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1. Introduction 

The study of capital markets at the level of the transaction, commonly referred 

to as the study of market microstructure, is generally concerned with (Madhavan, 

2000): a) price formation and price discovery, b) market structure and design, and c) 

the implications of information and disclosure for trading and the price process.i  

Price volatility and liquidity often surface as central themes in empirical as well as 

theoretical research in the area1 because these characteristics impact directly or 

indirectly all aspects of financial science and financial decision-making, including 

models of asset prices, and thus the cost of capital. As such, understanding how the 

microstructure of markets empirically influences volatility and liquidity is an 

important line of inquiry.  This study is an empirical examination of the determinants 

and behavior of price volatility and liquidity utilizing a unique measurement process 

that preserves the information inherent in transaction prices.  

A thorough understanding of the determinants and behavior of volatility and 

liquidity and how they are interconnected, requires that empirical analysis be carried 

out at the level of the transaction. Most studies of these characteristics of security 

prices however have traditionally relied on data measured over arbitrarily chosen 

fixed time intervals not at the transaction level2. Fixed interval data by its nature 

                                                 
1 For example, Roll (1984), Hasbrouck (1991), Stoll (1989), Kyle (1985), Glosten and Milgrom 
(1985), Easley, Keifer, O’Hara, and Paperman (1996), Foster and Viswanathan (1995), Lee, Mucklow, 
and Ready (1993), Goldstein and Kavajecz (2000) Jones and Lipson (2001), Chordia, Roll, and 
Subrahmanyam (2002), and Kaul, and Lipson (1994). 
2 For example, Chordia, Roll, and Subrahmanyam (2000), Hasbrouck and Seppi (2001), Harford and 
kaul (2004), Foster and Viswanathan (1990), Harris (1986), Wood, McInish and Ord (1985), Lee, 
Mucklow, and Ready (1993), Bessembinder (2003) Goldstein and Kavajecz (2000), Hasbrouck and 
Sofianos (1993), and Jones and Lipson (2001). 
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masks critical aspects of the true underlying irregularly spaced transaction series. 

Further, fixed interval data also tends to create artificial behavior that may not be 

reflective of the underlying dynamics of  transaction price series, such as unknown 

heteroskedasticity and artificial autocorrelation3. Finally, extant theory is in fact a 

theory of transactions. Drawing inferences about theories based upon transactions 

from tests based on fixed interval data may lead to unknown biases in conclusions. 

This study circumvents the problem by working with a metric that preserves the 

information inherent in the actual irregularly spaced transaction series. The metric is 

commonly referred to as ‘Price Duration’4. 

This study is divided into three parts, each addressing a particular question 

involving price volatility and liquidity. I first focus on the determinants of volatility 

and liquidity. I then investigate how a change in market design, the shift by the NYSE 

to a decimalization pricing protocol, influenced the relation between the determinants 

of volatility and liquidity and those measures. I finish with an analysis of the recently 

conjectured hypothesis that there are common factors which influence the liquidity of 

financial securities. That analysis focuses on whether such common influences can be 

said to exist once one controls for the theoretical determinants of liquidity. The 

common thread tying these three parts together is the use of intra-day price duration 

as a reflection of the transaction process. 

Price durations are defined as the time between successive price changes. 

They can be interpreted as the time it takes for the price to move up or down by a 
                                                 
3 Engle and Lange (2001),  Lo and MacKinlay (1988). 
4 As used by Engle and Lange (2001). 
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fixed increment. Durations are an appealing alternative to modeling price dynamics 

using a fixed-interval time series because they preserve the fundamental 

characteristics of irregularly spaced transaction data. Further, as shown later, a unique 

feature of a price duration is that it also provides a measure of the inverse of realized 

price volatility. Price durations therefore allow direct tests of the determinants of 

volatility that preserve the inherent informational richness of the data. In addition 

models of the dynamics of price duration allow the computation of a measure of 

expected volatility, a predicted determinant of liquidity. By approaching the price 

formation process from the direction of price duration I am able to preserve 

information about the underlying transaction process that is lost using time series 

price data that is based upon a fixed interval. 

I formulate and test microstructure hypotheses about volatility and liquidity 

utilizing a general model of the dynamics of price duration that accounts for 

conditional autocorrelation effects, namely an Autoregressive Conditional Duration 

(ACD) model5. The first part of this study involves an investigation of the dynamics 

of price duration for a sample of NYSE stocks.  Because a price duration can be 

shown to measure the inverse of volatility, the models and tests constitute an analysis 

of the determinants and behavior of volatility. Thus, the first part of this study 

initially focuses on the microstructure of price formation and specifically on 

volatility. I also investigate the determinants and behavior of liquidity. Expected 

                                                 
5 Engle and Russell (1998), Engle and Lange (2001), Bauwens and Giot (2000). 

  
3 



 

volatility is predicted to influence liquidity by numerous extant theories6. The 

dynamic model of price duration allows me to compute expected volatility thus also 

allowing me to estimate its relation to liquidity. Another unique feature of this study 

is the definition and analysis of a direct measure of liquidity, the signed order 

imbalance, in contrast to measures such as volume which only indirectly measure 

liquidity and by their nature mask the true underlying fundamental. The second part 

of the study deals with market structure and design issues. The specific focus is on the 

impact of the recent NYSE decimalization upon the dynamics of volatility and 

liquidity. I examine in detail how the dynamic models of volatility and liquidity were 

influenced by this shift in market design (protocol). The third part of the study deals 

again with price formation but focuses on the recent conjecture that liquidity of 

securities is influenced by a set of common factors. I investigate whether common 

influences are present in the raw data, but more importantly whether common 

influences are present once controls for variables predicted to influence liquidity. 

This is the first study to present a thorough set of tests of the determinants of 

volatility and liquidity using price duration as the underlying metric. In addition it is 

the first study to utilize such models to investigate the effects of a market protocol 

change, in this case the switch to a decimalization pricing system by the NYSE. 

Finally, this is the first study to examine the issue of commonality in liquidity using 

both an informational rich measure of liquidity, signed order imbalances, but also a 

measure of liquidity that controls for its underlying determinants. One such 

                                                 
6 Virtually all information asymmetry microstructure works like Kyle (1985), Easley and O;Hara 
(1987), as well as Escribano, Pascual, and Tapia (2002), and Chordia, Roll, and Subrahmanyan (2001). 
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determinant being expected volatility, which itself is computed from a price duration 

model that also preserves the informational richness of the transaction price series. 

The study presents an alternative empirical estimation framework to the works of 

Hasbrouck and Seppi (2001) and Chordia, Roll, and Subrahmanyam (2000) which are 

both rooted in fixed-interval data and which do not directly control for other 

determinants at the microstructure level. 

This study uses intra-day transaction data for a sample of NYSE stocks to 

construct realized price durations, defined as the lengths of time between successive 

price changes of at least a pre-defined threshold size. The data are for the period 

October 2, 2000 till May 31, 2001, and are drawn from the NYSE TAQ data set. 

Associated with each such duration, I isolate relevant concurrent or cumulated 

transaction characteristics such as the bid-ask spread, quoted depth, etc., called 

duration marks. These data are also drawn from the TAQ data set. Price durations 

have the unique feature that they are always non-negative. The dynamics of price 

duration are modeled using a modified Autoregressive Conditional Duration (ACD) 

specification7 which directly accounts for the non-negative characteristic. The model 

is extremely well suited for analyzing high frequency data exhibiting volatility 

clusters, autoregressive effects, and occurring at irregularly spaced intervals because 

it circumvents the price discreteness bias and bid-ask bounce problems of fixed-

period time series models. Rather, it is a dynamic model of the event time segregation 

                                                 
7 The ACD model was first developed and presented in Engle & Russell, (1998). 
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of real price/information events between successive price deteriorations8. The 

approach also helps avoid the well-documented problem of spurious serial cross-

autocorrelation associated with fixed-interval returns arising from non-trading period 

time-deformations (Lo and MacKinlay 1988). In addition, the duration construct 

processes the irregularly-spaced time series data without introducing the inevitable 

heteroskedasticity problems associated with a standard fixed-interval time series 

approach (Engle and Russell, 1998). 

My results can be summarized as follows. I find that conditional volatility is 

largely determined by the interaction of past volatility, lagged (change in) nominal 

spread, and the lags of transaction intensity, quoted depth and absolute price change. 

The finding is consistent with the predictions of information asymmetry 

microstructure theories of Roll (1984), Kyle (1985), Glosten and Milgrom (1985), 

Bagehot (1971), Easley and O’Hara (1987)9. I find that liquidity, measured as signed 

order imbalances is determined by conditional volatility and other information 

asymmetry proxies like lagged spread, volume, number of transactions, and absolute 

price change, consistent with the predictions of Kyle (1985), Glosten and Milgrom 

(1985), Chordia, Roll, and Subrahmanyam (2001), and Lee, Mucklow and Ready 

(1993). The results indicate that the change in market design, the shift by the NYSE 

to a decimalization pricing scheme, affected the dynamics of mid-quote price 

formation and price revision. There is evidence conditional volatility fell following 

                                                 
8 Similar to the constructs initially proposed in Cho and Frees (1998). 
9 Also Hasbrouck (1991), Stoll (1989), Blume, Easley, and O’Hara (1994)., Easley, Keifer, O’Hara, 
and Paperman (1996), Hasbrouck (1988), Foster and Viswanathan (1995), Easley and O’Hara (1992), 
and Jones, Kaul, and Lipson (1994). 
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the switch to decimalization, consistent with the findings of Bessembinder (2003) and 

in agreement with the argument made by decimalization proponents that a refinement 

in the pricing grid would lead to more continuous, correct and less volatile pricing. In 

addition, decimalization exerted a negative impact on liquidity, as measured by the 

dynamics of the realized market depth formation process, consistent with the 

conclusions in Harris (1991, 1994), Grossman and Miller (1998), and Seppi (1997). 

Finally, the results on tests for commonality confirm the findings in Hasbrouck and 

Seppi (2001) and Chordia, Roll and Subrahmanyam (2000) of a single latent factor 

explaining about 15% of liquidity co-variation. The commonality evidence disappears 

however after controlling for the effects of conditional volatility and microstructure 

variables. I conclude from these tests, that the documented commonality in liquidity 

is generated by the underlying fundamental process of liquidity formation, including 

the subsumed microstructural co-formation of volatility and price. 

The study begins with a review of the relevant literature. A description of 

ACD methodology, models, and variations pertinent to each of the three issues is then 

presented. The data are then described, as well as filters and algorithms for handling 

intraday transactions. I then formulate and test different microstructure hypotheses for 

each of the three issues addressed, and describe the results. The final section provides 

concluding remarks. 
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2. Relevant Literature and Research Outline 

Until recently, empirical studies were limited by the scarcity and limitations of 

transactions data. New and much more detailed transaction databases have, however 

become available in recent years. Researchers now have the opportunity to access the 

whole universe of transactions data, as databases exist which record every transaction 

and its related characteristics. With the advent of intra-day transaction datasets, 

testing theoretical models of the workings of capital markets and the price formation 

process have become feasible. Extant literature has focused largely on the cost of 

immediacy and transaction services, and the impact of that cost on the short run 

behavior of security prices10. That particular area of research constitutes the field of 

“market microstructure”. 

Market microstructure is primarily concerned with the market for transaction 

services, and the implications for prices. Whereas asset pricing models usually 

assume frictionless capital markets, market microstructure deals with the trading costs 

and frictions characterizing actual financial markets. In addition, microstructure 

theory is closely linked to the economic implications of information, since trading 

costs are very closely related to the information in traders’ possession. In particular, 

microstructure models focus on the structural and informational frictions causing an 

asset’s price to diverge from its full-information expectation. 

 

 

                                                 
10 Stoll, (2002). For an excellent review, see O’Hara (1995), and Harris (2003). 
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2.1. Market Microstructure 

Liquidity (defined as the ability to ‘trade large size quickly, at low cost, when 

you want to trade’11) is determined by the interaction of two primary fundamentals, 

the bid-ask spread and market depth. 

 

2.1.1 Models of the Bid-Ask Spread 

The formation and components of the bid-ask spread, as well as how and why 

it differs across securities has been in the focus of considerable research12. 

Accounting for the bulk of trading costs and measuring one major dimension of 

liquidity, the bid-ask spread is defined as the difference between what buyers must 

pay and what sellers receive if they post active, market orders and trade through a 

centralized system or a market maker. The literature has identified several 

components of the bid-ask spread, the most important of which are: order handling 

costs13, non competitive pricing14, inventory risk15, the option effect16, and 

asymmetric information17. As Stoll (2002) explains, these factors are not independent. 

Inventory risk, the option effect, and asymmetric information are all related to 

uncertainty. Inventory risk arises from the release of unanticipated public information 

after inventory is acquired; the option effect arises from public information releases 

                                                 
11 Harris, (2003). 
12 For an excellent review of market microstructure literature, see O’hara (1995), Stoll (2002), and 
Harris (2003). 
13 Demsetz (1968), etc.. 
14 Garman (1976) and Amihud and Mendelson (1980), atc. 
15 Smidt (1971), Stoll (1978). 
16 The option effect was developed by Copeland and Galai (1983). 
17 Originated by Bagehot (1971), Black (1986.) 
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before the trade; the adverse selection component results from private information 

held by informed traders before the trade. The order handling component of the 

spread is basically compensation for the services and resources market makers 

expend. I now turn to a brief review of how the bid-ask spread is influenced by the 

inventory and information effects.  

 

2.1.1.1. Inventory Models 

The study of market microstructure arose as an alternative to classical 

frictionless Walrasian models of trading behavior. Frictionless models work fine 

under perfect competition and free entry assumptions. Central to the study of market 

microstructure however, is the functioning of market makers as agents that provide 

liquidity and price continuity, and promote price stability.  

Early research modeled the market maker’s behavior as a supplier of 

“predictive immediacy,” the bid-ask spread being his return18. Early work explained 

the bid-ask spread through trading volume, the stock’s risk level, price, and firm size. 

For instance Garman (1976) and Amihud and Mendelson (1980) consider a single 

monopolistic market maker, with the bid-ask spread arising as compensation for the 

likelihood of bankruptcy or failure to provide liquidity.  

These static models have limited ability to “explain variation in bid-ask spread 

as a part of intraday price dynamics” (Madhavan, 2000, page 9.) Since dealers must 

maintain an inventory in order to ensure a smooth trading process and price 

                                                 
18 Demsetz (1968). 
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continuity, their holdings will be affected by past transactions and expectations about 

future order flow. Order flow and hence inventory level is uncertain however, so a 

component of the bid-ask spread dealers charge will likely be compensation for 

assumed inventory risk (for risk-averse dealers.) Smidt (1971) introduced the first 

model that explained a dealer’s spread dynamics as a function of his inventory 

position. Considering inventory carrying costs and constrained dealer capital, the 

dealer’s situation can be described using the Gambler’s Ruin Problem. Basically, the 

dealer adjusts both spreads and prices to avoid ruin. In a more contemporary model, 

Madhavan and Smidt (1993), dealers set bid and ask prices to maximize the present 

expected value of trading revenue minus inventory storage costs as time goes to 

infinity. In their model, order imbalances lead to quote revisions, and market makers 

quote prices that induce mean reversion in inventories.  

Another set of inventory models are based on the risks associated with holding 

inventory, namely potential price deterioration. For example, a market maker who 

buys at the bid price is prone to inventory risk if there is a chance the price will drop 

before the inventory has been moved19. Stoll (1978) shows the optimal bid-ask spread 

depends positively on the dealer’s risk aversion, the stock return’s variance and 

quoted depth, and negatively on the dealer’s wealth. Stoll’s model also predicts that 

after a sale at the bid, the dealer lowers both the bid and ask quote, and after a 

purchase at the ask, both the bid and the ask quotes are raised20. 

                                                 
19 Theoretical models of inventory risk include Garman (1976), Stoll (1978), Amihud and Mendelson 
(1980), Ho and Stoll (1981, 1983), and Spiegel and Subrahmanyam (1995.) 
20 The model was subsequently extended to a multi-period framework and improved by Ho and Stoll 
(1981), however the predictions are basically the same. 
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2.1.1.2. Asymmetric Information Models 

Jack Treynor (1971), (publishing under the pseudonym Walter Bagehot) 

suggested a distinction between traders based on the information they possess. One 

group of traders had no private information and traded only for liquidity purposes, 

and to execute portfolio rebalancing. Treynor labels these liquidity, or “noise” 

traders21. The other group of investors is comprised of traders possessing some 

private information; these informed investors sell at the bid if they have information 

justifying a lower price, and buy at the ask if the full information price level is above 

the current price. In Treynor’s model, the market maker and individuals who place 

limit orders lose in transactions with informed traders, because the informed traders 

can not be identified. Similarly, market makers gain from trades with liquidity 

traders, generally ensuring they survive and ensuring a structure in which continuous 

limit order posts are possible. Uninformed traders always lose to informed traders, 

regardless of whether they use market or limit orders. Uninformed traders end up 

regretting their trading or not-trading if they submit limit orders, and will lose half the 

spread to informed investors if they submit market orders (Harris, 2003). They can 

only avoid the losses by choosing not to trade. The important result of the model is 

that the bid-ask spread the market maker sets will contain an information component 

because of the possibility the market maker will be exploited by informed traders. 

Kyle (1985) models the informational content of order flow in the presence of 

a single monopolistic informed trader and many uninformed traders. The informed 

                                                                                                                                           
 
21 See also Black (1986.) 
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investor knows the distribution of the exogenous uninformed order flow and 

considers the price impact of her trading. The auctioneer determines the clearing price 

based on aggregate order flow. The model is initially a one-shot auction similar to the 

NYSE opening, and is subsequently extended to the limiting case of a continuous 

auction. In the one-shot auction setting, the market clearing price is: 

)~~(~
0 uxpp ++= λ ,       [ 2.1] 

where is the price before the auction, and 0p x~ and u~ are the order flow of the 

informed and uninformed traders respectively. Lambda is the price impact coefficient 

of total order flow, generally referred to as Kyle’s Lambda,  

2
1

2

2

2
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

u

pLambda
σ
σ

,        [2.2] 

where is the variance of the asset price, and is the variance of the 

exogenous uninformed order flow. The market clearing price is positively related to 

the variance of the asset price, and negatively related to the variance of the 

uninformed order flow because the informed investor finds it harder to camouflage 

her trade in a uniform, low variance, uninformed trading environment.  

2
pσ 2

uσ

In the continuous auction setting, assuming only market orders, Kyle models 

the market maker’s price setting behavior as a function of the net order flow. The 

resulting security price is set at its expected value, given the particular order flow, and 

net order imbalance. In the resulting rational expectations equilibrium, prices end up 

gradually incorporating all private information, and the market maker sets prices to 
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clear the market. If the market maker tries to behave strategically and infers the 

probability of being faced with an informed trader (say he expects large trades to 

come from informed traders,) then equilibrium might not be reached. Market depth, 

defined as the size of a trade that can be arranged at a given cost22, is proportional to 

the amount of noise trading, and inversely proportional to the amount of private 

information. In a continuous auction setting, the depth of the market and the volatility 

of prices are constant.  

To summarize, Kyle presents a model which quantifies the intuition of 

Bagehot, and shows that price innovations can be modeled as functions of quantities 

traded, consistent with modeling price changes as consequences of new information. 

As Harris (2003) points out, the adverse selection component of the bid-ask 

spread in this type of model arises as compensation for market maker losses to 

informed investors. Alternatively, Glosten and Milgrom (1985) derive the adverse 

selection component of the bid-ask spread from the market maker learning about the 

true value of the security conditional on the direction of the next trade and the 

probability of facing an informed trader. As Harris (2003) proves, using the so-called 

Glosten-Milgrom Theorem, these two perspectives lead to identical conclusions about 

the size of the adverse selection spread component23. 

 

 

 

                                                 
22 Harris, (2003). 
23 See Easley and O’Hara (1987) for a related development. 
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2.1.1.3. Time between Trades and Information 

Easley and O’Hara (1992), in an important extension of the above models, 

study the role of time in price adjustment24. The authors relax the assumption that 

time is exogenous in the model. Instead, they argue the time (duration) between 

trades will convey information. A long duration, i.e. a prolonged period without a 

trade is interpreted as a lack of new information arrival. The probability of being 

faced with an informed trader is thus small, and therefore the market maker will 

adjust the bid-ask spread downward. Furthermore, the authors argue that any 

empirical investigation of transaction data ignoring the timing of transactions will be 

biased, because it will ignore the information content of the non-trading intervals. 

More importantly, the sequences of price changes and volumes are major factors in 

the market maker’s information set. Market makers’ quotes as hypothesized by the 

model will converge to their strong form efficient market values, because quotes will 

be revised at a rate increasing in the fraction of informed trades, approximated by 

trading intensity. The quantification of price durations will permit a direct test of 

Easley and O’Hara’s predictions. 

Such refined asymmetric information models predict that information is 

conveyed through trading, and therefore, trading affects prices and returns, because 

this is how information is impounded into prices. In the model, absence of trading 

would mean no news. Diamond and Verrechia (1987) in contrast, conclude an 

                                                 
24 Easley and O’Hara (1991, 1992) and Easley, Keifer, and O’Hara (1997) all present extended models 
dealing with dynamic informational efficiency, and the effect of sequential information arrival upon 
the model described above.  
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absence of trades indicates bad news which informed investors can not capitalize on, 

due to short sale constraints. 

Admati and Pfleiderer (1988) allow for two types of liquidity traders: 

discretionary and non-discretionary. The former trade a number of shares at a 

particular time, while the latter can strategically choose an optimal trading period. 

They show that discretionary traders will choose to trade when there is no 

information event, and trading activity will be unrelated to information. Absence of 

trades would then be characteristic of informed trading and long durations. 

Holden and Subrahmanyam (1992) incorporate competition among informed 

traders into Kyle’s model. They allow for multiple informed investors, each trying to 

profit from a fleeting informational advantage. The model predicts higher trading 

volume, faster private information revelation, short times between trades, and faster 

convergence to the security’s true market value. In other words, markets become 

more efficient when competition is allowed, even in the presence of informed traders. 

 

2.1.1.4.  Empirical Evidence 

Numerous empirical studies have provided at least limited support for the 

importance of heterogeneous information and trading activity on the bid-ask spread. 

Chordia, Roll, and Subrahmanyam (2001) find that spreads sharply increase in down 

markets and weakly decrease in up markets, constituting an asymmetric response of 

spread to market movements. Easley, Keifer, O’Hara, and Paperman (1996) find that 

large spreads are usually attributed to asymmetric private information, and pertain to 
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less active stocks which face a greater risk of informed trading. The authors use 

trading volume as a proxy for adverse selection. McInish and Wood (1992) also find 

that spread tends to widen following large volume orders. Studies using alternative 

proxies for adverse selection risk feature insider ownership (Glosten and Harris 

1988), market value of shares outstanding (Harris 1994), turnover (Stoll 1978), and 

the number of securities a dealer makes a market in (Branch and Freed 1977.) These 

studies find similar results. Harris (1994) finds that market tick size affects the 

composition of the bid-ask spread. Bollen, Smith, and Whaley (2002) conclude the 

spread is a function of the minimum tick size, the inverse of trading volume, dealer 

competition, and inventory-holding premium. The last component appears to be the 

major one, and is a non-linear function of share price and return volatility. 

Ho and Macris (1984) find that the bid-ask spread is positively related to asset 

risk, and incorporates significant inventory effects. They find the spread to be 

negatively related to the level of dealer’s inventory. Glosten and Harris (1988) find 

that the bid-ask spread contains an information component, as well as another joint 

component that includes dealer’s risk aversion and inventories. Also, they find that 

the adverse selection component of the bid-ask spread increases with trade size. 

Hasbrouck (1988) estimates a bivariate vector autoregressive model of 

volume and prices, and finds volume is related to price revisions (confirming an old 

Wall Street adage that “it takes volume to move prices”.) Moreover, he finds 

information effects exceed inventory effects. 
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2.1.2. Price Effects Associated with Trading and Depth 

Quoted bid and ask prices only apply to trades of specified size (quoted 

depth.) Institutional investors like pension funds and mutual funds often trade 

quantities much larger than the posted depth. Large orders may have an inherent price 

impact resulting in worse price execution25. Market depth, therefore provides an 

important complementary dimension of market liquidity, quality and trading costs. 

Large trades are usually executed through “block” negotiation in the upstairs market, 

or “worked” throughout the day to minimize their price impact26. Studies focusing on 

the effects of block trading27 have discovered evidence of a price impact associated 

with large trades, although it is mild, and temporary at best. Furthermore, large trades 

have a pronounced asymmetric impact on price, with price increases from purchases 

persisting, thus possibly reflecting an adjustment to new information. Studies by 

Barclay and Warner (1993), Chan and Lakonishok (1995), and Keim and Madhavan 

(1996) fail to support the theory that informed traders and insiders execute large 

trades. Rather, informed traders execute medium-sized transactions, or they chop up 

their transactions, thus giving rise to auto-correlated order imbalances. Keim and 

Madhavan (1996) find that the price impact of block trades is positively related to 

trade size, and negatively related to market capitalization. This body of literature is 

                                                 
25 Price execution is defined as the eventual actual price at which the transaction takes palce. 
26 For details on block negotiation, see Harris (2003.) 
27 See Scholes (1972), Krauss and Stoll (1972a and 1972b), and Holthausen, Leftwich and Mayers 
(1987.) 
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supplemented by recent works28 on the interaction of liquidity and trading strategies 

of large investors. 

Other studies29 have investigated the price effects of institutional “herding.” 

They show that such trades do in fact have a persistent effect on price, and that 

buying precedes future positive returns.  

Consistent with these observations, Chordia and Subrahmanyam (2002) 

develop a model which explicitly considers how market makers accommodate 

autocorrelated order imbalances resulting from large traders splitting their orders. The 

authors show that autocorrelated net order imbalances lead to a positive relation 

between lagged imbalances and returns, with the relationship reversing sign after 

accounting for current imbalance. The model isolates signed net order imbalances 

rather than cumulative trading volume as the major price moving factor, and is 

consistent with Kyle’s (1985) intuition. In other words, the old adage “it takes volume 

to move prices” should in fact be “it takes order imbalance to move prices.” The 

argument is extremely pertinent to this research, because my primary liquidity 

measure of realized market depth (VNET) is in fact the realized signed net order 

imbalance transacted within a price duration. Chordia and Subrahmanyam (2002) test 

their model using daily data, while the duration framework takes the model one step 

further, thus allowing a direct test of microstructure effects – a feature that is arguably 

lost when using cumulated daily signed volumes.  

                                                 
28 Dubil (2002), Bertsimas and Lo (1998), Jarrow (1992), Frey and Patie (2001). 
29 Lakonishok, Schleifer, and Vishny (1992), Wermers (1999), and Stoll (2000.) 
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French and Roll (1986) examine returns on trading vs. non-trading days and 

document a greater return variance on trading than on non-trading days. They offer 

several alternative explanations for their results. Public information might arrive with 

greater frequency during business hours with the result that prices are revised to 

reflect the newly available information. Alternatively, private information might be 

introduced during business hours through informed trading. Finally, the trading 

process itself might lead to higher volatility on trading days. French and Roll find that 

the private information hypothesis is supported, and that volatility in stock returns 

during business hours is due to informed traders entering the market at the open and 

prices eventually impounding the new information. French and Roll’s  argument is 

formalized in subsequent models by Admati and Pfleiderer (1989) and Foster and 

Viswanathan (1990). Alternative tests utilizing intraday data (Harris 1986, Madhavan, 

Richardson, and Roomans 1997, and Wood, McInish, and Ord 1985) have 

documented U-shaped patterns in the bid ask spread and volume during the day, and 

tend to support these price formation hypotheses. Jain and Joh (1988) find that day-

of-week and time-of-day dummies are significant in explaining trading volume, and 

are correlated with returns.  

In summary, extant research supports the existence of both inventory and 

information effects on liquidity, and finds evidence that trading affects the time series 

pattern of spreads and volatility. Thus, controlling for the alternative hypothesized 
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components of the bid-ask spread30, the evidence suggests that cross-sectional 

variation in spreads can be explained by economic variables. 

 

2.1.2.1. Net Order Imbalances and Price Changes 

Several authors have argued that it is net order flow, or order imbalances, and 

not volume that moves prices31. The idea is intuitively appealing since total volume 

will inevitably aggregate transactions on both sides of the market, thus rendering 

impossible any test of the respective price effects of buy versus sell orders. Madhavan 

and Smidt (1991) disentangle order flow’s signal of future value from inventory 

effects and find a significant information effect, and a weak inventory effect. Their 

findings support the hypothesis that order imbalances lead to quote revisions. The 

relation is also confirmed by Hasbrouck and Sofianos (1993) and Chordia, Roll, and 

Subrahmanyam (2002) who find that signed order imbalances reduce market 

liquidity, and that returns are correlated with previous imbalances. Dennis and 

Weston (2001) argue that economies of scale exist in the acquisition of information, 

and that institutions and insiders are more informed than individual investors. They 

find evidence that market makers move prices in response to institutional trades, 

supporting the information asymmetry hypothesis. The idea is that trade size or order 

flow reflects the underlying disagreement amongst traders about a security’s true 

value. On the other hand, Jones, Kaul, and Lipson (1994) argue that trade sizes, and 
                                                 
30 George, Kaul, and Nimalendran (1991) find the adverse selection component only accounts for 8 to 
13 percent of the quoted spread. Huang and Stoll (1997) find that 38 percent of the spread is due to 
inventory and adverse selection costs. 
31 Madhavan and Smidt (1991), Hasbrouck and Sofianos (1993), Chordia, Roll, and Subrahmanyam 
(2002).  
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therefore volume contain no information beyond that contained in transaction 

frequency, and claim the number of transactions is more important than size. Their 

finding is consistent with the Mixture of Distributions Hypothesis (MDH)32. MDH 

implies a positive relation between volume and volatility because they are jointly 

determined by the number of information events which serves as a mixing variable 

and explains their positive correlation. 

 

2.1.3. Plan of Study 

The literature abounds with alternative explanatory variables and empirical 

proxies that could readily be used as independent variables representing order 

processing, inventory, and information effects impacting spreads and overall 

liquidity, market quality and trading costs. Intraday models of price formation 

provide insights about how to identify the influence of asymmetric information and 

inventories on prices. These models predict the inventory effect will be transitory, and 

the asymmetric information effect will lead to a permanent change in prices, since the 

(net) order flow acts as a signal about future security value and leads to a permanent 

belief revision.  

A central focus of this study is the modeling of the time between successive 

price changes. I assume there is a latent information arrival stochastic directing 

process which drives trades and thus price changes. The Autoregressive Conditional 

Duration (ACD) models applied will allow direct modeling of the evolution of the 

                                                 
32 Clark (1973), Harris (1987), Andersen (1996). 
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time between price changes. The time between price changes provides a measure of 

price volatility that does not impose an arbitrary, fixed interval framework on the 

analysis. The model’s treatment of time is better suited for analyzing irregularly 

spaced, ultra-high frequency transaction data, while circumventing the 

heteroskedasticity inherent in fixed-interval data. Furthermore, the duration construct 

helps avoid problems like bid-ask bounce, and the spurious autocorrelation of returns 

arising from working with discrete prices and non-trading periods. 

Microstructure theories can then be tested by examining the impact of 

variables hypothesized to affect the price and spread formation process upon the 

expectation of the conditional price duration. In addition, as outlined in Section 6, the 

price duration framework allows me to estimate a model of realized market depths 

and thus test the influence of different hypothesized determinants of liquidity.33 The 

setting will also allow direct tests of the above mentioned liquidity effects in the 

presence of large traders, as well as provide insights about optimal liquidation 

strategies for large portfolios. 

 

2.2. Market Protocol Change: Decimalization at the NYSE 

2.2.1. Market Protocols 

The NYSE started as a call auction market, in which trading took place at pre-

specified times according to prescribed rules. This mechanism is now a remnant of 

                                                 
33 The empirical setting also enables construction of market reaction curves (Engle and Lange 2001) 
that can be examined in trying to pinpoint the key driving factors of market depth and liquidity 
dynamics. 
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the past34, even though it still characterizes the exchange’s opening procedures where 

a single clearing price is set to clear the market and maximize trading volume. During 

the rest of the day, the NYSE operates as a continuous auction in which investors 

“trade against resting orders placed earlier by other investors and against the ‘crowd’ 

of floor brokers” (Stoll, 2002 page 3.) In addition, the NYSE is a hybrid 

auction/dealer market because specialists are allowed to trade for their own accounts 

in order to maintain liquidity and price continuity in their assigned stocks. 

Investors submit two types of orders. Market orders require immediate 

execution at the best available price, limit buy orders set a maximum price to buy and 

sell orders a minimum price to sell. The highest limit order to buy and the lowest 

limit order to sell establish the market and the quantities at those prices determine the 

depth of the market. Market orders then trade with the best limit orders. Priority rules 

are typically used to determine how market and limit orders are fulfilled. First priority 

is given to orders with the best price and secondary priority to orders posted first at a 

given price. Until recently, the NYSE had stipulated minimum increments by which 

stock prices could change. These are known as tick size. Tick sizes affect the way 

priority rules operate. As Harris (1991) notes, the secondary priority is meaningless if 

the tick size is very small. If the tick size is small, investors and/or dealers can “step 

in front of” limit orders to buy by quoting a slightly higher price and incurring a 

relatively small cost35. On the other hand, when tick size is small, investors placing 

                                                 
34 For a detailed description of the trading environment, see Harris (2003.) 
35 A Business Week (October 27, 2003) article “Under the Gun at the Big Board” refers to the increased 
specialist use of ‘penny-jumping’, lack of transparency, and unclear trade-through rules. A WSJ article 
(February 18, 2004 C1) “Five Specialists Agree to Pay Big Board Fines” also documents the rising 
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limit orders and thus supplying liquidity to the market run an increased chance of 

their buy limit orders being “picked off” if new information warrants a lower price. 

Too low a tick size could therefore discourage investors from placing limit orders and 

hence reduce market depth and liquidity. Thus, an optimal minimum tick size may be 

consistent with the operational efficiency of capital markets. 

 

2.2.2. Decimalization and the Tick Size 

Decimalization refers to the practice of quoting security prices in one-cent 

increments, rather than a fraction of a dollar. Up until June 1997, the NYSE tick size 

was 1/8th of a dollar. The 1/8th tick size dates back to October 13, 1915, when the 

NYSE switched from quoting prices as percentage of par to quoting them in dollars. 

Angel, (1997) provides some history behind the seemingly arbitrary 1/8th rule. Before 

1915, the minimum tick size was 1/8th of a percent, dating back as far as 1817. Street 

lore suggests the 1/8th rule arose form the Spanish “pieces of eight’ coins that were 

chopped into eight pieces for use in the colonies, but no historical evidence supports 

the argument, especially since the first NYSE prices were quoted in British pre-

decimal currency units. After June, 1997, the NYSE switched to a 1/16th of a dollar 

minimum tick size. The New York Stock Exchange completed the switch to decimal 

pricing in January 2001. By the end of April 2001, all major exchanges in the USA 

had switched to decimal pricing, replacing the 1/8 or 1/16 increment quotes.  

                                                                                                                                           
incidence of the specialist practice of stepping-in-front of orders. Both provide anecdotal evidence of 
hindered liquidity, partly due to the decimalization switch. 
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Proponents of decimalization claimed that refining the pricing grid and the 

associated bid-ask spread would lead to a decrease in transaction costs, enable more 

smaller-sized trades, and increase market participants’ welfare by reducing the 

opportunities for market makers to extract excessive profits. The NYSE approved 

decimalization with the stated intent of making prices easier to understand, reducing 

spreads, and making the NYSE conformable to international markets. However, 

arguments favoring an optimal fractional tick size also exist. 

 

2.2.3. Literature on the Effects of Decimalization 

Harris (1991, 1994) states that reducing the tick size decreases liquidity by 

decreasing the cost of getting inside someone else’s quote, thus decreasing the 

incentive to post limit orders. Posting a limit order also reveals the investor’s 

information set which can move the price in an unfavorable direction. A larger tick 

size will then increase investor compensation for the vulnerability of exposing their 

positions through limit order postings. Angel (1997) provides empirical evidence that 

a larger relative tick size increases willingness to post limit orders. 

Brown, Laux, and Schachter (1991) also claim that an optimal, non-decimal 

tick size might exist that minimizes the costs of negotiating and bargaining. In 

addition, a wider relative tick size leads to fewer possible prices and correspondingly 

less information to track, thus making the contents of the order book much easier for 
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market makers to track.36 Furthermore, a wider minimum tick size reduces the 

probability of trading errors (Brown, Laux, and Schachter, 1991) and encourages 

dealers to make a market in a stock by effectively setting a minimum bid-ask spread37 

and encouraging market makers to conduct more research and promote the stock 

better if they are also brokers. The latter argument pertains to the NYSE since some 

specialist firms are owned by large brokerage firms.  

In an early version of Chakravarty, Wood, and Van Ness (2004), the authors 

provide an overview of the theoretical literature focusing on tick size, splitting it into 

five streams: 

1) Research claiming optimal minimum tick size arises due to 

market frictions from Bertrand competition among liquidity providers 

(Anshuman and Kalay (1998), Bernhardt and Hughson (1996), Kandel and 

Marx (1997).) 

2) Research claiming minimum tick size helps coordinate 

negotiation (Brown, Laux, and Schachter (1991), and Cordella and Foucault 

(1999).) 

3) Research relating tick size and payment for order flow, 

claiming that a reduction in tick size might diminish the practice of paying for 

order flow and increase transparency and trading volume. (Chordia and 

Subrahmanyam (1995), and Battalio and Holden (1996)) 

                                                 
36 The existence of an optimal number of pieces of information held in short term memory is supported 
by cognitive research by Miller (1956) and Simon (1974). 
37 See Harris (1991, 1994), Ball and Chordia (2001), Grossman and Miller (1988), and Niemeyer and 
Sandås (1993) 
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4) Research claiming smaller tick size will reduce bid-ask spreads 

thus enhancing liquidity (Hart (1993), Peake (1995), O’Connell (1997).) 

5) Research claiming a lower tick size will lower spreads and 

depth due to a decline in profitability of supplying liquidity (Harris (1994, 

1998), Grossman and Miller (1998), and Seppi (1997).) 

The empirical effect of decimalization on market liquidity, price volatility, 

and welfare do not suggest any overall benefit was gained. Bacidore (1997) finds that 

a reduction in tick size from 1/16th of a dollar to 5 cents on The Toronto Stock 

Exchange decreased spreads, but left depth and trading volume unaffected. A 

reduction from 5 cents to a penny, however, lead to almost no discernible changes in 

any market quality variables. Other research38 has confirmed decimalization led to 

decreased spreads and depth on The Toronto Stock Exchange. Ball and Chordia 

(2001) and Goldstein and Kavajecz (2000) find that reducing NYSE ticks from 1/8th 

to 1/16th decreased quoted spreads, corresponding depths, and limit order book 

depth.39 Studies on the NYSE change to sixteenths40, and the AMEX switch to 

sixteenths (Ronen and Weaver, 2001) also find that tick size reduction reduces 

spreads and depths, thus making it costlier to execute large trades.  

Gibson, Singh, and Yeramilli (2003) conclude that the adverse selection and 

inventory components of the spread remained relatively unaffected by the switch to 

                                                 
38 Huson, Kim, and Mehrorta (1997), Porter and Weaver (1997), Ahn, Cao, and Choe (1998), and 
Weaver (2003.) 
39 Ball and Chordia (2001) support the move to decimalization, claiming it will lead to more efficient 
spreads closer to the “true” spreads for large, liquid stocks. 
40 Bollen and Whaley (2001), Ricker (1998), Goldstein and Kavajecz (2000), Jones and Lipson (2001), 
and Alexander and Peterson (2003). 
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decimal prices, and the reduction in spreads after NYSE decimalization was due 

mainly to a diminished order-processing component. Chung and Chuwonganant 

(2001) investigate the frequency of quote revisions, using it as a proxy for market 

quality, efficiency, price discovery, and competitiveness. They find that the frequency 

of quote revisions has increased with decimalization, thus reducing price rigidity. 

They also find that minimum price variation rather than minimum tick size is the 

binding constraint on absolute spread quote behavior. Bessembinder (2003) reports 

that intraday volatility declined following decimalization but the quote revision 

process remained relatively unaffected. Dyl, White, and Gorman (2002) argue that 

decimalization will likely have no impact on dollar trading volume, because lower 

spreads will induce more information gathering and market making efforts that 

compensate for higher trading costs. The only change as the market reaches its new 

equilibrium, they hypothesize, will be lower stock prices, as firms split their stocks, 

striving to achieve an “optimal preferred price range” for their shares that decreases 

with spreads and tick size. 

 

2.2.4. Plan of Study 

All studies investigating the impact of decimalization have shown that even 

though bid-ask spreads have generally decreased after decimalization41, thus 

improving liquidity by reducing trading costs, another component of liquidity, namely 

market depth has deteriorated. Contrary to what regulators hoped for, the net result 

                                                 
41 Preliminary results by NYSE Senate Subcommittee on Securities and Investment, May 24 2001, 
state the average bid-ask spread has narrowed by 37 percent. 
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seems to be increased trading costs for institutional investors, and the impact is 

unclear for smaller sized trades. The welfare implications of the switch are 

ambiguous.42

By analyzing intraday transactions (TAQ) data from the NYSE, this study will 

empirically test for changes in the liquidity and realized market volatility processes 

brought about by decimalization, within the framework of price durations. In 

addition, I will test the validity of existing market microstructure theories in the 

presence of decimal prices, and examine the effect of decimalization on price 

formation dynamics in light of alternative microstructure hypotheses. 

 

2.3. Liquidity and Commonality in Liquidity 

2.3.1. Overview and Literature on Liquidity 

Liquidity in financial markets is commonly defined as the ability to ‘trade 

large size quickly, at low cost, when you want to trade’43. Liquidity (trading) costs 

may exert a significant influence on required returns44 and thus influence corporate 

costs of capital. 

The two major components of trading costs are costs of immediacy and 

market depth. In the most general case, immediacy is represented by market maker 

bid and ask quotes, and depth by the quantity of shares that can be transacted at those 

quotes. Liquidity is thus a bi-dimensional concept, influenced by the interaction of 

                                                 
42 Bessembinder (2003) finds no deterioration in selected market quality measures after decimalization. 
43 Harris, (2003). 
44 Amihud and Mendelson (1986), Jacoby, Fowler, and Gottesman (2000), Jones (2001), and Butler, 
Grullon, and Weston (2002). 
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immediacy and depth. Early microstructure research, for the most part overlooked 

this bi-dimensional aspect, concentrating only on one of the two measures, namely 

immediacy costs45. These models assume constant trade size. On the other hand, early 

studies dealing with market depth instead assume a single liquidation price, thus 

assuming away the second dimension of liquidity46. 

Recent empirical studies have investigated the relation between the two 

liquidity components. Lee, Mucklow, and Ready (1993) find evidence that NYSE 

specialists manage adverse selection risks by dynamically setting both immediacy 

costs and depths. The authors detect a negative contemporaneous relation between 

depth and spread size. Goldstein and Kavajecz (2000), and Jones and Lipson (2001) 

also emphasize the relation between spreads and market depths, within the context of 

new market reforms like decimalization, and changes in rules and policies. Escribano, 

Pascual, and Tapia (2002) is among one of the few studies to propose alternative, bi-

dimensional proxies measuring liquidity. They find that heterogeneous expectations 

about future volatility usually give rise to unambiguous liquidity changes, and that 

volatility is a major factor in the contemporaneous evolution of spreads and depths. 

Chung and Zhao (2003) find that spreads and depths are strategically adjusted mostly 

in the early and late hours of the day, consistent with the higher volatility 

characterizing those times. The authors also find that depth revisions are much more 

common than spread revisions. A theoretical model of the exact inter-temporal 

                                                 
45 Ho and Stoll (1981), Glosten and Milgrom (1985), others. 
46 Other models of depth (Charoenwong and Chung, 1998, Kavajecz, 1999) are mainly just extensions 
of the asymmetric information models of the spread. 
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relation between spreads and depths changes resulting from market maker adjustment 

to concurrent shocks is, however still lacking. 

Chordia, Roll, and Subrahmanyam (2002) examine the empirical relation 

between trading activity, liquidity and market returns using signed order imbalances 

to approximate trading activity pressures47. Similar to the Chordia and 

Subrahmanyam (2002) order imbalance treatment, the authors claim order imbalances 

could proxy for asymmetric information and therefore reduce market liquidity and 

bring about a permanent price revision, just as in Kyle (1985.) In addition, random 

order imbalances could lead to temporary price and depth quotation changes, as 

market makers try to smooth their inventory positions. The authors find that lagged 

values of liquidity and market returns can predict liquidity, consistent with the 

hypothesis that price fluctuations decrease liquidity because they increase inventory 

risk. In a related paper, Chordia, Roll, and Subrahmanyam (2001) detect negative 

serial autocorrelation in daily liquidity measures and an asymmetric response of 

spreads to up and down markets. Spreads seem to decrease and depth increases in up 

markets, while the opposite is true for down markets. In addition, spreads and depth 

respond to market volatility, and day-of-week effects. Contrary to general intuition, 

recent market volatility is found to reduce spreads, a finding difficult to fit into 

existing theoretical models. 

 

                                                 
47 An extensive line of research (Gallant, Rossi, and Tauchen (1992), Lo and Wang (2000)) has 
documented the relation between trading volume and market return. For an excellent summary, see 
Karpoff (1986). 
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2.3.2. Liquidity Commonality 

A handful of recent empirical studies (the two major ones being Chordia, Roll, 

and Subrahmanyam (2000), and Hasbrouck and Seppi (2001)) have examined and 

documented commonality in trading activity and liquidity in equity markets. The 

issue of correlated liquidity is of particular interest, for it could help explain the 

driving forces behind the October 1987 stock market crash, or the documented 1998 

credit sensitive bonds global liquidity crisis that gave rise to other financial crises 

characterized by diminishing, even disappearing liquidity48. These studies detect the 

presence of common factors in order flows, proxies for liquidity, and returns. 

Liquidity commonality could have important implications for asset pricing if it 

represents a systematic, non-diversifiable factor49. Acharya and Pedersen (2002) also 

argue that common, systematic liquidity risks could make required returns a function 

of expected illiquidity and the correlation between security return and illiquidity and 

their market counterparts. Pastor and Stambaugh (2002) find that securities having a 

high return or liquidity in illiquid markets command a premium. 

Commonality might be due to different types of market-wide liquidity 

shocks50. Basket trading, program trading, and herding by large institutional investors 

                                                 
48 Chordia, Sarkar, and Subrahmanyam (2003) give an example of LTCM’s 1998 London and Tokyo 
offices lack of buyers and sellers. 
49 Jones (2001), and Amihud (2002) claim that since liquidity is persistent, it could help predict future 
returns and will be negatively related to contemporaneous returns. 
50 Cai (2003) provides an alternative explanation for the 1998 LTCM liquidity crisis. His paper 
supports the claim that dealers engaged in very heavy “front running” during LTCM’s financial crisis 
and margin calls. Because LTCM’s exposures were known and easy to anticipate, dealers stepped in 
front of upcoming LTCM orders and benefited from the subsequent price change. Since it is illegal for 
dealers to step in front of their own customers, but not illegal to step in front of other dealers’ 
customers, the situation could have easily given rise to the documented ubiquitous liquidity crisis, as 
well as correlated liquidity across different bonds. 
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could lead to correlated inventory fluctuations, giving rise to liquidity commonality. 

Such effects could arise from public news releases51 about macroeconomic factors or 

portfolio-wide liquidity shocks. Alternatively, commonality could also arise from 

market-wide informational asymmetries. Friederich and Payne (2002, page 10) offer 

one intuitive explanation for the latter. If a given sample of stocks has “at least one 

common return driver and a subset of traders has access to a model that provides 

better than average forecasts of the driver,” the activity of these traders will generate 

market-wide informational asymmetries. Chordia, Roll, and Subrahmanyam (2000) 

similarly argue that revolutionary new technologies employed with varying success 

by different firms might also induce an “outbreak of asymmetric information.” 

Barberis, Schleifer, and Wurgler (2003) model correlated uninformed trading and its 

implications for return co-movements. Alternatively, Fernando (2003) presents a 

model in which the incidence of common factors in liquidity is explained by co-

varying investor heterogeneity rather than common liquidity shocks, while cross-asset 

liquidity commonality is attributed to correlated idiosyncratic liquidity shocks and 

correlated fundamentals. 

 

2.3.2.1. Empirical Evidence on Commonality in Liquidity 

Hasbrouck and Seppi (2001) sample the 30 stocks in the Dow Jones Industrial 

Average (DJIA) and find52 evidence of correlated common factors in order flows and 

                                                 
51 Following models by Subrahmanyam (1991), Chowdhry and Nanda (1991), Kumar and Seppi 
(1994), and Caballe and Krishnan (1994). 
52 Their results confirm the Lo and Wang (2000) theoretically hypothesized factor structure for trading 
volume in the presence of portfolio rebalancing and liquidation. 
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returns. More importantly, using principal components analysis, they find common 

factors in the levels of liquidity proxies53. These components, as mentioned earlier, 

can either be the result of unsophisticated liquidity trades arising from momentum, 

tax-effects, portfolio rebalancing or correlated trading based on forecasts of 

underlying driving variables. Hasbrouck and Seppi (2001) use principal components 

and canonical correlation techniques to detect common cross-firm factors in liquidity 

and order flows. The common factors of signed and absolute order flow explain part 

of the variation in returns. In addition, liquidity also exhibits common factors54, even 

though these factors explain only a modest portion of cross-firm variation after 

accounting for seasonality. The modest evidence of commonality leads the authors to 

the conclusion that common liquidity shocks are only eminent in short-lived, crisis-

like episodes, and are not characteristic, or sustainable in periods of normal trading. 

The authors suggest that a part of the explanation for the modest degree of 

commonality might be the presence of both transitory (immediacy related) and 

permanent (informational) components in liquidity measures. Their approach, 

aggregating over a fixed-time interval (15 minutes), does not allow a clear 

segregation of the two effects because it potentially averages transitory and 

permanent episodes, and will further be confounded by the presence of unequally 

                                                 
53 The research is separate from the bulk of studies (Jain and Joh (1988), Foster and Viswanathan 
(1990), Wood, McInish and Ord (1985)) establishing time-of-day liquidity effects, or liquidity patterns 
around idiosyncratic, firm-specific events ( as in Lee, Mucklow and Ready (1993), Foster and 
Viswanathan (1995).) Also, refer to Section II – A. 
54 The identity of the factors is, as usual, unknown. Henker and Martens (2002) present some evidence 
that one of the factors might be a common cost component due to portfolio effects of dealers hedging 
their positions by varying the spreads of stocks they deal in which exhibit correlated liquidity. That 
common factor is largest for securities with highest trading frequencies. 
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spaced trades and bid-ask bounce. I suggest that employing the duration framework 

isolating meaningful information events (price changes) might provide a remedy to 

this problem because my liquidity measure is predicated upon the particular price 

change it brought about, as discussed in sections 2.3.3 and 6.3. 

Chordia, Roll, and Subrahmanyam (2000) present an alternative method of 

detecting commonality in liquidity. Friedrich and Payne (2002) describe the method 

as a “stock-by-stock time series market model regression,” of the change in a liquidity 

variable on the concurrent change in a cross-sectional market or industry average of 

the same variable. Also included as independent variables are all the traditional 

determinants of liquidity such as volatility, volume, price, number of transactions, etc. 

The linear relationship is justified by Subrahmanyam (1991). Chordia, Roll, and 

Subrahmanyam (2000) test whether inventory or asymmetric information sources 

govern commonality, and if trading cost shocks are non-diversifiable and therefore 

priced. With regard to inventory effects in commonality, the authors find that greater 

market-wide trading (most likely due to more uninformed trading) possibly decreases 

inventory risks and thus decreases specialist spreads. The presence of market-wide 

informational asymmetry evidenced by a greater number of transactions, however55 

promptly increases spreads. The authors’ model does not permit them to test whether 

market-wide asymmetric information has common driving factors, only that it gives 

rise to commonality in liquidity. 

                                                 
55 Consistent with Barclay and Warner (1993), and Jones, Kaul, and Lipson (1994)  
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Chordia, Roll, and Subrahmanyam (2000) speculate that even though their 

results show that most of the cross-sectional variation in liquidity is diversifiable, 

assets with higher sensitivity to liquidity shocks might require higher average 

expected returns. The claim is formalized by Acharya and Pedersen (2002) who show 

that time-varying common factors in liquidity influence required returns. The 

prediction is further confirmed by Pástor and Stambaugh (2002) who find that over a 

34-year period, the average return on stocks that are highly sensitive to liquidity 

exceeds the average returns of stocks less sensitive to liquidity. Vayanos and Wang 

(2002) develop a search-based model of asset trading and show that market-wide 

liquidity can influence cross-sectional stock returns and that liquid assets trade at a 

premium relative to less liquid assets.  

Chordia, Sarkar, and Subrahmanyam (2003) extend the search for 

commonality in liquidity by considering how stock and bond liquidity co-vary. They 

find significant correlations between liquidity shocks across the two markets, 

supporting the claim that a common factor like macro liquidity might drive liquidity 

measures. 

Huberman and Halka (2001) also find evidence that supports the existence of 

a market-wide systematic component of liquidity. Using autoregressive models on a 

range of liquidity proxies, the authors find that the residuals from two mutually 

exclusive samples are positively correlated even after controlling for microstructure 

variables. Their econometric model is structurally very similar to the Chordia, Roll, 

Subrahmanyam (2000) “market regression” setting. 
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Harford and Kaul (2004) extend the fixed-time 15-minute interval analysis of 

Hasbrouck and Seppi (2001) and try to identify possible sources of the order flow 

commonality they detect with principal component analysis and its correlation with 

returns. They find that commonality is strong for the stocks included in the S&P500 

index while not so pervasive for non-index stocks whose modestly co-varying order 

flow tends to be driven by market order flow and industry forces.  They find 

individual stock and aggregate order flow co-movement is the driving force behind 

correlated returns. An interesting implication of their findings is that market makers 

might utilize aggregate order flow in addition to stock specific order flow to model 

their price, spread, and depth quoting behavior. The principal components they detect 

only explain a modest portion (9-16% for the first component) of the co-variation in 

index stocks order flow and the proportion explained is even weaker for non-index 

stocks. The modest explanatory power of their components confirms the results of 

Hasbrouck and Seppi (2001) but is in disagreement with the Chordia, et al (2000) 

finding of significant commonality in changes of daily measures of trading costs. The 

authors claim a new estimation strategy or aggregation method is needed to reconcile 

these findings. My duration-based analysis is one such alternative estimation method, 

for it provides an event time model of trading costs (price impact or realized depth 

measures) explicitly controlling for market microstructure and conditional volatility 

effects. 

The major differences between the Hasbrouck and Seppi (2000) and the 

Chordia, Roll and Subrahmanyam (2000) liquidity commonality procedures are the 
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statistical framework (principal components vs. market regression), time interval (15 

minute  vs. daily), form of variables (levels vs. changes.) Hasbrouck and Seppi claim 

using levels is more appropriate because differencing an otherwise stationary series 

like spreads or depths will induce spurious autocorrelation in residuals. Principal 

components (or factor) analysis, while more general, does not produce a clear 

definition of the underlying factors generating commonality.  

 

2.3.3. Plan of Study 

I first estimate a model of realized market depth that incorporates 

instantaneous volatility and microstructure effects. I then test for commonality in the 

raw realized market depths and the model’s  residuals. The approach takes direct 

account of price duration and will include the expected conditional durations and thus 

conditional volatility effects in liquidity formation. Furthermore, the effect of 

decimalization on liquidity commonality will also be investigated within the construct 

of price durations and associated realized depths. 

The methodology is unique, because until now the commonality literature has 

investigated aggregated daily time series (Chordia, Roll, and Subrahmanyam, 2000), 

or arbitrary fixed, intra-day time interval spans (Hasbrouck and Seppi, 2001) without 

accounting for the effects of variables microstructure theory predicts might influence 

liquidity formation and neglecting the more realistic aspect of event time price and 

depth formation. The approach presented here is rooted in price durations, and is thus 

first estimated in discrete, event time, offering a better approximation of actual price 
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and depth formation dynamics. The ACD model framework will thus enable 

individual stock liquidity measures to be explicitly adjusted for the effects of 

conditional expected volatility, providing an indirect way of testing whether 

conditional expected volatility determines commonality in liquidity. This integrated 

approach to liquidity modeling, starting with the estimation of expected duration 

dynamics, then incorporating their effect into a model of realized market depths will 

allow me to isolate the event time realized shocks to liquidity formation. Next, a 

common factor and principal component analysis is carried out on the set of realized 

depth shocks. Detecting a common factor behind the co-variation of liquidity shocks, 

having controlled for sources of cross-sectional variation and event-time isolated 

microstructure effects could strengthen the notion of market-wide systematic liquidity 

shocks, a component which financial theory and the existing literature suggest will 

most likely be priced.  

Hasbrouck and Seppi (2001) argue that the common factors of signed and 

absolute order flow could in fact explain a portion of returns. My research takes a 

unified approach to price (return) and liquidity formation modeling, since it is set up 

in the discrete event time of individual price durations rather than trying to model the 

formation of liquidity and returns as two disjoint processes, and imposing some fixed-

interval aggregation across the two in order to examine dependence. My liquidity 

measure and its associated residual from my market depth regression is inherently 

tied to the subsumed return it brought about or was associated with by the very 

definition of a price duration as the time between a price movement of at least a 
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predetermined magnitude. A more refined microstructure approach can thus be 

implemented to model the individual price changes; all within the duration time 

construct predicated on real price events rather than fixed time-intervals. Hasbrouck 

and Seppi (2001) and Harford and Kaul (2004) assume that causation runs from 

trading activity to prices and their fixed interval analysis strives to connect price 

changes to changes in order flow. My analysis will relax that assumption by modeling 

the dynamics of the price and depth formation processes through their synthetic co-

evolution within the event time defined price duration construct. It is thus a sensible 

alternative to the approach in Harford and Kaul (2004.)  

The models of realized market depth should be of particular interest to 

portfolio managers and large traders concerned about the price impact of their trades. 

In addition, the results will shed further light upon the existence of liquidity 

commonality. Finally, the impact of decimalization will provide insights about 

whether changes in market design or trading regime characteristics give rise to or at 

least influence to some degree the strength of the commonality manifested by market 

liquidity characteristics. 

 

3. Methodology – Price Duration and the ACD Framework 

Transaction data usually arrives at irregular time intervals, while standard 

econometric techniques are based on fixed time interval analysis. Historically, such 

data have been aggregated over some fixed time interval day, week, month, etc. in 

order to apply current fixed-interval time series econometric models. The technique is 
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known as calendar time sampling. The length of the sampling interval often changes 

the pattern of the empirically detected price dynamics. In addition, if a long interval is 

chosen, Engle and Russell (1998) claim the microstructure properties of the data are 

lost. If too short an interval is chosen, excess heteroskedasticity will generally be 

present. Further, the rate of transaction arrival varies over the course of the day, week, 

or year. Often times, transaction frequency might depend on news releases or other 

unobservable events, which can be thought of as a stochastic directing process. In 

such cases, a trading time sampling technique utilizing a time scale set by trade 

arrivals would be more appropriate if the objective is to characterize the determinants 

of price formation. Often times, the major driving variable to be modeled and forecast 

is the quantity transacted over a period of time, which is determined by the 

transaction arrival rates.  

Models set in trading time, a type of “deformed” or “market” time are better 

suited for analyzing the microstructure effects present in the data, and for modeling 

transaction arrivals. Inter-trade duration models represent an important class of such 

models. These models focus on the time between transactions or other qualifying 

events. In addition to the time between transactions, multiple relevant 

contemporaneous characteristics associated with each transaction can also be 

analyzed. These factors are viewed as a separate vector of random variables that 

identify or further describe each duration event and will be called duration “marks.” 

The terminology is borrowed from the literature on point processes56. When dealing 

                                                 
56 Snyder and Miller (1991). 
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with price transaction data in deformed trading time spanned by each trade duration, 

the marks are usually the number of shares traded, the transaction price, and the 

posted bid and ask prices, but the list can be expanded to include other relevant 

market microstructure variables such as market design or reform indicators. 

Similarly, the inter-trade duration construct can be expanded to accommodate 

a thinned, or weighted duration measure. The bulk of this study utilizes one such 

measure, called the price duration. Instead of measuring the time between every 

transaction, the price-weighted duration gauges the time between absolute price 

changes of a given magnitude. Mid-quote price changes are usually used in this 

approach. These price-weighted durations will therefore incorporate accumulated 

intertrade durations, thus allowing further insight to the price formation process. The 

process eliminates the problems of bid-ask bounce and price discreteness associated 

with trade duration modeling and by isolating only meaningful price events it proxies 

for the underlying information generating process driving price formation. It is thus a 

viable complementary alternative to fixed interval empirical research. 

 

3.1. Duration Models 

Following Chapter 14 of Gourieroux and Jesiak (2002), a short description of 

dynamic duration models, presented in a price duration context follows. 
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Denote by , n = 1,….Nm
nτ

m , m = 1, …M, the duration between the (n-1)th and 

the nth significant price change57 on day m. I will henceforth refer to τ  as ‘price 

duration.’ Probabilities of various outcomes of a random experiment can be defined 

by a probability density function f or the cumulative distribution function F given by: 

 

[ ]
dy

dyyyPyf dy
+≤<

= →
τ

0lim)(  and    [3.1] 

 

[ yPyF ≤= ]τ)(        [3.2] 

 

where τ is the variable of interest. Since price duration is a nonnegative 

variable, the density and cumulative distribution functions satisfy the relationship 

dy
ydFyf )()( =  and      [3.3] 

∫
+

=
0

)()( ττ dfyF .       [3.4] 

The survivor function measures the probability that duration exceeds a 

constant time y , and is defined by: 

[ ] +ℜ∈>= yyPyS ,)( τ        [3.5] 

and is a decreasing function with limiting values S(0) = +1, and S(+ ) = 0, 

satisfying 

∞

                                                 
57 Gourieroux and Jesiak (2002) present the process through times between trades, because they 
concentrate on the trade duration as opposed to the price duration used in this study. 
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∫
+∞

=−=
y

dfyFyS ττ )()(1)( .     [3.6] 

The hazard or intensity function λ  provides a measure of the instantaneous 

probability of occurrence of a price change after a time y has elapsed during which no 

price changes occurred, and is defined as 

[ ydyyyP
dy

y dy ≥+≤<= → ττλ |1lim)( 0 ]     [3.7] 

         [ ]
[ ]yP

dyyyP
dydy ≥

+≤<
= → τ

τ1lim 0       

         
)(
)(

yS
yf

=    

From the hazard function, one can derive an expression for the survivor 

function 

dy
ySd

dy
ydS

yS
y )(ln)(

)(
1)( −=−=λ ,     [3.8] 

and therefore 

{ }∫−=
y

dyS
0

)(exp)( ττλ .      [3.9] 

Initially, assume the hazard function is a constant λλ =)( y , meaning that the 

occurrence of a price change is independent of the time already elapsed without a 

change. Under this condition, the duration distribution generating a fixed λ  is easily 

derived: 

λλ =
−

=
dy

ySdy )(ln)(       [3.10] 

with solution 
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ykyS λ−=)(ln         [3.11] 

and therefore  

)exp()( yKyS λ−=        [3.12] 

where K is a constant of integration. Since the boundary condition is S(0)=1, 

this will imply K=1, and the solution for the associated duration distribution is: 

 )exp()()exp()( yyfyyS λλλ −=⇔−= .    [3.13] 

That is duration is distributed exponential, with parameter 0>λ , mean 

and variance . Furthermore, the ratio of its mean to its standard 

deviation is unity, avoiding the so-called property of “excess dispersion”

1−= λτE 2−= λτV

58. 

Actual durations likely exhibit excess dispersion and non-constant hazard 

functions, so the exponential will rarely be an appropriate distribution choice. 

Alternatively, the gamma distribution, the Burr distribution, and the Weibull 

distributions have been used to describe the duration distribution. All of these are 

distributions for positive random variables. In what follows, I show that empirically 

the Weibull distribution provides the best fit so I now focus on that distribution. 

 Following Gourieroux and Jesiak (2002), the family of Weibull distributions 

is derived from the exponential distributions family by a deterministic time 

deformation. A Weibull distributed duration variableτ , with parameters γ  and λ , 

denoted W(γ ,λ ) is equivalent to following the exponential distribution γλτ )( γ (1, 

1). The hazard, pdf, and survivor functions are respectively: 

                                                 
58 Actual trade and price durations exhibit “excess dispersion”, defined as the sample standard 
deviation greater than the sample mean (Engle and Russell, 1998). 
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1)()( −= γλγλλ yy ,       [3.14] 

λγ λλγλ )(exp)()( 1 yyyf −= − ,      [3.15] 

λλ )(exp)( yyS −= .       [3.16] 

The hazard function of a Weibull distributed duration variable could thus be a 

constant λλ =)( y  in the case that 1=γ  59, monotonically decreasing in y if 

10 << γ , and increasing if 1>γ  . In the former case, the distribution is said to have a 

negative duration dependence, and a positive duration dependence in the latter. A 

decreasing hazard function, in my duration context would imply that the longer we 

have gone without a price change, the lower the probability a price change will 

actually occur. In other words, the likelihood of a price change (or failure) at time y, 

conditional upon duration up to time y, is decreasing in y. Another appealing quality 

of the Weibull distribution is that unlike the exponential, it allows for excess 

dispersion since its mean and variance are: 

)11(1
λλ

τ +Γ=E        [3.17] 

⎥⎦
⎤

⎢⎣
⎡ +Γ−+Γ= − 22 )11()21(

λλ
λτV .     [3.18] 

 

3.2. Autoregressive Conditional Duration Models 

Engle and Russell (1998) develop and introduce the Autoregressive 

Conditional Duration model for a time series of durations. We can think of the model 

                                                 
59 Note that the Weibull nests the exponential distribution when 1=γ . 
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as a time series model of time, or simply, as a GARCH process that models durations 

between events such as price changes. The model essentially looks at market 

volatility by tying it to the intensity of trading. Instead of modeling asset price 

behavior in calendar time, the model represents price movements as being driven by 

an underlying information arrival process, or “directing process” that eventually 

manifests itself in trading patterns. Having parameterized the conditional intensity 

function of the price durations, the model can be used to forecast price duration (price 

change) arrival rates. The conditional intensity can be parameterized as a function of 

only the time between past events, and the associated marks. The dependence of the 

arrival rate on past durations is the reason for the label Autoregressive Conditional 

Duration.  

Consider a stochastic process, which is a sequence of arrival times 

{t0,t1,….tn}. Let N(t) be a counting function of the number of events that have 

occurred by time t. N(t) is a step function, continuous from the left, with limits from 

the right. Now, let the stochastic process be a “marked point process” because 

associated with every arrival (trade arrival or alternatively price change arrival), there 

is a vector of characteristics, or marks. Furthermore, assume the process evolves with 

after-effects; i.e. we have a marked point process in which the realization of price 

durations at a given point in time depends on the sequence of price durations 

preceding it. In addition, assume the process is also conditionally orderly. That is, at 

time t ≥ t0 for a sufficiently small interval of time, and conditional on any event P 

defined by the realization of the process in the interval [t0 , t), the probability of two 
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or more events occurring is infinitesimal relative to the probability of one event. 

Furthermore, a “self-exciting process” is assumed, under which past evolution 

impacts the probability structure of future events. Such a conditionally orderly 

stochastic process can be described by the conditional intensity, conditional density of 

durations between times, and conditional survivor function, taking into account past 

information including at least arrival times and the count. Engle and Russell (1998) 

provide an alternative definition of the hazard function, which is the conditional 

intensity of such a process: 

t
tttNtNttNP

tttNt tN
ttN ∆

>∆+
= →∆

)...,),(|)()((
lim),....),(|( )(1

0)(1λ      [3.19] 

 

If I let iτ  = ti – ti-1 be the interval between two arrival times, duration, the 

density of iτ conditional on past durations can be specified directly. Let iψ be the 

expectation of the ith duration given as: 

E( iτ  | 1−iτ , … 1τ ) = iψ  ( 1−iτ , … 1τ ; θ) ≡ iψ ,    [3.20]  

where θ is a vector of parameters that determine the conditional mean 

function. 

The novelty of the ACD model lies in its ability to summarize the dependence 

of the conditional intensity on the past durations only through the conditional 

expected duration function iψ . The crucial assumption permitting that simplification 

is  

iτ  = iiεψ ,         [3.21] 
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where { iε } ~ i.i.d. with density p(ε, φ) which must be specified. Gourieroux 

and Jasiak (2002), describe the simplification as introducing a path-dependent time 

deformation such that the durations expressed on the new time scale are i.i.d. Since 

all durations, both realized and conditional, have to be nonnegative, the multiplicative 

disturbance will have positive probability only for positive values, and it must have a 

mean of unity. We have to assume then that iε  is independent of iτ  , and that 

1)|( 1 =−ii IE ε , where Ii-1 is the information set available at ti-1.This assumption 

requires that “all the temporal dependence in the durations be captured by the mean 

function” (Peiris, Allen, Yang 2002). The assumption can be tested using the 

standardized residuals of the ACD model. 

ACD models are obtained as different classes of parameterizations of the 

conditional expected duration function. The model is autoregressive because the 

probabilistic structure of iτ resembles an autoregressive (AR) process. The 

conditional expectation of durations depends on past durations and other marks. Thus, 

the conditional intensity (hazard) of the duration process does not depend on any 

other conditioning information but the expected duration and the counting function. 

The temporal dependence in the duration series is thus entirely captured by the mean 

equation. 

A multitude of ACD models can be developed using different functional 

specifications of the time deformation measured by the expected duration and 

s'ε distribution family. Engle and Russell (1998) use the baseline hazard function of 
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tft =λ         [3.22] 

which is the ratio of the density function of ε and the survival function 

associated with tε . The conditional intensity of an ACD model based on the 

assumptions mentioned above is given in Engle and Russell (1998) as 

1)(1)(
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Past history thus influences conditional intensity through both a multiplicative 

effect and a shift in the baseline hazard, what the authors call an “accelerated failure 

time” model. One useful application of the model might be in predicting the rate of 

time flow from past event arrival times, through the function ψ . 

In the simplest version of the model, the durations are conditionally 

exponential, the baseline hazard is one, and the conditional intensity is  

1)(

1

+

=
tNψ

λ .         [3.24] 

Similarly, a host of alternative distributions can also be accommodated, the 

most important of which as discussed earlier, is the Weibull. The choice of error 

distribution p(ε, φ) will determine the density of ,τ  f( Θ,| Iτ ), ),( φθ=Θ 60. 

 Assume that only the past m durations and q conditional durations influence 

the conditional duration at time t. We refer to this as the ACD(m,q) model, which 

                                                 
60 The parameters θ of the conditional mean, and the parameters φ  of the conditional density are 

assumed to be constant. If ψθ Θ∈ and Φ∈φ , then )(),( Φ⊗Θ∈≡Θ ψφθ  
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proposes a type of ARMA dynamics for nψ . The parameterization of the conditional 

mean nψ  in this model61 is analogous to the parameterization of the conditional 

variance in the GARCH(m,q) model of Bollerslev (1986). The autoregressive linear 

specification for the conditional mean function is given by 
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j
jin

m

i
in −

=
−

=
∑∑ ++= ψβταωψ

11
     [3.25] 

where the parameters are nonnegative. Engle and Russell (1998) suggest the 

model is a convenient parameterization because it allows various moments to be 

calculated by expectation, regardless of the form of the baseline hazard.  The 

conditional mean of iτ  is iψ , the conditional duration, but the unconditional mean is 

∑ +−
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))(1(
)(

ji
iE

βα
ωµτ      [3.26] 

if the duration process is stationary. Similarly, unconditional variances can be 

computed62, depending on the distribution for the errors. If the errors follow an 

exponential distribution, the corresponding EACD(1,1) model, for example will have 

unconditional variance of 
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Alternatively, if the errors are Weibull distributed, the unconditional variance 

will be 

                                                 
61 Note that if 0== ji βα the model nests the Poisson constant arrival rate of durations. 
62 See, for example Engle and Russell (1998). 
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where 1
)11(
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2
−

+Γ
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=

γ

γσ ε     

Thus under either error type, if 0>α , the unconditional standard deviation 

will exceed the mean and the process will exhibit “excess dispersion.” Notice that the 

distribution of the errors in the model will define the distribution of the durations, 

therefore the excess dispersion of the Weibull(1,γ ) errors, just like their non-constant 

hazard rate as seen later, simply gets transferred to the durations. 

In addition, the autocorrelation function of iτ  for the ACD(1,1) model can be 

calculated through a recursive formula, similar to the standard GARCH model: 

αββ
αββαρ

21
)1(

2

2

1 −−
−−

= , and      [3.29] 

1)( −+= nn ρβαρ  for (n>1)      [3.30] 

Therefore the persistence effect and clustering of durations will be governed 

by )( βα + , while a slowly decaying autocorrelation function requires β to be close 

to one. Refer to Figure 1. 

Letting iii ψτη −= , a martingale sequence by construction, the ACD(m,q) 

specification can easily be transformed into the following ARMA(z, q) model with 

highly autocorrelated innovations: 
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where  ),max( qmz =

Finally, the parameters of the model can be estimated using maximum-

likelihood procedures. If the underlying distribution of the errors is unknown, similar 

to the Lee and Hansen (1994) proof in the GARCH context, Engle and Russell (1998) 

prove that a quasi-maximum likelihood estimation computed as if error terms are 

exponentially distributed will produce consistent, and asymptotically normal 

estimates. Naturally, the result is identical to maximum likelihood estimation of the 

ACD model when the errors are known to be exponentially distributed. The 

associated quasi log-likelihood function is 
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and in case a QMLE is run, residuals can be smoothed to get a kernel 

estimator of the unknown error distribution. QMLE, however does not ensure 

efficiency of the estimates. Maximum likelihood with the correct density will be the 

more efficient estimator, giving the baseline hazard different parametric shapes 

according to specified error distributions. As already mentioned, the Weibull 

distribution has been widely used in the duration literature mainly because of its 

nonnegative range of support and the ability to exhibit a monotonically increasing or 

decreasing hazard rate as a function of time. Its survivor and hazard functions were 

computed earlier. Adopting the notation of Engle and Russell, the probability density 
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function f and the corresponding survivor function S for the Weibull with parameters 

),( γk  are respectively: 

{ }γγγ ττγτ )(exp)( 1 kkf −= −  and     [3.33] 

{ }γττ )(exp)( kS −= .       [3.34] 

And therefore the hazard will be: 
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Using the result of Engle and Russell (1998), in the context of the ACD(1,1) 

model, the conditional intensity of the durations with Weibull ),1( γ  distributed errors 

is 
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where is the gamma function and )(⋅Γ γ is the previously discussed Weibull 

parameter. Note that the conditional intensity is now a two parameter family, and can 

exhibit monotonically increasing or decreasing hazard functions depending onγ .  

From the conditional intensity, the log-likelihood function associated with the 

Weibull distributed durations for the ACD(1,1) model, is 
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where 

Γ is the Gamma function, 

11 −− ++= iii βψατωψ  for i>1 
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Maximum likelihood estimates of the parameters in the specified mean 

(conditional duration) equation and of the Weibull parameter can then be obtained 

using standard MLE methods. Namely, the log likelihood function is maximized 

iteratively with respect to the parameters in θ  subject to the stationarity and non-

negativity conditions above.  

The expected lengths of the price durations are estimated with ACD models 

and can be used as approximations of the inverse of expected volatility. As previously 

mentioned, the price formation evolution can be modeled as a marked point process 

with after effects and memory, dependent upon the latent information variable. The 

exact relation between expected price durations and standard measures of 

instantaneous volatility is derived63  from the solution of the ‘crossing time’ problem 

for a continuous-time stochastic process by Engle and Russell (1998) as: 

i
i

c
ψ

σ
2

2~ = ,        [3.38] 

where c is the price duration threshold.  The result carries a lot of intuitive 

appeal, since over a discretized price change, one can generally expect the longer it 

takes the price to move by an increment, the lower the expected volatility of the 

stock’s price. In this way, an alternative statistic of (the inverse of) price volatility is 

                                                 
 63Allen, Peiris, and Yang (2002) derive the relation by presenting the price process as a binomial 
process with increments of  and estimating the expected variance per unit of time. c±
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obtained, which elegantly circumvents the price discreteness and calendar time 

problem by measuring the length of time between price changes rather than the usual 

deviation from average price. The construct shares a lot of similar features with the 

volatility specification in event time introduced by Cho and Frees (1988). 

 

3.2.1. Extensions of the Standard ACD Model 

The dynamic specification of the expected duration iψ can also be expanded 

to accommodate exogenous variables (marks), or it can be a non-linear function 

similar to the popular extensions of the GARCH model like EGARCH, and 

NGRACH.  

 

3.2.1.1. The Log-ACD Model 

Bauwens and Giot (2000) introduce a logarithmic ACD model called Log-

ACD. The model’s appealing feature is that it eliminates a potential problem, namely 

that if some of the exogenous explanatory variables or their coefficients are negative, 

MLE might produce a negative expected duration. That particular limitation can be 

handled with an exponential transformation of the exogenous variables (Copejans and 

Domowitz’s (1999)), but it can also be handled by simply making sure none of the 

expected durations produced by  the estimation are negative64. I will estimate a Log-

ACD (1,1) model to check for robustness. The features of the Log-ACD model with 

                                                 
64 The MLE estimation ceases on a negative iψ , so as long as estimations converge, negative expected 
durations must not have been a problem. 
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Weibull ),1( γ distributed  errors ( iε ) will now be presented. The description follows 

Bauwens and Giot (2000). 

The logarithmic ACD model starts by modifying the mixing process for the 

observed duration to 

iτ  = ,         [3.39] i
ie εψ

where the errors are assumed i.i.d. The assumption, paired with the 

assumption that the errors have 1=µ will allow us to subsume the dependence in the 

duration process in the conditional expectation  

in such a way that: 

)|(ln)|( 11 −− =⇒= iiiii IEeIE i τψτ ψ
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i

IE τ
τ

 is i.i.d.        [3.40] 

I now introduce one specification for an equation for the autoregressive model 

of the logarithm of the conditional durations: 

11ln −− ++= iii βψταωψ       [3.41] 

which can be rewritten as  

11 )(ln −− +++′= iii ψβαεαωψ ,     [3.42] 

where ⎥
⎦

⎤
⎢
⎣

⎡
+Γ−=′ )11(ln
γ

αωω . 

The only restriction the model imposes is 1<+ βα , necessary for 

stationarity. More importantly, however, if the model also includes exogenous 

variables in the specification for the log of the conditional duration, I no longer need 
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to worry about the possibility that a negative coefficient might give rise to a negative 

expected duration, since . 0>ieψ

The density function of iτ can be written as: 
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and the log likelihood function of the observed durations iτ for i = 1, 2….N 

will be: 
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where iψ is as defined in the equation for the log of the conditional expected 

duration, which can be estimated by maximum likelihood methods. 

 

3.2.1.2. Other Extensions 

Ghysels, Gourieroux, and Jasiak (1997) present a stochastic volatility duration 

(SVD) model which accommodates stochastic volatility in the durations. Bauwens 

and Veredas (1999) establish the stochastic conditional duration model (SCD) which 

uses a stochastic volatility model for the durations rather than a GARCH-like 

specification. 

Grammig and Maurer (1999) introduced an ACD model based on a Burr 

underlying error distribution, which nests the Weibull distribution and exhibits a non-

monotonous hazard function because it depends on one more parameter. 
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Potential market microstructure candidate variables can be included in the 

specification, allowing new tests of the determinants of price formation and other 

market dynamics. One important set of variables are exogenous price-related 

variables. Including exogenous price-related variables will address the concern voiced 

by He and Chen (2003) that standard ACD model estimations assume the duration 

time process is exogenous to the price process, or the so-called “exogeneity problem.”  

 

4. Data Description and Transformations 

This study utilizes NYSE TAQ (Trades and Quotes) data. The TAQ dataset 

evolved from the earlier TORQ dataset compiled by Joel Hasbrouck. The database 

records every transaction that occurred for the stocks traded on the NYSE, and is 

released in monthly increments65. The dataset consists of two separate time stamped 

parts: one lists the trades and the other the bid and ask quoted prices posted by NYSE 

specialists. The prevailing quotes can be determined for any given transaction and 

matched according to the time stamp. An important study by Lee and Ready (1991) 

suggests matching transactions with quotes that are at least five seconds old, since on 

the NYSE floor, quotes are posted more quickly than transactions. In addition, each 

transaction is classified as either a sale or a purchase based on a modified “midpoint” 

rule. If a transaction price is closer to the ask than to the bid matched quote, the 

transaction is termed a buy, otherwise it is a sell. If the transaction falls on the 

midpoint of the relevant ask and bid quotes, the “tick” rule is applied. If the 

                                                 
65 Refer to http://www.nyse.com/taq  
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transaction price is greater than the previous price, it is classified as an uptick, and the 

transaction is classified as a  buy. Downticks are classified as sells. Lee and Ready 

(1991)66 found this process of transaction signing to be most accurate and best 

performing in a variety of simulated scenarios. The method has since become the 

norm in NYSE empirical microstructure works, and is also used by Engle and Lange 

(2001). Only transactions with a ‘regular’ TAQ database condition indicator are 

retained, and those occurring within normal business hours. Data is treated 

consecutively from day to day, discarding the first price change for each day to 

prevent overnight information episodes from entering the sample. In addition, 

because lagged duration marks will be used, the first durations from each day will 

also be purged later on.  

Price durations are computed for every stock in the sample. Two alternative 

construction methods for price durations have been suggested in the literature. In the 

original Engle and Russell (1998) study of ACD models, trade-to-trade durations are 

used. Engle and Lange (2001) alternatively use the price durations defined by the 

time between significant price movements of predetermined size. Engle and Lange 

(2001) recommend using price movements measured between successive mid-quote 

prices to compute durations, where the mid-quote price is the mid-point of the bid and 

ask quote associated with the particular trade. They claim the mid-quote price 

provides an accurate indication of the asset’s true market value, and more 
                                                 
66 The Lee and Ready (1991) transaction signing algorithm has faced some criticism recently, namely 
by Grammig and Theissen (2002) who claim that trade misclassification could bias empirical studies 
employing in particular the Easley, Keifer, O’Hara, and Paperman (1996) methodology for estimating 
informed trading probability. Our empirical model is structured around price durations, so we 
hopefully circumvent the problem. 
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importantly, using it instead of the actual transaction price avoids the problem of bid-

ask bounce and the negative serial correlation in price changes that it induces. Thus 

price discreteness noise is reduced. To make sure we exclude aberrations and that real 

price events are being isolated as durations, I require at least two consecutive trades 

with midpoint quote changes outside a preset threshold to signal the end of a price 

duration. Example 1 (enclosed at end) provides a sample duration construction. The 

use of that particular construction method is necessitated by the appealing feature of 

one of its associated marks - net directional volume over each duration (VNET). As 

described later on, VNET measures the realized market depth associated with a 

particular price deterioration, and is useful in measuring market liquidity.  

For each of the price durations, a variety of summary measures are compiled. 

The choice of these characteristics, called marks is discussed in a later section.  

One particular mark however, warrants a more detailed description and will be 

presented next. 

 

4.1. Net Directional Volume (VNET) 

VNET, net directional volume is defined by Engle and Lange (2001) as  

∑=
i

ii voldVNET       [4.1] 

where d is the direction of trade indicator (buy = 1 and sell = -1) and vol is the 

number of shares traded. Summation is over all transactions in a given price duration. 

VNET is thus an intraday measure of realized market liquidity, which is defined as 

the net directional volume associated with a price movement of a predefined, 
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threshold magnitude. VNET provides a direct measure of ex-post market depth, 

corresponding to each particular price deterioration. Theories predicated on 

information asymmetries predict VNET will vary with volume, transactions, and 

volatility. The movements of this measure of net order imbalances can be interpreted 

as an interaction of the varying proportions of informed and uninformed traders and 

the cumulative change in specialist inventories. VNET is constructed in event time 

and is measured repeatedly throughout the trading day to capture the short run 

dynamics of market liquidity. VNET allows one to test if market depth is a function 

of the magnitude and timing of current and lagged transaction flows. However, the 

construct is predicated upon transaction price changes, and thus only follows quote 

revision dynamics while casting no light upon the behavior of the spread, since the 

quoted spread changes are subsumed in the aggregated duration marks. Actually, all 

spread-relevant marks resulting from the usage of price durations have to do with 

quoted spreads at each price change event. Since liquidity has both a spread and a 

depth dimension, the construct tends to relegate the former component while 

producing a meaningful measure of the latter. 

Note that VNET does not differentiate whether the excess volume produced a 

price increase or a price decrease since price durations are constructed using the 

absolute price change in mid-quote prices over the duration interval. Based on 

Chordia, Roll, and Subrahmanyam (2001) I could expect the net directional volume to 

differ for a price increase than for a decrease, exhibiting some sort of asymmetric 

price stickiness. I conjecture that price decreases could be associated with a market 
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maker’s desire to get rid of excess inventory, and could provide some insights about 

the existence of inventory effects, and will therefore include a dummy for a price 

increase in the model of realized liquidity. 

The bid-ask spread only measures market tightness for low volume orders. For 

a high volume order, there may be an inferior execution. Low realized liquidity 

occurs when high volume orders can not be executed at the current bid or ask. 

Liquidity is therefore reflected in the transaction price expected for various size 

buying or selling orders. The schedule of such prices is often called the market 

reaction curve. It illustrates depth, the maximum number of shares that can be traded 

at any given price. Slope of the curve is often estimated by net trading volume and the 

corresponding price change over a fixed interval of time. However, estimation over a 

fixed interval of time has numerous problems, stemming from the discreteness of the 

price change, and the likelihood that excess demand can be close to zero, depending 

on the length of the time period chosen. Further, using a fixed time interval would 

dissipate the advantage of using transactions data, since in effect, the short run 

dynamics of transactions prices and volumes are being discarded. VNET thus 

measures market depth directly as the number of shares that can be bought or sold 

within a given price range. Its measurement interval is therefore dependent on the 

price level, rather than on calendar time67.  

 

                                                 
67 Re-computing average VNET over pre-specified price thresholds, allows a construction of implied 
market reaction curves. The slope and sensitivity of these curves provide direct inference about 
realized price elasticity and general liquidity patterns. 
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5. Data and Sample Construction 

The NYSE completed the switch to decimal pricing of all its 3,525 listed 

issues on January 29, 2001. This ended a five-month test period during which a pilot 

sample of 158 select NYSE listed stocks traded in price increments of a penny, while 

the remainder traded in sixteenths of a dollar. The switch started on August 28, 2000 

with 7 stocks (Phase I), then 57 more were added on September 25, 2000 (Phase IIA), 

and an additional 94 securities were added on December 5, 2000 (Phase IIB.) 

The phased transition to decimal prices provides a natural experiment for an 

examination of changes in price formation dynamics, liquidity, and quote setting 

behavior. Chakravarty, Wood, and Van Ness (2002), Gibson, Singh, and Yerramilli 

(2002), Bacidore, Battalio, and Jennings (2001) investigate the effects of 

decimalization, by constructing a matched, non-decimal control sample for the pilot 

stocks. The use of such matched securities allows control for market effects occurring 

simultaneously with the decimalization of the pilot securities. Existing research and 

inferences however, have for the most part been based on a more descriptive analysis, 

and methods utilizing fixed-interval time-sampling. The usage of an ACD model in 

this natural experiment setting will provide further insight into the influence of 

decimalization, as well as provide basis for tests of hypothesized market 

microstructure effects in the price formation dynamics and the relative change in 

strength of the effects associated with the switch to decimal pricing. Moreover, this is 

the first study to examine the evolution of price and liquidity formation and the 
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effects of decimalization in event-time, predicated upon the construct of price 

duration. 

This study utilizes a matched sample of pilot and control stocks. The test 

sample period in this study will be similar to Chakravarty, Wood, and Van Ness 

(2002). I use 20 Phase IIA only (started on September 25, 2000) pilot stocks, however 

my test sample period starts 1 week after the beginning of the phase, on October 2, 

2000. Chakravarty, Wood, and Van Ness (2002) report their communication with 

market participants indicated that significant “learning” was taking place in the first 

weeks of the decimal pilot as the parties involved were experimenting with the new 

system, looking for an equilibrium trading strategy. The end of the test sample period 

is January 26, 2001 because that is the last day of non-decimal trading for the control 

stocks.  

Each of the pilot stocks is matched with the non-decimal stock, identified in 

Chakravarty, Wood, and Van Ness (2002). Their matching criteria make sure that at 

the time of selection (shortly before the date of decimalization), the control stock was 

similar68 to the pilot stock on a number of criteria, with the only notable difference 

that it trades in sixteenths69. Selection criteria used also reflect the selection criteria 

used to identify the initial NYSE pilot stocks, and include: option availability, similar 

price, similar traded volume, similar volatility, similar market capitalization, similar 

                                                 
68 Similar within  %.10±
69 Bacidore, Battalio, and Jennings (2001) compute a score using the same criteria to identify matching 
stocks. 
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relative strength to the S&P 500 Index, similar recent price performance, similar 

industry (if possible), and same listing venue (NYSE).  

In addition, a control sample period of all-decimal trading from February 0870, 

2001 until May 31, 2001 reflecting fully decimalized NYSE trading is also examined 

to test the robustness of my conclusions. The stocks in the sample and control sample 

along with the descriptive statistics of their trades over both the test and control 

periods are listed in Table 1. 

I examine the change in the differences among pilot stock and matched 

control stock coefficients over the test sample period and the control sample period. 

Examining the change in differences allows me to control for imperfect matching. I 

do however, include proxies for traditional control variables such as market 

capitalization and average volatility in the estimated models. The ACD(1,1) model of 

expected price durations is in fact a model of expected volatility, allowing for the 

expectation to depend on past durations (reciprocals of volatility). In addition, some 

of the duration marks like trading volume proxy for market capitalization. I will thus 

be effectively controlling for average stock volatility and firm size, so arguably the 

differences among decimal and matched stocks over the individual sample period 

only will also have a reasonable degree of validity. 

 

 

 

                                                 
70 Allowing 8 business days for “learning.” 
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5.1. Construction of Price Series, Durations, and Associated Marks 

I use the NYSE TAQ database to obtain tick-by-tick trades and quotes data for 

each of the pilot and control stocks for the test period October 2, 2000 till January 26, 

2001, and the control period from February 08, 2001 till May 31, 2001. Transactions 

are matched to their prevailing quotes according to the time-stamp, and identified as 

either buys or sells following the Lee and Ready (1991) modified midpoint rule. 

Similar to Engle and Lange (2001), the data are filtered to promote consistency and 

isolate only intra-day price fluctuations. Since the opening mechanism of the NYSE 

resembles a one-shot auction, and excess volatility has been reported around the 

opening, the first five minutes of trading will be dropped. The filter is necessitated by 

the different information and price discovery and setting process characterizing the 

open. I also drop transactions that occurred after the regular closing time of 4:01 pm. 

In addition, as suggested in Chung, Van Ness, and Van Ness (2001), trades and 

quotes involving out of sequence time stamps, an obvious error in range, or a 

correction are discarded. Thus, quotes will be omitted if either the bid or the ask price 

is equal to or less than zero, or if the quoted depth is equal to or less than zero. As in 

Huang and Stoll (1997), quotes are also omitted if the quoted spread is greater than $4 

or less than zero. In addition, those trades for which 1.0/|)(| 11 >− −− ttt ppp and 

quotes for which  or 1.0/|)(| 11 >− −− ttt aaa 1.0/|)(| 11 >− −− ttt bbb  will be dropped 

because they most likely arise because of data errors due to their size. Trades will be 

omitted if the price is less than or equal to zero. As discussed in Section 4., at least 
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two consecutive data points containing a change in the midpoint of specialist’s quotes 

by at least a pre-specified threshold size will trigger a price duration.  

Contemporaneous and aggregated variables associated with each of the price 

durations are computed. These marks will include: 

PTIME – length of duration in seconds 

NPTIME – normalized,71 de-seasonalized duration length 

AVEVOL – the average transaction size per duration 

VOLUME – volume transacted during a duration 

NUMBER – the number of transactions in a duration 

DUMSPR – a dummy equal to 1 if the nominal spread is greater than the 

modal spread for a stock 

SPREAD – the nominal spread associated with the last transaction of a 

duration 

NLSPRD – normalized, de-seasonalized lagged spread. 

DSPREAD – the realized change in the nominal spread, measured from last 

duration. Will be used to proxy for spread revision. 

PDSPREAD – realized percentage change in the nominal spread 

ESPREAD – effective spread, equal to |/)(2| ttt MMP −  , where is the 

price, and is the midpoint for the last trade in a duration.  The usage of this spread 

definition allows estimation of actual execution costs paid by a trader when trades 

occur at prices inside the posted bid or ask price (Chung, Ness, and Ness (2002).) 

tP

tM

                                                 
71 The details about the normalization process are described in section 7.1. 
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DESPREAD – the realized change in effective spread  

PDESPREAD – realized percentage change in the effective spread 

RSPREAD – realized spread, defined as |/)(2| 1 tttt MPP +− , where  is the 

price associated with the last transaction of the next duration, and the other variables 

are defined as above. The realized spread will provide a measure of the average price 

reversal after a trade, or “market making revenue net of losses to better informed 

investors” (Chung, Van Ness, and Van Ness (2002).) 

1+tP

DRSPREAD – the change in realized spread 

PDRSPREAD – the percentage change in the realized spread 

VOLNET = VOLUME minus VNET 

TPRICE – the price of the trade signaling a duration’s length 

PRESID – realized price change over a duration 

APRESID – absolute realized price change over a duration 

DEPTH – combined quoted depth at SPREAD 

Section 6 presents the formulation of models designed to test various 

microstructure hypotheses within the framework of the ACD models. The empirical 

specification of the hypothesized microstructure relations and decimalization’s effect 

on these relations is also presented.72 Finally, I formulate a test specification for 

commonality in liquidity within the ACD framework, and a proposal for examining  

decimalization’s impact on commonality, measuring commonality’s sensitivity to tick 

size. Section 7 presents the empirical results. 
                                                 
72 Market reaction curves and their implied slopes and sensitivities could also be constructed to 
measure the shift in liquidity dynamics due to the lower tick size. 
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6. Testable Hypotheses - Empirical Specifications 

6.1. Empirical Tests of Microstructure Hypotheses 

6.1.1. Exogenous Variables  

Conditional expected duration series is an efficiently measured proxy for 

conditional volatility, one that circumvents the problems associated with fixed-

interval price change measurement. Denoting the conditional expectation of a 

normalized duration iψ  as ENPTIME, a self-contained ACD(1,1) model can be 

represented as: 

1111 −− ++= ttt ENPTIMENPTIMEENPTIME βαω    [6.1] 

I initially estimate both an exponential error ACD(1,1) and a Weibull error, 

WACD(1,1) QMLE model with the directly specified likelihood functions described 

in Section 3. 

Including exogenous variables in the specification will allow the conditional 

expectation of a duration assessed at t0 to reflect possible relevant information 

available to market participants at t0. Without the exogenous variables, the model’s 

specification would be self-contained. Adding exogenous variables however, has to 

be done in a manner that ensures the conditional expected normalized duration as 

well as the durations succeeding it will be positive numbers. This requires a 

specification which allows exogenous variables to have negative estimated 

coefficients while still retaining the non-negativity of the expected durations. As 

mentioned before, this is not an issue as long as MLE convergence is achieved. 
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Copejans and Domowitz (1999) suggest an alternative specification which is 

formulated to avoid the negativity problem: 

)exp(1111 tttt zENPTIMENPTIMEENPTIME κβαω ′+++= −−  [6.2] 

where is a  vector of exogenous variables, and tz κ ′ is the vector of coefficients 

associated with them. This specification is also estimated for robustness. I find it 

generally produces equivalent results in terms of coefficients and model performance. 

I also estimate the Weibull Log-ACD(1,1) model. The Weibull Log-ACD model 

provides a specification far better suited for handling possible negative exogenous 

variable coefficients and never gives rise to negative durations. 

 

6.1.1.1. Specification of the ACD Model 

 a) Volume 

As hypothesized by Easley and O’Hara (1987), large trades will reflect a 

higher probability of informed trading, since informed agents try to capitalize on their 

fleeting informational advantage and are more likely to trade large sizes. Their theory 

predicts either the lag of AVEVOL or VOLUME, or both will be negatively related to 

ENPTIME. The reason being that informed trading leads to price revisions, higher 

volatility, and therefore a lower conditional expected price duration. Kyle (1985), and 

Hasbrouck (1988), also hypothesize a negative relation as do Blume, Easley, and 

O’Hara (1994), and Easley, Keifer, O’Hara and Paperman (1996) who suggest that 

volume provides information which is not contained in past prices, and can generally 

be interpreted as a signal for the quality of information. These models predict that 
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high volume will signify a higher probability of informed trading, and a negative 

relation between VOLUME and expected duration. The Mixture of Distributions 

Hypothesis (MDH),( Gallant, Rossi, and Tauchen (1992), Tauchen and Pitts (1983), 

and Epps and Epps (1976)) suggests on the other hand that volume is positively 

related to conditional volatility, and therefore negatively related to the conditional 

expectation of price duration73. 

 

b) Number of Transactions 

Theory suggests the lagged number of transactions may be negatively related 

to conditional volatility. Foster and Viswanathan (1995), Easley and O’Hara (1992), 

Jones, Kaul, and Lipson (1994), claim it is the pace of trading as evidenced by the 

number of transactions that leads to an increase in price volatility by helping revise 

the market maker’s belief about being faced with an informed trader. In addition, the 

number of transactions can be used as a proxy for informed trading if informed 

traders indeed split their large trades to disguise their informational advantage and 

minimize price impact. These arguments all suggest a negative relation between the 

lagged number of transactions and expected conditional duration.  

In contrast, a large lagged number of transactions might help market makers 

arrive at a less noisy estimate of the true price, leading to lower expected volatility, 

and therefore a higher conditional expectation of duration, as suggested by the work 

of French and Roll (1986), Garbade and Silber (1979), and Mendelson (1982). Also, 

                                                 
73 So do McInish and Wood (1992) who find that trade size increases bid-ask spread, and therefore 
volatility. 
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consistent with Admati and Pfleiderer (1988), a low number of transactions could be 

interpreted as informed trades only because uninformed trading is deterred by short 

sale constraints, and therefore lead to longer durations. 

 

c) Transaction Arrival Rate 

The average rate of transaction arrivals during the previous duration interval 

might also affect the conditional expectation of duration. The empirical relation is 

however ambiguous, because the existing literature suggests opposing effects. On the 

one hand, the trading process itself may introduce noise into prices (French and Roll 

(1986)), so less frequent trading (larger lagged average transaction arrival rate) could 

actually reduce conditional volatility, and thus result in a positive relation between 

the arrival rate and expected duration. On the other hand, even though only relevant 

to auction length, Amihud and Mendelson (1987), and Madhavan (1992) suggest a 

large lagged average transaction arrival rate could delay the price discovery process if 

it implies increased uncertainty and noise, thus increasing volatility and decreasing 

expected duration, resulting in a negative relation between the arrival rate and 

conditional expected duration. 

 

d) Accumulated Order Imbalances 

The summation of past net directional volumes (VNETs) is a noisy 

approximation of the net change in specialist inventory. In spite of its crudeness 

however, including summed lagged imbalances as an exogenous variable in my 
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ACD(1,1) specification will provide an indirect measure of inventory effects. Models 

developed by Stoll (1978), and Ho and Stoll (1981) suggest a negative relation 

between inventory level and expected duration, because the higher the inventory 

level, the greater the inventory risk, and the more willing the specialist will be to 

change (mid-quote of) prices, thus the lower the conditional expectation of duration. 

 

e) The Spread 

The quoted spread for each duration will always be a multiple of the minimum 

tick size. The lagged spread variables would all be expected to enter the ACD(1,1) 

model with a negative coefficient, as suggested in Roll (1984), Hasbrouck (1991), 

and Stoll (1989) who all document the relation between bid-ask spreads and short 

term prices. Bagehot (1971), Kyle (1985), and Glosten and Milgrom (1985) predict 

that dealers adjust the spread upwards if they are faced with an increased probability 

of informed trading. Therefore, a high lagged spread is predicted to be associated 

with a higher propensity of dealers to change mid-quote prices, a higher expected 

volatility, and therefore lower duration. The effect is however indirect because I do 

not directly model the actual dynamics of spread setting behavior. Testing explicitly 

for the size of the hypothesized information, order-processing, or inventory-based 

models of the spread can not be carried out within the price duration framework74.  

                                                 
74 Filtering out only those durations which were accompanied by a major change in spread however, as 
done in Kallimipalli and Warga (2002) for example will provide us with a set of spread change price 
durations. Ordered-probit models can then be used to predict the behavior of the spread, and test 
explicitly for the significance of each of the hypothesized components of the bid-ask spread, and the 
effect of recent market history and volatility.  
 

  
75 



 

6.1.2. Models Explaining Net Directional Volume: VNET 

Net directional volume is a direct measure of liquidity since it measures the 

realized market depth associated with particular event-time price deformations. Based 

upon identification of the optimal specification of the ACD(1,1) model, I construct an 

estimated series of expected conditional durations. These estimates, along with other 

exogenous marks will be used as explanatory variables in a model of realized market 

depth measured over each duration interval, proxied by VNET: 

( ) MENPTIMEVNET tt κββ ′++= )log(log 10     [6.3] 

where Mt is a vector of duration mark logs, and κ is their coefficient vector. 

The model is estimated in logs, after Engle and Lange (2001). 

The regression will model realized liquidity or the net directional volume that 

can be transacted before prices have adjusted and how it moves with volume, 

volatility and other duration marks. 

 

6.1.2.1. Specification of the VNET Model 

Asymmetric information theories75 predict that higher transaction intensity 

reflects an influx of informed traders and therefore negatively impacts liquidity. 

These theories predict a negative relation between the lagged number of transactions 

and VNET. 

Similarly, a high lagged VOLUME could also signify increased transaction 

intensity and a higher level of informed trading. However, it could also signify an 

                                                 
75 Kyle (1985), Glosten and Milgrom (1985), and others. 
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abundance of trading, in which specialists support a higher net order imbalance 

(Diamond and Verrechia (1987), and Madhavan and Smidt (1993).) Generally, Engle 

and Lange (2001) detect a positive relation between lagged VOLUME and VNET, 

which is always less than unity. Their results suggest that market depth responds to 

volume less than proportionately, reflecting the increased risk of informed trading 

associated with high volumes. 

Escribano, Pascual, and Tapia (2002), Chordia, Roll, and Subrahmanyam 

(2001) and virtually all of the informational asymmetry microstructure works predict 

a negative relation between depth and expected volatility, implying a positive relation 

between depth and expected duration. A low expected duration would be associated 

with increased expected volatility and the potential for informed trading, and 

therefore lower market liquidity. 

Lagged spread is expected to enter the VNET equation with a negative sign if 

large spreads evidence high informational asymmetry and low liquidity. In other 

words when the market is tight it usually will lack depth. Lee, Mucklow and Ready 

(1993) and Engle and Lange (2001) document the above relation. Alternatively, the 

relation may depend on the size of the firm as found for NASDAQ stocks by Chung 

and Zhao (2003). 

In addition, I also include summed lagged VNET’s as an independent variable 

serving as indirect proxy for inventory effects on market depth. I hypothesize that 

increased specialist inventory will provide support for larger realized depth, for the 
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market maker will be able to accommodate larger order imbalances, aiding him in the 

effort to unload extra inventory and reduce inventory risk. 

Chordia, Roll, and Subrahmanyam (2001) hypothesize that signed order 

imbalances will be higher after market declines, and lower after market increases. The 

coefficient of lagged price change (PRESID) is therefore hypothesized to have a 

negative relation with VNET. In addition, I form an asymmetric PRESID 

specification testing for asymmetric liquidity response to price decreases and 

increases.  

I also form the NPTIME_ERR variable defined as the log of 

(NPTIME/ENPTIME). If significant, even though it is a contemporaneous variable, 

Engle and Lange (2001) claim it can be used as a measure of impatience. Since a 

trader can influence this shock term by trading on one side of the market and thus 

influencing the contemporaneous NPTIME, the variable is weakly exogenous. A 

positive coefficient on the variable would suggest the market “interprets impatience” 

to reflect a high likelihood of asymmetric information. Thus, rapid trading would 

reduce the volume that could otherwise be traded at a particular price, and a positive 

coefficient would mean that traders who spread their trades over longer than the time 

they expect duration to last would face higher market depth, all else equal.  

 

6.2. Empirical Tests for Decimalization Effects 

Comparing the coefficients of the pilot and control samples in the above 

referenced ACD and VNET models will provide a useful test of the effects of 
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decimalization. I compare the coefficients on the matched stocks individual 

regressions, as well as the coefficient estimates from pooled across securities 

regressions. This allows me to directly test how decimalization influenced conditional 

volatility and realized liquidity. The ACD and VNET models will isolate the effect of 

the switch in trading regime respectively upon the formation of conditional duration 

expectation and market liquidity. The shift in the sensitivity of liquidity to changes in 

the VNET variables brought about by decimalization will also be examined. 

Harris (1991, 1994), Grossman and Miller (1988), and Seppi (1997) predict 

that if the minimum tick size is reduced (or in the extreme case, prices are 

decimalized altogether), market depth and liquidity will decline. The reason as 

described in the literature review section is that investors will be discouraged from 

placing limit orders as their quotes can be “stepped in front of” or “picked off.” 

Brown, Laux, and Schachter (1991) and Cordella and Foucault (1996), hypothesize 

that an optimal tick size exists for every security, and thus decimalization would end 

up reducing liquidity. They claim an optimal tick size reduces negotiating costs and 

the probability of errors, encourages dealers to make a market by posting spreads, and 

encourages them to conduct more research on their assigned stock. Anshuman and 

Kalay (1998), Bernhardt and Hughson (1996), and Kandel and Marx (1996) claim 

such an optimal tick size arises due to market frictions in Bertrand competition 

among liquidity providers. Angel (1997), Ball and Chordia (1998), and Goldstein and 

Kavajec (2000) find evidence of liquidity decline after the NYSE switch to sixteenths 

in 1997. 
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The above findings are in disagreement with the widely held belief and claims 

by Hart (1995), Peake (1995), and O’Connell (1997) that reducing the tick size will 

increase liquidity through enabling better price comparison, competition, and 

integration of markets. The argument seems to work for the bid-ask spread, but not 

for market depth. Little research has been conducted testing which components of the 

bid ask spread in particular have changed with decimalization, how large is the 

adverse affect on market depth and the change of its sensitivity to different trading 

characteristics, and how the changes in the price formation and quote setting process 

could come to impact large volume traders. 

I examine these questions by identifying the process for and estimating 

separate ACD and VNET models during the pilot and post-pilot sample periods. 

Decimalization’s impact upon the model’s coefficients will provide direct evidence 

about how the equilibrium price formation and quote setting processes changed as a 

result of the new minimum tick size.  Modeling the realized market depths and 

comparing the difference among coefficients in the VNET regression brought about 

by decimalization will give me an estimate of the structural change in liquidity 

characteristics.76

 

                                                 
76 As mentioned before, a thinned price duration process which only filters the price changes 
accompanied by a significant change in the spread could also be applied. The size of the bid-ask spread 
components and the dynamics of the quote setting process can then be better modeled through the 
application of ordered probit models, including ACD predicted durations and proxy variables for the 
different components as explanatory variables. Comparing matched stock coefficients or pooled 
coefficients between the two samples in my natural experiment setting could throw light upon the 
impact of the minimum tick size change on the important bid-ask spread component of liquidity. 
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6.3. Empirical Tests for Commonality in Liquidity 

The major measure of liquidity in my model is VNET, the realized net order 

imbalance. VNET can alternatively be viewed as the realized market depth associated 

with each price change of at least a predetermined size. As previously discussed, my 

regression of VNET on a set of explanatory microstructure variables will help model 

and forecast market depth. The orthogonalized residuals from the VNET regression 

model will be used to construct a series of individual stock liquidity shocks obtained 

in event time. These residuals by constructions have been cleansed of potential stock-

specific cross sectional influences due to microstructure and conditional volatility 

effects. The residuals will therefore represent a proxy for exogenous shocks to 

liquidity. I treat each stock as a cross-sectional unit in the multivariate exploration for 

whether common factors influence the variability of the residual series. I conduct 

principal component and common factor analysis on the multivariate set of residuals. 

These methods allow me to test for the presence of underlying systematic driving 

forces behind liquidity formation as well as document the liquidity commonality 

phenomenon from the unique perspective of real (possibly informational) event time.  

The simultaneity of the stock price durations can’t be obtained across the sample of 

40 stocks. I therefore aggregate the residuals from the realized market depth 

regressions across fixed time intervals77 and investigate the resulting time-consistent 

cumulated residual series for common factors. I argue that since the two-staged event 

time analysis of expected duration (ACD model) and realized market depth (VNET) 

                                                 
77 Daily aggregation is utilized, but the results from more frequent aggregations are computed to check 
for robustness. 
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has already been applied around individual price changes, the duration setup allows a 

more efficient estimation of liquidity. Aggregation is then applied to ensure a larger-

scale simultaneity and time-consistency. The methodology is thus a viable, if not even 

superior alternative to a straightforward fixed-interval (15 minutes as in Hasbrouck 

and Seppi (2001) and Harford and Kaul (2004)) analysis because an attempt to model 

the subsumed conditional volatility and its dynamics and effect upon realized market 

depth is made at the micro level of stock-specific price durations and events first, thus 

more closely tracing the real-time price and liquidity formation co-evolution. 

The procedure used to explore for common factors in liquidity is similar to the 

principal component factor analysis of Hasbrouck and Seppi (2001) and Harford and 

Kaul(2004). My approach however, benefits from the use of the unexplained isolated 

realized market depths associated with each of the respective real price changes, 

instead of working with an arbitrarily set fixed-interval series which is unlikely to 

coincide with real individual stock price events and net order imbalances. Utilizing 

the VNET marks associated with price durations and the residuals from my individual 

stock VNET regressions will arguably constitute a less ambiguous and problematic 

liquidity commonality estimation framework. This results because the approach also 

addresses the Hasbrouck and Seppi (2001) concern of segregating transitory and 

permanent liquidity by providing a model of realized depth which will filter my 

liquidity measure of most cross-sectional variation by controlling for stock-specific 

microstructure and volatility effects. More importantly, the analysis could reconcile 

the findings of differential explanatory power of the liquidity principal component in 
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the liquidity measures of Harford and Kaul (2004) with the changes in liquidity 

measures used by Chordia et al, (2000). 

My analysis is an example of the alternative estimation and aggregation 

technique Harford and Kaul (2004) call for, because it is an event-time based 

estimation of the synthetic co-evolution of price changes and corresponding liquidity 

measures, accounting for an array of microstructure variables and separately modeled 

concurrent conditional volatility (ACD) effects. Concentrating on the price duration 

construct synthetically binds the dynamics of price changes and associated liquidity 

measures more closely to real life price and trading cost formation patterns. The 

traditional fixed-interval analysis of Hasbrouck and Seppi (2001) and Harford and 

Kaul (2004) assumes that synchronous trading activity will move prices, and tries to 

detect the correlation between return and order flow in the fixed-interval aggregates. 

The duration-based approach is a unified setting centered around the event-time co-

evolution of price and liquidity formation, and is thus better suited to incorporating 

and detecting the non-synchronous microstructure and conditional volatility patterns 

that might affect its progression. 

The usage of event-time adjusted residuals addresses the concern voiced by 

Lo and MacKinlay (1988, 1990) who develop a statistical model of non-synchronous 

trading and show that when fixed-interval analytical techniques are applied to it, 

spurious autocorrelation, cross correlation, and most importantly cross autocorrelation 

will inevitably be detected. Lo and MacKinlay’s (1990) model is constructed around 

the probability of trades and is designed to purge a series of concomitant returns of 
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spurious autocorrelation. My cumulated residuals are measured over fixed-intervals, 

but the price duration framework estimation of expected duration and VNET has 

already specifically adjusted them for non-synchronicity and non-simultaneous stock 

price events. 

One could argue that since the transaction data exhibits non-conforming time 

patterns across stocks, I can not expect whatever might induce commonality such as 

macroeconomic information or shocks to be impounded into prices simultaneously 

for all stocks, or at least not be detectable in arbitrarily aggregated, albeit ex-post 

contemporaneous fixed intervals. Commonality in liquidity would thus more likely 

not give rise to concurrent liquidity changes, but the liquidity residuals from the 

individual events aggregated over a reasonable fixed-interval could still manifest the 

co-variation induced by commonality. Traders might be slow to respond, market 

frictions might exist, or some stocks might trade more frequently and would thus be 

faster or harder hit by market wide informational asymmetries. Furthermore, similar 

to Cao’s (2003) argument, market maker front running might also give rise to non-

contemporaneous correlated liquidity, so aggregation in that case is the correct 

approach to investigate for commonality78. 

The common factor analysis or principal components results should therefore 

be interpreted in terms of an ex-post rationalization of the evolution of price event 

defined raw and unexplained cumulated liquidity, rather than an attempt to predict 
                                                 
78 Alternatively, I could only use the thinned series of realized market depth residuals displaying 
certain characteristics most likely attributed to the effect of a systematic liquidity shock, idiosyncratic 
liquidity shock, or information shock. The formulation would provide a direct test for the driving force 
behind liquidity commonality. 
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liquidity movements disjoint in time. Some caution should therefore be exercised in 

using the results to predict liquidity co-movement or devise portfolio trading cost 

minimization strategies or hedges. 

Detecting common factors driving the variability of the adjusted market depth 

series will confirm or test  the findings79 of the theoretical and empirical literature on 

commonality in liquidity. In addition, I analyze the consequences of decimalization 

on the strength of the common factors and thus test whether the trading process 

characteristics are in any way conducive to liquidity commonality. 

 

7. Results 

I present both individual security estimation results as well as pooled 

regression results. The results of various robustness tests are also reported. 

7.1. Durations and Marks 

 7.1.1. Duration Calculations 

I initially estimate the price durations using a common threshold of $1/16th for 

all stocks over both the test and control time periods, as this is the minimum tick size 

for the non-decimal stocks. The characteristics of the resulting durations are presented 

in Tables 2a and 2b. The 1/16th threshold results in a more disperse distribution of 

durations across stocks than is desired. 

To obtain a workable, consistent series of price durations for each stock, 

Engle and Lange (2001) recommend using a price threshold resulting in roughly 15 

                                                 
79 Hasbrouck and Seppi  (2001), Harfod and Kaul (2004), Chordia, Roll, and Subrahmanyam (2000). 
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durations per day for every stock, or a total of about 1170 durations per stock for my 

sample. I calibrated the price change threshold for each decimal and control stock to 

obtain a comparable number of durations for each decimal stock and its control stock 

match over each of the two time periods.80 The thresholds and the characteristics of 

the resulting raw durations are presented in Tables 3a and 3b.  

 

7.1.2. Marks Calculation 

The marks of each duration are computed as outlined in Section 5. The 

computations of the normalized duration length and spread deserve some specific 

attention. 

NPTIME – Extant empirical research81 documents a prominent inverted U-

shaped pattern in durations, bid-ask spreads, and volume within the day. The average 

frequencies of my duration data (Figure 2a) exhibit a clear U-shaped time-of-day 

pattern. The plot of the average duration lengths over each quarter-hour interval 

(Figure 2b) confirms the inverted U-shaped pattern of the time-of-day effects. I adjust 

the duration times for each stock will therefore be adjusted for seasonality effects by 

running a regression of durations upon an exhaustive set of quarter-hour dummies, 
                                                 
80 The resulting price thresholds are not uniform across the two sample time periods for the matched 
control stocks due to a couple of reasons. First, during the control time period, the matched control 
stocks were trading in $1/16ths which necessitated that the mid-quote price threshold be a multiple of 
the minimum tick size. Applying those same price thresholds over the control time period resulted in 
too few durations for the matched stocks since some of them (PKI, UNH) went through stock splits, 
but mainly because thy were now trading in decimals. (see Table 3a) They therefore had to be 
recalibrated. 
On the other hand, using the same thresholds for the decimal stocks gave me an average of exactly 15 
durations per day for a stock. The fact, coupled with the lack of stock splits in the decimal stocks 
allowed me to use the same price thresholds as in the test period. 
81 Harris (1986), Madhavan, Richardson and Roomans (1997), and Wood, McInish, and Ord (1985), 
Engle and Russell (1998.) 
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with no intercept. The dummy variable coefficients, which will be the model’s 

predicted duration values for any quarter-hour will just be equal to the mean durations 

over each quarter82. The normalized seasonally-adjusted duration NPTIME is 

computed by dividing realized durations by the predicted duration for each relevant 

quarter of the trading day. The resulting normalized durations will be my major 

variable iτ . Their statistics are described in Table 4, confirming the documented 

empirical result of excess dispersion. 

NLSPREAD – The procedure used to de-seasonalize the spread will be the 

same as for the time-of-day adjustment of NPTIME. Figure 3 plots the quarter-hour 

time-of-day effects83 for average spread, confirming the U-shaped pattern and 

strength of seasonal factors.  

Figure 4a plots the pooled all-stocks raw duration histogram, and presents the 

corresponding exponential function fit. Figure 4b presents the histogram for 

normalized durations. Longer normalized durations are also increasingly less likely. 

An exponential distribution, however, assumes a constant hazard rate, meaning that 

the likelihood of a price change is independent of the time elapsed without a price 

change. Furthermore, the exponential distribution implies no excess dispersion (mean 

equal to standard deviation) which is obviously not the case as evidenced by the 

means and standard deviations in Tables 3 and 4. Since the sample duration data 

exhibits excess dispersion, a Weibull distribution might provide a better fit (plotted in 

                                                 
82 The coefficients for all the quarterly dummies are significant. Results are currently omitted for the 
sake of brevity. 
83 All the quarterly dummies are significant. Results are currently omitted for brevity. 

  
87 



 

Figure 4b) because it can accommodate the greater volatility of durations and allows 

for an increasing hazard function ( 1>γ ) which would account for the longer 

durations. Excess dispersion also implies that the data exhibits a greater proportion of 

large durations than an exponential distribution would predict (refer to Figures 4a and 

4b percentile plots). The Weibull could explicitly model for that possibility.  

Running a T-test for unity mean and standard deviation84 on the standardized 

residuals from my ACD models would help determine which error distribution 

provides a better fit to the duration data. Furthermore, I can examine the standardized 

(squared) residuals for autocorrelation. Since the Exponential model implies 

i.i.d.
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τε = , the Weibull implies i.i.d. 
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= is i.i.d. I will compute Q-statistics and determine which model does 

the best job of filtering the residuals of autocorrelation. This will be one of my tools 

for cross-model comparison. 

 

7.2. ACD Models 

Both the raw and the normalized durations exhibit a significant degree of 

autocorrelation, as evidenced by the correlograms of the merged durations in Table 5. 

The durations are autocorrelated and non-normal85. The setting thus calls for the use 

                                                 
84 In the case of the Weibull ACD(1,1) model, should be distributed exponentially, so the same test 
can be applied to the residuals of the model raised to the power equal to the estimated gamma 
coefficient. 

γε

85 As also evidenced by the (not reported) values of Jarque-Bera statistics and skewness and kurtosis. 
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of ACD(1,1) models to better describe the conditional expectation of time until the 

next price deterioration. 

The results are presented in two parts. The first part examines and tests 

whether the errors for three alternative specifications conform to the underlying 

theoretical distributional assumptions implicit in the underlying statistical 

assumption. The second part focuses on the economic interpretation of the 

coefficients. 

The maximum likelihood estimation of the models will be carried out in 

EViews 4.1, using the log-likelihood object routine, with Marquardt86 optimization 

algorithm. Bollerslev-Woolridge robust errors were also used87 for tests of the null 

hypotheses that the coefficients equal zero. 

 

7.2.1. Results for a Simple Model 

I initially estimate Exponential, Weibull, and Logarithmic-Weibull ACD(1,1) 

models for the test time period, with only the lagged spread as an exogenous variable. 

The model estimated is88: 

11111 −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω  [7.1] 

Engle and Russell(1998) found this specification to be reasonable for their 

analysis of durations for the stock of IBM. The (1,1) autoregressive structure proves 

to be the optimal specification89 for each distributional assumption and model. 

                                                 
86 Berndt-Hall-Hall-Hausman (BHHH) algorithm is also used as a check for robustness of results. 
87 Seldom differed from those produced using the default estimated variance-covariance matrix. 
88 For the Log-Weibull ACD model, the specification is 

11111 )log( −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω  
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The results for the Exponential, Weibull, and Logarithmic-Weibull models are  

reported in Tables 6a, 6b, and 6c respectively. The overwhelming majority (about 

92% of the cases) of the stocks exhibit statistically significant positive 1α and 1β . The 

finding denotes a persistent process, meaning that the conditional expectation of time 

until the next price change is dependent upon past durations and expected durations. 

Expected volatility is thus conditioned upon the current information set, containing 

both past realized and conditional durations. The process therefore describes the 

observed autocorrelation in the duration data. For the decimal stocks, the three 

models produce an average 1α of 0.11 and average 1β  is 0.57, and the matched control 

stocks produce an average 1α of 0.15 and an average 1β  of 0.57. The resulting 

autocorrelation functions describing the persistence of the processes are plotted in 

Figure 5. The coefficient for the lagged spread is consistently negative and 

significant. The finding is in agreement with the theoretical research relating 

increased volatility to wider bid-ask spreads (refer to section 6). 

 

 

 

 

                                                                                                                                           

1

89 Within each model, different autoregressive structures are nested specifications, so an optimal can be 
selected based on log-likelihood values and information criteria. The finding is similar to GARCH 
studies finding (1,1) to be the optimal specification. As mentioned above, note that comparison across 
Exponential, Weibull, and Logarithmic-Weibull ACD models based on log-likelihood values and 
information criteria are generally not possible due to their different likelihood functions. The only 
exception is the Weibull ACD model which nests the Exponential ACD if =γ . Instead, the 
cleanliness of the (squared) residuals is the appropriate yardstick for cross-model comparisons. 
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7.2.2. Complete Model Specification 

Having considered different ACD autoregressive structures, and based upon 

the previously described theories, I chose the following optimal specification90: 
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where  is an indicator variable equal to 1 if the price declined during 

the previous duration and zero if it increased, allowing for an asymmetric effect 

1−tPRESID
NI

)( NP γγ + of past negative price changes compared to positive )( Pγ price changes on 

conditional duration. The rest of the exogenous mark variables are as defined in 

Section 5.1. For the moment I concentrate on the error structure of the model. Section 

7.2.3. focuses on the economic interpretation of the estimated coefficients. 

Three types of ACD(1,1) models are estimated testing different error 

distributions or conditional duration setups: Exponential, Weibull, and Logarithmic-

Weibull. Models are estimated separately for both the test time period of pilot 

decimalization and the control time period of full decimalization. The results are 

reported in Tables 7(a, b, c). 

The autoregressive coefficients 1α and 1β  are once again strongly positive 

significant for virtually all of the cases.  The processes modeled are therefore strongly 

                                                 
90 For the Log-Weibull ACD model, the specification is: 
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persistent, and the results reconfirm that expectation of time till next price change is 

in fact conditioned upon past durations and expected durations. The inverse of 

expected volatility is therefore also conditioned upon the current information set. The 

process therefore captures the observed autocorrelation and clusters of normalized 

duration data. Across the three models, test period decimal stocks have an average 

1α of 0.1395 and average 1β  is 0.6496, while the matched control stocks produce 

average 1α of 0.1545 and average 1β  of 0.584. The resulting autocorrelation functions 

describing the persistence of the processes are plotted in Figure 6. As expected from 

the size of the coefficients, the decimal stocks process displays a higher degree of 

persistence, indicating that shocks linger a bit longer than for the stocks with 

fractional trading91. The decay patterns don’t differ by as much across models 

because the 1α and 1β coefficients are fairly uniform across models, unlike the other 

variables’ coefficients. 

 

7.2.2.1. Criteria for Cross Model Comparison 

The Log-Likelihood estimation of the Weibull-based models provides an 

estimate of γ , which allows a direct initial test of whether the durations and therefore 

the model’s errors are exponentially distributed. As Table 6d reports, for about half of 

the stocks I can reject the null hypothesis that 1=γ in my simple starting point model 

thus ruling in favor of a Weibull model. Most of the stocks for which the Exponential 

                                                 
91 As expected, under the fully decimal control time period, the decay patterns of both groups of stocks 
display similar persistence, and dissipate in a similar longer interval. 
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null is rejected exhibit 1>γ , translating into an increasing hazard function. Thus, the 

longer a stock has gone without a price change, the higher the probability that one 

will occur. The exponential distribution, on the other hand, exhibits a constant hazard 

function, meaning that the probability of a price change is independent of the time a 

stock has gone without one. 

For cross-model comparison, finding the best model and specification in the 

case of different likelihood functions and non-nested models can be carried out by an 

examination of the standardized (squared) residuals. The primary reason I resorted to 

ACD models was that actual measured durations were autocorrelated and non-

normal. If an ACD model does a good job of capturing that autocorrelation, the 

standardized residuals should be i.i.d. and free of autocorrelation as discussed above. 

The degree of autocorrelation remaining can be estimated and the Q-statistics and 

correlograms reported. Furthermore, for the exponential model, I can test the 

hypothesis that both the mean and the standard deviation of the standardized residuals 

are equal to unity, since the exponential distribution would imply no excess 

dispersion. The same test can be performed using the Weibull standardized residuals 

raised to the power equal to the estimated γ coefficient since these transformed 

residuals should be exponentially distributed under the Weibull distributional 

assumption.  

For brevity, I omit the results from tests on the residuals for the models 

reported in the prior section. An initial examination of the convergence behavior, 
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coefficient significance, likelihoods, and residuals from the starting point 

specification tends to favor the Logarithmic Weibull (1,1) error models. 

 

7.2.2.2. Cross-Model Comparisons 

7.2.2.2.1. Error Distribution Tests 

I test the distributional assumptions of the three models. I identify the best 

performing model, and for brevity, only discuss the sign and magnitude of its decimal 

stock coefficients and how they differ from the control stock coefficients. I later use 

only the predicted durations from that optimal model as an explanatory variable in my 

VNET regressions. 

Just as I did with the simple spread-only model, I test whether the Weibull and 

Logarithmic-Weibull models produce a coefficient 1=γ 92. This is an appropriate 

initial test of whether the Weibull is the better-fitting duration distribution. If the null 

of 1=γ  can not be rejected, the Weibull ACD model reduces to the nested 

Exponential ACD model. Table 8 reports the results and once again, the exponential 

null is rejected for about half the stocks in the Weibull model, and ¾ of the stocks 

with the Logarithmic-Weibull model. Since the Weibull specification nests the 

Exponential ACD, there is an improved log-likelihood value whenever we relax the 

constraint of γ=1. The test is thus equivalent to a Likelihood Ratio test. The 

conditional probability of a price change is increasing in the time elapsed without a 

                                                 
92 This is the γ coefficient of the Weibull log-likelihood function, estimated simultaneously by the 
MLE. It is not any of the coefficients appealing in the ACD specifications. 
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price change whenever 1>γ . The function also indirectly makes longer durations 

increasingly less likely. For the cases in which the null is not rejected, ruling in favor 

of exponentially distributed errors and durations, a constant hazard rate adequately 

describes the instantaneous probability of a price change, independent of the time 

elapsed without one.  

The Weibull ACD model tends to increase the average Log-Likelihood value 

compared to the Exponential ACD model for virtually all cases, thus again ruling in 

favor of the Weibull distribution.  A standard Likelihood Ratio test of whether the 

Logarithmic-Weibull model is better than the Weibull would in this case be 

meaningless since the two do not share a nested specification, and do not even have a 

common likelihood function. I can, however, examine the Akaike and Schwartz 

Information Criteria for cross model comparison of non-nested models93. I will infer 

that the model with the lowest information criteria is the best performing model. 

Examining the results in Table 7(a, b, and c), the Exponential model has the highest 

average AIC and SIC values, the Weibull being slightly better, while the 

Logarithmic-Weibull model consistently exhibits the lowest average information 

criteria. Based on these tests, I conclude the Logarithmic –Weibull model performs 

best. 

The next test will utilize the models’ standardized residuals. First, I examine 

the Exponential ACD residuals. According to the multiplicative error assumptions of 

                                                 
93 According to Greene (2003), page 159. 
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the model, the standardized residuals 
ψ
τε =  should be i.i.d. exponential, with a mean 

and standard deviation of unity. If the Weibull model is in fact a better fit, as 

predicted by the results in Table 8, I should reconfirm that finding here. The results of 

the mean and variance equality tests and empirical Watson, and Anderson –Darling94 

tests of exponential distribution are reported in Table 9. Once again, the results reject 

the exponential-null quite strongly for all cases, as well as the null of no excess 

dispersion )1( == σµ .  

I also examine the Weibull ACD model standardized residuals ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ψ
τε , and 

the Logarithmic-Weibull ACD model residuals ϕ

τε
e

=  . As was the case with the 

Exponential ACD model residuals, the mean of the residuals is in fact close to unity95. 

If the residuals are Weibull(1,γ) distributed, raising them to the estimated power γ, 

should produce an exponential distribution. I conduct Kolmogorov and Watson 

exponential tests on the residuals and compare exponential quantiles to empirical 

quantiles. The results (reported in Table 10) confirm that for the majority of the 

stocks, I fail to reject the null hypothesis of exponentially distributed , thus ruling 

in favor of the Weibull(1,γ) distribution for the errors. The Logarithmic-Weibull 

ACD(1,1) model seems to do a marginally better job of producing Weibull residuals. 

γε

                                                 
94 See Anderson and Darling (1952) and D'Agostino and Stephens (1986) for description of the tests 
and the associated statistics. 
95 Test results omitted for brevity. 
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In addition, I also look at the quantile plots of , compared to an empirical 

quantile plot. For the majority of the stocks, I discover an empirical distribution 

closely resembling the exponential, with the majority of the quantiles lying very close 

to or on the 45° line, thus close to the hypothetical exponential quantile. Figure 7 

shows the Weibull and Logarithmic-Weibull model  quantiles , for stocks HIT and 

RCL, with the remaining stocks’ plots exhibiting similar distributions. The finding 

reconfirms the Weibull as a better error assumption, and hints once again that the 

Logarithmic-Weibull might be the better model, since its quantile plots closer to 

the 45° line. 

γε

γε

γε

 

7.2.2.2.2. Autocorrelation Results 

I now turn to an examination of the time series properties of the models’ 

standardized residuals and squared residuals. Table 11 reports the Ljung-Box 

Portmanteau Q-statistics and the results of the test of zero autocorrelation at a 

particular lag for the first 15 autocorrelations and partial autocorrelations for stock 

CLB. The results are generally quite similar for the rest of the stocks in the sample. In 

general, the tests confirm that the Logarithmic-Weibull model is marginally better 

than the Weibull model, which in turn is a bit better than the Exponential model in 

filtering out autocorrelation. 

The collective results suggest strongest support for the Logarithmic-Weibull 

model. It allows for a flexible specification permitting negative values (or negative 

coefficients of) exogenous variables, converges faster regardless of starting values, 
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produces the assumed Weibull disturbances, does a good job of filtering 

autocorrelation, has lowest AIC and SIC values and highest LL values, and its ML 

estimation was in general more stable and robust. 

 

7.2.3. ACD Results  

I now turn to a more formal interpretation of the results of my best, 

Logarithmic-Weibull (1,γ), ACD (1,1) specification of the model.96 The estimation 

results are reported in Table 7c. The full model is: 
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7.2.3.1. Tests of Microstructure Hypotheses 

The signs and magnitudes of the ω, α1, and β1 coefficients are overwhelmingly 

positive significant and virtually indistinguishable across decimal and non-decimal 

stocks. Both decimal and control stocks thus have similar autocorrelation functions 

and decay patterns, as discussed in Section 7.2.2.  

The γ0 coefficient of normalized lagged spread is consistently negative, and 

significant for about half of the stocks. The coefficient’s sign supports the 

documented relation between bid-ask spreads and short term prices of Roll (1984), 

Hasbrouck (1991), and Stoll (1989). In addition, the finding is consistent with the 

hypothesis that higher spreads are associated with an increased probability of 

informed trading making dealers more eager to change prices, translating into higher 
                                                 
96 Found to be the optimal model, but note that all other models would produce identical conclusions. 
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expected volatility and thus a lower expected price duration as suggested by Kyle 

(1985), Glosten and Milgrom (1985), and Bagehot (1971). 

The models of Easley and O’Hara (1987), Hasbrouck (1988) suggest that 

informed trading is manifested in greater transactions volume, and in turn leads to a 

quicker revision of prices, higher conditional volatility, and therefore lower expected 

price duration. In addition, Blume, Easley, and O’Hara (1994), and Easley, Keifer, 

O’Hara, and Paperman (1996) also predict that volume conveys a signal about 

information quality not contained in prices, and thus also hypothesize a negative 

coefficient97. 

The estimated γ1 coefficient is consistently negative, and significant for about 

30% of the stocks. Larger lagged (average) volume does in fact lead to a higher 

conditional volatility and lower expected duration.  

A positive lagged spread change would indicate market makers have increased 

the spread possibly to shield themselves in the face of costly informed trading. They 

would thus perceive to be in an informed trading environment and be more willing to 

revise prices, thus increasing conditional volatility and decreasing expected duration. 

In agreement with the theoretical arguments presented above, the γ2 coefficient is 

negative and significant for roughly 90% of the stocks.  

Lagged quoted depth enters my specification in order to provide a preliminary 

inspection of the relation between the depth component of liquidity and price 

                                                 
97 So do McInish and Wood (1992) and a host of papers focusing on the Mixture of Distributions 
Hypothesis (Tauchen and Pitts (1983), and Epps and Epps (1976)) claiming volume is positively 
related to conditional volatility, and thus negatively related to expected duration.  
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volatility. A lower lagged depth could indicate a higher degree of uncertainty and 

informed trading, thus translating into a higher conditional volatility and lower 

expected duration. It is important to note however, that quoted depth is not generally 

a very meaningful number, for it generally applies to only small trades. There is no 

predominant sign for the γ3 coefficient; the average coefficient is negative however, 

and a few of the negative coefficients are significant. I therefore find that lagged 

quoted depth generally exerts a mild negative influence on expected duration. The 

result could be a attributed to a more complicated spread/depth quoting dealer 

behavior. For example if market makers set quoted depth high in the face of informed 

trading. Conversely, quoted depth may simply not be a useful proxy variable for 

informed trading; quoted depth arguably measures the thinnest range of the limit 

order book and may not be the best marker of the depth facet of liquidity. This 

assertion is confirmed later in my analysis of models explaining the behavior of net 

directional volume, VNET. 

The γ4 coefficient of lagged number of transactions offers a direct test of the 

assertions by Foster and Viswanathan (1995), Easley and O’Hara (1992), and Jones, 

Kaul, and Lipson (1994.) These authors argue that the pace of trading proxies for 

informed trading and increases if informed investors split up their trades, or when 

public information is released. If true, the dealer adjusts prices more quickly, giving 

rise to higher volatility. In contrast, works like French and Roll (1986) and 

Mendelson (1982) argue that more transactions enable the dealer to obtain a less 

noisy estimate of the true price and thus will result in lower volatility, hypothesizing a 
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positive coefficient. Similarly, Admati and Pfleiderer (1988) claim a low number of 

transactions might reveal more informed trading if uninformed trades are deterred, 

thus again leading to a positive γ4 coefficient prediction. 

The γ4 coefficient is overwhelmingly negative, and significant for roughly half 

the stocks. Lagged number of transactions thus tends to have a negative effect on 

conditional duration, possibly due to a higher degree of informed trading and market 

maker willingness to revise quotes.  

The last set of coefficients γP and γN allow a test of whether absolute lagged 

price change asymmetrically affects the quote revision process. I argue that if the 

previous duration was associated with a large absolute price change, it might indicate 

a heightened level of informational asymmetry and a more volatile trading 

environment. The conjecture would be consistent with expected duration being 

negatively associated with (γP<0, and γP+ γN<0) a large lagged absolute price change. 

I incorporate a standard asymmetric setup to test whether negative or positive lagged 

price changes exert higher pressure on the conditional quote formation process. The 

effect of a positive lagged price change on expected duration is thus  γP, and that of a 

negative price change is γP+ γN. 

Virtually all of the estimated γP coefficients are negative (average coefficient 

value = -1.08), with about 82% of them being significant. About half of the γN 

coefficients are negative, and the other half are positive, with roughly 50% of each 

group being significant. The results are therefore inconclusive. Lagged absolute price 

changes tend to be associated with upward changes in conditional volatility and give 
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rise to a negative effect upon expected mid-quote duration. Negative and positive 

lagged price changes affect expected duration in a seemingly uniform fashion. It is 

thus only the magnitude and not the direction of the past price change that affects the 

conditional quote formation process. 

 

7.2.3.2. Decimal vs. Control Stock Coefficients 

 7.2.3.2.1. Initial Tests for between Group Coefficient Equality 

I now compare the coefficients of the decimal stock sample to the coefficients 

of the control stock sample over both time periods. I initially conduct two-tailed 

equality of mean t-tests assuming both equal and unequal variances. The next section 

reports results for a pooled regression specification. The mean equality test  results 

are reported in Table 12 (a and b). During the test sample time period, I can not reject 

(at the 5% significance level) the null hypothesis that decimal and non-decimal stock 

coefficients have equal means for all of my exogenous variables. The coefficient of 

lagged depth γ3 is the only exception, where the test rejects the null at roughly the 8% 

level. The tests over the control time period confirm the validity of the matching 

system, failing to detect differences in both groups means when all stocks traded in 

decimals. The exception is the coefficient for the lagged change in spread γ2, which is 

more negative for the stocks originally trading in decimals. 

Even though the two sets of sample means are largely indistinguishable, an 

interesting observation can be made from the t-statistics. During the test time period, 

the mean coefficients for the decimal stocks were larger in absolute value than the 
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coefficients of the control stocks98. Thus virtually all of the t-statistics in Table 12a 

are positive. The finding does not extend to the fully decimal time period results, 

presented in Table 12b. Assuming comparable average exogenous variables across 

stock samples the larger decimal coefficients are consistent with a higher average 

expected price duration and thus lower conditional volatility for decimal stocks. This 

would be consistent with the argument that the refined pricing grid enables smoother 

and more stable price quoting, thus making the expected average time for a 

predetermined price change higher and expected conditional volatility lower99.  

 

7.2.3.2.2. Pooled Regression Tests 

In order to test the robustness of the prior results, I also estimate the following 

pooled, 40-stock Logarithmic-Weibull ACD(1,1) model: 
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where IC is an indicator variable equal to 1 if the stock is a control stock and 

zero otherwise. The specification allows for common persistence parameters but a 

separate set of exogenous mark coefficients for the control stocks. Results of the 

                                                 
98 A single-factor ANOVA of the differences between the coefficient pairs, excluding outliers tends to 
reject the hypothesis that mean coefficients are equal for all the exogenous variables. 
99 The argument is also confirmed by the examination of the average control stock coefficients.  They 
show a significantly higher average over the decimal time period compared to their non-decimal 
trading period. 

  
103 



 

estimation over the test sample period and the fully decimal control sample period are 

reported in Table 12c. 

The estimation confirms the previous observation that the ω, α1, and β1 

coefficients are quite stable across time periods. The estimation over the test sample 

period reinforces my findings of the sign and magnitudes of the coefficients of the 

exogenous microstructure variables. All un-interacted coefficients are similar to the 

means of the individual stock ACD estimates. The exceptions are γ3, which is now 

insignificant but nevertheless positive, and γ4 which is now positive and significant.  

The positive γ3 coefficient is now in agreement with microstructure 

predictions that higher lagged depth is indicative of lower informational asymmetry, 

and thus lower conditional volatility and higher expected duration. The insignificance 

of the γ3 coefficient however, strengthens the conclusion that quoted depth might not 

be a very meaningful mark in the context of price duration because it only applies to 

small trades. 

The positive and significant γ4 coefficient lends support to the claims of 

French and Roll (1986), and Mendelson (1982) who argue that more transactions help 

the dealer arrive at a less noisy estimate of the true price and thus give rise to lower 

expected volatility and higher conditional expected duration. Furthermore, Admati 

and Pfleiderer (1988) would also predict a positive coefficient. Their model predicts a 

low number of transactions might be due to the uninformed trades being deterred and 

thus a higher degree of informational asymmetry, and a lower conditional duration 

and higher volatility. Overall, the pooled estimation presents evidence that the effects 
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hypothesized by this body of work dominate the negative hypothesized relation 

predicted by Foster and Viswanathan (1995), Easley and O’Hara (1992), and Jones, 

Kaul, and Lipson (1994). 

Three of the interacted control stock coefficients are significantly different 

from zero, indicating divergence from their decimal stock counterparts.  

The γ10 coefficient of lagged normalized spread is negative and significant, 

thus lagged spreads decrease conditional expected duration and increase expected 

volatility more for fractionally trading stocks. The finding is in agreement with the 

predictions of Roll (1984), Hasbrouck (1991), and Stoll (1989), and Bagehot (1971), 

Kyle (1985), and Glosten and Milgrom (1985). Fractionally trading stocks are thus 

more sensitive to lagged normalized spreads, translating into a lower conditional 

expected duration and thus higher conditional volatility. The finding lends support to 

the claim that a refinement of the pricing grid affected the quote revision process and 

made prices less volatile. 

The γ12 coefficient on lagged change in spread is also negative and significant 

for the control stocks. The decrease in the conditional expectation of price duration is 

thus smaller for a comparable increase in lagged spread for control stocks. Once 

again, everything else equal, the formation dynamics of expected duration for decimal 

stocks would give rise to higher durations and thus lower volatility.  

Finally, the coefficient of γ1P is positive and significant. Lagged absolute price 

change thus does not seem to impact the mid-quote revision process and the expected 

duration for control stocks by as much as it does for decimal stocks. A Wald test fails 
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to reject the null that γP + γ1P=0, thus only decimal stock mid-quote formation is in 

fact dependent upon the magnitude of the past price change. The finding can be 

attributed to the refined pricing grid making mid-quote revision less sticky and price 

formation faster and more efficient with decimal pricing.  

The estimation over the control sample period generally confirms the 

hypothesized expected convergence of the more important microstructure 

coefficients, since all stocks are now trading in decimals. The only exceptions are the 

differences in control stock coefficients of lagged depth and price change. These 

results might possibly be attributed to market makers still learning the new system 

and adjusting their price quotation process. Excluding the lagged absolute price 

change,100 a Wald test does not reject the joint null that the interacted, control stock 

coefficients are equal to zero, confirming the robustness of the matching sample and 

the experimental setting.  

In general, the results suggest the switch to decimalization affects the 

dynamics of the mid-quote price formation and price revision processes. After the 

complete switch to decimalization, the price formation process adjusted to the new 

trading regime, and the dynamics of expected conditional duration became stable and 

uniform in terms of the new ACD model coefficients. Decimalization seems to have 

reduced conditional mid-quote price volatility by making the average conditional 

expectation of time necessary for a predetermined price change slightly larger. The 

                                                 
100 Since the new trading regime forces the control stocks to now trade within finer increments, we can 
expect the dynamics of mid-quote price formation to be in the process of equilibrating, and probably 
be slightly different from those of the decimal stocks which have traded in decimals for a longer time.  
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finding is in direct agreement with the argument of decimalization advocates who 

argued that a refined pricing grid leads to more continuous, correct, and generally less 

volatile pricing. The results also suggest that conditional intraday volatility has 

declined with decimalization, confirming the arguments of Bessembinder (2003) and 

Chakravarty, Wood, and van Ness (2004). I do not however, directly test whether this 

change occurred for my sample. 

 

7.3. VNET Based Model of Realized Market Depth 

I now turn to a model of ex-post realized market depth (VNET) over each 

price duration. This model is designed to capture the dynamics of event-time varying 

liquidity as a function of proxies for information asymmetry and other market 

characteristic variables. Engle and Lange (2001) propose and test a simpler version of 

the model proposed here. 

Testing a host of relevant hypothesized microstructure variables for each of 

the individual stocks and each time period, I isolated the model specification resulting 

in most statistically significant coefficients for the most stocks101. Using F-tests, AIC, 

and SIC, I isolate the most parsimonious and robust specification. The resulting 

model is: 
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101 Potential microstructure proxy variables tested include: duration average volume, duration volume, 
number of transactions, nominal spread, normalized nominal spread, change in nominal spread, (%, 
change in) effective spread, (%, change in) realized spread, balanced volume, price at duration’s last 
trade, (absolute) price change over a duration, and quoted depth. 
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where is an indicator variable equal to 1 if the preceding price change 

was positive and -1 if it was negative.  

−+
−

/
1tPRESIDI

The regression equation is estimated separately for each stock, for both 

sample periods. The estimated coefficients and their significance are reported in 

Tables 13a and 13b.  

In addition, I also estimate another specification, over the pooled, cumulated 

sample periods. The model includes the same independent variables as above, but I 

also add the interaction of all right hand side variables with a dummy variable ( CPI ) 

equal to 1 for the fully decimal control time period. The pooled regression equation 

is: 
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The pooled specification directly allows an estimate of a pooled individual 

stock model across the two time samples, and enables a test for shifts in intercept and 

other coefficients after the regime shift to decimalization. A Wald test of whether the 

interacted coefficients are equal to zero is in fact identical to the standard Chow test 

of a structural break after decimalization102. The pooled regression results are 

reported in Table 14, and Wald and Chow statistics are reported in Table 15. 

                                                 
102 The Chow test of a structural change at start of decimal trading, estimated on the pooled time 
samples data and the standard regression model without interacted terms. For a description of the 
Chow test, see Greene (2003), page 133. 
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The dependent variable’s lag is never significant even though VNET does 

exhibit some autocorrelation, in agreement with the claim of Chordia and 

Subrahmanyam (2002). I attribute the result to the set of explanatory variables being a 

proper proxy for past depths. Interestingly, the cumulated signed order imbalances 

never entered the specification significantly and so might either not constitute a 

proper proxy for inventory effects, or the realized market depth component of 

liquidity is not significantly influenced by inventory effects. Furthermore, the model’s 

residuals are generally free of autocorrelation.  

 

7.3.1. VNET Model Individual Stock Regression Results 

The coefficient of conditional duration β1 given the current information set is 

predominantly positive and significant in both Tables 13 and 14 over both the test 

time period and the control time period103. Market depth thus deteriorates if market 

makers perceive higher conditional volatility (lower expected duration,) possibly due 

to an increase in informed traders. The finding is consistent with the predictions of 

Escribano, Pascual, and Tapia (2002), and Chordia, Roll, and Subrahmanyam (2001). 

The coefficient on the number of lagged transactions β2 is predominantly 

negative and marginally significant during both sample time periods. Its sign is 

consistent with the conjecture that more intensified trading can potentially signal 

informed trading and thus lead to a decrease in market depth, in line with the 

                                                 
103 The interpretation of the coefficients for the control time period in Table 14 can be carried out by 
examining the sign and significance of the sum of the pooled coefficient and the corresponding 
interacted coefficient, in this case 1β and 8β . 
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informational asymmetry models of Kyle (1985) and Glosten and Milgrom (1985). 

The marginal significance of the coefficient in the individual stock regression setting 

suggests, however, the offsetting effect of more transactions making the market more 

liquid, and thus increasing supported market depth, as hypothesized by Diamond and 

Verrechia (1987), and Madhavan and Smidt (1993).  

The coefficient of lagged spread β3 is overwhelmingly negative and significant 

over each sample period. I also estimated models that included lagged change in 

spread and other spread related exogenous marks but they generally led to similar 

conclusions, with lagged nominal spread representing spread effects best. In general, 

the result is consistent with the results of Lee, Mucklow and Ready (1993) and Engle 

and Lange (2001) that tight market depth goes hand in hand with wide spreads, 

representing a negative relation between these two facets of liquidity.  

The coefficient of lagged volume β4, is predominantly positive and 

significant. The finding suggests that increased total volume is probably a poor proxy 

for informed trading. Rather, it may be an indicator of decreased order imbalance due 

to more offsetting trades. In light of this result, it seems that the offsetting effect 

hypothesized by Diamond and Verrechia (1987), and Madhavan and Smidt (1993) 

and mentioned above does in fact dominate. Since VNET is an absolute value, and 

the regression is set in logs however, the finding of a coefficient less than unity can 

be interpreted104 as a less than proportional response of VNET to VOLUME. 

Increased volume is thus associated with a proportionately smaller increase in order 

                                                 
104 As noted by Engle and Lange (2001). 
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imbalance percentage, possibly due to increased market maker concerns of informed 

trading. 

The coefficient of the weakly exogenous105 PTIME_ERR variable β5 is 

strongly significant and uniformly positive across the sample stocks. Because trading 

moves prices, the variable is weakly exogenous when for example we try to forecast 

VNET conditional on time to conduct trading. Since the variable can be influenced by 

trading on one side of the market, the coefficient can be interpreted as the reward for 

“patience.” For a stock with the average β5 = 0.5, a trader willing to increase trading 

time by 100% will face a 50% more favorable market depth. The sign of the 

estimated coefficient is consistent with the prediction that market makers condition 

their quote setting behavior on, among other things, the degree of impatience they are 

faced with, and will raise their estimates of informed trading, and in turn readjust 

quotes, and move spreads up, and realized depth down.  

Finally, the 6β coefficient of is mainly positive, 

but rarely significant in the individual stock regressions. The magnitude of the 

previous price change dos not in general affect net directional volume. I also tested a 

specification allowing for asymmetric effects of positive and negative price changes 

on VNET but the model failed to detect any significant asymmetric response factor, 

or depth “stickiness”. The positive coefficient in the individual stock regressions thus 

fails to provide any support for the Chordia, Roll, and Subrahmanyam (2001) claim 

that signed order imbalances will be higher after market declines, and lower after 
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105 The variable is considered weakly exogenous because it is contemporaneous but it can be affected 
by heavy one-sided trading. 
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market increases. It should be noted however, that I only test the immediate (lag one) 

market movements effect on order imbalance level and not general market trends.  

 

7.3.2. Pooled Regression results 

The regression coefficients are also estimated in a pooled regression setting, to 

exploit maximum information. I allow for stock specific intercepts, similar to a panel 

fixed effect treatment due to each stock’s differing average duration volume and price 

threshold. In the pooled-stock equivalent of the individual regression reported in 

Table 13, I thus include a 40-element intercept vector of fully exhaustive stock 

dummies to control for cross-sectional heterogeneity. The results for the stock pools 

across the test time period and control time period samples are reported in Table 16. I 

also estimated a pooled specification within each time period with interactive 

dummies allowing a test for whether the control sample stocks’ (the stocks trading in 

1/16th increments) coefficients shifted. The results of that specification (Table 17b) 

are discussed further in the next section. As Engle and Lange (2001) point out, this 

pooled model forces constant and identical elasticities across stocks.  

The pooled regression for the test time period (Table 16a) produces an 

unambiguously significant set of individual intercepts and strongly significant set of 

coefficients for the explanatory variables, with the exception of β2. On the other hand, 

β6 is now strongly significant. Despite that, the remaining coefficients have the same 

signs and magnitudes as estimated by the averages in the individual stock regressions. 

The pooled regression for the control time period (Table 16b) also produces a set of 

  
112 



 

strongly significant individual intercept coefficients, and a set of significant 

coefficients with signs and magnitudes once again similar to the average individual 

stock regression estimates, except for β6 which is now insignificant but still 

positive106. 

The findings of the pooled regressions reconfirm the directions of the relations 

described in the preceding section dealing with individual stock regressions. They 

suggest the results are relatively robust. 

 

7.3.3. Decimal vs. Control Stock Coefficients 

 7.3.3.1. Individual stock regressions 

In this section, I investigate whether decimalization brought about a shift in 

market depth formation dynamics. I first examine the difference in coefficient size 

from the individual stock regressions. I report t-tests for mean differences, and F-tests 

for variance explained. The results are reported in Table 18 (a and b). In light of the 

limited number of observations and hence power of the associated t-tests and 

ANOVAs however, I also estimate an interaction specification (results reported in 

Table 14, 17a, and 20) which will allow a more efficient Wald test for equality of 

coefficients. 

The average coefficients of the decimal stocks are not statistically different 

from those for the control stocks during the test time period. Table 18a reports that 

                                                 
106 Once again, in order to make similar conclusions based on the results in Table 17a, at this point I 
only look at the sign and significance of the summed non-interacted and interacted coefficients, for I 
am not discussing decimalization effects and differences between decimal and control (non-decimal) 
stocks as of yet. 
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equal and unequal variance t-tests, as well as paired two-sample tests fail to reject the 

hypothesis of equal average coefficients for each of the variables across both groups 

of stocks. Furthermore, a single factor ANOVA of the differences in coefficient pairs 

fails to reject the null of a zero mean. The coefficients are remarkably consistent and 

stable across decimal and control stocks, reconfirming the finding of Engle and Lange 

(2001) pertaining to the effect of the change in ticker from 1/8th to 1/16th. Table 18b 

reconfirms the finding of constant and stable coefficients, where those tests fail to 

reject the null of equal means for all coefficients but β1
107. Overall, based on these 

tests, I infer that individual stocks exhibit quite stable coefficients in terms of sign 

and significance across trading regime characteristics and sample periods. The results 

strengthen the model’s robustness and hint that in fact, the model is adequately 

describing the dynamics of the formation of duration-bound realized order 

imbalances. In addition, same stock coefficients across the two sample periods are 

also stable and remarkably similar (Table 19.) 

I now turn to the results of my other individual stock regression (Table 14), 

this time pooled across the two sample periods, allowing for a decimalization 

structural change in all coefficients. A Wald test of the joint null hypothesis that the 

coefficients of the interacted terms are zero is a test of the impact of the new trading 

regime on all stocks. The results are reported in Table 15. Note that this particular 

Wald test is equivalent to a regular Chow test for a structural break in a pooled 

sample period individual stock regression of the regular, non-interacted RHS 

                                                 
107 The finding could be ascribed to outliers though. 
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variables only. Table 15 also reports the results from these Chow tests, but the 

estimation results from the 40 individual stock regressions are omitted for brevity. As 

anticipated, one would expect to find no evidence of a structural change for the pilot 

stocks, already trading in decimals over both sample time periods. The tests in Table 

15 fail to reject the null of no structural shift for about half of the stocks. In contrast, 

the control sample stocks exhibit a more pronounced structural shift, for I can only 

reject the null for 30% of the stocks. There is thus, significant evidence that the 

decimal trading regime change affected the depth formation process of the control 

stocks108. In particular, decimalization brought about a sizable significantly positive 

change in the coefficient of expected duration.  In view of the previous conclusion 

from the ACD models that decimalization might have increased expected duration, 

the finding supports the predictions of Hart (1995), Peake (1995), and O’Connell 

(1997) who hypothesize that decimalization will increase liquidity through enabling 

better price comparison and competition. There also seems to be some evidence that 

the coefficient of lagged transaction number has gone down due to decimalization, 

and since the actual number of average transactions is virtually identical for both pre-

decimalization and post-decimalization, the finding thus favors the predictions of 

Harris (1991, 1994), Grossman and Miller (1988), and Seppi (1997) who predict that 

if the minimum tick is lowered market depth and liquidity will suffer. The coefficient 

of impatience has also fallen, meaning that the reward for patience has decreased.  

                                                 
108 In addition, both the Chow and Wald tests from stock pooled regressions reported in Table 17a and 
20 and discussed later, soundly reject the null that the change in trading regime exerted no change on 
control stock, decimal stock, and all stocks’ depth formation dynamics.  
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7.3.3.2. Pooled Regressions 

A reexamination of the 40 stock pool regression coefficients within each 

sample period reported in Table 16, at first glance suggests stability in sign for 

decimal and control stocks within the two sample periods. In addition, I also calculate 

separate pools for the 20-stock sample of decimal and control stocks within each 

period. The results are also reported in Table 16. 

Testing whether decimal stock coefficients differed from their control stock 

counterparts during the test sample period, simple t-tests fail to reject the zero mean 

difference null for each coefficient except for the coefficients of spread and 

impatience. The setting, however, is not the most appropriate, given the limitations of 

such a test. 

The more sophisticated structural break tests allowed by the regressions in 

Table 14 suggest that decimalization might have brought about a possible shift in 

realized depth formation dynamics, even though the effects have potentially offsetting 

implications for the resulting change in liquidity formation. I now examine the 

control stocks pool and all stocks pool for a structural break in coefficients on January 

29, 2001, using an interacted model which is the pooled equivalent of the model in 

Table 14: 
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where oβ  and 7β  are stock specific intercept vectors of size 20 for my control stock 

pool and 40 for the pool of all (Table 20) stocks.  

The results from the pooled regression estimation for the control stocks 

(reported in Table 17a.) once again indicate that the universal switch to decimal 

trading affected the liquidity formation dynamics of the stocks in the control stock 

sample. Interestingly though, only the 8β coefficient is significant, meaning that 

decimalization only brought about a discernible positive change in the coefficient of 

expected duration. Since there are no significant offsetting effects from other 

interacted coefficients, the finding is somewhat unambiguous regarding improvement 

in liquidity formation dynamics. In addition, a Wald test soundly rejects the joint null 

of zero interacted coefficients, and a Chow test in an un-interacted regression also 

rejects the null of no structural break at January 29, 2001. 

Pooled regression estimation (Table 20) for the sample of both the decimal 

and control stocks also reveals the switch to decimalization seems to have affected 

the liquidity formation process of all stocks, even the decimal stocks that traded in 

penny increments during the pilot sample period. Once again, the 8β coefficient of 

interacted expected duration is positive and significant, and so is the 10β coefficient of 

lagged spread. The conclusion is that dynamics of realized depth were positively 

affected by the universal switch to decimal prices. It seems like liquidity was 

improved by the lower impact of volatility and adverse selection. Results from the 

corresponding Wald and Chow tests also confirm the hypothesis of a decimalization 

structural break in all stocks’ liquidity formation. 
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In order to better test whether the pooled stock coefficients of decimal and 

control stocks were different within each sample period, I resort to the following 

model (reported in Table 17b) allowing for a 40-element individual stock intercept 

vector. 
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The useful feature of this regression specification is that I can now directly 

test for the significance of the difference in liquidity formation dynamics between 

decimal and fractionally trading stocks, using the full information of the variance-

covariance matrix. As anticipated, during the fractional trading period, the control 

stocks exhibited differing formation dynamics than the matched pilot stocks trading 

in decimals. The pooled estimation reveals a significant positive difference in the 

coefficient of lagged spread and a negative difference in the coefficient of impatience. 

Notice that the magnitude of the difference (0.054 for the spread coefficient and -

0.048 for the impatience coefficient) is the same as the magnitude of the difference in 

these respective coefficients in Table 16a, the advantage of the present test being that 

a more robust significance test of the difference can be carried out in the context of 

the regression in Table 17b. The larger (by 50%) negative coefficient of lagged 

spread for decimal stocks suggests a decrease in the predicted realized depth and a 

  
118 



 

partial decline in depth and liquidity, consistent with the predictions of Harris (1991, 

1994), Grossman and Miller (1988), and Seppi (1997). It is useful to note however, 

that the mean spread for decimal stocks during the fractional pilot time sample period 

was exactly 50% smaller (refer to Table 1). The finding could not therefore be 

interpreted as an unambiguous decline in liquidity due to decimalization, but rather as 

a re-equilibration of a remarkably stable functional relation of the dynamics of 

realized depth. 

Considering the joint determination of the spread and depth facets of liquidity, 

I am inclined to conclude that the shift to decimalization did not necessarily impact 

inversely liquidity formation. On the other hand, the difference in the impatience 

coefficient suggests that decimal stocks tended to reward impatience by more during 

the pilot time period. The finding would support the claim that decimal trading makes 

market makers follow prices more closely and update quotes in a timelier fashion 

based on current information set. Rapid trading would thus reduce the volume that 

could otherwise be transacted at a particular price by more for stocks trading in 

decimals. The difference thus presents a slightly increased market impact for trades in 

decimal stocks, supporting the claim of reduced liquidity by Harris (1991, 1994), 

Grossman and Miller (1988), and Seppi (1997). Overall, a Wald test soundly rejects 

the null of no structural break between decimal and control stocks during the pilot 

sample time period. In light of the individual coefficient shifts, both would tend to 

support the claim that decimal stocks’ realized depth was slightly impaired. 
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Turning my attention to the fully decimal trading sample period (Table 16 b, 

and Table 17b), I now fail to detect differences in liquidity formation dynamics 

among pilot and control stocks. The finding is reassuring because we would in fact 

expect to find no differences in that control sample period due to the equivalence of 

the trading regime. The only significant coefficient difference is the increased 

coefficient of expected duration for control stocks109.  

Overall, my findings confirm that the major underlying dynamics of realized 

depth formation are quite stable, and are not unambiguously affected to a 

considerable degree by changes in trading regime characteristics. The findings 

support the idea of fairly constant, time invariant depth elasticity with respect to the 

right hand side explanatory marks. In addition, the signs of the coefficients are 

consistent with the relations between liquidity (realized depth) and exogenous marks 

suggested by information asymmetry arguments. My proxy for inventory effects 

never entered any of the specifications significantly.  

In terms of decimalization’s impact on realized market depth, there is 

moderate evidence that over the test sample period, liquidity formation dynamics 

were in fact affected negatively by the decimal pricing grid. In particular, the liquidity 

formation process for decimal stocks was hampered by the larger negative coefficient 

of lagged spread, and the higher market impact of trades in decimal-trading stocks 

compared to fractionally trading stocks, as evidenced by the different coefficient of 

                                                 
109 Therefore, an increase in instantaneous volatility would decrease depth by more for control (now 
freshly decimal) stocks, at least in these initial weeks of fully decimal trading, possibly due to market 
makers still learning how to adjust price quotations towards a more stable coefficient like the one for 
pilot stocks. 
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impatience. The results seem to favor the conclusions in Harris (1991, 1994), 

Grossman and Miller (1988), and Seppi (1997), who predict that if the minimum tick 

is lowered market depth and liquidity will go down, and the empirical descriptive 

findings of Chakravarty, Wood, and Van Ness (2004).  

In addition, the universal switch to decimal trading on January 29, 2001 also 

affected the realized depth formation process of both control stocks and all stocks in 

the sample. The results of my individual and pooled interacted and non-interacted 

specifications suggest that decimalization brought about a sizable significantly 

positive change in the coefficient of expected duration, and since decimalization 

might have increased expected duration, the finding supports the claims of Hart 

(1995), Peake (1995), and O’Connell (1997) who hypothesize decimalization will 

increase liquidity through enabling better price comparison and competition.  

 

7.4. Commonality in Liquidity 

My duration based approach has allowed me to isolate particular price 

durations in real, event time and model their concurrent characteristics and formation 

process. The analysis started with a model of conditional expected duration as a 

function of the lagged hypothesized microstructure variables, and estimated the 

dynamics of expected conditional duration, or conditional volatility formation, 

predicated on the real price event intervals. Each of these price events (durations) 

constituted a significant mid-quote price change and its associated market quality and 

characteristics marks were also computed over the corresponding time interval. The 
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ensuing analysis of realized market depth, or net directional volume (VNET) 

associated with each of the price change events, specifically subsumed and 

incorporated the effects of expected conditional duration, or conditional volatility and 

also allowed for variables predicted to affect liquidity formation. The market depth 

model focuses on the evolution of liquidity formation by synthetically binding and 

subsuming the concomitant price and liquidity formation dynamics within the 

common duration construct, thus tracking market depth in real event time as a process 

that is not disjoint from but is rather predicated upon price formation. The analysis is 

thus an alternative to the fixed-interval intra-day estimation procedures that simply 

assume the relation between liquidity and price formation will manifest itself in the 

arbitrarily formed intervals. My approach is therefore a direct answer to the concerns 

of Harford and Kaul (2004).  

This section utilizes data from the aforementioned results in a multivariate 

analysis of the constructed series of market liquidity and liquidity shock measures. In 

particular, I examine the data for common factors driving the co-variance and 

standardized covariance structures of realized market depths and the residuals from 

the market depth models. The liquidity commonality phenomenon and its 

ramifications and implications for asset pricing are described in sections 2.3 and 6.3. 

The commonality in liquidity analysis presented here is a direct but more unified 

extension of the empirical work in Hasbrouck and Seppi (2001), Huberman and 

Halka (2001), and Harford and Kaul (2004).  A key difference in my analysis is the 

direct control for microstructure and conditional volatility effects, and the reliance on 
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event-time defined meaningful price change episodes to model piece and liquidity co-

formation. The examination presented here follows a unified estimation approach 

which includes a liquidity model allowing for volatility and microstructure effects 

and circumvents the pitfall of disjoint trade and price formation processes assumed in 

the econometrically problematic fixed-interval analysis. 

 

7.4.1. Liquidity Variable Choice and Data Aggregation 

I examine several alternative market liquidity series constructed around each 

significant price movement. The first series (VNETL) is the log of the absolute value 

of the cumulated signed net order imbalance associated with each price duration. 

VNETL is the dependent variable in my VNET regression, and is a direct ex-post 

measure of the market supported depth for each price event. Alternatively, since it 

measures an actual number of shares, the series of the cumulated signed net order 

imbalance (NNET) transacted during a particular duration will also be used.  

I also use the series of residuals (RES) from each of the individual stock 

VNET regressions in which the dependent variable is the logged realized market 

depth. These residual series therefore control for market microstructure and 

conditional volatility effects. RES is thus a proxy for actual liquidity shocks net of 

cross-sectional and stock specific influences. Since the VNET regression was set in 

log levels, I will also construct  a residual series representing liquidity shock to 

realized market depth in actual shares by taking the exponent of the absolute value of 

the residual from the log regression, and then keeping the sign of the residual in order 
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to retain the direction of the shock. The resulting series (EXRES) thus provides a 

measure of the magnitude in actual shares as well as the signs of the errors. 

As discussed in Section 6.3, factor analysis requires the input variables be 

concomitant and time-synchronous in order to obtain a conforming data matrix. I 

achieve conformity by aggregating my relevant liquidity measures over individual 

business days. I thus obtain standardized series of individual stock liquidity and 

liquidity shocks for each of  78 business days during my test and control sample 

periods110.  

 

7.4.2. Common Factor Analysis 

I conduct standard principal component analysis and maximum likelihood 

common factor analysis using as a basis the cross-sectional correlation matrix defined 

by the relevant measure of liquidity. The following discussion of the two methods 

follows Dillon and Goldstein (1984). 

Principal component analysis is a data reduction technique that isolates a 

parsimonious set of mutually orthogonal linear combinations (components) which 

explain the majority of the variation present within a large set of concomitant data 

series. The components are extracted so that the first component accounts for the 

largest amount of variation in the data, the second component is uncorrelated with the 

                                                 
110 For thinly traded stocks, in the cases a particular duration spanned more than one business day, the 
aggregation method records a zero measure for liquidity and shocks on the inactive day. The results 
from the ensuing factor analysis remain unchanged if I recode the data  and substitute the mean value 
of the series instead of the zero. The results are thus robust to my substitution choice, either because 
the mean for most of the series is close to zero, or the transformation does not affect the pattern of 
deviations from the mean and the general covariance structure of the series. 
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first and explains the largest proportion of the remaining residual variation, and so on. 

Algebraically, the first principal component (C1) is the linear combination of the 

observed variables Xi , i = 1, 2, …,p  
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components can be extracted, where p is the rank of the covariance (or correlation) 

matrix. The goal of the analysis is typically to identify a parsimonious representation 

explaining variation in the data with as few components as possible.  

Maximum Likelihood factor analysis, on the other hand begins with the 

assumption that a set of unobservable common factors and a single latent unique 

factor explain all the variation in a given variable. The assumed model is: 
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where up to pm ≤ common factors (CF) can be extracted, and 

 are the weights of the jmjpiv j
i KK ,2,1,,2,1, == th common factor associated with 

the ith observable variable, and the pje j K2,1, = are the unique residual effects.  
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A primary difference in estimating the two models is that principal 

components extraction is simply a mathematical calculation. The method makes nor 

requires any assumptions about the multivariate statistical distribution governing the 

data. In contrast, ML Factor analysis as it is generally implemented presumes the 

underlying data are multivariate normal. The distinction in terms of interpretation is 

that PC analysis (without making any assumptions about an underlying multivariate 

distribution) provides no statistical theory that can be used to ‘test’ for the number of 

factors while ML factor analysis (based on multivariate normality) provides such a 

test. The analyses utilize the standardized variables, and thus the correlation matrix 

rather than the covariance matrix, removing differences due to the individual variable 

means and dispersions.111  

 

7.4.3. Principal Components and ML Factor Analysis Results 

Table 21 reports the results from the analysis based upon the liquidity series 

and the liquidity residual series of the 40 sample stocks over the pilot and fully 

decimal period, as well as over the merged time period. The percentage of variation 

explained by each factor is obtained by dividing the respective eigenvalue of the 

correlation matrix associated with each respective factor by 40, the number of series. 

The rank of the correlation matrix equals 40, implying the matrix has 40 positive 

eigenvalues. 

                                                 
111 In the literature, this adjustment is most commonly necessitated by differing units of measurement 
among the data sample series. In the present case however, the units of measurement are uniform but 
the rather uneven variances of the series necessitate the adjustment. 
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The results from the realized market depth series VNETL and NNET 

generally confirm the findings of mild commonality in liquidity detected of 

Hasbrouck and Seppi (2001) and Huberman and Halka (2001). Up to 15% of the 

variation in aggregated logged net directional volumes associated with each price 

duration can be explained by the first factor. The finding is very close to the 13% 

found by Hasbrouck and Seppi (2001) from their analysis of transactions realized 

within fixed, 15 minute intervals. Assuming multivariate normality, the standard error 

of that first eigenvalue is 1.34 and is thus statistically significant112. The VNETL and 

NNET scree-plots in Table 22 also confirm the finding of a single common factor 

governing liquidity co-variation113. 

The evidence of commonality disappears when the residuals from the liquidity 

regressions are examined. The eigenvalues and the associated percentage of variation 

explained by the first three factors in the analysis of the RES and EXRES series are 

small114. In addition, an examination of the RES and EXRES scree-plots in Table 22 

confirms the absence of a common dominating factor. The findings strengthen the 

validity of the individual VNET regressions. In particular, the impact of RHS 

variables accounting for microstructure and conditional volatility effects on liquidity 

account for the manifestation of a common factor liquidity structure. The finding 

                                                 
112 With n observations ( ) )2,0(~ 2

..

i

distasy

ii Nln ψψ− where iψ  and are the population and 

sample value of the i

il

th  eigenvalue. Standard error of the eigenvalue of 6 is therefore 34.1
40

)6(2 2

=  

113 Scree-plots (after Cattell, 1966) are simply a plot of the eigenvalues in descending order. The 
number of relevant factors (the scree) is marked by the point where the subsequent eigenvalues plot as 
a straight line.  
114 Assuming multivariate normality none are significant. 
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provides evidence against the claim that systematic liquidity shocks give rise to 

correlated liquidity, and therefore have potentially important implications for the 

discussion of liquidity effects in asset pricing. The results suggest common driving 

forces in terms of microstructure and volatility effects on individual-stock liquidity 

formation processes are what drives commonality in liquidity. Furthermore, they 

support the claim of Fernando (2003) that systematic common liquidity shocks do not 

give rise to liquidity commonality. 

The results on commonality suggest the characteristics of the trading process, 

namely the individual stock price and liquidity formation dynamics ultimately give 

rise to and account for the bulk of liquidity commonality. While the common factor 

analysis does not help pinpoint precise identity of the effects giving rise to a common 

liquidity factor, a task left for future research, the results make it reasonable to 

surmise that their  origin is rooted at the microstructural level of price, liquidity, and 

conditional volatility formation. Moreover, the event-time, price-duration based 

analysis undertaken in this study is in fact particularly well-suited for and relevant in 

delineating the actual liquidity formation process and modeling the synthetic co-

evolution of price and liquidity. 

 

7.4.3.1. Pilot Stocks vs. Control Stocks  

Comparing the common factor analysis results of the pilot, decimally trading 

stocks with those of the control stocks over each of my sample test periods provides a 
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way to assess how minimum tick trading regime changes affected stock liquidity 

formation dynamics, and liquidity commonality. 

Table 23 reports the results of the principal component factor analyses on the 

two stock groups over each sample period. The results reconfirm the finding from the 

previous section of a single factor explaining from 14% to 19% of the co-variation in 

the raw liquidity measures VNETL and NNET. The evidence of a common factor 

again however disappears in the results of the RES and EXRES orthogonalized 

residuals. 

The difference in the strength of the common factor behind pilot and control 

stocks is quite small and virtually indistinguishable. In general however, decimal/pilot 

stocks do exhibit a slightly higher explained proportion of co-variation. I conclude 

decimalization had no influence on liquidity commonality, and if anything, it seems 

to have made liquidity variations more related and uniform. The latter argument 

agrees with the argument made by decimalization proponents that switching to penny 

pricing increments would encourage price continuity and standardization and 

contribute to a smoother, less fragmented trading environment. 

 

8. Conclusion 

This study utilized the construct of price duration, defined as the time 

necessary for prices to move in either direction by at least a pre-specified increment.  

The appealing feature of the construct is that it provides an event time segregation of 

real price/information events rather than relying on fixed-interval analysis. Having 
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predicated the duration construct on the change in price, the concomitant levels of or 

changes in other market characteristics, called marks, are subsumed and synchronized 

to the real price events they relate to. The price duration construct thus allows for a 

unique microstructural examination of the interrelated formation processes of price, 

liquidity, and volatility while tracing their developments within the confines of 

individual stock real price events. The study first proceeded by parameterising the 

conditional duration/volatility process of 40 NYSE stocks through the estimation of 

various multiplicative error Autoregressive Conditional Duration models. Having 

isolated the proper functional form and most suitable empirical distributional 

assumptions, I used the model’s output to generate the series of expected conditional 

durations, representing a proxy for the inverse of expected volatility, conditioned on 

past durations and an array of lagged exogenous microstructural marks. 

The process allowed me to test an array of hypothesized informational market 

microstructure relations, confirming the significance and direction of their 

hypothesized impact on volatility formation dynamics. The results strongly support 

the hypothesized sign and significance of informational microstructure variables 

affecting price and volatility development115.  

The purpose of this study was to then shed some light upon the effect of the 

trading regime change in minimum ticker size upon price, volatility, and liquidity 

formation. In addition, the expected durations were used in a regression modeling the 

                                                 
115 Individual works tested include Roll (1984), Hasbrouck (1991), Stoll (1989), Kyle (1985), Glosten 
and Milgrom (1985), Bagehot (1971), Blume, Easley, and O’Hara (1994), Easley, Keifer, O’Hara, and 
Paperman (1996), Easley and O’Hara (1987), Hasbrouck (1988), Foster and Viswanathan (1995), 
Easley and O’Hara (1992), and Jones, Kaul, and Lipson (1994). 

  
130 



 

realized market depth, or net directional volume transacted over particular price 

duration. This is the only study which approaches the issues through the event time 

construct of price duration as opposed to fixed-interval analysis.  

There is evidence that the switch to decimalization affected the dynamics of 

the mid-quote price formation and price revision. After the complete switch to 

decimalization, the price formation process adjusted to the new trading regime, and 

the dynamics of expected conditional duration remained quite stable and uniform in 

terms of the new ACD model coefficients. Decimalization seems to have reduced 

conditional mid-quote price volatility by making the average conditional expectation 

of time necessary for a predetermined price change slightly larger. The finding is in 

direct agreement with the argument of decimalization advocates claiming that a 

refined pricing grid will lead to more continuous, correct, and generally less volatile 

pricing. Evidence thus seems to point that conditional intraday volatility has declined 

with decimalization, confirming the claims of Bessembinder (2003) and Chakravarty, 

Wood, and van Ness (2004). 

In addition, my liquidity analysis confirms that the underlying dynamics of 

realized depth formation are quite stable, and are not unambiguously affected to a 

considerable degree by changes in trading regime characteristics. The findings 

support the idea of fairly constant, time invariant depth elasticity with respect to the 

right hand side explanatory marks. In addition, the signs of the coefficients confirm 
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the information asymmetry microstructure works116 predicted relations between 

liquidity (realized depth) and exogenous microstructure marks. My proxy for 

inventory effects never enters significantly any of the liquidity analysis specifications. 

In terms of decimalization’s impact, there is moderate evidence that over the 

test sample period, liquidity formation dynamics were in fact affected negatively by 

the decimal pricing grid. In particular, the liquidity formation process for decimal 

stocks was hampered by the larger negative coefficient of lagged spread, and the 

higher market impact of trades in decimal-trading stocks compared to fractionally 

trading stocks, as evidenced by the different coefficient of impatience. The results 

seem to favor the conjectured relations in Harris (1991, 1994), Grossman and Miller 

(1988), and Seppi (1997), who predict that if the minimum tick is lowered market 

depth and liquidity will go down, and the empirical descriptive findings of 

Chakravarty, Wood, and Van Ness (2004). 

In addition, the universal switch to decimal trading on January 29, 2001 also 

affected the realized depth formation process of both control stocks and all stocks in 

the sample. The results of both the individual and pooled interacted and un-interacted 

specifications mildly support the claims of the microstructure works of Hart (1995), 

Peake (1995), and O’Connell (1997) who hypothesize decimalization would increase 

liquidity through enabling better price comparison and competition.  

                                                 
116 Works tested include Kyle (1985), Glosten and Milgrom (1985), Diamond and Verrechia (1987), 
Madhavan and Smidt (1993), Lee, Mucklow and Ready (1993), Engle and Lange (2001), Chordia, 
Roll, and Subrahmanyan (2001), Escribano, Pascual, and Tapia (2002), and Chordia and 
Subrahmanyam (2002). 
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Finally, I conduct a common factor analysis on the aggregated realized market 

depth and orthogonalized residuals series. My results confirm the findings of 

Hasbrouck and Seppi (2001) of a single latent factor explaining about 15% of 

liquidity co-variation. Interestingly, the evidence of commonality disappears after 

controlling for concomitant microstructure and volatility effects. In particular, the 

impact of RHS variables accounting for microstructure and conditional volatility 

effects on liquidity, or their subsumed interrelated formation dynamics could well 

account for the manifestation of a common factor liquidity structure. The finding 

provides evidence against the claim that systematic liquidity shocks give rise to 

correlated liquidity117, at least not in a direct way but possibly through their impact on 

price and volatility dynamics, and could therefore have potentially important 

implications about liquidity effects on asset pricing. Rather, it seems like the common 

driving forces in terms of microstructure and volatility effects behind individual-stock 

liquidity formation processes are the very reason commonality in liquidity is detected. 

The interpretation of the finding tends to support an argument that the trading process 

characteristics, namely the individual stock price and volatility formation dynamics 

ultimately give rise to and account for the bulk of the traditionally documented 

liquidity commonality. 

In light of the results, the precise identity of the common liquidity factor is not 

directly pinpointed, but it would be quite reasonable to surmise that its origin is 

rooted at the microstructural determination of price, liquidity, and conditional 

                                                 
117 Confirming the theoretical conclusions from the model in Fernando (2003). 

  
133 



 

volatility formation. Moreover, the event-time, price-duration based analysis 

undertaken in this study could in fact be particularly well-suited for and pertinent to 

the delineation of the actual liquidity formation process and the modeling of the 

synthetic co-evolution of price and liquidity. 
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i Madhavan (2000) provides a definition of market microstructure as the “area of finance concerned with the 

process by which investors’ latent demands are ultimately translated into transactions.” He splits the general area 

into four sub areas: 

1) Price formation and price discovery, examines the static properties of execution costs and 

their determinants, as well as the dynamic models of price formation by which latent demands ultimately 

translate into trading prices and volumes that reflect available information.  

2) Market structure and design issues, dealing with the effect of alternative trading protocols and 

regulations upon the price formation process, market liquidity, and quality. 

3) Information and disclosure, concerned primarily with the effect of the price formation 

process’ characteristics upon traders’ strategies and behavior. The issue of market transparency is the 

core of this research area. 

4) Relation of microstructure informational issues to other finance areas like corporate finance, 

investments, and international finance. 
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Example 1.
A sample duration for a hypothetical set of transactions and their matched quotes.

Threshold=$.0625
Transaction 

Time
Transaction 

Price Bid Quote Ask Quote
Mid-Quote 

Price
Trade 

Indicator Direction d i Volume vol i

10:01:00 5.1250$       5.1250$     5.375$       5.2500$     S 1 300
Duration = 72 seconds 10:01:05 5.3125$       5.1250$     5.375$       5.2500$     B -1 200
VNET = 100 10:01:12 5.3750$       5.1250$     5.375$       5.2500$     B -1 100
Volume = 900 10:01:25 5.1250$       5.1250$     5.375$       5.2500$     S 1 100

10:02:12 5.5000$       5.1250$     5.500$       5.3125$     B -1 200
10:02:20 5.5000$       5.1250$     5.500$       5.3125$     B -1 200

∑=
i

ii voldVNET

149



Figure 1.
Autocorrelation functions of an ACD(1,1) process for different values 
of alpha and beta.
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Figure 2.
Time-of-day effects of raw durations. Quarter-hours reported on horizontal axis.

October 2, 2000 till January 26, 2001. February 8, 2001 till May 31, 2001.
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Figure 3.
Time-of-day effects of average spread. Quarter-hours reported on 
horizontal axis.

October 2, 2000 till January 26, 2001.

February 8, 2001 till May 31, 2001.
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Figure 4a.
Histogram and probability plot of raw durations against exponential distribution.

           October 2, 2000 till January 26, 2001.     February 8, 2001 till May 31, 2001.
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Figure 4b.
Histograms and probability plots of the normalized durations against the Exponential and Weibull distributions.

October 2, 2000 till January 26, 2001.
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Figure 4b.
Histograms and probability plots of the normalized durations against the Exponential and Weibull distributions.

February 8, 2001 till May 31, 2001.
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Figure 5. Autocorrelation functions of the simple starting point estimated ACD(1,1) 
models. Sample period October 2, 2000 till January 26, 2001.
Model is:

Where ENPTIME is the conditional expected normalized duration, NPTIME is the 
normalized actual duration, and SPREAD is nominal spread associated with the
particular duration.
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Figure 6. Autocorrelation functions of the optimal estimated ACD(1,1) models.
 Sample period October 2, 2000 till January 26, 2001.

Model is:
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. 
transaction volume, DSPREAD = change in nominal spread, DEPTH = quoted depth, NUMBER = # of 
transactions, APRESID = |price change|.
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Figure 7. Empirical distribution tests of the standardized residuals from the 
WACD and WLACD models for stocks HIT and RCL.
Sample time period October 2, 2000 till January 26, 2001. 

HIT RCL

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

STANDWL_1

E
xp

on
en

tia
l Q

ua
nt

ile

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

STANDW_1

E
xp

on
en

tia
l Q

ua
nt

ile

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

STANDW_1
E

xp
on

en
tia

l Q
ua

nt
ile

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14

STANDWL_1

E
xp

on
en

tia
l Q

ua
nt

ile

158



Table 1. Company Descriptives
Ticker symbols and names of the decimal and matched control sample companies.

Ticker Company Name Ticker Company Name
AOL AMERICA ONLINE WMT WAL-MART STORES
ASF ADMINISTAFF INC CCN CHRIS-CRAFT INDS
BEN FRANKLIN RESOURCES INC AOC AON CORP
CI CIGNA CORP UNH UNITEDHEALTH GROUP INC
CL COLGATE-PALMOLIVE CO KO COCA-COLA CO
CPQ AOL TIME WARNER INC T AT&T CORP
DCX DAIMLERCHRYSLER AG DOV DOVER CORP
GMH GENERAL MOTORS CL H ALL ALLSTATE INSURANCE
GT GOODYEAR TIRE & RUBBER CO GP GEORGIA-PACIFIC CORP
HAR HARMAN INTERNATIONAL INDS PHM PULTE HOMES INC
KF KOREA FUND APF MORGAN STAN ASIA PACIFIC FD
LE LANDS END CLB CORE LABORATORIES NV
LMT LOCKHEED MARTIN CORP MRO MARATHON OIL CORP
MLM MARTIN MARIETTA MATERIALS HTN HOUGHTON MIFFLIN CO
RCL ROYAL CARIBBEAN CRUISES LTD CNF CNF INC
S SEARS ROEBUCK Co NKE NIKE INC -CL B
SGY STONE ENERGY CORP AMG AFFILIATED MANAGERS GRP INC
STT STATE STREET CORP PKI PERKINELMER INC
UBS UBS AG HIT HITACHI LTD -ADR
VAL VALSPAR CORP AGX AGRIBRANDS INTERNATIONAL INC

Decimal Pilot Stocks Matched Control Stock

159



Table 1 (cont'd) Company Descriptives
Descriptive statistics for the decimal pilot sample and control sample stocks and their trades.
Sample time period October 2, 2000 till January 26, 2001.

Market Cap 
end 2000

Average 
Daily 

Volume 

Mean 
Daily 

Trades
Mean 
Price

Price 
Var.

Mean 
Trans. 

Spread
Market Cap 

end 2000

Av. Daily
Volume 
(thous.)

Mean 
Daily 

Trades
Mean 
Price

Price 
Var.

Mean 
Trans. 

Spread
AOL 80,614       12547 1954 47.43 41.51 0.0807 WMT 237,469       7303 2173 49.66 12.77 0.0993
ASF 746            215 246 36.21 215.83 0.1575 CCN 2,328           63 95 71.38 14.3 0.2412
BEN 9,286         493 495 38.96 4.04 0.0719 AOC 8,912           1408 431 33.81 12.82 0.1219
CI 20,111       740 788 120.69 51.93 0.2092 UNH 19,471         1446 958 96.97 633* 0.1543
CL 36,578       1594 839 56.99 15.32 0.063 KO 151,416       3685 1381 58.8 4.54 0.0942
CPQ 25,419       11172 2048 22.56 23.6 0.0527 T 64,863         15271 2276 21.84 9.65 0.0876
DCX 41,335       577 423 43.35 6.42 0.0849 DOV 8,242           716 520 40.94 4.92 0.1314
GMH 29,831       3384 797 26.83 13.05 0.0712 ALL 31,714         2443 949 38.02 9.29 0.107
GT 3,623         906 525 19.56 8.25 0.0513 GP 6,329           1922 718 26.68 7.99 0.1056
HAR 1,243         200 194 37.6 22.31 0.1756 PHM 1,754           310 307 37.86 16.67 0.1485
KF 528            140 58 11.2 0.59 0.0693 APF 556              97 37 8.89 0.08 0.0849
LE 736            168 184 24.74 7.6 0.1006 CLB 880              100 73 22.49 3.06 0.1825
LMT 14,632       1102 606 33.09 1.35 0.0832 MRO 8,554           1183 525 27.5 0.7 0.0901
MLM 1,979         154 176 38.65 9.81 0.1093 HTN 1,335           176 142 38.47 16.08 0.1474
RCL 5,070         573 216 23.56 7.93 0.1024 CNF 1,645           360 258 29.02 15.6 0.1401
S 11,579       1366 690 32.95 6.3 0.0613 NKE 14,991         1172 632 46.89 47.47 0.1225
SGY 1,197         137 190 56.78 16.75 0.147 AMG 1,209           154 226 54.12 18.7 0.2012
STT 20,086       688 955 120.52 72.4 0.2046 PKI 5,226           549 784 100.5 75.12 0.2929
UBS 69,602       220 222 147.25 218.85 0.1957 HIT 28,727         33 86 101.44 113 0.4371
VAL 1,367         96 143 27.78 5.85 0.0882 AGX 1,345           56 31 50.25 22.68 0.134
Mean 18778.074 1823.5503 587.3751 48.335 37.485 0.10898 Mean 29848 1922.3391 630.1 47.777 51.922 0.15619

* UNH went through a stock split, explaining the large variance, and the difference in mean sample volatility

MATCHED  CONTROL SAMPLEPILOT DECIMAL SAMPLE
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Table 1. (cont'd) Company Descriptives
Descriptive statistics for the trades of the decimal pilot sample and control sample.
Sample time period February 8, 2001 till May 31, 2001.

Average 
Daily 

Volume 
(thous.)

Mean Daily 
Trades Mean Price

Price 
Variance

Mean 
Trans. 

Spread

Average 
Daily 

Volume 
(thous.)

Mean Daily 
Trades

Mean 
Price

Price 
Variance

Mean 
Trans. 

Spread
AOL 12567 2177 46.10 30.07 0.0689 WMT 5516 2160 50.90 3.68 0.0523
ASF 193 195 22.48 12.08 0.1083 CCN 62 113 68.88 14.41 0.1459
BEN 567 697 41.74 5.35 0.0633 AOC 918 530 34.30 1.66 0.0727
CI 1076 1085 102.10 53.46 0.1379 UNH 2093 1116 58.45 7.56 0.0703
CL 1431 1148 55.79 6.16 0.0591 KO 3916 1521 48.57 18.71 0.0487
CPQ 8983 1792 18.90 4.88 0.0414 T 9127 1812 21.96 0.77 0.0351
DCX 457 318 48.45 5.10 0.0758 DOV 671 678 38.65 5.06 0.0758
GMH 2982 814 21.70 4.51 0.0576 ALL 1907 1250 41.50 2.70 0.0508
GT 886 678 25.43 3.03 0.0525 GP 1516 760 30.96 5.09 0.0576
HAR 153 180 31.21 14.51 0.1361 PHM 414 455 40.12 19.40 0.0957
KF 130 41 10.25 0.93 0.0643 APF 61 32 8.43 0.18 0.0607
LE 123 173 29.25 16.36 0.0983 CLB 100 90 22.28 5.41 0.1570
LMT 1404 805 36.67 1.79 0.0734 MRO 1296 806 29.61 4.50 0.0446
MLM 173 184 45.97 7.36 0.0984 HTN 154 208 47.37 26.62 0.0964
RCL 889 319 23.09 10.32 0.0733 CNF 270 307 31.31 5.51 0.0810
S 1381 829 37.50 5.38 0.0549 NKE 1296 777 41.69 22.92 0.0673
SGY 179 271 52.30 16.04 0.1364 AMG 169 278 51.63 17.00 0.1550
STT 871 1233 98.52 84.69 0.1375 PKI 545 739 64.43 137.44 0.1468
UBS 79 157 148.91 90.17 0.3084 HIT 37 100 92.51 117.43 0.3529
VAL 171 222 30.87 30.87 0.0816 AGX 24 28 54.00 0.05 0.0596
Mean 1734.724 666 46.3615 20.153 0.09637 Mean 1504.6103 687.93846 43.8775 20.805 0.096

MATCHED  CONTROL SAMPLEPILOT DECIMAL SAMPLE
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Table 2a.
Characteristics of durations computed using a fixed $1/16 price threshold for all stocks.
Sample time period October 2, 2000 till January 26, 2001.

Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage 
Price Threshold 

(%)
Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage 
Price Threshold 

(%)
AOL 13374 0.0625 47.48 0.13163 WMT 13990 0.0625 50.17 0.12458
ASF 2957 0.0625 35.48 0.17616 CCN 881 0.0625 72.06 0.08673
BEN 4269 0.0625 38.96 0.16042 AOC 2943 0.0625 34.66 0.18032
CI 5221 0.0625 118.29 0.05284 UNH 12620 0.0625 100.35 0.06228
CL 6154 0.0625 57.08 0.10950 KO 9632 0.0625 58.77 0.10635
CPQ 4686 0.0625 23.35 0.26767 T 6195 0.0625 22.58 0.27679
DCX 2866 0.0625 43.69 0.14305 DOV 6035 0.0625 41.02 0.15236
GMH 3998 0.0625 27.05 0.23105 ALL 6519 0.0625 37.75 0.16556
GT 1474 0.0625 19.64 0.31823 GP 5069 0.0625 26.94 0.23200
HAR 2738 0.0625 37.71 0.16574 PHM 4207 0.0625 38.02 0.16439
KF 166 0.0625 10.97 0.56974 APF 108 0.0625 8.86 0.70542
LE 2240 0.0625 25.13 0.24871 CLB 1081 0.0625 22.56 0.27704
LMT 4640 0.0625 33.11 0.18876 MRO 3401 0.0625 27.58 0.22661
MLM 1862 0.0625 38.52 0.16225 HTN 1900 0.0625 38.69 0.16154
RCL 1976 0.0625 23.56 0.26528 CNF 3378 0.0625 28.96 0.21581
S 3982 0.0625 33.13 0.18865 NKE 4194 0.0625 47.32 0.13208
SGY 3155 0.0625 57.07 0.10951 AMG 4916 0.0625 54.59 0.11449
STT 9281 0.0625 120.77 0.05175 PKI 15673 0.0625 100.75 0.06203
UBS 3490 0.0625 149.36 0.04185 HIT 1294 0.0625 100.86 0.06197
VAL 902 0.0625 27.59 0.22653 AGX 296 0.0625 47.94 0.13037
Mean 3972 0.0625 48.40 0.1905 Mean 5217 0.0625 48.02 0.1819

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 2a.
Characteristics of durations computed using a fixed $ 1/16 price threshold for all stocks.
Sample time period February 8, 2001 till May 31, 2001.

Number of 
Durations

Nominal Price 
Threshold ($)

Average
Midquote 

Price
Price 

Threshold (%)
Number of 
Durations

Nominal Price 
Threshold ($)

Average
Midquote 

Price
Price 

Threshold (%)
AOL 11235 0.0625 44.93 0.1391 WMT 7948 0.0625 50.64 0.1234
ASF 1943 0.0625 22.78 0.2744 CCN 443 0.0625 67.80 0.0922
BEN 4343 0.0625 41.57 0.1503 AOC 2381 0.0625 34.42 0.1816
CI 8276 0.0625 102.95 0.0607 UNH 5544 0.0625 58.32 0.1072
CL 6054 0.0625 55.88 0.1118 KO 4132 0.0625 48.77 0.1282
CPQ 2937 0.0625 19.31 0.3237 T 2779 0.0625 21.97 0.2845
DCX 2086 0.0625 48.28 0.1295 DOV 3541 0.0625 38.38 0.1628
GMH 3249 0.0625 21.77 0.2871 ALL 4118 0.0625 41.38 0.1510
GT 2646 0.0625 25.16 0.2484 GP 3666 0.0625 30.63 0.2040
HAR 1978 0.0625 31.43 0.1989 PHM 2750 0.0625 39.19 0.1595
KF 89 0.0625 9.96 0.6275 APF 33 0.0625 8.37 0.7467
LE 1757 0.0625 28.92 0.2161 CLB 675 0.0625 22.11 0.2827
LMT 4370 0.0625 36.56 0.1710 MRO 1573 0.0625 29.46 0.2122
MLM 1551 0.0625 45.29 0.1380 HTN 1829 0.0625 46.10 0.1356
RCL 1639 0.0625 23.67 0.2640 CNF 1861 0.0625 31.39 0.1991
S 3842 0.0625 37.22 0.1679 NKE 2329 0.0625 41.85 0.1493
SGY 3391 0.0625 52.68 0.1186 AMG 3093 0.0625 51.36 0.1217
STT 10778 0.0625 97.71 0.0640 PKI 6601 0.0625 66.13 0.0945
UBS 2560 0.0625 148.55 0.0421 HIT 1104 0.0625 91.14 0.0686
VAL 1627 0.0625 30.71 0.2035 AGX 72 0.0625 53.94 0.1159
Mean 3818 0.0625 46.2665 0.1968 Mean 2823.6 0.0625 43.6675 0.1860

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 2b.
Descriptives of raw durations computed using a fixed $ 1/16 price threshold for all stocks.
Sample time period October 2, 2000 till January 26, 2001.

Mean 
Duration 

(seconds)

Duration 
Standard 
Deviation Median Min. Max.

Mean 
Duration 

(seconds)

Duration 
Standard 
Deviation Median Min. Max.

AOL 147 163 98 5 11560 WMT 133 156 83 2 3401
ASF 534 820 245 7 9070 CCN 981 1159 538 8 10012
BEN 452 543 276 6 6934 AOC 475 666 280 5 11560
CI 187 221 121 5 3741 UNH 137 157 87 2 2849
CL 304 348 194 5 6256 KO 172 196 108 3 2949
CPQ 342 474 194 8 8119 T 291 402 166 6 7734
DCX 576 741 339 8 7569 DOV 330 415 201 4 4996
GMH 376 464 227 6 7430 ALL 249 325 148 3 5317
GT 859 1207 465 7 15561 GP 332 466 191 5 10808
HAR 639 730 391 5 7311 PHM 455 594 266 5 10103
KF 4401 4485 2695 33 18743 APF 5952 5285 4050 114 21096
LE 858 1224 445 6 17018 CLB 1492 1954 848 5 20026
LMT 407 475 252 3 6185 MRO 498 641 278 5 7677
MLM 923 1098 563 5 16544 HTN 1024 1304 574 6 14263
RCL 926 1298 492 9 14416 CNF 549 728 311 3 9963
S 456 569 268 5 7315 NKE 288 371 166 4 4914
SGY 653 875 328 5 8272 AMG 428 613 208 4 7151
STT 134 171 79 3 2924 PKI 121 150 75 3 5215
UBS 469 771 219 4 10912 HIT 1031 988 762 3 7922
VAL 1324 1674 786 12 15050 AGX 3746 3797 2336 46 17399
Mean 748.35 918 433.85 7 10047 Mean 934.2 1018 583.8 12 9268

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 2b.
Descriptives of raw durations computed using a fixed $ 1/16 price threshold for all stocks.
Sample time period February 8, 2001 till May 31, 2001.

Mean 
Duration 

(seconds)

Duration 
Standard 
Deviation Median Min. Max.

Mean 
Duration 

(seconds)

Duration 
Standard 
Deviation Median Min. Max.

AOL 164 265 107 3 14881 WMT 210 238 136 5 4092
ASF 865 1343 374 2 15581 CCN 1124 1300 715 18 10050
BEN 410 474 260 4 5859 AOC 588 726 364 4 10646
CI 187 233 117 4 4644 UNH 274 331 167 8 4212
CL 293 342 185 4 6501 KO 316 368 199 7 4984
CPQ 475 591 286 10 8082 T 619 865 347 10 14534
DCX 746 962 440 5 10508 DOV 479 590 281 4 5916
GMH 511 628 307 7 7445 ALL 389 481 236 7 7156
GT 640 803 366 5 8203 GP 459 542 279 4 5661
HAR 814 1011 492 4 11776 PHM 544 655 326 5 7200
KF 5333 5505 2878 60 20450 APF 6567 5295 4829 324 19680
LE 1041 1359 598 9 16092 CLB 1763 2120 1043 5 14705
LMT 392 535 231 6 14098 MRO 891 1216 487 7 20219
MLM 1022 1265 596 3 10341 HTN 937 1174 572 10 12251
RCL 888 1187 522 12 15987 CNF 846 1140 490 5 11799
S 461 602 273 7 14161 NKE 404 579 231 7 9633
SGY 527 655 298 5 7700 AMG 534 818 254 3 14380
STT 135 163 83 3 2246 PKI 212 240 134 4 3345
UBS 638 920 308 4 8703 HIT 1120 1192 784 4 8891
VAL 1020 1422 539 11 15182 AGX 4682 4642 2598 99 18536
Mean 828.1095 1013 463 8 10922 Mean 1147.9 1226 723.6 27 10395

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 3a.
Characteristics of durations computed after calibrating the stock specific price threshold for all stocks.
Sample time period October 2, 2000 till January 26, 2001.

Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage Price 
Threshold (%)

Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage Price 
Threshold (%)

AOL 1806 0.28 47.21 0.5931 WMT 1523 0.25 50.47 0.4953
ASF 1408 0.15 36.09 0.4156 CCN 1341 0.03125 72.11 0.0433
BEN 1800 0.13 39.05 0.3329 AOC 1685 0.09375 34.67 0.2704
CI 1479 0.25 118.74 0.2105 UNH 1608 0.34375 103.62 0.3317
CL 1466 0.19 57.24 0.3319 KO 1264 0.21875 58.69 0.3727
CPQ 1302 0.15 23.46 0.6394 T 1082 0.15625 22.77 0.6862
DCX 1241 0.12 43.63 0.2750 DOV 1295 0.1875 40.93 0.4581
GMH 1413 0.14 27.06 0.5174 ALL 1127 0.1875 37.71 0.4972
GT 1312 0.07 19.7 0.3553 GP 1248 0.15625 27.04 0.5778
HAR 1338 0.15 37.68 0.3981 PHM 1462 0.15625 38.07 0.4104
KF 781 0.01 11.12 0.0899 APF 348 0.005 8.86 0.0564
LE 1081 0.13 25.13 0.5173 CLB 1081 0.0625 22.56 0.2770
LMT 1298 0.17 33.09 0.5138 MRO 1597 0.09375 27.61 0.3396
MLM 1336 0.09 38.52 0.2336 HTN 1247 0.09375 38.76 0.2419
RCL 1365 0.09 23.56 0.3820 CNF 1119 0.15625 29.26 0.5340
S 1126 0.16 33.15 0.4827 NKE 1287 0.15625 47.41 0.3296
SGY 1380 0.16 57.08 0.2803 AMG 1332 0.25 54.75 0.4566
STT 1279 0.42 121.05 0.3470 PKI 1328 0.625 100.34 0.6229
UBS 1392 0.19 148.83 0.1277 HIT 1294 0.0625 100.86 0.0620
VAL 1103 0.05 27.59 0.1812 AGX 570 0.005 48.79 0.0102
Mean 1335 0.155 48.449 0.3612 Mean 1242 0.1645625 48.264 0.3537

MATCHED  CONTROL SAMPLEPILOT DECIMAL SAMPLE
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Table 3a.
Characteristics of durations computed with recalibrated price thresholds for the matched stocks.
Sample time period February 8, 2001 till May 31, 2001.

Number of 
Durations

Nominal 
Price 

Threshold ($)

Average 
Midquote 

Price

Percentage 
Price Threshold 

(%)

Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage Price 
Threshold (%)

AOL 1268 0.28 44.31 0.63191 WMT 1437 0.20 50.51 0.39596
ASF 787 0.15 23.04 0.65104 CCN 845 0.02 67.67 0.02956
BEN 1646 0.13 41.39 0.31409 AOC 1514 0.09 34.48 0.26102
CI 1878 0.25 103.68 0.24113 UNH 1880 0.15 58.23 0.25760
CL 1145 0.19 55.78 0.34062 KO 1063 0.16 48.91 0.32713
CPQ 744 0.15 19.39 0.77359 T 733 0.14 21.97 0.63723
DCX 889 0.12 48.2 0.24896 DOV 847 0.17 38.21 0.44491
GMH 950 0.14 21.81 0.64191 ALL 942 0.16 41.24 0.38797
GT 2358 0.07 25.16 0.27822 GP 2026 0.10 30.62 0.32658
HAR 862 0.15 31.36 0.47832 PHM 910 0.16 39.04 0.40984
KF 631 0.01 10.15 0.09852 APF 592 0.004 8.38 0.04773
LE 789 0.13 28.72 0.45265 CLB 686 0.06 22.14 0.27100
LMT 1035 0.17 36.52 0.46550 MRO 1085 0.08 29.38 0.27229
MLM 1080 0.09 45.24 0.19894 HTN 1163 0.10 46.06 0.21711
RCL 1015 0.09 23.73 0.37927 CNF 1107 0.10 31.46 0.31786
S 902 0.16 37.17 0.43045 NKE 943 0.13 41.98 0.30967
SGY 1379 0.16 52.82 0.30292 AMG 1413 0.15 51.31 0.29234
STT 1049 0.42 96.99 0.43303 PKI 1056 0.32 67.18 0.47633
UBS 1104 0.19 148.18 0.12822 HIT 1135 0.06 91.08 0.06588
VAL 1951 0.05 30.75 0.16260 AGX 754 0.004 53.98 0.00741
Mean 1173.1 0.155 46.2195 0.38259 Mean 1106.55 0.1179 43.6915 0.28777

MATCHED  CONTROL SAMPLEPILOT DECIMAL SAMPLE
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Table 3a.
Characteristics of durations computed with test-period calibrated stock specific price threshold for all stocks.
Sample time period February 8, 2001 till May 31, 2001.

Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage 
Price Threshold 

(%)

Number of 
Durations

Nominal Price 
Threshold ($)

Average 
Midquote 

Price

Percentage 
Price 

Threshold (%)

AOL 1268 0.28 44.31 0.6319 WMT 954 0.25 50.44 0.4956
ASF 787 0.15 23.04 0.6510 CCN 646 0.03125 67.77 0.0461
BEN 1646 0.13 41.39 0.3141 AOC 1445 0.09375 34.47 0.2720
CI 1878 0.25 103.68 0.2411 UNH 477 0.34375 58.2 0.5906
CL 1145 0.19 55.78 0.3406 KO 620 0.21875 49.02 0.4462
CPQ 744 0.15 19.39 0.7736 T 552 0.15625 21.96 0.7115
DCX 889 0.12 48.2 0.2490 DOV 716 0.1875 38.26 0.4901
GMH 950 0.14 21.81 0.6419 ALL 690 0.1875 41.24 0.4547
GT 2358 0.07 25.16 0.2782 GP 962 0.15625 30.55 0.5115
HAR 862 0.15 31.36 0.4783 PHM 929 0.15625 39.03 0.4003
KF 631 0.01 10.15 0.0985 APF 480 0.005 8.39 0.0596
LE 789 0.13 28.72 0.4526 CLB 675 0.0625 22.11 0.2827
LMT 1035 0.17 36.52 0.4655 MRO 835 0.09375 29.43 0.3186
MLM 1080 0.09 45.24 0.1989 HTN 1220 0.09375 46.05 0.2036
RCL 1015 0.09 23.73 0.3793 CNF 564 0.15625 31.46 0.4967
S 902 0.16 37.17 0.4305 NKE 737 0.15625 41.83 0.3735
SGY 1379 0.16 52.82 0.3029 AMG 793 0.25 51.21 0.4882
STT 1049 0.42 96.99 0.4330 PKI 350 0.625 67.36 0.9279
UBS 1104 0.19 148.18 0.1282 HIT 1104 0.0625 91.14 0.0686
VAL 1951 0.05 30.75 0.1626 AGX 641 0.005 53.98 0.0093
Mean 1173.1 0.155 46.2195 0.3826 Mean 769.5 0.1645625 43.695 0.3824

MATCHED  CONTROL SAMPLEPILOT DECIMAL SAMPLE
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Table 3b.
Descriptive statistics of the raw durations with calibrated stock specific price thresholds for all stocks.
Sample time period October 2, 2000 till January 26, 2001.

Mean 
Duration 

(seconds)

Duration 
Standard 
Deviation

Median Min. Max.
Mean 

Duration 
(seconds)

Duration 
Standard 
Deviation

Median Min. Max.

AOL 948 1242 563 5 13588 WMT 1042 1287 586 19 11579
ASF 966 1398 436 12 11685 CCN 766 966 441 6 17945
BEN 963 1225 541 8 11141 AOC 772 1083 420 6 16352
CI 568 753 330 11 7456 UNH 857 1251 464 19 17297
CL 1105 1323 662 14 15007 KO 1100 1281 694 16 13454
CPQ 1082 1485 595 19 16085 T 1082 1763 790 25 19024
DCX 1174 1578 627 9 15124 DOV 1271 1681 664 12 15609
GMH 968 1282 538 17 12631 ALL 1163 1657 617 11 18817
GT 943 1421 496 9 15561 GP 1172 1567 591 9 11770
HAR 1123 1531 643 6 18235 PHM 1095 1497 595 6 14828
KF 1773 2025 1121 23 16586 APF 3343 3402 2391 20 21579
LE 1507 2008 764 6 17728 CLB 1492 1955 848 5 20026
LMT 1252 1576 745 15 17540 MRO 979 1292 522 11 10734
MLM 1214 1443 728 7 18433 HTN 1398 1398 811 9 16247
RCL 1256 1824 630 9 17804 CNF 1403 1826 793 4 14090
S 1396 1724 787 17 12768 NKE 801 1137 444 16 13670
SGY 1264 1761 620 9 16981 AMG 1216 1839 549 9 14165
STT 782 1121 406 19 13222 PKI 1004 1419 564 13 20840
UBS 978 1501 443 8 15377 HIT 1031 988 763 3 7922
VAL 1133 1351 714 12 15050 AGX 2836 3250 1682 46 19310
Mean 1119.75 1478.6 619.45 12 14900 Mean 1291.15 1626.95 761.45 13 15763

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE

169



Table 3b.
Descriptive statistics of the raw durations computed after re-calibrating the matched stock price thresholds.
Sample time period February 8, 2001 till May 31, 2001.

Mean 
Duration 

(seconds)

Duration 
Standard 
Deviation

Median Min. Max.
Mean 

Duration 
(seconds)

Duration 
Standard 
Deviation

Median Min. Max.

AOL 1249 1575 753 11 19391 WMT 1035 1200 653 10 16521
ASF 1733 2651 727 8 17452 CCN 709 878 423 13 7227
BEN 984 1219 595 17 17101 AOC 1249 1574 753 11 19391
CI 711 878 423 13 7227 UNH 745 921 448 20 11932
CL 1338 1710 777 17 15854 KO 1110 1409 674 14 13173
CPQ 1628 1993 1023 37 19234 T 1916 2439 1126 48 21975
DCX 1592 2031 871 9 15181 DOV 1683 2093 922 15 13841
GMH 1575 1936 865 16 13617 ALL 1514 1952 859 17 16954
GT 714 965 402 5 11216 GP 791 979 450 7 9475
HAR 1591 2055 937 5 15406 PHM 1459 1763 818 15 12163
KF 2594 2744 1775 9 16905 APF 2168 2155 1446 8 17400
LE 1990 2592 1087 17 18761 CLB 1721 2119 997 5 14705
LMT 1351 1793 743 13 18455 MRO 1225 1587 641 7 15486
MLM 1344 1854 737 6 15285 HTN 1349 1619 828 13 14183
RCL 1307 1704 727 14 13691 CNF 1320 1717 716 5 14705
S 1686 2249 860 10 16822 NKE 921 1355 513 12 15627
SGY 1108 1459 597 5 13214 AMG 1007 1595 451 8 15531
STT 1057 1441 586 18 15843 PKI 1090 1531 609 6 17166
UBS 1207 1821 580 5 16149 HIT 1097 1161 762 4 8891
VAL 881 1176 493 9 13647 AGX 2039 2307 1132 10 13288
Mean 1382 1792 777.9 12 15523 Mean 1307 1618 761.05 12 14482

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 4.
Descriptive statistics of the normalized durations computed after calibrating the stock specific 
price threshold for all stocks.
Sample time period October 2, 2000 till January 26, 2001.

Mean Stand. 
Duration

Duration 
Standard 
Deviation

Median Min. Max. Mean Stand. 
Duration

Duration 
Standard 
Deviation

Median Min. Max.

AOL 1 1.2203 0.6424 0.0067 17.33 WMT 1 1.1594 0.627 0.0135 18.53
ASF 1 1.3516 0.5475 0.0083 20.16 CCN 1 1.1597 0.6516 0.0067 22.15
BEN 1 1.1164 0.6536 0.0112 13.96 AOC 1 1.2768 0.5959 0.0092 20.04

CI 1 1.166 0.5996 0.0187 9.43 UNH 1 1.337 0.6241 0.0101 30.02
CL 1 1.138 0.648 0.0168 16.90 KO 1 1.0548 0.7054 0.0238 10.43

CPQ 1 1.2451 0.6114 0.0186 15.83 T 1 1.1331 0.6064 0.0156 11.84
DCX 1 1.1926 0.6066 0.0093 13.78 DOV 1 1.297 0.5737 0.0083 18.57
GMH 1 1.1588 0.6255 0.0211 10.62 ALL 1 1.3407 0.5951 0.0078 22.41

GT 1 1.3027 0.5734 0.0156 13.89 GP 1 1.3088 0.5779 0.0111 16.83
HAR 1 1.2732 0.6358 0.0089 13.24 PHM 1 1.1912 0.611 0.0043 12.96

KF 1 0.9608 0.7101 0.0106 7.26 APF 1 0.8377 0.8595 0.0059 5.67
LE 1 1.2704 0.5901 0.0058 17.01 CLB 1 1.2145 0.6401 0.0032 18.32

LMT 1 1.1131 0.6442 0.0065 11.27 MRO 1 1.2263 0.6057 0.0067 16.06
MLM 1 1.0976 0.6964 0.0049 17.02 HTN 1 1.1492 0.6421 0.0067 12.46
RCL 1 1.2775 0.582 0.0059 14.85 CNF 1 1.1653 0.6193 0.0029 12.15

S 1 1.1373 0.6409 0.0098 10.65 NKE 1 1.2404 0.5897 0.0187 15.25
SGY 1 1.2577 0.5728 0.0045 11.75 AMG 1 1.3163 0.5389 0.0094 13.67
STT 1 1.3235 0.6006 0.0228 19.65 PKI 1 1.3161 0.6076 0.0168 23.93
UBS 1 1.2142 0.5936 0.0066 16.82 HIT 1 0.8892 0.7402 0.0024 7.24
VAL 1 1.0721 0.6958 0.0066 10.47 AGX 1 1.0216 0.6426 0.0129 7.05

Mean 1 1.194445 0.62352 0.011 14.1 Mean 1 1.181755 0.63 0.010 15.78

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 4.
Descriptive statistics of the normalized durations computed after calibrating the stock 
specific price threshold for all stocks.
Sample time period February 8, 2001 till May 31, 2001.

Mean Stand. 
Duration

Duration 
Standard 
Deviation

Median Min. Max. Mean Stand. 
Duration

Duration 
Standard 
Deviation

Median Min. Max.

AOL 1 1.1403 0.6478 0.0127 16.67 WMT 1 1.0722 0.6708 0.0172 16.53
ASF 1 1.4655 0.4504 0.0057 15.16 CCN 1 1.0046 0.6724 0.0126 8.13
BEN 1 1.1623 0.6648 0.0152 13.49 AOC 1 1.1238 0.6747 0.0029 10.99

CI 1 1.1623 0.6393 0.0116 14.05 UNH 1 1.0424 0.6557 0.0151 10.82
CL 1 1.1523 0.6721 0.0132 14.43 KO 1 1.0709 0.6752 0.0120 11.48

CPQ 1 1.0302 0.6983 0.0177 8.56 T 1 1.2230 0.6427 0.0226 14.95
DCX 1 1.0661 0.6357 0.0088 8.06 DOV 1 1.0832 0.6491 0.0085 7.83
GMH 1 1.0675 0.6320 0.0112 8.19 ALL 1 1.1358 0.6151 0.0098 9.91

GT 1 1.1905 0.6357 0.0084 14.31 GP 1 1.0995 0.6375 0.0090 12.40
HAR 1 1.1457 0.6579 0.0031 10.62 PHM 1 1.0198 0.6755 0.0074 8.36

KF 1 0.9581 0.7707 0.0020 8.82 APF 1 0.9211 0.7084 0.0039 8.68
LE 1 1.2431 0.6277 0.0057 11.44 CLB 1 1.0592 0.6698 0.0048 8.54

LMT 1 1.1680 0.6407 0.0086 12.33 MRO 1 1.0879 0.6069 0.0142 9.28
MLM 1 1.3671 0.5862 0.0029 17.21 HTN 1 1.1144 0.6481 0.0071 12.12
RCL 1 1.1446 0.6307 0.0121 11.38 CNF 1 1.1497 0.6509 0.0020 16.45

S 1 1.1595 0.6081 0.0064 8.90 NKE 1 1.3135 0.5983 0.0155 14.94
SGY 1 1.1486 0.6585 0.0091 12.46 AMG 1 1.4723 0.5581 0.0052 21.05
STT 1 1.1769 0.5988 0.0186 13.19 PKI 1 1.1962 0.6172 0.0053 11.21
UBS 1 1.2816 0.5938 0.0066 11.74 HIT 1 0.9613 0.7244 0.0039 7.39
VAL 1 1.1691 0.6218 0.0100 12.96 AGX 1 0.9402 0.6791 0.0063 7.77

Mean 1 1.169965 0.63355 0.009 12.20 Mean 1 1.10455 0.65 0.01 11.44

PILOT DECIMAL SAMPLE MATCHED  CONTROL SAMPLE
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Table 5.
Correlograms of the first 15 autocorrelations and partial autocorrelations of the raw and 
normalized durations.The correlations are computed for the dataset of all merged 
durations for ease of presentation. The durations for the 40 individual stocks, however 
exhibit the same autocorrelation pattern.
Q-statistics and p-values test the null of zero autocorrelation at the specified lag.

Autocorr.
Partial 
Corr.  Q-Stat  Prob Autocorr.

Partial 
Corr.  Q-Stat  Prob

1 0.217 0.217 2418.4 0.00 1 0.224 0.224 2283.6 0.00
2 0.135 0.092 3357.9 0.00 2 0.151 0.106 3317.2 0.00
3 0.103 0.06 3909.4 0.00 3 0.112 0.062 3892.5 0.00
4 0.088 0.047 4308.2 0.00 4 0.096 0.05 4316.8 0.00
5 0.079 0.04 4627.9 0.00 5 0.085 0.041 4649.6 0.00
6 0.063 0.024 4833.2 0.00 6 0.08 0.037 4941.3 0.00
7 0.062 0.028 5032.7 0.00 7 0.079 0.037 5225.2 0.00
8 0.072 0.039 5298.7 0.00 8 0.087 0.045 5573 0.00
9 0.077 0.041 5607.6 0.00 9 0.082 0.036 5882.7 0.00

10 0.082 0.042 5950 0.00 10 0.097 0.051 6310.5 0.00
11 0.081 0.037 6284.4 0.00 11 0.09 0.037 6679.2 0.00
12 0.072 0.026 6549 0.00 12 0.082 0.027 6982.4 0.00
13 0.078 0.034 6860.3 0.00 13 0.09 0.039 7353.8 0.00
14 0.082 0.036 7204.7 0.00 14 0.099 0.045 7799.6 0.00
15 0.083 0.035 7557.2 0.00 15 0.093 0.034 8195.4 0.00

Autocorr.
Partial 
Corr.  Q-Stat  Prob Autocorr.

Partial 
Corr.  Q-Stat  Prob

1 0.145 0.145 1081.6 0.00 1 0.143 0.143 938.11 0.00
2 0.096 0.076 1553.9 0.00 2 0.106 0.087 1449.5 0.00
3 0.079 0.057 1874.9 0.00 3 0.087 0.063 1798.5 0.00
4 0.069 0.045 2120.6 0.00 4 0.083 0.057 2113.6 0.00
5 0.066 0.042 2344.3 0.00 5 0.071 0.041 2340.6 0.00
6 0.056 0.031 2506.8 0.00 6 0.064 0.035 2529.9 0.00
7 0.053 0.029 2651.5 0.00 7 0.048 0.019 2635.9 0.00
8 0.052 0.028 2792.5 0.00 8 0.055 0.029 2775.5 0.00
9 0.058 0.034 2968.1 0.00 9 0.047 0.021 2878 0.00

10 0.054 0.028 3118.7 0.00 10 0.059 0.033 3034.8 0.00
11 0.045 0.018 3222.1 0.00 11 0.044 0.016 3123.8 0.00
12 0.042 0.017 3312.8 0.00 12 0.04 0.013 3195.5 0.00
13 0.049 0.025 3437.3 0.00 13 0.043 0.018 3279.3 0.00
14 0.046 0.02 3545 0.00 14 0.047 0.022 3380.5 0.00
15 0.041 0.015 3630.4 0.00 15 0.044 0.018 3469.1 0.00

October 2, 2000 till January 26, 2001. February 8, 2001 till May 31, 2001.

Normalized Durations,                   
adjusted for Time-of-day effects

Raw Durations Raw Durations

Normalized Durations,                    
adjusted for Time-of-day effects

October 2, 2000 till January 26, 2001. February 8, 2001 till May 31, 2001.
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Table 6a. ML estimation of a WACD(1,1) model. Sample time period October 2, 2000 
till January 26, 2001.

Model is*: 

ω α β δ LogL AIC SIC
AOL 0.086 0.180 0.740 -0.152 -1734.030 1.926 1.938

p-value 0.040 0.000 0.000 0.085

ASF 0.325 0.125 0.661 -0.521 -1354.700 1.931 1.946
p-value 0.000 0.000 0.000 0.000

BEN 0.237 0.091 0.731 -0.503 -1769.049 1.971 1.983
p-value 0.000 0.000 0.000 0.000

CI 0.278 0.116 0.720 -0.275 -1419.094 1.926 1.940
p-value 0.000 0.010 0.000 0.118

CL 0.726 0.131 0.252 -0.920 -1434.295 1.964 1.978
p-value 0.000 0.000 0.052 0.000

CPQ 0.110 0.051 0.868 -0.459 -1225.029 1.889 1.905
p-value 0.000 0.000 0.000 0.000

DCX 0.132 0.164 0.734 -0.182 -1188.828 1.924 1.940
p-value 0.000 0.000 0.000 0.000

GMH 1.351 -0.003 -0.155 -2.891 -1370.299 1.947 1.961
p-value   NA    NA    NA   NA  

GT 0.882 0.158 0.108 -1.600 -1262.509 1.932 1.948
p-value 0.000 0.000 0.258 0.000

HAR 0.229 0.117 0.726 -0.285 -1280.763 1.922 1.937
p-value 0.000 0.000 0.000 0.000

KF 0.139 0.156 0.737 -0.396 -753.014 1.941 1.965
p-value 0.002 0.000 0.000 0.152

LE 0.611 0.179 0.496 -1.524 -1032.204 1.919 1.937
p-value 0.117 0.213 0.141 0.200

LMT 0.187 0.070 0.802 -0.402 -1272.434 1.968 1.984
p-value 0.000 0.000 0.000 0.000

MLM 0.572 0.108 0.418 -0.610 -1312.363 1.972 1.988
p-value 0.000 0.001 0.000 0.000

RCL 0.590 0.103 0.649 -1.735 -1255.476 1.847 1.862
p-value 0.000 0.003 0.000 0.000

S 0.118 0.066 0.848 -0.311 -1082.548 1.932 1.950
p-value 0.000 0.001 0.000 0.000

SGY 0.583 0.141 0.457 -0.721 -1298.817 1.890 1.905
p-value 0.000 0.000 0.000 0.000

STT 0.135 0.098 0.829 -0.228 -1242.702 1.951 1.967
p-value 0.000 0.000 0.000 0.000

UBS 0.252 0.241 0.557 -0.160 -1306.546 1.884 1.899
p-value 0.000 0.000 0.000 0.000

VAL 0.487 -0.153 0.615 -1.300 -1043.372 1.901 1.919
p-value 0.197 0.343 0.069 0.273
Mean 0.402 0.107 0.590 -0.76 -1281.9 1.927 1.943

Decimal Pilot Stocks

11111 −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, Spread = nominal spread.
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Table 6a. ML estimation of a EACD(1,1) model. Sample time period October 2, 2000 
(cont'd) till January 26, 2001.

Model is*: 

ω α β δ LogL AIC SIC
WMT 0.484 0.208 0.461 -0.716 -1452.202 1.914 1.928
p-value 0.000 0.000 0.000 0.002

CCN 0.384 0.437 0.231 -0.150 -1215.002 1.819 1.835
p-value 0.000 0.000 0.000 0.040

AOC 0.241 0.132 0.739 -0.744 -1598.153 1.903 1.916
p-value 0.000 0.000 0.000 0.000

UNH 0.116 0.125 0.811 -0.239 -1528.452 1.907 1.921
p-value 0.000 0.000 0.000 0.003

KO 0.088 0.052 0.884 -0.208 -1251.545 1.988 2.004
p-value 0.030 0.001 0.000 0.216

T 0.197 0.075 0.865 -1.243 -1011.142 1.878 1.897
p-value 0.000 0.000 0.000 0.000

DOV 0.439 0.270 0.486 -1.054 -1234.298 1.914 1.930
p-value 0.025 0.000 0.004 0.105

ALL 0.349 0.157 0.640 -0.959 -1072.465 1.912 1.930
p-value 0.000 0.000 0.000 0.000

GP 0.195 0.059 0.850 -0.757 -1203.358 1.936 1.953
p-value 0.000 0.000 0.000 0.000

PHM 0.271 0.087 0.771 -0.480 -2086.811 2.862 2.877
p-value 0.000 0.000 0.000 0.000

APF 1.237 0.122 -0.092 -2.904 -338.590 1.975 2.019
p-value 0.003 0.220 0.819 0.024

CLB 0.395 0.353 0.383 -0.509 -1024.613 1.905 1.923
p-value 0.000 0.000 0.000 0.000

MRO 0.346 0.098 0.697 -1.296 -1552.556 1.951 1.964
p-value 0.000 0.000 0.000 0.000

HTN 0.193 0.100 0.801 -0.538 -1200.727 1.934 1.950
p-value 0.000 0.000 0.000 0.000

CNF 0.100 0.100 0.858 -0.306 -1183.623 2.125 2.143
p-value 0.000 0.000 0.000 0.000

NKE 0.416 0.151 0.602 -0.953 -1273.585 1.987 2.003
p-value 0.000 0.000 0.000 0.000

AMG 0.793 0.126 0.314 -0.934 -1258.076 1.896 1.912
p-value 0.000 0.000 0.000 0.000

PKI 0.172 0.077 0.818 -0.157 -1279.550 1.935 1.950
p-value 0.000 0.000 0.000 0.000

HIT 0.343 0.255 0.465 -0.128 -1245.440 1.933 1.949
p-value 0.000 0.000 0.000 0.058

AGX 0.516 0.262 0.241 -0.127 -548.021 1.940 1.971
p-value 0.001 0.000 0.162 0.654

Mean 0.364 0.162 0.591 -0.72 -1227.91 1.981 1.999

Matched Control Stocks

11111 −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, Spread = nominal spread.
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Table 6b. ML estimation of a WACD(1,1) model. Sample time period October 2, 2000 
till January 26, 2001.

Model is*: 

ω α β δ γ LogL AIC SIC
AOL 0.041 0.094 0.879 -0.074 1.074 -1670.7 1.857 1.872

p-value 0.000 0.000 0.000 0.000 0.000

ASF 0.164 0.080 0.808 -0.245 0.939 -1373.9 1.960 1.979
p-value 0.000 0.000 0.000 0.000 0.000

BEN 0.223 0.088 0.745 -0.471 1.055 -1784.2 1.989 2.004
p-value 0.000 0.000 0.000 0.000 0.000

CI 2.263 0.029 -0.569 -0.637 1.052 -1406.9 1.911 1.928
p-value 0.000 0.497 0.085 0.106 0.000

CL 0.779 0.102 0.286 -1.201 1.065 -1423.7 1.950 1.968
p-value 0.000 0.002 0.026 0.000 0.000

CPQ 0.090 0.060 0.888 -0.430 1.056 -1453.9 2.243 2.263
p-value 0.000 0.015 0.000 0.000 0.000

DCX 0.133 0.164 0.734 -0.183 0.998 -1188.8 1.926 1.946
p-value 0.000 0.000 0.000 0.000 0.000

GMH 0.868 0.022 0.169 -2.607 0.883 -1701.2 2.417 2.435
p-value   NA    NA    NA   NA   NA  

GT 0.685 0.211 0.272 -1.755 1.029 -1647.1 2.520 2.540
p-value 0.335 0.418 0.672 0.116 0.000

HAR 0.348 0.087 0.688 -0.540 0.986 -1458.4 2.189 2.208
p-value 0.000 0.000 0.000 0.000 0.000

KF 0.137 0.150 0.744 -0.394 1.123 -744.4 1.922 1.951
p-value 0.000 0.000 0.000 0.076 0.000

LE 0.608 0.173 0.509 -1.552 1.110 -1577.6 2.931 2.954
p-value 0.056 0.141 0.064 0.139 0.000

LMT 0.184 0.069 0.806 -0.398 1.045 -1270.1 1.966 1.986
p-value 0.000 0.000 0.000 0.000 0.000

MLM 0.405 0.109 0.542 -0.341 1.029 -1313.3 1.975 1.994
p-value 0.000 0.000 0.000 0.000 0.000

RCL 0.591 0.105 0.646 -1.736 0.965 -1422.3 2.093 2.112
p-value 0.000 0.006 0.000 0.000 0.000

S 0.117 0.065 0.850 -0.309 1.042 -1080.9 1.930 1.953
p-value 0.000 0.000 0.000 0.000 0.000

SGY 0.416 0.164 0.530 -0.412 0.902 -1358.2 1.977 1.996
p-value 0.000 0.000 0.000 0.000 0.000

STT 0.088 0.069 0.872 -0.096 0.989 -1231.8 1.936 1.956
p-value 0.000 0.000 0.000 0.000 0.000

UBS 0.259 0.248 0.546 -0.170 0.948 -1302.9 1.880 1.899
p-value 0.000 0.000 0.000 0.000 0.000

VAL 0.667 -0.146 0.376 -1.733 1.119 -4514.5 8.202 8.225
p-value 0.017 0.293 0.079 0.200 0.000
Mean 0.453 0.097 0.566 -0.76 1.021 -1546 2.389 2.409

Decimal Pilot Stocks

11111 −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, Spread = nominal spread.
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Table 6b. ML estimation of a WACD(1,1) model. Sample time period October 2, 2000 
(cont'd) till January 26, 2001.

Model is*: 

ω α β δ γ LogL AIC SIC
WMT 0.692 0.201 0.397 -1.559 1.059 -1774.35 2.338 2.356

p-value 0.000 0.000 0.000 0.000 0.000

CCN 0.388 0.429 0.234 -0.149 1.055 -1211.66 1.816 1.835
p-value 0.000 0.000 0.000 0.025 0.000

AOC 0.237 0.131 0.742 -0.736 1.021 -1597.40 1.903 1.919
p-value 0.000 0.000 0.000 0.000 0.000

UNH 0.110 0.124 0.815 -0.225 1.051 -1524.77 1.904 1.921
p-value 0.000 0.000 0.000 0.002 0.000

KO 0.075 0.052 0.893 -0.159 1.114 -1238.67 1.969 1.990
p-value 0.014 0.000 0.000 0.236 0.000

T 0.195 0.074 0.868 -1.239 1.102 -1002.26 1.864 1.887
p-value 0.000 0.000 0.000 0.000 0.000

DOV 0.570 0.246 0.342 -0.813 1.001 -1231.61 1.911 1.931
p-value 0.000 0.000 0.000 0.000 0.000

ALL 0.347 0.158 0.641 -0.956 1.013 -1072.30 1.913 1.936
p-value 0.000 0.000 0.000 0.000 0.000

GP 0.175 0.039 0.890 -0.762 0.951 -1192.38 1.920 1.941
p-value 0.000 0.001 0.000 0.000 0.000

PHM 0.336 0.077 0.744 -0.578 1.000 -1350.51 1.856 1.874
p-value 0.000 0.000 0.000 0.000 0.000

APF 1.272 0.111 -0.125 -2.856 1.219 -328.75 1.924 1.979
p-value 0.000 0.105 0.665 0.001 0.000

CLB 0.445 0.369 0.338 -0.603 0.946 -1021.57 1.901 1.924
p-value 0.000 0.000 0.000 0.000 0.000

MRO 0.284 0.091 0.753 -1.188 0.975 -1552.43 1.952 1.969
p-value 0.000 0.000 0.000 0.000 0.000

HTN 0.198 0.101 0.798 -0.551 0.977 -1200.11 1.934 1.955
p-value 0.000 0.000 0.000 0.000 0.000

CNF 0.236 0.154 0.746 -0.668 0.997 -1051.41 1.890 1.912
p-value 0.000 0.000 0.000 0.000 0.000

NKE 0.510 0.167 0.490 -1.040 1.038 -1304.26 2.036 2.056
p-value 0.000 0.000 0.000 0.000 0.000

AMG 0.792 0.133 0.303 -0.929 0.893 -1286.24 1.940 1.960
p-value 0.000 0.001 0.002 0.000 0.000

PKI 0.169 0.076 0.821 -0.154 1.004 -1279.53 1.936 1.956
p-value 0.000 0.000 0.000 0.000 0.000

HIT 0.306 0.231 0.520 -0.117 1.188 -1216.15 1.889 1.909
p-value 0.000 0.000 0.000 0.012 0.000

AGX 0.508 0.252 0.258 -0.114 1.085 -544.81 1.933 1.971
p-value 0.000 0.000 0.092 0.649 0.000
Mean 0.392 0.161 0.573 -0.770 1.034 -1199.1 1.936 1.959

Matched Control Stocks

11111 −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, Spread = nominal spread.
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Table 6c. ML estimation of a WLACD(1,1) model. Sample time period October 2, 2000
(cont'd)  till January 26, 2001.

Model is*:

ω α β δ γ LogL AIC SIC
AOL 0.058 0.069 0.896 -0.190 1.082 -1655.7 1.840 1.855

p-value 0.000 0.000 0.000 0.000 0.000

ASF 0.385 0.167 0.193 -1.509 0.878 -1289.9 1.841 1.859
p-value 0.000 0.000 0.025 0.000 0.000

BEN 0.090 0.104 0.649 -0.367 1.043 -1762.7 1.965 1.981
p-value 0.000 0.000 0.000 0.005 0.000

CI 0.165 0.126 0.653 -0.321 1.045 -1393.2 1.892 1.910
p-value 0.000 0.000 0.000 0.000 0.000

CL 0.019 0.036 0.930 -0.028 1.062 -1439.2 1.972 1.990
p-value 0.002 0.000 0.000 0.560 0.000

CPQ 0.265 0.176 0.437 -2.118 1.039 -1202.1 1.856 1.875
p-value 0.000 0.000 0.000 0.000 0.000

DCX 0.067 0.123 0.762 -0.052 1.001 -1185.0 1.919 1.940
p-value 0.000 0.000 0.000 0.412 0.000

GMH 0.220 0.155 0.446 -1.464 1.046 -1348.7 1.917 1.936
p-value 0.000 0.000 0.000 0.000 0.000

GT 0.285 0.186 0.116 -2.325 0.965 -1247.1 1.910 1.930
p-value 0.000 0.000 0.154 0.000 0.000

HAR 0.397 0.180 0.006 -1.393 0.998 -1231.8 1.850 1.870
p-value 0.000 0.000 0.931 0.000 0.000

KF 0.053 0.094 0.828 -0.199 1.135 -737.7 1.904 1.934
p-value 0.009 0.000 0.000 0.414 0.000

LE 0.225 0.202 0.425 -0.870 0.966 -1010.3 1.880 1.903
p-value 0.000 0.000 0.000 0.000 0.000

LMT 0.087 0.059 0.813 -0.405 1.046 -1271.0 1.968 1.988
p-value 0.000 0.000 0.000 0.002 0.000

MLM 0.165 0.112 0.402 -0.723 1.034 -1303.0 1.960 1.979
p-value 0.000 0.000 0.000 0.000 0.000

RCL 0.117 0.089 0.828 -0.461 0.963 -1264.5 1.861 1.881
p-value 0.000 0.000 0.000 0.000 0.000

S 0.088 0.068 0.844 -0.562 1.044 -1077.8 1.925 1.947
p-value 0.000 0.000 0.000 0.000 0.000

SGY 0.299 0.144 0.352 -1.138 0.923 -1290.3 1.879 1.898
p-value 0.000 0.000 0.000 0.000 0.000

STT 0.040 0.052 0.916 -0.054 0.995 -1224.9 1.925 1.945
p-value 0.000 0.000 0.000 0.085 0.000

UBS 0.116 0.177 0.590 -0.104 0.948 -1300.0 1.876 1.895
p-value 0.000 0.000 0.000 0.169 0.000

VAL 0.194 0.169 0.488 -1.139 1.084 -1024.0 1.868 1.890
p-value 0.000 0.000 0.000 0.000 0.000
Mean 0.167 0.124 0.579 -0.771 1.015 -1262.9 1.900 1.920

Decimal Pilot Stocks

11111 )log( −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, Spread = nominal spread.
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Table 6c. ML estimation of a WLACD(1,1) model. Sample time period October 2, 2000
(cont'd) till January 26, 2001.

Model is*:

ω α β δ γ LogL AIC SIC
WMT 0.242 0.177 0.508 -1.224 1.088 -1439.0 1.897 1.915

p-value 0.000 0.000 0.000 0.000 0.000

CCN 0.130 0.274 0.285 -0.117 1.044 -1220.3 1.829 1.848
p-value 0.000 0.000 0.000 0.304 0.000

AOC 0.188 0.120 0.728 -0.921 1.025 -1590.7 1.895 1.911
p-value 0.000 0.000 0.000 0.000 0.000

UNH 0.084 0.106 0.830 -0.181 1.048 -1523.0 1.902 1.918
p-value 0.000 0.000 0.000 0.043 0.000

KO 0.014 0.033 0.940 -0.005 1.116 -1237.5 1.968 1.988
p-value 0.307 0.000 0.000 0.965 0.000

T 0.206 0.073 0.859 -1.643 1.101 -1000.7 1.861 1.884
p-value 0.000 0.000 0.000 0.000 0.000

DOV 0.286 0.194 0.567 -1.169 0.990 -1198.6 1.860 1.880
p-value 0.000 0.000 0.000 0.000 0.000

ALL 0.234 0.159 0.615 -1.132 1.019 -1065.4 1.901 1.924
p-value 0.000 0.000 0.000 0.000 0.000

GP 0.332 0.096 0.657 -2.147 0.979 -1174.7 1.892 1.913
p-value 0.000 0.000 0.000 0.000 0.000

PHM 0.306 0.147 0.530 -1.191 0.971 -1352.1 1.858 1.876
p-value 0.000 0.000 0.000 0.000 0.000

APF 0.289 0.061 -0.147 -3.031 1.216 -329.1 1.925 1.981
p-value 0.025 0.065 0.641 0.006 0.000

CLB 0.350 0.286 0.063 -1.129 0.961 -997.2 1.856 1.879
p-value 0.000 0.000 0.397 0.000 0.000

MRO 0.214 0.103 0.656 -1.537 0.980 -1549.7 1.948 1.965
p-value 0.000 0.000 0.000 0.000 0.000

HTN 0.109 0.072 0.814 -0.422 0.976 -1201.7 1.937 1.957
p-value 0.000 0.000 0.000 0.002 0.000

CNF 0.123 0.095 0.837 -0.424 1.001 -1039.5 1.869 1.891
p-value 0.000 0.000 0.000 0.000 0.000

NKE 0.358 0.144 0.452 -1.773 0.997 -1207.7 1.886 1.906
p-value 0.000 0.000 0.000 0.000 0.000

AMG 0.340 0.117 0.437 -1.132 0.888 -1242.8 1.875 1.894
p-value 0.000 0.000 0.000 0.000 0.000

PKI 0.060 0.054 0.893 -0.081 1.005 -1280.0 1.937 1.956
p-value 0.000 0.000 0.000 0.020 0.000

HIT 0.085 0.148 0.584 -0.069 1.185 -1219.1 1.893 1.913
p-value 0.001 0.000 0.000 0.198 0.000

AGX 0.029 0.166 0.352 0.205 1.075 -547.1 1.941 1.979
p-value 0.618 0.000 0.012 0.525 0.000
Mean 0.199 0.131 0.573 -0.956 1.033 -1171 1.896 1.919

Matched Control Stocks

11111 )log( −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, Spread = nominal spread.
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Table 6d. Model*:

Gamma coefficients from the Weibull ACD(1,1) and the Weibull-Logarithmic ACD(1,1) models
with lagged spread as the only exogenous variable. Sample period October 2, 2000 till January 26, 2001.
The goodness of the Weibull distributional assumption in both cases can be tested by H0: γ=1, which describes 
the nested exponential distribution.

γ p-value γ p-value γ p-value γ p-value
AOL 1.0744 0.0000 1.0819 0.0000 WMT 1.0588 0.0085 1.0876 0.000
ASF 0.9389 0.0047 0.8783 0.0000 CCN 1.0554 0.0071 1.0443 0.0278
BEN 1.0548 0.0073 1.0433 0.0170 AOC 1.0208 0.2301 1.0246 0.1657
CI 1.0522 0.4188 1.0448 0.0400 UNH 1.0509 0.0047 1.0477 0.0077
CL 1.0653 0.0059 1.0623 0.0010 KO 1.1140 0.0000 1.1155 0.0000
CPQ 1.0557 0.1064 1.0388 0.0411 T 1.1018 0.0001 1.1014 0.0001
DCX 0.9979 0.9135 1.0008 0.9663 DOV 1.0005 0.9771 0.9903 0.6033
GMH 0.8835 NA 1.0458 0.0362 ALL 1.0126 0.5278 1.0193 0.3594
GT 1.0292 0.8024 0.9653 0.0856 GP 0.9510 0.021 0.9789 0.2542
HAR 0.9860 0.7080 0.9983 0.9238 PHM 0.9995 0.9861 0.9715 0.1244
KF 1.1228 0.0001 1.1353 0.0000 APF 1.2187 0.0000 1.2162 0.0000
LE 1.1097 0.2829 0.9663 0.1177 CLB 0.9458 0.0055 0.9610 0.0249
LMT 1.0454 0.0285 1.0456 0.0337 MRO 0.9750 0.1471 0.9804 0.2620
MLM 1.0292 0.1240 1.0336 0.0759 HTN 0.9766 0.2347 0.9755 0.2145
RCL 0.9651 0.2888 0.9634 0.0536 CNF 0.9972 0.9135 1.0010 0.9662
S 1.0420 0.0680 1.0445 0.0590 NKE 1.0384 0.0958 0.9969 0.8849
SGY 0.9022 0.0000 0.9232 0.0000 AMG 0.8927 0.0000 0.8880 0.0000
STT 0.9893 0.5488 0.9946 0.7795 PKI 1.0040 0.8200 1.0048 0.7898
UBS 0.9481 0.0095 0.9477 0.0099 HIT 1.1883 0.0000 1.1853 0.0000
VAL 1.1188 0.3667 1.0839 0.0010 AGX 1.0853 0.0222 1.0748 0.0423

8 12 11 10

9 16 12 10

MATCHED  CONTROL SAMPLE

WACD(1,1) H0: γ=1

Number of rejections at 
5%

PILOT DECIMAL SAMPLE

Number of rejections at 
10%

WACD(1,1) H0: γ=1 Log-WACD(1,1)  H0: γ=1
Log-WACD(1,1)  H0: 

γ=1

Number of rejections at 
5%

Number of rejections at 
10%

11111 −−− +++= tttt SpreadENPTIMENPTIMEENPTIME δβαω

* Where ENPTIME is the conditional expected normalized duration, NPTIME is the normalized actual duration, and SPREAD is nominal spread associated with the particular duration.
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ML Estimation of an Exponential ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC SIC
AOL 0.210 0.107 0.853 -0.039 -0.027 -0.296 0.013 0.000 0.278 -0.142 -1662.33 1.85 1.88
p-value 0.010 0.000 0.000 0.000 0.006 0.000 0.098 0.099 0.001 0.001

ASF 1.213 0.341 -0.097 -0.249 0.038 -1.219 0.013 -0.019 -1.406 -1.245 -1337.98 1.92 1.95
p-value 0.234 0.042 0.740 0.118 0.820 0.022 0.892 0.253 0.364 0.171

BEN 0.625 0.158 0.617 -0.011 -0.026 -0.256 -0.051 -0.002 -0.491 0.683 -1759.09 1.97 2.00
p-value 0.000 0.000 0.000 0.516 0.082 0.000 0.000 0.151 0.002 0.000

CI 1.023 0.237 0.228 -0.290 -0.001 -0.962 -0.001 -0.012 1.072 -1.145 -1413.71 1.93 1.96
p-value 0.367 0.111 0.324 0.158 0.994 0.043 0.995 0.149 0.439 0.047

CL 0.179 0.053 0.884 -0.007 0.014 -0.757 -0.007 0.000 -0.765 -0.069 -1429.01 1.96 2.00
p-value 0.005 0.003 0.000 0.470 0.178 0.000 0.474 0.400 0.000 0.395

CPQ 0.291 0.099 0.745 -0.063 -0.014 -0.619 0.002 0.000 0.070 0.038 -1217.54 1.89 1.93
p-value 0.012 0.000 0.000 0.000 0.311 0.000 0.893 0.258 0.784 0.795

DCX 0.812 0.097 0.743 0.074 -0.050 0.177 -0.002 0.001 -2.376 -0.252 -1172.42 1.91 1.95
p-value 0.000 0.017 0.000 0.001 0.015 0.418 0.922 0.460 0.000 0.285

GMH 0.347 0.193 0.588 -0.065 0.002 -0.468 0.000 -0.002 -0.081 -0.120 -1533.46 2.19 2.22
p-value 0.840 0.575 0.374 0.846 0.994 0.824 0.999 0.886 0.982 0.971

GT 0.486 0.309 0.490 0.064 0.013 -1.020 0.004 -0.009 -2.816 0.207 -1257.37 1.93 1.97
p-value 0.335 0.017 0.003 0.344 0.845 0.122 0.909 0.036 0.139 0.839

HAR 0.202 -0.042 0.921 0.005 -0.009 -0.623 0.013 0.007 -1.284 1.529 -1254.42 1.89 1.93
p-value 0.000 0.046 0.000 0.868 0.602 0.012 0.383 0.000 0.006 0.000

KF 0.342 0.168 0.718 0.000 -0.033 -0.748 0.038 -0.025 -1.293 -1.456 -737.33 1.92 1.98
p-value 0.084 0.000 0.000 0.991 0.129 0.227 0.087 0.006 0.251 0.142

LE -0.202 0.081 1.043 0.124 0.105 0.524 -0.053 -0.028 -1.832 1.295 -1112.64 2.08 2.13
p-value 0.885 0.507 0.000 0.525 0.597 0.806 0.583 0.027 0.230 0.133

LMT 0.751 0.371 0.233 -0.093 0.017 -1.055 0.001 -0.005 -1.455 0.301 -1275.14 1.98 2.02
p-value 0.029 0.005 0.099 0.223 0.623 0.008 0.982 0.176 0.025 0.330

MLM 0.116 0.610 0.413 -0.027 0.054 -0.933 -0.064 -0.021 -0.623 0.798 -1296.61 1.96 2.00
p-value 0.805 0.001 0.005 0.802 0.354 0.096 0.174 0.113 0.546 0.301

RCL 0.317 0.154 0.793 -0.046 -0.009 -0.491 0.010 -0.008 -0.853 0.189 -1252.90 1.85 1.89
p-value 0.000 0.000 0.000 0.000 0.335 0.000 0.335 0.000 0.000 0.196

Table 7a. 

Model is*: 

Decimal Pilot Stocks
1141312

11101111

)()log(

)log(
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal 
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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ML Estimation of an Exponential ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC SIC
S 0.307 -0.027 0.919 -0.089 -0.011 -0.685 -0.019 0.001 -0.071 0.037 -1082.13 1.94 1.99

p-value 0.451 0.763 0.000 0.099 0.860 0.330 0.577 0.625 0.960 0.923

SGY 0.637 0.187 0.488 -0.007 -0.017 -0.903 0.013 -0.015 -0.496 0.413 -1321.93 1.93 1.97
p-value 0.325 0.049 0.021 0.946 0.866 0.000 0.743 0.251 0.537 0.222

STT 0.017 0.042 0.920 -0.022 0.002 -0.822 0.014 0.001 -0.024 -0.093 -1286.23 2.03 2.07
p-value 0.895 0.052 0.000 0.138 0.924 0.000 0.076 0.300 0.866 0.019

UBS 0.107 0.116 0.849 0.011 -0.004 -0.295 -0.006 -0.002 -0.163 0.216 -1290.56 1.87 1.91
p-value 0.113 0.000 0.000 0.311 0.689 0.000 0.333 0.088 0.199 0.000

VAL 1.116 0.087 0.415 -0.291 -0.142 -1.559 0.129 -0.021 2.086 -0.526 -1100.78 2.02 2.06
p-value 0.359 0.765 0.571 0.375 0.444 0.420 0.452 0.375 0.551 0.798
Mean 0.445 0.167 0.638 -0.051 -0.005 -0.651 0.002 -0.01 -0.63 0.033 -1289.68 1.95 1.99

Table 7a. cont'd

Model is*: 

Decimal Pilot Stocks (cont'd)
1141312

11101111
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal 
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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ML Estimation of an Exponential ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC SIC
WMT 1.234 0.199 0.476 -0.045 -0.066 -0.805 -0.011 0.000 1.000 -0.133 -1455.01 1.93 1.96
p-value 0.001 0.005 0.000 0.488 0.194 0.015 0.721 0.958 0.372 0.594

CCN 1.665 0.373 0.233 -0.482 -0.020 -0.410 -0.204 -0.141 1.082 -0.850 -1196.414 1.801 1.839
p-value 0.090 0.058 0.403 0.167 0.894 0.432 0.249 0.188 0.723 0.744

AOC 0.360 0.147 0.751 -0.054 0.000 -1.326 -0.014 -0.003 -1.018 0.090 -1584.80 1.89 1.93
p-value 0.000 0.000 0.000 0.016 0.979 0.000 0.187 0.094 0.001 0.598

UNH 0.294 0.101 0.820 -0.028 -0.005 -0.616 -0.013 0.001 -0.427 0.157 -1519.48 1.90 1.94
p-value 0.010 0.000 0.000 0.181 0.715 0.000 0.255 0.306 0.007 0.006

KO 0.366 0.066 0.857 -0.008 -0.010 -0.936 0.017 -0.001 -0.882 -0.390 -1242.43 1.98 2.02
p-value 0.061 0.013 0.000 0.781 0.552 0.028 0.171 0.221 0.195 0.002

T 0.614 0.038 0.670 -0.094 0.046 -1.664 -0.028 0.000 -3.441 -0.106 -1001.62 1.87 1.92
p-value 0.267 0.709 0.000 0.305 0.446 0.138 0.428 0.815 0.031 0.849

DOV 0.158 0.185 0.731 -0.094 0.021 -0.694 -0.010 -0.002 -0.400 0.407 -1222.47 1.90 1.94
p-value 0.136 0.000 0.000 0.000 0.135 0.000 0.386 0.043 0.124 0.001

ALL 0.432 0.095 0.817 -0.017 -0.025 -0.979 0.019 -0.001 -0.775 -0.227 -1062.64 1.91 1.95
p-value 0.002 0.001 0.000 0.471 0.075 0.000 0.120 0.205 0.049 0.126

GP 0.642 0.101 0.707 -0.146 -0.001 -1.527 -0.016 -0.001 -1.304 0.201 -1194.65 1.93 1.97
p-value 0.006 0.019 0.000 0.002 0.967 0.001 0.452 0.669 0.072 0.394

PHM 0.400 0.105 0.755 -0.188 0.017 -0.982 -0.016 -0.004 -0.266 -0.168 -1412.12 1.95 1.98
p-value 0.164 0.005 0.000 0.000 0.652 0.000 0.582 0.256 0.591 0.506

APF 1.727 0.203 0.011 -0.122 -0.088 -1.635 -0.027 -0.009 1.039 -3.935 -335.73 1.99 2.10
p-value 0.013 0.094 0.969 0.540 0.047 0.263 0.732 0.644 0.799 0.185

CLB 0.792 0.299 0.190 -0.066 -0.051 -0.706 0.177 -0.041 -1.866 -0.594 -994.47 1.86 1.91
p-value 0.021 0.000 0.160 0.633 0.293 0.217 0.006 0.044 0.008 0.346

MRO 0.140 0.072 0.894 -0.048 -0.012 -2.190 0.039 -0.003 -0.878 0.022 -1520.64 1.92 1.95
p-value 0.043 0.000 0.000 0.032 0.185 0.000 0.000 0.000 0.081 0.903

Table 7a. cont'd.

Matched Control Stocks

Model is*: 
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal 
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.

183



ML Estimation of an Exponential ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC SIC
HTN 0.593 0.109 0.708 -0.114 -0.014 -0.882 -0.008 -0.005 -1.258 0.313 -1189.52 1.93 1.97
p-value 0.000 0.000 0.000 0.000 0.436 0.000 0.595 0.028 0.000 0.092

CNF 0.470 0.150 0.792 -0.091 -0.034 -0.829 0.009 -0.006 -0.308 0.319 -1031.49 1.86 1.91
p-value 0.005 0.000 0.000 0.020 0.148 0.000 0.626 0.008 0.291 0.091

NKE 1.074 0.185 0.340 -0.255 0.071 -1.394 -0.048 -0.004 -3.418 1.075 -1199.45 1.88 1.92
p-value 0.019 0.004 0.010 0.003 0.138 0.000 0.182 0.204 0.000 0.002

AMG 1.583 0.169 0.030 -0.379 -0.010 -1.155 -0.095 0.002 -0.531 0.251 -1252.74 1.90 1.94
p-value 0.001 0.011 0.844 0.000 0.849 0.000 0.007 0.804 0.232 0.214

PKI 0.058 0.059 0.880 -0.012 -0.003 -0.130 -0.039 0.000 0.240 -0.086 -1279.26 1.94 1.98
p-value 0.824 0.032 0.000 0.764 0.911 0.264 0.005 0.828 0.352 0.178

HIT 0.868 0.305 0.337 -0.017 -0.097 -0.004 0.083 -0.037 -0.297 -0.069 -1226.52 1.91 1.95
p-value 0.000 0.000 0.001 0.683 0.000 0.971 0.021 0.000 0.156 0.728

AGX 0.652 0.259 0.256 0.057 -0.061 -0.446 0.065 -0.026 -0.112 0.434 -541.48 1.94 2.01
p-value 0.020 0.000 0.083 0.498 0.105 0.277 0.037 0.029 0.891 0.639
Mean 0.706 0.161 0.563 -0.110 -0.017 -0.965 -0.006 -0.014 -0.691 -0.164 -1173.146 1.910 1.955

Table 7a. cont'd.

Model is*: 

Matched Control Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal 
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7a. ML Estimation of an Exponential ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC    SIC
AOL 0.900 0.188 0.646 0.011 -0.041 -0.290 -0.018 0.000 -0.767 -0.235 -1573.45 2.500 2.540
p-value 0.004 0.002 0.000 0.583 0.154 0.042 0.196 0.340 0.046 0.026

ASF 0.148 0.154 0.827 -0.135 0.014 -0.712 0.034 -0.007 -0.401 -0.224 -773.15 1.993 2.052
p-value 0.831 0.028 0.000 0.170 0.787 0.423 0.662 0.000 0.845 0.710

BEN 0.073 0.111 0.840 0.014 -0.017 0.346 -0.017 0.007 -0.282 -0.169 -1911.08 2.336 2.369
p-value 0.389 0.000 0.000 0.337 0.358 0.236 0.050 0.000 0.248 0.020

CI 0.043 0.065 0.880 -0.008 0.018 -0.332 -0.004 0.000 -0.252 0.017 -1786.15 1.914 1.943
p-value 0.461 0.000 0.000 0.429 0.041 0.000 0.548 0.415 0.008 0.762

CL -0.119 -0.057 0.931 0.063 0.177 2.082 -0.025 0.001 -4.417 -0.991 -1192.47 2.102 2.146
p-value 0.807 0.268 0.000 0.191 0.058 0.021 0.789 0.363 0.198 0.179

CPQ 0.311 0.076 0.714 -0.019 0.004 -1.325 -0.035 0.000 0.139 -0.528 -722.47 1.972 2.034
p-value 0.279 0.147 0.000 0.700 0.893 0.001 0.139 0.707 0.887 0.081

DCX 0.185 0.119 0.800 -0.026 0.010 -1.287 -0.011 -0.003 -0.331 -0.059 -847.50 1.931 1.985
p-value 0.157 0.000 0.000 0.136 0.547 0.000 0.392 0.037 0.024 0.771

GMH 0.508 0.073 0.715 0.020 -0.080 0.178 0.050 0.005 -0.268 -0.651 -1095.27 2.329 2.380
p-value 0.000 0.001 0.000 0.003 0.000 0.272 0.000 0.000 0.049 0.000

GT 0.723 0.186 0.701 -0.047 -0.024 -0.542 -0.039 -0.005 -1.577 -0.374 -2267.56 1.933 1.957
p-value 0.000 0.001 0.000 0.022 0.281 0.080 0.055 0.024 0.024 0.353

HAR 0.415 0.074 0.665 -0.084 0.041 -0.963 -0.085 -0.001 -0.346 -0.153 -835.30 1.964 2.019
p-value 0.280 0.204 0.000 0.246 0.307 0.000 0.004 0.694 0.539 0.585

KF 1.174 0.244 -0.069 -0.078 -0.020 -2.355 0.000 -0.022 -0.712 -1.463 -611.18 1.972 2.043
p-value 0.005 0.003 0.699 0.273 0.608 0.000 0.999 0.292 0.689 0.363

LE 0.708 0.289 0.560 -0.031 -0.031 -0.442 -0.032 -0.008 -0.828 0.039 -717.92 1.848 1.907
p-value 0.000 0.000 0.000 0.330 0.200 0.000 0.157 0.008 0.016 0.838

LMT 0.799 0.280 0.085 -0.092 -0.016 -1.073 -0.020 0.001 0.298 -1.020 -1055.87 2.062 2.109
p-value 0.173 0.074 0.654 0.228 0.801 0.001 0.680 0.807 0.819 0.008

Decimal Pilot Stocks
1141312

11101111

)()log(

)log(
1

−−−−

−−−−

−+++++

++++=

t
PRESID
NNPttt

ttttt

APRESIDINUMBERDEPTHDSPREAD

AVEVOLNLSPRDENPTIMENPTIMEENPTIME
tγγγγγ

γγβαω

* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7a. ML Estimation of an Exponential ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.
Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC    SIC
MLM 0.192 0.162 0.537 -0.066 0.050 -1.078 -0.011 -0.002 -0.615 -0.193 -1028.92 1.926 1.972
p-value 0.247 0.002 0.000 0.123 0.047 0.000 0.693 0.678 0.093 0.462

RCL 0.814 0.237 0.519 -0.089 -0.010 -0.567 -0.061 -0.006 -0.817 -0.061 -974.89 1.943 1.991
p-value 0.005 0.001 0.000 0.071 0.718 0.123 0.022 0.131 0.143 0.873

S 1.782 0.038 0.521 0.002 -0.121 -0.928 -0.050 0.001 -1.926 0.181 -850.25 1.910 1.963
p-value 0.005 0.770 0.061 0.981 0.092 0.317 0.422 0.544 0.102 0.751

SGY -0.108 0.095 0.752 -0.033 0.068 -0.704 -0.006 0.000 -0.580 0.043 -1328.10 1.942 1.980
p-value 0.352 0.000 0.000 0.209 0.005 0.000 0.729 0.988 0.020 0.642

STT 0.198 0.146 0.799 -0.063 -0.018 -0.225 0.007 -0.001 0.142 -0.058 -976.07 1.882 1.929
p-value 0.221 0.000 0.000 0.000 0.377 0.042 0.618 0.247 0.479 0.269

UBS 0.238 0.192 0.704 -0.085 -0.001 -0.165 -0.022 -0.004 0.262 -0.227 -1025.93 1.878 1.924
p-value 0.018 0.000 0.000 0.000 0.962 0.014 0.089 0.130 0.028 0.055

VAL 0.617 0.306 0.426 -0.053 -0.019 -0.531 -0.021 -0.014 -0.459 0.257 -1839.76 1.897 1.926
p-value 0.000 0.000 0.000 0.001 0.209 0.000 0.102 0.000 0.001 0.198

Mean 0.480 0.149 0.628 -0.040 -0.001 -0.546 -0.018 -0.003 -0.687 -0.293 -1170.7 2.012 2.058

Decimal Pilot Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7a cont'd. ML Estimation of an Exponential ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC    SIC
WMT 0.051 0.066 0.812 -0.023 0.040 -0.159 -0.026 0.000 -0.865 0.255 -1373.50 1.927 1.964
p-value 0.738 0.032 0.000 0.186 0.039 0.433 0.033 0.374 0.034 0.106

CCN 0.474 0.252 0.584 -0.030 -0.026 -0.024 0.009 -0.040 -0.846 0.359 -789.17 1.894 1.950
p-value 0.007 0.000 0.000 0.357 0.286 0.932 0.700 0.004 0.043 0.454

AOC 0.396 0.055 0.818 -0.053 -0.013 -0.891 -0.003 -0.001 -0.923 0.354 -1464.19 1.949 1.984
p-value 0.000 0.015 0.000 0.003 0.224 0.000 0.736 0.298 0.000 0.059

UNH -0.438 0.054 0.759 -0.114 0.108 -2.378 -0.020 0.000 0.118 0.138 -1831.28 1.960 1.989
p-value 0.165 0.470 0.000 0.133 0.054 0.000 0.359 0.776 0.923 0.681

KO 0.094 0.009 0.883 0.013 0.005 -0.655 -0.009 0.001 -0.264 -0.260 -1021.67 1.943 1.990
p-value 0.688 0.918 0.000 0.828 0.886 0.091 0.712 0.566 0.800 0.233

T 0.318 0.091 0.801 -0.084 0.022 -0.801 -0.019 0.000 -1.687 0.084 -682.20 1.891 1.954
p-value 0.098 0.020 0.000 0.012 0.341 0.174 0.312 0.477 0.105 0.782

DOV 0.587 0.251 0.530 -0.078 -0.027 -0.711 0.006 -0.002 -1.003 1.251 -802.83 1.922 1.978
p-value 0.031 0.000 0.000 0.051 0.426 0.002 0.810 0.098 0.004 0.000

ALL 0.399 0.173 0.652 -0.069 0.013 -0.435 0.013 -0.004 -0.385 -0.886 -1139.14 2.442 2.494
p-value 0.593 0.158 0.002 0.414 0.881 0.577 0.705 0.003 0.868 0.211

GP 0.212 0.042 0.883 0.006 -0.008 -0.802 0.002 0.001 -0.948 0.253 -1993.54 1.979 2.007
p-value 0.112 0.098 0.000 0.782 0.542 0.023 0.827 0.569 0.048 0.305

PHM 1.064 0.110 0.502 -0.119 -0.077 -0.526 -0.042 -0.001 0.392 0.027 -886.91 1.973 2.026
p-value 0.003 0.027 0.000 0.005 0.081 0.002 0.160 0.586 0.308 0.915

APF 0.723 0.333 0.294 0.139 -0.061 1.043 0.015 -0.037 -4.302 5.558 -561.34 1.933 2.008
p-value 0.005 0.000 0.013 0.060 0.030 0.363 0.566 0.087 0.019 0.045

CLB 1.893 0.161 0.366 0.172 -0.193 0.223 -0.059 0.004 0.447 -2.042 -661.45 1.960 2.027
p-value 0.009 0.214 0.089 0.139 0.004 0.625 0.435 0.859 0.737 0.073

MRO 1.212 0.184 0.283 -0.003 -0.019 -1.228 -0.038 -0.001 -3.403 -0.929 -1048.04 1.952 1.998
p-value 0.000 0.000 0.019 0.928 0.575 0.000 0.123 0.597 0.001 0.043

Matched Control Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7a cont'd. ML Estimation of an Exponential ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn LogL AIC    SIC
HTN 0.155 0.059 0.896 0.010 -0.013 -0.395 0.015 -0.005 -0.428 0.474 -1118.90 1.943 1.987
p-value 0.238 0.002 0.000 0.699 0.527 0.066 0.472 0.008 0.035 0.030

CNF 0.500 0.178 0.375 -0.030 0.054 0.007 -0.028 -0.005 -2.145 1.210 -1067.53 1.949 1.994
p-value 0.013 0.000 0.000 0.327 0.065 0.959 0.280 0.039 0.000 0.000

NKE 0.480 0.132 0.784 0.024 -0.041 -0.502 0.022 -0.002 -0.785 -0.199 -904.11 1.941 1.992
p-value 0.000 0.000 0.000 0.334 0.008 0.007 0.073 0.008 0.054 0.298

AMG 0.863 0.187 0.407 -0.126 0.013 -0.472 -0.089 -0.009 -0.458 0.189 -1303.98 1.861 1.898
p-value 0.000 0.000 0.000 0.000 0.511 0.000 0.000 0.000 0.001 0.133

PKI -0.126 0.127 0.830 -0.029 0.035 -0.391 -0.024 -0.001 0.116 0.089 -999.68 1.914 1.961
p-value 0.289 0.000 0.000 0.232 0.063 0.000 0.071 0.131 0.580 0.153

HIT 0.948 0.284 0.224 -0.061 -0.031 -0.163 -0.017 -0.044 0.278 -0.706 -1107.21 1.970 2.015
p-value 0.000 0.000 0.078 0.032 0.361 0.049 0.581 0.001 0.310 0.007

AGX 0.381 0.489 0.093 0.064 -0.011 0.080 0.056 -0.046 -1.650 0.151 -698.07 1.881 1.942
p-value 0.058 0.000 0.395 0.242 0.724 0.914 0.040 0.010 0.288 0.917

Mean 0.509 0.162 0.589 -0.020 -0.011 -0.459 -0.012 -0.010 -0.937 0.268 -1072.7 1.959 2.008

Matched Control Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b ML estimation of a Weibull ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
AOL 0.203 0.107 0.858 -0.038 -0.026 -0.287 0.012 0.000 0.273 -0.139 1.087 -1651.2 1.842 1.875

p-value 0.003 0.000 0.000 0.000 0.001 0.000 0.057 0.037 0.000 0.000 0.000

ASF 1.189 0.330 -0.050 -0.248 0.038 -1.238 0.007 -0.019 -1.402 -1.214 1.130 -1324.1 1.898 1.939
p-value 0.144 0.011 0.830 0.045 0.773 0.003 0.934 0.153 0.259 0.088 0.000

BEN 0.594 -0.124 0.923 0.024 -0.032 -0.729 -0.091 0.009 -0.619 0.496 1.329 -1746.4 1.954 1.987
p-value 0.008 0.001 0.000 0.719 0.000 0.278 0.017 0.003 0.605 0.154 0.000

CI 0.997 0.239 0.221 -0.297 0.004 -0.976 0.000 -0.012 1.088 -1.151 1.075 -1411.3 1.925 1.964
p-value 0.316 0.070 0.276 0.109 0.968 0.020 0.999 0.103 0.367 0.022 0.000

CL 0.193 0.056 0.881 -0.007 0.014 -0.741 -0.005 -0.001 -0.822 -0.075 1.073 -1422.4 1.957 1.997
p-value 0.013 0.001 0.000 0.490 0.132 0.000 0.545 0.218 0.002 0.293 0.000

CPQ 0.287 -0.176 1.096 -0.240 0.005 -3.998 0.005 -0.001 -0.469 1.377 1.370 -1269.3 1.968 2.012
p-value 0.274 0.000 0.000 0.001 0.969 0.215 0.966 0.159 0.927 0.001 0.000

DCX 0.813 0.098 0.742 0.073 -0.050 0.177 -0.002 0.001 -2.367 -0.254 0.988 -1171.4 1.907 1.953
p-value 0.000 0.020 0.000 0.002 0.019 0.433 0.908 0.476 0.000 0.300 0.000

GMH 0.352 0.119 0.557 -0.100 0.011 -0.495 0.000 -0.001 -0.232 -0.388 0.925 -1388.8 1.983 2.024
p-value 0.854 0.733 0.485 0.732 0.955 0.825 0.998 0.937 0.958 0.904 0.000

GT 0.509 0.308 0.496 0.065 0.008 -1.024 0.004 -0.009 -2.756 0.133 1.077 -1263.1 1.944 1.987
p-value 0.254 0.007 0.001 0.282 0.890 0.078 0.882 0.022 0.109 0.881 0.000

HAR 0.384 -0.008 0.870 0.026 -0.031 -0.478 -0.002 0.005 -1.056 1.217 1.037 -1262.6 1.905 1.948
p-value 0.000 0.793 0.000 0.564 0.000 0.026 0.916 0.063 0.000 0.000 0.000

KF 0.387 0.189 0.666 -0.002 -0.035 -0.798 0.045 -0.029 -1.511 -1.626 1.151 -727.2 1.893 1.958
p-value 0.019 0.000 0.000 0.946 0.054 0.095 0.017 0.000 0.111 0.046 0.000

Decimal Pilot Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b. cont'd ML estimation of a Weibull ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
LE 0.391 0.187 0.757 -0.097 0.101 -1.429 -0.058 -0.027 -2.504 1.251 1.207 -1023.3 1.915 1.966

p-value 0.737 0.048 0.000 0.633 0.492 0.207 0.438 0.003 0.091 0.136 0.000

LMT 0.141 0.078 0.851 -0.025 0.013 -0.281 -0.001 -0.001 -0.517 0.005 1.050 -1267.5 1.971 2.015
p-value 0.091 0.002 0.000 0.153 0.184 0.050 0.895 0.206 0.076 0.965 0.000

MLM 0.098 0.635 0.406 -0.025 0.053 -0.937 -0.053 -0.022 -0.641 0.703 1.123 -1295.3 1.957 2.000
p-value 0.801 0.000 0.001 0.774 0.264 0.024 0.172 0.038 0.453 0.269 0.000

RCL 0.321 0.156 0.790 -0.046 -0.009 -0.491 0.009 -0.008 -0.863 0.193 0.976 -1252.4 1.852 1.895
p-value 0.000 0.000 0.000 0.000 0.352 0.000 0.380 0.000 0.000 0.208 0.000

S 0.266 -0.047 0.921 -0.095 -0.007 -0.675 -0.021 0.002 0.052 0.060 1.279 -1072.4 1.926 1.975
p-value 0.302 0.411 0.000 0.004 0.861 0.136 0.333 0.289 0.953 0.809 0.000

SGY 2.198 -0.111 0.543 -0.584 -0.310 -5.101 0.245 -0.121 5.987 2.533 1.113 -1270.0 1.858 1.900
p-value 0.459 0.585 0.014 0.493 0.475 0.270 0.519 0.012 0.301 0.230 0.000

STT 0.048 0.013 0.938 -0.019 0.000 -0.471 -0.004 0.002 -0.040 -0.033 1.028 -1212.0 1.914 1.958
p-value 0.552 0.295 0.000 0.101 0.982 0.000 0.525 0.001 0.694 0.231 0.000

UBS 0.125 0.121 0.842 0.012 -0.005 -0.286 -0.006 -0.003 -0.190 0.200 0.964 -1288.8 1.869 1.910
p-value 0.099 0.000 0.000 0.278 0.626 0.000 0.414 0.104 0.175 0.003 0.000

VAL 0.402 0.243 0.322 -0.035 -0.027 -0.415 0.003 -0.040 3.596 -0.119 1.288 -1042.3 1.912 1.962
p-value 0.829 0.760 0.889 0.952 0.921 0.916 0.994 0.687 0.697 0.993 0.002
Mean 0.495 0.121 0.681 -0.083 -0.014 -1.034 0.004 -0.014 -0.250 0.158 1.113 -1268.1 1.917 1.961
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b. cont'd ML estimation of a Weibull ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
WMT 1.229 0.210 0.477 -0.042 -0.066 -0.821 -0.011 0.000 -0.764 -0.124 1.064 -1455.3 1.93 1.97

p-value 0.000 0.001 0.000 0.466 0.144 0.006 0.701 0.848 0.327 0.580 0.000

CCN 1.611 0.347 0.271 -0.553 -0.013 -0.491 -0.192 -0.138 0.888 -0.351 1.196 -1196.1 1.80 1.84
p-value 0.017 0.013 0.167 0.033 0.906 0.190 0.123 0.077 0.665 0.836 0.000

AOC 0.309 0.134 0.775 -0.049 0.002 -1.305 -0.014 -0.003 -0.903 0.061 1.030 -1579.7 1.89 1.92
p-value 0.000 0.000 0.000 0.015 0.780 0.000 0.146 0.110 0.001 0.696 0.000

UNH 0.287 0.102 0.823 -0.026 -0.004 -0.615 -0.013 0.001 -0.423 0.153 1.058 -1514.8 1.90 1.94
p-value 0.004 0.000 0.000 0.156 0.698 0.000 0.195 0.255 0.003 0.003 0.000

KO 0.352 0.069 0.863 -0.004 -0.008 -0.904 0.016 -0.001 -0.886 -0.383 1.129 -1226.5 1.96 2.00
p-value 0.020 0.001 0.000 0.858 0.518 0.008 0.102 0.068 0.099 0.000 0.000

T 0.608 0.030 0.661 -0.083 0.048 -1.717 -0.026 0.000 -3.596 -0.119 1.228 -1005.9 1.88 1.93
p-value 0.119 0.666 0.000 0.189 0.259 0.032 0.298 0.668 0.002 0.762 0.000

DOV 0.365 0.265 0.607 -0.098 0.009 -0.620 -0.020 -0.003 -0.396 0.303 0.975 -1223.0 1.91 1.95
p-value 0.022 0.000 0.000 0.002 0.634 0.001 0.185 0.025 0.243 0.038 0.000

ALL 0.751 0.143 0.745 -0.027 -0.011 -1.370 0.024 -0.002 -2.745 0.133 0.990 -1059.8 1.90 1.95
p-value 0.001 0.001 0.000 0.533 0.582 0.000 0.164 0.026 0.000 0.563 0.000

GP 0.644 0.102 0.707 -0.146 -0.002 -1.529 -0.016 -0.001 -1.312 0.202 1.008 -1164.6 1.89 1.93
p-value 0.006 0.017 0.000 0.002 0.963 0.001 0.458 0.666 0.073 0.391 0.000

PHM 0.373 0.112 0.753 -0.184 0.021 -0.893 -0.004 -0.005 -0.418 -0.216 1.034 -1357.3 1.87 1.91
p-value 0.112 0.002 0.000 0.000 0.503 0.000 0.872 0.085 0.291 0.249 0.000

APF 1.704 0.183 -0.024 -0.121 -0.083 -1.641 -0.022 -0.008 1.148 -3.727 1.232 -324.9 1.94 2.06
p-value 0.001 0.029 0.907 0.382 0.010 0.101 0.703 0.548 0.687 0.073 0.000

CLB 0.826 0.319 0.161 -0.058 -0.056 -0.605 0.181 -0.042 -1.886 -0.556 0.936 -994.5 1.86 1.91
p-value 0.036 0.000 0.271 0.719 0.301 0.354 0.011 0.073 0.021 0.442 0.000

Matched Control Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b. cont'd ML estimation of a Weibull ACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
MRO 0.160 0.078 0.881 -0.057 -0.012 -2.180 0.042 -0.003 -0.921 0.016 1.007 -1519.8 1.92 1.96

p-value 0.029 0.000 0.000 0.017 0.194 0.000 0.000 0.000 0.081 0.930 0.000

HTN 0.664 0.118 0.672 -0.118 -0.020 -0.880 -0.007 -0.006 -1.315 0.344 0.983 -1189.7 1.93 1.97
p-value 0.000 0.000 0.000 0.000 0.326 0.000 0.676 0.032 0.000 0.091 0.000

CNF 0.600 0.194 0.717 -0.113 -0.050 -0.858 0.023 -0.008 -0.157 0.156 1.015 -1082.2 1.96 2.00
p-value 0.002 0.000 0.000 0.014 0.052 0.000 0.251 0.007 0.660 0.458 0.000

NKE 1.067 0.185 0.336 -0.256 0.072 -1.379 -0.046 -0.004 -3.437 1.082 1.015 -1195.6 1.88 1.92
p-value 0.017 0.003 0.009 0.002 0.122 0.000 0.194 0.195 0.000 0.002 0.000

AMG 0.559 0.115 0.676 -0.098 -0.038 -0.286 0.009 -0.002 -0.157 0.183 0.886 -1252.9 1.90 1.94
p-value 0.002 0.000 0.000 0.001 0.138 0.007 0.544 0.462 0.455 0.052 0.000

PKI -0.269 0.052 0.900 -0.051 0.005 -0.375 -0.064 0.001 0.755 -0.124 1.003 -1260.9 1.92 1.96
p-value 0.190 0.020 0.000 0.145 0.881 0.000 0.000 0.304 0.000 0.018 0.000

HIT 0.869 0.282 0.374 -0.017 -0.097 0.032 0.074 -0.035 -0.298 -0.030 1.214 -1190.4 1.86 1.90
p-value 0.000 0.000 0.000 0.559 0.000 0.696 0.003 0.000 0.044 0.833 0.000

AGX 1.663 0.358 0.074 -0.092 -0.100 -0.439 -0.030 -0.094 -0.770 0.800 1.170 -528.4 1.90 1.98
p-value 0.000 0.000 0.527 0.116 0.030 0.354 0.447 0.000 0.068 0.400 0.000
Mean 0.72 0.17 0.57 -0.11 -0.02 -0.94 0.00 -0.02 -0.88 -0.11 1.06 -1166.1 1.90 1.95

Matched Control Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b. ML estimation of a Weibull ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
AOL 0.868 0.188 0.675 0.007 -0.040 -0.292 -0.017 -0.001 -0.727 -0.239 1.164 -1543.7 2.454 2.499
p-value 0.000 0.000 0.000 0.612 0.048 0.007 0.072 0.096 0.010 0.002 0.000

ASF 0.458 0.082 0.740 0.017 -0.006 -0.394 0.020 -0.003 -1.348 -0.186 0.757 -679.0 1.756 1.821
p-value 0.245 0.530 0.000 0.942 0.949 0.798 0.875 0.434 0.581 0.808 0.000

BEN 0.160 0.115 0.861 -0.004 0.013 -0.348 0.004 -0.003 -0.713 -0.492 1.066 -1567.4 1.919 1.955
p-value 0.378 0.000 0.000 0.854 0.611 0.332 0.779 0.011 0.355 0.021 0.000

CI 0.042 0.065 0.880 -0.008 0.018 -0.333 -0.004 0.000 -0.250 0.017 1.030 -1784.7 1.913 1.946
p-value 0.441 0.000 0.000 0.401 0.029 0.000 0.522 0.373 0.006 0.754 0.000

CL 0.130 0.069 0.789 -0.016 0.002 -0.438 -0.018 0.001 -0.054 0.093 1.070 -1139.2 2.011 2.059
p-value 0.794 0.453 0.000 0.823 0.969 0.497 0.756 0.447 0.983 0.831 0.000

CPQ 0.403 0.060 0.773 -0.039 -0.016 -1.244 -0.044 0.000 0.719 -0.348 1.189 -720.3 1.968 2.037
p-value 0.046 0.059 0.000 0.218 0.379 0.000 0.004 0.868 0.231 0.126 0.000

DCX 0.164 0.119 0.806 -0.026 0.011 -1.284 -0.010 -0.003 -0.343 -0.014 1.044 -845.9 1.930 1.989
p-value 0.171 0.000 0.000 0.102 0.428 0.000 0.399 0.018 0.012 0.942 0.000

GMH 0.240 0.135 0.659 -0.055 0.008 -0.871 -0.016 0.000 0.125 0.006 1.051 -916.2 1.954 2.010
p-value 0.119 0.005 0.000 0.073 0.662 0.000 0.326 0.954 0.775 0.981 0.000

GT 1.626 0.066 0.638 -0.158 -0.117 -0.840 -0.052 -0.008 -1.209 1.204 1.038 -2260.2 1.927 1.954
p-value 0.000 0.503 0.000 0.016 0.013 0.227 0.168 0.051 0.486 0.042 0.000

HAR 1.697 0.178 0.086 -0.221 -0.038 -1.077 -0.125 0.000 -0.741 0.199 0.987 -845.4 1.989 2.050
p-value 0.002 0.072 0.667 0.038 0.466 0.000 0.009 0.979 0.343 0.648 0.000

KF 1.106 0.248 0.153 -0.226 -0.013 -2.916 0.025 -0.051 -2.621 -3.397 1.210 -611.4 1.976 2.053
p-value 0.004 0.002 0.429 0.005 0.755 0.000 0.611 0.000 0.235 0.063 0.000

LE 1.441 0.344 0.362 0.038 -0.045 -1.080 -0.109 -0.008 -2.665 0.156 1.003 -741.1 1.909 1.974
p-value 0.003 0.001 0.000 0.735 0.522 0.006 0.055 0.498 0.058 0.837 0.000

LMT 0.804 0.283 0.071 -0.094 -0.015 -1.078 -0.018 0.001 0.275 -1.013 1.059 -1013.5 1.982 2.034
p-value 0.132 0.048 0.676 0.174 0.791 0.000 0.680 0.789 0.812 0.004 0.000

Decimal Pilot Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b. Cont'd ML estimation of a Weibull ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
MLM 0.255 0.202 0.548 -0.052 0.035 -0.715 -0.031 -0.003 -0.604 -0.170 0.988 -1026.4 1.923 1.974
p-value 0.145 0.000 0.000 0.171 0.168 0.000 0.224 0.530 0.073 0.522 0.000

RCL 0.820 0.241 0.515 -0.088 -0.010 -0.557 -0.060 -0.006 -0.834 -0.051 1.066 -962.7 1.920 1.974
p-value 0.002 0.000 0.000 0.045 0.675 0.092 0.012 0.079 0.098 0.881 0.000

S 1.725 0.059 0.523 0.001 -0.120 -0.967 -0.042 0.001 -1.798 0.152 1.057 -855.5 1.923 1.982
p-value 0.018 0.643 0.066 0.990 0.112 0.260 0.475 0.664 0.127 0.772 0.000

SGY -0.049 0.087 0.781 -0.020 0.049 -0.724 -0.005 0.001 -0.499 0.028 1.032 -1351.1 1.977 2.019
p-value 0.817 0.017 0.000 0.578 0.204 0.000 0.820 0.822 0.070 0.824 0.000

STT 0.177 0.143 0.803 -0.064 -0.015 -0.210 0.006 -0.001 0.149 -0.058 1.099 -967.7 1.868 1.920
p-value 0.197 0.000 0.000 0.000 0.390 0.026 0.603 0.166 0.364 0.173 0.000

UBS 0.248 0.192 0.701 -0.089 0.002 -0.134 -0.026 -0.006 0.288 -0.239 0.950 -1011.9 1.855 1.905
p-value 0.010 0.000 0.000 0.000 0.915 0.040 0.067 0.055 0.010 0.012 0.000

VAL 1.822 0.420 0.407 0.065 -0.179 0.397 -0.050 -0.048 -1.318 -0.148 1.051 -1836.3 1.895 1.926
p-value 0.000 0.000 0.000 0.219 0.000 0.359 0.113 0.000 0.161 0.829 0.000

Mean 0.71 0.16 0.59 -0.05 -0.02 -0.76 -0.03 -0.01 -0.71 -0.22 1.05 -1134 1.95 2.00
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b cont'd. ML estimation of a Weibull ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
WMT 0.062 0.070 0.813 -0.022 0.035 -0.144 -0.024 0.000 -0.771 0.263 1.140 -1349 1.893 1.934
p-value 0.596 0.003 0.000 0.100 0.014 0.354 0.007 0.327 0.014 0.030 0.000

CCN 0.474 0.247 0.588 -0.030 -0.027 0.004 0.012 -0.039 -0.841 0.381 1.169 -773 1.858 1.920
p-value 0.000 0.000 0.000 0.219 0.120 0.985 0.505 0.000 0.007 0.283 0.000

AOC 0.387 0.054 0.823 -0.052 -0.013 -0.869 -0.003 -0.001 -0.911 0.351 1.062 -1459 1.944 1.982
p-value 0.000 0.007 0.000 0.001 0.170 0.000 0.733 0.247 0.000 0.037 0.000

UNH 0.056 0.216 0.822 -0.126 0.078 -1.518 -0.063 -0.008 -0.363 0.257 1.140 -1845 1.975 2.008
p-value 0.878 0.004 0.000 0.031 0.066 0.000 0.003 0.000 0.734 0.383 0.000

KO 1.533 0.304 0.787 0.287 0.052 4.065 -0.209 -0.005 -7.135 0.700 1.370 -990 1.886 1.937
p-value 0.387 0.078 0.000 0.063 0.733 0.234 0.008 0.054 0.409 0.536 0.000

T 0.299 0.088 0.816 -0.086 0.022 -0.829 -0.020 0.000 -1.566 0.067 1.116 -675 1.873 1.942
p-value 0.043 0.003 0.000 0.002 0.220 0.072 0.180 0.486 0.055 0.780 0.000

DOV 0.576 0.250 0.533 -0.078 -0.028 -0.693 0.008 -0.002 -0.974 1.268 1.062 -795 1.906 1.967
p-value 0.018 0.000 0.000 0.030 0.368 0.001 0.732 0.064 0.002 0.000 0.000

ALL 0.853 0.090 0.676 -0.227 -0.017 -1.441 0.056 -0.003 -1.326 -1.108 1.346 -975 2.096 2.152
p-value 0.100 0.484 0.000 0.052 0.812 0.116 0.200 0.090 0.616 0.183 0.000

GP 0.395 0.093 0.797 -0.028 -0.009 -0.710 -0.013 -0.001 -0.968 0.274 1.069 -1972 1.958 1.989
p-value 0.000 0.000 0.000 0.029 0.306 0.000 0.105 0.040 0.000 0.060 0.000

PHM 1.016 0.200 0.567 -0.052 -0.096 -0.537 -0.030 -0.003 0.290 0.021 1.178 -895 1.993 2.051
p-value 0.010 0.016 0.000 0.128 0.066 0.000 0.445 0.189 0.489 0.949 0.000

APF 0.755 0.306 0.303 0.128 -0.065 0.872 0.016 -0.034 -3.516 5.072 1.192 -547 1.888 1.969
p-value 0.000 0.000 0.001 0.018 0.001 0.314 0.404 0.036 0.020 0.013 0.000

CLB 2.036 0.153 0.330 0.172 -0.206 0.219 -0.064 0.005 0.588 -2.273 1.087 -666 1.977 2.050
p-value 0.001 0.182 0.051 0.087 0.000 0.586 0.345 0.800 0.628 0.026 0.000

MRO 1.247 0.191 0.255 -0.004 -0.019 -1.229 -0.040 -0.001 -3.389 -0.945 1.046 -1046 1.950 2.001
p-value 0.000 0.000 0.026 0.905 0.550 0.000 0.080 0.493 0.000 0.025 0.000

Matched Control Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7b cont'd. ML estimation of a Weibull ACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

HTN 0.153 0.059 0.897 0.009 -0.012 -0.380 0.014 -0.005 -0.425 0.468 1.046 -1121 1.949 1.997
p-value 0.200 0.001 0.000 0.691 0.507 0.057 0.452 0.003 0.027 0.020 0.000

CNF 0.482 0.176 0.382 -0.030 0.055 0.012 -0.027 -0.005 -2.146 1.229 1.023 -1067 1.949 1.999
p-value 0.015 0.000 0.000 0.295 0.056 0.928 0.278 0.032 0.000 0.000 0.000

NKE 0.482 0.132 0.784 0.023 -0.041 -0.501 0.021 -0.002 -0.787 -0.198 0.991 -904 1.943 1.999
p-value 0.000 0.000 0.000 0.361 0.009 0.009 0.081 0.012 0.057 0.309 0.000

AMG 0.847 0.192 0.395 -0.124 0.016 -0.464 -0.090 -0.009 -0.451 0.201 0.902 -1289 1.842 1.883
p-value 0.000 0.000 0.000 0.000 0.531 0.000 0.000 0.003 0.006 0.192 0.000

PKI -0.072 0.097 0.872 -0.038 0.021 -0.419 -0.028 -0.001 0.256 0.055 1.009 -999 1.914 1.966
p-value 0.441 0.000 0.000 0.022 0.120 0.000 0.003 0.033 0.121 0.230 0.000

HIT 1.597 0.263 0.221 -0.147 -0.118 -0.478 -0.076 -0.044 0.924 -0.989 1.133 -1085 1.933 1.981
p-value 0.000 0.000 0.122 0.016 0.006 0.001 0.046 0.032 0.078 0.015 0.000

AGX 0.354 0.470 0.111 0.057 -0.009 0.058 0.060 -0.047 -1.304 0.381 1.208 -677 1.828 1.895
p-value 0.013 0.000 0.168 0.083 0.673 0.711 0.002 0.000 0.240 0.716 0.000

Mean 0.68 0.18 0.59 -0.02 -0.02 -0.25 -0.02 -0.01 -1.24 0.27 1.11 -1056 1.93 1.98

Matched Control Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal
spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c. ML estimation of a WLACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
AOL 0.228 0.087 0.886 -0.008 -0.015 -0.533 0.003 0.000 -0.053 -0.191 1.089 -1644 1.834 1.867
p-value 0.001 0.000 0.000 0.513 0.119 0.000 0.684 0.025 0.631 0.001 0.000

ASF 0.273 0.182 0.462 -0.145 0.062 -1.360 -0.055 -0.011 -0.812 0.017 0.884 -1276 1.829 1.870
p-value 0.236 0.000 0.000 0.023 0.098 0.000 0.009 0.001 0.036 0.932 0.000

BEN 0.322 0.121 0.597 0.010 -0.013 -0.382 -0.040 -0.001 -0.523 0.429 1.047 -1756 1.964 1.998
p-value 0.005 0.000 0.000 0.627 0.417 0.006 0.003 0.321 0.018 0.013 0.000

CI 0.379 0.161 0.665 -0.093 0.000 -0.412 -0.012 -0.004 -0.307 -0.081 1.053 -1382 1.885 1.924
p-value 0.012 0.000 0.000 0.000 0.999 0.000 0.406 0.000 0.046 0.363 0.000

CL 0.794 0.133 0.537 -0.031 -0.011 -0.930 0.009 -0.001 -2.796 0.036 1.079 -1415 1.947 1.987
p-value 0.000 0.000 0.000 0.211 0.645 0.000 0.520 0.069 0.000 0.812 0.000

CPQ 0.101 0.060 0.860 -0.055 0.009 -1.720 -0.006 0.000 -0.473 -0.012 1.045 -1201 1.864 1.908
p-value 0.248 0.000 0.000 0.010 0.477 0.000 0.554 0.188 0.129 0.933 0.000

DCX 0.630 0.132 0.706 0.065 -0.070 -0.084 -0.006 0.000 -0.604 -0.251 1.012 -1172 1.908 1.954
p-value 0.000 0.000 0.000 0.002 0.002 0.277 0.684 0.957 0.002 0.275 0.000

GMH 0.871 0.145 0.634 -0.038 -0.038 -0.865 -0.029 -0.001 -1.752 -0.171 1.054 -1340 1.914 1.955
p-value 0.000 0.000 0.000 0.150 0.066 0.002 0.066 0.031 0.000 0.342 0.000

GT 0.830 0.198 0.352 -0.014 -0.065 -1.571 0.011 -0.001 -3.648 1.361 0.979 -1235 1.901 1.944
p-value 0.000 0.000 0.000 0.717 0.017 0.000 0.604 0.197 0.001 0.017 0.000

HAR 0.585 0.162 0.515 -0.141 -0.003 -1.163 -0.051 -0.008 -0.902 0.284 1.006 -1221 1.843 1.886
p-value 0.000 0.000 0.000 0.002 0.880 0.000 0.006 0.007 0.000 0.048 0.000

KF 0.206 0.100 0.805 -0.002 -0.029 -1.108 0.039 -0.021 -0.621 -1.921 1.161 -723 1.881 1.946
p-value 0.103 0.000 0.000 0.942 0.052 0.072 0.026 0.001 0.511 0.029 0.000

LE 0.812 0.250 0.437 -0.022 0.000 -0.191 -0.076 -0.013 -1.679 0.209 0.985 -995 1.862 1.913
p-value 0.000 0.000 0.000 0.632 0.992 0.444 0.007 0.000 0.000 0.472 0.000
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c. cont'd ML estimation of a WLACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
LMT 0.079 0.058 0.798 -0.041 0.013 -0.699 0.002 0.000 -0.576 -0.006 1.046 -1269 1.974 2.017

p-value 0.460 0.003 0.000 0.066 0.293 0.001 0.906 0.956 0.146 0.965 0.000

MLM 0.492 0.140 0.310 -0.055 -0.028 -0.745 0.020 -0.006 -1.436 -0.105 1.040 -1295 1.957 2.000
p-value 0.008 0.000 0.002 0.276 0.269 0.001 0.325 0.082 0.001 0.726 0.000

RCL 0.185 0.090 0.854 -0.049 -0.009 -1.168 0.020 -0.005 -0.548 0.376 0.980 -1248 1.846 1.888
p-value 0.008 0.000 0.000 0.010 0.366 0.000 0.094 0.001 0.066 0.071 0.000

S 0.056 0.069 0.857 -0.031 0.019 -0.820 -0.003 0.000 -0.663 0.001 1.046 -1078 1.936 1.986
p-value 0.604 0.001 0.000 0.099 0.207 0.004 0.805 0.999 0.040 0.997 0.000

SGY 1.246 0.185 0.171 -0.137 -0.054 -0.830 -0.086 -0.009 -1.676 0.256 0.929 -1279 1.871 1.913
p-value 0.000 0.000 0.064 0.015 0.121 0.000 0.004 0.005 0.000 0.188 0.000

STT 0.073 0.041 0.926 0.002 -0.003 -0.605 0.002 0.000 -0.125 -0.010 1.005 -1212 1.914 1.958
p-value 0.301 0.000 0.000 0.871 0.800 0.000 0.802 0.159 0.171 0.778 0.000

UBS 0.022 0.078 0.879 0.008 0.003 -0.639 -0.014 -0.001 0.070 0.163 0.964 -1282 1.858 1.900
p-value 0.772 0.000 0.000 0.565 0.800 0.000 0.112 0.386 0.663 0.049 0.000

VAL 0.876 0.214 0.341 -0.128 -0.079 -1.089 -0.026 -0.009 -1.040 0.785 1.086 -1018 1.868 1.918
p-value 0.000 0.000 0.000 0.001 0.040 0.000 0.397 0.049 0.069 0.121 0.000

Mean 0.453 0.130 0.630 -0.045 -0.016 -0.846 -0.015 -0.005 -1.008 0.059 1.024 -1252 1.893 1.937

Decimal Pilot Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c cont'd. ML estimation of a WLACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
WMT 0.788 0.185 0.550 -0.073 -0.009 -0.636 -0.022 0.000 -1.588 -0.232 1.090 -1439 1.906 1.944
p-value 0.000 0.000 0.000 0.030 0.706 0.003 0.186 0.697 0.000 0.075 0.000

CCN 0.561 0.288 0.297 0.047 -0.027 -0.054 -0.046 -0.065 -0.391 -0.783 1.056 -1203 1.812 1.855
p-value 0.000 0.000 0.000 0.182 0.212 0.735 0.089 0.001 0.228 0.018 0.000

AOC 0.249 0.105 0.777 -0.061 0.004 -2.034 -0.012 0.000 -1.073 0.080 1.032 -1575 1.884 1.919
p-value 0.001 0.000 0.000 0.023 0.739 0.000 0.328 0.760 0.006 0.703 0.000

UNH 0.383 0.090 0.831 -0.001 -0.009 -0.591 -0.019 0.001 -0.719 0.151 1.056 -1511 1.895 1.931
p-value 0.001 0.000 0.000 0.955 0.442 0.003 0.076 0.041 0.000 0.021 0.000

KO 0.277 0.035 0.925 0.024 -0.001 -0.635 0.003 0.000 -1.084 -0.289 1.127 -1227 1.961 2.006
p-value 0.027 0.003 0.000 0.213 0.890 0.041 0.645 0.405 0.027 0.000 0.000

T 0.328 0.045 0.903 -0.096 0.009 -2.069 0.019 0.000 -2.459 -0.057 1.115 -994 1.860 1.910
p-value 0.027 0.001 0.000 0.008 0.482 0.000 0.033 0.362 0.000 0.730 0.000

DOV 0.483 0.265 0.559 -0.130 0.021 -1.257 -0.029 -0.005 -0.694 -0.182 1.000 -1189 1.855 1.899
p-value 0.008 0.000 0.000 0.012 0.403 0.000 0.123 0.000 0.072 0.378 0.000

ALL 0.775 0.122 0.779 -0.030 -0.055 -1.044 0.030 -0.001 -1.634 -0.186 1.036 -1055 1.893 1.942
p-value 0.000 0.000 0.000 0.308 0.000 0.001 0.020 0.045 0.003 0.284 0.000

GP 0.555 0.057 0.760 -0.167 0.019 -1.979 -0.027 0.001 -2.737 0.547 0.996 -1160 1.879 1.924
p-value 0.002 0.002 0.000 0.000 0.405 0.000 0.129 0.303 0.000 0.006 0.000

PHM 0.174 0.117 0.744 -0.043 0.028 -1.270 0.005 -0.002 -1.260 -0.179 0.987 -1336 1.844 1.884
p-value 0.214 0.000 0.000 0.121 0.151 0.000 0.722 0.119 0.000 0.220 0.000

APF 0.911 0.096 -0.198 -0.187 -0.083 -1.961 -0.024 -0.003 1.877 -4.018 1.232 -325 1.937 2.059
p-value 0.060 0.019 0.379 0.273 0.040 0.093 0.691 0.837 0.539 0.080 0.000

CLB 0.626 0.282 0.320 -0.024 -0.022 -1.492 0.002 -0.027 -2.938 1.062 0.996 -969 1.814 1.865
p-value 0.004 0.000 0.000 0.712 0.438 0.000 0.935 0.002 0.000 0.019 0.000

MRO 0.226 0.088 0.826 -0.052 -0.022 -2.840 0.060 -0.003 -1.671 -0.007 1.005 -1522 1.921 1.958
p-value 0.062 0.000 0.000 0.103 0.130 0.000 0.000 0.000 0.026 0.979 0.000
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c cont'd. ML estimation of a WLACD(1,1) model. Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
HTN 0.449 0.089 0.684 -0.082 -0.014 -1.133 0.014 -0.005 -2.120 0.355 0.985 -1188 1.925 1.970

p-value 0.002 0.000 0.000 0.040 0.540 0.000 0.477 0.098 0.000 0.216 0.000

CNF 0.487 0.139 0.796 -0.032 -0.043 -0.896 0.046 -0.007 -0.853 0.058 1.022 -1022 1.848 1.898
p-value 0.001 0.000 0.000 0.363 0.032 0.000 0.003 0.000 0.008 0.708 0.000

NKE 0.693 0.144 0.504 -0.234 -0.013 -1.880 0.027 -0.002 -2.208 0.324 1.004 -1199 1.882 1.926
p-value 0.003 0.000 0.000 0.000 0.609 0.000 0.191 0.123 0.000 0.139 0.000

AMG 0.458 0.105 0.622 -0.134 0.007 -0.988 -0.017 -0.001 -0.940 0.145 0.893 -1239 1.879 1.922
p-value 0.030 0.000 0.000 0.004 0.836 0.000 0.396 0.865 0.004 0.221 0.000

PKI 0.186 0.060 0.868 -0.008 0.007 -0.174 -0.039 0.000 -0.100 -0.067 1.016 -1268 1.928 1.971
p-value 0.170 0.000 0.000 0.700 0.690 0.021 0.000 0.950 0.497 0.076 0.000

HIT 0.792 0.163 0.507 -0.007 -0.127 0.051 0.046 -0.026 -0.461 0.132 1.210 -1196 1.867 1.911
p-value 0.000 0.000 0.000 0.820 0.000 0.612 0.058 0.006 0.023 0.468 0.000

AGX 0.194 0.179 0.282 0.128 -0.063 0.034 0.068 -0.034 -0.291 0.452 1.089 -539 1.933 2.017
p-value 0.476 0.000 0.048 0.171 0.096 0.949 0.024 0.006 0.743 0.600 0.000
Mean 0.480 0.133 0.617 -0.058 -0.020 -1.142 0.004 -0.009 -1.167 -0.135 1.047 -1158 1.886 1.935

Matched Control Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c ML estimation of a WLACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
AOL 0.483 0.121 0.783 -0.023 -0.017 -0.992 -0.013 0.000 -0.610 -0.029 1.140 -1164.414 1.855 1.900

p-value 0.001 0.000 0.000 0.151 0.279 0.000 0.149 0.400 0.033 0.705 0.000

ASF 0.770 0.209 0.534 -0.231 0.038 -1.413 -0.051 -0.007 -2.089 -0.136 0.848 -622.673 1.612 1.678
p-value 0.002 0.000 0.000 0.001 0.304 0.000 0.073 0.001 0.000 0.608 0.000

BEN 0.152 0.072 0.836 0.009 -0.009 -1.124 -0.001 0.001 -0.601 -0.009 1.069 -1568.014 1.920 1.956
p-value 0.070 0.000 0.000 0.567 0.479 0.000 0.911 0.018 0.012 0.957 0.000

CI 0.239 0.099 0.713 -0.038 0.020 -0.520 0.000 0.000 -0.802 -0.125 1.036 -1771.030 1.899 1.931
p-value 0.032 0.000 0.000 0.047 0.171 0.000 0.997 0.414 0.000 0.238 0.000

CL 0.037 0.091 0.732 0.042 0.024 -0.843 -0.021 0.001 -0.767 -0.072 1.052 -1106.826 1.954 2.003
p-value 0.794 0.000 0.000 0.149 0.218 0.002 0.263 0.172 0.038 0.700 0.000

CPQ 0.026 0.083 0.761 -0.090 0.015 -1.634 -0.034 0.000 0.720 -0.313 1.144 -702.657 1.921 1.989
p-value 0.890 0.004 0.000 0.037 0.457 0.001 0.060 0.934 0.401 0.276 0.000

DCX 0.634 0.139 0.598 -0.034 -0.041 -1.746 0.000 -0.003 -1.228 0.107 1.038 -848.347 1.935 1.995
p-value 0.007 0.000 0.000 0.369 0.179 0.000 0.986 0.030 0.000 0.736 0.000

GMH 0.143 0.181 0.526 -0.041 0.033 -1.829 -0.022 -0.001 -1.152 0.229 1.062 -906.500 1.934 1.990
p-value 0.458 0.000 0.000 0.333 0.166 0.000 0.286 0.262 0.103 0.447 0.000

GT 0.698 0.098 0.678 -0.064 -0.021 -1.040 -0.036 -0.001 -3.378 0.148 1.045 -2226.595 1.899 1.926
p-value 0.000 0.000 0.000 0.000 0.165 0.000 0.002 0.145 0.000 0.634 0.000

HAR 0.717 0.137 0.391 -0.106 -0.024 -0.978 -0.013 -0.002 -1.767 0.235 1.011 -820.140 1.931 1.991
p-value 0.005 0.000 0.000 0.100 0.498 0.000 0.652 0.371 0.001 0.368 0.000

KF 0.313 0.118 0.256 -0.051 -0.032 -1.836 0.046 -0.017 -2.918 -1.924 1.163 -602.046 1.946 2.024
p-value 0.184 0.000 0.086 0.380 0.302 0.005 0.194 0.233 0.035 0.157 0.000

LE 0.748 0.146 0.741 0.074 -0.111 -0.378 0.018 -0.001 -0.715 0.390 1.004 -705.424 1.818 1.884
p-value 0.000 0.000 0.000 0.069 0.000 0.301 0.474 0.733 0.041 0.120 0.000

LMT 0.221 0.111 0.691 -0.086 0.001 -1.767 -0.028 0.000 0.184 -0.326 1.009 -985.352 1.927 1.980
p-value 0.208 0.000 0.000 0.006 0.962 0.000 0.095 0.465 0.716 0.151 0.000
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.

201



Table 7c. cont'd ML estimation of a WLACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

MLM 0.141 0.115 0.552 -0.142 0.028 -1.611 -0.012 0.001 -0.523 -0.697 0.973 -1008.787 1.890 1.941
p-value 0.395 0.000 0.000 0.001 0.288 0.000 0.582 0.663 0.308 0.020 0.000

RCL 0.545 0.148 0.656 -0.037 -0.038 -0.927 0.007 -0.002 -1.295 -0.021 1.058 -961.477 1.918 1.971
p-value 0.000 0.000 0.000 0.326 0.049 0.004 0.700 0.117 0.029 0.950 0.000

S 1.013 0.126 0.684 0.009 -0.091 -1.257 -0.059 -0.001 -0.667 0.634 1.030 -853.067 1.918 1.977
p-value 0.000 0.000 0.000 0.771 0.002 0.002 0.003 0.214 0.202 0.015 0.000

SGY -0.130 0.073 0.786 -0.025 0.048 -0.726 0.001 0.001 -0.639 0.070 1.026 -1331.646 1.949 1.990
p-value 0.262 0.000 0.000 0.382 0.032 0.000 0.976 0.443 0.047 0.509 0.000

STT -0.022 0.017 0.978 -0.034 -0.008 -0.241 0.011 0.000 0.276 -0.139 1.118 -963.967 1.861 1.913
p-value 0.701 0.007 0.000 0.000 0.270 0.009 0.008 0.245 0.011 0.000 0.000

UBS 0.329 0.141 0.725 -0.104 -0.019 -0.268 -0.004 -0.005 0.230 -0.394 0.950 -1014.365 1.859 1.909
p-value 0.009 0.000 0.000 0.001 0.407 0.012 0.842 0.093 0.150 0.002 0.000

VAL 0.352 0.162 0.611 -0.059 -0.024 -1.122 0.009 -0.006 -0.574 0.011 0.998 -1834.204 1.893 1.924
p-value 0.001 0.000 0.000 0.007 0.171 0.000 0.478 0.014 0.017 0.969 0.000

Mean 0.370 0.119 0.662 -0.052 -0.011 -1.113 -0.010 -0.002 -0.916 -0.118 1.039 -1099.9 1.892 1.944

Decimal Pilot Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c. cont'd ML estimation of a WLACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
WMT 0.041 0.059 0.895 -0.023 0.016 -0.594 -0.025 0.000 -0.194 0.013 1.161 -1339.813 1.881 1.922

p-value 0.566 0.000 0.000 0.030 0.077 0.000 0.000 0.753 0.074 0.883 0.000

CCN 0.416 0.156 0.668 -0.020 -0.053 0.177 0.024 -0.019 -0.860 0.551 1.154 -781.064 1.877 1.939
p-value 0.001 0.000 0.000 0.448 0.010 0.481 0.206 0.065 0.044 0.250 0.000

AOC 0.362 0.067 0.774 -0.062 -0.014 -1.142 -0.008 -0.001 -1.264 0.377 1.063 -1455.630 1.939 1.977
p-value 0.000 0.000 0.000 0.004 0.261 0.000 0.467 0.424 0.000 0.100 0.000

UNH 0.344 0.174 0.554 -0.095 -0.005 -1.684 -0.009 -0.001 -0.506 0.076 1.117 -1788.308 1.915 1.948
p-value 0.019 0.000 0.000 0.000 0.807 0.000 0.462 0.029 0.200 0.644 0.000

KO 0.261 0.064 0.693 -0.048 0.020 -1.246 -0.051 0.000 -0.997 -0.217 1.111 -991.267 1.888 1.939
p-value 0.173 0.007 0.000 0.130 0.423 0.000 0.003 0.395 0.016 0.274 0.000

T 0.254 0.076 0.861 -0.077 0.015 -0.867 -0.023 0.000 -1.047 -0.203 1.118 -673.806 1.871 1.940
p-value 0.092 0.000 0.000 0.009 0.380 0.112 0.115 0.785 0.237 0.446 0.000

DOV 0.480 0.131 0.694 -0.056 -0.055 -1.279 -0.017 0.000 -0.002 0.553 1.057 -794.797 1.905 1.967
p-value 0.021 0.000 0.000 0.098 0.060 0.000 0.485 0.628 0.996 0.032 0.000

ALL 0.956 0.162 0.381 -0.139 -0.025 -1.357 -0.034 -0.001 -1.442 -1.759 1.048 -889.883 1.915 1.971
p-value 0.002 0.000 0.000 0.005 0.525 0.001 0.155 0.319 0.155 0.000 0.000

GP 0.549 0.128 0.242 -0.085 0.004 -0.788 -0.027 -0.001 -2.544 0.150 1.063 -1977.991 1.964 1.995
p-value 0.003 0.000 0.022 0.009 0.843 0.000 0.063 0.319 0.000 0.581 0.000

PHM 1.096 0.078 0.226 -0.178 -0.103 -0.764 -0.063 -0.001 -0.207 0.125 1.086 -884.093 1.969 2.028
p-value 0.001 0.025 0.140 0.001 0.031 0.000 0.053 0.599 0.595 0.621 0.000

APF 0.548 0.283 0.151 0.169 -0.092 1.191 0.007 -0.023 -1.684 4.766 1.209 -538.686 1.860 1.942
p-value 0.020 0.000 0.104 0.011 0.001 0.244 0.809 0.230 0.445 0.044 0.000

CLB 0.516 0.113 0.240 0.073 -0.038 0.031 -0.006 -0.004 -1.679 -0.744 1.025 -667.366 1.981 2.053
p-value 0.037 0.000 0.085 0.231 0.273 0.903 0.875 0.529 0.009 0.145 0.000

Matched Control Stocks
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 7c. cont'd ML estimation of a WLACD(1,1) model. Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Stock ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

MRO 0.393 0.040 0.887 0.041 -0.009 -1.641 -0.023 0.000 -2.745 -0.156 1.052 -1039.655 1.938 1.989
p-value 0.000 0.004 0.000 0.026 0.403 0.000 0.035 0.420 0.001 0.616 0.000

HTN 0.141 0.050 0.895 -0.035 0.001 -0.612 -0.029 -0.002 -0.376 0.786 1.042 -1106.740 1.924 1.972
p-value 0.166 0.000 0.000 0.043 0.936 0.001 0.040 0.052 0.015 0.000 0.000

CNF 0.056 0.106 0.509 -0.045 0.052 -0.149 -0.012 -0.002 -2.182 1.108 1.014 -1072.516 1.959 2.009
p-value 0.752 0.000 0.000 0.259 0.097 0.449 0.644 0.201 0.000 0.003 0.000

NKE 0.532 0.164 0.690 0.040 -0.039 -1.019 0.031 -0.002 -1.454 -0.309 1.000 -895.226 1.924 1.981
p-value 0.000 0.000 0.000 0.280 0.091 0.001 0.052 0.013 0.014 0.255 0.000

AMG 0.420 0.135 0.493 -0.163 0.060 -0.864 -0.105 -0.008 -1.314 0.685 0.909 -1274.650 1.821 1.862
p-value 0.019 0.000 0.000 0.000 0.030 0.000 0.000 0.005 0.000 0.001 0.000

PKI -0.005 0.059 0.874 -0.043 0.007 -0.602 -0.037 0.000 0.246 0.119 0.996 -1008.034 1.932 1.984
p-value 0.967 0.000 0.000 0.042 0.612 0.000 0.002 0.798 0.232 0.106 0.000

HIT 0.591 0.176 -0.030 -0.171 0.001 -0.159 -0.056 -0.028 -0.565 -0.357 1.115 -1092.428 1.946 1.995
p-value 0.015 0.000 0.818 0.005 0.987 0.184 0.106 0.001 0.038 0.141 0.000

AGX -0.090 0.251 0.330 0.042 -0.003 0.465 0.071 -0.035 -1.180 -0.152 1.196 -685.504 1.850 1.917
p-value 0.562 0.000 0.000 0.330 0.908 0.485 0.002 0.008 0.377 0.914 0.000

Mean 0.39 0.12 0.55 -0.04 -0.01 -0.65 -0.02 -0.01 -1.10 0.27 1.08 -1047.87 1.91 1.87

Matched Control Stocks (cont'd)
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in 
nominal spread, DEPTH = quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 8. Optimal Specification Model. 
Sample time period October 2, 2000 till January 26, 2001.
Gamma coefficients from the Weibull ACD(1,1) and the Weibull-Logarithmic ACD(1,1) 
models.The goodness of the Weibull distributional assumption in both cases can be 
tested by H0: γ=1, which describes the nested exponential distribution.

γ p-value γ p-value γ p-value γ p-value
AOL 1.087 0.000 1.089 0.000 WMT 1.140 0.026 1.161 0.000
ASF 1.130 0.169 0.884 0.000 CCN 1.169 0.089 1.154 0.009
BEN 1.329 0.018 1.047 0.013 AOC 1.062 0.097 1.063 0.079
CI 1.075 0.281 1.053 0.021 UNH 1.140 0.002 1.117 0.004
CL 1.073 0.001 1.079 0.000 KO 1.370 0.000 1.111 0.000
CPQ 1.370 0.233 1.045 0.037 T 1.116 0.001 1.118 0.000
DCX 0.988 0.690 1.012 0.572 DOV 1.062 0.210 1.057 0.988
GMH 0.925 0.716 1.054 0.016 ALL 1.346 0.724 1.048 0.136
GT 1.077 0.156 0.979 0.331 GP 1.069 0.769 1.063 0.859
HAR 1.037 0.331 1.006 0.778 PHM 1.178 0.299 1.086 0.500
KF 1.151 0.000 1.161 0.000 APF 1.192 0.000 1.209 0.000
LE 1.207 0.077 0.985 0.533 CLB 1.087 0.120 1.025 0.878
LMT 1.050 0.017 1.046 0.026 MRO 1.046 0.693 1.052 0.815
MLM 1.123 0.028 1.040 0.051 HTN 1.046 0.417 1.042 0.452
RCL 0.976 0.263 0.980 0.331 CNF 1.023 0.585 1.014 0.359
S 1.279 0.000 1.046 0.071 NKE 0.991 0.661 1.000 0.865
SGY 1.113 0.422 0.929 0.000 AMG 0.902 0.000 0.909 0.000
STT 1.028 0.270 1.005 0.777 PKI 1.009 0.927 0.996 0.422
UBS 0.964 0.084 0.964 0.095 HIT 1.133 0.000 1.115 0.000
VAL 1.288 0.488 1.086 0.001 AGX 1.208 0.001 1.196 0.019

7 11 8 9

9 14 10 10

Number of 
rejections at 

5%

Number of 
rejections at 

5%

Number of 
rejections at 

10%

Number of 
rejections at 

10%

PILOT SAMPLE MATCHED  CONTROL SAMPLE

WACD(1,1) H0: 
γ=1

WLACD(1,1)  H0: 
γ=1

WACD(1,1) H0: 
γ=1

WLACD(1,1)  H0: 
γ=1

Sample period Oct. 2, 2000 till Jan. 26, 2001. Sample period Feb. 8, 2001 till May 31, 2001

205



Table 9. Optimal Specification Model.
Sample time period October 2, 2000 till January 26, 2001.
Test of the standardized residuals from the Exponential ACD(1,1) model.
The goodness of the Exponential distributional assumption in both cases is tested by H0: µ=1, 
H0: σ =1, and an empirical Watson (W) and Anderson-Darling (AD) test of exponential 
distribution. 

W test AD test W test AD test

 H0: µ=1 H0: σ =1  H0: µ=1 H0: σ =1
p-val. p-val. p-val. p-val. p-val. p-val. p-val. p-val.

AOL 0.9573 0.0000 0.0000 0.0000 WMT 0.9982 0.0000 0.0000 0.0000
ASF 0.4630 0.0000 0.0000 0.0000 CCN 0.0504 0.0000 0.0000 0.0000
BEN 0.9941 0.0000 0.0000 0.0000 AOC 0.9283 0.0000 0.0000 0.0000
CI 0.8287 0.0000 0.0000 0.0000 UNH 0.9999 0.0000 0.0000 0.0000
CL 0.8699 0.0000 0.0000 0.0000 KO 0.9209 0.4174 0.0000 0.0000
CPQ 0.9304 0.0000 0.0000 0.0000 T 0.2268 0.0077 0.0000 0.0000
DCX 0.6496 0.0000 0.0000 0.0000 DOV 0.9822 0.0000 0.0000 0.0000
GMH 0.5393 0.0000 0.0000 0.0000 ALL 0.6798 0.0000 0.0000 0.0000
GT 0.3238 0.0000 0.0000 0.0000 GP 0.0319 0.0000 0.0000 0.0000
HAR 0.8027 0.0000 0.0000 0.0000 PHM 0.5833 0.0000 0.0000 0.0000
KF 0.9349 0.0001 0.0001 0.0000 APF 0.9999 0.0000 0.0000 0.0000
LE 0.0002 0.0000 0.0000 0.0000 CLB 0.4405 0.0002 0.0000 0.0000
LMT 0.5808 0.0000 0.0000 0.0000 MRO 0.9711 0.0000 0.0000 0.0000
MLM 0.7684 0.0006 0.0000 0.0000 HTN 0.9947 0.0000 0.2107 0.0005
RCL 0.9012 0.0000 0.0000 0.0000 CNF 0.7713 0.0000 0.0000 0.0000
S 0.6549 0.0000 0.0000 0.0000 NKE 0.1651 0.0000 0.0000 0.0000
SGY 0.0212 0.0000 0.0000 0.0000 AMG 0.9261 0.0000 0.0000 0.0000
STT 0.4667 0.0000 0.0000 0.0000 PKI 0.0027 0.0000 0.0000 0.0000
UBS 0.9723 0.0000 0.0000 0.0000 HIT 0.9903 0.0000 0.0000 0.0000
VAL 0.5398 0.0195 0.0000 0.0000 AGX 0.9971 0.4009 0.0043 0.0000

PILOT SAMPLE MATCHED  CONTROL SAMPLE
EACD(1,1) EACD(1,1)

Exponential nullExponential null
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Table 10. Optimal Specification Model.
Sample time period October 2, 2000 till January 26, 2001.
Test of stand. residuals from the Weibull and Logarithmic-Weibull ACD(1,1) models.
The goodness of the Weibull distributional assumption in both cases can be tested by 
running an empirical Kolmogorov (K) and Watson (W) tests of exponential distribution 
with mean 1 upon both models' standardized residuals, raised to power γ.

eγ eγ

p-values K W K W p-values K W K W
AOL 0.011 0.000 0.005 0.000 WMT 0.009 0.000 0.007 0.000
ASF 0.004 0.000 0.219 0.000 CCN 0.134 0.035 0.271 0.055
BEN 0.000 0.000 0.017 0.000 AOC 0.032 0.000 0.019 0.000
CI 0.326 0.000 0.086 0.000 UNH 0.052 0.000 0.038 0.000
CL 0.016 0.000 0.021 0.000 KO 0.131 0.000 0.133 0.006
CPQ 0.899 0.000 0.073 0.000 T 0.071 0.000 0.160 0.005
DCX 0.044 0.000 0.173 0.000 DOV 0.340 0.000 0.338 0.000
GMH 0.000 0.000 0.007 0.000 ALL 0.011 0.000 0.030 0.000
GT 0.377 0.000 0.354 0.000 GP 0.056 0.000 0.032 0.000
HAR 0.336 0.029 0.057 0.000 PHM 0.741 0.010 0.115 0.090
KF 0.258 0.574 0.309 0.591 APF 0.063 0.101 0.072 0.065
LE 0.009 0.000 0.757 0.010 CLB 0.143 0.068 0.410 0.253
LMT 0.077 0.005 0.101 0.001 MRO 0.040 0.000 0.014 0.000
MLM 0.365 0.333 0.304 0.051 HTN 0.153 0.121 0.286 0.145
RCL 0.192 0.000 0.207 0.001 CNF 0.646 0.000 0.317 0.002
S 0.008 0.000 0.228 0.004 NKE 0.202 0.000 0.176 0.000
SGY 0.235 0.000 0.113 0.000 AMG 0.666 0.000 0.338 0.000
STT 0.065 0.000 0.108 0.000 PKI 0.181 0.000 0.223 0.000
UBS 0.253 0.000 0.157 0.000 HIT 0.041 0.301 0.048 0.292
VAL 0.001 0.000 0.629 0.505 AGX 0.165 0.197 0.134 0.364

Failed rej. 
at 5% 11 2 16 3

Failed 
rej. at 5% 15 5 13 7

Failed rej. 
at 10% 9 2 13 2

Failed 
rej. at 
10% 11 4 12 4

Expon.null Expon.nullExpon.null Expon.null

PILOT SAMPLE MATCHED  CONTROL SAMPLE
WACD(1,1) WACD(1,1)WLACD(1,1) WLACD(1,1)
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Table 11 Stock CLB. 
Sample time period October 2, 2000 till January 26, 2001. 
Correlograms of 15 ACs and PACs of EACD, WACD, and WLACD residuals 
Q-statistics and p-values test the null of zero autocorrelation at the specified lag.

AC PAC Q-stat p-value AC PAC Q-stat p-value
1 0.025 0.025 0.6684 0.414 1 -0.017 -0.017 0.3021 0.583
2 -0.059 -0.06 4.4986 0.105 2 -0.031 -0.031 1.3574 0.507
3 -0.007 -0.004 4.5452 0.208 3 0.007 0.006 1.408 0.704
4 0.071 0.068 9.98 0.041 4 0.044 0.043 3.4944 0.479
5 0.029 0.025 10.911 0.053 5 -0.01 -0.009 3.6115 0.607
6 0.012 0.019 11.071 0.086 6 -0.009 -0.007 3.6974 0.718
7 0.009 0.012 11.156 0.132 7 -0.017 -0.018 4.001 0.780
8 0.027 0.024 11.925 0.155 8 0 -0.003 4.0011 0.857
9 -0.008 -0.012 11.998 0.213 9 -0.017 -0.017 4.2983 0.891

10 -0.007 -0.007 12.055 0.281 10 -0.015 -0.015 4.5381 0.920
11 0.056 0.053 15.445 0.163 11 0.008 0.008 4.6042 0.949
12 -0.039 -0.048 17.124 0.145 12 -0.026 -0.026 5.3232 0.946
13 -0.056 -0.049 20.572 0.082 13 -0.027 -0.026 6.1317 0.941
14 -0.027 -0.028 21.35 0.093 14 -0.025 -0.027 6.7975 0.942
15 0.048 0.036 23.851 0.068 15 0.007 0.004 6.8571 0.961

AC PAC Q-stat p-value AC PAC Q-stat p-value
1 0.029 0.029 0.8907 0.345 1 -0.018 -0.018 0.3365 0.562
2 -0.058 -0.059 4.5342 0.104 2 -0.034 -0.035 1.6035 0.449
3 -0.005 -0.002 4.5607 0.207 3 0.012 0.01 1.7471 0.627
4 0.069 0.066 9.7123 0.046 4 0.05 0.049 4.4183 0.352
5 0.032 0.028 10.847 0.054 5 -0.009 -0.007 4.5096 0.479
6 0.015 0.021 11.086 0.086 6 -0.008 -0.005 4.5843 0.598
7 0.014 0.017 11.291 0.126 7 -0.017 -0.019 4.8838 0.674
8 0.027 0.024 12.089 0.147 8 0.002 -0.002 4.8872 0.770
9 -0.007 -0.011 12.148 0.205 9 -0.017 -0.017 5.2058 0.816

10 -0.007 -0.007 12.198 0.272 10 -0.016 -0.015 5.4714 0.858
11 0.058 0.055 15.815 0.148 11 0.01 0.01 5.5801 0.900
12 -0.04 -0.049 17.564 0.130 12 -0.028 -0.029 6.4306 0.893
13 -0.056 -0.049 21.055 0.072 13 -0.031 -0.029 7.4533 0.877
14 -0.026 -0.027 21.774 0.083 14 -0.027 -0.029 8.2254 0.877
15 0.047 0.036 24.214 0.062 15 0.01 0.006 8.3341 0.910

WLACD Standardized residuals
AC PAC Q-stat p-value AC PAC Q-stat p-value

1 0.033 0.033 1.1923 0.275 1 -0.004 -0.004 0.0147 0.903
2 -0.037 -0.039 2.7143 0.257 2 -0.017 -0.017 0.3371 0.845
3 0.009 0.011 2.7935 0.425 3 0.037 0.037 1.8052 0.614
4 0.064 0.062 7.1806 0.127 4 0.046 0.046 4.135 0.388
5 0.04 0.037 8.9099 0.113 5 -0.006 -0.004 4.1697 0.525
6 0.028 0.03 9.7534 0.135 6 0.006 0.006 4.2127 0.648
7 0.013 0.013 9.9501 0.191 7 -0.015 -0.018 4.4484 0.727
8 0.043 0.04 11.949 0.153 8 0.027 0.025 5.2349 0.732
9 -0.021 -0.028 12.419 0.191 9 -0.026 -0.027 5.9957 0.740

10 -0.027 -0.028 13.237 0.211 10 -0.023 -0.022 6.5873 0.764
11 0.057 0.053 16.819 0.113 11 0.021 0.02 7.0731 0.793
12 -0.016 -0.028 17.097 0.146 12 -0.001 -0.002 7.0743 0.853
13 -0.034 -0.029 18.362 0.144 13 -0.024 -0.018 7.6841 0.864
14 -0.024 -0.022 18.998 0.165 14 -0.022 -0.023 8.2301 0.877
15 0.05 0.046 21.7 0.116 15 0.024 0.022 8.8452 0.885

EACD Standardized residuals

WACD Standardized residuals

WLACD Squared Standardized residuals

WACD Squared Standardized residuals

EACD Squared Standardized Residals
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Table 12a. Decimal vs. control stock coefficient comparison in WLACD(1,1) model. 
Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

t-Test: Two-Sample Assuming Equal Variances
ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

Mean 0.45 0.13 0.63 -0.05 -0.02 -0.85 -0.01 0.00 -1.01 0.06 1.02 -1252.05 1.89 1.94
Variance 0.13 0.00 0.05 0.00 0.00 0.19 0.00 0.00 0.87 0.36 0.00 47678.09 0.00 0.00
Pooled Variance 0.09 0.00 0.06 0.01 0.00 0.42 0.00 0.00 1.04 0.67 0.01 69672.16 0.00 0.00
Hyp. Mean Dif. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
df 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00
t Stat -0.28 -0.11 0.16 0.56 0.37 1.45 -1.82 1.10 0.49 0.75 -1.02 -1.13 0.51 0.08
P(T<=t) one-tail 0.39 0.46 0.44 0.29 0.36 0.08 0.04 0.14 0.31 0.23 0.16 0.13 0.31 0.47
t Crit.one-tail 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69
P(T<=t) two-tail 0.78 0.92 0.87 0.58 0.72 0.16 0.08 0.28 0.62 0.46 0.32 0.27 0.61 0.94
t Crit. two-tail 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02

t-Test: Two-Sample Assuming Unequal Variances
ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

Mean 0.45 0.13 0.63 -0.05 -0.02 -0.85 -0.01 0.00 -1.01 0.06 1.02 -1252.05 1.89 1.94
Variance 0.13 0.00 0.05 0.00 0.00 0.19 0.00 0.00 0.87 0.36 0.00 47678.09 0.00 0.00
Hyp. Mean Dif. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
df 32.00 36.00 37.00 33.00 37.00 29.00 38.00 23.00 37.00 31.00 36.00 35.00 38.00 37.00
t Stat -0.28 -0.11 0.16 0.56 0.37 1.45 -1.82 1.10 0.49 0.75 -1.02 -1.13 0.51 0.08
P(T<=t) one-tail 0.39 0.46 0.44 0.29 0.36 0.08 0.04 0.14 0.31 0.23 0.16 0.13 0.31 0.47
t Crit.one-tail 1.69 1.69 1.69 1.69 1.69 1.70 1.69 1.71 1.69 1.70 1.69 1.69 1.69 1.69
P(T<=t) two-tail 0.78 0.92 0.87 0.58 0.72 0.16 0.08 0.28 0.62 0.46 0.32 0.27 0.61 0.94
t Crit. two-tail 2.04 2.03 2.03 2.03 2.03 2.05 2.02 2.07 2.03 2.04 2.03 2.03 2.02 2.03

t-test paired
ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

Mean 0.45 0.13 0.63 -0.05 -0.02 -0.85 -0.01 0.00 -1.01 0.06 1.02 -1252.05 1.89 1.94
Variance 0.13 0.00 0.05 0.00 0.00 0.19 0.00 0.00 0.87 0.36 0.00 47678.09 0.00 0.00
Pooled Variance #N/A 0.40 0.08 -0.38 -0.06 0.09 0.11 0.39 0.40 0.83 0.48 0.80 0.54 0.43
Hyp. Mean Dif. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
df 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00
t Stat -0.27 -0.14 0.17 0.48 0.35 1.50 -1.93 1.27 0.64 1.45 -1.39 -2.30 0.75 0.10
P(T<=t) one-tail 0.40 0.45 0.43 0.32 0.36 0.07 0.03 0.11 0.27 0.08 0.09 0.02 0.23 0.46
t Crit.one-tail 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73
P(T<=t) two-tail 0.79 0.89 0.87 0.63 0.73 0.15 0.07 0.22 0.53 0.16 0.18 0.03 0.46 0.92
t Crit. two-tail 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal spread, DEPTH 
= quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 12a. Cont'd ANOVA of differences in decimal vs. control stock coefficients during the test sample period.
Sample time period October 2, 2000 till January 26, 2001.

Model is*: 

ANOVA SUMMARY
Groups Count Sum Average Variance

ω 18.00 -0.10 -0.01 0.19
α 18.00 -0.19 -0.01 0.00
β 18.00 -0.34 -0.02 0.06
γ0 18.00 -0.08 0.00 0.01
γ1 18.00 0.11 0.01 0.00
γ2 18.00 4.67 0.26 0.85
γ3 18.00 -0.48 -0.03 0.00
γ4 18.00 0.11 0.01 0.00
γp 18.00 6.59 0.37 0.87
γn 18.00 0.95 0.05 0.14
γ 18.00 -0.37 -0.02 0.01

ANOVA
SS df MS F P-value F crit
3.11 10 0.31 1.60 0.11 1.88

36.27 187 0.19
39.4 197

Between Groups
Within Groups

Source of Variation

Total
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal spread, DEPTH 
= quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 12b. Decimal vs. control stock coefficient comparison in WLACD(1,1) model. 
Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

t-Test: Two-Sample Assuming Equal Variances
ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

Mean 0.37 0.12 0.66 -0.05 -0.01 -1.11 -0.01 0.00 -0.92 -0.12 1.04 -1099.9 1.89 1.94
Variance 0.10 0.00 0.03 0.00 0.00 0.27 0.00 0.00 1.04 0.26 0.01 191125 0.01 0.01
Pooled Variance 0.09 0.00 0.05 0.01 0.00 0.40 0.00 0.00 0.86 0.88 0.01 164321 0.00 0.00
Hyp. Mean Dif. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
df 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00 38.00
t Stat -0.23 -0.24 1.51 -0.32 0.12 -2.33 0.95 1.63 0.63 -1.31 -1.66 -0.41 -1.09 -1.20
P(T<=t) one-tail 0.41 0.41 0.07 0.38 0.45 0.01 0.17 0.06 0.27 0.10 0.05 0.34 0.14 0.12
t Crit.one-tail 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69
P(T<=t) two-tail 0.82 0.81 0.14 0.75 0.90 0.02 0.35 0.11 0.53 0.20 0.10 0.69 0.28 0.24
t Crit. two-tail 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02 2.02

t-Test: Two-Sample Assuming Unequal Variances
ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC

Mean 0.37 0.12 0.66 -0.05 -0.01 -1.11 -0.01 0.00 -0.92 -0.12 1.04 -1099.9 1.89 1.94
Variance 0.10 0.00 0.03 0.00 0.00 0.27 0.00 0.00 1.04 0.26 0.01 191125 0.01 0.01
Hyp. Mean Dif. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
df 38.00 32.00 30.00 35.00 38.00 34.00 33.00 25.00 36.00 26.00 38.00 37.00 30.00 30.00
t Stat -0.23 -0.24 1.51 -0.32 0.12 -2.33 0.95 1.63 0.63 -1.31 -1.66 -0.41 -1.09 -1.20
P(T<=t) one-tail 0.41 0.41 0.07 0.38 0.45 0.01 0.17 0.06 0.27 0.10 0.05 0.34 0.14 0.12
t Crit.one-tail 1.69 1.69 1.70 1.69 1.69 1.69 1.69 1.71 1.69 1.71 1.69 1.69 1.70 1.70
P(T<=t) two-tail 0.82 0.81 0.14 0.75 0.90 0.03 0.35 0.12 0.53 0.20 0.10 0.69 0.29 0.24
t Crit. two-tail 2.02 2.04 2.04 2.03 2.02 2.03 2.03 2.06 2.03 2.06 2.02 2.03 2.04 2.04
t-test paired ω α β γ0 γ1 γ2 γ3 γ4 γp γn γ LogL AIC SIC
Mean 0.37 0.12 0.66 -0.05 -0.01 -1.11 -0.01 0.00 -0.92 -0.12 1.04 -1099.9 1.89 1.94
Variance 0.10 0.00 0.03 0.00 0.00 0.27 0.00 0.00 1.04 0.26 0.01 191125 0.01 0.01
Pooled Variance 0.30 0.42 0.45 0.19 0.34 0.04 -0.04 0.70 0.29 -0.81 0.05 0.78 -0.02 -0.01
Hyp. Mean Dif. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
df 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00 19.00
t Stat -0.28 -0.31 1.92 -0.35 0.15 -2.38 0.94 2.25 0.74 -1.04 -1.71 -0.84 -1.08 -1.19
P(T<=t) one-tail 0.39 0.38 0.04 0.37 0.44 0.01 0.18 0.02 0.23 0.16 0.05 0.21 0.15 0.12
t Crit.one-tail 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73 1.73
P(T<=t) two-tail 0.78 0.76 0.07 0.73 0.88 0.03 0.36 0.04 0.47 0.31 0.10 0.41 0.29 0.25
t Crit. two-tail 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09
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Table 12b. Cont'd ANOVA of differences in decimal vs. control stock coefficients during the control sample period.
Sample time period February 8, 2001 till May 31, 2001.

Model is*: 

Groups Count Sum Average Variance
ω 20.00 -0.45 -0.02 0.13
α 20.00 -0.08 0.00 0.00
β 20.00 2.21 0.11 0.07
γ0 20.00 -0.15 -0.01 0.01
γ1 20.00 0.03 0.00 0.00
γ2 20.00 -9.35 -0.47 0.77
γ3 20.00 0.19 0.01 0.00
γ4 20.00 0.08 0.00 0.00
γp 20.00 3.68 0.18 1.23
γn 20.00 -7.77 -0.39 2.78
γ 20.00 -0.76 -0.04 0.01

ANOVA

SS df MS F P-value F crit
7.66 10.00 0.77 1.68 0.09 1.88

95.03 209 0.45
102.7 219Total

ANOVA SUMMARY

Source of Variation
Between Groups
Within Groups
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* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. transaction volume, DSPREAD = change in nominal spread, DEPTH = 
quoted depth, NUMBER = # of transactions, APRESID = |price change|.
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Table 12c. Interacted stock pooled ACD estimation, testing for 
differences in control stock coefficients.

Model is*:

Oct. 2, 2000 till Jan. 26, 2001. Feb. 8, 2001 till May 31, 2001.
Method: ML (Marquardt) Method: ML (Marquardt)
Included observations: 51543 Included observations: 45592

Coeff. Std. Err. z-Stat. p-val. Coeff. Std. Err. z-Stat. p-val. 
ω 0.15 0.01 17.25 0.00 ω 0.17 0.01 15.67 0.00
α 0.11 0.00 49.53 0.00 α 0.10 0.00 42.12 0.00
β 0.76 0.01 148.4 0.00 β 0.74 0.01 110.21 0.00
γ0 -0.03 0.00 -8.12 0.00 γ0 -0.04 0.00 -11.52 0.00
γ1 -0.01 0.00 -4.29 0.00 γ1 -0.01 0.00 -3.22 0.00
γ2 -0.55 0.01 -53.06 0.00 γ2 -0.72 0.03 -21.15 0.00
γ3 0.00 0.00 -1.62 0.11 γ3 -0.01 0.00 -2.48 0.01
γ4 0.00 0.00 2.08 0.04 γ4 0.00 0.00 3.40 0.00
γp -0.08 0.02 -4.72 0.00 γp -0.01 0.02 -0.62 0.54
γn 0.03 0.02 1.11 0.27 γn -0.12 0.03 -4.23 0.00
γ10 -0.02 0.01 -3.38 0.00 γ10 0.00 0.01 0.87 0.38
γ11 0.00 0.00 -0.67 0.50 γ11 0.00 0.00 1.32 0.19
γ12 -0.12 0.03 -3.77 0.00 γ12 0.01 0.05 0.28 0.78
γ13 0.00 0.00 1.53 0.13 γ13 -0.01 0.00 -2.13 0.03
γ14 0.00 0.00 -0.37 0.71 γ14 0.00 0.00 -0.79 0.43
γ1p 0.06 0.02 2.70 0.01 γ1p -0.13 0.03 -3.80 0.00
γ1n -0.03 0.03 -0.85 0.39 γ1n 0.23 0.05 5.01 0.00
γ 1.01 0.00 346.5 0.00 γ 1.03 0.00 312.11 0.00

LogL LogL
Avg. LogL Avg. LogL
# of Coef. # of Coef.
AIC AIC
SIC SIC

18.000
1.923
1.926

-0.9563
18

1.913
1.916

psiwl_1 = ω + α*log(NPTIMEt-1) + β*ENPTIMEt-1 +  γ0*NLSPRDt-1 + γ1*log(AVEVOLt-1)+ 
γ2*DSPREADt-1 + γ3*log(DEPTHt-1) + γ4*NUMBERt-1 + (γp + γn*I

-
PRESID)*APRESIDt-1 

+γ10*NLSPRDt-1*I
C + γ11*log(AVEVOLt-1)*I

C+ γ12*DSPREADt-1*I
C + γ13*log(DEPTHt-1)*I

C + 
γ14*NUMBERt-1*I

C + (γ1p*I
C + γ1n*I

C*I-PRESID)*APRESIDt-1 

-43814-49292.5
-0.9610

* ENPTIME = exp. duration, NPTIME = norm. duration, NLSPRD = norm. nominal spread, AVEVOL = avg. 
transaction volume, DSPREAD = change in nominal spread, DEPTH = quoted depth, NUMBER = # of 
transactions, APRESID = |price change|.
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Table 13a. Individual stock VNET regression.
Sample period Oct. 2, 2000 till Jan. 26, 2001.

Model is*:

β0 β1 β2 β3 β4 β5 β6

AOL 7.537 0.163 -0.218 -0.092 0.313 0.381 -0.054
p-value 0.000 0.099 0.000 0.024 0.000 0.000 0.085
ASF 5.234 0.003 -0.079 -0.293 0.187 0.402 0.015

p-value 0.000 0.982 0.367 0.000 0.003 0.000 0.614
BEN 7.288 -0.589 0.188 -0.153 -0.023 0.556 -0.005

p-value 0.000 0.006 0.010 0.001 0.665 0.000 0.804
CI 7.878 0.688 0.066 -0.125 -0.057 0.731 0.038

p-value 0.000 0.000 0.426 0.005 0.383 0.000 0.363
CL 7.164 0.252 0.016 -0.153 0.130 0.423 -0.034

p-value 0.000 0.211 0.815 0.001 0.025 0.000 0.173
CPQ 8.251 0.415 -0.117 -0.124 0.210 0.436 -0.037

p-value 0.000 0.001 0.045 0.025 0.001 0.000 0.085
DCX 6.499 0.093 -0.048 -0.135 0.176 0.518 0.038

p-value 0.000 0.603 0.623 0.005 0.010 0.000 0.141
GMH 8.259 0.286 0.079 -0.293 0.032 0.636 -0.025

p-value 0.000 0.085 0.305 0.000 0.591 0.000 0.289
GT 6.488 0.872 -0.099 -0.243 0.140 0.851 0.021

p-value 0.000 0.001 0.384 0.001 0.065 0.000 0.413
HAR 7.077 0.660 0.039 -0.094 -0.028 0.577 -0.051

p-value 0.000 0.000 0.679 0.194 0.671 0.000 0.165
KF 4.765 -0.352 0.041 -0.299 0.067 0.653 0.011

p-value 0.000 0.319 0.844 0.053 0.548 0.000 0.733
LE 7.599 0.180 0.244 -0.093 -0.090 0.483 0.038

p-value 0.000 0.205 0.026 0.141 0.272 0.000 0.218
LMT 7.004 0.815 -0.093 -0.123 0.179 0.678 0.021

p-value 0.000 0.005 0.246 0.022 0.003 0.000 0.475
MLM 6.626 0.503 0.122 -0.053 -0.009 0.623 0.025

p-value 0.000 0.113 0.264 0.414 0.905 0.000 0.391
RCL 6.520 -0.022 -0.013 -0.268 0.108 0.756 0.052

p-value 0.000 0.888 0.893 0.000 0.090 0.000 0.082
S 5.962 0.212 -0.138 -0.194 0.293 0.432 -0.036

p-value 0.000 0.163 0.069 0.000 0.000 0.000 0.154
SGY 7.311 0.176 0.024 -0.145 -0.047 0.437 0.003

p-value 0.000 0.259 0.792 0.041 0.511 0.000 0.911
STT 6.587 0.390 -0.183 0.034 0.210 0.337 0.023

p-value 0.000 0.001 0.018 0.393 0.003 0.000 0.649
UBS 5.254 -0.321 -0.248 -0.185 0.251 0.439 0.054

p-value 0.000 0.012 0.007 0.000 0.000 0.000 0.138
VAL 7.198 -0.133 0.255 -0.146 -0.204 0.433 0.057

p-value 0.000 0.555 0.061 0.074 0.034 0.000 0.032
Mean 6.825 0.215 -0.008 -0.159 0.092 0.539 0.008
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 13a. cont'd.  Individual stock VNET regression.
Sample period Oct. 2, 2000 till Jan. 26, 2001.

Model is*:

β0 β1 β2 β3 β4 β5 β6

WMT 6.967 0.293 -0.313 -0.290 0.316 0.515 0.003
p-value 0.000 0.069 0.000 0.000 0.000 0.000 0.928
CCN 4.641 -0.280 -0.043 0.163 0.039 0.194 0.018

p-value 0.000 0.113 0.796 0.126 0.612 0.006 0.534
AOC 6.092 0.208 0.046 -0.092 0.157 0.860 0.028

p-value 0.000 0.320 0.626 0.488 0.007 0.000 0.272
UNH 5.700 0.413 -0.258 -0.042 0.350 0.355 0.023

p-value 0.000 0.000 0.000 0.511 0.000 0.000 0.489
KO 8.215 0.298 -0.185 -0.005 0.182 0.352 -0.037

p-value 0.000 0.130 0.005 0.943 0.003 0.000 0.092
T 7.637 0.203 -0.083 -0.106 0.269 0.395 -0.012

p-value 0.000 0.073 0.252 0.326 0.000 0.000 0.589
DOV 7.188 0.179 0.026 -0.209 0.065 0.515 0.011

p-value 0.000 0.175 0.755 0.031 0.286 0.000 0.697
ALL 8.209 0.254 -0.029 -0.292 0.058 0.576 0.021

p-value 0.000 0.091 0.729 0.002 0.404 0.000 0.473
GP 6.770 -0.006 -0.010 -0.334 0.159 0.464 0.024

p-value 0.000 0.964 0.898 0.001 0.015 0.000 0.308
PHM 6.677 0.587 -0.096 -0.197 0.055 0.564 0.012

p-value 0.000 0.000 0.300 0.031 0.415 0.000 0.692
APF 5.235 2.023 0.045 0.345 0.117 0.917 -0.065

p-value 0.002 0.251 0.905 0.583 0.575 0.000 0.361
CLB 6.226 -0.008 0.130 -0.202 -0.117 0.502 0.018

p-value 0.000 0.970 0.408 0.245 0.162 0.000 0.634
MRO 6.803 0.404 -0.018 -0.153 0.126 0.752 0.013

p-value 0.000 0.034 0.840 0.254 0.083 0.000 0.558
HTN 5.671 -0.351 0.053 -0.038 0.064 0.565 -0.021

p-value 0.000 0.198 0.704 0.788 0.462 0.000 0.528
CNF 6.704 0.101 -0.028 -0.291 0.082 0.550 0.018

p-value 0.000 0.381 0.773 0.003 0.264 0.000 0.550
NKE 6.419 -0.019 0.058 -0.346 0.101 0.558 0.013

p-value 0.000 0.920 0.495 0.002 0.096 0.000 0.645
AMG 6.470 0.308 0.019 -0.238 0.018 0.306 0.039

p-value 0.000 0.067 0.833 0.007 0.783 0.000 0.285
PKI 7.617 0.108 0.077 -0.088 -0.013 0.330 -0.047

p-value 0.000 0.415 0.313 0.088 0.844 0.000 0.615
HIT 4.366 -0.060 -0.133 0.055 0.088 0.185 -0.032

p-value 0.000 0.801 0.357 0.564 0.344 0.002 0.292
AGX 6.508 -0.665 0.474 0.464 -0.201 0.367 0.139

p-value 0.000 0.177 0.038 0.047 0.096 0.003 0.001
Mean 6.506 0.200 -0.013 -0.095 0.096 0.491 0.008
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 13b.  Individual stock VNET regression 
Sample period Feb. 8, 2001 till May 31, 2001.

Model is*:

β0 β1 β2 β3 β4 β5 β6

AOL 7.929 0.181 -0.231 -0.067 0.302 0.364 -0.008
p-value 0.000 0.144 0.000 0.130 0.000 0.000 0.803
ASF 5.345 0.076 -0.268 -0.385 0.225 0.398 0.037

p-value 0.000 0.542 0.024 0.000 0.015 0.000 0.413
BEN 5.972 0.350 -0.327 -0.098 0.291 0.445 0.008

p-value 0.000 0.010 0.000 0.014 0.000 0.000 0.658
CI 7.205 0.575 -0.003 -0.163 0.061 0.759 0.012

p-value 0.000 0.000 0.968 0.000 0.270 0.000 0.721
CL 6.747 0.098 -0.124 -0.049 0.249 0.390 -0.001

p-value 0.000 0.539 0.055 0.279 0.000 0.000 0.980
CPQ 9.660 0.926 -0.065 -0.110 0.076 0.407 -0.004

p-value 0.000 0.000 0.452 0.117 0.381 0.000 0.876
DCX 7.869 -0.459 0.197 -0.270 -0.067 0.533 0.017

p-value 0.000 0.052 0.109 0.000 0.460 0.000 0.550
GMH 8.393 0.737 -0.123 -0.135 0.138 0.574 -0.006

p-value 0.000 0.000 0.132 0.040 0.038 0.000 0.803
GT 6.090 0.424 -0.124 -0.148 0.185 0.732 0.013

p-value 0.000 0.005 0.097 0.001 0.001 0.000 0.464
HAR 6.798 -0.128 0.139 -0.110 -0.031 0.502 -0.011

p-value 0.000 0.612 0.248 0.168 0.704 0.000 0.793
KF 4.544 0.637 -0.444 -0.044 0.253 0.530 -0.011

p-value 0.000 0.347 0.055 0.805 0.027 0.000 0.760
LE 7.262 -0.064 0.186 -0.102 -0.076 0.517 0.057

p-value 0.000 0.665 0.145 0.165 0.450 0.000 0.114
LMT 8.157 0.418 -0.098 -0.132 0.093 0.694 -0.002

p-value 0.000 0.050 0.271 0.053 0.201 0.000 0.960
MLM 6.711 0.179 0.276 -0.009 -0.046 0.618 0.016

p-value 0.000 0.507 0.017 0.919 0.540 0.000 0.625
RCL 7.293 0.171 0.100 -0.197 0.060 0.759 0.006

p-value 0.000 0.480 0.339 0.006 0.387 0.000 0.831
S 7.293 0.027 -0.198 -0.034 0.234 0.445 -0.035

p-value 0.000 0.851 0.018 0.461 0.001 0.000 0.152
SGY 7.735 0.649 0.203 -0.151 -0.157 0.459 -0.023

p-value 0.000 0.001 0.010 0.010 0.017 0.000 0.412
STT 6.137 0.087 -0.214 -0.050 0.288 0.262 -0.051

p-value 0.000 0.441 0.006 0.175 0.000 0.000 0.328
UBS 6.200 -0.135 0.077 -0.182 -0.020 0.402 -0.065

p-value 0.000 0.351 0.457 0.001 0.789 0.000 0.138
VAL 6.873 -0.090 0.381 -0.018 -0.163 0.535 0.023

p-value 0.000 0.588 0.000 0.758 0.020 0.000 0.262
Mean 7.011 0.233 -0.033 -0.123 0.095 0.516 -0.001

Decimal Pilot Stocks
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 13b. cont'd  Individual stock VNET regression 
Sample period Feb. 8, 2001 till May 31, 2001.

Model is*:

β0 β1 β2 β3 β4 β5 β6

WMT 8.691 0.388 -0.118 -0.054 0.143 0.378 -0.007
p-value 0.000 0.002 0.032 0.142 0.018 0.000 0.768
CCN 4.836 0.121 0.011 0.065 0.053 0.294 -0.032

p-value 0.000 0.661 0.956 0.452 0.612 0.001 0.308
AOC 7.137 0.857 -0.104 -0.108 0.113 0.855 0.032

p-value 0.000 0.000 0.223 0.089 0.068 0.000 0.191
UNH 6.811 0.358 -0.120 -0.140 0.190 0.588 0.047

p-value 0.000 0.034 0.055 0.001 0.000 0.000 0.018
KO 8.451 1.066 -0.164 -0.150 0.133 0.518 -0.045

p-value 0.000 0.000 0.038 0.009 0.096 0.000 0.118
T 9.395 0.797 -0.307 0.064 0.242 0.339 -0.037

p-value 0.000 0.000 0.000 0.313 0.003 0.000 0.103
DOV 7.707 0.425 0.000 -0.042 0.069 0.540 0.014

p-value 0.000 0.026 0.999 0.513 0.436 0.000 0.669
ALL 7.174 0.375 -0.184 -0.040 0.242 0.511 -0.013

p-value 0.000 0.097 0.044 0.478 0.002 0.000 0.714
GP 6.657 1.147 -0.188 -0.081 0.217 0.774 0.025

p-value 0.000 0.000 0.011 0.083 0.000 0.000 0.215
PHM 5.556 1.027 -0.145 -0.074 0.262 0.447 0.045

p-value 0.000 0.001 0.215 0.224 0.006 0.000 0.153
APF 4.693 0.197 -0.063 -0.003 0.103 0.338 -0.038

p-value 0.000 0.624 0.806 0.988 0.397 0.011 0.218
CLB 7.566 0.150 0.391 -0.232 -0.279 0.508 0.053

p-value 0.000 0.743 0.021 0.032 0.006 0.000 0.236
MRO 6.742 0.681 -0.081 -0.161 0.183 0.555 -0.006

p-value 0.000 0.000 0.294 0.004 0.008 0.000 0.752
HTN 6.729 0.228 0.200 -0.138 -0.083 0.517 0.028

p-value 0.000 0.214 0.056 0.022 0.301 0.000 0.323
CNF 6.819 0.799 0.005 -0.211 0.012 0.670 0.001

p-value 0.000 0.005 0.962 0.000 0.882 0.000 0.984
NKE 7.023 0.107 -0.017 -0.089 0.125 0.561 0.080

p-value 0.000 0.604 0.864 0.185 0.100 0.000 0.009
AMG 5.305 0.227 -0.123 -0.092 0.189 0.282 0.001

p-value 0.000 0.109 0.148 0.117 0.004 0.000 0.980
PKI 7.035 0.610 -0.006 -0.060 0.067 0.559 -0.037

p-value 0.000 0.001 0.954 0.233 0.412 0.000 0.476
HIT 4.929 -0.099 0.173 -0.066 -0.017 0.188 -0.002

p-value 0.000 0.733 0.211 0.310 0.849 0.002 0.963
AGX 3.740 0.400 -0.091 -0.169 0.025 0.343 -0.030

p-value 0.000 0.223 0.662 0.203 0.797 0.003 0.279
Mean 6.650 0.493 -0.047 -0.089 0.100 0.488 0.004
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Table 14. Individual stock restricted regressions over pooled sample period.

Model is*: 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13

AOL 7.519 0.164 -0.219 -0.091 0.314 0.380 -0.053 0.398 0.017 -0.012 0.025 -0.011 -0.016 0.045
p-value 0.000 0.079 0.000 0.017 0.000 0.000 0.071 0.664 0.917 0.881 0.685 0.898 0.772 0.322

ASF 5.230 0.004 -0.080 -0.293 0.188 0.402 0.015 0.133 0.070 -0.183 -0.091 0.034 -0.001 0.019
p-value 0.000 0.980 0.377 0.000 0.004 0.000 0.632 0.864 0.702 0.202 0.430 0.753 0.991 0.711

BEN 7.298 -0.573 0.185 -0.152 -0.023 0.556 -0.006 -1.321 0.918 -0.511 0.053 0.312 -0.111 0.015
p-value 0.000 0.004 0.006 0.000 0.641 0.000 0.766 0.018 0.000 0.000 0.371 0.000 0.033 0.614

CI 7.888 0.694 0.064 -0.125 -0.058 0.730 0.036 -0.683 -0.118 -0.067 -0.038 0.119 0.029 -0.024
p-value 0.000 0.000 0.416 0.003 0.356 0.000 0.368 0.266 0.578 0.523 0.517 0.162 0.623 0.646

CL 7.152 0.248 0.015 -0.152 0.131 0.422 -0.034 -0.386 -0.128 -0.142 0.102 0.117 -0.031 0.035
p-value 0.000 0.189 0.818 0.000 0.016 0.000 0.150 0.613 0.618 0.139 0.122 0.188 0.559 0.325

CPQ 8.391 0.426 -0.112 -0.122 0.198 0.435 -0.037 1.256 0.508 0.047 0.014 -0.120 -0.029 0.032
p-value 0.000 0.000 0.054 0.028 0.001 0.000 0.088 0.257 0.045 0.653 0.878 0.255 0.666 0.373

DCX 6.488 0.094 -0.048 -0.135 0.178 0.517 0.038 1.374 -0.545 0.244 -0.134 -0.243 0.015 -0.022
p-value 0.000 0.593 0.616 0.005 0.009 0.000 0.133 0.063 0.058 0.076 0.108 0.016 0.822 0.582

GMH 8.254 0.285 0.078 -0.293 0.033 0.636 -0.025 0.145 0.455 -0.201 0.159 0.105 -0.062 0.019
p-value 0.000 0.073 0.289 0.000 0.567 0.000 0.267 0.865 0.096 0.080 0.065 0.253 0.326 0.599

GT 6.491 0.871 -0.100 -0.243 0.140 0.851 0.021 -0.400 -0.449 -0.024 0.095 0.045 -0.120 -0.008
p-value 0.000 0.000 0.366 0.000 0.056 0.000 0.393 0.556 0.123 0.857 0.253 0.623 0.066 0.786

HAR 7.074 0.658 0.040 -0.095 -0.028 0.577 -0.051 -0.269 -0.768 0.094 -0.012 -0.003 -0.076 0.039
p-value 0.000 0.000 0.662 0.172 0.660 0.000 0.152 0.705 0.013 0.547 0.914 0.979 0.330 0.484
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = impatience proxy, APRESID = 
|price change|.
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Table 14. cont'd Individual stock restricted regressions over pooled sample period.

Model is*: 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13

KF 4.783 -0.343 0.045 -0.305 0.063 0.650 0.012 -0.232 0.813 -0.481 0.238 0.180 -0.095 -0.026
p-value 0.000 0.328 0.830 0.047 0.570 0.000 0.715 0.857 0.284 0.124 0.312 0.261 0.552 0.587

LE 7.580 0.180 0.252 -0.091 -0.089 0.481 0.039 -0.313 -0.242 -0.067 -0.011 0.013 0.034 0.017
p-value 0.000 0.208 0.023 0.151 0.281 0.000 0.208 0.719 0.236 0.687 0.913 0.917 0.644 0.713

LMT 6.998 0.805 -0.093 -0.124 0.180 0.678 0.022 1.133 -0.370 -0.011 -0.004 -0.081 0.017 -0.022
p-value 0.000 0.005 0.244 0.021 0.003 0.000 0.467 0.138 0.299 0.930 0.968 0.387 0.797 0.625

MLM 6.624 0.506 0.123 -0.053 -0.008 0.623 0.024 0.093 -0.320 0.153 0.046 -0.038 -0.005 -0.008
p-value 0.000 0.114 0.268 0.421 0.909 0.000 0.397 0.896 0.441 0.337 0.663 0.714 0.952 0.858

RCL 6.460 -0.026 -0.037 -0.274 0.117 0.763 0.050 0.833 0.197 0.137 0.078 -0.057 -0.005 -0.044
p-value 0.000 0.861 0.696 0.000 0.051 0.000 0.075 0.276 0.516 0.356 0.446 0.555 0.954 0.291

S 5.957 0.221 -0.142 -0.192 0.296 0.431 -0.035 1.334 -0.191 -0.057 0.160 -0.061 0.013 0.000
p-value 0.000 0.122 0.046 0.000 0.000 0.000 0.140 0.083 0.363 0.623 0.019 0.537 0.809 0.996

SGY 7.327 0.174 0.023 -0.144 -0.049 0.436 0.003 0.404 0.473 0.179 -0.004 -0.107 0.023 -0.026
p-value 0.000 0.261 0.800 0.040 0.491 0.000 0.924 0.550 0.063 0.136 0.961 0.271 0.685 0.537

STT 6.511 0.384 -0.191 0.033 0.220 0.335 0.030 -0.372 -0.294 -0.023 -0.082 0.068 -0.074 -0.079
p-value 0.000 0.001 0.011 0.392 0.001 0.000 0.547 0.633 0.077 0.837 0.130 0.521 0.181 0.283

UBS 5.246 -0.321 -0.248 -0.185 0.252 0.440 0.054 0.956 0.186 0.329 0.003 -0.273 -0.039 -0.121
p-value 0.000 0.013 0.007 0.000 0.000 0.000 0.141 0.109 0.333 0.017 0.964 0.004 0.543 0.033

VAL 7.176 -0.130 0.254 -0.146 -0.201 0.433 0.056 -0.326 0.025 0.126 0.123 0.039 0.107 -0.034
p-value 0.000 0.580 0.072 0.085 0.044 0.000 0.040 0.680 0.932 0.463 0.227 0.746 0.167 0.321

Mean 6.822 0.216 -0.01 -0.159 0.093 0.539 0.008 0.188 0.012 -0.02 0.036 0.002 -0.021 -0.010
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = impatience proxy, APRESID = 
|price change|.
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Table 14. cont'd Individual stock restricted regressions over pooled sample period.

Model is*: 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13

WMT 6.974 0.295 -0.313 -0.290 0.315 0.515 0.003 1.729 0.096 0.196 0.237 -0.173 -0.136 -0.009
p-value 0.000 0.053 0.000 0.000 0.000 0.000 0.920 0.041 0.632 0.028 0.004 0.045 0.010 0.803

CCN 4.637 -0.279 -0.034 0.162 0.039 0.194 0.018 0.199 0.401 0.045 -0.097 0.014 0.100 -0.050
p-value 0.000 0.104 0.831 0.115 0.600 0.004 0.529 0.811 0.235 0.863 0.479 0.918 0.379 0.251

AOC 6.101 0.211 0.046 -0.090 0.156 0.859 0.028 1.039 0.653 -0.151 -0.017 -0.042 -0.005 0.003
p-value 0.000 0.282 0.600 0.469 0.004 0.000 0.241 0.141 0.046 0.234 0.905 0.622 0.950 0.926

UNH 5.692 0.411 -0.258 -0.043 0.350 0.355 0.023 1.139 -0.038 0.137 -0.094 -0.161 0.233 0.024
p-value 0.000 0.001 0.000 0.526 0.000 0.000 0.524 0.045 0.845 0.119 0.239 0.021 0.000 0.555

KO 8.248 0.304 -0.184 -0.010 0.178 0.353 -0.038 0.182 0.758 0.020 -0.141 -0.043 0.163 -0.006
p-value 0.000 0.189 0.019 0.912 0.014 0.000 0.143 0.843 0.007 0.847 0.165 0.667 0.004 0.867

T 7.701 0.205 -0.078 -0.097 0.263 0.394 -0.012 1.706 0.593 -0.229 0.162 -0.022 -0.055 -0.025
p-value 0.000 0.058 0.259 0.341 0.000 0.000 0.563 0.155 0.001 0.031 0.187 0.843 0.373 0.434

DOV 7.187 0.179 0.026 -0.210 0.065 0.515 0.011 0.534 0.239 -0.024 0.168 0.002 0.023 0.005
p-value 0.000 0.169 0.753 0.027 0.280 0.000 0.696 0.517 0.306 0.857 0.147 0.986 0.728 0.914

ALL 8.203 0.253 -0.028 -0.286 0.059 0.576 0.019 -1.030 0.132 -0.158 0.247 0.184 -0.066 -0.030
p-value 0.000 0.083 0.728 0.002 0.378 0.000 0.505 0.248 0.630 0.204 0.021 0.075 0.300 0.510

GP 6.764 0.001 -0.013 -0.332 0.161 0.463 0.023 -0.114 1.110 -0.172 0.247 0.054 0.312 0.000
p-value 0.000 0.996 0.884 0.003 0.036 0.000 0.399 0.887 0.000 0.134 0.038 0.556 0.000 0.989

PHM 6.680 0.587 -0.097 -0.196 0.055 0.564 0.012 -1.088 0.384 -0.035 0.114 0.196 -0.116 0.032
p-value 0.000 0.000 0.263 0.022 0.385 0.000 0.668 0.199 0.290 0.824 0.299 0.118 0.094 0.474

APF 5.218 1.733 0.066 0.272 0.093 0.917 -0.073 -0.443 -1.587 -0.117 -0.275 -0.002 -0.562 0.034
p-value 0.001 0.245 0.851 0.628 0.619 0.000 0.260 0.813 0.306 0.791 0.643 0.991 0.008 0.638
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = impatience proxy, APRESID = 
|price change|.
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Table 14. cont'd Individual stock restricted regressions over pooled sample period.

Model is*: 

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13

CLB 6.198 -0.020 0.152 -0.218 -0.119 0.502 0.019 1.369 0.221 0.227 -0.010 -0.156 0.000 0.034
p-value 0.000 0.921 0.308 0.191 0.136 0.000 0.598 0.149 0.674 0.333 0.963 0.243 0.999 0.575

MRO 6.845 0.412 -0.015 -0.146 0.123 0.752 0.014 -0.099 0.267 -0.066 -0.015 0.060 -0.197 -0.020
p-value 0.000 0.016 0.854 0.227 0.060 0.000 0.506 0.913 0.355 0.597 0.911 0.577 0.005 0.533

HTN 5.695 -0.341 0.052 -0.031 0.063 0.566 -0.021 1.055 0.563 0.153 -0.108 -0.150 -0.049 0.049
p-value 0.000 0.160 0.676 0.807 0.415 0.000 0.488 0.195 0.082 0.381 0.452 0.216 0.532 0.269

CNF 6.704 0.101 -0.028 -0.293 0.082 0.550 0.019 0.112 0.705 0.031 0.082 -0.069 0.120 -0.018
p-value 0.000 0.414 0.783 0.004 0.299 0.000 0.559 0.888 0.017 0.820 0.484 0.521 0.081 0.674

NKE 6.448 -0.013 0.060 -0.336 0.100 0.557 0.014 0.560 0.106 -0.075 0.245 0.026 0.005 0.065
p-value 0.000 0.944 0.483 0.002 0.100 0.000 0.630 0.458 0.701 0.570 0.058 0.791 0.938 0.118

AMG 6.467 0.308 0.018 -0.238 0.018 0.306 0.039 -1.159 -0.078 -0.143 0.147 0.171 -0.024 -0.038
p-value 0.000 0.091 0.847 0.012 0.796 0.000 0.325 0.071 0.728 0.250 0.179 0.069 0.661 0.447

PKI 7.621 0.105 0.079 -0.089 -0.014 0.329 -0.045 -0.586 0.504 -0.085 0.029 0.082 0.230 0.008
p-value 0.000 0.478 0.355 0.125 0.847 0.000 0.668 0.403 0.022 0.488 0.690 0.432 0.000 0.941

HIT 4.326 -0.041 -0.144 0.054 0.096 0.185 -0.033 0.599 -0.119 0.328 -0.127 -0.116 0.012 0.029
p-value 0.000 0.860 0.314 0.562 0.295 0.002 0.271 0.409 0.751 0.101 0.267 0.374 0.886 0.522

AGX 6.508 -0.665 0.474 0.464 -0.201 0.367 0.139 -2.773 1.080 -0.569 -0.628 0.230 -0.028 -0.168
p-value 0.000 0.189 0.044 0.054 0.106 0.003 0.002 0.015 0.072 0.068 0.022 0.143 0.867 0.001

Mean 6.511 0.187 -0.01 -0.10 0.094 0.491 0.008 0.147 0.299 -0.03 0.008 0.004 -0.002 -0.004
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = impatience proxy, APRESID = 
|price change|.
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Table15. Wald and Chow tests of no structural break at exchange-wide 
decimalization, Jan. 29, 2001

Model is*:

AOL F-stat. 1.40 Prob. 0.20 AOL F-stat. 1.36 Prob. 0.22
LL Ratio 9.80 Prob. 0.20 χ2 9.49 Prob. 0.22

ASF F-stat. 1.38 Prob. 0.21 ASF F-stat. 1.51 Prob. 0.16
LL Ratio 9.70 Prob. 0.21 χ2 10.58 Prob. 0.16

BEN F-stat. 5.17 Prob. 0.00 BEN F-stat. 5.47 Prob. 0.00
LL Ratio 36.12 Prob. 0.00 χ2 38.29 Prob. 0.00

CI F-stat. 3.98 Prob. 0.00 CI F-stat. 3.65 Prob. 0.00
LL Ratio 27.87 Prob. 0.00 χ2 25.58 Prob. 0.00

CL F-stat. 3.11 Prob. 0.00 CL F-stat. 1.85 Prob. 0.07
LL Ratio 21.80 Prob. 0.00 χ2 12.93 Prob. 0.07

CPQ F-stat. 8.58 Prob. 0.10 CPQ F-stat. 1.59 Prob. 0.13
LL Ratio 59.60 Prob. 0.09 χ2 11.11 Prob. 0.13

DCX F-stat. 17.35 Prob. 0.00 DCX F-stat. 1.26 Prob. 0.27
LL Ratio 118.85 Prob. 0.00 χ2 8.82 Prob. 0.27

GMH F-stat. 3.12 Prob. 0.00 GMH F-stat. 3.05 Prob. 0.00
LL Ratio 21.86 Prob. 0.00 χ2 21.37 Prob. 0.00

GT F-stat. 3.23 Prob. 0.00 GT F-stat. 3.23 Prob. 0.00
LL Ratio 22.61 Prob. 0.00 χ2 22.59 Prob. 0.00

HAR F-stat. 1.52 Prob. 0.16 HAR F-stat. 1.52 Prob. 0.16
LL Ratio 10.66 Prob. 0.15 χ2 10.61 Prob. 0.16

KF F-stat. 0.72 Prob. 0.66 KF F-stat. 0.72 Prob. 0.66
LL Ratio 5.07 Prob. 0.65 χ2 5.03 Prob. 0.66

LE F-stat. 2.31 Prob. 0.02 LE F-stat. 2.31 Prob. 0.02
LL Ratio 16.20 Prob. 0.02 χ2 16.15 Prob. 0.02

LMT F-stat. 2.62 Prob. 0.01 LMT F-stat. 2.61 Prob. 0.01
LL Ratio 18.36 Prob. 0.01 χ2 18.29 Prob. 0.01

MLM F-stat. 0.39 Prob. 0.91 MLM F-stat. 0.39 Prob. 0.91
LL Ratio 2.76 Prob. 0.91 χ2 2.75 Prob. 0.91

RCL F-stat. 2.97 Prob. 0.00 RCL F-stat. 2.97 Prob. 0.00
LL Ratio 20.81 Prob. 0.00 χ2 20.78 Prob. 0.00

S F-stat. 2.68 Prob. 0.01 S F-stat. 2.68 Prob. 0.01
LL Ratio 18.79 Prob. 0.01 χ2 18.75 Prob. 0.01

SGY F-stat. 2.55 Prob. 0.01 SGY F-stat. 2.55 Prob. 0.01
LL Ratio 17.86 Prob. 0.01 χ2 17.83 Prob. 0.01

STT F-stat. 8.57 Prob. 0.00 STT F-stat. 8.57 Prob. 0.00
LL Ratio 59.58 Prob. 0.00 χ2 59.99 Prob. 0.00

UBS F-stat. 11.17 Prob. 0.00 UBS F-stat. 11.17 Prob. 0.00
LL Ratio 77.38 Prob. 0.00 χ2 78.16 Prob. 0.00

VAL F-stat. 2.01 Prob. 0.05 VAL F-stat. 2.01 Prob. 0.05
LL Ratio 14.09 Prob. 0.05 χ2 14.05 Prob. 0.05
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table15 cont'd Wald and Chow tests of no structural break at exchange-wide 
decimalization, Jan. 29, 2001

Model is*:

WMT F-stat. 2.90 Prob. 0.01 WMT F-stat. 2.93 Prob. 0.00
LL Ratio 20.36 Prob. 0.00 χ2 20.50 Prob. 0.00

CCN F-stat. 2.24 Prob. 0.03 CCN F-stat. 2.24 Prob. 0.03
LL Ratio 15.75 Prob. 0.03 χ2 15.65 Prob. 0.03

AOC F-stat. 3.06 Prob. 0.00 AOC F-stat. 3.31 Prob. 0.00
LL Ratio 21.47 Prob. 0.00 χ2 23.20 Prob. 0.00

UNH F-stat. 4.63 Prob. 0.00 UNH F-stat. 4.63 Prob. 0.00
LL Ratio 32.37 Prob. 0.00 χ2 32.39 Prob. 0.00

KO F-stat. 3.49 Prob. 0.00 KO F-stat. 3.49 Prob. 0.00
LL Ratio 24.43 Prob. 0.00 χ2 24.41 Prob. 0.00

T F-stat. 3.46 Prob. 0.00 T F-stat. 3.46 Prob. 0.00
LL Ratio 24.25 Prob. 0.00 χ2 24.23 Prob. 0.00

DOV F-stat. 0.89 Prob. 0.51 DOV F-stat. 0.58 Prob. 0.78
LL Ratio 6.25 Prob. 0.51 χ2 4.04 Prob. 0.78

ALL F-stat. 0.87 Prob. 0.10 ALL F-stat. 1.82 Prob. 0.08
LL Ratio 1142.57 Prob. 0.08 χ2 12.72 Prob. 0.08

GP F-stat. 26.00 Prob. 0.00 GP F-stat. 26.00 Prob. 0.00
LL Ratio 177.84 Prob. 0.00 χ2 181.97 Prob. 0.00

PHM F-stat. 5.21 Prob. 0.00 PHM F-stat. 5.21 Prob. 0.00
LL Ratio 36.38 Prob. 0.00 χ2 36.44 Prob. 0.00

APF F-stat. 1.95 Prob. 0.06 APF F-stat. 1.95 Prob. 0.06
LL Ratio 13.77 Prob. 0.06 χ2 13.68 Prob. 0.06

CLB F-stat. 1.79 Prob. 0.08 CLB F-stat. 1.83 Prob. 0.08
LL Ratio 12.62 Prob. 0.08 χ2 12.81 Prob. 0.08

MRO F-stat. 5.45 Prob. 0.00 MRO F-stat. 5.45 Prob. 0.00
LL Ratio 38.07 Prob. 0.00 χ2 38.14 Prob. 0.00

HTN F-stat. 3.15 Prob. 0.00 HTN F-stat. 3.15 Prob. 0.00
LL Ratio 22.08 Prob. 0.00 χ2 22.05 Prob. 0.00

CNF F-stat. 10.93 Prob. 0.00 CNF F-stat. 10.99 Prob. 0.00
LL Ratio 75.65 Prob. 0.00 χ2 76.95 Prob. 0.00

NKE F-stat. 1.29 Prob. 0.25 NKE F-stat. 1.29 Prob. 0.25
LL Ratio 9.10 Prob. 0.25 χ2 9.06 Prob. 0.25

AMG F-stat. 3.53 Prob. 0.00 AMG F-stat. 3.53 Prob. 0.00
LL Ratio 24.75 Prob. 0.00 χ2 24.73 Prob. 0.00

PKI F-stat. 5.59 Prob. 0.00 PKI F-stat. 5.90 Prob. 0.00
LL Ratio 39.07 Prob. 0.00 χ2 41.32 Prob. 0.00

HIT F-stat. 1.92 Prob. 0.06 HIT F-stat. 1.92 Prob. 0.06
LL Ratio 13.48 Prob. 0.06 χ2 13.44 Prob. 0.06

AGX F-stat. 3.04 Prob. 0.00 AGX F-stat. 3.00 Prob. 0.00
LL Ratio 21.37 Prob. 0.00 χ2 21.00 Prob. 0.00

Wald Tests
Matched Control Stocks

Chow Tests
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Table 16a. . Results of pooled estimation.
Sample period Oct. 2, 2000 till Jan. 26, 2001.

Model is*:

Coefficient p-value
AOL 9.445 0.000
ASF 6.218 0.000
BEN 6.707 0.000

CI 6.506 0.000
CL 7.666 0.000

CPQ 9.233 0.000
DCX 7.153 0.000
GMH 8.129 0.000

GT 6.747 0.000
HAR 5.987 0.000

KF 4.994 0.000
LE 6.394 0.000

LMT 7.470 0.000
MLM 5.730 0.000
RCL 6.772 0.000

S 7.837 0.000
SGY 6.232 0.000
STT 6.927 0.000
UBS 6.272 0.000
VAL 5.328 0.000

WMT 8.723 0.000 R-squared 0.422726
CCN 3.971 0.000 Adjusted R-sq. 0.422222
AOC 6.482 0.000 S.E. of regr. 1.892327
UNH 7.378 0.000 Sum sq. resid 184405.6

KO 8.314 0.000 Log likelihood -105987.8
T 9.570 0.000 Mean dep. var 7.735439

DOV 7.107 0.000 S.D. dep. var 2.48952
ALL 8.000 0.000 AIC 4.114384
GP 7.896 0.000 SIC 4.122282

PHM 6.173 0.000 Durbin-Watson 2.000205
APF 4.035 0.000
CLB 4.878 0.000

MRO 6.970 0.000
HTN 5.301 0.000
CNF 6.804 0.000
NKE 7.025 0.000
AMG 6.165 0.000

PKI 6.896 0.000
HIT 4.176 0.000

AGX 3.751 0.000
β0 0.191 0.000
β1 -0.014 0.335
β2 -0.149 0.000
β3 0.096 0.000
β4 0.511 0.000
β5 0.009 0.040

All Stocks Pool
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 16a. Cont'd Results of pooled estimation.
Sample period Oct. 2, 2000 till Jan. 26, 2001.

Model is*:

Coefficient p-value Coefficient p-value
AOL 9.396 0.000 WMT 8.834 0.000
ASF 6.189 0.000 CCN 4.051 0.000
BEN 6.664 0.000 AOC 6.587 0.000
CI 6.474 0.000 UNH 7.468 0.000
CL 7.618 0.000 KO 8.432 0.000
CPQ 9.182 0.000 T 9.693 0.000
DCX 7.111 0.000 DOV 7.203 0.000
GMH 8.079 0.000 ALL 8.108 0.000
GT 6.701 0.000 GP 8.005 0.000
HAR 5.955 0.000 PHM 6.262 0.000
KF 4.944 0.000 APF 4.160 0.000
LE 6.357 0.000 CLB 4.964 0.000
LMT 7.427 0.000 MRO 7.087 0.000
MLM 5.692 0.000 HTN 5.396 0.000
RCL 6.732 0.000 CNF 6.899 0.000
S 7.790 0.000 NKE 7.124 0.000
SGY 6.202 0.000 AMG 6.241 0.000
STT 6.895 0.000 PKI 6.955 0.000
UBS 6.242 0.000 HIT 4.228 0.000
VAL 5.287 0.000 AGX 3.847 0.000

β0 0.211 0.000 β0 0.188 0.000
β1 -0.019 0.334 β1 -0.010 0.642
β2 -0.160 0.000 β2 -0.106 0.000
β3 0.100 0.000 β3 0.092 0.000
β4 0.534 0.000 β4 0.486 0.000
β5 0.011 0.093 β5 0.008 0.234

R-squared 0.380207 R-squared 0.452141
Adjusted R-squared 0.379627 Adjusted R-squared 0.451589
S.E. of regression 1.830739 S.E. of regression 1.956058
Sum squared resid 89417.46 Sum squared resid 94930.96
Log likelihood -54028.8 Log likelihood -51893.09
Mean dependent var 7.919973 Mean dependent var 7.536912
S.D. dependent var 2.324341 S.D. dependent var 2.641366
Akaike info criterion 4.048289 Akaike info criterion 4.180786
Schwarz criterion 4.056266 Schwarz criterion 4.189286
Durbin-Watson stat 2.000593 Durbin-Watson stat 2.001634

Decimal Stocks Pool Control Stocks Pool
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 16b. Results of pooled estimation 
Sample period Feb. 8, 2001 till May 31, 2001.

Model is*:

Coefficient p-value
WMT 8.844 0.000
CCN 4.340 0.000
AOC 6.966 0.000
UNH 7.576 0.000

KO 8.493 0.000
T 9.637 0.000

DOV 7.375 0.000
ALL 8.044 0.000
GP 7.264 0.000

PHM 6.740 0.000
APF 4.491 0.000
CLB 5.513 0.000

MRO 7.638 0.000
HTN 5.813 0.000
CNF 6.336 0.000
NKE 7.317 0.000
AMG 6.025 0.000

PKI 6.746 0.000
HIT 4.514 0.000

AGX 3.504 0.000
AOL 9.755 0.000
ASF 6.674 0.000
BEN 6.974 0.000

CI 6.936 0.000
CL 7.981 0.000

CPQ 9.320 0.000 R-squared 0.422008
DCX 7.326 0.000 Adjusted R-sq. 0.421436
GMH 8.607 0.000 S.E. of regr. 1.842248

GT 6.712 0.000 Sum sq. resid 154577.6
HAR 6.122 0.000 Log likelihood -92525.34

KF 5.266 0.000 Mean dep. var 7.712487
LE 6.305 0.000 S.D. dep. var 2.421991

LMT 7.889 0.000 AIC 4.060859
MLM 5.840 0.000 SIC 4.069664
RCL 7.373 0.000 Durbin-Watson 1.972806

S 8.075 0.000
SGY 6.223 0.000
STT 7.468 0.000
UBS 5.733 0.000
VAL 5.319 0.000
β0 0.290 0.000
β1 -0.028 0.060
β2 -0.114 0.000
β3 0.092 0.000
β4 0.526 0.000
β5 0.002 0.707

All Stocks Pool
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 16b. cont'd Results of pooled estimation 
Sample period Feb. 8, 2001 till May 31, 2001.

Model is*:

Coefficient p-value Coefficient p-value
AOL 9.718 0.000 WMT 8.814 0.000
ASF 6.642 0.000 CCN 4.359 0.000
BEN 6.944 0.000 AOC 6.987 0.000

CI 6.913 0.000 UNH 7.599 0.000
CL 7.949 0.000 KO 8.522 0.000

CPQ 9.281 0.000 T 9.671 0.000
DCX 7.301 0.000 DOV 7.402 0.000
GMH 8.575 0.000 ALL 8.072 0.000

GT 6.683 0.000 GP 7.285 0.000
HAR 6.105 0.000 PHM 6.759 0.000

KF 5.249 0.000 APF 4.515 0.000
LE 6.276 0.000 CLB 5.529 0.000

LMT 7.861 0.000 MRO 7.663 0.000
MLM 5.819 0.000 HTN 5.833 0.000
RCL 7.350 0.000 CNF 6.355 0.000

S 8.041 0.000 NKE 7.341 0.000
SGY 6.206 0.000 AMG 6.050 0.000
STT 7.438 0.000 PKI 6.767 0.000
UBS 5.719 0.000 HIT 4.524 0.000
VAL 5.299 0.000 AGX 3.528 0.000
β0 0.181 0.000 β0 0.441 0.000
β1 -0.020 0.327 β1 -0.030 0.191
β2 -0.122 0.000 β2 -0.110 0.000
β3 0.090 0.000 β3 0.091 0.000
β4 0.538 0.000 β4 0.518 0.000
β5 0.002 0.759 β5 0.000 0.941

R-squared 0.396909 R-squared 0.42445
Adjusted R-sq. 0.396266 Adjusted R-sq. 0.42377
S.E. of regr. 1.793783 S.E. of regr. 1.91599
Sum sq. resid 75405.78 Sum sq. resid 77473.04
Log likelihood -46985.6 Log likelihood -43708.60
Mean dep. var 7.804998 Mean dep. var 7.50405
S.D. dep. var 2.308591 S.D. dep. var 2.52404
AIC 4.007638 AIC 4.13957
SIC 4.016574 SIC 4.14937
Durbin-Watson 1.990328 Durbin-Watson 1.95614

Control Stocks PoolDecimal Stocks Pool
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 17a. Time sample pooled estimation of decimal stocks and control stocks,
 allowing for a change in coefficients after decimalization.

Model is:

Coeff. p-value Coeff. p-value
β0 AOL 9.399 0.000 β0 WMT 8.834 0.000
β0 ASF 6.190 0.000 β0 CCN 4.052 0.000
β0 BEN 6.665 0.000 β0 AOC 6.587 0.000
β0 CI 6.475 0.000 β0 UNH 7.467 0.000
β0 CL 7.619 0.000 β0 KO 8.432 0.000
β0 CPQ 9.184 0.000 β0 T 9.694 0.000
β0 DCX 7.112 0.000 β0 DOV 7.204 0.000
β0 GMH 8.081 0.000 β0 ALL 8.108 0.000
β0 GT 6.702 0.000 β0 GP 8.005 0.000
β0 HAR 5.956 0.000 β0 PHM 6.262 0.000
β0 KF 4.945 0.000 β0 APF 4.160 0.000
β0 LE 6.359 0.000 β0 CLB 4.965 0.000
β0 LMT 7.428 0.000 β0 MRO 7.088 0.000
β0 MLM 5.693 0.000 β0 HTN 5.397 0.000
β0 RCL 6.733 0.000 β0 CNF 6.899 0.000
β0 S 7.792 0.000 β0 NKE 7.124 0.000
β0 SGY 6.203 0.000 β0 AMG 6.241 0.000
β0 STT 6.898 0.000 β0 PKI 6.955 0.000
β0 UBS 6.243 0.000 β0 HIT 4.229 0.000
β0 VAL 5.288 0.000 β0 AGX 3.848 0.000
β1 PSIWL_1 0.211 0.000 β1 PSIWL_1 0.187 0.000
β2 LOG(NUMBE -0.019 0.321 β2 LOG(NUMBE -0.010 0.657
β3 LOG(SPREAD -0.160 0.000 β3 LOG(SPREAD -0.106 0.000
β4 LOG(VOLUM 0.100 0.000 β4 LOG(VOLUM 0.092 0.000
β5 LOG(NPTIME 0.534 0.000 β5 LOG(NPTIME 0.486 0.000
β6 LOG(APRESI 0.010 0.096 β6 LOG(APRESI 0.008 0.218
β7 CP*AOL 0.315 0.151 β7 CP*WMT 0.023 0.918
β7 CP*ASF 0.449 0.009 β7 CP*CCN 0.287 0.092
β7 CP*BEN 0.276 0.107 β7 CP*AOC 0.382 0.053
β7 CP*CI 0.434 0.009 β7 CP*UNH 0.116 0.555
β7 CP*CL 0.326 0.087 β7 CP*KO 0.075 0.736
β7 CP*CPQ 0.093 0.678 β7 CP*T -0.037 0.882
β7 CP*DCX 0.186 0.316 β7 CP*DOV 0.185 0.359
β7 CP*GMH 0.489 0.018 β7 CP*ALL -0.048 0.826
β7 CP*GT -0.022 0.902 β7 CP*GP -0.738 0.000
β7 CP*HAR 0.146 0.381 β7 CP*PHM 0.483 0.011
β7 CP*KF 0.300 0.122 β7 CP*APF 0.334 0.133
β7 CP*LE -0.085 0.626 β7 CP*CLB 0.543 0.004
β7 CP*LMT 0.429 0.023 β7 CP*MRO 0.561 0.008
β7 CP*MLM 0.124 0.454 β7 CP*HTN 0.419 0.021
β7 CP*RCL 0.613 0.001 β7 CP*CNF -0.560 0.004
β7 CP*S 0.245 0.212 β7 CP*NKE 0.201 0.320
β7 CP*SGY -0.001 0.996 β7 CP*AMG -0.209 0.230
β7 CP*STT 0.536 0.002 β7 CP*PKI -0.203 0.266
β7 CP*UBS -0.528 0.001 β7 CP*HIT 0.275 0.078
β7 CP*VAL 0.008 0.962 β7 CP*AGX -0.336 0.077
β8 CP*PSIWL_1 -0.028 0.593 β8 CP*PSIWL_1 0.253 0.000
β9 CP*LOG(NUM -0.002 0.944 β9 CP*LOG(NUM -0.029 0.350
β10 CP*LOG(SPR 0.039 0.037 β10 CP*LOG(SPR -0.001 0.984
β11 CP*LOG(VOL -0.009 0.688 β11 CP*LOG(VOL 0.004 0.859
β12 CP*LOG(NPT 0.004 0.794 β12 CP*LOG(NPT 0.026 0.121
β13 CP*LOG(APR -0.009 0.331 β13 CP*LOG(APR -0.008 0.371

R-squared 0.388 R-squared 0.448
0.388 0.448
1.814 1.926
1.996 1.981

Wald P-value Wald Chow P-value
F-statistic 9.436 0.000 F-statistic 16.434 16.43134 0.000
Chi-square 245.329 0.000 Chi-square 427.275 425.756 0.000

Decimal pool comb. time sample Control Pool comb. time sample

Durbin-Watson statDurbin-Watson stat

Adjusted R-squared
S.E. of regression

Adjusted R-squared
S.E. of regression
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = 
impatience proxy, APRESID = |price change|.
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Table 17b. cont'd. Pooled estimation over each sample period, allowing for differences in 
control stock coefficients. Model is*:

Coeff. p-value Coeff. p-value
β0 WMT 8.829 0.000 β0 WMT 8.876 0.000
β0 CCN 4.048 0.000 β0 CCN 4.350 0.000
β0 AOC 6.583 0.000 β0 AOC 6.985 0.000
β0 UNH 7.463 0.000 β0 UNH 7.601 0.000
β0 KO 8.426 0.000 β0 KO 8.525 0.000
β0 T 9.688 0.000 β0 T 9.677 0.000
β0 DOV 7.199 0.000 β0 DOV 7.405 0.000
β0 ALL 8.103 0.000 β0 ALL 8.078 0.000
β0 GP 8.000 0.000 β0 GP 7.284 0.000
β0 PHM 6.258 0.000 β0 PHM 6.760 0.000
β0 APF 4.154 0.000 β0 APF 4.507 0.000
β0 CLB 4.960 0.000 β0 CLB 5.520 0.000
β0 MRO 7.083 0.000 β0 MRO 7.666 0.000
β0 HTN 5.393 0.000 β0 HTN 5.830 0.000
β0 CNF 6.895 0.000 β0 CNF 6.353 0.000
β0 NKE 7.119 0.000 β0 NKE 7.340 0.000
β0 AMG 6.237 0.000 β0 AMG 6.045 0.000
β0 PKI 6.951 0.000 β0 PKI 6.767 0.000
β0 HIT 4.226 0.000 β0 HIT 4.516 0.000
β0 AGX 3.844 0.000 β0 AGX 3.522 0.000
β0 AOL 9.395 0.000 β0 AOL 9.728 0.000
β0 ASF 6.187 0.000 β0 ASF 6.649 0.000
β0 BEN 6.663 0.000 β0 BEN 6.952 0.000
β0 CI 6.473 0.000 β0 CI 6.920 0.000
β0 CL 7.617 0.000 β0 CL 7.957 0.000
β0 CPQ 9.181 0.000 β0 CPQ 9.291 0.000
β0 DCX 7.110 0.000 β0 DCX 7.309 0.000
β0 GMH 8.078 0.000 β0 GMH 8.584 0.000
β0 GT 6.699 0.000 β0 GT 6.691 0.000
β0 HAR 5.953 0.000 β0 HAR 6.111 0.000
β0 KF 4.942 0.000 β0 KF 5.256 0.000
β0 LE 6.356 0.000 β0 LE 6.283 0.000
β0 LMT 7.426 0.000 β0 LMT 7.869 0.000
β0 MLM 5.690 0.000 β0 MLM 5.826 0.000
β0 RCL 6.730 0.000 β0 RCL 7.357 0.000
β0 S 7.789 0.000 β0 S 8.049 0.000
β0 SGY 6.200 0.000 β0 SGY 6.212 0.000
β0 STT 6.895 0.000 β0 STT 7.445 0.000
β0 UBS 6.241 0.000 β0 UBS 5.723 0.000
β0 VAL 5.285 0.000 β0 VAL 5.305 0.000
β1 PSIWL_1 0.212 0.000 β1 PSIWL_1 0.183 0.000
β2 LOG(NUMBE -0.020 0.327 β2 LOG(NUMBE -0.020 0.336
β3 LOG(SPREAD -0.160 0.000 β3 LOG(SPREAD -0.121 0.000
β4 LOG(VOLUM 0.100 0.000 β4 LOG(VOLUM 0.090 0.000
β5 LOG(NPTIME 0.534 0.000 β5 LOG(NPTIME 0.538 0.000
β6 LOG(APRESI 0.011 0.104 β6 LOG(APRESI 0.002 0.735
β7 CONTROL*PS -0.024 0.646 β7 CONTROL*PS 0.257 0.000
β8 CONTROL*LO 0.009 0.747 β8 CONTROL*LO -0.017 0.557
β9 CONTROL*LO 0.054 0.044 β9 CONTROL*LO 0.015 0.437
β10 CONTROL*LO -0.008 0.712 β10 CONTROL*LO 0.004 0.855
β11 CONTROL*LO -0.048 0.002 β11 CONTROL*LO -0.026 0.110
β12 CONTROL*LO -0.002 0.794 β12 CONTROL*LO -0.002 0.844

R-squared 0.423 R-squared 0.422
0.422 0.422
2.001 1.973

Wald p-value Wald p-value
F-statistic 2.736 0.012 F-statistic 3.686 0.001
Chi-square 16.416 0.012 Chi-square 22.113 0.001

Durbin-Watson stat
Adjusted R-squared
Durbin-Watson stat

Adjusted R-squared

Fractional Trading Period Fully-Decimal Trading Period

( )

C
PRESIDt

C
t

C
t

C
t

C
t

C
t

PRESIDttt

tttt

IIAPRESID

IERRNPTIMEIVOLUME

ISPREADINUMBERIENPTIME

IAPRESIDERRNPTIMEVOLUME

SPREADNUMBERENPTIMEVNET

t

t

−+
−

−

−−

−+
−−

−−

−

−

+

++

+++

+++

+++=

/
1112

11110

19187

/
116514

131210

1

1

)log(

)_log()log(

)log()log()log(

)log()_log()log(

)log()log()log(log

β

ββ

βββ

βββ

ββββ

* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = 
impatience proxy, APRESID = |price change|.
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Table 18a. Tests for differences in coefficients of matched decimal and control stocks
              in individual stock uninteracted regressions over Oct. 2, 2000 till Jan. 26, 2001.

Model is*:

t-Test: Two-Sample Assuming Equal Variances
β0 β1 β2 β3 β4 β5 β6

Mean 6.825 0.215 -0.008 -0.159 0.092 0.539 0.008
Variance 0.921 0.151 0.021 0.008 0.020 0.020 0.001
Observations 20.000 20.000 20.000 20.000 20.000 20.000 20.000
Pooled Variance 1.000 0.210 0.023 0.028 0.018 0.029 0.002
Hyp. Mean Dif. 0.000 0.000 0.000 0.000 0.000 0.000 0.000
df 38.000 38.000 38.000 38.000 38.000 38.000 38.000
t Stat 1.010 0.103 0.111 -1.219 -0.093 0.890 -0.046
P(T<=t) one-tail 0.159 0.459 0.456 0.115 0.463 0.190 0.482
t Crit.one-tail 1.686 1.686 1.686 1.686 1.686 1.686 1.686
P(T<=t) two-tail 0.319 0.918 0.912 0.231 0.927 0.379 0.964
t Crit. two-tail 2.024 2.024 2.024 2.024 2.024 2.024 2.024

t-Test: Two-Sample Assuming Unequal Variances
β0 β1 β2 β3 β4 β5 β6

Mean 6.825 0.215 -0.008 -0.159 0.092 0.539 0.008
Variance 0.921 0.151 0.021 0.008 0.020 0.020 0.001
Observations 20.000 20.000 20.000 20.000 20.000 20.000 20.000
Hyp. Mean Dif. 0.000 0.000 0.000 0.000 0.000 0.000 0.000
df 38.000 35.000 38.000 25.000 38.000 35.000 37.000
t Stat 1.010 0.103 0.111 -1.219 -0.093 0.890 -0.046
P(T<=t) one-tail 0.159 0.459 0.456 0.117 0.463 0.190 0.482
t Crit.one-tail 1.686 1.690 1.686 1.708 1.686 1.690 1.687
P(T<=t) two-tail 0.319 0.918 0.912 0.234 0.927 0.380 0.964
t Crit. two-tail 2.024 2.030 2.024 2.060 2.024 2.030 2.026

t-Test: Paired Two Sample for Means
β0 β1 β2 β3 β4 β5 β6

Mean 6.825 0.215 -0.008 -0.159 0.092 0.539 0.008
Variance 0.921 0.151 0.021 0.008 0.020 0.020 0.001
Observations 20.000 20.000 20.000 20.000 20.000 20.000 20.000
Pooled Variance 0.651 -0.099 0.537 -0.114 0.459 0.448 0.230
Hyp. Mean Dif. 0.000 0.000 0.000 0.000 0.000 0.000 0.000
df 19.000 19.000 19.000 19.000 19.000 19.000 19.000
t Stat 1.705 0.099 0.163 -1.174 -0.126 1.176 -0.052
P(T<=t) one-tail 0.052 0.461 0.436 0.128 0.451 0.127 0.479
t Crit.one-tail 1.729 1.729 1.729 1.729 1.729 1.729 1.729
P(T<=t) two-tail 0.105 0.922 0.872 0.255 0.901 0.254 0.959
t Crit. two-tail 2.093 2.093 2.093 2.093 2.093 2.093 2.093
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = 
impatience proxy, APRESID = |price change|.
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Table 18a. cont'd

 Anova: Single Factor
Tests for differences in coefficients of matched decimal and control stocks
 in individual stock uninteracted regressions over Oct. 2, 2000 till Jan. 26, 2001.

Model is*:

SUMMARY
Groups Count Sum Average Variance

β0 20 6.38819 0.31941 0.7023
β1 20 0.2992 0.01496 0.45904
β2 20 0.10716 0.00536 0.02165
β3 20 -1.27839 -0.06392 0.05933
β4 20 -0.07917 -0.00396 0.01977
β5 20 0.95983 0.04799 0.0333
β6 20 -0.01126 -0.00056 0.00233

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 1.88234 6 0.31372 1.69227 0.12762 2.167425
Within Groups 24.6564 133 0.18539
Total 26.5388 139
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = 
impatience proxy, APRESID = |price change|.
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Table 18b.
Tests for differences in coefficients of matched decimal and control stocks
in individual stock uninteracted regressions over Feb. 8, 2001 till May 31, 2001.

Model is*:

t-Test: Two-Sample Assuming Equal Variances
β0 β1 β2 β3 β4 β5 β6

Mean 7.01063 0.23292 -0.033 -0.1225 0.09468 0.5164 -0.0014
Variance 1.31787 0.12233 0.04862 0.00822 0.02373 0.01927 0.0008
Observations 20 20 20 20 20 20 20
Pooled Variance 1.69368 0.12565 0.03655 0.00722 0.02016 0.02358 0.00103
Hyp. Mean Dif. 0 0 0 0 0 0 0
df 38 38 38 38 38 38 38
t Stat 0.87695 -2.3202 0.22391 -1.2466 -0.1088 0.57871 -0.5292
P(T<=t) one-tail 0.19301 0.0129 0.41201 0.1101 0.45695 0.2831 0.29988
t Crit.one-tail 1.68595 1.68595 1.68595 1.68595 1.68595 1.68595 1.68595
P(T<=t) two-tail 0.38602 0.0258 0.82403 0.22019 0.91391 0.5662 0.59975
t Crit. two-tail 2.02439 2.02439 2.02439 2.02439 2.02439 2.02439 2.02439

t-Test: Two-Sample Assuming Unequal Variances
β0 β1 β2 β3 β4 β5 β6

Mean 7.01063 0.23292 -0.033 -0.1225 0.09468 0.5164 -0.0014
Variance 1.31787 0.12233 0.04862 0.00822 0.02373 0.01927 0.0008
Observations 20 20 20 20 20 20 20
Hypothesized Mean D 0 0 0 0 0 0 0
df 36 38 34 37 37 37 36
t Stat 0.87695 -2.3202 0.22391 -1.2466 -0.1088 0.57871 -0.5292
P(T<=t) one-tail 0.19316 0.0129 0.41208 0.1102 0.45696 0.28315 0.29996
t Critical one-tail 1.6883 1.68595 1.69092 1.68709 1.68709 1.68709 1.6883
P(T<=t) two-tail 0.38633 0.0258 0.82417 0.2204 0.91392 0.56629 0.59992
t Critical two-tail 2.02809 2.02439 2.03224 2.02619 2.02619 2.02619 2.02809

t-Test: Paired Two Sample for Means
β0 β1 β2 β3 β4 β5 β6

Mean 7.01063 0.23292 -0.033 -0.1225 0.09468 0.5164 -0.0014
Variance 1.31787 0.12233 0.04862 0.00822 0.02373 0.01927 0.0008
Observations 20 20 20 20 20 20 20
Pooled Variance 0.60074 0.13626 0.33035 -0.3423 0.28501 0.43542 0.13451
Hyp. Mean Dif. 0 0 0 0 0 0 0
df 19 19 19 19 19 19 19
t Stat 1.36255 -2.4964 0.26991 -1.0773 -0.1283 0.76524 -0.5677
P(T<=t) one-tail 0.09448 0.01095 0.39507 0.14742 0.44963 0.22677 0.28845
t Crit.one-tail 1.72913 1.72913 1.72913 1.72913 1.72913 1.72913 1.72913
P(T<=t) two-tail 0.18896 0.0219 0.79014 0.29484 0.89926 0.45353 0.5769
t Crit. two-tail 2.09302 2.09302 2.09302 2.09302 2.09302 2.09302 2.09302

( )
−+

−−

−−

−
+++

+++=
/

116514

131210

1
*)log()_log()log(

)log()log()log(log

tPRESIDttt

tttt

IAPRESIDERRNPTIMEVOLUME

SPREADNUMBERENPTIMEVNET

βββ
ββββ

* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.

232



Table 18b. cont'd

Anova: Single Factor
Tests for differences in coefficients of matched decimal and control stocks
 in individual stock uninteracted regressions over Feb. 8, 2001 till May 31, 2001.

Model is*:

SUMMARY
Groups Count Sum Average Variance

β0 20 7.2181 0.3609 1.40316
β1 20 -5.2016 -0.2601 0.21708
β2 20 0.27074 0.01354 0.05031
β3 20 -0.6697 -0.0335 0.01932
β4 20 -0.0977 -0.0049 0.02901
β5 20 0.56203 0.0281 0.02697
β6 20 -0.1074 -0.0054 0.00179

ANOVA
Source of Variation SS df MS F P-value F crit

Between Groups 3.97299 6 0.66216 2.65224 0.01837 2.16743
Within Groups 33.2051 133 0.24966
Total 37.1781 139
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 19. 
Anova tests of same stock coefficient changes from test to control sample period.

Model is*:

Anova of Decimal stocks coefficient changes.
Groups Count Sum Average Variance

β0 20 -3.711241 -0.185562 0.589668
β1 20 -0.367061 -0.018353 0.22265
β2 20 0.498848 0.024942 0.045285
β3 20 -0.724558 -0.036228 0.009095
β4 20 -0.056315 -0.002816 0.018999
β5 20 0.454096 0.022705 0.003339
β6 20 0.1806 0.00903 0.001662

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 0.647048 6 0.107841 0.847525 0.535532 2.167425
Within Groups 16.92328 133 0.127243
Total 17.57033 139

Anova of Control stocks coefficient changes.
Groups Count Sum Average Variance

β0 20 -2.88133 -0.144067 1.259989
β1 20 -5.867889 -0.293394 0.372576
β2 20 0.662429 0.033121 0.038038
β3 20 -0.115852 -0.005793 0.049328
β4 20 -0.074875 -0.003744 0.015527
β5 20 0.056295 0.002815 0.035443
β6 20 0.084482 0.004224 0.002434

ANOVA
Source of Variation SS df MS F P-value F crit
Between Groups 1.687213 6 0.281202 1.110007 0.359879 2.167425
Within Groups 33.69337 133 0.253334
Total 35.38059 139
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, 
NPTIME_ERR = impatience proxy, APRESID = |price change|.
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Table 20. Pooled estimation over the combined time sample periods, with a 40-element intercept.
 Interacted variable allow for a shift in individual stock intercept and all pooled coefficients at 
the time of the exchange-wide decimaization (Jan. 29, 2001.)

Model is*:

Variable Coeff. Std. Error t-Statistic p-value
WMT 8.723 0.109 80.376 0.000
CCN 3.971 0.085 46.939 0.000
AOC 6.482 0.096 67.653 0.000
UNH 7.378 0.095 77.898 0.000
KO 8.315 0.107 77.628 0.000
T 9.570 0.121 79.277 0.000
DOV 7.107 0.098 72.793 0.000
ALL 8.000 0.108 74.293 0.000
GP 7.896 0.106 74.741 0.000
PHM 6.172 0.091 67.776 0.000
APF 4.036 0.130 31.152 0.000
CLB 4.878 0.094 51.988 0.000
MRO 6.970 0.100 69.694 0.000
HTN 5.302 0.092 57.877 0.000
CNF 6.803 0.099 68.958 0.000
NKE 7.025 0.099 71.210 0.000
AMG 6.165 0.088 69.670 0.000
PKI 6.896 0.091 75.878 0.000
HIT 4.176 0.081 51.757 0.000
AGX 3.751 0.104 35.956 0.000
AOL 9.445 0.114 82.996 0.000
ASF 6.218 0.090 69.315 0.000
BEN 6.707 0.092 72.728 0.000
CI 6.506 0.091 71.322 0.000
CL 7.666 0.103 74.374 0.000
CPQ 9.234 0.116 79.377 0.000
DCX 7.153 0.100 71.716 0.000
GMH 8.129 0.109 74.653 0.000
GT 6.747 0.102 66.426 0.000
HAR 5.987 0.090 66.228 0.000
KF 4.994 0.108 46.039 0.000
LE 6.394 0.097 65.901 0.000
LMT 7.470 0.101 73.724 0.000
MLM 5.730 0.091 62.974 0.000
RCL 6.772 0.100 67.927 0.000
S 7.837 0.107 73.432 0.000
SGY 6.233 0.090 69.301 0.000
STT 6.927 0.093 74.420 0.000
UBS 6.272 0.090 69.747 0.000
VAL 5.327 0.094 56.971 0.000
β1 0.191 0.026 7.300 0.000
β2 -0.014 0.014 -0.957 0.338
β3 -0.149 0.011 -13.165 0.000
β4 0.096 0.011 8.885 0.000
β5 0.511 0.008 66.225 0.000
β6 0.010 0.005 2.106 0.035
CP*WMT 0.105 0.158 0.662 0.508
CP*CCN 0.359 0.128 2.799 0.005
CP*AOC 0.471 0.140 3.358 0.001
CP*UNH 0.184 0.140 1.313 0.189

All stocks both sample periods pool
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = impatience proxy, 
APRESID = |price change|.
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Table 20. cont'd
Pooled estimation over the combined time sample periods, with a 40-element intercept.
 Interacted variable allow for a shift in individual stock intercept and all pooled coefficients at 
the time of the exchange-wide decimaization (Jan. 29, 2001.)

Model is*:

Variable Coeff. Std. Error t-Statistic p-value
CP*KO 0.163 0.159 1.021 0.307
CP*T 0.050 0.179 0.277 0.782
CP*DOV 0.254 0.147 1.723 0.085
CP*ALL 0.030 0.157 0.188 0.851
CP*GP -0.646 0.148 -4.360 0.000
CP*PHM 0.555 0.139 3.997 0.000
CP*APF 0.444 0.174 2.558 0.011
CP*CLB 0.625 0.142 4.400 0.000
CP*MRO 0.653 0.150 4.358 0.000
CP*HTN 0.499 0.133 3.764 0.000
CP*CNF -0.480 0.140 -3.423 0.001
CP*NKE 0.279 0.147 1.895 0.058
CP*AMG -0.151 0.127 -1.186 0.236
CP*PKI -0.162 0.135 -1.201 0.230
CP*HIT 0.329 0.119 2.767 0.006
CP*AGX -0.255 0.147 -1.733 0.083
CP*AOL 0.293 0.169 1.733 0.083
CP*ASF 0.444 0.140 3.170 0.002
CP*BEN 0.254 0.134 1.889 0.059
CP*CI 0.418 0.131 3.182 0.002
CP*CL 0.301 0.150 2.003 0.045
CP*CPQ 0.069 0.176 0.391 0.696
CP*DCX 0.159 0.149 1.071 0.284
CP*GMH 0.462 0.162 2.850 0.004
CP*GT -0.048 0.141 -0.341 0.733
CP*HAR 0.124 0.136 0.913 0.361
CP*KF 0.259 0.160 1.616 0.106
CP*LE -0.101 0.143 -0.706 0.480
CP*LMT 0.405 0.150 2.695 0.007
CP*MLM 0.099 0.134 0.739 0.460
CP*RCL 0.587 0.150 3.924 0.000
CP*S 0.223 0.157 1.419 0.156
CP*SGY -0.022 0.130 -0.166 0.868
CP*STT 0.528 0.139 3.786 0.000
CP*UBS -0.549 0.129 -4.262 0.000
CP*VAL -0.019 0.129 -0.146 0.884
β8 0.100 0.040 2.492 0.013
β9 -0.015 0.021 -0.725 0.468
β10 0.035 0.015 2.324 0.020
β11 -0.002 0.016 -0.144 0.885
β12 0.015 0.011 1.364 0.173
β13 -0.008 0.006 -1.315 0.188

R-squared 0.422
Adjusted R-squared 0.422
S.E. of regression 1.869
Sum squared resid 338975.5
Log likelihood -198531.1
Mean dependent var 7.725
S.D. dependent var 2.458
Akaike info criterion 4.090
Schwarz criterion 4.099
Durbin-Watson stat 1.988

Chow test p-value Wald Test p-value
F-statistic 14.552 0.000 5.267 0.000
Log likelihood ratio 667.749 0.000 31.601 0.000

All stocks both sample periods pool
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* VNET = net dir. volume,
ENPTIME = exp. duration, NUMBER = # of transactions, SPREAD = nominal spread, VOLUME = tr. volume, NPTIME_ERR = impatience proxy, 
APRESID = |price change|.
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Table 21. Common Factor Analysis
Principal component analysis on the 40 element correlation matrix of liquidiy and 
residuals series.Daily series are generated by aggregating the results from 
indivudual event time duration-based regressions. Respective eigenvalues can 
be obtained by multiplying the % by 40, the number of series (i.e. .11387*40=4.555)

Series First Second Third First Second Third
VNETL 11.387 6.794 5.982 11.387 6.794 5.982
NNET 8.499 6.679 5.916 8.499 6.679 5.916
RES 7.312 6.574 6.141 7.312 6.574 6.141
EXRES 6.765 6.327 6.075 6.765 6.327 6.075

Series First Second Third First Second Third
VNETL 15.811 6.927 6.037 15.811 6.927 6.037
NNET 8.218 6.877 6.135 8.218 6.877 6.135
RES 6.993 6.138 5.972 6.993 6.138 5.972
EXRES 8.033 6.291 5.759 8.033 6.291 5.759

Series First Second Third First Second Third
VNETL 12.793 5.814 5.111 12.793 5.814 5.111
NNET 6.483 5.171 4.575 6.483 5.171 4.575
RES 5.593 5.191 4.823 5.593 5.191 4.823
EXRES 6.225 5.332 4.996 6.225 5.332 4.996

% Explained b y Factor

Principal Components ML Factor Analysis
% Explained b y Factor % Explained b y Factor

Oct. 2, 2000 till Jan. 26, 2001.

Feb. 8, 2001 till May 31, 2001.

Oct. 2, 2000 till May 31, 2001.

Principal Components ML Factor Analysis
% Explained b y Factor % Explained b y Factor

Principal Components ML Factor Analysis
% Explained b y Factor
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Table 22
Scree plots of factor eigenvalues from the estimation period Oct. 2, 2000 till May 31, 2001.
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Table 23. Decimal vs Control Stock Common Factor Analysis
Principal component analysis on the 20 element correlation matrix of decimal and 
control stock liquidiy and residuals series. Daily series are generated by aggregating 
the results from indivudual event time duration-based regressions. Respective 
eigenvalues can be obtained by multiplying the % by 20, the number of 
series (i.e. .13953*20=2.79)

Series First Second Third First Second Third
VNETL 13.953 9.586 8.507 14.649 9.261 7.696
NNET 11.621 9.133 8.405 10.315 9.097 8.591
RES 11.265 9.593 8.389 11.449 9.765 9.048
EXRES 10.652 9.653 8.704 10.345 9.085 8.99

Series First Second Third First Second Third
VNETL 19.976 9.376 8.188 16.881 10.553 9.236
NNET 12.723 9.946 7.88 10.187 9.384 8.442
RES 10.882 9.516 8.238 9.936 9.661 8.898
EXRES 12.535 9.807 8.765 9.504 9.184 7.949

Series First Second Third First Second Third
VNETL 16.305 9.268 7.759 14.467 8.51 7.161
NNET 10.13 7.918 7.338 8.54 7.654 7.216
RES 9.465 7.769 7.495 8.839 7.555 7.527
EXRES 9.773 8.54 7.669 8.521 7.969 7.638

Oct. 2, 2000 till May 31, 2001.
Decimal Stocks Control Stocks

% Explained by Factor % Explained by Factor

Oct. 2, 2000 till Jan. 26, 2001.
Decimal Stocks Control Stocks

% Explained by Factor % Explained by Factor

Decimal Stocks Control Stocks
% Explained by Factor

Feb. 8, 2001 till May 31, 2001.

% Explained by Factor
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