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CHAPTER I 
 

INTRODUCTION 

Efforts to describe chemical processes exist in various forms. Preferentially, based 

on idealized and simplified understanding of the underlying mechanism, first-principles 

models are developed. Many of these models have been standardized in commercial 

software such as ChemCAD for education or AspenPlus for prototyping process design. 

However, hardly can an idealized first-principles model find its application in practice; 

because, often, some artificial factors (like tray efficiency in a distillation column) have 

to be introduced to augment an ideal model to improve modeling accuracy via tuning 

against experiment data. Moreover, first-principles models are expensive to develop. It 

takes time for researchers to acquire sufficient knowledge for describing a new process 

mathematically and comprehensively. An ultimate goal of first-principles modeling is to 

understand the fundamental physics. However, in practice, partial or empirical 

understanding is often sufficient for certain practical applications. For instance, a 

modestly accurate input-output dynamic model makes controller design possible. 

Contrasting to first-principles modeling, another effort is black-box modeling by 

system identification. Black-box modeling tends to overlook details in mechanism, but 

focuses on input-output behavior of a process. For instance, the input-output description 

via first-order-plus-time-delay models is often adequate for process control engineers to 

tune PID controllers. There are many choices for model structures including Finite 

Impulse Response, Autoregressive with exogenous inputs, Output Error, Autoregressive 

and Moving Average with exogenous inputs, and Box-Jenkins. For each structure, the 

simplest one is a linear model. Surprisingly, many chemical processes can be quite well 

described using linear models due to the fact that most chemical processes are operated 

around a steady state operating point. The linear model could be interpreted as a local  
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linearization of the truly nonlinear chemical process. 

Despite the fact that linear models have been successfully used in many chemical 

processes, efforts have been devoted to describe nonlinear dynamical chemical processes in a 

more compact or unified approach. It is also expected that nonlinear modeling can provide 

more accurate description. If a nonlinear model is desired, users have options to represent a 

nonlinear function mapping. These options include but are not limited to polynomial models, 

piecewise models, basis function models, network models, and fuzzy models.  

Interestingly, there is also experienced-based knowledge existing for chemical 

processes. These rules are familiar to us in various forms including process operating 

instructions and manuals, handbooks and rules of thumb. Some rules are derived from prior 

knowledge, which could be either understanding of fundamentals or experts’ experience. For 

instance, our knowledge regarding distillation behavior might produce two following rules 

expressing steady state relations: 

IF Reflux (R) is Fast THEN Overhead Purity (xd) is High 

IF Reflux (R) is Slow THEN Overhead Purity (xd) is Low 

where linguistic terms ‘Fast’ and ‘Slow’ are used to specify Reflux (R) while ‘High’ and 

‘Low’ are used to specify xd.   

 Knowledge expressed in logical rules is easy to understand but often difficult to use. 

Linguistic terms such as Fast, Slow, High, and Low are often not clearly defined. Moreover, 

human knowledge might be incomplete or outdated. 

 In this work, one focus is to describe the input-output behavior of a nonlinear 

dynamic process. We choose TSK (Takagi-Sugeno-Kang) (Sugeno & Kang, 1986; Takagi & 

Sugeno, 1985) fuzzy models to approximate nonlinearity. The choice is motivated to take 

advantage of simplicity, interpretability, modularity and flexibility in a fuzzy model. 

The concept of a fuzzy set was introduced by Zadeh (Zadeh, 1965) to express degrees 

of membership of elements to sets, which could be viewed as a generalization of the classical 
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notion of set defined on a two-value (0 and 1 or Ture and False) membership value. 

Subsequently, fuzzy logic is invented to handle the reasoning based on fuzzy sets. There are 

many ways to define fuzzy logic. An interesting application of fuzzy logic in engineering 

fields (fuzzy logic in broad sense) is fuzzy modeling, which uses fuzzy models to represent a 

nonlinear function. A fundamental proof, which permits the belief in fuzzy modeling shows 

that a fuzzy model is a universal approximator (Kosko, 1994). It simply means that fuzzy 

models can theoretically approximate almost any nonlinear function. Although a fuzzy model 

is not the only universal approximator, it is preferable over other modeling approaches 

because of its simplicity, interpretability, modularity and flexibility. 

One aspect of simplicity could be the modeling simplicity. One merit in fuzzy 

modeling is to allow users to translate their intuition and knowledge into a qualitative model 

description at first, by a fuzzy model, and leave quantitative description to a later tuning 

phase. For instance, an experienced operator can quickly provide a model with several rules 

to describe a distillation column as shown above, then, subsequently the break points 

defining linguistic categories can be fine tuned. 

Because fuzzy models are strongly connected to human knowledge, they are often 

accredited interpretability. The use of linguistic terms seems to be an ‘obvious’ reason. For 

sure, the involvement of linguistic terms makes a fuzzy model appear friendly to users. More 

fundamentally, the interpretability is due to the fact that a fuzzy model is expressed in 

IF…THEN structure, which matches the reasoning procedure for humans and makes a fuzzy 

model appear ”intelligent”.  

Another important aspect of interpretability is knowledge transparence, which is due 

to the modularity in a fuzzy model. Fuzzy models are made of rules. Regardless how ‘big’ a 

fuzzy model is, each rule in the fuzzy model is relatively simple. A fuzzy model as a whole 

with thousands of rules looks by no means interpretable no matter how many linguistic terms 

are used. However, the modularity in a fuzzy model allows users to look at a fuzzy model in 

a different way by shifting focus onto individual rules. In each rule, knowledge on local 

behavior of a nonlinear process becomes clear, and interpretability is possible. 
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Modularity is also aligned with the concept of divide-and-conquer in dealing with 

complex problems. In fuzzy model identification, modularity could be exploited to convert 

the identification of a fuzzy model to a number of smaller and simpler identification 

problems, each of which focuses on a rule. In applications, for instance, designing a fuzzy 

model based controller, modularity is used to translate the controller design for a fuzzy 

model into a number of smaller and simpler controller design problems. 

Modularity also leads to flexibility in fuzzy models. A fuzzy model can be viewed as 

an interface rather than a model. It serves as a common gateway to connect different types of 

models and allow communication among them. As shown below is a possibility to let a fuzzy 

model to incorporate different types of models  

IF x is High THEN use a first-principles model 

IF x is Low THEN use a Neural Network model 

IF x is Medium THEN y is High 

The flexibility and modularity also simplifies the model management maintenance. In 

addition to adapting model parameters to compensate model-plant mismatch, fuzzy models 

also allow insertion and deleting operations on rules to incorporate newly discovered events 

and eliminate obsolete behavior.  

 Different from most black-box modeling approaches, in our view, fuzzy models 

explicitly separate nonlinear components in a model from its linear components. This work 

will exploit this feature to simplify the model structure. 

However, the applications of fuzzy models are limited by their insufficiency to handle 

high-dimension problems due to a well known problem, the curse of dimensionality. With 

this restriction, fuzzy models can hardly have any significant practical impact. Even for a 

single-input-single-output (SISO) dynamic process, fuzzy models will be embarrassed if the 

SISO process has high dynamic orders. Many successful academic examples of using fuzzy 
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models are demonstrated on dynamic processes with low dynamic orders, often not 

exceeding four.  

In this work, fuzzy models, particularly TSK type of fuzzy models are chosen to 

describe nonlinear dynamics due to the potential benefits mentioned above. The TSK model 

used in this work is featured with a generalized rule structure, which is proposed to overcome 

its insufficiency in dealing with high dimensional problem. The new structure has different 

dimensions in rule antecedent and consequent. Usually, in this work, the antecedent 

dimension is lower than consequent and contains only ‘nonlinear variables’, which tends to 

directly handle the curse of dimensionality by having fewer variables included in 

antecedents. Additionally, the new structure replaces the combinatorial antecedent structure 

by a more flexible one, where an extra degree of freedom is introduced to ‘rotate’ the 

coverage of a rule. The new addition reduces the number of rules needed in a TSK model by 

improving the covering efficiency of each rule. With the generalized rule antecedent 

structure, the TSK model in this work is referred to as GTSK (generalized TSK). 

The structure of a GTSK model includes the overall model dimension and antecedent 

dimension. In this work, since the primary modeling target is nonlinear dynamic processes, 

the determination of the overall dimension of a GTSK model is translated to discover the 

dynamic orders from measured input-output data. The antecedent dimension of a GTSK 

model is determined by finding nonlinear components in a GTSK model.  

Parameter estimation of the GTSK model is automated heuristically by recognizing 

rules from an iteratively partitioned space. Following the heuristic procedure is the fine 

tuning of the fuzzy model parameters by solving a nonlinear optimization problem with 

matrix inequality constraints. 

This work tends to provide a unified and systematic procedure to obtain a GTSK 

model with new rule structure from input-output data for a nonlinear dynamic process. The 

procedure is demonstrated on several theoretical benchmark problems, which are drawn from 

published research works and are used primarily for illustrating ideas, comparing methods 

and verifying results. The procedure is also tested on a distillation column simulator, which 
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has been successfully used in past research work (Ou, 2001). Additionally, the procedure is 

tested on a pilot-scale chemical process, two-phase flow, which exhibit nonlinear dynamics, 

time delay, and measurement noise.  

 Innovations of this work are design of a new rule antecedent structure, which has a 

reduced antecedent dimension and a more flexible antecedent structure, design of a 

systematic approach to determine dynamic orders and detect nonlinear variables, and design 

of a heuristic procedure that iteratively partition an antecedent to generate regions, within 

which a linear relation is valid. 
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CHAPTER II 
 

LITERATURE SURVEY 

2.1 Literature Survey for Dynamic Order Determination 

TSK type of fuzzy models is used in this work to describe a nonlinear dynamic 

process. Several potential benefits that users might expect from a fuzzy model have been 

listed in the Introduction. The modeling procedure proposed in this work is capable of 

dealing with multiple-input-multiple-output (MIMO) processes. However, the majority of 

technical elaboration will be based on single-input-single-output (SISO) models as 

described in Equation (2.1) for the simplicity of presentation. The extension to MIMO 

models will be addressed accordingly.  

( ) ( ) ( ) ( ) ( )( ) ( )1 , , , , ,y t f y t y t ny u t d u t nu d e t= − − − − − +L L    (2.1) 

Equation (2.1) is a nonlinear autoregressive with exogenous input (NARX) model. The 

term NARX is chosen to be consistent with its linear counterpart, ARX models. The 

terminology is however not unique in the literature. In (Seborg & Henson, 1996), the 

structure in Equation (2.1) is named as a nonlinear autoregressive and moving average 

model (NARMA). In this work, ARX structure is chosen for its simplicity. More 

importantly, function arguments (lagged y and u) in Equation (2.1) include only input and 

output measurements. Some operations and treatment on raw data in this work are 

currently limited to model structures that have only measurable function arguments. 
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More complex structures could be used to describe nonlinear dynamics if 

necessary. A nonlinear NARMAX model is described in (Johansen & Foss, 1993). Its 

structure information is retrieved from its linear counterpart, ARMAX. As commented in 

(Nelles, 2001), more advanced structures are often not worth their additional 

complexities in describing nonlinear dynamics. On the other hand, NARX models as 

simpler models should often be tried first for any unknown structure nonlinear dynamic 

processes.The btained NARX models could be the basis for further structure variation or 

complication. In (Fischer, Nelles & Isermann, 1998), an NARX is first identified then 

converted to a nonlinear output error model (NOE) by some regressor replacements (for 

instance, y(t-1) is replaced by its prediction ŷ(t-1)) followed by model parameter retuning. 

Additionally, we assume, in this work, that ny, nu and d in Equation (2.1) are time 

invariants. The additional simplification may be against the nature of some realistic 

processes. For instance, a time-varying delay is often encountered in chemical processes, 

where a transportation delay strongly relates to a flow rate that is time varying in nature. 

On the other hand, a constant delay is often a good enough approximation in practice, 

especially in a relatively steady working condition.  

The first step in system identification is to determine orders of the model. For the 

SISO model in Equation (2.1), the problem is then to discover ny, nu and d. 

In terms of dynamic order determination, there are well-developed methods for 

linear systems. For dynamical linear systems, a preliminary analysis using autocorrelation 

and partial autocorrelation (Box, Jenkins & Reinsel, 1994) is able to identify dynamic 

orders. The result is often a set of candidate orders to be tried and validated further 

against data. Dynamic order determination can also be translated to problems regarding 

regressor analysis. Regressor analysis does not result in the dynamic orders and time 

delay directly. However, it would be a trivial practice to draw, ny, nu and d from the 

result of regressor analysis. One method is subset selection (Miller, 1990), which has 

different versions including forward selection, backward elimination, cycling 

replacement and exhaustive search methods. Among them, only exhaustive search, the 

most expensive one, is guaranteed to be able to find a global optimal solution, the best set 
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of regressors. Other methods are heuristically motivated aiming at a suboptimal solution 

with improvement in searching speed or efficiency.  

Analysis of variance (ANOVA) as a tool to find the influential experimental 

factors can also be used to find influential regressors (Lind & Liung, 2008). ANOVA 

method suffers from the curse of dimensionality and the evaluation of interacting 

influence among factors requires a combinatorial amount of trials. In addition, a 

conventional ANOVA procedure takes finite levels of experimental factors rather than 

continuous (‘infinite’ levels) values. Extra computation is required to prepare the raw 

data for ANOVA analysis (for instance by clustering).  

For nonlinear dynamical models, even for NARX models, there is not a general 

method such as the autocorrelation or partial autocorrelation method available for 

dynamic order determination. Rigorous analysis based on nonlinear correlation is 

possible if the nonlinear structure of f is known or presumed (Haber & Unbehauen, 

1990). There are a variety of choices of predefined nonlinear structures such as bilinear, 

Wiener, Hammerstein models or their combinations. Another approach aims at a general 

target and does not depend on a predefined nonlinear structure. The geometric method 

(Molina, Sampson, Fitzgerald & Niranjan, 1996) is proposed to determine the embedded 

dimension in deterministic nonlinear autoregressive nonlinear systems. Following the 

same concept, its extension to dealing with deterministic ARX by including inputs is 

proposed in (Rhodes & Morari, 1995) based on False Nearest Neighbor. Both methods 

are more intuitively motivated rather than rigorously derived, and can be roughly argued 

based upon the first-order Taylor expansion. Another method also based on the first-order 

Taylor expansion argument is Lipschitz Quotient (He & Asada, 1993) aiming at 

deterministic NARX dynamic processes. 

The difficulty in determining the order in Equation (2.1) is the unknown nonlinear 

function, f. Even if f is known to be nonlinear, the richness of nonlinearity would keep 

users from exhausting all possible nonlinear forms, making it difficult to find ny, nu and 

d. If the nonlinearity is known, it is possible to transform a nonlinear problem into a 

linear problem. If the nonlinearity is unknown, users could resort to any one of ‘big’ 
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models such as neural network or any other one being proved to be a universal 

approximator. These complex structures are able to capture almost any nonlinearity given 

enough flexibility. Without nonlinearity being a problem, users can then experiment and 

compare different sets of orders in these ‘big’ models. The drawback of using ‘big’ 

models is high computational burden. Additionally, as we will present later, 

experimentation of dynamic orders in ‘big’ models is not suitable for another objective in 

this work, nonlinear component detection. In our work, a unified approach is proposed 

for both dynamic order determination and nonlinear component detection.  

2.2 Literature Survey for Fuzzy Model Structure 

There are several different types of fuzzy models. One of them is the Mamdani 

fuzzy model (Mamdani, 1974). For the nonlinear dynamic process in Equation (2.1), 

Mamdani fuzzy models might be defined by rules as below 

( ) ( )( )
( )

1 1 1 is     is  

y t

r r
ny nu

r

y t A u t nu d A

C

+ +− − −IF AND AND

THEN is

L   (2.2) 

where, the expression ( ) ( )1 11 is     isr r
ny nuy t A u t nu d A + +− − −AND ANDL  is the antecedent of 

the rule. The expression ( ) ry t Cis  is the consequent of the rule. The variables y(t-1), …, 

y(t-ny), u(t-d), …, u(t-nu-d) are antecedent variables and 1
rA  is the fuzzy subset for y(t-1) 

in the rule. Notations of fuzzy subsets for other variables should be clear in context. A 

Mamdani fuzzy model has the perhaps the simplest consequent models.  

An extension of Mamdani fuzzy models is Takagi-Sugeno-Kang (TSK) fuzzy 

model (Sugeno & Kang, 1986; Takagi & Sugeno, 1985). The generalization goes to rule 

consequent. For the nonlinear dynamic process in Equation (2.1), a rule in a TSK fuzzy 

model could be defined by 

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )
( )

1 1

1 1

1 1
1

1 1
0 1

 1 is      is  

1

r r
ny nu

r r r r

r r r ny
ny

r r r r nu
nu

y t A u t nu d A

z y t k z u t d e t

z a z a z

z b b z b z

+ +

− −

− − −

− − −

− − −

= + − +

= + + +

= + + +

IF AND AND

THEN A B

A

B

L

L

L

    (2.3) 



 

11 
 

where, consequent model is ( ) ( ) ( ) ( ) ( )1 1r r r rz y t k z u t d e t− −= + − +A B  with dynamic orders 

ny and nu, pure time delay d and a constant kr. z is the backshift operator. The local 

model could be interpreted as a linearization of the nonlinear dynamic process in 

Equation (2.1). The linearization explains the inclusion of the constant term kr. As 

mentioned in (Leith & Leithead, 1999; Shorten, Smith, Bjorgan & Gollee, 1999), the 

linearization could be interpreted as conducted around either a steady state or transitional 

working point. Including of the later is commented to be able to improve modeling 

performance for transient behavior (Smith & Johansen, 1997). 

 Mamdani and TSK represent two major types of fuzzy models and are different in 

consequents. In fact, a TSK fuzzy model could be further generalized by replacing its 

linear consequent models with other types of models. In (Mastorocostas & Theocharis, 

2002), a new type of fuzzy model is proposed with neural network consequent models. 

Hierarchical fuzzy models (Lee, Chung & Yu, 2003; Liu & Li, 2005; Zeng & Keane, 

2005) are often mentioned in the literature and could also be considered as a particular 

type of generalization by having fuzzy models as local models. 

 Interestingly, fuzzy models could also be compared with models originated from 

other disciplines. It is shown in (Andersen, Lotfi & Westphal, 1998; Roger & Sum, 1993) 

that a TSK fuzzy model with Gaussian membership functions and product operator for 

AND logic conjunction is functionally equivalent to a normalized radial basis network 

under certain restrictions. In (Smith & Johansen, 1997), a TSK fuzzy model is addressed 

in a broader perspective as a multi-model network. 

 The above mentioned fuzzy models represent one direction of generalization of 

fuzzy model structure by making consequent models more complex. Interestingly, not 

much effort is devoted to generalize the antecedent structure in a fuzzy model. The 

maneuverability in antecedents lies mainly in the choices of different types of 

membership functions including triangular, trapezoidal and Gaussian, etc., as well as 

different configurations for a particular type of membership functions.  
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Another degree of freedom in designing antecedents is via using different logic 

operators. For instance, the AND conjunction in the antecedent expression in Equation 

(2.2) or (2.3) could be quantitatively evaluated using either product or minimum operator. 

In addition to these two, there are in fact many other choices for the evaluation of AND 

conjunction, which is defined by a variety of T-norms as a result of research on symbolic 

fuzzy logic (Lee & Zhu, 1995).  

2.3  Literature Survey for Fuzzy Model Identification 

Identifying a fuzzy model generally involves two objectives, structure 

identification and parameter estimation. The structure identification selects variables for 

antecedent and consequent, determining number of fuzzy subsets for each variable, and 

estimating number of rules in a fuzzy model. Parameter estimation determines values of 

model parameters.  

As shown in a TSK rule in Equation (2.3), model parameters include parameters 

defining all fuzzy subsets (membership functions) in the antecedent and those defining 

consequent models. There are many different approaches for fuzzy model identification. 

They vary for different types of fuzzy models to be identified or based on different 

assumptions. Very often in practice, the structure identification and parameter value 

estimation are coupled. For instance, the number of rules is related to the number of 

variables in the antecedent as well as the number of fuzzy subsets for each antecedent 

variable. Meanwhile, an addition or deletion of a fuzzy subset to a variable is expected to 

affect of the distribution of other fuzzy subsets, which in turn results in retuning of 

membership functions for optimal result. Inevitably, any variation in antecedent 

parameter values should be accompanied by corresponding change in consequent model 

coefficients. 

2.3.1 Variable Selection 

 Variable selection determines the variables for rule antecedent and consequent. 

Very often, it is implicitly assumed for simplicity that all rules in a fuzzy model share the 

same set of antecedent and consequent variables. It is therefore equivalent in practice to 
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define the problem as antecedent and consequent variable selection for a fuzzy model. 

Variable selection is not conducted separately but often accompanied by parameter 

estimation/retuning. A common explicit procedure is to try different sets of selections 

with evaluation of their corresponding model accuracy and complexity, and find the best. 

In (Pomares, Rojas, González & Prieto, 2002), the variable selection is conducted 

iteratively in a constructive approach to build a fuzzy model. In each iteration, a fuzzy 

model is augmented by either changing the number of fuzzy subsets of already selected 

variables or adding a variable in antecedent. The better one is kept. Similar to the 

approach widely used in classification tree identification, the antecedent variable 

selection is implicitly conducted in (Nelles & Isermann, 1996). In each step, the 

augmentation of the existing fuzzy model is tried by adding a new rule for each candidate 

variable. The best rule is then kept. In the end, antecedent variable selection is 

automatically achieved by discarding variables from the antecedent, which are never 

selected. The variable selection becomes more complicated for a dynamic process as 

described in Equation (2.1) since each variable is associated with an unknown dynamic 

order. The variable selection problem should then be extended to determine the dynamic 

order for each variable. The extension could be simply achieved by including more 

lagged terms, which, however, largely increases the problem dimension and makes many 

methods designated for low dimension problems become difficult.  

2.3.2 Fuzzy Model Identification 

 There are several different ways to categorize methods in fuzzy model 

identification. Some identification methods are based on heuristic criterion for linguistic 

interpretability and knowledge transparency. On the other hand, many other identification 

methods tend to find a more accurate fuzzy model by minimizing a quantitative 

performance index.  

The approaches to extract fuzzy rules heuristically are mainly inspired by two 

procedures. The Pittsburgh approach focuses on rule set evolution while the Michigan 

approach evolves individual rules independently. Both Pittsburgh and Michigan 

approaches use genetic algorithms for optimization, which is consistent with the main 
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theme being heuristic. More importantly, it is due to the fact that heuristic criteria are 

unable to provide explicit searching directions expressed by gradients or Hessians. The 

research on this field focus primarily on inventing new heuristics by digging deep how 

human process linguistic information, or devise more efficient searching or combinatorial 

optimization techniques (Cordon, Herrera, Gomide, Hoffmann & Magdalena, 2001). 

Different from those heuristically inspired approaches, a modeling error driven 

approach estimate parameter values of a fuzzy model by optimizing the performance 

index, for instance, sum of squared error. In this approach, one could take either a 

‘global’ procedure to tune all parameters (antecedent, consequent parameters) 

simultaneously or a ‘local’ procedure starting from individual rules and combine them to 

be a fuzzy model. The ‘global’ procedure requires a good initial guess to avoid trivial 

solutions or poor local minimal. In (Dickerson & Kosko, 1996), an initial fuzzy model is 

generated by recognizing piece-wise patches along a SISO nonlinear function to be 

approximated. Then a steepest descent optimizer is followed. Heuristics based on 

clustering are also used to recognize the prototype rules (Dickerson & Kosko, 1996; 

Vernieuwe, Baets & Verhoest, 2006; Wang & Yang, 2009). In (Nelles, 2001) rules are 

progressively generated by conducting an equal division in a dimension in each step. It is 

also possible to over-parameterize a fuzzy model and let a simplification procedure (Yen 

& Wang, 1999) to merge redundant rules or eliminate invalid rules.  

It is worthy pointing out that there is a procedure that tends to obtain a fuzzy 

model representation of a known nonlinear process by mathematical equivalence 

(Kawamoto, 1992). This approach has nothing to do with above mentioned fuzzy model 

identification from data. The main purpose of this procedure is to represent a nonlinear 

model by a fuzzy model and exploit the structure features in the fuzzy model to design 

controller, and investigate stability for the original nonlinear model. 

Additionally, heuristic-based stochastic procedures exist to gain both model 

structures and parameter values simultaneously (Du & Zhang, 2008; Guenounou, 

Belmehdi & Dahhou, 2009; Lin, 2008; Lin & Xu, 2006), which however require even 

more computation resources. 
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CHAPTER III 

A GENERALIZED RULE ANTECEDENT STRUCTURE 

In this chapter, a generalized rule antecedent structure is proposed. The new rule 

antecedent uses only nonlinear variables. Additionally, one more degree of freedom is 

introduced to design antecedents to cover an antecedent space more efficiently. The 

following elaboration focuses on a single-input-single-output (SISO) model. The 

extension to multiple-input-multiple-output MIMO models is provided at the end.  

3.1 Model Complexity 

Equation (3.1) represents a SISO dynamic process with dynamic orders ny, nu, 

pure time delay d, and an additive noise e (t) 

 ( ) ( ) ( ) ( ) ( )( ) ( )1 , , , , ,y t f y t y t ny u t d u t nu d e t= − − − − − +L L
 

 (3.1) 

where y is the process response and u is the input. The nonlinear function, f could be 

approximated by a TSK model in Equation (2.3) and reproduced as below for simple 

reference  

  

 

( ) ( )( )
( ) ( ) ( ) ( ) ( )

( )
( )

1 1

1 1

1 1
1

1 1
0 1

 1 is      is  

1

r r
ny nu

r r r r

r r r ny
ny

r r r r nu
nu

y t A u t nu d A

z y t k z u t d e t

z a z a z

z b b z b z

+ +

− −

− − −

− − −

− − −

= + − +

= + + +

= + + +

IF AND AND

THEN A B

A

B

L

L

L
  

 (3.2) 
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Complexity of a TSK model could simply be regarded as the number of rules. For 

the TSK model in Equation (3.2), given that each variable has 5 fuzzy subsets (could be 

linguistically labeled as Low, Medium-Low, Medium, Medium-High, High), there would 

be 5ny+nu+1 possible rules to be considered. The problem dimension (ny+nu+1 in this case) 

is an obvious cause for the complexity. Moreover, the number of rules also depends on 

the number of fuzzy subsets for each variable. The illustrated number, 5 is quite 

conservative in practice. Simply put, the TSK model described in Equation (3.2) has 

difficulty to deal with high dimension problems or it is subject to “the curse of 

dimensionality”.  

In the following, a generalized rule antecedent structure is proposed to design an 

efficient GTSK model by using fewer rules. The new rule antecedent only uses nonlinear 

variables, which separates the antecedent dimension from the problem dimension. The 

complexity of a GTSK model is only related to the antecedent dimension. It is then 

possible to apply a GTSK model to a high dimension problem so long as its antecedent 

dimension is acceptable. 

Additionally, the proposed rule antecedents are expressed as ellipsoids covering 

the underlying local regions and feature one more degree of freedom in design. The extra 

flexibility makes spatial coverage more efficient and simplifies a fuzzy model in terms of 

number of rules. 

3.2 Antecedent Dimension 

The direct approach to reduce the number of rules is to control the problem 

dimension, which is unfortunately determined by the nature of the problem but not by 

users. However, dimension reduction in the antecedent is still possible by excluding 

variables that appear linearly.  

To illustrate dimension reduction, consider the following nonlinear dynamic 

model with three regressors, [y(t-1) y(t-2) u(t-1)]  

  ( ) ( ) ( ) ( ) ( )21 2 2.5 1 1y t y t y t y t u t = − − + + − −     (3.3) 
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Using the rule structure in Equation (3.2), the rule antecedent could then be 

expressed as (y(t-1) is A1 AND y(t-2) is A2 AND u(t-1) is A3)). The antecedent dimension 

is 3, which is same as the problem dimension. Assuming that each variable has 5 fuzzy 

sets, the combinatorial construction will then generate 53=125 possible rules. 

The dynamic model in Equation (3.3) can be represented in a linear format using 

time-varying parameters.  

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 01 2 1y t a t y t a t y t b t u t= − + − + −    (3.4) 

with a1(t) = 2.5, a2(t) = y(t-1) and b0(t) = y(t-1)2 where, model parameters a2 and b0 are 

not only time-varying but functions of the regressor, y(t-1). It indicates that the model can 

be expressed linearly in all variables except y(t-1). The coefficient values in Equation 

(3.4) are independent of y(t-2) and u(t-1). Equivalently, the regressor, y(t-1), is the only 

regressor that changes the otherwise linear model coefficient values. Therefore, y(t-1) 

should be the only one included in the antecedent. The simplified rule is defined by  

( ) ( ) ( ) ( )1 2 1

 ( 1) is  

1 2 1

r

r r r r

y t A

y t k a y t a y t b u t

−

= + − + − + −

IF THEN

  

(3.5) 

where the antecedent dimension is reduced to 1. The possible number of rules is reduced 

from 125 to 5. In Equation (3.5), y(t-1) is then an antecedent variable and collected in a 

vector c(t). Regressors in the consequent including y(t-1), y(t-2) and u(t-1) are collected 

in vector x(t).  

 The concept to include only nonlinear variables in antecedents have been 

explicitly mentioned in (Shorten, Smith, Bjorgan & Gollee, 1999) or implicitly applied in 

(Nelles & Isermann, 1996; Tanaka & Wang, 2001), where fuzzy models are used to 

describe known nonlinear dynamic processes. However, the above mentioned dimension 

reduction can only be made practically applicable if it is able to find antecedent variables 

from data. The detection of antecedent variables will be addressed in Chapter 4.  
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3.3 Antecedent Structure 

3.3.1 A Generalized Antecedent Structure 

As mentioned above, the number of rules is related to the problem dimension by 

5ny+nu+1. In Section 3.2, it is illustrated that it is possible to use a number for the exponent 

less than ny+nu+1. However, the exponential relation between the number of rules and 

the dimension (antecedent dimension) is still preserved. The underlying cause for the 

exponential connection is the combinatorial antecedent structure expressed in the TSK 

rule in Equation (3.2), using AND conjunction to connect antecedent variables. For 

example, given a two dimensional antecedent (c1 is A1 and c2 is A2), if Gaussian 

membership functions are assumed and the product operator is used for the AND 

conjunction, the antecedent is then evaluated by the truth of antecedent (TA) 

   
2 2

1 1 2 2

1 2

exp
c o c o

TA
σ σ

    − − = − −        
    (3.6) 

where TA is an ellipsoid centering at (o1,o2) with width by σ1 and σ2. A contour plot of TA 

is shown below 

 

Figure 3.1. The ellipsoid contour of TA 

In Figure 3.1, the highest value of TA =1 is reached at the centroid. The further 

out is the contour, the smaller the TA. The value of TA can be interpreted as the 

1c

2c

1o

2o
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belongingness of a data point to a local region. 

A fuzzy model has several rules. Given a two-dimensional antecedent with equal 

number of fuzzy sets for each antecedent variable, a typical combinatorial antecedent 

space partition and representation by horizontal and vertical ellipsoids is shown in Figure 

3.2(a) 

 

                                         (a)                               (b) 

Figure 3.2. Antecedent space partition and representation 

where, 9 rules result from the exhaustive combinations of 3 fuzzy sets for each 

antecedent variable. Users might resort to the techniques in (Yen & Wang, 1999) to 

reduce the redundancy in consequent models and have a more compact fuzzy model. The 

number of rules can be reduced by merging some regions that exhibit similar local 

behavior. Figure 3.2(b) shows a possible simplified partition after merging some regions.  

The partition in Figure 3.2(b) will also become inefficient as shown in Figure 3.3, where 

neither a horizontal nor a vertical ellipsoid provides an efficient representation of the 

underlying local region represented by either the rotated “space” of correlated variables 

or irregular polygons. 

1c

2c

1c

2c



 

 

Figure 3.3. A rotated local region covered by a horizontal or vertical ellipsoid

One possible solution for covering the space is to use many smaller ellipsoids as 

shown in Figure 3.4, which

Figure 3.4. A rotated local region covered 

Another solution is to rotate the ellipsoid as shown in Figure 3.5.

Figure 3.5. 
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3. A rotated local region covered by a horizontal or vertical ellipsoid

One possible solution for covering the space is to use many smaller ellipsoids as 

which however might result in a lot of rules.  

 

4. A rotated local region covered by many small ellipsoids

nother solution is to rotate the ellipsoid as shown in Figure 3.5. 

 

Figure 3.5. A rotated local region covered by a rotated ellipsoid

 

3. A rotated local region covered by a horizontal or vertical ellipsoid 

One possible solution for covering the space is to use many smaller ellipsoids as 

many small ellipsoids 

 

ellipsoid 
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The rotated ellipsoid proposed here with the stretching and contraction is flexible 

enough to match many geometric shapes. In order to address the rotation mathematically, 

the parameters σ in Equation(3.6) are replaced by a symmetric positive definite matrix P, 

which is termed as the shape matrix in this work and redefines the truth of antecedent by 

  ( ) ( )( )exp
T

TA = − − −c o P c o     (3.7) 

where o is a vector with dimension of nc and represents the centroid, and the dimension 

for the shape matrix P is nc by nc. The flexibility in representing antecedent subspaces is 

at cost of additional nc(nc-1)/2 new parameters in the shape matrix in Equation (3.7). 

This approach could be interpreted as a transition from a TSK fuzzy model with many 

simple rules to a GTSK fuzzy model with fewer complex rules. Clearly, the simplicity 

and complexity in this context refers to that in rule antecedents.   

3.3.2 Interpretation of the Proposed Structure 

Interested readers could follow the following method to convert the new 

antecedent structure in Equation (3.7) to a conventional antecedent in Equation (3.2) with 

new defined variables. Since the treatment in Section 3.3.2 is not essential, readers might 

also choose to skip it.  

The conversion is aided via representing the shape matrix in Equation (3.7) by its 

spectral decomposition.  

     
1

nc
T

i i i
i

λ
=

=∑P z z      (3.8) 

where λi is an eigenvalue and zi is the corresponding eigenvector. Substituting P by its 

spectral decomposition, Equation (3.7) then becomes 
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( ) ( )
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∑

∏

∑∏

c o z z c o

c o z z c o     (3.9) 

Then TA could be converted to the conventional form  

2

1

exp
nc

i i

i i

v q
TA

σ=

  − = −    
∏     (3.10) 

with the new introduced antecedent variable vi, centroid, qi and σi are defined by 

,
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,
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i j i j
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=

−

=
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∑

∑      (3.11) 

 The rule antecedent could then be represented in the conventional format using 

AND conjunction as 

( ) ( )1 1 1 1is , is ,nc nc nc ncv A q v A qσ σAND ANDL    (3.12) 

where A1(q1, σ1) denotes a Gaussian membership function with the centroid, q1 and the 

width specified by σ1. 

 The above mentioned interpretation might be useful to convert an existing GTSK 

model with the generalized antecedent structure to a conventional TSK fuzzy model to 

regain the interpretability offered in antecedents using AND conjunction. It seems also 

that the antecedent structure generalization is to extend a conventional TSK fuzzy model 

architecturally by introducing an extra layer to linearly combined raw variables to form 
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antecedent variables.  

However, the above interpretation might not be helpful in estimating model 

parameters in general. For instance, there are nc(nc+1)/2 variables required to specify the 

shape matrix. However, there are nc(nc+1) parameters expressed in Equation (3.11); zi,j 

(i=1,…,nc; j=1,…,nc) and λi (i=1,…,nc). One might need to add additional constraints to 

eliminate the extra nc(nc+1)/2 degrees of freedom. For instance, eigenvectors are 

orthogonal to each other and eigenvectors have unit length. 

3.4 SISO Models 

In a GTSK model, model parameters include both antecedent and consequent 

parameters. Antecedent parameters specify active regions for each rule while consequent 

parameters describe local models. For simplicity of presentation, a vector x(t) is defined 

as below to collect the input arguments in Equation (3.1) 

( ) ( ) ( ) ( ) ( )1 1
T

t y t y t ny u t d u t d nu = − − − − − x L L  (3.13)
 

 

where the dimension of x(t) is nx+1 with nx = ny+nu +1. 

 If a GTSK model is used to approximate the nonlinear function f in Equation 

(3.1), the fuzzy model is then defined as below using the proposed antecedent structure 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 1 1 1ˆis in ,

ˆis in ,M M M M M

t R y t t

t R y t t

=

=

IF c o P THEN θ x

IF c o P THEN θ x

M

   

(3.14) 

where, superscript 1 indicates the first rule in a GTSK model. The antecedent 

representation using AND conjunction in Equation (3.2) is replaced by the statement c(t) 

is in R1 (o1,P1). The expression of R1 (o1,P1) could be interpreted to represent an 

ellipsoidal active region for the first rule. The number of rules, M, is assumed known. c(t) 

containing nc antecedent variables is defined as below and obtained as nonlinear 

components in Chapter 4 for nonlinear dynamic processes. 



 

24 
 

   
( ) ( ) ( )1

T

nct c t c t =  c L     (3.15) 

3.4.1 Model Parameters
 

 Figure 3.6 illustrates the model parameters to be estimated for a GTSK model in a 

two-dimension antecedent structure. 

 
Figure 3.6. Model parameters for a 4-rule GTSK model 

 
Ri represents the active region for the ith rule. Its location and shape are specified 

by antecedent parameters; a centroid vector, Ri nc∈o  and a positive definite shape 

matrix, Ri nc nc×∈P . They are respectively defined by 

   1

Ti i i
nco o =  o L      (3.16) 

1 2 4

2 3 5

4 5 6

i i i

i i i
i

i i i

p p p

p p p

p p p

 
 
 =
 
 
 

P

L

L

L

M M M O

    (3.17) 
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where the symmetric matrix Pi is specified by a vector ( )1 2Rnc nci × +∈p   

( )1 2 3 1 2
i i i i i

nc ncp p p p +
 =  p L    (3.18)

 
The Pi matrix can be expressed as a weighted sum of symmetric basis matrices in 

order to facilitate the computation later on 

( )1 2

1

nc nc
i i

j j
j

p
+

=

= ∑P B     (3.19) 

where symmetric basis matrices, Bj, are defined in the following manner 

1

1 0 0

0 0 0

0 0 0

 
 
 =
 
 
 

B

L

L

M M O M

L

,     2

0 1 0

1 0 0

0 0 0

 
 
 =
 
 
 

B

L

L

M M O M

L     (3.20)

 

3

0 0 0

0 1 0

0 0 0

 
 
 =
 
 
 

B

L

L

M M O M

L

, …, ( )1 2

0 0 0

0 0 0

0 0 1

nc nc+

 
 
 =
 
 
 

B

L

L

M M O M

L

 

The local model parameters (consequent parameters) are included in vector 

1Ri n×+∈θ  defined by 

0 1
i i i i

nxθ θ θ =  θ L     (3.21)
 

3.4.2 Model Computation 

The computation of the model in Equation (3.14) is defined by 

( ) ( ) ( )
1

ˆ ˆ
M

i i

i

y t w t y t
=

=∑     (3.22) 
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where ŷi(t) is output from the local model in Rule i and weighted by wi(t). Weights wi(t) 

are defined as the normalized truth of the antecedent (TA)  

( ) ( )

( )
1

i
i

M
i

i

TA t
w t

TA t
=

=

∑
     (3.23) 

with TA evaluated by Equation (3.7) 

3.5  Extension to MIMO Models 

Dealing with MIMO models becomes simple in this work. As below, a MIMO 

model is shown a collection of several MISO models. Interested readers might follow 

Section 3.5 to see how a MIMO model is equivalent to multiple MISO or come back later 

to revisit the subject when dealing with a MIMO case.  

For a MIMO process, a general description of its one-step predictor is defined by 

( ) ( ) ( ) ( ) ( )( )ˆ 1 , , , , ,t t t ny t d t d nu= − − − − −y f y y u uL L   (3.24) 

where, the MIMO model has n outputs and m inputs. The output and input vectors, y(t) 

and u(t) are defined by  

( ) ( ) ( )

( ) ( ) ( )

1

1

T

n

T

m

t y t y t

t u t u t

 =  

 =  

y

u

L

L
    (3.25) 

The above model structure implicitly assumes that the dynamic orders in all yi 

(i=1,…,n) and uj(j=1,…,m) for each output yk(t) are ny and nu respectively. A universal 

time delay is also assumed between each pair of uj and yk. The universal order 

assumption is in general not true in practice. However, a MIMO GTSK in discrete time 

model could be modified to have such a universal-order structure by adding zeros if 

necessary. A regressor vector x(t) is defined to collect all input arguments in Equation 

(3.24) 



 

27 
 

( ) ( ) ( ) ( ) ( )1 1
TT T T Tt t t ny t d t d nu = − − − − − x y y u uL L  (3.26) 

where the dimension of x(t) is nx+1 with nx = n×ny+(m+1)×nu. The model is then 

defined as below 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 1 1 1ˆis in ,

ˆis in ,M M M M M

t R t t

t R t t

=

=

IF c o P THEN y θ x

IF c o P THEN y θ x

M

   

(3.27) 

The model in Equation (3.27) is almost identical to that in Equation (3.14). oi and 

Pi have the same meaning. Antecedent variables are included in vector c(t), which is also 

a subset of x(t). The only difference is that local models in Equation (3.28) are multiple-

output. The vector ŷi collects the n output predictions by the local model in the ith rule  

1ˆ ˆ ˆi i i T
ny y =  y L      (3.28) 

Consequently, local model parameters are organized in a matrix ( )1Rn nxi × +∈θ  defined by 

1,0 1,1 1,

,0 ,1 ,

i i i
nx

i

i i i
n n n nx

θ θ θ

θ θ θ

 
 

=  
  

θ

L

M M O M

L

    (3.29)

 

 Each row of θi corresponds to an output and every column of θ
i is related to a 

regressor. It is possible to decompose θ
i in terms of columns or rows as below  

1

0 ;

i

i i i i
nx

i
n

 
  = =   
  

θ

θ θ θ θ

θ

L M    (3.30) 

Where i
jθ (j=0,…,nx) represents the jth column in matrix θi and rows i

kθ

represents the kth row in θi (k=1,…,n) 
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The computation in Equation (3.22) is then extended as below to deal with a 

multiple-output model. 

( )

( )
( ) ( )

1 1

1

ˆ

ˆ

i

M
i

i i
n n

y t

w t t

y t
=

  
  

=   
  

   

∑
θ

x

θ

M M     (3.31) 

Equation (3.31) could be viewed as a collection of n single-output models. For 

instance, the computation for the kth output is 

( ) ( ) ( )
1

ˆ
M

i i
k k

i

y t w t t
=

=∑ θ x      (3.32) 

where i
kθ  defined in Equation (3.30) is the kth row of matrix θi. It then is possible to 

define a single output GTSK model for the kth output only by 

( ) ( )( ) ( ) ( )

( ) ( )( ) ( ) ( )

1 1 1 1 1ˆis in ,

ˆis in ,

k k

M M M M M
k k

t R y t t

t R y t t

=

=

IF c o P THEN θ x

IF c o P THEN θ x

L   (3.33) 

 Comparing the single-output model for output yk with that in Equation (3.14), 

equivalence is established by equating kθ
i in Equation (3.33) to θi in Equation (3.14). 

However, two models are different. Model in Equation (3.14) is SISO while that in 

Equation (3.33) is MISO. The x(t) in Equation (3.33) actually collects the lagged multiple 

inputs and lagged multiple outputs. Fortunately, the difference in contents in x(t) has no 

impact on evaluation of the first and second order derivatives to be presented later. The 

computation of gradients and Hessian matrices for a SISO GTSK model can be extended 

directly to each MISO element in a MIMO GTSK model. 

A matrix kθ is defined to collect all local model parameters for the kth output.  

1
k

k
r

k

 
 

=  
  

θ

θ

θ

M      (3.34) 
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The above decomposition can facilitate estimation of model parameters in terms of 

evaluation of derivatives if a decomposable performance index is used. Simply, the 

centroids and shape matrices have global influence on a GTSK model. Their influence on 

all outputs should be accumulated. To the contrary, the consequent parameters, kθ have 

only local influence on its corresponding output yk. It then could be expected that the 

interactions between kθ and lθ (k≠l) is zero. The representation of a MIMO GTSK model 

by several single-output GTSK models will be exploited in Chapter 5 to derive the first 

and second order derivatives of an objective function with respect to model parameters. 
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CHAPTER IV 

DYNAMIC ORDER DETERMINATION AND  

NONLINEAR COMPONENT DETECTION 

Determination of dynamic orders (ny, nu and d in Equation (3.1)) is the first step 

in system identification. Order determination is in general difficult for nonlinear system 

identification due to the interaction of model structure (unknown orders) and unknown 

nonlinearity. If the attenuation of unknown nonlinearity is possible, different model 

structures could then be fairly compared. Guided by this concept, the work in this chapter 

uses a recursive estimation to reduce the effect of the underlying nonlinearity on 

parameter variation, and proposes a sequential nearest neighbor rearrangement to 

enhance the reduction. The “best” dynamic order will minimize a final prediction error 

with the consideration of the locality of the model parameters. In addition to determining 

dynamic orders, the sequential nearest neighbor rearrangement is also extended to detect 

nonlinear components, which are regressors responsible for parameter variation if a 

nonlinear dynamic model is converted to a liner time-varying dynamic model. The result 

from Chapter 4 could be viewed as the preliminary analysis for building a GTSK model 

to be presented in Chapter 5. The dynamic order determination defines the overall 

dimension of a model. The nonlinear component detection selects antecedent variables 

for the model.  
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4.1 Dynamic Order Determination 

The dynamic orders ny, nu and delay d are described in Equation (3.1). The 

difficulty in discovering the dynamic orders for a nonlinear dynamic model is caused by 

the unknown nonlinearities. Even if f is known to be nonlinear, the richness of 

nonlinearity would keep users from exhausting all possible nonlinear forms, making it 

difficult to find ny, nu and d. If the unknown nonlinearity is not a problem or at least not 

as severe as it was, it is possible to devise a procedure for dynamic order analysis for a 

NARX. The objective of the following methodology is to detangle the nonlinearity and 

dynamic orders, which makes it possible to define model orders. The methodology 

simply involves two stages of works. The first is to attenuate the unknown nonlinearity. 

The second is search for dynamic orders. 

4.1.1 Nonlinearity Representation 

Nonlinearity could be explicitly or implicitly expressed. It is possible to transform 

a nonlinear dynamic model into a linear one if the nonlinear function is known. For 

instance, the following nonlinear dynamic model 

( ) ( ) ( ) ( )3 3
0.4 1 1y t y t u t e t= − + − +     (4.1) 

could be redefined as a linear dynamic model by static transformation z(t) = y(t-1)3, v(t) = 

u(t-1)3 

Unknown nonlinearity could be addressed by using structure-rich models such as 

neural network models, basis function models and fuzzy systems. These models are all 

universal approximators and able to capture almost any nonlinearity given enough 

flexibility. If a neural network model is used, one then could use the following procedure 

to find proper dynamic orders. A neural network is tried for different sets of ny, nu and d 

and the best set is then reported. Due to the application of a neural network, the 

nonlinearity is presumably addressed. The only affecting factors for modeling 

performance are ny, nu and d. It then is possible to find the set with the best performance. 

This approach is very general and could be applied to any scenarios, any nonlinear 
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dynamic models by any universal approximators. The drawback is the computational 

burden in terms of training ‘big’ models and efforts put to select appropriate network 

architecture (number of layers, nodes in each layer in neural networks; number of fuzzy 

subsets, number of rules in a fuzzy system).  

If simple models are preferred such as linear models, nonlinearity could be 

addressed by adaptation. Model parameters are recursively updated to track the model 

parameter variation caused by nonlinearity. Linear models with parameter adaptation 

require much less computation compared to ‘big’ models. The following example shows 

how convert a nonlinear dynamic process to a linear format. The example uses a NARX 

model defined by 

( ) ( )
( )

( ) ( )3

3

1
1

1 1

y t
y t u t e t

y t

−
= + − +

+ −    
 (4.2) 

which could be represented in a linear format 

( ) ( ) ( ) ( ) ( ) ( )1 01 1y t a t y t b t u t e t= − + − +    (4.3) 

where a1(t) and b0(t) are time-varying model parameters and are defined in Equation (4.4) 

as functions of y(t-1) and u(t-1) to establish one-to-one correspondence between Equation 

(4.3) match Equation (4.2) 

( )
( )

( ) ( )2

1 02

1
, 1

1 1
a t b t u t

y t
= = −

+ −
   (4.4) 

In general, the nonlinear dynamic model in Equation (3.1) could be expressed in 

the following linear format 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

0

1 ny

nu

y t a t y t a t y t ny

b t u t d b t u t nu d e t

= − + + − +

− + + − − +

L

L
   (4.5) 
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The linear format could be established from a known nonlinear dynamical model 

by one-to-one correspondence as shown in Equation (4.4). However, the linear format is 

not always unique and one could have options. For instance, given a NARX model 

defined in Equation (4.6) 

( )
( ) ( ) ( )( )

( ) ( )
( ) ( )2 2

1 2 1 2.5
1

1 1 2

y t y t y t
y t u t e t

y t y t

− − − +
= + − +

+ − + −
  (4.6) 

It is possible to define a linear format 

( ) ( ) ( ) ( ) ( ) ( )1 01 1y t a t y t b t u t e t= − + − +    (4.7) 

with 

 ( )
( ) ( )( )

( ) ( )
( )1 02 2

2 1 2.5
, 1

1 1 2

y t y t
a t b t

y t y t

− − +
= =

+ − + −
 

another possibility is defined in Equation (4.8) with a different set of time-varying model 

parameters 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 01 2 1y t a t y t a t y t b t u t e t= − + − + − +    (4.8) 

with  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )
2

1 2 02 2 2 2

2.5 2 1
, , 1

1 1 2 1 1 2

y t y t
a t a t b t

y t y t y t y t

− −
= = =

+ − + − + − + −
 

In general, it is rather difficult (maybe impossible) to extract the exact parameter 

functions as defined in Equation (4.4) from data only. There are few exceptions such as 

the one mentioned in (Young, 1993), where a1(t) and b0(t) are known to be linear 

functions of y(t-1) and u(t-1). 
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The nonlinear dynamic model in Equation (3.1) could also be approximately 

expressed by the following time-varying model 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1

0

1 ny

nu

y t k t a t y t a t y t ny

b t u t d b t u t nu d e t

≈ + − + + − +

− + + − − +

L

L
   (4.9) 

The approximation is due to the first-order Taylor expansion of Equation (3.1) 

with following definitions 

( ) ( )
( )

( )
( )

( )

( )
( )

( )
( )

0 0

0 0

0 0 0

0 0

1
1

1

t t

t t

f f
k t y t y t y t ny

y t y t ny

f f
u t u t nu d

u t d y t ny

∂ ∂
= − − − − − −

∂ − ∂ −

∂ ∂
− − − − −

∂ − ∂ −

L

L

 

( )
( )

( )
( )

0

0

1 1 t

ny t

f
a t

y t

f
a t

y t ny

∂
=
∂ −

∂
=
∂ −

M      (4.10) 

( )
( )

( )
( )

0

0

0 t

nu t

f
b t

u t d

f
b t

u t nu d

∂
=
∂ −

∂
=
∂ − −

M  

where, t0 represents the reference point that the Taylor expansion is based on. 

The representation of Equation (3.1) by Equation (4.5) or (4.9) are different, 

although both share the same notations for time-varying model parameters a(t) and b(t). 

Equation (4.5) is due to the one-to-one correspondence to Equation (3.1), while Equation 

(4.9) is based on one-to-one correspondence to the first-order Taylor expansion of 

Equation (3.1). The only difference is the additional time-varying intercept term k(t) in 
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Equation (4.9) and the following presented order determination procedure is applicable to 

both structures. 

4.1.2 Recursive Estimation for Time Varying Parameters 

Equation (4.5) or (4.9) could be represented in a more compact format 

( ) ( ) ( ) ( )Ty t t t e t= +x θ     (4.11) 

with  

( ) ( ) ( ) ( ) ( ) ( )1 0

T

ny nut k t a t a t b t b t =  θ L L      

( ) ( ) ( ) ( ) ( )1 1
T

t y t y t ny u t d u t nu d = − − − − − x L L     

where, the constant regressor will be dropped if format in Equation (4.5) is used. The 

output prediction is then defined using the estimates of time-varying parameters 

( ) ( ) ( )ˆˆ Ty t t t= x θ       (4.12) 

There are several different ways to estimate θ(t). Recursive estimation attempts to 

estimate local model parameters instantaneously. Another approach uses stochastic 

models to describe parameter variation if the statistics regarding parameter variation is 

assumed known. Among them, the simplest one is a random walk model. A Kalman filter 

is then used to estimate the time-varying parameter values as the states in the stochastic 

model. The second approach will not be investigated in this work since we assume the 

lack of knowledge on the statistics of parameter variation. 

Recursive estimation for parameter values, θ(t), is based on a time-varying 

weighted quadratic performance as below 

( ) ( ) ( )( ) ( )
2

1

,
t

J t y y w t
τ

τ τ τ
=

= −∑ )     (4.13) 
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where w(τ,t) is a weighting function. Commonly used weighting functions include 

rectangular window weighting and exponential weighting (Ljung & Soderstrom, 1986). 

In this work, the exponential weighting is used and described by,  

( ), , 0,1, ,tw t Nττ α τ−= = L     (4.14) 

where the variable, α, a scalar between 0 and 1, is termed as forgetting factor. Figure 4.1 

illustrates a particular exponential weighting with α = 0.95. 

Figure 4.1. Exponential weighting with α = 0.95 

Using exponential weighting, the following equations (Young, 1984) are used to 

update model parameters from ( )ˆ 1N −θ to ( )ˆ Nθ  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

1

ˆˆ 1

1 1

ˆ ˆ ˆ1

1
1 1

T

T

T

y t t t

t t t t t t

t t t y t y t

t t t t t

α

α

−

= −

= − − +

= − − −

= − − −

x θ

H P x x P x

θ θ H

P P H x P

   (4.15) 

The forgetting factor, determines the influence of data in the past to the current 

estimation. The suggested range for α is between 0.9 and 0.99 (Young, 1984). In practice, 

trials for α might be needed for a balanced performance for nonlinearity adaptation speed 

and parameter estimation precision. 
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4.1.3 Sequential Nearest Neighbor Rearrangement 

In the recursive estimation with exponential weighting, the tuning variable is the 

forgetting factor. When adjusting the forgetting factor, one should be aware of its 

conflicting affects on parameter estimates. The forgetting factor relates to the rate of 

variation. A smaller forgetting factor is expected for faster parameter variation. On the 

other hand, the precision of parameter estimates is determined by the size of data 

included in an “effective” window. The length of the window is also a function of the 

forgetting factor. Smaller is the tuning factor (shorter window), fewer data are included 

for estimation. In turn, the variance in estimates is high.  Therefore, a larger forgetting 

factor should be preferred for higher estimation precision. However, a larger forgetting 

factor is only a good choice for slow parameter variation. The above argument verifies 

the suggested range for forgetting factor over 0.90, where the precaution is also 

mentioned for using exponential recursive estimation for slow variation at best (Young, 

1984).  

As a result of the conflicting influence of forgetting factor on parameter estimates, 

dynamical nonlinear processes being dealt are expected to have slow parameter variation. 

Unfortunately, the nonlinearity is inherited in the data and determined by the nature of 

the process to be investigated. There is nothing one can possibly do to alter the nature of 

the process given only access to test it and generate input-output data. However, the 

nonlinearity is in fact not really the difficulty that we are aiming at but the source of 

difficulty, the parameter variation. The nonlinearity is believed to be the cause of 

parameter variation. It is desired to get around the inherited and inaccessible nonlinear 

nature of a process to change the parameter variation directly.  If it is possible, the 

improvement of the recursive estimation becomes probable. As proposed below is an 

approach to manipulate raw data in time sequence to create an artificial sequence of data 

with slowed parameter variation.  The following elaboration starts by defining parameter 

variation explicitly 

( ) ( ) ( )
( ) ( ) ( )

1 1, ,

1 0, ,

i i i

i i i

a t a t a t i ny

b t b t b t j nu

∆ = − − =

∆ = − − =

L

L
   (4.16) 
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with the definition, the following vector collecting variations for all parameters is defined 

( ) ( ) ( )

( ) ( ) ( ) ( )1 0

1
T

ny nu

t t t

a t a t b t b t

∆ = − −

 = ∆ ∆ ∆ ∆ 

θ θ θ

L L
  (4.17) 

 The parameter variation at t could then be quantified by ( )t∆θ , where norm is 

not specified. The parameter variation (pv) for the entire data set is  

( )
2

N

t

pv t
=

= ∆∑ θ      (4.18) 

 If it is possible to minimize pv, it is then expected that resultant data set would be 

more suitable for a recursive estimation. The optimal solution would be a permutation of 

a sequence of number (1, …, N). Find the right permutation is like to solve a travelling 

salesman problem to find the shortest path traveling through all cities and visiting each 

city only once. The optimization problem is NP-complete. In this work, a suboptimal 

solution is pursued rather than the exact optimal solution. The suboptimal solution is the 

result of a greedy procedure (Cormen, Leiserson, Rivest & Stein, 2001), where 

minimization of pv is decomposed into N-1 simpler minimization problems. 

 
( ) ( ) ( )( )

( ) ( ) ( )

min 2 3

min 2 min 3 min

N

N

∆ + ∆ + + ∆

≤ ∆ + ∆ + + ∆

θ θ θ

θ θ θ

L

L
  (4.19) 

where N-1 minimization problems are slightly dependent to each with dependence in 

every two consecutive tasks.  

 The greedy procedure is then conduced as below. Assuming θ(1) is known, then 

θ(2) is searched for the problem of min ||θ(1)-θ(2)||, which in turn determines θ(2). 

Subsequently, ||θ(2)-θ(3)|| is minimized and θ(3) is determined. The procedure stops 

when θ(N) is determined. Two fundamental steps are involved in this procedure, 

determination of θ(1) and solving the problem of min ||θ(k-1)-θ(k)|| to determine θ(k). 
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With known θ(k-1), the problem of min ||θ(k-1)-θ(k)|| is fully expanded as below 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 0

1 0

min 1

min , , , , ,

min min

T

ny nu

ny nu

i j
i j

k k

a k a k b k b k

a k b k
= =

− −

 = ∆ ∆ ∆ ∆ 

≤ ∆ + ∆∑ ∑

θ θ

L L

  (4.20) 

The bound is due to the triangular inequality. The minimization of ||θ(k-1)-θ(k)|| 

is then translated to minimize ny+nu+1 smaller objectives simultaneously. Given a time-

varying model, the parameters ai(k) and bj(k) can be expressed as functions of all states 

( )
( ) ( )
( ) ( )

1 , , ,

, ,
i i

y t y t ny
a k a

u t d u t nu d

− − 
=   − − − 

L

L
   (4.21) 

The expression for bj(t) is similar. Note that the indices are different in both sides 

of Equation (4.21), which simply means that the kth sample in the optimal result is the tth  

sample in time order. If ai(k-1) is known and its correspondence sample in time order is τ. 

 ( )
( ) ( )
( ) ( )

1 , , ,
1

, ,
i i
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a k a

u d u nu d

τ τ

τ τ
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L

L
 

The exact functional form of ai is unknown. If its continuity and differentiability 

are assumed and its high order derivatives are assumed to be negligible, the difference 

between ai(k-1) and ai(k) could be approximated b 

( ) ( )
( )

( ) ( )( )
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∂ −

∂
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∑

∑
  (4.22) 

If the first order derivative is bounded by a constant Gai, the minimization of  

||ai(k-1) - ai(k)|| could be approached by 
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  ( ) ( ) ( ) ( )min 1 mini i i
t

a k a k Ga t
τ

τ
≠

− − ≤ −x x   (4.23) 

where, x is defined in Equation (4.11) and t becomes the decision variable. Since the 

functional form is uniformly assumed for all parameter functions, the solution of Problem 

(4.23) will simultaneously minimize the all upper bounds. In this work, the Euclidean 

norm is used and described by  

( ) ( ) ( ) ( )( ) ( ) ( )( )2 2

2
1 0

ny nu

i i

t y i y t i u d i u t d iτ τ τ
= =

− = − − − + − − − − −∑ ∑x x    (4.24) 

A nearest neighbor will define the solution for Problem (4.20). The solving 

procedure is then termed as Sequential Nearest Neighbor Rearrangement (SNNR). The 

resultant regressor and output are labeled as xsnnr and ysnnr .  The rearrangement starts 

letting xsnnr(1) = x(1) and ysnnr(1) = y(1). If the nearest neighbor of  xsnnr(1) is found to be 

x(t), x(t) and y(t) is then added to the rearranged data set by letting xsnnr(2) = x(t) and 

ysnnr(2) = y(t). Then the nearest neighbor of xsnnr(2) is found and added to the rearranged 

data set. The procedure continues until the xsnnr(N) is found.  

 By conducting the SNNR, the raw data in time-sequence is reorganized in spatial-

order. The treatment is expected to reduce the parameter variation, which enables the 

choice of a larger forgetting factor, α which in turn improves the parameter estimates. 

The results of the SNNR procedure are the basis for the analysis in the following section 

for dynamic order determination.  

However, first is a demonstration of the impact of the SNNR procedure on 

parameter variation as well as recursive estimation. The demonstration is based on the 

deterministic nonlinear dynamic model in Equation (4.25) 

( ) ( )
( )

( )3

2

1
1

1 1

y t
y t u t

y t

−
= + −

+ −
    (4.25)
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 Figure 4.2 shows the first 1000 out of 5000 samples generated from the 

deterministic model when u(t) is driven by a “skyline” function.

 

 
Figure 4.2. Data generated from the model in Equaiton (4.25) 

 

 The time-varying model parameters a1(t) and b0(t) are defined in Equation (4.4) 

and their variation over time is shown in Figure 4.3. 

 
Figure 4.3. Time varying parameters a1(t) and b0(t) in Equation (4.4) 
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Euclidean norm, ( ) ( )( ) ( ) ( )( )
5000

2 2

1 1 0 0
2

1 1
t

pv a t a t b t b t
=

= − − + − −∑ . The obtained pv is 

99.25. The mean squared error (MSE) resulted from a recursive estimation on the time-

sequenced data is 0.0044. 

 The SNNR operation is illustrated on a segment of data with 10 samples. The raw 

data in time sequence is shown in Table 4.1 indexed by t.  

Table 4.1. A segment of 10 data samples in time sequence 

t 1 2 3 4 5 6 7 8 9 10 

y(t-1) 0 0.2488 -0.8683 0.7200 -0.3775 -1.1465 -0.2815 -0.1014 -0.8542 0.1648 

u(t-1) 0 0.2076 0.7200 0.7603 0.3617 0.8668 -0.0913 -0.3199 0.7120 -0.2645 

 The SNNR rearranged data is shown in Table 4.2 and indexed by k. The index t in 

Table 4.2 tracks the rearrangement and relates the kth data sample in Table 4.2 to its 

original position in Table 4.1. Two regressors in Table 4.2 are denoted by y1 and u1 rather 

than the time-lagged notations in the original time sequence data set.  

Table 4.2. SNNR rearranged data for the time-sequence data in Table 4.1 

k 1 2 3 4 5 6 7 8 9 10 

t 1 7 8 10 2 5 9 3 4 6 

y1 0 -0.2815 -0.1014 0.1648 0.2488 -0.3775 -0.8542 -0.8683 -0.9385 -1.1465 

u1 0 -0.0913 -0.3199 -0.2645 0.2076 0.3617 0.7120 0.7200 0.7603 0.8668 

 Figure 4.4 shows the first 1000 samples of SNNR rearranged data for the time-

sequenced data in Figure 4.2. It is observed that the abrupt transition between adjaent 

levels in Figure 4.2 for both u(t) and y(t) is replaced by a smooth transition in both u1 and 

y1 in Figure 4.4. 
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Figure 4.4. SNNR Rearranged regressors from the time-sequence data in Figure 4.1 

 For the rearranged data, the varying parameters are redefined in terms of u1 and y1 
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 The variation of a1(k) and b0(k) is shown in Figure 4.5, which results in a 

parameter variation of 32.03, only about a third of that in the time-sequence data. The 

mean squared error (MSE) resulted from a recursive estimation on the rearranged data is 

0.0022, which is half of that in the time-sequence data. 
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Figure 4.5. Varying parameters for the SNNR rearranged data. 

 The same test and comparison is conducted on 6 deterministic models, their 

stochastic versions are defined in Equations (4.40~4.45). The results are summarized in 

Table 4.3.  

Table 4.3. MSE for a recursive estimation 

 Time Sequence SNNR 

Model 1 0.0148 0.0112 

Model 2 0.0486 0.0084 

Model 3 0.0044 0.0025 

Model 4 0.0022 0.0017 

Model 5 0.0064 0.0034 

Model 6 7.38e-8 3.57e-5 

As observed in Table 4.3, SNNR is able to reduce the MSE in the Models 1~5. 
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Increase of MSE is however observed in the Model 6 test, where the tested model is 

linear. Therefore, the increase of MSE might signal the ineffectiveness of SNNR 

treatment and imply that the model is linear. Using this feature, one might use the SNNR 

to tell if a given process is linear or nonlinear.  

4.1.4 Model Comparison Criterion 

The methodology for determination of dynamic orders could be trying different 

sets of ny, nu and d and find the best values. Given a set of ny, nu and d, regressors are 

determined first on the original time-sequenced data, x(t). A SNNR is then conducted on 

x(t) and y(t) producing xsnnr(t) and ysnnr(t), to which an exponential weighting recursive 

estimation will be applied. The quality of the hypothesized ny, nu and d will then be 

evaluated by a criterion considering both fitting and generalization performance. In this 

work, the evaluation is based upon a modified final prediction error (FPE) criterion. The 

original FPE (Ljung, 1999) is defined for a linear model with N samples by 

 ( )2

1

1 ˆt,
N

N
t

N np
FPE

N np N
ε

=

+
=

− ∑ θ    (4.26) 

Equation (4.26) can be interpreted as a weighted mean squared error where the weighting 

is determined by N, the size of data set as well as the model complexity, np, the number 

of parameters. The FPE criterion results from the performance index 

  ( )2

1

ˆt,
N

N N
t

V ε
=

=∑ θ       (4.27) 

In application to exponentially-weighted recursive estimation, the definition of 

FPE is modified according to the exponentially weighted performance index 

 ( )t 2

t 1

ˆt,
k

k
k kV α ε−

=

=∑ θ      (4.28) 

where Vk is varying, and progressively includes more data.  The weighting factor, αk-t 

would become very small for long-past data sets, making the remote error 
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inconsequential in estimating θk. A critical number L is hence introduced to decompose 

Vk as below  

  
( ) ( )

( )

t 2 t 2

t 1 t 1

t 2

t 1

ˆ ˆt, t,

ˆt,

k L k
k k

k k k
k L

k
k

k
k L

V α ε α ε

α ε

−
− −

= = − +

−

= − +

= +

≈
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∑

θ θ
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where, Vk is approximated by its recent portion. By this approximation, the number of 

data involved in Vk is a constant, L. Subsequently, the FPE based on Vk is redefined 
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= − +

+
=

− ∑ θ     (4.30) 

where, the implicit constraints on t by k-L+1≥1 and k≤N bound k between L and N. The 

average of FPE(k) over all k is then defined 
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where, the double sum is decomposed into three parts after being switched 
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(4.32) 

The recursive estimation works well if parameter variation within a local range is 

assumed to be small 

t 1 t 2 t
ˆ ˆ ˆ

L L+ − + −≈ ≈ ≈θ θ θL     (4.33) 

which in turn results in the following approximation 
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 ( ) ( ) ( )2 2 2
t 1 t 2 t
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The double sum is then simplified to  
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If N is large, the second part dominates, which results in a further simplified 

average FPE as  
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 The average FPE in Equation (4.36) is similar to the original one in Equation 

(4.26), and has the same interpretation as a weighted prediction error, except that the 

weighting is different. Once L is chosen, the first term on the right-hand side of Equation 

(4.36) is a constant.  Then Equations (4.26) and (4.36) are similar, with L the data 

window length, replacing N, the total number of data. A simplified FPE in Equation (4.37) 

is used in this work and will continue to be denoted as FPE 

  ( )
1

2 ˆ,
N L

t
t L

L np
FPE t

L np
ε

− +

=

+
=

− ∑ θ     (4.37) 

The value of L is related to the decomposition by Equation (4.29) and determined 

by considering αL small enough to be negligible. In this work, L is determined as below  

  
4

1
L

α
=

−
     (4.38) 

where (1-α)-1 is termed as memory time-constant (Ljung, 1999). As shown in Figure 4.6 , 

the specification of L in Equation (4.29) will ignore the past data with weights less than 
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0.02. Additionally, the number α4/(1-α) remains relatively constant between 0.016 and 

0.018 if α is over 0.9, which is a common choice for a forgetting factor. 

 
Figure 4.6. α vs. α4/(1- α) (the weight for the most remote data) 

4.1.5 Regressor Selection Procedure 

Given several sets of ny, nu and d, their FPEs are evaluated. The set with the 

minimum FPE on SNNR data is reported including the determined orders. The 

determination procedure could be conducted in an exhaustive approach for all possible 

combinations of different ny, nu and d given pre-defined max_ny, max_nu and max_d for 

possible maximum ny, nu and d. The pseudo-code for the exhaustive search is shown in 

Figure 4.7. 

 

Figure 4.7. Exhaustive dynamic order search 
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 One concern with the exhaustive search is the computational burden. The pay off 

of the expensive exhaustive search is optimality of the final solution. Suboptimal search 

techniques are available in a subset selection for linear regression. Subset selection 

methods include forward selection, backward elimination, cycling replacement as well as 

heuristic combinatorial search (Miller, 1990). For linear regression problems, one could 

fully exploit the superposition feature in a linear model to simplify a search. It explains 

that subset selection method is always accompanied by orthogonalization. An 

orthogonalization procedure removes the redundant components of two regressors and 

eliminates the candidate regressors that are highly correlated with selected regressors.  

 In nonlinear systems with unknown nonlinearity, orthogonalization is not 

possible. However, it does not mean that the subset selection is inapplicable. In this work, 

a forward selection procedure combing the above mentioned recursive estimation on 

spatially ordered data is proposed to find important regressors. The procedure starts with 

users’ input max_ny, max_nu and max_d. Then, a number of candidate regressors are 

generated and denoted as [x1 x2 x3 … xm xrandom]. xrandom is a random regressor that 

presumably contains no meaningful information to predict output. At first, m+1 FPEs are 

computed for (y,[x1]), (y, [x2]), … , (y, [xm]), (y, [xrandom]), where y is the output and xi in 

bracket is the regressor in consideration. The regressor with the minimum FPE is selected. 

If x2, for instance, is the first selected regressor, there will be other m FPEs to be 

evaluated for (y, [x2, x1]), (y, [x2, x3]), …, (y, [x2, xm]), (y, [x2, xrandom]). Each bracket 

contains a combination of x2 (first selected) with the rest. The regressor combination with 

the minimum FPE is then kept. The selection continues until the minimum FPE increases 

or the xrandom is selected. The injection of a random regressor is mentioned in (Miller, 

1990) as a stopping criterion. The selection of xrandom signifies that the rest of candidates 

are less influential on y(t) than a presumably irrelevant one.  

The selected regressors might define values of ny, nu and d if selected regressors 

are consecutive due to implicit constraint on the model structure in Equation (3.1), which 

requires consecutive regressors. For instance, a set of regressors [y(t-1), y(t-2), u(t-1), u(t-

2)] defines ny=2, nu=1, and, d=1. Absences, however, could exist in selected regressors 

such as [y(t-1) y(t-4) u(t-1) u(t-3)], which does not correspond a set of ny, nu and d.  
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It seems unlikely in most situations that y(t-2), y(t-3) and u(t-2) should not be 

included. However, if there are strong correlations or recycle phenomena, those missing 

variables may be redundant, and the particular selection may not be unique. Another 

realization of excitement and noise, might select another subset from the correlated 

variables. The inclusion of redundant variables increases the model complexity. However, 

for database management simplicity, in this work, if the situation with absence occurs, a 

further comparison is executed on different order values. For the illustrated example, an 

exhaustive comparison is conducted on possible values of ny=1, 2, 3 or 4 combined the 

possible values of nu=0, 1, or 2, with d = 1. However, the extra computation would be 

unnecessary if the constraint on having consecutive regressors is dropped. 

4.2 Nonlinear Component Detection 

There is an implicit assumption made on the above SNNR operation. The time-

varying parameters are functions of all regressors. The assumption is valid for the 

dynamic model in Equation (4.2), where parameters are functions of two regressors, u(t-

1) and y(t-1). The model in Equation (4.6) has regressors y(t-1), y(t-2) and u(t-1). 

However the parameters a1 and a2 are functions of only y(t-1) and y(t-2). The regressor 

u(t-1) has no impact on parameter variation. It is then expected that the SNNR on [y(t-1) 

y(t-2)] might reduce more parameter variation than operating SNNR on [y(t-1) y(t-2) u(t-

1)]. The further reduction in parameter variation should be revealed by a smaller MSE 

resulted from a recursive estimation.  

An extension of the SNNR-based order determination procedure is the used to 

detect the regressors that are affecting the output nonlinearly. The detected regressors are 

termed as nonlinear components and to be used as antecedent variables in Chapter 5. The 

purpose of conducting SNNR is to reduce parameter variation so that the recursive 

estimation is able to capture the variation better, which in turn, results in a smaller MSE. 

The SNNR mentioned above rearranges data based on all the regressors in order to 

compare different sets of ny, nu and d. However, it is possible that only a subset of 

regressors is affecting time-varying parameters. The subset is denoted by [c1,...,cnc]. It is a 

subset of selected regressors denoted by [x1,…,xnx]. The regressors not included in 
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[c1,...,cnc]  have no affect on parameter variation. It is then expected that a SNNR on 

[c1,...,cnc] only would be able to reduce more parameter variation and produce an smaller 

MSE. There are totally 2nx-1 subsets in [x1,…,xnx] excluding the empty one. Each subset 

from [x1,…,xnx] is considered as a candidate set of nonlinear components, [c1,...,cnc], on 

which the SNNR is conducted and a corresponding MSE is computed. The subset with 

minimum MSE is reported to contain the nonlinear components. 

4.3 Extension to MIMO Processes 

Extending the above technique to a MIMO(m,n) (m inputs and n outputs) process 

is straight forward. The SISO model in Equation (3.1) is expanded as below for the kth 

output by including more regressors. 
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(4.39)

 

where dynamic orders include nyk1, .., nykn and nuk1, …, nukm, and delay 
1, ,y y

k knd dL

between yk and other outputs as well as delay 
1, ,u u

k kmd dL  between yk and all inputs. All of 

these numbers are to be determined using the above method for the single output case. 

The nonlinear components for yk are then selected after orders are determined. 

4.4 Simulations and Discussions 

4.4.1 Testing Models and Processes 

The proposed order determination and nonlinear component detection method are 

tested on data generated by several nonlinear dynamic models, an experimental unit and a 

distillation column simulator. The first five models are nonlinear autoregressive with 

exogenous inputs models (NARX). They are different in terms of nonlinear interactions 
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between inputs and outputs. Model 1 has nonlinearity only in the lagged input, u(t-1). 

Model 2 is nonlinear in lagged output only. Model 3 is nonlinear in both lagged input and 

output, u(t-1) and y(t-1). Model 4 is also nonlinear in both lagged input and output but 

have more regressors included than Model 3. Like Model 1, Model 5 is another model 

with nonlinearity in the lagged input, u(t-1). The nonlinear function with respect to u(t-1) 

is, however, different in both models. Model 6 is a linear ARX model used only once to 

demonstrate the impact of SNNR on recursive estimation with result in Table 4.3.  

The input signals used in the first five models are generated by a skyline function 

and bounded between -1 and 1. The shortest and longest durations are 20 and 50 samples 

respectively. Output signals are initialized as zeros.  The noise e(t) is subject to a normal 

distribution, N(0,σ2). The value of σ is different in each model and specified such that e(t) 

has a small magnitude compared to outputs. As below, a portion of input-output data for 

the first five models is illustrated along with model equations. A total of 5000 samples 

are generated and used in order determination and nonlinear component detection. 

Model 1 (Narendra & Parthasarathy, 1990) 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )

0.3 1 0.6 2 0.6sin 1 0.3sin 3 1

0.1sin 5 1

y t y t y t u t u t

u t e t

π π

π

= − + − + − + − +

− +
  (4.40) 

where e(t)~N(0,0.52) 

 
Figure 4.8. Input-output data generated for Model 1 in Equation (4.40) 

 

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

u

0 100 200 300 400 500 600 700 800 900 1000
-10

0

10

t

y



 

53 
 

Model 2 (Narendra & Parthasarathy, 1990) 

( )
( ) ( ) ( )( )

( ) ( )
( ) ( )2 2

1 2 1 2.5
1

1 1 2

y t y t y t
y t u t e t

y t y t

− − − +
= + − +

+ − + −
  (4.41) 

where e(t)~N(0,0.52) 

 
Figure 4.9. Input-output data generated for Model 2 in Equation (4.41) 

 
Model 3 (Narendra & Parthasarathy, 1990) 

( ) ( )
( )

( ) ( )3

2

1
1

1 1

y t
y t u t e t

y t

−
= + − +

+ −
   (4.42)

 
where e(t)~N(0,0.52) 

  
Figure 4.10. Input-output data generated for Model 3 in Equation (4.42) 
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Model 4 (Narendra & Parthasarathy, 1990) 

( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( )2 2

1 2 3 2 3 1 1

1 3 2

y t y t y t u t y t u t
y t e t

y t y t

− − − − − − + −
= +

+ − + −  
(4.43) 

where e(t)~N(0,0.052) 

 
Figure 4.11. Input-output data generated for Model 4 in Equation (4.43) 

 
Model 5 (Narendra & Parthasarathy, 1990) 

( ) ( ) ( )( ) ( ) ( )( ) ( )0.8 1 1 0.8 1 1 0.5y t y t u t u t u t e t= − + − − − − + +
  

(4.44) 

where e(t)~N(0,0.12) 

 
Figure 4.12. Input-output data generated for Model 5 in Equation (4.44) 
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Model 6: 

( ) ( ) ( ) ( )0.8 1 0.6 2 0.4 1y t y t y t u t= − + − + −    (4.45) 

Models 7 and 8 are two deterministic nonlinear dynamic models. 

Model 7 

 ( ) ( ) ( )2
0.8 1 1y t y t u t= − + −      (4.46) 

Model 8 

 ( ) ( ) ( )( )0.8 1 cos 1y t y t u tπ= − + −     (4.47) 

Different from Models 1-5, Model 7 has a quadratic term u(t-1), where u(t) is also 

generated by a “skyline” function between -1 and 1. The effect of u(t) on y(t) would be 

missed in average. As below, Equation (4.48) is the linear time-varying model for Model 

7 with a1(t)=0.8 and b0(t)=u(t-1). In average, the effect of u(t-1) in Equation (4.48) is 

reflected by E(b0(t)). In this case, E(b0(t)) is 0 since u(t) is a random signal between -1 

and 1.  

 ( ) ( ) ( ) ( ) ( )1 01 1y t a t y t b t u t= − + −     (4.48) 

Therefore, the regressor u(t-1) would be missed if a recursive estimation is 

conducted in time sequence, where b0(t) is a random number between -1 and 1 in time 

sequence The recursively estimated b0(t) would be wandering around zero. However, the 

proposed SNNR is able to reveal the impact of u(t-1) on model output. By rearrangement, 

the randomness in u(t-1) is eliminated. Consequently, the varying parameter, b0, is no 

longer a random variable but gradually increases from -1 to 1. A recursive estimation on 

the rearranged data is then able to reflect the impact of u(t-1) on y(t). Model 8 has a 

quadratic-like term cos(πu(t-1)) and will be used to test the proposed order determination 

technique. 

Model 9 in Equation (4.49) is used to demonstrate the non-uniqueness of obtained 

result as discussed in Section 4.1.1. By observing Equation (4.49), the nonlinear 

component could be either y(t-1) or y(t-2). A detailed test will reveal the observation. 
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Model 9 

 ( ) ( ) ( ) ( )0.2 1 2 1y t y t y t u t= − − + −     (4.49) 

Models 10 and 12 are deterministic nonlinear autoregressive (NAR) models in 

(Molina, Sampson, Fitzgerald & Niranjan, 1996) and used for method comparison. 

Models 11 and 13 are derived from Models 10 and 12 with noise added to the output and 

used to compare the influence of noise on different methods. The noise e(t) in Models 11 

and 13 has a small magnitude compared to output signals and is subject to N(0,σ2), where 

σ
2
 is set to about one thousandth of the average magnitude of output signal in the 

corresponding deterministic models. 

Model 10 (Molina, Sampson, Fitzgerald & Niranjan, 1996) 

( ) ( ) ( )( )4 1 1 1y t y t y t= − − −     (4.50) 

Model 11: 

( ) ( ) ( )( )
( ) ( ) ( )

4 1 1 1o o o

o

y t y t y t

y t y t e t

= − − −

= +
   (4.51) 

where e(t)~N(0,0.02252) 

 

Figure 4.13. Data generated for Model 10 in Equation (4.50) 
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Model 12 (Molina, Sampson, Fitzgerald & Niranjan, 1996) 

( ) ( ) ( )2
1 1.4 1 0.3 2y t y t y t= − − + −    (4.52) 

Model 13: 

( ) ( ) ( )
( ) ( ) ( )

2
1 1.4 1 0.3 2o o o

o

y t y t y t

y t y t e t

= − − + −

= +
  (4.53) 

where e(t)~N(0,0.02722) 

 

Figure 4.14. Data generated for Model 12 in Equation (4.52) 

Model 14: Two-phase flow process 

 Figure 4.15 shows an experiment setup of a two-phase flow process in the unit 

operation lab in the School of Chemical Engineering at Oklahoma State University. This 

unit is managed by a laboratory scale distributed control system, Camile.  The schematic 

diagram of the process is shown in Figure 4.16. Both bottom and top pressures of the 

vertical pipe are measured. There are two air flow supplies labeled as ‘Small air’ and 

‘Large air’ in Figure 4.16. Air from the two pipes merges and flows to a T, whose outlet 

end is connected to the bottom of the vertical pipe. The other inlet end of the T is 

connected to the water pipe labeled as ‘water’ in Figure 4.16. 
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 In this work, this unit is used to study the dynamics between mixed air & water 

and the pressure drop across the vertical pipe. Experiment is conducted in an open loop 

and only the air valve opening (‘Large air’ pipe) is manually changed. The ‘Small air’ 

pipe is closed. The ‘water’ pipe is controlled at 20 lbmol/hr. The measurements of the 

water flowrate in the ‘water’ pipe are shown in Figure 4.17. 

 

 

Figure 4.15. The two-phase flow experiment setup 

Pressure 
transducer 

“T” 
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valve 

Pressure tap 
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Figure 4.16. The schematic diagram for the two phase flow experiment 

 

Figure 4.17. Water flowrate measurements with set point at 20 lbmol/hr 
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 The process could be defined differently by taking signals from different channels. 

Figure 4.18(a) shows a possible choice. The input, u is chosen to be the measurement of 

the air flowrate. The output, y is the measuremtn of pressure drop, the difference between 

top and bottom pressure shown in Figure 4.16. A portion of 4500 measurements are 

displayed in Figure 4.18(b). There are totally 8830 measurements are recorded. Although 

the control interval was 0.1 second, the sampling rate for this data was chosen as 0.5 

second. 

 

(a) 

 

(b) 

Figure 4.18.  A choice of input and output channels; input, u is the measurement of air 
flowrate and output, y is the pressure drop measurement. a) The flowchart; b) The 

corresponding input and output data 
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noisier than at high values of y. A first-order filter is added in the data acquisition and 

control devise ( a Camile 2000 unit) to suppress some noise in y for observation 

convenience. With the filter included, Figure 4.19(a) shows another possible process 

definition. The input, denoted as us is the command signal for the air valve opening, 

which as shown precedes the air flowrate measurement. The output becomes the filtered 

pressure drop measurement and denoted as yf.  The data is shown in Figure 4.19(b).  

 

(a) 

 

(b) 

Figure 4.19. A choice of input and output channels; input, us is the signal to the air valve 
opening and output, yf is the filtered pressure drop measurement. a) The flowchart; b) The 

corresponding input and output data 
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Model 15: Binary distillation column 

Model 15 is a methanol-water binary distillation column simulator (Ou & 

Rhinehart, 2002) modified to have 20 trays. The distillation column simulator is a MIMO 

process. Two inputs are reflux flowrate (gmol/hr), u1, and reboiler heating percentage 

(TY%), u2. The sample interval is 30 seconds. The reflux flowrate varies between 50 and 

90 (gmol/hr) and heating percentage is between 40% and 55%. The duration time for 

each step change randomly varies between 0.05 and 1 hour. The first 1000 samples of 

inputs are illustrated in Figure 4.20. 

 

Figure 4.20. Reflux flowrate (solid line) and reboiler heat rate (dash line) 
Inputs to the distillation column 

Two outputs, y1 and y2, are the overhead and bottom concentrations of methanol 

xD and xB, in mole faction. The first 1000 output samples are shown in Figure 4.21. 
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Figure 4.21. The xD (solid line, left scale) and 
xB (dash line, right scale) in distillation column experiments 

4.4.2 Testing on Dynamic Order Determination 

An example is presented at first to demonstrate the details in order determination. 

The example is based on the deterministic version of Model 2. The first 1000 data 

samples are shown in Figure 4.22 and a total 5000 data are generated and used for the 

order determination. 

 
Figure 4.22. Data generated for the determinist version of model in Equation (4.42) 
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maximum d are set to 5, 4 and 1 respectively. The selection procedure is collected in  

Table 4.4. Regressor forward selection for data in Figure 4.22 

Step y(t-1) y(t-2) y(t-3) y(t-4) y(t-5) u(t-1) u(t-2) u(t-3) u(t-4) u(t-5) random 

1 0.0516 0.1248 0.2360 0.3572 0.4907 0.4246 0.3697 0.3243 0.3323 0.3661 3.348 

2 0.0408 0.0390 0.0400 0.0429 0.0131 0.0371 0.0411 0.0510 0.0534 0.0551 

3 0.0045 0.0060 0.0082 0.0146 2.1E+56 0.0117 0.0089 0.0114 0.0193 

4 0.0057 0.0073 0.0055 0.0043 0.0093 0.0035 0.0059 0.0098 

5 0.0068 0.0042 0.0062 0.0062 1.9E+10 0.0043 0.0105 

In Table 4.4, there are 11 regressors including 10 time-lagged regressors and a 

random regressor, the last one. At the first run, all 11 regressors are tried one by one. 

Their corresponding FPEs are recorded in the first row. Among them, the one with the 

smallest FPE at 0.0516 is chosen, and the related regressor is y(t-1). In the next step, the 

selected regressor, y(t-1) is combined with the rest of 10 regressors. The results of 10 

trials are in row 2, where the minimum FPE is due to u(t-1) at 0.0131. The blank for y(t-

1) in row 2 only indicates that y(t-1) has been included. Continuing on this procedure, we 

then need have both y(t-1) and u(t-1) included and try their combinations with rest of 9 

candidate regressors. The next minimum FPE is 0.0045 for y(t-2). Then y(t-2) is included. 

The next discovery is u(t-4) with FPE at 0.0035. At the fifth step, the minimum FPE is 

0.042, which is however greater than the previous minimum FPE of 0.035. The increase 

in FPE signals to terminate the forward selection. 

The above forward selection selects the four regressors [y(t-1) y(t-2) u(t-1) u(t-4)]. 

In theory, one could create an arbitrary model including these regressors. In practice, it is 

however unlikely to exclude u(t-2) and u(t-3) while having u(t-4) is included. In addition, 

the objective of this work is to determine dynamic orders, ny and nu. In order to include 

u(t-4), nu and d should be set to 3 and 1 respectively. This configuration however 

contains additional regressors u(t-2) and u(t-3), which are however rejected by the 

forward selection. In this work, a minor exhaustive search is conducted to compare 

different values for several values for nu, 0, 1, 2 and 3 with fixed ny at 2 and d at 1. The 

result is collected in Table 4.5, where the best value for nu is 0 with the minimum FPE of 
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0.0045. Therefore, the determined regressors are [y(t-1) y(t-2) u(t-1)] with ny=2, nu=0, 

d=1. 

Table 4.5. Exhaustive search on nu with ny=2, d=1 for data in Figure 4.22 

nu 0 1 2 3 

FPE 0.0045 0.0275 0.0066 0.0378 

 The above order determination procedure by a forward selection followed by a 

minor exhaustive search uses SNNR rearranged data in recursive estimation. To reveal 

the impact of SNNR on order determination, the forward selection procedure is repeated 

for the same data set without using SNNR. The details of selection are collected in Table 

4.6. The selected regressors are y(t-1), u(t-1) and u(t-2). No minor exhaustive search is 

needed. Compared the model definition in Equation (4.2), the result misses y(t-1) while 

find u(t-2) that is not presented in the deterministic model. We simply state that the result 

include two ‘mistakes’. 

Table 4.6. Regressor forward selection for data in Figure 4.22 using time-sequence data 

Stepy(t-1) y(t-2) y(t-3) y(t-4) y(t-5) u(t-1) u(t-2) u(t-3) u(t-4) u(t-5) random 

1 0.0526 0.1260 0.2367 0.3611 0.5010 1.6116 1.5373 1.4841 1.4906 1.5271 5.7726 

2 0.0556 0.0521 0.0533 0.0530 0.0462 0.0557 0.0634 0.0619 0.0588 0.0555 

3 0.0515 0.0508 0.0506 0.0502 0.0301 0.0501 0.0493 0.0493 0.0484 

4 0.0352 0.0325 0.0322 0.0317 0.0402 0.0401 0.0372 0.0316 

The order determination method is also applied to other deterministic models, 

deterministic versions of models in Equations (4.40~4.44). The results are summarized in 

Table 4.7, which also include the results using original time-sequence data for 

comparison. 
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Table 4.7. Regressors determined for deterministic versions of Models 1-5 

Model Time Sequence SNNR Truth 

1 y(t-1)y(t-2)y(t-3) y(t-1)y(t-2)y(t-3)u(t-1) y(t-1)y(t-2)u(t-1) 

2 y(t-1)u(t-1)u(t-2) y(t-1) y(t-2) u(t-1) y(t-1)y(t-2)u(t-1) 

3 y(t-1) u(t-1) y(t-1)u(t-1) y(t-1) u(t-1) 

4 u(t-1)  y(t-1)y(t-2)y(t-3)u(t-1) y(t-1)y(t-2)y(t-3)u(t-1)u(t-2) 

5 y(t-1)y(t-2)  y(t-1)u(t-1) y(t-1)u(t-1) 

As observed in Table 4.7, both approaches are tied in the Model 3 test. In the 

Model 1 test, the ‘Time Sequence’ misses u(t-1) but adds y(t-3), making 2 mistakes, 

while the ‘SNNR’ adds y(t-3), making 1 mistake. In the Model 2 test, the ‘Time Sequence’ 

misses y(t-2) but adds u(t-2), making 2 mistakes. The ‘SNNR’ makes 1 mistakes in the 

Model 4 test while ‘Time Sequence’ makes 4 mistakes by finding only u(t-1).  In the 

Model 5 test, ‘Time Sequence’ adds y(t-2) but misses u(t-1). For the first 5 tests, the 

‘SNNR has 2 mistakes while the ‘Time Sequence’ makes 10 mistakes.  Illustrated by this 

comparison, neither approach is perfect, but the ‘SNNR’ outperforms the ‘Time 

Sequence’ in terms of number of mistakes made. 

Tables 4.8 collects the comparison results using time-sequence and SNNR 

rearranged data for stochastic models in Equations (4.40~4.44) with example data shown 

in Figures 4.8~4.12.  

Table 4.8. Regressors determined for Models 1-5 

Model Time Sequence SNNR Truth 

1 y(t-1)y(t-2)u(t-1) y(t-1)y(t-2)u(t-1) y(t-1)y(t-2)u(t-1) 

2 y(t-1)y(t-2)y(t-3)u(t-1) y(t-1) y(t-2) u(t-1) y(t-1)y(t-2)u(t-1) 

3 y(t-1) u(t-1) y(t-1)u(t-1) y(t-1) u(t-1) 

4 u(t-1) y(t-1)y(t-2)y(t-3)u(t-1) y(t-1)y(t-2)y(t-3)u(t-1)u(t-2) 

5 y(t-1)u(t-1) y(t-1)u(t-1) y(t-1)u(t-1) 

Observed in Table 4.8, the ‘SNNR’ performs better with 1 mistake while ‘Time 
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Sequence’ makes 5 mistakes. It is also observed that only the result for the Model 1 is 

different in both Tables 4.7 and 4.8 for the ‘SNNR’ while the results for Models 1, 2, 3 

and 5 are different in both tables for the ‘Time Sequence’. It seems that the result due to 

‘SNNR’ is less influenced by the additional noise than the ‘Time Sequence’. It might be 

difficult to draw a general conclusion on the observation. Intuitively, the noise term will 

affect how model parameters vary, which in turn affects the performance of recursive 

estimation. Consequently, the order determination results, which are based on recursive 

estimation, should also be affected. On the other hand, the additional parameter variation 

after the noise being injected could be attenuated by the ‘SNNR’, which reduces the 

influence of noise on parameter variation then subsequently on order determination.  

The details of regressor selection for Models 7-8 are shown in Tables 4.9 and 4.10, 

where an extra regressor y(t-2) is found for each. It implies that the regressor y(t-2) has 

influence on y(t). In Equations (4.46) and (4.47), although y(t) is not directly related to 

y(t-2), the regressor y(t-2) is able to affect y(t) via y(t-1). More importantly, Tables 4.9 

and 4.10 show that the regressor u(t-1) is found for both models. 

Table 4.9. Regressor selection for Model 7 

 y(t-1) y(t-1)u(t-1) y(t-1)u(t-1)y(t-2) y(t-1)u(t-1)y(t-2)y(t-4) 

FPE 0.01370.0028 0.0025 0.0032 (Stop) 

Table 4.10. Regressor selection for Model 8 

 y(t-1) y(t-1)y(t-2) y(t-1)y(t-2)u(t-1) y(t-1)y(t-1)u(t-1)y(t-4) 

FPE 0.07870.0293 0.0188 0.0222 (Stop) 

The proposed order determination is also compared to the geometric 

method .(Molina, Sampson, Fitzgerald & Niranjan, 1996) The testing is conducted on 

Models 10-13, and results are summarized in Table 4.11. As observed, the geometric 

method is able to extract correct orders for deterministic nonlinear AR models while 

performs poorly with the presence of additive noise. The geometric method makes a total 

of four mistakes for both Models 11 and 13. The proposed order determination makes 
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one mistake for Model 12. 

Table 4.11. Regressors determined for Models 10-13 

Model SNNR Geometric Truth 

10 y(t-1) y(t-1) y(t-1) 

11 y(t-1) y(t-1) y(t-2) y(t-3) y(t-1) 

12 y(t-1) y(t-2) y(t-3) y(t-1) y(t-2) y(t-1)y(t-2) 

13 y(t-1) y(t-2) y(t-1) y(t-2)y(t-3)y(t-4) y(t-1)y(t-2) 

 The dynamic order determination is applied to the two-phase flow process with 

two possible input-output selections in Figures 4.18 and 4.19. The results are collected in 

Table 4.12. 

Table 4.12. Regressors determined for the two-phase flow process 

Input Output  

Air flowrate Pressure drop y(t-1) y(t-2) u(t-1) 

Air valve opening  signal Filtered pressure drop yf(t-1) yf(t-2) yf(t-3) us(t-4) 

For the input and output defined in Figure 4.18, the recognized regressors are [y(t-

1) y(t-2) u(t-1)]. The regressors determined for the input and ouput defined in Figure 4.19 

include [yf(t-1) yf(t-2) yf(t-3) us(t-4)]. Unlike the previous examples, it is not possible to 

justify the obtained results by ‘true’ dynamic orders for the two phase flow process, 

which are unknown. However, the difference expressed in results can be justified by our 

empirical knowledge regarding the process. The dynamic order in yf in Figure 4.19 is one 

order higher than that in the output, y in Figure 4.18. The extra order in yf is due to the 

first order filtering operation applied to the output, y. In two input channels, difference is 

in delay, which is consistent with the physical process. The signal us ‘command to the 

valve’ precedes the signal, u, air flowrate measurement. There are few steps between us 

and u. The signal, us is generated manually and recorded. It then is converted to a 3~15 

psi pneumatic signal. The variation in the pneumatic signal changes the pressure on the 

diaphragm, which then pushes or releases the stem connected to the valve plug. The air 
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flowrate is then altered and measured. The measurement is u. The delay difference of 3 

between u and us should be considered as an average difference over the entire data set. 

The exact difference might be different sample by sample. 

Applying the proposed order determination to Model 15, the result obtained using 

the procedure extended in Section 4.3 and is summarized in Table 4.13 for both outputs.  

Table 4.13. Results of order determination for the distillation column 

Output y1, distillate (xD) Output y2, bottoms (xB) 

FPE Forward Selection FPE Forward Selection 

2.11e-4 y1(t-1) 7.02e-7 y2(t-1) 

3.83e-5 y1(t-2) 1.52e-7 y2(t-4) 

3.55e-5 u1(t-3) 1.17e-7 u2(t-1) 

3.52e-5 y1(t-3) 1.13e-7 u1(t-3) 

3.43e-5 y2(t-3) 1.13e-7 u2(t-3) 

3.62e-5 y2(t-4)   

The selected regressors for y1(t) are [y1(t-1) y1(t-2) y1(t-3) y2(t-3) u1(t-3)] and the 

selected regressors for y2(t) are [y2(t-1) y2(t-4) u1(t-3) u2(t-1)]. For the output y2, the value 

of ny needs to be 4 if y2(t-4) is included. It would also include both y2(t-2) and y2(t-3). 

Therefore, a minor exhaustive search is needed to compare several different values of ny 

and the result is summarized in Table 4.14. 

Table 4.14. Exhaustive search on ny for y2 

ny 1 2 3 4 

FPE 1.25E-07 1.17E-07 1.23E-07 1.28E-07 

 Then the regressors determined for output y2 is [y2(t-1) y2(t-2) u1(t-3) u2(t-1)]. 
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4.4.3 Testing on Nonlinear Component Detection 

The nonlinear component detection will be based on the results in the above order 

determination. The implementation detail of nonlinear component detection is given for 

the Model 1 in Equation (4.40) with selected regressors [y(t-1) y(t-2) u(t-1)]. The result is 

recorded in Table 4.15, wherein the numbers for the row “Subsets” represent the 

combination of the 1st(y(t-1)) , 2nd(y(t-2)), and 3rd(u(t-1)) regressors.  

Table 4.15. Exhaustive search for nonlinear components for Model 1 

Subsets 1 2 3 1&2 1&3 2&3 1&2&3 

MSE 0.3328 0.3366 0.2747 0.3373 0.2987 0.3006 0.3195 

In the first trial, the entry for Subset “1”, the SNNR procedure is conducted based 

on y(t-1). The resultant data is then used in a recursive estimation that results in a MSE of 

0.3328. The trial continues until all combinations of regressors are exhausted. The 

minimum MSE is 0.2747, which corresponds to the third regressor, u(t-1). According to 

the result, the time-varying model could be described as below using the detected 

nonlinear component u(t-1).  

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 01 1 1 2 1 1y t a u t y t a u t y t b u t u t e t= − − + − − + − − +   

The results of nonlinear component detection for the first five models in 

Equations (4.40~4.44) are summarized in Table 4.16. 

Table 4.16. Results for nonlinear component detection for Models 1~5 

Model  Detected nonlinear components 

1 u(t-1) 

2 y(t-1), y(t-2) 

3 y(t-1), u(t-1) 

4 y(t-2) 

5 u(t-1) 
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Observed from Table 4.16, it seems that the difference between detected and 

desired nonlinear components is clear in the Model 4 test. It seems that in Equation (4.43), 

every regressor is nonlinear. However, only y(t-2)  is reported to be a nonlinear 

component while others are perhaps ignored. However, the result should not be 

interpreted that only y(t-2) is nonlinearly expressed in the Model. Since we are only 

reporting the minimum MSE as shown in Table 4.16, the results include only the 

‘dominant’ nonlinear components.  

Table 4.17 shows the details for nonlinear component detection for Model 4. The 

last row in Table 4.17 is the MSE on the raw data without SNNR operation. The first 

observation is that the minimum MSE is due to the regressor y(t-2), which is the reported 

nonlinear component in Table 4.16. On the other hand, it is observed in the last row that 

the MSE without SNNR is the maximum, which implies that every regressor has impact 

on parameter variation. It then indicates that every regressor is nonlinearly expressed in 

the model. However, the regressor, y(t-2) seems to dominate others in this test. 

Table 4.17. Exhaustive search for nonlinear components for Model 4 

Regressors MSE  Regressors MSE 

y(t-1) 0.004021 y(t-2)u(t-1) 0.003668 

y(t-2) 0.003241 y(t-3)u(t-1) 0.00343 

y(t-3) 0.003579 y(t-1)y(t-2)y(t-3) 0.00349 

u(t-1) 0.005035 y(t-1)y(t-2)u(t-1) 0.003711 

y(t-1)y(t-2) 0.003353 y(t-1)y(t-3)u(t-1) 0.003571 

y(t-1)y(t-3) 0.003312 y(t-2)y(t-3)u(t-1) 0.003453 

y(t-1)u(t-1) 0.004086 y(t-1)y(t-2)y(t-3)u(t-1) 0.003509 

y(t-2)y(t-3) 0.003365 No SNNR 0.005578 

The details of nonlinear component detection for Model 9 with regressors 1st(y(t-

1)) , 2nd(y(t-2)), and 3rd(u(t-1)) are collected in Table 4.18. 
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Table 4.18. Details of nonlinear components detection for Model 9 

Subsets 1 2 3 1&2 1&3 2&3 1&2&3 

MSE (10-3) 0.0144 0.0143 0.6442 0.1266 0.2186 0.2007 0.3159 

In Table 4.18, the minimum MSE, 0.0143 corresponds the regressor y(t-2). 

Interestingly, the corresponding MSE for regressor y(t-1) is 0.0144 and very close to that 

due to y(t-2). It would be fair to conclude that both regressors are equally good, which is 

consistent with model structure in Equation (4.49)  

 The nonlinear component detection results for the two-phase process are collected 

in Table 4.19 for two different choices of input and output channels. The results are 

reasonable and both include lagged input and output signals. 

Table 4.19. Nonlinear components detected for the two phase flow process 

Input Output Nonlinear components 

Air flowrate Pressure drop y(t-2) u(t-1) 

Air valve opening  signal Filtered pressure drop yf(t-1) yf(t-2) us(t-4) 

The nonlinear component results for the distillation column test are listed in Table 

4.20. For each output, competing choices are listed in terms of dimension and error. For 

y1, the minimum MSE = 3.153e-5 is to have [y1(t-2) y2(t-3)] as nonlinear components. 

The next minimum MSE is 3.155e-5 that has only one nonlinear component, y2(t-3).  The 

second choice features a low dimension while the first one has a lower MSE. For y2, two 

competing choices are listed. The minimum MSE = 9.10e-8 corresponds to the selection 

of [y2(t-1) u2(t-1)] as nonlinear components. The next minimum MSE is 1.06e-7, which 

has only one nonlinear component [u2(t-1)] included. All listed choices for nonlinear 

components will be further investigated and tried in creating GTSK models. 

Table 4.20. Choices of nonlinear components for the distillation column 

Output y1, distillate (xD) Output y2, bottoms (xB) 

MSE  MSE  

3.15e-5 [y1(t-2) y2(t-3)] 9.10e-8 [y2(t-1) u2(t-1)] 
3.16e-5 y2(t-3) 1.06e-7 [u2(t-1)] 
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CHAPTER V 
 

PARAMETER ESTIMATION FOR GTSK MODELS 

In this chapter, a two-stage approach is described to estimate model parameter 

values for the GTSK model described in Chapter 3 with selected antecedent and 

consequent variables in Chapter 4. Model parameters include both antecedent parameters, 

centorid (o), shape matrix (P) and coefficients for local linear relations (θ) for each rule. 

A brief summary of all parameters could be found in Equation (3.14). In Chapter 5, a 

constrained optimization problem with matrix inequalities is defined to estimate model 

parameter values, which are initialized by a proposed heuristic approach. The following 

elaboration focuses on a SISO model. The extension to MIMO models will be provided 

at the end of each section if necessary.  

5.1 Parameter Estimation by Newton’s Method 

5.1.1 A Constrained Optimization Problem 

Estimation of model parameter values is generally treated in an optimization 

scheme by minimizing a performance index defined over a data set. The entire data set is 

collectively denoted by [y C X] as output, antecedent and consequent variables. In detail 

the denotation is described by 

[ ]
( )

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 0

1 0

1 1 1 1 1

| | | |
nc nx

nc nx

y c c x x

y N c N c N x N x N

 
 ≡  
  

y C X

L L

M M O M M O M    (5.1)
 

where x0 is the constant regressor in Equation (3.13). Variables, x1 ~ xnx are regressors 

due to the determined dynamic orders ny, nu and pure delay, d in Chapter 4. Variables, c1 

~ cnc are antecedent variables as the nonlinear components determined also in Chapter 4.  



 

74 
 

The following optimization problem is then defined given the number of rules, M 

is known. 

( ) ( )( )2

, , 1

ˆminimize  

subject to

, 1, ,

i i i

N

t

i

J y t y t

i M

=

= −

> =

∑
o P θ

P 0 L

    (5.2) 

where, the computation of ŷ is described in Equation (3.22). Inequality constraints signify 

that all shape matrices Pi are positive definite. The following matrix function with respect 

to Pi is used to convert the constrained optimization to an unconstrained one (Boyd, 

Balakrishnan, Feron & Ghaoui, 1994) 

( ) ( )( )1
logdet

else.

i i
iφ

− >
= 
∞

P P 0
P    (5.3) 

Then, the augmented objective performance index is defined by 

( ) ( )aug
1

=
M

i

i

J s sJ φ
=

+∑ P      (5.4)
 

where the scalar s is used to adjust the relative importance of J with respect to the sum of 

( )iφ P . The treatment of matrix inequality is borrowed from the interior-point method to 

solve a convex linear matrix inequality optimization problem (Boyd & Vandenberghe, 

2004), although the optimization problem in Equation (5.2) is not convex. 

 The first and second-order derivatives of Jaug(s) to model parameters consist of 

those from the performance index and the penalty function. The derivatives due to the 

penalty function is described as below aided by the parameterization of Pi in Equation 

(3.19) 
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( ) ( )( )
( )

1
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1, , ; 1, , 1 2
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i
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i i
j bi i
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i M j b nc nc
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=

∂ ∂

= = +

P
P B P B

L L
   

 (5.6) 

where Tr  is the trace of a matrix. Clearly, ( )iφ P is independent of centroid, oi and local 

model parameters, θi. 

The first-order derivatives of J to model parameters are described by  

( ) ( )( ) ( ) ( )
1

ˆ2 , 1, ,
N

i
i

t

J
y t y t w t t i M

=

∂
= − − =

∂ ∑ x
θ
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 (5.7)
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N
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i
t

J
y t y t y t y t w t t

i M
=

∂
= − − − −

∂

=

∑ P c o
o

L    

 (5.8) 
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 (5.9) 

 The gradient vector is then described by  

1

aug aug aug, with i
i i i

M

J J J
 

∂ ∂ ∂  
= =    ∂ ∂ ∂  
 

g

g g
o P θ

g
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 (5.10)

 

where ( )( )1aug aug aug; Tr ;i
ji i i i i i

j j

J J JJ J J
s s s

p p

−∂ ∂ ∂∂ ∂ ∂
= = − =

∂ ∂ ∂ ∂ ∂ ∂
P B

o o θ θ
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 The Hessian matrix is then defined by 

2 2 2
aug aug aug

2

2 2 2
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2

2 2 2
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2
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   (5.11) 

The element-wise calculation of the second-order derivatives of J to model 

parameters are described by 
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With the above computed gradient vector and Hessian matrix. Newton’s method 

will be applied to optimize the model parameters by solving a sequential of quadratic 

optimization problems. The solving procedure is summarized in the Algorithm 5.1 
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The algorithm involves two loops. The inner loop uses Newton’s method to solve 

an unconstrained optimization problem with a given s. The scalar s is increased by µ in 

the outer loop to make the performance index J more important. The algorithm stops 

when s is sufficiently large. The scalar m in the outer loop stopping criterion is the 

number of model parameters. In the convex optimization (Boyd & Vandenberghe, 2004), 

it is shown that m/s quantifies the quality of a suboptimal solution and defined as the 

upper bound of the difference between the true optimal function value and the actual 

solution.  

5.1.2  Interpretation of Local Optimal Solutions 

 Based on the Algorithm 5.1, the scalar s becomes sufficiently large at the end, 

which lets performance index dominate the penalty term. It is then possible to derive 

solutions at equilibrium conditions by considering only performance index. By letting 

Equation (5.7) equal to zero, we then have 

( ) ( )( ) ( ) ( )
1

ˆ2 0, 1, ,
N

i

t

y t y t w t t i M
=

− − = =∑ x L
  

 (5.22)
 

A possibility is to let wi(t) be zero for all t. The trivial solution could be reached if 

oi is set to be sufficiently far from all c(t), which as shown in Equations (3.7) and (3.23) 

Algorithm 5.1 
0. Algorithm configuration: s=10, µ=2,ε=1e-3 

1. Initial guess: v(0)= [o(0), P(0), θ(0)] 

Repeat 
2. Newton method 

Repeat 
2.1. Evaluate g and H 
2.2. Compute the search direction: (∆v = H-1g) 
2.3. Linear search for λ and update:  v=v+λ∆v 
2.4 Stop if || λ∆v ||2 < ε 

3. Increase s: s=µs; 
4. Stop if m/s<ε 
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will make TAi(t) and wi(t) very small. Otherwise, the equilibrium condition will be 

satisfied in a complex way. With ŷ(t) replaced by Equation (3.22), the equilibrium 

condition becomes 

( ) ( ) ( ) ( ) ( )
1 1

ˆ2 0
N M

j j i

t j

y t w t y t w t t
= =

 
− − = 

 
∑ ∑ x

   
 (5.23)

 

which could be simplified if the following assumption holds 
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≈ ≠
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the assumption makes the cross product of weights in different rules negligible and let 

( ) ( ) ( ) ( ) ( )
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i j j i i

j

w t w t y t w t y t
=

≈∑  

Roughly speaking, the assumption is satisfied if rules in a GTSK model are 

relatively independent with wi(t) ≈0 or wi(t) ≈1. With the assumption, the equilibrium 

condition is simplified to 

( ) ( )( ) ( ) ( )
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ˆ2 0
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i i
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 (5.25)
 

The approximated equilibrium condition could be interpreted as a result of solving 

the following weighted least square 

( ) ( )( ) ( )
2

1

ˆ
N

i i i

t

J y t y t w t
=

= −∑     (5.26) 

 The equilibrium condition for centroids is achieved by letting Equation (5.8) 

equal to zero 
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 Clearly, the trivial solution with all zero wi(t) due to a distant oi is able to satisfy 

the equilibrium condition. The trivial solution is however undesired. Another possibility 

is to let the product of (ŷi(t) - ŷ(t))wi(t) equal to zero
 
everywhere, which will be 

approximately satisfied if the assumption in Equation (5.24) is made again. The product 

is about zero if wi(t) ≈ 0. Otherwise, the expression of (ŷ
i(t) -  ŷ(t)) is about zero if wi(t) ≈ 

1. Therefore, if rules in a GTSK model are relatively independent to each other, the 

equilibrium condition for the centroid is approximately satisfied. 

 Similarly, the equilibrium condition on the shape matrix parameters could also be 

approximately satisfied if rules are assumed relatively independent. 

5.1.3 Random Parameter Initialization 

An important factor affecting a nonlinear optimization is the initial guesses of 

decision variable values. Often times, initial guesses are randomly set. However, for the 

proposed GTSK model, random initialization might result in trivial or even infeasible 

solutions. Algorithm 5.1 requires feasible initial guesses. Since there are only constraints 

on Pi, users might initialize Pi as identity matrix and randomize oi and θi to avoid 

infeasible initializations.  

 Care needs also to be taken to initialize the centroid, oi especially for higher 

dimensional antecedents in order to prevent trivial wi(t) (all wi(t) are close to zero). As 

discussed in Section 5.1.2, trivial wi(t) will immediately satisfy the equilibrium 

conditions for both antecedent and consequent parameters. An illustration is shown in 

Figure 5.1 with a collection of antecedent samples as [y(t-3) u(t-9)]. y(t-3) is between 50 

and 160 while u(t-9) is between 20 and 100. Define an area by [100<y(t-3)<160, 50<u(t-

9)<100] as shown as the dashed box in Figure 5.1. Anywhere in that box is claimed to be 

distant from all observed samples. The box covers about 34% of the entire antecedent 

space. Therefore, there is about 34% likelihood to generate a trivial random centroid. 

Even if nontrivial centroids are initialized, the optimization is still subject to local optimal 
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solutions. Many random trials are needed to increase the probability of obtaining a global 

solution. In (Iyer & Rhinehart, 1999), statistical analysis is provided to estimate number 

of random trials given the probability of convergence region for a global optimal 

solution. 

 

Figure 5.1. Antecedent space defined by antecedent variables u(t-9) and y(t-3) 

Alternatively, centroids might be randomly drawn from observed samples. This 

approach guarantees that every centroid is at least significantly expressed once. However, 

care has to be taken to make sure that drawn random centroids spread wide enough in 

order to cover the entire antecedent space effectively. Otherwise, it is possible that all 

drawn centroids are too concentrated. It could happen when distribution of data samples 

are significantly uneven over antecedent space. In Figure 5.1, there are 5000 points, 90% 

of them are distributed in the right-bottom corner. The rest of points are scattered in the 

both tails, assuming 200 and 300 points at both tails respectively. The likelihood of 

drawing one from the right-bottom corner is 90%. If the desired centroid distribution is to 
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have at least one centroid in each portion of data in Figure 5.1 (the top tail, the bottom-

right corner, the bottom tail), the likelihood is L If N random centroids are drawn. 

1

1

1 1

1 1

1 0.9 0.04 0.06 0.9 0.04

0.9 0.06 0.04 0.06
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N N N N k k

k

N N
N k k N k k

k k

L
−

−

=

− −
− −

= =

= − − − −

− −

∑

∑ ∑
   (5.28)

 

Figure 5.2 shows the evaluation of the L in Equation (5.28) with respect to N. It 

indicates that least 45 random centroids need to be generated to assure the above 

mentioned initialization requirements with 0.99 likelihood. N will be increased if more 

centroids are required for the sparser areas, which is often necessary for data-rich-but-

information-poor chemical processes, where a large amount of data is recorded at steady 

state operation. For describing a chemical process around a steady state condition, one 

linear model will be sufficient. Nonlinearity is observed during transition between 

operating conditions, which however only generate a limit amount of data although more 

rules are needed to describe nonlinear behavior. In practice, it is hard to tell if N is 

sufficiently large, one might have to try to find the right value. 

 

Figure 5.2. Evaluation of function in Equation (5.28) 
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5.2 Parameter Estimation for MIMO GTSK Models 

Readers might choose to skip this section now and interested readers could come 

back to revisit this section when dealing with models.  

The following constrained quadratic performance index is used for a MIMO 

GTSK model 

( )
( ) ( )( ) ( ) ( )( )

, , 1 1

ˆ ˆminimize  

subject to

0

i i i

N
T

i M t

i

J t t t t
≤ ≤ =

= − −

>

∑
o P θ

y y Q y y

P   

 (5.29) 

where, the weighting matrix Q is a positive definite diagonal matrix used to reflect the 

relative importance of each output or to make them comparable by adjusting scales 

1 0

0 n

q

q

 
 =  
  

Q

L

M O M

L
     

 (5.30) 

Q(i,j) is set to zero (i≠j). Otherwise, yi and yj are coupled. Since Q is only a diagonal 

matrix, the performance index J can be decomposed as below 

1

n

k
k

J J
=

=∑
     

(5.31) 

with ( ) ( )( )2

1

ˆ
N

k k k k
t

J q y t y t
=

= −∑  

The derivatives of J with respect to model parameters are then defined by 

1 1 1

; ;
n n n

k k k

k k kk k

J J JJ J J

= = =

∂ ∂ ∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑o o P P θ θ   
 (5.32) 

where the derivative to kθ could be further simplified due to its local influence on Jk only  
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k
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 (5.33)

 The second order derivatives are defined by 
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It shows that the evaluation of the first and second derivatives for a single-output 

GTSK model is only needed. Simple arithmetic operations and matrix stacking would be 

able to recover the derivates and Hessian matrix for a MIMO GTSK model.  

The Hessian matrix is then expected to have a diagonal sub-matrix in its right-

bottom corner. 
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 (5.35) 

5.3 Overview of the Proposed Parameter Initialization 

A constrained nonlinear optimization problem is described above to estimate model 

parameters. The performance of the optimization is subject to the quality of initial 

guesses of decision variable values. One might need to try many different random 

initializations and find an acceptable result. At the same time, randomization has to be 
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carefully conducted to avoid poor centroid locations and distributions. In addition to the 

initialization problem, it is assumed in the above elaboration that the number of rules, M 

is known. However, this number is unknown and should be related to the complexity of 

the functional behavior. In practice, determination of M often requires trials for an 

appropriate choice with balanced model accuracy and complexity.  

The above optimization procedure takes a ‘global’ approach to estimate parameter 

values for a GTSK model and adjust all parameters simultaneously. This approach has 

the advantage to fully consider interactions among all parameters while suffers the above 

mentioned initialization difficulties. On the other hand, a GTSK model could be viewed a 

collection of rules. As shown in Figure 3.6, a GTSK model consists of 4 rules, where 

each rule is designated to an ellipsoidal area. An alternative approach to identify a GTSK 

model is then to identify its rules individually. A rule is identified if its antecedent and 

consequent parameters are estimated. As shown in Figure 3.6, antecedent identification 

will be to recognize an ellipsoid in terms of a centroid and a shape matrix. Consequent 

model identification is reduced to an estimation of a local linear model in the 

corresponding antecedent area. A rule is identified if it is known where the rule is needed 

in terms of a region in antecedent space. The antecedent space in this work is simply 

defined as a minimum hypercube that contains all antecedent samples. The problem is 

then to define regions in antecedent space to place rules. In this work, rule regions are 

generated out of an antecedent space by partition. An illustrating example for the Figure 

3.6 is shown below, where four regions are defined by three linear splitting boundaries 

(dashed lines). 

 

Figure 5.3. An antecedent space partitioned by three linear boundaries 



 

86 
 

In this work, boundaries are iteratively placed in an antecedent space as below.  

 

Figure 5.4. An iterative procedure to partition an antecedent space 

The antecedent space partition procedure could also be represented by a 

regression tree (Breiman, Friedman, Olshen & Stone, 1984) as shown in Figure 5.5(a), 

where t1 is the where the tree starts and is termed as a root node. Every tree has only one 

root that represents the original undivided antecedent space. Underneath t1 is the first split 

boundary, a linear inequality, sTc≥s0, which divides the space t1 into two disjointed parts. 

To the left of t1 is a branch node, t2, which includes all the data fulfilling the inequality. 

The rest of data from t1 is contained in another branch node t3.  Underneath t2, another 

split boundary is presented that further divides t2 into other two disjointed parts. Two 

nodes, t4 and t5 are then generated. No further splits are conducted on t4 and t5 that then 

make them terminal nodes. To the right of t1, a similar splitting process is conducted, 

which results two branch nodes t6 and t7 as well as three terminal nodes t5, t8 and t9. 
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(a)                                                                          (b) 

Figure 5.5.  Antecedent space partition by a regression tree 

The rectangle in Figure 5.5(b) outlines the range of variables c1 and c2 which are 

the two regressors identified as providing nonlinear functionality. These are the 

antecedent variables. Initially, the rectangle defines a space, t1. The first split is indicated 

by the line labeled l1, which split region t1 into two regions which were labeled t2 and t3.  

However, region t2, was split by line l2, creating regions t4 and t5.  Similarly, region t3, 

was split by line l3, creating regions t6 and t7. Then region t7, was split by line l4, creating 

regions t8 and t9.  

Note that in this approach, it is no longer necessary to assume the number of 

rules, M. It is, however, determined along with the space partitioning procedure.  

The concept of recursive space partition is also seen in (Nelles, 2001; Nelles & 

Isermann, 1996), where only boundaries along with axes are allowed and must pass the 

centroid of the space to be partitioned. In (Hartmann & Nelles, 2009; Nelles, 2006), a 

more general partition is defined in a sigmoid function to construct hierarchical models,  

which requires careful initializations of the smoothness of the sigmoid function, and 
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splitting position and direction to avoid trivial solutions. The partition defined in a 

sigmoid function could be considered as a ‘soft’ partition to be seen below. In this work, 

a ‘sharp’ partition is instead defined, analyzed and solved. In the meantime, the ‘soft’ 

partition is also investigated. The impact of the initial smoothness of a sigmoid function 

on a ‘soft’ partition is demonstrated to be complex and illustrated in Figure 5.29. 

5.4 A Splitting and Regression Problem 

5.4.1 Description of the Splitting and Regression Problem 

The fundamental step to obtain an antecedent space partition is to solve a splitting 

and regression problem (SRP). An example SRP on a two dimensional antecedent space 

is illustrated in Figure 5.6. The objective is to minimize the modeling error of the 

partitioned data by the two linear models by placing a linear separation boundary (the 

bold dashed line) in the antecedent space, which results in two regions A and B. Each 

region has a local linear model. The two linear models shown use all relevant regressors, 

not just the two (c1 and c2) chosen to express nonlinear behavior. The separation 

boundary is chosen here to be linear, and is a function of c1 and c2. 

 
Figure 5.6. Parameters to be estimated in solving a SRP 

c1 

c2 

 

A 

B 
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The belongingness of data sample to region A is determined by l(t) and φ(t) as below 

( ) ( ) ( )0 1 1t t tnc ncl s s c s c= + + +L    (5.36) 

( )
( )
( )

0, t 0
t

1, t 0

l

l
ϕ

 <
= 

≥
    (5.37) 

where s0,…,snc defines a separation boundary in Figure 5.6. The value of l(t) is 

2 2
1 ncs s+ +L  times of distance of a point, [c1(t),…,cnc(t)] to the linear separation 

boundary. However, Equation (5.37) implies that only the sign of l(t) matters. In Figure 

5.6, the points in category A have negative values for l(t) while B category has positive 

l(t).  In Figure 5.6, two local linear models are  

( ) ( ) ( )
( ) ( ) ( )

0 1 1

0 1 1

y t t t

y t t

a
nx nx

b
nx nx

a a x a x

t b b x b x

= + + +

= + + +

L

L
   (5.38) 

Combing Equation (5.37) with the Equation (5.38), the output prediction is then 

computed by 

 ( ) ( )( ) ( ) ( ) ( )ŷ t 1 t y t t ta byϕ ϕ= − +    (5.39) 

The SRP is then solved by minimizing the following performance index J 

( )2

, ,
1

min t
N

t

J ε
=

=∑
s a b

    (5.40) 

where, ε(t) = y(t) - ŷ(t) is the residual, and parameter values to be estimated include a and 

b in Equation (5.38), and s in Equation (5.36),  

5.4.2 SRP is Not a Clustering Problem 

The problem described above includes a linear separation boundary and also a 

learning perspective. The SRP problem needs to minimize a performance index, which 
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makes it a supervised learning problem. If we only focus on the linear separation part, it 

seems to be a clustering problem to separate un-categorized data, which is a typical 

unsupervised learning problem and can be solved in different ways (Hastie, Tibshirani & 

Friedman, 2001). The following illustration is used to indicate the difference between a 

separation boundary due to an unsupervised learning and the boundary for the SRP. The 

function used for the illustration is defined in Equation (5.41) and Figure 5.7 shows a 

collection of random samples 

1
1 2 1 2

2
1 2 1 2

5 ,

5 ,

y x x x x
y

y x x x x

 = + ≥
≡ 

= + <     
 (5.41) 

 

Figure 5.7. Data samples for Equation (5.41) 

The antecedent space is shown in Figure 5.8. 
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Figure 5.8. Data samples in antecedent space for Equation (5.41) 

 Figure 5.9 shows the result of an unsupervised learning, which separates data to 

two clusters based on their geometric distribution. This type of data segregation is 

however inconsistent with the underlying nonlinearity in the function. The desired data 

segregation due to the function definition is shown in Figure 5.10. Therefore, the problem 

to be solved is not purely an unsupervised learning problem. The boundary is not placed 

based on geometric distribution of data but on the function nonlinearity embedded in data. 

 

Figure 5.9. A linear boundary based on data distribution 
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Figure 5.10. A linear boundary according to function nonlinearity 

There are a number of methods proposed to initialize or identify a fuzzy model by 

unsupervised learning in either an input space or an input-output space (Dickerson & 

Kosko, 1996). Unsupervised learning is however relied on data distribution but not 

function nonlinearity. The above illustration shows why we should not do that.  

5.4.3 Analysis of the Splitting and Regression Problem 

The minimization problem in Equation (5.40) is nonlinear since the model 

parameters a or b are nonlinearly coupled with separation boundary parameters, s. The 

objective function in Equation (5.40) is discontinuous due to the discontinuity in the 

separation boundary in Equation (5.37). In order to derive more compact analytical 

expressions for first and second-order derivatives for analysis, Equation (5.37) is replaced 

by a sigmoid function 

   ( ) ( )
1

1
l t

t

e τ

ϕ
−

=

+

    (5.42) 

where, τ is introduced to adjust the ‘sharpness’ of the separation boundary. The impact of 

τ on Equation (5.42) is illustrated in Figure 5.11. 
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Figure 5.11. Illustration of Equation (5.42) with different τ 

In this work, the original separation boundary in Equation (5.37) is called a “sharp” 

boundary. The modified one for analysis is a “soft” boundary. The sharp boundary is 

recovered from the soft one at τ approaches to zero.  

With the soft separation boundary defined, it is then possible to compute the 

gradients defined by 

TT T T
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g
a b s

   (5.43) 

where, g is a concatenation of three gradient vectors. Among them, for instance, the 

gradient of J to a is defined by 

0

T
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J J J

a a
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=  ∂ ∂ ∂ a

L    (5.44) 

 The derivative of J to ak is derived as below 
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In the similar approach, the first order derivative of J to bk is described 
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The first order derivative of J to sk is computed as below 
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with the following equality derived from Equation (5.42) 
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the derivative to sk is concluded by 
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τ=

∂
= −
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where w(t) = ya(t)-yb(t) is the prediction difference between two local models. 

The second-order derivative is collected in the following Hessian matrix,
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where for instance, H(1,2) is a nx+1 by nx+1 matrix as defined by 
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the definitions for other block matrices are similar. The explicit derivations of each 

matrix element are given as below 
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 Once the gradients and Hessian matrix are obtained, it is then possible to analyze 

local solutions. The “soft” boundary is an approximation of the “sharp” boundary. As 

mentioned above, the “sharp” boundary is recovered from the “soft” one as τ approaches 

to zero. It is then possible to obtain the gradients and Hessian matrix for the “sharp” 

boundary by computing the limits of Equations (5.43) and (5.50) for the “soft” one. 
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where, the following limit appearing in Equations (5.49, 5.53, 5.54, 5.56 and 5.57) needs 

to be evaluated  
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 Using above evaluation, the gradients are then reevaluated by 
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Where ( ){ }0a aNa t tϕ= =  and ( ){ }1b bNb t tϕ= = . Na collects data belonging to group 

A while Nb collects data in group B. Second-order derivatives are evaluated by  
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Equilibrium solutions are defined if Equations (5.60) and (5.61) are zero. The 

equilibrium condition on sk is automatically satisfied in Equation (5.62). One possible 
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solution is to have all φ(t) = 0 (or  φ(t) = 1) for all t, then the equilibrium condition is 

( ) ( )
1

0
N

k
t

t x tε
=

=∑  

which is resulted from a least square estimation of model parameters for one linear model. 

The φ(t)=0 for all t implies that all data belong to group A and no data is in B. The 

corresponding Hessian matrix is then described by 

0

0 0

T 
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H     (5.69) 

where, X is defined in Equation (5.1). XTX is positive semi-definite if X has linear 

independent columns, which is a reasonable assumption for a linear regression problem. 

H is hence positive semi-definite and the solution with φ(t) = 0 is stable. The same 

conclusion is also available for φ(t) =1. These two situations define trivial solutions for 

the SRP problem since no separation is obtained. 

On the contrary, a non-trivial separation will have both zero and non-zero φ(t). 

The equilibrium condition is described by  
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where, two equations are independent to each other, each of which is satisfied if model 

parameters are estimated by a least square estimation. The corresponding Hessian matrix 

then becomes 

  
0 0

0 0

0 0 0

T
A A

T
B B

 
 

=  
  

X X

H X X

 

   (5.70) 



 

99 
 

where XA denote the portion of X being assigned to model A and is described by  
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Then the Hessian matrix in Equation (5.70) is also positive semi-definite and 

indicates a stable solution.  

Based on the above analysis, it can be concluded that the SRP has many local 

minima. A local minimum could be trivial if the separation happens outside the 

antecedent space. If the separation is placed inside, two local models are then obtained. It 

then provides a two-step procedure to reach an equilibrium solution starting from an 

arbitrary separation boundary followed by least square estimation on one or two models 

depending on the location of the boundary. In a searching space with many stable local 

minima, a gradient based optimization method, which optimizes both separation and local 

model parameters simultaneously, can easily get trapped. On the other hand, obtaining a 

local optimal solution is however often good enough to be expected in practice. In the 

following, we will follow a heuristic procedure to obtain a particular local optimal 

solution, which, as will be demonstrated in section 5.5.5, tends to be a global solution 

compared with solutions obtained from other methods. 

5.5 Solving of the Splitting and Regression Problem 

5.5.1 Initialization of Data Segregation 

As analyzed in 5.4, the SRP problem has many local optimal solutions. A local 

solution is obtained when a random boundary is given. A trivial solution is obtained if the 

boundary is outside the antecedent space.  

The SRP is solved in this work by a heuristic suboptimal approach. The heuristic 

approach is based on the assumption that the entire data set could be described by two 

local linear models. The entire data set is denoted by [y C X] in Equation (5.1). 
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A separation is specified by s defined in Equation (5.36). We then have the 

following expression for a separation. Given a separation defined by s, it results in a split 

of data [y C X] into A and B groups as [yA CA XA] and [yB CB XB] with definitions for 

group A as shown below. The definition for XA is described in Equation (5.71), and yA 

and CA are defined by 

( )

( )

1
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a
Na

y t

y t
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=  
 
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    (5.72)

  The model with two underlying linear models are defined by 
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  (5.73) 

  The corresponding model parameters a and b are estimated.  

( )
( )

1

1

ˆ

ˆ

T T

T T
B

−

−

=

=

A A A A

B B B

a X X X y

b X X X y

      (5.74) 

the residual for model A could then be evaluated by 

ˆ= −A A Aε y X a       (5.75) 

substituting Equations (5.74) and (5.75) for â  and yA the residual terms is then described 
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( )( ) ( )
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(5.76) 

The residual is then used to compute a quadratic performance criterion, JA for 

model A by 

T
A A AJ E  =  ε ε

     
 (5.77) 

where, εT ε is equal to the trace of a matrix εεT. 

( )T
A A AJ E Tr =  ε ε

    
(5.78) 

with definition of εA in Equation (5.76) 
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where the cyclic operation in Trace is used to obtain the above equality. In addition, it 

can be verified that  
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then JA is expressed in terms of XA and σA by. 
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where, the Trace term is evaluated as below  
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 (5.81) 

where, it is assumed that that Na >> nx. 

In the same manner, the performance criterion for model B is described by 

( )( )1 2T TJ Tr σ
−

= −B B B B B BI X X X X  and approximated by 2J Nbσ≈B B . Then the quadratic 

performance is expressed as a weighted sum of σA and σB by 

2 2

J J J

N Nσ σ

= +

≈ +
A B

A A B B
     

(5.82) 

where, if φ(t) in Equation (5.37) is known, NA and NB can be calculated by 
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additionally, the unknown 2σ A
and 2σ B

 

are to be replaced by their estimates by  
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(5.84) 

where µA and µB are unknown means of yA and yB in groups A and B. Substituting 

Equations (5.83) and (5.84) to Equation (5.82), the minimization problem to be solved is 

described by 
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where, there are N+2 decision variables, N belongingness values, φ(t), µA and µB. Since 

the φ(t) are not coupled, it can be solved individually by solving a simple optimization 

problem for the objective J(t) if and µA and µB are assumed to be known 

( ) ( ) ( )( ) ( )( ) ( )( )2 2 22 t 1 t tJ t y t yϕ µ ϕ µ= − + − −A B   
 (5.86) 
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By equating the first-order derivative to zero, φ(t) is then solved by 
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( )( ) ( )( )
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2 2
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=

− + −

B

A B
   

(5.87) 

Where the second-order derivative is always positive assuming that µA and µB are not 

equal to y(t) at the same time. It then verifies that the solution of φ(t) in Equation (5.87) is 

a global optimal solution for the J(t) in Equation (5.86) minimizes J(t). 

Combining Equations (5.85) and (5.87) defines the minimization problem in 

terms of µA and µB only by.  
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 (5.88) 

the objective function in Equation (5.88) has only two decision variables µA and µB, 

which is to be found using a Newton’s method. The first order derivatives of J to µA and 

µB are computed by 
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 (5.89) 

And the second-order derivatives are described by 
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(5.90) 

Using the gradient and Hessian matrix, a version of Newton’s method modified 

for non-convex quadratic problem in (Han, Pardalos & Ye, 1992) is used to minimize J 

,and find µA and µB since it is possible that resultant Hessian matrix might be indefinite 

(containing both positive and negative eigenvalues). 

Once J is minimized, φ(t) is determined by Equation (5.87) and automatically lies 

between 0 and 1. The resultant φ(t) takes any value within 0 and 1 instead of 0 and 1 only 

as defined in Equation (5.37). The following Equation (5.91) will convert the φ(t) to a 

two-value indicator (0,1) 

( )
( )
( )

0, 0.5

1, 0.5

t
t

t

ϕ
ϕ

ϕ

 <
= 

≥
   

(5.91) 

which assigns each data sample to either group A or B.  

 5.5.2 Solving for a Linear Boundary 

Note the solving procedure mentioned above does not use a linear separation 

boundary. φ(t) is obtained by minimizing J in Equation (5.88) but not confined to a linear 

separation boundary defined in Equation (5.36). Now the problem to be solved comes 

down to find a linear boundary segregating data with known categories, 0 and 1 due to 

Equation (5.91). There are many ways to place a linear separation boundary in data with 

known classifications. Perceptron neural network, logistic regression and linear 

discriminate are all possible methods to find a linear separation boundary. However, 
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these methods are only effective if the classification problem is linear separable.  

Multi-layer perceptrons (Hagan, Demuth & Beale, 2002) can be used for linear 

inseparable classifications assuming the number of linear boundaries is known. Linear 

regression can be used to fit a linear separation model for a two-value function. The 

resultant separation boundary is often not robust. A more robust approach way to find a 

linear separation boundary is by solving a support vector machine (SVM) (Hastie, 

Tibshirani & Friedman, 2001). The following version of SVM is used in this work to find 

the linear separation parameters s based on obtained φ(t)  
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(5.92) 

where ‘slack’ variables ξ are introduced to take care of misclassification if the problem is 

non-separable. A misclassification is indicated by ξ > 1. The scalar r is used to penalize 

the total amount of misclassification.  

In implementing the above procedure to find a separation boundary in practice, 

one practical problem is encountered when a trivial solution is obtained via solving the 

SVM. The trivial solution is defined by letting all separation parameters be zero. One 

possible situation to have a trivial solution is when the problem is equally mixed. A 

different approach is then taken to find a separation boundary if a zero boundary is 

obtained out of the SVM. 

 The following several examples show progressively how a trivial solution is 

obtained. Figure 5.12(a) shows a linearly separable example; the obtained separation 

boundary due to SVM is shown in Figure 5.12(b). In fact, the obtained boundary is same 

as that due to a linear discriminate method. 
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(a)                                                                  (b) 

Figure 5.12. A linear boundary generated for liner separable data 

 A little mixed example (linear non-separable) is shown in Figure 5.13, where 5 

solid dots are mixed with circles. The solid separation boundary is due to a SVM solution 

and the dashed line is due to a linear discriminate method. Two methods can be compared 

based on the number of misclassifications. The SVM method performances better with 10 

misclassification than the linear discriminate with 16 misclassifications.  

 

Figure 5.13. A linear non-separable case; 
(solid line by SVM, dashed line by liner discriminate) 

 A more mixed or non-separable case is shown in Figure 5.14, where a set of dots 
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are followed by a set of equal number circles. The pattern then repeats.  

 

Figure 5.14. A liner non-separable example with equally mixed points 

The resultant values of separation parameters are all zeros by either SVM or 

linear discriminate method. The dots and circles are equally mixed. Any linear boundary 

through the center of region will end up with same number misclassification. In the 

objective function of Equation (5.92), the penalty term for the non-separability is a 

constant. Therefore, the only quantity can be minimized is the norm of separation 

parameter vector. Its minimum is zero with all separation parameters being zero.  

On the other hand, it is clear from Figure 5.14 that two categories of data exist, 

dots and circles. Separation has to be defined. In this situation, a technique based on a 

special type of neural network, liner vector quantization (LVQ) (Hagan, Demuth & 

Beale, 2002) is used to find a suitable linear boundary. LVQ is a clustering technique 

used to recognize clusters in the categorized data. A separation boundary could be 

defined by connecting centers of two clusters for different categories. Figure 5.15 shows 

the result of the implementation of LVQ for the problem in Figure 5.14. As shown, there 

are 10 clusters (triangles) recognized for dots and 10 clusters (stars) for circles. There are 

hence totally 100 possible linear separation boundaries. The best one is reported as the 

found separation boundary.  
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Figure 5.15. Clusters found by LVQ for data in Figure 5.14 

5.5.3 Boundary Refinement  

The solved s is then applied to Equations (5.36) and (5.37) to update φ(t), which is 

now confined a linear separation boundary. The resultant φ(t) defines a split, [yA CA XA] 

and [yB CB XB]. Then a and b are estimated by Equation (5.74). It then is able to evaluate 

residuals εA and εB explicitly by Equation (5.75). The belongingness values of φ(t) are 

then updated by minimizing the following J with replacement of (y(t)-µA) and (y(t)-µB) in 

Equation (5.88) by εA(t) and εB(t) 

( ) ( ) ( )( ) ( )
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(5.93) 

where, φ(t) is solved by  
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(5.94) 

The new φ(t) is then converted to 0 and 1 by Equation (5.91) and the SVM is solved 

again. Subsequently, a and b are re-estimated. The flowchart in Figure 5.16 illustrates the 

procedure to solve the SRP. 
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Figure 5.16. Flowchart for solving a SRP 

5.5.4 Testing and Demonstration 

The following examples are used to demonstrate how to implement the proposed 

technique to solve a SRP in practice. The first example is a piecewise linear function 

defined as below and illustrated in Figure 5.17(a) 

1

2

9 47.5 0 2.5

10 2.5 4

y x x
y

y x x

 = − + ≤ ≤
≡ 

= − < ≤    
(5.95)

 

where, the separation is at x=2.5. Solving the problem of Equation (5.88), the solved µA 

and µB are -32.4915 and 36.5139 and the φ due to Equation (5.87) separate the function is 

shown in Figure 5.17(a), where dots and circles represent two different groups.  

SRP 

Solve µA and µB (5.88) 

Solve φ(t) (5.87) and Convert (5.91) 

Solve a SVM for s (5.92) or Try LVQ 

Compute φ(t) (5.36), (5.37) 

Estimate a and b (5.74) 

Solve φ(t) (5.94) and Convert (5.91) 

Converge ? 

END 

No 

Yes 
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(a)                                                             (b) 

Figure 5.17. a) Initialization of data segregation for Equation (5.95); 
b) A linear separation boundary found for the initial data segregation 

The initial separation is consistent with the piece-wise function. The resultant 

separation boundary is shown as the vertical line in Figure 5.17(b).This problem has a 

very particular piece-wise function, which has very distinct values in each region. The 

problem is actually solved at the first iteration. The initial data segregation is consistent 

with the underlying function nonlinearity. 

 The second example is defined by 
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5 2.5 4

y x x
y

y x x

 = − + ≤ ≤
≡ 

= − < ≤    
 (5.96)

 

where, the difference to the first example is in the second linear function. The separation 

is also at x=2.5. The found optimal µA and µB of y, are 17.4742, 38.5195. The resultant 

segregation of data is shown in Figure 5.18(a), where the segregation is not totally 

consistent with the desired separation according to the function definition. 5 circles 

before x=2.5 should be dots. The misclassification illustrates the mismatch between an 

unsupervised learning and the desired classification. The first separation boundary by 

solving a SVM is shown as the dot-dashed vertical line (the leftmost one) in Figure 

5.18(b), which separates circles from dots. Then two linear models are obtained. One of 
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linear models actually (dots) matches the true model exactly since dots are all resulted 

from one linear function. Residuals are computed after two linear models are obtained 

and the separation boundary is then updated, which is shown as the dashed vertical line 

(the rightmost one) in Figure 5.18(b). Clearly, it is closer to the desired solution at x=2.5 

than the initial boundary. The dashed line resulted in a better separation and two better 

local models. Using the improved local models, residuals are updated, which in turn 

results in another step of improvement of separation boundary. The third separation is 

shown as the solid vertical line (middle one) in Figure 5.18(b). The solution is at x = -

2.4757. In this simulation, further iteration results in no improvement. Actually, there are 

infinite number of global solutions between two margin points, the last point from the left 

line equation and first point from the right one. The resultant one is due to the SVM 

solution, which is expected to be robust with equal distance between two margin points.  

 

(a)                                                              (b) 

Figure 5.18. a) Initialization of data segregation for Equation (5.96) 
b) Initial linear boundary and its variation over iteration 

 The third example is more confusing at the initial step than the first two and 

defined by 
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The initial separation is shown in Figure 5.19(a) with two recognized centers µA = 

35.1792 and µB = 34.7254, which separates high value y from low values. However, the 

initial separation does not match the underlying nonlinearity in the piecewise function. 

The initial boundary solved is the dot-dashed line (the leftmost one) shown in Figure 

5.19(b). Another iteration brings the separation boundary to the right of x=2.5 (the dashed 

line in Figure 5.19(b). The final separation boundary is shown as the solid vertical line at 

x=-2.4757 in Figure 5.19(b). 

 

(a)                                                           (b) 

Figure 5.19. a) Initialization of data segregation for Equation (5.97) 
b) Initial linear boundary and its variation over iteration 

Note that the nonlinear optimization problem in Equation (5.88) is subject to the 

initial guesses of µA and µB (a common problem for all nonlinear optimization problems). 

Figure 5.20 shows an initial separation due to estimated µA(0) = 35.4836 and µB(0) = 

57.9810. It appears that a linear boundary might not be needed since all data points 

appear to belong to one category with only two dark dots are observed in the upper-left 

corner in Figure 5.20. Solving a SVM based on the initial categorization results in a 

trivial separation with s0=-1, s1 = 0, which means no separation. Clearly, the initial 

categorization of data is not consistent with the underlying nonlinear function.  
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Figure 5.20. An initial data segregation for Equation (5.97) fails a SVM solver 

As mentioned above, a LVQ based method will be applied when SVM fails. For 

this case, a linear quantization vector (LVQ) is solved to recognize some clusters in each 

category. The result is shown in Figure 5.21, where one cluster (star) is identified for the 

two solid dots and 16 clusters (triangles) are identified for the circles. Given the solved 

LVQ, the next step is to try all possible separation boundaries. One boundary at x=0.9160 

defined by two clusters of x=0.0312 (star) and x=1.8 (triangle) is shown in Figure 5.21. 

In this case, 16 separation boundaries are tried (one star and 16 triangles).  

 

Figure 5.21. Clusters recognized using LVQ for the initial segregation in Figure 5.20 

 The best of 16 trials is shown as the dot-dashed vertical line (the leftmost) in 

Figure 5.22. The dashed and solid linear boundaries are obtained in the next two 

iterations. Convergence is obtained at x = -2.4757. 
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Figure 5.22. Initial boundary from clusters in Figure 5.21 and its variation in iterations 

 As shown in Figure 5.23 is a SRP applied to a linear piecewise function with three 

pieces. The resultant separation is the solid vertical line (the leftmost one) in Figure 5.23. 

One can imagine that subsequent steps will be to solve two SRPs for data on both sides of 

the first separation. Following the procedure, an antecedent space is progressively 

partitioned. 

 

Figure 5.23. Liner boundary solved for a three-piece piecewise function 
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the two-piece piecewise linear functions can be easily verified as global optimal solutions 

since obtained separation matches the separations defined in original functions.   

 

Figure 5.24. Linear boundary solved for a quadratic function 

 The sum of squared error (SSE) with respect to different separation boundary 

locations is shown in Figure 5.25 for the quadratic function. As shown, the optimization 

problem appears to have a ‘global’ minimum around 1, which matches the converged 

solution shown in Figure 5.24.  

 

Figure 5.25. SSE with respect to the separation locations for the quadratic function 
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Figure 5.26 shows a one-period of Sin function, where the convergence is 

obtained at -2.5741. The solution is also shown in Figure 5.27 for the performance 

function (SSE) with respect to separation. The performance function is more complex 

than that in Figure 5.25. As shown in Figure 5.27, the resultant separation boundary is at 

the right edge of the valley of the performance function.  

 

Figure 5.26. Initial linear boundary and its variation over iteration 

 

Figure 5.27. SSE with respect to the separation locations for Sin(x) 
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5.5.5 Comparison to Other Methods 

In this section, the above mentioned SRP solving procedure is compared to two 

other methods. One is to use Newton’s method to optimize the separation parameters, s, 

and local model parameters a and b simultaneously using a “soft” boundary. The other 

one is the Nelder-Mead method to search for separation parameters only. The following 

comparison is based on the piece wise linear function in Equation (5.97) and the function 

defined in Equation (5.98) 

a. Newton’s method to solve a SRP 

The first and second order derivatives for using a Newton’s method are described 

in Equations (5.43) and (5.50). One tuning factor is τ for the sharpness of a boundary, 

which has to be carefully chosen for a satisfactory result. The parameters, s0, a and b are 

randomly initialized. In order to avoiding out-of-antecedent-space initial separation 

boundaries, the parameter s1 is set such at the initial separation boundary location is at 

x=3.2040. The following gradients (g) and Hessian matrix (H) are evaluated for a very 

small τ = 1e-6 (τ = 0 will give indefinite evaluations numerically) 

[ ]2110.3 2963.9 558.41 2032.4 0 0
T

= − − − −g  

65 104 0 0 0 0

104 223.6 0 0 0 0

0 0 16 58 0 0

0 0 58 211.1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T
 
 
 
 

=  
 
 
 
 

H  

where the gradients and Hessian matrix to s are all zeros, which verifies the derivations in 

Equations (5.62, 5.64, 5.65, 5.67 and 5.68). Therefore, separation parameters cannot be 

updated. The performance indexes over iterations are 

J = [45745 215.05 215.04] 
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which implies that Newton’s method converges after one step. The separation boundary 

is still at x=3.2024 and the improvement is achieved only by adjusting the local model 

parameters a and b. The procedure is same as to conduct two linear regressions on both 

sides of a random linear separation boundary. Although the boundary is far from the 

desired, the solution is still a local optimum. 

The following g and H are evaluated at τ = 0.1, where evaluations for separation 

parameters become significant.  

[ ]2105.2 2956.8 564.29 2041.2 3800.6 1179.6
T

= − − − −g  

62.58 96.573 1.9995 6.4058 1860.8 577.7

96.573 200.78 6.4058 20.588 6012.7 1860.8

1.9995 6.4058 14.421 52.615 1987.3 617.12

6.4058 20.588 52.615 192.74 6419.8 1987.3

1860.8 6012.7 1987.3 6419.8 13106 2892.3

577.7 1860.8 6

− −
=

− −

− − − −

−

H

17.12 1987.3 2892.3 534.21

T
 
 
 
 
 
 
 
 

− − − 

 

 The performance index over iterations is shown in Figure 5.28 Newton’s method 

converges after 5 iterations.  

 

Figure 5.28. Objective function converges using Newton’s method to solve a SRP 
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The separation boundary converges x=3.2680 and the final performance index is 

250.9310, which is however larger than 215.04 due to τ =1e-6. Several tests are 

conducted on various τ values and the results are collected in Table 5.1. Figure 5.29 

shows the converged objective function values with respect to τ. If an extra layer of 

optimization is introduced to optimize the scalar τ, Figure 5.29 implies that the 

optimization will be subject to local optimal solutions. 

Table 5.1. Solution for a SRP using different τ values 

τ obj(final) Separation boundary  τ obj(final) Separation boundary 

1e-6 215.0415 3.2040 0.6 2.7419 2.6838 

1e-3 215.0421 3.2000 0.7 0.0003 2.5062 

0.01 181.7927 3.2000 0.8 0.0014 2.5004 

0.1 250.9310 3.2680 0.9 28.4969 2.6215 

0.2 155.3974 2.0837 1.0 46.8515 3.2997 

0.3 3.8066 2.7486 1.5 8.5687 3.0385 

0.4 1.3362 2.5848 2.0 9.6278 3.0246 

0.5 16.3559 2.7133  

 

Figure 5.29. Converged objective function value with respect to τ 
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b. Nelder-Mead method to solve a SRP 

A Nelder-Mead method searches for separation boundary parameters only. For 

each tried separation boundary, two local linear models are then estimated by least square 

regression. Figure 5.30 is the pseudo code for the Nelder-Mead to solve a SRP. 

( ) ( ) ( )
( ) ( )

1 2

1

0

1, 2, 0.5, 0.5, 0.001
While (1)

/ / ordering all the vertices
J J J
IF J J Then

return
End IF
/ / compute the center of the best m-1 vertices

11=
1 1

//compute the refletion of the wors

m

m

k

m

m k

α ρ γ σ ε

ε

= = = = =

≤ ≤ ≤
− ≤

−
∑− =

s s s

s s

s s

L

( )
( ) ( ) ( ) ( )

( ) ( )

( )
( ) ( )

0 0

1 1

1

0 0

t vertex to the center
=

IF  And Then
replace  by 

Else IF  Then
/ / compute the expansion vertex

IF  Then
replace  by 

Else
replace  by 

End IF
Els

r m

r r m

m r

r

e m

e r

m e

m r

J J J J

J J

J J

α

γ

−

+ −
< <

<

= + −
<

s s s s

s s s s

s s

s s

s s s s

s s

s s

s s

( )
( ) ( )

( )
( )

0

1 1

e
/ / contraction

1

IF  Then
Replace  by 

Else
//Shrink
For each  1, ,

End For
End IF

End IF
End While

c r
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i
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ρ ρ
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=
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Figure 5.30. Nelder-Mead algorithm to solve a SRP 
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where, m is the number of vertices and defined by nc+1. 

Unlike the above mentioned Newton’s method, the Nelder-Mead adjusts only 

separation parameters while the former optimizes both separation parameters and local 

model parameters at the same time. There are many factors affecting a Nelder-Mead 

method such as values for α, ρ and γ in the pseudo code. More importantly, the Neader-

Mead method is also subject to initial guesses. Shown in Figure 5.31 is the performance 

index with respect to the location of a separation boundary. The performance is defined 

by SSE error reduction by having two local linear models  

 

Figure 5.31. SSE with respect to the separation locations for Equation (5.97) 

Figure 5.31 shows that the problem to be solved by the Nelder-Mead method has 

only one local optimal solution, which is also the global solution. As expected, the 

Nelder-Mead method should be able to locate the global optimal solution. Figure 5.32 

shows 50 trials of the Nelder-Mead starting from random initial guesses, where global 

solution is found 48 times. 
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Figure 5.32. Separation locations for Equation (5.97) by Nelder-Mead method 

The second function to be tried is defined as below (Zhang, Chen, Ansari & Shi, 

2004) and plotted in Figure 5.33 

( ) ( ) ( ) ( ) ( ) ( )1 0.5 sin 2 1 0.4 cos 1 0.1 sin 3 ; 0 5y x x x x x x xπ π π= − + + + + ≤ ≤  (5.98) 

 

Figure 5.33. Illustration of the function in Equation (5.98) 
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The performance index with respect to the location of separation boundary is 

shown in Figure 5.34, where several local optimal solutions are observed 

 

Figure 5.34. SSE with respect to separation locations for Equation (5.98) 

Figure 5.35 shows the solutions obtained by the Nelder-Mead method out of 50 

trials. Among them, 15 solutions are around the global solution at w=3.47.  

 

Figure 5.35. Separation locations for Equation (5.98) by Nelder-Mead method 
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The 50 trials by solving the SRP using the proposed procedure are shown in 

Figure 5.36. The scattering of solutions shown in Figure 5.35 is not observed in Figure 

5.36. Instead, two groups of solutions could be visually recognized. There are 35 

solutions around the global solution. The other 15 solutions concentrate around w = 3.7 

and a little away from the global solution. 

 

Figure 5.36. Separation locations for Equation (5.98) by the proposed SRP solver 

As a conclusion, the proposed solving procedure for a SRP is more robust and 

problem independent. The Newton’s method depends the ‘sharpness’ factor, τ, whose 

impact on the algorithm is shown complex. Direct search methods such as the Nelder-

Mead method are subject to algorithm configurations and could get trapped by local 

optimal than the proposed SRP solver.  

5.6 Extension to Multiple-Output Processes 

Readers might choose to skip this section and come back for details when dealing 

with MIMO models. 

The above SRP is for single-output models. Several functions need to be extended 

for models with multiple outputs. One of them is the performance index in Equation 

(5.85), which is redefined for multiple outputs by  
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( )
( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( )

22

, ,
1

minmize 1

subject to

0,1; 1, ,

N
T T

t
t

J t t t t t t

t t N

µ µ ϕ
ϕ ϕ

ϕ

=

= − − + − − −

= =

∑
A B

A A A B B By µ R y µ y µ R y µ

L

(5.99) 

where scalar y(t) is replaced by a vector y(t) with dimension of n. Scalars of µA and µB 

are also replaced by their vector versions. Two diagonal weighting matrices RA and RB 

are introduced to adjust the scale of each output in each group (all weights are positive 

numbers).  

 φ(t) in Equation (5.87) is then solved by  

( )
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

T

T T

t t
t

t t t t
ϕ

− −
=

− − + − −

B B B

A A A B B B

y µ R y µ

y µ R y µ y µ R y µ
  

 (5.100)

 

and described by 

( ) B

A B

E
t

E E
ϕ =

+     
 (5.101)

 

with 

( )( ) ( )( )
( )( ) ( )( )

T

T

E t t

E t t

= − −

= − −

A A A A

B B B B

y µ R y µ

y µ R y µ  

It can also be verified that φ(t) in Equation (5.100) minimizes the objective 

funtion in Equation (5.99). With the definition of φ(t) by µA and µB, the optimization 

problem is converted to a problem with only decision variables of µA and µB. The first-

order derivatives of J to µA and µB are described by 
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( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( ) ( )

2

1

2

1

2 2 1

2 1 2 1

N
A

A
t

N

A
t

t tEJ
t E t t E

t tEJ
t E t t E

ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ

=

=

∂ ∂∂∂
= + − −

∂ ∂ ∂ ∂

∂ ∂∂∂
= + − − −

∂ ∂ ∂ ∂

∑

∑

B
A A A A

B
B

B B B B

µ µ µ µ

µ µ µ µ  

 (5.102)
 

 The second-order derivatives are described by 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( )

( ) ( )
( )

( )( ) ( )( ) ( )

2

2 2
1

2
3

1
2 4 4

16 2

T TN

t

T T

t E t Et t t EJ
E E t E R

E E

t E t E E
E R y t y t R R t

E E

ϕ ϕϕ ϕ ϕ
ϕ

ϕ ϕ
ϕ

=

 − − ∂ ∂ ∂  ∂∂  = + + +    ∂ ∂ ∂ ∂  ∂ +    

+ −
+ − − +

+

∑ A BB
A B B A

A A A AA A B

A B B
B A A A A A

A B

µ µ µ µµ

µ µ

(5.103) 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( )

( ) ( )
( )

( )( ) ( )( ) ( )( )

2

2 2
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2

3

1
2 4 1 4

16 2 1
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T T

t E t Et t t EJ
E E t E R

E E

E t E t E
E R y t y t R R t

E E

ϕ ϕϕ ϕ ϕ
ϕ

ϕ ϕ
ϕ

=

 − − ∂ ∂ ∂  ∂∂  = + + − +    ∂ ∂ ∂ ∂  ∂ +    

− −
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A B A B

B B B BB A B
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A B B B B B

A B
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 (5.104) 
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( )
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( )( ) ( )( )
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2 2 2 1

1 1
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(5.105) 

where, the derivatives of EA and EB to µA and µB are defined respectively 

( )( )

( )( )

1

2

2

2

A

B

B

E
t

E
t

∂
= − −

∂

∂
= − −

∂

A
A

B

R y µ
µ

R y µ
µ    

 (5.106)

 

and the derivatives of φ(t) to µA and µB are defined by
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( )
( )

( )
( )
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A
t E E

E E

t E E

E E

ϕ

ϕ

∂ − ∂
=

∂ ∂+

∂ ∂
=

∂ ∂+

B

A AA B

B B

B BA B

µ µ

µ µ

    (5.107)

 

 The problem is non-convex. The same optimizer using the revised Newton’s 

method for non-definite quadratic problems is used. 

5.7 Recursive Partition by Growing a Binary Tree 

The above mentioned SRP finds a linear separation boundary. A tree growth 

procedure is defined to recursively solve SRPs in obtained regions, which at the end 

defines a partition in an antecedent space. The procedure should end when stopping 

criteria are satisfied. As shown in Figure 5.23, it is clear to observe that one more SRPs 

on either side of the first separation boundary is required to complete the partition. Then, 

the growth procedure stops when modeling error is zero. The simple stopping criterion is 

only suitable for a piece-wise linear model. For a nonlinear model as shown in Figure 

5.24, the tree growth cannot be stopped by the zero-modeling-error stopping criterion 

given sufficient number of data points in each region for parameter estimation. 

Practically, the growth has to be stopped at least for the minimal number of data points in 

a region to estimate local model parameters. 

In this work, a scalar αM is used to determine if a splitting is acceptable. The 

threshold number determines the minimum number of data points in a region. A splitting 

is rejected if either resultant region contains less than αM data points. The threshold 

number is not directly set by users but resulted from a predefined number, M . 

M

N

M
α =      (5.108)

 
where N is the number of data points and M  could be roughly interpreted as the 

anticipated maximum number of regions (rules). It is expected that the number M is 
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more relevant for users’ anticipation of the modeling complexity, number of rules. Lack 

of fit should be expected if the M is chosen too small while a too largeM will result in 

over fit. Trials could be taken to find a suitable M . More aggressively, a linear search 

could be conducted to find an optimal M . 

 Different M are tried for function y=x2 over [-4,4]. The results for M = 3,5,10 

and 15 are shown in Figure 5.37. Table 5.2 collects the number of regions and SSE for 

each M . Without any split, the SSE is 3755.37. The reduction rate of SSE is 93.72 % at 

M = 3 with one split. Another 5.81% improvement is achieved at M = 5 with another 

two splits. 0.38% improvement is gained at M = 10 with another three splits. Trials could 

be made for different M .  

 
                              (a)  M =3                                                    (b) M =5 

 
                                     (c) M =10                                                   (d) M =15 

Figure 5.37. Antecedent partition using different M  
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Table 5.2. The number of rules and SSE resulted from different M  

M  3 5 10 15 20 

M 2 4 7 10 14 

SSE 235.67 17.16 2.94 0.9428 0.1526 

In this work, M is not searched. Instead, a large M is chosen on purpose, which 

might result in a ‘large’ model with ‘too’ many rules’. Then a tree trim procedure is 

conducted to cut off unnecessary tree branches to reduce model complexity. 

5.8 Removal of Insignificant Partitions by Trimming a Tree 

As mentioned above, an appropriate M is needed to generate a suitable size 

GTSK model with reasonable number of rules. Trials could be made to find a proper M . 

In this work, M is not tried. Instead, a ‘large’ M is used, which will purposely over-

partition an antecedent space. By doing that, the problem to be solved can only be over-

fitting but not under-fitting. Subsequently, some regions in the over-partitioned spaces 

are merged via removing some unnecessary boundaries, which has the least model 

improvement per model complexity efficiency. Therefore, the under-fitting and over-

fitting are addressed in two stages.  

Using a large M could also be considered as an attempt to find a ‘global’ solution 

out of one obtained in a step-wise manner. Ideally, the partition problem should be solved 

by considering all separation boundaries together in order to get a global optimal partition 

in terms of both modeling complexity and errors. Rather than attempting to solve such a 

difficulty problem, the recursive procedure in this work is to solve a separation a time. 

Together, separations from each step build up the solution. The resultant solution is a 

step-wise partition, which is expected to be different from a solution obtained from 

‘global’ procedure if it ever exists. If a large M is used, it is hoped that the resultant step-

wise solution contains a ‘global’ solution. If considering a tree structure, the ‘global’ 

optimal tree is contained in the excessively large tree due to a large M . The problem 
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remains to be solved is to find the ‘global’ tree by removing unnecessary branches and 

leaves from the ‘big’ tree. 

A tree trim procedure is then operated to remove unnecessary branches. Branches 

to be removed should have low model improvement per model complexity efficiency. As 

shown in Figure 5.38(a), there are three branches with branch nodes t2, t3 and t7. A branch 

is denoted by Bt, for instance, branch Bt3 extracted from Figure 5.38(a) is shown in 

Figure 5.5.  

 

Figure 5.38. The branch Bt3 from Figure 5.5(a) 

A branch Bt is defined as a set of leaf nodes that are decedents of Bt.  For 

instance, Bt3 in Figure 5.38 is defined by [ ]3 6 8 9, , .Bt t t t=
 

At the tree-growth stage, the node t3 is split into two nodes t6 and t7. The split is 

accepted if the modeling error is reduced, and t6 and t7 contain sufficient amount of data 

points.  Therefore, the comparison is only made between t3 and its two immediate 

decedents. The comparison can be extended to include later generation decedents. As 

shown in Figure 5.38, node t3 is split into 3 leaf nodes. An extended comparison could be 

made to evaluate if the split of t3 to [t6,t8,t9] is necessary. However, the extended 

comparison is only applicable when the branch Bt3 for t3 is known. It is why the 

following procedure is implemented after the tree-growth procedure is finished.  
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A performance index for a branch Bt is defined by 

 ( ) ( )
Bt

R Bt R
τ

τ
∈

=∑     (5.109)

 
Where R(τ) is the SSE of the local linear model for the node, τ. Its regularization with 

considering model complexity is defined by 

( ) ( )R Bt R Bt Btα α= +    (5.110)

 where |Bt| represents the complexity of branch Bt.  A regularization performance index is 

also defined for the branch node t 

( ) ( )R t R t tα α= +     (5.111)

 
where |t| is the complexity for the model to the node t. In this work, the complexity is 

simply defined as the number models in a branch. Therefore, |t| is always 1 since it 

contains only one model while |Bt| is the number of leaf nodes.  

The branch Bt will be kept (all splits are accepted) if ( ) ( )aR Bt R tα < . The 

inequality however depends on α, which reaches a critical α, αc(t), when ( ) ( )aR Bt R tα = . 

The variable αc (t) is hence defined by (5.112) 

  ( )
( ) ( )

,  is a branch node

, is a leaf or root node
c

R t R Bt
t

t Bt t

t

α

 −


= −
∞

  (5.112)

 

The critical value αc(t) hence reveals the performance improvement per 

complexity increment efficiency for the branch node, t. Clearly, larger αc(t) is preferred 

and less efficient branch should be removed. At every step, αc for all branch nodes are 

computed. The branch node with the minimum αc is defined by tp 
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 ( ) ( ) ( )
1

minc p t Bt

R t R Bt
a t

Bt t∈

−
=

−
    (5.113)

 
where, Bt1 is a abuse of the branch notation and represents the entire tree (a branch from 

the root node). The branch Btp is then hypothetically removed. Then, αc is reevaluated for 

all left branch nodes, and another tp is found and hypothetically removed. The procedure 

continues until the root node, t1, is reached. It is shown that αc(tp) value will be 

monotonically decreasing (Breiman, Friedman, Olshen & Stone, 1984), which implies 

that worse branches are removed first and the removal sequence is optimal.  

The above procedure will generate a sequence of αc(tp), which is the minimum in 

each step. Nodes with αc (tp) lower than a threshold number will be actually removed and 

a trimmed tree is then obtained. In this work, the threshold number is tried for an 

appropriate level of complexity. 

The corresponding tree structure for the Figure 5.37(c) is shown in Figure 5.39, 

where the number under each box is the sum of squared error and solid boxes are for leaf 

nodes. 

 

Figure 5.39. The tree structure for the antecedent partition in Figure 5.37 (c) 
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Table 5.3. The value αc for branch nodes shown in Figure 5.39 

αc t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 

1 ∞ 55.69 40.12 ∞ 5.90 1.70 6.62 ∞ ∞ ∞ ∞ ∞ ∞ 

2 ∞ 55.69 59.32 ∞ 5.90 ∞ 6.62 ∞ ∞ ∞ ∞ ∞ ∞ 

3 ∞ 105.48 59.32 ∞ ∞ ∞ 6.62 ∞ ∞ ∞ ∞ ∞ ∞ 

4 ∞ 105.48 112.03 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

5 ∞ ∞ 112.03 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

As shown in Figure 5.39, there are 5 branch nodes, t2, t3, t5, t6 and t7. At the first 

step, the minimum αc is found for t6 with 1.7032. Then branch Bt6 is hypothetically 

removed. The removal is simply operated by changing the branch node t6 to a leaf node. 

At next step, the branch node with minimum αc is t5 with 5.8971. The procedure 

continues until all branch nodes are hypothetically removed. The largest αc is 112.03 and 

its 10%, 11.20 is set as the threshold number to remove insignificant branch nodes. In this 

example, branches underneath branch nodes t5, t6, and t7 will be permanently removed. 

The resultant trimmed tree is shown in Figure 5.40(a). The corresponding splitting is 

shown in Figure 5.40(b), where light-colored vertical lines represented removed splits. 

The result is same as that shown in Figure 5.41(b) with M = 5.  

 
(a)                                                             (b) 

 
Figure 5.40. Antecedent space partition after removing splits under branch nodes t5, t6 

and t7 in Figure 5.39; light lines represent removed splits 
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The results for trimmed trees due to M = 15 and 20 are also shown in Figure 5.41 

for comparison, where the threshold is also set as the 10% of the largest αc. It is observed 

that trimmed trees are identical regardless the value of M . Therefore, an excessive large

M could be used to generate a large tree and a tree-trim procedure is used to remove 

unnecessary branches. Certainly, more computation is needed for generating a bigger 

tree, which however gives a better chance to contain an ‘optimal’ tree. 

 

(a)                                                               (b) 

Figure 5.41. Antecedent space partitions after remove some unimportant splits (light 
lines) for a) Figure 5.37 (c); b) Figure 5.37 (d) 

5.9 Rule Antecedent Parameter Estimation 

The tree growth procedure generates a number of separation boundaries that 

partition the antecedent space. Given a partitioned antecedent space, there are many 

views on recognizing a local region. One way is to consider the local region as a 

polyhedron consisting of several separation boundaries. Another way is to consider the 

local region to be a set of points. Each way has its corresponding methods to identify 

centers and ellipsoids. Within a polyhedron, a maximum volume ellipsoid could be found. 

A minimum volume ellipsoid could be found containing a set of points. Both problems 

can be solved efficiently by convex optimization (Boyd & Vandenberghe, 2004).  A 

dynamic search approach in (Pronzato, Wynn & Zhigljabsky, 2000) can also be used to 
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identify ellipsoids. 

The above mentioned techniques are sound choices. However, and perhaps 

unnecessarily, this work also considers the quality of each data point. The quality is 

related to the prediction error for each data sample. For instance, the solid dots in Figure 

5.42 represent data points with small residuals while the circles represent data points with 

larger residuals.  

 

Figure 5.42. A local region in an antecedent space; dark dots represent data points with 

smaller residuals while circles represent points with higher residuals 

A rule antecedent in fact represents the region where the consequent model is 

expected to be accurate.  It is then reasonable to use only data samples with smaller 

residuals to estimate the antecedent parameters.  There are many approaches for 

weighting the importance of data.  This work uses a simple approach, where weighting is 

defined by the residual 
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where Nr is the number of data points in region r. The script (r,i) represents the ith data in 

region r. r
iβ reaches the highest value at 1 when r

iε  is zero.   
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The centroid or is estimated by 
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and the matrix Pr is defined  by its inverse 
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CHAPTER VI 

RESULTS FOR TESTING PROBLEMS 

The objective of Chapter 6 is to test the proposed procedure to create GTSK 

models for function approximation in Section 6.1 and nonlinear dynamic process 

modeling in Section 6.2. The GTSK models to be created use the generalized antecedent 

structure proposed in Chapter 3. In modeling nonlinear dynamic processes, the dimension 

of a GTSK model (both antecedent and consequent dimensions) is specified by the 

determined dynamic orders and detected nonlinear components in Chapter 4. The model 

parameters are determined by parameter estimation procedure presented in Chapter 5. 

6.1 Function approximation 

Function 1  

The first function to be approximated is defined by  

( ) ( )( )( )3 1 1.9 0.7 1.8 , -2.1 x 2.1y x x x x x= − − + + ≤ ≤   (6.1) 

Function 1 is used in (Dickerson & Kosko, 1996) as a primary example to demonstrate a 

function approximation procedure using GTSK models. The procedure starts initializing 

membership functions for both x and y by projecting recognized ellipsoidal patches onto 

x-y coordinates. The patch reorganization is an unsupervised learning procedure. 

Following the heuristic initialization, model parameters are refined using a steepest 

decent optimizer. The algorithm in (Dickerson & Kosko, 1996) works fine for Function 

1. As demonstrated in Section 5.4.2, unsupervised learning might result in inappropriate 

initialization since it uses measures based on data distribution rather on nonlinearity.
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Since the function has only one input, it should be included in both antecedent and 

consequent. There are 412 points uniformly sampled from the function. The scalar M  in 

Equation (5.108) is set to 50, which implies that a region should no longer be split if it 

contains less than 412/50 ≈ 8 data points.  

 With the above configuration, 30 branch nodes are generated, each of which is 

associated with an efficiency index, αc defined in Equation (5.113). Values of αc for all 

branch nodes are shown in Figure 6.1.  

 

Figure 6.1. Values of αc for antecedent space partition for Equation (6.1) 

At this point, it should be subject to users’ judgment to select an approximate value 

level in αc to discard unimportant splits. In this testing, we choose to keep first 5 branch 

nodes. Among them, the lowest αc value is 68.70, to which the next lower αc value is 

13.80. The resultant antecedent space partition is shown in Figure 6.2, which also shows 

the membership function initialization for an 8-rule GTSK model. The membership 

functions are initialized using Equations (5.115) and (5.116) 
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Figure 6.2. Antecedent space partition and TAs based on Equation (6.1) 

 The initialized GTSK model is fully described in Equation (6.2) 
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IF THEN

  (6.2) 

where, R1(-2.0,470.6) defines the region for the first rule (the leftmost in Figure 6.2) with 

o1 = -2.0 and P1 = 470.6. Both o and P are introduced in Equation (3.7). In the first rule, 

the linear consequent model is, y1 = 133.59x+248.59. Note that the linear consequent 

model might not necessarily represent the local behavior of the original nonlinear 

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-30

-20

-10

0

10

x
y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

T
A



 

141 
 

function due to linearization. The interpretation of linear consequent models depends on 

the interactions in rules and is discussed later in detail 

The GTSK model is then used to approximate the function. The approximation is 

shown as dashed line in Figure 6.3. The mean squared error (MSE) for the approximation 

is 0.21, which is lower than that mentioned in (Dickerson & Kosko, 1996). 

 

Figure 6.3. Function approximation by the 8-rule GTSK model in Figure 6.2 

Figure 6.4 shows for each rule the normalized truth of antecedent, w defined in 

Equation (3.23), which could be used to visualize the interaction between rules and local 

interpretability in each rule. For instance, the 4th rule almost works alone for x between -

1.4 and -0.6, where the valve of w for the 4th rule is about one. Therefore, the consequent 

model in the 4th rule could be interpreted as a local linear approximation for the nonlinear 

function over the above mentioned region. Following the similar procedure, it is possible 

to interpret consequent models in all rules as local linear approximation for the nonlinear 

function and identify the approximation region respectively. Interactions between rules 

are signified by the value w a little far away from both 0 and 1. For instance, interaction 

between the 4th and 5th rules is observed for x between -0.6 and -0.2, where there are 

about 15 points with the value of w between 0.2 and 0.8. The assumption made on w in 

Equation (5.24) would not hold due to the presence of many interactions in rules. 

Therefore, it might be possible to use Newton’s method (Algorithm 5.1) to further adjust 

model parameters to reduce the approximation error. 
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Figure 6.4. Normalized TAs for those in Figure 6.2 

 Figure 6.5 shows the optimized membership functions by Algorithm 5.1 starting 

from the above initialization. The resultant function approximation is shown in Figure 6.6 

with the MSE reduced to 0.12. The improvement in terms of MSE is clear. Some 

noticeable large approximation error in Figure 6.3 (around x=-1.5, -0.5, 0.7) are 

significantly reduced. The approximation in Figure 6.6 becomes also smoother, which is 

due to the increase of overlap between adjacent membership functions. For instance, the 

4th and 5th (from the left) membership functions in Figure 6.5 share a significant portion 

of overlap, which is not observed in Figure 6.3. The increase of overlapping is also 

observed in other adjacent membership function pairs, between 2nd and 3rd, and between 

7th and 8th.  
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Figure 6.5. Optimized TAs from initialization in Figure 6.2 

 

Figure 6.6. Function approximation by the optimized 8-rule GTSK model 

 The MSE reduction is achieved at the cost of interaction increase between rules. 

Rules resulted from the initialization shown in Figure 6.3 are relatively independent. The 

independence can be verified by the value w in Figure 6.4, which is close to 1 for the 

majority of data. The independence implies that the behavior of each rule represents the 

local behavior of the GTSK model. In other words, each rule is locally interpretable with 

respect to the GTSK model. In Figure 6.5, membership functions are more coupled. The 

increased interactions between rules are evidently observed in Figure 6.7. Rule 4 and 5 

become less interpretable in terms of local behavior of the GTSK model. Both rules need 

to be considered together to explain a perhaps local quadratic behavior.  
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In general, approximation error and model interpretability are two conflicting goals. 

The illustrated interaction increase in rules should be expected in general when model 

parameters are optimized by the Newton’s method (Algorithm 5.1), which will result in 

GTSK models consisting of less interpretable rules due to poor modularity. On the other 

hand, one might be able to preserve interpretability by forcing a certain distance between 

centroids or limiting the overlap between membership functions.  

 

Figure 6.7. Normalized TAs for those in Figure 6.5 

 The two-stage parameter estimation procedure in Chapter 5 is also compared with 

the following one with random initialization. Figures 6.8 and 6.9 show the best result out 

of 50 trials. It represents a typical undesired result, stronger overlap but higher MSE 

(0.41).  
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Figure 6.8. Optimized TAs starting from random initialization 

 

Figure 6.9. Function approximation by the 8-rule GTSK model in Figure 6.8 

In approximating Function 1, the αc is chosen to give an 8-rule GTSK model in 

order to compare the 8-rule fuzzy model in (Dickerson & Kosko, 1996). Certainly, one 

might need to have several trials to decide an appropriate value. In the following two 

function approximation examples, we will demonstrate what one may expect when the 

number of rules is progressive increased in a GTSK model. 

Function 2 (Zhang, Chen, Ansari & Shi, 2004) 

 The second function to be tested is defined by 

( ) ( ) ( )sin 4 1 0.4 cos , 0 5y x x x xπ π= + + ≤ ≤  (6.3) 
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Figure 6.10 shows four different antecedent space partitions and membership 

function initializations. The partition in Figure 6.10(b) has one more split than that in 

Figure 6.10 (a). The additional split is added to the second region in Figure 6.10 (b), 

which then generates two linear approximations. One more split is added in Figure 6.10 

(c) to its leftmost region, which exhibit strong nonlinear behavior. In Figure 6.10 (d) two 

more splits are added to split the 2nd and 9th regions in Figure 6.10 (c). It is observed in 

Figure 6.10 (d) that more splits are placed in the left part of the function. The function is 

uneven in terms of nonlinear behavior in different regions. Its left part is more nonlinear 

than its other parts. Therefore, the obtained partition is desired, which distribute rules 

according to nonlinearity.  

 
    (a) 8-rule                                                     (b) 9-rule 

 
(a) 10-rule                                         (d) 13-rule 

 
Figure 6.10. Antecedent space partition and TAs on Equation (6.3) 
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Function 3 

 The third function to be tested is a two-dimensional quadratic function. 

2 2
1 2 1 2, 2 , 2y x x x x= + − ≤ ≤     (6.4) 

There are 441 points uniformly sampled. With M  set at 100, there are 55 branch 

nodes generated and their corresponding alphas are shown in Figure 6.11.  

 

Figure 6.11. Values of αc for antecedent space partition for Equation (6.4) 

The values of the first two αcs is much higher than others. It would be reasonable to 

keep both if either one is to be kept. Figure 6.12 shows the resultant antecedent space and 

the corresponding antecedents in terms of ellipsoids with TA=0.05  

 
(a)                                                              (b) 

 
Figure 6.12. a) Antecedent space partition by αc > 117; b) Ellipsoids (TA = 0.05) 
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Figure 6.13 shows the normalized truth of antecedent for all rules, where limited 

interactions are observed. It indicates that rules have good interpretability for the local 

behavior of the nonlinear function. In this example, the optimization by Algorithm 5.1 

reduces the MSE from 0.125 to 0.121 (3.2% improvement). The negligible improvement 

is probably due to the distribution of w for each rule. Figure 6.13 shows that the values of 

w for each rule are either high or low. The values of w for the rule in left-front corner are 

plotted in Figure 6.14, where 424 out of 441 points have w outside the range of (0.1, 0.9).  

Other 17 points cluster around either 0.8 or 0.2. Not much intermediate values are 

observed for w. The observation might be able to make the assumption in Equation (5.24) 

approximately hold. It then indicates that the initialization almost reaches a local solution. 

 

Figure 6.13. Normalized TAs for those in Figure 6.12 
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Figure 6.14. Normalized TAs for the left-front rule in Figure 6.13 

The obtained model is an 8-rule GTSK model, which approximates the quadratic 

function using 8 planes. The approximation is shown in Figure 6.15 with MSE of 0.125. 

 

Figure 6.15. Quadratic function approximation by the GTSK model in Figure 6.12 
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Certainly, one can manage to discard the branch node with the second highest αc in 

Figure 6.11. The resultant partition is shown in Figure 6.16, which is uneven and only 

have the right portion of the antecedent space partitioned. It then suggests to keeping 

branch nodes with like αc values. 

 

Figure 6.16. Antecedent space partition by αc > 130 

  The same procedure is practiced if users manage to increase the number of rules. 

Figure 6.17 shows the values of the rest of αc and clearly indicates two groups with 

difference at least one order of magnitude. It suggests that one should keep all αc between 

3 and 8, if any of them is going to be kept.  

 

Figure 6.17. A portion of αc  in Figure 6.11 with values less than 118 
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 The resultant antecedent partition is shown in Figure 18, which adds an additional 

split to each region in Figure 6.12. The observation is reasonable. Unlike Function 2 in 

Equation (6.3) whose nonlinearity is uneven, the two-dimensional quadratic function is 

uniformly nonlinear in every direction. Due to the uniformity, the antecedent space 

should be evenly partitioned. The increased rules will enable the GTSK model to 

approximate function in a finer scale. The 16 recognized antecedents are shown in Figure 

6.18(a) and Figure 6.18(b) shows the approximation by the 16-rule GTSK model with 

MSE of 0.0153.  

 

Figure 6.18. a) Antecedent space partition by αc > 3; b) Ellipsoids (TA = 0.05) 

 

Figure 6.19. Quadratic function approximation by the GTSK model in Figure 6.18 
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 One might follow the above procedure to further increase the number of rules by 

including branch nodes with smaller αc as shown in Figure 6.20. The distinction between 

different levels is not as clear as shown in Figure 6.11 and 6.17. One might need try 

several values and find an appropriate one  

 

Figure 6.20. A portion of αc shown in Figure 6.11 with values less than 3 

It is also observed that splits in Figures 6.12 and 6.18 are along with the coordinate 

directions. The observation is reasonable since the symmetric quadratic function is 

uniformly nonlinear in all directions. 
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Figure 6.21. Quadratic function approximation by the GTSK model in Figure 6.22 

 The corresponding antecedents of 16 rules due to random initialization are shown 

in Figure 6.22, where very strong and complex coupling among rules are observed. 

Modularity in rules does not seem to exist and interpretation of rules with respect to local 

behavior of the model is impossible. 

 

Figure 6.22. Optimized TAs for a 16-rule GTSK model from random initialization 
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Function 3 is uniformly nonlinear in all directions. The resultant ellipsoids shown 

in Figures 6.12 and 6.18 are oriented along with coordinates. The next example will 

demonstrate how ellipsoids are to be oriented if the function is unevenly nonlinear in 

different directions. 

Function 4 (Zhang, Chen, Ansari & Shi, 2004) 

 The fourth function to be approximated is defined below and shown in Figure 

6.23(a) 

( )( )( )1 2 1 2

1
exp cos 4 , 0 , 1

2
y x x x x= + ≤ ≤    (6.5) 

Figure 6.23(b) is the contour plot of the function, which shows that the function 

behaves linearly along the main-diagonal direction from (0,1) to (1,0).  

 

(a)                                                           (b) 

Figure 6.23. Illustration of the function in Equation (6.5) and its contour plot 
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Figure 6.24. Values of αc for antecedent space partition on Equation (6.5) 

By including the first 5 branch nodes, the resultant antecedent partition is shown in 

Figure 6.25. The partition slices the antecedent space along the main diagonal direction, 

which matches the nonlinear orientation shown in Figure 6.23(b). The corresponding 

initialization of rule antecedents is shown in Figure 6.25. The approximation due to the 8-

rule GTSK model has a MSE of 0.0015. 

 

(a)                                                         (b) 

Figure 6.25. a) Antecedent space partition by αc > 0.1;b) Ellipsoids (TA=0.05) 
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significantly changed. However, the direction of each antecedent is still kept in the main 

diagonal direction while the length and width of each ellipsoid are changed.  

 

Figure 6.26. Optimized TAs of a 8-rule GTSK model for Equation (6.5) 

The resultant function approximation is shown in Figure 6.27 with reduced MSE of 

0.0003. Again, the reduction of MSE is at the cost of interpretability in individual rules. 

 

Figure 6.27. Approximation of Equation (6.5) by the GTSK model in Figure (6.26) 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1

1.5

x2x1

y



 

157 
 

The local models in the above four examples are linear. In fact, there is no 

restriction on types of local models. Roughly speaking, one should expect better 

approximation and less number of rules if more complex local models are used. In the 

next example, linear and quadratic local models are compared. 

Function 5 

 The fifth function (Zhang, Chen, Ansari & Shi, 2004) to be approximated is 

defined 

( ) ( ) ( )2 2
1 2

1 2 1 2cos 2 cos 2 e , 1 , 1
x x

y x x x xπ π
− +

= − ≤ ≤   (6.6) 

The function and its contour plot are shown in Figure 6.28.  

 

(a)                                                                  (b) 

Figure 6.28. Illustration of function in Equation (6.6) and its contour plot 

 In this example, there are 1681 points sampled from the function. With M  of 100, 
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Figure 6.29. Values of αc for antecedent space partition on Equation (6.6) 

 Figure 6.30 shows the obtained antecedent partition by accepting branch nodes 

with alpha greater than 0.81. A 34-rule GTSK model is then initialized. Figure 6.30 

shows the final result after implementing Algorithm 5.1 to tune model parameters. The 

function approximation and corresponding contour plot are shown in Figure 6.31. The 

MSE for the function approximation is 0.0069.  

 

(a)                                                               (b) 

Figure 6.30.a) Antecedent space partition by αc>0.81; b) Ellipsoids (TA=0.05) 
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(a)                                                             (b) 

Figure 6.31. Function approximation by the model in Figure 6.30 and the contour 

 One could further increase the number of rules to reduce the approximation error. 

Alternatively, users might increase the complexity of local models. In the flowing 

example, quadratic local models are used instead. The obtained αc values for all branch 

nodes are shown in Figure 6.32. 

 

Figure 6.32. Values of αc for antecedent space partition for Equation (6.6) with 
quadratic local models 
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 With threshold for αc set at 1.5, the following partition is obtained in Figure 

6.33(a). The optimized antecedents are shown in Figure 6.33(b). The resultant function 

approximation and contour plot are shown in Figure 6.34. The MSE is 0.0049.  

 

(a)                                                                (b) 

Figure 6.33.a) Antecedent space partition by αc >1.5; b) Ellipsoids (TA=0.05) 

 

(a)                                                                 (b) 

Figure 6.34. Function approximation by the model in Figure 6.33 and the contour 
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The number of model parameters in the 16-rule GTSK model with quadratic local 

models is 176. On the other hand, the number of parameters is 272 in the 34-rule GTSK 

model with local linear models. It indicates that using more complex local models can 

significantly reduce the number of rules and overall model parameters while improving 

function approximation performance. However, complex local models might be difficult 

for interpretation, which is however subject to users’ knowledge.  

The above testing focuses on function approximation. The following several testing 

will be about nonlinear dynamic modeling, which is actually not very much different 

from function approximation in this work since the dynamic model structure is restricted 

to ARX structure. Users then have full access to all model inputs. The structure 

information for a nonlinear dynamic model is assumed known and determined in Chapter 

4 by the proposed order determination technique. The antecedent variables are also 

selected in Chapter 4. In several following examples, we will validate the antecedent 

variable selection made in Chapter 4. For the convenience of presentation, we might 

reproduce some equations in Chapter 4. It is observed in Section 6.1 that modularity and 

local interpretability in initialized rules are reduced by further parameter tuning using 

Newton’s method due to interaction increase between rules. In the following testing, 

results are based on parameter estimates extracted from partitioned antecedent space.  

6.2 Dynamic Nonlinear Modeling 

Model 1 (Narendra & Parthasarathy, 1990) 

( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )

0.3 1 0.6 2 0.6sin 1 0.3sin 3 1

0.1sin 5 1

y t y t y t u t u t

u t e t

π π

π

= − + − + − + − +

− +
 (6.7) 

The order determination was conducted on Model 1 in Chapter 4. The determined 

regressors are [y(t-1) y(t-2) u(t-1)] in Table 4.8. The detected nonlinear component is u(t-

1) that will be the antecedent variable. In order to verify the choice of antecedent variable, 

the following experiment is conducted to try different antecedent variables. The 

experiment result is collected in Table 6.1. The performance is evaluated by the sum of 

square error (SSE) between the output y and its prediction. The SSE without any splitting 

is 1544. The first row of Table 6.1 have the number of rules and resultant SSE due to 
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having only u(t-1) in the antecedent. In order to compare each choice of antecedent 

variable fairly, each resultant GTSK model is configured to have the same number of 

rules; 3 in this experiment. It is observed in Table 6.1, the best choice of antecedent 

variable is u(t-1). The other two choices, either y(t-1) or y(t-2), barely reduce the SSE. 

The experiment is then able to validate the choice of u(t-1) as the antecedent variable. 

Table 6.1.Trials of antecedent variables for Model 1 in Equation (6.7) 

Antecedent Number of rules SSE 

u(t-1) 3 1325 

y(t-1) 3 1540 

y(t-2) 3 1538 

 A GTSK model could include different number of rules by accepting different 

levels of αc. In the following, each choice of number of rules is validated by a separate 

data set (validation data set). The results are collected in Table 6.2. The training data 

include 5000 samples while validation data include 3000 samples. The ‘Model Error’ is 

the sum of training and validation MSE. It is observed that Model Error start increasing 

when M is over 8. Based on the experiment results in Table 6.2, it actually makes no 

difference by choosing M as 7 or 8. In the following illustration, M=8 is chosen. 

Table 6.2. Trials of a GTSK model for Model 1 

M 
MSE 

Model Error
Training Validation 

2 0.272 0.276 0.547 

3 0.265 0.269 0.534 

4 0.259 0.261 0.520 

5 0.253 0.257 0.510 

6 0.252 0.257 0.509 

7 0.251 0.256 0.507 

8 0.251 0.256 0.507 

9 0.251 0.259 0.509 
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 Having u(t-1) in the antecedent with M=8, the resultant antecedent partition and 

membership function initializations are shown in Figure 6.35, where the number in each 

region indicates the order that regions are generated in a binary tree. 

 

Figure 6.35. Antecedent space partition and TAs for Model 1 

Figure. 6.36 shows the separations in the nonlinear part of Model 1, g(u(t-1)), the 

sum of three Sine functions of u(t-1), which behaves relatively linearly in local regions.  

 

Figure 6.36. The separation boundaries shown for the nonlinear part in Model 1 
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( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

3 3

6 6

5 5

ˆ3 : 1 is in 0.9,227.5 3.02 0.34 1 0.56 2 2.88 1

ˆ6 : 1 is in 0.6,100.0 0.33 0.31 1 0.60 2 0.11 1

ˆ5 : 1 is in 0.3,145.5 0.82 0.29 1 0.61 2 1.06 1

1:

u t R y t y t y t u t

u t R y t y t y t u t

u t R y t y t y t u t

u

− − = − + − + − − −

− − = − + − + − + −

− − = − + − + − − −

IF THEN

IF THEN

IF THEN

IF ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

( )

1 1

4 4

8 8

7

ˆ1 is in 0.0,533.3 0.03 0.30 1 0.60 2 5.32 1

ˆ4 : 1 is in 0.1,567.1 0.22 0.26 1 0.63 2 3.25 1

ˆ8 : 1 is in 0.3,299.6 0.78 0.30 1 0.61 2 1.13 1

7 : 1 is in

t R y t y t y t u t

u t R y t y t y t u t

u t R y t y t y t u t

u t R

− − = − + − + − + −

− = + − + − + −

− = + − + − − −

−

THEN

IF THEN

IF THEN

IF ( )( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( ) ( )

7

2 2

ˆ0.5,129.0 0.31 0.31 1 0.58 2 0.19 1

ˆ2 : 1 is in 0.9,141.1 2.72 0.33 1 0.58 2 2.64 1

y t y t y t u t

u t R y t y t y t u t

= + − + − + −

− = + − + − − −

THEN

IF THEN

(6.8) 

It is observed in Equation (6.8) that coefficients for u(t-1) experiences both 

magnitude variation and sign change. However, coefficients for either y(t-1) or y(t-2) do 

not seem to vary too much. It seems that the variation in the coefficient for u(t-1) is 

sufficient to verify the nonlinearity of the model. A more detail address of coefficient 

value variation across rules needs to however consider the variance of model parameter 

estimates. The covariance of local model parameters is estimated by 

( ) ( ) ( )( )
12ˆ ˆ

Ti i i iCov σ
−

=θ X X     (6.9)

 

where the matrix X i collects all regressors in region i. ( )2
ˆ iσ is the variance estimate for 

the noise in region i and is computed via the residuals, εi by 

( ) ( )( )2 2

1

1
ˆ

iN
i i

i
t

t
N

σ ε
=

= ∑
     

(6.10) 

where Ni is the data number in region i. The 95% confidence interval for i
jθ  is defined by 

( )ˆ ˆ ˆ1.96 ,i i i i
j j j jCovθ θ θ θ= ±

    
(6.11) 

Equation (6.11) is for Gaussian distribution for a known variance. One might use 

Student distribution if variance is an estimate. The difference could however be ignored 
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for sufficient number of data, likely over 50 data points (Box, Jenkins & Reinsel, 1994).  

The coefficients and their 95% confidence interval for 8 rules are shown in Figure 6.37.  

 
Figure 6.37. Coefficients for local models in the GTSK model in Figure 6.35 

 In Figure 6.37, θ0 to θ3 are coefficients for regressors, 1, y(t-1), y(t-2) and u(t-1). 

Strong variation is observed for both θ0 and θ3. The variation in θ3 indicates a change of 

model behavior in different regions. On the other hand, the confidence intervals for θ1 in 

different rules have overlaps. The same phenomenon is also observed for θ2. The 

observations might imply constant coefficients for regressors, y(t-1) and y(t-2) for all 

rules, which then suggests that it might be unnecessary to include y(t-1) and y(t-2) in a 

GTSK model. It is then possible to simply the structure of the GTSK model as a hybrid 

with an explicit linear structure. 

( ) ( ) ( ) ( )( )1 21 2 1y t a y t a y t f u t= − + − + −
   

(6.12) 

The obtained GTSK model is compared to other modeling possibilities. In this 

work, a radial basis network model (RB) and a feed-forward neural network model 
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‘training error’ and 2500 data points are used to give a ‘validation error’. Both ‘training’ 

and ‘validation’ errors are summed-square of residuals. The comparison detail is 

collected in Table 6.3. 

Table 6.3 Comparison of the GTSK with RB and FFNN for Model 1 
Model ArchitectureTraining (SSE) Validation (SSE) # of Parameters 

GTSK 8 1253.6 639.7 48 

FFNN (3,5,6,1) 1252.9 639.2 63 

FFNN (3,2,12,1) 1256.6 640.6 57 

FFNN (3,8,4,1) 1254.2 647.4 73 

RB 11 4564.8 3209.6 56 

In Table 6.3, the architecture for GTSK is the number of rules. In the FFNN 

models, the architecture represents the number of inputs, number of neurons in each of 

two hidden layers, and the number of outputs. The architecture in the RB model is the 

number of neurons. The RB model gives the highest training and validation errors. On the 

other hand, there is no significant difference between GTSK and FFNN.  

Training a neural network is a nonlinear optimization process. In practice, one 

often has to try many times of training from random initialization to obtain an acceptable 

solution. The result in Table for each FFNN is the best out of 50 trials while GTSK needs 

only one trial. In addition, the architecture information for a FFNN is not automatically 

available. In practice, one needs to try different architecture, and for each multiple 

regressors to find the probably best model. Three attempts are revealed in Table 6.3. 

The GTSK model is more informative than a FFNN model. Parameter values in a 

FFNN model can hardly reveal any knowledge about the process to be described. 

Observed in Figure.6.37, the values of local model coefficients indicate to decouple y(t-1) 

and y(t-2) from a nonlinear function of u(t-1).  

Model 3 (Narendra & Parthasarathy, 1990) 

( ) ( )
( )

( ) ( )3

2

1
1

1 1

y t
y t u t e t

y t

−
= + − +

+ −
   (6.13) 
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 The determined order is defined by ny=1,nu=0 and d=1. The result of nonlinear 

component detection indicates that both u(t-1) and y(t-1) should be included in 

antecedents.  The antecedent space is shown in Figure 6.38 

 
Figure 6.38. Two-dimension antecedent space for Model 3 

The results for trials of GTSK models with different complexity are collected in 

Table 6.4, where the minimum Model Error is due to a 10-rule GTSK model. 

Table 6.4. Trials of a GTSK model for Model 3 

 
MSE 

 
M Training Validating Model Error 

2 0.277 0.278 0.555 

3 0.268 0.271 0.540 

4 0.265 0.266 0.530 

5 0.261 0.264 0.525 

6 0.259 0.262 0.521 

8 0.257 0.260 0.516 

9 0.256 0.260 0.516 

10 0.255 0.259 0.514 

11 0.255 0.260 0.515 

 Figure 6.39(a) shows the antecedent space partition with 10 regions. Figure 
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6.39(b) shows the ellipsoids with TA = 0.05 for initialized 10 rules. 

 

(a)                                                              (b) 

Figure 6.39. a) Antecedent space partition by αc > 10; b) Ellipsoids (TA=0.05) 

 The estimated local model coefficients and their 95% confidence interval are 

shown in Figure 6.40 for the 10-rule GTSK model. θ0, θ1 and θ2 are coefficients for 

regressors, 1, y(t-1) and u(t-1). It is found after comparing each pair of local models that 

the rule 8 and 10 might have same local models. Confidence intervals for each pair of 

corresponding local model coefficients have overlap in rule 8 and 10.  The observation 

could be verified by observing Figure 6.39. Regions 8 and 10 are next to each at about 

the same level of y(t-1), which makes both have about the coefficient for y(t-1). On the 

other hand, region 8 and 10 contain data with opposite signs on u(t-1) around 0. The term 

of u(t-1)3 in Equation (6.11) may be expressed by θ2 (t)u(t-1) with θ2 (t) = u(t-1)2, which 

eliminates the effect of signs in u(t-1).  

Based on the above comparison, one may decide to merge rules 8 and 10 to one 

rule. The merge can be easily operated by remove the line boundary between 8 and 10. 

Note that the merge operation on regions 8 and 10 only is not possible by choosing a 

different level of αc since both regions are resulted from different branch nodes.  
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Figure 6.40. Coefficients for local models in the GTSK model in Figure 6.39 

The selected antecedent variables u(t-1) and y(t-1) are due to nonlinear 

component detection in Chapter 4. In the following, experiments are conducted to try 

other antecedents with different complexity to verify the result. The comparison is 

collected in Table 6.5. Note the MSE without split is 0.289.  

Table 6.5.Trials of antecedent variables for Model 3 

Antecedent Number of rules MSE (Training) 

y(t-1) 5 0.271 

y(t-1) 19 0.266 

u(t-1) 11 0.267 

 Reduction in MSE is observed for each trial. However, the maximum 

improvement in MSE is achieved for the GTSK model with the two-dimensional 

antecedent. In Table 6.3, the training MSE for a 10-rule GTSK model is 0.255, which is 

smaller than those obtained for either a 19-rule model with antecedent variable, y(t-1) or 

a 11-rule model with antecedent variable u(t-1). 
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 The above two nonlinear modeling examples use the results on order 

determination and nonlinear component detection from Chapter 4 to construct GTSK 

models. It is noticed that the results for Model 1 and 3 from Chapter 4 match the ‘truth’. 

In Chapter 4, we also mentioned the ‘mistakes’ that the order determination could make 

such as the missing of u(t-2) for Model 4. Also, the detected nonlinear components 

contain only the most dominating one such as the y(t-2) for Model 4. In the following the 

example, a GTSK model for Model 4 based on determined orders and detected nonlinear 

components will be created and compared with one based on the ‘truth’. 

Model 4 (Narendra & Parthasarathy, 1990) 

( )
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )
( )2 2

1 2 3 2 3 1 1

1 3 2

y t y t y t u t y t u t
y t e t

y t y t

− − − − − − + −
= +

+ − + −  
(6.14) 

The dynamic order analysis in Chapter 1 determines the following values, ny=3, 

nu=0 and d=1 as shown in Table 4.8. The detected nonlinear component is y(t-2).  

The trial for different level of complexity is collected in Table 6.6, which suggests 

an 8-rule GTSK model for its minimum Model Error, although other choices for M being 

6 and 7 might be also acceptable. 

Table 6.6. Trials of a GTSK model for Model 4 

M 
MSE 

Model Error 
Training Validating 

2 0.0037 0.0041 0.0078 

3 0.0031 0.0035 0.0066 

4 0.0029 0.0032 0.0061 

5 0.0029 0.0031 0.0060 

6 0.0028 0.0031 0.0059 

7 0.0028 0.0031 0.0059 

8 0.0028 0.0031 0.0058 

9 0.0028 0.0031 0.0059 
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Figure 6.41 shows the resultant antecedent partition and membership functions. 

The resultant parameter estimates for local models are shown in Figure 6.42 along with 

the 95% confidence interval. 

 

Figure 6.41. Antecedent space partition and TAs for Model 4 

 

Figure 6.42. Coefficients for local models in the GTSK model in Figure 6.41 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

y(t-2)

y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y(t-2)

T
A

0 2 4 6 8

-0.2

0

0.2

0.4

r

θ 0

0 2 4 6 8
0

0.2

0.4

0.6

r

θ 1

0 2 4 6 8
-0.6
-0.4
-0.2

0
0.2
0.4

r

θ 2

0 2 4 6 8

-0.2

0

0.2

r

θ 3

0 2 4 6 8

0.5

0.6

0.7

0.8

0.9

r

θ 4



 

172 
 

The comparison is made to build a GTSK model with ny=3, nu=1 and d =1, which 

are ‘truth’ in the Model 4. The antecedent variables are [u(t-1) u(t-2) y(t-1) y(t-2) y(t-3)] 

since they are all nonlinearly expressed in Model 4. The trial results for GTSK models 

with different complexity are collected in Table 6.7. 

Table 6.7. Trials of a GTSK model for Model 4 with all regressors included 

M 
MSE 

Model Error 
Training Validating 

2 0.0036 0.0039 0.0075 

4 0.0032 0.0035 0.0067 

5 0.0029 0.0032 0.0067 

6 0.0032 0.0034 0.0066 

7 0.0031 0.0034 0.0065 

8 0.0031 0.0034 0.0065 

11 0.0031 0.0034 0.0065 

12 0.0031 0.0034 0.0065 

The maximum number of rules is 12 due to the choice of M being 50. It is 

interesting to note at first that the number of rules does not change much when antecedent 

dimension is increased from 1 to 5. Antecedent variables have different values in each 

rule. For instance, the antecedent variable u(t-1) has 12 levels. In the conventional TSK 

fuzzy models, 12 levels implies 12 fuzzy subsets for u(t-1). In the conventional 

combinatorial antecedent structure, one might expect to create a fuzzy model out of 512 

possible rules. The example shows that the generalized antecedent structure can largely 

improve the capability of modeling by efficiently representing an antecedent space. 

More importantly in this example is to observe that the minim Model Error in 

Table 6.7 is higher than that in Table 6.6. The model does not become better by using 

‘true’ dynamic orders. It provides a piece of evidence to show that the order 

determination and nonlinear component detection techniques in Chapter 4 are appropriate 

to provide the structure information for dynamical nonlinear modeling.  
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The two-phase flow  

There are two sets of input-output definitions for the two phase flow process. In the 

following test, the input is taken as the air flowrate measurement and the output is the 

pressure drop measurement. According the Table 4.12, the determined order is defined by 

ny=2, nu=0 and d=1. The antecedent variables are detected nonlinear components y(t-2) 

and u(t-1). Figure 6.43 shows the antecedent space. 

 

Figure 6.43. Two-dimension antecedent space for the two-phase process 

The training data set include 8830 samples. The validation data set include 3000 

samples shown in Figure 6.44. 

 

Figure 6.44. Validation data set for the two-phase flow process 
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The trial results for different model complexity are collected in Table 6.8, where 

the 6-rule model has the minimum Model Error.  

Table 6.8. Trials of a GTSK model for the two phase process 

M 
MSE Model 

Error Training Validating 

1 1.74E+02 1.23E+02 2.97E+02 

5 1.50E+02 9.52E+01 2.45E+02 

6 1.46E+02 9.72E+01 2.43E+02 

Figure 6.45(a)  shows the obtained partition of the antecedent space into 6 regions. 

The initialized truth of antecedent with TA = 0.05 is illustrated in Figure 6.45(b). 

 

(a)                                                                 (b) 

Figure 6.45. a) Antecedent space for two phase flow process; b) Ellipsoids (TA=0.05) 
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Figure 6.46. Coefficients for local models in the GTSK model in Figure 6.45 

The nonlinearity of the process could be verified by the evident coefficient 

variation across rules shown in Figure 6.46. Rule 1 covers the most of the antecedent 

space and describes the process behavior operated under high air flowrate. High air flow 

blows water out of the vertical pipe creating an annular flow pattern. Varying the air 

flowrate when water is out barely affects the pressure drop. The negligible effect is 

reflected by the small coefficient value of θ3 in Rule 1. When the process is operated in 

an intermediate air flowrate, with air and water coexisting in the pipe, varying the air 

flowrate will affect the density of the air-water mix, which in turn affects the pressure 

drop. The process behavior observed in intermediate air flowrate is primarily described 

by Rule 4. The other Rules, 2, 3, 5 and 6 describe the process behavior operated under 

low air flowrate and transition behavior from intermediate air flowrate to low. When the 

air flowrate is further decreased from the intermediate region, not only the density of the 

air-water mix is changed but also water starts accumulating in the pipe. With the 

increased water holdup, pressure drop is increased. Part of the water accumulation 

operation is described by Rule 3 and 5. Rule 6 features low pressure drop and low air 

flowrate. The low pressure drop is due to previous high air flowrate conditions, which 
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blows water out of pipe. Therefore, Rule 6 describes the transitional behavior from high 

to low air flowrate. Rule 2 is also featured with low air flowrate but it has high pressure 

drop. Therefore, Rule 2 describes the process behavior of further reducing the airflow 

rate when a certain amount of water has been accumulated in the pipe. 

Distillation Column 

The parameter value estimation for the distillation column is also based on the 

previously determined dynamic order and selected nonlinear component candidate sets in 

Chapter 3.  The parameter value estimation is conducted for each output.  

Overhead Concentration, xD (= y1) 

For the output y1, the determined regressors are [y1(t-1) y1(t-2) y1(t-3) y2(t-3) u1(t-

3)], and antecedent variables are to be chosen from [y1(t-2) y2(t-3)] or [y2(t-3)]. Five 

thousand data samples in the training set are used to identify a GTSK model and another 

set of 3000 are used for validation. Both data set are used to compare different choices of 

antecedent variables and model complexity in terms of number of rules. The result is 

summarized in Table 6.9. 

Table 6.9. Training and validation results for the GTSK model on y1 

Antecedent No. of Rules Training (MSE) Validation (MSE) Total MSE 

[y1(t-2) y2(t-3)] 

2 2.71e-5 2.76e-5 5.48e-5 

3 2.68e-5 2.75e-5 5.43e-5 

4 2.65e-5 2.74e-5 5.40e-5 

6 2.62e-5 2.85e-5 5.47e-5 

[y2(t-3)] 

2 2.70e-5 2.80e-5 5.50e-5 

3 2.67e-5 2.76e-5 5.43e-5 

4 2.65e-5 2.77e-5 5.42e-5 

5 2.64e-5 2.77e-5 5.41e-5 

10 2.62e-5 2.81e-5 5.43e-5 
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Observed from Table 6.9, the best one is a 4-rule GTSK model with both y1(t-2) 

and y2(t-3) included in the antecedent. The antecedent space is shown in Figure 6.47. The 

corresponding antecedent space partition and the truth of antecedent at TA =0.05 for each 

rule are shown in Figure 6.48. 

 

Figure 6.47. Two-dimension antecedent space for y1 of the distillation column 

 

Figure 6.48. a) Antecedent space partition for y1 of the distillation column; 
b) Ellipsoids (TA=0.05) 

Figure 6.49 shows the local model coefficients and their 95% confidence interval. 
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Figure 6.49. Coefficients for local models in the GTSK model in Figure 6.48 

Confidence interval overlaps are observed for θ1 and θ3 across all rules. The 

observation may indicate constant  coefficients for regressors y1(t-1) and y1(t-3).  Then a 

hybrid model structure may be defined  

( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 1 1 2 11 3 2 , 3 , 3y t a y t a y t f y t y t u t= − + − + − − −
 

(6.15)
 

Overlap of confidence interval is also observed for θ2. One might also decide that 

coefficient for y1(t-2) is a constant across all rules. However, a constant coefficient to 

y1(t-2) is unable to take y1(t-2) out of the nonlinear part and add another linear term like 

a3y1(t-2) since the regressor, y1(t-2) is included in the antecedent. One possibility is to 

take y1(t-2) out of antecedent such as the second best model in Table 6.9. It is a 5-rule 

model with only one antecedent variable y2(t-3). The corresponding antecedent partition 

is shown in Figure 6.50. Confidence interval overlap for θ1, θ2 and θ3 is observed in 

Figure 6.51. Since y1(t-2) is no longer included in the antecedent, it is then possible to 

take y1(t-2) out of the nonlinear part in Equation (6.13) and redefine a hybrid model by 
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( ) ( ) ( ) ( ) ( ) ( )( )1 1 2 1 3 1 2 11 2 3 3 , 3y t a y t a y t a y t f y t u t= − + − + − + − −
 

(6.16)
 

 

Figure 6.50. Antecedent space partition and TAs for y1 of the distillation column 

 

Figure 6.51. Coefficients for local models in the GTSK model in Figure 6.50 
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Bottom Concentration, xB (= y2) 

The same procedure is also applied to the output, y2. For the output y2, the 

determined regressors are [y2(t-1) y2(t-2) u1(t-3) u2(t-1)].  There are two sets of antecedent 

variables to be compared; [y2(t-1) u2(t-1)] and [u2(t-1)]. The result is summarized in Table 

6.10. 

Table 6.10. Training and validation results for the GTSK model on y2 

Antecedent No. of Rules Training (MSE) Validation (MSE) Model Error 

[y2(t-1) u2(t-1)] 

1 1.36e-7 1.10e-7 2.46e-7 

2 1.17e-7 9.70e-8 2.14e-7 

3 1.13e-7 1.05e-7 2.19e-7 

[u2(t-1)] 

1 1.36e-7 1.10e-7 2.46e-7 

2 1.17e-7    9.80e-8 2.15e-7 

3 1.14e-7 1.05e-7 2.19e-7 

Observed from Table 6.10, the best one is a 2-rule model with both y2(t-1) and 

u2(t-1)  as antecedent variables. The next  choice is a 2-rule model with only u2(t-1) as the 

antecedent variable. We first explore the best choice. The resultant antecedent space 

partition and the truth of antecedent at TA =0.05 are shown in Figure 6.52. 

 
Figure 6.52. Two-dimension antecedent space for y2 of the distillation column 
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(a)                                                               (b) 

Figure 6.53. a) Antecedent space partition output y2 of the distillation column; 
b) Ellipsoids (TA=0.05) 

It is observed in Figure 6.53, the separation boundary is almost vertical. The 

observation suggests a lower antecedent dimension with only u2(t-1), which in this case 

matches the second best choice in Table 6.9. Figure 6.54 shows the resultant antecedent 

space partition with only one antecedent variable, u2(t-1).  Figure 6.55 shows the local 

model coefficients and their 95% confidence interval for the 2-rule model. 

 
Figure 6.54. Antecedent space partition and TAs for y2 of the distillation column 
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Figure 6.55. Coefficients for local models in the GTSK model in Figure 6.50 

 Figure 6.55 shows that the nonlinearity in the 2-rule model is due to nonlinear 

coupling between u1(t-3) and u2(t-1). Coefficients for regressors, y2(t-1) and y2(t-2) could 

be considered as constants. The following hybrid structure could then be defined for 

output, y2.  

( ) ( ) ( ) ( ) ( )( )1 2 2 2 1 21 2 3 , 1y t a y t a y t f u t u t= − + − + − −
  

(6.17)
 

A MIMO (2,2) Model 
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includes antecedent variables from both single-output GTSK models.  

 

Figure 6.56. Two-dimension antecedent space for the MIMO(2,2) GTSK model 

The extended antecedent space (y2(t-3), u2(t-1)) will be partitioned by linear 

boundaries resulted from an exhaustive combination of obtained linear boundaries for 

both antecedent variables y2(t-3) and u2(t-1). Figure 6.57 shows the partitioned antecedent 

space for the MIMO(2,2) model. 

 

Figure 6.57. Antecedent space partition for the MIMO(2,2) GTSK model 
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Local models for each region in Figure 6.56 will be taken from individual models 

respectively.  Note that the above mentioned construction only provides a more compact 

model description but not extra modeling accuracy or interpretability. Actually, the 

interpretability is reduced. From either single-output GTSK model, it is clear to tell 

which regressor has the dominant affect on the nonlinearity for the corresponding output.  

In this case, y2(t-3) affects y1 nonlinearly and u2(t-1) affects y2 nonlinearly. The 

decoupled connection is however smeared in the MIMO format, one can only tell that 

both y2(t-3) and u2(t-1) are affecting y1 and y2 nonlinearly. The advantage of having a 

MIMO format is to provide a general model description for the subsequent analysis and 

applications. 

If both individual models share same antecedent variables, one could create 

MIMO models directly by solving the MIMO version of SRP in Section 5.6. It is 

however not the case for the distillation column example. 
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CHAPTER VII 

 

SUMMARY, CONCLUSIONS AND  

FUTURE RESEARCH RECOMMENDATIONS 

7.1 Summary 

 In this work, a generalized antecedent structure is proposed to replace the 

conventional combinatorial structure in a TSK fuzzy model. One of new features in the 

proposed antecedent structure is the extra degree of freedom in angle, which makes it 

possible to rotate the active region of a rule. In this work, active regions have the shape of 

ellipsoids. The rotation improves the coverage efficiency of rules. The improvement is 

achieved by allowing active regions to be more flexibly shaped according to function 

nonlinearity, which replaced the forced shapes oriented along with coordinates in the 

conventional antecedent structure. As a consequence, the improved rule coverage 

efficiency is expected to extend the application of TSK fuzzy models to higher dimension 

problems. 

 Another feature in the proposed antecedent structure is the separation of 

antecedent dimension from the overall dimension for a GTSK model. The distinction is a 

direct effort to deal with “the curse of dimensionality” and makes it even possible to 

apply the conventional TSK fuzzy models to high dimension problems so long as the 

corresponding antecedent dimension is acceptable. More importantly, the dimension 

separation is made applicable in this work by the proposed method to detect nonlinear 

components, which defines antecedent variables and antecedent dimension. 



 

 
 

One focus of this work is to use the resultant GTSK model featured with the 

proposed antecedent structure to model nonlinear dynamic processes. A systematic 

approach is provided to create a GTSK model from input-output data. The overall 

dimension of a GTSK model defined by dynamic orders is determined by a selection 

procedure based on the recursive estimation of spatially rearranged data using the 

proposed SNNR method. The recursive estimation on SNNR treated data is also used to 

detect nonlinear components, which in this work refer to the regressors having 

dominating impact on the nonlinear behavior of a process. 

The parameter estimation for the GTSK model with the proposed antecedent 

structure is initialized by recognizing ellipsoids out of a partitioned antecedent space. The 

partition in this work is conducted recursively. In each step, a spliiting and regression 

problem is solved by the proposed procedure. It is shown at least that the solution is a 

local optimum for the defined problem. Model parameters can be further tuned by a 

Newton’s method that solves a constrained optimization problem. Constraints are 

imposed on the positive definiteness of shape matrices in the proposed antecedent 

structure. 

7.2 Conclusions 

The proposed SNNR method rearranges time-sequenced raw data by spatial order. 

The SNNR treatment is demonstrated to be able to artificially reduce the parameter 

variation caused by nonlinearity. The effectiveness of SNNR is verified by the reduced 

MSE on rearranged output and its prediction. It should be noted that the SNNR used in 

this work is only to prepare raw data for subsequent analysis on dynamic order 

determination and nonlinear component detection. The reduced MSE due to SNNR by no 

means suggests an alternative approach for recursive estimation for better prediction. 

Simply, prediction is a temporal concept and only applicable for the time-sequenced data, 

using past observation to predict the future behavior. However, the time sequence is no 

longer preserved in SNNR treated data, where the computation using recursive estimation 

equations should not be interpreted as prediction.  
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The proposed dynamic order determination based on SNNR is able to discover 

influential regressors. The method is however not perfect and makes ‘mistakes’. However, 

it provides better results in terms of number of ‘mistakes’ and sensitivity to noise, 

compared to the method using time-sequenced data. Comparing to other methods like 

geometric method, the proposed method performs less affected by noise.  

The nonlinear components detection finds the regressors that exhibit dominating 

impact on process nonlinearity. The obtained results are verified by comparing to testing 

models and further verified in Chapter 6 by trying different antecedent variables in GTSK 

models.  

The proposed solving procedure for separation boundaries shows better 

performance than other solvers (Newton’s method and Nelder-Mead) in terms of locating 

a global optimal solution for a given multimodal  optimization problem. However, the 

proposed solver is highly designated to the separation and regression problem defined in 

this work. It should not be understood that a better optimizer is offered to replace 

Newton’s or Nelder-Mead method in general.  

Model parameters for antecedents and consequents are initialized once the 

antecedent space partition is achieved. The initialization uses only data confined in a 

recognized subspace to compute for the corresponding rule, centroid, shape matrix and 

local model coefficients.  Therefore, it is not surprising to observe that initialized rules 

exhibit limited interactions, which make rules more modular and interpretable.  The 

interpretability could be verified by comparing the behavior of a rule with the local 

behavior of the nonlinear model.  

The overall modeling accuracy of a GTSK model could be improved by further 

adjusting model parameters in an optimization scheme, which is conducted in this work 

by solving a constrained optimization problem. As observed in this work, the 

improvement in terms of modeling accuracy is achieved by interaction increase between 

rules. The observation is intuitively reasonable and increased interaction can at least 

make the GTSK model behave smoother. On the other hand, interaction increase reduces 
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the modularity.  A rule alone is not sufficient to describe the local behavior of a nonlinear 

process. Therefore, individual rules become less interpretable. Users should be aware of 

the effect of parameter optimization on modularity and interpretability. If preference is 

set on modeling accuracy, one might accept a less interpretable model. On the other hand, 

one might prefer a modular model if, for instance, model management is concerned. It is 

possible that the obtained model might be augmented by deleting obsolete rules or adding 

new rules in the model management phase. It is then desired that any alteration has only 

local impact, which is possible if coupling between modules is limited. 

The proposed parameter estimates are much better in terms of modularity 

compared to those estimated based on random initialization. The rules in GTSK models 

resulted from optimization starting from random initialization barely retain any 

modularity. 

The obtained GTSK models exhibit desired behavior with ellipsoids expressing 

the truth of antecedent oriented according to function nonlinearity. The rule distribution 

in a GTSK model is also reasonable. Rules are given to more nonlinear portion of a 

function or to approximate a nonlinear function in a finer scale. These observations imply 

that the complexity of the resultant GTSK models in this work is determined by function 

nonlinearity rather than problem dimension. This is desired behavior, which could be the 

basis to support applying GTSK models to high dimension problems. 

The conventional interpretability in individual antecedent variables will be lost 

due to the additional degree of freedom that combines all antecedent variables. However, 

the interpretability of the antecedent as a whole is still meaningful. A rule antecedent can 

be interpreted as a function that defines active region for the consequent model. It is also 

shown that it is possible to regain the conventional interpretability by converting the new 

GTSK model into the conventional format by defining several new variables. Then, 

interpretation in new variables could be defined. 

7.3 Future Research Recommendations 

This work provides a systematic approach starting from detecting data structure 
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and ending at a GTSK model. Many aspects in this work could be further investigated. 

In this work, the dynamic order determination method is limited to the ARX type 

of nonlinear dynamic processes. The limitation is due to the SNNR operation that needs 

access to measurements. It is desired that the order determination technique could be 

generalized to include a broader range of model structures, where lagged prediction or 

residuals might be included as candidate regressors to be tried. They are, however, 

unavailable from measurements directly. A recommended procedure is to start the 

generalization by first considering an ARX structure. The obtained prediction for the 

rearranged data could then be used to compute residuals. Then, the SNNR operation on 

prediction and residuals becomes possible. 

The SNNR operation is this work is conducted in a brute-force manner, which 

finds the exact nearest neighbor to a point in each step by computing its distance to all 

other points and finding the minimum. Further investigation is desired to improve the 

efficiency of the SNNR operation. 

The nonlinear component detection in this work uses an exhaustive search to try 

all possible combinations of regressors, which would cause scalability problem when 

dealing with high dimension problem. Therefore, improving the search method for 

nonlinear component detection is also worthy of further investigation.  

 The order determination method is not perfect. The order determination is based 

on spatially rearranged data. The rearrangement is however based on the assumption of 

negligible high-order influence of regressors on parameter variation. It is then a research 

focus in the future to relax the assumption by considering higher order influence, or it is 

more desired to find an approach to test the assumption.  

This work used all variables up to a certain order, not just the sparse subset found 

as important. Next pursuit should explore using only the variables found to be regressors. 

 Algorithms to solve the separation and regression problems could also be a 

research topic. A heuristic method appearing in a recent paper by (Magnani & Boyd, 
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2009) might be an alternative to solve the problem and worthy of investigation. 

This work suggested that the obtained GTSK models can be further simplified by 

merging parameter-like rules or being redefined as a hybrid including an explicit linear 

structure. The later practice could be unified with the dynamic order determination and 

nonlinear component detection to allow users to gain more insight into the model 

structure embedded in data.  

Another future research topic is on model management to let the model 

automatically adjust according to the dynamic behavior variation of the process to be 

modeled. One could adapt the local model coefficients or modify the interaction between 

rules to eliminate the mismatch. It is also possible to add new rules if mismatch is caused 

by never observed behavior. It is desired in the future study to find a systematic approach 

to reduce the mismatch and preserve interpretability by minimum modification of a 

model via evaluating all possible modifications. Retaining interpretability will need extra 

constraints to restrict the interaction between rules. 

 The proposed modeling approach is tested on several benchmark problems and a 

laboratory scale process. A possible future investigation is to broaden its application to 

industrial scale problems. The application could focus on different aspects. GTSK models 

could be used only for prediction and monitoring. One might be interested only in finding 

the overall problem dimension. It is also possible to investigate the structure embedded in 

input-output data expressed by a hybrid structure with both linear and nonlinear parts. A 

very important application is to use obtained GTSK models to design controllers (Sala, 

Guerra & Babuška, 2005). There have been many different ways proposed to design 

fuzzy model based controllers; adaptive nonlinear control using feedback linearization 

(Feng 2002; Feng and Chen 2005; Qi and Brdys 2008), linear matrix inequalities based 

parallel distributed compensator (Tanaka & Wang, 2001), gain scheduling-like multiple 

model approach (Hunt & Johansen, 1997) and nonlinear model predictive control 

(Abonyi, Nagy & Szeifert, 2001; Fischer, Schmidt & Kavsek-Biasizzo, 1997; Huang, 

Lou, Gong & Edgar, 2000). A comprehensive investigation and comparison of these 

methods is desired.  
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