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CHAPTER I 
 

INTRODUCTION 

The use of educational video has increased over the past decade. In 2009, it became the third 

most popular genre for learning and reached 38% of adult Internet users (Purcell, 2010). Empirical 

research on the use of dynamic audiovisual learning materials in education demonstrates that learners 

not only prefer instructional video over text, but are also more likely to gain deeper conceptual 

understanding of the content from video than from words alone (Baggett, 1984; Mayer, 2002, 2003; 

Mayer & Moreno, 2002). In many learning contexts, knowledge acquisition is better achieved 

through presenting materials in formats optimized to use both the visual and auditory sensory 

channels at the same time (Mayer, 2001). Content presented in video is also more memorable than 

text-based instruction (Jonassen, Peck, & Wilson, 1999). A major assumption underlying this 

empirical work is that humans can construct a mental representation of the semantic meaning from 

either auditory or visual information alone, but when instruction is presented in both formats, each 

source provides complementary information that is relevant to learning (Baggett, 1984).  

At the same time, other empirical evidence suggests that video, like other dynamic and 

complex audiovisuals, may be no better than a series of equivalent content static images because 

dynamic visuals is difficult for students to perceive and understand, and may interfere with successful 

learning (Catrambone & Seay, 2002; Hegarty, Kriz, & Cate, 2003; Hegarty, Narayanan, & Freitas, 

2002; Mayer, 2005; Tversky, Morrison, & Betrancourt, 2002).
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The perceived difficulty of the learning materials may also be increased, in particular for 

novice students, because they do not possess adequate knowledge to discriminate relevant from 

irrelevant information (Bromage & Mayer, 1981; Graesser, 1981) and are often distracted by focusing 

on non-essential features of presentations at the expense of more important information (Lowe, 1999, 

2003). 

Statement of the Problem 

Video requires high levels of cognitive processing to synthesize the visual and auditory 

streams of information and to extract the semantics of the message (Homer, Plass, & Blake, 2008). 

This increased processing increases the learner’s cognitive load, especially when students are novices 

in the knowledge domain and lack appropriate prior knowledge to guide their attention (Moreno, 

2004; Sweller, 1999). Therefore, a key problem in using video as an instructional device is how to 

direct learners’ attention to relevant information and decrease cognitive load, creating conditions for 

the learners’ cognitive system to meet the processing demands that are needed to organize and 

integrate knowledge from a stream of visual and auditory information. More specifically, cognitive 

researchers have identified three major challenges in using audiovisuals in instruction: (1) the 

transitory nature of the dynamic materials, (2) the difficulty of focusing students’ attention on 

essential information in the complex and fast stream of visual and verbal information, and (3) the 

inclusion of extraneous content that competes with the essential information for limited cognitive 

resources (e.g., Ayres & Paas, 2007; Lowe, 1999, 2003; Tversky, et al., 2002). 

Theoretical Framework 

In an attempt to overcome the challenges associated with processing information from 

multimedia materials, such as video, cognitive scientists have developed a number of theories to 

explain learning from materials rich in media and have proposed design principles to manage 

learners’ cognitive load and to enhance knowledge acquisition. Cognitive Theory of Multimedia 
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Learning (CTML) ( Mayer, 2001) and Cognitive Load Theory (CLT) (Sweller, Van Merrienboer, & 

Paas, 1998) help explain and predict learning from educational multimedia. Both theories were tested 

in multimedia instructional environments (Moreno, 2006) and are based on assumptions regarding the 

relationship between cognition and learning from dual representation information formats. 

Five of these assumptions are particularly relevant to learning from video. First, the cognitive 

architecture assumption postulates that the human mind consists of an unlimited, long-term memory 

(LTM) in which all prior knowledge is stored and a limited working memory (WM) in which new 

information is processed. Second, the dual-channel assumption proposes that WM has two channels 

for visual/pictorial and auditory/verbal processing and that the two channels are structurally and 

functionally distinct (Clark & Paivio, 1991). Third, the limited capacity assumption states that each 

channel has limited capacity for information that can be processed at one time (Baddeley, 1986; 

Baddeley & Logie, 1999). Fourth, the active processing assumption explains that humans actively 

engage in the cognitive processes to select relevant verbal and non-verbal information from the 

learning materials, organize the selected information into cognitive structures, and integrate these 

cognitive structures with the existing knowledge to construct a new (or update an old) mental 

representation (Mayer, 1996a). Finally, the cognitive load assumption maintains that during learning, 

humans are typically exposed to three types of cognitive load that compete for the limited resources 

of WM: (1) intrinsic load is the cognitive processing required to comprehend content, (2) extraneous 

load is caused by ineffective formats of content presentation, and (3) germane load, which is 

beneficial to learning, enables learners to engage in deeper cognitive processing of the to-be-learned 

material (Sweller, et al., 1998). 

According to CTML and CLT, integrating complex learning material into LTM may burden 

the limited cognitive resources of the learner. In the case of learning from video, the human cognitive 

system can process only small portions of the large amounts of visual and auditory stimuli received. 

Unlike processing printed text, learners in formal educational contexts typically do not have the 



4 
 

opportunity to stop the video presentation and reflect on what was learned and identify potential gaps 

in their knowledge. Thus, information processing in this situation frequently requires longer and more 

intense periods of cognitive and metacognitive activity. Regardless of the amount of information 

presented in each sensory channel, the learner’s WM will accept, process, and send to LTM only a 

limited number of information units (Attneave, 1954; Jacobson, 1950, 1951). Thus, working memory 

requires direct prompting to accept, process, and send to the long-term storage only the most crucial 

information (Clark, Nguyen, & Sweller, 2006). 

Empirical research informed by CTML and CLT suggested a number of prescriptive 

principles to help multimedia designers create learning materials that are better aligned with human 

cognitive architecture. These design principles can be categorized into two groups. The first group 

comprises strategies aimed at reducing extraneous cognitive load (i.e., processing that is not related to 

the instructional goal) and increasing germane load (i.e., processing that results in deeper learning). 

These strategies include adding cues to signal the main ideas (called signaling) and eliminating the 

unnecessary content from learning materials (called weeding). In signaling, the presentation’s main 

ideas are summarized and highlighted to aid learners in selecting relevant information and organizing 

it into coherent mental representations. In weeding, non-essential content is eliminated in order to 

allow students to engage in processing only the essential content. The second group of design 

principles is aimed at managing intrinsic cognitive load (i.e., essential processing related to the 

learning goal), such as dividing the presentation into small units, called segmentation. With 

segmentation, learning material is broken up into several segments of information to help students 

process one cluster of related information elements before moving to the next one.  

Purpose Statement 

Prior research on multimedia learning demonstrates that when applied individually 

segmentation, signaling, and weeding (SSW) can effectively decrease learners’ self-reported mental 
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effort (e.g., Mayer, 2001; Mayer, Mathias, & Wetzell, 2002; Moreno & Mayer, 1999; Pollock, 

Chandler, & Sweller, 2002) and improve knowledge acquisition (Mayer & Chandler, 2001; Mayer & 

Moreno, 2003; Mayer, Moreno, Boire, & Vagge, 1999). For example, with segmentation, learners are 

able to process pre-structured information and maintain the cognitive capacity necessary to 

understand the learning content, which results in improved transfer of knowledge (Mayer & Chandler, 

2001). In signaled multimedia presentations, learners can build a mental outline of the presentation, 

which improves both the retention and transfer of knowledge (Mautone & Mayer, 2001). Similarly, 

applying weeding to multimedia learning materials was found to reduce extraneous cognitive load 

and improve learners’ transfer of knowledge (Mayer, Heiser, & Lonn, 2001).  

While numerous studies applied the segmentation, signaling, and weeding principles to the 

design of animations, hypermedia, and educational games (Mautone & Mayer, 2001; Mayer & 

Chandler, 2001; Mayer, et al., 2001; Moreno & Mayer, 2000), little research has examined the effects 

of these design principles in the context of educational video. Moreno (2007) analyzed the effect of 

directing attention to relevant information with signaling and segmentation (SS) in dynamic 

audiovisuals. In this study, instructional video and animation were designed using the SS principles 

and compared to video and animation designed without SS. The findings showed that, while the non-

SS group outperformed the SS group on the retention of conceptual information, the SS group 

performed better on the test of knowledge transfer and reported lower levels of cognitive load. 

Research Questions 

The present study builds on prior research in two important ways. First, the study examines 

how the segmentation, signaling, and weeding design principles in educational video affect students’ 

cognitive load and learning outcomes as compared to students learning from a non-SSW version of 

the same video. The second contribution is to outline a theoretical and empirical basis for the domain 

of educational video design. Many of the design techniques that are used in educational video today 
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reflect the subjective perceptions of ―what works best‖ acquired through the designer’s personal 

experience and what is considered best practices in the field, rather than empirical evidence (Najjar, 

1996; Wetzel, Radtke, & Stern, 1994). Another challenge in educational video design has been to 

identify information presentation techniques that facilitate higher-order learning, such as transfer of 

knowledge and structural knowledge acquisition (Gerjets, Scheiter, & Catrambone, 2004). Enhancing 

knowledge transfer is particularly important because successful instruction should not focus 

exclusively on the retention of knowledge but should also encourage creative applications of newly 

acquired knowledge in novel situations (Sternberg & Mio, 2009). 

Specifically, this study was guided by these three research questions: 

1. Will the SSW intervention affect the perceived learning difficulty of novice learners in the 

context of educational video? 

2. Will the SSW intervention affect retention of knowledge, knowledge transfer, and structural 

knowledge acquisition for novice learners in the context of educational video? 

3. Will the SSW intervention improve far transfer of knowledge and structural knowledge 

acquisition to a larger extent than retention of knowledge for novice learners in the context of 

educational video? 

Research Hypotheses 

Research question 1: Will the SSW intervention affect the perceived learning difficulty of 

novice learners in the context of educational video? 

According to CTML, multimedia learning materials designed using signaling and short, 

concise segments help reduce extraneous cognitive load (as reflected by perceived learning difficulty; 

Kalyuga, Chandler, & Sweller, 1999) because the learner is primed to engage in the processing of 

conceptually distinct clusters of information elements (Mautone & Mayer, 2001; Mayer, et al., 2002; 

Moreno & Mayer, 1999; Pollock, et al., 2002). In contrast, in an embellished and long instruction, 
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extraneous material competes with and consumes the learner’s limited cognitive resources and results 

in increased extraneous cognitive load (Bruenken, Plass, & Leutner, 2004; Cennamo, 1993). 

The hypothesis associated with the first research question in this study was that applying 

SSW in educational video would decrease perceived learning difficulty. Evidence for this hypothesis 

was reported in a study by Moreno (2007), where participants who studied a segmented version of 

classroom video (experiment 1) or animation (experiment 2), reported lower mental effort and 

perceived the learning materials as less difficult than participants who studied using non-segmented 

versions of the material. Evidence was also found in five studies where students reported low mental 

effort and demonstrated better learning outcomes when extraneous material was removed from 

multimedia presentations  (Mayer et al., 2001, Experiments 1, 3, and 4; Moreno & Mayer, 2000, 

Experiments 1 and 2). Similarly, reduction in self-reported mental effort was reported by participants 

in a study using a segmented narrated animation explaining the formation of lighting, as compared to 

the control group that learned from a continuously narrated animation (Mayer & Chandler, 2001). 

Research question 2: Will the SSW intervention affect retention of knowledge, knowledge 

transfer, and structural knowledge acquisition for novice learners in the context of educational 

video? 

The dynamic and continuous stream of visual and auditory information in educational video 

may overwhelm novice learners, who lack adequate levels of prior knowledge in the learning domain 

to inform the selection of relevant information. Empirical evidence demonstrates that novice learners 

lack the necessary knowledge to identify the most relevant parts of an instructional animation 

(Kettanurak, Ramamurthy, & Haseman, 2001) and tend to focus their attention on perceptually salient 

rather than thematically relevant, information in animations (Lowe, 2003).  

It was hypothesized that the SSW intervention in educational video would facilitate students’ 

selecting, organizing, and integrating processes, which will result in improved learning outcomes on 
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the tests of knowledge retention, transfer of knowledge, and structural knowledge acquisitions. 

Preliminary evidence suggests that novice learners do not seem to have enough time to engage in 

adequate processing of verbal and visual information when they are exposed to continuous 

multimedia presentation (Mayer & Chandler, 2001). Supporting evidence for the positive affect of 

segmentation was found in a study where students who viewed segments of a narrated animation 

outperformed their counterparts who viewed the non-segmented narrated animation when retention, 

visual-verbal matching, and knowledge transfer were measured (Mayer, et al., 1999). Another study 

showed that students who received segmented lessons about electric motors performed better on 

transfer tests compared to students who received continuous lessons (Mayer, Dow, & Mayer, 2003). 

Signaling is another multimedia design principle that aides cognitive processing (Boucheix & Lowe, 

2010; De Koning, Tabbers, Rikers, & Paas, 2010; Mautone & Mayer, 2001). Because signaling 

reduces the extraneous processing of irrelevant information, the SSW group in the present study was 

expected to outperform the non-SSW group on all measures of learning outcomes. Structural 

knowledge was added as a relevant dependent measure based on the assumption that segmenting and 

adding signals to the learning materials aids students in recognizing the structure of the main concepts 

within itself and in relation to other concepts in the video (Tennyson & Cocchiarella, 1986). 

 Empirical evidence also suggests that novice learners tend to engage in both essential and 

incidental processing, which together exceed their available cognitive capacity (Mayer, et al., 2001; 

Moreno & Mayer, 2002). Therefore, weeding (i.e., removal of non-essential content) can 

hypothetically prevent the learner from engaging in incidental processing so that more cognitive 

resources can be devoted to the processing of essential content. This result was obtained in a study 

where a weeded and concise animation aided students in selecting relevant information compared to a 

narrated animation that included irrelevant material (Mayer, et al., 2001). In two other studies 

students were presented with an animation and concurrent narration intended to explain the formation 

of lightning (Experiment 1) or the operation of hydraulic braking systems (Experiment 2). For some 
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students, the authors added background music, sounds, both, or neither. On tests of retention and 

transfer, the groups receiving both sound and music performed worse than the group that received 

neither, groups receiving music performed worse than groups not receiving music, and groups 

receiving sounds performed worse than groups not receiving sounds (Moreno & Mayer, 2000). 

Research question 3: Will the SSW intervention improve far transfer of knowledge and 

structural knowledge acquisition to a larger extent than retention of knowledge for novice learners in 

the context of educational video? 

CTML design principles provide ways of creating multimedia presentations intended to 

promote deeper learning and provide cognitive support (Mayer, 2005). Prior research on cognitive 

scaffolding tools, such as advance organizers, demonstrates that most of the empirical studies found 

no significance difference between the experimental groups on the tests of knowledge retention, but 

the treatment groups did tend to outperform control groups on the tests of knowledge transfer (e.g., 

Mayer, 1979, 2003). Therefore, it was hypothesized that students learning from video with SSW 

would have more cognitive resources to engage in higher-order thinking (analysis, synthesis, 

evaluation of information) and would perform better on the tests of knowledge transfer and structural 

knowledge than on the test of knowledge retention. This hypothesis is also supported by the results of 

a recent study where students in non-signaling and non-segmentation video groups outperformed 

signaling and segmentation groups on retention tests, but underperformed on transfer of learning 

measures (Moreno, 2007). 

In summary, this study tested the following three hypotheses:  

1. Novice learners in the SSW video group will report lower levels of learning difficulty than 

their counterparts in the control group.  

2. Novice learners in the SW video group will improve in overall knowledge acquisition 

(retention, far transfer, and structural knowledge) in the context educational video.  
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3. Novice learners in the SSW video group will outperform the control group on the tests of 

knowledge transfer and structural knowledge acquisition, but not on the test of knowledge 

retention. 

Definition of Terms 

Educational Video—a stream of visual and auditory media presented simultaneously and 

intended to facilitate learning.   

Educational Multimedia—educational presentations containing any combination of text, still 

images, animated images, motion pictures, sound effects, narration and background music.  

Signaling—adding cues that signal the main ideas and concepts of the learning materials. 

Segmenting—breaking up the learning presentation into short units such as topics or lessons.  

Weeding—eliminating unnecessary or redundant content from learning materials. 

Structural knowledge—the concepts operational structure within itself and between 

associated concepts. 

Knowledge Transfer—applying knowledge from one context (in which the knowledge was 

acquired) to another novel context that had a different underlying structure than those presented in the 

learning materials. 

Cognitive Load—mental effort required to process information. The three types of cognitive 

load are as follows:  

 Intrinsic load: the mental effort caused by the inherent complexity of to-be-learned 

information.  

 Extraneous load: the mental effort imposed by the design and presentation of to-be-learned 

information. 
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 Germane load: the mental effort exerted by learners to process new information to integrate 

into existing knowledge structures. 
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CHAPTER II 
 

 

REVIEW OF THE LITERATURE 

The Benefits of Using Video in Education 

Advancements in information and communication technologies resulted in the renewed 

interest of the educational community in multimedia learning materials. Much of the recent 

discussion has focused on the educational benefits of multimedia to optimize learners’ cognitive 

processing of essential learning content and to facilitate organization and integration of complex 

information. One specific multimedia format—educational video—has been described as important in 

helping students acquire knowledge due to its capability to present learning content dynamically and 

its use of multiple media, such as still and moving images, audio, and animations (Baggett, 1984; 

Mayer, 2005; Shepard, 1967). Since the advent of television, multiple empirical studies on the use of 

dynamic audiovisuals in education have demonstrated that students not only prefer educational video 

over text, but are also more likely to gain deeper learning from video than from words alone (Baggett, 

1984; Mayer, 2002, 2003, 2005; Mayer & Moreno, 2002; Salomon, 1984; Shepard, 1967; Wetzel, et 

al., 1994). Researchers suggested that because audiovisuals contain two representations, visual that 

conveys information about objects and its relation to other objects, and verbal that communicates 

abstract meaning and special attributes of this information, a combination of both representations 

should increase the learning effect (e.g., Guttormsen, Kaiser, & Krueger, 1999; Hegarty, et al., 2003; 

Lowe, 1999).  
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Moreover, watching the changes of visual information, rather than mentally inferring this 

information, helps learner to free up cognitive resources to organize and integrate information more 

effectively and efficiently (Hegarty, et al., 2003; Schnotz & Rasch, 2005). Dynamic visualizations are 

also perceived by students as useful due to their ability to present content that is difficult to verbalize 

but easy to demonstrate (e.g., Chandler, 2009). For example, videos help students observe complex 

natural processes (e.g., the formation of lightning; Mayer & Chandler, 2001), mechanical systems 

(e.g., an electric motor; Mayer, et al., 2003), procedures involved in performing a task (e.g., first aid, 

Arguel & Jamet, 2009; or solving probability calculation problems; Spanjers & Van Merrienboer, 

2010), laboratory experiments, and field observations (DiPaolo, 1995).  

 

Figure 1: Educational uses of video 

 Audiovisuals can help students acquire deeper and more flexible knowledge structures in 

many learning situations. For example, in learning foreign languages, video helps students to hear and 

see native speakers and acquire skills in reading, writing, speaking and listening (Dhonau & 

McAlpine, 2002; White, Easton, & Anderson, 2000). In online and distance learning, video can be 

used to serve a wide geographic area, where it is otherwise impossible for learners to attend face-to-
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face classes (Carnevale & Young, 2001). Figure 1 provides additional examples of the educational 

uses of video. 

The Challenges of Using Video in Education 

Despite the vast amounts of evidence on the benefits of audiovisuals in learning, educational 

research on the use of video also shows that learning materials using multiple formats of knowledge 

representation can place increased cognitive demands on learners’ WM (Mayer, 2001). In the context 

of learning from video, students need to process a continuous stream of large amounts of visual and 

verbal information, focus their attention simultaneously on both representations, select and relate 

these representations together, organize and evaluate their interactions, and finally construct and 

integrate coherent mental representations into LTM (Lowe, 1999; Mayer & Moreno, 2003). These 

mental processes impose a high cognitive load on learners’ cognitive systems and impede learning. 

More specifically, dynamic audiovisual materials place excessive demands on learners’ cognition due 

to (1) their transitory nature; (2) their compositional complexity (i.e., a fast stream of visual and 

verbal information); and (3) the inclusion of extraneous content, such as background music, that 

competes with the essential information for learners’ limited cognitive resources (Ayres & Paas, 

2007; Lowe, 1999; Tversky, et al., 2002). 

First, information in dynamic visualizations is transient; that is, information appears briefly 

and is continuously replaced with new information—what is visible at the present moment has to 

make way for other information presented in the subsequent moment (Ayres & Paas, 2007). In this 

condition, students are forced to process information that is shown very briefly and that disappears 

before it can be consciously selected for further processing, unless some kind of trace in which key 

points are kept, is available (Paas, Van Gerven, & Wouters, 2007). During the viewing of video, 

learners not only need to integrate this new information with existing knowledge that is stored in the 

LTM, but also with previously presented information that has to be kept active in the WM. This 
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transiency in information presentation causes challenges for learners because there is only a limited 

amount of time in which relevant information can receive attention before it decays and is replaced by 

other information. Consequently, it becomes more difficult for the learner to recognize what elements 

of the content are relevant, causing the learner to split his or her visual attention over different 

components of the presentation. Tversky et al. (2002) suggest that failure to find improved learning 

from animations may be due to the fact that animations are often ―too complex or too fast to be 

accurately perceived‖ (p. 247). Several studies have shown empirically that learning from animations 

is hindered if the presentation speed is too high (e.g., K. Meyer, Rasch, & Schnotz, 2010), or if 

attention is distracted by irrelevant movements in the animation (e.g., Lowe, 1999). Thus, the 

transient nature of video is assumed to have serious implications for WM and may result in decreased 

knowledge acquisition (Ainsworth & Vanlabeke, 2004; Arguel & Jamet, 2009; Ayres & Paas, 2007; 

Paas, Tuovinen, Tabbers, & Van Gerven, 2003) (see Figure 2). 

 

 Figure 2: Problems associated with learning from audiovisuals 

Second, dynamic audiovisual presentations require students to simultaneously attend to many 

elements that move from one location to another and might change with respect to different 

perceptual attributes (e.g., color, form, orientation). Learners are required to organize and integrate 
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new information, while extracting the conceptual and structural meaning behind presented concepts 

and then use the newly created knowledge representations as the basis for further processing. 

Learners’ abilities to succeed in these tasks largely depends on the proper allocation of attention 

(Gaddy, Sung, & Van den Broek, 2001). Because novice learners frequently do not possess an 

adequate knowledge base to discriminate relevant information from irrelevant, they become at risk of 

focusing on non-essential information and drawing inaccurate conclusions (Bromage & Mayer, 1981; 

Graesser, 1981). For example, when the learner is unfamiliar with a topic, he or she may find it 

difficult to recognize the main ideas in a presentation or select the relevant elements in a multimedia 

presentation. The lack of learners’ sustained attention on relevant content is also caused by objects 

that are high in their perceptual salience. This is especially evident in situations where the 

thematically relevant aspects are not the most salient in the presented materials (Lowe, 1999, 2003) 

and with field-dependent students, who do not possess the necessary skills to distinguish relevant 

information that is "hidden" in a presentation (Witkin, Moore, Goodenough, & Cox, 1977). 

Finally, audiovisuals often include much extraneous visual and verbal material (i.e., the so-

called ―bells and whistles‖), such as embellished narration, background music, or graphics, which 

may be appealing to students but do not contain any essential information. In these situations, learners 

are forced to simultaneously engage in essential and incidental cognitive processing, which increases 

the chances of overwhelming the learner’s cognitive capacity to understand and internalize essential 

content. There is ample research showing that essential and incidental processing of content creates a 

mental burden, rather than improves learning (e.g., Mayer, et al., 2001; Mayer & Moreno, 2003; 

Moreno & Mayer, 2000). Increased cognitive demands caused by incidental processing leave fewer 

cognitive resources for essential processing, and, therefore, learners are less likely to engage in 

knowledge organization and integration that is necessary for meaningful learning. 

Although these three challenges may arise independent of each other, they are most likely to 

interact and cause undesirable outcomes, such as increased cognitive load, that interferes with 
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effective learning (Bruenken, et al., 2004; Hanson, 1989; Homer, et al., 2008). For example, focusing 

attention seems especially relevant for a novice learner if the information includes essential and 

extraneous content that is available on screen for a brief time. Clark, Nguyen, & Sweller (2006) 

argued that extracting a message for novice learners from a fast presentation is often challenging and 

burdens their WM causing the brain to process only small proportions of the large amounts of stimuli 

received. Therefore, it is recommended that audiovisual designers use techniques that guide learners’ 

attention at the right moment to the right information in the display (Schnotz & Lowe, 2008). 

Multimedia Design Theories and Principles 

Cognitive Theory of Multimedia Learning (Mayer, 2001) and Cognitive Load Theory 

(Sweller, 1999) provide a useful framework to explain the cognitive processing during learning from 

educational video. This framework is based on the idea that learning occurs when students actively 

construct knowledge representations, and these knowledge structures are the result of constant 

interaction between the highly transient sensory store; the limited-capacity WM and LTM, which has 

a virtually unlimited capacity. 

Learners acquire information through the sensory registers (e.g., eye, ear), and store it in the 

sensory store that briefly holds raw, unprocessed information until the stimulus pattern is recognized 

or lost. Pattern recognition involves the matching of stimulus information with previously acquired 

knowledge (Moore, Burton, & Myers, 1996). Sensory registers consist of two separate channels: one 

for the processing of visual or pictorial information and one for the processing of auditory or verbal 

information (Baddeley, 1986; Baddeley & Logie, 1999; Paivio, 1986). Because each channel has a 

relatively limited capacity, it is easy for the cognitive system to become overloaded if more than a 

few segments or chunks of novel information are processed simultaneously (Baddeley, 1986; Miller, 

1956; Sweller, 2003). Presenting unique information in both visual/pictorial and auditory/verbal 

formats allows the learner to use both information processing channels at the same time and enables 
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the learner to construct integrated mental models that make the retrieval of the information more 

likely (Paivio, 1986; Plass, Chun, Mayer, & Leutner, 1998).  

The information is then retained in the WM. Klatzky (1975) defined WM as a work space in 

which information may be rehearsed, elaborated, used for decision making, lost, or stored in the third 

memory structure. Due to these functions, Working memory has also been equated with 

consciousness (Sweller, et al., 1998). WM is described as the bottleneck of human cognitive system 

having very limited duration and capacity. It can store information for only about 30 seconds 

(Peterson & Peterson, 1959), and only about seven, plus or minus two, information segments 

(chunks), can be processed in it at any given time (Miller, 1956). The exact number of items has been 

shown to depend upon a number of factors, such as age, level of fatigue, expertise in the content area, 

complexity of information, and priming (e.g., Baddeley, 1992; Baddeley, Thomson, & Buchanan, 

1975; Stoltzfus, Hasher, & Zacks, 1996). Working memory can maintain information longer than the 

sensory store through a process known as maintenance rehearsal, which recycles material over and 

over as the cognitive system processes it. Without rehearsal, the information would decay and be lost 

within seconds. Research has shown that this limited pool affects everything from decision making to 

the sizes of visual images that can be processed.  

The third component of the human cognitive system is the LTM, which is described as a 

complex and permanent storehouse for individuals’ knowledge about the world and their experiences 

in it (Baddeley, 1986; Moore, et al., 1996; Wyer, Schank, & Abelson, 1995). Long-term memory 

stores information that has been processed and deemed relevant by WM in the form of schemas (also 

referred to as schemata). Schemas are memory structures that organize a large number of information 

elements into a single element. For example, the schema of a house may include such information 

elements as construction materials, room types and layout, home appliances, etc. A major distinction 

between WM and LTM lies in that LTM has no known capacity limitations (Paas & Van 

Merrienboer, 1994; Sweller, et al., 1998). Interactions between WM and LTM allow humans to 
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engage in cognitive activities that can range from the simple memorizing of facts to advanced 

applications; transferring knowledge; and applying skills, which are characteristic of an expert. 

Novice learners are typically engaged in learning by employing sensory channels within WM to build 

new schemas in LTM. 

Based on this cognitive architecture, human verbal and visual perception is extremely 

selective, and learners can focus their attention only on a small amount of auditory/verbal and 

visual/pictorial presentation at once, and only a small portion of that information can be subsequently 

processed in WM (Baddeley, 1992). The elements, that learners will select to process are determined 

by several factors, such as the element’s relative importance and the level of detail (Winn, 1993). The 

analysis of the characteristics affecting the learners’ attention helps to identify the properties that 

enable students to direct their attention to the most relevant elements of the learning materials and to 

predict the conditions under which the audiovisual presentation may be effective (De Koning, 

Tabbers, Rikers, & Paas, 2009). 

While learner’s cognitive capacity available in a specific learning situation is limited and has 

to be distributed over several cognitive and metacognitive processes, the content to be learned induces 

more demands on this capacity depending on its intrinsic complexity and element interactivity (i.e., 

intrinsic load) (Paas, Renkl, & Sweller, 2004). For example, learning individual vocabulary units or 

words of a foreign language is intrinsically less complex than learning grammar because the latter 

requires consideration of the interaction of different parts of speech, and is, therefore, intrinsically 

more complex (Van Merrienboer, Kirschner, & Kester, 2003). Furthermore, different types of 

learning materials and different instructional designs require different amounts of cognitive capacity, 

independent of the content of the learning material. The capacity needed to meet these design and 

presentation related requirements is assumed to make no contribution to the learning process because 

it has to be used to compensate for a ―bad‖ instructional or informational design (e.g., too much text 

on a PowerPoint slide), resulting in extraneous demands on the WM (i.e., extraneous load). Finally, 
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cognitive capacity is needed for active knowledge construction, such as schema integration or 

automation. This type of cognitive load is assumed to be the key factor in the understanding and the 

storing of the learning material and, thus, it is considered to be germane to learning (i.e., germane 

load). Cognitive Load Theory proposes that the total available capacity is limited, and that the three 

types of cognitive load (i.e., intrinsic, extraneous, and germane) are additive in their combined 

capacity requirements. Therefore, the main implication for the design of multimedia learning 

materials is that these materials and activities should be designed with minimal extraneous load 

requirements and maximal potential for germane cognitive processing (Bruenken, Steinbacher, Plass, 

& Leutner, 2002). 

These theoretical considerations and empirical findings in studies informed by CTML and 

CLT have resulted in the development of various design principles that take into account the 

processing limitations of WM to manage the cognitive load demands associated with audiovisuals 

(Mayer, 2001; Paas, et al., 2003). These principles were tested in a variety of learning scenarios, 

resulting in specific prescriptions regarding when they work, for whom, and for which types of 

learning materials (e.g., Mayer & Moreno, 2003; Plass, et al., 1998; Plass, Chun, Mayer, & Leutner, 

2003). These principles involve the manipulation of characteristics of the audiovisual materials such 

as SSW. The following section will review the existing research on three of these design principles as 

they apply to the challenges in using audiovisual presentations in education—transiency of 

information, difficulty in guiding learners’ attention to relevant content, and high amounts of 

extraneous content (Figure 3). 
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Figure 3: Design solutions  

Segmentation 

Segmentation is a design principle in which the learning materials are divided into short units 

and distributed over series of instructional events, such as topics or lessons referred to as segments 

(Clark, et al., 2006). In video, segments are chunks of dynamic visualizations that have an identifiable 

start and end point and which are distinguished by inserting pauses between different segments 

(Boucheix & Guignard, 2005; Hasler, Kersten, & Sweller, 2007; Mayer & Chandler, 2001; Mayer, et 

al., 2003; Moreno, 2007; Spanjers, Van Gog, Van Merrienboer, & Wouters, 2011). The purpose of 

this method is to allow learners to intellectually digest manageable pieces of learning materials before 

moving on to the next segment of information (Sweller, 1999). Segmentation has been described as a 

possible solution to the problem of information transiency educational video (Spanjers & Van 

Merrienboer, 2010). 

Several studies examined the effects of segmentation of dynamic visualizations on learning 

and found that this method is helpful for novice learners, when the learning material is conceptually 
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complex and when the pace of the presentation is rapid. For example, Mayer, Dow and Mayer (2003) 

compared the learning outcomes of students who learned about electric motors using a simulation 

game in which they interacted with an on-screen agent. In the continuous version, students viewed a 

continuous animation showing how the electric motor operates. In the segmented version, a list of 

questions appeared corresponding to each segment of the narrated animation. Results showed that the 

segmented group outperformed the continuous group on the test of knowledge transfer. Boucheix and 

Guignard (2005) compared the cognitive effects of different versions of a slideshow with learners’ 

control. One version of the slideshow allowed students to start the next slide or repeat the previous 

slide and two other versions allowed learners to control the rate of the presentation (fast and slow). 

The researchers found larger gains from pretest to posttest for students using the segmented version of 

the slideshow. 

Three other studies explored multimedia designs featuring learner control and segmentation 

(Hasler, et al., 2007; Mayer & Chandler, 2001; Moreno, 2007).  In these designs, the presentation 

stopped automatically at the end of each segment, and the participants could decide when they wanted 

to continue with the next segment. Moreno (2007) conducted two experiments that had the 

participants view a segmented version of an exemplary classroom video (experiment 1) or an 

animation demonstrating teaching skills (experiment 2). In both experiments participants reported 

investing less mental effort and perceived the learning materials as less difficult than those who 

learned from non-segmented versions of the material. Mayer and Chandler (2001) examined the 

effects of a segmented version of a narrated animation that explained lightning formation using 

sixteen segments. Each segment contained one or two sentences of narration and approximately eight 

to ten seconds of animation. Investigators found that although students in both groups received 

identical content, students who viewed the segmented presentation performed better on subsequent 

tests of problem-solving transfer than did students who viewed a continuous presentation. Finally, 

Hasler et al. (2007) compared four versions of their learning material on the causes of day and night: 
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a segmented animation, a non-segmented animation that students could pause at each moment (i.e., 

with learner control), a non-segmented animation without learner control, and a non-segmented 

audio-only version without learner control. Learning time was equalized for the conditions by having 

students study the learning material repeatedly until ten minutes were over. Their results showed that 

learners who studied the segmented animation or the animation that they could pause performed 

better on test questions than students who studied one of the two other versions of the material, even 

though most learners who could pause the animation did not use that option. Although learners in 

these three studies had less control than the learners in the studies of Boucheix and Guignard (2005) 

and Mayer et al. (2003), Spanjers et al. (2010) suggested that learner control might still have 

influenced the effects of segmentation. 

Segmentation was also found to help define event boundaries. That is, rather than relying on 

students' ability to mentally segment the presentation by inferring the topic shift and the presentation 

structure, designers of the learning materials do it for them (Spanjers & Van Merrienboer, 2010). It 

was hypothesized that segmentation might enhance learning by aiding students in perceiving the 

underlying structure of the process or procedure. For example, Catrambone (1995) compared four 

groups, which differed on whether or not a label for a particular calculation sub-step was provided 

(i.e., providing meaning to the step) and on whether or not that calculation sub-step was placed on a 

separate line (i.e., cue of what constituted a step). Learning outcomes were higher, and students 

mentioned sub-steps more often in their description of the calculation procedure when a label was 

provided, when the step was visually isolated or both the label was provided and the step was 

isolated, compared with the control condition in which no segmenting and cueing were provided. 

The effect of segmentation on students with different levels of prior knowledge is another 

relevant area of study. For example, Spanjers et al. (2011) investigated the effects of segmented and 

non-segmented animations on probability calculation procedures on the learning of students with 

different levels of prior knowledge, and their segmented animations automatically paused after each 
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segment and automatically continued after two seconds. A significant interaction was found between 

the effects of segmentation and prior knowledge: students with lower levels of prior knowledge 

learned more efficiently from segmented animations than from non-segmented animations, while 

students with higher levels of prior knowledge learned equally efficiently from non-segmented and 

segmented ones (cf., the expertise reversal effect; Kalyuga, 2007). One potential explanation for this 

effect is that learners with higher levels of prior knowledge might rely more on their existing 

knowledge structures of the domain and not use segmentation as temporal cues to break up the 

content into relevant chunks. Similar findings were reported by Boucheix and Guignard (2005) that 

show that students with higher levels of prior knowledge do not need additional guidance through 

segmentation because for students with higher levels of prior knowledge, the amount of cognitive 

resources they can devote to cognitive activities with a positive effect on learning is reduced when 

they have to reconcile the instructional guidance with the guidance given by their available cognitive 

schemas (Kalyuga, 2007). 

Signaling 

Another design principle that has been studied extensively is signaling. Signaling can help 

students focus on relevant content in audiovisuals through several methods: increasing the luminance 

of specific objects in a visual display (e.g., De Koning, Tabbers, Rikers, & Paas, 2007), changing a 

word’s font style to boldface in a text (e.g., Mautone & Mayer, 2001), flashing to connect related 

elements (Craig, Gholson, & Driscoll, 2002; Jeung, Chandler, & Sweller, 1997), giving related 

elements the same color (Kalyuga, et al., 1999), providing orienting cues like gestures as guides to 

related elements (Lusk & Atkinson, 2007), or by adding an outline and headings indicated by 

underlining and spoken emphasis (Mayer, 2005). Although signals do not provide any substantive 

information, research found that people learn more deeply from audiovisuals when essential material 

is highlighted or cued (Mautone & Mayer, 2001; B. Meyer, 1975; Tversky, Heiser, Lozano, 

MacKenzie, & Morrison, 2008). De Koning et.al (2009) identify three main functions of signaling 
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that might be related to distinct perceptual and cognitive effects: 1) guiding learners’ attention to 

facilitate the selection and extraction of essential information, 2) emphasizing the major topics of 

instruction and their organization, and 3) making the relations between elements more salient to foster 

their integration. 

Studies on text comprehension have consistently shown that signals improve the recall of the 

content they emphasize (e.g., Cashen & Leicht, 1970; Dee-Lucas & DiVesta, 1980; Lorch & Lorch, 

1996). Other studies showed that memory for uncued content is unaffected (Foster, 1979), inhibited 

(Glynn & DiVesta, 1979), or sometimes even enhanced (Cashen & Leicht, 1970). These findings 

suggest that emphasizing particular content may guide learners’ attention to essential information but 

does not necessarily reduce attention for uncued information (De Koning, et al., 2009). Although 

research on signaling in text-processing produced mixed results, signaling in static illustrations was 

found to guide students’ attention and improve learning (Tversky, et al., 2008). For example, several 

studies found that redirecting the learners’ attention to critical elements of the problem using, for 

example, color highlights led to more correct problem-solutions than studying the same diagrams 

without such cues (Thomas & Lleras, 2007). This result is in line with Park and Hopkins’ (1993) 

recommendation to use perceptual features (e.g., color, motion) to guide learners’ attention to critical 

information during visual instruction (De Koning, et al., 2009).  

Signaling was also found to reduce extraneous cognitive processing during instruction as 

indicated by performance on a secondary task and learning outcomes. Evidence of this function 

comes from a study on text processing, where students read a signaled or a non-signaled text while at 

the same time their reaction times to a secondary task were measured as an indication of cognitive 

load (Britton, Glynn, Meyer, & Penland, 1982). Results indicated that texts containing cues about 

relevant concepts and their relations required less cognitive resources to process than texts without 

cues. Loman and Mayer (1983) compared students in two groups who studied signaled or non-

signaled texts and showed that students in the signaled condition experienced lower cognitive load 



26 
 

causing them to construct better representations of the content, as indicated by better retention and 

transfer performances. The authors suggested that signaling the text reduced students’ visual search 

and the unnecessary load associated with locating relevant information, which freed up WM 

resources for genuine learning activities. 

The effects of signaling were also examined in learning from audiovisuals (Mautone & 

Mayer, 2001) who found that dynamic cueing may improve learning. For example, Lowe and 

Boucheix (2007) examined a form of ―continuous cueing‖ by presenting learners with an animation 

of a piano mechanism with a dynamic spreading color cue. The visual colored path continuously 

provided a close temporal and visuospatial similarity to related auditory information and occurred 

synchronous with the visualization of the main causal chains. Results showed that signaling improved 

students’ understanding of the kinematics and functional model of the piano mechanism, suggesting 

that the spreading color cue effectively enhanced germane cognitive processing (De Koning, et al., 

2009). The investigators indicated that the eye movement data collected in the study suggested that 

the continuous cue produced an altered viewing pattern, that is, it introduced a new way of viewing 

the animation, which may have stimulated learners to cognitively process the content more deeply. 

De Koning, et al. (2009) suggested that the success of this type of cueing may lie in the fact that it 

served not only the function of guiding attention to essential information but also functioned to relate 

elements within a representation (i.e., it made temporal relations more explicit), which may have 

increased cognitive engagement and subsequent understanding of the animation.  

In another study that used signaling to guide attention to essential information, De Koning et 

al. (2007) asked learners to study a non-narrated complex animation illustrating the dynamics of the 

main processes of the cardiovascular system. One group studied the animation with a visual color 

contrast cue highlighting one specific process (i.e., the valves system), whereas another group studied 

the animation without visual cues. Results indicate that emphasizing particular content significantly 

improved comprehension and transfer performance on both the content that was cued as well as on 



27 
 

the content that was uncued. No differences were found in the amount of cognitive load, but given the 

higher learning performances in the cued condition, the investigators argued that visual cueing leads 

to a more effective use of WM resources. To explain these results, De Koning, et al. (2009) suggested 

that the effectiveness of visual cues is dependent on the complexity of the instructional animation and 

only improves learning if learners need cues to assist them in constructing a coherent representation. 

This suggestion could be found in line with the study of Jeung et al. (1997) that has demonstrated that 

the degree of visual complexity of instruction seems to be a crucial factor for the effectiveness of 

cueing. 

Despite the generally positive effects of signaling in text and animations, other research 

demonstrates that visual cueing does not always improve learning. Within this body of work, 

researchers have focused on the effects of graphical cues on the comprehension of a visual-only 

animation without text. For example, in an eye-tracking experiment, Kriz and Hegarty (2007) 

compared two groups of students that studied a user-controlled animation showing the steps in a 

flushing cistern mechanism using arrows to guide attention to essential information and arrows to 

emphasize causal relations between components or inferences. Results revealed no evidence of the 

benefit of cueing on comprehension. Furthermore, while the arrow cues were found to direct students’ 

attention to more relevant information, it did not result in a better understanding of the information 

presented in the animation than studying an animation without visual cues. Other researchers used eye 

tracking and verbal reporting techniques to identify the underlying mechanism of attention cueing. 

For example, a study by De Koning et al. (2007) involved learning from an animation of the 

cardiovascular system in which none, one, or all of its subsystems were successively cued using a 

spotlight cue (i.e., luminance contrast). Results were similar to those of Kriz and Hegarty (2007) in 

that the spotlight cues effectively captured students’ attention, however they did not improve the 

understanding of content. 
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Research also found that improper use of signaling can even increase the cognitive load of the 

learner. In a study by Moreno (2007), prospective teachers studied effective teaching skills with, or 

without visual cues. In the cueing condition, the critical teaching skills that were visualized in the 

animation were highlighted in a bright red color on a step laddered list containing the labels for each 

skill. The labels accompanying the skills in the animation were used to guide students’ attention to 

essential information and relating connected elements between representations. Results showed that 

the cues did not improve learning performance. Moreno (2007) suggested that cueing may have 

forced learners to spatially split their visual attention between the animation and the highlighted 

labels that were presented side-by-side therefore may have interfered with the learning process.  

Although some studies demonstrate that signaling does not always facilitate learning, Mayer 

(2001) suggested that signals should produce a strong effect under certain conditions: (1) for students 

who do not normally pay attention to the outline structure of a passage, (2) for passages that are 

poorly written, (3) when the goal of instruction is promoting retention of the major conceptual 

information and creative problem solving, and (4) when the teacher wants to help students recognize 

topic shifts. 

Weeding 

Weeding is an instructional design strategy in which irrelevant content is eliminated as a 

potential solution to reduce the negative effect of the extraneous materials in audiovisuals. Mayer & 

Moreno (2003) suggested that learning materials are better understood when they include fewer rather 

than many extraneous words, visuals, and sounds and found that students learn better from a concise 

summary that highlights the relevant words and pictures than from a longer version of the summary. 

The inclusion of irrelevant information often primes learners to engage in incidental processing and 

diverts the limited cognitive resources, which may hinder learning (Brünken, Plass, & Leutner, 2004). 
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Sweller (1999) referred to the addition of extraneous material in instruction as an example of 

extraneous cognitive load.  

Tabbers (2002) categorized the extraneous information in the learning materials into three 

kinds. First, it is the information that is irrelevant to learning but interesting to keep students 

motivated. Multiple studies found that these extraneous details often do more harm than good to 

learning (Harp & Mayer, 1997, 1998; Mayer, et al., 2001; Moreno & Mayer, 2000). Second, 

redundant information that is derived from other information elements in the presentation was also 

found to have a negative effect on learning. Redundant information includes presenting text or a 

picture accompanying an animation both on-screen and as a narration (Kalyuga, et al., 1999; Kalyuga, 

Chandler, & Sweller, 2000; Mayer, et al., 2001; Mousavi, Low, & Sweller, 1995), adding explanatory 

text to a diagram that could be understood on its own (Chandler & Sweller, 1991), or adding the full 

text to a summary of a text (Mayer, 1996b). Third, redundant information that is familiar to learners 

who develop expertise in a learning domain can be detrimental to learning. For example, an expert in 

a certain area will not need the information that is essential to a novice. Researchers suggest that 

when experts are forced to process information that is already familiar to them, extraneous cognitive 

load is increased due to processing redundancies, which leads to negative influence on learning 

(Kalyuga, Chandler, & Sweller, 1998; Kalyuga, et al., 2000). 

Research on weeding shows that adding interesting but conceptually irrelevant content in 

text-based materials reduces the amount of relevant material that the learner remembers (Garner, 

Gillingham, & White, 1989; Hidi & Baird, 1988; Wade & Adams, 1990). For example, in a study 

using a free recall test, Mayer (2003) found that students given a weeded version of a text produced 

59 facts, while students given the original version produced 35 facts, indicating a 68% improvement 

for the weeded passage. Students given the concise version also performed better on the 

comprehension test, answering 46 percent of the questions correctly, whereas students given the 

original version answered 37 percent of the test items correctly.  
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Extraneous materials should be excluded from multimedia presentations, even if this extra 

information contains interesting and potentially motivating elements, such as illustrations or music or 

sounds (Harp & Mayer, 1998; Moreno & Mayer, 2000). A number of experiments have shown that 

removing superfluous information from multimedia instructions resulted in more effective learning. 

For example, in two experiments, Moreno and Mayer (2000) compared two versions of a learning 

system; one was delivering information as narration and animation, the other delivering the same 

information with the same narration and animation, but adding interesting yet irrelevant sounds and 

background music. Investigators found strong evidence for a negative effect of background music on 

knowledge acquisition. In both experiments, students working with the material without background 

music outperformed the learners working with the material containing background music. In a similar 

study, Mayer et al. (2001) demonstrated that adding interesting but conceptually irrelevant video clips 

to a multimedia explanation can result in negative effects on students' understanding of the 

explanation. The investigators found that students who viewed video clips added within the narrated 

animation or placed before the narrated animation displayed poorer problem-solving transfer 

performance than students who received no video clips.  

In computer-based instruction, Mayer (2008) indicated that students performed better on a 

problem-solving transfer test in 13 out of 14 experiments involving topics like lightning, ocean 

waves, and brakes after receiving a concise lesson rather than an expanded lesson (Harp & Mayer, 

1997, 1998; Mayer, Bove, Bryman, Mars, & Tapangco, 1996; Mayer, et al., 2001; Moreno & Mayer, 

2000). Mayer explained that including extraneous material caused learners to engage in high levels of 

extraneous processing. The extraneous material competes for cognitive resources in WM and can 

divert attention from the important material, disrupt the process of organizing the material, and can 

prime the learner to organize the material around an inappropriate theme. Mayer (2001) identified 

three complementary versions for removing the extraneous content from learning materials: (1) 

student learning is lessened when interesting but irrelevant words and pictures are added to a 
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multimedia presentation; (2) student learning is decreased when interesting but irrelevant sounds and 

music are added to a multimedia presentation; and (3) student learning is improved when unneeded 

words are eliminated from a multimedia presentation.   

Summary and Implications for the Design of Educational Video 

Segmentation and Cognition 

According to the cognitivist view of learning, learning involves the construction of cognitive 

schemas, which are stored in LTM. To construct those schemas, information from the dynamic 

visualizations must be maintained and processed in WM (Sweller, et al., 1998). That is, information 

elements need to be selected from the stream of information and then mentally integrated with 

information that was presented earlier and with prior knowledge in order to form a representation 

from the shown presentation (Moreno & Mayer, 2007). In this condition, the cognitive activities, 

complexity of the learning materials and limitations of WM create a bottleneck for learning (Sweller, 

et al., 1998). Cognitive researchers recommend breaking up the presentation into small units and 

allowing pauses between these units to reduce its complexity and to provide students with sufficient 

time to attend to the necessary cognitive activities without having to simultaneously attend to new 

incoming information, thereby reducing extraneous cognitive load at certain points in time (e.g., 

Ayres & Paas, 2007; Mayer & Moreno, 2003; Moreno & Mayer, 2007; Schnotz & Lowe, 2008).  

Another function of the segmentation method is to enhance students’ perception of the 

presentation’s underlying structure. Instead of relying on students' ability to mentally segment the 

presentation; instructional designers can segment the presentation to optimize learning. Dynamic 

visualizations present multiple steps or units in an event or procedure across time, and students are 

required to attain to the structure of these events or procedures (K. Meyer, et al., 2010; Schnotz & 

Lowe, 2008). According to the event segmentation theory (Zacks, Speer, Swallow, Braver, & 

Reynolds, 2007) indicates that individuals construct the underlying structure of a procedure or an 
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event from their models in the WM on the basis of incoming sensory information and prior 

knowledge. Students then use these models to develop predictions about what will happen in the 

presentation next and compare these predictions with what they perceive through their sensory 

registers. When students’ predictions and the new incoming sensory information do not coincide, a 

new event or procedure model for the segment needs to be constructed and an event boundary needs 

to be distinguished. The distinction of event boundaries is a result of the interaction between WM and 

LTM to interpret the information stored in previously acquired schemas, therefore it can be expected 

that individual differences in mental segmentation may lead to differences in learning outcomes 

(Spanjers, et al., 2011). Novice learners, in particular, may experience increased cognitive demands 

because they have not developed LTM schemas with which to compare incoming information, and 

should therefore benefit from explicit segmentation in audiovisual materials to a greater extent than 

advanced learners.  

Signaling and Cognition 

A crucial part of constructing a coherent representation from instructions is learners’ ability 

to identify and extract main ideas or concepts. Signaling can guide the process of concepts 

identification by cueing the content that requires intentional processing. Human visual perception is 

extremely selective allowing learners to focus their visual attention only on a small amount of a visual 

display at once and only a small portion of that information can be subsequently processed in WM 

(Baddeley, 1992). Furthermore, the elements learners could attend to are determined by the elements’ 

prominence and their level of detail (Winn, 1993). Thus, carefully signaling the relevant information 

in the presentation can help students in their cognitive process and enhance learning outcomes.  

Cognitive scientists (e.g., Mayer, 1997, 2001; Sweller, 1988, 1999) identify three main 

functions of signaling that might be related to distinct perceptual and cognitive effects: (1) guiding 

learners’ attention to facilitate the selection and extraction of essential information, (2) emphasizing 
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the major topics of instruction and their organization, and (3) making the relations between elements 

more salient to foster their integration. Because WM is severely limited in both its duration and 

capacity to process new information, directing learners’ available cognitive resources to the relevant 

learning content is therefore important to designing instruction.  

Signaling can focus learners’ attention on the most relevant information leading to decreased 

visual search and mental resources required to control visual attention. Thus, signaling reduces 

extraneous cognitive load associated with locating relevant information, freeing up cognitive 

resources for germane learning processing directly relevant for schema construction. Additionally, 

information is usually made up of individual parts that together constitute a hierarchical structure 

(Schnotz & Lowe, 2008). Information comprehension is dynamic and the global structure of the 

content needs to be updated after each transition between topics (Lorch, Lorch, & Matthews, 1985). 

However, discerning the topic structure from the whole presentation often fails if learners are not 

adequately supported with appropriate signals that emphasize the presentation’s overall topic 

structure (Loman & Mayer, 1983; Lorch & Lorch, 1995). Therefore, helping learners identify the 

individual elements and synthesize them into a coherent knowledge representation is an essential task 

for instructional designers. Although signaling emphasizes the organization of instructions and helps 

learners to accurately represent the structure of the presented information, organizational cues are 

only effective in altering the organization of content in memory if the instructions are complex and do 

not involve a well-defined structure or contain many topics (Lorch, 1989; B. Meyer, 1975).  

Weeding and Cognition  

Any instructional activity that requires students to engage in the processing of information 

that is not directly relevant to learning the content is likely to impair learning by increasing 

extraneous cognitive load (Paas, et al., 2004). In video-based instruction, visual and auditory 

materials are processed in different subsystems of WM (the dual-channel capacity assumption) and 
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both subsystems have separate, limited processing capacities that cannot be exchanged between the 

systems (Baddeley, 1986; Baddeley & Logie, 1999). Extraneous cognitive load occurs when learners 

are required to engage in irrelevant cognitive activities not directed toward schema acquisition and 

automation rather than the intrinsic nature of the task (Sweller & Chandler, 1994; Sweller, et al., 

1998). Therefore, all aspects of learning materials should eliminate irrelevant cognitive activities, 

reduce extraneous cognitive load, so the learner is primed to engage only in essential processing and 

allowed to devote more cognitive resources to essential processing.  
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CHAPTER III 
 

METHODOLGY 

Design Overview 

This study used a quasi-experimental, between-subjects design to measure the effect of 

segmentation, signaling and weeding (SSW, independent variable) on four dependent variables: 

(1) perceived learning difficulty, (2) knowledge retention, (3) transfer of knowledge, and (4) 

structural knowledge acquisition. Prior knowledge and metacognitive awareness were included in 

the model as covariates. The instruction used in the present study was an educational video with 

two different designs. One group viewed the SSW version of the video (i.e., the SSW group) 

while the original, non-SSW video was viewed by the second group (i.e., the non-SSW or control 

group). Each group was randomly assigned to one of the two treatment conditions via a coin toss. 

To protect the participants’ identity, all questionnaires were anonymous and students used the last 

four digits of their campus wide identification number as identifier. Participants in both groups 

spent approximately 32 minutes watching the video and 35 minutes for pre- and post-test. 

Watching the video and testing for both groups were part of the regular class activities and 

conducted during the same week of class and at the same time of the day. 
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Participants 

Participants were 226 undergraduate, non-science majors enrolled in two introductory 

entomology courses at Oklahoma State University, ENTO 2003: Insects and Society and ENTO 

2223: Insects and Global Public Health. There were 110 students in the SSW video group and 116 

students in the non-SSW group. Males totaled 132 (58.4%) and females 94 (41.6%). Average age was 

20 years old (SD = 3.08), with mean years in college of 2.3 (SD = 1.07). All participations were 

fluent in English and consisted of freshmen, sophomores, juniors, and seniors in non-science majors 

such as accounting, history, education, business, and political science. Students were given credit for 

their participation in the study. 

Instrumentation 

For each participant, the paper-and-pencil materials consisted of two typed packets on 8.5x11 

inch sheets of paper. The pre-test (the first packet) was handed to students before watching the video 

and consisted of a consent form, a one-page demographics survey, a 52-item metacognitive awareness 

inventory to assess participants’ metacognitive awareness and self-regulated use of learning strategies 

(Schraw & Dennison, 1994), and a 10-item test of prior knowledge to assess the participants’ domain-

specific knowledge. The test of prior knowledge was developed by course instructors based on the 

relevant entomology concepts covered in the U.S. high school science curriculum. The post-test (the 

second packet) was handed out after watching the video and consisted of a one-question instrument of 

the perceived difficulty of the video as an indirect subjective measure of cognitive load (Kalyuga, et 

al., 1999), a 20-question multiple-choice test (i.e., knowledge retention measure), a 5-question 

multiple-choice test (i.e., knowledge transfer measure) and a 20-item sorting task to organize the main 

concepts covered in the video (i.e., structural knowledge measure). All learning measures were 

developed by the course instructors and approved by the Oklahoma State University Institutional 

Review Board (see Appendix A). 
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Pre-test 

Consent form: This form was used to identify volunteers for this study. Participants were free 

to volunteer in the experiment by signing or decline to volunteer by not signing the consent form. 

Students who decided to participate signed the form, while students who declined to participate, left 

the form unsigned (see Appendix B). 

Demographics questionnaire: The demographics questionnaire was developed by the 

investigator to collect information related to the demographic makeup of the participants. The 

questionnaire includes questions about participants’ gender, age, year in college, grade point average, 

school majors and the preferred learning style. The learning style question was worded in the 

following way: I prefer learning from 1) lectures, 2) books, 3) videos/movies; 4) hands-on activities 

(see Appendix C). 

Metacognitive awareness inventory (MAI): This instrument contains 52 true/false questions 

to determine participants’ self-regulating use of learning strategies (Schraw & Dennison, 1994). The 

instrument consists of questions such as the following: I am good at organizing information; I 

consciously focus my attention on important information; I have a specific purpose for each strategy I 

use; I learn best when I know something about the topic. Cronbach’s α for the MAI with a population 

of college students was estimated at .86, indicating adequate internal consistency (Hartley & 

Bendixen, 2003) (see Appendix D). 

Prior knowledge test: This measure consisted of 10 questions with four-option multiple-

choice responses to assess participants’ prior knowledge about insects. Each correct answer yielded 

one point for a total of 10 points. Scores ranged from zero (no correct responses) to 10 (all correct 

responses) (see Appendix E). 
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Post-test 

Self-reported video difficulty: This questionnaire consisted of one Likert-scale self-report 

question to assess participants’ perceived difficulty associated with watching the video. The 

questionnaire asks participants to indicate the degree of difficulty experienced from the video (from 1 

= extremely easy, to 9 = extremely difficult). Participants reported the level of their perceived 

difficulty by placing a check mark next to one of the nine items that applied to them. This 

questionnaire was based on a survey developed by Paas & Merrienboer (1994) and updated by 

Kalyuga, Chandler, & Sweller (1999) and has been validated in other studies. Reliability of the scale 

with a population of college students was estimated with Cronbach’s coefficient α at .90 (Paas & Van 

Merrienboer, 1994) (see Appendix F). 

The Retention test: This measure consisted of 20 questions multiple-choice to assess 

participants’ retention of the core concepts from the video. Each segment was covered by five 

questions (e.g.,: Which is NOT part of insect’s breathing system?) Participants could choose from the 

following responses: Spiracle; Lungs; Branching Tubes. Each correct answer yields 1 point, for a 

total of 20 points. The score ranged from zero (no correct responses) to 20 (all correct responses) (see 

Appendix G, questions 1-4, 6-9, 11-14, 16-19 and 21-24). 

The test of knowledge transfer consisted of five multiple-choice questions to assess 

participants’ ability to infer the answer based on the information conveyed in the video. The questions 

covered five concepts from the video with one separate question for each segment.  For example, the 

participants were asked: Could a soldier termite perform the role of a worker termite? The responses 

they could choose from: a) yes, social insects will likely rotate tasks during their lifespan; and b) no, 

termites have a short lifespan and are not likely to change the role they perform. The video did not 

cover this question directly, but the answer could be inferred based on the information about the life 

of insects from the video. Every correct answer was worth one point and the sum score ranged from 
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zero (no correct responses) to five (all correct responses). These questions were designed to elicit 

transfer of knowledge by exposing participants to logically equivalent problems that required them to 

transfer knowledge from one context to another (Barnett & Ceci, 2002).  

The structural knowledge test consisted of a numbered list of 20 concepts covered in the 

video (presented randomly) and a sheet of five columns representing the five conceptual segments of 

the video. Participants were asked to write the number associated with each concept in the appropriate 

column. Participants received one point for every correct answer, and the sum score ranged from zero 

(no concepts arranged correctly) to 20 (all concepts arranged correctly) (see Appendix H). 

All learning measurements were developed by the course instructor who did not participate in 

collection or analysis of data beyond developing these instruments. All self-developed tests of 

learning were reviewed by two entomology instructors for construct validity. The ratings indicated 

that the tests adequately reflected and assessed the entomology concepts included in the video and in 

the tests. 

Materials 

The video used in the present study was part of the instructors’ supplemental materials for the 

corresponding topic about insects as well as SSW version of the same video. The original video 

entitled ―Insect‖ was professionally produced by the British Broadcasting Company in 1994. It is part 

of an educational video series that investigates the insect’s life cycle and various tasks insects 

perform, such as eating, breathing, flying and communicating. The original and the SSW-augmented 

video included close-up video shots of insects, animations, diagrams, photographs, sound effects, and 

voice-overs. The investigator obtained a permission to use the video in this experiment through the 

office of the legal consular of the Learning Resource Center at Tulsa Community College. The TCC 

legal consular issued a legal justification document stating that the use of this video in this experiment 

falls under the Fair Use Act for Educators (see Appendix I). 
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The SSW version of the video was modified by applying the CTML principles of segmenting, 

signaling, and weeding (SSW). Specifically, the following design manipulations were performed. 

First, the video was divided into five conceptual segments (i.e., segmentation), each about six minutes 

long (Table 1). These segments were built-in as part of the video, and students had no control over the 

sequence of the presentation, playing or stopping them. The order of presenting information was 

identical for both versions.  

Table 1  

Segment titles  

Segment Title Duration 

1. Basic Facts 6 minutes 

2. Insect Body parts 6 minutes 

3. Insects’ Evolution 6 minutes 

4. Aquatic life, visual system & communication 6 minutes 

5. Defense techniques & social insects 6 minutes 

 

Each segment was introduced by a static graphic indicating segment’s name, which remained visible 

for about 10 seconds (see Figure 4).   

 

Figure 4: Segment introduction 
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To maintain a fair design between both groups, the investigator divided the video in the non-

SSW condition in the same way as in the SSW condition, with five breaks; however the segment’s 

title was replaced by a static graphic without any mention of the segment’s content. The breaks were 

marked by the following graphic titles: part one, part two, part three, part four and part five. 

The signaling method used an introduction and a summary screen for each segment and 

added cues and signals for the main information (i.e., signaling) (see Table 2). 

Table 2:  

Concepts signaled in the SSW video 

Segment Topics covered in each segment 

Segment 1  Insects’ habitat 

  Insects in human Mythology 

  Negative & Positive Aspects  

Segment 2  Common characteristics 

  Breathing System 

  Mouths & Eating 

  Spread of Human Diseases 

Segment 3  Early insects 

  Pollination & co-evolution 

  Reproduction 

  Complete Metamorphosis 

  Flying 

Segment 4  Aquatic life 

  Incomplete Metamorphosis 

  Anatomy & function of the eye 

  Communication techniques 

Segment 5 
 Defense techniques 

 Social life 

 

Each segment began with an introduction showing the segment title and followed by a list of 

the core concepts presented as a narrated bulleted list for 20 seconds. For example, the second 

segment began with the title ―Insect Body Parts‖ followed by a list of topics: Common characteristics, 

breathing system, mouths & eating, and spread of human diseases (See Figure 5).  
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Figure 5: Topics that make up the Insect Body Parts segment  

Summaries were presented at the end of each segment as concise narrated bulleted lists of the 

concepts discussed in each segment and presented for 60 to 90 seconds (see Figure 6). Concepts were 

also signaled using static diagrams like the one shown in Figure 6. 

 

Figure 6: A diagram used for signaling and segment summary 

Finally, weeding was performed with the help of the course instructor to eliminate sections of 

the video that were entertaining but not essential for the understanding of content. For example, the 

investigator removed an animated section of an insect morphing into a car and a section on folklore 

involving European insects. Removing these sections from the SSW video did not affect the structure 

or the meaning of the video content. In the non-SSW video, these sections were left in the video. 
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The resulting SSW video was 32 minutes long, which matched the duration of the original 

video viewed by the control group. Videos were presented in the Digital Video Disk (DVD) format. 

The classroom used in this study was a large lecture hall where students normally attend their 

lectures. The lecture hall was equipped with a computer, video projector, speakers and a large 12x8 

foot screen.  

Procedure 

First, each section was randomly assigned to either SSW or non-SSW video via a coin toss. 

Course instructors were present during the experiment to explain the purpose of the research followed 

by the investigator reading the recruitment script (see Appendix J). The recruitment script included a 

brief introduction about the investigator, the scope of the study and the confidentiality of the data 

collected. No sign-up sheet was used. Second, students who expressed willingness to participate in 

the experiment were given the first packet to complete before watching the video. The first packet 

consisted of a demographic survey, a test of prior knowledge, and metacognitive awareness 

inventory. Then, participants in both groups watched the video in its entirety without pausing for 

questions, discussions, or note-taking. Immediately after watching the video, participants received the 

post-test packet consisting of the learning difficulty survey and tests of learning.  

Data Analysis 

The basic data analysis model for this study was a one-way between-groups multivariate 

analysis of covariance (MANCOVA) to compare the differences between the SSW and control 

group’s means on four dependent variables: the perceived difficulty of the video presentation, 

retention of knowledge, structural knowledge acquisition, and knowledge transfer. This experiment 

design controlled for the participants’ variances in prior knowledge, learning style, and metacognitive 

awareness using t-tests and a chi-square test for the learning style variable, which showed no 

differences between the groups. Prior knowledge was included as a covariate in the MANCOVA 
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analysis. To validate the significance of the model and the interpretation, preliminary analysis of the 

required assumptions was conducted focusing on the reliability of covariates, normality, homogeneity 

of variance, and homogeneity of regression. All statistical tests were performed with alpha at .05. 

MANCOVA has been successfully implemented in similar prior studies (e.g., Moreno, Reisslein, & 

Ozogul, 2009; Renkl, Atkinson, & Groe, 2004). 
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CHAPTER IV 
 

 

FINDINGS 

Descriptive Statistics 

The basic data analysis model used for this study was a one-way between-groups 

multivariate analysis of covariance (MANCOVA). Table 3 shows the mean scores and standard 

deviations for the SSW and non-SSW groups on the measures of difficulty rating, knowledge 

retention, knowledge transfer, and structural knowledge. Descriptive statistics that characterize 

the participants are presented in Table 3.  

Table 3      

Descriptive statistics for the dependent measures 

 Learning 

Difficulty 

Knowledge 

Retention 

Knowledge 

Transfer 

Structural 

Knowledge 

Overall 

Learning 

Group M SD M SD M SD M SD M SD 

SSW 2.31 1.15 15.83 2.53 4.52 .763 11.98 2.44 31.20 6.17 

Non-SSW 2.76 1.54 14.74 3.05 3.97 1.04 10.49 3.14 28.82 6.27 

 

Note: Scores ranged from 0 to 9 for the learning difficulty rating, from 0 to 20 for the 

retention test, from 0 to 5 for the transfer test, from 0 to 20 for the structural test and from 0 

to 45 for the overall learning outcomes 
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Table 4 

Descriptive statistics for the participants’ demographics 

 
N Minimum Maximum Mean Std. Deviation 

GPA 226 2.2 4.0 3.3 .42 

Gender 226 1 2 1.42 .49 

Student's age 226 17 51 20.19 3.08 

Years in College 226 1 4 2.3 1.07 

 

Data Screening 

Prior to the main analyses, data were screened for out-of-range responses and systematic 

patterns of missing data (e.g., when no value was stored for the variable within variable sets). Missing 

data has been reported as one of the most pervasive problems in data analysis (Tabachnick & Fidell, 

2008) and can be an issue of concern when it obscures true differences that exist between groups. 

However, in the present study none of the above concerns were detected. The missing values were 

found to be scattered evenly across variables and treatment conditions with fairly small number of 

cases and no apparent patterns or clusters emerging. For example, the investigator observed three 

cases out of 229 participants where pretest data had been collected, but was not accompanied with 

posttest data, and vice-versa.  

Occasional missing values were dealt with in two phases. First, initial "data cleaning" 

procedures involved purging any cases that did not contain both pre and posttest data or there was no 

identifiers for both pre and posttest packets. As a result, the original sample (n = 229) was reduced to 

226. The second method employed for handling missing data was to insert group mean for that 

particular variable in the missing data cell (Cohen & Cohen, 1983; Tabachnick & Fidell, 2008).  

 

 



47 
 

MANCOVA Assumptions 

Normality    

MANCOVA and other multivariate techniques are based upon the assumption of multivariate 

normality, which assumes that sampling distributions of means for the dependent variables are 

normally distributed. Although with the equal cell size, the data is protected against Type 1 error due 

to assumption violation, individual item distributions were checked to ensure normal distribution (i.e., 

no univariate outliers). To check for such normality, each of the study's dependent measures was 

assessed by constructing histograms and normal probability plots, and by examining the kurtosis 

values associated with each distribution. The descriptive information revealed that the normality 

assumption was met according to the conventional criteria (see Table 5). 

Table 5 

Normality levels for each dependent variable 

 Mean Std. Deviation Skewness Kurtosis 

 Statistic Statistic Statistic Std. Error Statistic Std. Error 

Learning Difficulty  2.54 1.379 1.269 .162 3.230 .322 

Knowledge Retention 15.27 2.854 -.939 .162 .964 .322 

Knowledge Transfer 4.23 .954 -1.323 .162 1.426 .322 

Structural Knowledge 11.22 2.915 -1.058 .162 1.998 .322 

Overall Learning 
29.98 6.323 -1.099 .162 1.129 .322 

 

Multicollinearity, Singularity and Linearity 

Multicollinearity and singularity refer to the assumption that dependent variables are 

expected to be weakly to moderately associated with one another so as to not contribute redundant 

information. Redundancy was determined by assessing the degree of relationship between variables 

and by reviewing within-cell correlation matrices. The results of the correlation values for the 

dependent variables revealed that perceived learning difficulty ranged from -.16 to -.26, the recall 
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measure ranged from -.26 to .78, the knowledge transfer from -.24 to .64, the structural knowledge 

from -.16 to .69 and the overall learning outcomes ranged from -.25 to .78. With regard to linearity, 

scatter plots were examined among each cluster of dependent measures, and no significant deviations, 

curvilinear relationships, or outliers were noted (see Table 5).   

Variable Correlations 

To assess the overall relationship between the dependent variables and the pretest of prior 

knowledge as an appropriate and valid covariate, a correlation matrix was constructed. The matrix 

revealed that the dependent variables were highly correlated with the pretest and all other dependent 

variables (i.e., retention, structural, and far transfer, overall learning outcomes, and cognitive load); 

therefore, the pretest of prior knowledge is an appropriate and valid covariate for this analysis (see 

Table 6).  

Table 6 

Correlations among dependent variables and prior knowledge 

 Prior 

Knowledge 

Learning 

Difficulty 

Knowledg

e Retention 

Transfer of 

Knowledge 

Structural 

knowledge 

Overall 

Learning 

Prior knowledge  (1)      

Learning Difficulty  -.235
*
 (1)     

Knowledge Retention .432
*
 -.260

*
 (1)    

Knowledge Transfer .267
*
 -.242

*
 .619

*
 (1)   

Structural Knowledge .247
*
 -.164

*
 .385

*
 .273

*
 (1)  

Overall .390
*
 -.245

*
 .784

*
 .641

*
 .685

*
 (1) 

Note: Correlation higher than r = 0.25 is significant at p < 0.05 level (two-sided) 

 

The shared variability between the covariate and the five dependent variables ranged from -

.16 to .818. Pearson Correlation and the significance level was < .01. 

               

 



49 
 

Groups Homogeneity 

To examine whether there were differences between groups and to control for these 

differences as a potential confounding effect, independent t-tests were conducted on the following 

variables: pretest of prior knowledge, learning style, and metacognitive awareness. The results 

indicated that both groups were very similar across these characteristics and the existing differences 

could not affect the analysis outcomes (prior knowledge: t =.990 (224), p = .323, learning style: t 

=.357(224), p = .721, and metacognitive awareness: t = -.856 (224), p = .393). Chi-Square revealed 

that there was no significant difference between participants on the learning style and that learning 

styles were equally representative in both groups, chi-square = 5.242 (df = 4, N =224), p = .263. 

These results indicate that any change in learning outcomes from the video was not due to differences 

in prior knowledge or metacognitive awareness.   

MANCOVA Analysis 

To assess the main effects of the SSW treatment, MANCOVA was utilized as an initial test of 

differences. The main MANCOVA was conducted to determine the effect of the video design on 

students’ learning outcomes and perceived learning difficulty as a measure of cognitive load. 

Dependent variables included retention of knowledge, transfer of knowledge, structural knowledge 

acquisition, and learning difficulty; the independent variable was video design; and the participants’ 

prior knowledge was included as a covariate. MANCOVA results revealed a significant main effect 

for the SSW treatment, Wilks' Lambda Λ = .84, F (1,223) = 8.345; p < .01, η2 =. 16, which prompted 

a series of univariate tests for each dependent measure summarized in Table 7. 
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Table 7 

Univariate analyses of the effects of SSW on perceived learning difficulty, knowledge retention, 

knowledge transfer, structural knowledge, and overall learning 

Dependent Variable Sum of Squares df Mean Square F P η2 

Learning Difficulty 9.385 1 9.385 5.297 .022 .023 

Knowledge Retention 48.358 1 48.358 7.477 .007 .032 

Knowledge Transfer 15.281 1 15.281 19.506 .000 .080 

Structural Knowledge 110.429 1 110.429 14.614 .000 .062 

Overall Learning 239.741 1 239.741 7.235 .008 .031 

 

Research Questions 

Research Question 1: Will SSW methods decrease extraneous cognitive load for novice 

learners in the context of educational video? 

Results of the between-subjects analysis showed that the SSW group reported lower learning 

difficulty (M = 2.31, SD = 1.147) compared to the non-SSW group (M = 2.76, SD = 1.541) and that 

the difference was statistically significant at (F (1,223) = 5.297, p = .022). The results produced an eta 

square of .023, indicating that the SSW intervention accounted for a 2.3% decrease in the perception 

of learning difficulty for students in the SSW group (see Table 7).  

Research Question 2: Will SSW methods improve retention, far transfer, and structural 

knowledge for novice learners in the context of educational video? 

Post-hoc analysis revealed group mean differences on four measures of learning. First, the 

SSW methods group (M = 31.20, SD = 6.173) performed better on gaining overall knowledge 

compared to the non-SSW group and the difference between the groups was statistically significant, F 

(1, 223) = 7.235, p = .008. The results also showed an eta square of .031, indicates that the SSW 

methods had an estimated main effect of 3.1% improvement in the overall knowledge for the 

participants in the SSW group. 
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The SSW group scored higher on the retention test (M = 15.83, SD = 2.526) compared to the 

non-SSW group (M = 14.74, SD = 3.051), and the difference between both groups was statistically 

significant, F (1, 223) = 7.477, p = .007. The results produced an eta square of .032, indicating a 3.2% 

improvement effect in knowledge retention in the SSW video group. 

The SSW group also scored higher on the test of knowledge transfer of (M = 4.52, SD = .763) 

compared to the non-SSW (M = 3.97, SD = 1.038), and the difference was statistically significant F 

(1, 223) = 19.506, p < .001. The results produced an eta square of .080, indicating that the 

intervention had an estimated main effect of 8 % improvement in knowledge transfer for the 

participants in the SSW group. 

Finally, the SSW group scored higher on the structural knowledge test (M = 11.98, SD = 

2.442) compared to the control group (M = 10.49, SD = 3.144), and the difference was statistically 

significant, F (1, 223) = 14.614, p < .001. The results produced an eta square of .062, indicating that 

the SSW methods had an estimated main effect of 6.2% improvement in structural knowledge 

acquisition for the participants in the SSW group.  

Research Question 3: When used with novice learners in the context of educational video, 

will the SSW intervention improve transfer of knowledge and structural knowledge acquisition to a 

larger extent than retention of knowledge? 

The results of this study showed that students who watched the SSW video scored higher on 

transfer and structural knowledge compared to the retention test. As indicated above, eta square 

showed an 8% improvement in the results on the test of knowledge transfer (F (1, 223) = 19.506, p < 

.001), a 6.2% improvement in structural knowledge acquisition (F (1, 223) = 14.614, p < .001), and a 

more modest 3.2% improvement in knowledge retention (F (1, 223) = 7.477, p = .007). 
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CHAPTER V 
 

 

CONCLUSION 

General Discussion 

Educational video has the potential to make the learning process more engaging and 

effective, but it can also prove cognitively overwhelming. The present study used CTML and 

three of its design principles—segmenting, signaling, and weeding—to reduce novice learners’ 

extraneous cognitive load and facilitate knowledge acquisition. The results of this study support 

previous findings produced in the context of learning from educational animations and 

hypermedia and provide empirical evidence that validates this theory in several ways.  

This finding supports CTML’s underlying assumption that WM has a limited capacity, 

and the human mind can only process small portions of large amounts of visual and auditory 

stimuli at one time. Furthermore, it is consistent with the evidence that SSW principles reduce 

perceived cognitive load by focusing students’ attention on important aspects of the learning 

material, providing concise cues about relevant information, and guiding them to engage in 

organizing and integrating only the essential information (Mautone & Mayer, 2001; Mayer & 

Moreno, 2003). First, the use of segmenting, signaling, and weeding in educational video reduced 

perceived learning difficulty for novice learners, which has been associated with extraneous 

cognitive load (e.g., Kalyuga, et al., 1999; Paas & Merriënboer, 1994).
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The segmentation principle used in the present study helped reduce students’ perception of 

the task’s learning difficulty by chunking 32 minutes of continuous video content into 5 coherent 

video segments. Although the SSW and control group spent the same amount of time watching the 

video (32 minutes), the duration of each segment in the SSW condition was relatively short (about 6 

minutes) and segmenting the long video contributed to the optimization of learners’ knowledge 

integration processes during learning. In the non-SSW condition, learners were not able to process 

information as effectively and efficiently because the continuous stream of novel information without 

explicit breaks interfered with the organization and integration of individual information segments. 

Second, signaling helped learners in the SSW condition to organize relevant information into a 

coherent structure and decreased extraneous cognitive load associated with the extraction of semantic 

cues that were implicit in the non-SSW video. Finally, weeding reduced the cognitive processing of 

extraneous material and resulted in decreased perception of learning difficulty and higher levels of 

sustained attention on relevant aspects of the video (Mayer & Moreno, 2003).  

Despite the low scores of the learning difficulty measure for both groups, the participants 

performed only at an average level on the tests of knowledge retention and had relatively low scores 

on the measure of structural knowledge acquisition. This indicates that participants in both groups 

were overly confident in reporting of the learning difficulty and couldn’t organize the knowledge 

effectively with or without the SSW intervention. Nevertheless, the finding that the test scores for the 

SSW group were significantly higher on all measures of learning suggests that the SSW intervention 

did improve learning outcomes for domain novices learning from dynamic audiovisual materials, 

accounting for as much as eight percent of the variance in knowledge transfer.  

This result is consistent with prior CTML research, which found that adding entertaining but 

irrelevant information to a multimedia presentation resulted in poorer understanding of the content 

(Mayer & Moreno, 2003). In the SSW condition, more cognitive resources were available for the 

processing of essential content, leading to more effective organization and integration processes, 
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deeper learning and, consequently, higher test scores. In the non-SSW video condition, however, the 

nonessential information and the necessity to discern the most relevant content may have created 

extraneous cognitive load either by competing with the essential content for the limited cognitive 

resources or by demanding more cognitive resources to process the nonessential content. As a result, 

the processes of organizing and integrating knowledge were hindered (cf., Chandler & Sweller, 

1991).  

Finally, it was found that SSW principles impacted students’ learning outcomes differentially, 

with the highest scores found in the transfer of knowledge and structural knowledge measures (as 

compared to knowledge retention), suggesting that SSW principles promote higher-order learning 

(Mayer, 2005). This result highlights the importance of taking into account the limitations of learners’ 

WM capacity when designing video, especially when learners have not developed domain-specific 

schemas that help them interpret dynamic visual information (Kalyuga, Ayres, Chandler, & Sweller, 

2003; Moreno & Duran, 2004). Unlike processing print text, which allows the learner to control the 

pace at which information is ―fed‖ to the working memory; educational video presentations are 

typically long (20 minutes to 1.4 hours) and are shown to learners without interruptions, in their 

entirety. Thus, more cognitive support, like segmenting, signaling, and weeding, is required in 

situations with limited learner control over the pace, sequencing, and duration of content presentation. 

Scope and Limitations 

There are possible limitations related to the sampling and measurement used in this study. 

First, the investigator employed a convenience sample to focus on one specific student population 

(i.e., novice, undergraduate, non-science majors enrolled in a science course), one particular domain 

(i.e., entomology), and a specific presentation format (i.e., long educational video). Furthermore, the 

fact that the video used in this study was relatively low in conceptual difficulty (i.e., basic information 

about insect life), suggests that it is possible that researchers working with more complex, and ill-



55 
 

structured topics and with other populations may produce entirely different results. For example, it 

has been consistently shown that cognitive support mechanisms are particularly effective when used 

with novice learners and complex topics (Shapiro, 2004).  

While the investigator attempted to control for as many differences between groups as 

possible, a quasi-experiment always runs the risk that prior differences exist between the groups on 

variables not measured, and these differences may cause differences in the outcome variables. 

However, we had no reason to suspect that the two groups of students would differ, as all students 

were non-science majors and generally in their junior or senior year of college. Analysis of the basic 

demographic characteristics, such as gender, year in school, and GPA scores, confirmed this 

assumption.  

Using a self-report to measure learning difficulty and infer cognitive load is considered a 

limitation because this measure focuses narrowly on the content difficulty and does not include other 

critical aspects of cognitive load, such as mental effort and response time. However, finding a single 

valid measure of cognitive load continues to be a challenge for educational psychologists (e.g., 

DeLeeuw & Mayer, 2008).  Finally, the use of a multiple-choice test to measure student learning 

outcomes is considered another limitation. Short essays could serve as a more accurate measure of 

participants’ knowledge, which might afford better insight into the mechanisms underlying the 

facilitating or inhibiting effects of each design principle. 

Research Implications 

The present study used a concept-sorting task as a measure of structural knowledge 

acquisition. While retention and transfer measures have traditionally been employed in prior studies 

to assess learning outcomes in multimedia learning, adding structural knowledge provides an 

important insight into learning from video. Structural knowledge is considered an essential aspect of 

deep learning (e.g., Jonassen, Wilson, Wang, & Grabinger, 1993), because it not only involves the 
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integration of declarative information into useful knowledge concepts, but also the organization of the 

implicit patterns of relationships among concepts as well as understanding of the concepts’ 

operational structure within itself and between associated concepts (Tennyson & Cocchiarella, 1986). 

This study showed that even though structural knowledge scores were relatively low for both 

experimental groups (students are seldom assessed on structural knowledge), the SSW intervention 

did produce a measurable effect on this dependent measure of learning. Thus, an implication for 

educational video researchers and designers is to determine the utility of various design principles in 

facilitating structural knowledge acquisition and emphasize it in their instruction. 

Segmenting, signaling, and weeding appear to be useful design principles to decrease 

extraneous cognitive processing and enhance student learning from educational videos. However, it 

should not be assumed that application of different CTML design principles improves all types of 

learning outcomes equally. They will likely facilitate some learning outcomes and may lose their 

potency for others. For example, the segmenting principle may be most beneficial in terms of 

scaffolding structural knowledge acquisition, while signaling may prove more useful for helping 

learners integrate declarative knowledge. Consequently, educational video designers should have a 

very clear understanding of the learning goals and then design the video accordingly. The use of 

segmenting, signaling, and weeding in the present study suggests that the SSW design intervention 

may be particularly useful in situations where there is little or no guidance from the instructor (e.g., 

online learning) to explicitly focus and guide students to the essential concepts the video is designed 

to address.  

While prior studies employed short animations that varied from few seconds to few minutes, 

the video used in this study was 32 minutes long. It is conceivable that in a longer treatment like the 

one used in this study, participants were able to determine the pattern of the SSW video design and 

use the signals and summaries provided to support their metacognitive processing relative to the 

monitoring an summarizing of learning. In a shorter treatment, however, it is possible that learners 
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would not experience the same level of metacognitive support due to the initial adjustment period it 

would require. This hypothesis should be also empirically tested. 

A useful venue for the future study of educational video is to examine the application of other 

CTML design principles (i.e., modality, pretraining, spatial contiguity, redundancy, temporal 

contiguity, etc.), and involve participants that differ in their levels of metacognitive awareness, prior 

knowledge, spatial skills, and learning preferences. This line of inquiry may use these design 

principles individually or, as in the present study, in combination. For example, according to the 

expertise-reversal effect, the instructional effects found for novice learners may disappear or even 

revert as they acquire expertise in the knowledge domain (Kalyuga, et al., 2003). It seems likely that 

the CTML design principles are more effective for novices than advanced learners. Another 

promising area of research is to examine the effects that students’ prior knowledge may have on 

learning outcomes when watching video designed based on CTML design principles. According to 

the expertise-reversal effect, the instructional effects found for novice learners may disappear or even 

revert as they acquire expertise in the knowledge domain (Kalyuga et al., 2003). Thus, it is possible 

that SSW methods are more effective for novices than for advanced learners. This hypothesis should 

be empirically tested.  

Finally, a possible future research area is examining the conditions when the learner is in 

control of the pace of instruction, such as comparing how students learn from video that contains 

built-in or user-controlled breaks after each segment (as in a DVD). This research might produce 

more specific design principles for educational video design suited for online or distance learning. 

These research directions can prove important in improving educational video design and promote the 

development of more refined research-based design principles. 
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