all x; or there are no differences between two 

populations.  

Alternative hypothesis Ha: F(x) ≠ G(x) for some x; or there are some differences 

between two populations. 

Where F(x) is the population distribution corresponding to the variable of X and G(x) 

is the population distribution corresponding to the variable of Y.  

In the format of alternative hypothesis, Conover (1999) pointed out that the MW test is 

also sensitive to test the mean differences between two populations. Therefore, the other way 

to express the alternative hypothesis is: 

For non-directional test: 

Null hypothesis Ho:  E(X) = E(Y) or the mean of population X is not equal the mean 

of population Y. 

Alternative hypothesis Ha: E(X) ≠ E(Y) or the mean of population X is not equal the 

mean of population Y. 
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In summary, there are several ways to express the null and alternative hypotheses; they 

are developed to serve different research interests and research questions. When researchers 

want to detect the general differences between two populations, they can use the method 

proposed by Bradley (1968), Conover (1999), and Gibbons and Chakraborti (2003).  If 

researchers are more likely to detect the differences in location between two populations, the 

methods supplied by Bradley (1968), Daniel (1990), Marascuilo and McSweeney (1977), 

Pratt and Gibbons (1981), and Sheskin (2000) or the other form by Conover (1999) can be 

adapted.  Moreover, when researchers want to testify whether the two ranked distributions 

have the same probability, the format by Gibbons and Chakraborti (2003) may be suggested. 

Siegel and Castellan (1988) concluded that Mann-Whitney test can be utilized with all three 

research questions. 

This study seeks to detect the general difference between two populations; therefore, the 

non-directional alternative hypothesis will be applied to the research. The null and alternative 

hypotheses are: 

Ho: F(x) = G(x) for all x; or there are no differences between two populations.  

Ha: F(x) ≠ G(x) for some x; or there are some differences between two populations. 

 
3) Formulas of the Test Statistic, Sample Size, and Decision Rules 

Vogt (2005) defined test statistics as “statistics used to test a finding for statistical 

significance” (p.323). Freund and Williams (1966) described the term test statistic as “a 

statistic on which the decision whether to accept or reject a given hypothesis is based” (p. 

110). However, due to the different data arrangements and forms of hypotheses, different 

textbooks provide slightly different forms of the test statistic for a statistical test.  Therefore, 

after hypotheses are formed, the next step is to find appropriate test statistics to either support 
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or refuse the hypotheses. The following four sections introduce different formats of test 

statistics for small and large samples that have been developed by textbook authors.  

 
Conover’ s Test Statistic T 

Conover (1999) used T and T1 as the test statistic for evaluating hypotheses. He used one 

formula (T) when “there are no ties or just a few ties” (p.272) and the other (T1) when “there 

are many ties” (p. 273). A tie means a situation when there are samples that have exactly the 

same values as other values. Conover (1999) suggested assigning the average of the ranks 

(called mid-rank) to all the equal values.  The formula for the test statistic T with no or a few 

ties is: 

 T= 
1

1
( )

n

i
i

R X
=
∑ ,  where the R(Xi) is the rank associated with the variable Xs in   

 population 1.  

 The formula for the test statistic T1 with many ties is: 
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∑ is the sum of the squares of all 

N of the ranks or average ranks actually used in both samples. N = n1 + n2. 

The above two formulas apply as test statistics when both samples are no more than 20 

(n1 ≤ 20 and   n2 ≤ 20).  Conover (1999) proposed another method to find the approximate p 

value by calculating the standard normal Z score for the test statistic T.  If one uses a non-

directional alternative hypothesis, the p-value for the situation of no ties is:  
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p-value = 2×P(
1

1 2

1 1
2 2

( 1)
12

NT n
Z

n n N

+
+ −

≤
+

), where Z is a standard normal variable. Where 

the p-value is twice as small as the value of 2×P(Z  ≤ T) or  2×P(Z ≥ T). When there 

are some ties, T is substituted with T1.   

When either one of the sample with sizes is more than 20 (n1 > 20 or n2 > 20) and there 

are no ties in either sample, Conover (1999) proposed another formula for the large sample 

approximation.  The test statistic formula is: 

ωp ≅ 1 1 2( 1) ( 1)
2 12p

n N n n Nz+ +
+ , where Zp is the standard Z value with the 

associated upper quantile p (ωp).   

Freund and Williams (1966) explained the term, quantile, as “a value at or below which lies a 

given fraction of a set of data” (p. 44). 

Conover (1999) used the same formula for both small and large samples with ties in the 

samples. The only difference for the large-sample situation is that T1 is compared with the 

standard normal Z, not the table values as used with the small samples. The decision rule is 

to reject the null hypothesis with a fixed nominal type I error rate (α) if T or T1 is less than 

the tabled quantile value (ωp) with both e small and large sample sizes. 

The issue of ties appears confusing in the literature. Further, there is no clear definition 

for “a few ties” and “many ties”.  Conover (2005) suggested that if there are ties in the 

samples, researchers should always become conservative and use the formulas for the 

situation of ties. In addition, it is not clear about the definition of lower and upper quantiles. 

Moreover, previous researchers do not suggest using the formula of approximate p-value 

when there are small samples and the underlying population distributions are not normal. In 
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this study, therefore, the formula of approximate p-value proposed by Conover (1999) does 

not apply in any of the calculations in the examples to be demonstrated.  

 
Daniel’s Test Statistics T 

Daniel (1990) proposed a different formula of test statistic for evaluating hypotheses 

compared to Conover (1999). He used information associated with population one to 

calculate the test statistic T.  When there are ties in either sample, the mean of the rank will 

be assigned to the tied values. He claimed that no matter the size of the median (location 

parameter) between population one and two, “depending on the null hypothesis, either a 

sufficiently small or a sufficiently large sum of ranks assigned to sample observations from 

population one causes us to reject the null hypothesis” (p.91). The test statistic T when both 

samples are no more than 20 (n1≤ 20 and n2 ≤ 20) is: 

T = S - 1 1( 1)
2

n n + ; where S is the sum of the ranks assigned to the samples from 

population 1, and n1 is the sample size of group 1.  

This formula is used no matter whether ties exist or not.   

The decision rules for the small sample sizes with the (α) level of significance 

(nominal Type I error rate) is:  

When the alternative hypothesis is non-directional (Ha: Mx  ≠ My), reject Ho if the 

calculated T test statistic is less than the table value w(α/2) or greater than w1-(α/2) 

which is given by n1n2- w(α/2) 

When either sample size is greater than 20 (n1 > 20 or n2 > 20) and there are no ties, the 

formula for the normal approximation is: 
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When there are ties across groups, the formula may be adjusted under the denominator of 

the formula above by the correction for ties which is 
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number of ties for a given rank.  Once, corrected for ties, the large-sample approximation 

formula is: 
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The decision rule is: 

If the calculated absolute Z is greater than the tabled Z value at the (α/2) level, then 

reject the null hypothesis Ho: Mx  = My. If the calculated absolute Z is greater than 

the tabled Z value with the α  level, then reject the null hypothesis. 

Daniel’s T test statistic is suggested when the purpose of the research is to compare the 

location parameters between two populations. He did not mention whether the test statistics 

could be applied for determining the general differences between two populations. Dealing 

with the situation of ties under the small sample sizes, he did not provide any adjustment. 

Instead, Daniel (1990) (as cited in Noether (1967) used Noether’s suggestion that “the 

adjustment has a negligible effect unless a large proportion of observations are tied or there 

are ties of considerable extent” (p. 93). However, Daniel is very conservative about the large 

sample approximation when ties exist across groups. Daniel suggested neglecting ties if they 
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exist within the same group since “there is no effect on test statistic when ties happen within 

groups” (p. 94).    

 
Test Statistic U 

Bradley (1968), Marascuilo and McSweeney (1977), Pratt and Gibbons (1981), and 

Sheskin (2000) proposed similar formulas of test statistics for evaluating hypotheses that are 

different from the test statistics proposed by Daniel (1990) and Conover (1999). They use U 

and U’ (or U1 and U2) to derive the test statistics. When both sample sizes are less than or 

equal to 20 (n1 ≤ 20 and n2 ≤ 20) for Bradley (1968), Pratt and Gibbons (1981), and Sheskin 

(2000), or when both sample sizes are less than or equal to 10 (n1 ≤ 10 and n2 ≤ 10) for 

Marascuilo and McSweeney (1977), the test statistic is: 

1R∑  is the sum of the ranks of the sample expected to have the smaller sum. 

2R∑  is the sum of the ranks of the sample expected to have the larger sum. 

U1 = 
1 1

1 2 1
( 1)

2
n nn n R+

× + −∑         

U2 = 
2 2

1 2 2
( 1)

2
n nn n R+

× + −∑  or  = n1 × n2 - U1      

Where U1 + U2 = n1 × n2;   

The smallest U statistic is tested for significance. 

The decision rule is: 

If the observed U is less than or equal to the tabled Ucritcal (U ≤ Ucritcal) at the specific 

level of significance (α), the null hypothesis is rejected.  When this occurs, there is a 

significant difference between these two populations.    
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When sample sizes are large (n1> 20 or n2 > 20), Sheskin (2000) suggested using a 

similar formula similar to Daniel’s (1990).  Marascuilo and McSweeney (1977) proposed the 

same formula when either or both sample sizes in the groups are greater than 10. The normal 

approximation is: 

Z = 
1 2

1 2 1 2

2
( 1)

12

n nU

n n n n

−

+ +
.  

The decision rules are the same as the one proposed by Daniel’s (1990). They are: 

If the calculated absolute Z is greater than the tabled Z value at the (α/2) level, then 

the null hypothesis Ho: Mx  = My is rejected. If the calculated absolute Z is greater 

than the tabled Z value with the α  level, then reject the null hypothesis. 

Bradley (1968) and Pratt and Gibbons (1981) did not provide any adjustment for the 

situation of the existence of ties for either cases of small or large sample sizes. Instead, they 

suggested using the average rank (called mid-rank) method. The average rank method 

assigns each sample with the same average rank value and then applying this average rank 

value to the test statistic formulas.  Marascuilo and McSweeney (1977) and Sheskin (2000) 

did not provide any adjustment to the situation of the existence of ties for the small sample 

test. When the sample sizes are large (greater than 20), they proposed applying a method 

similar to the method proposed by Daniel (1990). It is as follows: 

Z = 
3

1 2

1 21 2 1 2

1 2 1 2

2
[ ( )( 1)

12 12( )( 1)
i i

n nU

n n t tn n n n
n n n n

−

−+ +
+ + −
∑

,  
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where t is the number of ties for a given rank. The decision rules for the statistical 

analysis are the same as the ones used by Daniel (1990). They are: 

If the calculated absolute Z is greater than the tabled Z value at the (α/2) level, then 

the null hypothesis Ho: Mx = My is rejected. If the calculated absolute Z is greater 

than the tabled Z value with the α  level, then reject the null hypothesis. 

The formulas for small samples proposed by Marascuilo and McSweeney (1977), Pratt 

and Gibbons (1981), and Sheskin (2000) are used to test whether two populations are the 

same except for a shift in location (median, or mean).  Bradley (1968) provided the same 

formulas for the hypothesis of testing location differences between two populations and the 

one of testing whether the two populations are identical.  Similarly, there is no clear 

description of when to apply the formulas for the existence of ties.     

 
Test Statistic W 

Siegel and Castellan (1988) pointed out that the Mann-Whitney test may be used to check 

whether two independent samples were drawn from the same population.  The formulas for 

test statistics are somewhat similar to the ones proposed by Conover (1999). Test statistics W 

is used when the sample sizes are less than or equal to 10 (n1 ≤ 10 and n2 ≤ 10), and is as 

follows:  

 Wx = 1R∑ ; the sum of the ranks of multiple variables of Xs from population 1s 

Wy= 2R∑ ;  the sum of the ranks of  multiple variables of Ys from population 2s 

 Wx + Wy = ( 1)
2

N N + , where N = n1 + n2  

 The smaller value of Wx and Wy is used as the test statistic. 

The decision rule is:  



 28

If the probability of the observed W found in the Table As less than the specific level 

of significance (α), the null hypothesis is rejected and there is a significant difference 

between these two populations.   

When the sample size is more than 10 (n1 > 10 or n2 > 10) or when one of the sample 

sizes is 3 or 4 and the other is more than 12, the formula for the normal approximation is 

used, which is: 

Z= 
1

1 2

( 1)0.5
2

( 1)
12

x
n NW

n n N

+
± −

+
, where Wx = 1R∑ . 

Siegel and Castellan (1988) suggested assigning each tied value with the average rank 

(called mid-rank) and applying the test statistic formulas for the samples less than or equal to 

10. If either or both samples are greater than 10, they suggested the following normal 

approximation formula: 

Z= 
3

1 2

3
11 2

0.5
2

( )
( 1)[ ]

( 1) 12 12

x

g

j j
j

n nW

t t
n n N N

N N
=

± −

−
−

−
−

∑
, where tj is the number of the tied ranks in 

the jth grouping.  

  The decision rule is: 

If calculated absolute Z is greater than the tabled Z value with the α/2 level, then 

reject the null hypothesis. 

Siegel and Castellan (1988) suggested that the test statistics be applied to investigate 

whether two independent samples have been drawn from the same population or whether the 

two populations have the same medians. The test statistics are also used to test whether the 
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probability of population X greater than population Y (P(X>Y)) is the same as the probability 

of population X less than population Y (P(X<Y)) which is equal to 0.5. On the issue of ties, 

Siegel and Castellan did not specify the minimum number of ties in order to use the formula 

for the ties situation.  

 
4) Examples to Demonstrate the Calculation of Test Statistics 

There were two examples designed by the researcher in order to present the different 

ways of calculating test statistics from the methods proposed by various textbook authors. 

These examples were presented to aid understanding and allow for a comparison of the 

differences among various formulas. 

 
Example One: A Small Sample for Each Group 

Score values were as follows, 

  Sample 1: 17, 36, 18, 40, 52; n1 = 5 

  Sample 2: 15, 37, 23, 32, 43, 50; n2 = 6 

The research question was designed to detect whether these two samples were drawn 

from identical populations at the α level of 0.05. Thus, the null and alternative hypotheses 

were:  

Ho: There was no difference between the two populations. 

Ha: There was a difference between the two populations. 
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Data arrangement was as follows: 

Score X  17 18   36  40  50   

Rn1(x)  2 3   6  8  10   

Score Y 15   23 32  37  43  52  

Rn2(x) 1   4 5  7  9  11  

 

Rn1(x) and Rn2(x) were the ranks assigned to Xi and Yj, where i was equal to 1, 2, …, 

n1 and j was equal to 1, 2, …,n2. 

Calculations of the test statistics from four methods that were previously introduced 

in the “Formulas of the Test Statistic and Decision Rules” section were demonstrated:  

 
Method 1: Conover’s Test Statistic T 

T= 
1

1
( )

n

i
i

R X
=
∑ , where the R(Xi) was the rank associated with the variable X scores in 

population 1.  

  T= 2 + 3 + 6 + 8 + 10 = 29; the quantile value at theα level of 0.05 (ω0.05) was 21.  

The calculated test statistic T was not less than the tabled quantile value at the 

nominal Type I error rate (α) of 0.05.  Therefore, the null hypothesis cannot be 

rejected. 

 
Method 2: Daniel’s Test Statistic T 

T = S - 1 1( 1)
2

n n + ; where S was the sum of the ranks assigned to the samples from 

population 1.   

  S = 2 + 3 + 6 + 8 + 10 = 29 
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T= 30 - 5 (5 1)
2

× +  = 15; the tabled quantile value of the two-tailed test at theα level of 

0.05 (ω0.05/2) was 4. 

T was not less than the table value; therefore, the null hypothesis cannot be rejected. 

 
Method 3: Test Statistic U 

  1R∑  was the sum of the ranks of the sample expected to have the smaller sum. 

  2R∑  was the sum of the ranks of the sample expected to have the larger sum. 

  U1 = 
1 1

1 2 1
( 1)

2
n nn n R+

× + −∑         

  U2 = 
2 2

1 2 2
( 1)

2
n nn n R+

× + −∑  or = n1 × n2 - U1; where U1 + U2 = n1 × n2.   

  The smallest U statistic was tested for significance. 

  1R∑  = 2 + 3 + 6 + 8 + 10 = 29; U (or U1) = 5 (5 1)5 6 29
2

× +
× + −  = 16 

  2R∑ = 1 + 4 + 5 + 7 + 9 + 11 = 37;  U’ (or U2) = 6 (6 1)5 5 37
2

× +
× + −  = 16  

  or U’ (or U2)  = 5 × 6 -16 =14 

  U = 14; the tabled quantile value at the α level of 0.05 (ω0.05/2) equals 4. 

  T was not less than the table value; therefore, the null hypothesis cannot be rejected. 

 
Method 4: Test Statistic W 

  Wx = 1R∑ ; it was the sum of the ranks of  variables of Xs from population 1. 

  Wy= 2R∑ ; it was the sum of the ranks of  variables of Ys from population 2. 
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  Wx + Wy = ( 1)
2

N N + , where N = n1 + n2  

  Wx = 1R∑   = 2 + 3 + 6 + 8 + 10 = 29 

  Wy= 2R∑  = 1 + 4 + 5 + 7 + 9 + 11 = 37 

The test statistic W was 29; its p-value from the table provided by Siegel and 

Castellan (1988) was 0. 5346. Since the nominal Type I error rate (α) was 0.05, the 

null hypothesis cannot be rejected. 

In conclusion, by comparing the results of the tests from the different calculations of the 

test statistic, the same conclusion was reached with all tests in this example. Therefore, it 

may be that the same result will occur from the different calculations by various textbook 

authors. It appears that researchers can decide to use the test statistic that best suits their 

research needs.  

 
Example Two: A Large Sample for Either Group 

Score values were as follows, 

Sample 1: 8, 17, 36, 18, 40, 52, 38, 59, 31, 68; n1 = 10 

Sample 2: 3, 15, 25, 48, 37, 65, 6, 57, 42, 35, 11, 23, 32, 43, 50, 51, 62, 74, 20,       

   69, 44, 9, 39, 47, 66, 55; n2 = 26 

The research question was developed to detect whether these two samples were 

drawn from the identical populations at the α level of 0.05. Thus, the null and 

alternative hypotheses were:  

  Ho: There was no difference between two the populations. 

  Ha: There was a difference between two the populations. 
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Data arrangement was as follows: 

X   8    17 18    31   36  38  

Rn1(x)   3    7 8    12   15  17  

Y 3 6  9 11 15   20 23 25  32 35  37  39 

Rn2(x) 1 2  4 5 6   9 10 11  13 14  16  18 

X 40        52  59     68   

Rn1(x) 19        27  29     34   

Y  42 43 44 47 48 50 51  55  57 62 65 66  69 74 

Rn2(x)  20 21 22 23 24 25 26  28  30 31 32 33  35 36 

 

Rn1(x) and Rn2(x) were the ranks assigned to Xi and Yj, where i was equal to 1, 2, …, 

n1 and j was equal to 1, 2, …,n2. They were: 

R(x1) = 3 + 7 + 8 + 12 + 15 + 17 + 19 + 27 + 29 + 34 = 171 

  R(x2) = 1 + 2 + 4 + 5 + 6 + 9 + 10 + 12 + 13 + 14 + 16 + 18 + 20 + 21 + 22 + 23 + 24  

+ 25 + 26 + 28 + 30 + 31 + 32 + 33 + 35 + 36 = 496 

Method 1: Conover’s Test Statistic T 

T= 
1

( )
n

i
i

R X
=
∑ , where the R(Xi) was the rank associated with the variable X scores in 

population 1.  

  T= 171 

ωp ≅ 1 1 2( 1) ( 1)
2 12p

n N n n Nz+ +
+ , where Zp was the standardized Z value with the 

associated upper quantile p.  

  n1 = 10, n2 = 26, N = 10 + 26 = 36  
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  ωp ≅ 1 1 2( 1) ( 1)
2 12p

n N n n Nz+ +
+  =10(36 1) 10 26 (36 1)

2 12pz+ × × +
+   

        = 185 + 1.96 × 28.32  

           ≈  240 

  T was less than ωp, so the null hypothesis was retained. 

 
Method 2: Daniel’s Test Statistic T 

Z = 
1 2

1 2 1 2

2
( 1)

12

n nT

n n n n

−

+ +
, and T = S - 1 1( 1)

2
n n + ;where S was the sum of the ranks 

assigned to the samples from population 1.   

  S = 171 

  T = S - 1 1( 1)
2

n n + = 171 - 10 (10 1)
2

× +  = 116 

  Z= 
1 2

1 2 1 2

2
( 1)

12

n nT

n n n n

−

+ +
  = 

10 26116
2

10 26 (10 26 1)
12

×
−

× × + +
 = 14

28.32
−  ≈ -0.49.  

From the standard normal Z table, the probability (p-value) of Z ≥ -0.49 was about 

0.6879.  

The p-value was greater than the level of significance (α = .05), thus, the null 

hypothesis cannot be rejected. 

 
Method 3: Test Statistic U 

  U (or U1) = 
1 1

1 2 1
( 1)

2
n nn n R+

× + −∑
 = 10 (10 1)10 26 171

2
× +

× + − = 144 
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  U’ (or U2) = 
2 2

1 2 2
( 1)

2
n nn n R+

× + −∑   = n1 × n2 - U (or U1) = 10×26-144  

     = 116   

  U = 116 

  Z = 
1 2

1 2 1 2

2
( 1)

12

n nU

n n n n

−

+ +
= 

10 26116
2

10 26 (10 26 1)
12

×
−

× × + +
 = 14

28.32
−  ≈ -0.49. 

From the standard normal Z table, the probability (p-value) of Z ≥ -0.53 was about 

0.6879.  

The p-value was greater than the level of significance (α = .05), so the null hypothesis 

cannot be rejected. 

 
Method 4: Test Statistic W 

 Z= 
1

1 2

( 1)0.5
2

( 1)
12

x
n NW

n n N

+
± −

+
; where Wx = 1R∑ . 

 Z= 

10 (36 1)171 0.5
2

10 26 (36 1)
12

× +
± −

× × +
 = 14 0.5

28.32
− ±  Z ≈ - 0.48 or - 0.51  

From the standard normal Z table, the probability (p-value) of Z ≥ - 0.48 or Z ≥ - 0.51 

was about 0.6844 and 0.6950, respectively. The p-value was greater than the level of 

significance (α = .05); therefore, the null hypothesis cannot be rejected. 

 
Again, from this large-sample example, in comparing the results of the tests from the 

different calculations of the test statistic, the same conclusion was reached with all tests in 
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this example. Therefore, it was shown that researchers may use any formula for the normal 

large-sample approximation introduced by various textbook authors to obtain the same result.  

 
5) The Mann-Whitney Test Used in This Study 

 Based upon the conclusion provided by Siegel and Castellan (1988), The MW test can be 

used to test the general difference between two populations, the location of the two 

populations (means or median), and the equivalent probabilities of the two populations.  

Presented below are the summarized and modified: 1) assumptions and data arrangements, 2) 

hypotheses, and 3) formulas of test statistics and decision rules for small and large sample 

sizes for the MW test that were used for this study. 

 
1) Assumptions and Data Arrangements 

 The assumptions for applying the MW test were as follows:  

(1) Each sample score has been randomly selected from the population it 

represents.  

(2) The originally observed sample score was a continuous variable.  

(3) Two sample scores were randomly selected and score sets were mutually 

independent.  

(4) The measurement scale employed was at least ordinal.  

 Data Arrangement shows the expression of arranging data after we get the data sets were 

obtained for use with the MW test technique. 

Let X1, X2, …, Xn1 denote the random sample scores size n1 with an expected smaller 

sum of ranks. 
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Let X1, X2, …, Xn2 denote the random sample scores size n2 with an expected larger  

sum of ranks. 

  Assign the ranks 1 to (n1 + n2) to the observations from the smallest to the largest. 

  Let N= n1 + n2. 

 
2) Applicable Hypotheses 

 Because this research was designed to detect the alternative hypothesis that there were 

differences between two sampled population distributions, the non-directional hypothesis 

(two-tailed test) of the test was: 

  Ho: F(x) = G(x) for all x; or there was no difference between the two populations.  

Ha: F(x) ≠ G(x) for some x; or there were some differences between the two    

       populations. 

 Where  F (x) was the population distribution function of the sum of the ranks of the 

sample expected to have the smaller sum, and G(x) the population distribution 

function of the sum of the ranks of the sample expected to have the larger sum. 

 
3) Formulas of Test Statistics and Decision Rules for Small and Large Sample Sizes  

 Test statistics are used to calculate the value needed to perform the hypothesis test. 

Because of the ease of understanding and calculating the formula as well as consistent with 

the procedure in SAS/NPAR1WAY , the test statistic used in this research is adapted from 

the Test statistics W method proposed by Siegel and Castellan (1988).   

 
 Small Sample Size in each group (n1 ≤ 20; n2 ≤20) 

 Wx = 1R∑ ; the sum of the ranks of multiple variables of Xs from population 1s 
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Wy= 2R∑ ;  the sum of the ranks of  multiple variables of Ys from population 2s 

 Wx + Wy = ( 1)
2

N N + , where N = n1 + n2  

 The smaller value of Wx and Wy is used as the test statistic. 

The decision rule is:  

If the probability of the observed W found in the table is less than the specific level of 

significance (α), the null hypothesis is rejected and there is a significant difference 

between these two populations.   

When the sample size is more than 20 (n1 > 20 or n2 > 20), the formula for the normal 

approximation is used, which is: 

Z= 
1

1 2

( 1)0.5
2

( 1)
12

x
n NW

n n N

+
± −

+
, where Wx = 1R∑ . 

 The decision rule is: 

If calculated absolute Z is greater than the tabled Z value with the α/2 level, then 

reject the null hypothesis. 

Siegel and Castellan (1988) suggested that the test statistics be applied to investigate 

whether two independent samples have been drawn from the same population or whether the 

two populations have the same medians. The test statistics are also used to test whether the 

probability of population X greater than population Y (P(X>Y)) is the same as the probability 

of population X less than population Y (P(X<Y)) which is equal to 0.5. On the issue of ties, 

Siegel and Castellan did not specify the minimum number of ties in order to use the formula 

for the ties situation.  
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 In summary, the researcher suggests the following steps to execute the MW test.  First, 

give two sample score sets, X with the size of n1 and Y with the size of n2, with N= n1 + n2. 

Second, combine the observations from these two groups into a single group, and then assign 

the rank from one to N to the observation from the smallest to the largest. Third, let R1 

represent the smaller sum of the ranks of the observations for the first group, and let R2 serve 

as the larger sum of the ranks of the observations for the second group. Fourth, use formulas 

to calculate the test statistic or p-value. Fifth, use the tabled value or calculate the p-value and 

detect whether the test statistic reaches the level of significance. Lastly, draw conclusions 

based on the findings in step five. 

 
6) Selecting Sample Sizes 

This section introduced methods of selecting sample sizes by researchers who proposed 

test statistics for investigating the null hypothesis in section three formulas of the test statistic 

and decision rules. Various textbooks provided tables with different pairs of equal and 

unequal sample sizes and the associated critical values used to assess statistical significances.  

Neave and Worthington (1988) provided critical values for all sample size combinations up 

to 25 per group. Marascuilo and McSweeney (1977) provided critical values tables for equal 

and unequal sample size groups from (1, 1) to (10, 10). Siegel and Castellan (1988) included 

lower and upper-tail probability of Wx for sample size groups from (3, 3) to (10, 10). 

Conover (1999) and Daniel (1991), Bradley (1968), Pratt and Gibbons (1981), and Sheskin 

(2000) provided critical values tables for equal and unequal sample size groups from (2, 2) to 

(20, 20). Due to different formulas used in calculating test statistics, the critical values were 

slightly different for each formula.  Therefore, when researchers decided on the formulas for 
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calculating test statistics, it was appropriate to adopt the associated critical value table for the 

sample sizes in order to perform the statistical analysis.   

Samples in this research included small (n1 ≤ 20; n2 ≤20) and large (n1 > 20; n2 > 20) 

sizes, with equal and unequal conditions. The specific sizes of both samples were introduced 

in CHAPTER THREE. 

 
7) Issue of Ties 

 Tied scores are always an issue for all nonparametric statistics. The issue of ties, as 

pointed out from researchers who proposed formulas of test statistics in Formulas of the Test 

Statistic and Decision Rules section, must be solved for this study. When there were some 

samples with the same values (ties that occur in the same sample), or when ties existed 

between two samples, researchers such as Conover (1999), Bradley (1968), and Pratt and 

Gibbons (1981) suggesedt assigning an average of the ranks (mid-rank) to those 

observations. However, Siegel and Castellan (1988),  Neave and Worthington (1988), and  

Conover (1999) pointed out that variability in the sets of ranks are affected by tied ranks. 

They suggested using a formula for tie correction as a compromise to the problem. However, 

no researcher clearly defined when to use the test statistic formulas of tied conditions.  

Conover (1999) used the phrase of “if there are many ties” for the situation to use the test 

statistic of ties without quantifying the “many”. Others used “when there are ties” in applying 

the test statistic. In personal communication with Conover (2005), Conover suggested when 

ties existed, the formulas for “many ties” should be used especially if various number of ties 

were manipulated during the simulation process. Due to a lack of clarity among the 

definitions of ties for the various authors, this study did not address this issue of ties. In other 

words, tied scores were not considered in this study. 
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The Kolmogorov-Smirnov Two-Sample Test 

 The Kolmogorov-Smirnov two-sample test (the KS-2 test) is one of the nonparametric 

statistical techniques for comparing two sample cumulative distribution functions to detect 

whether there are any differences between two population distributions for two samples 

Conover (1999). Daniel (1990) and Higgins (2004) wrote that the KS-2 test was also referred 

to as a general or omnibus test for testing whether the populations of two independent 

samples were identical.  Siegel and Castellan (1988) and Marascuilo and McSweeney (1977) 

also concluded that when any non-directional alternative hypothesis was tested, the KS-2 test 

was sensitive to any distributional difference.  

 When conducting the KS-2 test, researchers should understand: 1) the assumptions about 

this test and the procedures of setting up data sets, 2) the types of applicable hypotheses, 3) 

the formulas of calculating test statistics and the definitions of sample sizes, and the decision 

rules of performing the test.  This section presented various approaches from different 

textbook authors in order to help the researcher understand more about the KS-2 test.  A 

further consideration included 4) two examples (one small-sample and one large-sample 

example) to calculate test statistics of the KS-2 test introduced by various textbook authors.  

The researcher also recommends 5) the KS-2 test used in this study. Finally, discussions on 6) 

selecting sample sizes as considered by various textbook authors and 7) the issues of ties 

related to the KS-2 test.    
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1) Assumptions and Data Arrangements 

There were some assumptions that researchers should be sensitive about in order to 

perform the KS-2 test. Based upon the suggestions from Conover (1999), they are as follows: 

(1) Each sample has been randomly selected from the population it represented. 

(2) The measurement scale employed is at least ordinal. 

(3) Two samples are mutually independent. 

(4) The originally observed variable is a continuous variable. 

Bradley (1968) also revealed that the sizes of sampled populations are infinite and no tied 

observations occurred in the samples. Marascuilo and McSweeney (1977) also pointed out 

that in order to eliminate tied observations, the continuity on variables was necessary. Daniel 

(1990) and Sheskin (2000) only assumed that samples were independent and random, and the 

data were measured on at least ordinal scale.  

After identifying the assumptions of applying the KS-2 test, researchers should know 

how to define the data set in order to perform this test.  Daniel (1990), Conover (1999), and 

Sheskin (2000) defined the data in the following ways. 

(1) Let S1(x) be the empirical distribution function based upon the random sample 

scores of X1, X2, …, Xn1.  

(2) Determine the cumulative probabilities for each value of X1, X2, …, Xn1. 

(3) Let S2(x) be the empirical distribution function based upon the random sample 

scores of Y1, Y2, …, Yn2.  

(4) Determine the cumulative probabilities for each value of Y1, Y2, …, Yn2. 
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Daniel (1990) also defined S1(x) and S2(x) as:  

  S1(x) =
1

(number of observed X's  x)
n

≤ , and  S2(x) =
2

(number of observed Y's  y)
n

≤ .  

 Siegel and Castellan (1988) had similar data definition but specified S1(x) and S2(x) to be 

the cumulative distribution:  

Let S1(x) = 
1

K
n

 and S2(x) = 
2

K
n

, where K is the number of data less than or equal to X 

in the first sample set and Y in second sample set.  

 
Higgins (2004) had the same definitions but changed S1(x) to F1(W) and S2(x) to F2(W). 

These assumptions and data arrangement as they related to this study are discussed in a later 

section “The Kolmogorov-Smirnov two-sample Test Used in This Study”. 

  
2) Applicable Hypotheses 

When researchers determined their research questions and perform the hypothesis tests, 

the first step is to define the null and alternative hypotheses relating to the research questions.  

Marascuilo and McSweeney (1977), Daniel (1990), Conover (1999), and Sheskin (2000) 

proposed similar formats of non-directional alternative hypotheses. They were shown below:   

 Non-directional (two-sided) test:  

Ho: F(x) = G(x) for all x; from -∝ to + ∝ 

  Ho: There are no differences between two populations.  

  Ha: F(x) ≠ G(x) for at least one value of x;  

  Ha: There are some differences between two populations. 

Marascuilo and McSweeney (1977) and Conover (1999) explained that the hypothesis 

test detects the general difference between two populations.  Once the null hypothesis was 
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rejected, the difference would be between the location parameter (mean or median), the scale 

parameter (standard deviation), the skewness, or kurtosis. 

 This research investigated the general differences between two populations, and did not 

compare whether one was superior the other. Therefore, non-directional hypotheses were 

applied to the study, that was:    

Ho: F(x) = G(x) for all x; from -∝ to + ∝ ; or there is no difference between the two  

populations. 

Ha: F(x) ≠ G(x) for at least one value of x; or there are some differences between the 

two populations. 

 
3) Test Statistics and Decision Rules for the Testing the Hypotheses 

 When executing the hypothesis test, the most important step was to calculate the test 

statistic and determine whether the null hypothesis was rejected or retained. Hence, this 

section presented the formulas for test statistics and the decision rules to test the hypotheses.  

Neave (1988) stated that “the Kolmogorov-Smirnov method uses the maximum vertical 

difference between two cumulative population distribution functions (cdf’s) as the test 

statistics” (p. 149). Higgins (2004) explained that “the Kolmogorov-Smirnov statistic was the 

maximum absolute value of the difference between the two sample cdf’s.” (p. 57) Neave and 

Higgins proposed the same method to find the test statistic for the Kolmogorov-Smirnov 

method. They both used the maximum absolute difference between two cumulative sample 

distribution functions as the test statistic.  Bradley (1968), Conover (1999), Daniel (1990), 

and Siegel and Castellan (1988) all pointed out that this test can be used with both equal and 

unequal sample sizes. Textbooks reviewed by the researcher presented similar format of the 

test statistics; therefore, only one demonstration of the test statistic in small and large sample 
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sizes found from various textbooks was presented in this section. The test statistics for both 

small sample sizes (n1 or n2 was no more than 25) and large-sample sizes were provided as 

follows: 

 
Small Sample Size (n1 ≤ 25 and  n2 ≤ 25) 

No matter whether the two samples are equal or unequal, when the sample sizes are less 

than or equal to 25 in both groups (n1 ≤ 25 and n2 ≤ 25), the test statistic is presented as: 

D n1,n2 is the maximum absolute difference between the two empirical distribution 

functions or cumulative distribution functions,  and 

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

 
The decision rule for the hypothesis test is:  

If the observed Dm,n is greater than or equal to the tabled D n1,n2 critical (D n1n2 ≥ D n1,n2 

critical) at the specific level of significance (α), the null hypothesis is rejected. 

Therefore, there is a significant difference between these two populations.   

 
Large Sample Size (n1 > 25 or n2 > 25) 

Textbooks reviewed by this researcher proposed similar format of the test statistics. The 

test statistic when either one sample or both samples are larger than twenty five (n1 > 25 or  

n2 > 25) is shown as:  

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

 
Critical D n1,n2 is calculated with a formula based on various significance level (α).  

When the significance level is α, the critical value is: 

 D n1,n2 =  table value (K) × 1 2

1 2

n n
n n
+ . 
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Table value (K) is displayed in Table 3, shown below. 

 
Table 3: Table Values for the Kolmogorov-Smirnov two-sample test when sample sizes from 

either simple group are greater than 25  

 Significance Level (α) 

Two-tailed 0.20 0.10 0.05 0.02 0.01 

Table Value (K)  1.07 1.22 1.36 1.52 1.63 

 

The decision rule for the hypothesis test is:  

If the observed D n1,n2 is greater than or equal to the calculated and tabled Dn1,n2 critical 

(D n1,n2 ≥ D n1,n2 critical) at the specific level of significance (α), the null hypothesis is 

rejected.  Therefore, there is a significant difference between these two populations.    

 
4) Examples to Demonstrate the Calculation of the Test Statistic 

Presented next were the examples which were demonstrated in the MW test. This may 

help readers examine differences in performing the MW and the KS-2 tests. 

Example One: A Small Sample for Each Group 

Score values were as follows: 

  Sample 1: 17, 36, 18, 40, 52; n1 = 5 

  Sample 2: 15, 37, 23, 32, 43, 50; n2 = 6 

The research question was designed to detect whether these two samples were drawn 

from identical populations at the α level of 0.05. Thus, the null and alternative hypotheses 

were:  
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  Ho: There was no difference between two populations. 

  Ha: There was a difference between two populations. 

 

Data arrangement was as follows: 

X  17 18   36  40  50  

Sn1(x) 0 0.2 0.4 0.4 0.4 0.6 0.6 0.8 0.8 1.0 1.0

Y 15   23 32  37  43  52 

Sn2(x) .0.17 0.17 0.17 0.33 0.5 0.5 0.67 0.67 0.83 0.83 1.0

D .0.17 0.03 0.13 0.07 0.1 0.1 0.07 0.13 0.03 0.17 0 

 

S1(x) = 
1

(number of observed X's  x)
n

≤ , and  S2(x) = 
2

(number of observed Y's  y)
n

≤ .  

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

                    =  0.13  
                         

Table value D n1,n2; 0.05 = 0.667 

0.13 was not greater than 0.667, so the null hypothesis can not be rejected. Therefore, 

it was concluded that there was no difference between the two populations.  

 
Example Two: A Large Sample for Either Group 

Score values were as follows, 

Sample 1: 8, 17, 36, 18, 40, 52, 38, 59, 31, 68; n1 = 10 

Sample 2: 3, 15, 25, 48, 37, 65, 6, 57, 42, 35, 11, 23, 32, 43, 50, 51, 62, 74, 20,       

   69, 44, 9, 39, 47, 66, 55; n2 = 26 
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 The research question was developed to detect whether these two samples were drawn 

from the identical populations at the α level of 0.05. Thus, the null and alternative 

hypotheses were:  

  Ho: There was no difference between two the populations. 

  Ha: There was a difference between two the populations. 

Data arrangement was as follows: 

X   8    17 18    31 

Sn1(x) 0 0 .1 .1 .1 .1 .2 .3 .3 .3 .3 .4 

Y 3 6  9 11 15   20 23 25  

Sn2(x) .038 .076 .076 .114 .152 .190 .190 .190 .228 .226 .304 .304 

D .038 .076 .024 -.014 -.052 -.090 .01 .11 .062 .014 -.004 .096 

X   36  38  40      

Sn1(x) .4 .4 .5 .5 .6 .6 .7 .7 .7 .7 .7 .7 

Y 32 35  37  39  42 43 44 47 48 

Sn2(x) .342 .38 .418 .456 .456 .494 .494 .532 .570 .608 .646 .684 

D .058 .02 .082 .024 .144 .106 .206 .168 .130 .092 .054 .016 

X   52  59     68   

Sn1(x) .7 .7 .8 .8 .9 .9 .9 .9 .9 1 1 1 

Y 50 51  55 57  62 65 66  69 74 

Sn2(x) .722 .760 .760 .798 .836 .836 .874 .912 .950 .950 .988 1 

D -.022 -.060 .04 .002 .064 .064 .026 -.012 -.050 .050 .012 0 

 

S1(x) = 
1

(number of observed X's  x)
n

≤ , and  S2(x) = 
2

(number of observed Y's  y)
n

≤ .  

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

             =0.206 
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the critical D n1,n2 =  0.500 

0.206 was not greater than 0.500, so the null hypothesis can not be rejected. 

If the formula for large samples was applied, and α =0.05, 

the critical D n1,n2 =  table value (K) × 1 2

1 2

n n
n n
+ .= 1.36× 10 26

10 26
+
×

 ≈ 0.506 

0.206 was not greater than 0.506, so the null hypothesis was retained. Therefore, it 

was concluded that there was no difference between the two populations.  

 
5) The Kolmogorov-Smirnov two-sample Test Used in This Study 

 After reviewing various textbooks, the following elements were recommended for 

applying the KS-2 test.  These same elements were proposed by all; they were described as 1) 

assumptions and data arrangements, 2) hypotheses, and 3) formulas of test statistics and 

decision rules for small and large sample sizes.  

 
1) Assumptions and Data Arrangements 

Assumptions similar to Conover’s (1999) were suggested for this study. There were 

four assumptions as followed:  

(1) Each sample has been randomly selected from the population it represented.  

(2) The measurement scale employed was at least ordinal.  

(3) The originally observed variable was a continuous variable.  

(4) Two samples were mutually independent.  

 Data arrangement proposed by Siegel and Castellan (1988) were modified and used in 

this study:  
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Let S1(x) be the cumulative distribution probability function (cdf’s) based upon the 

random sample scores of X1, X2, …, Xn1.  

Determine the S1(x) for each value of X1, X2, …, Xn1,  let S1(x) = 
1

K
n

.  

Let F(x) be the population that the sample of X’s were randomly drawn from.  

Let S2(x) be the cumulative distribution probability function (cdf’s) based upon the 

random sample scores of Y1, Y2, …, Yn2.  

Determine S2(x) for each value of Y1, Y2, …, Yn2, let S2(x) = 
2

K
n

.  

Let G(x) be the population that the sample of Y’s were randomly drawn from. 

D n1,n2   was symbolized as the test statistic for the KS-2 test.  It was the maximum 

absolute difference between the two empirical distribution functions or cumulative 

distribution functions. 

 
2) Applicable Hypotheses  

 Since this study compared whether there were any general differences between the two 

populations, a non-directional hypothesis test was presented. 

The null and alternative hypotheses were:  

Ho: there were no differences between two populations, or  

Ho: F(x) = G(x) for all x; from -∝ to + ∝.  

Ha: there were some differences between two populations, or  

Ha: F(x) ≠ G(x) for at least one value of x.  
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3) Formulas of Test Statistics and Decision Rules for Small and Large Sample Sizes. 

Formulas of the test statistic (D n1,n2 ) for both small and large sample conditions as well 

as decision rules for the testing the hypotheses were presented. In order to be consistent in 

the definition of sample sizes to compare with the MW test, the researcher will use a size of 

20 as the boundary to define small and large sample sizes.  

 
Small Sample Size (n1 ≤ 20 or n2≤  20) 

When both samples were no more than 20 (n1 ≤ 20 or n2≤  20), the test statistic of the KS-

2 test was: 

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

 
  The decision rule of the hypothesis test was: 

If the observed Dm,n was greater than or equal to the tabled D n1,n2 critical (D n1n2 ≥ D n1,n2 

critical) at the specific level of significance (α), the null hypothesis was rejected. 

Therefore, there was a significant difference between these two populations.   

 
Large Sample Size (n1 > 20 or n2 > 20) 

When either or both samples were larger than 20: (n1 > 20 or n2 > 20), the test statistic of 

the KS-2 test was:  

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

Critical D n1,n2 was calculated with a formula based on various significance level (α).  

When the significance level was α,  

  the critical D n1,n2 =  table value (K) × 1 2

1 2

n n
n n
+ .     

  The decision rule was: 
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When the observed D n1,n2 was greater than or equal to the tabled Dn1,n2 critical (D n1,n2 ≥ 

D n1,n2 critical) at the specific level of significance (α), the null hypothesis was rejected.  

Therefore, there was a significant difference between these two populations.    

In summary, when researchers decide to apply the KS-2 test as their statistical analysis, 

the following steps were proposed to employ the test: first, rank sample scores from each of 

the two sample distributions in their own cumulative frequency distribution. Second, for each 

listed variable, determine the difference between the two-sample cumulative distributions by 

subtracting the two cumulative relative frequencies. Third, find the largest difference in 

either direction. Fourth, use the Tabled value and detect whether the test statistics reach the 

significance level. Fifth, draw conclusions based on the finding from step Four. 

 
6) Selecting sample sizes: 

Different textbook authors provided tables with different pairs of equal and unequal 

sample sizes and the associated critical values.  Gibbons and Chakraborti (2003) included 

critical values tables for selected sample size groups from (2, 2) to (8, 8) with equal and 

unequal sizes, and (9, 9) to (20, 20) with equal sample sizes. Marascuilo and McSweeney 

(1977), Siegel and Castellan (1988), and Sheskin (2000) included critical values tables for 

both equal and unequal sample size groups from (3, 3) to (25, 25). Conover (1999) and 

Daniel (1990) provided critical values tables for selected unequal sample size groups from (1, 

9) to (16, 20).  

 In this research, both small and large sizes of samples included both equal and unequal 

conditions. The specific size elections for the two samples were described in CHAPTER 

THREE. 
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7) Issue of Ties: 

 When there were observations in both samples having the same score values (or tied 

scores), researchers proposed different ways to deal with this situation. For example, Bradley 

(1968) and Marascuilo and McSweeney (1977) assumed that originally observed variable 

was a continuous variable implying that no tied observations occurred in the samples. Siegel 

and Castellan (1988), Conover (1999), Sheskin (2000), and Higgins (2004) did not discuss 

the issue of ties, while Daniel (1990) claimed that there was no problem when tied scores 

were presented within the same sample group.  It was complicated if the tied condition 

happens between two sample groups. To simplify this problem, Daniel (1990) and Schroer 

and Trenkler (1995) proposed that if there are any ties shown between two samples, the 

probability of the tied value is zero (0).  Then, they suggest using a pair chart for the diagonal 

line to calculate the difference from the chart. However, it is complicated to draw the path 

and the diagonal line. Neave and Worthington (1988) pointed out that ties might cause severe 

differences only when they occurred in the area of the maximum difference. They proposed 

two methods to calculate the maximum difference.  The first one was to assign the 

probability of zero to the tied sample values. They concluded that the difference only shows 

in the calculation at the end of ties. Similarly, they also suggested using pair chart to check 

whether the results were the same as of the previous step. The second method was to average 

the calculated D for the sample with the same score values. They claimed, “This method can 

be tricky to apply if there were a lot of ties” (p. 155). As a result, to eliminate the difficulty of 

defining the positions of “the end of ties” and “a lot of ties”, this study did not discuss tied 

scores for the sample data. 
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Heterogeneity of Variance, Skewness, and Kurtosis 

Introduction 

 When researchers apply any parametric statistic to their study, they assume that the data 

are drawn from normal populations and the variances among the populations are equal to one 

another. When there are violations about the assumptions, the nonparametric statistical 

analytic techniques usually will be applied to replace the parametric ones (Conover, 1999).  

Heterogeneity of variance, skewness, and kurtosis are considered violations of the 

assumptions for parametric statistics. Discussions about these violations are presented below:  

 
Heterogeneity of variance 

 Homogeneity of variance is one of the assumptions that must be satisfied when 

performing any parametric statistic (Conover, 1999; Pedhazur & Schmelkin, 1991; Sheskin, 

2000; Siegel & Castellan, 1988). If this assumption is not met, nonparametric statistical tests 

are typically introduced for statistical analysis (Gibbons & Chakraborti, 1991).  Vogt (2005) 

defined homogeneity of variance as a condition that populations from which samples have 

been drawn do not have similar or equal variance.  Zinnerman’s research (2004)  revealed 

that nonparametric tests of location, such as the Wilcoxon-Mann-Whitney rank test, were 

affected by unequal variances of two samples. When the ratios between two population 

standard deviations were increased from 1 to 2, Type I error rate increased significantly when 

the population distributions are normal and non-normal distributions. Non-normal 

distributions such as lognormal, gamma, Gumbel, Weibull, have a power function shape. 

Moreover, when the population standard deviation ratios were increased from 2 to 3, Type I 

error rates of these populations became more liberal (Type I error rates are greater than the 

significance level α). Therefore, it may be necessary to detect the variances between two 



 55

populations if researchers decide to assess Type I error rates for any two-sample statistical 

test. Penfield (1994) also supported the argument and suggested examining the equality of 

the variance assumption and the level of skewness about the data sets when performing a 

two-sample location test. This is particularly true when the Type I error rate and power are 

evaluated.  

 There are various methods for indicating homogeneity of variance between two samples 

when performing Monte Carlo simulations. Penfield (1994) used the ratio between two 

population variances 
2
1
2
2

σ
σ

 as an index for homogeneity of variance. The symbol 2
1σ  

represents the population variance of the first sample group and 2
2σ  is the population 

variance of the second sample group. Gibbons and Chakraborti (1991) and Zimmerman 

(2003; 2004) also used the ratio between two population standard deviations 1

2

σ
σ

 as an 

indicator for homogeneity of variance. The two indicators 
2
1
2
2

σ
σ

 and 1

2

σ
σ

 have the same effect 

when applied to Monte Carlo simulations since the first ratio is the squared value of the 

second one. Therefore, this researcher decided to use 1

2

σ
σ

 as an index for detecting the 

violation of the assumption of homogeneity of variance.  

 
Skewness and Kurtosis 

Skewness and kurtosis are assessed to detect shapes of a distribution (Balakrishman & 

Nevzorov, 2003; Joanest & Gill, 1998). Sheskin (2000) and Vogt (2005) defined skewness as 

a measure which reflects the degree to which a score distribution is asymmetrical or 

symmetrical. When data are symmetrical, researchers usually assume data are normally 
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distributed. According to the definition by Vogt (2005), kurtosis is an indicator of the degree 

to which a score distribution is peaked. Sheskin (2000) revealed that the reason for 

measuring kurtosis is to verify whether data are derived from a normally distributed 

population. In 1895, Pearson first developed a set of measures of skewness and kurtosis (as 

cited in Balakrishman and Nevzorov, 2003).   They are given by: 

Skewness: 3
1 3

2

βγ
β

= ,  

where β3 is the third central moment of the population distribution function. 

                      β2 is the second central moment of the population distribution function.  

  Kurtosis: 4
2 2

2

βγ
β

=                      

where β4 is the fourth central moment of the population distribution function. 

                      β2 is the second central moment of the population distribution function.  

Based upon Sheskin’s explanation (2000), “the word moment is employed to represent to 

the sum of the deviations from the mean in reference to sample size” (p.10).  Balakrishman 

and  Nevzorov (2003) provided the formula of the nth central moment (βn) of a continuous 

variable X which is defined as βn = E(X-EX)n. Based on this formula, the first central 

moment of the population distribution function is derived as β1 : β1 = E(X-EX)1. After this 

calculation, β1, population mean (μ), is obtained. Using a similar procedure, the second 

central moment of the population distribution function β2 is obtained. This is the population 

variance (σ2). Fleishman (1978) and Joanest and Gill (1998) proposed exact formulas based 

on Pearson’s work to find skewness and kurtosis. However, Bai and  Ng (2005), Sheskin 
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(2000) and Algina, Olejnik, and Ocanto (1989) replaced the β3 , β4 , and β2 by μ3, μ4, and σ2, 

and changed the formulas of skewness and kurtosis to 3

1 3

μ
γ

σ
=  and 4

2 4

μγ
σ

= .   

Balakrishman and  Nevzorov (2003) pointed out that distributions with  γ2 > 3 are 

leptokurtic distributions; those with γ2 < 3 are platykurtic distributions; others with γ2= 3 are 

mesokurtic distributions (including the normal distribution).  Moreover, distributions with 

γ1> 0 are positively skewed distributions; those with γ1 < 0 are negatively skewed 

distributions; Algina, Olejnik, and Ocanto (1989) suggested that distributions with γ1= 0 and   

γ2= 3 are normal distributions.  Sheskin (2000) defined leptokurtic as a score distribution that 

tends to be clustered much more closely around the mean with a high degree of peakedness. 

A platykurtic distribution is one where the score distribution tends to be spread out more 

from the mean with a low degree of peakedness. A mesokurtic distribution has a moderate 

degree of peakedness and is represented by a normal distribution that is a bell-shaped curve.    

Skewness and kurtosis are significant indicators for describing shape characteristics of a 

score distribution. When researchers decide to perform any statistical test, skewness and 

kurtosis are important considerations about whether the population distributions are normal 

or non-normal. This helps researchers determine whether to use parametric or nonparametric 

statistical analytic techniques.  This study will detect how the MW test and the KS-2 perform 

in terms of Type I error rate and statistical power under various degrees of skewness and 

kurtosis. The strategy is fully explained in CHAPTER THREE. 

 
Method of Selecting Population Distributions                                                            

In evaluating two-sample statistical tests, many researchers have developed methods to 

simulate samples from population distributions. A population distribution, according to 
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Sheskin’s definition (2000), is a shape of arranging a group of variables that share something 

in common with one another.  Based on the characteristics of population distributions, 

researchers have explored Type I error rates and statistical power when comparing various 

two-sample statistical tests. For example, Blair and Higgins (1985) compared the power of 

the paired-sample test with Wilcoxon’s signed-ranks test among normal, lognormal, mixed-

normal, exponential, mixed- exponential, uniform, double- exponential, truncated normal, 

Chi-square, and Cauchy population distributions. MacDonald (1999) investigated statistical 

power and Type I error rates between two samples for the Student t test and the Wilcoxon 

rank sum test (the Mann-Whitney test) across normal, mixed-normal, and exponential 

population distributions. Zimmerman (2001b) examined  Type I and Type II error rates 

between two samples among the Student t test, the t tests on rank and the MW test when the 

sample sizes are the same. Zimmerman (2001b) detected these two-sample statistical tests for 

normal, mixed-normal, exponential, Laplace, and Cauchy population distributions.  These 

researchers used the known population distributions to examine statistical power and Type I 

and Type II error rates in parametric and nonparametric two-sample statistical tests.   

Fleishman (1978) developed a power function as a distribution generating method to help 

researchers produce widely different distributions and to simulate empirical distributions.  

The formula is as follows: 

  Y= a+ [(d×X + c)×X + b]×X,                             

where Y is a distribution dependent on the constants. 

X is a random variate normally distributed with the mean zero and unit standard 

deviation 1, or N (0, 1). 
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a is constant, a = -c, b, c, and d values which were generated by Fleishman and are 

found in APPENDIX I. The coefficients of a, b, c, and d in APPENDIX I can be 

found with the restrictions that the mean, variance, skewness, and kurtosis are 0, 1, γ1 

and γ2. This simulation formula was adopted by researchers such as Penfield (1994)  

to detect Type I error rates between two sample tests in parametric and nonparametric 

statistics research. 

In APPENDIX I, the measures of skewness and kurtosis are calculated by the formulas 

provided by Fleishman (1978):   

  Where the measure of skewness = 3
1 3

βγ
σ

= ;  

  the measure of kurtosis = 4
2 4 3βγ

σ
= −  

 This population distribution generating function has been applied in Monte Carlo studies 

for detecting Type I error rates and statistical power by various researchers. Olejnik and 

Algina (1987) and Algina, Olejnik, and Ocanto (1989) adopted Fleishman’s power function 

(1978) to create observations on both normal and non-normal distributions and used these to 

estimate Type I error rates and power for the O’Brien test, the Brown-Forsythe test, the 

Fligner-Killeen test and two Tiku’s tests. These tests are other nonparametric statistical two-

sample tests of scale difference (such as difference in variances).  In Algina, Olejnik, and 

Ocanto’s 1989 study, twelve distributions were generated by different degrees of skewness 

and kurtosis.  Penfield (1994) applied Fleishman’s power function to investigate Type I error 

rates and power for the Student t test, the MW test, vander Waerden Normal Score (NS) test, 

and Welchi-Aspin-Satterthwaite (W) test. About nineteen population distributions were 

generated in that study.  As shown here, researchers adopted Fleishman’s power function to 
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investigate statistical power and Type I error rates under different shapes of population 

distributions when the focus of their research was to detect power and Type I error rates with 

various degrees of skewness and kurtosis, as well as for testing the differences between 

variances of samples.  

 Given that one purpose of this study is to detect Type I error rates and statistical power 

under various differences in variances, skewness, and kurtosis between two samples, 

Fleishman’s power function will be utilized to generate different distributions along with 

various ratios of skewness and kurtosis for the Monte Carlo simulation.  Moreover, this study 

will adopt the coefficient of skewness and kurtosis as applied in Penfield (1994) and Algina, 

Olejnik, and Ocanto  (1989) to investigate Type I error rates and statistical power between 

the MW and the KS-2 tests.  

 
Issues Related to the Mann-Whitney Test 

 When investigating the Mann-Whitney (MW) test, Type I error rates and statistical power 

are two of the most important criteria to determine whether the statistical test is conservative 

or liberal in the decision-making of hypothesis testing. Research related to these two issues 

was explored and is presented below. 

 
Type I Error Rates 
 
 Type I error rate is the probability of rejecting a true null hypothesis. When researchers 

perform hypothesis tests, one of the main goals is to find out Type I error rates for making 

decisions in statistical inference.  Many studies here investigated Type I error rates. For 

example, Gibbons and Chakraborti (1991) investigated Type I error rates of the Mann-

Whitey test and the Student t test with normal distributions with the conditions of equal (n1 = 
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n2 = 10) and unequal (n1 =4, n2 = 16) sizes in small samples. They also considered one equal 

(σ1 = σ2) and four sets of unequal population standard deviations: (1) σ1 = 2.5σ2; (2) σ1 = 

5σ2; (3) σ2 = 2.5σ1; (4) σ2 = 5σ1.  There were two findings with equal population standard 

deviations between two samples. First, it was found that when both sample sizes were 10 and 

the significance level (α) was 0.0432, Type I error rate was about 0.0458 which is a little 

greater than the significance level (α). However, when sample sizes were unequal (n1 =4, n2 

= 16) and the significance level (α) was 0.05, Type I error rate was about 0.0457 which is a 

little less than the significance level (α).  It was concluded that the MW test is more 

conservative with the condition of unequal small sample sizes than equal ones. Based on the 

definition from Gibbons and Chakraborti (1991), when Type I error rate is less than the 

significance level (α), the test is a conservative test.   

There are several findings from Gibbons and Chakraborti (1991) when the population 

standard deviations were not equal between two samples. When both sample sizes were the 

same (n1 = n2 = 10), it was found that when the significance level (α) was 0.0432, Type I 

error rates of the MW test were changed from 0.0559 with σ1 = 2.5σ2 to 0.0691 with σ1 = 

5σ2. Similar results were found for the other two sets of unequal variances (0.0565 with σ2 = 

2.5σ1, and 0.0749 with σ2 = 5σ1). It was shown that Type I error rates of all four sets of the 

unequal standard deviations were greater than the significance level (α). Similarly, when 

sample sizes were not equal (n1 =4, n2 = 16) and the significance level (α) was 0.05, Type I 

error rates were about 0.1271, 0.1439 with the population standard deviations of σ1 = 2.5σ2 

and σ1 = 5σ2, respectively. However, when the population standard deviations were σ2 = 

2.5σ1 and σ2 = 5σ1, Type I error rates were about 0.0075, and 0.0109, respectively, when 
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comparing with the significance level (α) of 0.05.  It was found that the MW test was more 

conservative (Type I error rates were less than the significance level α) within the condition 

of unequal small sample sizes. When the smaller sample had the smaller population standard 

deviation and the larger sample had the larger one, Type I error rates were less than the 

significance level α, and, the MW test became conservative. 

 There were several conclusions drawn from Gibbons and Chakraborti’s 1991 study.   

First, Type I error rates of the MW test were very close to the significance level (α) when the 

sizes of two samples were small and equal regardless of population standard deviations. 

Second, Type I errors were much greater than the significance level (α) when small sample 

sizes were unequal, especially when the smaller sample was associated with the larger 

population standard deviations and the larger size with a smaller population standard 

deviations.  However, the MW test became much more conservative (Type I errors were 

much less than the significance level α) when the smaller sample had a smaller standard 

deviation.  

 Penfield (1994) investigated Type I error rates of the Student’s t test, the MW test, the 

van der Waerden Normal Scores (NS) test, and the Welch-Aspin-Sattertheaite (W) test from 

normal and non-normal distributions. Data in this study were generated by Fleishman’s 

power function (1978) with various degrees of skewness (S) and kurtosis (K). Penfield 

examined three sets of equal sample sizes: (5, 5), (10, 10), and (20, 20) when both equal and 

unequal population variances were applied and the significance levels (α) were 0.056, 0.052, 

and 0.05, respectively. He also examined two sets of unequal sample sizes:  (5, 15) and (10, 

20) with α of 0.053and 0.05, respectively and both conditions of equal and unequal 
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population variances. The ranges for 19 pairs of skewness and kurtosis (K, S) were from (0, -

1) to (1.5, 3.5).   

This research revealed several findings with regards to the MW test. First, when there 

were equal population variances between two samples, Type I error rates for all level of 

skewness and kurtosis (K, S) were close to the significance levels (α) for all equal pairs of 

samples in this study. Second, when there were unequal sample sizes (5, 15) and (10, 20) 

with equal population variances between two samples, Type I error rates were acceptable at 

α of 0.053and 0.05 for all levels of skewness and kurtosis (K, S). Third, when two samples 

had equal sizes but different variances (σ1
2 = 4σ2

2), Type I error rates were greater than the 

significance levels (α) at levels of skewness. Moreover, as the level of skewness increased, 

Type I error rates increased significantly.  Fourth, when two samples were unequal in both 

sizes and population variances, Type I error rates were greater than the significance levels 

(α) when the larger population variances were associated with the smaller sample sizes at all 

levels of skewness. However, when the larger population variances were associated with the 

larger sample sizes, Type I error rates were much less than the significance levels (α) at all 

level of skewness.  

In conclusion, the MW test was very liberal (Type I error rates were greater than the 

significance level α) when two samples had equal sizes but different variances despite the 

sample sizes and levels of skewness.  When both samples were of the same size, as the level 

of skewness increased, the actual Type I rates increased significantly. The MW test became 

extremely liberal when one of the two samples had the larger variance and the smaller size.  

On contrary, the test was very conservative (Type I error rates were less than the significance 

level α) when the larger sample held a larger variance.  



 64

 The findings from Penfield’s research confirmed the conclusions proposed from Gibbons 

and Chakraborti’s investigation in 1991 that the MW test was conservative (the Type I error 

rate was less than the significance level α )  in terms of Type I error rates when two samples 

had small unequal sample sizes, and the larger size of the two samples had the larger 

population variance.  The test was liberal (Type I error rates were greater than the 

significance level α) when the smaller sample had a larger variance.  

 Kasuya (2001) investigated Type I error rates of the MW test when the variances of two 

populations were not equal.  He used the ratios of two population standard deviations to 

simulate the results of the MW test under equal and unequal sample sizes (n1 = 25, n2 = 15; 

n1 = n2 = 20; and n1 =30, n2 = 10). Simulations were separately performed with the 

populations from normal and uniform distributions.  Results revealed that in the normal 

distribution, when the sample size of the two samples were unequal (n1 = 25, n2 = 15 and n1 = 

30, n2 = 10), as the standard deviation ratio (SD ratio) between two populations was 

increased from 0.2 to 4, Type I error rates increased from 0.05 to 0.11 (n1 = 25, n2 = 15) and 

0.02 to 0.14(n1 = 30, n2 = 10).  When the sample sizes were equal, Type I error rates were 

decreased from 0.08 to 0.05 when the SD ratio between two normally distributed populations 

changed from 0.2 to 1.6. However, when the SD ratio changed from 1.6 to 4.0, Type I rates 

increased from 0.05 to 0.08.  Similar results were found when the populations were from 

uniform distributions.  

Thus, conclusions drawn from Kasuya (2001) also confirmed that the MW test inflated 

Type I error rate when the variances differed between two samples with equal and unequal 

sample sizes.  This study also supported Penfield (1994) and Gibbons and Chakraborti’s 

investigation in 1991 that when the larger size of the two samples had the larger population 
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standard deviation, Type I errors became much less than the significance level (α) and the 

MW test was extremely conservative. 

 Zimmerman has studied Type I error rates and the power of nonparametric tests over two 

decades since 1980s, particularly the MW test. In 1985, Zimmerman proposed a simulation 

study of the MW test with the assumptions of (1) normal (binomial distribution) and non-

normal population distributions (uniform distribution), (2) equal and small sample sizes (n1 = 

n2 = 5), (3) equal and unequal (σ1 = 4σ2) population variances, and (4) the significance level 

(α) was 0.056. The results of this study were that when the two population variances were 

the same, Type one error rates were less than the significance level (0.053 for the normal 

distribution and 0.055 for the non-normal distribution).  However, when populations 

variances were unequal (σ1 = 4σ2), Type I error rates of the MW test were greater than the 

0.056 significance level (0.070 for the normal distribution and 0.076 for the non-normal 

distribution).  

In conclusion, under the condition of small and equal sizes between two samples, the 

MW test was conservative when the population variances were the same regardless of the 

population distributions. The MW test became liberal when the population variances were 

unequal but the sample sizes were small and equal with both normal and non-normal 

distributions. However, the study was conducted only comparing one set of sample sizes in 

two pairs of population variances under two population distributions.   

 Zimmerman (1987) expanded the study only in the normal distribution with the 

assumptions of: (1) three pairs of small sample sizes with one equal (n1 = n2 = 10) and two 

unequal (n1 =16, n2 = 4 and n1 = 4, n2 = 16), (2) one pair of equal population variances (σ1 = 

σ2) and one with extremely unequal population variances (σ1 = 5σ2), and (3) the significance 
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level (α) was 0.05.  It was found that when the assumption of homogeneity of variances was 

met, Type I error rates were 0.041, 0.049, and 0.048 for sample sizes of n1 = n2 = 10, n1 =16, 

n2 = 4 and n1 = 4, n2 = 16, respectively.  These Type I error rates were all less than the 

significance level of 0.05. Moreover, when the first population standard deviation was five 

times as large as the second population standard deviation (σ1 = 5σ2), only the sample size 

combination of n1 =16 and n2 = 4 had a very small Type I error (0.006). Type I error rates of 

other two pairs of sample size combinations were all greater than the 0.05 significance level 

(0.075 for n1 = n2 = 10 and 0.134 for n1 = 4, n2 = 16). 

 Based on this research, it appeared that when two populations had the same small sample 

sizes, the MW test was liberal (Type I error rate exceeded the significance level) with 

extremely unequal variances. When the sample size was large with much larger variance than 

the other sample, the MW test became very conservative (the Type I error rate was less than 

the significance level). On the other hand, the MW test was liberal when the sample size was 

small with much larger variance than the other sample. Gibbons and Chakraborti (1991), 

Penfield (1994), and Kasuya (2001) all confirmed this finding in their studies in later years 

which was discussed in an earlier section. 

 In 1990, Zimmerman and Zumbo investigated Type I error rates of the MW test with 

normal, uniform, exponential, Cauchy, and mix-normal distributions for the two populations. 

They examined two sets of small and equal sample sizes (n1 = n2 = 8 and n1 = n2 = 16). Nine 

sets of differences between two population standard deviations (σ1- σ2 = 0, 0.5, 1.0, 1.5, 2.0, 

2.5, 3.0, 3.5, and 4.0) were also examined for Type I error rates. It was found that when the 

difference between the two population standard deviations was zero and both sample sizes 

were eight, Type I error rates for normal, uniform, exponential, Cauchy, and mix-normal 
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distributions were 0.051, 0.052, 0.052, 0.047, and 0.048, respectively. As the population 

standard deviation differences increased, Type I error rates for all five kinds of population 

distributions increased too.  Moreover, when both sample sizes increased from 8 to 16 and 

the standard deviation difference was zero, all five distributions had Type I error rates less 

than 0.05. Similarly, when the standard deviation difference was increased, Type I error rates 

were raised as well.  

 This study by Zimmerman and Zumbo (1990a) concluded that when the two samples had 

equal sizes and were less than 20, the MW test was conservative since Type I error rates were 

less than the significance level of 0.05 with normal, uniform, exponential, Cauchy, and mix-

normal population distributions. When homogeneous of variances was violated, the MW test 

became liberal in any of these five population distributions. It was suggested that the MW 

test was powerful for both normal and non-normal distributions when the two samples had 

small and equal sizes and population variances of these two samples were the same.  

However, when two samples had equal sample sizes but population variances of these two 

samples differed from each other, the MW test was not powerful with both normal and non-

normal population distributions. 

 In 1998, Zimmerman started to examine Type I error rates of the MW test with the 

normal population distribution under the conditions of both equal and unequal sample sizes 

with both equal and unequal population standard deviations.  The significance level was 0.05 

for this study. The pairs of sample sizes (n1, n2) were (40, 20), (20, 40), (20, 20), (30, 30), 

and (40, 40). Ratios of two population standard deviations (
2

1

σ
σ

) were used to examine Type 

I error rates; 
2

1

σ
σ

ratios were 1, 2, 3, and 4, respectively. It was found that Type I error rates 
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were 0.049, 0.049, and 0.050 which were very close to the significance level of 0.05 when 

the ratio 
2

1

σ
σ

 was 1 (equal population variance) and the combinations of these two sample 

sizes were (20, 20), (30, 30), and (40, 40) respectively. When 
2

1

σ
σ

ratios increased, Type I 

error rates of these three combinations of equal sample sizes became greater than the 0.05 

significance level.  When the pair combination of the two samples was (20, 40), Type I error 

rates were greater than 0.05 significance level regardless of the ratios of two population 

standard deviations(
2

1

σ
σ

). However, when the pair combination of the two samples changed 

to (40, 20), the Type I error rate was greater than 0.05 when the 
2

1

σ
σ

ratio was equal to one. 

Type I error rates became less than 0.05 significance level as ratios of 
2

1

σ
σ

became greater 

than one (unequal variances).  

 In conclusion, with normal population distributions and large sample size scenarios, the 

MW test was liberal (Type I error rates exceed the significance level) with the assumption of 

homogeneity of variances when the sizes of the two samples were unequal to one the other. 

The MW test was conservative (Type I error rates are lea than the significance level) with the 

assumption of unequal population variances when the sample with large size had large 

2

1

σ
σ

ratios. 

  Zimmerman  (2000) proposed a Type I error rate investigation for both large and small 

equal sample sizes (n1 = n2 = 4, 5, 6, 7, 8, 20, 40, and 80) with population standard deviation 
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ratios (
2

1

σ
σ

) from 1.0 to 4.0 in increments of 0.5. The study included three α significance 

levels for each pair of sample size combination.  When the sample sizes were four (n1 = n2 = 

4), the significance levels α were 0.028, 0.058, and 0.114.  When the sample sizes were five 

(n1 = n2 = 5), the significance levels α were 0.016, 0.056, and 0.096. When the sample sizes 

were 6 (n1 = n2 = 6), the significance levels α were 0.016, 0.042, and 0.094. When the sample 

sizes were 7 (n1 = n2 = 7), the significance levels α were 0.012, 0.054, and 0.104. When the 

sample sizes were 8 (n1 = n2 = 8), the significance levels α were 0.010, 0.050, and 0.104. 

When the sample sizes were 20, 40, and 80 (n1 = n2 = 20, 40, and 80), the significance levels 

α were 0.01, 0.05, and 0.10.   

 It was found that Type I error rates were less than or equal to the significance levels α for 

all pairs of sample size combinations when the 
2

1

σ
σ

 ratio was equal to one. When the 

2

1

σ
σ

ratio increased, Type I error rates became greater than the significance levels α for both 

small and large sample sizes.  

 The results revealed that the MW test was mildly conservative when homogeneity of 

variances existed with the normal distribution and both samples were equal regardless of the 

sizes of these samples. The MW test became liberal when the condition of homogeneity of 

variances was violated for all sizes of equal samples. However, only the normal distribution 

for the two populations was examined in this study.        

In order to assess Type I error rates of the MW test with both normal and non-normal 

population distributions, Zimmerman examined Type I error rates of the MW test for 11 
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different population distributions in 2003 and 25 different population distributions in 2004 

for both small and large sample sizes with different ratios of population standard deviations.  

Further, in 2003, Zimmerman examined Type I error rates of the MW test with both three 

pairs of small and equal size combinations (n1 = n2 = 6, 8, and 10) and six pairs of large and 

equal sample size combinations (n1 = n2 = 20, 30, 60, 90, 120, and 200). The population 

standard deviation ratios (
2

1

σ
σ

) were 1.0, 1.1, 1.2 which were equal to or had small 

differences between two population variances. Three levels of significance were considered 

(α = 0.009, 0.041, and 0.093). It was found that, at all three levels of significance, Type I 

error rates were slightly inflated as the 1

1

σ
σ

 ratios increased from 1.0 to 1.2 in both small (n1 = 

n2 = 6, 8, and 10) and large samples (n1 = n2 = 20, 30, 60, 90, 120, and 200) regardless of the 

type of population distributions. 

In conclusion, the MW test was slightly conservative (Type I error rates were less than 

significance) when homogeneity of variances existed (
2

1

σ
σ

=1) for small and large sample 

sizes with the normal and non-normal population distributions. The MW test was 

conservative when homogeneity of variances was slightly violated with normal distributions 

and large sample sizes. However, the MW test was liberal (Type I error rates exceed the 

significance level) when homogeneity of variances was slightly violated with non-normal 

population distributions regardless of the sizes of these two equal samples. 

In 2004, Zimmerman investigated Type I error rates of the MW test with both four pairs 

of large and equal size combinations (n1 = n2 = 20, 25, 50, and 80) with population standard 
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deviation ratios (
2

1

σ
σ

) of 1.0, 1.25, 2.0 and 3.0. There were 25 normal and non-normal 

population distributions examined.  Three levels of significance were considered (0.01, 0.05, 

and 0.10). It was found that when both sample sizes were 25, Type I error rates were close or 

equal to the significance levels as the 
2

1

σ
σ

 ratio was equal to 1.  Type I error rates exceeded 

the significance levels as the 
2

1

σ
σ

 ratios changed to 2 and 3.  Especially when the populations 

were exponential, gamma, and the Weibull distributions, Type I error rates increased 

dramatically. Type I error rates also inflated as the 
2

1

σ
σ

 ratios changed from 1.25 to 2.0 and 

the pairs of equal sample sizes increased from 20 to 80. This was particularly the case with 

the Weibull population distribution. 

 In conclusion, the MW test was slightly conservative when homogeneity of variances 

existed (
2

1

σ
σ

=1) for large and equal sample sizes with the normal and non-normal population 

distributions. It became liberal when there was no existence of homogeneity of variances 

when sample sizes were equal and large with normal and non-normal population 

distributions. The MW test was extremely liberal, especially, when populations were non-

normal distributions. This indicated that researchers should reconsider whether the MW test 

is appropriate under conditions such as sample sizes, population variances, and shapes of the 

population distributions. 

     
Statistical Power Estimates 
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 Statistical power is another important criteria for making decisions in statistical inference. 

Statistical power is the probability of correctly rejecting a false null hypothesis. Shavelson 

(1988) stated that statistical power is used to point out the probability of detecting a 

difference if the difference actually exists. Researchers might hope to have high statistical 

power when performing any statistical test.  

In power comparisons of small and equal sample sizes (n1 = n2 = 10), Gibbons and 

Chakraborti (1991) found that the MW test had similar power with the Student’s t test when 

the population variances were equal to each other (σ1 = σ2). The MW test was more powerful 

than the Student’s t test when there were extremely unequal variances (σ1 = 5σ2, and σ2 = 

5σ1) between two samples. The results revealed that when the sample sizes are small and 

equal, the MW test was more powerful than the Student’s test as the assumption of 

homogeneity of variances was violated.  

 Penfield (1994) examined statistical power of the Student’s t test, the MW test, the van 

der Waerden Normal Scores (NS) test, and the Welch-Aspin-Sattertheaite (W) test from 

normal and non-normal distributions. Data in this study were generated by Fleishman’s 

power function (1978) with various degrees of skewness (S) and kurtosis (K). Penfield 

considered three sets of equal sample sizes: (5, 5), (10, 10), and (20, 20) and two sets of 

unequal sample sizes:  (5, 15) and (10, 20) with both conditions of equal and unequal 

population variances. The ranges for 19 pairs of skewness and kurtosis (K, S) were from (0, -

1) to (1.5, 3.5).   

It was found that when sizes for both samples were five (n1 = n2 = 5) and the pairs of 

skewness and kurtosis (S, K) were (0.5, -.05), (1, 3), the power of the MW test and the van 

der Waerden Normal Scores (NS) test was the same and greater than the Student’s t test. 
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When the pairs of skewness and kurtosis were (1.5, 2.5) and (1.5, 3), the MW test and NS 

test were the desired tests. When the two sample sizes were (10, 10), (20, 20), (5, 15) and 

(10, 20) and pairs of S, K were (0.5, -0.5), (0.5, 3), (1, .5) (1, 3) (1.5, 2.5) and (1.5, 3), the 

MW test was preferred to the other tests.  When variances were unequal (σ1 = 2σ2), the MW 

test had more power only with the sample sizes of (10, 20) and the combinations of skewness 

and kurtosis were (1, 0.5), (1, 3), (1.5, 2.5) and (1.5, 3). 

 In conclusion, the MW test was powerful when the samples were small with equal and 

unequal sizes. The MW test was also powerful when the population distributions had various 

degrees of skeweness and kurtosis. It was suggested by Penfield (1994) that the MW test had 

more power in the small equal and unequal sample sizes and non-normal population 

distributions. 

 Zimmerman (1985) investigated statistical power estimates between the MW test and the 

Student’s t test in the normal distribution under the conditions of equal small sample sizes (n1 

= n2 = 5) and both equal and unequal (σ1 =4σ2) population variances. It was found that, in the 

condition of small and equal sample sizes, the Student’s t test was more powerful than the 

MW test for both equal and unequal variances.    

In 1987, Zimmerman examined the power of the MW test and the Student’s t test in the 

normal distribution with the assumptions of (1) three pairs of small sample sizes with one 

equal (n1 = n2 = 10) and two unequal (n1 =16, n2 = 4 and n1 = 4, n2 = 16), (2) one pair of 

equal population variances (σ1 = σ2) and one with extremely unequal population variances 

(σ1 = 5σ2), and (3) a significance level (α) of 0.05.  It was found that the MW test was more 

powerful only under the condition of unequal and small sample sizes (n1 =16, n2 = 4) when 

the extremely unequal population variances (σ1 = 5σ2) existed. 
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The results from the 1985 and 1987 studies by Zimmerman revealed that the MW test is 

more powerful with a normal distribution when the two samples had small and unequal sizes,  

and when the sample with the larger size had a larger population variance.  However, it 

appeared that the comparisons of sample sizes and population variances were limited.  One 

might question paired comparisons of sample sizes and population variances that were not in 

the range used in this investigation. 

In 1990, Zimmerman and Zumbo investigated the power estimates of the MW test and 

the Student t test with normal, uniform, exponential, Cauchy, and mix-normal distributions 

for two populations. They examined two sets of small and equal sample sizes (n1 = n2 = 8 and 

n1 = n2 = 16). Nine sets with differences between two population standard deviations (σ1- σ2 

= 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0) were also examined for statistical power 

estimates.  It was found that the MW test had more power than the Student t test under 

exponential, Cauchy, and mixed-normal distributions.  

In 2003, Zimmerman examined the power estimates of the MW test and the Student t test 

with both three pairs of small and equal sample size combinations (n1 = n2 = 6, 8, and 10) and 

six pairs of large and equal sample size combinations (n1 = n2 = 20, 30, 60, 90, 120, and 200) 

for 11 different population distributions. The population standard deviation ratios (
2

1

σ
σ

) were 

1.0, 1.1, 1.2 which were equal to, or had small differences between two population variances. 

It was found that when the population standard deviation ratio (
2

1

σ
σ

) was 1.1, the MW test 

was more powerful than the Student t test at the sample size combinations of n1 = n2 = 10 

with populations of exponential, lognormal, and skewed binomial distributions. As the 

sample sizes increased, the power of the MW test also increased. As a result, it was 
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suggested that the MW test had more power than the Student’s t test when selected samples 

had small or large equal sizes and limited non-normal distributions. When the samples were 

large, the MW test had less power in most non-normal distributions and normal distributions. 

In the current study, the researcher decided to examine Type I error rates and power 

estimates of the MW test with populations of selected normal and non-normal distributions. 

Fleishman’s power function will be used for generating those selected normal and non-

normal distributions since the coefficients of skewness and kurtosis can be defined through 

this power function. Pair combinations of two samples will include conditions of equal and 

unequal, as well as small and large sizes.  The specific sizes of pair combinations will be 

presented in CHAPTER THREE. 

 
Issues Related to the Kolmogorov-Smirnov Two-Sample Test 

 When investigating the Kolmogorov-Smirnov two sample test (KS-2), Type I error rates 

and statistical power are major focus to assess whether the statistical test is conservative or 

liberal in the hypothesis testing. Research related to Type I error rates and statistical power 

were explored and presented below. 

 
Type I Error Rates  

Even though the Type I error rate is one of the important criterion of examining a 

statistical test, there was limited research to detect Type I error rates for the KS-2 test with a 

non-directional (two-tailed) hypothesis in peer-reviewed journals or in  nonparametric 

statistical textbooks. In the KS-2 test study by Sackrowitz and Samuel- Cahn (1999),  it used 

expected p values to replace Type I error rates and examined conditions directional (one-

tailed) hypothesis. However, in the educational and social behavioral research fields, most 
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researchers tend to be conservative and use a non-directional (two-tailed) hypothesis to 

define research questions.  Type I error rates are significantly important when performing 

hypothesis testing. Moreover, there is a lack of research in the KS-2 test with a non-

directional (two-tailed) hypothesis test for detecting general differences between two samples.  

Due to this critical need, Type I error rates of the KS-2 test were explored in this study.    

 
Statistical Power Estimates 

When comparing the power efficiency of the KS-2 test to other statistical tests under a 

non-directional (two-tailed) hypothesis, the Student’s t was the one that was often used to be 

evaluated with the KS-2 test.  By comparing the power efficiency between the Student’s t test 

and the KS-2 test,  the KS-2 test had higher power efficiency when sample sizes were small 

(Siegel & Castellan, 1988).  When performing comparisons of the power efficiency of the 

KS-2 test with other nonparametric statistical tests, the chi-square and the median tests were 

the ones that were often used in comparison. For example, in assessing the chi-square test 

and the KS-2 test, or the median test and the KS-2 test, the KS-2 test was more powerful than 

any of these two tests regardless of the sample sizes (Siegel & Castellan, 1988). Textbook 

authors made comments about power estimates in the KS-2 test. Sprent and Smeeton (2001) 

claimed that the KS-2 test may have less power estimates than other tests when detecting 

mean differences between two distributions. Siegel and Castellan (1988) pointed out that the 

KS-2 test is more powerful for small samples. Power estimates may be slightly reduced when 

samples are increased in size. However, neither Siegel and Castellan (1988), nor Sprent and 

Smeeton (2001) specified the number of sample sizes that were used to perform the 

comparisons.  They also did not describe in detail the kind of population distributions and 

sample sizes used to obtain these results.  
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 In the 1990’s, researchers such as Wilcox, Baumgartner, WeiB, and Shindler examined 

the power of the KS-2 test along with some other parametric and nonparametric statistical 

techniques for non-directional hypotheses (two-tailed test). Wilcox (1997) examined the 

power of  the KS-2 tests and Student’s t test when the sample sizes were 25 with mean 

differences of 0.6, 0.8 and 1.0 for a normal distribution, 1.0 for a mix-normal distribution, 

and 0.6 for both exponential and lognormal distributions. It was found that, at the nominal 

Type I error rate (α) of 0.05, the KS-2 tests had smaller power (0.384, 0.608, and 0.814) than 

Student’s t test (0.529, 0.778, and 0.925) when population distributions were normal 

regardless of the population mean differences.  The KS-2 test had greater power (0.688, 

0.866 and 0.666, respectively) than the Student’s t test when the populations were mix-

normal, exponential and lognormal.     

In conclusion, as population distributions become non-normal, statistical power of the 

KS-2 test was increased when the sizes were 25 in each sample when mean differences 

occurred between two samples.  However, there was no simulation under the consideration of 

no mean differences.  No consideration of changing population variances was examined in 

the research that was reviewed.     

Baumgartner, WeiB, and  Shindler (1998) detected the statistical power of the KS-2 test 

along with the Student’s t test, the Wilcoxon test, the Cramer-von Miss test and one new rank 

test they proposed at the nominal Type I error rate (α) of 0.05.  Four simulations were 

performed in this research.  The first simulation compared these parametric and 

nonparametric statistical tests when the sizes of both samples were 10 (n1 = n2 = 10) and 

mean differences but equal variances existed between two populations with normal 

distributions. It was found that the KS-2 test was the less powerful among these evaluated 
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statistical tests when population distributions were normal, with mean differences between 

two populations. The second simulation detected power functions of the KS-2 test, the 

Wilcoxon test, the Cramer-von Miss test, and the proposed new rank test with both sample 

sizes of 10 (n1 = n2 = 10) and the normal distribution. These two samples had no population 

mean differences but population variances were different. It was found that when the KS-2 

test was compared with the Wilcoxon test and the Cramer-von Miss test, the KS-2 was the 

most powerful test among these three nonparametric statistical tests.   A third simulation 

examined power functions of the KS-2 test, the Wilcoxon test, the Cramer-von Miss test and 

the new proposed rank test with both sample sizes of 10 (n1 = n2 = 10) and the exponential 

distribution. It was found that the KS-2 test had the least power estimates among those tests. 

One last comparison simulated power estimates of the KS-2 test, Cramer-von Miss test, and 

the proposed new rank test with large sample sizes (from n1 = n2 = 50 to 1200) and the 

underlying populations were normal, with the mean of 0 and standard deviation of 1
12

 and 

uniformly distributed in the interval of -0.5 and 0.5. Findings indicated that the KS-2 test was 

the least powerful among these tests, especially with a simulated sample size of more than 

800.  It appears that the power estimates of the KS-2 test are inferior to the other two tests 

when populations are large and uniformly distributed.  

In Baumgartner, WeiB, and  Shindler’s (1998) study, the following conclusions were 

drawn. The KS-2 was not powerful under the conditions of equal sample sizes (both small 

and large) and normal distributions with no difference between underlying population 

variances. The KS-2 was powerful when sample sizes were small and equal with a normal 

distribution and variance differences between the underlying populations.  Even though this 

study added homogeneity of variances into consideration when performing simulations, these 
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conclusions seem limited and not enough to generate results for other non-normal population 

distributions without simulating different skewness and kurtosis for the shapes of the 

underlying population distributions.   

Based upon prior research, it seems like these studies considered the situations of equal 

sample sizes only. No conditions of unequal sample sizes were simulated to estimate 

statistical power of the KS-2 two-tailed test. Moreover, under the consideration of equal sizes, 

the numbers of paired size combinations of two samples might not be sufficient enough for 

researchers to generalize conclusions based upon fewer cases of equal sample sizes. 

Furthermore, the KS-2 test is one of the nonparametric statistical techniques for determining 

general differences between two populations when the population distributions are non-

normal. These researches seemed to mainly focus on power estimates in normal distributions. 

Only a few non-normal population distributions, such as mix-normal, exponential, and 

lognormal, were investigated along with normal distributions.  No study related reported 

Type I error rates for non-directional hypotheses. Therefore, this study will perform Monte 

Carlo simulations of Type I error rates and power estimates for the KS-2 test with equal and 

unequal sample sizes in both small and large samples. Non-normal population distributions 

with different degrees of skewness and kurtosis will be considered in these simulations.  The 

specific considerations will be described in detail in CHAPTER THREE.   

   
Comparisons between the MW test and the KS-2 test 

As noted, various researches have explored Type I error rates and power estimates for 

parametric and nonparametric techniques, such as the Student’s t test and the Mann-Whitney 

test. However, there appears to be limited related research to detect Type I error rates for the 

KS-2 test. Several researchers have performed statistical power comparisons varying only in 
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location with normal distributions for the KS-2 test. Siegel and Castellan (1988) even 

suggested that the KS-2 test was more powerful than the Wilcoxon- MW test with the 

scenario of very small sample sizes.   

 Dixon (1954) detected power estimates of the MW test and the KS-2 test under small 

sizes and normal population distribution conditions. This study showed that when sample 

sizes are equal and small (n1 = n2 = 2, 3, 4, and 5), the power estimates are the same between 

the MW test and the KS-2 test with the α level of 1
3

, 1
10

, 1
70

 and 1
126

, respectively.  Schroer 

and Trenkler (1995) simulated power functions for the KS-2 test, Student’s t test, and the 

MW test in normal, Cauchy, lognormal, and logistic distributions under equal (n1 = n2 = 8 

and n1 = n2 = 15) and unequal sample sizes( n1 = 12, n2 = 4, and  n1 = 18, n2 = 12). It was 

found that when underlying population distributions were asymmetric or had extreme values 

or outliers, the KS-2 test had better power than the other assessed statistical tests regardless 

of the equality of sample sizes.  

 The conclusion drawn from these two studies was that when the two independent samples 

had equal and small sample sizes with an underlying population of normal distribution, 

power estimates of the MW test and the KS-2 test were very similar or even the same.  

However, when the population distributions for both samples became non-normal, power 

estimates of the KS-2 test were better than the MW test.      

 Schroer and Trenkler (1995) also compared the power of the KS-2, the MW, the Cramer-

von Mises test and another new test they proposed in three non-normal distributions (Pareto, 

lognormal, and Singh-Maddalas) with large sample sizes (n1 = n2 = 25). It was found that the 

KS-2 test had the smallest power in both the Pareto distribution and the Singh-Maddala 
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distribution. The KS-2 test had higher power than the MW test when the population was 

lognormal and Singh-Maddala distributions.  

 In conclusion, as noted here, the KS-2 was not superior or inferior to the MW test in 

statistical power with some non-normal population distributions. The shape of the population 

distributions might be the essential determination of statistical power estimation for these two 

nonparametric statistical tests.   

 Baumgartner, WeiB, and Shindler (1998) investigated the statistical power function of 

the KS-2 test, the MW test, along with other parameter and nonparametric tests when the 

underlying populations were normal distributions. When both sample sizes were equal to 10 

and the population variances were 1 for both samples, power estimates of the MW test were 

superior to the KS-2 test regardless of the differences in population mean. However, when 

there was no difference between the mean of two populations but population variances did 

vary, power estimates of the KS-2 test were better than the MW test when the two samples 

were size 10 and the nominal Type I error rate (α) was 0.05.     

 Fahoome (1999) investigated the smallest equal-sample sizes for large-sample 

approximations of the MW test, the KS-2 test, and other nineteen nonparametric tests for 

single-sample, two-sample, and multiple-sample conditions with minimal Type I error 

inflation or loss of power. He also compared differences in the statistics between large-

sample approximations and tabulated critical value if the comparisons were appropriate.  

This research simulated data for normal, smooth symmetric, extreme asymmetric, extreme 

bimodal, and multimodal lumpy distributions from Micerri data sets (1989).  It was found 

that the KS-2 test performed inconsistent by when either approximate or critical p-value were 

closer to the nominal Type I error rate (α).  Critical 0.01 p-values were better for normal and 
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multimodal lumpy distributions. Approximated 0.01 and 0.05 p-values were better for 

smooth symmetric and extreme asymmetric distribution data sets. The KS-2 test did not 

perform well on the Micerri data sets. There was no value of suggested smallest equal sample 

sizes for large sample approximations with nominal Type I error rates of 0.01 or 0.05.  All 

four Micerri distributions performed well with critical p-values for the MW test.  When 

determining the smallest equal sample sizes for large sample approximations, with these four 

data sets, there were several suggestions based upon various distributions. For normal 

distribution, the suggested sample sizes were 25 for α of 0.01 and 14 for α of 0.05. For 

extreme asymmetric distribution, the suggested smallest equal-sample sizes were 44 for α of 

0.01 and 17 for α of 0.05. When multimodal distribution occurred, the smallest equal-sample 

sizes were 29 for α of 0.01 and 10 for α of 0.05. There was no value of the smallest equal-

sample sizes with smooth symmetric data sets with α of 0.01. When α was 0.05, the smallest 

equal-sample size was 17.  

 
Summary 

In this chapter, the historical development of the Mann-Whitney test and the 

Kolmogorov-Simirnov two-sample test was reviewed. The theoretical framework of these 

two tests including data definition, assumptions, hypotheses, and test statistics from various 

textbooks were also examined. Sample size selections and the issue of tied conditions were 

investigated through the literature.  Examples developed by the researcher were implemented 

for performing the calculation of test statistics of the MW test and the KS-2 test, as suggested 

by various textbooks.  In this study, heterogeneity of variances, skewness, and kurtosis of 

population distributions will be main considerations when performing the Monte Carlo 

simulations, therefore, these considerations were also reviewed and presented.  Selecting 
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population distributions was another key concern for this study; thus, methods of selecting 

populations were examined from the literature.  Finally, issues of Type I error rates and 

power estimates as related to the MW test and the KS-2 test were reviewed to guide the 

researcher in selecting sample size combinations of the two independent samples as well as 

ratios of population standard deviations (SD ratios) when executing Monte Carlo simulations.  

Overall, when comparing Type I error rates and power estimates between the Mann-Whitney 

test and the Kolmogorov-Smirnov two-sample test, especially, under the non-directional 

alternative hypothesis, there is little related peer-reviewed literature to discuss this issue. 

 In conclusion, this literature review provides a foundation for understanding elements to 

perform this simulation study.  It helps this research clearly define the conditions, such as 

sample size combinations, SD ratios, ratios of skewness and kurtosis, to form population 

distributions by using Fleishmen’s power function (1978). This will serve to appropriately 

execute the simulations and to aid in resolving the research questions of this study.     
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CHAPTER THREE 

RESEARCH METHOD  

Introduction 

  
 This chapter presents the populations and sampling methods used to determine the 

simulated subjects for this study.  Sample sizes for both the Mann-Whitney (MW) and the 

Kolmogorov-Smirnov two-sample (KS-2) tests are discussed. Formulas for these two 

statistical tests are presented. The SAS computer program that was utilized to perform the 

Monte Carlo simulation techniques is discussed. Formulated test statistics for small samples 

and large sample approximations for the MW test and the KS-2 test were planned in this 

chapter. Methods of selecting population distributions, simulated data sets related to sample 

size combinations, ratios between two population standard deviations, and levels of nominal 

Type I error are introduced as these were needed to compare the actual Type I error rates and 

statistical power estimates of the two nonparametric statistical tests.  There were 15 

population distributions, 12 sets of sample size combinations, and 7 different ratios of 

standard deviation.  Exactly 20,000 replications per condition were executed for a total of 

1380 conditions (840 for the first research question, 360 for the second question, 36 for the 

third research question, and 144 for the fourth research question) examining Type I error 

rates and statistical power for the MW test and the KS-2 test when applicable. Moreover, the 

steps for performing this simulation study are described in this chapter. 
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Simulation Overview 

 Since this was a simulation, there were no human subjects used in this study. Population 

distributions of two independent sample sets were strictly generated by the computer, a Dell 

IBM compatible computer with the CPU processor of Pentium dual core 2.80 GHz, along 

with the program using SAS version 8.2 ("Statistical analysis system," 1999). The RANNOR 

procedure in SAS was used to generate random numbers from a normal distribution with a 

mean of zero and a variance of one which was required in the Fleishmen’s power 

transformation method (1978) of generating population distributions (Fan, Felsovalyi, Sivo, 

& Keenan, 2003). After generating the sample sets, the PROC NPAR1WAY procedure was 

used to perform actual Type I error rates and power simulations. Simulated data were used to 

analyze Type I error rates and power for both the MW test and the KS-2 test under conditions 

determined by the researcher in Table 3. A SAS syntax program was written by the 

researcher in order to generate populations and sampling distributions, and for calculating 

each test statistic. A sample of the SAS syntax for this study was provided in APPENDIX II.  

The calculated test statistics were evaluated utilizing both tabled critical values and 

asymptotic approximated critical values. The nominal Type I error rates, alpha (α), for each 

sample size was 0.05 as was used in Carolan and Tebbs (2005). The actual Type I error rates 

(exact p-values) were computed for both small sample tabled values and large-sample 

approximations.    
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Populations 

 Since this was a simulation study for comparing the MW and the KS-2 tests in two 

independent sample conditions, the first step to perform simulations was to determine 

population distributions associated with these two samples.  Therefore, it was important for 

the researcher to develop populations for simulations. More importantly, a method to 

consistently generate populations in order to produce reliable population distributions for 

sampling data sets and performing Monte Carlo simulations was crucial. 

   
Method of Generating the Populations 

 This section described the method of generating population distributions used for this 

study. This section also introduced the types of population distributions used for simulating 

the comparisons of the MW and the KS-2 tests.  Fleishmen’s power function (1978) was 

utilized for generating population data sets for the simulations in this study.  Fleishman 

(1978) developed a power function as a population distribution generating method for 

creating widely different distributions and simulating empirical distributions. The formula 

was as follows: 

   Y= a+ ((dX+c)X+b)X 

This was presented as formula (12) and introduced in CHAPTER TWO. Based on 

Fleishmen’s definitions, the X was a random variate, normally distributed with a mean of 

zero and unit standard deviation of 1, or N (0, 1), and coefficient a equals negative c.  The 

variable X was generated using the SAS/RANNOR program. The coefficients a, b, c, and d 

were defined based upon the associated conditions of the study, such as means, standard 
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deviations, and pairings of skewness, and kurtosis. A sample of the SAS syntax was provided 

in APPENDIX II. 

 An essential step was to define the population distributions in comparing the MW and the 

KS-2 tests. Since one of the research questions examined Type I error rates and statistical 

power when degrees of skewness and kurtisos for population distributions were varied, it was 

necessary to find populations based on Fleishmen’s power function. Among the population 

distributions that were used in this study, twelve population distributions were utilized by 

Algina, Olejnik, and Ocanto (1989) and three population distributions (uniform-like, logistic-

like, and exponential-like) were used by Penfield (1994).  Therefore, a total of fifteen 

population distributions were investigated to examine these two nonparametric statistical 

techniques. Based on Fleishmen’s work (1978), the following table listed the pairings of 

skewness and kurtosis and the coefficients b, c, and d with a mean of 0 and standard 

deviation of 1. This listed information was used in this study in order to generate population 

distributions for the two sample sets to perform Monte Carlo simulations. Neither Fleishmen 

nor Penfield provided the coefficients b, c, and, d for the uniform-like and logistic-like 

distributions. Therefore, these coefficients, reported in Table 4, were calculated using 

Fleishmen’s formula with Mathematica 5.0 software (Wolfram, 2003).  

In Table 4, there were three leptokurtic distributions with same skewness rations but 

different degrees of kurtosis.  There were also two skewed and platykurtic distributions with 

different degrees of skewness and kurtosis.  Moreover, two different skewed and leptokurtic 

distributions were determined by the same kurtosis ratios but different skewness ratios. 



 88

Table 4: Coefficients used in Fleishmen’s power function (1978) with μ = 0; σ = 1. 

Distribution 
Skewness 

(γ1) 

Kurtosis 

(γ2) 
a b c d 

Normal1 0.00 0.00 0.00 1.0000000 0.00 0.00 

Platykurtic1 0.00 -.50 0.00 1.0767327 0.00 -0.0262683 

Normal Platykurtic1 0.00 -1.00 0.00 1.2210010 0.00 -0.0801584 

Leptokurtic1 0.00 1.00 0.00 0.9029766 0.00 0.0313565 

Leptokurtic1 0.00 2.00 0.00 0.8356646 0.00 0.0520574 

Leptokurtic1 0.00 3.75 0.00 0.7480208 0.00 0.0778727 

Skewed1 0.75 0.00 -0.1736300 1.1125146 0.1736300 -0.0503344 

Skewed and platykurtic1 0.50 -0.50 -0.1201561 1.1478491 0.1201561 -0.0575035 

Skewed and platykurtic1 0.25 -1.00 -0.0774624 1.2634128 0.0774624 -0.1000360 

Skewed and leptokurtic1 0.75 3.75 -0.0856306 0.7699520 0.0856306 0.0693486 

Skewed and leptokurtic1 1.25 3.75 -0.1606426 0.8188816 0.1606426 0.0491652 

Skewed-leptokurtic1 1.75 3.75 -0.3994967 0.9296605 0.3994967 -0.0364670 

Uniform-like2 0.00 -1.20 0.00 1.2237300 0.00 -0.0636881 

Logistic-like2 0.00 1.30 0.00 0.8807330 0.00 0.0382866 

Double exponential-like2 0.00 3.00 0.00 0.7823562 0.00 0.06790456 

 
Note: 1 indicated distributions adopted from Algina, Olejnik, and Ocanto (1989). 
          2 indicated distributions adopted from Penfield (1994). 
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Sampling 

 After defining population distributions for the two samples, the size of the two samples 

was defined for this simulation study. Moreover, the condition related to sampling such as 

ratios between the two population variances, which these two samples were generated from, 

also affected these two samples. Therefore, it was important to introduce pair combinations 

of the two sample sizes and ratio combinations of two standard deviations between these two 

populations ( 1

2

σ
σ

) when implementing this Monte Carlo simulation study. Furthermore, 

sampling procedures for simulations were described in this section. 

 
Sample Size Determination 

 Because most reviewed studies in the literature performed simulations in both equal and 

unequal sample size scenarios, some significant findings were uncovered when examining 

Type I error rates and power for the MW test or the KS-2 test in the condition of equal 

sample sizes. Even though the first research question was to detect Type I error rates and 

power only when sample sizes were not equal to each other, the equal sample size condition 

was also simulated in this study. Due to the nominal Type I error (significance level) of this 

study of 0.05, the selected sample size combinations were based on the literature. Both equal 

and unequal sample size conditions were examined since statistical tests may behave 

differently under these sample size conditions. Small equal sample size combinations 

included (8, 8) and (16, 16), as used in Zimmerman and Zumbo (1990). The smallest sample 

size combination of (8, 8) was used in both studies by Zimmerman and Zumbo (1990) and 

Schroer and Trenkler (1995) as the smallest sample sets with the significance level (α) of 

0.05.  In Zimmerman and Zumbo’s study, it was found that the actual Type I error rate of the 
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MW test was close to 0.05 when population variances were not the same.  Similarly, Schroer 

and Trenkler (1995) used (8, 8) as the smallest sample sets to simulate statistical power of the 

MW test and the KS-2 test with the significance level (α) of 0.05.  

Large equal sample size combinations were (25, 25) and (50, 50) as suggested in 

Baumgrater, WeiB, and Shindler (1998).  In Baumgrater, WeiB, and Shindler’s 1998 study, 

there was no result to explain the performance of Type I error rates and statistical power 

when no mean differences existed between two samples with the sizes of (25, 25) and (50, 

50).  However, it was crucial for current study since one of the considerations was to detect 

Type I error rates and statistical power when two samples were equal and large in sizes with 

no concern of any mean differences.  Unequal sample size combinations included (4, 16) and 

(16, 4) in Zimmerman (1985), (10, 20) in Penfield (1994), and (30, 10) in Kasuya (2001). 

The researcher also investigated the conditions of (20, 10) and (10, 30) in order to compare 

with Zimmerman’s study. Two other size combinations of (50, 100) and (100, 50) also were 

used to detect Type I error rates and statistical power when the differences between two 

sample sizes that were at least 50.   

Since these collections of both equal and unequal sample size combinations were used in 

the MW test, the simulation results presented here either validated or revoked the literature.  

Moreover, the combinations were selected to allow for comparisons of the results for the 

MW test and the KS-2 test to draw conclusions for the research questions of this study.  

 

Ratios of Two Standard Deviation Conditions (SD ratios or 1

2

σ
σ

) 

One of the research questions in this study involved examining Type I error rates and 

power estimates of the MW test and the KS-2 test with the condition of heterogeneity of 
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variances of the populations.  Unequal standard deviations between two populations were 

used in the study.  The considered SD ratios  ( 1

2

σ
σ

) were 1, 2, 3, and 4 from Zimmerman 

(1998). Further, 1
2

, 1
3

, and 1
4

 were examined based on the researcher’s interest of the idea 

of variance ratios by Gibbons and Chakraborti (1991). The selected SD ratios were used in 

the simulation along with other conditions to compare results for the MW test and the KS-2 

test, and to draw conclusions based on the research questions of this research in consideration 

with the literature. 

 
Sampling Procedure 

 After the fifteen population distributions were simulated from Fleishmen’s power 

function with the associated coefficients (a, b, c, and d), the desired samples were randomly 

generated based on the determined conditions. These conditions were sample sizes and ratios 

of standard deviations between the two populations distributions listed in Table AV. After 

specifying the pair combinations of sample sizes and ratios between the two population 

standard deviations, the SAS/RANNOR procedure were implemented to generate two sample 

data sets and then the comparison of the MW and the KS-2 tests were performed by the 

SAS/NPAR1WAY procedure. A sample of SAS syntax  was in APPENDIX III. Overall, the 

design of the simulation followed the elements of first part of each research question: 

Question 1:  If only sample sizes differ between two samples,  

       a.  Is there any difference in Type I error rates for these two nonparametric techniques?  

   The main concern of this research question was sample sizes, so the simulation was 

performed under the same population distributions and equal SD ratio between two samples.  
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Table 5: Summary of Conditions for Monte Carlo Simulations 

 

Distribution 
Skewness 

(γ1) 

Kurtosis 

(γ2) 

Sample 

Size 

SD Ratio 

2

1

σ
σ

 
Simulation 

1 Normal 0.00 0.00 (8, 8) 4 Type I  Rate  

2 Platykurtic 0.00 -0.50 (16, 16) 3 Power Estimates  

3 Normal Platykurtic 0.00 -1.00 (25, 25) 2 --- 

4 Leptokurtic1 0.00 1.00 (50, 50) 1 --- 

5 Leptokurtic2 0.00 2.00 (4, 16) 1
2

 --- 

6 Leptokurtic3 0.00 3.75 (16, 4) 1
3

 
--- 

7 Skewed 0.75 0.00 (10, 20) 1
4

 
--- 

8 Skewed and platykurtic1 0.50 -0.50 (20, 10) --- --- 

9 Skewed and platykurtic2 0.25 -1.00 (10, 30) --- --- 

110 Skewed and leptokurtic1 0.75 3.75 (30, 10) --- --- 

11 Skewed and leptokurtic  2 1.25 3.75 (50, 100) --- --- 

12 Skewed-leptokurtic 1.75 3.75 (100, 50) --- --- 

13 Uniform-like 0.00 -1.20 --- --- --- 

14 Logistic-like 0.00 1.30 ---        --- --- 

15 Double exponential-like 0.00 3.00 --- --- --- 
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Therefore, it was involved 15 distributions × 8 sample sizes × 1 ratio of between two 

standard deviations × 1 run (Type I error rate) for a total of 120 conditions.  

b.  Is there any difference in power for these two nonparametric techniques?  

This research question was not only sample sizes but changed in SD ratios, so the 

simulation was executed under the same population distributions but different sample sizes 

and SD ratios.  Then, the simulation conditions were involved 15 distributions × 8 sample 

sizes × 6 ratios of between two standard deviations × 1 run (Power) for a total of 720 

conditions.  

 
Question 2: If only the heterogeneity of variance between two populations exists, is there any  

 difference in power for these two nonparametric techniques?  

The considerations of this research question were different population variances in the 

same population distributions and equal sample sizes, so the simulation involved 15 

distributions × 4 sample sizes × 6 ratios of between two standard deviations × 1 run (Power) 

for a total of 360 conditions.  

 
Question 3: If the nature of the underlying population distributions varies in skewness only,  

  is there any difference in power for these two nonparametric techniques?  

The third research question involved different skewness but the same kurtosis under the 

conditions of equal sample sizes and SD ratios. Among these 15 population distributions, 

shown in Table 4, normal and skew distributions with the same degrees of kurtosis (γ2 = 0) 

were the first two population distributions for the comparison. For example, one pair of 

population distributions × 4 sample sizes × 1 ratio of between two standard deviations × 1 

run (Power) for a total of four conditions for this paired populations. Platykurtic and skewed 
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and platykurtic1 with the same degrees of kurtosis (γ2 = -.050) were the second two 

population distributions for the comparison, so 1 pair of population distributions × 4 sample 

sizes × 1 ratio of between two standard deviations × 1 run (Power) for a total of four 

conditions for this paired set of populations. Normal platykurtic and skewed and platykurtic2 

with the same degrees of kurtosis (γ2 = -1.00) was the third two population distributions for 

the comparison, so 1 pair of population distributions × 4 sample sizes × 1 ratio of between 

two standard deviations × 1 run (Power) for a total of four conditions for this paired set of 

populations. The footnote notation in this section indicated the associated population 

distribution shown in Table 4.  Lastly, four distributions (Leptokurtic3, Skewed and 

leptokurtic1, Skewed and leptokurtic2 and Skewed-leptokurtic) with the same degrees of 

kurtosis (γ2 = 3.75) but with different skewness were used to perform pair-wise comparisons. 

Therefore, 6 paired population distributions × 4 sample sizes × 1 ratio of between two 

standard deviations × 1 run (Power) for a total of 24 conditions for this paired set of 

populations.  In conclusion, a total of 36 (4 + 4 + 4 + 24 = 36) conditions were performed for 

examining the third research question. 

 
Question 4: If the nature of the underlying population distributions varies in kurtosis only, is  

  there any difference in power for these two nonparametric techniques?  

The fourth research question considered different kurtosis but the same skewness, sample 

sizes, and SD ratios. Among these 15 population distributions in Table 4, exactly 9 

populations had the same skewness (γ1 = 0) but vary in kurtosis.  These nine were pair-wise 

compared to fulfill the fourth research question. So,  36 (= 9 8
2
× ) paired population 

distributions × 4 sample sizes × 1 ratio of between two standard deviations × 1 run (Power) 
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for a total of 144 conditions for this paired set of populations.  Two other population 

distributions also had the same skewness (γ1 = 0.75) but varying in kurtosis, so 1 pair of 

population distribution × 4 sample sizes × 1 ratio of between two standard deviations × 1 run 

(Power) for a total of 4 conditions for this paired set of populations.  Therefore, a total of 148 

(144 + 4 = 148) conditions were performed for examining the fourth research question.     

Exactly 20,000 replications per condition were employed to simulate the Type I error rate 

and power of both tests. The nominal Type I error rate (α) for this study was 0.05 and was 

used for the comparisons with actual Type I error rates. Thus, the performance of the MW 

and the KS-2 tests under each evaluated condition were examined.   All simulated data were 

rounded to three digits.   

Test Statistics 

 Formulas of the test statistic for both small and large samples for the MW test and the 

KS-2 test were listed in CHAPTER TWO.  Each of the two tests was applied to the generated 

data samples. Two-tailed tests will investigate statistical differences between two simulated 

samples under each determined condition (832 conditions in total) at the nominal alpha level 

(α) of 0.05 by the SAS/NPAR1WAY program. 

 
The Mann-Whitney Test Used in This Study 

 Based upon the literature reviewed in CHAPTER TWO, this researcher summarized and 

modified 1) assumptions and data arrangements, 2) hypotheses, and 3) formulas of test 

statistics and decision rules for small and large sample sizes and presented the MW test that 

will be used for this study. 
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1) Assumptions and Data Arrangements 

 The assumptions for applying the MW test are as follows:  

(1) Each sample score has been randomly selected from the population it 

represents.  

(2) The originally observed sample score is a continuous variable.  

(3) Two sample scores are randomly selected and score sets are mutually 

independent.  

(4) The measurement scale employed is at least ordinal.  

 The data Arrangement shows the expression of arranging data after the data sets are 

obtained to use with the MW test technique. 

Let X1, X2, …, Xn1 denote the random sample scores size n1 with an expected smaller 

sum of ranks. 

Let X1, X2, …, Xn2 denote the random sample scores size n2 with an expected larger  

sum of ranks. 

  Assign the ranks 1 to (n1 + n2) to the observations from the smallest to the largest. 

  Let N= n1 + n2. 

 
2) Applicable Hypotheses 

 Because this research is designed to detect the alternative hypothesis that there are 

differences between two sampled population distributions, the non-directional hypothesis 

(two-tailed test) of the test is: 

  Ho: F(x) = G(x) for all x, or there is no difference between the two populations.  

Ha: F(x) ≠ G(x) for some x, or there are some differences between the two 

populations. 
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 Where  F(x) is the population distribution function of the sum of the ranks of the 

sample expected to have the smaller sum, and G(x) the population distribution 

function of the sum of the ranks of the sample expected to have the larger sum. 

 
3) Formulas of Test Statistics and Decision Rules for Small and Large Sample Sizes  

 Test statistics are used to calculate the value needed to perform the hypothesis test. 

Because of the ease of understanding and calculating the formula and consistent with the 

procedure in SAS/NPAR1WAY , the test statistic used in this research is adapted from the 

Test statistics W method proposed by Siegel and Castellan (1988).   

 
 Small Sample Size in each group (n1 ≤ 20; n2 ≤20) 

 Wx = 1R∑ ; the sum of the ranks of multiple variables of Xs from population 1s 

Wy= 2R∑ ;  the sum of the ranks of  multiple variables of Ys from population 2s 

 Wx + Wy = ( 1)
2

N N + , where N = n1 + n2  

 The smaller value of Wx and Wy is used as the test statistic. 

The decision rule is:  

If the probability of the observed W found in the table is less than the specific level of 

significance (α), the null hypothesis is rejected and there is a significant difference 

between these two populations.   

When the sample size is more than 20 (n1 > 20 or n2 > 20), the formula for the normal 

approximation is used, which is: 



 98

Z= 
1

1 2

( 1)0.5
2

( 1)
12

x
n NW

n n N

+
± −

+
, where Wx = 1R∑ . 

 The decision rule is: 

If calculated absolute Z is greater than the tabled Z value with the α/2 level, then 

reject the null hypothesis. 

Siegel and Castellan (1988) suggested that the test statistics be applied to investigate 

whether two independent samples have been drawn from the same population or whether the 

two populations have the same medians. The test statistics are also used to test whether the 

probability of population X greater than population Y (P(X>Y)) is the same as the probability 

of population X less than population Y (P(X<Y)) which is equal to 0.5. On the issue of ties, 

Siegel and Castellan did not specify the minimum number of ties in order to use the formula 

for the ties situation.  

 
The Kolmogorov-Smirov Two-Sample Test Used in This Study 

 After reviewing the literature as presented in CHAPTER TWO, the following elements 

are recommended for applying the KS-2 test: 1) assumptions and data arrangements, 2) 

hypotheses, and 3) formulas of test statistics and decision rules for small and large sample 

sizes.  

 
1) Assumptions and Data Arrangements 

Assumptions similar to Conover (1999) are suggested for this study. There are four 

assumptions as followed: 

(1) Each sample has been randomly selected from the population it   

      represented.  
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(2) The measurement scale employed is at least ordinal.  

(3) The originally observed variable is a continuous variable.  

(4) Two samples are mutually independent. 

 The data arrangement proposed by Siegel and Castellan (1988) was modified and used in 

this study:  

Let S1(x) be the cumulative distribution probability function (cdf’s) based upon the 

random sample scores of X1, X2, …, Xn1.  

Determine the S1(x) for each value of X1, X2, …, Xn1,  let S1(x) = 
1

K
n

.  

Let F(x) be the population that the sample of X’s are randomly drawn from.  

Let S2(x) be the cumulative distribution probability function (cdf’s) based upon   

the random sample scores of Y1, Y2, …, Yn2.  

Determine S2(x) for each value of Y1, Y2, …, Yn2, let S2(x) = 
2

K
n

.  

Let G(x) be the population that the sample of Y’s are randomly drawn from. 

D n1,n2   is symbolized as the test statistic for the KS-2 test.  It is the maximum absolute 

difference between the two empirical distribution functions or cumulative distribution 

functions. 

 
2) Applicable Hypotheses  

 Because this research is designed to detect the alternative hypothesis that there are 

differences between two sampled population distributions, the non-directional hypothesis 

(two-tailed test) of the test is: 

Ho: there is no difference between two populations, or  
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 F(x) = G(x) for all x; from -∝ to + ∝. 

Ha: there are some differences between two populations, or   

   F(x) ≠ G(x) for at least one value of x.  

 
3) Formulas of Test Statistics and Decision Rules for Small and Large Sample Sizes. 

Formulas of the test statistic (D n1,n2 ) for both small and large sample conditions as well 

as decision rules for the testing the hypotheses are presented. To be consistent in the 

definition of sample sizes for comparison with the MW test, a size of 20 was selected as the 

boundary to define small and large sample sizes.  

 
Small Sample Size (n1 ≤ 20 or n2≤  20) 

When both samples are no more than 20 (n1 ≤ 20 or n2≤  20), the test statistic of the KS-2 

test is: 

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  

 
  The decision rule of the hypothesis test is: 

If the observed Dm,n is greater than or equal to the tabled D n1,n2 critical (D n1n2 ≥ D n1,n2 

critical) at the specific level of significance (α), the null hypothesis is rejected. 

Therefore, there is a significant difference between these two populations.   

 
Large Sample Size (n1 > 20 or n2 > 20) 

When either or both samples are larger than 20: (n1 > 20 or n2 > 20), the test statistic 

of the KS-2 test is:  

  D n1,n2 = 1 2max ( ) ( )n nx
S x S x−  
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Critical D n1,n2 is calculated with a formula based on various significance level (α).  

When the significance level is α,  

  the critical D n1,n2 =  table value (K) × 1 2

1 2

n n
n n
+ .     

  The decision rule is: 

When the observed D n1,n2 is greater than or equal to the tabled Dn1,n2 critical (D n1,n2 ≥ D 

n1,n2 critical) at the specific level of significance (α), the null hypothesis is rejected.  

Therefore, a significant difference probably exists between these two populations.    

  
Simulation Steps 

 In order to assist in performing the Monte Carlo simulation study for a two-tailed test, the 

simulation steps were described here to avoid any confusion in executing the simulations.  

These six steps included:  

Step 1 

 Use Fleishmen’s power function (1978) with μ = 0; σ = 1 for generating these 15 

population distributions. The coefficients provided in Table AII and were used and 15 

population distributions were generated by executing the SAS/RANNOR program.  

 
Step 2 

Determine the null and alternative hypotheses for each comparison and the significance 

levels for each comparison (α = 0.05).  Then, determine the formulas of test statistic U for 

the MW test and test statistic D for the KS-2 test (described in the section of Test Statistics). 
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Step 3 

 Generate two independent random samples of size n1 and n2, respectively, from the 

sixteen population distributions with the specified ratios of the two population standard 

deviations ( 1

2

σ
σ

). The pair combinations of sample sizes and ratios of population standard 

deviations were listed in Table 4. 

 
Step 4 

 Calculate the values of test statistics of the MW test (U) and the KS-2 test (D), based on 

the generated two independent samples in Step 3. 

 
Step 5 

 Compare W with critical W and D with critical D and determine whether to reject or 

retain the null hypothesis (Ho) by the decision rules in the section of Test Statistics by 

utilizing SAS/NPAR1WAY procedure.   

 
Step 6  

About 20,000 replications per condition l were required when performing this simulation. 

(Computer was automatically to repeat the first five steps 20, 000 times and count the total 

number of times Ho is rejected for the MW and the KS-2 tests, and obtain the proportion of 

rejections for each test by using SAS/RANNOR procedure.)  Gibbons and Chakraborti (1991) 

noted that “theses proportions provide estimates of the probability information of rejection by 

the respective tests for particular configuration of means, variances, and sample sizes” (p. 

261).  
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Summary 

 In this Monte Carlo simulation study, the researcher examined Type I error rates and 

statistical power when applicable under each predetermined condition.  There are 15 

population distributions, 12 sets of sample size combinations, and 7 different ratios of 

standard deviation.  Exactly 20,000 replications per condition were executed for a total of 

1380 conditions (840 for the first research question, 360 for the second question, 36 for the 

third research question, and 144 for the fourth research question). Moreover, the steps for 

performing this simulation study were also described in this chapter. 

The SAS/RANNOR procedure was used to generate sample data sets for population 

distributions.  These distributions came from Fleishmen’s power function (1978) by using the 

coefficients listed in Table 4. A summary of the types of population distributions, 

combinations of the sample sizes, and ratios of standard deviation (SD ratios) to be used here 

were listed in Table 5. Suggested formulas of test statistics for the MW test and the KS-2 test 

were also presented.  The SAS/NPAR1WAY procedure was used to simulate Type I error 

rates and statistical power for the MW and the KS-2 tests in each condition when applicable. 

Moreover, simulation steps were used and followed when performing Monte Carlo 

simulations in order to eliminate any confusion when the researcher performs the simulations.  

The results of simulations were presented in CHAPTER IV. 
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CHAPTER FOUR 
 

RESULTS  

Introduction 

In this chapter, estimated Type I error rates and statistical power for the Mann-Whitney 

test (MW) and Kolmogorov-Simirnov two-sample test (KS-2) under various conditions are 

presented and discussed at the significance level (α) of .05.  In order to help the researcher 

better understand the shape of fifteen populations discussed in this study, figures of these 

fifteen population distributions that were simulated are presented in Appendix IV: 

Histograms of fifteen population distributions.  Furthermore, tables and figures are provided 

based on the order of the research questions in this study. In research questions one and two, 

only crucial tables and scatter plots are used to display the results of these simulations.  The 

complete results of tables for these two questions are presented in Appendix V: Tables of 

findings.  Findings of research questions three and four are displayed as tables and are 

presented in this chapter.  

 
Findings 

 Findings of this study are presented based upon the arrangement of the research 

questions.  Significant findings are provided for research questions one and two.  The results 

of research questions three and four are presented later this chapter.  

  Research Question 1:  If only sample sizes differ between two samples,  

a. Is there any difference in Type I error rate for these two nonparametric techniques?  
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 In this research question, the researcher simulated the conditions that two samples were 

from the same population distribution with the same SD ratios, but they differed in sample 

sizes.  Exactly eight pairs of unequal sample sizes from the same population distribution 

(about 15 population distributions in total) and SD ratio of 1 were simulated. The MW and 

the KS-2 tests were performed to examine the simulated Type I error rates for both 

nonparametric statistical techniques. 

Table 5 illustrates simulated Type I error rates for both the MW and the KS-2 tests after 

performing the simulations. The table shows that when sample sizes were unequal and small, 

such as (4, 16) and (16, 4), the simulated Type I error rates were less than 0.020 for all 15 

population distributions when performing the KS-2 test.  When samples were unequal and 

increased by size, the simulated Type I error rates were also raised. Overall, estimated Type I 

error rates for these fifteen population distributions were less than the significance level (α) 

of 0.05 in the KS-2 test.  When the MW test was executed for the simulated samples, it was 

found that the range of estimated Type I error rates for these fifteen populations was between 

0.046 and 0.055.  Most of the estimated Type I error rates were less than the α level of 0.05. 

It seemed that there was no increase in estimated Type I error rates as the sample sizes 

increased. Both the KS-2 test and the MW test were found to yield consistent results across 

these 15 population distributions. 

After investigating the results of the MW test and the KS-2 test, it appeared that the KS-2 

test was a more conservative test than the MW test based upon the conditions discussed in 

the first part of the of the first research question.   
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Table 6: Type I Error Rates: Only Sample sizes Differ between Two Samples (SD Ratio = 1) 

TYPE I ERROR 
TYPE I 

ERROR POPULATION 
SAMPLE 

SIZE 
MW KS-2 

POPULATION 
SAMPLE 

SIZE 
MW KS-2 

Normal (4, 16) .048* .014* Platykurtic (4, 16) .052 .016* 

 (16, 4) .051 .015*  (16, 4) .049* .014* 

 (10, 20) .050* .030*  (10, 20) .049* .029* 

 (20, 10) .051 .029*  (20, 10) .049* .028* 

 (10, 30) .048* .036*  (10, 30) .049* .039* 

 (30, 10) .051 .038*  (30, 10) .048* .035* 

 (50, 100) .052 .043*  (50, 100) .049* .039* 

 (100, 50) .050* .043*  (100, 50) .047* .041* 

(4, 16) .049* .014* Leptokurtic_1 (4, 16) .049* .014* 

(16, 4) .050* .014*  (16, 4) .050* .015* 

(10, 20) .050* .028*  (10, 20) .050* .028* 

(20, 10) .048* .029*  (20, 10) .048* .028* 

(10, 30) .047* .035*  (10, 30) .051 .039* 

(30, 10) .051 .038*  (30, 10) .051 .038* 

(50, 100) .052 .043*  (50, 100) .048* .040* 

Normal 

Platykurtic 

(100, 50) .051 .041*  (100, 50) .049* .040* 

* indicated the simulated Type I Error Rate was less than the significance level (α) of .05.



 107

Table 6 CONT: Type I Error Rates: Only Sample sizes Differ between Two Samples (SD  
   Ratio = 1) 

 
TYPE I 

ERROR 

TYPE I 

ERROR POPULATION 
SAMPLE 

SIZE 
MW KS-2 

POPULATION 
SAMPLE 

SIZE 
MW KS-2 

Leptokurtic_2 (4, 16) .048* .013* (4, 16) .051 .014* 

 (16, 4) .051 .014* (16, 4) .051 .016* 

 (10, 20) .049* .029* (10, 20) .049* .029* 

 (20, 10) .049* .029* (20, 10) .048* .028* 

 (10, 30) .052 .038* (10, 30) .050* .036* 

 (30, 10) .051 .038* (30, 10) .051 .038* 

 (50, 100) .047* .040* (50, 100) .050* .041* 

 (100, 50) .048* .041* 

Leptokurtic_3 

 

(100, 50) .051 .037* 

(4, 16) .050* .016* (4, 16) .049* .015* 

(16, 4) .050* .015* (16, 4) .051 .015* 

(10, 20) .047* .029* (10, 20) .052 .030* 

(20, 10) .048* .030* (20, 10) .049* .029* 

(10, 30) .053 .037* (10, 30) .051 .038* 

(30, 10) .051 .039* (30, 10) .048* .037* 

(50, 100) .051 .039* (50, 100) .047* .038* 

Skewed 

 

(100, 50) .051 .041* 

Skewed and 

Platykurtic_1 

(100, 50) .049* .040* 

* indicated the simulated Type I Error Rate was less than the significance level (α) of .05.



 108

Table 6 CONT.: Type I Error Rates: Only Sample sizes Differ between Two Samples (SD  
    Ratio = 1) 

 
TYPE I 

ERROR 

TYPE I 

ERROR POPULATION 
SAMPLE 

SIZE 
MW KS-2 

POPULATION 
SAMPLE 

SIZE 
MW KS-2 

(4, 16) .047* .014* (4, 16) .050* .016* 

(16, 4) .050* .014* (16, 4) .049* .015* 

(10, 20) .047* .030* (10, 20) .052 .030* 

(20, 10) .048* .029* (20, 10) .050* .030* 

(10, 30) .048* .036* (10, 30) .049* .037* 

(30, 10) .051 .037* (30, 10) .049* .038* 

Skewed and 

Platykurtic_2 

(50, 100) .048* .040* 

Skewed and 

Leptokurtic_1 

(50, 100) .049* .040* 

 (100, 50) .050* .041*  (100, 50) .055 .045* 

(4, 16) .050* .014* (4, 16) .051 .016* 

(16, 4) .050* .014* (16, 4) .053 .015* 

(10, 20) .046* .028* (10, 20) .048* .028* 

(20, 10) .050* .030* (20, 10) .046* .029* 

(10, 30) .050* .035* (10, 30) .051 .039* 

(30, 10) .050* .037* (30, 10) .051 .039* 

(50, 100) .049* .040* (50, 100) .047* .038* 

Skewed and 

Leptokurtic_2 

(100, 50) .051 .039* 

Skewed- 

Leptokurtic 

(100, 50) .048* .039* 

* indicated the simulated Type I Error Rate was less than the significance level (α) of .05.
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Table 6 CONT.: Type I Error Rates: Only Sample sizes Differ between Two Samples (SD   
   Ratio = 1) 

 
TYPE I 

ERROR 

TYPE I 

ERROR POPULATION 
SAMPLE 

SIZE 
MW KS-2 

POPULATION 
SAMPLE 

SIZE 
MW KS-2 

Uniform-Like (4, 16) .051 .015* (4, 16) .051 .015* 

 (16, 4) .049* .015* (16, 4) .050* .015* 

 (10, 20) .050* .030* (10, 20) .049* .030* 

 (20, 10) .047* .028* (20, 10) .047* .027* 

 (10, 30) .050* .038* (10, 30) .046* .036* 

 (30, 10) .051 .034* (30, 10) .050* .037* 

 (50, 100) .050* .041* (50, 100) .051 .041* 

 (100, 50) .051 .040* 

Logistic-Like 

 

(100, 50) .050* .039* 

(4, 16) .049* .015*     

(16, 4) .051 .016*     

(10, 20) .047* .027*     

(20, 10) .049* .029*     

(10, 30) .050* .037*     

(30, 10) .048* .038*     

(50, 100) .048* .042*     

Double 

Exponential-

Like 

(100, 50) .051 .042*     

* indicated the simulated Type I Error Rate was less than the significance level (α) of .05.
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Research Question 1:  If only sample sizes differ between two samples,  

b. Is there any difference in power for these two nonparametric techniques?  

When investigating part (b) of question one, the researcher decided to change the SD 

ratios.  This was because when the SD ratios of the two samples were not equal to 1, the 

shapes of the population distributions were not the same between two samples.  In other 

words, it was assumed that the null hypothesis Ho: F(X) = G(X) was violated.  Therefore, the 

p-values yielded from the MW test and the KS-2 test with differences in SD ratios served as 

statistical power (the probability of rejecting the false null hypothesis).  The simulations were 

performed based upon the same population distributions but the SD ratios and the sample 

sizes were changed. The complete set of statistical power for all 15 population distributions 

are given in Tables 7 to 21 in APPENDIX V: Tables of Findings. 

From Tables 7 to 21 in APPENDIX V, it was found that when the two independent 

samples were unequal, regardless of the sizes in 14 population distributions (except for the 

Skewed-Leptokurtic distribution, Figures 23), the estimated statistical power values of 

performing the MW test were all small.  The values of statistical power for the MW test were 

from 0.006 to 0.300. The values of the statistical power for the KS-2 test were various based 

on the SD ratios and the sizes of the two samples. The range of the power of the KS-2 test 

was from 0.005 to 1.0.  Figures 1 to 22 are the scatter plots of estimated statistical power for 

the MW and KS-2 tests when the SD ratios were 4, 3, 1
3

, and 1
4

for 11 populations (except 

the Skewed, Skewed and Platykurtic_1, Skewed and Platykurtic_2, and Skewed-Leptokurtic 

distributions). These figures represented statistical power values based upon Tables 7 to 17 in 

APPENDIX V.   
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The other important finding from the majority of the population distributions (except the 

Skewed, Skewed and Platykurtic_1, Skewed and Platykurtic_2, and Skewed-Leptokurtic 

distributions) was: when the population standard deviation between two samples was very 

different and the size of the unequal samples were much different, such as from (4, 16) to 

(100, 50), the KS-2 test had higher statistical power than the MW test. Moreover, as the 

sample sizes were increased, the estimated statistical power of the MW test was consistent 

and did not increase.  However, statistical power of the KS-2 test was dramatically increased 

as the sample sizes increased.  When the sample sizes became (50, 100) and (100, 50), the 

estimated statistical power approached 1.0. In some conditions, for example, sample size = 

(100, 50) and SD ratio = 4 or 1
4

 in the Platykurtic distribution, the estimated statistical power 

was equal to one.   

 
 
Figure 1: Power of the Normal Distribution when Sample Sizes Differ and SD ratios = 4 &  

   3 
            Power 
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Figure 2: Power of the Normal Distribution when Sample Sizes Differ and SD ratios = 1/3  
  & 1/4    

 
                Power 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Power of the Platykuritc Distribution when Sample Sizes Differ and SD ratios =  

   4 & 3   
 

                   Power 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Power of the Platykuritc Distribution when Sample Sizes Differ and SD ratios =  

   1/3 &  1/4   
 
    Power 
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Figure 5: Power of the Normal Platykurtic Distribution when Sample Sizes Differ and SD  
   ratios = 4 & 3  

        
             Power 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Power of the Normal Platykurtic Distribution when Sample Sizes Differ and SD 

   ratios = 1/3 & 1/4  
        
                Power 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Power of the Leptokurtic 1Distribution when Sample Sizes Differ and SD ratios   

   = 4 & 3  
             Power 
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Figure 8: Power of the Leptokurtic 1 Distribution when Sample Sizes Differ and SD ratios  
               =  1/3 & 1/4   
 
             Power 

 
Figure 9: Power of the Leptokurtic 2 Distribution when Sample Sizes Differ and SD ratios  
               =  4 & 3  

 
              Power 

 
 
Figure 10: Power of the Leptokurtic 2 Distribution when Sample Sizes Differ and SD ratios   
                 =  1/3 & 1/4   
 

            Power 
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Figure 11: Power of the Leptokurtic 3 Distribution when Sample Sizes Differ and SD ratios   
                 = 4  & 3  
 
                       Power 

 
 
Figure 12: Power of the Leptokurtic 3 Distribution when Sample Sizes Differ and SD ratios   
                 = 1/3 & 1/4   
      
             Power 
 
 
 
 
 
 
 
 
 
 
 
Figure 13: Power of the Skewed and Leptokurtic 1 Distribution when Sample Size Differ  

and SD ratios = 4 & 3  
 
          Power 
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Figure 14: Power of the Skewed and Leptokurtic 1 Distribution when Sample Sizes Differ  
and SD ratios = 1/3 & 1/4   

 
               Power  

 
 
Figure 15: Power of the Skewed and Leptokurtic 2 Distribution when Sample Sizes Differ  

and SD ratios = 4 & 3  
 
Power 

 
Figure 16: Power of the Skewed and Leptokurtic 2 Distribution when Sample Sizes Differ  

and SD ratios = 1/3 & 1/4   
 

Power 

 
 



 117

Figure 17: Power of the Uniform-Like Distribution when Sample Sizes Differ and SD  
                 ratios = 4 & 3  

Power 

 
 
 
Figure 18: Power of the Uniform-Like Distribution when Sample Sizes Differ and SD   
                 ratios = 1/3 & 1/4   

Power 

 
 
Figure 19: Power of the Logistic-Like Distribution when Sample Sizes Differ and SD ratios  

= 4 & 3  
 

         Power 
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Figure 20: Power of the Logistic-Like Distribution when Sample Sizes Differ and SD ratios  
= 1/3 & 1/4   

 
Power 

 
 
Figure 21: Power of the Double Exponential -Like Distribution when Sample Sizes Differ  

and SD ratios = 4 & 3  
 
Power 

 
 
Figure 22: Power of the Double Exponential -Like Distribution when Sample Sizes Differ  

and SD ratios = 1/3 & 1/4   
 
Power 
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Figures 23 to 31 are the scatter plots of the simulated statistical power of the MW test and 

the KS-2 test when SD ratios were 4, 3, 2, and 1
2

, 1
3

 and 1
4

 for the Skewed, Skewed and 

Platykurtic_1, Skewed and Platykurtic_2, and the Skewed-Leptokurtic distributions. These 

graphs show that the estimated statistical power of both the MW test and the KS-2 test were 

small when sample sizes were (4, 16) and (16, 4). The estimated power of the KS-2 test was 

smaller than or close to the MW test when sample sizes were (4, 16) and (16, 4).   

When the two underlying populations are heavily skew to the left (the Skewed-

Leptokurtic distribution, Figures 23), the estimated statistical power values of performing the 

MW test were all small (Figures 24 and 25 and Table 18 in APPENDIX V). The range of 

statistical power for the MW test was from 0.006 to 0.300. When the sample sizes increased 

to (50, 100) and (100, 50), the estimated statistical power at all six SD ratios were between 

0.544 and 0.733 in a Skewed-Leptokurtic distribution.  Moreover, when the sample with 

smaller size had larger population standard deviations, the estimated statistical power was 

greater than the condition of larger samples with small population standard deviations.  When 

performing the KS-2 test on the same simulated sample sets, it was found that when sample 

sizes were unequal and small, the estimated statistical power was small too.  When sample 

sizes were increased, the estimated statistical power increased as well.  When the sample 

sizes were either (50, 100) or (100, 50), statistical power was substantially large and close to 

1 when the SD ratios were 4, 3, 1
3

, and 1
4

.  The range of estimated statistical power was 

between 0.911 and 1.0 for these conditions. 
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Figure23: Histogram of the Skewed-Leptokurtic distribution (N =20, 000, Y-axis is the  
relative frequency, X-axis is the Z score) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24: Power of the Skewed-Leptokurtic Distribution when Sample Size Differs and  

SD ratios = 4, 3 & 2         
   Power 

 
 
Figure 25: Power of the Skewed-Leptokurtic Distribution when Sample Size Differs and  

SD ratios = 1/2, 1/3 & 1/4         
        Power 
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When the two underlying populations are positively skewed (Skewed, Skewed and 

Platykurtic_1, and Skewed and Platykurtic_2 distributions, as demonstrated in Figures 26 to 

28), with increasing sample sizes with unequal samples such as (50, 100) and (100, 50), 

changes in statistical power of the KS-2 test was at least 0.90 as the population standard 

deviation (SD ratios) were either 2 or 1
2

.  As SD ratios became very different between the 

two populations (3, 1
3

, 4, and 1
4

),  statistical power was almost equal to one.  The graphs of 

statistical power for these four population distributions with SD ratios of (4, 3, 2, 1
2

, 1
3

, and 

1
4

) are presented in Figures 29 to 34.  The simulated results of statistical power for these 

three population distributions at conditions of eight different sample size combinations with 

six SD ratios are displayed in APPENDIX V: Tables 19 to 21.  

 
Figure26: Histogram of the Skewed distribution (N =20, 000, Y-axis is the relative   
                 frequency, X-axis is the Z score) 
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Figure27: Histogram of the Skewed and Platykurtic_1 distribution (N =20, 000, Y-axis is  
the relative frequency, X-axis is the Z score) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure28: Histogram of the Skewed and Platykurtic_2 distribution (N =20, 000, Y-axis is  

      the relative frequency, X-axis is the Z score) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29: Power of Skewed Distribution when Sample Size Differs and SD ratios = 4, 3, &   
                 2  
 
              Power 
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Figure 30: Power of Skewed Distribution when Sample Size Differs and SD ratios = 1/2,  
1/3, & 1/4   

            Power 

 
 
Figure 31: Power of Skewed and Platykurtic 1 Distribution when Sample Size Differs   

                 and SD ratios = 4, 3, & 2  
      
                  Power 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32: Power of Skewed and Platykurtic 1 Distribution when Sample Size Differs and  
                 SD ratios = 1/2, 1/3, & 1/4   
 
            Power 
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Figure 33: Power of Skewed and Platykurtic 2 Distribution when Sample Size Differs and  
                 SD ratios = 4, 3, & 2  
 

Power 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 34: Power of the Skewed and Platykurtic 2 Distribution when Sample Size Differs  

and SD ratios = 1/2, 1/3, & 1/4   
 

         Power 
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Research Question 2: If only the heterogeneity of variance between two populations exists, is 

there any difference in power for these two nonparametric techniques?  

 Tables 22 to 36 in APPENDIX V display the simulated results of statistical power 

regarding the MW test and the KS-2 test with six different SD ratios and four pairs of equal 

sample sizes drawn from fifteen population distributions. When simulating statistical power 

for the MW test across four different pairs of equal sample sizes under the condition of  

heterogeneity of variance, it was found that there were no significant differences in statistical 

power among four pairs of equal samples sizes, (8, 8), (16, 16), (25, 25) and (50, 50) when 

the SD ratios were 4 and 1
4

 , 3 and 1
3

, 2 and 1
2

, in nine out of fifteen populations (Tables 22 

to 28, and 35 to 37 in APPENDIX V).  The simulated statistical power of the MW test for 

this research question tended to be small. The range of statistical power for SD ratios of 4 

and 1
4

, 3 and 1
3

, and 2 and 1
2

 were between .068 and .083, .059 and .080, and .052 and .061, 

respectively. This indicated that when there were large differences in the population standard 

deviations between two underlying population distributions (such as SD ratio = 4 or 1
4

), there 

was slightly more statistical power than when samples were drawn from the same population 

distribution but with a small difference in the population standard deviations (such as SD 

ratio = 2 and 1
2

). 

In contrast, the trends of simulated statistical power of the KS-2 test with six different SD 

ratios and four pairs of equal sample sizes drawn from these nine population distributions 

were much different than the MW test with two samples under the same conditions. It 

appeared that as sample sizes were small and equal, and regardless of the differences in SD 
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ratios, statistical power of the MW test and the KS-2 test were small too.  When sample sizes 

began to increase under the condition of the same SD ratio, statistical power of the KS-2 test 

increased spectacularly. However, the power of the MW test remained similar with the same 

condition. When the two samples increased in size and the population SD ratios between the 

two underlying population distributions were 2 and 1
2

, the range of statistical power of the 

MW test was small under these two conditions.  When there was an increase in sample sizes 

and population SD ratios, statistical power of the KS-2 test increased extensively.  

Conversely, the power of the MW test was alike with the same condition. With a sample size 

of (50, 50) and population standard deviation ratios that were significantly different from 

each other (SD ratios = 4 and 1
4

), the range of statistical power of the KS-2 test was between 

.945 and 1.0.  

Figures 35 to 43 show the tendencies in statistical power of the MW test and the KS-2 

test under the conditions of sample size (50, 50) and SD ratios of 1
4

, 1
3

, 1
2

, 2, 3, and 4 in 

nine population distributions. 

 

Figure 35: Power of the Normal Population when Only SD Ratios Are Different with  
Sample Size = (50, 50) and α = .05 

 
    Power 
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Figure 36: Power of the Platykurtic Population when Only SD Ratios Are Different with  

Sample Size = (50, 50) and α = .05 
     Power 

 
 
Figure 37: Power of the Normal Platykurtic Population when Only SD Ratios Are  

Different with Sample Size = (50, 50) and α = .05 
 

     Power 
 

 
 
 
 
 
 
 
 
 
 
Figure 38: Power of the Leptokurtic_1 Population when Only SD Ratios Are Different with  

Sample Size = (50, 50) and α = .05 
 

      Power 
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Figure 39: Power of the Leptokurtic_2 Population when Only SD Ratios Are Different with  
Sample Size = (50, 50) and α = .05 

 
      Power 

 
 
 
Figure 40: Power of the Leptokurtic_3 Population when Only SD Ratios Are Different with  

Sample Size = (50, 50) and α = .05 
 
Power 

 
 
 
Figure 41: Power of the Uniform-Like Population when Only SD Ratios Are Different with  

sample Size = (50, 50) and α = .05 
       
           Power 
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Figure 42: Power of the Logistic-Like Population when Only SD Ratios Are Different with  
Sample Size = (50, 50) and α = .05 

 
Power 

 
 
Figure 43: Power of the Double Exponential-Like Population when Only SD Ratios Are  

Different with Sample Size = (50, 50) and α = .05 
 
Power 

 
 

When two equal-sized samples were drawn from following six positively skewed 

population distributions (Skewed, Skewed and Platykurtic_1, Skewed and Platykurtic_2, 

Skewed and Leptokurtic_1, Skewed and Leptokurtic_2, and Skewed- Leptokurtic 

distributions; see Figures 26 to 28, and 44 to 46), statistical power for both the MW test and 

the KS-2 test increased as the sizes in both samples increased.  However, statistical power for 

the MW test was slightly raised as the sample sizes increased in spite of the differences in the 

population standard deviations between the two samples. The statistical power of the MW 

test for conditions of all four pairs of equal sample sizes and six SD ratios were small and 
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less than 0.250 in these six population distributions except the Skewed- Leptokurtic 

distribution (Tables 29 to 34 in APPENDIX V).  Conversely, statistical power for the KS-2 

test significantly increased as the sample sizes changed from (8, 8) to (50, 50).  As the 

difference between the two population standard deviations became more severe, such as SD 

ratio = 4 and 1
4

, statistical power turned out to be stronger.  When the size of two samples 

was (50, 50), the range of statistical power with SD ratios of 4 and 1
4

 under these population 

distributions was between 0.967 and 1.0 (Figures 47 to 51).   

When the two samples were drawn from a Skewed- Leptokurtic distribution and the sizes 

were (25, 25) and (50, 50), statistical power of the KS-2 test across six SD ratios was almost 

equal to 1.0 (Figure 52 and APPENDIX V: Table 34).  The statistical power of the KS-2 test 

was increased considerably when sizes of two samples were increased across six different SD 

ratios.   

 
Figure 44: Histogram of the Skewed and Leptokurtic_1 distribution (N =20, 000, Y-axis is  

 the relative frequency, X-axis is the Z score) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 131

Figure 45: Histogram of the Skewed and Leptokurtic_2 distribution (N =20, 000, Y-axis  
is the relative frequency, X-axis is the Z score) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 46: Histogram of the Skewed- Leptokurtic distribution (N =20, 000, Y-axis is the  

relative frequency, X-axis is the Z score) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 47: Power of the Skewed Population with ONLY SD Ratios Are Different and  

Sample Size = (50, 50) and α = .05 
 
              Power 
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Figure 48: Power of the Skewed and Platykurtic_1 Population with ONLY SD Ratios Are  

Different and Sample Size = (50, 50) and α = .05 
 
          Power 

 
 
Figure 49: Power of the Skewed and Platykurtic_2 Population with ONLY SD Ratios Are  

Different and Sample Size = (50, 50), (25, 25) and α = .05 
 
           Power 

 
 
 
Figure 50: Power of the Skewed and Leptokurtic_1 Population with ONLY SD Ratios Are  

Different and Sample Size = (50, 50) and α = .05 
 
               Power 
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Figure 51: Power of the Skewed and Leptokurtic_2 Population with ONLY SD Ratios Are  

Different and Sample Size = (50, 50) and α = .05 
 
           Power 

 
 
 
Figure 52: Power of the Skewed-Leptokurtic Population with ONLY SD Ratios Are  

Different and Sample Size = (50, 50), (25, 25) and α = .05 
 
          Power 
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Research Question 3: If the nature of the underlying population distributions varies in  

skewness only, is there any difference in power for these two  

nonparametric techniques?  

 This research question allowed for a comparison of statistical power with the same 

sample sizes and kurtosis coefficients but with different skewness coefficients.  When two 

samples were drawn from the population distributions with different degrees of skewness but 

equal kurtosis ratios, statistical power for the MW test was small and almost the same as 

sample sizes were increased.  The range of statistical power of the MW test for all 36 

combinations was between 0.049 and 0.082. 

 When the KS-2 test was applied to these 36 combinations under the conditions of this 

research question, it was found that statistical power was smaller than the power for the MW 

test when the sample size was (8, 8) in 36 simulations.  The statistical power of sample size 

(8, 8) in the KS-2 test ranged from 0.018 to 0.042 which was smaller than the range in the 

MW test (from 0.047 to 0.071).  In these groups with four different combinations of equal 

sample sizes, most simulations showed that when the degree of the skewness changed in the 

large sample set, the statistical power of the KS-2 test was higher than the power of the MW 

test. However, when the two populations had the same degree of kurtosis -0.50 but differed 

in the degree of skewness, 0.00 and 0.50, statistical power of the KS-2 test was still smaller 

than the MW test for both small and large samples.  Similar findings were found under the 

conditions that kurtosis was 3.75 and skewness between the two population distributions 

were (0.75, 1.25) and (0.00, 0.75) for both small and large sample sizes.  However, when the 

kurtosis ratio was -1.00 and the skewness ratios for the two underlying population 

distributions were 0.00 and 0.25, the MW test had more power than the KS-2 test regardless 
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of size of the two samples.  Similar results applied to conditions that kurtosis ratio of 3.75 

and the skewness ratios were (0.75, 1.75) and (0.00, 0.75) for the two underlying population 

distributions.  The complete statistical power values of the MW test and the KS-2 test for this 

research question are presented in Table 37. 

 
Table 37: Power; Only Skewness Ratios Are Different (γ11  ≠ γ12 & α = .05) 

 
POWER POWER 

POPULATION 
SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Kurtosis = 0.00 

γ1N =  0.00; γ1S = 0.75 

Kurtosis = 3.75 

γ1L3 =  0.00; γ1SL3 = 1.75 

(8, 8) 

(16, 16) 

.051 

.053 

.021 

.048 

(8, 8) 

(16, 16) 

.071 

.086 

.042 

.114 

(25, 25) .057 .055 (25, 25) .105 .162 

Normal 

Vs. 

Skewed 

(50, 50) .065 .082 

Leptokurtic_3 

Vs. 

Skewed and 

Leptokurtic 

(50, 50) .163 .351 

Kurtosis = -.50 

γ1P =  0.00; γ1PS1 = 0.50 

Kurtosis = 3.75 

γ1SL1 = 0.75; γ1SL2 = 1.25 

(8, 8) .054 .023 (8, 8) .050 020 

(16, 16) .051 .041 (16, 16) .050 .039 

(25, 25) .053 .045 (25, 25) .053 .040 

. Platykurtic 

Vs 

Skewed and 

Platykurtic_1 

(50, 50) .056 .058 

Skewed and 

Leptokurtic_1 

vs 

Skewed and 

Leptokurtic_2 
(50, 50) .057 .055 
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Table 37 CONT.: Power; Only Skewness Ratios Are Different (γ11  ≠ γ12 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Kurtosis = -1.00 

γ1NP =  0.00; γ1SP2 = 0.25 

Kurtosis = 3.75 

γ1SP1 =  0.75; γ1SP3 = 1.75 

(8, 8) 

(16, 16) 

.047 

.046 

.018 

.035 

(8, 8) 

(16, 16) 

.047 

.046 

.018 

.035 

(25, 25) .053 .038 (25, 25) .053 .038 

Normal 

Platykurtic 

Vs. 

Skewed and 

Platykurtic_2 
(50, 50) .050 .046 

Skewed and 

Leptokuvsrtic_1

Vs. 

Skewed and 

Leptokurtic_3 
(50, 50) .050 .046 

Kurtosis = 3.75 

γ1L3 =  0.00; γ1SL1 = 0.75 

Kurtosis = 3.75 

γ1SL2 =  1.25; γ1SL3 = 1.75 

(8, 8) .049 .018 (8, 8) .049 .018 

(16, 16) .050 .041 (16, 16) .050 .041 

(25, 25) .057 .044 (25, 25) .057 .044 

Leptokurtic_3 

Vs. 

Skewed and 

Leptokurtic_1 

 
(50, 50) .057 .055 

Skewed and 

Leptokurtic_2 

Vs. 

Skewed and 

Leptokurtic_3 

 (50, 50) .057 .055 

Kurtosis = 3.75 

γ1L3 =  0.00; γ1SL2 = 1.25 

 

(8, 8) 

(16, 16) 

.057 

.058 

.025 

.054 

(25, 25) .068 .064  

Leptokurtic_3 

Vs. 

Skewed and 

Leptokurtic_2 

(50, 50) .082 .102 
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Research Question 4: If the nature of the underlying population distributions varies in  

kurtosis only, is there any difference in power for these two 

nonparametric techniques?  

This research question allowed for a comparison of statistical power with the same 

sample sizes and skewness coefficients but different kurtosis coefficients.  When two 

samples were drawn from the population distributions with different degrees of kurtosis but 

equal skewness ratios, statistical power for the MW test was small and almost the same 

regardless of increases in sample sizes such as (8, 8) to (50, 50).  The range of statistical 

power of the MW test for all 144 combinations was between 0.043 and 0.065.  It was shown 

that statistical power of the MW test in this research question was very consistent across all 

levels of sample size when kurtosis ratios changed but skewness ratios remained the same. 

When the KS-2 test was applied to the same simulated samples, it was found that 

statistical power was smaller than power for the MW test with this small sample size (8, 8).  

The range of statistical power of sample size (8, 8) in the KS-2 test ranged from 0.018 to 

0.022.  The range of statistical power in the MW test was from 0.047 to 0.054.   

When the two samples had the same skewness but the difference in kurtosis was smaller 

than 2.0 in most of the comparisons, statistical power for the MW test was higher than the 

power for the KS-2 test across four equal-sized pairs of samples. However, if the difference 

in kurtosis between the two populations become substantial, statistical power for the KS-2 

test was larger than power for the MW test especially in the two samples with large sets of 

sizes.   

Complete statistical power values for the MW test and the KS-2 test for this research 

question are presented in Table 38.      
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Table 38: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Skewness = 0.00 

γ2N =  0.00; γ2P = -0.50 

Skewness = 0.00 

γ2N =  0.00; γ2LL = 1.30 

(8, 8) 

(16, 16) 

.051 

.045 

.018 

.033 

(8, 8) 

(16, 16) 

.048 

.047 

.018 

.037 

(25, 25) .050 .035 (25, 25) .051 .040 

Normal 

Vs. 

Platykurtic 

(50, 50) .050 .041 

Normal 

Vs. 

Logistic-Like 

(50, 50) .048 .046 

Skewness = 0.00 

γ2N =  0.00; γ2NP = -1.00 

Skewness = 0.00 

γ2N =  0.00; γ2L2 = 2.00 

(8, 8) .048 .019 (8, 8) .050 .020 

(16, 16) .050 .039 (16, 16) .047 .038 

(25, 25) .048 .040 (25, 25) .053 .044 

. Normal 

Vs. 

Normal 

Platykurtic 

(50, 50) .052 .052 

Normal 

Vs. 

Leptokurtic_2 

(50, 50) .050 .055 

Skewness = 0.00 

γ2N =  0.00; γ2L1 = 1.00 

Skewness = 0.00 

γ2N =  0.00; γ2DEL = 3.00 

(8, 8) 

(16, 16) 

.050 

.048 

.019 

.037 

(8, 8) 

(16, 16) 

.052 

.050 

.021 

.041 

(25, 25) .050 .037 (25, 25) .053 .044 

Normal 

Vs. 

Leptokurtic_1 

(50, 50) .048 .041 

Normal 

Vs. 

Double 

Expeonential-

Like 
(50, 50) .050 .055 
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Table 38 CONT.: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Skewness = 0.00 

γ2N =  0.00; γ2L3 = 3.75 

Skewness = 0.00 

γ2P =  -0.50; γ2L1 = 1.00 

(8, 8) .049 .019 (8, 8) .051 .019 

(16, 16) .047 .041 (16, 16) .046 .037 

(25, 25) .052 .047 (25, 25) .050 .041 

 

. Normal 

Vs. 

Leptokurtic_3 

(50, 50) .052 .067 

Platykurtic 

Vs. 

Leptokurtic_1 

(50, 50) .048 .045 

Skewness = 0.00 

γ2P =  -0.50; γ2NP = -1.00 

Skewness = 0.00 

γ2P =  -0.50; γ2L2 = 2.00 

(8, 8) .050 .018 (8, 8) .049 .019 

(16, 16) .045 .036 (16, 16) .048 .041 

(25, 25) .050 .038 (25, 25) .048 .043 

 

. Platykurtic 

Vs. 

Normal 

Platykurtic 

(50, 50) .052 .046 

 

. Platykurtic 

Vs. 

Leptokurtic_2 

(50, 50) .048 .055 

Skewness = 0.00 

γ2N =  0.00; γ2UL = -1.20 

Skewness = 0.00 

γ2P =  -0.50; γ2L3 = 3.75 

(8, 8) .050 .018 (8, 8) .051 .022 

(16, 16) .050 .040 (16, 16) .048 .045 

(25, 25) .051 .043 (25, 25) .051 .052 

Normal 

Vs. 

Uniform-Like 

(50, 50) .053 .053 

 

Platykurtic 

Vs. 

Leptokurtic_3 

(50, 50) .050 .079 
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Table 38 CONT.: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Skewness = 0.00 

γ2P =  -0.50; γ2UL = -1.20 

Skewness = 0.00 

γ2NP =  -1.00; γ2UL = -1.20 

(8, 8) 

(16, 16) 

.049 

.047 

.018 

.036 

(8, 8) 

(16, 16) 

.050 

.045 

.019 

.033 

(25, 25) .049 .038 (25, 25) .049 .036 

Platykurtic  

Vs. 

Uniform-Like 

(50, 50) .049 .044 

Normal 

Platykurtic  

Vs. 

Uniform-Like 

(50, 50) .049 .040 

Skewness = 0.00 

γ2P =  -0.50; γ2LL = 1.30 

Skewness = 0.00 

γ2NP =  -1.00; γ2LL = 1.30 

(8, 8) .053 .021 (8, 8) .048 .018 

(16, 16) .048 .038 (16, 16) .048 .042 

(25, 25) .047 .038 (25, 25) .048 .050 

Platykurtic 

Vs. 

Logistic-Like 

(50, 50) .049 .047 

Normal 

Platykurtic 

Vs. 

Logistic-Like 

(50, 50) .049 .070 

Skewness = 0.00 

γ2NP =  -0.50; γ2DEL = 3.00 

Skewness = 0.00 

γ2NP =  -1.00; γ2L1 = 3.00 

(8, 8) 

(16, 16) 

.052 

.050 

.021 

.044 

(8, 8) 

(16, 16) 

.052 

.050 

.021 

.041 

(25, 25) .049 .048 (25, 25) .053 .044 

Platykurtic l 

Vs. 

Double 

Exponential-

Like 
(50, 50) .051 .068 

Normal 

Platykurtic  

Vs. 

Double 

Exponential-

Like (50, 50) .050 .055 
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Table 38 CONT.: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Skewness = 0.00 

γ2NP =  -1.00; γ2L1 = 1.00 

Skewness = 0.00 

γ2L1 =  1.00; γ2L2 = 2.00 

(8, 8) .051 .021 (8, 8) .047 .018 

(16, 16) .045 .043 (16, 16) .043 .034 

(25, 25) .053 .049 (25, 25) .050 .037 

Normal 

Platykurtic 

Vs. 

Leptokurtic_1 

(50, 50) .052 .070 

 

Leptokurtic_1 

Vs. 

Leptokurtic_2 

(50, 50) .049 .039 

Skewness = 0.00 

γ2NP =  -1.00; γ2L2 = 2.00 

Skewness = 0.00 

γ2L1 =  1.00; γ2L3 = 3.75 

(8, 8) .050 .020 (8, 8) .051 .019 

(16, 16) .052 .050 (16, 16) .048 .038 

(25, 25) .053 .055 (25, 25) .049 .039 

 

Normal 

Platykurtic 

Vs. 

Leptokurtic_2 

(50, 50) .052 .084 

 

Leptokurtic_1 

Vs. 

Leptokurtic_3 

(50, 50) .050 .049 

Skewness = 0.00 

γ2NP =  -1.00; γ2L3 = 3.75 

Skewness = 0.00 

γ2L1 =  1.00; γ2UL = -1.20 

(8, 8) .051 .023 (8, 8) .051 .019 

(16, 16) .046 .051 (16, 16) .048 .045 

(25, 25) .050 .066 (25, 25) .050 .047 

 

Normal 

Platykurtic 

Vs. 

Leptokurtic_3 

(50, 50) .052 .117 

Leptokurtic_1 

Vs. 

Uniform-Like 

(50, 50) .051 .070 
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Table 38 CONT.: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Skewness = 0.00 

γ2L1 =  1.00; γ2LL = 1.30 

Skewness = 0.00 

γ2L3 =  3.75; γ2UL = -1.20 

(8, 8) 

(16, 16) 

.049 

.048 

.019 

.036 

(8, 8) 

(16, 16) 

.051 

.050 

.021 

.055 

(25, 25) .052 .038 (25, 25) .054 .070 

Leptokurtic_1 

Vs. 

Logistic-Like 

(50, 50) .048 .040 

Leptokurtic_3 

Vs. 

Uniform-Like 

(50, 50) .051 .114 

Skewness = 0.00 

γ2L1 =  1.00; γ2DEL = 3.00 

Skewness = 0.00 

γ2L3 =  3.75; γ2LL = 1.30 

(8, 8) .050 .018 (8, 8) .048 .020 

(16, 16) .047 .036 (16, 16) .048 .036 

(25, 25) .049 .037 (25, 25) .047 .036 

Leptokurtic_1 

Vs. 

Double 

Expeonential-

Like 
(50, 50) .054 .046 

Leptokurtic_3 

Vs. 

Logistic-Like 

(50, 50) .047 .048 

Skewness = 0.00 

γ2L2 =  2.00; γ2L3 = 3.75 

Skewness = 0.00 

γ2L3 =  3.75; γ2DEL = 3.00 

(8, 8) 

(16, 16) 

.047 

.046 

.020 

.034 

(8, 8) 

(16, 16) 

.050 

.046 

.019 

.034 

(25, 25) .051 .038 (25, 25) .048 .038 

Leptokurtic_2 

Vs. 

Leptokurtic_3 

(50, 50) .050 .042 

Leptokurtic_3 

Vs. 

Double 

Exponential-

Like 
(50, 50) .049 .041 
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Table 38 CONT.: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

POWER POWER 
POPULATION 

SAMPLE 

SIZE MW KS-2 
POPULATION 

SAMPLE 

SIZE MW KS-2 

Skewness = 0.00 

γ2L2 =  2.00; γ2L3 = -1.20 

Skewness = 0.00 

γ2UL =  -1.20; γ2LL = 1.30 

(8, 8) .051 .022 (8, 8) .051 .021 

(16, 16) .050 .048 (16, 16) .046 .044 

(25, 25) .051 .057 (25, 25) .051 .050 

Leptokurtic_2 

Vs. 

Uniform-Like 

(50, 50) .051 .088 

Uniform-Like 

Vs. 

Logistic-Like 

(50, 50) .048 .074 

Skewness = 0.00 

γ2L2 =  2.00; γ2L3 = 1.30 

Skewness = 0.00 

γ2UL =  -1.20; γ2DEL = 3.00 

(8, 8) .051 .019 (8, 8) .055 .024 

(16, 16) .047 .034 (16, 16) .049 .050 

(25, 25) .051 .037 (25, 25) .051 .063 

Leptokurtic_2 

Vs. 

Logistic-Like 

(50, 50) .051 .040 

Uniform-Like 

Vs. 

Double 

Expeonential-

Like 
(50, 50) .052 .102 

Skewness = 0.00 

γ2L2 =  2.00; γ2L3 = 3.75 

Skewness = 0.00 

γ2LL =  1.30; γ2DEL = 3.00 

(8, 8) .051 .019 (8, 8) .049 .019 

(16, 16) .046 .036 (16, 16) .048 .036 

(25, 25) .050 .034 (25, 25) .049 .037 

Leptokurtic_2 

Vs. 

Double 

Exponential-

Like 
(50, 50) .051 .042 

Logistic-Like 

Vs. 

Double 

Exponential-

Like 
(50, 50) .050 .043 
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Table 38 CONT.: Power; Only Kurtosis Ratios Are Different (γ21  ≠ γ22 & α = .05) 
 

 
POWER 

POPULATION 
SAMPLE 

SIZE MW KS-2 

Skewness = 0.75 

γ2S =  0.00; γ2SL1 = 3.75 

(8, 8) 

(16, 16) 

.054 

.052 

.024 

.050 

(25, 25) .058 .063 

Skewed 

Vs. 

Skewed 

leptokurtic_1 

(50, 50) .065 .106 
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Summary 

 This chapter presented the results and findings of the simulations for the study.  There 

were four research questions addressed.  Among these four research questions, results of both 

Type I error rates and statistical power were discussed in the first research question.  Results 

of statistical power were expressed for research questions two through four. The significance 

level (α) of 0.05 was applied when performing the MW test and the KS-2 test to the 

simulated data sets.  

 In the findings of Type I error rates between these two nonparametric statistical 

techniques under the conditions of the first research question, most simulated Type I error 

rates for both the MW test and the KS-2 test were less than 0.05.  The KS-2 test had typically 

lower Type I error rates than the MW test. In other words, Type I error rates for the KS-2 test 

tended to be less than the rates for the MW test. 

 The study of statistical power for the second part of the first research question indicated 

that both the KS-2 test and the MW test had small statistical power when the sample sizes 

were small and unequal in spite of differences in the SD ratios of the populations. When the 

sample sizes were large and unequal such as (50, 100) and (100, 50) and the differences in 

population standard deviations were considerably large (such as SD ratio = 4 or 1
4

), statistical 

power of the KS-2 test for all 15 populations was close to 1.0.  Moreover, when the shapes of 

the underlying populations were positively skewed with sample sizes (50, 100) and (100, 50), 

statistical power of the KS-2 test was much more sensitive than the MW test when 

population standard deviation ratios were not equal to 1.0 (such as SD ratio = 4, 3, 2, 1
2

, 1
3

, 

or 1
4

). The findings of the second research question yielded similar results in statistical power 
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when performing the KS-2 test for four pairs of independent samples with equal sizes (8, 8), 

(16, 16), (25, 25), and (50, 50).  The statistical power of the MW test under the conditions of 

the second research question was found to be consistently small in fifteen population 

distributions across different levels of SD ratios with the defined four pairs of equal sample 

sizes.  

 Even though the considerations for research questions three and four were not the same, 

the results of statistical power for these two questions were very similar. Both statistical 

power values for the MW test and the KS-2 tests were small.  The results of statistical power 

of the MW test for both research questions showed that statistical power was small and 

almost the same, being consistent across all four pairs of two equal-sized independent 

samples despite the changes in either the kurtosis or skewenss ratios. The KS-2 test produced 

slightly different results when compared with the MW test. Statistical power was relatively 

small when the sample sizes were small and equal, such as (8, 8).  As the sample sizes 

increased, statistical power also increased. When the two underlying population distributions 

had the same kurtosis but greatly differed in skewness, statistical power for the KS-2 test was 

higher than the power of the MW test while the two equal-sized samples increased in size. 

Similar results were found when the two samples had fixed skewness but different kurtosis in 

their population distributions.  When the two equal-sized samples had the same skewness but 

different kurtosis in their underlying population distributions, statistical power for the KS-2 

test was higher than the power of the MW test as the two equal sized samples increased in 

size. 
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CHAPTER FIVE 
 

DISCUSSIONS  

Introduction 

The Mann-Whitney (MW) test and the Kolmogrov-Smirnov two sample test (KS-2) are 

nonparametric statistical tests used to detect whether there is a general difference between 

two samples when the two underlying population distributions are distribution-free.  The 

focus of this study was to examine and compare Type I error rates and statistical power 

between the Mann-Whitney (MW) and the Kolmogrov-Smirnov two sample (KS-2) tests 

when the two samples had different population variances or various degrees of kurtosis and 

skewness. This study also compared Type I error rates and power, if applicable, when the 

two samples were of different sizes. 

This chapter provides the general conclusions of the study. In addition, theoretical 

implications, practical implications, limitations, and recommendations for future research are 

presented. Conclusions are proposed based upon the findings of Type I error rates and 

statistical power between the two tests. Next, theoretical implications are provided through a 

comparison of the literature in accordance with the research questions. Practical implications 

provide suggestions for practice, such as the method of simulating statistical power in this 

study, and criteria for selecting between the MW and the KS-2 tests. Limitations of this study 

are provided.  Finally, recommendations for future research are presented in this chapter. 
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General Conclusions 

This study examined Type I error rates and statistical power differences between the 

Mann-Whitney (MW) and the Kolmogrov-Smirov two-sample (KS-2) tests. Simulations 

were conducted to examine power comparisons between the KS-2 and the MW tests by 

performing 20, 000 replications per condition. Variations in sample, the underlying 

population distributions varying in variance, and skewness and kurtosis were utilized.  

Simulations were performed to investigate four research questions. The first research 

question was directly applicable to assess Type I error rates. The results highlight differences 

between the KS-2 test and the MW test, important to those performong these nonparametric 

statistical hypothesis tests for general differences between populations.  

When examining Type I error rates for the MW test and the KS-2 test with different 

sample sizes but same SD ratio and population distributions between two samples, the study 

showed that Type I error rates for the KS-2 test were much less than the rates for the MW 

test.  Type I errors for the MW test were close to the nominal value (α=0.05). However, Type 

I error rates for the KS-2 test were much less than the nominal value.  This implied that when 

researchers perform significance tests in detecting general differences between two samples 

with the same underlying population distributions, the KS-2 test is more likely to result in 

rejecting the null hypothesis.  This is not true, however, when mean differences are detected. 

Researchers will have a greater chance of finding a difference between two samples with the 

same underlying population distributions when applying the KS-2 test rather than the MW 

test.  

When sample sizes are unequal and small with the same underlying population 

distributions, the MW test has more statistical power than the KS-2 test regardless of the 
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population SD ratios. The KS-2 test has more statistical power than the MW test under the 

condition that population variances and the sample sizes are greatly different from one 

another, regardless of the underlying population distributions.  It was also discovered that 

when sample sizes were small and unequal, both the MW test and the KS-2 test had small 

statistical power. The MW test was slightly more powerful than the KS-2 test in spite of the 

SD ratios. It is suggested that when the size of the two samples is small and unequal, the MW 

test is more powerful than the KS-2 test.  As the sample size increases and remains unequal, 

the KS-2 test is more powerful than the MW test.  

When the two underlying population distributions differed in skewness, statistical power 

for both the MW and the KS-2 test was small.  When sample size was small, regardless of the 

differences in skewness between the two population distributions, the KS-2 had smaller 

statistical power than the MW test. When the skewness between the two populations became 

different and sizes for both samples were large, the KS-2 test had more power than the MW 

test. 

When only the degree of kurtosis was different between the two population distributions, 

the MW and the KS-2 test had small statistical power. When sample size was small and the 

degree of kurtosis between the two population distributions was ignored, the KS-2 test had 

smaller statistical power than the MW test. The KS-2 test had slightly more statistical power 

as the degree of the kurtosis become very different between the two populations in 

comparisons of two samples with large sizes.  

In conclusion, the KS-2 test is smaller than the MW test in comparison of the type I error 

rates in unequal sample sets.  Moreover, when population variances vary between two 

samples, the KS-2 test has more statistical power than the MW test. Furthermore, the power 
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of the KS-2 test exceeded the power of the MW test in large sample settings when either one 

of the following conditions existed: 

1. The difference in the Skewness in populations between the two samples was 

more than 0.5 with the same kurtosis and variance. 

2. The difference in the Kurtosis in populations between the two samples was 

more than 2.0 with the same skewness and variance. 

Theoretical Implications 

This study investigated Type I error rates and statistical power differences between the 

Mann-Whitney (MW) and the Kolmogrov-Smirnov two sample (KS-2) tests under various 

conditions. The simulated findings can be meshed with the literature, as guided by the 

research questions listed below:  

Question 1:  If only sample sizes differ between two samples,  

a.  Is there any difference in Type I error rate for these two nonparametric 

techniques?  

b.  Is there any difference in power for these two nonparametric techniques?  

Question 2: If only the heterogeneity of variance between two populations exists, is there  

 any difference in power for these two nonparametric techniques?  

Question 3: If the nature of the underlying population distributions varies in skewness only,  

  is there any difference in power for these two nonparametric techniques?  

Question 4: If the nature of the underlying population distributions varies in kurtosis only, is  

        there any difference in power for these two nonparametric techniques? 
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Sample Size 

 The first research question detected Type I error rates and statistical power in the MW 

and the KS-2 tests when two samples varied in sample size. Eight different pairs of equal 

sample sizes were simulated. When only sample sizes were different between the two 

samples, with same SD ratios and same degrees of skewness and kurtosis in the two 

underlying population distributions, it was found that Type I error rates for both the MW and 

the KS-2 tests were all small and mostly less than the nominal significance level of (α) 0.05.  

When detecting Type I error rates for the MW test, results in the present simulation study 

were similar to findings reported in the literature. For example, when the two samples had 

sizes of (4, 16), the Type I error rate for the MW test (the Type I error rate = 0.048) in the 

normal distribution was less than the nominal rate (nominal α = 0.05). This finding was 

similar to the values reported by Zimmerman (1987) and Gibbons and Chakraborti’s (1991).   

Zimmerman (1987) reported a Type I error rate of 0.048 with an α of 0.05. Gibbons and 

Chakraborti’s study (1991) found a error rate of 0.048 with the same α of 0.05.  Moreover, 

when detecting the Type I error rate for the MW test with sample size (16, 4), the Type I 

error rate of 0.051 was greater than the nominal significance level of 0.05. However, 

Zimmerman (1987) had a Type I error rate of 0.049 for the same conditions, which was less 

than the significance level of 0.05. When sample size increased to (30, 10), Type I error rates 

of the MW test became 0.051 which was inflated and greater than the nominal significance 

level of 0.05. Conversely, Kasuya (2001) reported a Type I error rate of 0.0495 which was 

slightly less than  the α of 0.05. 

 Based on a review of literature, there is a lack of research on the KS-2 test with a non-

directional hypothesis test when investigating the general difference between two samples. In 
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order to fill this gap, the current study simulated Type I error rates for the KS-2 test in eight 

pairs of unequal sample sizes and fifteen population distributions.  The present study 

discovered that the Type I error rates for all eight pairs of two samples in fifteen population 

distributions were less than the nominal level α of 0.05. Type I error rates for the KS-2 test 

were less than and close to the nominal significance level when the two samples with the 

same underlying population distributions differed by size.  Also of interest was that if the 

sample sizes were small and unequal (both sizes were no more than 20), Type I error rates 

were extremely small and at most 0.03.  As the two unequal samples increased their sizes, 

such as the (50, 100) and (100, 50), Type I error rates were at most 0.045.   

In general, it appears that the Type I error rates for the KS-2 test are much more lower 

than the rates for the MW test. This occurs when the two sample sizes are small and unequal, 

and homogeneity of variance exists in normal and fourteen non-normal population 

distributions. For two samples with large unequal sizes, Type I error rates for both tests 

approached the nominal significance level of 0.05.   

This study also investigated statistical power for both the KS-2 test and the MW test with 

the same eight pairs of unequal sample size combinations in fifteen population distributions. 

These distributions differed in SD ratios.   It was discovered that both statistical power for 

the MW test and the KS-2 test was very small. The MW test was more powerful than the KS-

2 test under the condition of small and unequal sample sizes with a normal population 

distribution.  As the sizes increased, the statistical power of the KS-2 test became superior to 

the MW test.  When the sample sizes were large and relatively unequal, and the SD ratios 

were extremely small or extremely large, the power of the KS-2 test was close to one.  

Similar results were found in the 14 non-normal distributions discussed in the CHAPTER IV.   
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The present Monte Carlo study discovered that when one of the two samples is 

tremendously different from the other in sample size, the KS-2 test is more powerful than the 

MW test under the condition that population variances are greatly different, regardless of the 

underlying population distributions.  This finding did not support the figures of power 

functions provided in Schroer and Trenkler’s (1995) study.  Those figures showed that the 

MW test had better power than the KS-2 test, when the condition of small and equal sample 

sizes existed. When comparing statistical power between the MW test and the KS-2 test, 

most research literature discussed this issue under the condition of different population 

variances but equal sizes between the two samples. Some research literature discussed this 

issue for a directional hypothesis test.  There was limited literature comparing statistical 

power between the MW test and the KS-2 test for non-directional hypothesis tests, when the 

two samples were different in size and population variance with the same underlying 

population distribution.  

In general, the present simulation study showed that the KS-2 test had smaller Type I 

error rates than the MW test when two samples differ in size with homogeneity of population 

variance.  The KS-2 test had less power than the MW test when sample sizes were small and 

unequal. The value of statistical power for the KS-2 test was greater than the value for the 

MW test as sample size become large and unequal to one another.  This was true with a 

violation of homogeneity of population variance.   

 
Heterogeneity of Variance 

 The second research question examined statistical power for the MW and the KS-2 tests 

when the two samples were only different in population variances. This study simulated 

statistical power in the conditions of equal sample size and the same underlying population 
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distributions (15 population distributions) between two samples that differed in SD ratios.  

The four pairs of equal sample sizes were (8, 8), (16, 16), (25, 25) and (50, 50). The 

statistical power for the MW and the KS-2 tests were produced when the SD ratios were 1
4

, 1
3

, 

1
2

, 2, 3, and 4.     

 This present study found that the MW test had very little but consistent statistical power 

across the four simulated pairs with equal sample sizes.  This was true when population 

variances of the two samples were not the same in normal and non-normal population 

distributions.  Even though population variances were greatly different between two samples, 

statistical power for the MW test changed only slightly.  By reviewing literature, it was found 

that the results of statistical power for the MW test were similar with the study by Gibbons 

and Chakraborti (1991) in generating statistical power for the MW test in the normal 

distribution. For example, the statistical power for the MW test was 0.070 with sample size 

of (8, 8) and a SD ratio of 4 in the present study. The power was changed to 0.056 when the 

SD ratio changed to 2.  Similarly, Gibbons and Chakraborti (1991) had a statistical power for 

the MW test of 0.0691 with sample size of (10, 10) and a SD ratio of 5. The power became 

0.0559 with the same size with a SD ratio of 2.5. 

The current study found that the KS-2 test was much more powerful than the MW test in 

fifteen population distributions. Findings were simulated for both small and large samples 

when population variances were different between two samples.  This current study agreed 

with Siegel and Castellan (1988) and Baumgartner, WeiB, and Shindler’s study (1998) that 

the KS-2 test was more powerful for small samples when population variances were not 

equal. For example, in Baumgartner, WeiB, and Shindler’s study (1998), a figure of 
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simulated power functions demonstrated that the KS-2 test had more power than the MW test 

with a sample size of (10, 10) and an increase in population variance in normally distributed 

samples. The current study found that the KS-2 test and the MW test had a statistical power 

of 0.082 and 0.070, respectively, with a SD ratio of 4.  As sample sizes increased, the power 

of the KS-2 test increased too. Moreover, the present study provided evidence that the KS-2 

test was much more powerful than the MW test with large sample sizes when the population 

variances were extremely different between the two samples. When the SD ratios were 

extremely large or extremely small with a large sample size, statistical power for the KS-2 

test was substantially large in both normal and non-normal population distributions.  

In conclusion, when the condition of heterogeneity of variance between two populations 

existed in the two equal-sized small samples, the KS-2 test and the MW test had similar 

statistical power.  However, the KS-2 test had much greater statistical power than the MW 

test when sample sizes were equal and large.   

 
Difference in Skewness 

  The third research question investigated statistical power of the MW and the KS-2 tests 

between two equal-sized samples with different degrees of skewness in their underlying 

population distributions.  It was assumed that the two samples were from populations with 

the same kurtosis and SD ratios (SD ratio = 1) but different skewness. The four pairs of equal 

sample sizes used for simulations were (8, 8), (16, 16), (25, 25) and (50, 50).  

Simulation results suggested that both the MW and KS-2 tests had small statistical power 

regardless of the differences in skewness between the two underlying population 

distributions. When the two sample sizes were small, the MW test had more power than the 

KS-2 test despite differences in skewness between the two underlying population 
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distributions.  As sample sizes increased and skewness between the two populations were 

separated from one the other, the KS-2 test had more power than the MW test in most of the 

simulations.  

Literature such as Penfield (1994) pointed out that the MW test had more power than 

other nonparametric two-sample tests ( the van der Wrerden Normal Score (NS) test and the 

Welch-Aspin-Sattertheaite (W) test) under various degrees of the kurtosis and skewness. 

However, Penfield (1994) did not compare statistical power between the MW test and the 

KS-2 test when there is only different skewness between the two populations.  The present 

study provided evidence that the MW test had more power than the KS-2 test in specified 

ratios of skewness and kurtosis when the two samples were small and had the same sizes and 

SD ratio.  When the size of the two samples started to increase, the KS-2 test became 

superior to the MW test regarding statistical power in most of the comparisons when the two 

underlying populations had two different skewness ratios with the same kurtosis.   

Overall, the KS-2 test and the MW test had small statistical power when only skewness 

ratios varied for both small and large equal sized samples.  The MW test was more powerful 

than the KS-2 test when sample size was small regardless of the difference in skewness.   As 

the difference in skewness between the two populations became more than 0.5 in large 

sample settings, such as (50, 50), the KS-2 test became superior of the MW test in statistical 

power. 

Difference in Kurtosis 

The last research question considered the statistical power of the MW and the KS-2 tests 

between two samples equal in size but different in degrees of kurtosis in their underlying 

population distributions.  It was assumed that the two samples were from populations with 
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the same kurtosis and SD ratios (SD ratio = 1) but with different skewness.  Simulated 

sample sizes were (8, 8), (16, 16), (25, 25) and (50, 50). Findings suggested that the values of 

statistical power were small for the MW test and the KS-2 test under the simulation 

conditions.   

By comparing statistical power between the MW test and the KS-2 test, this study 

concluded that when sample sizes were small, statistical power of the MW test was small and 

superior to the KS-2 test in spite of the difference in the degrees of kurtosis.  If the 

differences in the kurtosis between two population distributions were more than 2.0 and 

sample sizes increased, the KS-2 test had more power than the MW test in most of the 

simulations.  When the skewness ratio was zero and the kurtosis ratios of two population 

distributions were apart from one another, power of the KS-2 test was inferior to the MW test 

as the two samples increased in size.  

It is difficult to locate literature which focuses on the comparison between the MW test 

and the KS-2 test and power estimates when only differences in the degree of kurtosis exist 

with normal and non-normal population distributions. This simulation study is unique in 

presenting evidence that the MW test had slightly more statistical power than the KS-2 test in 

two-sample comparisons, when the two underlying population distributions had the same 

skewness but differed mildly in kurtosis.  The KS-2 test had more statistical power when the 

two underlying population distributions had the same skewness but the difference in kurtosis 

was more than 2.0 with large and equal sample sizes like (50, 50).   

Generally, the KS-2 test and the MW test had small statistical power when only kurtosis 

varied for both small and large equal sized samples.  The MW test had more statistical power 

than the KS-2 test when sample size was equal and small regardless of the difference in 
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kurtosis.  When the difference of kurtosis between the two populations was more than 2.0 in 

large sample settings, such as (50, 50), the KS-2 test became more powerful than the MW 

test.   

Practical Implications 

 This study presents two main practical implications.  First, an explanation is provided 

concerning why the effect size was not appropriate for performing statistical power 

simulations. Next, this study has provided guidelines for researchers who choose between the 

MW test and the KS-2 test for hypothesis testing. 

Method to Simulate Statistical Power  

When estimating the power of a statistical test, most researchers, such as Cohen (1988) 

and Murphy and Myors (1998) suggest that statistical power relies on the significance level 

(α) and effect size. Effect size (d) is a function of the difference between two population 

means divided by the population variance. Equal variance is required in finding an effect size. 

The formula for effect size provided by Cohen (1988) is: 

Effect size (d) = B Aμ μ
σ
−

;  

where Bμ and Aμ are population means for the two samples; 

σ is the population standard deviation for either sample (equal variance is assumed) 

In this study, a hypothesis test was used to evaluate whether there was a general 

difference between the two samples. Heterogeneity of variance, difference in skewness, and 

difference in kurtosis were investigated through the simulations.  The main focus of this 

simulation study was not in the difference in means between two samples. Moreover, when 
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either of the populations of the two samples changed in variance, skewness, and/or kurtosis, 

the two population distributions also change. Therefore, effect size was not applicable for 

determining statistical power in this simulation study.  

Advice to Researchers 

The present simulation study used a predetermined significance level of 0.05 to assess 

statistical power.  The method of finding statistical power for either the MW test or the KS-2 

test involved determining the proportion of the number of hypothesis tests under the 

determined condition with statistical significance (p-value less than the significance level) 

out of the total number of replications.  The larger the proportion, the greater the statistical 

power for the MW or the KS-2 test.   

The MW test and the KS-2 test are both nonparametric statistical techniques used to 

perform a hypothesis test on determining a general difference between two populations.  The 

current simulation study presented suggestions for researchers in determining which one of 

these two nonparametric statistical techniques should be applied (Also in Table 38): 

(1) When the two samples are different in sample sizes only, the KS-2 test is the 

recommended statistical test.  The KS-2 test is much more lower on Type I error rates 

than the MW test.  Moreover, the KS-2 test has more statistical power than the MW 

test under this condition.  In the other words, when researchers use the KS-2 

technique for hypothesis testing, the KS-2 test is more sensitive to rejecting the null 

hypothesis; moreover, the finding from the hypothesis test is more likely to generalize 

from sample data back to populations.  

(2) When the two samples are different in population variance only, the KS-2 test has 

more statistical power than the MW test when the sample sizes are large for the two 
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samples.  When the size of the two samples is small, and if the population SD ratios 

are extremely large or small, the MW has greater statistical power than the KS-2 test. 

(3) When the two samples differ in the degree of skewness between two the underlying 

population distributions, the MW test has more statistical power than the KS-2 test in 

small samples.  This is true regardless of the differences in the degree of skewness. 

The KS-2 test has more statistical power when the difference in the degree of the 

skewness is more than 0.50 with large samples. 

(4) When the two samples differ in the degree of kurtosis between two underlying 

population distributions, the MW test has more statistical power than the KS-2 test in 

small and large samples when the difference in the of the degree of kurtosis is at most 

2.0. The KS-2 test has more statistical power when the difference in the degree of the 

kurtosis is more than 2.0 in large samples. 

 

Table 39: Summary of the Conditions to Use the MW or the KS-2 Test  

Condition 1: Unequal Sample Size 

Sample Size Population SD Ratio Test 

n1< n2 1 KS-2 

(4, 16) 1/4, 1/3, 3,  4 MW 

(10, 20), (10, 30) (50, 100) 1/4, 1/3, 3,  4 KS-2 
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Table 39 Cont.: Summary of the Conditions to Use the MW or the KS-2 Test  

Condition 2: Equal Sample Size  

1. Population SD Ratio Sample Size  Test 

1/4, 1/3, 3, 4  n1 = n2 = 8 KS-2 

  n1 = n2 > 8 KS-2 

1/2, 2  n1 = n2 = 8 MW 

  n1 = n2 > 8 KS-2 

2. Differences of two Skewness Ratios Sample Size Test 

≤ 0.5  n1 = n2 ≤ 25 MW 

  n1 = n2 > 25 MW 

> 0.5  n1 = n2 ≤ 25 MW 

  n1 = n2 > 25 KS-2 

3. Differences of two Kurtosis Ratios               Sample Size Test 

≤ 2  n1 = n2 ≤ 25 MW 

  n1 = n2 > 25 MW 

> 2  n1 = n2 ≤ 25 MW 

  n1 = n2 > 25 KS-2 

 

Limitations of the Study 

 There are several limitations for the current Monte Carlo simulation study.  First, the 

issues of tied data are excluded in this study.  Researchers, such as Siegel and Castellan 

(1988),  Neave and Worthington (1988), and  Conover (1999), revealed that variability in the 

sets of ranks are affected by tied ranks. They suggested using a tie correction formula as a 
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compromise to the problem when performing the MW test. However, researchers have not 

provided clarity of the definition of ties and when to use the test statistic formulas of tied 

conditions. Smilar but more complicated discussions have taken place when the KS-2 test 

was performed under the tied condition.  Some researcher, such as Bradley (1968) and 

Marascuilo and McSweeney (1977) claimed that an originally observed variable was a 

continuous variable implying that no tied observations occurred in their samples. Daniel 

(1990) claimed that there was no problem when tied scores were presented within the same 

sample group while complications arose when the tied condition happened between two 

sample groups. Other researchers, such as Siegel and Castellan (1988), Conover (1999),  

Sheskin (2000), and Higgins (2004), did not discuss the issue of ties. Due to a lack of clarity 

among the definition of ties for the various notable authors, this study did not address the 

issue of ties. In other words, tied scores were not considered in this study. 

 Next, pairs of equal and unequal sample sizes were selected for inclusion based on 

literature. The purpose of such sample selection was to compare the simulation results in 

Type I errors and statistical power between the MW test and the KS-2 test in conjunction 

with previous literature.  However, there are many different pairs of sample sizes other than 

the ones in this current research. Sample sizes are often selected by researchers because of 

their individual research settings.  

 Lastly, values of skewness and kurtosis were limited, too. The selected degrees of 

skewness and kurtosis were based upon the 15 population distributions utilized in this study.  

Other unknown, named non-normal distributions existed, along with degrees of skewness 

and kurtosis which vary due to the shape of the data distribution.   

 



 163

Recommendations for Future Research 

This study was designed to explore Type I error rates and statistical power between the 

KS-2 test and the MW test under specific and separate conditions: (1) unequal sample size, (2) 

heterogeneity of variance, (3) difference in skewness, and (4) difference in kurtosis between 

the two underlying population distributions. When two underlying populations differ in their 

distributions, examining statistical power becomes essential in statistical tests. Murphy and 

Myors (1998) clearly describe how statistical power affects researchers in the decision 

making process:  

Studies with too little statistical power can frequently lead to erroneous conclusions. In 

particular, they will very often lead to the incorrect conclusion that findings reported in a 

particular study are not likely to be true in a broader population. (p. 1) 

Murphy and Myors (1998) pointed out the importance of statistical power in the social and 

behavioral sciences when researchers perform statistical tests for their study.  When 

statistical power is too small, the results of the hypothesis tests may not be generalizable to 

the population. 

There is substantial research on statistical power between the MW test and parametric 

statistical techniques, such as the Student’s t test. However, when researchers try to 

determine whether to use either the MW test or the KS-2 test for evaluating a general 

difference between two samples, there is inadequate research on Type I error rates and 

statistical power between these two tests to support a decision. This research performed 

simulations under predetermined conditions for only one of the effects under fifteen 

population distributions between the KS-2 and the MW tests.  It is hoped that future 

researchers are aided in strengthening their decision to perform either of these two 
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nonparametric statistical tests in their studies. However, the reported results were simulated 

based on a limited number of conditions. The simulations were also executed one condition 

at a time. Future research can expand simulations in the areas suggested below: 

(1) Interaction effects: If two or more of the effects (such as different population 

variances, different degrees of the skewness and kurtosis) explored in this study occur 

simultaneously, what is the statistical power for the MW test or the KS-2 test?  The 

present study simulated statistical power for the MW test and the KS-2 test when only 

one of the following conditions occurs: heterogeneity of variance, difference in 

skewness, or difference in kurtosis.  It is possible that two underlying non-normal 

populations differ in variance and skewness, variance and kurtosis, skewness and 

kurtosis, or even in variance, skewness, and kurtosis when the two samples differ in 

size.  It is recommended that the conditions explored here to be combined, and 

interaction effects might be analyzed. 

(2) Sample sizes: This study examined four pairs of equal sample sizes and eight pairs of 

unequal sample sizes.  However, there are still many pairs of equal and unequal 

sample sizes that should be simulated. Such an assessment might assist researchers in 

finding a nonparametric statistical test between the MW and the KS-2 tests with a 

higher statistical power.  A higher statistical power may ensure the chance of 

generalizing the findings of the hypothesis test to setting with larger populations. 

(3) Skewness and Kurtosis: The present study simulated statistical power with 15 

populations and equal samples in size.  When comparing statistical power, only some 

values of different degrees of kurtosis and skewness in these populations were used 

for the simulations.  There are non-normal distributions with various degrees of 
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kurtosis and skewness, other than the ones explored in this current study.  Future 

researchers can perform Monte Carlo simulations and compare statistical power for 

the MW test and the KS-2 test under various degrees of kurtosis and skewness and 

combinations of the unequal sample size condition to help researchers select the most 

powerful two-sample nonparametric test, either the MW test or the KS-2 test.   

In conclusion, the Mann-Whitney and the Kolmogrov-Smirnov two samples 

nonparametric statistical tests are known for the hypothesis tests of general difference 

between two samples. They are utilized when samples are violated the assumption of 

normality in the populations and the measurement of samples is at least ordinal. This current 

study compared the statistical power and Type I errors (if applicable) between these two 

nonparametric techniques.  The study revealed that the KS-2 test was more powerful than the 

MW test when the two samples have unequal size. The KS-2 test had smaller Type I error 

rates than the MW test under this condition too. The MW test had slightly more statistical 

power the KS-2 test under the condition of small and equal-sized samples.  However, when 

the two equal samples were large and at least 25 with the underlying non-normal populations, 

the KS-2 test had more power than the MW test.   

Furthermore, there are still areas the need future research to fill the gap such as 

comparison the statistical power for the KS-2 and the MW tests when two unequal-sizes 

samples with different population variance, skewness, or kurtosis.  The optimal goal of this 

study is to provide guidelines for researchers in strengthening their decision when selecting 

either of these two nonparametric statistical tests in their studies.           



 166

References 

Algina, J., Olejnik, S., & Ocanto, R. (1989). Type I error rates and power estimates for 

selected two-sample tests of scale. Journal of Educational Statistics, 14(4), 373-384. 

Bai, J., & Ng, S. (2005). Tests for skewness, kurtosis, and normality for time series data. 

Journal of Business & Economic Statistics, 23(1), 49-60. 

Balakrishman, N., & Nevzorov, V. B. (2003). A primer on statistical distributions. Hoboken, 

New Jersey: A John Wiley & Sons, Inc. 

Baumgartner, W., WeiB, P., & Shindler, H. (1998). A nonparametric test for the general two-

sample problem. Biometrics, 54, 1129-1135. 

Blair, R. C., & Higgins, J. J. (1985). Comparison of the power of the paired samples t-test to 

that of Wilcoxon's sign-ranks test under various population shapes Psychological 

Bulletin, 97(1), 119-128. 

Bradley, J. V. (1968). Distribution-free statistical tests Englewood Cliffs, N.J.: .Prentice-Hall  

Buning, H. (2001). Kolmogorov-Simrnov and Cramer-Von Mises type two-sample tests with 

various weight functions. Communication Statistics, 30(4), 847-865. 

Carolan, C. A., & Tebbs, J. A. (2005). Nonparametric test for and against likelihood ratios 

ordering in the two-sample problem. Biometrika, 92(1), 159-171. 

Cliff, N., & Keats, J. A. (2003). Ordinal measurement in the behavioral sciences (2 ed.). 

Mahwah, N.J.: Lawrence Erlbaum Associates. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2 ed.). Hillsdale, N. 

J.: Lawrence Erlbaum Associates. 



 167

Conover, W. J. (1999). Practical nonparametric statistics (3 ed.). New York: John Wiley & 

Sons, Inc. 

Conover, W. J. (2005). Practical nonparametric statistics. In C. H. Lee (Ed.). 

Daniel, W. W. (1990). Applied nonparametric statistics (2 ed.). Boston: PWS-Kent 

Publishing Company. 

Dixon, W. J. (1954). Power under normality of several nonparametric tests. Annals of 

Mathematical Statistics, 20, 393-403. 

Fahoome, G. (1999). A Monte Carlo study of twenty-one nonparametric statistics with 

normal and nonnormal data. Unpublished doctoral dissertation, Wayne State 

University, Detroit, MI. 

Fahoome, G., & Sawilowsky, S. S. (2000, April 24-28). Review of twenty nonparametric 

statistics and their large sample approximations. Paper presented at the Annual 

Meeting of the American Educational Research Association, New Orleans, LA. 

Fan, X., Felsovalyi, A., Sivo, S. A., & Keenan, S. C. (2003). SAS for Monte Carlo studies: A 

guide for quantitative researchers. Cary, NC: SAS Publishing. 

Fleishman, A. I. (1978). A method for simulating non-normal distribution. Psychometrika, 

43, 521-532. 

Freund, J. E., & Williams, F. J. (1966). Dictionary/outline of basic statistics. New York: 

Dover Publications, Inc. . 

Gibbons, J. D., & Chakraborti, S. (1991). Comparisons of Mann-Whitney, student's t, and 

alternate t test for means of normal distributions. Journal of Experimental Education, 

59(3), 258-267. 



 168

Gibbons, J. D., & Chakraborti, S. (2003). Nonparametric statistical inference (4th ed.). New 

York, NY: Marcel Dekker, Inc. 

Higgins, J. J. (2004). Introduction to modern nonparametric statistics. Pacific Grove: 

Thomson Learning, Inc. 

Joanest, D. N., & Gill, C. A. (1998). Comparing measures of sample skewness and kurtosis. 

The Statistician 47(1), 183-189. 

Kasuya, E. (2001). Mann-Whitney test when variances are unequal. Animal Behaviour, 

61(6), 1247-1249. 

Keselman, H. J., & Cribbie, R. (1997). Specialized tests for detecting treatment effects in the 

two-sample problems. Journal of Experimental Education, 65(4), 355-366. 

Krishnaiah, P. R., & Sen, P. K. (1984). Nonparametric methods (Vol. 4). New York: Elsevier 

Science Publishers B. V. 

Lee, C. H. (2005, April 22). Factors affecting student learning outcomes among engineering 

students in statistics courses Paper presented at the Twenty-Third Annual Oklahoma 

Psychological Society Spring Research Conference, Edmond, OK. 

MacDonald, P. (1999). Power, Type I and Type III error rates of parametric and 

nonparametric statistical tests. Journal of Experimental Education, 67(4), 367-379. 

Marascuilo, L. A., & McSweeney, M. (1977). Nonparametric and distribution-free methods 

for social science. Monterey, CA: Brooks/Cole Publishing Company. 

Micerri, T. (1989). The Unicorn, normal curve, and other improbable creatures. 

Psychological Bulletin, 105(1), 156-166. 

Mooney, C. Z. (1997). Monte Carlo simulation. Thousand Oaks, CA: SAGE Publications, 

Inc. 



 169

Murphy, K. R. & Myors, B. (1998). Statistical power analysis: A simple and general model 

for traditional and modern hypothesis tests. Mahwah, N.J.: Lawrence Erlbaum 

Associates. 

Neave, H. R., & Worthington, P. L. (1988). Distribution-free tests. London: Unwin Hyman 

Ltd. 

Noether, G. (1967). Elements of nonparametric statistics. New York: Wiley. 

Olejnik, S. F., & Algina, J. (1987). Type I error rates and power estimates of selected 

parametric and nonparametric tests of scale. Journal of Educational Statistics, 12(1), 

45-61. 

Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An 

integrated approach. Hillsdale, New Jersey: Lawrence Erlbaum Associates. 

Penfield, D. A. (1994). Choosing a two-sample location test. Journal of Experimental 

Education 62(4), 343-350. 

Pratt, J. W., & Gibbons, J. D. (1981). Concepts of nonparametric theory. New York: 

Springer-Verlarg. 

Sackrowitz, H., & Samuel-Cahn, E. (1999). P-values as random variables -expected p values. 

The American Statistician, 53(4), 326-331. 

Schroer, G., & Trenkler, D. (1995). Exact and randomization distributions of Kolmogorov-

Smirnov tests two or three samples. Computational Statistics & Data Analysis, 20, 

185-202. 

Shavelson, R. J. (1988). Statistical reasoning for the behavioral sciences (2nd ed.). Boston: 

Allyn and Bacon, Inc. 



 170

Sheskin, D. J. (2000). Handbook of parametric and nonparametric statistical procedures. 

Baca Raton: Chapman & Hall/CRC. 

Siegel, S., & Castellan, J. N. J. (1988). Nonparametric statistics for the behavioral sciences 

(2 ed.). Boston, Massachusetts: McGraw-Hill. 

Sprent, P., & Smeeton, N. C. (2001). Applied Nonparametric Statistical Methods (3rd ed.). 

New York Chapman & Hall /CRC. 

Statistical analysis system. (1999). Cary, NC: SAS Institute Inc. 

Vogt, W. P. (1993). Dictionary of statistics and methodology: A nontechnical guide for the 

social sciences. Newbury Park, CA: Sage Publications. . 

Vogt, W. P. (2005). Dictionary of statistics and methodology: A nontechnical guide for the 

social sciences (3rd ed.). Thousand Oaks, CA: Sage Publications. 

Wilcox, R. R. (1997). Some practical reasons for reconsidering the Kolmogorov-Smirnov 

test. British Journal of Mathematical & Statistical Psychology, 50(1), 9-20. 

Wolfram, S. (2003). Mathematica 5.0. Champaign, IL Wolfram Research, Inc. 

Zimmerman, D. W. (1985). Power functions of the t test and Mann-Whitney U test under 

violation of parametric assumptions. Perceptual and Motor Skills, 61, 467-470. 

Zimmerman, D. W. (1987). Comparative power of Student t test and Mann-Whitney U test 

for unequal sample sizes and variances. The Journal of Experimental Education, 55, 

171-174. 

Zimmerman, D. W. (1998). Invalidation of parametric and nonparametric statistical tests by 

concurrent violation of two assumptions. Journal of Experimental Education, 67(1), 

55-68. 



 171

Zimmerman, D. W. (2000). Statistical significance levels of nonparametric test biased by 

heterogeneous variance of treatment groups. The Journal of General Psychology 

127(4), 354-364. 

Zimmerman, D. W. (2001b). Mimicking properties of nonparametric rank tests using scores 

that are not ranks. The Journal of General Psychology, 120(4), 509-516. 

Zimmerman, D. W. (2003). A warning about the large-sample Wilcoxon-Whitney test. 

Understanding Statistics 2(4), 267-280. 

Zimmerman, D. W. (2004). Inflation of type I error rates by unequal variance associated with 

parametric, nonparametric, and rank-transformation tests. Psicologica, 25, 103-133. 

Zimmerman, D. W., & Zumbo, B. D. (1990a). The relative power of the Wilcoxon-Mann-

Whitney test and Student t test under simple bounded transformation. The Journal of 

General Psychology, 117(4), 425-436. 

 



 172

 
 

 

 

 

 

 

 

APPENDICES 



 173

 APPENDIX I: Coefficients of Fleishman’s power function (1978) 
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 APPENDIX I CONT.: Coefficients of Fleishman’s power function 
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APPENDIX II:  E-mail Contact with Conover, W. J. 
 
Subject: A question about one formula in your book  
 
 
October 4, 2005 
 
 
 
Chin-Huey, 
  
There are no guidelines as to when we cross over from “just a few ties” to “many ties.” I 
suggest that if you are in doubt, you should use the formulas for “many ties” especially if this 
is a simulation where the number of ties will vary. 
  
Dr. Conover 
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APPENDIX III: A Sample of SAS Syntax for Generating Population Distributions 
 
 
DM "OUTPUT; CLEAR; LOG; CLEAR;"; 
OPTIONS LS=80 PS=75 NODATE; 
 
*************************************************************************; 
** AUTHOR: Chin-Huey Lee                                               **; 
** DATE: 10-26-06                                                      **; 
** UPDATE:                                                             **; 
** PURPOSE: GENERATE NORMAL POPULATION DISTRIBUTIONS AND HISTOGRAM     **; 
** REPLICAED 20000 SAMPLES of SIZE (8, 8)                              **;             
*************************************************************************; 
 
*1. GENERATE NORMAL POPULATION & HISTOGRAM; 
DATA NORMAL; 
  DO I=1 TO 20000; 
        Y = RANNOR (0); 
  OUTPUT; 
  END; 
RUN; 
title 'Normal Population Distribution Histogram'; 
PROC UNIVARIATE data=Normal; 
  var Y; 
  histogram ; 
RUN; 
QUIT; 
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APPENDIX IV: A Sample of SAS Syntax for Sampling Procedure 
 
DM "OUTPUT; CLEAR; LOG; CLEAR;"; 
OPTIONS LS=80 PS=75 NODATE; 
 
************************************************************; 
** AUTHOR: Chin-Huey Lee                                  **; 
** DATE: 10-26-06                                         **; 
** UPDATE:                                                **; 
** PURPOSE: GENERATE NORMAL POPULATIONS with SD ratio = 1 **; 
** REPLICAED 20000 SAMPLES of SIZE (4, 16)                **;                          
** NOTES:                                                 **; 
************************************************************; 
 
DATA NORMALS1; 
DO I=1 TO 20000; 
     DO J = 1 TO 4; 
        Y = RANNOR (0); 
     OUTPUT;  
     END; 
     DO K = 1 TO 16; 
        Y = RANNOR (0); 
        OUTPUT; 
  END; 
 END; 
 RUN; 
DATA SETNS1; 
SET NORMALS1; 
IF J < 5 THEN J =1; 
IF J = 5 THEN J =2; 
KEEP I J Y; 
RUN; 
*PERFORM MAN-WHITNEY AND KS-2 TESTS; 
PROC NPAR1WAY WILCOXON EDF CORRECT = NO NOPRINT; 
BY I; 
CLASS J; 
VAR Y; 
OUTPUT OUT = OUTPUTNS1 WILCOXON EDF;  
RUN; 
PROC EXPORT DATA=OUTPUTNS1  
            
OUTFILE="F:\DISSERTATION\OUTPUT1\EQUAL_SD\SAMPLE1\OUTPUTNS1.XLS"  
            DBMS= EXCEL REPLACE; 
RUN;  
*SAVE P-VALUE FOR THE MANN-WHITNEY AND THE KS-2 TESTS; 
DATA P_VALUE_NS1; 
SET OUTPUTNS1; 
KEEP P2_WIL P_KSA; 
RUN; 
*FIND TYPE I ERROR RATE; 
DATA MWTYPEI_NS1; 
  SET P_VALUE_NS1; 
  RETAIN COUNT 0; 
  IF P2_WIL < = .05 THEN COUNT = COUNT +1; 
  RENAME COUNT = MW_COUNT;  
RUN; 
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DATA KSTYPEI_NS1; 
SET P_VALUE_NS1; 
RETAIN COUNT 0; 
  IF P_KSA < = .05 THEN COUNT = COUNT +1; 
  RENAME COUNT =KS_COUNT; 
RUN; 
DATA TYPEI_NS1; 
MERGE  MWTYPEI_NS1 KSTYPEI_NS1; 
RUN; 
PROC EXPORT DATA=TYPEI_NS1  
            
OUTFILE="F:\DISSERTATION\OUTPUT1\EQUAL_SD\SAMPLE1\TYPEI_N1S1.XLS"  
            DBMS= EXCEL REPLACE; 
RUN; 
QUIT; 
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APPENDIX V: Histograms of Population Distributions (N = 20000; Y-axis: relative  
 

   frequency,  X-axis: Z score) 
 
Figure 53: Histogram; Normal Population Distribution (Skewness = 0.00, Kurtosis = 0.00) 
 

 

Figure54: Histogram; Platykurtic Population Distribution (Skewness = 0.00, Kurtosis = -                   
                0.50) 
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Figure 55: Histogram; Normal Platykurtic Population Distribution (Skewness = 0.00,  
                 Kurtosis = -1.00) 

 

Figure 56: Histogram; Leptokurtic_1 Population Distribution (Skewness = 0.00, Kurtosis =  
                 1.00) 
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Figure 57: Histogram; Leptokurtic_2 Population Distribution (Skewness = 0.00, Kurtosis =  
                  2.00) 

 

Figure 58: Histogram; Leptokurtic_3 Population Distribution (Skewness = 0.00, Kurtosis =   
                 3.75) 
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Figure 59: Histogram; Uniform-Like Population Distribution (Skewness = 0.00, Kurtosis = - 
                 1.20) 

 

Figure 60: Histogram; Logistic-Like Population Distribution (Skewness = 0.00, Kurtosis =  
                 1.30) 
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Figure 61: Histogram; Double Exponential-Like Population Distribution (Skewness = 0.00,   
                 Kurtosis = 3.00) 
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APPENDIX VI: Tables of Findings 
 
Table 7: Power of Normal Distributions When Sample Sizes Differ and SD Ratio ≠ 1  

  (α = .05) 
 

Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(4, 16) 4  .141 .068 (16, 4) 4  .007 .005 

 3  .132 .055  3  .010 .005 

 2  .111 .039  2  .015 .006 

 1
2

 .015 .006  
1
2

 .113 .037 

 1
3

 .008 .005  
1
3

 .133 .055 

 1
4

 .006 .005  
1
4

 .145 .070 

(10, 20) 4  .114 .260 (20, 10) 4 .033 .170 

 3  .107 .185  3 .031 .103 

 2  .088 .089  2 .032 .047 

 1
2

 .033 .049  
1
2

 .084 .088 

 1
3

 .032 .105  
1
3

 .102 .178 

 1
4

 .033 .171  
1
4

 .117 .261 
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Table 7 CONT.: Power of Normal Distributions When Sample Sizes Differ and SD  
                  Ratio ≠ 1  (α = .05)  
 

Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

 (10, 30) 4  .136 .436 (30, 10) 4 .016 .222 

 3  .124 .297  3 .017 .126 

 2  .100 .137  2 .021 .057 

 1
2

 .022 .056  
1
2

 .100 .139 

 1
3

 .017 .130  
1
3

 .127 .297 

 1
4

 .015 .214  
1
4

 .139 .439 

(50, 100) 4  .119 .999 (100, 50) 4 .034 .999 

 3  .105 .973  3 .030 .981 

 2  .084 .570  2 .031 .525 

 1
2

 .033 .519  
1
2

 .088 .572 

 1
3

 .032 .982  
1
3

 .108 .971 

 1
4

 .034 .999  
1
4

 .124 .999 
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Table 8: Power of Platykurtic Distribution When Sample Sizes Differ and SD Ratio ≠ 1 
  (α = .05) 

 
Power Power Sample 

Size 

SD 

Ratio MW KS-2 

Sample 

Size 

SD 

Ratio MW KS-2 

(4, 16) 4 .141 .066 (16, 4) 4 .008 .006 

 3 .138 .059  3 .009 .005 

 2 .112 .037  2 .015 .006 

 
1
2

 .014 .007  
1
2

 .116 .038 

 
1
3

 .009 .006  
1
3

 .140 .056 

 
1
4

 .007 .005  
1
4

 .141 .070 

(10, 20) 4 .121 .281 (20, 10) 4 .032 .177 

 3 .111 .189  3 .032 .110 

 2 .085 .091  2 .032 .048 

 
1
2

 .031 .051  
1
2

 .089 .095 

 
1
3

 .031 .107  
1
3

 .107 .191 

 
1
4

 .033 .182  
1
4

 .118 .272 
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Table 8 CONT.: Power of Platykurtic Distribution When Sample Sizes Differ and SD  
   Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

Size 

SD 

Ratio MW KS-2 

Sample 

Size 

SD 

Ratio MW KS-2 

(10, 30) 4 .143 .480 (30, 10) 4 .016 .234 

 3 .128 .323  3 .016 .137 

 2 .105 .151  2 .019 .062 

 1
2

 
.021 .058  1

2
 

.101 .143 

 1
3

 
.018 .136  1

3
 

.131 .328 

 1
4

 
.016 .234  1

4
 

.142 .483 

(50, 100) 4 .126 .999 (100, 50) 4 .035 1 

 3 .109 .985  3 .031 .993 

 2 .087 .623  2 .032 .581 

 1
2

 
.033 .586  1

2
 

.089 .627 

 1
3

 
.034 .993  1

3
 

.112 .986 

 1
4

 
.035 .999  1

4
 

.035 1 
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Table 9: Power of Normal Platykurtic Distributions When Sample Sizes Differ and SD 
    Ratio ≠ 1  (α = .05) 
 

Power Power Sample 

Size 

SD 

Ratio MW KS-2 

Sample 

Size 

SD 

Ratio MW KS-2 

(4, 16) 4 .144 .070 (16, 4) 4 .007 .006 

 3 .143 .059  3 .008 .005 

 2 .121 .041  2 .012 .006 

 
1
2

 .012 .006  
1
2

 .124 .040 

 
1
3

 .008 .006  
1
3

 .145 .059 

 
1
4

 .006 .006  
1
4

 .146 .069 

(10, 20) 4 .124 .304 (20, 10) 4 .033 .216 

 3 .115 .216  3 .030 .127 

 2 .092 .106  2 .031 .053 

 
1
2

 .030 .050  
1
2

 .087 .100 

 
1
3

 .031 .127  
1
3

 .115 .213 

 
1
4

 .032 .213  
1
4

 .119 .296 
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Table 9 CONT.: Power of Normal Platykurtic Distributions When Sample Sizes Differ   
     and SD Ratio ≠ 1  (α = .05) 

 
Power Power Sample 

Size 

SD 

Ratio MW KS-2 

Sample 

Size 

SD 

Ratio MW KS-2 

(10, 30) 4 .144 .574 (30, 10) 4 .017 .283 

 3 .136 .410  3 .016 .159 

 2 .111 .191  2 .021 .063 

 1
2

 
.019 .066  1

2
 

.111 .192 

 1
3

 
.016 .164  1

3
 

.145 .421 

 1
4

 
.018 .287  1

4
 

.145 .572 

(50, 100) 4 .125 1 (100, 50) 4 .035 1.000 

 3 .115 .999  3 .033 .999 

 2 .092 .819  2 .035 .805 

 1
2

 
.032 .805  1

2
 

.097 .824 

 1
3

 
.033 .999  1

3
 

.115 .999 

 1
4

 
.035 1  1

4
 

.130 1.000 
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Table 10: Power of Leptokurtic 1Distributions When Sample Sizes Differ and SD Ratio  
     ≠ 1 (α = .05) 

 
Power Power Sample 

Size 

SD 

Ratio MW KS-2 

Sample 

Size 

SD 

Ratio MW KS-2 

(4, 16) 4 .136 .066 (16, 4) 4 .008 .006 

 3 .129 .052  3 .010 .006 

 2 .107 .037  2 .017 .006 

 
1
2

 .017 .006  
1
2

 .108 .039 

 
1
3

 .009 .006  
1
3

 .130 .054 

 
1
4

 .008 .006  
1
4

 .142 .069 

(10, 20) 4 .110 .247 (20, 10) 4 .032 .156 

 3 .102 .167  3 .031 .095 

 2 .082 .084  2 .033 .044 

 
1
2

 .031 .045  
1
2

 .084 .085 

 
1
3

 .031 .045  
1
3

 .105 .170 

 
1
4

 .030 .153  
1
4

 .116 .250 
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Table 10 CONT.: Power of Leptokurtic 1Distributions When Sample Sizes Differ and  
     SD Ratio ≠ 1    (α = .05) 

 
Power Power Sample 

Size 

SD 

Ratio MW KS-2 

Sample 

Size 

SD 

Ratio MW KS-2 

(10, 30) 4 .135 .402 (30, 10) 4 .016 .200 

 3 .130 .267  3 .017 .120 

 2 .097 .129  2 .024 .055 

 
1
2

 .022 .053  
1
2

 .096 .128 

 
1
3

 .018 .118  
1
3

 .122 .261 

 
1
4

 .015 .200  
1
4

 .135 .399 

(50, 100) 4 .115 .997 (100, 50) 4 .033 .999 

 3 .106 .953  3 .035 .960 

 2 .081 .508  2 .034 .467 

 
1
2

 .033 .468  
1
2

 .085 .520 

 
1
3

 .034 .959  
1
3

 .103 .949 

 
1
4

 .033 .999  
1
4

 .119 .998 
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Table 11: Power of Leptokurtic 2 Distributions When Sample Sizes Differ and SD Ratio   
     ≠ 1    (α = .05) 

  
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .134 .063 (16, 4) 4 .008 .005 

 3 .128 .054  3 .009 .006 

 2 .103 .036  2 .019 .006 

 
1
2

 .018 .007  
1
2

 .102 .036 

 
1
3

 .010 .006  
1
3

 .125 .051 

 
1
4

 .008 .005  
1
4

 .138 .067 

(10, 20) 4 .114 .233 (20, 10) 4 .030 .148 

 3 .100 .162  3 .030 .090 

 2 .077 .081  2 .034 .046 

 
1
2

 .031 .043  
1
2

 .082 .085 

 
1
3

 .031 .090  
1
3

 .102 .165 

 
1
4

 .034 .146  
1
4

 .110 .233 
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Table 11 CONT.: Power of Leptokurtic 2 Distributions When Sample Sizes Differ and  
     SD Ratio ≠ 1    (α = .05) 

  
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .133 .373 (30, 10) 4 .016 .190 

 3 .120 .252  3 .018 .112 

 2 .096 .126  2 .024 .056 

 
1
2

 .024 .055  
1
2

 .093 .124 

 
1
3

 .018 .112  
1
3

 .120 .249 

 
1
4

 .016 .192  
1
4

 .134 .371 

(50, 100) 4 .117 .996 (100, 50) 4 .033 .998 

 3 .104 .934  3 .033 .934 

 2 .083 .476  2 .034 .422 

 
1
2

 .033 .425  
1
2

 .084 .479 

 
1
3

 .031 .939  
1
3

 .111 .930 

 
1
4

 .034 .998  
1
4

 .116 .995 
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Table 12: Power of Leptokurtic 3 Distributions When Sample Sizes Differ and SD Ratio   
                ≠ 1 (α = .05) 
 

Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .133 .065 (16, 4) 4 .008 .005 

 3 .126 .052  3 .010 .005 

 2 .102 .035  2 .016 .006 

 
1
2

 .020 .007  
1
2

 .103 .037 

 
1
3

 .011 .006  
1
3

 .125 .053 

 
1
4

 .008 .005  
1
4

 .135 .063 

(10, 20) 4 .109 .223 (20, 10) 4 .033 .141 

 3 .100 .151  3 .029 .085 

 2 .078 .079  2 .031 .043 

 
1
2

 .034 .044  
1
2

 .077 .079 

 
1
3

 .029 .087  
1
3

 .095 .149 

 
1
4

 .032 .135  
1
4

 .111 .219 
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Table 12 CONT.: Power of Leptokurtic 3 Distributions When Sample Sizes Differ and  
     SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .133 .349 (30, 10) 4 .019 .176 

 3 .118 .231  3 .017 .102 

 2 .090 .119  2 .024 .052 

 
1
2

 .025 .054  
1
2

 .093 .118 

 
1
3

 .018 .108  
1
3

 .117 .229 

 
1
4

 .015 .174  
1
4

 .133 .344 

(50, 100) 4 .111 .991 (100, 50) 4 .033 .995 

 3 .106 .906  3 .032 .902 

 2 .082 .435  2 .034 .380 

 
1
2

 .035 .387  
1
2

 .080 .442 

 
1
3

 .032 .897  
1
3

 .101 .898 

 
1
4

 .031 .994  
1
4

 .114 .992 
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 Table 13: Power of Skewed and Leptokurtic 1 Distributions When Sample Sizes Differ  
                  and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .142 .070 (16, 4) 4 .010 .007 

 3 .132 .056  3 .012 .006 

 2 .113 .039  2 .018 .007 

 
1
2

 .018 .006  
1
2

 .107 .038 

 
1
3

 .013 .007  
1
3

 .136 .060 

 
1
4

 .010 .007  
1
4

 .143 .070 

(10, 20) 4 .126 .254 (20, 10) 4 .042 .164 

 3 .109 .172  3 .039 .103 

 2 .082 .085  2 .041 .051 

 
1
2

 .036 .048  
1
2

 .083 .089 

 
1
3

 .040 .107  
1
3

 .112 .175 

 
1
4

 .042 .167  
1
4

 .119 .247 
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Table 13 CONT.: Power of Skewed and Leptokurtic 1 Distributions When Sample Sizes  
       Differ and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .149 .386 (30, 10) 4 .024 .219 

 3 .131 .262  3 .025 .129 

 2 .101 .129  2 .027 .061 

 
1
2

 .027 .061  
1
2

 .101 .130 

 
1
3

 .026 .132  
1
3

 .130 .260 

 
1
4

 .028 .218  
1
4

 .151 .392 

(50, 100) 4 .181 .996 (100, 50) 4 .092 .998 

 3 .152 .936  3 .080 .951 

 2 .109 .505  2 .057 .470 

 
1
2

 .058 .470  
1
2

 .109 .506 

 
1
3

 .073 .944  
1
3

 .151 .939 

 
1
4

 .092 .998  
1
4

 .176 .996 
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Table 14: Power of Skewed and Leptokurtic 2 Distributions When Sample Sizes Differ  
               and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .152 .079 (16, 4) 4 .016 .011 

 3 .141 .060  3 .184 .008 

 2 .113 .041  2 .020 .007 

 
1
2

 .021 .008  
1
2

 .111 .040 

 
1
3

 .018 .012  
1
3

 .135 .075 

 
1
4

 .016 .011  
1
4

 .155 .078 

(10, 20) 4 .150 .302 (20, 10) 4 .065 .228 

 3 .134 .214  3 .058 .143 

 2 .097 .099  2 .047 .062 

 
1
2

 .047 .059  
1
2

 .101 .105 

 
1
3

 .064 .277  
1
3

 .152 .301 

 
1
4

 .063 .232  
1
4

 .145 .300 
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Table 14 CONT.: Power of Skewed and Leptokurtic 2 Distributions When Sample   
               Sizes Differ and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .175 .453 (30, 10) 4 .049 .306 

 3 .154 .318  3 .043 .192 

 2 .117 .154  2 .036 .078 

 
1
2

 .039 .077  
1
2

 .116 .157 

 
1
3

 .048 .317  
1
3

 .179 .458 

 
1
4

 .047 .310  
1
4

 .177 .459 

(50, 100) 4 .300 .999 (100, 50) 4 .234 1 

 3 .260 .977  3 .190 .985 

 2 .166 .632  2 .115 .631 

 
1
2

 .110 .625  
1
2

 .165 .631 

 
1
3

 .232 1  
1
3

 .302 .999 

 
1
4

 .236 1  
1
4

 .300 .999 
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 Table 15: Power of Uniform-Like Distributions When Sample Sizes Differ and  
       SD Ratio ≠ 1 (α = .05)  

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .146 .070 (16, 4) 4 .007 .006 

 3 .137 .055  3 .008 .005 

 2 .120 .038  2 .013 .006 

 
1
2

 .012 .006  
1
2

 .120 .041 

 
1
3

 .008 .005  
1
3

 .136 .057 

 
1
4

 .007 .006  
1
4

 .144 .069 

(10, 20) 4 .124 .296 (20, 10) 4 .033 .199 

 3 .113 .206  3 .032 .120 

 2 .090 .099  2 .032 .052 

 
1
2

 .031 .052  
1
2

 .088 .097 

 
1
3

 .030 .116  
1
3

 .117 .209 

 
1
4

 .031 .198  
1
4

 .120 .289 
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 Table 15 CONT.: Power of Uniform-Like Distributions When Sample Sizes Differ and  
                    SD Ratio ≠ 1 (α = .05)  

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .146 .540 (30, 10) 4 .015 .265 

 3 .134 .383  3 .016 .149 

 2 .109 .175  2 .019 .059 

 
1
2

 .020 .059  
1
2

 .106 .170 

 
1
3

 .016 .149  
1
3

 .132 .376 

 
1
4

 .017 .272  
1
4

 .141 .544 

(50, 100) 4 .126 1 (100, 50) 4 .035 1 

 3 .117 .996  3 .032 .999 

 2 .090 .731  2 .032 .703 

 
1
2

 .031 .701  
1
2

 .093 .734 

 
1
3

 .033 .999  
1
3

 .111 .997 

 
1
4

 .033 1  
1
4

 .126 1 
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Table 16: Power of Logistic-Like Distributions When Sample Sizes Differ and SD Ratio   
                  ≠ 1 (α = .05) 
 

Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .141 .071 (16, 4) 4 .008 .006 

 3 .130 .054  3 .009 .005 

 2 .104 .037  2 .017 .007 

 
1
2

 .017 .007  
1
2

 .104 .036 

 
1
3

 .010 .006  
1
3

 .132 .057 

 
1
4

 .006 .005  
1
4

 .133 .065 

(10, 20) 4 .117 .247 (20, 10) 4 .033 .155 

 3 .103 .171  3 .034 .093 

 2 .083 .084  2 .033 .047 

 
1
2

 .031 .044  
1
2

 .084 .086 

 
1
3

 .031 .096  
1
3

 .102 .164 

 
1
4

 .031 .155  
1
4

 .116 .248 
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Table 16 CONT.: Power of Logistic-Like Distributions When Sample Sizes Differ and   
                               SD Ratio ≠ 1 (α = .05) 
 

Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .134 .390 (30, 10) 4 .015 .193 

 3 .124 .266  3 .017 .118 

 2 .100 .131  2 .023 .055 

 
1
2

 .024 .056  
1
2

 .097 .125 

 
1
3

 .019 .119  
1
3

 .124 .266 

 
1
4

 .016 .201  
1
4

 .137 .397 

(50, 100) 4 .122 .997 (100, 50) 4 .032 .999 

 3 .104 .944  3 .031 .951 

 2 .083 .502  2 .034 .451 

 
1
2

 .032 .455  
1
2

 .085 .507 

 
1
3

 .032 .951  
1
3

 .104 .945 

 
1
4

 .035 .999  
1
4

 .117 .997 
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Table 17: Power of Double Exponential-Like Distributions When Sample Sizes Differ   
                  and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .124 .066 (16, 4) 4 .010 .006 

 3 .125 .052  3 .011 .006 

 2 .102 .036  2 .017 .006 

 
1
2

 .019 .007  
1
2

 .100 .035 

 
1
3

 .012 .006  
1
3

 .122 .053 

 
1
4

 .009 .005  
1
4

 .136 .063 

(10, 20) 4 .109 .226 (20, 10) 4 .032 .139 

 3 .099 .155  3 .033 .084 

 2 .079 .080  2 .033 .046 

 
1
2

 .034 .045  
1
2

 .078 .080 

 
1
3

 .030 .087  
1
3

 .100 .156 

 
1
4

 .030 .139  
1
4

 .116 .228 
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Table 17 CONT: Power of Double Exponential -Like Distributions When Sample Sizes   
      Differ and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .130 .351 (30, 10) 4 .018 .177 

 3 .120 .244  3 .017 .108 

 2 .094 .119  2 .025 .054 

 
1
2

 .023 .053  
1
2

 .097 .122 

 
1
3

 .019 .107  
1
3

 .119 .242 

 
1
4

 .016 .186  
1
4

 .132 .357 

(50, 100) 4 .113 .992 (100, 50) 4 .033 .996 

 3 .102 .912  3 .033 .913 

 2 .083 .452  2 .033 .404 

 
1
2

 .034 .403  
1
2

 .082 .449 

 
1
3

 .034 .913  
1
3

 .101 .911 

 
1
4

 .034 .996  
1
4

 116 .992 
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Table 18: Power of Skewed-Leptokurtic Distributions When Sample Sizes Differ and  
            SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .197 119 (16, 4) 4 .043 .041 

 3 .187 .095  3 .040 .026 

 2 .174 .069  2 .034 .014 

 
1
2

 .036 .015  
1
2

 .165 .065 

 
1
3

 .040 .028  
1
3

 .186 .095 

 
1
4

 .044 .041  
1
4

 .192 .113 

(10, 20) 4 .262 .552 (20, 10) 4 .176 .627 

 3 .248 .472  3 .161 .517 

 2 .199 .305  2 .125 .293 

 
1
2

 .123 .293  
1
2

 .195 .300 

 
1
3

 .160 .514  
1
3

 .248 .466 

 
1
4

 .175 .627  
1
4

 .259 .553 



 207

Table 18 CONT.: Power of Skewed-Leptokurtic Distributions When Sample Sizes   
     Differ and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .295 .800 (30, 10) 4 .168 .801 

 3 .281 .719  3 .143 .692 

 2 .231 .534  2 .113 .410 

 
1
2

 .115 .409  
1
2

 .229 .532 

 
1
3

 .149 .695  
1
3

 .278 .719 

 
1
4

 .164 .799  
1
4

 .300 .798 

(50, 100) 4 .675 1 (100, 50) 4 .733 1 

 3 .647 1  3 .689 1 

 2 .544 1  2 .556 1 

 
1
2

 .555 1  
1
2

 .548 1 

 
1
3

 .688 1  
1
3

 .641 1 

 
1
4

 .730 1  
1
4

 .675 1 
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Table 19: Power of Skewed Distributions When Sample Sizes Differ and SD Ratio ≠ 1   
    (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .152 .076 (16, 4) 4 .013 .010 

 3 .151 .064  3 .012 .009 

 2 .126 .042  2 .016 .007 

 
1
2

 .015 .007  
1
2

 .125 .041 

 
1
3

 .014 .007  
1
3

 .151 .065 

 
1
4

 .014 .011  
1
4

 .155 .079 

(10, 20) 4 .149 .351 (20, 10) 4 .056 .304 

 3 .134 .256  3 .055 .201 

 2 .113 .133  2 .045 .078 

 
1
2

 .045 .078  
1
2

 .111 .131 

 
1
3

 .052 .196  
1
3

 .139 .262 

 
1
4

 .058 .305  
1
4

 .153 .358 
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Table 19 CONT.: Power of Skewed Distributions When Sample Sizes Differ and SD  
     Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .172 .615 (30, 10) 4 .040 .421 

 3 .162 .471  3 .034 .270 

 2 .134 .258  2 .033 .097 

 
1
2

 .032 .096  
1
2

 .132 .256 

 
1
3

 .035 .276  
1
3

 .161 .475 

 
1
4

 .038 .424  
1
4

 .178 .618 

(50, 100) 4 .266 1 (100, 50) 4 .179 1 

 3 .245 1  3 .166 1 

 2 .195 .945  2 .122 .979 

 
1
2

 .120 .980  
1
2

 .186 .946 

 
1
3

 .164 1  
1
3

 .244 1 

 
1
4

 .185 1  
1
4

 .265 1 
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Table 20: Power of Skewed and Platykurtic 1 Distributions When Sample Sizes Differ  
     and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .145 .072 (16, 4) 4 .009 .008 

 3 .142 .059  3 .010 .006 

 2 .123 .041  2 .014 .006 

 
1
2

 .014 .006  
1
2

 .122 .039 

 
1
3

 .010 .006  
1
3

 .145 .061 

 
1
4

 .010 .008  
1
4

 .147 .071 

(10, 20) 4 .129 .324 (20, 10) 4 .043 .247 

 3 .120 .231  3 .039 .157 

 2 .102 .117  2 .037 .062 

 
1
2

 .037 .061  
1
2

 .098 .115 

 
1
3

 .040 .161  
1
3

 .123 .232 

 
1
4

 .044 .251  
1
4

 .137 .327 
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Table 20 CONT.: Power of Skewed and Platykurtic 1 Distributions When Sample Sizes   
           Differ and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .163 .580 (30, 10) 4 .027 .351 

 3 .153 .438  3 .024 .204 

 2 .120 .211  2 .027 .079 

 
1
2

 .024 .076  
1
2

 .113 .205 

 
1
3

 .025 .206  
1
3

 .148 .430 

 
1
4

 .028 .346  
1
4

 .159 .582 

(50, 100) 4 .195 1 (100, 50) 4 .098 1 

 3 .175 .999  3 .089 1 

 2 .134 .886  2 .072 .917 

 
1
2

 .070 .918  
1
2

 .138 .887 

 
1
3

 .089 1  
1
3

 .177 .999 

 
1
4

 .098 1  
1
4

 .192 1 
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Table 21: Power of Skewed and Platykurtic 2 Distributions When Sample Sizes Differ  
     and SD Ratio ≠ 1 (α = .05) 
 

Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(4, 16) 4 .146 .074 (16, 4) 4 .007 .007 

 3 .136 .054  3 .008 .005 

 2 .124 .039  2 .012 .006 

 
1
2

 .013 .006  
1
2

 .123 .039 

 
1
3

 .010 .006  
1
3

 .146 .058 

 
1
4

 .009 .007  
1
4

 .151 .075 

(10, 20) 4 .134 .328 (20, 10) 4 .039 .243 

 3 .118 .233  3 .037 .155 

 2 .096 .114  2 .033 .063 

 
1
2

 .035 .065  
1
2

 .095 .114 

 
1
3

 .034 .152  
1
3

 .117 .234 

 
1
4

 .037 .244  
1
4

 .124 .321 
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Table 21 CONT.: Power of Skewed and Platykurtic 2 Distributions When Sample Sizes   
        Differ and SD Ratio ≠ 1 (α = .05) 

 
Power Power Sample 

 Size 

SD  

Ratio MW KS-2 

Sample 

 Size 

SD  

Ratio MW KS-2 

(10, 30) 4 .155 .622 (30, 10) 4 .020 .340 

 3 .145 .461  3 .021 .200 

 2 .118 .226  2 .020 .071 

 
1
2

 .022 .070  
1
2

 .118 .226 

 
1
3

 .018 .196  
1
3

 .139 .458 

 
1
4

 .019 .337  
1
4

 .151 .615 

(50, 100) 4 .154 1 (100, 50) 4 .057 1 

 3 .139 1  3 .051 1 

 2 .111 .917  2 .048 .942 

 
1
2

 .044 .941  
1
2

 .110 .913 

 
1
3

 .051 1  
1
3

 .136 1 

 
1
4

 .056 1  
1
4

 .150 1 
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 Table 22: Power of Normal Populations with ONLY SD Ratios Are Different  
                  (SD Ratio ≠ 1 & α = .05) 
 

POWE7R POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .070 .082 (8, 8) .061 .035 

(16, 16) .074 .358 (16, 16) .053 .098 

(25, 25) .077 .643 (25, 25) .058 .152 
4 

(50, 50) .075 .989 

1
2

 

(50, 50) .060 .383 

(8, 8) .066 .056 (8, 8) .069 .060 

(16, 16) .064 .224 (16, 16) .063 .223 

(25, 25) .070 .409 (25, 25) .070 .414 
3 

(50, 50) .067 .880 

1
3

 

(50, 50) .069 .877 

(8, 8) .056 .033 (8, 8) .071 .083 

(16, 16) .052 .093 (16, 16) .072 .344 

(25, 25) .058 .153 (25, 25) .072 .639 
2 

(50, 50) .058 .375 

1
4

 

(50, 50) .074 .987 
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Table 23: Power of Platykurtic Populations with ONLY SD Ratios Are Different   
                 (SD Ratio ≠ 1 & α = .05) 

 
POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .069 .085 (8, 8) .057 .033 

(16, 16) .072 .376 (16, 16) .055 .098 

(25, 25) .078 .685 (25, 25) .063 .171 
4 

(50, 50) .080 .994 

1
2

 

(50, 50) .059 .418 

(8, 8) .069 .061 (8, 8) .066 .061 

(16, 16) .066 .236 (16, 16) .066 .236 

(25, 25) .067 .444 (25, 25) .071 .451 
3 

(50, 50) .067 .915 

1
3

 

(50, 50) .068 .918 

(8, 8) .060 .035 (8, 8) .069 .085 

(16, 16) .056 .100 (16, 16) .071 .375 

(25, 25) .060 .167 (25, 25) .075 .695 
2 

(50, 50) .059 .425 

1
4

 

(50, 50) .076 .994 
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Table 24: Power of Normal Platykurtic Populations with ONLY SD Ratios Are    
                Different (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .076 .097 (8, 8) .059 .034 

(16, 16) 072 .444 (16, 16) .057 .117 

(25, 25) .075 .794 (25, 25) .057 .203 
4 

(50, 50) .083 1.000 

1
2

 

(50, 50) .063 .586 

(8, 8) .072 .070 (8, 8) .066 .068 

(16, 16) .080 .292 (16, 16) .066 .288 

(25, 25) .075 .569 (25, 25) .070 .569 
3 

(50, 50) .073 .981 

1
3

 

(50, 50) .071 .982 

(8, 8) .061 .038 (8, 8) .076 .100 

(16, 16) .057 .121 (16, 16) .073 .444 

(25, 25) .060 .207 (25, 25) .079 .800 
2 

(50, 50) .064 .583 

1
4

 

(50, 50) .081 .992 
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Table 25: Power of Leptokurtic_1 Populations with ONLY SD Ratios Are Different   
                (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .070 .078 (8, 8) .057 .032 

(16, 16) .070 .318 (16, 16) .057 .093 

(25, 25) .074 .588 (25, 25) .059 .137 
4 

(50, 50) .072 .974 

  1
2

 

(50, 50) .060 .345 

(8, 8) .063 .053 (8, 8) .067 .055 

(16, 16) .062 .203 (16, 16) .064 .203 

(25, 25) .061 .371 (25, 25) .065 .359 
3 

(50, 50) .067 .828 

1
3

 

(50, 50) .065 .824 

(8, 8) .058 .034 (8, 8) .073 .079 

(16, 16) .052 .089 (16, 16) .070 .316 

(25, 25) .057 .142 (25, 25) .074 .588 
2 

(50, 50) .057 .345 

1
4

 

(50, 50) .071 .974 
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Table 26: Power of Leptokurtic_2 Populations with ONLY SD Ratios Are Different   
                (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .071 .075 (8, 8) .055 .029 

(16, 16) .069 .297 (16, 16) .053 .087 

(25, 25) .073 .551 (25, 25) .056 .133 
4 

(50, 50) .073 .963 

1
2

 

(50, 50) .057 .314 

(8, 8) .064 .052 (8, 8) .062 .051 

(16, 16) .060 .185 (16, 16) .059 .186 

(25, 25) .068 .345 (25, 25) .069 .347 
3 

(50, 50) .068 .791 

1
3

 

(50, 50) .066 .789 

(8, 8) .058 .032 (8, 8) .070 .076 

(16, 16) .055 .087 (16, 16) .069 .300 

(25, 25) .056 .133 (25, 25) .072 .548 
2 

(50, 50) .057 .315 

1
4

 

(50, 50) .079 .962 
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Table 27: Power of Leptokurtic_3 Populations with ONLY SD Ratios Are Different  
                (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .071 .072 (8, 8) .057 .031 

(16, 16) .068 .280 (16, 16) .052 .083 

(25, 25) .068 .504 (25, 25) .059 .126 
4 

(50, 50) .070 .944 

1
2

 

(50, 50) .056 .290 

(8, 8) .067 .051 (8, 8) .065 .051 

(16, 16) .062 .179 (16, 16) .062 .182 

(25, 25) .069 .318 (25, 25) .063 .306 
3 

(50, 50) .064 .742 

1
3

 

(50, 50) .066 .737 

(8, 8) .054 .031 (8, 8) .065 .066 

(16, 16) .055 .084 (16, 16) .070 .279 

(25, 25) .056 .122 (25, 25) .071 .506 
2 

(50, 50) .055 .288 

1
4

 

(50, 50) .073 .943 
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Table 28: Power of Skewed Populations with ONLY SD Ratios Are Different  
   (SD Ratio ≠ 1 & α = .05) 

 
POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .091 .122 (8, 8) .070 .046 

(16, 16) .109 .535 (16, 16) .081 .173 

(25, 25) .129 .858 (25, 25) .094 .338 
4 

(50, 50) .191 1.000 

1
2

 

(50, 50) .130 .823 

(8, 8) .081 .089 (8, 8) .081 .088 

(16, 16) .085 .382 (16, 16) .096 .385 

(25, 25) .122 .697 (25, 25) .121 .697 
3 

(50, 50) .177 .994 

1
3

 

(50, 50) .174 .994 

(8, 8) .069 .047 (8, 8) .089 .124 

(16, 16) .079 .176 (16, 16) .106 .530 

(25, 25) .097 .337 (25, 25) .133 .861 
2 

(50, 50) .135 .823 

1
4

 

(50, 50) .197 1.000 
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Table 29: Power of Skewed and Platykurtic_1 Populations with ONLY SD Ratios 
         Are Different (SD Ratio ≠ 1 & α = .05) 

 
POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .090 .123 (8, 8) .071 .046 

(16, 16) .108 .532 (16, 16) .078 .171 

(25, 25) .140 .895 (25, 25) .095 .331 
4 

(50, 50) .195 1.000 

1
2

 

(50, 50) .131 .820 

(8, 8) .083 .087 (8, 8) .084 .087 

(16, 16) .100 .382 (16, 16) .095 .381 

(25, 25) .123 .689 (25, 25) .123 .691 
3 

(50, 50) .175 .994 

1
3

 

(50, 50) .176 .995 

(8, 8) .070 .045 (8, 8) .090 .127 

(16, 16) .080 .175 (16, 16) .106 .526 

(25, 25) .096 .333 (25, 25) .135 .864 
2 

(50, 50) .133 .823 

1
4

 

(50, 50) .188 1.000 
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Table 30: Power of Skewed and Platykurtic_2 Populations with ONLY SD Ratios 
           Are Different (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .078 .107 (8, 8) .065 .041 

(16, 16) .081 .490 (16, 16) .058 .135 

(25, 25) .089 .846 (25, 25) .066 .267 
4 

(50, 50) .100 1.000 

1
2

 

(50, 50) .074 .737 

(8, 8) .071 .071 (8, 8) .072 .079 

(16, 16) .071 .336 (16, 16) .074 .336 

(25, 25) .078 .644 (25, 25) .084 .646 
3 

(50, 50) .088 .994 

1
3

 

(50, 50) .088 .994 

(8, 8) .064 .041 (8, 8) .077 .079 

(16, 16) .063 .140 (16, 16) .079 .498 

(25, 25) .066 .265 (25, 25) .087 .851 
2 

(50, 50) .077 .742 

1
4

 

(50, 50) .098 1.000 
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Table 31: Power of Skewed and Leptokurtic_1 Populations with ONLY SD Ratios 
    Are Different (SD Ratio ≠ 1 & α = .05) 

 
POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .071 .077 (8, 8) .059 .031 

(16, 16) .085 .323 (16, 16) .059 .097 

(25, 25) .095 .577 (25, 25) .065 .145 
4 

(50, 50) .117 .970 

1
2

 

(50, 50) .077 .349 

(8, 8) .070 .059 (8, 8) .069 .058 

(16, 16) .072 .205 (16, 16) .073 .209 

(25, 25) .081 .367 (25, 25) .084 .372 
3 

(50, 50) .102 .809 

1
3

 

(50, 50) .103 .811 

(8, 8) .057 .033 (8, 8) .075 .077 

(16, 16) .057 .091 (16, 16) .084 .322 

(25, 25) .067 147 (25, 25) .098 .578 
2 

(50, 50) .073 .337 

1
4

 

(50, 50) .122 .967 



 224

Table 32: Power of Skewed and Leptokurtic_2 Populations with ONLY SD Ratios 
    Are Different (SD Ratio ≠ 1 & α = .05) 

 
POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .090 .102 (8, 8) .068 .039 

(16, 16) .115 .404 (16, 16) .073 .119 

(25, 25) .144 .680 (25, 25) .088 .190 
4 

(50, 50) .221 .988 

1
2

 

(50, 50) .118 .454 

(8, 8) .084 .073 (8, 8) .082 .072 

(16, 16) .097 .267 (16, 16) .096 .268 

(25, 25) .125 .477 (25, 25) .123 .474 
3 

(50, 50) .186 .904 

1
3

 

(50, 50) .191 .902 

(8, 8) .065 .037 (8, 8) .089 .100 

(16, 16) .076 .118 (16, 16) .114 .406 

(25, 25) .087 .192 (25, 25) .144 .682 
2 

(50, 50) .122 .461 

1
4

 

(50, 50) .222 .988 
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Table 33: Power of Skewed-Leptokurtic Populations with ONLY SD Ratios Are  
    Different (SD Ratio ≠ 1 & α = .05) 

 
POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .153 .243 (8, 8) .117 .112 

(16, 16) .252 .795 (16, 16) .185 .485 

(25, 25) .357 .976 (25, 25) .261 .787 
4 

(50, 50) .580 1.000 

1
2

 

(50, 50) .446 .997 

(8, 8) .146 .193 (8, 8) .143 .196 

(16, 16) .228 .693 (16, 16) .232 .693 

(25, 25) .326 .945 (25, 25) .331 .942 
3 

(50, 50) .540 1.000 

1
3

 

(50, 50) .549 1.000 

(8, 8) .115 .114 (8, 8) .158 .246 

(16, 16) .175 .472 (16, 16) .251 .787 

(25, 25) .258 .781 (25, 25) .357 .978 
2 

(50, 50) .445 .997 

1
4

 

(50, 50) .575 1.000 
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Table 34: Power of Uniform-Like Populations with ONLY SD Ratios Are Different  
                (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .074 .094 (8, 8) .061 .036 

(16, 16) .075 .423 (16, 16) .054 .108 

(25, 25) .075 .764 (25, 25) .060 .188 
4 

(50, 50) .077 .998 

1
2

 

(50, 50) .064 .510 

(8, 8) .070 .066 (8, 8) .069 .067 

(16, 16) .068 .275 (16, 16) .068 .271 

(25, 25) .070 .525 (25, 25) .071 .514 
3 

(50, 50) .070 .963 

1
3

 

(50, 50) .073 .967 

(8, 8) .059 .035 (8, 8) .072 .093 

(16, 16) .056 .110 (16, 16) .073 .427 

(25, 25) .061 .183 (25, 25) .078 .769 
2 

(50, 50) .060 .507 

1
4

 

(50, 50) .080 .999 
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Table 35: Power of Logistic-Like Populations with ONLY SD Ratios Are Different 
                (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .071 .079 (8, 8) .056 .031 

(16, 16) .071 .312 (16, 16) .055 .090 

(25, 25) .071 .574 (25, 25) .057 .138 
4 

(50, 50) .075 .970 

1
2

 

(50, 50) .058 .328 

(8, 8) .064 .053 (8, 8) .067 .054 

(16, 16) .061 .200 (16, 16) .065 .200 

(25, 25) .062 .357 (25, 25) .067 .352 
3 

(50, 50) .067 .809 

1
3

 

(50, 50) .067 .812 

(8, 8) .058 .033 (8, 8) .067 .071 

(16, 16) .054 .090 (16, 16) .072 .313 

(25, 25) .056 .139 (25, 25) .073 .574 
2 

(50, 50) .055 .331 

1
4

 

(50, 50) .074 .972 
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Table 36: Power of Double Exponential-Like Populations with ONLY SD Ratios Are 
                Different (SD Ratio ≠ 1 & α = .05) 
 

POWER POWER SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

SD 

RATIO 

SAMPLE 

SIZE MW KS-2 

(8, 8) .070 .074 (8, 8) .058 .033 

(16, 16) .069 .289 (16, 16) .053 .084 

(25, 25) .073 .530 (25, 25) .057 .127 
4 

(50, 50) .075 .949 

1
2

 

(50, 50) .053 .292 

(8, 8) .062 .049 (8, 8) .064 .052 

(16, 16) .062 .181 (16, 16) .062 .184 

(25, 25) .067 .320 (25, 25) .066 .323 
3 

(50, 50) .067 .755 

1
3

 

(50, 50) .067 .760 

(8, 8) .056 .030 (8, 8) .069 .072 

(16, 16) .054 .085 (16, 16) .069 .286 

(25, 25) .054 .129 (25, 25) .071 .524 
2 

(50, 50) .055 .293 

1
4

 

(50, 50) .076 .950 
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