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CHAPTER |

INTRODUCTION

Efforts to describe chemical processes exist in various forms. Predyebased
on idealized and simplified understanding of the underlying mechanistprinciples
models are developed. Many of these models have been standardizetimercial
software such as ChemCAD for education or AspenPlus for protgtypocess design.
However, hardly can an idealized first-principles model find piglieation in practice;
because, often, some artificial factors (like tray efficjeimca distillation column) have
to be introduced to augment an ideal model to improve modeling accuratyning
against experiment data. Moreover, first-principles models arenexpeto develop. It
takes time for researchers to acquire sufficient knowledgddscribing a new process
mathematically and comprehensively. An ultimate goal of firsteles modeling is to
understand the fundamental physics. However, in practice, partiaéngoirical
understanding is often sufficient for certain practical appbeoati For instance, a
modestly accurate input-output dynamic model makes controller design possible.

Contrasting to first-principles modeling, another effort is black-modeling by
system identification. Black-box modeling tends to overlook detail®eohanism, but
focuses on input-output behavior of a process. For instance, the input-outpigtidesc
via first-order-plus-time-delay models is often adequate focgss control engineers to
tune PID controllers. There are many choices for model structnobsding Finite
Impulse Response, Autoregressive with exogenous inputs, Output Erroredvessive
and Moving Average with exogenous inputs, and Box-Jenkins. For eachuisrubie
simplest one is a linear model. Surprisingly, many chemicalepsas can be quite well
described using linear models due to the fact that most chepnaxdsses are operated
around a steady state operating point. The linear model could be interpreted &s a loca



linearization of the truly nonlinear chemical process.

Despite the fact that linear models have been successf@ty insmany chemical
processes, efforts have been devoted to describe nonlinear dyinameinécal processes in a
more compact or unified approach. It is also expected that nonlireeling can provide
more accurate description. If a nonlinear model is desired, hagesoptions to represent a
nonlinear function mapping. These options include but are not limited togigl models,

piecewise models, basis function models, network models, and fuzzy models.

Interestingly, there is also experienced-based knowledgstirexifor chemical
processes. These rules are familiar to us in various formadingl process operating
instructions and manuals, handbooks and rules of thumb. Some rules are flenvedor
knowledge, which could be either understanding of fundamentals or expgesience. For
instance, our knowledge regarding distillation behavior might producefdllowing rules

expressing steady state relations:
| F Reflux (R) is Fast THEN Overhead Purity (xq) isHigh
|F Reflux (R) is Sow THEN Overhead Purity (xg) is Low

where linguistic terms ‘Fast’ and ‘Slow’ are used to speB@flux (R) while ‘High’ and

‘Low’ are used to specifyy.

Knowledge expressed in logical rules is easy to understand batdifficult to use.
Linguistic terms such as Fast, Slow, High, and Low are oftérclearly defined. Moreover,

human knowledge might be incomplete or outdated.

In this work, one focus is to describe the input-output behavior of aneanl
dynamic process. We choose TSK (Takagi-Sugeno-Kang) (S#g&mamg, 1986; Takagi &
Sugeno, 1985) fuzzy models to approximate nonlinearity. The choice igatedtito take

advantage of simplicity, interpretability, modularity and flexibilitya fuzzy model.

The concept of a fuzzy set was introduced by Zadeh (Zadeh, 196%9r&sexiegrees
of membership of elements to sets, which could be viewed as aligateon of the classical

2



notion of set defined on a two-value (0 and 1 or Ture and False) memgberalue.
Subsequently, fuzzy logic is invented to handle the reasoning basedzgrséig. There are
many ways to define fuzzy logic. An interesting applicatiorfualzy logic in engineering
fields (fuzzy logic in broad sense) is fuzzy modeling, whicls dsezy models to represent a
nonlinear function. A fundamental proof, which permits the belief in fuzageling shows
that a fuzzy model is a universal approximator (Kosko, 1994). It simglgns that fuzzy
models can theoretically approximate almost any nonlinear functitrough a fuzzy model
is not the only universal approximator, it is preferable over othedeling approaches

because of its simplicity, interpretability, modularity and flexibility

One aspect of simplicity could be the modeling simplicity. Oneitmerfuzzy
modeling is to allow users to translate their intuition and knowléutgea qualitative model
description at first, by a fuzzy model, and leave quantitativerigéisn to a later tuning
phase. For instance, an experienced operator can quickly provide a nitbdetweral rules
to describe a distillation column as shown above, then, subsequently eile fwints

defining linguistic categories can be fine tuned.

Because fuzzy models are strongly connected to human knowledge reéheftem
accredited interpretability. The use of linguistic terms se#@rbe an ‘obvious’ reason. For
sure, the involvement of linguistic terms makes a fuzzy model afperaally to users. More
fundamentally, the interpretability is due to the fact that ayfunodel is expressed in
IF...THEN structure, which matches the reasoning procedure for husnansmakes a fuzzy

model appear "intelligent”.

Another important aspect of interpretability is knowledge tramspa, which is due
to the modularity in a fuzzy model. Fuzzy models are made e$.ridegardless how ‘big’ a
fuzzy model is, each rule in the fuzzy model is relatively sempl fuzzy model as a whole
with thousands of rules looks by no means interpretable no matter Aowlmguistic terms
are used. However, the modularity in a fuzzy model allows tsdo®k at a fuzzy model in
a different way by shifting focus onto individual rules. In eacle,rilhowledge on local

behavior of a nonlinear process becomes clear, and interpretability is possible.



Modularity is also aligned with the concept of divide-and-conquereadirny with
complex problems. In fuzzy model identification, modularity could xy@ogted to convert
the identification of a fuzzy model to a number of smaller and similentification
problems, each of which focuses on a rule. In applications, for instdesgning a fuzzy
model based controller, modularity is used to translate the contd®kgn for a fuzzy

model into a number of smaller and simpler controller design problems.

Modularity also leads to flexibility in fuzzy models. A fuzzydel can be viewed as
an interface rather than a model. It serves as a commonayatewonnect different types of
models and allow communication among them. As shown below is a pogsthlet a fuzzy
model to incorporate different types of models

IF xisHigh THEN use a first-principles model
IF xisLow THEN use a Neural Network model
IF xisMedium THEN y isHigh

The flexibility and modularity also simplifies the model magragnt maintenance. In
addition to adapting model parameters to compensate model-planatctisifuzzy models
also allow insertion and deleting operations on rules to incorporaty descovered events
and eliminate obsolete behavior.

Different from most black-box modeling approaches, in our view, fumpgels
explicitly separate nonlinear components in a model from its lio@aponents. This work
will exploit this feature to simplify the model structure.

However, the applications of fuzzy models are limited by their insuffigiembandle
high-dimension problems due to a well known problem, the curse of dimelitgion4th
this restriction, fuzzy models can hardly have any significaattmal impact. Even for a
single-input-single-output (SISO) dynamic process, fuzzy madidlibe embarrassed if the

SISO process has high dynamic orders. Many successful acaebeamples of using fuzzy



models are demonstrated on dynamic processes with low dynamics,oaften not

exceeding four.

In this work, fuzzy models, particularly TSK type of fuzzy migdare chosen to
describe nonlinear dynamics due to the potential benefits mentioned abevESK model
used in this work is featured with a generalized rule structure, whichgeg®d to overcome
its insufficiency in dealing with high dimensional problem. The newctire has different
dimensions in rule antecedent and consequent. Usually, in this workanteeedent
dimension is lower than consequent and contains only ‘nonlinear varjablash tends to
directly handle the curse of dimensionality by having feweriabégs included in
antecedents. Additionally, the new structure replaces the cotob@antecedent structure
by a more flexible one, where an extra degree of freedomtrigduced to ‘rotate’ the
coverage of a rule. The new addition reduces the number of ruldschieea TSK model by
improving the covering efficiency of each rule. With the geneedlirule antecedent

structure, the TSK model in this work is referred to as GTSK (generalized TS

The structure of a GTSK model includes the overall model dimensioaraededent
dimension. In this work, since the primary modeling target is nonlidyaamic processes,
the determination of the overall dimension of a GTSK model is @etsito discover the
dynamic orders from measured input-output data. The antecedent dimehsoGTSK

model is determined by finding nonlinear components in a GTSK model.

Parameter estimation of the GTSK model is automated healligtlty recognizing
rules from an iteratively partitioned space. Following the hearistocedure is the fine
tuning of the fuzzy model parameters by solving a nonlinear opfirzg@roblem with

matrix inequality constraints.

This work tends to provide a unified and systematic procedure to ob@IRS&
model with new rule structure from input-output data for a nonlineaardic process. The
procedure is demonstrated on several theoretical benchmark probleicts ave drawn from
published research works and are used primarily for illustratiegs, comparing methods

and verifying results. The procedure is also tested on a distilleclumn simulator, which



has been successfully used in past research work (Ou, 2001). Adbjifitr& procedure is
tested on a pilot-scale chemical process, two-phase flow, wkighitenonlinear dynamics,

time delay, and measurement noise.

Innovations of this work are design of a new rule antecedent stugthich has a
reduced antecedent dimension and a more flexible antecedent siruddsign of a
systematic approach to determine dynamic orders and detect maonMar&bles, and design
of a heuristic procedure that iteratively partition an antecetbegenerate regions, within

which a linear relation is valid.



CHAPTER Il

LITERATURE SURVEY

21 Literature Survey for Dynamic Order Determination

TSK type of fuzzy models is used in this work to describe a nomluhgsamic
process. Several potential benefits that users might expectffarzy model have been
listed in the Introduction. The modeling procedure proposed in this workpable of
dealing with multiple-input-multiple-output (MIMO) processes. Howettee majority of
technical elaboration will be based on single-input-single-outpusd$Iimodels as
described in Equation (2.1) for the simplicity of presentation. Thensixte to MIMO

models will be addressed accordingly.
y(t)=f(y(t-1).L ,y(t-ny),u(t-d) L u(t-nu—d))+e(t) (2.1)

Equation (2.1) is a nonlinear autoregressive with exogenous input (NARXEl. The
term NARX is chosen to be consistent with its linear counterpdtX models. The
terminology is however not unique in the literature. In (Seborgefaddn, 1996), the
structure in Equation (2.1) is named as a nonlinear autoregressivacamy average
model (NARMA). In this work, ARX structure is chosen for its siitip}). More
importantly, function arguments (laggg@ndu) in Equation (2.1) include only input and
output measurements. Some operations and treatment on raw data worthisire

currently limited to model structures that have only measurtaletion arguments.



More complex structures could be used to describe nonlinear dynaimics
necessary. A nonlinear NARMAX model is described in (Johansen & E888). Its
structure information is retrieved from its linear counterpartMAX. As commented in
(Nelles, 2001), more advanced structures are often not worth Huaitional
complexities in describing nonlinear dynamics. On the other hand, N&RBdels as
simpler models should often be tried first for any unknown structardinear dynamic
processes.The btained NARX models could be the basis for futthetuse variation or
complication. In (Fischer, Nelles & Isermann, 1998), an NARX & fidentified then
converted to a nonlinear output error model (NOE) by some regreggacements (for

instancey(t-1) is replaced by its predictigiit-1)) followed by model parameter retuning.

Additionally, we assume, in this work, that, nu andd in Equation (2.1) are time
invariants. The additional simplification may be against the nabdfireome realistic
processes. For instance, a time-varying delay is often encadimieteemical processes,
where a transportation delay strongly relates to a flowthateis time varying in nature.
On the other hand, a constant delay is often a good enough approximagicactice,

especially in a relatively steady working condition.

The first step in system identification is to determine ordéthe model. For the

SISO model in Equation (2.1), the problem is then to discoyeu andd.

In terms of dynamic order determination, there are well-d@eel methods for
linear systems. For dynamical linear systems, a preliminary aakiag autocorrelation
and partial autocorrelation (Box, Jenkins & Reinsel, 1994) is abldetatify dynamic
orders. The result is often a set of candidate orders to lokane validated further
against data. Dynamic order determination can also be trshgtafproblems regarding
regressor analysis. Regressor analysis does not result gylenic orders and time
delay directly. However, it would be a trivial practice t@awlyny, nu andd from the
result of regressor analysis. One method is subset selectitiar(M990), which has
different versions including forward selection, backward eliminationcliray
replacement and exhaustive search methods. Among them, only exhaeatsle the

most expensive one, is guaranteed to be able to find a global optiotedrs the best set



of regressors. Other methods are heuristically motivated aiatiagsuboptimal solution

with improvement in searching speed or efficiency.

Analysis of variance (ANOVA) as a tool to find the influentetperimental
factors can also be used to find influential regressors (Lindufag, 2008). ANOVA
method suffers from the curse of dimensionality and the evaluatiomt@facting
influence among factors requires a combinatorial amount of trialsaddition, a
conventional ANOVA procedure takes finite levels of experimefatetors rather than
continuous (‘infinite’ levels) values. Extra computation is requiregrgpare the raw

data for ANOVA analysis (for instance by clustering).

For nonlinear dynamical models, even for NARX models, there is genaral
method such as the autocorrelation or partial autocorrelation metihaithble for
dynamic order determination. Rigorous analysis based on nonlinealatorreis
possible if the nonlinear structure of f is known or presumed (Habé&mBehauen,
1990). There are a variety of choices of predefined nonlineatwstescsuch as bilinear,
Wiener, Hammerstein models or their combinations. Another approashasiangeneral
target and does not depend on a predefined nonlinear structure. Thetrgeomethod
(Molina, Sampson, Fitzgerald & Niranjan, 1996) is proposed to determirearthedded
dimension in deterministic nonlinear autoregressive nonlinear systestiswing the
same concept, its extension to dealing with deterministic AigXncluding inputs is
proposed in (Rhodes & Morari, 1995) based on False Nearest NeighbomBibtbds
are more intuitively motivated rather than rigorously derived, amdbe roughly argued
based upon the first-order Taylor expansion. Another method also based on-threldirst
Taylor expansion argument is Lipschitz Quotient (He & Asada, 1388)ng at

deterministic NARX dynamic processes.

The difficulty in determining the order in Equation (2.1) is the unknown naaline
function, f. Even iff is known to be nonlinear, the richness of nonlinearity would keep
users from exhausting all possible nonlinear forms, making it dliffto find ny, nu and
d. If the nonlinearity is known, it is possible to transform a nonlirgrablem into a

linear problem. If the nonlinearity is unknown, users could resornyooae of ‘big’



models such as neural network or any other one being proved to be a universa
approximator. These complex structures are able to capture amosbnlinearity given
enough flexibility. Without nonlinearity being a problem, users can ¢éxperiment and
compare different sets of orders in these ‘big’ models. The dckwbg using ‘big’
models is high computational burden. Additionally, as we will presemer,
experimentation of dynamic orders in ‘big’ models is not suitédri@nother objective in

this work, nonlinear component detection. In our work, a unified approgutogmsed

for both dynamic order determination and nonlinear component detection.
2.2 Literature Survey for Fuzzy Model Structure

There are several different types of fuzzy models. One of ikethe Mamdani
fuzzy model (Mamdani, 1974). For the nonlinear dynamic process in Bgu@il),
Mamdani fuzzy models might be defined by rules as below

IF (y(t-1)isA AND L AND u(t-nu—d) isA..., ) (2.2)
THEN y(t)isC'

where, the expressiop(t-1)is A’ AND L AND u(t-nu-d) isA,,,.. IS the antecedent of
the rule. The expressiof(t)isC' is the consequent of the rule. The varialyfgs), ...,

y(t-ny), u(t-d), ..., u(t-nu-d) are antecedent variables andis the fuzzy subset for(t-1)

in the rule. Notations of fuzzy subsets for other variables shouldebe in context. A
Mamdani fuzzy model has the perhaps the simplest consequent models.

An extension of Mamdani fuzzy models is Takagi-Sugeno-Kang (TBkKzy
model (Sugeno & Kang, 1986; Takagi & Sugeno, 1985). The generalizationogags
consequent. For the nonlinear dynamic process in Equation (2.1), ia uleESK fuzzy
model could be defined by

IF (y(t-1)isA' AND L AND u(t-nu-d) isA .. )

THEN A'(z')y(t)=K +B"(z")u(t-d)+€ (t) (2.3)
A'(zY)=1+raz +L +a,z"

B (z')=by+bjz"+L +b,z™
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where, consequent mOdelAS(z’l)y(t)zk'+B'(z’1)u(t—d)+e' (t) with dynamic orders

ny andnu, pure time delayd and a constarit’. z is the backshift operator. The local
model could be interpreted as a linearization of the nonlinear dgnprocess in
Equation (2.1). The linearization explains the inclusion of the constamt k'. As
mentioned in (Leith & Leithead, 1999; Shorten, Smith, Bjorgan & Gollee, 1986)
linearization could be interpreted as conducted around either a stasglpr transitional
working point. Including of the later is commented to be able to improwdeling

performance for transient behavior (Smith & Johansen, 1997).

Mamdani and TSK represent two major types of fuzzy models andiféarent in
consequents. In fact, a TSK fuzzy model could be further generaljzeeplacing its
linear consequent models with other types of models. In (Mastorec&stdeocharis,
2002), a new type of fuzzy model is proposed with neural network consaguoeets.
Hierarchical fuzzy models (Lee, Chung & Yu, 2003; Liu & Li, 2005; Zé&n¢leane,
2005) are often mentioned in the literature and could also be consategegarticular

type of generalization by having fuzzy models as local models.

Interestingly, fuzzy models could also be compared with modelmaiggl from
other disciplines. It is shown in (Andersen, Lotfi & Westphal, 1998; R&ggum, 1993)
that a TSK fuzzy model with Gaussian membership functions and progector for
AND logic conjunction is functionally equivalent to a normalized radasis network
under certain restrictions. In (Smith & Johansen, 1997), a TSK fuzzglnsdddressed

in a broader perspective as a multi-model network.

The above mentioned fuzzy models represent one direction of geatoaliof
fuzzy model structure by making consequent models more complexeshegty, not
much effort is devoted to generalize the antecedent structurefunz model. The
maneuverability in antecedents lies mainly in the choices oferdiit types of
membership functions including triangular, trapezoidal and Gauss@an,ast well as

different configurations for a particular type of membership functions.
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Another degree of freedom in designing antecedents is via usfiegedif logic
operators. For instance, the AND conjunction in the antecedent erpras€Equation
(2.2) or (2.3) could be quantitatively evaluated using either product or minimunmarpera
In addition to these two, there are in fact many other choaethé evaluation of AND
conjunction, which is defined by a variety of T-norms as atreguesearch on symbolic
fuzzy logic (Lee & Zhu, 1995).

2.3 Literature Survey for Fuzzy Model Identification

Identifying a fuzzy model generally involves two objectives, stmact
identification and parameter estimation. The structure iderttdicaelects variables for
antecedent and consequent, determining number of fuzzy subsetshforaeable, and
estimating number of rules in a fuzzy model. Parameter egtimdg¢termines values of

model parameters.

As shown in a TSK rule in Equation (2.3), model parameters include etmam
defining all fuzzy subsets (membership functions) in the anteceddnthase defining
consequent models. There are many different approaches for fuzzyidesddication.
They vary for different types of fuzzy models to be identifiedbased on different
assumptions. Very often in practice, the structure ideniificabnd parameter value
estimation are coupled. For instance, the number of rules is rétatiy number of
variables in the antecedent as well as the number of fuzzy subsetach antecedent
variable. Meanwhile, an addition or deletion of a fuzzy subset to ablaiis expected to
affect of the distribution of other fuzzy subsets, which in turn resaoltretuning of
membership functions for optimal result. Inevitably, any variationamtecedent
parameter values should be accompanied by corresponding changsequemnt model
coefficients.

2.3.1 Variable Selection

Variable selection determines the variables for rule antated® consequent.
Very often, it is implicitly assumed for simplicity that allles in a fuzzy model share the

same set of antecedent and consequent variables. It is thewpioralent in practice to
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define the problem as antecedent and consequent variable selectiofuzay anodel.
Variable selection is not conducted separately but often accomphpigrhrameter
estimation/retuning. A common explicit procedure is to try diffessris of selections
with evaluation of their corresponding model accuracy and complexityfind the best.
In (Pomares, Rojas, Gonzalez & Prieto, 2002), the variable selesti@oniducted
iteratively in a constructive approach to build a fuzzy model. I &acation, a fuzzy
model is augmented by either changing the number of fuzzy sufsatready selected
variables or adding a variable in antecedent. The better okepis Similar to the
approach widely used in classification tree identification, the cadent variable
selection is implicitly conducted in (Nelles & Isermann, 1996). &che step, the
augmentation of the existing fuzzy model is tried by adding aroknfor each candidate
variable. The best rule is then kept. In the end, antecedent easaidction is
automatically achieved by discarding variables from the antateddich are never
selected. The variable selection becomes more complicateal dgnamic process as
described in Equation (2.1) since each variable is associatecawitinknown dynamic
order. The variable selection problem should then be extended to detdmnuhgamic
order for each variable. The extension could be simply achieveadiyding more
lagged terms, which, however, largely increases the problem donessil makes many

methods designated for low dimension problems become difficult.

2.3.2 Fuzzy Model Identification

There are several different ways to categorize method$uzay model
identification. Some identification methods are based on heurigicien for linguistic
interpretability and knowledge transparency. On the other hand, manyd&hgfication
methods tend to find a more accurate fuzzy model by minimizing atitpie

performance index.

The approaches to extract fuzzy rules heuristically are ynaspired by two
procedures. The Pittsburgh approach focuses on rule set evolution whigctiigan
approach evolves individual rules independently. Both Pittsburgh and Muachiga

approaches use genetic algorithms for optimization, which is tensiwith the main
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theme being heuristic. More importantly, it is due to the fact liearistic criteria are
unable to provide explicit searching directions expressed by gradiehtessians. The
research on this field focus primarily on inventing new heusidtic digging deep how
human process linguistic information, or devise more efficientbewy or combinatorial

optimization techniques (Cordon, Herrera, Gomide, Hoffmann & Magdalena, 2001).

Different from those heuristically inspired approaches, a modeliray driven
approach estimate parameter values of a fuzzy model by oipyrize performance
index, for instance, sum of squared error. In this approach, one coulcithke a
‘global’ procedure to tune all parameters (antecedent, consequeametars)
simultaneously or a ‘local’ procedure starting from individualswdaed combine them to
be a fuzzy model. The ‘global’ procedure requires a good initiadggtee avoid trivial
solutions or poor local minimal. In (Dickerson & Kosko, 1996), an initiakyunodel is
generated by recognizing piece-wise patches along a SIS@emnfunction to be
approximated. Then a steepest descent optimizer is followed. H=urisised on
clustering are also used to recognize the prototype rules (Bmke Kosko, 1996;
Vernieuwe, Baets & Verhoest, 2006; Wang & Yang, 2009). In (Nelles, 20049 are
progressively generated by conducting an equal division in a diomeimseach step. It is
also possible to over-parameterize a fuzzy model and let a Boapdn procedure (Yen
& Wang, 1999) to merge redundant rules or eliminate invalid rules.

It is worthy pointing out that there is a procedure that tendsbtain a fuzzy
model representation of a known nonlinear process by mathematicalalegue
(Kawamoto, 1992). This approach has nothing to do with above mentioned fuzzly mode
identification from data. The main purpose of this procedure ispi@sent a nonlinear
model by a fuzzy model and exploit the structure features inuttey fmodel to design

controller, and investigate stability for the original nonlinear model.

Additionally, heuristic-based stochastic procedures exist ta ath model
structures and parameter values simultaneously (Du & Zhang, 200&noGnou,
Belmehdi & Dahhou, 2009; Lin, 2008; Lin & Xu, 2006), which however require even

more computation resources.
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CHAPTER Ill
A GENERALIZED RULE ANTECEDENT STRUCTURE

In this chapter, a generalized rule antecedent structure is progteedew rule
antecedent uses only nonlinear variables. Additionally, one more defgfesedom is
introduced to design antecedents to cover an antecedent space nuieatlgff The
following elaboration focuses on a single-input-single-output (SIS@pem The

extension to multiple-input-multiple-output MIMO models is provided at the end.
3.1  Model Complexity

Equation (3.1) represents a SISO dynamic process with dynamircs osdenu,

pure time delay, and an additive noise(t)
y(t)=f(y(t-1)L ,y(t-ny)u(t-d)L u(t—nu—d))+e(t) (3.1)

wherey is the process response amds the input. The nonlinear functiohcould be
approximated by a TSK model in Equation (2.3) and reproduced as belasimiole

reference

IF (y(t-1)isA' AND L AND u(t-nu—d) isA, ... )
THEN A'(z7')y(t)=k +B"(z')u(t-d)+€ (1) 52)
A'(z")=1+az ' +L +az" |

B (z")=by+bjz +L +bj,z™
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Complexity of a TSK model could simply be regarded as the numberest Fbr
the TSK model in Equation (3.2), given that each variable has 5 fubagts (could be
linguistically labeled as Low, Medium-Low, Medium, Medium-High, Higtmere would
be 8Y¥*"*! possible rules to be considered. The problem dimensjem+1 in this case)
is an obvious cause for the complexity. Moreover, the number of rulzsiegends on
the number of fuzzy subsets for each variable. The illustrated nurBber quite
conservative in practice. Simply put, the TSK model described intiBqués.2) has
difficulty to deal with high dimension problems or it is subject tbhe“curse of

dimensionality”.

In the following, a generalized rule antecedent structureoiggsed to design an
efficient GTSK model by using fewer rules. The new rule antetextdy uses nonlinear
variables, which separates the antecedent dimension from the proiohemsion. The
complexity of a GTSK model is only related to the antecedentrdiime. It is then
possible to apply a GTSK model to a high dimension problem so long astédcedent

dimension is acceptable.

Additionally, the proposed rule antecedents are expressed as ellipsvateng
the underlying local regions and feature one more degree of fraadiesign. The extra
flexibility makes spatial coverage more efficient and simgsifa fuzzy model in terms of

number of rules.
3.2 Antecedent Dimension

The direct approach to reduce the number of rules is to control tideipr
dimension, which is unfortunately determined by the nature of the pmnote not by
users. However, dimension reduction in the antecedent is still podsibexcluding

variables that appear linearly.

To illustrate dimension reduction, consider the following nonlinear diymam

model with three regressorg(tf1) y(t-2) u(t-1)]

y(t)=y(t-1)[ y(t-2)+ 2.5+ y*(t— Ju(t- 3 (3.3)
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Using the rule structure in Equation (3.2), the rule antecedent couldbthen
expressed ay(t-1) isA; AND y(t-2) isA, AND u(t-1) isAg)). The antecedent dimension
is 3, which is same as the problem dimension. Assuming that eaahledras 5 fuzzy
sets, the combinatorial construction will then generié& 6 possible rules.

The dynamic model in Equation (3.3) can be represented in a lineaatfasing

time-varying parameters.
y(t)=a,(t)y(t-1)+a,(t) y(t—2)+b,(t)u(t-1) (3.4)

with ay(t) = 2.5,ax(t) = y(t-1) andbo(t) = y(t-1)* where, model parameteas andby, are
not only time-varying but functions of the regress€tr1). It indicates that the model can
be expressed linearly in all variables excgtl). The coefficient values in Equation
(3.4) are independent gf{t-2) andu(t-1). Equivalently, the regressof(t-1), is the only
regressor that changes the otherwise linear model coaftficadues. Thereforey(t-1)

should be the only one included in the antecedent. The simplified rule is defined by

IF y(t—1) isA" THEN (3.5)

y(t)=k"+ay(t-1)+ayy(t—2)+bu(t-1) '
where the antecedent dimension is reduced to 1. The possible numbes & rettuced
from 125 to 5. In Equation (3.5)(t-1) is then an antecedent variable and collected in a
vectorc(t). Regressors in the consequent includi(tel), y(t-2) andu(t-1) are collected

in vectorx(t).

The concept to include only nonlinear variables in antecedents hare be
explicitly mentioned in (Shorten, Smith, Bjorgan & Gollee, 1999) or iaitpliapplied in
(Nelles & Isermann, 1996; Tanaka & Wang, 2001), where fuzzy madelsised to
describe known nonlinear dynamic processes. However, the above meuiiimeedion
reduction can only be made practically applicable if it is abkntl antecedent variables
from data. The detection of antecedent variables will be addressed in Chapter 4.
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3.3 Antecedent Structure
3.3.1 A Generalized Antecedent Structure

As mentioned above, the number of rules is related to the problemsianeoy
5L |In Section 3.2, it is illustrated that it is possible to use a nufobéne exponent
less thamy+nu+1. However, the exponential relation between the number of rules and
the dimension (antecedent dimension) is still preserved. The undedsumse for the
exponential connection is the combinatorial antecedent structure segbriesthe TSK
rule in Equation (3.2), usingdND conjunction to connect antecedent variables. For
example, given a two dimensional antecedentig Az and c; is Ay), if Gaussian
membership functions are assumed and the product operator is used #NDIhe

conjunction, the antecedent is then evaluated by the truth of antecBdlent (

TAexp(_(
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)

(3.6)

whereTA is an ellipsoid centering aby(0,) with width bye; ande,. A contour plot ofTA

is shown below
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Figure 3.1. The ellipsoid contour A

In Figure 3.1, the highest value ®A =1 is reached at the centroid. The further

out is the contour, the smaller tH&. The value ofTA can be interpreted as the
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belongingness of a data point to a local region.

A fuzzy model has several rules. Given a two-dimensional antecedargqual
number of fuzzy sets for each antecedent variable, a typscabioatorial antecedent
space partition and representation by horizontal and vertigageillis is shown in Figure
3.2(a)
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Figure 3.2. Antecedent space partition and representation

where, 9 rules result from the exhaustive combinations of 3 fuzitgy fee each
antecedent variable. Users might resort to the techniques in &YWang, 1999) to
reduce the redundancy in consequent models and have a more companiddekyThe
number of rules can be reduced by merging some regions thdtitesimilar local
behavior. Figure 3.2(b) shows a possible simplified partition afezgimg some regions.
The partition in Figure 3.2(b) will also become inefficientsaswn in Figure 3.3, where
neither a horizontal nor a vertical ellipsoid provides an efficieptesentation of the
underlying local region represented by either the rotated “speHoedrrelated variables

or irregular polygons.
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Figure 33. A rotated local region covered by a horizontalertical ellipsoir

One possible solution for covering the space iss® many smaller ellipsoids
shown in Figure 3.4yhich however might result in a lot of rules.

Figure 34. A rotated local region coverby many small ellipsoic
Another solution is to rotate the ellipsoid as shawhigure 3.5

Figure 3.5A rotated local region covered by a rotagfithsoic
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The rotated ellipsoid proposed here with the stretching and contrafierible
enough to match many geometric shapes. In order to address the rottti@matically,
the parameters in Equation(3.6) are replaced by a symmetric positive definitexr3
which is termed as the shape matrix in this work and redefines the truth afdarteby

TA:exp(—(c—o)T P(c- o)) (3.7)

whereo is a vector with dimension a@ic and represents the centroid, and the dimension
for the shape matriR is nc by nc. The flexibility in representing antecedent subspaces is
at cost of additionahc(nc-1)/2 new parameters in the shape matrix in Equation (3.7).
This approach could be interpreted as a transition from a TSK fapglel with many
simple rules to a GTSK fuzzy model with fewer complex ruldsay, the simplicity

and complexity in this context refers to that in rule antecedents.
3.3.2 Interpretation of the Proposed Structure

Interested readers could follow the following method to convert the new
antecedent structure in Equation (3.7) to a conventional antecedemqation (3.2) with
new defined variables. Since the treatment in Section 3.3.2 is eotiekseaders might

also choose to skip it.

The conversion is aided via representing the shape matéguation (3.7) by its
spectral decomposition.

P=>4z7 (3.8)

where/; is an eigenvalue ang is the corresponding eigenvector. Substituthgy its

spectral decomposition, Equation (3.7) then becomes
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TA= exp(—(c— o)T i‘/ﬁ z7 (c ()j
=[exn(~4(c-0 27 (c- 9 (3.9

ln_c!exp[—ﬂ,, [i(cj _oj);,ﬂ

=1

ThenTA could be converted to the conventional form

TA= ln_c[exp[—(v';q') J (3.10)
| -

G =2 0%, (3.11)

The rule antecedent could then be represented in the conventianat ising

AND conjunction as
v, is A (0,,0,) ANDL AND v, is A, (O 1O ) (3.12)

where Ay(q;, 01) denotes a Gaussian membership function with the cenggpahd the

width specified by;.

The above mentioned interpretation might be useful to convert stngxGTSK
model with the generalized antecedent structure to a conventiSiafuzzy model to
regain the interpretability offered in antecedents ugihdp conjunction. It seems also
that the antecedent structure generalization is to extend a comatitSK fuzzy model

architecturally by introducing an extra layer to linearynbined raw variables to form
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antecedent variables.

However, the above interpretation might not be helpful in estimatindem
parameters in general. For instance, theregre+1)/2 variables required to specify the
shape matrix. However, there argnc+1) parameters expressed in Equation (3.4});
(i=1,...,nc; j=1,...nc) and4; (i=1,...,nc). One might need to add additional constraints to
eliminate the extranc(nctl1)/2 degrees of freedom. For instance, eigenvectors are

orthogonal to each other and eigenvectors have unit length.
3.4 SISO Models

In a GTSK model, model parameters include both antecedent andjeense
parameters. Antecedent parameters specify active regioeadbrrule while consequent
parameters describe local models. For simplicity of presentativactorx(t) is defined
as below to collect the input arguments in Equation (3.1)

x(t):[l y(t-1) L y(t-ny) u(t-d) L u(t—d—nu)]T (3.13)

where the dimension aft) is nx+1 with nx = ny+nu +1.

If a GTSK model is used to approximate the nonlinear fundtion Equation
(3.1), the fuzzy model is then defined as below using the proposed antecedent structure

IF (c(t)isin R"(0",P*)) THEN §'(t)=0'x(t)
M (3.14)
IF (c(t)isinR" (0" P")) THEN §" (t)=0"x(t)

where, superscript 1 indicates the first rule in a GTSK modék @antecedent
representation usingND conjunction in Equation (3.2) is replaced by the statem(@nt

is in R* (o*,PY). The expression oR' (0',PY) could be interpreted to represent an
ellipsoidal active region for the first rule. The number of rulMsis assumed knowia(t)
containing nc antecedent variables is defined as below and obtained as nonlinear
components in Chapter 4 for nonlinear dynamic processes.
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3.4.1 Model Parameters

(3.15)

Figure 3.6 illustrates the model parameters to be estimat@d3TSK model in a
two-dimension antecedent structure.

I
[of <]

2 2
= |:P11 Pui|
p122 P:.:fz

Figure 3.6. Model parameters for a 4-rule GTSK model

ynzI:k2+afy-z—1|+---+a:yy.z—;gy.+

Blule—d)++Eult—nu—d)

R represents the active region for ifferule. Its location and shape are specified

by antecedent parameters; a centroid veatbe R™ and a positive definite shape

matrix, P' € R"™"™ . They are respectively defined by

L ojm]T
P, p, L
p; Ps L
P Ps L
M M O
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where the symmetric matr¥ is specified by a vectqp' e R™(™*/?

pi = |: p:ll. pI2 pI3 L p;lc(nc+1)/2j| (318)

The P’ matrix can be expressed as a weighted sum of symmetricrhasices in

order to facilitate the computation later on
P = Z p'B, (3.19)

where symmetric basis matric&, are defined in the following manner

r Or r
o Z oo

0
1
M
0

O§OH
o oo
r Or r
o oo

(3.20)

0 0L
0 0L
N = =
nc(nc+1)/2 M MO
0 0L

© z O O
o 2+ O
r Or r
o Z o o
r Z O O

The local model parameters (consequent parameters) are includestctor

0' e R™ defined by
0=[6 6 L 0,] (3.21)

3.4.2 Model Computation

The computation of the model in Equation (3.14) is defined by

()= 3w ()5 (1) (3.22)
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wherej'(t) is output from the local model in Rule i and weightedaly§). Weightsw/(t)

are defined as the normalized truth of the anteced@nt (

W (t)= iU (3.23)

>TA 1)

with TA evaluated by Equation (3.7)
3.5 Extension to MIMO Models

Dealing with MIMO models becomes simple in this work. As belovI&O
model is shown a collection of several MISO models. Interestaetenrganight follow
Section 3.5 to see how a MIMO model is equivalent to multiple Md&CGome back later

to revisit the subject when dealing with a MIMO case.

For a MIMO process, a general description of its one-step predictor is defined by
y(t)=f(y(t-1)L y(t-ny)u(t-d)L u(t-d-nu)) (3.24)

where, the MIMO model has outputs andn inputs. The output and input vectoyst)
andu(t) are defined by

(3.25)

The above model structure implicitly assumes that the dynamersord ally;
(i=1,...,n) andy;(j=1,...,m) for each outpuy(t) areny andnu respectively. A universal
time delay is also assumed between each paiy cdnd y.. The universal order
assumption is in general not true in practice. However, a MIM@IGin discrete time
model could be modified to have such a universal-order structure by azihog if
necessary. A regressor vectdt) is defined to collect all input arguments in Equation
(3.24)
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x()=[1 y"(t-1) L y'(t-ny) u'(t-d) L u'(t-d-nu)] (3.26)

where the dimension of(t) is nx+1 with nx = nxny+(m+1)xnu. The model is then

defined as below

IF (c(t)isin R"(0*,P')) THEN §'(t) = 0'x(t)
M (3.27)
IF (c(t)isinR" (o™ ,PM)) THEN y" (t) = 0"x(1)

The model in Equation (3.27) is almost identical to that in Equation ('1ai)d
P' have the same meaning. Antecedent variables are included in e@gtauhich is also
a subset ok(t). The only difference is that local models in Equation (3.28) aiépte-

output. The vectod' collects then output predictions by the local model in ifleule
g =[% L %] (3.28)
Consequently, local model parameters are organized in a roaerR™™Y defined by
[e. e L 6
0= M M O M (3.29)

Oo O L Oy

Each row ofe' corresponds to an output and every columi'ad$ related to a

regressor. It is possible to decomp@sia terms of columns or rows as below

19i
0 =0, L o] 0 =| M (3.30)

Where 0; (j=0,...,nx) represents th¢" column in matrix®' and rows,o

represents thié" row in®' (k=1,...,n)
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The computation in Equation (3.22) is then extended as below to deal with a

multiple-output model.

Vi (t) M 0
M =S w () MK() (3.31)
) 0

Equation (3.31) could be viewed as a collectiomaingle-output models. For

instance, the computation for tk& output is
V(1) =2 w (1) 0'(t) (3.32)

where,0' defined in Equation (3.30) is tH" row of matrix@'. It then is possible to

define a single output GTSK model for ti&output only by

IF (c(t)isin R (0*,P*)) THEN §i:(t)= ,0%(1)
L (3.33)
IF (c(t)isinR" (0" ,P" )) THEN 9 (t) = 0" x(t)

Comparing the single-output model for outputwith that in Equation (3.14),
equivalence is established by equatiyin Equation (3.33) td®' in Equation (3.14).
However, two models are different. Model in Equation (3.14) is SIS$®ewhat in
Equation (3.33) is MISO. Thet) in Equation (3.33) actually collects the lagged multiple
inputs and lagged multiple outputs. Fortunately, the difference in comex{3 has no
impact on evaluation of the first and second order derivatives to benprddater. The
computation of gradients and Hessian matrices for a SISO @Gi@&l€l can be extended
directly to each MISO element in a MIMO GTSK model.

A matrix «0 is defined to collect all local model parameters forkﬂﬁeutput.

8= M (3.34)



The above decomposition can facilitate estimation of model parameteerms of
evaluation of derivatives if a decomposable performance index is Ssegly, the
centroids and shape matrices have global influence on a GTSHK.mibde influence on
all outputs should be accumulated. To the contrary, the consequent pesa@diave
only local influence on its corresponding outgut It then could be expected that the
interactions betwee® and 0 (k#l) is zero. The representation of a MIMO GTSK model
by several single-output GTSK models will be exploited in Chapt® derive the first

and second order derivatives of an objective function with respect to model pasameter
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CHAPTER IV

DYNAMIC ORDER DETERMINATION AND

NONLINEAR COMPONENT DETECTION

Determination of dynamic orderey( nu andd in Equation (3.1)) is the first step
in system identification. Order determination is in generaldiffifor nonlinear system
identification due to the interaction of model structure (unknown orderd)unknown
nonlinearity. If the attenuation of unknown nonlinearity is possible, diftemodel
structures could then be fairly compared. Guided by this conceptottkein this chapter
uses a recursive estimation to reduce the effect of the undprhonlinearity on
parameter variation, and proposes a sequential nearest neighb@ngement to
enhance the reduction. The “best” dynamic order will minimizana prediction error
with the consideration of the locality of the model parameteraddiition to determining
dynamic orders, the sequential nearest neighbor rearrangenadst extended to detect
nonlinear components, which are regressors responsible for paramedgiovaf a
nonlinear dynamic model is converted to a liner time-varying dimamdel. The result
from Chapter 4 could be viewed as the preliminary analysis fédibgia GTSK model
to be presented in Chapter 5. The dynamic order determination défieesverall
dimension of a model. The nonlinear component detection selects antecadables

for the model.
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4.1  Dynamic Order Determination

The dynamic orderswy, nu and delayd are described in Equation (3.1). The
difficulty in discovering the dynamic orders for a nonlinear dywamodel is caused by
the unknown nonlinearities. Even ff is known to be nonlinear, the richness of
nonlinearity would keep users from exhausting all possible nonlineasfanaking it
difficult to find ny, nu andd. If the unknown nonlinearity is not a problem or at least not
as severe as it was, it is possible to devise a procedurgrfamit order analysis for a
NARX. The objective of the following methodology is to detangle theineatity and
dynamic orders, which makes it possible to define model orders. Eteodology
simply involves two stages of works. The first is to attenuataitik@own nonlinearity.

The second is search for dynamic orders.
4.1.1 Nonlinearity Representation

Nonlinearity could be explicitly or implicitly expressed. ljpgssible to transform
a nonlinear dynamic model into a linear one if the nonlinear funcidknown. For

instance, the following nonlinear dynamic model
y(t)=0.4y(t- ])3 +u(t- ])3+e(t) (4.1)

could be redefined as a linear dynamic model by static tamafionz(t) = y(t-1), v(t) =
u(t-1)°

Unknown nonlinearity could be addressed by using structure-rich modélasuc
neural network models, basis function models and fuzzy systems. Toestsmre all
universal approximators and able to capture almost any nonlineaviy g@nough
flexibility. If a neural network model is used, one then could beddllowing procedure
to find proper dynamic orders. A neural network is tried for ckffié sets ohy, nu andd
and the best set is then reported. Due to the application of al meiveork, the
nonlinearity is presumably addressed. The only affecting facfor modeling
performance aray, nu andd. It then is possible to find the set with the best performance.
This approach is very general and could be applied to any scenanjosoalinear
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dynamic models by any universal approximators. The drawback isotngutational
burden in terms of training ‘big’ models and efforts put to sedgqtropriate network
architecture (number of layers, nodes in each layer in neukabrikst number of fuzzy

subsets, number of rules in a fuzzy system).

If simple models are preferred such as linear models, nonlyeaould be
addressed by adaptation. Model parameters are recursively digdatack the model
parameter variation caused by nonlinearity. Linear models withnpger adaptation
require much less computation compared to ‘big’ models. The folloatagple shows
how convert a nonlinear dynamic process to a linear format. ¥drae uses a NARX
model defined by

y(t):%+u(t—l)3+e(t) @.2)

which could be represented in a linear format
y(t)=a/(t)y(t-1)+by(t)u(t-1)+e(t) (4.3)

wherea; (t) andbg(t) are time-varying model parameters and are defined in Equétin
as functions of/(t-1) andu(t-1) to establish one-to-one correspondence between Equation
(4.3) match Equation (4.2)

1

T by (t)=u(t-12)° (4.4)

a(t)

In general, the nonlinear dynamic model in Equation (3.1) could be expriesse

the following linear format

y(t)=a/(t)y(t-1)+L +a, (t)y(t—ny)+

(4.5)
by (t)u(t—d)+L +b, (t)u(t—nu—d)+e(t)
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The linear format could be established from a known nonlinear dgaambobdel
by one-to-one correspondence as shown in Equation (4.4). Howevinetireformat is
not always unique and one could have options. For instance, given a NARX model
defined in Equation (4.6)

_y(=D)y(-2)(y(t-9+29
Y(t)_ 1+y(t—1)2+y(t—2)2 (t 1) (t) (4.6)

It is possible to define a linear format
y(t)=a/(t)y(t-1)+by(t)u(t-1)+e(t) 4.7)
with

y(t-2)(y(t-1)+ 2.5)’ By (t)=1

3 (t)=

Lt y(t-1) +y(t-2)

another possibility is defined in Equation (4.8}wa different set of time-varying model

parameters
y(t)=a/(t)y(t-1)+a,(t) y(t—2)+by(t)u(t—1) +e(t) (4.8)
with
) 2.5y(t-2) a, (t)= y(t-9° by (t) =1

CLey(t-1 +y(t- 2 S Lry(t- 2 +y(t- 27

In general, it is rather difficult (maybe imposgpto extract the exact parameter
functions as defined in Equation (4.4) from datéyomhere are few exceptions such as
the one mentioned in (Young, 1993), whexgt) and by(t) are known to be linear
functions ofy(t-1) andu(t-1).
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The nonlinear dynamic model in Equation (3.1) coaldo be approximately
expressed by the following time-varying model

y(t)=k(t)+a(t)y(t-1)+L +a, (t)y(t—ny)+

(4.9)
by (t)u(t—d)+L +b, (t)u(t—nu—d)+e(t)

The approximation is due to the first-order Taydxpansion of Equation (3.1)
with following definitions

of

K()=Y(6) 5 g YD~ o (o) -
ﬁ%u(to_n{ _ﬁ%u(to_m_d)
al(t)=ay(atf_1) o
M (4.10)
3, (t)= ay(finy) .
of

to

%)= 5oit=a)
M

of
b (1) = ou(t—nu—d)

f

where,tp represents the reference point that the Tayloaesipn is based on.

The representation of Equation (3.1) by Equatiorb)(4r (4.9) are different,
although both share the same notations for timghvgrmodel parametei&t) andb(t).
Equation (4.5) is due to the one-to-one correspaceléo Equation (3.1), while Equation
(4.9) is based on one-to-one correspondence tdfitkteorder Taylor expansion of
Equation (3.1). The only difference is the additibtime-varying intercept terrk(t) in
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Equation (4.9) and the following presented ordeeiheination procedure is applicable to

both structures.
4.1.2 Recursive Estimation for Time Varying Paramet

Equation (4.5) or (4.9) could be represented imeenscompact format

y(t)=x"(t)0(t)+e(t) (4.11)

0(t)=[k(t) a(t) L a,(t) b(t) L b(t)]

x(t)=[1 y(t-1) L y(t-ny) u(t-d) L u(t-nu-d)]

where, the constant regressor will be droppedrin&d in Equation (4.5) is used. The
output prediction is then defined using the estasaif time-varying parameters

J(t)=x"(1)(t) (4.12)

There are several different ways to estinéte Recursive estimation attempts to
estimate local model parameters instantaneouslyth®n approach uses stochastic
models to describe parameter variation if the ®iesi regarding parameter variation is
assumed known. Among them, the simplest one isdora walk model. A Kalman filter
is then used to estimate the time-varying parametires as the states in the stochastic
model. The second approach will not be investigatetthis work since we assume the

lack of knowledge on the statistics of parameteiatian.

Recursive estimation for parameter value§), is based on a time-varying

weighted quadratic performance as below

IO=3(v()- () w(z.t) (4.13)
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where w(z,t) is a weighting function. Commonly used weightifighctions include
rectangular window weighting and exponential weaigit(Ljung & Soderstrom, 1986).

In this work, the exponential weighting is used dedcribed by,

w(r,t)=a, z=0,1L N (4.14)

where the variabley, a scalar between 0 and 1, is termed as forgdtiictgr. Figure 4.1

illustrates a particular exponential weighting witk 0.95.

w(t, 30)

Figure 4.1. Exponential weighting with= 0.95

Using exponential weighting, the following equasofYoung, 1984) are used to

update model parameters frcﬁ(nN -1)to ﬁ(N)

A

9(t)=XT (t)ﬂ(t—l)
H

(t)= (xT (t)P(t-1)x t)+05)_1 -
()= < ) H(O(9(0)- <t>> )
P(t)=- (P(t-1)- H(t) X' (1) P(t-1)

The forgetting factor, determines the influencedafa in the past to the current
estimation. The suggested rangedas between 0.9 and 0.99 (Young, 1984). In pragtice
trials for « might be needed for a balanced performance forimeenlity adaptation speed

and parameter estimation precision.
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4.1.3 Sequential Nearest Neighbor Rearrangement

In the recursive estimation with exponential weilgdpt the tuning variable is the
forgetting factor. When adjusting the forgettingctta, one should be aware of its
conflicting affects on parameter estimates. Thegdtimg factor relates to the rate of
variation. A smaller forgetting factor is expectied faster parameter variation. On the
other hand, the precision of parameter estimatedetermined by the size of data
included in an “effective” window. The length ofetlwindow is also a function of the
forgetting factor. Smaller is the tuning factor dgler window), fewer data are included
for estimation. In turn, the variance in estimatesigh. Therefore, a larger forgetting
factor should be preferred for higher estimatioacggion. However, a larger forgetting
factor is only a good choice for slow parameteniateim. The above argument verifies
the suggested range for forgetting factor over Q®Bere the precaution is also
mentioned for using exponential recursive estinmf@ slow variation at best (Young,
1984).

As a result of the conflicting influence of forgeg factor on parameter estimates,
dynamical nonlinear processes being dealt are égbéc have slow parameter variation.
Unfortunately, the nonlinearity is inherited in tdata and determined by the nature of
the process to be investigated. There is nothirggaam possibly do to alter the nature of
the process given only access to test it and genémput-output data. However, the
nonlinearity is in fact not really the difficultyh&t we are aiming at but the source of
difficulty, the parameter variation. The nonlinggris believed to be the cause of
parameter variation. It is desired to get arourelittherited and inaccessible nonlinear
nature of a process to change the parameter \arigirectly. If it is possible, the
improvement of the recursive estimation becomedabite. As proposed below is an
approach to manipulate raw data in time sequencectie an artificial sequence of data
with slowed parameter variation. The followingleleation starts by defining parameter

variation explicitly

(4.16)



with the definition, the following vector collectirvariations for all parameters is defined

AB(t)=0(t)—0(t-1)

—[Aa(t) L Aa,(t) ab(t) L ab,(0)] (4.17)

The parameter variation atould then be quantified Oye(t)|, where norm is

not specified. The parameter variatigm)(for the entire data set is
N
pv=">"[a0(t)| (4.18)
t=2

If it is possible to minimizeyv, it is then expected that resultant data set wbald
more suitable for a recursive estimation. The ogkisolution would be a permutation of
a sequence of number (1, .N). Find the right permutation is like to solve avielling
salesman problem to find the shortest path tragetmough all cities and visiting each
city only once. The optimization problem MP-complete. In this work, a suboptimal
solution is pursued rather than the exact optirokit®n. The suboptimal solution is the
result of a greedy procedure (Cormen, LeisersorvedRi & Stein, 2001), where

minimization ofpv is decomposed intd-1 simpler minimization problems.

min([|A0(2)|+ A0 (3)+L +[A0(N)|) @.19)
< min||A0(2)|+ minfa6 (3] +L + mirfae(N)| |
where N-1 minimization problems are slightly dependenteah with dependence in

every two consecutive tasks.

The greedy procedure is then conduced as belosuming0(1) is known, then
0(2) is searched for the problem of mi@(1)-0(2)||, which in turn determines(2).
Subsequently, §(2)-0(3)|| is minimized an®(3) is determined. The procedure stops
when O(N) is determined. Two fundamental steps are involuedthis procedure,
determination 06(1) and solving the problem of mif(k-1)-0(k)|| to determin®(K).
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With known®@(k-1), the problem of ming(k-1)-0(k)|| is fully expanded as below

min|0 (k—1)-8 (k)|
=minH[Aai(k),L Aa, (K),Ab, (k) L ,Abnu(k)T

ny nu
< ; min|[aa, (k)| + ; min]ab; (k)|

(4.20)

The bound is due to the triangular inequality. Timaimization of f(k-1)-0(k)||
is then translated to minimizg+nu+1 smaller objectives simultaneously. Given a time-

varying model, the parametezgk) andb;(k) can be expressed as functions of all states

u(t-d),L ,u(t-nu-d) #.21)

ai(k):a[y(t_l)’L y(t-ny), J

The expression fdp(t) is similar. Note that the indices are differembioth sides
of Equation (4.21), which simply means that kfesample in the optimal result is tH
sample in time order. Hij(k-1) is known and its correspondence sample ie tnder is.

y(z-1).L ,y(r—ny),
a(k-1)=a
u(z—d),L ,u(r—nu-d)

The exact functional form o is unknown. If its continuity and differentiabifit
are assumed and its high order derivatives arerassio be negligible, the difference
betweerg;(k-1) anda;(k) could be approximated b

A (k-1 (k)= 22l (V1) -y(e1)

(4.22)

+iﬁ o(u(z—j-d)-u(t-j-d))

j=0

If the first order derivative is bounded by a cam$tGa;, the minimization of
[lai(k-1) - a(K)|| could be approached by
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min|a (k-1)-a (k)| < minGa, Ix(z)=x(t)| (4.23)
where,x is defined in Equation (4.11) aridoecomes the decision variable. Since the
functional form is uniformly assumed for all paraerdunctions, the solution of Problem
(4.23) will simultaneously minimize the all uppeoumds. In this work, the Euclidean
norm is used and described by

Ie(e)-x(t)], = \/i(y(r—i)—y(t—i))z+i(u(r—d—i)—u(t—d—i))2 (4.24)
A nearest neighbor will define the solution for Blemn (4.20). The solving
procedure is then termed as Sequential Neareshbl@igRearrangement (SNNR). The
resultant regressor and output are labeledsgagsand yn, . The rearrangement starts
letting Xsnnf1) =X(1) and ¥nn(1) =y(1). If the nearest neighbor ofsnn(1) is found to be
X(t), x(t) andy(t) is then added to the rearranged data set bydetti.(2) = x(t) and
Ysnnd2) =Y(1). Then the nearest neighbor@fn(2) is found and added to the rearranged

data set. The procedure continues untibdhg(N) is found.

By conducting the SNNR, the raw data in time-segeds reorganized in spatial-
order. The treatment is expected to reduce thengea variation, which enables the
choice of a larger forgetting factar, which in turn improves the parameter estimates.
The results of the SNNR procedure are the basith®analysis in the following section
for dynamic order determination.

However, first is a demonstration of the impacttbé SNNR procedure on
parameter variation as well as recursive estimafidre demonstration is based on the
deterministic nonlinear dynamic model in Equatidr2b)

=M 1) 4.25
y(t) 1+y(t—1)2+u(t ) (4.25)

40



Figure 4.2 shows the first 1000 out of 5000 samplenerated from the

deterministic model wheu(t) is driven by a “skyline” function.
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Figure 4.2. Data generated from the model in Equdi.25)

The time-varying model parametagt) andbo(t) are defined in Equation (4.4)

and their variation over time is shown in Figurg.4.
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Figure 4.3. Time varying parameteigtand ly(t) in Equation (4.4)

The parameter variatiorp\{) defined Equation (4.18) is then evaluted usirg th
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5000

Euclidean norm,pv=z\/(al(t)—al(t—l))z+(b0(t)—b0(t—1))2 . The obtainedpv is

99.25. The mean squared error (MSE) resulted froecarsive estimation on the time-
sequenced data is 0.0044.

The SNNR operation is illustrated on a segmemtabd with 10 samples. The raw

data in time sequence is shown in Table 4.1 indéyed

Table 4.1. A segment of 10 data samples in timaesscp

t 1|2 3 4 5 6 7 8 9 10

y(t-1) | 0| 0.2488| -0.8683 0.7200 -0.3745 -1.14p5 -0.2815.1014 | -0.8542| 0.1648

u(t-1) | 0 | 0.2076| 0.7200| 0.7608 0.361y 0.8668 -0.0913.3199 | 0.7120 | -0.2645

The SNNR rearranged data is shown in Table 4.2radeked byk. The index in
Table 4.2 tracks the rearrangement and relate&thdata sample in Table 4.2 to its
original position in Table 4.1. Two regressors able 4.2 are denoted gy andu; rather
than the time-lagged notations in the original tseguence data set.

Table 4.2. SNNR rearranged data for the time-sezpidata in Table 4.1

2 3 4 5 6 7 8 9 10

7 8 10 2 5 9 3 4 6

Y1 -0.2815| -0.1014] 0.1648 0.2488 -0.37(5 -0.8542.86&B | -0.9385| -1.1465

ol O | -

Uy -0.0913| -0.3199 -0.2645 0.2076 0.3617 0.7120 2dm7| 0.7603 | 0.8668

Figure 4.4 shows the first 1000 samples of SNNiRremged data for the time-
sequenced data in Figure 4.2. It is observed tiatabrupt transition between adjaent
levels in Figure 4.2 for both(t) andy(t) is replaced by a smooth transition in botrand
y1 in Figure 4.4.
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Figure 4.4. SNNR Rearranged regressors from the-s@guence data in Figure 4.1

For the rearranged data, the varying parametersedefined in terms af andy;

a(k)=(1rn(kF)  by(k)=u (k)

The variation ofay(k) and bg(k) is shown in Figure 4.5, which results in a
parameter variation of 32.03, only about a thirdhaft in the time-sequence data. The
mean squared error (MSE) resulted from a recuesstenation on the rearranged data is

0.0022, which is half of that in the time-sequedata.
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Figure 4.5. Varying parameters for the SNNR reayeandata.

The same test and comparison is conducted on éndieistic models, their
stochastic versions are defined in Equations (4415). The results are summarized in
Table 4.3.

Table 4.3. MSE for a recursive estimation

Time SequencéSNNR
Model 1 0.0148 0.0112
Model 2 0.0486 0.0084
Model 3 0.0044 0.0025
Model 4 0.0022 0.0017
Model 5 0.0064 0.0034
Model 6 7.38e-8 3.57e-5

As observed in Table 4.3, SNNR is able to redueeMISE in the Models 1~5.
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Increase of MSE is however observed in the Mod&ss, where the tested model is
linear. Therefore, the increase of MSE might sigtie ineffectiveness of SNNR
treatment and imply that the model is linear. Ugimg feature, one might use the SNNR

to tell if a given process is linear or nonlinear.
4.1.4 Model Comparison Criterion

The methodology for determination of dynamic ordessld be trying different
sets ofny, nu andd and find the best values. Given a sehyfnu andd, regressors are
determined first on the original time-sequence@dddt). A SNNR is then conducted on
x(t) andy(t) producingXsnn(t) and ¥nn(t), to which an exponential weighting recursive
estimation will be applied. The quality of the hyjpesizedny, nu andd will then be
evaluated by a criterion considering both fittingdageneralization performance. In this
work, the evaluation is based upon a modified fpraldiction error (FPE) criterion. The
original FPE (Ljung, 1999) is defined for a lineaodel withN samples by

N+nmp 1 & L,/ A
FPE = — t,0 4.26
NN 2 (0) (4.26)
Equation (4.26) can be interpreted as a weighteahrsquared error where the weighting
is determined by, the size of data set as well as the model contplexp, the number

of parameters. ThEPE criterion results from the performance index

Vy =

N
t=1

& (t.0,) (4.27)

In application to exponentially-weighted recursiestimation, the definition of

FPE is modified according to the exponentially vatégl performance index
k -
vV, :zak*tgz(t,ﬂk) (4.28)
=1

whereV is varying, and progressively includes more dafée weighting factorg**
would become very small for long-past data setskimga the remote error
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inconsequential in estimatirgy. A critical numberL is hence introduced to decompose

Vi as below

t=1 t=k-L+1 (429)

where,Vy is approximated by its recent portion. By this rappmation, the number of
data involved invi is a constant,. Subsequently, the FPE basedWiis redefined

L+np 1l k-t 2(+ A
FPE (k)= - t,0 4.30
M- S el >

where, the implicit constraints drby k-L+1>1 andk<N boundk betweenL andN. The
average of FPE(K) over dlis then defined

FPE = z FPE(k
L+l kLL (4.31)
+np et .2
N L+1L np;tkzé+l (tB )
where, the double sum is decomposed into three ptidr being switched
N K . L1 t+L-1
> > ak"tgz(t,ﬂk): > ak t(«;"z(t 0 )
k=L t=k—L+1 t=1 k=L (4 32)
N-L+1t+L-1 R N N " ’
+ Z Z ak"tgz(t,ek)+ Z Zak"tgz(t,ﬂk)
t=L k=t t=N-L+2 k=t

The recursive estimation works well if parameteriatéon within a local range is

assumed to be small
0, .,~0, ,~L =0, (4.33)

which in turn results in the following approximatio

46



& (1.0,4)~e”(10,,)~L ~&*(10,) (4.34)

k=L t=k-L+1 t=1 k=L (4'35)

If N is large, the second part dominates, which resnlta further simplified

average FPE as

L-1
L k
- ;0[ L—H'Ip N-L+1
FPE ~
N-L+lL-np &

gz(t,ﬁt) (4.36)

The average FPE in Equation (4.36) is similarite original one in Equation
(4.26), and has the same interpretation as a vesigptediction error, except that the
weighting is different. Onck is chosen, the first term on the right-hand silEquation
(4.36) is a constant. Then Equations (4.26) and86j4are similar, withL the data
window length, replacingy, the total number of data. A simplified FPE in Bgan (4.37)
is used in this work and will continue to be dedats FPE

B L+np N-L+1 ) ~
FPE = = ; P (t,ﬁt) (4.37)

The value ol is related to the decomposition by Equation (4&%) determined

by considering:" small enough to be negligible. In this wokkis determined as below
L% (4.38)
l-«o

where (1e)* is termed asnemory time-constant (Ljung, 1999). As shown in Figure 4.6 ,

the specification oL in Equation (4.29) will ignore the past data withights less than
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0.02. Additionally, the numbes*™® remains relatively constant between 0.016 and
0.018 ifa is over 0.9, which is a common choice for a faiggtfactor.
0.019
0.018 -

0.017 A

/(1)

0.016 -

0.015

0-014 T T T T 1
0.9 0.92 0.94 0.96 0.98 1

o

Figure 4.6 vs.o™ ™ (the weight for the most remote data)

4.1.5 Regressor Selection Procedure

Given several sets afy, nu andd, their FPEs are evaluated. The set with the
minimum FPE on SNNR data is reported including thetermined orders. The
determination procedure could be conducted in draestive approach for all possible
combinations of differenty, nu andd given pre-definednax_ny, max_nu andmax_d for
possible maximunmmy, nu andd. The pseudo-code for the exhaustive search isrshow

Figure 4.7.

Exhaustive order selection

for ny = 1to max_ny
for nu= 0tomax_nu
ford=1tomax d

Compute FPE(ny,nu,d)
Keep the minmum FPE
end loop
end loop
end loop

return the ny,nu and d with minimum FPE

Figure 4.7. Exhaustive dynamic order search
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One concern with the exhaustive search is the ctatipnal burden. The pay off
of the expensive exhaustive search is optimalittheffinal solution. Suboptimal search
techniques are available in a subset selectionlif@ar regression. Subset selection
methods include forward selection, backward elitiama cycling replacement as well as
heuristic combinatorial search (Miller, 1990). Hioear regression problems, one could
fully exploit the superposition feature in a lingaodel to simplify a search. It explains
that subset selection method is always accompatigdorthogonalization. An
orthogonalization procedure removes the redundamtponents of two regressors and

eliminates the candidate regressors that are hagithglated with selected regressors.

In nonlinear systems with unknown nonlinearity,thogonalization is not
possible. However, it does not mean that the sidadecttion is inapplicable. In this work,
a forward selection procedure combing the abovetiomed recursive estimation on
spatially ordered data is proposed to find impdrtagressors. The procedure starts with
users’ inputmax_ny, max_nu and max_d. Then, a number of candidate regressors are

generated and denoted ag k> X3 ... Xy Xandon]. Xangom IS @ random regressor that

presumably contains no meaningful information tedget output. At firstpt+1 FPES are
computed fory[x]), (V, [X2]), .- » (s [Xml), (¥, [Xrandon]), Wherey is the output and; in
bracket is the regressor in consideration. Theessgr with the minimum FPE is selected.
If %o, for instance, is the first selected regressoerethwill be otherm FPEs to be
evaluated fory{ [xo, x1]), (Y, [X2, X3]), ..., (¥, [X2, Xm]), (Y, [X2, Xandon]). Each bracket
contains a combination af (first selected) with the rest. The regressor doatibn with
the minimum FPE is then kept. The selection comgnuntil the minimum FPE increases
or the Xangom IS Selected. The injection of a random regressaneéntioned in (Miller,
1990) as a stopping criterion. The selection gfs¥n Signifies that the rest of candidates
are less influential oy(t) than a presumably irrelevant one.

The selected regressors might define valuasyofiu andd if selected regressors
are consecutive due to implicit constraint on thedel structure in Equation (3.1), which
requires consecutive regressors. For instance, @ segressorsy{t-1), y(t-2), u(t-1), u(t-
2)] definesny=2, nu=1, and,d=1. Absences, however, could exist in selectedes=grs

such asy(t-1) y(t-4) u(t-1) u(t-3)], which does not correspond a sehyfnu andd.
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It seems unlikely in most situations thgt-2), y(t-3) andu(t-2) should not be
included. However, if there are strong correlationsecycle phenomena, those missing
variables may be redundant, and the particularcsete may not be unique. Another
realization of excitement and noise, might selewbtleer subset from the correlated
variables. The inclusion of redundant variablesaases the model complexity. However,
for database management simplicity, in this wadrkhe situation with absence occurs, a
further comparison is executed on different orddues. For the illustrated example, an
exhaustive comparison is conducted on possibleegabiiny=1, 2, 3 or 4 combined the
possible values afiu=0, 1, or 2, withd = 1. However, the extra computation would be

unnecessary if the constraint on having consecuéigeessors is dropped.
4.2  Nonlinear Component Detection

There is an implicit assumption made on the abd\BIFS operation. The time-
varying parameters are functions of all regressdte assumption is valid for the
dynamic model in Equation (4.2), where parametegsunctions of two regressong(t-

1) andy(t-1). The model in Equation (4.6) has regressgtsl), y(t-2) and u(t-1).
However the parametees anda, are functions of only(t-1) andy(t-2). The regressor
u(t-1) has no impact on parameter variation. It imteepected that the SNNR oy(tf1)
y(t-2)] might reduce more parameter variation tharragpey SNNR ony(t-1) y(t-2) u(t-
1)]. The further reduction in parameter variatidrod be revealed by a smaller MSE

resulted from a recursive estimation.

An extension of the SNNR-based order determinagpimtedure is the used to
detect the regressors that are affecting the owmmuoiinearly. The detected regressors are
termed as nonlinear components and to be usedesedent variables in Chapter 5. The
purpose of conducting SNNR is to reduce parameseration so that the recursive
estimation is able to capture the variation betidnich in turn, results in a smaller MSE.
The SNNR mentioned above rearranges data basedl t¢imearegressors in order to
compare different sets afy, nu andd. However, it is possible that only a subset of
regressors is affecting time-varying parameterg Jubset is denoted bg]...C]. It is a

subset of selected regressors denoted Xpy..[Xw]. The regressors not included in
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[c1,...Cn¢] have no affect on parameter variation. It isntlexpected that a SNNR on
[C1,...Cnc] ONly would be able to reduce more parameter tiarisand produce an smaller
MSE. There are totally™* subsets inx, ..., X~ excluding the empty one. Each subset
from [xi,...,Xw] IS considered as a candidate set of nonlinearmpooents, ¢;,...Cnc], ON
which the SNNR is conducted and a corresponding MSEomputed. The subset with

minimum MSE is reported to contain the nonlineanponents.
4.3  Extension to MIMO Processes

Extending the above technique to a MIMQ{) (m inputs anch outputs) process
is straight forward. The SISO model in Equatiorl)3s expanded as below for tk8

output by including more regressors.

Ye(t=2) L ¥ (n-ny)
yl(t—dkyl),L ,yl(t—nykl—dkyl),
L

Ye(t)= T | Ya(t=d).L (t-ny—dy) |+&(t) (4.39)
ul(t—dfl),L ,ul(t—nukl—dlfl)

L
Up (t=dg ) L Uy (t— U, —dli )

where dynamic orders incluaia, .., Ny, andnuii, ..., NUkm, and delay? L ,d?
betweeny, and other outputs as well as detayr ,d¢, betweenyi and all inputs. All of

these numbers are to be determined using the abetteod for the single output case.

The nonlinear components farare then selected after orders are determined.
4.4  Simulations and Discussions
4.4.1 Testing Models and Processes

The proposed order determination and nonlinear oot detection method are
tested on data generated by several nonlinear dgrmaodels, an experimental unit and a
distillation column simulator. The first five modebkre nonlinear autoregressive with

exogenous inputs models (NARX). They are diffeienterms of nonlinear interactions
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between inputs and outputs. Model 1 has nonlinearily in the lagged inputj(t-1).
Model 2 is nonlinear in lagged output only. Modas $1onlinear in both lagged input and
output,u(t-1) andy(t-1). Model 4 is also nonlinear in both lagged inpatd output but
have more regressors included than Model 3. Likeléd, Model 5 is another model
with nonlinearity in the lagged inpui(t-1). The nonlinear function with respectut-1)

is, however, different in both models. Model 6 iBn@ar ARX model used only once to

demonstrate the impact of SNNR on recursive esiimatith result in Table 4.3.

The input signals used in the first five models geaerated by a skyline function
and bounded between -1 and 1. The shortest anddbdgrations are 20 and 50 samples
respectively. Output signals are initialized aogerThe noise(t) is subject to a normal
distribution,N(0,6%). The value of is different in each model and specified such &t
has a small magnitude compared to outputs. As hedgvortion of input-output data for
the first five models is illustrated along with n@dquations. A total of 5000 samples

are generated and used in order determination amithear component detection.

Model 1 (Narendra & Parthasarathy, 1990)
y(t)=0.3y(t— 1)+ 0.6/(t— 3+ 0.6sifizu(t— )+ 0.3s(naB(t— )k
0.1sin( 5ru(t— 3)+e(t)

wheree(t)~N(0,0.5)

(4.40)

1

- l | | | | | |
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10

10
0 100 200 300 400 500 600 700 800 900 1000
t

Figure 4.8. Input-output data generated for Modiel Equation (4.40)
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Model 2 (Narendra & Parthasarathy, 1990)
y(t)= y(t=1)y(t- 22)(y(t N 1)+2 29, u(t-1)+e(t) (4.41)
1+y(t-1) +y(t-2)

wheree(t)~N(0,0.5)

- 1 l 1 | | 1 l 1 1 |
0 100 200 300 400 500 600 700 800 900 1000
t

- 5 l 1 | | 1 l 1 1 |
0 100 200 300 400 500 600 700 800 900 1000
t

Figure 4.9. Input-output data generated for Modiel Equation (4.41)

Model 3 (Narendra & Parthasarathy, 1990)

y(t) :%Jm(t ~1 +e(t) (4.42)

wheree(t)~N(0,0.5)

- l | | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000
t

Il

-2
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t

Figure 4.10. Input-output data generated for M@&diel Equation (4.42)
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Model 4 (Narendra & Parthasarathy, 1990)

_Y(-Dy(t-2)y(t-3u(t-3(y(t-3- J+u(t-3

y(t)= +e(t)

1ry(t-3 +y(t-2°

wheree(t)~N(0,0.0%)

800 1000

t
1
0.5 -
>~ 0
0.5 .
-10 260 460 660 860 1000

t
Figure 4.11. Input-output data generated for Mddiel Equation (4.43)

Model 5 (Narendra & Parthasarathy, 1990)

y(t)=0.8y(t-1+(u(t—1- 0.9u(t— Ju(t— I+ 05+e(t)

wheree(t)~N(0,0.%)

1

- 1 [ | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

t

-1
0 100 200 300 400 500 600 700 800 900 1000
t

Figure 4.12. Input-output data generated for Mé&diel Equation (4.44)
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Model 6.
y(t)=0.8y(t— 1)+ 0.6/(t— 3+ 0.4(t— ) (4.45)

Models 7 and 8 are two deterministic nonlinear ayicamodels.

Model 7
y(t)=0.8y(t-)+u(t- 3’ (4.46)

Model 8
y(t)=0.8y(t -1+ cogzu(t— ) (4.47)

Different from Models 1-5, Model 7 has a quadratienu(t-1), whereu(t) is also
generated by a “skyline” function between -1 andie effect ofu(t) on y(t) would be
missed in average. As below, Equation (4.48) iditiear time-varying model for Model
7 with a;(t)=0.8 andbg(t)=u(t-1). In average, the effect oft-1) in Equation (4.48) is
reflected by BHfo(t)). In this case, Bx(t)) is O sinceu(t) is a random signal between -1
and 1.

y(t)=a,(t)y(t—1)+by(t)u(t-1) (4.48)

Therefore, the regressau(t-1) would be missed if a recursive estimation is
conducted in time sequence, whépé) is a random number between -1 and 1 in time
sequence The recursively estimabg@) would be wandering around zero. However, the
proposed SNNR is able to reveal the impacai(tfl) on model output. By rearrangement,
the randomness in(t-1) is eliminated. Consequently, the varying partamdy, is no
longer a random variable but gradually increases frl to 1. A recursive estimation on
the rearranged data is then able to reflect theaainpf u(t-1) ony(t). Model 8 has a
guadratic-like term cos(i(t-1)) and will be used to test the proposed ordé&rdenation

technique.

Model 9 in Equation (4.49) is used to demonstra¢erton-uniqueness of obtained
result as discussed in Section 4.1.1. By obseniagation (4.49), the nonlinear

component could be eithgft-1) ory(t-2). A detailed test will reveal the observation.
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Model 9
y(t)=0.2y(t-Dy(t— +u(t-1 (4.49)

Models 10 and 12 are deterministic nonlinear agr@ssive (NAR) models in
(Molina, Sampson, Fitzgerald & Niranjan, 1996) amsked for method comparison.
Models 11 and 13 are derived from Models 10 andit2 noise added to the output and
used to compare the influence of noise on diffeneethods. The noisgt) in Models 11
and 13 has a small magnitude compared to outpodisignd is subject #8(0,6%), where
o is set to about one thousandth of the average muaigniof output signal in the

corresponding deterministic models.

Model 10 (Molina, Sampson, Fitzgerald & Niranjan, 1996)
y(t)=4y(t-1)(1-y(t-1) (4.50)
Model 11

Yo (1) =4y, (t=1)(1- ¥ (t- D)

y(t)=y(t), +e(t) (4.51)

wheree(t)~N(0,0.0225)

0.8 -
0.6
0.4
0.2 -

0 10 20 30 40 50 60 70 80 90 100

Figure 4.13. Data generated for Model 10 in Equeféb50)
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Model 12 (Molina, Sampson, Fitzgerald & Niranjan, 1996)
y(t)=1-1.4y(t- )"+ 0.3/(t- 3 (4.52)

Model 13

Yo (t)=1-L1.4y,(t- 3"+ 0.3,(t- 2

y(t)=y,(t)+e(t) (4.53)

wheree(t)~N(0,0.0273)

15

0.5¢

-0.5+ f

0 10 20 30 40 50 60 70 80 90 100

Figure 4.14. Data generated for Model 12 in Equeféb52)
Model 14: Two-phase flow process

Figure 4.15 shows an experiment setup of a twoelfiasv process in the unit
operation lab in the School of Chemical Engineeah@klahoma State University. This
unit is managed by a laboratory scale distributattrol system, Camile. The schematic
diagram of the process is shown in Figure 4.16 hBmittom and top pressures of the
vertical pipe are measured. There are two air ffmpplies labeled as ‘Small air' and
‘Large air’ in Figure 4.16. Air from the two pip@serges and flows to a T, whose outlet
end is connected to the bottom of the vertical pipee other inlet end of the T is

connected to the water pipe labeled as ‘waterigufe 4.16.
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In this work, this unit is used to study the dymasrbetween mixed air & water
and the pressure drop across the vertical pipeetfitrpnt is conducted in an open loop
and only the air valve opening (‘Large air’ pips)manually changed. The ‘Small air’
pipe is closed. The ‘water’ pipe is controlled &t [Bmol/hr. The measurements of the
water flowrate in the ‘water’ pipe are shown in g 4.17.

i

/27 21:23

¥

¥y

o
O
N

Pressure tap

Solenoid
valve

T Pressure Water Small air | | Large air
transducer

Figure 4.15. The two-phase flow experiment setup

58



l_.
@

Bottom pressure
¢ v air
é; ;i< ! air

.
%ﬂ P
—

Small air

Figure 4.16. The schematic diagram for the two elilasv experiment
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Figure 4.17. Water flowrate measurements with egtt@at 20 lbmol/hr
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The process could be defined differently by talsignals from different channels.
Figure 4.18(a) shows a possible choice. The inpig,chosen to be the measurement of

the air flowrate. The outpuy,is the measuremtn of pressure drop, the differestseen

top and bottom pressure shown in Figure 4.16. Aigrorof 4500 measurements are
displayed in Figure 4.18(b). There are totally 883asurements are recorded. Although
the control interval was 0.1 second, the samplatg for this data was chosen as 0.5

second.

Sj. gna_l to '\'3_1\',: E.i.r f]. owrate pressure drl:lp
—— | AirValve # Twophase unit >
u ki
(a)
30
20
S
10
O a7 PPN N ot I s ottt L1 | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500
t
300
200 B
>
0 ! ! ! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500
t
(b)

Figure 4.18. A choice of input and output channelsut,u is the measurement of air
flowrate and outputy is the pressure drop measurement. a) The flowdhafthe

corresponding input and output data

As observed in Figure 4.18(b), the pressure dropsomement at low values is
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noisier than at high values gf A first-order filter is added in the data acqusi and
control devise ( a Camile 2000 unit) to suppressiesaoise iny for observation
convenience. With the filter included, Figure 4d)96hows another possible process
definition. The input, denoted ag is the command signal for the air valve opening,
which as shown precedes the air flowrate measurerbe output becomes the filtered
pressure drop measurement and denotgd ashe data is shown in Figure 4.19(b).

filtered
signal to valve air flowrate pressure drop
——» AjrValve » Twophase unit * Filter >
- u v -\
(a)
100
s 50- |
0

l l l l l l l l
0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

200

> 100 - _

l l l l l l l l
0 500 1000 1500 2000 2500 3000 3500 4000 4500
t

(b)

Figure 4.19. A choice of input and output channielst, us is the signal to the air valve
opening and outpuy; is the filtered pressure drop measurement. aflolehart; b) The
corresponding input and output data
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Model 15: Binary distillation column

Model 15 is a methanol-water binary distillationlwon simulator (Ou &
Rhinehart, 2002) modified to have 20 trays. Théli#ison column simulator is a MIMO
process. Two inputs are reflux flowrate (gmol/hr), and reboiler heating percentage
(TY%), up. The sample interval is 30 seconds. The refluwiféde varies between 50 and
90 (gmol/hr) and heating percentage is between 408655%. The duration time for
each step change randomly varies between 0.05 dmlirl The first 1000 samples of

inputs are illustrated in Figure 4.20.

Reflux (Ibmol/hr) ——-TY (%)

30
0 200 400 600 800 1000

time (sampling numbers)

Figure 4.20. Reflux flowrate (solid line) and releoiheat rate (dash line)
Inputs to the distillation column

Two outputsy; andy,, are the overhead and bottom concentrations ofianet

Xp andxg, in mole faction. The first 1000 output samples stiown in Figure 4.21.
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Figure 4.21. Thex(solid line, left scale) and
xg (dash line, right scale) in distillation columnpeximents

4.4.2 Testing on Dynamic Order Determination

An example is presented at first to demonstrateldtails in order determination.
The example is based on the deterministic versioiMadel 2. The first 1000 data
samples are shown in Figure 4.22 and a total 5@@@ are generated and used for the

order determination.

L 1 1 1 |
300 400 500 600 700 800 900 1000
t

4,
> 21 M—{ 7
(o)™ -

1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
t

Figure 4.22. Data generated for the deterministivarof model in Equation (4.42)

1 L
0 100 200

In using forward selection to select importantesgors, the maximuny, nu and
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maximumd are set to 5, 4 and 1 respectively. The selegiionedure is collected in

Table 4.4. Regressor forward selection for daf@gure 4.22

Stepy(t-1) y(t-2) [y(t-3) |y(t-4) y(t-5) [u(t-1) |u(t-2) |u(t-3) |u(t-4) [u(t-5) [random
1 ]0.0516|0.1248|0.2360(0.3572(0.4907|0.4246|0.3697 | 0.3243| 0.3328.3661|3.348

2 0.0408/0.0390(0.0400(0.0429/0.0131|0.0371 | 0.0411| 0.051)0.0534/0.0551
3 0.0045|0.0060/0.0082(0.0146 2.1E+560.0117 | 0.00890.0114/0.0193
4 0.0057|0.0073|0.0055 0.0043 |0.0093 | 0003t |0.0059/0.0098
5 0.0068|0.004z |0.0062 0.0062 | 1.9E+1pD 0.0043/0.0105

In Table 4.4, there are 11 regressors includingih@-lagged regressors and a
random regressor, the last one. At the first rdinlh regressors are tried one by one.
Their corresponding FPEs are recorded in the foat Among them, the one with the
smallest FPE at 0.0516 is chosen, and the relagpgssor ig(t-1). In the next step, the
selected regressoy(t-1) is combined with the rest of 10 regressors. fidwilts of 10
trials are in row 2, where the minimum FPE is dwa(t-1) at 0.0131. The blank fogt-

1) in row 2 only indicates thg(t-1) has been included. Continuing on this procedue
then need have botf{t-1) andu(t-1) included and try their combinations with ret9o
candidate regressors. The next minimum FPE is 6.8@4(t-2). Theny(t-2) is included.
The next discovery ig(t-4) with FPE at 0.0035. At the fifth step, the mwmim FPE is
0.042, which is however greater than the previousmum FPE of 0.035. The increase

in FPE signals to terminate the forward selection.

The above forward selection selects the four regrsgy(t-1) y(t-2) u(t-1) u(t-4)].
In theory, one could create an arbitrary modeluditig these regressors. In practice, it is
however unlikely to exclude(t-2) andu(t-3) while havingu(t-4) is included. In addition,
the objective of this work is to determine dynamiders,ny andnu. In order to include
u(t-4), nu and d should be set to 3 and 1 respectively. This coméition however
contains additional regressougt-2) and u(t-3), which are however rejected by the
forward selection. In this work, a minor exhaustsearch is conducted to compare
different values for several values far, 0, 1, 2 and 3 with fixedy at 2 andd at 1. The

result is collected in Table 4.5, where the belteréor nu is 0 with the minimum FPE of
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0.0045. Therefore, the determined regressorsyérd ) y(t-2) u(t-1)] with ny=2, nu=0,
d=1.

Table 4.5. Exhaustive search mnwith ny=2, d=1 for data in Figure 4.22

nu 0 1 2 3
FPE 0.0045 |0.0275 0.0066 0.0378

The above order determination procedure by a fiahsgalection followed by a
minor exhaustive search uses SNNR rearranged datecursive estimation. To reveal
the impact of SNNR on order determination, the mdvselection procedure is repeated
for the same data set without using SNNR. The Betéiselection are collected in Table
4.6. The selected regressors gtel), u(t-1) andu(t-2). No minor exhaustive search is
needed. Compared the model definition in Equatib8)( the result missegt-1) while
find u(t-2) that is not presented in the deterministic nhodke simply state that the result

include two ‘mistakes’.

Table 4.6. Regressor forward selection for daf@gure 4.22 using time-sequence data

Stepy(t-1) |y(t-2) [y(t-3) [y(t-4) |y(t-5) u(t-1) [u(t-2) |u(t-3) |u(t-4) |u(t-5) |random
1 ]0.05260.12600.23670.36110.50101.61161.53731.48411.49061.52715.7726

2 0.05560.05210.05330.05300.04620.05570.06340.06190.05880.0555
3 0.05150.05080.05060.0502 0.03010.05010.04930.04930.0484
4 0.03520.03250.03220.03171 0.04020.040310.03720.0316

The order determination method is also applied tteerodeterministic models,
deterministic versions of models in Equations (441@4). The results are summarized in
Table 4.7, which also include the results usingginal time-sequence data for

comparison.
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Table 4.7. Regressors determined for deterministisions of Models 1-5

ModelTime Sequencg SNNR Truth

1 yELY(E2)y(t-3) y(t-1y(t-2)y(t-3)u(t-1) - y(-1)y(t-2)u(t-1)

2 y(t-1)u(t-1)u(t-2) y(t-1) y(t-2) u(t-1) y(t-1)y(t-2)u(t-1)

3 y(t-1) u(t-1) y(t-1)u(t-1) y(t-1) u(t-1)

4 u(t-1) y(t-Dy(t-2)y(t-3)u(t-1)  y(t-1)y(t-2)y(t-3)u(t-1)u(t-2)
5 y(t-Lyt-2) y(t-1)u(t-1) y(t-1)u(t-1)

As observed in Table 4.7, both approaches areiigie Model 3 test. In the
Model 1 test, the ‘Time Sequence’ miss€t1) but addsy(t-3), making 2 mistakes,
while the ‘SNNR’ addy(t-3), making 1 mistake. In the Model 2 test, them& Sequence’
missesy(t-2) but adda(t-2), making 2 mistakes. The ‘SNNR’ makes 1 mistakethe
Model 4 test while ‘Time Sequence’ makes 4 mistakgdinding onlyu(t-1). In the
Model 5 test, ‘Time Sequence’ adgd-2) but missesu(t-1). For the first 5 tests, the
‘SNNR has 2 mistakes while the ‘Time Sequence’ mdk& mistakes. lllustrated by this
comparison, neither approach is perfect, but thBINB' outperforms the ‘Time

Sequence’ in terms of number of mistakes made.

Tables 4.8 collects the comparison results usinge-8equence and SNNR
rearranged data for stochastic models in Equatd®~4.44) with example data shown
in Figures 4.8~4.12.

Table 4.8. Regressors determined for Models 1-5

Model[Time Sequence SNNR Truth
1 yt-1y(t-2)u(t-1) y(t-1)y(t-2)u(t-1) y(t-1)y(t-2)u(t-1)

2 y(t-1y(t-2)y(t-3)u(t-1) y(t-1) y(t-2) u(t-1) y(t-1)y(t-2)u(t-1)

3 y(t-1) u(t-1) y(t-Du(t-1) y(t-1) u(t-1)

4 u(t-1) y(t-1)y(-2)y(t-3)u(t-1) y(t-1)y(t-2)y(t-3)u(t-1)u(t-2)
5 y(t-D)u(t-1) y(t-D)u(t-1) y(t-1)u(t-1)

Observed in Table 4.8, the ‘SNNR’ performs betté@éhw mistake while ‘Time
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Sequence’ makes 5 mistakes. It is also observedotiia the result for the Model 1 is
different in both Tables 4.7 and 4.8 for the ‘SNNRiile the results for Models 1, 2, 3
and 5 are different in both tables for the ‘Time&ence’. It seems that the result due to
‘SNNR’ is less influenced by the additional noibart the ‘Time Sequence’. It might be
difficult to draw a general conclusion on the olaéon. Intuitively, the noise term will
affect how model parameters vary, which in turreet the performance of recursive
estimation. Consequently, the order determinatesults, which are based on recursive
estimation, should also be affected. On the othedhthe additional parameter variation
after the noise being injected could be attenuatedhe ‘SNNR’, which reduces the

influence of noise on parameter variation then sgbently on order determination.

The details of regressor selection for Models 7eBshown in Tables 4.9 and 4.10,
where an extra regressy(t-2) is found for each. It implies that the regresgt-2) has
influence ony(t). In Equations (4.46) and (4.47), althougl) is not directly related to
y(t-2), the regressoy(t-2) is able to affecy(t) via y(t-1). More importantly, Tables 4.9
and 4.10 show that the regress(irl) is found for both models.

Table 4.9. Regressor selection for Model 7

y(t-1) y(E-1ut-1) yE-u(t-1)y(t-2) y(t-1u(t-1)y(t-2)y(t-4)
FPE [0.01370.0028 | 0.0025 0.0032 (Stop)

Table 4.10. Regressor selection for Model 8

y(t-1) y(t-1)y(t-2) y(t-1)y(t-2)u(t-1) y(t-1)y(t-1)u(t-1)y(t-4)
FPE |0.07870.0293 | 0.0188 0.0222 (Stop)

The proposed order determination is also comparedthe geometric
method .(Molina, Sampson, Fitzgerald & Niranjan9@P The testing is conducted on
Models 10-13, and results are summarized in Tallé.4As observed, the geometric
method is able to extract correct orders for det@stic nonlinear AR models while
performs poorly with the presence of additive noildge geometric method makes a total
of four mistakes for both Models 11 and 13. Theppsed order determination makes
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one mistake for Model 12.

Table 4.11. Regressors determined for Models 10-13

Model|SNNR Geometric Truth

10 y(t-1) y(t-1) y(t-1)

11 y(t-1) y(t-1) y(t-2) y(t-3) y(t-1)

12 y(t-1) y(t-2) y(t-3) (t-1) y(t-2) y(t-1)y(t-2)
13 y(t-1) y(t-2) y(t-1) y(t-2)y(t-3)y(t-4) y(t-1)y(t-2)

The dynamic order determination is applied to ttke-phase flow process with
two possible input-output selections in Figures84ahd 4.19. The results are collected in
Table 4.12.

Table 4.12. Regressors determined for the two-ph@seprocess

Input Output

Air flowrate Pressure drop y(t-1) y(t-2) u(t-1)

Air valve opening signa‘FiItered pressure drogr(t-1) yi(t-2) ys(t-3) ug(t-4)

For the input and output defined in Figure 4.18,idcognized regressors ayd-{
1) y(t-2) u(t-1)]. The regressors determined for the input amgliodefined in Figure 4.19
include y(t-1) yi(t-2) vi(t-3) us(t-4)]. Unlike the previous examples, it is not pbssito
justify the obtained results by ‘true’ dynamic arsldor the two phase flow process,
which are unknown. However, the difference expréssaesults can be justified by our
empirical knowledge regarding the process. The elyoarder iny; in Figure 4.19 is one
order higher than that in the outputin Figure 4.18. The extra order ynis due to the
first order filtering operation applied to the outpy. In two input channels, difference is
in delay, which is consistent with the physicalgass. The signals ‘command to the
valve’ precedes the signal, air flowrate measurement. There are few stepsdstus
andu. The signalys is generated manually and recorded. It then ivexted to a 3~15
psi pneumatic signal. The variation in the pneumsijnal changes the pressure on the
diaphragm, which then pushes or releases the sbemected to the valve plug. The air
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flowrate is then altered and measured. The meastersiu. The delay difference of 3
betweenu andus should be considered as an average differencetbgezntire data set.
The exact difference might be different sample &ayle.

Applying the proposed order determination to Matkl the result obtained using
the procedure extended in Section 4.3 and is suineasin Table 4.13 for both outputs.

Table 4.13. Results of order determination fordistillation column

Outputys, distillate &p) Outputy,, bottoms Xg)

FPE Forward SelectiojFPE Forward Selection
2.11e-4 |y (t-1) 7.02e-7 |ys(t-1)

3.83e-5 yi(t-2) 1.52e-7 |y (t-4)

3.55e-5 |uy(t-3) 1.17e-7 |p(t-1)

3.52e-5 y;(t-3) 1.13e-7 |uy(t-3)

3.43e-5  |y,(t-3) 1.13e-7  |up(t-3)

3.62e-5 |y (t-4)

The selected regressors fqaft) are fi(t-1) ya(t-2) yi(t-3) y2(t-3) uy(t-3)] and the
selected regressors fgi(t) are o(t-1) yo(t-4) ua(t-3) ux(t-1)]. For the outpuy,, the value
of ny needs to be 4 i,(t-4) is included. It would also include boy(t-2) andys(t-3).
Therefore, a minor exhaustive search is neededrpare several different valuesryf
and the result is summarized in Table 4.14.

Table 4.14. Exhaustive searchmyfor y,

ny 1 2 3 4
FPE 1.25E-07| 1.17E-07 1.23E-Q7 1.28E-p7

Then the regressors determined for ouypus [yo(t-1) yo(t-2) ua(t-3) ux(t-1)].
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4.4.3 Testing on Nonlinear Component Detection

The nonlinear component detection will be basetherresults in the above order
determination. The implementation detail of nordineomponent detection is given for
the Model 1 in Equation (4.40) with selected regoes /(t-1) y(t-2) u(t-1)]. The result is
recorded in Table 4.15, wherein the numbers for rine “Subsets” represent the
combination of the Si(y(t-1)) , 2'%(y(t-2)), and &(u(t-1)) regressors.

Table 4.15. Exhaustive search for nonlinear compisiier Model 1

Subsetsl 2 3 1&2 |1&3 |2&3 |1&2&3
MSE 0.3328/0.3366|0.2747|0.3373/0.2987/0.3006/0.3195

In the first trial, the entry for Subset “1”, th&d§R procedure is conducted based
ony(t-1). The resultant data is then used in a recuestienation that results in a MSE of
0.3328. The trial continues until all combinatioat regressors are exhausted. The
minimum MSE is 0.2747, which corresponds to thedtinegressorn(t-1). According to
the result, the time-varying model could be destdilas below using the detected

nonlinear componeni(t-1).
y(t)=a (u(t-1))y(t-)+a(u(t-1)y(t-2+by(u(t-ult- I+e(t)

The results of nonlinear component detection fog first five models in
Equations (4.40~4.44) are summarized in Table 4.16.

Table 4.16. Results for nonlinear component degadbr Models 1~5

Model Detected nonlinear components
1 u(t-1)
y(t-1), y(t-2)
y(t-1), u(t-1)
y(t-2)
u(t-1)

a] ] WO N
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Observed from Table 4.16, it seems that the difiezebetween detected and
desired nonlinear components is clear in the Mddekt. It seems that in Equation (4.43),
every regressor is nonlinear. However, opfy-2) is reported to be a nonlinear
component while others are perhaps ignored. Howetler result should not be
interpreted that only(t-2) is nonlinearly expressed in the Model. Since ave only
reporting the minimum MSE as shown in Table 4.1& tesults include only the

‘dominant’ nonlinear components.

Table 4.17 shows the details for nonlinear compbdetection for Model 4. The
last row in Table 4.17 is the MSE on the raw daithout SNNR operation. The first
observation is that the minimum MSE is due to gmressoy(t-2), which is the reported
nonlinear component in Table 4.16. On the othedhdns observed in the last row that
the MSE without SNNR is the maximum, which implibat every regressor has impact
on parameter variation. It then indicates that yvegressor is nonlinearly expressed in

the model. However, the regressgt;2) seems to dominate others in this test.

Table 4.17. Exhaustive search for nonlinear compisnier Model 4

Regressors MSE Regressors MSE
y(t-1) 0.004021 y(t-2)u(t-1) 0.003668
y(t-2) 0.003241 y(t-3)u(t-1) 0.00343
y(t-3) 0.003579 y(t-1)y(t-2)y(t-3) 0.00349
u(t-1) 0.005035 y(t-1)y(t-2)u(t-1) 0.003711
y(t-1)y(t-2) 0.003353 y(t-1)y(t-3)u(t-1) 0.003571
y(t-1)y(t-3) 0.003312 V(t-2)y(t-3)u(t-1) 0.003453
y(t-1)u(t-1) 0.004086 y(t-1)y(t-2)y(t-3)u(t-1) |0.003509
y(t-2)y(t-3) 0.003365 No SNNF 0.005578

The details of nonlinear component detection ford®ld® with regressors’fy(t-
1)) , 29y(t-2)), and '(u(t-1)) are collected in Table 4.18.
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Table 4.18. Details of nonlinear components detadior Model 9
Subsets 1 2 3 1&2 | 1&3 | 2&3 | 1&2&38
MSE (10°) [0.0144/0.0143/0.6442/0.1266/0.2186/0.2007(0.3159

In Table 4.18, the minimum MSE, 0.0143 correspotits regressory(t-2).
Interestingly, the corresponding MSE for regresgbi) is 0.0144 and very close to that
due toy(t-2). It would be fair to conclude that both regmssare equally good, which is

consistent with model structure in Equation (4.49)

The nonlinear component detection results fotweephase process are collected
in Table 4.19 for two different choices of inputdanutput channels. The results are

reasonable and both include lagged input and osigoals.

Table 4.19. Nonlinear components detected forwluepthase flow process

Input Output Nonlinear componen

Air flowrate Pressure drop y(t-2) u(t-1)

Air valve opening signa‘FiItered pressure drogs(t-1) y(t-2) ugt-4)

The nonlinear component results for the distillat@lumn test are listed in Table
4.20. For each output, competing choices are listeadrms of dimension and error. For
y1, the minimum MSE = 3.153e-5 is to hawe(f-2) y.(t-3)] as nonlinear components.
The next minimum MSE is 3.155e-5 that has only mo@inear componeny,(t-3). The
second choice features a low dimension while ttst éine has a lower MSE. Fgy, two
competing choices are listed. The minimum MSE $&-& corresponds to the selection
of [y2(t-1) ux(t-1)] as nonlinear components. The next minimum MSE.O06e-7, which
has only one nonlinear componenk(f-1)] included. All listed choices for nonlinear
components will be further investigated and trie@dreating GTSK models.

Table 4.20. Choices of nonlinear components fodikgllation column

Outputy, distillate &p) |Outputy,, bottoms Xg)
MSE MSE

3.15e-5 | {1(t-2) yo(t-3)] [9.10e-8 | ¥a(t-1) up(t-1)]
3.16e-5 |y,(t-3) 1.06e-7 | [i(t-1)]
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CHAPTER V

PARAMETER ESTIMATION FOR GTSK MODELS

In this chapter, a two-stage approach is describedstimate model parameter

values for the GTSK model described in Chapter 8 vaelected antecedent and
consequent variables in Chapter 4. Model parametelisde both antecedent parameters,
centorid 0), shape matrixK) and coefficients for local linear relatiory) for each rule.
A brief summary of all parameters could be founcEguation (3.14). In Chapter 5, a
constrained optimization problem with matrix inelifies is defined to estimate model
parameter values, which are initialized by a preploseuristic approach. The following
elaboration focuses on a SISO model. The exteritsiddiIMO models will be provided

at the end of each section if necessary.
5.1 Parameter Estimation by Newton’s Method
5.1.1 A Constrained Optimization Problem

Estimation of model parameter values is generakyated in an optimization
scheme by minimizing a performance index defineer @/data set. The entire data set is
collectively denoted byy[C X] as output, antecedent and consequent variabletetail
the denotation is described by

L L
[yIcIX]sl M| M O M | M O M (5.1)

wherexg is the constant regressor in Equation (3.13). aldeis,x; ~ X.x are regressors
due to the determined dynamic ordeysnu and pure delayd in Chapter 4. Variables;
~ Cqc are antecedent variables as the nonlinear compodetermined also in Chapter 4.
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The following optimization problem is then defingaden the number of rule$/)
is known.

minimize J = ZN:( y(t)- 9(t))2

t=1

subject to (5.2)
P' >0, i=1L M

where, the computation gfis described in Equation (3.22). Inequality cosisits signify
that all shape matricd® are positive definite. The following matrix funmti with respect
to P is used to convert the constrained optimizatiorattounconstrained one (Boyd,
Balakrishnan, Feron & Ghaoui, 1994)

§(P)- log det((Pi )_1) P>0 (5.3)

00 else.

Then, the augmented objective performance inddefised by
Jog(8)=81+2 ¢ (P') (5.4)

where the scalais used to adjust the relative importance @fith respect to the sum of
¢(Pi ) The treatment of matrix inequality is borrowednfr the interior-point method to

solve a convex linear matrix inequality optimizatiproblem (Boyd & Vandenberghe,
2004), although the optimization problem in Equatib.2) is not convex.

The first and second-order derivativesJaf{s) to model parameters consist of
those from the performance index and the penaltgtion. The derivatives due to the
penalty function is described as below aided byphmmeterization of' in Equation
(3.19)
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a¢a$ )_ —Tr((Pi )’ Bj)
i=LL ,M; j=1L nc(nc+3)/z

Zz(;pb) -Tr((7) e,(P) ")
i=1L ,M; jb=1 nc(nc+3/ 2

(5.5)

(5.6)

whereTr is the trace of a matrix. Clearly/P' )is independent of centroid, and local

model parameters.

The first-order derivatives afto model parameters are described by

=2 (Y)-JOW ()x(1), i=1L M

o0’ =)

The gradient vector is then described by

. i a‘]au od au od au
g=| M|, with ¢ = = = =9
y o0 oP 00

0J - 0J
Sa\] i aug _ 0J _Tr((Pl)lBj)_ aug_Sa\]

i P f - S f y e ——
oo’ 00 op; op; 00' 00'
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The Hessian matrix is then defined by

%) 9%, 0% |

aug aug aug
00> 000P 000
0%J 0%J 02]
H= aug aug aug (511)
oPoo  oP* o0

0%J 0%J 0%J

aug aug aug

| 0800 08OP 0°0

The element-wise calculation of the second-ordetvatves of J to model
parameters are described by

%:_zg%?(v ()~ 9O (t)(c(t)-0 )" B, ((t)- 9)

~25 Wy )~ g()w (1)(c(t)-)' B (c(t)- o) .12

= 0Py

+23(v(1)-9()(5 (- 9(0)

0’3 04
opod  odopd

=330 (5 (1) 5(0)w (1) (c(t)- 0)

& ot
+4g:(y(t)—9(t))a§é§)W(t)Pi(c(t)—d) (5.13)
43 (v(0-5(0)(7 (0-30) 2L ot0)-)
-46(1-a) Y(y(1)-9(0)(5 (0= 5(0) W (08, (e(1)~0
21 84
opeo8'  opoe’
. ) | (5.14)
- tzlaﬁyT.(?w (t)x(t)_2t=1(y(t)_9(t))agp§t)x(t)
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t=1 00
+4i(y(t)—§/(t))wi(t)P'(c(t)_q)£ aét)j
- i (5.15)
S-S5 Q=500 (o0-a) )
+45('—a)g,(>’(t)—9(t))(9‘ (t)-9(1))w (t)P
e XTONT C AR PORTORT ] 5.16)
a(i?ea :ZIZN;‘W (Ox(E)X(1) w(t) (5.17)
with
ow(t) __aTA(t) w(t) ow (t)  aTA(t) wi(t) 519
P, op, iTN (1) 00® Lok Z’:TAi (t)
() _ A (1) () -5(1) O _TAOIOIO g
Py P, ZTAI( d0° o0 Z*: A (1)
OTA™ (1) a T
pee =-TA*(t)(c(t)-0*) B,(c(t)- ) (5.20)
aTg;(t)=2TAa(t)Pa(c(t)—oa) (5.21)

With the above computed gradient vector and Hegsiainix. Newton’s method
will be applied to optimize the model parameterssbyving a sequential of quadratic

optimization problems. The solving procedure is suamzed in the Algorithm 5.1
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Algorithm 5.1
0. Algorithm configuration: s=10, u=2,e=1e-3

1. Initial guess V()= [0(0), P(0), 6(0)]

Repeat
2. Newton method
Repeat
2.1. Evaluateg and H
2.2. Compute the search direction: (Av = H™g)

2.3. Linear search for A and update: v=v+1Av
24 Sopif || AAV ||2< &

3.Increase s s=us;

4. Sop if ms<e

The algorithm involves two loops. The inner loogaidewton’s method to solve
an unconstrained optimization problem with a gigeifhe scalas is increased by in
the outer loop to make the performance indemore important. The algorithm stops
when s is sufficiently large. The scalan in the outer loop stopping criterion is the
number of model parameters. In the convex optinurgBoyd & Vandenberghe, 2004),
it is shown thatm/s quantifies the quality of a suboptimal solutiordatefined as the
upper bound of the difference between the truenggtifunction value and the actual

solution.
5.1.2 Interpretation of Local Optimal Solutions

Based on the Algorithm 5.1, the scatabecomes sufficiently large at the end,
which lets performance index dominate the penatynt It is then possible to derive
solutions at equilibrium conditions by consideriogly performance index. By letting
Equation (5.7) equal to zero, we then have

—2i(y(t)—y(t))w' (t)x(t)=0, i=1 M (5.22)

A possibility is to letw/(t) be zero for alt. The trivial solution could be reached if
o' is set to be sufficiently far from ai{t), which as shown in Equations (3.7) and (3.23)
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will make TA(t) and w(t) very small. Otherwise, the equilibrium conditievill be
satisfied in a complex way. Witki(t) replaced by Equation (3.22), the equilibrium

condition becomes

_zi(y(t)_iwi (t)§ (t)]vvi (t)x(t)=0 (5.23)

(5.24)

the assumption makes the cross product of weighdgferent rules negligible and let

M

W (1) 2w (6) 9" (t)~w (1) ' (t)

=

Roughly speaking, the assumption is satisfied lesun a GTSK model are
relatively independent with/(t) ~0 or w(t) ~1. With the assumption, the equilibrium

condition is simplified to

23 (y()- (O (1)x(t)~ O (5.25)

The approximated equilibrium condition could beeiptreted as a result of solving
the following weighted least square

3 =3 (y(t) -9 (1) w(t) (5.26)

The equilibrium condition for centroids is achidvby letting Equation (5.8)
equal to zero
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43 (y(0)=9(0)(¥ (1)=9() ()P (c(t) ) =0 .27

Clearly, the trivial solution with all zeno/(t) due to a distart’ is able to satisfy
the equilibrium condition. The trivial solution wever undesired. Another possibility
is to let the product ofg{(t) - »(t)W(t) equal to zeroeverywhere, which will be
approximately satisfied if the assumption in Equatf5.24) is made again. The product
is about zero ifv'(t) ~ 0. Otherwise, the expression 6{) - #(t)) is about zero ifv'(t) ~
1. Therefore, if rules in a GTSK model are reldyivendependent to each other, the
equilibrium condition for the centroid is approxitaly satisfied.

Similarly, the equilibrium condition on the shapeatrix parameters could also be
approximately satisfied if rules are assumed ned@tiindependent.

5.1.3 Random Parameter Initialization

An important factor affecting a nonlinear optimipat is the initial guesses of
decision variable values. Often times, initial ggessare randomly set. However, for the
proposed GTSK model, random initialization mighsui¢ in trivial or even infeasible
solutions. Algorithm 5.1 requires feasible initgalesses. Since there are only constraints
on P, users might initialize® as identity matrix and randomize and ' to avoid

infeasible initializations.

Care needs also to be taken to initialize the o&hto' especially for higher
dimensional antecedents in order to prevent triwdé) (all W(t) are close to zero). As
discussed in Section 5.1.2, trivial/(t) will immediately satisfy the equilibrium
conditions for both antecedent and consequent peasn An illustration is shown in
Figure 5.1 with a collection of antecedent sampkeg/(t-3) u(t-9)]. y(t-3) is between 50
and 160 whileu(t-9) is between 20 and 100. Define an area by [§@8<160, 50«(t-
9)<100] as shown as the dashed box in Figure SigwAere in that box is claimed to be
distant from all observed samples. The box covbmita34% of the entire antecedent
space. Therefore, there is about 34% likelihoodjg¢oerate a trivial random centroid.
Even if nontrivial centroids are initialized, thptonization is still subject to local optimal
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solutions. Many random trials are needed to inerd¢las probability of obtaining a global
solution. In (lyer & Rhinehart, 1999), statistiGalalysis is provided to estimate number

of random trials given the probability of convergenregion for a global optimal
solution.

160

140

120

y(t-3)

100 ‘ap* o 0000 -

80

60

|
60 70 80 90
u(t-9)

Figure 5.1. Antecedent space defined by antecedeiatblesu(t-9) andy(t-3)

Alternatively, centroids might be randomly draworfr observed samples. This
approach guarantees that every centroid is at $egsficantly expressed once. However,
care has to be taken to make sure that drawn rameotnoids spread wide enough in
order to cover the entire antecedent space eftdgtiOtherwise, it is possible that all
drawn centroids are too concentrated. It could bapphen distribution of data samples
are significantly uneven over antecedent spacEigare 5.1, there are 5000 points, 90%
of them are distributed in the right-bottom corrine rest of points are scattered in the
both tails, assuming 200 and 300 points at botls taspectively. The likelihood of
drawing one from the right-bottom corner is 90%thk desired centroid distribution is to
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have at least one centroid in each portion of datgure 5.1 (the top tail, the bottom-
right corner, the bottom tail), the likelihoodLidf N random centroids are drawn.

LN

L=1-0.9"- 0.04 - 0.08 - 09" 0.0

N=:
k=1

N-1 N-1 5.28
->.0.9"°0.06 - 0.04* 0.06 5-28)
k=1 k=1

Figure 5.2 shows the evaluation of thén Equation (5.28) with respect M It
indicates that least 45 random centroids need t@mdeerated to assure the above
mentioned initialization requirements with 0.99elikood. N will be increased if more
centroids are required for the sparser areas, wbiditen necessary for data-rich-but-
information-poor chemical processes, where a largeunt of data is recorded at steady
state operation. For describing a chemical proeessnd a steady state condition, one
linear model will be sufficient. Nonlinearity is sérved during transition between
operating conditions, which however only generaliend amount of data although more
rules are needed to describe nonlinear behaviopraatice, it is hard to tell iN is

sufficiently large, one might have to try to firttetright value.

0.9
0.8
0.7}
_ 06!
0.5
0.4
0.3}

0.2

20 40 60 80

Figure 5.2. Evaluation of function in Equation §).2
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5.2 Parameter Estimation for MIMO GTSK Models

Readers might choose to skip this section now atetasted readers could come
back to revisit this section when dealing with mede

The following constrained quadratic performanceeinds used for a MIMO
GTSK model

minimize J :tle:( )-y(t ) ) Q(y(t)-y(t))

o,P 9' L|<M
subject to (5.29)
P'>0

where, the weighting matrix Q is a positive deénitiagonal matrix used to reflect the
relative importance of each output or to make tlkemparable by adjusting scales

0
M (5.30)

G
Q=M
0 a,

r QO r

Q(i,)) is set to zeroifj). Otherwisey; andy; are coupled. Sinc® is only a diagonal

matrix, the performance index J can be decomposéelaw

J= Z J, (5.31)

k=1

N

with 3, =, (vi (1) = 94 (1))

t=1
The derivatives of with respect to model parameters are then defiyed

A 30, A Z 0 8J,
60 & oo T ae T&5,0

(5.32)

where the derivative t@® could be further simplified due to its local infhe onJ, only
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ﬂ _% (5.33)

0 0,0

The second order derivatives are defined by

3 _iaka, 0’ & 0%, . 0’ 9%,

00° = 00° 0P S owdP 0.0 000,0
@:iaka_ 0?3 _ 3, (5.34)
oP* & oP?’ oPo,0 0PO .0

0’ 93,

o°,0 0°.0

It shows that the evaluation of the first and seélcderivatives for a single-output
GTSK model is only needed. Simple arithmetic openstand matrix stacking would be
able to recover the derivates and Hessian matria fddIMO GTSK model.

The Hessian matrix is then expected to have a dalgsub-matrix in its right-

bottom corner.

I - I L 02 |
00> 0P 0,0 000, 0
0%J 0%J 0%J 0%
oPoo  OPF 0P8 oPo 0
H=| 62J d%) 0%] (5.35)
0,000 0,00P 0°0
M M M O M
0%J 82 02
| 9,000 0,00P 0°.0

5.3  Overview of the Proposed Parameter Initialization

A constrained nonlinear optimization problem isalig®ed above to estimate model
parameters. The performance of the optimizatiorsubject to the quality of initial
guesses of decision variable values. One might reetty many different random
initializations and find an acceptable result. A¢ same time, randomization has to be
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carefully conducted to avoid poor centroid locasi@amd distributions. In addition to the
initialization problem, it is assumed in the ab@@boration that the number of rul@és,

is known. However, this number is unknown and sthdad related to the complexity of
the functional behavior. In practice, determinatiohM often requires trials for an

appropriate choice with balanced model accuracycantplexity.

The above optimization procedure takes a ‘globgpraach to estimate parameter
values for a GTSK model and adjust all parametensilsaneously. This approach has
the advantage to fully consider interactions amalhgarameters while suffers the above
mentioned initialization difficulties. On the othleand, a GTSK model could be viewed a
collection of rules. As shown in Figure 3.6, a GT8del consists of 4 rules, where
each rule is designated to an ellipsoidal areaalfernative approach to identify a GTSK
model is then to identify its rules individually. rule is identified if its antecedent and
consequent parameters are estimated. As showrgimeg=8.6, antecedent identification
will be to recognize an ellipsoid in terms of a tteid and a shape matrix. Consequent
model identification is reduced to an estimation aflocal linear model in the
corresponding antecedent area. A rule is identifigds known where the rule is needed
in terms of a region in antecedent space. The adést space in this work is simply
defined as a minimum hypercube that contains dtcmaent samples. The problem is
then to define regions in antecedent space to plaes. In this work, rule regions are
generated out of an antecedent space by parthionllustrating example for the Figure
3.6 is shown below, where four regions are defingdhree linear splitting boundaries

(dashed lines).

I
I
I
I
I -
I
I
I

-
-1
-
1~

1
I
I
I
I
1

Figure 5.3. An antecedent space partitioned byethinear boundaries
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In this work, boundaries are iteratively placedmantecedent space as below.

|
I I
® ©
I . I .
.- ) . ! -
-
20 | oD | oD
1 ~T
- I
I
I

-
- 1
-

1.---“
-
-
L. =~ L. =

Figure 5.4. An iterative procedure to partitionaamecedent space

The antecedent space partition procedure could bksorepresented by a

regression tree (Breiman, Friedman, Olshen & St@884) as shown in Figure 5.5(a),
where { is the where the tree starts and is termed astanomle. Every tree has only one
root that represents the original undivided antenedpace. Underneathis the first split
boundary, a linear inequalitgic>s,, which divides the spaceinto two disjointed parts.
To the left of { is a branch node;, twhich includes all the data fulfilling the inedjiya
The rest of data from, is contained in another branch noge Underneath,t another
split boundary is presented that further dividesnto other two disjointed parts. Two
nodes, £ and § are then generated. No further splits are conduatet, and ¢ that then
make them terminal nodes. To the right pfa similar splitting process is conducted,

which results two branch nodesand ¢ as well as three terminal nodestg and &.
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(al):igure 5.5. Antecedent space partition by a E%estree
The rectangle in Figure 5.5(b) outlines the ranipeaniablesc; andc, which are
the two regressors identified as providing nonlinéanctionality. These are the
antecedent variables. Initially, the rectangle miegia space;.tThe first split is indicated
by the line labeled,, which split regiontinto two regions which were labelegdand .
However, regionst was split by lind,, creating regions,tand ¢. Similarly, region 4,
was split by linds, creating regionstand . Then region4 was split by lind,, creating

regions § and &.

Note that in this approach, it is no longer necgssa assume the number of
rules,M. It is, however, determined along with the spaaeifponing procedure.

The concept of recursive space partition is alemse (Nelles, 2001; Nelles &
Isermann, 1996), where only boundaries along wiesare allowed and must pass the
centroid of the space to be partitioned. In (Hatm& Nelles, 2009; Nelles, 2006), a
more general partition is defined in a sigmoid tioit to construct hierarchical models,
which requires careful initializations of the smuwéss of the sigmoid function, and
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splitting position and direction to avoid triviablations. The partition defined in a
sigmoid function could be considered as a ‘softtipan to be seen below. In this work,
a ‘sharp’ partition is instead defined, analyzed aolved. In the meantime, the ‘soft’
partition is also investigated. The impact of thitial smoothness of a sigmoid function
on a ‘soft’ partition is demonstrated to be compex illustrated in Figure 5.29.

5.4 A Splitting and Regression Problem
5.4.1 Description of the Splitting and Regressioobiem

The fundamental step to obtain an antecedent g@atéon is to solve a splitting
and regression problem (SRP). An example SRP sroalimensional antecedent space
is illustrated in Figure 5.6. The objective is tanimize the modeling error of the
partitioned data by the two linear models by plgcanlinear separation boundary (the
bold dashed line) in the antecedent space, whistltsein two region®\ andB. Each
region has a local linear model. The two linear eil@dhown use all relevant regressors,
not just the two (c and ¢) chosen to express nonlinear behavior. The separat
boundary is chosen here to be linear, and is aiamof ¢ and @.

Y(t)=ay(t) +ax(t)+L +a,%,(t)

4/ $+SC(t)+5c,(t)=0

¢ /

3 ‘

Y (t) =k +hx(t) +L +hx, (1)

Figure 5.6. Parameters to be estimated in solviBgR
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The belongingness of data sample to redida determined bi(t) ande(t) as below

I(t)=5+SC(t)+L +5:Cu (1) (5.36)
ga(t):{(l)’ :Egj ° (5.37)

where s,...,5 defines a separation boundary in Figure 5.6. Thkiev of I(t) is
Js+L +s2 times of distance of a pointcift),....cnt)] to the linear separation

boundary. However, Equation (5.37) implies thatydhle sign ofi(t) matters. In Figure
5.6, the points in category A have negative vafoes$(t) while B category has positive
[(t). In Figure 5.6, two local linear models are

y (1) =a,+ax,(t)+L +a,%,(t)

(5.38)
Yo (t)=hy +bx (t)+L +b,x, (1)

Combing Equation (5.37) with the Equation (5.38g butput prediction is then
computed by

Y(t)=(1-p(1) y* (t)+o(t)y*(t) (5.39)

The SRP is then solved by minimizing the followpgyformance inded

minJ :ZN:gz(t) (5.40)

s,a,b

whereg(t) = y(t) - §(t) is the residual, and parameter values to be astonncludea and
b in Equation (5.38), anslin Equation (5.36),

5.4.2 SRP is Not a Clustering Problem

The problem described above includes a linear agparboundary and also a
learning perspective. The SRP problem needs tonmiei a performance index, which
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makes it a supervised learning problem. If we dabus on the linear separation part, it
seems to be a clustering problem to separate eg@ated data, which is a typical
unsupervised learning problem and can be solvelifferent ways (Hastie, Tibshirani &
Friedman, 2001). The following illustration is usedindicate the difference between a
separation boundary due to an unsupervised leaamidghe boundary for the SRP. The
function used for the illustration is defined inU&dgon (5.41) and Figure 5.7 shows a

collection of random samples

y_{y1=x1+5x2, X, > X, (5.41)
Y =5X +X,, X <X,

Figure 5.7. Data samples for Equation (5.41)

The antecedent space is shown in Figure 5.8.
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Figure 5.8. Data samples in antecedent space foateq (5.41)

Figure 5.9 shows the result of an unsupervisexhileg which separates data to
two clusters based on their geometric distributi®his type of data segregation is
however inconsistent with the underlying nonlingam the function. The desired data
segregation due to the function definition is shawkigure 5.10. Therefore, the problem
to be solved is not purely an unsupervised learpnodplem. The boundary is not placed
based on geometric distribution of data but onftinetion nonlinearity embedded in data.

Figure 5.9. A linear boundary based on data distio
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Figure 5.10. A linear boundary according to functimnlinearity

There are a number of methods proposed to in@alizdentify a fuzzy model by
unsupervised learning in either an input spacenomaut-output space (Dickerson &
Kosko, 1996). Unsupervised learning is howeverecelon data distribution but not

function nonlinearity. The above illustration showisy we should not do that.
5.4.3 Analysis of the Splitting and Regression Rnob

The minimization problem in Equation (5.40) is noablr since the model
parameters or b are nonlinearly coupled with separation boundasameterss. The
objective function in Equation (5.40) is discontug due to the discontinuity in the
separation boundary in Equation (5.37). In orderdé&sive more compact analytical
expressions for first and second-order derivatigesanalysis, Equation (5.37) is replaced

by a sigmoid function

o(t)=— "5 (5.42)

1+e ©

where,z is introduced to adjust the ‘sharpness’ of theaszion boundary. The impact of

7 on Equation (5.42) is illustrated in Figure 5.11.
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Figure 5.11. lllustration of Equation (5.42) wittifdrentt

In this work, the original separation boundary ougtion (5.37) is called a “sharp”
boundary. The modified one for analysis is a “sdfundary. The sharp boundary is
recovered from the soft onewdpproaches to zero.

With the soft separation boundary defined, it is then possibledmpute the
gradients defined by

2 @ ] e

where, g is a concatenation of three gradient vectors. Agntirem, for instance, the
gradient of] to a is defined by

.
) { o L o } (5.44)
oa | 0a, oa,,

The derivative o8 to ay is derived as below
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__gg(t)%:)
~$e0a-(0) 2L
=302 M) (1)

The first order derivative af to s is computed as below

R YOI UL R MIGRLL

= 5SK

with the following equality derived from Equation (5.42)

20 g 1)2-oi0) =

the derivative t@ is concluded by

2 -3 o0 (a-0(0) = uy

where wf) = yA(t)-y°(t) is the prediction difference between two local models.

The second-order derivative is collected in the followingsidesmatrix,
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(5.48)

(5.49)



GE 023 823 ]
daddl oadb oad
0°J 02J 523
H= 5.50

oboa" obob’  obos (5.50)
0°J 02 023
| 0s0d o090 095

where for instance, H(1,2) isa+1 bynx+1 matrix as defined by

D I
0a,0h, daoh,,

=l M O M (5.51)

3 g 09

| 0a,, b, oa,,, |

0%J
daoh’

the definitions for other block matrices are similar. The expdeitivations of each
matrix element are given as below

aj\;q ) IZN;(l‘(/’(t))ZXk (9% (1) (5.52)
> o)1) (0% (1) (5.53)
6akah t=1

= .
+§;(P2(t)(1—¢7(t))qrt)xk(t)w(t) (5.54)
Se0oa-o0)*n 0
af;:ajq ziq’z(t)xk(t)& (t) (5.55)
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ob,0s Nt—l T (5.56)
Semo(ta-0(0) e (0

2 =S r-o) S e
+i€(t)¢(t)(1—¢(t))zww(t) (5.57)

Once the gradients and Hessian matrix are obtained, itngtwsible to analyze
local solutions. The “soft” boundary is an approximation & ‘teharp” boundary. As
mentioned above, the “sharp” boundary is recovered tharisoft” one as approaches
to zero. It is then possible to obtain the gradients and Hess#nix for the “sharp”
boundary by computing the limits of Equations (5.43) &8Q) for the “soft” one.

g,=limg
0 (5.58)
H, = |IIT2)H

where, the following limit appearing in Equations (5.49, p%34, 5.56 and 5.57) needs
to be evaluated

t)(1-o(t (7
im 200 ) -
0 T =0 (1+ e—l(t)r’ ) -
—I(t)z"1
=lim (Iet u= fl)
0T (5.59)
_lim Y jim (W)
o (D) b '
u-o @l U—> eu|(t))
. 1
=lim =0
oo | (t)e”'(‘)
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Using above evaluation, the gradients are then reevaloated

Where Na = {ta

A while Nb collects data in group B. Second-order derivatives aleatea by

0J Na s a

oo, L) o0
0J S b b

o~ &1 ) oo
0J

_aSK =0 (5.62)

o(t*) :O} and Nb={tb‘(p(tb)=l} . Na collects data belonging to group

03 S ()% (1) (5.63)
5ak5a1_i:1Xk i X1 i '

2

oJ _ (5.64)
0a, ob

2

oJ _ (5.65)
08,08

3 S ()% () (5.66)
YRR |

2

oJ _ (5.67)
ob,0s

2

°J o (5.68)
05,05

Equilibrium solutions are defined if Equations (5.60) an@é1b.are zero. The

equilibrium condition ors, is automatically satisfied in Equation (5.62). One possible
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solution is to have abi(t) = 0 (or ¢(t) = 1) for allt, then the equilibrium condition is

N

2. 2(t)x(1)=0

t=1
which is resulted from a least square estimation of modeiyetess for one linear model.
The ¢(t)=0 for all t implies that all data belong to group A and no data is inl& T
corresponding Hessian matrix is then described by

XX 0
H:[ , 0} (5.69)

where, X is defined in Equation (5.1)X'X is positive semi-definite iX has linear
independent columns, which is a reasonable assumpti@nliimear regression problem.
H is hence positive semi-definite and the solution wift) = 0 is stable. The same
conclusion is also available fe(t) =1. These two situations define trivial solutions for
the SRP problem since no separation is obtained.

On the contrary, a non-trivial separation will have both zrd non-zerap(t).
The equilibrium condition is described by

where, two equations are independent to each other, éadhiah is satisfied if model
parameters are estimated by a least square estimation. rfégpomding Hessian matrix
then becomes

H=| 0 XX, O (5.70)
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whereXa denote the portion of being assigned to model A and is described by

1ox(tf) L ox(t)
X,=[M M O M (5.71)

1 ox(th) L % (t)

Then the Hessian matrix in Equation (5.70) is also positinei-definite and

indicates a stable solution.

Based on the above analysis, it can be concluded thatRReh&s many local
minima. A local minimum could be trivial if the separation happewtside the
antecedent space. If the separation is placed inside, twarlodals are then obtained. It
then provides a two-step procedure to reach an equilibsiotion starting from an
arbitrary separation boundary followed by least square dgstiman one or two models
depending on the location of the boundary. In a seardpage with many stable local
minima, a gradient based optimization method, which optimizésdaparation and local
model parameters simultaneously, can easily get trappethedother hand, obtaining a
local optimal solution is however often good enough to beategdean practice. In the
following, we will follow a heuristic procedure to obtain a paridc local optimal
solution, which, as will be demonstrated in section 5.5.5stéa be a global solution

compared with solutions obtained from other methods.
5.5  Solving of the Splitting and Regression Problem
5.5.1 Initialization of Data Segregation

As analyzed in 5.4, the SRP problem has many local opsoiations. A local
solution is obtained when a random boundary is given. A ltsalaition is obtained if the

boundary is outside the antecedent space.

The SRP is solved in this work by a heuristic suboptimalcgmbr. The heuristic
approach is based on the assumption that the entire dataugkte described by two

local linear models. The entire data set is denoteg ByX] in Equation (5.1).
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A separation is specified by defined in Equation (5.36). We then have the
following expression for a separation. Given a separationatebys, it results in a split
of data j C X] into A andB groups asyjx Ca Xa] and g Cg Xg] with definitions for
group A as shown below. The definition 8k is described in Equation (5.71), ayxl
andC, are defined by

y(t) o(tf) L coltd)
ya=| M |C,=| M O M (5.72)
y(tha) a(th) L cel(tha)

The model with two underlying linear models are defined by

Yo =X a+6€,
Y = Xgh +e;
with
=@ Loy (NDT (5.73)

Y (@) Ly (Ng)]

e, :N(0,621); e, :N(0,621)

The corresponding model parameteendb are estimated.

&= ) XY, (5.74)
b:(XBxB) XByB

the residual for modée\ could then be evaluated by
gA:yA—XAé (575)

substituting Equations (5.74) and (5.75) éoandy, the residual terms is then described
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£, = an+eA—( xA(xLxA)‘lx;)(x a+e,)

:(I —xA(xI\xA)'lx;)aA 70

The residual is then used to compute a quadratic perfeemeniterion,Ja for

model A by
I, =E[e)e,] (5.77)
where,¢' ¢ is equal to the trace of a matex.
3, =E[Tr(e))] (5.78)
with definition ofea in Equation (5.76)
J, = E[Tr((l XA (XX ) X 1\} ,g;(l X AKX L) X L))}

- E{Tr [(| XXX L) X L)ze ,@lﬂ

(5.79)

where the cyclic operation in Trace is used to obtain theeabquality. In addition, it

can be verified that

thenJa is expressed in terms X¥j andoa by.
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(5.80)

where, the Trace term is evaluated as below

Tr(l X, (XX, ) X ,I)
“Tr(1)-Tr (xA (XX, ) X )
- Na—Tr((x;xA)’lxI\xA)

=Na-Tr(l,.,)
=Na-nx-1

then

J, =(Na—-nx-1)os (5.81)

~ Naoc?
where, it is assumed that that Na >> nx.

In the same manner, the performance criterion for m&dét described by

JB=Tr(|_xB(xng)’le)g; and approximated byJ, ~Nbs? . Then the quadratic

B

performance is expressed as a weighted sun ahdog by

J=J,+J,

5.82
~N,o? + Nyop (5:82)

where, ifp(t) in Equation (5.37) is knowmNa andNg can be calculated by
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N, :ZN:(/)(t), Ny =N —ZN:(/)(t) (5.83)

t=1 t=1

additionally, the unknows-2 and 2 are to be replaced by their estimates by

2ot (5.84)
2l -em)(y() s )
B > (1-0(t))

where ua and ug are unknown means ofayand yg in groupsA and B. Substituting
Equations (5.83) and (5.84) to Equation (5.82), the meation problem to be solved is
described by

minmizeJ = tZi:goz (t)(y(t)— 4 )2 +( 1—¢(t))2(y(t)—ﬂs)2

Hp g (1)
subject to (5.85)
p(t)=0,1; t=1L N

where, there ardl+2 decision variables\ belongingness valueg(t), ua andug. Since
the ¢(t) are not coupled, it can be solved individually by solvinginaple optimization
problem for the objective t)(if andua andug are assumed to be known

IO=0* (YD)~ a) + (2= (1) (1)~ ) (5.86)
Where
-y 0)-m) -2 (0) (1))
02J (t) 2 2




By equating the first-order derivative to zept) is then solved by

" 0 (0] o

Where the second-order derivative is always positive assutihaig, andug are not
equal toy(t) at the same time. It then verifies that the solutiop(fjfin Equation (5.87) is
a global optimal solution for th#t) in Equation (5.86) minimizeXt).

Combining Equations (5.85) and (5.87) defines the minimizagooblem in
terms ofua andug only by.

N
minmizeJ =" (5.88)

Up Mg =1 (y(t)_luA )2+(Y(t)_:uB )2

the objective function in Equation (5.88) has only two decisianablesu, and usg,
which is to be found using a Newton’s method. The firseodgrivatives of J taa and

g are computed by

(5.89)

And the second-order derivatives are described by
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—6(y(1)- 1) (y(t)-1,)° (5.90)

Using the gradient and Hessian matrix, a version of Newtorgéthod modified
for non-convex quadratic problem in (Han, Pardalos & ¥392) is used to minimizé
,and findua andug since it is possible that resultant Hessian matrix might be intgefin

(containing both positive and negative eigenvalues).

OnceJ is minimized,p(t) is determined by Equation (5.87) and automatically lies
between 0 and 1. The resulta(t) takes any value within 0 and 1 instead of 0 and 1 only
as defined in Equation (5.37). The following Equation (5@l convert theg(t) to a

two-value indicator (0,1)

(5.91)

which assigns each data sample to either gfoopB.
5.5.2 Solving for a Linear Boundary

Note the solving procedure mentioned above does not lisea separation
boundaryg(t) is obtained by minimizing in Equation (5.88) but not confined to a linear
separation boundary defined in Equation (5.36). Now tleblem to be solved comes
down to find a linear boundary segregating data with knocategories, 0 and 1 due to
Equation (5.91). There are many ways to place a liregaration boundary in data with
known classifications. Perceptron neural network, logisticressgon and linear
discriminate are all possible methods to find a linear separabondary. However,
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these methods are only effective if the classification prolddmear separable.

Multi-layer perceptrons (Hagan, Demuth & Beale, 2002) be used for linear
inseparable classifications assuming the number of lineardbaes is known. Linear
regression can be used to fit a linear separation moded faro-value function. The
resultant separation boundary is often not robust. A mdmestapproach way to find a
linear separation boundary is by solving a support vectarhima (SVM) (Hastie,
Tibshirani & Friedman, 2001). The following version of S\Wused in this work to find
the linear separation parametsisased on obtainesalt)

nc N, Ny
minimize Y s? +r LZ;"‘ + fo’]
k=0 j=1

i=1

subject to
S+8C (1) +L +5.C, () 21-£%, i=1L N, (5.92)
S+8C (1) +L +8,.C, (1)) <& -1 j=1 N,
§é7=20

where ‘slack’ variable§ are introduced to take care of misclassification if the lprobs
non-separable. A misclassification is indicated?by 1. The scalar is used to penalize
the total amount of misclassification.

In implementing the above procedure to find a separationdaoy in practice,
one practical problem is encountered when a trivial solutiomt&ireed via solving the
SVM. The trivial solution is defined by letting all separation paeters be zero. One
possible situation to have a trivial solution is when the probleeqislly mixed. A
different approach is then taken to find a separation boyrifla zero boundary is
obtained out of the SVM.

The following several examples show progressively hotwivéal solution is
obtained. Figure 5.12(a) shows a linearly separable @earthe obtained separation
boundary due to SVM is shown in Figure 5.12(b). In féet, obtained boundary is same
as that due to a linear discriminate method.
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(a) (b)
Figure 5.12. A linear boundary generated for liner sépaudata

A little mixed example (linear non-separable) is shown inreigul3, where 5
solid dots are mixed with circles. The solid separation boyrigdalue to a SVM solution
and the dashed line is due to a linear discriminate methodmietlwods can be compared
based on the number of misclassifications. The SVM metaddrmmances better with 10

misclassification than the linear discriminate with 16 misclassifications

0.5

00000000,

0%

c2
o

-0.5 ‘ ‘ ‘
-1 -0.5 0 0.5 1

Figure 5.13. A linear non-separable case;
(solid line by SVM, dashed line by liner discriminate)

A more mixed or non-separable case is shown in Figl#e Where a set of dots
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are followed by a set of equal number circles. The pattemrepeats.

0.5;

0000000,
500°! 0o

o 00°
000000000
1

-0.5 ‘ ‘ |
-1 -0.5 0 0.5 1

Figure 5.14. A liner non-separable example with equallyethpoints

The resultant values of separation parameters are all bgresther SVM or
linear discriminate method. The dots and circles are equatigdnAny linear boundary
through the center of region will end up with same numbeclassification. In the
objective function of Equation (5.92), the penalty term fag titon-separability is a
constant. Therefore, the only quantity can be minimizethés norm of separation

parameter vector. Its minimum is zero with all separatiompatiers being zero.

On the other hand, it is clear from Figure 5.14 that twegmaies of data exist,
dots and circles. Separation has to be defined. In this siyatitechnique based on a
special type of neural network, liner vector quantization (LBagan, Demuth &
Beale, 2002) is used to find a suitable linear boundaryQ li%/a clustering technique
used to recognize clusters in the categorized data. A sepaf@mundary could be
defined by connecting centers of two clusters for diffecategories. Figure 5.15 shows
the result of the implementation of LVQ for the problem in Fegb.14. As shown, there
are 10 clusters (triangles) recognized for dots and 1@ectustars) for circles. There are
hence totally 100 possible linear separation boundariesb@&steone is reported as the

found separation boundary.
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Figure 5.15. Clusters found by LVQ for data in Figuri45s.
5.5.3 Boundary Refinement

The solveds is then applied to Equations (5.36) and (5.37) to upgl@tewhich is
now confined a linear separation boundary. The resuf@ntefines a split,\ja Ca Xa]
and s Cg Xg]. Thena andb are estimated by Equation (5.74). It then is able to evaluate
residualsea andeg explicitly by Equation (5.75). The belongingness values(tf are
then updated by minimizing the followidlgwith replacement ofy(t)-ua) and §(t)-ug) in
Equation (5.88) bya(t) andeg(t)

3= 0* ()2 (1) +(1- 0 (1)) £2(1) (5.93)

t=1

where,p(t) is solved by

p(t)= - (tg)éftg)sz 0 (5.94)

The newg(t) is then converted to 0 and 1 by Equation (5.91) andS¥M is solved
again. Subsequentlg,andb are re-estimated. The flowchart in Figure 5.16 illustrates the
procedure to solve the SRP.
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Solveu, andug (5.88)
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Solvegp(t) (5.87) and Convert (5.91)

|

Solve a SVM fors (5.92) or Try LVQ

|

Computep(t) (5.36), (5.37)

l

Estimatea andb (5.74)

l

Solvegp(t) (5.94) and Convert (5.91)

Yes

A 4

Figure 5.16. Flowchart for solving a SRP
5.5.4 Testing and Demonstration

The following examples are used to demonstrate how to ingpiethe proposed
technique to solve a SRP in practice. The first examplepie@ewise linear function

defined as below and illustrated in Figure 5.17(a)

- 47. < x< 2.t
E{y 9%+ 47.5 0< x (5.95)

y? = -10x 2.5<x< 4

where, the separation is at x=2.5. Solving the problem o&tan (5.88), the solvedx
andug are -32.4915 and 36.5139 and ¢héue to Equation (5.87) separate the function is
shown in Figure 5.17(a), where dots and circles représerdifferent groups.
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Figure 5.17. a) Initialization of data segregation for EQua&a®b);
b) A linear separation boundary found for the initial datpesgation
The initial separation is consistent with the piece-wise functioe. rElsultant
separation boundary is shown as the vertical line in Figuré(b).This problem has a
very particular piece-wise function, which has very distindties in each region. The
problem is actually solved at the first iteration. The initial dareggation is consistent

with the underlying function nonlinearity.

The second example is defined by

y'=-9x+47.5 0< X< 2.t
y= (5.96)

| y?=-5x 2.5<x< 4

where, the difference to the first example is in the setioedr function. The separation
is also at x=2.5. The found optimal andug of y, are 17.4742, 38.5195. The resultant
segregation of data is shown in Figure 5.18(a), wheresélgeegation is not totally
consistent with the desired separation according to the fundedinition. 5 circles
before x=2.5 should be dots. The misclassification illustratesriismatch between an
unsupervised learning and the desired classification. Theskmaration boundary by
solving a SVM is shown as the dot-dashed vertical line (tfimmdst one) in Figure

5.18(b), which separates circles from dots. Then two limeatels are obtained. One of
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linear models actually (dots) matches the true model exdntlg slots are all resulted
from one linear function. Residuals are computed after tweatimodels are obtained
and the separation boundary is then updated, which is saswime dashed vertical line
(the rightmost one) in Figure 5.18(b). Clearly, it is cldsethe desired solution at x=2.5
than the initial boundary. The dashed line resulted in a befparation and two better
local models. Using the improved local models, residualsupdated, which in turn

results in another step of improvement of separation bowundae third separation is
shown as the solid vertical line (middle one) in Figure ®BJ18(he solution is at x = -

2.4757. In this simulation, further iteration results in no inapment. Actually, there are
infinite number of global solutions between two margin points)dhkt point from the left

line equation and first point from the right one. The resulter@ is due to the SVM

solution, which is expected to be robust with equal distaetveden two margin points.
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(a) (b)

Figure 5.18. a) Initialization of data segregation for Equg&od6)
b) Initial linear boundary and its variation over iteration

The third example is more confusing at the initial step tharfitbietwo and
defined by

1_ < C
yE{y 9x+ 47.5 O<x< 2.8 (5.97)

y? = —5x 2.5<x< 4

112



The initial separation is shown in Figure 5.19(a) with two gacxed centerga =
35.1792 andis = 34.7254, which separates high vajueom low values. However, the
initial separation does not match the underlying nonlinearity enptbcewise function.
The initial boundary solved is the dot-dashed line (the leftrome) shown in Figure
5.19(b). Another iteration brings the separation boundattyetoight of x=2.5 (the dashed
line in Figure 5.19(b). The final separation boundary isvshas the solid vertical line at
x=-2.4757 in Figure 5.19(b).
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Figure 5.19. a) Initialization of data segregation for Equg&oi7)
b) Initial linear boundary and its variation over iteration

Note that the nonlinear optimization problem in Equation (5.88kigect to the
initial guesses afa andug (@ common problem for all nonlinear optimization problems).
Figure 5.20 shows an initial separation due to estimat€@) = 35.4836 andiz(0) =
57.9810. It appears that a linear boundary might notdseled since all data points
appear to belong to one category with only two dark de&tobserved in the upper-left
corner in Figure 5.20. Solving a SVM based on the initialgoaieation results in a
trivial separation with -1, s = 0, which means no separation. Clearly, the initial
categorization of data is not consistent with the underlying remnlifunction.
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Figure 5.20. An initial data segregation for Equation (5% a SVM solver

As mentioned above, a LVQ based method will be applied @M fails. For
this case, a linear quantization vector (LVQ) is solved ¢ogeize some clusters in each
category. The result is shown in Figure 5.21, where arster (star) is identified for the
two solid dots and 16 clusters (triangles) are identifiedHercircles. Given the solved
LVQ, the next step is to try all possible separation boundaies boundary at x=0.9160
defined by two clusters of x=0.0312 (star) and x=1.8n(¢yi@) is shown in Figure 5.21.
In this case, 16 separation boundaries are tried (onarstd6 triangles).

1H obooooo[o!oo@oooo@%o;ooooooooo!)ooooo @o%}@ooooooo!)ooooooooo;oo@@ooooo@@oboo@boo%
i

0.5 i |
1
i

s O i i
1
1
1

054 | _
1
1

-1 : i

L | I | L L | |
0 0.5 1 1.5 2 2.5 3 35 4

Figure 5.21. Clusters recognized using LVQ for the initigtesgation in Figure 5.20

The best of 16 trials is shown as the dot-dashed velingal(the leftmost) in
Figure 5.22. The dashed and solid linear boundaries latagned in the next two

iterations. Convergence is obtained at x = -2.4757.
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Figure 5.22. Initial boundary from clusters in Figure a8 its variation in iterations

As shown in Figure 5.23 is a SRP applied to a linear yisedunction with three
pieces. The resultant separation is the solid vertical line (tineost one) in Figure 5.23.
One can imagine that subsequent steps will be to solvER#s for data on both sides of
the first separation. Following the procedure, an antetesigamce is progressively
partitioned.
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Figure 5.23. Liner boundary solved for a three-pieceepvese function

Figure 5.24 shows results for a quadratic function aitgrt @erations. Unlike the
piece-wise linear functions, it is hard to tell how ‘optimal’ thkugon is. Solutions for

115



the two-piece piecewise linear functions can be easilyie@ris global optimal solutions
since obtained separation matches the separations defimegimal functions.

Figure 5.24. Linear boundary solved for a quadratiction

The sum of squared error (SSE) with respect to diffeseparation boundary
locations is shown in Figure 5.25 for the quadratic func#anshown, the optimization
problem appears to have a ‘global’ minimum around 1, kviniatches the converged

solution shown in Figure 5.24.
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Figure 5.25. SSE with respect to the separation locationsdauadratic function
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Figure 5.26 shows a one-period of Sin function, where dbmevergence is
obtained at -2.5741. The solution is also shown in Figuré P the performance
function (SSE) with respect to separation. The performdanction is more complex
than that in Figure 5.25. As shown in Figure 5.27, theltaast separation boundary is at

the right edge of the valley of the performance function.
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Figure 5.26. Initial linear boundary and its variation oveatien
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Figure 5.27. SSE with respect to the separation locatior&ri¢x)
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5.5.5 Comparison to Other Methods

In this section, the above mentioned SRP solving procedw@nipared to two
other methods. One is to use Newton’s method to optimizegparation parameters,
and local model parameteasandb simultaneously using a “soft” boundary. The other
one is the Nelder-Mead method to search for separatiamesers only. The following
comparison is based on the piece wise linear function iatieou(5.97) and the function
defined in Equation (5.98)

a. Newton’s method to solve a SRP

The first and second order derivatives for using a Newtoréthod are described
in Equations (5.43) and (5.50). One tuning factor fer the sharpness of a boundary,
which has to be carefully chosen for a satisfactory reshé parametersy, a andb are
randomly initialized. In order to avoiding out-of-antecedgpdace initial separation
boundaries, the parametgris set such at the initial separation boundary location is at
x=3.2040. The following gradientg)(and Hessian matrix{) are evaluated for a very

smallz = 1e-6 ¢ = O will give indefinite evaluations numerically)

g=[—2110.3 —2963.9 — 558.41- 2032.4 O]T

(65 104 0 0 0 G
104 2236 0 0 0 0
o 0 0 16 58 0 G
0 0 58 211.1 0 (
0 0O 0O 0 00
|0 O 0 0 00

where the gradients and Hessian matrig aoe all zeros, which verifies the derivations in
Equations (5.62, 5.64, 5.65, 5.67 and 5.68). Thezefeparation parameters cannot be

updated. The performance indexes over iterations are

J=[45745 215.05 215.04]

118



which implies that Newton’s method converges after one 3ie@ separation boundary
is still at x=3.2024 and the improvement is achieved ogladjusting the local model
parameters andb. The procedure is same as to conduct two linear regnsssio both
sides of a random linear separation boundary. Althoughhdlwedary is far from the
desired, the solution is still a local optimum.

The followingg andH are evaluated at= 0.1, where evaluations for separation
parameters become significant.

g=[-2105.2 - 2956.8 - 564.29- 20412 3800.6 11f¢

[62.58 96.573 1.9995 6.4058 1860.8 5777
96.573 200.78 6.4058 20.588 6012.7 186
1.9995 6.4058 14.421 52.615- 19873 61
6.4058 20.588 52.615 192.74- 64198 1987
1860.8 6012.7 — 1987.3— 6419.8- 13106 2892
| 577.7 1860.8 — 67.12 —1987.3 — 2892.3- 534.21

The performance index over iterations is shown in Figuz8 Blewton’s method
converges after 5 iterations.

10 15

Figure 5.28. Objective function converges using Newtoréghod to solve a SRP
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The separation boundary converges x=3.2680 and thep@ni@mrmance index is
250.9310, which is however larger than 215.04 duer tole-6. Several tests are
conducted on various values and the results are collected in Table 5.1. Fig2&® 5
shows the converged objective function values with respect ifoan extra layer of
optimization is introduced to optimize the scalar Figure 5.29 implies that the

optimization will be subject to local optimal solutions.

Table 5.1. Solution for a SRP using differenalues

T obj(final) Separation boundary T obj(final) | Separation boundary
le-6 215.0415 3.2040 0.6 2.7419 2.6838
le-3 215.0421 3.2000 0.7 0.0003 2.5062
0.01 181.7927 3.2000 0.8 0.0014 2.5004
0.1 250.9310 3.2680 0.9 28.4969 2.6215
0.2 155.3974 2.0837 1.0 46.8515 3.2997
0.3 3.8066 2.7486 15 8.5687 3.0385
0.4 1.3362 2.5848 2.0 9.6278 3.0246
0.5 16.3559 2.7133
250 ~
*
200 - /
T 150 -
E
£ 100 -
N ‘/\’_____‘
O A = T T 1
0 0.5 1 15 2

Figure 5.29. Converged objective function value with resjpect
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b. Nelder-Mead method to solve a SRP

A Nelder-Mead method searches for separation boundagmeters only. For
each tried separation boundary, two local linear modelhareestimated by least square
regression. Figure 5.30 is the pseudo code for the Nigldad to solve a SRP.

a=1p=2,y=050= 0.5¢= 0.001
While (1)
/ ordering all the vertices
Js)<ds)<L < ds)
IF J(s,)—Js)<e& Then
return
End IF
/I compute the center of the best m-1 vertices
1 ml
So—m kélsk
/lcompute the refletion of the wangertex to the center
s=sta(s— %)
IFJ(s)<J(s) AndJ(s)<J(s.,) Then
replaces, by
Else IFJ(s.)<J(s) Then
/I compute the expansion vertex
s=%+7(%— %)
IFJ(s.)<J(s) Then
replaces, by
Else
replaces,, by
End IF
Else
/ | contraction
s=ps+(l-p)s
IFJ(s,)<J(s) Then
Replaces, by
Else
//Shrink
Foreachs (i= 1, m)
s=3+o(s—3)
End For
End IF
End IF
End While

Figure 5.30. Nelder-Mead algorithm to solve a SRP
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where,mis the number of vertices and definedrioy 1.

Unlike the above mentioned Newton’'s method, the Nelder-Madsts only
separation parameters while the former optimizes both sepapdiameters and local
model parameters at the same time. There are many faftecsing a Nelder-Mead
method such as values f@rp andy in the pseudo code. More importantly, the Neader-
Mead method is also subject to initial guesses. Shown in Fig8teis the performance
index with respect to the location of a separation boundémy.pErformance is defined
by SSE error reduction by having two local linear models

-500

-1000

error reduction

-1500

-2000

Figure 5.31. SSE with respect to the separation locatiosgication (5.97)

Figure 5.31 shows that the problem to be solved by the Ni&ldad method has
only one local optimal solution, which is also the global solutiés.expected, the
Nelder-Mead method should be able to locate the global opsiahalion. Figure 5.32
shows 50 trials of the Nelder-Mead starting from random ingisdsses, where global
solution is found 48 times.
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Figure 5.32. Separation locations for Equation (5.97) égéi-Mead method

The second function to be tried is defined as below (Zh@hgn, Ansari & Shi,
2004) and plotted in Figure 5.33

y=(1-0.5) si Zx)+( & 0.4) cdsrx)+( 4 &) dnrg) ; << (5.98)

Figure 5.33. lllustration of the function in Equation (5.98)
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The performance index with respect to the location of separdoundary is
shown in Figure 5.34, where several local optimal solutiomslaserved

20+

401+

error reduction

-60+

-80+

Figure 5.34. SSE with respect to separation locations foatieau(5.98)

Figure 5.35 shows the solutions obtained by the Nelder-Mestiod out of 50
trials. Among them, 15 solutions are around the global solatia=3.47.

o® g0 o e 00 0 oo L4

0 10 20 30 40 50

Figure 5.35. Separation locations for Equation (5.98) égéi-Mead method
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The 50 trials by solving the SRP using the proposed proeeal@ shown in
Figure 5.36. The scattering of solutions shown in FiguB® % not observed in Figure
5.36. Instead, two groups of solutions could be visualbogrized. There are 35
solutions around the global solution. The other 15 solutionsecdrate around w = 3.7

and a little away from the global solution.

Figure 5.36. Separation locations for Equation (5.98) bytbposed SRP solver

As a conclusion, the proposed solving procedure for B BRmore robust and
problem independent. The Newton’'s method depends ttepisess’ factors, whose
impact on the algorithm is shown complex. Direct search rdstkach as the Nelder-
Mead method are subject to algorithm configurations and cgeddrapped by local
optimal than the proposed SRP solver.

5.6  Extension to Multiple-Output Processes

Readers might choose to skip this section and come badktaits when dealing
with MIMO models.

The above SRP is for single-output models. Several funatiead to be extended
for models with multiple outputs. One of them is the perfocaaimdex in Equation
(5.85), which is redefined for multiple outputs by
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minmize.J = tZ::goz(t)(y(t)— ) R (Y(8) -1 )+ (-0 (®) (y(8) -1 )" Ro (y(1) o)

Ha ot (1)
subject to
o(t)=0,1 t=1L N
(5.99)

where scalay(t) is replaced by a vectg(t) with dimension of n. Scalars @i andpg
are also replaced by their vector versions. Two diageeajhting matriceflRa andRg
are introduced to adjust the scale of each output in eaclp gall weights are positive

numbers).

¢(t) in Equation (5.87) is then solved by

((t)-1a) R (y(t) =) (5.100)
R (Y(t) =1 )+ (y() =1 ) Re (y(t) o)

and described by

o(t)= (5.101)

It can also be verified thag(t) in Equation (5.100) minimizes the objective
funtion in Equation (5.99). With the definition of{t) by ua andpg, the optimization
problem is converted to a problem with only decision varsabfqua andpg. The first-

order derivatives of J tma andpg are described by
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D320, (0 1) e,

N aff(’l) e, alLlAaco(t) o
£:§2¢(t) Mg EA+(1_¢(t)) a—Z(l—(o(t)) Mg =

The second-order derivatives are described by

023 zizaw(t)[aw(t)

onp S Oma ( Opa

' op(t)( o, \' ?(t)Ea —(1-0(1)) B
j (Ea +Eg)+40(t) e (aj +4EB[ (616 ]RA
o(t)Ea +9(t)Es —Eg

(En+Eg)’

Ra (Y(1)-Ba ) (¥(t) -1 ) BT +2R 0% (1)
(5.103)

23X ap(t)(2p(t)) e d o220 [2(E-(1-e()E
5—22 ( ](EA Es)+4(1-o(t)) ( ] EA[ RIS ]PB

(5.104)

ona | Ong

- izaw(t)(aw(t)j (B 5 )+ 20() dp(t) (%T A1) 6¢(t)(@T
(

t
(1-9(1)) Es (1) Ex w(t)EAEB—m—«)(t))Eé] T
+|8 16 Ra (¥()-1a )(y(t) -1 ) R
oot B e 0 m 0
(5.105)
where, the derivatives @& andEg to ua andug are defined respectively
oE
o = ZRuly(U)-m)
aEA (5.106)
B=-2R t)—
o, z(y() HB)

and the derivatives af(t) to pa andpg are defined by
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op(t) _  -B 0,

My (Ex+E )2 My
dp(t) E., OE

My (E,+E; )2 Mg

(5.107)

The problem is non-convex. The same optimizer usingrélised Newton’s

method for non-definite quadratic problems is used.
5.7 Recursive Partition by Growing a Binary Tree

The above mentioned SRP finds a linear separation boundlamee growth
procedure is defined to recursively solve SRPs in obtaiegns, which at the end
defines a partition in an antecedent space. The procetiordd end when stopping
criteria are satisfied. As shown in Figure 5.23, it is cleaberve that one more SRPs
on either side of the first separation boundary is requar@dmplete the partition. Then,
the growth procedure stops when modeling error is Zdre.simple stopping criterion is
only suitable for a piece-wise linear model. For a nonlimeadel as shown in Figure
5.24, the tree growth cannot be stopped by the zero-mgesiiar stopping criterion
given sufficient number of data points in each region foramater estimation.
Practically, the growth has to be stopped at least for thienalimumber of data points in

a region to estimate local model parameters.

In this work, a scalamy is used to determine if a splitting is acceptable. The
threshold number determines the minimum number of dataspoi region. A splitting

is rejected if either resultant region contains less thardata points. The threshold

number is not directly set by users but resulted frgredefined numbenM .

oy = (5.108)

2|z

where N is the number of data points amd could be roughly interpreted as the

anticipated maximum number of regions (rulds)is expected that the numbdf is
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more relevant for users’ anticipation of the modeling coriglenumber of rules. Lack

of fit should be expected if thkl is chosen too small while a too laigewill result in
over fit. Trials could be taken to find a suitalbe. More aggressivelya linear search

could be conducted to find an optirdl .
Different M are tried for functiony=x? over [-4,4]. The results fok = 3,5,10

and 15 are shown in Figure 5.37. Table 5.2 collects th#&auof regions and SSE for
eachM . Without any split, the SSE is 3755.37. The reduction l&S& is 93.72 % at

M = 3 with one split. Another 5.81% improvement is achiexe = 5 with another

two splits. 0.38% improvement is gainedMt= 10 with another three splits. Trials could

be made for differenM .
s i 9 i
10 .'°.,. : ] 0 3% : ]
< $ < $
> % { > k! {
| . | \‘\ /f |
0 L L 0 1 |
4 -2 0 2 4 -4 -2 0 2 4
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3 § 3| $
H 9| H H H
10 ..%‘ * 10 .‘-‘ f
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> kY § > kY §
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\ / \ w |f
5 1\ /I' i 5 1\ @ /r
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Figure 5.37. Antecedent partition using differét
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Table 5.2. The number of rules and SSE resulted frai@reift M

3 5 10 15 20

2 4 7 10 14
SSE|{235.6717.16 2.94|0.94280.1526

Z| <

In this work, M is not searched. Instead, a lafdes chosen on purpose, which
might result in a ‘large’ model with ‘too’ many rules’. Thentrae trim procedure is
conducted to cut off unnecessary tree branches to redodel complexity.

5.8 Removal of Insignificant Partitions by Trimming a Tree

As mentioned above, an appropriditis needed to generate a suitable size
GTSK model with reasonable number of rules. Trials coulthhde to find a propem .

In this work, M is not tried. Instead, a ‘largevl is used, which will purposely over-
partition an antecedent space. By doing that, the problera sollsed can only be over-
fitting but not under-fitting. Subsequently, some regionshi over-partitioned spaces
are merged via removing some unnecessary boundaviesh has the least model
improvement per model complexity efficiency. Therefdtee under-fitting and over-
fitting are addressed in two stages.

Using a largeM could also be considered as an attempt to find a ‘globaitieal
out of one obtained in a step-wise manner. Ideally, th@iparproblem should be solved
by considering all separation boundaries together in ordgatta global optimal partition
in terms of both modeling complexity and errors. Rather #tempting to solve such a
difficulty problem, the recursive procedure in this workdssolve a separation a time.
Together, separations from each step build up the solufioa.resultant solution is a

step-wise partition, which is expected to be different froreoltion obtained from

‘global’ procedure if it ever exists. If a lardd is used, it is hoped that the resultant step-

wise solution contains a ‘global’ solution. If considering a ts&ecture, the ‘global’

optimal tree is contained in the excessively large tree duelamaM . The problem
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remains to be solved is to find the ‘global’ tree by remowingecessary branches and
leaves from the ‘big’ tree.

A tree trim procedure is then operated to remove unregessnches. Branches
to be removed should have low model improvement per nooseplexity efficiency. As
shown in Figure 5.38(a), there are three branches vatith nodestt; and t. A branch
is denoted byBt, for instance, brancBt; extracted from Figure 5.38(a) is shown in
Figure 5.5.

Figure 5.38. The brandBt; from Figure 5.5(a)

A branch Bt is defined as a set of leaf nodes that are decederss. ofFor

instanceBts in Figure 5.38 is defined WBt, =[ts,t,,t,].

At the tree-growth stage, the nodast split into two nodesstand %. The split is
accepted if the modeling error is reduced, graht ¢ contain sufficient amount of data
points. Therefore, the comparison is only made betwgand its two immediate
decedents. The comparison can be extended to includegktieration decedents. As
shown in Figure 5.38, nodgis split into 3 leaf nodes. An extended comparison could be
made to evaluate if the split of to [t,ts,tg] iS necessary. However, the extended
comparison is only applicable when the brandg #Br t; is known. It is why the
following procedure is implemented after the tree-growth mhoieeis finished.
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A performance index for a branéh is defined by

R(Bt)= Y R(7) (5.109)

reBt

WhereR(z) is the SSE of the local linear model for the naddis regularization with
considering model complexity is defined by

R, (Bt)=R(Bt)+«|Bt| (5.110)

where Bt| represents the complexity of brarith A regularization performance index is
also defined for the branch node t

R, (t)=R(t)+alt] (5.111)

where |[t| is the complexity for the model to the node this work, the complexity is
simply defined as the number models in a branch. Thexeft is always 1 since it

contains only one model while |Bt| is the number of ledEso

The branchBt will be kept (all splits are accepted) K, (Bt)<R (t). The
inequality however depends o which reaches a critical, ac(t), whenR, (Bt)=R,(t).

The variableyx. (t) is hence defined by (5.112)

w, t is a branch node
(0= Bl (5112

, tis a leaf or root noc

The critical value ac(t) hence reveals the performance improvement per
complexity increment efficiency for the branch nodeClearly, larger(t) is preferred
and less efficient branch should be removed. At eveny, &t for all branch nodes are
computed. The branch node with the minimus defined by4
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 R(t)-R(BY)
A e

(5.113)
where, B, is a abuse of the branch notation and represents the &agér(a branch from
the root node). The branchyBs then hypothetically removed. Then,is reevaluated for
all left branch nodes, and anotltgrs found and hypothetically removed. The procedure
continues until the root node;, is reached. It is shown that(t,) value will be
monotonically decreasing (Breiman, Friedman, Olshen & &tG884), which implies

that worse branches are removed first and the removagiseg| is optimal.

The above procedure will generate a sequeneg(j, which is the minimum in
each step. Nodes with (tp) lower than a threshold number will be actually removed and
a trimmed tree is then obtained. In this work, the threshotdbeu is tried for an
appropriate level of complexity.

The corresponding tree structure for the Figure 5.3%(shown in Figure 5.39,
where the number under each box is the sum of sqear@dand solid boxes are for leaf
nodes.

Figure 5.39. The tree structure for the antecedent partitibigure 5.37 (c)
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Table 5.3. The value; for branch nodes shown in Figure 5.39

oc ft1 | t3 b 5 | [z |8 (o [tio [tn |2 |ls
1 o [55.69 [40.12 0 |5.901.70{6.62/0 | [0 |0 [0 |
2 o [55.69 [59.32 0 5900 [6.620 o |© joo |©o |0
3 o (105.4859.32 o o | [6.620 o |© joo |©o |0
4 o ]105.48|112.03|c fo |0 |0 o [© o [ o |©
S5 [0 |o© 112.03j0 |©o foo |0 |o [ jo |o |0 |0
6 |0 |0 00 0 oo joo oo oo joo joo joo |0 |0

As shown in Figure 5.39, there are 5 branch nodges, ts, t and . At the first
step, the minimunu is found for § with 1.7032. Then branch 8ts hypothetically

removed. The removal is simply operated by changing rdwech nodegtto a leaf node.

At next step, the branch node with minimum is & with 5.8971. The procedure

continues until all branch nodes are hypothetically removied.ldrgest:,. is 112.03 and
its 10%, 11.20 is set as the threshold number to removaeiiinsagt branch nodes. In this

example, branches underneath branch noges aind + will be permanently removed.

The resultant trimmed tree is shown in Figure 5.40(a). ddreesponding splitting is

shown in Figure 5.40(b), where light-colored vertical linegresented removed splits.

The result is same as that shown in Figure 5.41(b) Mith 5.
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Figure 5.40. Antecedent space partition after removing splder branch nodesg ts

and ¢ in Figure 5.39; light lines represent removed splits
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The results for trimmed trees dueNb= 15 and 20 are also shown in Figure 5.41
for comparison, where the threshold is also set as theol @& largest.. It is observed

that trimmed trees are identical regardless the valid ofrherefore, an excessive large

M could be used to generate a large tree and a tree-triradomecis used to remove
unnecessary branches. Certainly, more computation dede®r generating a bigger
tree, which however gives a better chance to contain aimalptree.
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4 3 4
$

ks ks
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° J .
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9
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-4 2 0 2 4 -4 2 0 2 4
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Figure 5.41. Antecedent space partitions after remove samgortant splits (light
lines) for a) Figure 5.37 (c); b) Figure 5.37 (d)

59 Rule Antecedent Parameter Estimation

The tree growth procedure generates a number of s@patzoundaries that
partition the antecedent space. Given a partitioned antecspgaoe, there are many
views on recognizing a local region. One way is to consibderlocal region as a
polyhedron consisting of several separation boundariesth&r way is to consider the
local region to be a set of points. Each way has its camelépg methods to identify
centers and ellipsoids. Within a polyhedron, a maximum velahipsoid could be found.
A minimum volume ellipsoid could be found containing a sepahts. Both problems
can be solved efficiently by convex optimization (Boyd &ndenberghe, 2004). A
dynamic search approach in (Pronzato, Wynn & Zhigljap2k90) can also be used to
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identify ellipsoids.

The above mentioned techniques are sound choices. ldowamd perhaps
unnecessarily, this work also considers the quality oh efata point. The quality is
related to the prediction error for each data sampleinsStance, the solid dots in Figure
5.42 represent data points with small residuals while the crepessent data points with

larger residuals.

v

C,

Figure 5.42. A local region in an antecedent space; daskrdpresent data points with
smaller residuals while circles represent points with higrseduals

A rule antecedent in fact represents the region wheredhgequent model is
expected to be accurate. It is then reasonable to nigedata samples with smaller
residuals to estimate the antecedent parameters. Therenarg approaches for
weighting the importance of data. This work uses a simgeaph, where weighting is

defined by the residual

N’ (3{)
B —exp —— ) (5.114)

whereN' is the number of data points in regiorThe script i) represents thi&' data in

regionr. g reaches the highest value at 1 wheis zero.
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The centroidd’ is estimated by

N’
>.Ac
i=1

r

0 =+ (5.115)
A
i=1
and the matriy" is defined by its inverse
N’ T
DY ACEC) CRL)
(P) == (5.116)

S
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CHAPTER VI
RESULTS FOR TESTING PROBLEMS

The objective of Chapter 6 is to test the proposed procddupzeate GTSK
models for function approximation in Section 6.1 and nonlingyamamic process
modeling in Section 6.2. The GTSK models to be createdhesgeneralized antecedent
structure proposed in Chapter 3. In modeling nonlineaamymprocesses, the dimension
of a GTSK model (both antecedent and consequent dimehs®rspecified by the
determined dynamic orders and detected nonlinear comigome@hapter 4. The model

parameters are determined by parameter estimation progedsented in Chapter 5.
6.1  Function approximation

Function 1

The first function to be approximated is defined by

y=3x(x-1)(x-1.9(x+ 0.9(x+ 1.8 , 2% x 2 (6.1)

Function 1 is used in (Dickerson & Kosko, 1996) asiagny example to demonstrate a
function approximation procedure using GTSK models. Tlequure starts initializing
membership functions for bothandy by projecting recognized ellipsoidal patches onto
x-y coordinates. The patch reorganization is an unsupenisaching procedure.
Following the heuristic initialization, model parameters are refinsithg a steepest
decent optimizer. The algorithm in (Dickerson & Kosko, 1)9&6rks fine for Function

1. As demonstrated in Section 5.4.2, unsupervised leammigigt result in inappropriate

initialization since it uses measures based on data distributiber ran nonlinearity.
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Since the function has only one input, it should be includdmbin antecedent and

consequent. There are 412 points uniformly sampled fte function. The scalavl in
Equation (5.108) is set to 50, which implies that a regi@ulshno longer be split if it

contains less than 412/ data points.

With the above configuration, 30 branch nodes are gtetkreach of which is
associated with an efficiency index, defined in Equation (5.113). Values «f for all

branch nodes are shown in Figure 6.1.

2000 +
®
1500 -
°
& 1000 -
500 - i
°
0 0000000000000 00000000000%

0 5 10 15 20 25 30 35
k

Figure 6.1. Values ai. for antecedent space partition for Equation (6.1)

At this point, it should be subject to users’ judgment to seleapproximate value
level inac to discard unimportant splits. In this testing, we choose ¢p kest 5 branch
nodes. Among them, the lowest value is 68.70, to which the next lowey value is
13.80. The resultant antecedent space partition is shownureFeg2, which also shows
the membership function initialization for an 8-rule GTSK moddie membership
functions are initialized using Equations (5.115) and (5.116
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Figure 6.2. Antecedent space partition and TAs basedjoatién (6.1)

The initialized GTSK model is fully described in Equation )6.2

IF (xisin R*(-2.0,470.6) THEN y'= 133.50+ 248.!
IF (xisin R?(-1.9,371.5) THEN y* = 76.3¢+ 137.4
IF(X|S|n R°(-1.6,142.9)THEN y*= 24.58+ 46.57
IF (xisin R*(-1.0,10.9) THEN y*=- 12.65- 8.34
IF (xisin R°(0.2,8.9) THEN y°= 4.9%+ 0.12 (6.2)
IF (xisin R°(1.217.4)) THEN y°=-12.7&+ 12.4
IF (xisin R’(1.7,153.3) THEN y’ = 15.10- 31.23
IF (xisin R°(2.0,177.8) THEN y’= 68.5¢— 130.3!

where,RY(-2.0,470.6) defines the region for the first rule (themebt in Figure 6.2) with
o' = -2.0 and b= 470.6. Bottp andP are introduced in Equation (3.7). In the first rule,
the linear consequent model ig, = 133.5%+248.59. Note that the linear consequent

model might not necessarily represent the local behavior efotiginal nonlinear
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function due to linearization. The interpretation of linear cqueat models depends on

the interactions in rules and is discussed later in detail

The GTSK model is then used to approximate the function.appeoximation is
shown as dashed line in Figure 6.3. The mean squa@dRISE) for the approximation
is 0.21, which is lower than that mentioned in (Dickerson &Ko 1996).

Figure 6.3. Function approximation by the 8-rule GTSK rhodEigure 6.2

Figure 6.4 shows for each rule the normalized truth ofcadent,w defined in
Equation (3.23), which could be used to visualize the inierabetween rules and local
interpretability in each rule. For instance, tfferdle almost works alone forbetween -
1.4 and -0.6, where the valvewffor the 4" rule is about one. Therefore, the consequent
model in the # rule could be interpreted as a local linear approximatiothfononlinear
function over the above mentioned region. Following the simiacedure, it is possible
to interpret consequent models in all rules as local linear xippaiion for the nonlinear
function and identify the approximation region respectivelyeractions between rules
are signified by the value a little far away from both 0 and 1. For instance, interaction
between the 4 and %' rules is observed fax between -0.6 and -0.2, where there are
about 15 points with the value ofbetween 0.2 and 0.8. The assumption made on
Equation (5.24) would not hold due to the presence ofymateractions in rules.
Therefore, it might be possible to use Newton’s method (Algar5.1) to further adjust

model parameters to reduce the approximation error.
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Figure 6.4. Normalized TAs for those in Figure 6.2

Figure 6.5 shows the optimized membership functions lgpthm 5.1 starting
from the above initialization. The resultant function approximasashown in Figure 6.6
with the MSE reduced to 0.12. The improvement in term$8E is clear. Some
noticeable large approximation error in Figure 6.3 (arovnel.5, -0.5, 0.7) are
significantly reduced. The approximation in Figure 6.6 bexpaiso smoother, which is
due to the increase of overlap between adjacent membéusioijons. For instance, the
4" and %' (from the left) membership functions in Figure 6.5 stesignificant portion
of overlap, which is not observed in Figure 6.3. The eeeof overlapping is also
observed in other adjacent membership function pairs, bet@eand &, and between
7" and &
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Figure 6.5. Optimized TAs from initialization in Figure 6.2

Figure 6.6. Function approximation by the optimized 8-rule IGTr®del

The MSE reduction is achieved at the cost of interactionaserbéetween rules.
Rules resulted from the initialization shown in Figure 6.3 elaively independent. The
independence can be verified by the valen Figure 6.4, which is close to 1 for the
majority of data. The independence implies that the behafieach rule represents the
local behavior of the GTSK model. In other words, eadé is locally interpretable with
respect to the GTSK model. In Figure 6.5, membershiptions are more coupled. The
increased interactions between rules are evidently observedure 6.7. Rule 4 and 5
become less interpretable in terms of local behavior o&i®K model. Both rules need

to be considered together to explain a perhaps local dicaloehavior.
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In general, approximation error and model interpretabilitynaceconflicting goals.
The illustrated interaction increase in rules should be expattgdneral when model
parameters are optimized by the Newton’s method (AlgoritHyy &hich will result in
GTSK models consisting of less interpretable rules due torpodularity. On the other
hand, one might be able to preserve interpretability bgirfgra certain distance between
centroids or limiting the overlap between membership functions.

0.9+ f

0.8+ f

0.7+ f

0.6+ f

0.4} .

0.3+ f

0.2+ f

0.1+ f

Figure 6.7. Normalized TAs for those in Figure 6.5

The two-stage parameter estimation procedure in Chapted$oisompared with
the following one with random initialization. Figures 6.8 arfl $how the best result out
of 50 trials. It represents a typical undesired resulthgao overlap but higher MSE
(0.42).
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Figure 6.9. Function approximation by the 8-rule GTSK rhodEigure 6.8

In approximating Function 1, the. is chosen to give an 8-rule GTSK model in
order to compare the 8-rule fuzzy model in (DickersoKdsko, 1996). Certainly, one
might need to have several trials to decide an appropriate.Valihe following two
function approximation examples, we will demonstrate what oag expect when the

number of rules is progressive increased in a GTSK model.
Function 2 (Zhang, Chen, Ansari & Shi, 2004)

The second function to be tested is defined by

y=sin(4;r\/§)+(1+ 0.4) cofrx) , B x< (6.3)
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Figure 6.10 shows four different antecedent space partimas membership
function initializations. The partition in Figure 6.10(b) has omare split than that in
Figure 6.10 (a). The additional split is added to the secegidmr in Figure 6.10 (b),
which then generates two linear approximations. One mditeésspdded in Figure 6.10
(c) to its leftmost region, which exhibit strong nonlinear behraWoFigure 6.10 (d) two
more splits are added to split th& and §' regions in Figure 6.10 (c). It is observed in
Figure 6.10 (d) that more splits are placed in the left patieofunction. The function is
uneven in terms of nonlinear behavior in different regittsdeft part is more nonlinear
than its other parts. Therefore, the obtained partition is desiich distribute rules
according to nonlinearity.

2| | | | ] 2| | | |
~ W J ) //\,
ol ] ol |\
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Figure 6.10. Antecedent space partition and TAs on EquggiBh
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Function 3

The third function to be tested is a two-dimensional quadiatiction.

y=x+Xx5, —2<X,X,<2 (6.4)

There are 441 points uniformly sampled. Wkh set at 100, there are 55 branch
nodes generated and their corresponding alphas are shéwgure 6.11.
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Figure 6.11. Values af; for antecedent space partition for Equation (6.4)
The values of the first twa.s is much higher than others. It would be reasonable to
keep both if either one is to be kept. Figure 6.12 shibe/sesultant antecedent space and

the corresponding antecedents in terms of ellipsoidsTitd.05
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Figure 6.12. a) Antecedent space patrtitiorpy 117; b) EllipsoidsTA = 0.05)
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Figure 6.13 shows the normalized truth of antecedent faula$, where limited
interactions are observed. It indicates that rules have moeqgbretability for the local
behavior of the nonlinear function. In this example, the opétiia by Algorithm 5.1
reduces the MSE from 0.125 to 0.121 (3.2% improvem&h®.negligible improvement
is probably due to the distribution wffor each rule. Figure 6.13 shows that the values of
w for each rule are either high or low. The valuew &r the rule in left-front corner are
plotted in Figure 6.14, where 424 out of 441 points waweitside the range of (0.1, 0.9).
Other 17 points cluster around either 0.8 or 0.2. Not mintdrmediate values are
observed fow. The observation might be able to make the assumption atigqu5.24)
approximately hold. It then indicates that the initialization alma@sathes a local solution.

Figure 6.13. Normalized TAs for those in Figure 6.12
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Figure 6.14. Normalized TAs for the left-front rule in g 6.13

The obtained model is an 8-rule GTSK model, which appraeisnthe quadratic
function using 8 planes. The approximation is shown in Figure with MSE of 0.125.

Figure 6.15. Quadratic function approximation by the GTSKdehm Figure 6.12
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Certainly, one can manage to discard the branch nodeheitfecond highest in
Figure 6.11. The resultant partition is shown in Figure 6adich is uneven and only
have the right portion of the antecedent space partitioneterit suggests to keeping
branch nodes with like. values.

X2
o

Figure 6.16. Antecedent space partitiorupy 130

The same procedure is practiced if users manage sagethe number of rules.
Figure 6.17 shows the values of the reswofand clearly indicates two groups with
difference at least one order of magnitude. It suggestsrieashould keep all. between

3 and 8, if any of them is going to be kept.
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Figure 6.17. A portion od in Figure 6.11 with values less than 118
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The resultant antecedent partition is shown in Figure 18, veltidh an additional
split to each region in Figure 6.12. The observationasaeable. Unlike Function 2 in
Equation (6.3) whose nonlinearity is uneven, the two-dimea$ quadratic function is
uniformly nonlinear in every direction. Due to the uniformitile antecedent space
should be evenly partitioned. The increased rules will endide GTSK model to
approximate function in a finer scale. The 16 recognin¢égicadents are shown in Figure
6.18(a) and Figure 6.18(b) shows the approximation byl@irule GTSK model with
MSE of 0.0153.

X2

Figure 6.19. Quadratic function approximation by the GTSKehm Figure 6.18

151



One might follow the above procedure to further incrébsenumber of rules by

including branch nodes with smalley as shown in Figure 6.20. The distinction between

different levels is not as clear as shown in Figure 6.116ahd. One might need try

several values and find an appropriate one
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Figure 6.20. A portion od: shown in Figure 6.11 with values less than 3

It is also observed that splits in Figures 6.12 and 6.18lang with the coordinate

directions. The observation is reasonable since the symnepiadratic function is

uniformly nonlinear in all directions.

The above procedure is compared against the following \wite random

initializations. It is found that some GTSK models due to randotalization produce

smaller MSE. One of typical good approximation result is showFigure 6.21 with

MSE of only 0.0051.
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Figure 6.21. Quadratic function approximation by the GTSKehmm Figure 6.22

The corresponding antecedents of 16 rules due to mairdbalization are shown
in Figure 6.22, where very strong and complex couplingregmrules are observed.
Modularity in rules does not seem to exist and interpretafionles with respect to local

behavior of the model is impossible.

Figure 6.22. OptimizedAs for a 16-rule GTSK model from random initialization
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Function 3 is uniformly nonlinear in all directions. The resul&hpsoids shown
in Figures 6.12 and 6.18 are oriented along with coordindtes next example will
demonstrate how ellipsoids are to be oriented if the functiamésenly nonlinear in
different directions.

Function 4 (Zhang, Chen, Ansari & Shi, 2004)

The fourth function to be approximated is defined below stimalvn in Figure
6.23(a)

y:%exp( cof 4x+%))) . &x X< (6.5)

Figure 6.23(b) is the contour plot of the function, whichvahthat the function

behaves linearly along the main-diagonal direction from) ¢0,{1,0).

(a) (b)

Figure 6.23. lllustration of the function in Equation (6.8{l &s contour plot

A total of 441 points are uniformly sampled. Wikh of 50, there are 29 branch

nodes generated and their correspondyaye shown in Figure 6.24.
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Figure 6.24. Values af. for antecedent space partition on Equation (6.5)

By including the first 5 branch nodes, the resultant antetg@etition is shown in
Figure 6.25. The partition slices the antecedent space alengaim diagonal direction,
which matches the nonlinear orientation shown in Figure 16)23the corresponding
initialization of rule antecedents is shown in Figure 6.25. dpgproximation due to the 8-
rule GTSK model has a MSE of 0.0015.
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Figure 6.25. a) Antecedent space patrtitiordy 0.1;b) EllipsoidsTA=0.05)

Improvement of MSE is achieved by further tuning the rhpdeameters using
Algorithm 5.1. Obtained rules are shown in Figure 6.26,ravleentroids of rules are
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significantly changed. However, the direction of each adesdeis still kept in the main
diagonal direction while the length and width of each ellipsa@dchanged.
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Figure 6.26. Optimized TAs of a 8-rule GTSK model foustipn (6.5)

The resultant function approximation is shown in Figure 6.@7 neduced MSE of
0.0003. Again, the reduction of MSE is at the cost of ingtgility in individual rules.

Figure 6.27. Approximation of Equation (6.5) by the GTigkdel in Figure (6.26)
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The local models in the above four examples are linearfadty there is no
restriction on types of local models. Roughly speaking, sheuld expect better
approximation and less number of rules if more compleX localels are used. In the

next example, linear and quadratic local models are compared
Function 5

The fifth function (Zhang, Chen, Ansari & Shi, 2004) te &pproximated is
defined

y=cos( 2rx) co$ 2x,) &9 gy x,< (6.6)

The function and its contour plot are shown in Figure 6.28.
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Figure 6.28. lllustration of function in Equation (6.6) anccastour plot

In this example, there are 1681 points sampled from thatifun. With M of 100,
there are 53 branch nodes are generated. The vdlug$oo all branch nodes are shown
in Figure 6.29.
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Figure 6.29. Values af. for antecedent space partition on Equation (6.6)

Figure 6.30 shows the obtained antecedent partition by taugdpanch nodes
with alpha greater than 0.81. A 34-rule GTSK model is thémlined. Figure 6.30
shows the final result after implementing Algorithm 5.1 to turceleh parameters. The
function approximation and corresponding contour plot acevshin Figure 6.31. The
MSE for the function approximation is 0.0069.
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Figure 6.30.a) Antecedent space partitiom0.81; b) EllipsoidsTA=0.05)
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Figure 6.31. Function approximation by the model in Figusé &nd the contour

One could further increase the number of rules to rethe&capproximation error.
Alternatively, users might increase the complexity of local eledIin the flowing
example, quadratic local models are used instead. The ethtaivalues for all branch
nodes are shown in Figure 6.32.
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Figure 6.32. Values of. for antecedent space partition for Equation (6.6) with
quadratic local models
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With threshold fora. set at 1.5, the following partition is obtained in Figure
6.33(a). The optimized antecedents are shown in FiguB£b§.3rhe resultant function

approximation and contour plot are shown in Figure 6.3¢.M8E is 0.0049.
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Figure 6.33.a) Antecedent space partitiormpyl.5; b) Ellipsoids TA=0.05)
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Figure 6.34. Function approximation by the model in Figus& &nd the contour
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The number of model parameters in the 16-rule GTSK maitlelquadratic local
models is 176. On the other hand, the number of paresrnist272 in the 34-rule GTSK
model with local linear models. It indicates that using moreptexnlocal models can
significantly reduce the number of rules and overall modehmpeters while improving
function approximation performance. However, complex lowadlels might be difficult
for interpretation, which is however subject to users’ kndgde

The above testing focuses on function approximation. dllerfing several testing
will be about nonlinear dynamic modeling, which is actually verty much different
from function approximation in this work since the dynamic el@tructure is restricted
to ARX structure. Users then have full access to all modaltsnpThe structure
information for a nonlinear dynamic model is assumed knawehdetermined in Chapter
4 by the proposed order determination technique. The aeecerariables are also
selected in Chapter 4. In several following examples, we \wlidate the antecedent
variable selection made in Chapter 4. For the conveniehgeesentation, we might
reproduce some equations in Chapter 4. It is observ8ddtion 6.1 that modularity and
local interpretability in initialized rules are reduced by furtharameter tuning using
Newton’s method due to interaction increase between rliethe following testing,

results are based on parameter estimates extracted fritiopad antecedent space.
6.2  Dynamic Nonlinear Modeling

Model 1 (Narendra & Parthasarathy, 1990)
y(t)=0.3y(t-1)+ 0.8/(t— I+ 0.6sifiru(t— + 0.3snaB(t— )i+
0.1sin( 5ru(t— 3)+e(t)

The order determination was conducted on Model 1 in ChdptEhe determined

(6.7)

regressors arg/(t-1) y(t-2) u(t-1)] in Table 4.8. The detected nonlinear componeunttis

1) that will be the antecedent variable. In order to verifyctiw@ce of antecedent variable,
the following experiment is conducted to try different anteoedvariables. The
experiment result is collected in Table 6.1. The performaesaluated by the sum of
square error (SSE) between the ougpand its prediction. The SSE without any splitting
is 1544. The first row of Table 6.1 have the numberutdsr and resultant SSE due to
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having onlyu(t-1) in the antecedent. In order to compare each chdi@ntecedent
variable fairly, each resultant GTSK model is configuredhdwe the same number of
rules; 3 in this experiment. It is observed in Table 6.1, #st bhoice of antecedent
variable isu(t-1). The other two choices, eithg(t-1) or y(t-2), barely reduce the SSE.
The experiment is then able to validate the choiagtef) as the antecedent variable.

Table 6.1.Trials of antecedent variables for Model 1 inaiqa (6.7)

AntecedenfNumber o rules [SSE

u(t-1) 3 1325
y(t-1) 3 1540
y(t-2) 3 1538

A GTSK model could include different number of rules logepting different
levels ofac. In the following, each choice of number of rules is vadidaby a separate
data set (validation data set). The results are collected ile Bah The training data
include 5000 samples while validation data include 3000 samfies:Model Error’ is
the sum of training and validation MSE. It is observed thateM&gror start increasing
whenM is over 8. Based on the experiment results in Table 6atually makes no

difference by choosinlyl as 7 or 8. In the following illustratiodM=8 is chosen.

Table 6.2. Trials of a GTSK model for Model 1
M MSE Model Error
Training | Validation
0.272 0.276 0.547
0.265 |0.269 0.534
0.259 |0.261 0.520
0.253 |0.257 0.510
0.252 |0.257 0.509
0.251 |0.256 0.507
0.251 |0.256 0.507

0.251 |0.259 0.509

O O] Nl o o ] W N
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Havingu(t-1) in the antecedent witll=8, the resultant antecedent partition and
membership function initializations are shown in Figure 6.3%re the number in each
region indicates the order that regions are generated iragy biee.
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Figure 6.35. Antecedent space partition and TAs for Mbdel

Figure. 6.36 shows the separations in the nonlinear pMbdél 1, g((t-1)), the

sum of three Sine functions oft-1), which behaves relatively linearly in local regions.

=

= 0

>

>

0.5 /fN | | | | |

-0.8 -06 -04 -0.2 0 0.2 0.4 0.6 0.8
u(t-1)

Figure 6.36. The separation boundaries shown for thignear part in Model 1

The resultant GTSK model is fully described in Equation (&c®) listed from the
left to right in Figure 6.35.
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F ( =) )
(u t-1) |sinR6 ~0.6,100. ;D)THEN 9°(t)=— 0.38 0.3{t- )% 09(1 )2 gt )
5: |F(u t— 1) isinR°(~0.3,145 5 THEN §°(t)=— 0.82 0.3qt- )+ Oft— )2 16— )
i )=- 008 0.30t- ) - )2 sge-)
(u(t- ( )= 022 0.3ft- )% (a )2 345 )
(u(t 1)isinR*(0.3,299.) THEN §°(t)= 0.78 0.3qt- ) Ogft— ) )
7: IF(u(t 1)isinR’(0.5,129.0) THEN §'(t)= 0.3% 0.3i(t- )+ 0.56t— ) )
(u( ( ) ) ) )

u(t-1) isinR?(0.9,141)) THEN §%(t)= 272 0.34t- )& O0p@-

2 ou@-
2 2[4

It is observed in Equation (6.8) that coefficients @ft-1) experiences both
magnitude variation and sign change. However, coefficfentsithery(t-1) ory(t-2) do
not seem to vary too much. It seems that the variation inda#iaent for u(t-1) is
sufficient to verify the nonlinearity of the model. A mordaileaddress of coefficient

value variation across rules needs to however considematiece of model parameter

estimates. The covariance of local model parameters is &stitma
. . . 1
cov(d)=(6') ((x ) x‘) 6.9)

.y . . ~i\2 . . .
where the matrixX' collects all regressors in reglon(ar') is the variance estimate for

the noise in region i and is computed via the tesligle' by
() =15 ) (6.10)
where Nis the data number in region i. The 95% confiddnterval for (9} is defined by
0, =6} +1.96Cov(6] 4 (6.11)

Equation (6.11) is for Gaussian distribution fokreown variance. One might use

Student distribution if variance is an estimatee Thfference could however be ignored
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for sufficient number of data, likely over 50 daiaints (Box, Jenkins & Reinsel, 1994).
The coefficients and their 95% confidence intefeald rules are shown in Figure 6.37.
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Figure 6.37. Coefficients for local models in th€SX model in Figure 6.35

In Figure 6.370, to 85 are coefficients for regressors,yli-1), y(t-2) andu(t-1).
Strong variation is observed for bathandds. The variation ird; indicates a change of
model behavior in different regions. On the othandy the confidence intervals férin
different rules have overlaps. The same phenomesoalso observed fof,. The
observations might imply constant coefficients fegressorsy(t-1) andy(t-2) for all
rules, which then suggests that it might be unrsgecgsto includey(t-1) andy(t-2) in a
GTSK model. It is then possible to simply the stumoe of the GTSK model as a hybrid

with an explicit linear structure.
y(t)=ay(t-1)+ay(t-2)+ f (u(t-1) (6.12)

The obtained GTSK model is compared to other mogdetiossibilities. In this
work, a radial basis network model (RB) and a fewdrard neural network model
(FFNN) are considered. In order to have a commaisiiar comparison, the architecture
for each model is chosen such that the numberrahpeter in each model is close. In the
comparison, 5000 data points are used to obtainntbdel parameters that gives a
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‘training error’ and 2500 data points are usediv@ @ ‘validation error’. Both ‘training’
and ‘validation’ errors are summed-square of remgluThe comparison detail is
collected in Table 6.3.

Table 6.3 Comparison of the GTSK with RB and FFldNNlodel 1

Model |ArchitectureTraining (SSEYalidation (SSE)# of Parameters
GTSK (8 1253.6 639.7 48
FFNN [(3,5,6,1) | 1252.9 639.2 63
FFNN [(3,2,12,1) | 1256.6 640.6 57
FFNN |(3,8,4,1) | 1254.2 647.4 73
RB 11 4564.8 3209.6 56

In Table 6.3, the architecture for GTSK is the nembf rules. In the FFNN
models, the architecture represents the numbenpafts, number of neurons in each of
two hidden layers, and the number of outputs. Tiehit@cture in the RB model is the
number of neurons. The RB model gives the highmastihg and validation errors. On the
other hand, there is no significant difference leemwGTSK and FFNN.

Training a neural network is a nonlinear optimiaatiprocess. In practice, one
often has to try many times of training from randmtialization to obtain an acceptable
solution. The result in Table for each FFNN is blest out of 50 trials while GTSK needs
only one trial. In addition, the architecture infation for a FFNN is not automatically
available. In practice, one needs to try differanthitecture, and for each multiple
regressors to find the probably best model. Thtteergts are revealed in Table 6.3.

The GTSK model is more informative than a FFNN nioBarameter values in a
FFNN model can hardly reveal any knowledge aboet phocess to be described.
Observed in Figure.6.37, the values of local madefficients indicate to decoupyé-1)

andy(t-2) from a nonlinear function af(t-1).

Model 3 (Narendra & Parthasarathy, 1990)

y(t):%+u(t—l)3+e(t) (6.13)
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The determined order is defined by ny=1,nu=0 antl. dhe result of nonlinear
component detection indicates that baifi-1) and y(t-1) should be included in

antecedents. The antecedent space is shown ireFacgiB
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Figure 6.38. Two-dimension antecedent space foré\1®d

The results for trials of GTSK models with diffeteromplexity are collected in
Table 6.4, where the minimum Model Error is dua tt0-rule GTSK model.

Table 6.4. Trials of a GTSK model for Model 3

MSE
M Training | ValidatingModel Erro
2 0.277 0.278 0.555
3 0.268 0.271 0.540
4 0.265 |0.266 0.530
5 0.261 0.264 0.525
6 0.259 0.262 0.521
8 0.257 |0.260 0.516
¢ 0.256 |0.260 0.516
10 0.255 |0.259 0.514
11 0.255 |0.260 0.515

Figure 6.39(a) shows the antecedent space partwith 10 regions. Figure
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6.39(b) shows the ellipsoids wilfA = 0.05 for initialized 10 rules.
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Figure 6.39. a) Antecedent space partitiomby 10; b) Ellipsoids TA=0.05)

The estimated local model coefficients and th&®e9confidence interval are
shown in Figure 6.40 for the 10-rule GTSK modg. 6, and 8, are coefficients for
regressors, Iy(t-1) andu(t-1). It is found after comparing each pair of lopsddels that
the rule 8 and 10 might have same local modelsfi@amrce intervals for each pair of
corresponding local model coefficients have overtapule 8 and 10. The observation
could be verified by observing Figure 6.39. Regi8nand 10 are next to each at about
the same level of(t-1), which makes both have about the coefficienty{c1). On the
other hand, region 8 and 10 contain data with dppsgns oru(t-1) around 0. The term
of u(t-1)® in Equation (6.11) may be expresseddbyt)u(t-1) with 65 (t) = u(t-1)?, which
eliminates the effect of signs uft-1).

Based on the above comparison, one may decide rfgemneles 8 and 10 to one
rule. The merge can be easily operated by remavdirth boundary between 8 and 10.
Note that the merge operation on regions 8 andnly ie not possible by choosing a
different level ofa. since both regions are resulted from differenhbhanodes.
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Figure 6.40. Coefficients for local models in th€SX model in Figure 6.39

The selected antecedent variable@-1) and y(t-1) are due to nonlinear
component detection in Chapter 4. In the followiegperiments are conducted to try
other antecedents with different complexity to fyerthe result. The comparison is
collected in Table 6.5. Note the MSE without sigli0.289.

Table 6.5.Trials of antecedent variables for M&lel

AntecedenfNumber of rule [MSE (Training)
y(t-1) 5 0.271
y(t-1) 19 0.266
u(t-1) 11 0.267

Reduction in MSE is observed for each trial. Hogrevthe maximum
improvement in MSE is achieved for the GTSK modethwthe two-dimensional
antecedent. In Table 6.3, the training MSE for aul®@ GTSK model is 0.255, which is
smaller than those obtained for either a 19-rulelehwith antecedent variablg(t-1) or
a 11-rule model with antecedent variab{el).
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The above two nonlinear modeling examples use fribgults on order
determination and nonlinear component detectiomf@hapter 4 to construct GTSK
models. It is noticed that the results for Modelrid 3 from Chapter 4 match the ‘truth’.
In Chapter 4, we also mentioned the ‘mistakes’ thatorder determination could make
such as the missing af(t-2) for Model 4. Also, the detected nonlinear comgas
contain only the most dominating one such as/fti2) for Model 4. In the following the
example, a GTSK model for Model 4 based on detexchorders and detected nonlinear
components will be created and compared with osedan the ‘truth’.

Model 4 (Narendra & Parthasarathy, 1990)

y(t) = y(t-1)y(t- 2)13:(;;3?‘13;:; 5)((1(;)‘2 3-Jrult- ;+e(t) (6.14)

The dynamic order analysis in Chapter 1 determihedollowing valuesny=3,
nu=0 andd=1 as shown in Table 4.8. The detected nonlineapoment is/(t-2).

The trial for different level of complexity is celtted in Table 6.6, which suggests
an 8-rule GTSK model for its minimum Model Errolthaugh other choices fvl being
6 and 7 might be also acceptable.

Table 6.6. Trials of a GTSK model for Model 4
M MSE Model Error
Training | Validating
0.0037 |0.0041 | 0.0078
0.0031 | 0.0035 | 0.0066
0.0029 | 0.0032 | 0.0061
0.0029 | 0.0031 | 0.0060
0.0028 | 0.0031 | 0.0059
0.0028 | 0.0031 | 0.0059
0.0028 | 0.0031 | 0.0058

0.0028 | 0.0031 | 0.0059

O] 0] N] O] O] ] W] N
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Figure 6.41 shows the resultant antecedent partdicd membership functions.
The resultant parameter estimates for local moalelsshown in Figure 6.42 along with

the 95% confidence interval.
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Figure 6.41. Antecedent space partition and TAdModel 4
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Figure 6.42. Coefficients for local models in th€SX model in Figure 6.41
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The comparison is made to build a GTSK model wjth3, nu=1 andd =1, which
are ‘truth’ in the Model 4. The antecedent variakdee i(t-1) u(t-2) y(t-1) y(t-2) y(t-3)]
since they are all nonlinearly expressed in ModeTle trial results for GTSK models
with different complexity are collected in Tabl& 6.

Table 6.7. Trials of a GTSK model for Model 4 with regressors included

MSE
M Model Error
Training | Validating
0.0036 | 0.0039 | 0.0075
0.0032 | 0.0035 | 0.0067

2
4
5 0.0029 | 0.0032 | 0.0067
6
U
8

0.0032 | 0.0034 | 0.0066
0.0031 | 0.0034 | 0.0065
0.0031 | 0.0034 | 0.0065
11 0.0031 | 0.0034 | 0.0065
12 0.0031 | 0.0034 | 0.0065

The maximum number of rules is 12 due to the chaoité being 50. It is
interesting to note at first that the number oésulloes not change much when antecedent
dimension is increased from 1 to 5. Antecedentabdes have different values in each
rule. For instance, the antecedent varialftel) has 12 levels. In the conventional TSK
fuzzy models, 12 levels implies 12 fuzzy subsets uf-1). In the conventional
combinatorial antecedent structure, one might exfecreate a fuzzy model out of’5
possible rules. The example shows that the gemedakintecedent structure can largely
improve the capability of modeling by efficientlgpresenting an antecedent space.

More importantly in this example is to observe ttra&# minim Model Error in
Table 6.7 is higher than that in Table 6.6. The eh@tbes not become better by using
‘true’ dynamic orders. It provides a piece of evide to show that the order
determination and nonlinear component detectionnigcies in Chapter 4 are appropriate

to provide the structure information for dynaminahlinear modeling.
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The two-phase flow

There are two sets of input-output definitionstfoe two phase flow process. In the
following test, the input is taken as the air flater measurement and the output is the
pressure drop measurement. According the Table thé2letermined order is defined by
ny=2, nu=0 andd=1. The antecedent variables are detected nonlowaponenty(t-2)

andu(t-1). Figure 6.43 shows the antecedent space.

y(t-2)

u(t-1)
Figure 6.43. Two-dimension antecedent space fotvthephase process
The training data set include 8830 samples. Thelatedn data set include 3000

samples shown in Figure 6.44.
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Figure 6.44. Validation data set for the two-phié®& process
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The trial results for different model complexityearollected in Table 6.8, where

the 6-rule model has the minimum Model Error.

v MSE Model
Training | Validatingerror

1 1.74E+0A.23E+022.97E+02

5 1.50E+0®.52E+01)2.45E+02

6 1.46E+0B®.72E+012.43E+02

Table 6.8. Trials of a GTSK model for the two phpsscess

Figure 6.45(a) shows the obtained partition ofahtecedent space into 6 regions.
The initialized truth of antecedent witlhA = 0.05 is illustrated in Figure 6.45(b).

200 1 200

150 1 150

100 )\

y(t-2)
y(t-2)

1004

0 5 10 15 20 25 0 5 10 15 20 25

u(t-1) u(t-1)
(a) (b)

Figure 6.45. a) Antecedent space for two phase filmeess; b) EllipsoidsTA=0.05)

The coefficients for local models are shown in Fég6.46.

174



100 0.6 *

o 50 < 0.2
an) [3 [an) * {
} 0
0 : $ 0.2 b4
0 2 4 6 0 2 4 6
r r
7 20
l L]
0.6 } 0
= < )
0.4 3 10 {
0.2
¢ ; 20 + 3
0 ;
0 2 4 6 0 2 4 6

Figure 6.46. Coefficients for local models in th€SX model in Figure 6.45

The nonlinearity of the process could be verifieg the evident coefficient
variation across rules shown in Figure 6.46. Ruleotlers the most of the antecedent
space and describes the process behavior operaded high air flowrate. High air flow
blows water out of the vertical pipe creating amwar flow pattern. Varying the air
flowrate when water is out barely affects the puessdrop. The negligible effect is
reflected by the small coefficient value @fin Rule 1. When the process is operated in
an intermediate air flowrate, with air and wateexisting in the pipe, varying the air
flowrate will affect the density of the air-waterixnwhich in turn affects the pressure
drop. The process behavior observed in intermedai@tdowrate is primarily described
by Rule 4. The other Rules, 2, 3, 5 and 6 desd¢hbeorocess behavior operated under
low air flowrate and transition behavior from intexdiate air flowrate to low. When the
air flowrate is further decreased from the interragdregion, not only the density of the
air-water mix is changed but also water starts mcdating in the pipe. With the
increased water holdup, pressure drop is increaBad. of the water accumulation
operation is described by Rule 3 and 5. Rule 6Gufeatlow pressure drop and low air
flowrate. The low pressure drop is due to previbigh air flowrate conditions, which
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blows water out of pipe. Therefore, Rule 6 des&itie transitional behavior from high
to low air flowrate. Rule 2 is also featured witwl air flowrate but it has high pressure
drop. Therefore, Rule 2 describes the process mhak further reducing the airflow
rate when a certain amount of water has been adatedun the pipe.

Distillation Column

The parameter value estimation for the distillatamiumn is also based on the
previously determined dynamic order and selectetdimear component candidate sets in

Chapter 3. The parameter value estimation is atiedifor each output.
Overhead Concentration,xp (=yi)

For the outpuyy, the determined regressors argtfl) yi(t-2) yi(t-3) yo(t-3) ua(t-
3)], and antecedent variables are to be chosen fyeffi2) y.(t-3)] or [y.(t-3)]. Five
thousand data samples in the training set are taseléntify a GTSK model and another
set of 3000 are used for validation. Both dataasetused to compare different choices of
antecedent variables and model complexity in teofneumber of rules. The result is
summarized in Table 6.9.

Table 6.9. Training and validation results for @€SK model ory;

Antecedent  |No. of Rule:  [Training (MSEMalidation (MSE|lotal MSE
2 2.71e-5 2.76e-5 5.48e-5
3 2.68e-5 2.75e-5 5.43e-5
ilt2)yl3) iy 2.656-5 27465 5.406-5
6 2.62e-5 2.85e-5 5.47e-5
2 2.70e-5 2.80e-5 5.50e-5
3 2.67e-5 2.76e-5 5.43e-5
[yo(t-3)] 7! 2.65e-5 2.77e-5 5.42e-5
S 2.64e-5 2.77e-5 5.41e-5
10 2.62e-5 2.81e-5 5.43e-5
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Observed from Table 6.9, the best one is a 4-rdI8KGmodel with bothy,(t-2)
andy,(t-3) included in the antecedent. The antecedenesgahown in Figure 6.47. The

corresponding antecedent space partition and ke of antecedent A =0.05 for each
rule are shown in Figure 6.48.

yl(t'Z)

Figure 6.47. Two-dimension antecedent spacg;fof the distillation column
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Figure 6.48. a) Antecedent space partitionyfaf the distillation column;
b) Ellipsoids TA=0.05)

Figure 6.49 shows the local model coefficients ek 95% confidence interval.
It seems possible to simplify the GTSK model by gireg rule 2 and rule 3 due to the
same argument mentioned above to merge rule 8@mdHigure 6.39.
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Figure 6.49. Coefficients for local models in th€SX model in Figure 6.48

Confidence interval overlaps are observed dprand 03 across all rules. The
observation may indicate constant coefficientsrégressorgi(t-1) andy;(t-3). Then a

hybrid model structure may be defined
y(t)=ay(t-2)+ayy,(t=3)+ f (y,(t-2) .y (t- 3 uyt-3) (6.15)

Overlap of confidence interval is also observedfoOne might also decide that
coefficient fory,(t-2) is a constant across all rules. However, ateohoefficient to
yi(t-2) is unable to takg(t-2) out of the nonlinear part and add another liniean like
agy1(t-2) since the regressoyi(t-2) is included in the antecedent. One possibiityo
takey;(t-2) out of antecedent such as the second best modalble 6.9. It is a 5-rule
model with only one antecedent variag¢-3). The corresponding antecedent partition
is shown in Figure 6.50. Confidence interval overar 01, 6, and 63 is observed in
Figure 6.51. Sincgi(t-2) is no longer included in the antecedent, ithisn possible to
takeyi(t-2) out of the nonlinear part in Equation (6.13) aadefine a hybrid model by
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y(t)=ay,(t-1)+ay,(t-
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Figure 6.50. Antecedent space partition and TAg{fof the distillation column
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Figure 6.51. Coefficients for local models in th€SX model in Figure 6.50
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Bottom Concentration, Xg (=Y»)

The same procedure is also applied to the outputFor the outputy,, the
determined regressors ag(f-1) y2(t-2) us(t-3) ux(t-1)]. There are two sets of antecedent
variables to be compared;(t-1) ux(t-1)] and px(t-1)]. The result is summarized in Table
6.10.

Table 6.10. Training and validation results for GESK model ory;

Antecedent  [No. of Rule:  [Training (MSE)Validation (MSEModel Erro
1 1.36e-7 1.10e-7 2.46e-7
[yo(t-1) up(t-1)] 2 1.17e-7 9.70e-8 2.14e-7
3 1.13e-7 1.05e-7 2.19e-7
1 1.36e-7 1.10e-7 2.46e-7
[Up(t-1)] 2 1.17e-7 9.80e-8 2.15e-7
3 1.14e-7 1.05e-7 2.19e-7

Observed from Table 6.10, the best one is a 2mddel with bothy,(t-1) and
Uy(t-1) as antecedent variables. The next choicisude model with onlyi(t-1) as the
antecedent variable. We first explore the bestagholhe resultant antecedent space
partition and the truth of antecedenTat=0.05 are shown in Figure 6.52.
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Figure 6.52. Two-dimension antecedent spacg.fof the distillation column
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Figure 6.53. a) Antecedent space partition outpof yhe distillation column;
b) Ellipsoids TA=0.05)
It is observed in Figure 6.53, the separation baunds almost vertical. The

observation suggests a lower antecedent dimengibnonly u,(t-1), which in this case
matches the second best choice in Table 6.9. F§bre shows the resultant antecedent
space partition with only one antecedent variabjé;1). Figure 6.55 shows the local
model coefficients and their 95% confidence intefoathe 2-rule model.
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Figure 6.54. Antecedent space partition and TAyfaf the distillation column

181



& 0.012 S o \
0.01 t 0.85
0 1 2 3 0 1 3
r r
x 10
0.1 ¢
0.05 + 4
s S 3
0 ’ )
0 1 2 3 0 1 2 3
r r
x 10*
2.2 $
EY
S 28
3
3.2 $
0 1 2 3

Figure 6.55. Coefficients for local models in th€SX model in Figure 6.50

Figure 6.55 shows that the nonlinearity in theu2-rmodel is due to nonlinear
coupling betweern(t-3) anduy(t-1). Coefficients for regressong(t-1) andy,(t-2) could
be considered as constants. The following hybnidctire could then be defined for
output,ys.

y(t)=ay,(t-1)+ay,(t-2)+ f (u(t—3) u,(t-1) (6.17)

A MIMO (2,2) Model

The above procedure treats each output individu@liytputy; is described by a
5-rule model, where the only antecedent variabyg(is3). The antecedent space partition
is shown in Figure 6.50. Outpyt is described by a 2-rule model, which has an
antecedent variabley(t-1) with the antecedent space partition shown gufe 6.54.
These two GTSK models could then be consideredM®{2,2) model with two inputs
and outputs. It is possible to construct a morepamnMIMO (2,2) GTSK model from
the obtained two GTSK models. The constructiontstay compounding the antecedent
space. The antecedent space in a MIMO(2,2) GTSKeimaill have dimension 2, which
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includes antecedent variables from both singlewtu@T SK models.
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Figure 6.56. Two-dimension antecedent space fomMiivO(2,2) GTSK model

The extended antecedent spaggt-3), ux(t-1)) will be partitioned by linear
boundaries resulted from an exhaustive combinabionbtained linear boundaries for

both antecedent variablggt-3) andu,(t-1). Figure 6.57 shows the partitioned antecedent
space for the MIMO(2,2) model.

42 44 46 48 50 52 54

uz(t-l)

Figure 6.57. Antecedent space partition for the 1@I2,2) GTSK model
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Local models for each region in Figure 6.56 willtaken from individual models
respectively. Note that the above mentioned coastm only provides a more compact
model description but not extra modeling accuracyinterpretability. Actually, the
interpretability is reduced. From either singlepuit GTSK model, it is clear to tell
which regressor has the dominant affect on theimeaulity for the corresponding output.
In this case,y,(t-3) affectsy; nonlinearly andu,(t-1) affectsy, nonlinearly. The
decoupled connection is however smeared in the Miigi@at, one can only tell that
both y,(t-3) anduy(t-1) are affectingy; andy, nonlinearly. The advantage of having a
MIMO format is to provide a general model descaptfor the subsequent analysis and
applications.

If both individual models share same antecedentabims, one could create
MIMO models directly by solving the MIMO version @RP in Section 5.6. It is
however not the case for the distillation columaraple.
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CHAPTER VII

SUMMARY, CONCLUSIONS AND
FUTURE RESEARCH RECOMMENDATIONS
7.1  Summary

In this work, a generalized antecedent structgreprioposed to replace the
conventional combinatorial structure in a TSK fuzmgdel. One of new features in the
proposed antecedent structure is the extra dedr&eemlom in angle, which makes it
possible to rotate the active region of a rulehla work, active regions have the shape of
ellipsoids. The rotation improves the coveragecedficy of rules. The improvement is
achieved by allowing active regions to be moreifigxshaped according to function
nonlinearity, which replaced the forced shapesnte@ along with coordinates in the
conventional antecedent structure. As a consequeiee improved rule coverage
efficiency is expected to extend the applicatiod 8K fuzzy models to higher dimension

problems.

Another feature in the proposed antecedent steicts the separation of
antecedent dimension from the overall dimensioraf@TSK model. The distinction is a
direct effort to deal with “the curse of dimensibtyd and makes it even possible to
apply the conventional TSK fuzzy models to high emsion problems so long as the
corresponding antecedent dimension is acceptabtee Nmportantly, the dimension
separation is made applicable in this work by treppsed method to detect nonlinear

components, which defines antecedent variablesaatgtedent dimension.
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One focus of this work is to use the resultant GTi8&del featured with the
proposed antecedent structure to model nonlineaardic processes. A systematic
approach is provided to create a GTSK model froputioutput data. The overall
dimension of a GTSK model defined by dynamic ordsrsletermined by a selection
procedure based on the recursive estimation ofiafipatearranged data using the
proposed SNNR method. The recursive estimationMNFStreated data is also used to
detect nonlinear components, which in this workerefo the regressors having
dominating impact on the nonlinear behavior of @cpss.

The parameter estimation for the GTSK model wite groposed antecedent
structure is initialized by recognizing ellipsoioist of a partitioned antecedent space. The
partition in this work is conducted recursively. éach step, a spliiting and regression
problem is solved by the proposed procedure. $hiswn at least that the solution is a
local optimum for the defined problem. Model paréene can be further tuned by a
Newton’s method that solves a constrained optindmajproblem. Constraints are
imposed on the positive definiteness of shape oeatrin the proposed antecedent
structure.

7.2 Conclusions

The proposed SNNR method rearranges time-sequeawediata by spatial order.
The SNNR treatment is demonstrated to be able tibcally reduce the parameter
variation caused by nonlinearity. The effectiveneSSNNR is verified by the reduced
MSE on rearranged output and its prediction. ltusthde noted that the SNNR used in
this work is only to prepare raw data for subsetuamalysis on dynamic order
determination and nonlinear component detectioe. fEduced MSE due to SNNR by no
means suggests an alternative approach for reeuestimation for better prediction.
Simply, prediction is a temporal concept and omgleable for the time-sequenced data,
using past observation to predict the future bedraowever, the time sequence is no
longer preserved in SNNR treated data, where thguatation using recursive estimation
equations should not be interpreted as prediction.



The proposed dynamic order determination basedNINRSis able to discover
influential regressors. The method is however motget and makes ‘mistakes’. However,
it provides better results in terms of number ofistalkkes’ and sensitivity to noise,
compared to the method using time-sequenced datap@ring to other methods like

geometric method, the proposed method performsaféssted by noise.

The nonlinear components detection finds the regresthat exhibit dominating
impact on process nonlinearity. The obtained resari¢ verified by comparing to testing
models and further verified in Chapter 6 by tryihfferent antecedent variables in GTSK

models.

The proposed solving procedure for separation bauesl shows better
performance than other solvers (Newton’s methodNeider-Mead) in terms of locating
a global optimal solution for a given multimodalptiization problem. However, the
proposed solver is highly designated to the sejparaind regression problem defined in
this work. It should not be understood that a betigtimizer is offered to replace

Newton’s or Nelder-Mead method in general.

Model parameters for antecedents and consequeatsnaialized once the
antecedent space partition is achieved. The iziéigbn uses only data confined in a
recognized subspace to compute for the correspgrrdie, centroid, shape matrix and
local model coefficients. Therefore, it is notmising to observe that initialized rules
exhibit limited interactions, which make rules maredular and interpretable. The
interpretability could be verified by comparing thehavior of a rule with the local

behavior of the nonlinear model.

The overall modeling accuracy of a GTSK model cduddimproved by further
adjusting model parameters in an optimization sehemhich is conducted in this work
by solving a constrained optimization problem. Abserved in this work, the
improvement in terms of modeling accuracy is adgkiely interaction increase between
rules. The observation is intuitively reasonable amcreased interaction can at least

make the GTSK model behave smoother. On the ot hinteraction increase reduces
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the modularity. A rule alone is not sufficientdescribe the local behavior of a nonlinear
process. Therefore, individual rules become lesspretable. Users should be aware of
the effect of parameter optimization on moduladahd interpretability. If preference is
set on modeling accuracy, one might accept a teésgretable model. On the other hand,
one might prefer a modular model if, for instano@del management is concerned. It is
possible that the obtained model might be augmenyatkleting obsolete rules or adding
new rules in the model management phase. It isdleited that any alteration has only
local impact, which is possible if coupling betweaadules is limited.

The proposed parameter estimates are much betteerins of modularity
compared to those estimated based on random izatian. The rules in GTSK models
resulted from optimization starting from random tiadization barely retain any

modularity.

The obtained GTSK models exhibit desired behaviith wllipsoids expressing
the truth of antecedent oriented according to fonchonlinearity. The rule distribution
in a GTSK model is also reasonable. Rules are gigemore nonlinear portion of a
function or to approximate a nonlinear functioraifiner scale. These observations imply
that the complexity of the resultant GTSK modelshis work is determined by function
nonlinearity rather than problem dimension. Thidesired behavior, which could be the
basis to support applying GTSK models to high disiam problems.

The conventional interpretability in individual acedent variables will be lost
due to the additional degree of freedom that costball antecedent variables. However,
the interpretability of the antecedent as a whelstiill meaningful. A rule antecedent can
be interpreted as a function that defines actiggorefor the consequent model. It is also
shown that it is possible to regain the conventiamarpretability by converting the new
GTSK model into the conventional format by definisgveral new variables. Then,
interpretation in new variables could be defined.

7.3  Future Research Recommendations

This work provides a systematic approach startiroghfdetecting data structure
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and ending at a GTSK model. Many aspects in thikwould be further investigated.

In this work, the dynamic order determination meiti®limited to the ARX type
of nonlinear dynamic processes. The limitationus tb the SNNR operation that needs
access to measurements. It is desired that the determination technique could be
generalized to include a broader range of modatstres, where lagged prediction or
residuals might be included as candidate regredsotse tried. They are, however,
unavailable from measurements directly. A recomredngrocedure is to start the
generalization by first considering an ARX struetuifhe obtained prediction for the
rearranged data could then be used to computeusdsidrhen, the SNNR operation on
prediction and residuals becomes possible.

The SNNR operation is this work is conducted inratdsforce manner, which
finds the exact nearest neighbor to a point in esiep by computing its distance to all
other points and finding the minimum. Further irtigettion is desired to improve the
efficiency of the SNNR operation.

The nonlinear component detection in this work wse®xhaustive search to try
all possible combinations of regressors, which wotduse scalability problem when
dealing with high dimension problem. Therefore, ioying the search method for
nonlinear component detection is also worthy oftferr investigation.

The order determination method is not perfect. @tter determination is based
on spatially rearranged data. The rearrangemembwsever based on the assumption of
negligible high-order influence of regressors orap@eter variation. It is then a research
focus in the future to relax the assumption by mergg higher order influence, or it is
more desired to find an approach to test the assomp

This work used all variables up to a certain ordet,just the sparse subset found

as important. Next pursuit should explore using ¢né variables found to be regressors.

Algorithms to solve the separation and regresgosblems could also be a

research topic. A heuristic method appearing ie@mt paper by (Magnani & Boyd,
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2009) might be an alternative to solve the probdeah worthy of investigation.

This work suggested that the obtained GTSK modaisbe further simplified by
merging parameter-like rules or being redefined dxybrid including an explicit linear
structure. The later practice could be unified wite dynamic order determination and
nonlinear component detection to allow users ta gabpre insight into the model

structure embedded in data.

Another future research topic is on model managéntenlet the model
automatically adjust according to the dynamic beravariation of the process to be
modeled. One could adapt the local model coefftsien modify the interaction between
rules to eliminate the mismatch. It is also posstbladd new rules if mismatch is caused
by never observed behavior. It is desired in theréustudy to find a systematic approach
to reduce the mismatch and preserve interpretatift minimum modification of a
model via evaluating all possible modificationstd®ang interpretability will need extra

constraints to restrict the interaction betweensul

The proposed modeling approach is tested on ddwenahmark problems and a
laboratory scale process. A possible future ingasibn is to broaden its application to
industrial scale problems. The application coulclion different aspects. GTSK models
could be used only for prediction and monitoringeQOnight be interested only in finding
the overall problem dimension. It is also possiblévestigate the structure embedded in
input-output data expressed by a hybrid structutle both linear and nonlinear parts. A
very important application is to use obtained GTi&&dels to design controllers (Sala,
Guerra & Babuska, 2005). There have been manyreifteways proposed to design
fuzzy model based controllers; adaptive nonlineartrol using feedback linearization
(Feng 2002; Feng and Chen 2005; Qi and Brdys 20@&pgr matrix inequalities based
parallel distributed compensator (Tanaka & Wand)130gain scheduling-like multiple
model approach (Hunt & Johansen, 1997) and nomnlimeadel predictive control
(Abonyi, Nagy & Szeifert, 2001; Fischer, Schmidtkavsek-Biasizzo, 1997; Huang,
Lou, Gong & Edgar, 2000). A comprehensive invesiigaand comparison of these

methods is desired.
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