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CHAPTER 1

INTRODUCTION

Distillation is the the work-horse of separation in the process industries. According

to Mix et al. (1978), distillation accounts for 3% of total energy consumed in the United

States. Seader and Henley (2006) estimate the energy consumption by distillation to be

equivalent to 13 million bbl/day of crude oil, and at a crude oil price of $40/bbl, approx-

imately, to be $20 trillion per year. The potential for savings in capital costs, operating

costs, and energy consumption from improvements in distillation design and operation is,

therefore, considerable.

Internals used in a distillation column to promote vapor-liquid contact are broadly clas-

sified into two classes — trays and packing. Combinations of trays and packings in a single

column have also been used. Trays and packings each offer a unique set of advantages and

disadvantages, and the several criteria that need to be considered in the choice of internals

are discussed elsewhere (Lockett, 1986). This work is focused on the distillation columns

which employ trayed internals.

Sieve, valve, bubble cap, and dual flow trays are some of the different tray types used

in distillation columns (Kister, 1992). Sieve trays are fabricated by punching holes into a

flat plate. The liquid flows onto a tray from an inlet downcomer and flows across the tray

and to the next tray through an outlet downcomer. The vapor rising through the sieve holes

prevents the liquid from weeping. In valve and bubble cap trays, additional construction

above the holes prevents liquid weeping at lower rates, but also results in additional pressure

drop, because the vapor has to maneuver through these constructions. In the dual flow trays,

there are no downcomers and the liquid and vapor flow counter currently through the holes.
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The interacting liquid and vapor on a tray create a two-phase dispersion on the tray.

Important design considerations, such as capacity or efficiency, are fundamentally depen-

dent on the phase velocities, interfacial area, transfer-coefficients, and contact times. The

success of an improved design method, therefore, is directly tied to the accuracy of the

models for the two-phase characteristics.

The bi-phase on a tray has been categorized into several flow regimes - emulsion, foam,

bubble, froth, and spray. The flow regime identifies the nature and behavior of the contin-

uous and the dispersed phases in the bi-phase. An operating tray can function in any of the

five flow regimes reported on a tray (Kister, 1992; Lockett, 1986) depending on the vapor-

to-liquid ratio and the physical properties of the system. Of the different flow regimes on

a tray, the froth and the spray regimes are the most commonly occurring on an industrial

tray.

Flow regimes have been used as a basis for fundamental modeling as they provide a

generalization of the bi-phase behavior. Categorizing models by flow regimes, however,

has a fundamental disadvantage because of the need to predict the transition between flow

regimes in order to apply the appropriate model. A discontinuity at the flow regime bound-

aries exists, and the gradual transitions in the efficiency and capacity observed experimen-

tally cannot be explained by this sudden change in bi-phase behavior at the flow regime

boundary.

Nevertheless, several empirical and theoretical studies, have been performed to inves-

tigate the regime transitions, particularly the froth-spray transition, on sieve trays. Excel-

lent reviews of the transition studies are available (Hofhuis and Zuiderweg, 1979; Lockett,

1981; Prado et al., 1987). A majority of the froth-spray transition work is on sieve trays.

However, the froth-spray transition studies have also been extended to valve trays (Dhule-

sia, 1983). Despite the several studies on the froth-spray transition over the years, no

reliable theoretical model exists (Lockett, 1981, 1986).

A fundamental drawback of all the froth-spray transition studies is that they assume

2



that the froth-spray transition is sudden and characterized by an operating point. While

the theoretical considerations developed for the froth-spray transition still apply, a new

approach is needed that considers the gradual transitions in the flow regimes rather than a

sudden and well-defined transition point.

The gradual change in the properties from one flow regime to another is due to the grad-

ual change in the vapor transport mechanisms. The broad definitions of the flow regimes

do not clearly delineate the various vapor transport mechanisms that exist. For instance,

the classical hydraulic model, which considers the bi-phase as an emulsion of bubbles is

applied to the entire froth regime because the froth regime is generally defined as a liquid

continuous regime. Studies in the froth regime (Ashley and Haselden, 1972; Hofhuis and

Zuiderweg, 1979; Raper et al., 1979, 1982), however, showed that the vapor transport in

the froth regime is not entirely in the form of bubbles. As the gas velocity increases, inter-

mittent vapor jets begin to form, and the vapor jets dominate the bi-phase before transition

to spray. To accommodate the vastly different vapor transport mechanisms, Hofhuis and

Zuiderweg (1979) proposed that the froth regime be divided into two subregimes: (i) the

bubbling froth, where the vapor transport is entirely in the form of bubbles, and (ii) the

mixed-froth, where the vapor transport is both in the form of bubbles and jets. The mixed-

froth regime described by Hofhuis and Zuiderweg (1979) is the transition zone where the

jets are beginning to form at one boundary and the jets are totally dominant at the other.

Even at conditions in the bubbling subregime, a bimodal bubble distribution exists and the

properties of the large bubbles may be different from those of the small bubbles (Ashley and

Haselden, 1972). In the mixed froth regime, the transport by bubbles and jets is markedly

different.

The ability to accurately and reliably predict the efficiency and capacity of trays in the

froth regime fundamentally should include and account for all of the various vapor trans-

port mechanisms that may be present. Incorrectly approximating the entire froth regime

using a single model based on bubble transport mechanisms is fundamentally flawed. Sim-

3



ilarly, categorizing models by a single mode of vapor transport is ineffective because vapor

transport via multiple mechanisms simultaneously exists.

Alternatively, accounting for contributions from all mechanisms of vapor transport

leads to multi-regime models that can be simplified to the existing single-regime mod-

els when only one mode of vapor transport is active, but can also be applied when multiple

modes of vapor transport are possible. Therefore, rather than forcing the transport mecha-

nisms to be bubble or jets based on the prevalent flow regime, a new approach to account

for the vapor transport mechanisms using a fraction jetting (and fraction bubbling) has been

used (Garcia and Fair, 2000b; Prado and Fair, 1990; Syeda et al., 2007).

The fraction jetting model can also explain the effect of rate, geometry, and physical

properties on efficiency in a manner that was not explained hitherto because changes in

rate, geometry, or physical properties not only affect transfer-coefficient, residence times,

contact times, or interfacial area, but also the fraction jetting and therefore the relative

contributions of the different modes of vapor transport.

A fundamental fraction jetting model can also provide insights into key factors promot-

ing or inhibiting modes of vapor transport and, thereby, increasing the maximum efficien-

cies observed on the trays by modest changes to design.

Fraction jetting models also facilitate multi-regime models, such as the Syeda et al.

(2007) sieve tray efficiency model, that are valid for both froth and spray regimes by ac-

counting for the contributions of the jets from when they begin to form in the froth regime,

rather than when they are noticeably formed at the spray transition. This is a better way to

gradually transition between regimes and to use the same model in both regimes.

The hypothesis of this work is that an improved fraction jetting model will lead to more

reliable multi-regime models. Predicting the fraction of the vapor transported as jets, or

fraction jetting, on a tray operating in the mixed-froth regime can bridge froth and spray

regime models, explain gradual changes in tray efficiency during the froth-spray transition,

and eliminate the need to predict the froth-spray transition point when separate froth and
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spray regime models are used.

Existing fraction jetting models have several shortcomings. Only two models for frac-

tion jetting exist in the literature (Prado and Fair, 1990; Syeda et al., 2007). The current

fraction jetting models are empirical and developed from limited data. Prado et al. (1987)

data used for the Prado et al. model were collected at the sieve holes on a tray, whereas the

Raper et al. (1982) data used for the Syeda et al. model were collected in the dispersion.

The models therefore are developed from inherently different fraction jetting measurements

and, as such, are not directly comparable. However, both models were developed from air-

water data and are entirely empirical.

The empirical nature of any model implies limited extrapolative or predictive capability.

This is of importance for the fraction jetting models because the data from which these em-

pirical models were developed are all from the air-water system and do not have sufficient

variability in terms of the factors affecting fraction jetting. The reliability of the empirical

models improves only when there is a large amount of quality data with a wide range of the

variables that have a stake are represented.

Therefore, there is a need to phenomenologically account for the factors affecting frac-

tion jetting and include them in the fraction jetting model in a reliable way. The current

models are lacking in this regard.

1.1 Research Objectives

The objectives of this work are to:

1. Develop a fundamental model for fraction jetting

2. Determine the physical significance of the parameters in the fraction jetting model

3. Demonstrate the applicability of the fraction jetting model as an alternative to exist-

ing fraction jetting model
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1.2 Contributions of this work

The main contribution of this work is a new phenomenological one-parameter model to

describe the fraction jetting on distillation trays. The physical significance of the parameter

in the model is explained in terms of the change in dominant mode of vapor transport from

bubbles to jets.

Fraction jetting models are often used as intermediate models in the hydraulic and ef-

ficiency models developed from a mechanistic framework and incorporate jetting such as

Syeda et al. (2007), Prado and Fair (1990), and Garcia and Fair (2000b) models. In this

work, the fraction jetting model is developed such that it can be directly applicable to the

existing mechanistic models that rely on a fraction jetting model for efficiency prediction.

The applicability and the advantages of the new fraction jetting model are demonstrated

using the Syeda et al. (2007) sieve tray efficiency model.

The liquid and vapor rates, tray geometry, and the system physical properties all affect

the fraction jetting and consequently the effective mechanism of vapor-liquid contact on a

tray. Change in the operating condition therefore has (i) a direct effect through a change in

the bi-phase properties and (ii) an indirect effect through a change in the fraction jetting.

The indirect effects are not well understood. In this work, using the predictions of the

fraction jetting model, the indirect effects of fraction jetting are explained.

This work provides a platform for design of better hardware to promote or inhibit jetting

because it identifies fraction jetting as an additional handle for design and modeling. In

addition, this work provides a basis to explain the rate and physical property effects in

terms of the contact mechanisms on the tray.

The scientific contributions of the research stem from an improved understanding of

the jetting phenomenon and the ability to explain indirect effects of rate, geometry, and

physical properties in terms of jetting. The work also provides a fundamental basis for

fraction jetting models and a launch pad for the development of new multi-regime models.
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Furthermore, the fundamental concept is also valid for other separation processes such as

absorption or stripping.

The economic contributions of this research are expected not only from improved de-

signs for trays, but also from improved overall distillation column designs. An under-

standing of fraction jetting promotes our ability to push the operation envelope for higher

capacity and efficiency gains. The large scale economics of distillation operation implies

that even minor increases in efficiency or capacity can lead to a large economic benefit.

Since distillation is a mature technology already in place for over 200 years, the profit mar-

gins are tight and there is a continuous need for improvement. The fraction jetting model is

expected to bring new opportunities for distillation research and development. Conversa-

tions with the leading distillation research experts at FRI (FRI, 2010) also led the author to

believe that jetting is observed at almost all rates and systems and may be the missing piece

in current distillation models. Finally, the models incorporating jetting via the fraction

jetting concept are closer to reality and, for that reason, have greater model reliability.

The broader impacts of this research are to make distillation systems more efficient and

process industries more competitive. According to Kister (1992), “distillation is the king of

separations,” and no existing technology can replace distillation in the near future (Kunesh

et al., 1995). Improved designs for distillation lead to better efficiency, reliability, and

sustainability, and favorably impact the society through reduced emissions, lesser carbon

footprint to achieve the same separation, and the more tangible economic benefits in an

energy driven economy.

1.3 Organization

In Chapter 2, an analysis of the needs and gaps in the literature are presented along

with a review of the state-of-the-art on vapor jetting on distillation trays. In Chapter 3, a

new fraction jetting model is described. In Chapter 4, the new fraction jetting model is

applied to the Syeda et al. (2007) sieve tray efficiency model and the results are discussed.
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In addition, the scope of the study and limitations of the proposed model are discussed.

Summary, conclusions, and directions for future work are described in Chapter 5.
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CHAPTER 2

VAPOR JETTING ON DISTILLATION TRAYS

The bi-phases on a tray can function in several possible flow regimes on a distillation

tray depending on the physical properties and the liquid-to-vapor ratio. Each flow regime

has a characteristic dominant mechanism of vapor and liquid transport.

In this chapter, a review of the flow regimes and the transitions between the froth and

spray regimes on distillation trays with emphasis on vapor transport mechanisms is pre-

sented. In addition, the concept of fraction jetting, its measurement, modeling, and appli-

cations are presented. Finally, an analysis of the needs and gaps is presented.

2.1 Basic definitions

In this section, some of the commonly used terms in this thesis and their physical sig-

nificance are presented.

F-factor The F-factor is a term to denote the vapor load. The F-factor is the square-root

of the kinetic energy of the vapor and is defined as

F-factor Fb = ub
√

ρG (2.1)

where

Fb is the F-factor,

ub is the vapor velocity based on the bubbling area, and

ρG is the vapor density.

In some cases, the F-factor is defined using vapor velocity based on the hole area and
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is termed as the hole F-factor (Fh) and is defined as

Fh = uh
√

ρG (2.2)

The F-factor is expressed in m/s (kg/m3)0.5, or equivalently, (Pa)0.5

Clear liquid height (hcl) The clear liquid height is the level to which the liquid falls if the

vapor flow stops and the liquid is prevented from weeping. The clear liquid height is

a measure of the liquid head on the tray and is an important variable in most capacity

and efficiency models. The clear liquid height is defined for both liquid continuous

and vapor continuous regimes. In general, the clear liquid height is the ratio of the

volume of the liquid in the dispersion to the bubbling area.

The clear liquid height is measured in m.

Hold-up fraction The hold up fraction relates the volumes of the liquid, the vapor, and

the dispersion. Accordingly, there are three definitions: (i) gas hold up fraction (ε)—

the volume of the gas in a unit volume of the two-phase dispersion, (ii) liquid hold

up fraction (εl or αe) — the volume of the liquid in a unit volume of dispersion, and

(iii) η = ε

1−ε
, the ratio of the gas to the liquid volumes in the dispersion.

Fraction jetting ( f j) The fraction jetting is the ratio of the volume of the gas transported

in the form of jets to the total volume of the gas transported. The fraction jetting is

the spray-like nature of the froth. The fraction jetting ( f j), volume fraction of the gas

transported as jets, is defined as

f j =
Vj

Vb +Vj
(2.3)

where

Vj is the vapor flow as jets (m3 / s), and

Vb is the vapor flow as bubbles (m3 / s).
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2.2 Flow regimes

On a distillation tray, the flow regime describes the two-phase mixture, which could be

liquid-continuous-vapor-dispersed, vapor-continuous-liquid-dispersed, or both. The two-

phase dispersions on a tray are classified into five flow regimes (Lockett, 1986): emulsion,

foam, bubble, spray, and froth.

In the bubble, emulsion, and the foam regimes, the liquid is the continuous phase and

the vapor is the dispersed phase. In each of the three regimes, vapor rises as bubbles through

the liquid. In the bubble regime, the liquid is slow moving and relatively quiescent, but in

the emulsion regime, the liquid has a high horizontal momentum. The foam regime, also

liquid continuous and vapor dispersed, occurs when bubble coalescence tendencies are

significant.

In the spray regime, the vapor is the continuous phase and the liquid is the dispersed

phase. Jets of vapor rise through the tray openings and atomize the liquid on the tray

projecting liquid droplets into the intertray spacing. The liquid droplets are simultaneously

subject to drag, gravity, and buoyancy forces and, as a result, fall back on to the tray to

repeat the projection process or get entrained to the tray above.

In the froth regime, liquid and vapor continuous dispersions could coexist. The vapor

transport in the froth regime, bounded by the bubble and spray regimes on a regime dia-

gram, gradually changes from bubble dominated to jet dominated with increasing F-factor.

However, jetting begins well before the transition to the spray regime. For this reason, the

froth regime was also referred to as being made up of two subregimes — the bubbling-

froth where the vapor transport is only by bubbles and the mixed-froth — where the vapor

transport is by both bubbles and jets (Hofhuis and Zuiderweg, 1979). In the froth regime

at lower rates, the vapor transport is primarily in the form of bubbles (Figure 2.1(a)). As

the vapor rates are increased, intermittent vapor jets begin to form, and eventually, the jets

break through the liquid layer on the tray (Figure 2.1(b)). At much higher rates, the vapor

jets dominate the bi-phase on the tray and the bi-phase resembles a spray (Figure 2.1(c)).
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(a) two-phase structure in the bubbling zone

(b) two-phase structure in the jetting zone

(c) two-phase structure in the spray

Figure 2.1: Two-phase structure on a tray.
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When more than 60% of the tray is jetting, a visible transition in the froth structure oc-

curs (Prado et al., 1987) and the transition to the spray regime is initiated. Further increase

in the vapor rate leads the operation into a vapor-continuous-liquid-dispersed spray regime.

Of the various flow regimes on a tray, the froth regime is considered to be the most

common to occur on industrial trays and is also the most complex (Kister, 1992). The

operation in the froth regime is characterized by constant fluctuations in the froth height

(Wijn, 1998). The local properties of the froth may vary considerably from the average

depending on the bubble sizes, coalescence and breakup of bubbles (Hu et al., 2007; Wijn,

1998), froth stabilization effects (Zuiderweg, 1982), surface tension and surface tension

gradients (Syeda et al., 2004), and random movements in the dispersion.

Not surprisingly, several variations of the froth bi-phase have been proposed and used

for modeling. Most notable among them are treating the froth as (i) an emulsion of bubbles

(AIChE, 1958), (ii) large bubbles, small bubbles, and jets (Ashley and Haselden, 1972;

Prado and Fair, 1990; Syeda et al., 2007), (iii) a vapor continuous region populated with

projected droplets over the liquid continuous region on the tray deck (Bennett et al., 1997),

and (iv) a vertical froth density distribution with a high liquid level zone and a low liquid

level zone (Van Sinderen et al., 2003). Specifying the prevalent flow regime on a tray and

the appropriate hydraulic contact mechanisms on a tray in the froth regime has implications

on the choice of the models as described in the next section.

As a result, several studies were undertaken to study the froth-spray transitions. Early

work was focused on bubble cap trays and later on sieve trays. The froth-spray transition

studies are described in the next section.

2.3 Froth-spray transition studies

The froth-spray transitions are the most studied flow regime transitions on trays since

Zuiderweg and Harmens (1958) first indicated that a phase inversion occurs from a liquid

continuous (froth) to a vapor continuous (spray) dispersion on sieve trays.
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The froth-spray transition has been attributed to the drop coalescence phenomenon oc-

curring at a certain level above the tray (Andrew, 1969; Porter and Wong, 1969), to the

interaction between the gas core of the jet and the liquid film adjacent to the gas core (Sun-

dar and Tan, 1999; Tan and Sundar, 2001), but mostly to the mechanisms resulting from

the two opposing forces due to the vapor inertia and the gravitational force on the liquid,

i.e., to the jet penetration theory described later in this section.

Owing to the gradual nature of the froth-spray transition, several criteria have been

used to define it. The common techniques that have been used for detecting the regime

transitions on trays are changes in light transmission (Porter and Wong, 1969), electrical

conductivity (Loon et al., 1973; Pinczewski and Fell, 1972; Prado and Fair, 1987; Raper

et al., 1982), residual pressure drop (Payne and Prince, 1975), liquid holdup profile (Barber

and Wijn, 1979), and orifice pulsation frequency (Pinczewski and Fell, 1972). Additionally,

acoustic and differential pressure signals (Al-Masry et al., 2007) and visual observations

(Barber and Wijn, 1979) have also been used.

The different techniques for the froth-spray transition studies led to several correla-

tions for predicting the froth-spray transition point. Lockett (1986) and Prado et al. (1987)

present an excellent review of the froth-spray transition studies. In this section, a brief

review of the froth-spray transitions studies is presented.

Lockett (1981) performed theoretical modeling of the froth-spray transition using the

jet penetration theory. Lockett was able to reduce the jet penetration theory equation, using

various values of the two parameters in the equation, to match the existing froth-spray

correlations by Barber and Wijn (1979), Hofhuis and Zuiderweg (1979), Payne and Prince

(1977), and Wong and Kwan (1979).

According to the jet penetration theory, a force balance between forces favoring and

resisting jet formation on a tray determines the froth-spray transition. Vapor jetting prevails

when the momentum of the vapor jet exceeds the momentum of the liquid trying to form

a bridge across the vapor jet. At near spray-like conditions, the vapor jets are continuous
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and penetrate completely through the froth. However, at lower rates, the force due to the

weight of the liquid tends to collapse the jet. The jet penetration theory predicts that at the

transition point, the two forces are equal.

The equations for the jet penetration model for froth-spray transition are described as

follows: The momentum of the gas jet, with a cross sectional area A j is

u2
gasρGA j (2.4)

where

u2
gas is the vapor velocity at a height h above the tray floor (m/s), and

ρG is the vapor density (kg/m3).

Similarly, the weight of the fluid above the gas jet that forms a bridge at a height h is

gρF(h f −h)A j (2.5)

where

ρF is the froth density (kg/m3),

h f is the froth height (m), which is constant for a given liquid and vapor rate.

h is the height above the tray floor (m), and

g is the acceleration due to gravity (m/s2).

Therefore, according to the jet penetration theory,

u2
gasρG = gρF(h f −h) (2.6)

A uniform froth-density is assumed so that

d(ρGu2
gas)

dh
=−ρFg (2.7)

However, the assumption of the uniform froth density is a gross over-simplification

according to Lockett.

In the jet penetration theory, the following equation was used to describe the expansion

of the jet issuing from an orifice: (
d j

dh

)n

= a
(

h
dh

)
+1 (2.8)
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where

n and a are variables describing the cone angle of the jet,

d j is the diameter of the jet at a height h above the tray floor (m),

dh is the hole diameter (m).

The function shown in Equation (2.8) for a=1, and for various values of n is shown in

Figure 2.2.

Figure 2.2: Jet expansion above a sieve hole described by Equation (2.8) for a=1, and for

various n. Source: Lockett (1981)

From gas continuity in the jet, and no change in the gas density,

u jd2
j = uhd2

h (2.9)

where

u j is the vapor velocity in the jet (m/s), and

uh is the vapor velocity through the holes (m/s).

From Equations (2.6)–(2.9), and using ρF = ρL(1− ε) and hcl = h f (1− ε), the final
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expression according to the jet penetration theory was obtained as

hcl

dh
=

(4+n)/n
(4/n)4/(4+n)

(
ρG

ρL

)n/(4+n) u2n/(4+n)
h

a4/(4+n)

(1− ε)4/(4+n)

(gdh)n/(4+n)
− 1− ε

a
(2.10)

where

ρL is the liquid density (kg/m3), and

ε is the gas hold up fraction.

Equation (2.10) expresses the froth-spray transition in terms of the vapor and liquid

rates. The clear liquid height at transition can be determined from any of the clear liq-

uid height correlations available in the literature (Lockett, 1986). Lockett recommends

the Hofhuis and Zuiderweg (1979) correlation for use in Equation (2.10). The operating

condition that satisfies the Equation (2.10) corresponds to the froth-spray transition point.

The published froth-spray correlations correspond to n = 1,2, or 4 in Equation (2.10).

The Barber and Wijn (1979) correlation corresponds to n = 1 and was derived with a con-

stant cone angle of the jet:

hcl

dh
= 1.35

(
ρG

ρL

)0.25 u0.4
h

(gdh)0.2

(
p
dh

)0.33

−0.59
(

p
dh

)0.33

(2.11)

where

p is the hole pitch.

Hofhuis and Zuiderweg (1979) correlation, Equation (2.12), corresponds to n = 2.

hcl

dh
= 1.07

(
ρG

ρL

)0.33 u0.66
h

(gdh)0.33 (2.12)

The Payne and Prince (1977) correlation, based on the slug-annular flow transition in

vertical two-phase pipe flow, is

hcl

dh
= 1.5

(
ρG

ρL

)0.5 uh(1− ε)0.5

(gdh)0.5 (2.13)

The Wong and Kwan correlation, developed from an earlier equation by Porter and Wong

(1969), which is based on a fluidized bed model for the spray regime, is

hcl

dh
= 30.5

(
ρG

ρL

)0.5 uh(1− ε)

g0.5 +2.06(1− ε) (2.14)
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The correlations by Payne and Prince (1977), Equation (2.13), and Wong and Kwan (1979),

Equation (2.14), correspond to n = 4.

However, Lockett (1986) argued that none of the above correlations are satisfactory in

explaining the experimental data and proposed a simple empirical expression:

hcl

dh
= 2.78

(
ρG

ρL

)0.5

uh (2.15)

Most of the correlations for the froth-spray transition include the clear liquid height,

which, in turn, is a function of the liquid and vapor rates and tray geometry. Pinczewski

and Fell (1982) proposed a correlation that does not include clear liquid height. The froth-

spray transition is correlated directly in terms of the vapor and liquid rates. The correlation

is

ubρ
0.5
G = 2.75

(
QL

W
ρ

0.5
L

)0.91 dh
φ

(2.16)

where

ub is the vapor velocity based on the bubbling area (m/s),

QL is the liquid volumetric flow rate (m3/s),

W is the outlet weir length (m), and

φ is the fractional open area.

Johnson (1981) proposed an empirical model for the froth-spray transition that includes

a dependence on surface tension:

ub = 0.04302ρ
−0.5
G ρ

0.692
L σ

0.06
φ

0.25L0.05d−0.1
h (2.17)

where

σ is the surface tension (N/m), and

L is the liquid volumetric flow rate per unit weir length (m3/s/m-weir).

The effect of surface tension on the froth-spray transition, however, is unclear from

the transition correlations. Jeronimo and Sawistowski (1973) proposed an equation with a
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greater dependence on surface tension than Equation (2.17):

ub =

0.655
φ

(
g(ρL−ρG)σ

2

dhρ3
G

)1/6

1+0.000104L−0.59φ−1.79 (2.18)

Porter and Wong (1969), Prince et al. (1979), and Lockett (1981) found no dependence

of surface tension on the froth-spray transition. The effect of variables included in the

empirical correlations, however, cannot be reliable because the effect of the ratio such as

ρG
ρL

can be correlated in terms of other physical properties (Lockett, 1986). The theoretical

jet penetration theory equation does not consider surface tension forces to play a part in

the froth-spray transition. The froth-spray transition correlations by Sundar and Tan (1999)

and Tan and Sundar (2001), derived from a force balance on a liquid film adjacent to the

gas core, however, include surface tension using the Kutateledze number. The Sundar and

Tan (1999) correlation is

hcl

dh
= 0.794Ku+2.124 (2.19)

The Tan and Sundar (2001) correlation is

h f

dh
= 1.85Ku+1.96 (2.20)

where Ku is the Kutateledze number defined by

Ku =
uhρ0.5

G
(σg(ρL−ρG))0.25 (2.21)

The Kutateledze number is the ratio of the forces due to gas inertia to the forces due to

surface tension and buoyancy.

In summary, several correlations exist for froth-spray transition on sieve trays. The cor-

relations express the froth-spray transition in terms of the liquid and vapor rates and the

clear liquid height. Surface tension has also been included in some correlations. The corre-

lations allow the designer to characterize the flow regimes into froth or spray by predicting

the transition point. The implications of such flow regime characterization are described in

the next section.
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2.4 Implications of the flow regime on modeling

The hydraulic and mass transfer properties of the trays are a function of the properties

of the two-phase dispersion on a tray. Fundamental modeling requires characterization of

the continuous and the dispersed phases, or, in effect, the hydraulic nature of the bi-phase.

Therefore, the flow regime, which characterizes the dispersion, is central to fundamental

hydraulic and mass transfer models on trays.

A change of the flow regime in the normal operating region implies a change in the

dispersion structure on the tray at the point of phase inversion warranting separate models

for each flow regime. To address the flow regimes in modeling, researchers chose one of

the following options: (a) a semi-empirical model that extrapolates into adjoining regimes

(Chen and Chuang, 1993), or (b) a separate model for each regime (Bekassymolnar and

Mustafa, 1991; Zuiderweg, 1982) coupled with correlations described in Section 2.3.

Proponents of the first approach argue that despite the change in the flow regime and

the associated transport phenomenon, the observed properties such as efficiency change

only gradually. As a result, models developed for one flow regime have been incorrectly

extrapolated into another taking advantage of the gradual transition in the capacity and

efficiency during regime change. However, this approach is fundamentally flawed because

a model developed on the assumption of liquid continuous phase, for instance, is unreliable

when the liquid becomes a dispersed phase.

On the other hand, the two model approach assumes that a flow regime transition point

exists and occurs suddenly. The uncertainty in the predicted transition point, in addition to

the likely presence of a transition zone instead of a transition point, invariably implies that

the separate model approach is only reliable when the flow regime is known for certain and

not during the transition zones.

The alternate approach, the approach used in this work, is that the change in flow regime

is not sudden, but gradually changes with the change in operating conditions as the dom-
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inant modes of vapor transport change. By accounting for all transport mechanisms, the

regimes are bridged as the vapor transport mechanism changes.

The studies of flow regime transitions, however, are not completely invalid with such an

assumption. As Prado et al. (1987) have shown, the “visible” transition to spray from froth

occurs about 50-60% of fraction jetting. Therefore, the ideas developed for the froth-spray

transitions, particularly the theoretical considerations based on the jet penetration theory,

are also valid for fraction jetting. The modeling work on the froth-spray transition studies

provides insight into the variables affecting the transition.

The rest of the chapter is focused on fraction jetting that describes the regime change

between the froth and the spray — the most likely flow regimes to occur on industrial trays

(Kister, 1992).

Fraction jetting was defined in Section 2.1. The fraction jetting is zero when all the

vapor is transported as bubbles and one when the entire vapor is transported as jets. Jet-

ting studies on sieve trays indicate that low fraction jetting is favored by large clear liquid

heights, and by low gas velocities (Lockett, 1986). Greater horizontal liquid momentum

also favors low fraction jetting as the tendency to form a liquid bridge across the tray open

is high (Lockett, 1981, 1986).

The next section describes fraction jetting measurement, modeling, and applications.

The summary of needs and gaps conclude the chapter.

2.5 Measurement of fraction jetting

The optical probe and the conductivity (or electric-resistivity) probe have been primar-

ily used for quantitative study of bubble properties in the two-phase mixture on trays. The

optical probe is similar in construction to the conductivity probe and is used when the liq-

uid involved is non-conducting or flammable. The detailed description of the techniques

is found in Lockett (1986). Yang et al. (2007) presents a review of the applications of the

bubble probe and other bubble property measurement techniques in two-phase flows.
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The measurement of fraction jetting using the conductivity probe is indirect. The con-

ductivity probe, also called the bubble probe, accounts for all vapor transported as bubbles.

The vapor that is not accounted for is the vapor that bypasses the probe in the form of jets.

The measurement of the fraction jetting using the bubble probe data is described in this

section.

The bubble probe was first designed by Burgess and Calderbank (1975) and Calderbank

and Pereira (1977). The limitations of the first bubble probe was that it was difficult to

measure closely space bubbles (Calderbank, 1978).

2.5.1 Raper et al. measurement method

Raper et al. (1982) used a mini-computer software that keeps track of preceding bubbles

and allows closely spaced bubbles to be accepted. The Raper et al. probe is placed at the

center row of tray openings and approximately midway through the froth vertically. The

bubble probe used by Raper et al. is essentially a collection of vapor-liquid continuity

detectors placed as shown in the Figure 2.3. The continuity detector 1 is surmounted by

another three detectors 2,3, and 4. The probe is positioned vertically so that the detector 1

is at the midpoint of the froth. It is not necessary for all continuity detectors to be placed in

the liquid phase. The multiple detectors provide a means of rejecting non vertical bubbles

(Raper et al., 1982).

The time it takes for the leading surface of a bubble to pass detector 1 yields bubble

central axis length. The time it takes for the leading edge of the bubble to pass from

detector 1 to detectors 2,3, or 4 gives the bubble velocity.

The bubble probe gives the distribution of the bubble sizes and bubble velocities. Us-

ing the gas hold up fraction, measured independently by Raper et al. using gamma-ray

densitometry, the total flux of bubbles crossing a horizontal plane in the dispersion is

NT =
ε

∑
n
i=1

fbiVBi
UBi

(2.22)
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where

NT is the total number of bubbles passing a unit horizontal plane in dispersion per second,

ε is the gas holdup fraction,

fbi is the size distribution frequency of the bubbles of size dBi,

VBi is the volume of the bubbles of size dBi (m3), and

UBi is the rise velocity of the bubbles of size dBi (m/s).

The apparent superficial velocity, V ′s , across the plane is

V ′s = NT

n

∑
i=1

fbiVBi (2.23)

The apparent superficial velocity is the fraction of the superficial velocity accounted by the

bubbles. The fraction jetting is obtained from the vapor unaccounted by the bubble probe

as

f j,meas =
Vs−V ′s

Vs
(2.24)

Using the bubble probe data and Equation (2.24), Raper et al. (1982) measured fraction

jetting on sieve, valve, and bubble cap trays.

2.5.2 Prado et al. measurement method

Prado et al. (1987) also used the bubble probe and the mini-computer software to mea-

sure the fraction jetting data on sieve trays. The technique used by Prado et al. was similar

to that used by Pinczewski and Fell (1972). An electrical resistance probe was bolted to the

underside of a tray so that the tip of the probe protruded through the orifice. These probes

were inserted into eight holes on a given tray.

When liquid surrounded the orifice, the circuit was closed, whereas when bubbles or

jets were formed, the circuit was open. Analog pulses were recorded by a pulse counter as

zeros (for liquid) or ones (for vapor).

An equal volume of the gas was assigned to every sampled ‘one.’ From the total sam-

pling time, gas flow rate, and total number of sampled ‘ones,’ a volume of the gas per ‘one’
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Figure 2.3: Schematic of the bubble probe used by Raper et al. Source: Raper et al. (1982)
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was determined. Converting the chains of ones into equivalent spherical bubble diameters

produced a binormal distribution of bubble sizes. The equivalent bubble volumes greater

than that of the second (larger) mode of the binormal bubble size distribution were counted

as jets.

The liquid cover or hole inactivity was obtained as the number of zeros divided by the

total number of zeros and ones. The fractions of small bubble, large bubble, and jetting

were obtained by dividing the number of ones for each characteristic hole activity by the

total number of zeros and ones.

The location of the conductivity probe affects the utility measured fraction jetting data.

The Prado et al. data are obtained with the conductivity probe located at the holes. How-

ever, the measurement of the fraction jetting at the holes is different from the fraction

jetting in the dispersion. Because of the measurement location, Prado et al. report, in ad-

dition to bubbling and jetting, a fraction of liquid cover, which indicates that there is not

enough information whether a particular hole is bubbling or jetting. On the other hand, the

measurements of the Raper et al. data are based on the conductivity probe placed at the

midpoint of the froth.

All fraction jetting data are collected on air-water systems. However, several models

used in distillation that are developed from air-water have been found to be very much

applicable to hydrocarbon systems that exhibit relatively low non-ideality as long as the

physical property effects are accurately incorporated.
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Table 2.1: Description of fraction jetting data. The instrument used in both cases is the

conductivity probe.

Source Tray types Datapoints No. Probes Location

Raper et al. (1982) Sieve, valve, and

bubblecap

29 1 In the dispersion

Prado et al. (1987) Sieve 429 8 In the orifice

2.6 Modeling fraction jetting

Only two models for fraction jetting are found in the literature — Prado and Fair (1987)

and Syeda et al. (2007). Both models are empirical models. The Prado and Fair (1987)

model was developed from Prado’s data and includes eight estimated parameters. The

Syeda et al. (2007) model was developed from Raper’s data and includes three parameters.

In this section, the two model equations are presented, and the advantages and the

limitations of the models are discussed.

As described in Section 2.5, the data collected for the Prado et al. model are inher-

ently different from the Raper et al. data because of the different measurement locations

employed.

For the fraction jetting model to be used in capacity and efficiency correlations, the data

of Raper et al. measured in the midpoint of the froth are more appropriate. For a fraction

jetting model that is to be used for orifice phenomenon, the Prado et al. data are more

appropriate.

A brief review of the two models along with the model equations is presented here.
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2.6.1 Prado et al. fraction jetting model

The Prado et al. model equations are shown in Equations (2.25)–(2.27).

f j =
ub−ub,0

ub,100−ub,0
(2.25)

ub,0 = 0.1ρ
−0.5
G ρ

0.692
L h0.132

w d−0.26
h φ

0.992L0.27 (2.26)

ub,100 = 1.1ρ
−0.5
G ρ

0.692
L h0.132

w d−0.26
h φ

0.992L0.27 (2.27)

where

ub is the vapor velocity based on bubbling area (m/s),

ub,0 is the vapor velocity based on bubbling area at 0% jetting (m/s), and

ub,100 is the vapor velocity based on bubbling area at 100% jetting (m/s).

The Prado et al. model has eight estimated parameters. The variables included in

Prado’s fraction jetting model are the most common variables used in several froth-spray

transition studies. The Prado model, Equation (2.25), can be expressed in terms of the

F-factor by multiplying throughout by ρ0.5
G , so that

f j =
Fb−Fb,0

Fb,100−Fb,0
(2.28)

Fb,0 = 0.1ρ
0.692
L h0.132

w d−0.26
h φ

0.992L0.27 (2.29)

Fb,100 = 1.1ρ
0.692
L h0.132

w d−0.26
h φ

0.992L0.27 (2.30)

where

Fb = ubρ0.5
G is the F-factor based on bubbling area (Pa0.5),

Fb,0 = ub,0ρ0.5
G is the F-factor based on bubbling area at 0% jetting (Pa0.5), and

Fb,100 = ub,100ρ0.5
G is the F-factor based on bubbling area at 100% jetting (Pa0.5).

The Prado model assumes a linear dependence of the fraction jetting on the F-factor for

a given liquid rate and geometry. Prado et al. indicate that there is a change in the dispersion

structure that is visually observed at about 50-60% jetting corresponding to a regime (Prado

et al., 1987). Prado’s model assumes the same linear dependence on F-factor before and

after the change.
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In addition, the Prado data used for the Prado model were based on the orifice phe-

nomenon and included a fraction of liquid cover in addition to bubbling and jetting. The

fraction liquid cover indicated the amount of inactive holes or insufficient information

whether a particular hole is jetting or bubbling.

2.6.2 Syeda et al. fraction jetting model

The Syeda model equation is

f j =−0.1786+0.9857
(
1− e−1.43Fb

)
(2.31)

The Syeda model was developed from Raper et al.’s data and has three fitted parame-

ters. The Syeda model is artificially limited to a value of 0.8 for F-factors beyond 3.0 and

is therefore asymptotically inconsistent. The model assumes a simple exponential relation-

ship of the jetting fraction with the vapor F-factor. The Syeda model only considers the

F-factor as a variable in the fraction jetting model. However, the Syeda model captures

the nonlinear rate of fraction jetting dependence on the F-factor by using an exponential

relationship, albeit empirically.

2.7 Analysis of needs and gaps

Neither the Syeda nor the Prado models has a theoretical basis. These two are the

only fraction jetting models available to date. Therefore, there is clearly a need for a new

fraction jetting model that is based on theory and also incorporates all the factors that affect

the fraction jetting in a consistent manner. Furthermore, the new fraction jetting model

should have good predictive capabilities and therefore a theoretical basis is desired. Such

a model will also help design of new experiments to study fraction jetting by providing a

basis for how each of the variables hydrodynamically affect the fraction jetting observed

experimentally.
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The models for tray capacity and efficiency are dependent on the prevailing flow regime.

Separate models for each flow regime have been developed and they require models to

detect the flow regime transitions. Of particular interest is the commonly occurring froth-

spray transition. However, the flow regime transitions are not sudden but occur gradually

over a wide operating range. Therefore, a fraction jetting model that can bridge the various

mechanisms of vapor transport has been used. This led to multi-regime models that are

dependent on the accurate representation of the various vapor transport mechanisms at any

operating condition. The most recent sieve tray efficiency models used a fraction jetting

model for the purpose of bridging the froth and spray regimes and are therefore applicable

to both regimes.

The fraction jetting model is a critical component used in the recent sieve tray efficiency

models to relate the contributions of the jetting zone and the bubbling zone to the observed

overall effect. However, not much modeling effort was expended on the fraction jetting

model.

The fraction jetting model that is used to obtain the overall effect of the bubble and

the jet models, however, is currently the weak link of the multi-regime models. A new

fraction jetting model can significantly improve the reliability of multi-regime models and

also provides an opportunity for new multi-regime mechanistic models. Improvements

in accurately predicting the jetting fraction not only brings the model to represent reality

closely, but also, as a result, provide more reliable models.

In Chapter 3, this need is addressed and a new fundamental model for fraction jetting

is presented.
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CHAPTER 3

FRACTION JETTING MODEL

In this chapter, a new single parameter fraction jetting model is described. The data

of Raper et al. (1982) are used to develop the model. The model structure is developed to

fundamentally explain the rate and physical property effects on fraction jetting.

The model structure is presented in Section 3.1, estimating the parameter is presented

in Section 3.2, and results and discussion are presented in Section 3.3.

The new fraction jetting model is developed such that it can be directly used in a multi-

regime mass transfer model in which a fraction jetting model is employed. The application

of the new fraction jetting model in the multi-regime mass transfer efficiency model is

presented in Chapter 4 using the Syeda et al. (2007) sieve tray efficiency model.

3.1 Model Structure

The premise of the froth-spray transition and the fraction jetting concepts is that the

formation of vapor jets with an increase in vapor rate during the normal operation of a tray

in the mixed-froth regime is responsible for the changes in the hydraulic and mass transfer

properties in the two-phase mixture. However, a key distinction between the froth-spray

transitions models and the fraction jetting model is that the transition point is not a specific

operating point according to the fraction jetting model, but the transition is an operating

range over which fraction jetting goes from zero to one.

Based on the studies from two-phase flow in pipes, the transition between flow regimes

is understood to occur due to hydrodynamic instabilities (Drazin, 2002). Depending on
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which of the forces such as inertia, viscous, surface tension acting on the bi-phases are

dominant, the nature of the instability that leads to the transition can be determined.

Porter and Wang (1969) found that surface tension and viscous forces have a negligi-

ble effect on the froth-spray transition. According to Lockett (1986), suggestions that the

Rayleigh instabilities of the gas jet are responsible for froth-spray transitions (Spells and

Bakowski, 1950) are also unfounded.

According to the jet penetration model, the force of the weight of the liquid above a

jet tends to form a liquid bridge across the jet and acts to collapse it. The force of the gas

momentum acts to resist the liquid bridge formation. A stable jet is formed when the gas

momentum exceeds the liquid weight force.

The success of the jet penetration theory implies that the forces due to the momentum of

the vapor and the weight of the liquid are responsible for the froth-spray transition (Lockett,

1986).

The theoretical considerations for the froth-spray transition studies based on the jet

penetration model will be still valid for the fraction jetting model. The forces affecting

froth-spray transition, which are also the forces that determine the jetting phenomenon, are

hypothesized to be responsible for fraction jetting.

Therefore, it follows that the modified Froude number is the dimensionless number

appropriate for correlating fraction jetting. The modified Froude number was previously

used by Hofhuis and Zuiderweg (1979) and Colwell (1981) as an independent variable in

their mixed-froth regime hydraulic correlations. The modified Froude number is the ratio

of the inertia of the vapor (square root of the kinetic energy of the vapor) to the resistance

to the vapor through the dispersion on the tray due to the presence of the liquid (square root

of the potential energy of the liquid on the tray).

The modified Froude number is defined in its general form as

Fr′ =
ugas
√

ρG√
ghliqρL

(3.1)
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where

Fr′ is the modified Froude number,

ugas is a characteristic gas velocity (m/s),

hliq is a characteristic liquid holdup (m),

g is the acceleration due to gravity, and

ρG and ρL are the vapor and liquid densities (kg/m3).

The modified Froude number represents the propensity of the vapor to be transported

in the form of jets rather than bubbles. In other words, the ratio of the volume of the

vapor transported as jets to the ratio of the volume of the vapor transported as bubbles

is proportional to the modified Froude number. The phenomenological relation can be

represented in equation form as

Vj

Vb
∝ Fr′ (3.2)

where

Vj is the vapor flow as jets (m3s−1), and

Vb is the vapor flow as bubbles (m3s−1).

From Equations (2.3) and (3.2),

1
f j
−1 =

Vb

Vj
∝

1
Fr′

(3.3)

Or,

1
f j
−1 =

Vb

Vj
=

β

Fr′
(3.4)

where

f j is the fraction jetting, and

β is the proportionality constant.

The proportionality constant β is the value of the modified Froude number where

Vb = Vj. For Fr′ > β , the volume of the vapor transported as jets is greater than that

transported as bubbles; for Fr′ < β , the volume of the vapor transported as jets is less than
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that transported as bubbles; and for Fr′ = β , equal volumes of the vapor is transported

as jets and bubbles. The parameter β , therefore, signifies the operating point in terms of

the modified Froude number where the dominant mode of vapor transport changes from

bubbling to jetting, or vice-versa.

At the value of Fr′ = β , the fraction jetting is equal to one-half. The above physical

significance for β indicates that the change in the dominant mode of vapor transport occurs

at a fraction jetting of one-half, which is consistent with the observations in the literature

that a change in the light transmission properties occurs at about 50-60% jetting and also

a visual change in the dispersion structure observed (Prado and Fair, 1990; Prado et al.,

1987).

Rearranging Equation (3.4), the final form of the fraction jetting model structure is

obtained as

f j =
Fr′

β +Fr′
(3.5)

3.2 Estimating β

The modified Froude number, defined in its general form in Equation (3.1), varies both

vertically in the dispersion and across the tray due to the variations in the ugas and hliq.

Dispersion density changes, momentum transfer between the vapor and the liquid, local

pressure variations, and dispersion height gradients all affect the local ugas and hliq. There-

fore, a vapor velocity and a liquid height that correlate with the average modified Froude

number in the dispersion are desired for a given operating point.

From various hydraulic and mass transfer correlations, the average properties of the

dispersion are well correlated by the vapor velocity based on the bubbling area, ub, and the

clear liquid height, hcl . Therefore, the modified Froude number is defined as

Fr′ =
ub
√

ρG√
ghclρL

(3.6)
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The definition of the modified Froude number, Equation (3.6), has also been used in

previous gas hold up fraction correlations by Colwell (1981) and Hofhuis and Zuider-

weg (1979) as the independent variable. The modified Froude number was also used by

Zuiderweg (1982) in their spray regime entrainment correlation where vapor jetting is the

dominant phenomenon.

For estimating β , the experimental fraction jetting data of Raper et al. (1982) on sieve

trays are used. The data were measured in the dispersion using the electrical conductivity

bubble probe as described in Section 2.5.1. The fraction jetting data were plotted against the

modified Froude number, which was calculated from Raper’s data and a clear liquid height

calculated from the Bennett et al. (1983) correlation. The data used for the correlation are

listed in Appendix A.

Using the MATLABTM function nlinfit, an optimum value of β is obtained to minimize

the sum squared error defined by

Sum Squared Error =
n

∑
i

(
f j,m− f j,p

)2 (3.7)

where

f j,m is the fraction jetting measured Raper et al. (1982) data, and

f j,p is the fraction jetting predicted using the new fraction jetting model.

The maximum likelihood (ML) criterion is satisfied by the parameter obtained by min-

imizing the objective function in Equation (3.7), the least-squares estimate, assuming that

the measurement errors in the fraction jetting measurements are normally distributed.

The new fraction jetting model is given by

f j =
Fr′

0.0449+Fr′
(3.8)

Furthermore, the uncertainty estimate of the parameter in Equation (3.8) can be cal-

culated using the studentized residuals. Using the MATLABTM function nlparci, the 95%

confidence limits on the parameter are obtained as

β = 0.0449±0.0073 (3.9)
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As described in Section 3.1, the numerical value of the parameter β represents a change

in the dominant mode of vapor transport from bubbles to jets.

3.3 Results and Discussion

This section presents the analysis and discussion for the fraction jetting model described

in Section 3.2.

3.3.1 Model fit

The goodness of fit is shown in Figure 3.1.
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Figure 3.1: Fit of the new jetting fraction model using the sieve tray data of Raper et al.

(1982). The curve represents Equation (3.8), f j =
Fr′

0.0449+Fr′

.
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The goodness of fit of the new fraction jetting model (Figure 3.1) for the Raper et al.

data indicates a good fit over the entire experimental data range.

The new fraction jetting model is compared with the Syeda et al. fraction jetting model

in the parity plot shown in Figure 3.2. The new fraction jetting model and the Syeda et al.

model provide comparable fit to the Raper et al. data.
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Figure 3.2: A parity plot of the new fraction jetting model predictions and the Syeda et al.

model predictions compared to Raper et al. experimental data.

For comparison, the predictions of the Syeda et al. (2007) fraction jetting model are

shown in Figure 3.3.

Furthermore, the value of β obtained from minimizing the sum squared error coincides

with the observed change in the rate of change of the fraction jetting and this is attributed

to the change in the dominant mode of vapor transport.
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Figure 3.3: Fit of the Syeda et al. model using Raper et al. (1982) data. The curve represents

the equation f j =−0.1786+0.9857
(
1− e−1.43Fb

)
.

As can be seen from Figure 3.3, the change in the rate of fraction jetting with F-factor

is also captured in the Syeda et al. model, albeit empirically.

Furthermore, the Syeda et al. fraction jetting model plateaus at a fraction jetting of

0.8 at F-factors beyond 3.0. The artificial limit of 0.8 is a result of the empirical model

structure. The new fraction jetting model, however, does not have such an artificial limit

on fraction jetting and predicts a fraction jetting of 1.0 as the F-factor approaches infinity.

This is illustrated as follows

lim
Fb→+∞

f j = lim
Fr′→+∞

Fr′

0.0449+Fr′
= 1.0 (3.10)

However, for the Syeda et al. model,

lim
Fb→+∞

f j = lim
Fb→+∞

−0.1786+0.9857(1− e−1.43Fb)

=−0.1786+0.9857 = 0.8071 6= 1.0 (3.11)
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3.3.2 Model consistency

The phenomenological method presented here also can be used to explain the relatively

good predictions of the Syeda et al. model. The exponential relationship used in the Syeda

et al. model has a remarkable similarity to the gas holdup fraction models such as the

Bennett et al. (1983) model for sieve trays, i.e.,

ε = 1− exp

(
−12.55

(
Fb√

ρL−ρG

)0.91
)

(3.12)

where

ε is the gas hold up fraction (volume of the vapor in the dispersion / volume of the disper-

sion), and

Fb is the F-factor based on the bubbling area, (Pa)0.5.

The ratio of the volume of the liquid in the dispersion to the volume of the vapor in the

dispersion, η , is

η =
1− ε

ε
(3.13)

Or equivalently,

ε =
η

1+η
(3.14)

Theoretical investigations of the conditions under which the energy of the two phases on

the tray is the minimum have to led to the relations where η was a function of the Froude

number (Azbel, 1963). Therefore, the gas hold up fraction can be expressed in terms of the

Froude number as

ε =
η

1+η
∝

Fr′

1+Fr′
(3.15)

An examination of the Equations (3.12) and Equation (3.15), in part, explains why the

fraction jetting may be correlated with the F-factor using an exponential relationship as in

the Syeda et al. model.
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3.3.3 Parameter consistency

Correlations based on Equation (3.15) have been used to predict the gas hold up fraction

or the liquid holdup fraction on trays (Colwell, 1981; Hofhuis and Zuiderweg, 1979). The

correlation by Hofhuis and Zuiderweg is shown in Figure 3.4. In this correlation, the

modified Froude number is used to predict the liquid hold up fraction (εl). If the beta value

of Equation (3.8) is plotted on the Hofhuis and Zuiderweg correlation plot, it coincides

with an inflexion zone where a rate of change occurs. This provides further evidence that

the modified Froude number at the numerical value of 0.0449 is indicative of a change in

the dominant mode of vapor transport from bubbles to jets.

Modified Froude number

Figure 3.4: Correlation of gas hold up fraction with Froude number. Source: Hofhuis and

Zuiderweg (1979).
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3.3.4 Residual analysis

A residual analysis for the new fraction jetting model is done to validate the goodness

of fit. The purpose of the residual analysis is to provide insight regarding

1. Randomness of the residual — A random distribution of the residuals implies that

the information in the data is adequately captured in the model and the variability in

the residuals is random and probably a result of insufficient variation in the data or

measurement errors.

2. Systemic bias — A residual plot not centered around the mean (or zero) indicates the

presence of a systemic bias.

The bias plot of the residual versus the predicted value indicates the randomness of the

predictions at all fraction jetting values (Figure 3.5). The randomness of the residual is

confirmed by the normal probability plot shown in Figure 3.6, which indicates the degree

of normality of the residuals. It can be concluded from the bias plot and the normality plot

that the effects of each of the model variables is well captured as indicated in the random

residuals.

Additional bias plots in which the residual fraction jetting is plotted against (i) clear

liquid height (ii) the vapor velocity based on the bubbling area and (iii) the fractional open

hole area are included in Appendix C. Furthermore, the bias plots are all centered at zero

indicating that there are no systemic biases in the model. The same conclusion is also

drawn from the parity plot of Figure 3.2.

3.3.5 Effect of clear liquid height model and tray geometry

Although the new fraction jetting model has only one parameter determined from the

experimental data, the use of clear liquid height in the equation means that it has to be deter-

mined from a correlation, or measured. The clear liquid height correlation used, therefore,

becomes another parameter in the model.
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Figure 3.5: Bias plot of the new jetting fraction model with respect to the predicted fraction

jetting value. The residual is calculated as predicted-measured. Raper et al. data.
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Figure 3.6: Normal probability plot of the residual fraction jetting. The residual is cal-

culated as predicted-measured. Raper et al. data. The solid line indicates the expected

probability value from normally distributed data.
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The clear liquid height models are of two types (i) based on the Francis weir equation

(Bennett et al., 1983; Colwell, 1981) and (ii) Zuiderweg’s type (Dhulesia, 1984; Hofhuis

and Zuiderweg, 1979; Zuiderweg, 1982). A comparison of the clear liquid height models

shows, however, that the choice of a clear liquid height model does not greatly affect the

fraction jetting predictions as shown in the Figure 3.7.
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Figure 3.7: The new fraction jetting model predictions with different clear liquid height

calculations indicate that the choice of the clear liquid height model is unimportant.

Studies on the properties of the jets (Lockett, 1981) indicate that hole diameter also

has an important effect on hole properties. The hole diameter and fractional hole area also

appear in many froth-spray transition studies. The effect of hole diameter, however, is not

captured in the new fraction jetting model.
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The effect of hole area on fraction jetting may have been indirectly captured using a

clear liquid height model, however, the data of Raper et al. show enough scatter that no

net hole area effect is observed in the data. The bias plot with respect to the hole area also

indicates that the data do not show a significant effect of hole area (See Appendix C).

3.4 Summary

A new phenomenological model for the fraction jetting has been presented. The model

is capable of predicting jetting fractions based on the modified Froude number. The impli-

cations for the model have been presented as well.

The key results are listed as follows:

1. The new fraction jetting model structure fits the Raper et al. data. over the entire

experimental data range.

2. The quality of the residuals indicate that there is no systemic bias in the predictions.

3. The randomness of the residuals indicates that the variability in the dependent vari-

able due to the variability in the independent variables has been adequately captured.

4. The form of the model is consistent with the previous models for εL and with the

Syeda’s fraction jetting model.

5. The value of 0.0449 for the modified Froude number connects with completely inde-

penent set of data by Hofhuis and Zuiderweg (1979).

The model will be used in the next section to combine the jetting properties with bub-

bling zone properties.
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CHAPTER 4

APPLICATION OF THE FRACTION JETTING MODEL

Syeda et al. (2007) sieve tray efficiency model provides a different fundamental tray

model that can capture the crown pattern of efficiency rate curves, i.e., the pattern charac-

terized by an initial increase followed by a decrease in efficiency with increasing vapor rate

thereby resembling a crown shape.

The fraction jetting data used were obtained using the air-water system. However, the

sieve tray efficiency model is developed using FRI’s tray efficiency data on isobutane/n-

butane system and the cyclohexane/n-heptane system at various pressures.

Evaluation of the new fraction jetting model in Syeda’s sieve tray efficiency model will

provide insight regarding the ability to capture the crown patterns.

In this chapter, the sieve tray efficiency model of Syeda et al. (2007) is modified by

using the new fraction jetting model (Equation 3.8) in place of Syeda’s original fraction

jetting model (Equation 2.31). The Syeda sieve tray efficiency model is described in Sec-

tion 4.2 along with the model equations. The implications of using the new fraction jetting

model in place of the Syeda et al. fraction jetting model are described and the efficiency

predictions with the new model are presented.

4.1 Combining efficiencies of bubbling and jetting zones

The fraction jetting model conveniently bridges the efficiencies of the bubble and jet

zones to an observed efficiency using an equation such as

(1− f j)Eb + f jE j = EOG (4.1)
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where

f j is the fraction jetting,

Eb is the efficiency of the bubbles,

E j is the efficiency of the jets, and

EOG is the point efficiency.

If the efficiency of the bubbling and the jetting zones are known, then Equation (4.1) can

be used to determine the point efficiency that results from both mechanisms. Equation (4.1),

initially proposed by Ashley and Haselden (1972) and later by Raper et al. (1982), is the

central idea behind the sieve tray efficiency model of Syeda et al. (2007).

The development of Equation (4.1) is as follows:

Consider the elemental strip shown in Figure 4.1. It is assumed that the liquid is per-

fectly mixed in the vertical direction and has a concentration of x.

Tray n

xn+1

x

x
n

ny

y
n-1

Figure 4.1: Elemental strip for point efficiency defintion.

By definition, the point efficiency is

EOG =
yn− yn−1

y∗− yn−1
(4.2)
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where

yn−1 is the composition of the entering vapor (mole fraction),

yn is the composition of the leaving vapor (mole fraction),

y∗ is the equilibrium vapor composition with respect to the liquid concentration x (mole

fraction), and

EOG is the efficiency of the shaded strip in Figure 4.1.

Equation (4.2) is valid regardless of the mode of vapor transport. The mass transfer

efficiency is determined not only by the driving force available for mass transfer, but also

by the interfacial area, and the contact times. When there are multiple modes of vapor

transport, the concentration change achieved is different for each mode despite the same

driving force because of the differences in the interfacial area and the contact times.

For the case when f j = 0, Equation (4.2) can be written as

Eb =
ybn− yn−1

y∗− yn−1
(4.3)

where

ybn is the concentration of the leaving vapor if the vapor transport is entirely in the form of

bubbles, and

Eb is the point efficiency of the bubbles.

Similarly, for the case when f j = 1, Equation (4.2) can be written as

E j =
y jn− yn−1

y∗− yn−1
(4.4)

where y jn is the concentration of the leaving vapor if the vapor transport is entirely in the

form of jets, and

E j is the point efficiency of the jets.

When both jets and bubbles exist over an operating cycle, the vapor phase material

balance for the more volatile component can be written as

ybnVb + y jnVj = yn(Vb +Vj) (4.5)
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where

Vj is the vapor flow as jets (m3/s), and

Vb is the vapor flow as bubbles (m3/s).

By definition, since

f j =
Vj

Vb +Vj
(2.3)

where f j is the fraction jetting.

Therefore,

ybn(1− f j)+ y jn f j = yn (4.6)

From Equations (4.2), (4.3), and (4.4),

(1− f j)[Eb(y∗− yn−1)+ yn−1]+ f j[E j(y∗− yn−1)+ yn−1] = (y∗− yn−1)EOG + yn−1

(4.7)

which leads to Equation (4.1).

(1− f j)Eb + f jE j = EOG (4.1)

4.2 Syeda et al. model

The Syeda et al. sieve tray efficiency model uses Equation (4.1) to obtain the point

efficiency as a combination of the jetting and the bubbling efficiencies. The hydraulic

picture on the tray is assumed to be composed of a jetting zone and a bubbling zone. The

bubble zone is, in turn, considered to be composed of two sub zones, one containing small

bubbles and the other large bubbles. In all zones, the two-resistance theory is assumed to

be valid. A brief review of the two-resistance theory is discussed in Section 4.2.1.

4.2.1 Two-resistance theory

According to the two-resistance theory, the entire resistance to mass-transfer is concen-

trated in films on either side of the vapor-liquid interface as shown in Figure 4.2.
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Figure 4.2: Liquid-vapor film representation for the two-resistance theory. y and x are

the bulk vapor and liquid compositions, and yi and xi are the interfacial vapor and liquid

compositions.

Equilibrium is assumed at the interface, and equimolal counter diffusion exists through-

out the films. The resistance to mass-transfer in each phase, or equivalently the overall

resistance, can be expressed in terms of the mass-transfer coefficients, interfacial area, and

the residence times of the liquid and vapor phases.

The point efficiency, which is the approach to equilibrium in the shaded region on

Figure 4.1, is expressed by Equation (4.8).

EOG = 1− exp(−NOG) (4.8)

where

EOG is the point efficiency (fractional),

NOG is the number of overall vapor phase transfer units.

The number of overall vapor phase transfer units are related to the individual vapor and

liquid phase transfer units as

1
NOG

=
1

NG
+

λ

NL
(4.9)

where

NG is the number of vapor phase transfer units,
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NL is the number of liquid phase transfer units,

λ = mG/L is the stripping factor,

m is the slope of the equilibrium line, and

G/L is the ratio of the vapor to liquid molar flow rates.

Equation (4.9) is a direct consequence of the application of the two-resistance theory,

to obtain the total resistance to mass transfer as the sum of the resistances in the vapor and

liquid phases.

The individual phase transfer units are obtained as

NG = kGaiGtG (4.10)

NL = kLaiLtL (4.11)

where

kG is the vapor phase mass transfer coefficient (m/s),

kL is the liquid phase mass transfer coefficient (m/s),

aiG is the interfacial area per unit volume of the vapor (m2/m3),

aiL is the interfacial area per unit volume of the liquid (m2/m3),

tG is the vapor residence time (s), and

ρG and ρL are the vapor and liquid densities (kg/m3).

Furthermore, from a material balance,

aiLtL =
ρLG f

ρGL f
aiGtG (4.12)

where

G f is the vapor rate (kg/s), and

L f is the liquid rate (kg/s).

Detailed development and the assumptions involved in the derivation of Equation (4.8)

are discussed in the literature (Lockett, 1986). In summary, the two-resistance theory re-

lates the overall (vapor phase) point efficiency to the mass-transfer coefficients of the indi-

vidual phases, the interfacial area, and the (vapor phase) residence time.
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4.2.2 Approaches to tray efficiency modeling

Models that employ the two-resistance theory can be broadly classified as those that pre-

dict the volumetric mass-transfer coefficients (kGa and kLa) and those that predict the mass-

transfer coefficients (kG and kL) separately from the interfacial area (a) for use in Equa-

tion (4.8).

The volumetric mass transfer coefficients (kGa and kLa) are predicted using independent

empirical correlations developed from experimental absorption or stripping data. When

used for distillation, volumetric mass transfer coefficients obtained from absorption or

stripping data are known to incorrectly predict low liquid phase resistance and, conse-

quently, over-predict efficiency (Chen et al., 1994; Kister, 1992; Lockett, 1986). The

AIChE (1958) and Chan and Fair (1984) are the most popular sieve tray efficiency models

that use volumetric mass transfer coefficients. The success of these models was primarily

rooted in the large database of commercial scale efficiency data used for model develop-

ment and the lack of alternative fundamental models at that time.

Models that predict kG and kL separately from a usually predict the mass-transfer coef-

ficients from the penetration theory or the surface renewal theory. The interfacial area and

the residence time are predicted using empirical correlations (Hughmark, 1965; Todd and

Van Winkle, 1972; Zuiderweg, 1982), or from the properties of the two-phase dispersion

such as the bubble diameter or drop diameter, the froth density, and the froth height.

Models using the two-phase dispersion properties assume a contact mechanism of the

two phases to define the dispersion structure. Therefore, these models are also known as

mechanistic models. The Prado and Fair (1990), Garcia and Fair (2000a,b), Syeda et al.

(2007), Chen and Chuang (1993) models are examples of the mechanistic class, which

includes all sieve tray models of the last decade.
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4.2.3 Syeda et al. sieve tray efficiency model equations

The equations of the Syeda et al. (2007) sieve tray efficiency model are described in

this section.

Equation (4.8) is applied in each of the bubbling and jetting zones. Furthermore, in the

bubbling zone, the small bubble efficiency, ESB, is taken as one with the assumption that

the small bubbles are so small that they emerge saturated through the froth (Lockett and

Ahmed, 1983). Two fractions to characterize the two phases on the tray are used — the

fraction small bubbling that determines the amount of vapor in the form of small bubbles

in the bubbling zone, and fraction jetting that determines the amount of vapor in the form

of jets. The fraction jetting model of Syeda et al. was discussed in Section 2.6.

The model equations are as follows:

d32L = 0.887d0.846
H u0.21

H (4.13)

where

d32L is the sauter mean diameter of the large bubbles (m),

dH is the hole diameter (m), and

uH is the vapor velocity based on the hole area (m/s).

uLB = 2.5V 1/6
LB +ub (4.14)

where

uLB is the rise velocity of the large bubbles (m/s),

VLB is the volume of the large bubbles (m3), and

ub is the vapor velocity based on the bubbling area (m/s).

aiG =
6

d32L
(4.15)

where

aiG is the interfacial area per unit volume of vapor (m2/m3).

tGLB =
h f

uLB
(4.16)
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where

tGLB is the residence time of the large bubbles (s), and

h f is the dispersion height (m).

kLLB = 1.13
(

DL

tG

)0.5

(4.17)

where

kLLB is the liquid side mass transfer coefficient of the large bubbles (m/s), and

DL is the molecular diffusivity of the liquid (m2/s).

The vapor phase mass transfer coefficient is determined from the numerical solution

presented by Zaritzky and Calvelo (1979). The same correlation was also used by Prado

and Fair (1990) and Garcia and Fair (2000a) in their sieve tray efficiency models for vapor

phase mass transfer coefficient of large bubbles. The asymptotic Sherwood number is

predicted from the gas Peclet number (PeG) in the correlation.

For 40 < PeG < 200, the following polynomial is used:

Sh∞ =−11.878+25.879(logPeG)−5.64(logPeG)
2 (4.18)

where

Sh∞ = kGLBd32L/DG is the asymptotic Sherwood number,

DG is the molecular diffusivity of the vapor (m2/s), and

PeG = d32LuLB/DG is the Peclet number.

For the range PeG > 200,

Sh∞ = 17.9 (4.19)

The Bennett et al. (1983) correlation is used for the froth height correlation. This is the

same correlation used for the new fraction jetting model presented in the previous chapter.

h f = hw +C
(

QL

Wαe

)0.67

(4.20)
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where

h f is the dispersion height (m),

hw is the outlet weir height (m),

QL is the volumetric flow rate of the liquid (m3/s), and

W is the length of the outlet weir (m).

αe, the liquid hold up fraction, is obtained from

αe = exp

−12.55

(
ub

(
ρG

ρL−ρG

)0.5
)0.91

 (4.21)

and C, the constant in Equation (4.20), is obtained as

C = 0.501+0.438exp(−137.8hw) (4.22)

The fraction of small bubbles is estimated from the first order binary breakage rate. The

breakage rate is derived from the functionality given by Hesketh et al. (1991):

k∆̄t = 0.16
3.8ρ0.1

L ρ0.3
G

σ0.4 (ubg)0.6tGLB (4.23)

where

k is the first order bubble breakage rate constant (1/s),

∆̄t is the time when half of the total secondary bubbles are formed in the froth from the

initial number of bubbles (s).

The fraction of small bubbles in the bubbling zone, FSB, is

FSB =
2(1− exp(−k∆̄t))

2(1− exp(−k∆̄t))+125exp(−k∆̄t)
(4.24)

The fraction of small bubbles given by Equation (4.24) is used to determine the effi-

ciency of the bubbling zone (Eb)

Eb = FSB ESB +(1−FSB) ELB (4.25)
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In the jetting zone, the Zuiderweg (1982) spray regime model is used to estimate the

efficiency of the jets. The Zuiderweg model equations are

kG j =
0.13
ρG
− 0.065

ρ2
G

(1 < ρG < 80 kg/m3) (4.26)

kL j =
2.6×10−5

µ0.25
L

(4.27)

E j = 1− exp
(
−

ah f KOG j

ub

)
(4.28)

ah f =
40

φ 0.3

(
F2

b hLFP
σ

)0.37

(4.29)

hL = 0.6h0.5
w

( p
b

FP
)0.25

(4.30)

where

kG j is the vapor phase mass transfer coefficient (m/s),

kL j is the liquid phase mass transfer coefficient (m/s),

kOG j = 1/(1/kG j +m/kL j) is the overall vapor phase mass transfer coefficient (m/s),

m is the slope of the equilibrium curve,

ρG is the vapor density (kg/m3),

µL is the liquid viscosity (Pa-s),

E j is the efficiency of the jets (fractional),

a is the interfacial area per volume of the two phase mixture (m2/m3),

h f is the dispersion height (m),

hw is the outlet weir height (m),

p is the hole pitch (m),

φ is the fractional hole area,

σ is the surface tension (N/m),

hL is the clear liquid height (m),

b is the weir length per unit bubbling area (1/m), and

FP is the flow parameter,
(

ρG
ρL

)0.5
at total reflux.
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Syeda’s fraction jetting model, Equation (2.31), is used for the fraction jetting

f j =−0.1786+0.9857(1− e−1.43Fb) (2.31)

where

f j is the fraction jetting,

Fb is the F-factor based on the bubbling area (Pa0.5)

The efficiencies of the bubbling zone, Equation (4.25), and the efficiency of the jetting

zone, Equation (4.28), are combined to obtain the point efficiency as

EOG = f jE j +(1− f j)Eb (4.1)

4.3 Methodology and Data

The results presented in this chapter are obtained by replacing Equation (2.31) of the

Syeda et al. sieve tray efficiency model with Equation (3.8). In addition, the printing errors

in the published Syeda et al. model have been identified (Syeda, 2010) and subsequently

corrected (See Appendix B). No other changes to the model structure or model equations

are made.

The data used for the efficiency predictions are the same as those used by Syeda et al.

to develop the sieve tray model. The data were obtained on a 1.22 m diameter column (FRI

data) on two binary hydrocarbon systems — cyclohexane/n-heptane (C6/C7) system and

isobutane/n-butane (IC4/NC4) system . The data are categorized by system, pressure, and

fractional hole area into seven sets:

1. isobutane/n-butane (IC4/NC4) system at 1138 kPa, 8.3% hole area

2. isobutane/n-butane (IC4/NC4) system at 1138 kPa, 14% hole area

3. isobutane/n-butane (IC4/NC4) system at 2068 kPa, 8.3% hole area

4. isobutane/n-butane (IC4/NC4) system at 2758 kPa, 8.3% hole area

55



5. cyclohexane/n-heptane (C6/C7) system at 34 kPa, 14% hole area

6. cyclohexane/n-heptane (C6/C7) system at 165 kPa, 14% hole area

7. cyclohexane/n-heptane (C6/C7) system at 165 kPa, 8.3% hole area

The IC4/NC4 system data at 2068 kPa and 2758 kPa pressures as corrected by Syeda et al.

using the Hoek and Zuiderweg (1982) method for vapor entrainment were used. The data

are representative of the physical properties of most industrial columns (Sakata and Yanagi,

1972; Syeda et al., 2007; Yanagi and Sakata, 1982). The data are described in Appendix D.

4.4 Results and Discussion

The following results and discussion are presented in this section:

1. A comparison of the point efficiency (EOG) predictions with the two fraction jetting

models.

2. A comparison of the predictions of the two fraction jetting models for the hydrocar-

bon systems.

3. The impact of fraction jetting on point efficiency predictions

4.4.1 EOG predictions

Figures 4.3–4.9 show predictions of the Syeda et al. model with the original fraction

jetting model used by Syeda et al. model and with their fraction jetting model replaced by

Equation (3.8). In addition, the predictions reported by Syeda et al. (2007), which have

been read from the smoothed prediction curves, are also included.

For all efficiency data, it can be seen that the Syeda et al. point efficiency (EOG) predic-

tions are similar using both fraction jetting models. There is also a close agreement with

the sieve tray efficiency predictions reported by Syeda et al.
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Since the objective is to verify the impact of replacing the Syeda et al. fraction jetting

model with the new fraction jetting model in the Syeda et al. sieve tray efficiency model,

average and maximum deviations between the efficiency predictions of the Syeda et al.

sieve tray efficiency model obtained using the two fraction jetting models are compared for

each of the seven data sets as shown in Table 4.1. From Table 4.1, it can be seen that the

average absolute deviations do not exceed 0.031 for all systems and pressures.

Table 4.1: Maximum and average absolute deviations between the point efficiency predic-

tions of the Syeda et al. sieve tray efficiency model using the new fraction jetting model

and using Syeda’s fraction jetting model.

System Pressure Hole area Maximum absolute Average absolute

kPa % deviation deviation

IC4/NC4 1,138 14.0 0.046 0.014

IC4/NC4 2,068 8.3 0.032 0.013

IC4/NC4 1,138 8.3 0.055 0.014

IC4/NC4 2,758 8.3 0.038 0.014

C6/C7 165 8.3 0.034 0.018

C6/C7 165 14.0 0.070 0.020

C6/C7 34 14.0 0.040 0.031

Therefore, the new fraction jetting model can directly replace the Syeda et al. fraction

jetting model in the Syeda et al. sieve tray efficiency model without negatively impacting

the point efficiency predictions. The implications of this result are that the phenomenolog-

ical fraction jetting model can now be used to extend the Syeda et al. sieve tray efficiency
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model and eliminate the artificial limit of 0.8 on the fraction jetting predictions of the Syeda

et al. model.

The point efficiency predictions of the Syeda et al. model obtained using the model

equations agree with those reported by the authors for the iso-butane/n-butane system at

2068 kPa, 2758 kPa, and 1138 kPa for both 8.3% and 14% hole areas. The point effi-

ciency predictions of the Syeda et al. model obtained using the model equations, however,

were considerably lower than those reported by the authors for the cyclohexane/n-heptane

system at all pressures and hole areas. The reason for the underpredicted results were

traced back to the fraction of small bubble model reported by the authors in the original

paper (Syeda, 2010). The corrections in the original version of the model are listed in Ap-

pendix D. However, the absolute predicted value of the Syeda et al. efficiency predictions

is not of importance for this study.

A key feature of the Syeda et al. sieve tray efficiency model is its ability to predict the

crowned efficiency patterns observed in the experimental data. The sieve tray efficiency

model uses the fraction jetting to combine the bubble zone and jetting zone efficiencies to

obtain the point efficiency. Using the new fraction jetting model in place of Syeda et al.’s

fraction jetting model retains the crowned pattern prediction capability of the sieve tray

efficiency model as seen in Figures 4.3–4.9. The result reconfirms that the new fraction

jetting model can effectively replace Syeda’s fraction jetting model in Syeda’s sieve tray

efficiency model.

4.4.2 Comparison of the fraction jetting predictions

The difference in the point efficiency predictions using the new fraction jetting model

and Syeda et al.’s fraction model are because of the differences in the predicted fraction

jetting.

Both the new fraction jetting model and Syeda et al.’s fraction jetting model were de-

veloped using Raper et al.’s air-water data. However, the fraction jetting in the sieve tray
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efficiency model is predicted for hydrocarbon systems.

The fraction jetting predictions using the new model and using the Syeda et al. fraction

jetting model are given in Tables 4.2– 4.8.

At higher rates and F-factors, the predictions of the Syeda et al. model are artificially

limited to 0.8 because of the model structure of the Syeda et al. model. The new fraction

jetting model, however, does not have that limitation and can predict fraction jetting values

higher than 0.8 at the high F-factor conditions.

The sensitivity of the efficiency model to the fraction jetting model used is also depen-

dent on the difference in the bubbling and jetting efficiencies used in Equation (4.1). If

the values of the bubbling and the jetting efficiencies are same, even large changes in frac-

tion jetting does not affect the efficiency prediction. For instance, the jetting and bubbling

efficiencies for the iso-butane/n-butane system at 1138 kPa and 14% hole area, given in Ta-

ble 4.2, can differ by as much as 46 percentage points. The difference in the bubbling and

jetting modes is typical of other systems as well, which are presented in the Tables 4.2–4.8.

Therefore, the new fraction jetting model can replace the Syeda fraction jetting model in

the Syeda sieve tray efficiency model without negatively impacting the efficiency predic-

tions even when the sensitivity of point efficiency predictions to fraction jetting predictions

are high as indicated by the markedly different bubbling and jetting zone efficiencies.

59



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

0.2

0.4

0.6

0.8

1

F−factor, m/s (kg/m3)0.5

P
oi

nt
 e

ffi
ci

en
cy

, E
O

G
 (

fr
ac

tio
na

l)

 

 

Measured E
OG

Predicted E
OG

 with Syeda et al. jetting model

Predicted E
OG

 with new jetting model

Predicted E
OG

 reported by Syeda et al. (2007)

Figure 4.3: Comparison of efficiency predictions for the IC4/NC4 system 1138 kPa, 8.3%

open hole area

Table 4.2: IC4/NC4 system 1138 kPa, 8.3% hole area. Comparison of the bubbling and

jetting efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

0.394 0.331 0.246 0.366 0.344 0.806 0.458 0.513

0.636 0.589 0.410 0.490 0.596 0.766 0.665 0.679

0.864 0.783 0.521 0.573 0.786 0.737 0.761 0.758

1.305 0.957 0.654 0.679 0.957 0.700 0.789 0.782

1.725 0.994 0.723 0.744 0.994 0.672 0.761 0.754

1.938 0.998 0.745 0.769 0.998 0.661 0.747 0.739

2.037 0.999 0.754 0.779 0.999 0.656 0.741 0.732

2.147 0.999 0.761 0.789 0.999 0.651 0.734 0.725
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Figure 4.4: Comparison of efficiency predictions for the IC4/NC4 system 1138 kPa, 14%

open hole area

Table 4.3: IC4/NC4 system 1138 kPa, 14% hole area. Comparison of the bubbling and

jetting efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

0.381 0.365 0.235 0.360 0.381 0.752 0.468 0.515

0.618 0.628 0.400 0.483 0.635 0.713 0.666 0.673

0.874 0.832 0.525 0.576 0.835 0.681 0.754 0.746

1.292 0.967 0.652 0.677 0.967 0.645 0.757 0.749

1.677 0.995 0.718 0.738 0.995 0.619 0.725 0.718

1.955 0.999 0.747 0.770 0.999 0.605 0.704 0.695

2.126 1.000 0.760 0.787 1.000 0.596 0.693 0.682
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Figure 4.5: Comparison of efficiency predictions for the IC4/NC4 system 2068 kPa, 8.3%

open hole area

Table 4.4: IC4/NC4 system 2068 kPa, 8.3% hole area. Comparison of the bubbling and

jetting efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

0.318 0.645 0.181 0.326 0.652 0.871 0.692 0.723

0.430 0.834 0.274 0.398 0.837 0.848 0.840 0.842

0.634 0.967 0.409 0.498 0.967 0.817 0.906 0.893

0.856 0.995 0.517 0.577 0.995 0.793 0.891 0.878

0.960 0.998 0.557 0.607 0.998 0.784 0.879 0.868

1.020 0.999 0.578 0.623 0.999 0.777 0.871 0.861

0.316 0.632 0.180 0.324 0.638 0.861 0.678 0.710

0.424 0.815 0.270 0.394 0.818 0.839 0.823 0.826

0.634 0.962 0.409 0.497 0.963 0.806 0.899 0.885

0.847 0.994 0.514 0.574 0.994 0.781 0.885 0.872

0.957 0.998 0.556 0.605 0.998 0.771 0.872 0.860

1.008 0.998 0.574 0.618 0.998 0.767 0.865 0.855

62



0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

0.2

0.4

0.6

0.8

1

F−factor, m/s (kg/m3)0.5

P
oi

nt
 e

ffi
ci

en
cy

, E
O

G
 (

fr
ac

tio
na

l)

 

 

Measured E
OG

Predicted E
OG

 with Syeda et al. jetting model

Predicted E
OG

 with new jetting model

Predicted E
OG

 reported by Syeda et al. (2007)

Figure 4.6: Comparison of efficiency predictions for the IC4/NC4 system 2758 kPa, 8.3%

open hole area

Table 4.5: IC4/NC4 system 2758 kPa, 8.3% hole area. Comparison of the bubbling and

jetting efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

0.258 0.902 0.126 0.290 0.904 0.924 0.907 0.910

0.395 0.988 0.247 0.388 0.988 0.898 0.966 0.953

0.529 0.998 0.345 0.462 0.998 0.878 0.957 0.943

0.599 0.999 0.388 0.493 0.999 0.870 0.949 0.936

0.626 1.000 0.404 0.504 1.000 0.868 0.947 0.933

0.184 0.712 0.049 0.222 0.717 0.938 0.728 0.767

0.249 0.878 0.117 0.281 0.880 0.922 0.885 0.892

0.385 0.983 0.239 0.379 0.983 0.896 0.962 0.950

0.512 0.997 0.333 0.449 0.997 0.878 0.957 0.944

0.577 0.999 0.375 0.480 0.999 0.870 0.950 0.937

0.614 0.999 0.397 0.498 0.999 0.865 0.946 0.932
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Figure 4.7: Comparison of predictions for C6/C7 system 34 kPa, 14% open hole area

Table 4.6: C6/C7 system 34 kPa, 14% hole area. Comparison of the bubbling and jetting

efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

1.470 0.013 0.687 0.757 0.027 0.598 0.419 0.459

2.047 0.029 0.754 0.789 0.046 0.601 0.465 0.484

2.495 0.032 0.779 0.830 0.047 0.582 0.464 0.491

2.740 0.034 0.787 0.847 0.049 0.573 0.461 0.493

3.146 0.038 0.796 0.871 0.052 0.561 0.457 0.495
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Figure 4.8: Comparison of efficiency predictions for the C6/C7 system 165 kPa, 8.3% open

hole area

Table 4.7: C6/C7 system 165 kPa, 8.3% hole area. Comparison of the bubbling and jetting

efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

0.708 0.077 0.449 0.499 0.099 0.775 0.403 0.436

0.995 0.094 0.570 0.597 0.111 0.737 0.468 0.485

1.392 0.115 0.672 0.689 0.128 0.705 0.516 0.525

2.070 0.167 0.756 0.783 0.177 0.668 0.548 0.561

2.642 0.244 0.785 0.831 0.252 0.644 0.559 0.577

3.002 0.307 0.794 0.853 0.315 0.631 0.566 0.585

3.143 0.340 0.796 0.861 0.347 0.626 0.569 0.587

3.278 0.393 0.798 0.867 0.400 0.622 0.577 0.593
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Figure 4.9: Comparison of efficiency predictions for the C6/C7 system 165 kPa, 14% open

hole area

Table 4.8: C6/C7 system 165 kPa, 14% hole area. Comparison of the bubbling and jetting

efficiencies.

Fb FSB f j f j Eb E j EOG EOG

(m/s)(kg/m3)0.5 (Syeda et al.) (new model) (Syeda et al.) (new model)

0.356 0.058 0.215 0.322 0.108 0.772 0.251 0.322

0.733 0.087 0.462 0.512 0.115 0.704 0.387 0.416

1.170 0.108 0.622 0.645 0.127 0.661 0.459 0.471

1.491 0.128 0.690 0.708 0.144 0.637 0.485 0.493

2.086 0.188 0.757 0.785 0.200 0.604 0.506 0.518

3.044 0.310 0.794 0.858 0.319 0.571 0.519 0.535

3.281 0.390 0.798 0.868 0.398 0.563 0.530 0.542

3.759 0.523 0.803 0.889 0.529 0.549 0.545 0.547
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4.4.3 Impact of fraction jetting on point efficiency

The new fraction jetting model also provides insight into how the mechanisms of vapor

transport affect efficiency with changes in rate and physical properties. The degree of large

bubbling, small bubbling, and jetting for each of the datasets is shown, using both Syeda’s

fraction jetting model and the new fraction jetting model, in Figures 4.10–4.23.

When there is more than one mode of transport available, the effect of physical prop-

erties on efficiency is two-fold. The change in the physical properties themselves cause

a change in the efficiency of mass transfer due to change in diffusivities and the driving

force for mass transfer. Additionally, they also cause a change in the resistance to vapor

flow through the dispersion and therefore the relative preferred modes of vapor transport.

This is evident from the Figures 4.10–4.23, where it can be seen that the fraction jetting

decreases with an increase in the pressure and small bubbling increases with increase in

pressure.

As explained before, due to the sensitivity of the point efficiency to fraction jetting,

the change in the fraction jetting with change in physical properties can be seen as the

way the efficiency change with physical properties is predicted in the model. With an

increase in the pressure, the break up of large bubbles increases the effective bubble regime

efficiency and, at the same time, increases the contributions of the bubbling zone to the

point efficiency due to decreased fraction jetting. This explains why, even with a reduction

in the vapor diffusivity and relative volatilities with increasing pressure, an overall increase

in efficiency is observed with increase in pressure.

The fraction jetting predictions also explain rate effects in a new light. Traditionally,

the drop in efficiency at higher rates was attributed to the decreasing contact times or en-

trainment. In addition to those effects, from the Figures 4.10–4.23, it appears that with

increase in rates, the fraction jetting increases, the bubble efficiency increases due to break
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up of large bubbles, and the jetting efficiency decreases due to decreased contact times.

The result of these effects is that there is net drop in efficiency because more of the vapor is

transported in the form of jets, which is generally less efficient than bubble transport. This

explains the gradual drop in efficiency at higher rates by attributing it to jetting.

The implications of understanding the rate and physical property effects in the context

of the new fraction jetting model are that they provide a better understanding of the impact

of fraction jetting on point efficiency. For instance, the drop in efficiency due to high

fraction jetting at high rates can be regained with a increase in resistance on the tray (a

higher weir perhaps) to promote bubbling. Modest changes to design aimed at reducing

fraction jetting may potentially lead to noticeable changes in efficiency as explained in this

chapter.
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Figure 4.10: Predicted fraction jetting, small bubbling, and large bubbling for the C6/C7

system 34 kPa, 14% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.11: Predicted fraction jetting, small bubbling, and large bubbling for the C6/C7

system 34 kPa, 14% open hole area using the new fraction jetting model.
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Figure 4.12: Predicted fraction jetting, small bubbling, and large bubbling for the C6/C7

system 165 kPa, 8.3% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.13: Predicted fraction jetting, small bubbling, and large bubbling for the C6/C7

system 165 kPa, 8.3% open hole area using the new fraction jetting model.
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Figure 4.14: Predicted fraction jetting, small bubbling, and large bubbling for the C6/C7

system 165 kPa, 14% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.15: Predicted fraction jetting, small bubbling, and large bubbling for the C6/C7

system 165 kPa, 14% open hole area using the new fraction jetting model.
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Figure 4.16: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 1138 kPa, 8.3% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.17: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 1138 kPa, 8.3% open hole area using the new fraction jetting model.
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Figure 4.18: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 1138 kPa, 14% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.19: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 1138 kPa, 14% open hole area using the new fraction jetting model.
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Figure 4.20: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 2068 kPa, 8.3% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.21: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 2068 kPa, 8.3% open hole area using the new fraction jetting model.
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Figure 4.22: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 2758 kPa, 8.3% open hole area using the Syeda et al. fraction jetting model.
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Figure 4.23: Predicted fraction jetting, small bubbling, and large bubbling for the IC4/NC4

system 2758 kPa, 8.3% open hole area using the new fraction jetting model.

75



4.5 Scope of the study

The fraction jetting model described here is limited to binary systems. When physical

properties of the systems involved are dissimilar, surface tension, surface tension gradient,

and froth stabilization forces also come into play. For aqueous systems with high surface

tension and association forces such as hydrogen bonding, the dependence on concentration

may be important.

The data used for the model is from air-water and therefore the extension to hydro-

carbon systems in not tested. However other hydraulic studies using the modified Froude

number indicate that such an extension might be possible (Hofhuis and Zuiderweg, 1979).

The fraction jetting at any operating condition is assumed to be constant. The fraction

jetting remains the same even if the operating condition is approached from a higher rate

or at a lower rate. This has not been tested and there is a need to study the fraction jetting

model factors in more detail.

Although the fraction jetting data of Raper et al. include two valve tray points and two

bubble cap tray points for comparison, the fraction jetting model is primarily for sieve trays.

However, the model structure is amenable for extension to other tray types. For instance,

the resistance on valve trays due to valve caps inhibits the jetting and results in reduced

fraction jetting. This expectation is consistent with the literature observations that valve

trays tend to operate more in the bubble regime than spray (Dhulesia, 1983, 1984; Kister,

1992).

The effect of hydraulic phenomenon like oscillations in the two phase mixture described

by Biddulph (1975) are also not considered.

All of the Raper et al. data are from a 0.5 m diameter column. The fraction jetting

data obtained from a small diameter column may be different than those obtained on a

larger diameter column found in industrial columns. The vapor distribution and hydraulic

gradients on large trays are different than those observed on small trays (Lockett, 1986;
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Tang et al., 1987). The fraction jetting changes with a change in the column diameter are

also outside the scope of this study.

4.6 Summary

In this chapter, the new fraction jetting model described in Chapter 3 was applied in the

Syeda et al. sieve tray efficiency model in place of their original model. The results were

compared with those of the Syeda et al. predictions. The new model also takes into effect

the weir height and the liquid load using the clear liquid height. The new model is directly

applicable to the existing multi-regime efficiency models and provides a phenomenological

basis for predicting fraction jetting unlike the existing empirical fraction jetting models.

In addition, the new model provides phenomenological explanations for the indirect

effects of rate and physical properties on efficiency in terms of fraction jetting. This can

potentially lead to better design and operation by engineering for lower fraction jetting

where efficiency loss at high rates are attributed to jetting rather than entrainment.
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CHAPTER 5

SUMMARY AND CONCLUSIONS

In this chapter the major findings and contributions of this work are discussed, conclu-

sions, and directions for future work are presented.

5.1 Major findings

The contributions and major findings are summarized below.

• A new fraction jetting model for sieve trays has been developed with the following

features:

– Has a simple model structure, which is based on the modified Froude number,

that is also consistent with existing empirical correlations is developed.

– Incorporates the vapor velocity, clear liquid height, vapor and liquid densities

affecting the fraction jetting in a phenomenological manner using the modified

Froude number.

– Is asymptotically consistent unlike the existing Syeda et al. fraction jetting

model

– Can directly be used in place of the Syeda et al. fraction jetting model in the

Syeda et al. sieve tray efficiency model.

– Explains the physical significance of the single parameter of the fraction jetting

model.

– Explains the rate of change of fraction jetting with F-factor phenomenologically

in terms of the dominant mode of vapor transport.
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• Provided a basis for explaining the indirect effects of rate on sieve tray efficiency

attributing the gradual drop in efficiency at high rates to fraction jetting

• Provided a basis for explaining the indirect effects of physical properties on sieve

tray efficiency attributing the higher efficiencies at higher pressures, despite a drop

in diffusivity and driving force, to reduced fraction jetting.

5.2 Conclusions

Incorporating fraction jetting leads to tray efficiency models that are based on a contact

mechanism in accordance with actual phenomenon on a tray. Gradual changes in efficiency

and capacity can be explained. Indirect effects of rate and physical properties have also

been attributed to changes in fraction jetting.

The proposed fraction jetting model has a phenomenological basis, agrees with the

current models, and has the ability to replace the existing fraction jetting models used in

multi-regime tray efficiency models.

The modified Froude number based model structure has been developed and used to

correlate Raper et al.’s fraction jetting data. The model describes Raper’s data over the

entire experimental range.

Based on the analysis of the residual fraction jetting (fraction jetting predicted using

the new model - measured fraction jetting), it follows that the new model has no systemic

bias and adequately captures the variability in the fraction jetting.

The value of the fraction jetting model parameter (0.0449), which signifies a change in

the dominant mode of vapor transport in terms of the modified Froude number, agrees with

completely independent set of data of Hofhuis and Zuiderweg (1979).

The new fraction jetting model can directly replace the Syeda’s fraction jetting model

in Syeda’s sieve tray efficiency model. The average absolute deviations between the Syeda

sieve tray efficiency model predictions using the Syeda fraction jetting model and the new
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fraction jetting model do not exceed 0.031 for all of the seven hydrocarbon data sets con-

sidered. Furthermore, the new fraction jetting model can predict the fraction jetting for

hydrocarbon systems without being artificially limited to a fraction jetting of 0.8 at high

F-factors.

The Syeda sieve tray efficiency model retains the crowned pattern predictive capability

when the new fraction jetting model is incorporated into it.

The fraction jetting model is expected to lead to improved models for predicting multi-

regime efficiency as it is based on a phenomenological understanding of the mechanisms

that lead to bubbling and jetting.

The methodology and the model structure developed can be a basis for further improve-

ment of the model with the availability of additional data.

5.3 Future work

Fraction jetting data are needed on systems other than air-water to allow verification

that the proposed new fraction jetting model has broad applicability. The data collection

should be aimed at measuring various factors on fraction jetting as outlined in this work.

In addition, the data collected on commercial scale columns will be valuable to capture the

vapor flow patterns on large trays.

As an extension to this model framework, the general form of the modified Froude num-

ber may be used to develop a more sophisticated fraction jetting model by implementing

gas velocity and the clear liquid profiles. Such an approach will provide a means to model

mechanisms such as jet breakup by considering the jet stability at various locations on the

tray.

A valued addition to this work would be the study of fraction jetting on different tray

types. The presence of additional construction above the holes on valve trays results in

additional resistance to jetting on valve trays. Raper’s data, however, includes only two

points for valve trays and two points for bubble cap trays. The fraction jetting on valve
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trays appears to be similar to that of the sieve trays, but there is a need for additional

experimental work that includes effect of valve tray specific geometric parameters such as

slot area, valve lift, and valve weight.

The effect of fractional hole area on fraction jetting is another direction of study for im-

proving the fraction jetting model. Variations in the fractional hole area due to (i) variation

in the hole diameter for the same number of holes, and (ii) variation in the number of holes

for the same diameter must be studied separately.

It is also recommended that the fraction jetting data collections be accompanied with

froth height, clear liquid height, and dispersion density measurements. This will allow the

use of measured hydraulic variables rather than estimated variables from clear liquid height

or froth density correlations.
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Fraction jetting data
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Table A.1: Raper et al. fraction jetting data. plate active area = 0.18 m2, plate thickness =

1.7 mm, Weir load = 10 (m3/h/m), column diameter = 0.5 m.

Fb φ hw TT ρG ρL hcl Fr′ f j

0.193 0.05 0.15 sieve 1.3 997 0.1421 0.0052 0.023

0.504 0.05 0.15 sieve 1.3 997 0.1210 0.0146 0.363

0.504 0.07 0.075 bubble cap 1.3 997 0.0649 0.0200 0.233

0.504 0.05 0.075 sieve 1.3 997 0.0649 0.0200 0.306

0.506 0.07 0.025 bubble cap 1.3 997 0.0277 0.0307 0.452

0.913 0.11 0.075 Glitsch V-1 valve 1.3 997 0.0537 0.0398 0.494

1.228 0.06 0.075 sieve 1.3 997 0.0468 0.0574 0.646

0.913 0.11 0.025 Glitsch V-1 valve 1.3 997 0.0236 0.0601 0.549

1.308 0.11 0.075 sieve 1.3 997 0.0452 0.0622 0.727

1.008 0.05 0.025 sieve 1.3 997 0.0228 0.0675 0.574

1.500 0.10 0.075 sieve 1.3 997 0.0417 0.0743 0.626

1.500 0.06 0.075 sieve 1.3 997 0.0417 0.0743 0.678

1.117 0.10 0.025 sieve 1.3 997 0.0219 0.0763 0.543

1.556 0.11 0.075 sieve 1.3 997 0.0407 0.0780 0.766

1.228 0.06 0.025 sieve 1.3 997 0.0210 0.0857 0.522

1.254 0.11 0.025 sieve 1.3 997 0.0208 0.0879 0.729

1.704 0.15 0.075 sieve 1.3 997 0.0383 0.0880 0.657

1.837 0.16 0.075 sieve 1.3 997 0.0363 0.0975 0.719

1.440 0.15 0.025 sieve 1.3 997 0.0195 0.1043 0.662

1.500 0.06 0.025 sieve 1.3 997 0.0191 0.1098 0.553

1.500 0.11 0.025 sieve 1.3 997 0.0191 0.1098 0.727

1.500 0.11 0.025 sieve 1.3 997 0.0191 0.1098 0.766

2.002 0.16 0.075 sieve 1.3 997 0.0340 0.1098 0.710

1.550 0.11 0.025 sieve 1.3 997 0.0188 0.1144 0.541

1.704 0.15 0.025 sieve 1.3 997 0.0178 0.1291 0.708

1.723 0.11 0.025 sieve 1.3 997 0.0177 0.1310 0.755

1.745 0.11 0.025 sieve 1.3 997 0.0176 0.1331 0.714

1.792 0.16 0.025 sieve 1.3 997 0.0173 0.1378 0.736

2.004 0.16 0.025 sieve 1.3 997 0.0161 0.1596 0.759

Fb F-factor, m/s (kg/m3)0.5 φ Fractional hole area hw Outlet weir height, m TT Tray type

ρG Vapor density, kg/m3 hcl Clear liquid height from Bennett et al. (1983) correlation, m

ρL Liquid density, kg/m3 Fr′ Modified Froude number f j Measured fraction jetting
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APPENDIX B

Syeda et al. sieve tray efficiency model - corrected equations

This appendix lists the corrected versions of the equations in the Syeda et al. (2007)

model that have been identified with the help of the first author of the article (Syeda, 2010).

Equation Remark

k∆̄t = 0.163.8ρ0.1
L ρ0.3

G
σ0.4 (ubg)0.6tGLB tGLB was not printed in the dissociation rate

equation for the fraction of small bubbles

hL = 0.6h0.5
w
( p

b FP
)0.25 Exponent of the weir height was not printed

in the Zuiderweg spray regime equations.

where

k is the first order bubble breakage rate constant (1/s),

∆̄t is the time when half of the total secondary bubbles are formed in the froth from the

initial number of bubbles (s) rhoG and ρL are the vapor and liquid densities (kg/m3),

p is the hole pitch (m),

b is the weir length per unit bubbling area (1/m),

FP is the flow parameter,
(

ρG
ρL

)0.5
at total reflux, and

tGLB is the residence time of the large bubbles (s)
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APPENDIX C

Residual analysis of the fraction jetting model

In this appendix, bias plots of the residual fraction jetting calculated from the new

fraction jetting model predictions and the Raper et al. data are plotted against (i) clear

liquid height (Figure C.1), (ii) the vapor velocity based on the bubbling area (Figure C.2),

and (iii) the fractional open hole area (Figure C.3).
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Figure C.1: Bias plot of the new jetting fraction model with respect to the calculated clear

liquid height from the Bennett et al. (1983) clear liquid height correlation for sieve trays.

The residual is calculated as predicted-measured. Raper et al. data.
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Figure C.2: Bias plot of the new jetting fraction model with respect to the vapor velocity

based on the bubbling area. The residual is calculated as predicted-measured. Raper et al.

data.
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Figure C.3: Bias plot of the new jetting fraction model with respect to the fractional hole

area which is the ratio of the open area to the bubbling area. The residual is calculated as

predicted-measured. Raper et al. data.
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APPENDIX D

Sieve tray efficiency data

The data tables for the sieve tray efficiency data used in Chapter 4 are presented here.

Tables D.1, D.3, D.5, D.7, D.9, D.11, and D.13 present the sieve tray efficiency data used

by Syeda et al. (2007) for the sieve tray efficiency model. Tables D.2, D.4, D.6, D.8, D.10,

D.12, and D.14 present the Syeda et al. (2007) sieve tray efficiency model predictions with

the new fraction jetting model.
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Table D.2: C6/C7 system 34 kPa, sieve tray efficiency data, 14% hole area, model predic-

tions with the Syeda et al. sieve tray efficiency model and the new fraction jetting model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

1.470 0.036 0.021 0.014 0.013 1.000 0.027 0.757 0.598 0.459

2.047 0.038 0.030 0.018 0.029 1.000 0.046 0.789 0.601 0.484

2.495 0.040 0.029 0.016 0.032 1.000 0.047 0.830 0.582 0.491

2.740 0.041 0.028 0.015 0.034 1.000 0.049 0.847 0.573 0.493

3.146 0.042 0.028 0.014 0.038 1.000 0.052 0.871 0.561 0.495

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional
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Table D.4: C6/C7 system 165 kPa, sieve tray efficiency data, 8.3% hole area, model predic-

tions with the Syeda et al. sieve tray efficiency model and the new fraction jetting model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

0.708 0.029 0.089 0.024 0.077 1.000 0.099 0.499 0.775 0.436

0.995 0.031 0.080 0.019 0.094 1.000 0.111 0.597 0.737 0.485

1.392 0.034 0.072 0.015 0.115 1.000 0.128 0.689 0.705 0.525

2.070 0.037 0.067 0.012 0.167 1.000 0.177 0.783 0.668 0.561

2.642 0.039 0.067 0.011 0.244 1.000 0.252 0.831 0.644 0.577

3.002 0.040 0.069 0.010 0.307 1.000 0.315 0.853 0.631 0.585

3.143 0.040 0.070 0.010 0.340 1.000 0.347 0.861 0.626 0.587

3.278 0.040 0.072 0.011 0.393 1.000 0.400 0.867 0.622 0.593

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional
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Table D.6: C6/C7 system 165 kPa, sieve tray efficiency data, 14% hole area, model predic-

tions with the Syeda et al. sieve tray efficiency model and the new fraction jetting model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

0.356 0.023 0.116 0.053 0.058 1.000 0.108 0.322 0.772 0.322

0.733 0.026 0.092 0.031 0.087 1.000 0.115 0.512 0.704 0.416

1.170 0.029 0.077 0.021 0.108 1.000 0.127 0.645 0.661 0.471

1.491 0.031 0.072 0.018 0.128 1.000 0.144 0.708 0.637 0.493

2.086 0.033 0.069 0.015 0.188 1.000 0.200 0.785 0.604 0.518

3.044 0.036 0.068 0.013 0.310 1.000 0.319 0.858 0.571 0.535

3.281 0.036 0.072 0.013 0.390 1.000 0.398 0.868 0.563 0.542

3.759 0.037 0.075 0.013 0.523 1.000 0.529 0.889 0.549 0.547

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional
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Table D.8: IC4/NC4 system 1138 kPa, sieve tray efficiency data, 8.3% hole area, model

predictions with the Syeda et al. sieve tray efficiency model and the new fraction jetting

model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

0.394 0.022 0.164 0.019 0.331 1.000 0.344 0.366 0.806 0.513

0.636 0.024 0.160 0.015 0.589 1.000 0.596 0.490 0.766 0.679

0.864 0.025 0.160 0.014 0.783 1.000 0.786 0.573 0.737 0.758

1.305 0.028 0.167 0.012 0.957 1.000 0.957 0.679 0.700 0.782

1.725 0.029 0.180 0.012 0.994 1.000 0.994 0.744 0.672 0.754

1.938 0.030 0.188 0.012 0.998 1.000 0.998 0.769 0.661 0.739

2.037 0.030 0.192 0.012 0.999 1.000 0.999 0.779 0.656 0.732

2.147 0.031 0.197 0.012 0.999 1.000 0.999 0.789 0.651 0.725

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional
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Table D.10: IC4/NC4 system 1138 kPa, sieve tray efficiency data, 14% hole area, model

predictions with the Syeda et al. sieve tray efficiency model and the new fraction jetting

model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

0.381 0.019 0.174 0.026 0.365 1.000 0.381 0.360 0.752 0.515

0.618 0.021 0.168 0.020 0.628 1.000 0.635 0.483 0.713 0.673

0.874 0.023 0.168 0.018 0.832 1.000 0.835 0.576 0.681 0.746

1.292 0.025 0.174 0.015 0.967 1.000 0.967 0.677 0.645 0.749

1.677 0.026 0.185 0.015 0.995 1.000 0.995 0.738 0.619 0.718

1.955 0.027 0.196 0.015 0.999 1.000 0.999 0.770 0.605 0.695

2.126 0.027 0.205 0.015 1.000 1.000 1.000 0.787 0.596 0.682

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional
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Table D.12: IC4/NC4 system 2068 kPa, sieve tray efficiency data, 8.3% hole area, model

predictions with the Syeda et al. sieve tray efficiency model and the new fraction jetting

model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

0.318 0.019 0.196 0.019 0.645 1.000 0.652 0.326 0.871 0.723

0.430 0.020 0.198 0.017 0.834 1.000 0.837 0.398 0.848 0.842

0.634 0.022 0.205 0.015 0.967 1.000 0.967 0.498 0.817 0.893

0.856 0.024 0.215 0.014 0.995 1.000 0.995 0.577 0.793 0.878

0.960 0.024 0.221 0.014 0.998 1.000 0.998 0.607 0.784 0.868

1.020 0.024 0.226 0.014 0.999 1.000 0.999 0.623 0.777 0.861

0.316 0.019 0.194 0.018 0.632 1.000 0.638 0.324 0.861 0.710

0.424 0.020 0.195 0.016 0.815 1.000 0.818 0.394 0.839 0.826

0.634 0.022 0.201 0.014 0.962 1.000 0.963 0.497 0.806 0.885

0.847 0.024 0.210 0.013 0.994 1.000 0.994 0.574 0.781 0.872

0.957 0.024 0.216 0.013 0.998 1.000 0.998 0.605 0.771 0.860

1.008 0.024 0.219 0.013 0.998 1.000 0.998 0.618 0.767 0.855

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional
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Table D.14: IC4/NC4 system 2758 kPa, sieve tray efficiency data, 8.3% hole area, model

predictions with the Syeda et al. sieve tray efficiency model and the new fraction jetting

model.

Fb d32L tGLB ELB FSB ESB EB f j E j EOGc

0.258 0.018 0.217 0.020 0.902 1.000 0.904 0.290 0.924 0.910

0.395 0.019 0.225 0.017 0.988 1.000 0.988 0.388 0.898 0.953

0.529 0.020 0.236 0.016 0.998 1.000 0.998 0.462 0.878 0.943

0.599 0.021 0.242 0.015 0.999 1.000 0.999 0.493 0.870 0.936

0.626 0.021 0.244 0.015 1.000 1.000 1.000 0.504 0.868 0.933

0.184 0.016 0.210 0.020 0.712 1.000 0.717 0.222 0.938 0.767

0.249 0.018 0.212 0.018 0.878 1.000 0.880 0.281 0.922 0.892

0.385 0.019 0.219 0.016 0.983 1.000 0.983 0.379 0.896 0.950

0.512 0.020 0.226 0.014 0.997 1.000 0.997 0.449 0.878 0.944

0.577 0.021 0.231 0.014 0.999 1.000 0.999 0.480 0.870 0.937

0.614 0.021 0.232 0.014 0.999 1.000 0.999 0.498 0.865 0.932

Fb F-factor, (Pa)0.5 ESB Efficiency of the small bubbles, fractional

d32L Sauter mean diameter of the large bubbles, m EB Efficiency of the bubble zone, fractional

tGLB Residence time of the large bubbles, s f j Fraction jetting, fractional

ELB Efficiency of the large bubbles, fractional E j Efficiency of the jetting zone, fractional

FSB Fraction of small bubbles in the bubble zone, fractional EOGc Predicted point efficiency, fractional

109



VITA

Anand N. Vennavelli

Candidate for the Degree of

Doctor of Philosophy

Dissertation: A PHENOMENOLOGICAL MODEL FOR FRACTION JETTING ON DIS-
TILLATION SIEVE TRAYS FOR MULTI-REGIME MASS TRANSFER
MODELING APPLICATIONS

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Hyderabad, AP, India on February 24, 1981.

Education:
Received the B.Tech degree from Osmania University, Hyderabad, AP, India,
2002, in Chemical Engineering
Received the M.S. degree from Oklahoma State University, Stillwater, Okla-
homa, United States of America, 2006, in Chemical Engineering
Completed the requirements for the degree of Doctor of Philosophy with a ma-
jor in Chemical Engineering at the Oklahoma State University in May, 2011.

Experience:
Worked at the ConocoPhillips San Francisco Refinery during the summers of
2006, 2007, and 2008.



Name: Anand N. Vennavelli Date of Degree: May, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A PHENOMENOLOGICAL MODEL FOR FRACTION JETTING ON
DISTILLATION SIEVE TRAYS FOR MULTI-REGIME MASS TRANS-
FER MODELING APPLICATIONS

Pages in Study: 109 Candidate for the Degree of Doctor of Philosophy

Major Field: Chemical Engineering

Scope and Method of Study: Predicting the fraction of the vapor transported as jets, or
fraction jetting, on a distillation tray operating in the mixed-froth regime has sev-
eral advantages. The fraction jetting model can explain the gradual changes in tray
efficiency during the froth-spray transition and eliminate the need to predict the froth-
spray transition point when separate froth and spray regime models are used. Fraction
jetting models facilitate multi-regime efficiency models, such as the Syeda, Afacan,
and Chuang (2007) sieve tray efficiency model, that are valid for both froth and spray
regimes. In this work, a new phenomenological model to predict fraction jetting is
presented. The model is developed using the air-water fraction jetting data of Raper
et al. (1982) on sieve trays. The fraction jetting model is developed such that it can
be directly used in multi-regime mass transfer modeling applications.

Findings and Conclusions: A single parameter phenomenological model, based on the mod-
ified Froude number, has been developed. The model structure is consistent with ex-
isting empirical fraction jetting models and the model parameter signifies a change
in the dominant mode of vapor transport from bubbles to jets. In addition, the model
predictions of the Syeda et al. sieve tray efficiency model with (a) the new fraction
jetting model and (b) the Syeda et al. fraction jetting model are compared to show
that the new fraction jetting model can directly replace the Syeda et al. fraction jet-
ting model in the Syeda et al. sieve tray efficiency model while retaining the unique
crowned efficiency-rate patterns of the Syeda et al. efficiency model. The new frac-
tion jetting model is expected to lead to improved models for predicting multi-regime
efficiency as it is based on a phenomenological understanding of the mechanisms that
lead to bubbling and jetting.

ADVISOR’S APPROVAL: Dr. James R. Whiteley


