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CHAPTER 1 INTRODUCTION 

 

1.1 Motivation and Objectives 

Several 3D periodic structures have been successfully fabricated by extrusion-base 

direct-write assembly of concentrated colloidal gel-based inks [1-6]. The ink filament is 

extruded continuously from a capillary nozzle and deposited onto a platform to draw 

complex patterns in a layer-by-layer scheme. These structures have demonstrated 

widespread potential applications in areas of sensors [7-9], composites [10-12], 

microvascular networks [13], photonic band-gap materials [14], and tissue-engineering 

scaffolds [15, 16]. However, current success in freeform fabrication of 3D structures is 

still achieved by empirically customizing the ink materials, and process variables to meet 

the manufacturing demand. The advance of direct-write techniques calls for science-

based correlations to related process history and ink properties to workpieces quality and 

manufacturing process optimization.  

Despite excellent self-supporting features, concentrated colloidal inks inevitably will 

undergo shape deformation more or less after deposition due to rheological response 

during deposition process as well as wetting, gravity, and drying stress and post 

processing such as sintering [4, 17]. The highlighted applications and functionality of 

micro-device largely depend on 3D structures geometric fidelity, and this fidelity has
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been closely tied to inks rheological properties and shear history of whole deposition 

process [18]. An ideal direct-write ink must possess shear thinning behavior to facilitate 

extrusion flow through fine capillary nozzles, and rapid transition from a flowable fluid 

to a strong elastic solid upon removal of extrusion pressure to maintain desired structures 

shape after deposition [4, 18]. In contrast, real direct-write inks generally display 

reversible viscoelastic properties with a high shear modulus at low shear loading, a high 

degree of shear thinning, and a limited structure recovery time.  

From a microstructure prospective, concentrated colloidal inks consist of closely 

packed flocs network, whose attrition and rebuilding determine the rheological behavior 

of inks. Here, various factors need to be specified to show their influence on the shape 

evolution of 3D structures. First, current inks formulation still follow the method that 

mimic old inks viscoelastic behavior that work for a similar shape, by trial and error 

adjustments of inks viscosity, and deposition parameters. In order to better tailor the 

desired inks, their viscoelastic properties need to be quantified to reveal its relationships 

with microstructures dynamics at low shear loading. Second, current inks were described 

as simple viscous fluids (i.e., Herschel-Bulkley fluid) after shear flow started. The time 

dependent reversible response of inks rheological behavior on the shear process needs to 

be quantitatively described by accounting for the gel networks evolution. Third, 3D 

structures shape evolution is also the results of shear history from inks rest in the 

reservoir to extrusion to rest after deposition. In order to better understand the influence 

of shear history on workpieces quality and optimize the operation conditions of 

deposition process, flow dynamics simulation need to be carried out to convey an 

accurate description of inks structure evolution during deposition and thereafter. The 



3 

 

details of ink dynamics between the quiescent, low shear rate and the yielded, high shear 

rate need to be characterized in relation to the shear history of deposition process. 

Besides, the failures of deposition process resulting from operation anomalies such as 

nozzle clogging, over flow, dynamic instabilities should have much to do with extrusion 

flow dynamics. Finally, although many attempts [6, 9-11] have been made to optimize 

some process specific writing inks and deposition parameters, most have not been related 

to the structures and dynamic properties of inks. The microstructure changes in gels 

network and the interrelation between dynamic ink properties, deposition variables, and 

shape evolution are poorly understood.  

The objective of this project is to obtain a fundamental understanding of the 

rheological properties, flow dynamics and shape evolution of the concentrated colloidal 

inks for direct-write assembly techniques through experimental and modeling methods at 

a microstructure level. The contributions made by this research will open new pathway to 

serves as a guideline for new inks design, deposition process optimization and 3D 

structures shape evolution control. 

1.2 Thesis Scope 

The aims of this project are three-fold: (1) to determine the viscoelastic properties of 

concentrated colloidal inks and establish the relationship between rheological parameters 

and static microstructure of gel networks, (2) to investigate the flow dynamics of 

concentrated colloidal inks during deposition process and quantitatively describe 

microstructure changes, (3) to measure and model the self-supporting shape evolution of 

spanning elements with different ink properties and deposition conditions. Each above 
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aspect is important for the ultimate goal of control and optimal shape evolution of 

deposited structures. Since inks microstructure changes are the most fundamental reasons 

for their shape evolution, it is the trend to do the research from a microscopic level.  

In this work, we present a comprehensive characterization of concentrated colloidal 

inks shape evolution for direct-write assembly. First of all, the viscoelastic properties of 

the ink are characterized and used to define a mass-less mechanical model representation. 

Second, as a part of experimental characterization of 3D structures shape evolution, the 

rheological properties of the colloidal ink are measured and use a modified time-

dependent rheological model to describe its thixotropic behavior. Third, flow dynamics 

of concentrated colloidal inks during deposition are calculated incorporating slip 

boundary conditions and compared with simulation results with slip boundary conditions. 

Finally, the shape evolution of spanning elements is investigated to correlate the ink 

properties, deposition variables to the shape evolution. The information collected here 

aims to elucidate the influence factors related to the shape evolution, and quantitatively 

describe how these variables contribute to the shape evolution degrees.  

1.3 Thesis Organization 

This thesis is organized into seven chapters. Chapter 1 (this chapter) states the 

motivation and objectives of this project, and describes thesis scope and organization that 

are presented in latter chapters. Chapter 2 is a review of literature pertinent to three 

interdisciplinary fields: direct-write assembly techniques, concentrated colloidal inks 

properties used in direct-write techniques, and microstructures and properties evolution 

of concentrated colloidal inks. Chapter 3 covers the formulation and preparation method 
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of concentrated colloidal inks, viscoelastic properties of inks at low shear loading. 

Chapter 4 reports the theoretical and experimental investigations of inks thixotropic 

rheology during shear flow. A single-phase time-dependent constitutive model is 

proposed and validated by actual experimental data, where the ink is treated as a 

homogeneous material with thixotropic properties and microstructure is characterized by 

a scalar structural parameter. Chapter 5 presents the flow dynamics simulation of 

concentrated colloidal inks during deposition process with wall slip boundary conditions 

based on previous rheology results. Chapter 6 describes the shape evolution of spanning 

elements structures of concentrated colloidal inks. Dimensional analysis was used to 

reduce relevant parameters, and an empirical model was developed. Besides, a 

viscoelastic catenary model was raised, and various influence factors are discussed to 

determine their contributions to the shape evolution. Chapter 7 summarizes the general 

conclusions drawn from complete work and provides recommendations for future work 

that could yield better understanding of the shape evolution due to the microstructures 

evolution of colloidal inks. 
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CHAPTER 2 BACKGROUND 

 

2.1 Direct-Write Assembly of Colloidal Inks 

The concept of “direct-write assembly” [19, 20] is defined as a host of solid freeform 

fabrication methods, which employ colloidal inks with the desired rheological and 

consolidation behavior to assemble complex 3D structures through a sequential 

deposition scheme without the need for traditional part specific tooling, dies or molds. 

According to the ink flow behavior, direct-write techniques can be categorized into two 

approaches: (1) droplet-based, and (2) filament-based ink approach [21-23]. In droplet-

based writing system, the ink is delivered in the form of discrete droplets to fabricate 

desired 3D structures. 3D printing [24, 25], direct ink-jet printing [26-28], and related 

approaches such as hot-melt printing [29-31] are representative droplet-based writing 

techniques [22, 23]. In contrast, the ink is continuously extruded through a single or 

multi-nozzle array to create filamentary elements through filament-based writing 

techniques, such as robocasting [1, 32], fused deposition [33], and micro-pen writing 

[34]. The filament-based direct-write techniques are especially promising due to their 

material flexibility, low cost, and capability for self-supporting features [35]. They allow 

creating advanced composites by multi-material depositions. They have the capabilities 

to assemble true 3D circuit packages even on curved surface. They also show a route for 

tissue engineering to fabricate bone scaffolds with integrated cartilage and bone regions.  
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Figure 2.1 Flow diagram of filament-based direct-write process. 

The flow diagram of filament-based direct-write procedure for freeform fabrication of 

3D structures is presented in Figure 2.1. First, 3D virtual structures are generated through 

computer aided design (CAD) model tools. Then, the operation parameters, such as 

deposition speed, applied pressure, nozzle diameter, and spacing height, should be 

specified. Next, process relevant ink properties, like material types and composition, 

should be determined. The computer numerical control (CNC) software processes the 

designed CAD model, operation conditions and ink properties, and conveys them to 

three-axis motion system and ink delivery system simultaneously. Three-axis motion 

system controls the accurate tool path for the deposition process. The ink delivery system 

supplies appropriate volumetric flow rate of inks along the tool-path lines. Based on the 

cooperation of these two systems, the real 3D structures can be created.  
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Figure 2.2 Schematic illustrations of Robocasting apparatus (a) x-y-z gantry robot, (b) 

multi-nozzle array ink delivery system, (c) mixing nozzle ink delivery system [36]. 

The ink delivery system is the most important component in the whole filament-based 

direct-write process. It depends on the ink properties, and desired 3D structures and 

determines the quality of the final products. It commonly consists of three components, 

propeller, reservoir, and deposition head. The feedstock inks are stored in reservoirs; the 

displacement part extrudes inks through a deposition head at desired volumetric flow 

rate. For example, in robocasting, the plunger can be mechanically displaced on the ink 

reservoir at the constant speed to drive the ink out of the nozzle. Figure 2.2 illustrates the 

schematics of the robocasting machine and multi-nozzle arrays for parallel printing of 

discrete ink materials and mixing nozzle system for multi-material mixture printing [16].  
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Although direct-write techniques have showed huge potential advantages, the 

challenges are also inevitable. The first challenge lies in the identification of new ink 

materials and their functions. Further advances require science-based ink design method, 

instead of empirically formulating new inks by trial and error adjustments of inks 

composition. The second challenge requires manufacturing high precision, quality parts 

using these materials. The shape deformation of structures during deposition, drying, and 

sintering is another direction to advance this technology. The last challenge is how to 

apply these techniques from prototyping to large-scale production, and to shorten 

production time and lower cost for these parts.  

2.2 Colloidal Processing Mechanisms of Powder Materials 

In powder materials processing, it is desirable to produce the uniformly compact 

green body with fully dense and fine-grain microstructures. Compared to powders 

consolidation by dry or semidry pressing in a die, colloidal methods are being 

increasingly used to eliminate any source of heterogeneity in the starting powders and 

consolidated green bodies, which leads to better control of strength-limiting defects in the 

final sintered parts.  

The term “colloid” is defined as a type of mixture, where particles with feature size of 

10
-9 

~ 10
-6

 m are dispersed in a liquid medium. Colloids generally can be divided into two 

broad classes: lyophilic colloids and lyophobic colloids. Lyophilic (i.e., liquid-loving) 

colloids show a strong affinity between the dispersed particle and the liquid. The liquid is 

strongly absorbed onto the particle surfaces, and this system is intrinsically stable due to 

a reduction in the Gibbs free energy when the particles are dispersed. Polymer solutions 
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are good examples of lyophilic colloids. Lyophobic (i.e., liquid-hating) colloids are those 

in which the liquid does not show affinity for the particle. This system is naturally 

unstable and tends to flocculate due to the Gibbs free energy increase when the particles 

are distributed in the liquid. Lyophobic colloids can, therefore, only be dispersed when 

the surface is treated in some way to cause a strong repulsion to exist between the 

particles. Colloidal inks used in direct-write techniques consisting of insoluble particles 

in a liquid are well-known examples of lyophobic colloids. 

Cesarano et al., [1] pioneered the use of flocculated colloidal gels as inks for direct-

write assembly of ceramics. Smay et al., [3, 4] advanced this method to develop aqueous 

colloidal inks for direct-write techniques. From then on, a broad array of powder 

materials have been employed to prepare colloidal inks, such as silica [3], lead zirconate 

titanate [4], barium titanate [37], alumina [38], mullite [5], silicon nitride [39], and 

hydroxyappatite [15]. Li et al., [37] prepared inks that flowed through 30µm glass 

capillary tips using nanoparticle barium titanate. Nadkarni et al., [36, 40] successfully 

developed multi-material inks by mixing different ceramic particles and ceramic-metal 

particles. Current success in colloidal ink design is achieved by following this two-step 

process, illustrated in Figure 2.3. A highly concentrated, stable colloidal suspension is 

prepared by dispersing the particles in an aqueous medium via electrosteric stabilization 

[41, 42], by adsorption of polyelectrolytes onto particle surfaces. The well-dispersed 

colloidal suspension is then gelled by introducing a systematic change mechanism such 

as pH shift, salt addition [5, 37], or bridging flocculation with a counter polyelectrolyte or 

other coagulants [38, 40]. This general approach of creating concentrated colloidal inks 

can be extended to any type of colloidal or nanoparticle materials with alternate surface 
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chemistry. Therefore, we need to understand the attractive interactions that lead to 

flocculation and how they can be overcome by repulsive interactions to produce colloids 

with the desired stability. 

 

Figure 2.3 Schematic illustration of colloidal inks preparation procedures. 

The total interparticle potential Vtotal in a colloidal system is a summation of attractive 

(e. g. van der Waals) and repulsive (e. g. double layer interactions, steric hindrance) 

potential energy [43-48]. If Vtotal is positive (net repulsion), the colloidal system is 

typically fluid and considered stable, whereas a negative (net attractive) potential 

between colloids includes aggregation and leads to gelation. A distinguishing feature of 

Dispersant
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pH

onic strength

Suspensions 

Gels 
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the colloidal system is that the contact area between particles and the dispersing medium 

is large. Particles in a suspension move throughout the liquid due to Brownian motion, 

gravity and convection currents. Brownian motion ensures the smaller particles, 

especially in micrometers or less, colliding with each other all the time, whereas the 

influence of gravity becomes negligible. Long-range forces resulting from van der Waals 

interactions are ubiquitous and always attractive between particles. The combination of 

Brownian motion and van der Waals attraction force would result in the formation of 

agglomeration of the particles to reduce the surface energy if the attractive forces 

overcome the repulsive forces. The van der Waals force is a weak force and becomes 

significant only at a very short distance. Van der Waals interaction between two particles 

is the sum of the molecular interaction for all pair of molecules composed of one 

molecule in each particle, as well as to all pairs of molecules with one molecule in a 

particle and one in the surrounding medium such as solvent. The attractive van der Waals 

interaction potential, Vvdw, exhibits a power law distance dependence whose strength 

depends on the dielectric properties of the interacting colloidal particles and the 

intervening medium. A schematic representation of Vvdw is shown in Figure 2.4. 

Although the nature of the attraction energy between two particles is the same as that 

between two molecules, integration of all the interaction between molecules from two 

particles and from medium results in a totally different dependence of force on distance. 

The attraction force between two particles decays much slowly and extends over 

distances of nanometers. As a result, a barrier potential must be developed to prevent 

agglomeration. Two basic stabilization mechanisms exist to overcome van der Waals 

attraction between particles: electrostatic stabilization and steric stabilization [20, 49].  
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Figure 2.4 Schematic illustrations of van der Waals potential energy Vvdw as a function of 

surface distance h. 

Electrostatic stabilization occurs when the repulsion between the particles is 

generated by a common surface charge on the particles. The repulsion is not a simple 

case of repulsion between charged particles. An electrical double layer of charge is 

produced around each particle and the repulsion occurs as a result of the interaction of the 

double layers. By introducing the analysis of the electrical double layer, we consider how 

particles acquire an electrostatic charge in an aqueous liquid and the general principle of 

the double layer. Most substances, such as oxides, acquire a surface electric charge when 

brought into contact with a polar (e.g. water) medium due to hydrolysis. The charged 

particles adsorb counter ions from medium, forming electric double layer. The double 

layer can be regarded as consisting of two regions: the inner region which may include 

adsorbed ions, and a diffuse region in which ions are distributed according to the 

influence of electrical forces and random thermal motions. According to Stern Model, the 

double layer is divided into two parts by a plane (the Stern Plane) which located at about 

h

h

Vvdw

0
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a hydrated ion radius from the surface. The thickness of the double layer depends on the 

charge density of the particle surface and the ionic strength of the electrolyte solution. 

The schematics of electrical double layer and corresponding repulsive electrostatic 

potential energy between charged particles with exponential distance dependence are 

shown in Figure 2.5. 

 

Figure 2.5 Schematic illustrations of the double layer near a positively charged particle 

surface and electrostatic potential energy Vel as a function of surface distance h. 

The total interaction between two electrostatic stabilized particles is the combination 

of the electric double layer and London-van der Waals forces. The electrostatic 

stabilization of particles in a suspension is successfully described by the DLVO theory, 
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named after Derjaguin, Landau, Verwey, and Overbeek [50, 51]. This theory predicts the 

stability of colloidal particles suspended in polar liquids.  

 

Figure 2.6 Net interaction potential between particles based on DLVO theory. 

Figure 2.6 shows the van der Waals attraction potential, electric repulsion potential, 

and the combination of the two opposite potentials as a function of distance from the 

surface of a spherical particle. At a distance far from the solid surface, both van der 

Waals attraction potential and electrostatic repulsion potential reduce to zero. Near the 

surface is a deep minimum in the potential energy produced by the van der Waals 

attraction. A maximum, also known as repulsive barrier, is located a little farther away 

from the surface, as the electric repulsion potential dominates the van der Waals 

attraction potential. Since the electric potential is dependent on the concentration and 

valence state of counter-ions and the van der Waals attraction potential is almost 
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independent of the concentration and valence state of counter-ions, the overall potential is 

strongly influenced by the concentration and valence state of counter-ions.  

Steric stabilization is achieved by adsorption of polymeric additives which serve to 

form protective colloids. Steric stabilization is the term used to describe the stabilization 

of colloidal particles which results from the interaction between uncharged polymer 

chains adsorbed onto the particle surface. The interactions among the polymer chains are 

fundamentally different from those among the charged ions in electrostatic stabilization is 

commonly associated with suspensions in organic liquids, but it is also effective for 

aqueous solvents. There are some requirements for steric stabilization of colloidal 

suspensions. The adsorbed polymer layer should completely cover the particles and as 

dense as possible to prevent the particles from close contact. The polymer should be 

firmly anchored to the surface of the particle. Good solvent condition is required for 

stabilization. If the solvent condition is poor, interaction between two polymer layers 

results in attractive, not repulsive, force. The conformation of adsorbed polymer is 

closely related to its steric stabilization capability, which depends on pH, solvent quality, 

molecular architecture, chemical nature of the anchoring group, and ionic strength of the 

medium. When two particles covered with adsorbed polymer layers approach close, the 

overlap of adsorbed organic layers on neighboring particle surfaces results in a repulsive 

force, or steric hindrance. Figure 2.7 shows the schematic representation of the 

stabilization by steric hindrance. Adsorbed polymeric species begin to overlap at l < h < 

2l, where l is the adsorbed layer thickness, is on the order of the radius of gyration of a 

polymer coil. Upon close approach h < l, in a good solvent, repulsive interactions arise 

due to the loss in configurational entropy of the adsorbed chains.  
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Figure 2.7 Schematic illustrations of steric interaction and corresponding steric potential 

as a function of surface distance h. 

In practice, colloidal inks stabilization is usually achieved by a combination of 

electrostatic repulsion and steric hindrance, termed as electrosteric stabilization. 

Electrosteric stabilization requires the presence of adsorbed polymer and significant 

electrical double-layer repulsion. A common way of achieving electrosteric stabilization 

in aqueous liquid is through the use of polyelectrolytes that dissociate to produce charged 

polymers. When polymers attached to a charge particle surface, a polymer layer would 

develop as discussed above. In addition, an electric potential adjacent to the solid surface 

would retain. When two particles approach each other, both electrostatic repulsion and 

steric restriction would prevent agglomeration, as illustrated in Figure 2.8.  
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Figure 2.8 Electrosteric interactions schematics of two positive charged particles covered 

by polyelectrolytes. 

The electrostatic component may originate from a net charge on the particle surface 

and/or charges associated with the polyelectrolyte attached to the surface. Polyelectrolyte 

adsorption is strongly influenced by the chemical and physical properties of the particle 

surface and solvent medium. For a given system, the adsorption behavior and 

conformation can be modified by tailoring solvent conditions. For example, anionic 

polyelectrolytes are fully ionized and adopt an open coil configuration in solution at high 

pH due to intersegment repulsion, and adopt a compact coil configuration at high ionic 

strength and adsorb in a dense layer with low adlayer thickness, as shown in Figure 2.9.  

 

Figure 2.9 Schematic illustrations of absorbed anionic polyelectrolyte species on an ideal 

ceramic surface as a function of pH and ionic strength. 

pH
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The stability of colloidal suspensions breaks down when the total energy barrier 

becomes of the same order of magnitude as the Brownian motion-associated energy of 

particles. The energy barrier can be affected by surface potential, solution pH, ionic 

strength, and the particle dimension. As predicted by DLVO theory, dispersions can be 

rendered unstable by either increasing ionic strength or adjusting pH toward the 

isoelectric point (IEP) at which the surface potential is minimum. Coagulation can be 

achieved via addition of a salt to a dispersed suspension. For electrosteric dispersion the 

electrostatic charges on the polyelectrolyte chains are shielded, allowing them to coil and 

act as uncharged polymers. Thus, the salt reduces the solvent quality and hence enhances 

adsorption. Upon suppression of the diffuse double layer, steric forces dictate the stability 

of the suspension. If the adsorbed layer is relatively thin, attraction may dominate due to 

van der Waals forces and the suspensions will become more viscous. As predicted by 

DLVO theory, dispersions can be rendered unstable by either increasing ionic strength or 

adjusting pH toward the isoelectric point (IEP).  

2.3 Rheology and Flow Behavior of Colloidal Inks 

Concentrated colloidal inks generally display a finite yield stress and reversible fluid-

to-solid transition behavior, which facilitate inks flow during extrusion and hold the 

desired shape after deposition. This rheological behavior has led to successful printing of 

several basic shapes and is due to attrition and re-building of colloidal gels structure. The 

important rheological parameters for a given ink may include its apparent viscosity, yield 

stress under shear, and viscoelastic properties (i.e., the loss and elastic moduli). 

Typically, such parameters are tailored for the specific direct-write technique used. 
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The viscosity of a flocculated suspension depends on the shear rate, the strength and 

range of the attraction between particles, and the solid volume fraction, solids. When 

solids < gel (the minimum solid loading for gelation to occur), the system consists of a 

clustered fluid, whereas atsolids ≥ gel, it is a colloidal gel. The suspension viscosity 

typically decreases with increasing shear rate (shear thinning), and increases with the 

depth of the attractive potential [52]. The relationship between shear stress and shear rate 

is commonly described by the Herschel Bulkley model: [53] 

   
0n

yτ τ Kγ                                                      (2.1) 

where   and 
y  

are the applied shear stress and shear yield stress respectively, K is a 

viscosity parameter, γ  is the shear rate, and n0 is a shear thinning exponent. As the ink 

flows through the deposition nozzle under a pressure gradient ∆P / Ln, a radial varying 

shear stress rτ  develops: 

      

r

n

rΔP
τ

2L
                                                        (2.2) 

where r is the radial position within the nozzle, ∆P is the pressure drop, and Ln is the 

length of the nozzle. The extrudate was hypothesized to possess dynamic core-shell 

architecture as a result of the radially varying shear stress within the extrusion nozzle [4, 

45]. Based on the radial varying shear stress and Herschel-Bulkley equation, Smay et al., 

[54] 
 
extended this core-shell model to a three-zone velocity profile with the cylindrical 

deposition nozzle that consists of an unyielded core moving at constant velocity 
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surrounded by a yielded shell experiencing laminar flow and a thin slip layer devoid of 

colloidal particles at the nozzle wall, as illustrated in Figure 2.10 [55].  

 

Figure 2.10 Schematic cross section of ink flow in a capillary tube with assumed core-

shell architecture. A slip layer (  ) of particle depleted solvent is shown between at the 

tube wall. [54] 

This filamentary architecture arises because the percolating network of attractive 

particles within the gelled ink is capable of transmitting stress above 
gel . When stress 

beyond its yield point (
y ), the ink exhibits shear thinning flow behavior due to the 

attrition of floc-floc bonds within gels network. Detailed characterizations of a variety of 

colloidal gels [56, 57] of homogeneous, single composition particles have demonstrated a 

generalized power-law-scaling behavior of their elastic properties described by [45, 58] 

       

ix

solids
i

gel

y k 1
 

    
                                                    (2.3) 

where k  is a system-specific prefactor, xi is a scaling exponent, and 
iy  is the property of 

interest (e.g., shear yield stress ( yτ ), shear modulus ( 'G ), or compressive yield stress ( yP ). 

The equilibrium mechanical properties of colloidal gels are governed by two parameters: 
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solids, which is proportional to their bond density, and gel, which scales inversely with 

bond strength. As the interparticle forces are made more attractive, colloidal gels 

(constant 
solids ) experience significant increases in their elastic properties. [46, 48, 56, 58] 

The density of interparticle bonds increases with 
solids  and as the particles are made more 

attractive, 
gel  decreases (i.e., particles form a gel network even at low concentration), 

resulting in a more rigid gel. The elastic properties ( 'G ,
 yτ , and 

yP ) of colloidal gels 

exhibit a power-law dependence on solids  similar to colloidal glasses, although the 

exponent values differ significantly. Reub and Zukoski [56] investigated the behavior of 

SiO2 gels and found exponent values of 4 ~ 6 for 'G , which are much smaller than their 

glassy counterparts. Channell et al., [58] studied the shear and compressive Rheology of 

Al2O3 gels. They found that 
yP  and 

yτ  exhibited a similar scaling exponent, xi ~ 5. Rao 

[59] have reported the exponent values for BaTiO3 nanoparticle gels to ~ 4, 4, and 6 for 

'G , yτ , and yP , respectively. Similar power law exponent values for colloidal gels have 

been reported in other studies [60-62]. 

Smay et al., [4] first related equilibrium shear rheological properties of PZT inks to 

shape evolution of structures. A simply supported, elastic beam model was used to 

describe a filamentary rod with circular cross-section that deflects under its own weight, 

as given by: 

       
2 3 3wx

δz (2Lx x L )
24EI

                                         (2.4) 
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where w is the distributed load, x is the position along the rod, E is the Young’s modulus 

of the filament (
'E (1 )2Gv  ) [63], v = 0.5 is the Poisson’s ratio for the filament [58], 

and I is area moment of inertia of the circular cross section ( 4I πD / 64 ).  The minimum 

ink elasticity requires assembling a given periodic structure can be estimated by setting a 

criteria for the maximum acceptable deflection of midδz 0.05D  for y = L / 2, and using 

the following equation: 

       
4

' 4

gel 0 3

L
G 1.39 10 ρ g

D
                                          (2.5) 

where 
gelρ  is the gel density, 0g  is the gravitational constant, L is the span length, and D 

is the diameter of the filament. In this study, mesoscale V-shaped test structures were 

assembled, consisting of a support base, a spanning layer, and a marker layer, as 

illustrated in Figure 2.11. Deflection measurement of spanning elements was used to 

probe the relationship between gel strength, deposition speed, and shear rate profiles in 

the nozzle. Smay et al., [3] combined optical images and weight loss data of 3D 

structures to illustrate the ability of silica gels to span unsupported regions.  
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Figure 2.11 (a) Schematic top view of V-shaped test structure highlighting the inner and 

outer support structures and spanning elements (marker layer is not shown). (b) 

Illustration of select spans demonstrating the reference height of 2 mm and the variation 

of span length (L) between the inner supports as a function of x position [4]. 
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CHAPTER 3 VISCOELASTIC PROPERTIES OF COLLOIDAL INKS 

 

3.1 Introduction 

The concentrated colloidal ink consists of a percolating network of attractive flocs, 

whose strength directly determines viscoelastic properties of ink materials. Previous work 

shows that inks viscoelastic properties are controlled by solid volume fraction solids and 

inter-flocs force [9-12]. The solid volume fraction solids is proportional to flocs bond 

density, and inter-flocs force determines flocs bond strength. Thus, tailoring the 

magnitude and range of attractions through solution conditions as well as solid volume 

fraction allows controlling mechanical properties of colloidal inks. By adjusting the solid 

volume fraction, pH value, compositions, flocculants concentration, or additional salts, 

the viscoelastic properties can be tailed over many orders of magnitude to facilitate inks 

flow through the deposition nozzle and then maintain their filaments shape even as they 

span gaps in the underlying layers [18, 40]. 

Here, Al2O3 concentrated colloidal gels were used as model ink materials. The Al2O3 

powders used are high purity, sub micrometer-size, and relatively monodispersed. To 

disperse Al2O3 powders in aqueous suspensions with polyelectrolytes addition, several 

critical factors such as the pH, the surface chemistry of powders, the degree of 

polyelectrolytes dissociation, the molecular weight of polyelectrolytes, and the 
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adsorption of polyelectrolytes must be understood and controlled [41, 42, 64, 65]. After 

the stabilized suspensions were obtained, the gel-based inks were prepared by adding 

appropriate amount of flocculants. During the extrusion, the unyielded ink must sustain 

the creep deformation caused by the extrusion pressure induced shear stress. Viscoelastic 

properties of Al2O3 gels before yielding can be measured by creep and recovery test 

within linear viscoelastic region. This method has the advantage of avoiding destruction 

in the sample. This permits the determination of rheological parameters under conditions 

which approach its conditions at undisturbed state and, as a consequence, allows a 

relationship between the results obtained and the actual structure of the ink material to be 

drawn. 

In this chapter, the equilibrium shear modulus and creep and recovery behavior of 

Al2O3 colloidal gels were measured as first step of a series shape evolution experiments. 

Here, shear modulus and creep compliance were used as diagnostic tools to characterize 

dynamic viscoelastic properties, which are an essential requirement for new ink design 

and shape evolution improvement. We focused on the relations between gels network 

structures and their rheological properties as a function of solid fraction solids and 

flocculant concentration. A mass-less mechanical model was used to analyze the creep 

and recovery behavior of Al2O3 colloidal inks.    

3.2 Experimental Procedure 

3.2.1 Materials  

Aluminum oxide powders (AKP-30, Sumitomo Chemical Co., Tokyo, Japan, with a 

mean particle size of 0.32 µm, a specific surface area of 7.1 m
2
/g, and a density of 3.97 
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g/cm
3
) served as ceramic phase. A 40% aqueous solution of poly(acrylic acid) (PAA) 

(Darvan 821A, R.T. Vanderbilt Co., Norwalk, CT) was used as a dispersant. 

Hydroxypropyl methylcellulose (HPMC) (Methocel F4M, Dow Chemical Co., Midland, 

MI, with a molecular weight of 3500) was prepared in a 5 wt% stock solution and used as 

a viscosifier. Nonlinear poly(ethylenimine) (ICN Biomedical, Aurora, OH, with 

molecular weight of 50,000~100,000) (PEI50-100k) were prepared in aqueous stock 

solutions with 10% polymer weight, and served as flocculants These polyelectrolyte 

structures are shown in Figure 3.1. All samples were prepared in de-ionized water having 

a nominal conductivity of 5×10
-4 
Ω

-1
·cm

-1
.  
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Figure 3.1 The structure of (a) PAA and (b) PEI. 

3.2.2 Gels preparation 

Concentrated Al2O3 colloidal gels preparation follows a two-step procedure. Firstly, 

Darvan 821A (0.65 wt%, based on alumina weight), de-ionized water, and alumina 

powders were added sequentially into a 250 ml sample cup containing about 30 g of 3 

mm diameter zirconia milling media. The blend was mixed for 3 min in a non-contact 

mixer (AR-250, Thinky Co., Laguna Hills, CA) to obtain a high concentrated colloidal 

suspension. Next, HPMC was added to achieve 7 mg/ml in the liquid phase. After mixed 

for 1.5 min and kept equilibrium for 1hr, these suspensions were gelled by adding the 
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flocculant of 10 wt% PEI50-100k solution, to achieve a desired flocculant concentration. In 

this study, the Al2O3 colloidal inks with solid fraction solids = 0.45, 0.47, and 0.49 were 

prepared. For each of these ink, the PEI concentration was selected as PEI wt% = 0.010, 

0.014, and 0.018.  

3.2.3 Zeta potential measurement 

Zeta potentials were measured in dilute Al2O3 dispersions using acoustophoretic 

titration. Suspensions of 4 vol% were prepared by mixing 28 g of Al2O3 with 168 ml 

deionized water. The suspension was then treated with an ultrasonic horn at 30 KW for 

10 min. To determine the zeta potential as a function of pH, 1.0 N standard HNO3 and 

KOH were used to adjust pH values. To determine zeta potential versus PAA 

concentration, 2.0 wt% of PAA solution was used to add to the suspension during 

titration. 

3.2.4 Potentiometric titrations measurement  

 A standard procedure for potentiometric titration has been adopted from the literature 

[64]. A representative potentiometric titration curve and its first derivative are given in 

Figure 3.2. Two titration peaks are observed in the first derivative curve. The distance 

between the two peaks is the amounts of the mole of equivalent (meq) titrant required to 

titrate PAA. The linear calibration curve in the inset of Figure 3.2 has been obtained for a 

known PAA concentration, and this calibration curve is used to determine the unknown 

amount of PAA in the solution. 

Aqueous suspensions of 12 vol% Al2O3 with different concentrations of PAA were 

prepared at pH values ranging from 3 to 10. While the Al2O3 powder is being added, the 
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pH is constantly monitored and adjusted so that it is always within 0.2 pH unit of the 

desired pH values. After mixing, the slurries were deagglomerated by using a high-

energy ultrasonic horn for 10 min and the pH is measured and adjusted again if 

necessary. The samples then are put into a gentle mechanical shaker for approximately 24 

h equilibrium and then centrifuged for 20 min at 11000 rpm to obtain the supernatants. 

The residual PAA concentration in the supernatant was analyzed by using the same 

previously stated titration procedure and then determined by using the linear calibration 

curve in Figure 3.2. The total amount of PAA adsorbed on Al2O3 was then calculated 

based on a mass balance for PAA. 

 

Figure 3.2 Typical titration curves for PAA and its corresponding first derivative curve; 

the inset shows the linear calibration curve between the PAA concentrations and the mole 

equivalent (meq) of titrant. 
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3.2.5 Linear viscoelastic properties measurement  

Stress sweep oscillation followed by creep and recovery measurements were carried 

out using a high-precision stress controlled rheometer (Bohlin C-VOR 200, Malvern 

Instruments, Westborough, MA) under the isothermal condition at 25 
0
C. A cup and bob 

geometry system (C14, Cup ID = 16 mm and Bob OD = 14 mm) with serrated walls was 

used to prevent the wall slip. For every measurement, the sample was subjected to a pre-

shear rate of γ = 0.2 s
-1

 for 1 min and then left at rest for 10 min to provide a consistent 

shear history. A stress sweep from 10
-2

 to 10
3
 Pa at constant frequency of 0.5 Hz was 

conducted to record the elastic modulus variations as a function of sweep stress and 

determine the limits of linear behavior (i.e., where the shear modulus G
’
 is approximately 

constant). The critical stress (c) is defined as the stress where elastic modulus falls to 

90% of the plateau value. 

After the stress sweep, the sample was allowed to rest in the cup for 10 min followed 

by a creep and recovery measurement.  The creep compliance, Jc(t) was measured by 

application of an instantaneous stress at time t = 0 and held constant for 120 s.  During 

this creep interval, the shear strain ( was measured as a function of time.  At the end of 

the interval, the stress was reduced to zero and  was again measured as a function of 

time for another 120 s as recovery interval to calculate the recovery compliance, Jr(t).  

The compliance J(t) was calculated based on: 

γ(t)
J(t)

τ
                                                         (3.1) 

3.3 Results and Discussion 
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3.3.1 Zeta Potential of Al2O3 particles 

Al2O3 has been verified to be an amphoteric oxide that is composed of negative and 

positive surface sites. And the pure Al2O3 powder in the acid solution is positively 

charged. The negatively charged PAA adsorbed onto the positively charged sites existing 

on the Al2O3 surface.  Figure 3.3 illustrated the surface zeta potential of Al2O3 powders 

as a function of pH values. For the bare Al2O3 powders, the isoelectric point (IEP) is 

around at pH = 8.3. When pH is below the IEP, the particle is positively charged. When 

the pH is above the IEP, the particle is negatively charged. While the Al2O3 powders 

coated with PAA, the surface zeta potential decreased dramatically. The IEP also 

decreased to about pH = 4.6. We can find that the coated dispersant can significantly 

change the physic-chemical properties of particles surface. 

 

Figure 3.3 Zeta potential of Al2O3 particles with and without PAA adsorption. 
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3.3.2 Adsorption of PAA onto Al2O3 

Titration analysis results of the PAA adsorption onto Al2O3 particles were illustrated 

in Figure 3.4. The concentration of PAA adsorbed from solution increased with the 

amount of PAA in solution up to a plateau level of average value 2.4 mg PAA/g Al2O3. 

There are two factors likely explain the observed phenomena. The first has to do with the 

amphoteric characteristics of the Al2O3 surface. Because of the net positive charges on 

the surface, the positive sites must be attractive to the negative sites of ionic PAA. The 

H
+
 ion from hydrolysis also decreased the pH values of the solution, until IEP was 

reached. 

 

Figure 3.4 The adsorption curves of PAA onto Al2O3
 
particles. 
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3.3.3 Stress sweep 

The stress sweep measurements revealed distinct linear viscoelastic regions for each 

of the ink studied.  

 

 

Figure 3.5 Linear viscoelastic regions of Al2O3 gels as a function of PEI wt% for solids= 

(a) 0.45, (b) 0.47, and (c) 0.49.  
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Figure 3.5 Linear viscoelastic regions of Al2O3 gels as a function of PEI wt% for solids= 

(a) 0.45, (b) 0.47, and (c) 0.49.  

As illustrated in Figure 3.5, when the shear stress  logarithmically increases from 

low to high value, the elastic modulus G
’
 keeps constant as equilibrium elastic modulus 

G
’
eq until critical value c. After that, the elastic modulus G

’
 decreases dramatically. The 

scaling of equilibrium elastic modulus G
’
eq and critical stress c with solid fraction solids 

for varying PEI wt% are illustrated in Figure 3.6 and 3.7. The trends are as expected: for 

a fixed value of solids, the plateau modulus G
’
eq, and critical stress c increases with 

increasing PEI wt% (i.e., stronger gels). For a given PEI wt%, the G
’
eq and c increases 

with solids. Furthermore, G
’
eq of Al2O3 inks are more sensitive to PEI wt% than to solids.  
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Figure 3.6 Variation of equilibrium elastic shear modulus G
’
eq with solids fraction solids 

for Al2O3 inks with varying PEI wt%. 

 

Figure 3.7 Variation of critical stress c with solids fraction solids for Al2O3 gels with 

varying PEI wt%. 
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3.3.4 Theoretical modeling of creep and recovery behavior 

Creep and recovery test within linear viscoelastic region can keep the microstructure 

of the sample materials undisturbed and especially help to investigate the dynamic 

behavior of sample materials existing under the constant stress. Mass-less mechanical 

models, combining the purely elastic springs and purely viscous dashpots can be used to 

describe the deformation of a viscoelastic system by fitting the creep and recovery data. 

The most common mechanical analogs include the Maxwell model, Kelvin-Voigt model 

and Burgers model as illustrated in Figure 3.8.  

 

                         

Figure 3.8 Schematic illustrations of mechanical models. (a) Maxwell model; (b) Kelvin-

Voigt model; (c) four-element Burgers model; (d) modified Burgers model. 

In Maxwell model, the spring and dashpot is associated in series, where G0 is elastic 

modulus of free spring, and  is the Newtonian viscosity of free dashpot. [66, 67] The 

compliance can be expressed as: 

0 0

1 t
J(t)

G η
                                                       (3.2) 

(a) (b) (d) (c) 

G0 

G1 







G

G

G

G



G 
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In Kelvin-Voigt model, they are associated in parallel, where G1 is retarded elastic 

modulus, and  is internal viscosity. [66, 68] Stress , strain t) and its rates of change 

with respect to time t are governed by the equation of the form: 

1 1

dγ(t)
τ G γ(t) η

dt
                                                   (3.3) 

By integrating Eq. (3.3), the strain t) would approach the deformation for the pure 

elastic material /G1 with the difference decaying exponentially: 

1

1 1

Gτ
γ(t) 1 exp t

G η

  
    

  
                                           (3.4) 

Thus, the creep compliance can be expressed as: 

1

1 1

G1
J(t) 1 exp t

G η

  
    

  
                                         (3.5) 

The Burgers model, comprising the association in series of the Maxwell model and 

the Kelvin-Voigt model is most widely used for the acceptable results obtained in many 

cases [69]. It has the following format: 

1

0 0 1 1

G1 t 1
J(t) 1 exp t

G η G η

  
      

  
                                     (3.6) 

The ink used in direct-write assembly of 3D structures is complex two-phase, multi-

component, and concentrated colloidal gel. It is a special flocculated system, in which a 

gel network is formed by closely packed flocs. The resulting gels have a large volume 

fraction of particles well above the gelation threshold, a very high viscosity, and a finite 

http://en.wikipedia.org/wiki/Strain_%28materials_science%29
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shear modulus. We assume that in linear viscoelastic region, the colloidal ink is a solid-

like viscoelastic system. That means when stress applied, the gel can be deformed with 

time, and after stress released, the gel will recover to its original state gradually. Thus, a 

modified Burgers model with one free spring and two Kelvin-Voigt components 

connected in series, as illustrated in Figure 3.8 (d) will be used to fit the creep and 

recovery data. The different components of this model can be connected to specific gels 

microstructure evolution. The free spring in this model represents the instantaneous strain 

of overall gel network. The first Kelvin-Voigt component stands for the delayed strain of 

overall gel network. The second Kelvin-Voigt component indicates the delayed strain of 

floc structures. Here, we assume that the overall gels network deforms very fast, while 

the floc structures induced response to stress are relatively slow. The creep (Jc(t)) and 

recovery (Jr(t)) mathematical model can be expressed by Eq. (6.7) and (6.8). 

1 2
c

0 1 1 2 2

G G1 1 1
J (t) 1 exp t 1 exp t

G G η G η

      
            

                                 

(3.7) 

  

   ' ' ' '1 1 2 2
r

1 1 1 2 2 2

G G G G1 1
J (t) 1 exp t exp t t 1 exp t exp t t

G η η G η η

          
                  

          

  

(3.8) 

where t
’
 is the time point when the stress is released, and creep phase changed to recovery 

phase.  

3.3.5 Creep and recovery compliance 

Figure 3.9 shows the experimental results of compliance function, J(t) as a function of 

time is for the same set of Al2O3 gels used in the stress sweep measurements. Hence, the 

nine data sets represent iteration at the three solids values of 0.45, 0.47, and 0.49 with 
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each having PEI = 0.010, 0.014, and 0.018 wt%. Since each gel has a unique value of G
’
eq 

and c, a common magnitude of stress in the creep tests was not selected. Rather, a stress 

in the range of cto c was selected for each ink.  

 

 

Figure 3.9 Compliance J(t) of Al2O3 gels plotted for creep and recovery experiments as a 

function of PEI wt% and solids = (a) 0.45, (b) 0.47, and (c) 0.49. 
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Figure 3.9 Compliance J(t) of Al2O3 gels plotted for creep and recovery experiments as a 

function of PEI wt% and solids = (a) 0.45, (b) 0.47, and (c) 0.49. 

In these curves, the time-dependence of the compliance J(t) resembles logarithmic 

growth in the creep experiment and exponential decay in the recovery experiment. The 

differences between the various PEI wt% are quite clear: the creep deformation is much 

larger for the low PEI wt% than for high one. In addition, at fixed PEI wt%, increasing 

the solids reduces the creep deformations. However, the influence of PEI wt% on the 

creep deformation is much more sensitive than that of solids. Similar observation was 

recorded during the stress sweep measurements.  

The continuous lines drawn in Figure 3.9 are the results of fitting the creep and 

recovery data to our previous proposed mechanical model and the fitting parameters are 

summarized in Table 1. The column 1/G0 represents the instantaneous unit stress 

deformation at t=0. The decrease observed in 1/G0 when the PEI wt%  is increased from 

0.010 to 0.018 is an indication of the colloidal gels network shift from weak floc 
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structures at low ionic strength to flocculated structures at high ionic strength. The 

columns 1/G1 and 1/G2 represent the maximum potential unit stress deformation of two 

Kelvin-Voigt components. Both of them have the same change trend as 1/G0.  

Table 3.1 Fitting parameters of creep and recovery model 


PEI 

wt% 

1/G0×10
-5 

(Pa
-1

)
 

1/G1×10
-5 

(Pa
-1

) 

1/G2×10
-5 

(Pa
-1

) 
/G1 

(s) 

/G2 

(s) 
r

2
 

0.45 

0.010 6.81 6.81 4.23 0.17 18.87 0.996 

0.014 3.33 1.15 2.07 1.23 32.26 0.994 

0.018 1.28 0.67 1.44 1.67 52.63 0.993 

0.47 

0.010 3.28 1.15 1.77 1.32 32.26 0.991 

0.014 1.65 0.69 1.52 1.61 43.48 0.995 

0.018 0.32 0.15 0.41 1.96 47.62 0.992 

0.49 

0.010 2.98 0.96 1.65 1.61 34.48 0.996 

0.014 0.56 0.24 0.80 1.69 43.48 0.954 

0.018 0.14 0.08 0.14 1.72 55.56 0.936 

 

The columns /G1 and /G2 represent the characteristic relaxation times of two 

Kelvin-Voigt components, respectively. The relaxation time /G1, on the order of few 

seconds, corresponds to the first Kelvin-Voigt component. The relaxation time/G2, on 

the order of tens of seconds, corresponds to the second Kelvin-Voigt component. There is 

no clear trend in these data; however they are still similar to the recovery times found in 

previous work on concentrated BaTiO3 gels using an oscillatory type measurement. [40] 
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Table 3.2 Compliance percentage of each model component 

solids PEI wt% JFS%
 

JKV1% JKV2% 

0.45 

0.010 38.15 38.15 23.70 

0.014 50.84 17.56 31.60 

0.018 37.76 19.76 42.48 

0.47 

0.010 52.90 18.55 28.55 

0.014 42.75 17.88 39.38 

0.018 36.36 17.05 46.59 

0.49 

0.010 53.31 17.17 29.52 

0.014 35.00 15.00 50.00 

0.018 38.89 22.22 38.89 

 

The full mechanical characterization of this system can be established by calculating 

the contribution of each component of the model, at the maximum deformation (i.e., t = 

120 s) to which the system is subjected. The percentage deformation of each component 

of the model can be calculated by  

component

sum

J
J% 100

J
                                                               (3.9) 

where Jcomponent is the corresponding component compliance: free spring compliance JFS = 

1/G0; the compliance of the first Kelvin-Voigt component, which can be expressed as: 

 1
KV1

1 1

G1
J (120) 1 exp 120

G η

  
     

  

                                      (3.10) 

, and the compliance of the second Kelvin-Voigt component, which can be expressed as: 

 2
KV2

2 2

G1
J (120) 1 exp 120

G η

  
     

  

                                    (3.11) 
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Jsum is the summation of all components compliance. The compliance percentage of each 

component is reported in Table 3.2. 

3.4 Summary 

For Al2O3 inks prepared in this work, PAA was adsorbed on the particle surface to 

promote stabilization. The zeta potential behavior of bare and PAA-coated Al2O3 

particles in suspension was quantitatively described. Excess PAA had little effect on the 

colloidal stability. The bare particles displayed an IEP around pH = 8.3. The addition of 

the PAA shifted the IEP of the coated particles to pH = 4.6. A surface saturation of PAA 

was reached at 2.4 mg PAA/g Al2O3, as determined by the Potentiometric titrations 

measurements. In the chosen processing range, the PAA was ionized and provided 

sufficient colloidal stability to formulate suspensions. 

The linear viscoelastic regions of Al2O3 colloidal gels have been determined by stress 

sweep tests. The viscoelastic measurements show that the alumina gels are usually more 

elastic within larger flocculant/dispersant ratio and solid fraction. Creep and recovery 

analyses disclosed internal structure dynamics of colloidal gels system. Creep-recovery 

curves were fitted to a modified Burgers model. This allowed us to simulate the 

viscoelastic behavior using this mechanical model. From the parameters values of this 

model, the elastic and viscous contributions to the general viscoelastic behavior were 

analyzed for each solid fraction and each flocculant/dispersant ratio. On this basis, the 

Al2O3 colloidal gels viscoelastic studies were complete.  
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CHAPTER 4 THIXOTROPIC RHEOLOGY OF COLLOIDAL INKS 

 

4.1 Introduction 

Previous studies have attributed the equilibrium shape deformation to the equilibrium 

elastic modulus of ink materials [4]. Despite the accuracy of this method in describing the 

equilibrium shape of deposited structures, it is still uncertain how the complex rheology 

of colloidal inks will affect dynamic shape evolution of as-deposited structures. The 

equilibrium rheology of colloidal inks in a steady state has been described by using 

Hershel-Bulkley model, and the corresponding extrusion flow dynamics has been 

predicted [54]. The simulation results indicated that extrudate was in a state of non-

equilibrium only during extrusion and recovers at once upon deposition. However, recent 

studies such as, direct flow visualization, finite element modeling, and classical fluid 

mechanics indicated that the colloidal structure is actually in a state of transition during 

extrusion and afterwards [70, 71]. Moreover, previous experience showed that both the 

extrusion flow in the capillary tube and the shape evolution after deposition occurs only 

in several few seconds [4]. It can be deduced that the short duration unsteady state flow 

behavior is of significance in this case. The thixotropic rheology of colloidal inks over 

shorter time scales seems to be critical important from the perspective of colloidal 

structures evolution during flow dynamics and after deposition. 
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Thixotropy is defined as a decrease of viscosity under constant shear stress or shear 

rate as a function of time, and followed by a gradual recovery when the shear is removed 

[72]. Although thixotropic fluids have found widely industrial applications, it is still hard 

to provide an exact definition of thixotropy that can be extensively accepted due to their 

complex mechanisms [72-74]. Various thixotropic models have been developed to 

describe the thixotropy behavior by combining the thixotropic assumption and the 

constitutive equation of a Non-Newtonian fluid, and most of them can be found in the 

reviews [72-75]. Generally, these models can be divided into two approaches: direct 

microstructural approach, and indirect microstructural approach. The direct 

microstructural approach is based on a description of the density of transient 

entanglements or of the aggregation of particles. While the latter one is based on a scalar 

parameter equation representing the change of structural breakdown and rebuild. 

Currently, structural kinetic theory is a more general approach to describe the thixotropic 

rheology based on microstructure dynamics. Moore [76] first introduced a scalar 

structural parameter to explain the flow behavior of ceramic pastes. Cheng and Evans 

[77] extended it to account for the thixotropic materials. From then on, the structural 

kinetics theory was established and applied to different phenomenological models to 

investigate thixotropic rheology of a variety of purely viscous systems [12-17]. 

The previous chapter showed that concentrated colloidal inks generally display strong 

viscoelastic behavior. The viscoelastic system makes it difficult sometimes to distinguish 

the effect of thixotropy from that of viscoelasticity clearly [72]. Acierno et al., [78] first 

postulated a constitutive model based on a series of Maxwell elements, and this model 

was modified to combine with Jeffrey’s model later [79]. These models extended the 
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linear viscoelastic mechanical analogs through a series of ideal springs and dashpots 

combination, and incorporate structural kinetic theory to describe the thixotropic 

rheology. Doraiswamy et al., [80] assumed that the concentrated suspensions have an 

initial elastic behavior before yielding and a purely viscous behavior afterwards. 

Mujumdar et al., [75] extended this model to describe the smooth transition of 

concentrated suspensions from an elastic dominated phase to a viscous dominated phase. 

Based on these works, Dullaert and Mewis [81] developed a general structural kinetics 

model for thixotropic colloidal suspensions to describe both structure-dependent elastic 

and viscous contributions of particles and medium.  

Currently, structural kinetic models have been successfully applied to describe the 

thixotropic rheology of numerous colloidal dispersions or weakly flocculated suspensions 

with low solid volume fraction [75, 79-84]. And this is the first time to analyze the 

thixotropy of concentrated colloidal gels with viscoelastic properties using this method. 

In this chapter, concentrated Al2O3 colloidal gels were employed as a model ink material 

to investigate the thixotropic rheology as the first part of a series of shape evolution 

experiments. An innovative engineering model based on the structural kinetics theory 

was proposed to quantify viscoelastic thixotropy of Al2O3 colloidal inks. This relatively 

simple and practical model can be used to predict the dynamic rheology of the ink and 

found to be in good agreement with experimental results. 

4.2 Experimental Procedure 
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4.2.1 Materials 

Here, three concentrated Al2O3 colloidal gels of 49% solid volume fraction with 

varying PEI concentrations of 0.010, 0.014, and 0.018wt% were prepared following 

previous chapter’s methods. At the beginning of each measurement, the sample was 

dominated by a pre-shear of 0.2 s
-1

 for 1 minute and then left undisturbed for 30 min to 

attain an approximately fully structured initial equilibrium state to avoid any pre-shear 

effect during gels preparation. 

4.2.2 Rheological measurements 

Three common rheological test modes (i.e., start-up experiment, shear rate step-

change experiment, and hysteresis loop experiment) were adopted to test the thixotropic 

behavior of model materials [72, 73, 75]. The first set of experiments consisted of a series 

of start-up shear flow of colloidal inks. A shear rates    was applied to static state samples 

abruptly and kept constant until steady state was reached. The second set of experiments 

consisted of a series of continuous shear rate step changes. The shear rate    was suddenly 

increased or decreased from a previous steady state to a new value until reach a new 

steady state. All measurements were maintained for 1 min, which was sufficient to attain 

the steady state in all cases. The third set of experiments consisted of hysteresis loops 

with different sweep time, where the shear rate was linearly increased from none to 100s
-

1
 and decreased to zero at the same speed. The corresponding shear stress was recorded 

for each measurement. Figure 4.1 shows the shear history schematics of shear rate step-

change and hysteresis loop experiment.  
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Figure 4.1 Schematic illustrations of (a) hysteresis loop and (b) shear-stress changes with 

time in shear-rate changes for a thixotropic material. 

All measurements were performed under the Bohlin rheometer under the isothermal 

condition at 25
0
C by digital temperature controller. A cup and bob measuring system 

(C14, Cup ID = 16mm and Bob OD = 14mm) with serrated wall was used to prevent the 

wall slip. Besides, to prevent water evaporation during the long periods required for 

measurements, a custom-made water trap was placed around the measuring device 

providing saturated atmosphere over the sample. In order to make sure the precision of 

the data, every measurement was repeated three times.  
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4.3 Development of Time Dependent Rheological Model 

The thixotropic behavior of concentrated colloidal gels, depending on their internal 

structure changes with time under different shear rates has been linked theoretically to gel 

networks rupture, attrition and restructuring processes [9-12], as shown in Figure 4.2. 

From a microstructure perspective, gel network is a collection of closely packed flocs, 

which are fractal aggregation of colloidal particles. When the shear is imposed to gels, 

gels network will evolve due to the individual flocs deform with weak inter-flocs 

interactions and even rupture into smaller flocs until the structural changes reach dynamic 

equilibrium. When the shear is removed, small flocs will incorporate into larger ones, and 

the connection between flocs will reagglomerate toward its initial agglomeration degree. 

The rate of agglomeration and breakdown of flocs are determined by Brownian motion 

and shear history, which lead to the time dependent characteristics.  

 

    

 

 

Figure 4.2 Schematic microstructure evolutions of colloidal gels with shear rate change. 

The larger circles indicate flocs in the gel consisted of gelled particles. The small dark 

circles indicate single particles. 

 



50 

 

4.3.1 Structural kinetics 

We follow the classic structural kinetic theory to propose a normalized structural 

parameter,  solids , , t   (i.e., 0 ≤ λ ≤ 1), to describe the thixotropic behavior of the gel. 

For constant solids, at any fixed location, it is considered to be a function of time t, and    

only. A fully structured gel has λ = 1, whereas a stable colloidal sol has λ = 0. The 

evolution of λ is assumed to be a first-order rate equation, analogue to reversible 

chemical reaction kinetics due to the flocs structure breakdown rate and agglomeration 

rate during the shear flow. The breakdown rate is assumed to be proportional to the 

instantaneous breakdown probability (i.e., λ), while the agglomeration rate is assumed to 

be proportional to the instantaneous agglomeration probability (i.e., 1 − λ). Thus, the 

first-order kinetic equation can be written as [81, 85, 86]: 

 
 b a

, t
K K 1

t

 
    


                                       (4.1)                    

where Kb is the overall breakdown rate constant, Ka is the overall agglomeration rate 

constant. The complete structural kinetics contains shear-induced breakdown, shear-

induced agglomeration and Brownian motion induced agglomeration [81]. The 

breakdown rate is the product of collision frequency and probability of breakdown. Since 

collision frequency is proportional to    [86, 87], Kb is assumed to be proportional to    as 

[86]:  

b bK k                                                          (4.2)                    
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where kb is specific breakdown rate constant. The agglomeration rate should increase 

with the    increase due to collision frequency and agglomeration probability increase. 

However, Gautham and Kapur [88] raised that higher shear rates will reduce the duration 

of collision significantly to make the agglomeration rate decrease eventually to zero. 

They [88] developed the agglomeration rate constant expression, based on Fan and 

Chen’s assumption [87] as: 

'

a 0
a ''

a

k k
K

k 1

 


 
                                                    (4.3)                    

where ka
 
 and ka

  
 are specific agglomeration rate constant,  is a exponential factor (  

  , and k0 is a Brownian motion induced agglomeration rate constant.  

Once the colloidal system achieves equilibrium at a given   , the agglomeration rate 

will equal the breakdown rate of flocs, and the structure of the system will approach an 

equilibrium value characterized by a single equilibrium structural parameter λe . This 

dynamic balance can be expressed as: 

  a
a e b e e

a b

K
K 1 K

K K
    


                                 (4.4)                    

By integrating Eq. (4.1) and substituting Eq. (4.4), the λ has the following form as: 

   e i e a bexp K K t                                           (4.5)                    

where λi is the structural parameter value prior to the    changes, (i.e., t = 0) = i). 
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4.3.2 Constitutive relationship 

In this study, the Al2O3 colloidal gel was treated as a single-phase viscoelastic 

material with thixotropy. The elastic stress  el and the viscous stress  vis are decoupled as 

in Dullaert and Mewis model [81], and the total stress total of flocs structure is the 

summation of these two terms as: 

el vis

total                                                           (4.6)                    

The  el  arising from the hydrodynamic interaction of the flocs, is assumed to obey a 

Hookean elastic response as:  

 el G                                                            (4.7)                    

where G λ  is a structural dependent shear modulus, and   is the elastic strain. The   λ  

is assumed to vary proportionally to the λ [79, 81] as: 

  mG G                                                          (4.8)                    

where Gm is the maximum shear modulus before shear flow starts (i.e., λ = 1). The   will 

increase linearly from zero to some critical strain c when the shear flow starts, and 

remain constant as long as the deformation process continues in the same direction [80]. 

It can be expressed as: 

 c 1 exp m t      
 

                                           (4.9)                    

where m and   are characteristic parameters. For the simplicity, we define a maximum of 

elastic yield stress y as: 
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y m cG                                                         (4.10)                    

The  el can now be written as: 

 el

y 1 exp m t      
 

                                      (4.11)                    

The  vis originating from the transient flocs network, consists of two terms: one describes 

the apparent viscosity decay  
de
 λ      due to flocs structure breakdown, and the other 

describes the infinite apparent viscosity ∞ at completely destroyed flocs structure (= 

0). It can be given as: 

 vis

de ,                                                  (4.12)                    

The viscosity decrement term  
de
 λ      is assumed to be proportional to and obey an 

exponential decay with the    as [89]: 

   de m, exp n                                             (4.13)                    

where m is zero-shear viscosity, n and  are material characteristic parameters. Hence, 

the constitutive equation can be written as: 

     y m, 1 exp m t exp n 


              
 

              (4.14)                    

The instantaneous apparent viscosity is defined as: 

 
el

total
m exp n 



  
      


                              (4.15) 
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Eq. (4.15) can also be applied to the equilibrium states, so we can get equilibrium 

apparent viscosity  
 
 as: 

 e e m exp n 

                                           (4.16) 

4.3.3 Estimation of parameters 

There are twelve basic parameters in the proposed model, including five structural 

kinetic parameters kb, ka
 
, ka

  
,  , and k0; three steady state elasticity parameters y, m, and 

; and four steady state viscosity parameters m, n, and ∞. All parameters are 

constrained to be positive.  

Table 4.1 Model parameters for Al2O3 inks of solids = 0.49 with varying PEI wt% 

PEI (wt %) 0.010% 0.014% 0.018% 

kb×10
3
 5.57 3.05 1.27 

ka
 
×10

3
 8.23 5.10 2.16 

ka
  
×10

4
 2.98 2.84 2.59 

        1.99 1.95 1.93 

k0×10
2
 5.58 3.70 1.79 

y (Pa) 70 164 245 

m 13.47 16.58 18.25 

 1.54 1.46 1.36 

m (Pa s) 580 1720 3400 

n 2.458 3.088 3.597 

 0.198 0.170 0.153 

∞ (Pa s) 1.199 1.688 1.960 
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During the estimation, some basic parameters can be combined as lumped parameters 

to estimate, such as
'

a 0
a ''

a

k k
K

k 1

 


 
, b bK k  , and a

e

a b

K

K K
 


. These parameters were 

evaluated separately with various data to minimize possible mathematical coupling. 

Firstly, the steady state shear flow data are used to estimate m, n,  ∞, and e. 

Secondly, a series of start-up shear flow and continuous step change shear rate data are 

used to estimate kb, ka
 
, ka

  
,  , and k0, combining with e. Finally, the transient start-up 

shear flow data at very small shear rate (i.e. ≈ 1) are used to estimate y, m, and . The 

estimated parameters obtained from above procedures are listed in Table 4.1. They can be 

used to validate the predictive capability of this model. 

4.4 Results and Discussion 

4.4.1 Steady state rheology 

Figure 4.3 showed the structural kinetics parameters Kb, and Ka changes as a function 

of the   . As plotted, the higher PEI concentration results in lower Kb and Ka value in the 

entire    range. Since higher PEI concentration leads to stronger strength between flocs, 

the stronger gels breakdown and agglomeration rates are slower than weak ones. Besides, 

Kb increases simply linearly along the   , while Ka shows initially increase until peak 

value and drop after that. When the    is terminated, the Ka is equal to k0 in that only 

Brownian motion induced agglomeration exists. As the    increases from low to 

intermediate value, the shear induces higher collision frequency of flocs, which leads to 

Ka increase. As the    increases from intermediate to high value, the shear induces both 

higher collision frequency and shorter collision duration of flocs, which leads to Ka 
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decrease. The peak of the Ka is the transition point, where agglomeration rate changes 

from increment to decrement with the   . 

 

 

Figure 4.3 The variation of (a) overall breakdown constant Kb and (b) overall 

agglomeration constant Ka as a function of the shear rate   . 
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After obtaining the function of Ka and Kb, the e can be calculated from Eq. (4.4), and 

the steady state flow curve can be predicted by substituting e into Eq. (4.14). Since there 

are two variables of    and t in the time-dependent rheological model, the equilibrium 

flow curve can eliminate the time evolution influence. The steady state rheological 

measurements were carried out by applying different constant shear rates to record the 

shear stress changes with time until equilibrium state.  

 

Figure 4.4 The steady state flow curves: (a) steady stress-shear rate curves, (b) steady 

apparent viscosity-shear rate curves. 

 

 



58 

 

 

Figure 4.4 The steady state flow curves: (a) steady stress-shear rate curves, (b) steady 

apparent viscosity-shear rate curves. 

As shown in Figure 4.4, the equilibrium flow curve shows a yield stress, and shear 

thinning behavior in the middle of measurement ranges. At higher   , the flow curve 

shows approximate Newtonian fluid characterization. The stronger gel shows higher 

yield stress, which implies a stronger elastic response. The higher PEI concentration also 

leads to higher shear stress at any instant   .  

4.4.2 Hysteresis loops 

Hysteresis measurements have been widely used as a tool to demonstrate the 

existence and extent of the thixotropic behavior of complex fluids. Early attempts to 

analyze thixotropic behavior were focused on qualitative or empirical concepts obtained 

from hysteresis-loop measurements [90]. The shape and area of the hysteresis loop have 
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been used to evaluate the thixotropic degree (i.e., larger area means larger thixotropic 

degree). However, hysteresis in flow curves is non-equilibrium behavior and hence 

highly dependent on the time span of the measurement [91].  

Hysteresis loops, observed in Figure 4.5 confirms the thixotropic behavior of 

colloidal inks, when the shear rate was linearly increased from static state and 

subsequently decreased with the same speed to its initial value. The shear stress of the 

forward and backward curves encloses an area of hysteresis loops which indicates the 

thixotropy degree. These loops are positive, i.e., the up-curve is higher than down-curve, 

which indicates that the progressive breakdown of the ink structure under shear followed 

by its gradual recovery when the shear decreases. Figure 4.5 (a) revealed the variation in 

hysteresis loops with different PEI concentration under the same sweep time. Qualitative 

observation indicates that thixotropy increases with gel strength. Figure 4.5 (b) showed 

the sweep times influence to the hysteresis loops. As the sweep time increased, the loops 

area decreased, and especially the down-curve approached the steady state flow curves. 

Although the hysteresis loops are not accurate enough for modeling, they have verified 

the shorter time-dependent behavior of colloidal gels. The solid lines represent model 

predictions. By comparing with experimental results, the thixotropic rheology model 

showed excellent prediction ability. 
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Figure 4.5 The hysteresis loops of experimental results comparing with model prediction: 

(a) varying PEIwt% at sweep time of 10 s, (b) at varying sweep times. 
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4.4.3 Breakdown and build-up curves 

Although the above-described hysteresis experimental procedure was easy and quick 

to perform, it has the drawback that two variables of shear rate and time were 

continuously changed simultaneously. And it is difficult to establish whether the 

observed change in viscosity is due to time or to the change in shear stress. This makes it 

difficult to determine that the shear stress change is due to shear rate or time. Therefore, 

in order to counter this drawback, flow measurements at equilibrium were carried out by 

applying different constant shear stresses whereas the time evolution of the resulting 

deformation was monitored. 

Figure 4.6 illustrated the continuous shear rate step change experimental results, 

compared with model predictions for Al2O3 inks with varying PEI concentrations. In 

Figure 4.6 (a), the shear rate was suddenly applied to static sample inks and continuous 

increased to 5, 30, 60, and 120s
-1

. At each step, the shear rate was retained for 1 min to 

ensure to attain equilibrium. The initial shear stress overshoot was obvious, and 

relaxation time decreased as shear rate increased. Figure 4.6 (b) illustrated the shear 

stress as a function of shear rate step-down from initial 30 s
-1

 to 10, 5, 1, and 0.1 s
-1

. The 

shear stress recovered very fast from initial undershoots. The prediction of the recovery 

curves is relatively poor with current model. This may be caused by the mechanical and 

measuring systems geometry error of the rheometer after large shear rates. 
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Figure 4.6 The shear rate step change of experimental results comparing with model 

prediction. (a) shear rate step-up measurements, (b) shear rate step-down measurements.  
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4.4.4 Start-up transient shear flow 

In a next step, some features of this model will be assessed in more detail to 

discriminate the elastic and viscous contributions by analyzing the start-up transient flow 

curves. The shear stress produced displays an initial overshoot before reaching a steady 

state value. Due to the very fast destruction process, low shear rates were chosen, namely 

   = 0.01 s
−1

, 0.1 s
−1

, and 1 s
−1

. Besides, lower shear rates can dramatically decrease the 

relative importance of viscous properties.  

 

Figure 4.7 Start-up shear flow of Al2O3 inks of solids = 0.49 and PEI wt% = 0.018 for    = 

(a) 0.01s
-1

, (b) 0.1s
-1

, and (c) 1s
-1

. 
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Figure 4.7 Start-up shear flow of Al2O3 inks of solids = 0.49 and PEI wt% = 0.018 for    = 

(a) 0.01s
-1

, (b) 0.1s
-1

, and (c) 1s
-1

. 
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Figure 4.7 demonstrated the shear stress evolution dynamics of Al2O3 inks with 

varying PEI concentrations under lower shear rates. In Figure 4.7 (a), the shear stress 

initially increases approximate linearly corresponding to an elastic deformation of the 

sample. As the shear proceeds, the elastic response transits from static to dynamic 

equilibrium. The same trends were also observed in Figure 4.7 (b), and (c). An overshoot 

is observed at shorter times, which indicates the presence of elasticity of colloidal gels. 

The overshoot before reaching a steady state value represents the transition of elastic 

properties. The overshoot value is somewhat larger than the yield stress, and cannot be 

tracked by current model. The overshoot point is also strongly related to the level of the 

imposed shear rate value. The larger the shear rate is, the earlier the overshoot advents. 

When the shear rate is large enough, the overshoot will disappear since the viscous 

properties are much more important than the elastic properties. 

The data showed an increase in the maxima shear stress and a decrease in the 

corresponding times with increasing PEI concentrations. Another noticeable feature 

revealed by these experiments was the variation of the shear stress maxima as a function 

of shearing time and shear rate. The experimental data were found to be satisfactorily 

correlated by the hyperbolic form as: 

γ t 10                                                            (4.17) 

As expected, this also confirmed the existence of a critical shear strain as pointed out 

before and in agreement with the previous model assumptions. 

 



66 

 

4.4.5 Structural evolution after cessation of shear flow 

After shear rates removed, the disrupted flocs can still aggregate at a specific rate 

with time toward the initially undisturbed value of structural parameter eλ 1 . From Eq. 

(4.5) evolution of the structure parameter with no shear can be expressed by: 

i 0λ 1 (λ 1)exp( k t)                                                 (4.18) 

From Eq. (4.18), it can be seen that structural parameter increases with time from initial 

value of iλ  and approaches unity in the limit. It turns out that Eq. (4.18) permits 

simulation of the development of the structure after the ink deposited from the syringe 

tip, which is of importance to the final product quality. 

 

Figure 4.8 Structural parameter evolution of Al2O3 inks of solids = 0.49 and PEI wt% = 

0.018 after cessation of shear flow from different initial state. 
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In Figure 4.8, the evolution of  with time after cessation of shear flow was computed 

from Eq. (4.17) for different initial values ofi. The  increased rapidly at beginning, and 

gradually slowed down until reached the maximum value eventually. It is obvious that 

the structural recovery path depends on 
iλ , which can be altered by the prior history of 

the ink. 

4.5 Summary 

This chapter is the first part of a comprehensive research carried out to evaluate the 

shape evolution of 3D structures fabricated by direct-write assembly. The systematic 

understanding of complex rheological behavior of colloidal gels used in SFF can provide 

necessary information for dynamic flow during deposition and structural recovery after 

deposition. From the foregoing data, the following conclusions can be made: 

(1) The thixotropic rheology of Al2O3 colloidal gels have been observed and 

confirmed through shear rate step change, and hysteresis loops experiments. It provides a 

rational explanation for the dynamic shape deformation of deposited structures. 

(2) By introducing the structural parameter changing with time, a generalized time-

dependent single phase rheological model for concentrated colloidal gels with 

viscoelasticity has been developed and applied to the experimental results. The results are 

in agreement with the predicted values from the model. Our model is simple with few 

model parameters, and provides better overall simulation results. 

(3) Colloidal gels strength has been considered as a factor influencing the thixotropic 

degree. The experimental data and simulation results have demonstrated that the colloidal 

gels with higher PEI concentrations have stronger thixotropy. 
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CHAPTER 5 STRUCTURE OF COLLOIDAL INKS DURING EXTRUSION FLOW  

 

5.1 Introduction 

The rheological behavior of colloidal inks depends on the composition and 

formulation. A typical colloidal ink comprises of particles, dispersant, binders, 

plasticisers, and liquid phase. Such inks normally dewater or phase-separate during 

extrusion process.  This effect arises because the liquid phase may migrate significantly 

more rapidly than the dispersed phase (particles) under the application of a pressure 

gradient.  The flow of colloidal gels invariably involves interactions at the interface 

between the material and walls.  The material flow response is highly dependent on the 

interfacial characteristics of the boundary.  During extrusion flow, the interfacial 

resistance naturally induces inhomogenities within the flow.  These inhomogenities in the 

flow produce complex stress and shear rate fields within the bulk of the flowing ink.  The 

development of the slip layer produces a lubricating effect, making flow easier and not 

representative of the bulk material. 

A number of extrusion flow dynamics of colloidal gels have been reported in 

previous studies.  Morissette and Lewis [20, 92] first calculated the shear rate profile in 

the extrusion filament by assuming the ink material as Newtonian fluids.  Smay et al., [4] 

used Herschel-Bulkley model to simulated the capillary flow dynamics of PZT
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colloidal inks and raised a core-shell architecture as a result of a radically varying shear 

stress within the extrusion nozzle. Roberts et al., [70] measured the flow profiles of 

colloidal gels of varying volume fraction in square microchannels by microscopic particle 

image velocimetry. Conrad et al., [71] investigated the structure and flow profiles of 

attractive colloidal suspensions in microchannels with direct imaging technique. All these 

investigations treat inks as time-independent materials, and the extrudate is in a state of 

non-equilibrium only during extrusion and recovers at once upon deposition. Besides, no-

slip wall boundary conditions were always adopted in these studies for Newtonian or 

simple rheological fluids, and led to good agreement with experimental observations [4, 

20, 70, 71, 92]. However, the rheologically complex fluids are known to violate the no-

slip boundary conditions [93]. During the extrusion process, wall slip of the gel is thought 

to occur due to a thin solvent rich, but particle depleted layer near the deposition nozzle 

wall [45]. This phenomenon will significantly change the flow behavior in comparison to 

the flow under no-slip conditions, and lead to the different analysis results of colloidal 

structure evolution. These factors make it a challenge to characterize the structure and 

fundamental flow behavior for colloidal inks in extrusion process.  

In our previous study, we developed a thixotropic rheological model to characterize 

Al2O3 colloidal gels by incorporating a time-dependent structural parameter. This model 

will be employed to simulate the inks flow dynamics and structure evolution. This paper 

is the second part of a series of shape evolution experiments and we still use Al2O3 

colloidal gels as model materials. The flow dynamic simulation was first implemented 

into a 3D computer code to predict the isothermal flow field, yield surfaces, and 

distribution parameters in a capillary flow with no slip boundary conditions. Then a series 



70 

 

of extrusion pressure experiments were carried out to determine the wall slip effect to 

accurately convey the flow dynamics information. Finally, the flow dynamics will be 

associated with the microstructure of colloidal gels through a structural parameter 

quantitatively. These studies help the researchers in understanding the effects of 

properties of colloidal gels, the parameters of operations and their interactions in 

controlling filament formation and will be useful while optimizing a delivery system for 

extrusion process.  

5.2 Mathematical Modeling and Numerical Simulation 

In the deposition process, colloidal inks undergo a steady transition flow from a 

relatively low velocity within the barrel to the final extrusion velocity within the nozzle. 

Too high or too low extrusion velocity is meaningless for the mechanical limitations of 

the extrusion flow, and normal operation condition is to keep the extrusion velocity in the 

range of 2 ~ 20 mm/s. The flow type of the ink can be regarded as laminar plug flow for 

the low Reynolds number in this process. 

5.2.1 Rheological model 

The previously proposed time-dependent rheological model of Al2O3 colloidal gels 

consists of structural kinetics equation and constitutive equation. Since the extrusion flow 

keeps steady state during the deposition process, we use equilibrium rheological to carry 

out the CFD simulation. The equilibrium rheological model can be simplified as: 

 

   

a
b a e

a b

y 0 e

Kd
K K 1

dt K K

, exp a 




        


               

 

                                  (5.1) 
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Table 4.1 showed the parameters values used for defining the rheological constitutive 

relationship used. 

5.2.2 Numerical simulation 

In this case, the ink is assumed to be an incompressible fluid, with constant density 

and isothermal without heat exchange. By neglecting the inertia term, the mass and 

momentum conservation equations based on Navier-Stokes equation can be written as: 

i

i

u
0

x






                                                       (5.2) 

ij

i j

P
0

x x


  
 

                                                (5.3) 

Inlet boundary condition is fixed velocity and outlet boundary condition is fixed pressure. 

Two wall boundary conditions are considered: no-slip boundary and slip boundary 

conditions with constant wall stress obtained by extrusion pressure measurements. The 

commercial program COMSOL Multiphysics 3.5a (COMSOL, Burlington, MA) was 

used to solve the governing equations. The resolution is based upon an iterative Newton 

scheme. Convergence is achieved when norm of the change in solution vector between 

successive iterations is less than 10
-6

. All simulations in this paper were performed on 

Intel Pentium IV 2.0 GHz with 3 GB RAM PC machines. 

5.3 Experimental Procedure 
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5.3.1 Materials  

In this chapter, three concentrated Al2O3 colloidal gels of 49% solid volume fraction 

with varying PEI concentrations of 0.010, 0.014, and 0.018wt% were used, which are the 

same with the inks used in previous chapter for consistency. 

5.3.2 Extrusion pressure measurement 

The analysis of wall slip requires a precise determination of the true wall stress. Since 

the syringe barrel has a significantly larger diameter than that of the nozzle, it is 

important to correct the pressure loss at the entrance of the nozzle to specify the wall 

stress. Bagley correction [94] was performed here by using data from nozzles of same 

diameter but different length.  The true wall stress 
w  after Bagley correction can be 

expressed as: 

 
w

n

D P

4 L e


 



                                                  (5.4) 

where e is the equivalent length caused by ends effect. And it can be determined by 

extrapolating    versus the Ln curve to Ln = 0. Since the flow rate is another influence 

factor to the excess pressure drop due to these end effects [95], various deposition speeds 

V  were performed. Here, we use apparent shear rate   
a
 as controllable variable, and it 

can be related to the V  as: 

a

8V

D
                                                    (5.4) 
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Figure 5.1 Schematic illustration of extrusion pressure drop measurement setup. 

The extrusion pressures were measured by using a robotic deposition apparatus 

(Robocaster, Oklahoma State University, Stillwater, OK), a pressure transducer (load 

cell, LCGD 25, OMEGA Engineering Inc., Stamford, CT), and data conversion and 

acquisition systems. The sample material was loaded into a 3 ml syringe barrel (Nordson 

EFD, East Providence, RI) fitted with extrusion nozzles (Nordson EFD, East Providence, 

RI) with varying length. The plunger of robocaster was connected to the load cell, and 

pushed the ram downward to extrude the gel at a fixed velocity. The load cell between 

the plunger and the ram measured the applied force and transfer the data to the data 

acquisition system. Figure 5.1 illustrates the schematics of the experimental apparatus 

and setup. The interfacial friction generated between the ram and the syringe barrel walls 

is negligible compared to the extrusion load. The dimensions of the components and 

operation conditions were listed in Table 5.1.  
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Table 5.1 Dimensions of extrusion system and operation conditions 

Syringe diameter, D0 (mm) 9.6 

Nozzle diameter, D (mm) 0.2 

Nozzle length, L (mm) 6.3, 12.7, 19.1 

Deposition speed, V  (mm/s) 1, 2, 4, 8, 12 

5.4 Results and Discussion 

5.4.1 Bagley end correction 

In Figure 5.2, the extrusion pressure drop    of three gels was plotted as a function of 

nozzle length Ln under various apparent shear rate   
a
. The    values show excellent 

linear dependence on the Ln due to the small scatter of the results (less than 2%). The gel 

with higher PEI concentration, or under higher   
a
 necessarily exhibits larger    value.  

 

Figure 5.2 Bagley plots for Al2O3 colloidal inks of solids = 0.49 with varying PEI wt% = 

(a) 0.010, (b) 0.014, (c) 0.018. 
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Figure 5.2 Bagley plots for Al2O3 colloidal inks of solids = 0.49 with varying PEIwt% = 

(a) 0.010, (b) 0.014, (c) 0.018. 
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All three gels show negative intercepts on the nozzle length axis, and this intercept is 

equivalent length e in Eq. (5.4). As the   
a
 is increased, the equivalent length e increases 

correspondingly. That means higher inlet flow rate can intensify the end effects at the 

contraction entrance. Besides, the slope of Bagley correction curves in Figure 5.2 also 

increases with the   
a
. This qualitatively describes the wall stress increases with the inlet 

flow rate.  

 

Figure 5.3 Computed wall stress    as a function of apparent shear rate   
a
 for nozzle 

length of Ln = 12.7 mm. 

Due to the highly linear relationship between the    and the Ln, Bagley correction 

can be successfully implemented according to Eq. (5.4) to compute the true wall stress    

at varying   
a
. Figure 5.3 shows the computed    change with the   

a
 for three gels 

extruded from nozzles with length Ln = 12.7 mm. We can see that the    also shows 
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approximately linear dependence on the   
a
. That means the    can be directly predicted 

through the   
a
 for the nozzle with the same Ln. 

5.4.2 Flow dynamics simulation 

After getting the    as a function of the   
a
, the wall slip effects and bulk flow 

dynamics can be obtained and compared with  the CFD simulation results with no slip 

wall conditions. Figure 5.4 shows the extrusion velocity v profiles as a function of the 

distance from the center x at the exit of the nozzle for varying   
a
. Each flow profile is 

normalized by its deposition speed V , and plotted against the dimensionless position in 

the nozzle x/D. The solid spot represents the simulation results from CFD with no slip 

wall conditions. The solid line represents the calculated results by using measured 

constant wall stress as boundary conditions. All the shape of flow profiles shows a solid-

like core enclosed by a fluid-like shell. At lower   
a
, vr/ V  is constant across a large 

fraction of the diameter, indicative of behavior similar to plug flow. As the   
a

 is 

increased, the core fraction shrinks, and shear flow in the shell region dominate the 

structure. Due to the wall slip effects, the significant improvement to the topology of the 

gels structure can be observed. And larger   
a
 can lead to more significant wall slip, and is 

more pronounced for gels with higher PEI concentration. To better illustrate the change 

trend of the core region, the core fraction, rc / R was plotted as a function of the   
a
, as 

shown in Figure 5.5. The rc / R shows a monotonic decrease with increasing   
a
 for all 

three gels. 
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Figure 5.4 Dimensionless velocity profiles under various apparent shear rate compared 

with no-slip boundary condition CFD simulation results for Al2O3 gels of solids = 0.49 

with different PEIwt% = (a) 0.010, (b) 0.014, and (c) 0.018 extrusion flow in nozzles of 

Ln = 12.7 mm. 

rv / V  
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Figure 5.5 Core fraction as a function of apparent shear rate   
a
 for Al2O3 gels of solids = 

0.49 with varying PEI wt% in nozzles of Ln = 12.7 mm. 

Based on Smay’s derivation [54], the total volume flow rate, Q can be calculated by 

R

r
0

Q 2 v dr                                                  (5.6) 

Integrating this equation by parts, we can get 

R
2 2 r

s
0

dv
Q R v r dr

dr

 
    

 
                                   (5.7) 

where rdv

dr

 
   
 

 . The radial shear stress r is proportional to the radius r: 

 r
r

w w

r R
dr d

R


   
 

                                        (5.8) 
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Substituting equation (5.8) into (5.7) and rearranging it, we can get 

w

y

2s
a r r3 3

w

4V4Q 1
d

R R




      

                                   (5.9) 

Figure 5.6 shows the wall slip velocity Vs as a function of the   
a
. We can find the slip 

velocity also shows linear dependence on   
a
 for three gels. As the apparent shear rate 

increased, the wall slip velocity also increases at the same rate. This relationship is only 

applicable in the experimental range, and cannot be extrapolated to the outside region. 

 

Figure 5.6 Computed wall slip velocity Vs as a function of apparent shear rate   
a
 for Ln = 

12.7 mm. 
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5.4.3 Structure dynamics of colloidal inks   

Figure 5.7 shows the equilibrium structural parameter e profiles of three gels as a 

function of normalized radius position at the nozzle exit under apparent shear rate. These 

structural parameter curves quantitatively describe gels structures breakage extent. For 

the same apparent shear rate, the gel with higher PEI concentration owns larger core 

region, and larger structural parameters at any position. For each gel, larger apparent 

shear rate leads to stronger structural breakage. At the lower apparent shear rate, there 

exists a core region and a shear-thinning region outside. At the higher apparent shear rate, 

the shear-thinning region shrinks very fast, and there is a Newtonian fluid-like region at 

the outside, where the structural parameter decrease very slow.  

 

Figure 5.7 Structural parameter change profile under different apparent shear rate for 

Al2O3 gels of solids = 0.49 with varying PEI wt% = (a) 0.010, (b) 0.014, (c) 0.018. 
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Figure 5.7 Structural parameter change profile under different apparent shear rate for 

Al2O3 gels of solids = 0.49 with varying PEI wt% = (a) 0.010, (b) 0.014, (c) 0.018. 
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After deposition, the structure of the gel will recover from the initial equilibrium state 

(i.e., ie) to fully structured state (= 1). Figure 5.8 shows the structural parameters 

recovery as a function of time after deposition at different radial position. The three gels 

are all deposited at   
a
 = 480 s

-1
, and start to reconstruct their network from time t = 0. The 

core region does not increase much after a long recovery time. The Newtonian region 

recovers relatively faster and at almost the same rate. In the shear thinning region, the 

recovery rate slows as the radial position decreases.   

 

Figure 5.8 Structure profiles recovery after deposition as a function of time for Al2O3 gels 

of solids = 0.49 with varying PEI wt% = (a) 0.010, (b) 0.014, (c) 0.018. 
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Figure 5.8 Structure profiles recovery after deposition as a function of time for Al2O3 gels 

of solids = 0.49 with varying PEI wt% = (a) 0.010, (b) 0.014, (c) 0.018. 
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5.5 Summary 

In this investigation, wall slip effect has been taken into account to accurately 

describe the flow dynamics of colloidal gels. A series of experiments using different 

diameters and lengths of capillary tips were conducted to measure the wall stress under 

different apparent shear rate. The analytical procedures for treating the experimental data 

are now well established, including the end correction effects by Bagley and subsequent 

treatment of wall slip phenomena. Based on the results of the experiments, a new method 

to predict the internal flow profile and slip velocity was proposed. The simulation results 

can convey the rheological information of the colloidal gels flow. The structural 

parameter was introduced to quantitatively describe the microstructure of the colloidal 

gels during extrusion process. These results offer new insight into the relationship 

between flow behavior and gels structure evolution. 
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CHAPTER 6 SHAPE EVOLUTION OF AS-DEPOSITED SPANNING ELEMENTS 

 

6.1 Introduction 

Currently, three basic periodic structures have been most widely assembled, including 

space filling layers, high aspect ratio walls, and spanning elements, as illustrated in 

Figure 6.1. Space filling layers require the deposited ink to form a continuous body 

without gap between layers. While, high aspect ratio walls need the deposited filament 

have spacing between individual layers exceeding filament width. Spanning elements set 

a series of spacing parallel layers to stack up, and the gap in underlying layers is bridged 

by overlying layers. In these structures, spanning elements are especially important due to 

its versatile applications in the areas of electronics [7, 8], composites [10, 13, 14], and 

biological science [96]. 

           

Figure 6.1 Schematic illusions of 3D periodic structures: (a) space filling layers, (b) high 

aspect ratio walls, and (c) spanning elements.  

      

(a)                              (b)                               (c) 
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The deflection of suspended elements has been studied and modeled by a number of 

investigators. Smay et al., [4] first related equilibrium shear rheological properties of PZT 

inks to the shape of circular spanning filaments by applying static Euler-Bernoulli beam 

theory with an effective homogeneous modulus G'eff. This ideal model was then applied 

to analyze the deflection of spanning filaments fabricated by ceramic inks [3, 15], organic 

inks [22], and fugitive inks [97]. Rao et al., [38] applied this model to investigate the 

deflection of hexagonal and square filaments. The relation of equilibrium shear properties 

to final shape is a simple view of the actual processes happening during the extrusion 

steps. During the extrusion, the ink must sustain the creep deformation caused by the 

extrusion pressure induced shear stress. The spanning elements inevitably undergoes 

sagging deformation due to capillary and gravity induced tensile stresses after deposition 

prior to the final solidification step [4]. Therriault et al., [17] modified this quasi-static 

Euler-Bernoulli equation to a dynamic form by replacing the elastic modulus with the 

time-dependent tensile creep compliance. However, this model can only provide good 

predictive values for high aspect ratio spanning filaments with length-to-diameter L/D > 

20. There are two limitations, which make the beam theory inaccurate for predicting the 

deflection of spanning filaments from colloidal inks. Firstly, the mesoscale spanning 

filaments fabricated by direct-write assembly generally exhibit low aspect ratio (i.e., L/D 

< 10), which is beyond the beam theory assumptions (i.e., L/D > 20). Secondly, colloidal 

inks belong to viscoelastic materials, whose viscous properties were neglected in beam 

theory. During the deposition of spans, the extruding filament bends 90 degree upon 

exiting the nozzle to traverse the gap between to supports. That means the elements have 

both viscous flexibility and elastic flexural rigidity.  
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In this chapter, we first use dimensional analysis to reduce several process variables 

into dimensionless groups. An empirical equation was used to relate these dimensionless 

groups. By comparing with experimental data, this model was verified to be able to 

predict the maximum deflection of mid-span point. Then, we assumed that the 

instantaneous shape of spanning filaments resembles that of a viscoelastic catenary, and 

evolves with time. The dynamic evolution process is correlated to the viscoelastic 

characteristics of colloidal inks and operation parameters. A time-dependent viscoelastic 

catenary model was developed to simulate the dynamic shape evolution process. The 

simulation results were compared to previously experimental observations. 

6.2 Empirical Modeling of Dimensional Analysis 

6.2.1 Dimensionless Groups 

Although previous simply supported beam model [4] is an idealized view of spanning 

phenomena, it is still possible to provide useful information about impact factors on 

deformation of spanning elements. When using this model to fit deflection profiles of 

spanning elements, the maximum deflection of mid-span zmid can be written as: 

 

4

mid

5wL
δz

384EI
                                                      (6.1) 

In this model, the suitable G
’
eff was selected to replace the G

’
. Although the relationship 

between G
’
eff and other variables has been demonstrated, it is still not a direct method to 

disclose how the different factors influence the deflection degree of the spanning 

elements. Here, we assume that the effective elastic modulus G
’
eff is the function of 

deposition speed V and equilibrium elastic modulus G
’
eq. Therefore, deposition speed V
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(2 ~ 10mm/s), equilibrium shear modulus G
’
eq (4×10

4
 ~ 1.5×10

5
Pa), span distance L (0.5 

~ 2.5mm), filament diameter D (~ 0.2mm), and gel density gel (~ 4.1g/cm
3
) become 

important parameters on zmid.  

In the case of all these variables, dimensionless analysis will reduce the number of 

variables to a more tractable set of dimensionless groups to characterize 

interrelationships. The Buckingham Pi method [98] is a systematic procedure for finding 

characteristic dimensionless groups associated with particular problem and then 

discovering functional relationships between these numbers. Three elementary 

dimensions (i.e., mass, length, and time) are taken to implement Buckingham Pi theorem, 

and there should be 3 (= 6 3) independent dimensionless groups. Three dimensionless 

groups are then defined as follows:  

mid
1

δz Midpoint deflection
π

D Filament diameter
 

                                     

 (6.2) 

2

L Filament length
π

D Filament diameter
                                             (6.3) 

2

gel

3 '

eq

ρ V Motion energy
π

G Elastic potential energy
                                      (6.4) 

Although the dimensionless groups are not unique, most of them still have a specific 

and explicit physical meaning. Physically, the first and second group indicates the 

deflection, and length of spanning filaments with respect to the filament diameter. The 

third group can be regarded as the ratio of motion energy and elastic potential energy. 
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6.2.2 Relations of dimensionless groups 

Based on the above dimensional argument, three relevant dimensionless groups can 

be written as:  

2

gelmid

'

eq

ρ Vδz L
f ,

D D G

 
   

 
                                              (6.5) 

where f is an as-yet undetermined correlating function, which is either monomial or non-

monomial form [99]. There are various possible forms of three dimensionless groups’ 

combination. Firstly, the monomial (i.e., power series) form of f function was tried as: 

2
1

y
y 2

gelmid
0 '

eq

ρ Vδz L
y

D D G

  
        

                                        (6.6) 

where y0, y1, and y2 are constants to be determined. Generally speaking, in order to seek 

the dependence of one dimensionless group upon the others, one must keep the remaining 

groups constant and plot the curve of one group versus the others. In order to investigate 

the effect of L/D and gel
2V /G

’
eq on zmid/D, their values were plotted while keeping 

another group constant in Figure 6.2.  
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Figure 6.2 Relations between dimensionless groups (a) zmid/D as a function of L/D by 

keeping gel
2V /G

’
eq constant; (b) zmid/D as a function ofgel

2V /G
’
eq by keeping L/D 

constant. 



92 

 

In Figure 6.2 (a), the zmid/D shows a monotone increasing power function trend with 

L/D at different constant gel
2V /G

’
eq. In Figure 6.2 (b), the same trend of zmid/D as a 

function of gel
2V /G

’
eq at varying constant L/D except for the existence of intercept when 

gel
2V /G

’
eq approaches zero. Then, the monomial Eq. (6.6) was modified to non-

monomial form by adding another undetermined constant y3 as follows: 

 

2
1

y
y 2

gelmid
0 3 '

eq

ρ Vδz L
y y

D D G

                

                                           (6.7) 

The values of y0, y1, y2, and y3 were calculated from experimental data by using least 

squares regression, and listed in Table 6.1. 

Table 6.1 Empirical constants obtained by least-square regression 

y0 y1 y2 y3 

1.24×10
5 

1.33 1.28 7.19×10
-8 

6.2.3 Validation and prediction of empirical model 

Figure 6.3 showed the comparison of empirical model predictions with previous 

experimental data. It is clear from the figure that the model is in good agreement with 

experimental data and the deviations between the empirical model predictions and 

experimental data mostly fall into ±10% error ranges. Besides, Figure 6.4 illustrated the 

predicted values of zmid/D as a function of both L/D and gel
2V /G

’
eq. 
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Figure 6.3 Comparison of model predictions with experimental data. 

 

 

 

Figure 6.4 Model predictions as a function of dimensionless groups and compared with 

experimental data. 

6.3 Mathematical Modeling of Viscoelastic Catenary 

zmid/D 

gel
2V /G

’
eq L/D 
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6.3.1 Bending moment of viscoelastic materials 

The stress-strain behavior of a viscoelastic material under a constant tensile stress 

can be analogue to Kelvin-Voigt model with parallel combination of two ideal 

rheological elements, spring and dashpot, as illustrated in Figure 3.8 (b). The spring 

represents the elastic behavior, and the dashpot represents the viscous behavior of the 

material. The traction coefficient of the dashpot  is determined by the viscosity with 

the relationship  The relationship between the tensile stresse and the tensile 

straine in the spring element is given by Hooke’s law as: 

            e eE                                                      (6.8) 

The relationship between the traction force v and the traction strain v in the dashpot 

element can make an analogy to shear flow constitutive equation of Newtonian fluid as:  

             v vd / dt                                                        (6.9) 

The total stress is the sum of elastic and viscous stress as: 

              e v e vE d / dt                                          (6.10) 

Since the total strain is equal to the e and v as: 

            e v                                                          (6.11) 

Eq. (6.10) can be rewritten as: 

              E d / dt                                              (6.12) 



95 

 

Assuming that a plane cross section normal to the axis of the filament remains plane after 

bending, it can be easily shown by simple bending theory that at any section of the 

filament, the longitudinal strain can be expressed as: 

            Y / R                                                       (6.13) 

where Y is the distance of surface from neutral axis, and R is the radius of curvature of 

the filament. Here, we set s, t) as the kinetic angle of the tangent to the centerline with 

the horizontal, where s is the arc-length coordinate. By simply setting        , the 

curvature       can be expressed as: 

            sd / ds 1/ R                                                 (6.14) 

Then, substituting Eq. (6.13) and (6.14) into Eq. (6.12), multiplying it by YdA, and 

integrating it over the section of the filament: 

   
2 2

s stYdA E Y dA Y dA                                 (6.15) 

where         is the bending moment M  and      
 
is the area moment of inertia I. 

Thus, the M of viscoelastic filament can be expressed as [100]: 

s stM EI I                                                     (6.16) 

6.3.2 Viscoelastic catenary model development 

The planar forces and moments analysis of the viscoelastic filament element is shown 

in Figure 6.5. The filament is assumed to be under uniformly distributed load. The length 

of the element ds can be separated into horizontal component dx, and vertical component 
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dy. The gravity force acting on the element can be expressed by the product of weight 

distribution w, and element length ds. At the lower end, there exist a tangential tension 

force T, a normal shear force N, and a counter clockwise direction bending moment M. 

At the upper end, there exist opposite direction tangential tension force T + dT, normal 

shear force N + dN, and bending moment M + dM, respectively. The bending slope at 

any position of the filament can be measured by slope angle The derivation of 

viscoelastic catenary model follows the viscous catenary model derived by Teichman et 

al. [101]. 

 

Figure 6.5 Forces and moments acting on an element of the filament. 

Horizontal forces balance: 
HF 0  

 

s s s s

d
T cos N sin 0

ds

T cos T sin N sin N cos 0

    

          

                     (6.17) 

Vertical forces balance: 
VF 0  

 
 

s s s s

d
T sin N cos 0

ds

T sin T cos N cos N sin w

    

          

                      (6.18) 
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The tension force T, and shear force N in Eq. (6.17) and (6.18) can be expressed 

respectively as [102]: 

s

s

w cos N
T

 



                                                 (6.19) 

s

s

T w sin
N

  



                                                 (6.20) 

By eliminating the tension force T in Eq. (6.19) and (6.20), we can get 

ss s ss
s 2 2

s s s

N Nw cos
2w sin N 0

 
      

  
                       (6.21) 

The universal relationship between shear force N and bending moment M has the form: 

 sM N 0                                                       (6.22) 

And previous derivation has showed the bending moment of viscoelastic filament in Eq. 

(6.16), so the Eq. (6.22) can be rewritten as:  

 s ss sstN M EI I                                                (6.23) 

Substituting Eq. (6.23) into Eq. (6.21), multiplying by cos, and integrating it, we can get 

 
2

sss ssst
ss sst 1

s s s

cos
EI cos sin I cos sin w f t
     

                 
     

      (6.24) 

where f1(t) is a constant of integration. By setting = 0, Eq. (6.24) can be turned into 

 sss ssst
1

s s s

w
EI I f t

 
     
  

                                          (6.25) 
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Substituting Eq. (6.23) into Eq. (6.19), the result can be written as: 

 sss ssst

s s s

w
EI I T x, t

 
     
  

                                       (6.26) 

Comparing Eq. (6.25) with (6.26), using the setting condition = 0, we can get 

     1f t T x, t T 0, t                                              (6.27) 

That means the tension force T (x, t) is only a time dependent variable as: 

   xT 0; T x, t T t                                                   (6.28) 

Substituting Eq. (6.27), and (6.28) into Eq. (6.24), it turned into  

 
2

sss ssst
ss sst

s s s

cos
EI cos sin I cos sin w T t
     

                 
     

           (6.29) 

Multiplying Eq. (6.29) by s/cos
2
and integrating it, we can get 

     ss sst 2EI I sec ws T t tan f t                                     (6.30) 

where f2(t) is a constant of integration. The symmetry determines that          

                      , that means f2 (t) = 0. Besides, the boundary conditions at the 

supported ends are             . Thus, Eq. (6.30) can be formulated as: 

   ss sstEI I sec ws T t tan                                    (6.31) 
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dx

dy

v
u u+du

v+dv

ds

ds'

 

Figure 6.6 Time dependent displacement of an element of the filament [103]. 

In order to figure out the time-dependent expression for tension force T(t), we need to 

analyze the filament movement dynamics during shape evolution. Figure 6.6 shows the 

element movement during the filament sagging process. Setting u(x, t) is the horizontal 

displacement, and v(x, t) is the vertical displacement of a cross-section element at 

location x. If ds is the original length of the element, and ds' is its new length, they can be 

expressed respectively as: 

2 2 2ds dx dy                                                       (6.32) 

   
2 2'2ds dx du dy dv                                              (6.33) 

For small to moderate deflection, < 1, s ≈ x, so that vx ≈ Corrected to the second 

order of small quantities, the filaments fractional change in length can be expressed as: 

2'

x
x

vds ds
u

ds 2

 
  

 
                                                (6.34) 

Then, the tension T(t) in the viscoelastic filament can be expressed as: 
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   
2' '

x
x xt x xt

t

vds ds ds ds
T t EA A EA u A u v v

ds ds 2

     
         

     
        

(6.35) 

Integrating Eq. (6.35) by using the boundary condition ut (±L/2, t) = 0, and the symmetry 

of the problem which leads to ut(0, t) = 0, we can get 

     

   

2 2
L/2 L/2 L/2

x x

0 0 0
t

L/2 L/2
2 2

t0 0

v v
T t dx L / 2 T t EA dx A dx

2 2

EA A
T t dx dx

L L

 
     

 


   

  

 
            

(6.36) 

By substituting Eq. (6.36) into Eq. (6.31), the final equation of filament dynamic catenary 

with boundary condition can be written as: 

 
   

     

L/2 L/2
2 2

xx xxt t0 0

EA A
EI I dx dx wx

L L

0, t L / 2, t 0; x, 0 0

  
           

 
      

                   (6.37) 

The first term on the left hand of Eq. (6.37) represents the resistance to viscoelastic 

bending effect; and the second term represents the resistance to viscoelastic stretching 

effect; the inhomogeneous force term on the right hand arises from the weight of the 

filament.  

6.3.3 Analytical method for model solution 

During the early stage of deflection,< 1, the second term on the left hand of Eq. 

(6.37) can be neglected, and it can be simplified as:  

xx xxtEI I wx                                            (6.38) 
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Integrating Eq. (6.38) with the initial condition           ,             , and 

          yields 

 
3 2

t

0

wx wL x E
x, t 1 exp dt

6EI 24EI

    
         

    
                         (6.39) 

The vertical displacement v (x, t) is 

 

2
2

x t
2

L/2 0

w L E
v x, t dx x 1 exp dt

24EI 2

     
            

       
              

(6.40) 

This solution is resemble to the elastic beam deflection expression, and describes the 

initial bending deflection of whole filament in very short time. As time progresses, the 

stretching effect starts to dominate the deflection process from the mid-span point to 

lateral supported ends. And the bending effect will be localized to a       neighborhood 

of the lateral attachment boundaries, while elsewhere the filament is subject primarily to 

stretching strain without cross-section shrinkage. Thus, over most of the filament we have 

a balance between stretching and gravity for the stretching solution, which satisfies: 

 

 

L/2 L/2
2 2

t0 0

EA A
dx dx wx

L L

x L / 2 x, L / 2 x

  
      
 

     

 
                              

(6.41) 

Squaring Eq. (6.41), and integrating it, we can get 

 
2 5 3 22

L/2 L/2 L/2
2 2 2

2 2t0 0 0

w L L
dx E dx dx

24A 24x

       
                      

(6.42) 

Similarly, we can also integrate     
 
 to get  
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 
 3 2

L/2
2 t

2t0

L
dx

24x


                                                            

(6.43) 

Substituting Eq. (6.42) and (6.43) into Eq. (6.41), we can get 

 
3

3 3

2t

2 24wx
E

3 AL
                                                           (6.44) 

Integrating Eq. (6.44), it yields 

 

1/3

t
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24w 3E
x, t x 1 exp dt

EAL 2

   
      

    
                                           (6.45) 

The vertical displacement v(x, t) is 

 

1/3
2 2

x t

2L/2 0

x L 24w 3E
v x, t dx 1 exp dt

2 8 EAL 2

     
          

      
                             (6.46) 

In lateral boundaries, the filament must be highly curved, and the stretching solution 

need to change rapidly to match the supported end condition, ±Lt) = 0. By balancing 

the bending term in Eq. (6.38), EI·xx + I·xxt ~ ED
4
/x

2
 + D

4
·x

2
t)

 
with the weight 

wx, and substituting stretching solution Eq. (6.39), yields the scaling widthx(t) of the 

bending boundary layer, x ~ (E
2
/3+E

-1/3
/t)

1/2 
(D

5
/wL)

1/3 
[1-exp(

t

0
3E / 2 dt  )]

1/6
.   

6.3.4 Equilibrium shape profiles of viscoelastic spanning elements 

As the time      , the spanning filament reached its equilibrium shape, and the 

equilibrium width        ∞  of the bending boundary layer can be scaled as 

                 . In the lateral bending boundary layer, the equilibrium shape was 
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calculated through the bending solution Eq. (6.40); while in the middle stretching layer, 

the equilibrium shape was calculated through the stretching solution Eq. (6.46). 

     

   

2

2

1/32 2

2

w L
v x, t x ; x L / 2, L / 2 x L / 2 x,L / 2

24EI 2

x L 24w
v x, t ; x L / 2 x,L / 2 x

2 8 EAL

   
            

    


   
         

  

      (6.47) 

 

Figure 6.7 Equilibrium deflection profiles of spanning filaments deposited at a speed of 6 

mm/s for span distances L = 0.775 (□), 1.312 (○), 1.849 (△), and 2.386 (◇) mm from 

PZT colloidal inks at varying pH = (a) 7.60, (b) 6.85, and (c) 6.15.  
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mm/s for span distances L = 0.775 (□), 1.312 (○), 1.849 (△), and 2.386 (◇) mm from 

PZT colloidal inks at varying pH = (a) 7.60, (b) 6.85, and (c) 6.15.  
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From Eq. (6.47), we can see that the final shape of the spanning filament is 

determined by its weight distribution w, diameter D, span distance L, and elastic modulus 

G'. For a specific colloidal ink deposited by the same tip, only span distance L, and 

elastic modulus G' are variables for this model equation. Previous research [40] has 

correlated the G' to the shear history. Here, we assume that the properly effective elastic 

modulus G'eff needs to be selected and predetermined to fit the data. 

 

Figure 6.8 Comparison of effective elastic modulus G'eff and equilibrium elastic modulus 

G'eq of PZT colloidal inks as a function of pH at a deposition speed of 6 mm/s. 

Figure 6.7 shows the equilibrium deflection profile of selected filaments at different 

pH values. We can see that as the pH value decreases, the corresponding deflection 

decreases remarkably. This phenomenon is the result of the gel strength reduction with 

the pH decrease. Besides, the span distance augment leads to the increase of filaments 

deflection profile at all pH values. Here, we use a piecewise function of Eq. (6.47) to 
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describe the deflection profile in the whole intervals of span distance. Although this 

method will lead to the unsmooth of the fitting curve and inaccurate in the lateral range, 

the fitting curve still can provide precise prediction in the middle range and boundary 

layer near two support ends.  

Figure 6.8 shows the varying trend of the G'eff with the pH value of PZT colloidal 

inks at the same deposition speed of 6 mm/s. As the pH value increases, the gel strength 

is attenuated, so that the corresponding G'eq decreases simultaneously. Due to the shear 

flow during extrusion process, the G'eff is always below the G'eq for PZT colloidal inks 

with different gel strength. And the G'eff also decreases with the descending of the gel 

strength caused by the pH reduction.  

 

Figure 6.9 Equilibrium deflection profiles of spanning filaments deposited at speeds of 

(a) 2mm/s, (b) 8mm/s, for span distances L = 0.775 (□), 1.312 (○), 1.849 (△), and 2.386 

(◇) mm from PZT colloidal inks at pH = 6.15.  
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Figure 6.9 Equilibrium deflection profiles of spanning filaments deposited at speeds of 

(a) 2mm/s, (b) 8mm/s, for span distances L = 0.775 (□), 1.312 (○), 1.849 (△), and 2.386 

(◇) mm from PZT colloidal inks at pH = 6.15.  

Figure 6.9 shows the deposition speed’s influence on the equilibrium deflection 

profiles for PZT colloidal inks at pH = 6.15. We can find that the higher deposition can 

generate larger deflection profile for various span distances. This can be explained by the 

relationship between the deposition speed and G'eff. Here the pH is a constant of 6.15, the 

only factor can alter the G'eff is the deposition. According to the selected values of G'eff, 

we can know the G'eff decreases as the deposition speed increases, as illustrated in Figure 

6.10. In Figure 6.10, the G'eff varying trend of PZT colloidal inks at pH = 6.15 was 

illustrated as a function of deposition speeds. Comparing to the G'eq (dash-dot line), the 

G'eff get close to the G'eq at lower deposition speed, and as the deposition speed increases, 
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the G'eff decreases from slow to dramatically. This trend indicates that the G'eff is sensitive 

to the deposition speed, whose increase can greatly attenuate the G'eff. 

 

Figure 6.10 The effective elastic modulus G'eff of PZT colloidal inks at pH = 6.15 vary 

with deposition speeds.  

6.3.5 Time dependent shape evolution of viscoelastic spanning filaments 

Since the initial bending is in very short time, we just use the stretching function of 

Eq. (6.46) to track the mid-span point dynamic deflection by setting x = 0 as: 

 

1/3
4

t

0

1 3wL 3E
v 0, t 1 exp dt

4 EA 2

   
      

    
                           (6.48) 

Although Eq. (6.48) is not accurate enough to describe the initial deflection, it still shows 

the whole deflection dynamics of mid-span point. From Eq. (6.48) we can see that except 

for the G'eff, the ratio of Young’s modulus and traction coefficient E /  is another 

important factor to control the deflection velocity. 
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Figure 6.11 Mid-span point dynamic deflection of spanning filaments from PZT colloidal 

inks at pH = 6.15 by assuming G'eff = 10
5
Pa; and E /  = (a) 0.1, (b) 1.0, and (c) 10. 
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Figure 6.11 Mid-span point dynamic deflection of spanning filaments from PZT colloidal 

inks at pH = 6.15 by assuming G'eff = 10
5
Pa; and E /  = (a) 0.1, (b) 1.0, and (c) 10. 

As we can see from Figure 6.11, the increase of span distance results in the increase 

of deflection at any instant. The deflection velocity exponentially decreases with the rest 

time. As the E /  increases, the time for mid-span point to reach its equilibrium state 

decreases dramatically. It can be concluded that the viscosity of the ink after deposition 

can significantly change the deflection velocity.  
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Figure 6.12 Mid-span point dynamic deflection of spanning filaments from PZT colloidal 

inks at pH = 6.15 by assuming G'eff = 10
5
Pa;  E / eq = 1.0; i = 0.6 0; and e = (a) 0.1, 

(b) 1.0, and (c) 10s. 
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Figure 6.12 Mid-span point dynamic deflection of spanning filaments from PZT colloidal 

inks at pH = 6.15 by assuming G'eff = 10
5
Pa;  E / eq = 1.0; i = 0.6 0; and e = (a) 0.1, 

(b) 1.0, and (c) 10s. 

However, owing to the shear history during the deposition, the viscosity of the ink is 

not in an equilibrium state but a transition state from a lower value to equilibrium value.  

We assume that the instant viscosity   obeys an exponential increase as: 

   0 i 0 e1 1 / exp t /                                         (6.49) 

where  
 
 is the initial viscosity after deposition,   

 
 is the equilibrium viscosity, and  e is 

the relaxation time. Figure 6.12 shows the viscosity recovery’s influence on the mid-span 

point deflection of spanning filaments with varying span distances. As the relaxation time 

  increases, the mid-span point deflection velocity increases very fast. 
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6.4 Summary 

Direct-write assembly provides flexible and inexpensive routes to rapidly design and 

assemble 3D mesoscale structures, whose functions are greatly determined by their 

physical geometry. Especially, the lattice structures with spanning filaments are widely 

fabricated into various 3D functional structures. In this work, a viscoelastic catenary 

model has been developed to describe the time dependent deflection of spanning 

filaments. The simulation results indicated that this model provides good predictive 

capability for mesoscale spanning filaments. Although the current work is limited to 

colloidal gels, the knowledge gained here may be easily extended to other complex ink 

systems such as partially melted thermoplastic polymers and metals. The contributions 

made by this research will open new pathways to serve as guidelines for new inks designs 

and 3D shape evolution control. 

Further refinements in process modeling are needed to characterize the ink flow 

inside the deposition nozzle and the structural recovery immediately after deposition. 

Dynamic measurements of spanning filaments deflection are also needed to be carried out 

to validate the time dependent behavior of this model. These analyses will provide 

important information for the design of future inks and help define the processing 

parameters. High-performance inks combined with accurate process modeling of the 

direct-write assembly technique will enable the creation of microvascular networks with 

unparalleled complexity and commercialization of technological applications in 

biomedical, advanced materials and micro-fluidics. 
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CHAPTER 7 CONCLUSIONS AND FUTURE WORKS 

 

The effects of colloidal inks properties, and shear history of extrusion process on the 

shape evolution of spanning elements were investigated via a combination of 

experimental measurement of interparticle interactions, rheological properties, and 

viscoelastic properties, and theoretical analysis of mechanism models. The fundamental 

knowledge emerged from this investigation should advance the new ink design on a 

quantitatively scientific base. In addition, this thesis also has contributed more broadly to 

the fundamental theory regarding the deflection phenomena of spanning elements. In this 

chapter, the principal findings of the study are presented, followed by proposed future 

research directions.  

7.1 Conclusions 

We have systematically investigated the effects of viscoelastic properties, structural 

rheology, and extrusion shear flow on the shape evolution of as-deposited 3D lattice 

structures. The findings yield from this project provides processing guidelines for the 

optimizing the ink design and operation conditions used in direct-write assembly of 3D 

structures at the microscale level. The important conclusions derived from this study are 

state below. 
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(1) Concentrated Al2O3 colloidal inks were prepared by following a two-step method. 

The physic-chemical properties, such as surface zeta potential, polymer adsorption were 

characterized. The viscoelastic properties of the ink were measured by using stress sweep 

method, and the solid volume fraction and flocculant concentration were considered as 

impact factors. Besides, the creep and recovery behavior of the ink within linear 

viscoelastic region were described by using a mass-less mechanical analogue. 

(2) The rheological behavior of colloidal inks was investigated to understand the 

microstructures evolution of colloidal inks under shear flow. Experimental results 

revealed the viscoelastic thixotropy of the ink. A thixotropic rheology model was 

developed based on structural kinetics theory. A normalized structural parameter was 

introduced to characterize the microstructure of gels network. The model parameters 

were obtained by using experimental data. The simulation results showed this model can 

be used to describe the rheology of colloidal inks.  

(3) In order to demonstrate the extrusion flow dynamics of the colloidal ink, the 

previous rheological model was used to carry out CFD simulation. Previous experience 

showed that the wall slip boundary condition was inevitable in this case. The extrusion 

pressure measurement was designed to characterize the wall slip. Combining with Bagley 

end correction, the true wall stress was computed. Then, the wall slip velocity was 

calculated and used to predict the velocity profiles. The structure of the colloidal ink 

during extrusion flow and thereafter was quantitatively described using structural 

parameter. The radial structural evolution after deposition was also obtained.  

(4) The shape evolution of as-deposited spanning elements was investigated by both 

empirical model and mechanism model. Firstly, the dimensional analysis was used to 
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reduce the impact factors into several dimensionless groups. An empirical model was 

developed to relate these dimensionless groups. This empirical model was verified and 

used to predict the maximum deflection of mid-span point. Secondly, a viscoelastic 

catenary model was developed based on the static force and moment balance of 

suspended elements. The analytical solution was used to approximately solve the model 

equations. This model can be used to predict not only equilibrium shape of spanning 

elements, but the dynamic deflection evolution with time. 

7.2 Recommendations 

It is strongly encouraged that continued investigations need to be done to further prove 

the viability of this scheme. This study has demonstrated the far-reaching consequence of 

3D structures direct-write assembly, structural shape evolution, and new ink design for 

colloidal processing of ceramics or metals. It is a giant step in the right direction, and 

especially important to potential electronics and tissue engineered scaffolds fabrication. 

(1) The cross section deformation of isolated or adjacent filaments can be related to 

the radial structure dynamics. The relevant parameters for measurement of filament cross 

section will be the evolution of the aspect ratio and the eccentricity of the cross section. 

This is especially important for the high aspect ratio wall structures. 

(2) A continuous CFD simulation of colloidal inks extrusion flow from syringe barrel 

to deposition onto the platform can be conducted to show the whole structures evolution 

during process. Especially, the free surface flow of the filament exit the nozzle is of 

particular importance due to its 90 degrees’ bending. 
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(3) The visualization of the extrusion flow is another pathway to detect the inks 

structure during extrusion flow and can be used to verify current simulations results. 

Currently, visualization methods have been used in dilute suspensions flow. If there is a 

practical method to track the structural evolution of dense material, it can benefit a lot to 

current research. 

(4) A high sensitive and high resolution digital camera system can be set up to 

directly observe the dynamic deflection of spanning elements after deposition to compare 

the results with model prediction. The will bring improvement to current theoretical 

model. 
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Scope and Method of Study: 3D periodic structures were fabricated by direct-write 

assembly of concentrated colloidal gels with self-supporting features. The rheological 

behavior of the gel was characterized in linear viscoelastic regions. The flow behavior of 

the gel was modeled by using structural kinetics theory. Based on this model, the 

dynamic extrusion process of the gel was simulated by incorporating slip wall boundary 

conditions. A viscoelastic catenary model was developed to describe span shape and 

compare the results to previous results that used a simple elastic beam theory. The shape 

evolution (i.e., spanning behavior) of spanning filaments observed was related to shear 

stress conditions and a limited set of rheological parameters. 

 

Findings and Conclusions: The rate and magnitude of microstructure change within a 

colloidal gel ink are crucial factors for shape evolution of 3D structures assembled by 

direct write techniques. The events that set the equilibrium shape of 3D structure occur 

within the initial few seconds after deposition and gels microstructure recovery within 

this period is critical to geometric fidelity. The shape evolution of 3D structures may be 

predicted by knowledge of the rheological behavior of the colloidal gel in shear loading. 

Rheological behavior can be related to the structural recovery time of the colloidal gel 

and this may be measured with a series of equilibrium flow measurements. Successful 

completion of this research advances science-based ink design methods and optimization 

of deposition variables. Better control of shape evolution will lead to improvements in 

advanced applications such as photonic band gap structures, artificial bone structures, and 

metal-ceramic composites. The improved connections between time-dependent shear 

behavior and shape evolution in an extrusion process will also impact other industries 

(e.g., clay extrusion for catalytic converter substrates) and improve industrial productivity 

through better paste design.  Although the current work is limited to colloidal gels, the 

knowledge gained here may be easily extended to other complex ink systems such as 

partially melted thermoplastic polymers and metals. 

 


