

 A GENERALIZED RULE ANTECEDENT

STRUCTURE FOR TSK TYPE OF DYNAMIC

MODELS: STRUCTURE IDENTIFICATION AND

PARAMETER ESTIMATION

 By

MING SU

Bachelor of Science
 East China University of Science and Technology

 Shanghai, People’s Republic of China
 2000

Master of Science
 East China University of Science and Technology

 Shanghai, People’s Republic of China
 2003

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 DOCTOR OF PHILOSOPHY

 December, 2009

ii

 A GENERALIZED RULE ANTECEDENT

STRUCTURE FOR TSK TYPE OF DYNAMIC

MODELS: STRUCTURE IDENTIFICATION AND

PARAMETER ESTIMATION

 Dissertation Approved:

Dr. R. Russell Rhinehart

 Dissertation Adviser

Dr. Karen A. High

 Dr. James R. Whiteley

 Dr. Martin T. Hagan

 Dr. Gary G. Yen

 Dr. A. Gordon Emslie

 Dean of the Graduate College

iii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my research advisor, Dr. R.

Russell Rhinehart for his guidance, instruction, knowledge sharing and encouragement

over years. He is ready all the time to discuss research problems and give advice. The

conversations with Dr. Rhinehart have always been inspirational and joyful. His

knowledge, analytical skills, creative thinking and sharp questions broaden my view on

many problems. His advising is not limited to research problems. He taught me how to

ask questions and sharpened my conversation and writing skills. He guided me how to

approach a problem from scratch and organize time effectively to do research.

I would also like to thank my committee members, Dr. James R. Whiteley, Dr.

Karen A. High, Dr. Gary G. Yen, and Dr. Martin T. Hagan for their insightful comments

and suggestions as well as warming support and encouragement. I thank Dr. Yen for the

time and effort that he spent on helping me preparing academic papers. I thank Dr. Hagan

for his help and time to guide me studying Neural Networks and System Identification,

I want to thank Dr. A. H. Johannes from Chemical Engineering for his help over

years to improve my presentation and teaching skills. I want to acknowledge Mr. Nittin

Sharma, Mr. Pedro de Lima, Ms. Preetica Kumar, and Mr. Garov Aurora for their help

and contribution to this project.

I wish to extend my thanks to the Edward E. and Helen Turner Bartlett

Foundation for financial support.

 Last, but not least I am thankful to my wife, Yumiao for her unconditional

patience and support, and her absurd confidence in me. I am also thankful to my 2-year

old daughter, Serena, who has always been a comfort to me when I feel frustrated. My

special appreciation goes to my parents, Wenxin Su and Minghua Du for their

understanding, caring and love.

iv

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION ..1

II. REVIEW OF LITERATURE..7

 2.1 Literature Survey for Dynamic Order Determination ..7
 2.2 Literature Survey for Fuzzy Model Structure ..10
 2.3 Literature Survey for Fuzzy Model Identification ...12
 2.3.1 Variable Selection ...12
 2.3.2 Fuzzy Model Identification ...13

III. A GENERALIZED RULE ANTECEDENT STRUCTURE15

 3.1 Model Complexity ...15
 3.2 Antecedent Dimension ...16
 3.3 Antecedent Structure ..18
 3.3.1 A Generalized Antecedent Structure ..18
 3.3.2 Interpretation of the Proposed Structure ...21
 3.4 SISO Models ..23
 3.4.1 Model Parameters ...24
 3.4.2 Model Computation ..25
 3.5 Extension to MIMO Models ..26

IV. DYNAMIC ORDER DETERMINATION AND NONLINEAR COMPOENT
DETECTION ...30

 4.1 Dynamic Order Determination ..31
 4.1.1 Nonlinearity Representation ...31
 4.1.2 Recursive Estimation for Time Varying Parameters35
 4.1.3 Sequential Nearest Neighbor Rearrangement ...37
 4.1.4 Model Comparison Criterion ..45
 4.1.5 Regressor Selection Procedure ...48
 4.2 Nonlinear Component Detection ...50
 4.3 Extension to MIMO Processes...51
 4.4 Simulations and Discussions ...51
 4.4.1 Testing Models and Processes ..51
 4.4.2 Testing on Dynamic Order Determination ...63
 4.4.3 Testing on Nonlinear Component Detection ..70

v

Chapter Page

V. PARAMETER ESTIMATION FOR GTSK MODELS ...73

 5.1 Parameter Estimation by Newton’s Method ..73
 5.1.1 A Constrained Optimization Problem ...73
 5.1.2 Interpretation of Local Optimal Solutions ..78
 5.1.3 Random Parameter Initialization ..80
 5.2 Parameter Estimation for MIMO GTSK Models...83
 5.3 Overview of the Proposed Parameter Initialization ...84
 5.4 A Splitting and Regression Problem ..88
 5.4.1 Description of the Splitting and Regression Problem88
 5.4.2 SRP is Not a Clustering Problem ..89
 5.4.3 Analysis of the Splitting and Regression Problem92
 5.5 Solving of the Splitting and Regression Problem ..99
 5.5.1 Initialization of Data Segregation ...99
 5.5.2 Solving for a Linear Boundary ...105
 5.5.3 Boundary Refinement ...109
 5.5.4 Testing and Demonstration ...110
 5.5.5 Comparison to Other Methods ..118
 5.6 Extension to Multiple-Output Processes ..125
 5.7 Recursive Partition by Growing a Binary Tree ..128
 5.8 Removal of Insignificant Partitions by Trimming a Tree130
 5.9 Rule Antecedent Parameter Estimation ...135

VI. RESULTS FOR TESTING PROBLEMS ...138

 6.1 Function Approximation ..138
 6.2 Dynamic Fuzzy Modeling..161

VII. SUMMARY, CONCLUSIONS AND FUTURE RESEARCH

RECOMMENDATIONS ...185

 7.1 Summary ..185
 7.2 Conclusions ..186
 7.3 Future Research Recommendations ...188

REFERENCES ..191

vi

LIST OF TABLES

Table Page
4.1 A segment of 10 data samples in time sequence ..42

4.2 SNNR rearranged data for the time-sequence data in Table 4.142

4.3 MSE for a recursive estimation..44

4.4 Regressor forward selection for data in Figure 4.22 ..64

4.5 Exhaustive search on nu with ny=2, d=1 for data in Figure 4.2265

4.6 Regressor forward selection for data in Figure 4.22 using time-sequence data65

4.7 Regressors determined for deterministic versions of Models 1-566

4.8 Regressors determined for Models 1-5 ..66

4.9 Regressors selection for Model 7 ...67

4.10 Regressors selection for Model 8 ...67

4.11 Regressors determined for Models 10-13 ..68

4.12 Regressors determined for the two phase flow process68

4.13 Results of order determination for the distillation column69

4.14 Exhaustive search on ny for y2 ..69

4.15 Exhaustive search for nonlinear components for Model 170

4.16 Results for nonlinear component detection for Models 1~5 70

4.17 Exhaustive search for nonlinear components for Model 471

4.18 Details of nonlinear component detection for Model 972

4.19 Nonlinear components detected for the two phase flow process72

4.20 Choices of nonlinear components for the distillation column72

5.1 Solution for a SRP using different τ values ...120

5.2 The number of rules and SSE resulted from different M 130

5.3 The value αc for branch nodes shown in Figure 5.39 ..134

6.1 Trials of antecedent variables for Model 1 ...162

vii

Table Page

6.2 Trials of a GTSK model for Model 1...162

6.3 Comparison of the GTSK with RB and FFNN for Model 1166

6.4 Trials of a GTSK model for Model 3...167

6.5 Trials of antecedent variables for Model 3 ..169

6.6 Trials of a GTSK model for Model 4...170

6.7 Trials of a GTSK model for Model 4 with all regressors included172

6.8 Trials of a GTSK model for the two phase process ...174

6.9 Training and validation results for the GTSK model on y1176

6.9 Training and validation results for the GTSK model on y2180

viii

LIST OF FIGURES

Figure Page

3.1 The ellipsoid contour of TA .. 18

3.2 Antecedent space partition and representation ... 19

3.3 A rotated local region covered by a horizontal or vertical ellipsoid 20

3.4 A rotated local region covered many small ellipsoids .. 20

3.5 A rotated local region covered by a rotated ellipsoid ... 20

3.6 Model parameters for a 4-rule GTSK model .. 24

4.1 Exponential weighting with α = 0.95 .. 36

4.2 Data generated from the model in Equation (4.25)... 41

4.3 Time varying parameters a1(t) and b0(t) in Equation (4.4) 41

4.4 SNNR Rearranged regressors from the time-sequence data in Figure 4.1 43

4.5 Varying parameters for the SNNR reaaranged data ... 44

4.6 α vs. α4/(1- α) .. 48

4.7 Exhaustive dynamic order search ... 48

4.8 Input-output data generated for Model 1 in Equation (4.40) 52

4.9 Input-output data generated for Model 2 in Equation (4.41) 53

4.10 Input-output data generated for Model 3 in Equation (4.42) 53

4.11 Input-output data generated for Model 4 in Equation (4.43) 54

4.12 Input-output data generated for Model 5 in Equation (4.44) 54

4.13 Data generated for Model 10 in Equation (4.50) ... 56

4.14 Data generated for Model 12 in Equation (4.52) ... 57

4.15 The two phase flow experiment setup ... 58

4.16 The schematic diagram for the two phase flow experiment 59

4.17 Water flowrate measurements with set point at 20 lbmol/hr 59

ix

Figure Page

4.18 A choice of input and output channels ... 60

4.19 A choice of input and output channels ... 61

4.20 Reflux flowrate (solid line) and boiler heat rate (dash line) 62

4.21 The xD and xB in distillation column experiments ... 63

4.22 Data generated for the determinist version of model in Equation (4.42) 63

5.1 Antecedent space defined by antecedent variables u(t-9) and y(t-3) 81

5.2 Evaluation of function in Equation (5.28) .. 82

5.3 An antecedent space partitioned by three linear boundaries 85

5.4 An iterative procedure to partition an antecedent space ... 86

5.5 Antecedent space partition by a regression tree .. 87

5.6 Parameters to be estimated in solving a SRP .. 88

5.7 Data samples for Equation (5.41) ... 90

5.8 Data samples in antecedent space for Equation (5.41) ... 91

5.9 A linear boundary based on data distribution ... 91

5.10 A linear boundary according to function nonlinearity .. 92

5.11 Illustration of Equation (5.42) with different τ .. 93

5.12 A linear boundary generated for liner separable data .. 107

5.13 A linear non-separable case ... 107

5.14 A liner non-separable example with equally mixed points 108

5.15 Clusters found by LVQ for data in Figure 5.14 ... 109

5.16 Flowchart for solving a SRP .. 110

5.17 a) Initialization of data segregation for Equation (5.95); b) A linear separation

boundary found for the initial data segregation ... 111

5.18 a) Initialization of data segregation for Equation (5.96); b) Initial linear boundary

and its variation over iteration ... 112

5.19 a) Initialization of data segregation for Equation (5.97); b) Initial linear boundary

and its variation over iteration ... 113

5.20 An initial data segregation for Equation (5.97) fails a SVM solver 114

5.21 Clusters recognized using LVQ for the initial segregation in Figure 5.20 114

5.22 Initial boundary from clusters in Figure 5.21 and its variation in iterations 115

x

Figure Page

5.23 Liner boundary solved for a three-piece piecewise function 115

5.24 Linear boundary solved for a quadratic function ... 116

5.25 SSE with respect to the separation locations for the quadratic function 116

5.26 Initial linear boundary and its variation over iteration... 117

5.27 SSE with respect to the separation locations for Sin(x) 117

5.28 Objective function converges using Newton’s method to solve a SRP 119

5.29 Converged objective function value with respect to τ. .. 120

5.30 Nelder-Mead algorithm to solve a SRP ... 121

5.31 SSE with respect to the separation locations for Equation (5.97) 122

5.32 Separation locations for Equation (5.97) by Nelder-Mead method 123

5.33 Illustration of the function in Equation (5.98) ... 123

5.34 SSE with respect to separation locations for Equation (5.98) 124

5.35 Separation locations for Equation (5.98) by Nelder-Mead method 124

5.36 Separation locations for Equation (5.98) by the proposed SRP solver 125

5.37 Antecedent partition using different M .. 129

5.38 The branch Bt3 from Figure 5.5(a) ... 131

5.39 The tree structure for the antecedent partition in Figure 5.37 (c) 133

5.40 Antecedent space partition after removing splits under branch nodes t5, t6 and t7 in

Figure 5.39 ... 134

5.41 Antecedent space partitions after remove some unimportant splits 135

5.42 A local region in an antecedent space .. 136

6.1 Values of αc for antecedent space partition for Equation (6.1) 139

6.2 Antecedent space partition and TAs based on Equation (6.1) 140

6.3 Function approximation by the 8-rule GTSK model in Figure 6.2....................... 141

6.4 Normalized TAs for those in Figure 6.2. .. 142

6.5 Optimized TAs from initialization in Figure 6.2. ... 143

6.6 Function approximation by the optimized 8-rule GTSK model 143

6.7 Normalized TAs for those in Figure 6.5 ... 144

6.8 Optimized TAs starting from random initialization .. 145

6.9 Function approximation by the 8-rule GTSK model in Figure 6.8....................... 145

xi

Figure Page

6.10 Antecedent space partition and TAs on Equation (6.3) 146

6.11 Values of αc for antecedent space partition for Equation (6.4) 147

6.12 a) Antecedent space partition by αc > 117; b) Ellipsoids (TA = 0.05) 147

6.13 Normalized TAs for those in Figure 6.12. ... 148

6.14 Normalized TAs for the left-front rule in Figure 6.13 ... 149

6.15 Quadratic function approximation by the fuzzy model in Figure 6.12 149

6.16 Antecedent space partition by αc > 130 ... 150

6.17 A portion of αc in Figure 6.11 with values less than 118 150

6.18 a) Antecedent space partition by αc > 3; b) Ellipsoids (TA = 0.05) 151

6.19 Quadratic function approximation by the fuzzy model in Figure 6.18 151

6.20 A portion of αc shown in Figure 6.11 with values less than 3 152

6.21 Quadratic function approximation by the GTSK model in Figure 6.22 153

6.22 Optimized TAs for a 16-rule GTSK model from random initialization 153

6.23 Illustration of the function in Equation (6.5) and its contour plot 154

6.24 Values of αc for antecedent space partition on Equation (6.5) 155

6.25 a) Antecedent space partition by αc > 0.1;b) Ellipsoids (TA=0.05) 155

6.26 Optimized TAs of a 8-rule GTSK model for Equation (6.5) 156

6.27 Approximation of Equation (6.5) by the GTSK model in Figure (6.26) 156

6.28 Illustration of function in Equation (6.6) and its contour plot 157

6.29 Values of αc for antecedent space partition on Equation (6.6) 158

6.30 a) Antecedent space partition by αc>0.81; b) Ellipsoids (TA=0.05) 158

6.31 Function approximation by the model in Figure 6.30 and the contour 159

6.32 Values of αc for antecedent space partition for Equation (6.6) with quadratic local

models .. 159

6.33 a) Antecedent space partition by αc >1.5; b) Ellipsoids (TA=0.05) 160

6.34 Function approximation by the model in Figure 6.33 and the contour 160

6.35 Antecedent space partition and TAs for Model 1 .. 163

6.36 The separation boundaries shown for the nonlinear part in Model 1 163

6.37 Coefficients for local models in the GTSK model in Figure 6.35 165

6.38 Two-dimension antecedent space for Model 3 .. 167

xii

Figure Page

6.39 a) Antecedent space partition by αc > 10; b) Ellipsoids (TA=0.05) 168

6.40 Coefficients for local models in the fuzzy model in Figure 6.39......................... 169

6.41 Antecedent space partition and TAs for Model 4 .. 171

6.42 Coefficients for local models in the GTSK model in Figure 6.41 171

6.43 Two-dimension antecedent space for the two-phase process 173

6.44 Validation data set for the two-phase flow process ... 173

6.45 a) Antecedent space for two phase flow process; b) Ellipsoids (TA=0.05) 174

6.46 Coefficients for local models in the GTSK model in Figure 6.45 175

6.47 Two-dimension antecedent space for y1 of the distillation column 177

6.48 a) Antecedent space partition output y1of the distillation column; b) Ellipsoids

(TA=0.05) .. 177

6.49 Coefficients for local models in the GTSK model in Figure 6.48 178

6.50 Antecedent space partition and TAs for y1 of the distillation column 179

6.51 Coefficients for local models in the GTSK model in Figure 6.50 179

6.52 Two-dimension antecedent space for y2 of the distillation column 180

6.53 a) Antecedent space partition output y2 of the distillation column; b) Ellipsoids

(TA=0.05) .. 181

6.54 Antecedent space partition and TAs for y2 of the distillation column 181

6.55 Coefficients for local models in the GTSK model in Figure 6.50 182

6.56 Two-dimension antecedent space for the MIMO(2,2) GTSK model 183

6.57 Antecedent space partition for the MIMO(2,2) GTSK model 183

1

CHAPTER I

INTRODUCTION

Efforts to describe chemical processes exist in various forms. Preferentially, based

on idealized and simplified understanding of the underlying mechanism, first-principles

models are developed. Many of these models have been standardized in commercial

software such as ChemCAD for education or AspenPlus for prototyping process design.

However, hardly can an idealized first-principles model find its application in practice;

because, often, some artificial factors (like tray efficiency in a distillation column) have

to be introduced to augment an ideal model to improve modeling accuracy via tuning

against experiment data. Moreover, first-principles models are expensive to develop. It

takes time for researchers to acquire sufficient knowledge for describing a new process

mathematically and comprehensively. An ultimate goal of first-principles modeling is to

understand the fundamental physics. However, in practice, partial or empirical

understanding is often sufficient for certain practical applications. For instance, a

modestly accurate input-output dynamic model makes controller design possible.

Contrasting to first-principles modeling, another effort is black-box modeling by

system identification. Black-box modeling tends to overlook details in mechanism, but

focuses on input-output behavior of a process. For instance, the input-output description

via first-order-plus-time-delay models is often adequate for process control engineers to

tune PID controllers. There are many choices for model structures including Finite

Impulse Response, Autoregressive with exogenous inputs, Output Error, Autoregressive

and Moving Average with exogenous inputs, and Box-Jenkins. For each structure, the

simplest one is a linear model. Surprisingly, many chemical processes can be quite well

described using linear models due to the fact that most chemical processes are operated

around a steady state operating point. The linear model could be interpreted as a local

2

linearization of the truly nonlinear chemical process.

Despite the fact that linear models have been successfully used in many chemical

processes, efforts have been devoted to describe nonlinear dynamical chemical processes in a

more compact or unified approach. It is also expected that nonlinear modeling can provide

more accurate description. If a nonlinear model is desired, users have options to represent a

nonlinear function mapping. These options include but are not limited to polynomial models,

piecewise models, basis function models, network models, and fuzzy models.

Interestingly, there is also experienced-based knowledge existing for chemical

processes. These rules are familiar to us in various forms including process operating

instructions and manuals, handbooks and rules of thumb. Some rules are derived from prior

knowledge, which could be either understanding of fundamentals or experts’ experience. For

instance, our knowledge regarding distillation behavior might produce two following rules

expressing steady state relations:

IF Reflux (R) is Fast THEN Overhead Purity (xd) is High

IF Reflux (R) is Slow THEN Overhead Purity (xd) is Low

where linguistic terms ‘Fast’ and ‘Slow’ are used to specify Reflux (R) while ‘High’ and

‘Low’ are used to specify xd.

 Knowledge expressed in logical rules is easy to understand but often difficult to use.

Linguistic terms such as Fast, Slow, High, and Low are often not clearly defined. Moreover,

human knowledge might be incomplete or outdated.

 In this work, one focus is to describe the input-output behavior of a nonlinear

dynamic process. We choose TSK (Takagi-Sugeno-Kang) (Sugeno & Kang, 1986; Takagi &

Sugeno, 1985) fuzzy models to approximate nonlinearity. The choice is motivated to take

advantage of simplicity, interpretability, modularity and flexibility in a fuzzy model.

The concept of a fuzzy set was introduced by Zadeh (Zadeh, 1965) to express degrees

of membership of elements to sets, which could be viewed as a generalization of the classical

3

notion of set defined on a two-value (0 and 1 or Ture and False) membership value.

Subsequently, fuzzy logic is invented to handle the reasoning based on fuzzy sets. There are

many ways to define fuzzy logic. An interesting application of fuzzy logic in engineering

fields (fuzzy logic in broad sense) is fuzzy modeling, which uses fuzzy models to represent a

nonlinear function. A fundamental proof, which permits the belief in fuzzy modeling shows

that a fuzzy model is a universal approximator (Kosko, 1994). It simply means that fuzzy

models can theoretically approximate almost any nonlinear function. Although a fuzzy model

is not the only universal approximator, it is preferable over other modeling approaches

because of its simplicity, interpretability, modularity and flexibility.

One aspect of simplicity could be the modeling simplicity. One merit in fuzzy

modeling is to allow users to translate their intuition and knowledge into a qualitative model

description at first, by a fuzzy model, and leave quantitative description to a later tuning

phase. For instance, an experienced operator can quickly provide a model with several rules

to describe a distillation column as shown above, then, subsequently the break points

defining linguistic categories can be fine tuned.

Because fuzzy models are strongly connected to human knowledge, they are often

accredited interpretability. The use of linguistic terms seems to be an ‘obvious’ reason. For

sure, the involvement of linguistic terms makes a fuzzy model appear friendly to users. More

fundamentally, the interpretability is due to the fact that a fuzzy model is expressed in

IF…THEN structure, which matches the reasoning procedure for humans and makes a fuzzy

model appear ”intelligent”.

Another important aspect of interpretability is knowledge transparence, which is due

to the modularity in a fuzzy model. Fuzzy models are made of rules. Regardless how ‘big’ a

fuzzy model is, each rule in the fuzzy model is relatively simple. A fuzzy model as a whole

with thousands of rules looks by no means interpretable no matter how many linguistic terms

are used. However, the modularity in a fuzzy model allows users to look at a fuzzy model in

a different way by shifting focus onto individual rules. In each rule, knowledge on local

behavior of a nonlinear process becomes clear, and interpretability is possible.

4

Modularity is also aligned with the concept of divide-and-conquer in dealing with

complex problems. In fuzzy model identification, modularity could be exploited to convert

the identification of a fuzzy model to a number of smaller and simpler identification

problems, each of which focuses on a rule. In applications, for instance, designing a fuzzy

model based controller, modularity is used to translate the controller design for a fuzzy

model into a number of smaller and simpler controller design problems.

Modularity also leads to flexibility in fuzzy models. A fuzzy model can be viewed as

an interface rather than a model. It serves as a common gateway to connect different types of

models and allow communication among them. As shown below is a possibility to let a fuzzy

model to incorporate different types of models

IF x is High THEN use a first-principles model

IF x is Low THEN use a Neural Network model

IF x is Medium THEN y is High

The flexibility and modularity also simplifies the model management maintenance. In

addition to adapting model parameters to compensate model-plant mismatch, fuzzy models

also allow insertion and deleting operations on rules to incorporate newly discovered events

and eliminate obsolete behavior.

 Different from most black-box modeling approaches, in our view, fuzzy models

explicitly separate nonlinear components in a model from its linear components. This work

will exploit this feature to simplify the model structure.

However, the applications of fuzzy models are limited by their insufficiency to handle

high-dimension problems due to a well known problem, the curse of dimensionality. With

this restriction, fuzzy models can hardly have any significant practical impact. Even for a

single-input-single-output (SISO) dynamic process, fuzzy models will be embarrassed if the

SISO process has high dynamic orders. Many successful academic examples of using fuzzy

5

models are demonstrated on dynamic processes with low dynamic orders, often not

exceeding four.

In this work, fuzzy models, particularly TSK type of fuzzy models are chosen to

describe nonlinear dynamics due to the potential benefits mentioned above. The TSK model

used in this work is featured with a generalized rule structure, which is proposed to overcome

its insufficiency in dealing with high dimensional problem. The new structure has different

dimensions in rule antecedent and consequent. Usually, in this work, the antecedent

dimension is lower than consequent and contains only ‘nonlinear variables’, which tends to

directly handle the curse of dimensionality by having fewer variables included in

antecedents. Additionally, the new structure replaces the combinatorial antecedent structure

by a more flexible one, where an extra degree of freedom is introduced to ‘rotate’ the

coverage of a rule. The new addition reduces the number of rules needed in a TSK model by

improving the covering efficiency of each rule. With the generalized rule antecedent

structure, the TSK model in this work is referred to as GTSK (generalized TSK).

The structure of a GTSK model includes the overall model dimension and antecedent

dimension. In this work, since the primary modeling target is nonlinear dynamic processes,

the determination of the overall dimension of a GTSK model is translated to discover the

dynamic orders from measured input-output data. The antecedent dimension of a GTSK

model is determined by finding nonlinear components in a GTSK model.

Parameter estimation of the GTSK model is automated heuristically by recognizing

rules from an iteratively partitioned space. Following the heuristic procedure is the fine

tuning of the fuzzy model parameters by solving a nonlinear optimization problem with

matrix inequality constraints.

This work tends to provide a unified and systematic procedure to obtain a GTSK

model with new rule structure from input-output data for a nonlinear dynamic process. The

procedure is demonstrated on several theoretical benchmark problems, which are drawn from

published research works and are used primarily for illustrating ideas, comparing methods

and verifying results. The procedure is also tested on a distillation column simulator, which

6

has been successfully used in past research work (Ou, 2001). Additionally, the procedure is

tested on a pilot-scale chemical process, two-phase flow, which exhibit nonlinear dynamics,

time delay, and measurement noise.

 Innovations of this work are design of a new rule antecedent structure, which has a

reduced antecedent dimension and a more flexible antecedent structure, design of a

systematic approach to determine dynamic orders and detect nonlinear variables, and design

of a heuristic procedure that iteratively partition an antecedent to generate regions, within

which a linear relation is valid.

7

CHAPTER II

LITERATURE SURVEY

2.1 Literature Survey for Dynamic Order Determination

TSK type of fuzzy models is used in this work to describe a nonlinear dynamic

process. Several potential benefits that users might expect from a fuzzy model have been

listed in the Introduction. The modeling procedure proposed in this work is capable of

dealing with multiple-input-multiple-output (MIMO) processes. However, the majority of

technical elaboration will be based on single-input-single-output (SISO) models as

described in Equation (2.1) for the simplicity of presentation. The extension to MIMO

models will be addressed accordingly.

() () () () ()() ()1 , , , , ,y t f y t y t ny u t d u t nu d e t= − − − − − +L L (2.1)

Equation (2.1) is a nonlinear autoregressive with exogenous input (NARX) model. The

term NARX is chosen to be consistent with its linear counterpart, ARX models. The

terminology is however not unique in the literature. In (Seborg & Henson, 1996), the

structure in Equation (2.1) is named as a nonlinear autoregressive and moving average

model (NARMA). In this work, ARX structure is chosen for its simplicity. More

importantly, function arguments (lagged y and u) in Equation (2.1) include only input and

output measurements. Some operations and treatment on raw data in this work are

currently limited to model structures that have only measurable function arguments.

8

More complex structures could be used to describe nonlinear dynamics if

necessary. A nonlinear NARMAX model is described in (Johansen & Foss, 1993). Its

structure information is retrieved from its linear counterpart, ARMAX. As commented in

(Nelles, 2001), more advanced structures are often not worth their additional

complexities in describing nonlinear dynamics. On the other hand, NARX models as

simpler models should often be tried first for any unknown structure nonlinear dynamic

processes.The btained NARX models could be the basis for further structure variation or

complication. In (Fischer, Nelles & Isermann, 1998), an NARX is first identified then

converted to a nonlinear output error model (NOE) by some regressor replacements (for

instance, y(t-1) is replaced by its prediction ŷ(t-1)) followed by model parameter retuning.

Additionally, we assume, in this work, that ny, nu and d in Equation (2.1) are time

invariants. The additional simplification may be against the nature of some realistic

processes. For instance, a time-varying delay is often encountered in chemical processes,

where a transportation delay strongly relates to a flow rate that is time varying in nature.

On the other hand, a constant delay is often a good enough approximation in practice,

especially in a relatively steady working condition.

The first step in system identification is to determine orders of the model. For the

SISO model in Equation (2.1), the problem is then to discover ny, nu and d.

In terms of dynamic order determination, there are well-developed methods for

linear systems. For dynamical linear systems, a preliminary analysis using autocorrelation

and partial autocorrelation (Box, Jenkins & Reinsel, 1994) is able to identify dynamic

orders. The result is often a set of candidate orders to be tried and validated further

against data. Dynamic order determination can also be translated to problems regarding

regressor analysis. Regressor analysis does not result in the dynamic orders and time

delay directly. However, it would be a trivial practice to draw, ny, nu and d from the

result of regressor analysis. One method is subset selection (Miller, 1990), which has

different versions including forward selection, backward elimination, cycling

replacement and exhaustive search methods. Among them, only exhaustive search, the

most expensive one, is guaranteed to be able to find a global optimal solution, the best set

9

of regressors. Other methods are heuristically motivated aiming at a suboptimal solution

with improvement in searching speed or efficiency.

Analysis of variance (ANOVA) as a tool to find the influential experimental

factors can also be used to find influential regressors (Lind & Liung, 2008). ANOVA

method suffers from the curse of dimensionality and the evaluation of interacting

influence among factors requires a combinatorial amount of trials. In addition, a

conventional ANOVA procedure takes finite levels of experimental factors rather than

continuous (‘infinite’ levels) values. Extra computation is required to prepare the raw

data for ANOVA analysis (for instance by clustering).

For nonlinear dynamical models, even for NARX models, there is not a general

method such as the autocorrelation or partial autocorrelation method available for

dynamic order determination. Rigorous analysis based on nonlinear correlation is

possible if the nonlinear structure of f is known or presumed (Haber & Unbehauen,

1990). There are a variety of choices of predefined nonlinear structures such as bilinear,

Wiener, Hammerstein models or their combinations. Another approach aims at a general

target and does not depend on a predefined nonlinear structure. The geometric method

(Molina, Sampson, Fitzgerald & Niranjan, 1996) is proposed to determine the embedded

dimension in deterministic nonlinear autoregressive nonlinear systems. Following the

same concept, its extension to dealing with deterministic ARX by including inputs is

proposed in (Rhodes & Morari, 1995) based on False Nearest Neighbor. Both methods

are more intuitively motivated rather than rigorously derived, and can be roughly argued

based upon the first-order Taylor expansion. Another method also based on the first-order

Taylor expansion argument is Lipschitz Quotient (He & Asada, 1993) aiming at

deterministic NARX dynamic processes.

The difficulty in determining the order in Equation (2.1) is the unknown nonlinear

function, f. Even if f is known to be nonlinear, the richness of nonlinearity would keep

users from exhausting all possible nonlinear forms, making it difficult to find ny, nu and

d. If the nonlinearity is known, it is possible to transform a nonlinear problem into a

linear problem. If the nonlinearity is unknown, users could resort to any one of ‘big’

10

models such as neural network or any other one being proved to be a universal

approximator. These complex structures are able to capture almost any nonlinearity given

enough flexibility. Without nonlinearity being a problem, users can then experiment and

compare different sets of orders in these ‘big’ models. The drawback of using ‘big’

models is high computational burden. Additionally, as we will present later,

experimentation of dynamic orders in ‘big’ models is not suitable for another objective in

this work, nonlinear component detection. In our work, a unified approach is proposed

for both dynamic order determination and nonlinear component detection.

2.2 Literature Survey for Fuzzy Model Structure

There are several different types of fuzzy models. One of them is the Mamdani

fuzzy model (Mamdani, 1974). For the nonlinear dynamic process in Equation (2.1),

Mamdani fuzzy models might be defined by rules as below

() ()()
()

1 1 1 is is

y t

r r
ny nu

r

y t A u t nu d A

C

+ +− − −IF AND AND

THEN is

L (2.2)

where, the expression () ()1 11 is isr r
ny nuy t A u t nu d A + +− − −AND ANDL is the antecedent of

the rule. The expression () ry t Cis is the consequent of the rule. The variables y(t-1), …,

y(t-ny), u(t-d), …, u(t-nu-d) are antecedent variables and 1
rA is the fuzzy subset for y(t-1)

in the rule. Notations of fuzzy subsets for other variables should be clear in context. A

Mamdani fuzzy model has the perhaps the simplest consequent models.

An extension of Mamdani fuzzy models is Takagi-Sugeno-Kang (TSK) fuzzy

model (Sugeno & Kang, 1986; Takagi & Sugeno, 1985). The generalization goes to rule

consequent. For the nonlinear dynamic process in Equation (2.1), a rule in a TSK fuzzy

model could be defined by

() ()()
() () () () ()

()
()

1 1

1 1

1 1
1

1 1
0 1

 1 is is

1

r r
ny nu

r r r r

r r r ny
ny

r r r r nu
nu

y t A u t nu d A

z y t k z u t d e t

z a z a z

z b b z b z

+ +

− −

− − −

− − −

− − −

= + − +

= + + +

= + + +

IF AND AND

THEN A B

A

B

L

L

L

 (2.3)

11

where, consequent model is () () () () ()1 1r r r rz y t k z u t d e t− −= + − +A B with dynamic orders

ny and nu, pure time delay d and a constant kr. z is the backshift operator. The local

model could be interpreted as a linearization of the nonlinear dynamic process in

Equation (2.1). The linearization explains the inclusion of the constant term kr. As

mentioned in (Leith & Leithead, 1999; Shorten, Smith, Bjorgan & Gollee, 1999), the

linearization could be interpreted as conducted around either a steady state or transitional

working point. Including of the later is commented to be able to improve modeling

performance for transient behavior (Smith & Johansen, 1997).

 Mamdani and TSK represent two major types of fuzzy models and are different in

consequents. In fact, a TSK fuzzy model could be further generalized by replacing its

linear consequent models with other types of models. In (Mastorocostas & Theocharis,

2002), a new type of fuzzy model is proposed with neural network consequent models.

Hierarchical fuzzy models (Lee, Chung & Yu, 2003; Liu & Li, 2005; Zeng & Keane,

2005) are often mentioned in the literature and could also be considered as a particular

type of generalization by having fuzzy models as local models.

 Interestingly, fuzzy models could also be compared with models originated from

other disciplines. It is shown in (Andersen, Lotfi & Westphal, 1998; Roger & Sum, 1993)

that a TSK fuzzy model with Gaussian membership functions and product operator for

AND logic conjunction is functionally equivalent to a normalized radial basis network

under certain restrictions. In (Smith & Johansen, 1997), a TSK fuzzy model is addressed

in a broader perspective as a multi-model network.

 The above mentioned fuzzy models represent one direction of generalization of

fuzzy model structure by making consequent models more complex. Interestingly, not

much effort is devoted to generalize the antecedent structure in a fuzzy model. The

maneuverability in antecedents lies mainly in the choices of different types of

membership functions including triangular, trapezoidal and Gaussian, etc., as well as

different configurations for a particular type of membership functions.

12

Another degree of freedom in designing antecedents is via using different logic

operators. For instance, the AND conjunction in the antecedent expression in Equation

(2.2) or (2.3) could be quantitatively evaluated using either product or minimum operator.

In addition to these two, there are in fact many other choices for the evaluation of AND

conjunction, which is defined by a variety of T-norms as a result of research on symbolic

fuzzy logic (Lee & Zhu, 1995).

2.3 Literature Survey for Fuzzy Model Identification

Identifying a fuzzy model generally involves two objectives, structure

identification and parameter estimation. The structure identification selects variables for

antecedent and consequent, determining number of fuzzy subsets for each variable, and

estimating number of rules in a fuzzy model. Parameter estimation determines values of

model parameters.

As shown in a TSK rule in Equation (2.3), model parameters include parameters

defining all fuzzy subsets (membership functions) in the antecedent and those defining

consequent models. There are many different approaches for fuzzy model identification.

They vary for different types of fuzzy models to be identified or based on different

assumptions. Very often in practice, the structure identification and parameter value

estimation are coupled. For instance, the number of rules is related to the number of

variables in the antecedent as well as the number of fuzzy subsets for each antecedent

variable. Meanwhile, an addition or deletion of a fuzzy subset to a variable is expected to

affect of the distribution of other fuzzy subsets, which in turn results in retuning of

membership functions for optimal result. Inevitably, any variation in antecedent

parameter values should be accompanied by corresponding change in consequent model

coefficients.

2.3.1 Variable Selection

 Variable selection determines the variables for rule antecedent and consequent.

Very often, it is implicitly assumed for simplicity that all rules in a fuzzy model share the

same set of antecedent and consequent variables. It is therefore equivalent in practice to

13

define the problem as antecedent and consequent variable selection for a fuzzy model.

Variable selection is not conducted separately but often accompanied by parameter

estimation/retuning. A common explicit procedure is to try different sets of selections

with evaluation of their corresponding model accuracy and complexity, and find the best.

In (Pomares, Rojas, González & Prieto, 2002), the variable selection is conducted

iteratively in a constructive approach to build a fuzzy model. In each iteration, a fuzzy

model is augmented by either changing the number of fuzzy subsets of already selected

variables or adding a variable in antecedent. The better one is kept. Similar to the

approach widely used in classification tree identification, the antecedent variable

selection is implicitly conducted in (Nelles & Isermann, 1996). In each step, the

augmentation of the existing fuzzy model is tried by adding a new rule for each candidate

variable. The best rule is then kept. In the end, antecedent variable selection is

automatically achieved by discarding variables from the antecedent, which are never

selected. The variable selection becomes more complicated for a dynamic process as

described in Equation (2.1) since each variable is associated with an unknown dynamic

order. The variable selection problem should then be extended to determine the dynamic

order for each variable. The extension could be simply achieved by including more

lagged terms, which, however, largely increases the problem dimension and makes many

methods designated for low dimension problems become difficult.

2.3.2 Fuzzy Model Identification

 There are several different ways to categorize methods in fuzzy model

identification. Some identification methods are based on heuristic criterion for linguistic

interpretability and knowledge transparency. On the other hand, many other identification

methods tend to find a more accurate fuzzy model by minimizing a quantitative

performance index.

The approaches to extract fuzzy rules heuristically are mainly inspired by two

procedures. The Pittsburgh approach focuses on rule set evolution while the Michigan

approach evolves individual rules independently. Both Pittsburgh and Michigan

approaches use genetic algorithms for optimization, which is consistent with the main

14

theme being heuristic. More importantly, it is due to the fact that heuristic criteria are

unable to provide explicit searching directions expressed by gradients or Hessians. The

research on this field focus primarily on inventing new heuristics by digging deep how

human process linguistic information, or devise more efficient searching or combinatorial

optimization techniques (Cordon, Herrera, Gomide, Hoffmann & Magdalena, 2001).

Different from those heuristically inspired approaches, a modeling error driven

approach estimate parameter values of a fuzzy model by optimizing the performance

index, for instance, sum of squared error. In this approach, one could take either a

‘global’ procedure to tune all parameters (antecedent, consequent parameters)

simultaneously or a ‘local’ procedure starting from individual rules and combine them to

be a fuzzy model. The ‘global’ procedure requires a good initial guess to avoid trivial

solutions or poor local minimal. In (Dickerson & Kosko, 1996), an initial fuzzy model is

generated by recognizing piece-wise patches along a SISO nonlinear function to be

approximated. Then a steepest descent optimizer is followed. Heuristics based on

clustering are also used to recognize the prototype rules (Dickerson & Kosko, 1996;

Vernieuwe, Baets & Verhoest, 2006; Wang & Yang, 2009). In (Nelles, 2001) rules are

progressively generated by conducting an equal division in a dimension in each step. It is

also possible to over-parameterize a fuzzy model and let a simplification procedure (Yen

& Wang, 1999) to merge redundant rules or eliminate invalid rules.

It is worthy pointing out that there is a procedure that tends to obtain a fuzzy

model representation of a known nonlinear process by mathematical equivalence

(Kawamoto, 1992). This approach has nothing to do with above mentioned fuzzy model

identification from data. The main purpose of this procedure is to represent a nonlinear

model by a fuzzy model and exploit the structure features in the fuzzy model to design

controller, and investigate stability for the original nonlinear model.

Additionally, heuristic-based stochastic procedures exist to gain both model

structures and parameter values simultaneously (Du & Zhang, 2008; Guenounou,

Belmehdi & Dahhou, 2009; Lin, 2008; Lin & Xu, 2006), which however require even

more computation resources.

15

CHAPTER III

A GENERALIZED RULE ANTECEDENT STRUCTURE

In this chapter, a generalized rule antecedent structure is proposed. The new rule

antecedent uses only nonlinear variables. Additionally, one more degree of freedom is

introduced to design antecedents to cover an antecedent space more efficiently. The

following elaboration focuses on a single-input-single-output (SISO) model. The

extension to multiple-input-multiple-output MIMO models is provided at the end.

3.1 Model Complexity

Equation (3.1) represents a SISO dynamic process with dynamic orders ny, nu,

pure time delay d, and an additive noise e (t)

 () () () () ()() ()1 , , , , ,y t f y t y t ny u t d u t nu d e t= − − − − − +L L

 (3.1)

where y is the process response and u is the input. The nonlinear function, f could be

approximated by a TSK model in Equation (2.3) and reproduced as below for simple

reference

() ()()
() () () () ()

()
()

1 1

1 1

1 1
1

1 1
0 1

 1 is is

1

r r
ny nu

r r r r

r r r ny
ny

r r r r nu
nu

y t A u t nu d A

z y t k z u t d e t

z a z a z

z b b z b z

+ +

− −

− − −

− − −

− − −

= + − +

= + + +

= + + +

IF AND AND

THEN A B

A

B

L

L

L

 (3.2)

16

Complexity of a TSK model could simply be regarded as the number of rules. For

the TSK model in Equation (3.2), given that each variable has 5 fuzzy subsets (could be

linguistically labeled as Low, Medium-Low, Medium, Medium-High, High), there would

be 5ny+nu+1 possible rules to be considered. The problem dimension (ny+nu+1 in this case)

is an obvious cause for the complexity. Moreover, the number of rules also depends on

the number of fuzzy subsets for each variable. The illustrated number, 5 is quite

conservative in practice. Simply put, the TSK model described in Equation (3.2) has

difficulty to deal with high dimension problems or it is subject to “the curse of

dimensionality”.

In the following, a generalized rule antecedent structure is proposed to design an

efficient GTSK model by using fewer rules. The new rule antecedent only uses nonlinear

variables, which separates the antecedent dimension from the problem dimension. The

complexity of a GTSK model is only related to the antecedent dimension. It is then

possible to apply a GTSK model to a high dimension problem so long as its antecedent

dimension is acceptable.

Additionally, the proposed rule antecedents are expressed as ellipsoids covering

the underlying local regions and feature one more degree of freedom in design. The extra

flexibility makes spatial coverage more efficient and simplifies a fuzzy model in terms of

number of rules.

3.2 Antecedent Dimension

The direct approach to reduce the number of rules is to control the problem

dimension, which is unfortunately determined by the nature of the problem but not by

users. However, dimension reduction in the antecedent is still possible by excluding

variables that appear linearly.

To illustrate dimension reduction, consider the following nonlinear dynamic

model with three regressors, [y(t-1) y(t-2) u(t-1)]

 () () () () ()21 2 2.5 1 1y t y t y t y t u t = − − + + − −  (3.3)

17

Using the rule structure in Equation (3.2), the rule antecedent could then be

expressed as (y(t-1) is A1 AND y(t-2) is A2 AND u(t-1) is A3)). The antecedent dimension

is 3, which is same as the problem dimension. Assuming that each variable has 5 fuzzy

sets, the combinatorial construction will then generate 53=125 possible rules.

The dynamic model in Equation (3.3) can be represented in a linear format using

time-varying parameters.

() () () () () () ()1 2 01 2 1y t a t y t a t y t b t u t= − + − + − (3.4)

with a1(t) = 2.5, a2(t) = y(t-1) and b0(t) = y(t-1)2 where, model parameters a2 and b0 are

not only time-varying but functions of the regressor, y(t-1). It indicates that the model can

be expressed linearly in all variables except y(t-1). The coefficient values in Equation

(3.4) are independent of y(t-2) and u(t-1). Equivalently, the regressor, y(t-1), is the only

regressor that changes the otherwise linear model coefficient values. Therefore, y(t-1)

should be the only one included in the antecedent. The simplified rule is defined by

() () () ()1 2 1

 (1) is

1 2 1

r

r r r r

y t A

y t k a y t a y t b u t

−

= + − + − + −

IF THEN

(3.5)

where the antecedent dimension is reduced to 1. The possible number of rules is reduced

from 125 to 5. In Equation (3.5), y(t-1) is then an antecedent variable and collected in a

vector c(t). Regressors in the consequent including y(t-1), y(t-2) and u(t-1) are collected

in vector x(t).

 The concept to include only nonlinear variables in antecedents have been

explicitly mentioned in (Shorten, Smith, Bjorgan & Gollee, 1999) or implicitly applied in

(Nelles & Isermann, 1996; Tanaka & Wang, 2001), where fuzzy models are used to

describe known nonlinear dynamic processes. However, the above mentioned dimension

reduction can only be made practically applicable if it is able to find antecedent variables

from data. The detection of antecedent variables will be addressed in Chapter 4.

18

3.3 Antecedent Structure

3.3.1 A Generalized Antecedent Structure

As mentioned above, the number of rules is related to the problem dimension by

5ny+nu+1. In Section 3.2, it is illustrated that it is possible to use a number for the exponent

less than ny+nu+1. However, the exponential relation between the number of rules and

the dimension (antecedent dimension) is still preserved. The underlying cause for the

exponential connection is the combinatorial antecedent structure expressed in the TSK

rule in Equation (3.2), using AND conjunction to connect antecedent variables. For

example, given a two dimensional antecedent (c1 is A1 and c2 is A2), if Gaussian

membership functions are assumed and the product operator is used for the AND

conjunction, the antecedent is then evaluated by the truth of antecedent (TA)

2 2

1 1 2 2

1 2

exp
c o c o

TA
σ σ

    − − = − −        
 (3.6)

where TA is an ellipsoid centering at (o1,o2) with width by σ1 and σ2. A contour plot of TA

is shown below

Figure 3.1. The ellipsoid contour of TA

In Figure 3.1, the highest value of TA =1 is reached at the centroid. The further

out is the contour, the smaller the TA. The value of TA can be interpreted as the

1c

2c

1o

2o

19

belongingness of a data point to a local region.

A fuzzy model has several rules. Given a two-dimensional antecedent with equal

number of fuzzy sets for each antecedent variable, a typical combinatorial antecedent

space partition and representation by horizontal and vertical ellipsoids is shown in Figure

3.2(a)

 (a) (b)

Figure 3.2. Antecedent space partition and representation

where, 9 rules result from the exhaustive combinations of 3 fuzzy sets for each

antecedent variable. Users might resort to the techniques in (Yen & Wang, 1999) to

reduce the redundancy in consequent models and have a more compact fuzzy model. The

number of rules can be reduced by merging some regions that exhibit similar local

behavior. Figure 3.2(b) shows a possible simplified partition after merging some regions.

The partition in Figure 3.2(b) will also become inefficient as shown in Figure 3.3, where

neither a horizontal nor a vertical ellipsoid provides an efficient representation of the

underlying local region represented by either the rotated “space” of correlated variables

or irregular polygons.

1c

2c

1c

2c

Figure 3.3. A rotated local region covered by a horizontal or vertical ellipsoid

One possible solution for covering the space is to use many smaller ellipsoids as

shown in Figure 3.4, which

Figure 3.4. A rotated local region covered

Another solution is to rotate the ellipsoid as shown in Figure 3.5.

Figure 3.5.

20

3. A rotated local region covered by a horizontal or vertical ellipsoid

One possible solution for covering the space is to use many smaller ellipsoids as

which however might result in a lot of rules.

4. A rotated local region covered by many small ellipsoids

nother solution is to rotate the ellipsoid as shown in Figure 3.5.

Figure 3.5. A rotated local region covered by a rotated ellipsoid

3. A rotated local region covered by a horizontal or vertical ellipsoid

One possible solution for covering the space is to use many smaller ellipsoids as

many small ellipsoids

ellipsoid

21

The rotated ellipsoid proposed here with the stretching and contraction is flexible

enough to match many geometric shapes. In order to address the rotation mathematically,

the parameters σ in Equation(3.6) are replaced by a symmetric positive definite matrix P,

which is termed as the shape matrix in this work and redefines the truth of antecedent by

 () ()()exp
T

TA = − − −c o P c o (3.7)

where o is a vector with dimension of nc and represents the centroid, and the dimension

for the shape matrix P is nc by nc. The flexibility in representing antecedent subspaces is

at cost of additional nc(nc-1)/2 new parameters in the shape matrix in Equation (3.7).

This approach could be interpreted as a transition from a TSK fuzzy model with many

simple rules to a GTSK fuzzy model with fewer complex rules. Clearly, the simplicity

and complexity in this context refers to that in rule antecedents.

3.3.2 Interpretation of the Proposed Structure

Interested readers could follow the following method to convert the new

antecedent structure in Equation (3.7) to a conventional antecedent in Equation (3.2) with

new defined variables. Since the treatment in Section 3.3.2 is not essential, readers might

also choose to skip it.

The conversion is aided via representing the shape matrix in Equation (3.7) by its

spectral decomposition.

1

nc
T

i i i
i

λ
=

=∑P z z (3.8)

where λi is an eigenvalue and zi is the corresponding eigenvector. Substituting P by its

spectral decomposition, Equation (3.7) then becomes

22

() ()

() ()()

()

1

1

2

,
11

exp

exp

exp

nc
T T

i i i
i

nc
T T

i i i
i

nc nc

i j j i j
ji

TA

c o z

λ

λ

λ

=

=

==

 
= − − − 

 

= − − −

  
 = − −    

∑

∏

∑∏

c o z z c o

c o z z c o (3.9)

Then TA could be converted to the conventional form

2

1

exp
nc

i i

i i

v q
TA

σ=

  − = −    
∏ (3.10)

with the new introduced antecedent variable vi, centroid, qi and σi are defined by

,
1

,
1

1 2

nc

i j i j
j

nc

i j i j
j

i i

v c z

q o z

σ λ

=

=

−

=

=

=

∑

∑ (3.11)

 The rule antecedent could then be represented in the conventional format using

AND conjunction as

() ()1 1 1 1is , is ,nc nc nc ncv A q v A qσ σAND ANDL (3.12)

where A1(q1, σ1) denotes a Gaussian membership function with the centroid, q1 and the

width specified by σ1.

 The above mentioned interpretation might be useful to convert an existing GTSK

model with the generalized antecedent structure to a conventional TSK fuzzy model to

regain the interpretability offered in antecedents using AND conjunction. It seems also

that the antecedent structure generalization is to extend a conventional TSK fuzzy model

architecturally by introducing an extra layer to linearly combined raw variables to form

23

antecedent variables.

However, the above interpretation might not be helpful in estimating model

parameters in general. For instance, there are nc(nc+1)/2 variables required to specify the

shape matrix. However, there are nc(nc+1) parameters expressed in Equation (3.11); zi,j

(i=1,…,nc; j=1,…,nc) and λi (i=1,…,nc). One might need to add additional constraints to

eliminate the extra nc(nc+1)/2 degrees of freedom. For instance, eigenvectors are

orthogonal to each other and eigenvectors have unit length.

3.4 SISO Models

In a GTSK model, model parameters include both antecedent and consequent

parameters. Antecedent parameters specify active regions for each rule while consequent

parameters describe local models. For simplicity of presentation, a vector x(t) is defined

as below to collect the input arguments in Equation (3.1)

() () () () ()1 1
T

t y t y t ny u t d u t d nu = − − − − − x L L (3.13)

where the dimension of x(t) is nx+1 with nx = ny+nu +1.

 If a GTSK model is used to approximate the nonlinear function f in Equation

(3.1), the fuzzy model is then defined as below using the proposed antecedent structure

() ()() () ()

() ()() () ()

1 1 1 1 1ˆis in ,

ˆis in ,M M M M M

t R y t t

t R y t t

=

=

IF c o P THEN θ x

IF c o P THEN θ x

M

(3.14)

where, superscript 1 indicates the first rule in a GTSK model. The antecedent

representation using AND conjunction in Equation (3.2) is replaced by the statement c(t)

is in R1 (o1,P1). The expression of R1 (o1,P1) could be interpreted to represent an

ellipsoidal active region for the first rule. The number of rules, M, is assumed known. c(t)

containing nc antecedent variables is defined as below and obtained as nonlinear

components in Chapter 4 for nonlinear dynamic processes.

24

() () ()1

T

nct c t c t =  c L (3.15)

3.4.1 Model Parameters

 Figure 3.6 illustrates the model parameters to be estimated for a GTSK model in a

two-dimension antecedent structure.

Figure 3.6. Model parameters for a 4-rule GTSK model

Ri represents the active region for the ith rule. Its location and shape are specified

by antecedent parameters; a centroid vector, Ri nc∈o and a positive definite shape

matrix, Ri nc nc×∈P . They are respectively defined by

 1

Ti i i
nco o =  o L (3.16)

1 2 4

2 3 5

4 5 6

i i i

i i i
i

i i i

p p p

p p p

p p p

 
 
 =
 
 
 

P

L

L

L

M M M O

 (3.17)

25

where the symmetric matrix Pi is specified by a vector ()1 2Rnc nci × +∈p

()1 2 3 1 2
i i i i i

nc ncp p p p +
 =  p L (3.18)

The Pi matrix can be expressed as a weighted sum of symmetric basis matrices in

order to facilitate the computation later on

()1 2

1

nc nc
i i

j j
j

p
+

=

= ∑P B (3.19)

where symmetric basis matrices, Bj, are defined in the following manner

1

1 0 0

0 0 0

0 0 0

 
 
 =
 
 
 

B

L

L

M M O M

L

, 2

0 1 0

1 0 0

0 0 0

 
 
 =
 
 
 

B

L

L

M M O M

L (3.20)

3

0 0 0

0 1 0

0 0 0

 
 
 =
 
 
 

B

L

L

M M O M

L

, …, ()1 2

0 0 0

0 0 0

0 0 1

nc nc+

 
 
 =
 
 
 

B

L

L

M M O M

L

The local model parameters (consequent parameters) are included in vector

1Ri n×+∈θ defined by

0 1
i i i i

nxθ θ θ =  θ L (3.21)

3.4.2 Model Computation

The computation of the model in Equation (3.14) is defined by

() () ()
1

ˆ ˆ
M

i i

i

y t w t y t
=

=∑ (3.22)

26

where ŷi(t) is output from the local model in Rule i and weighted by wi(t). Weights wi(t)

are defined as the normalized truth of the antecedent (TA)

() ()

()
1

i
i

M
i

i

TA t
w t

TA t
=

=

∑
 (3.23)

with TA evaluated by Equation (3.7)

3.5 Extension to MIMO Models

Dealing with MIMO models becomes simple in this work. As below, a MIMO

model is shown a collection of several MISO models. Interested readers might follow

Section 3.5 to see how a MIMO model is equivalent to multiple MISO or come back later

to revisit the subject when dealing with a MIMO case.

For a MIMO process, a general description of its one-step predictor is defined by

() () () () ()()ˆ 1 , , , , ,t t t ny t d t d nu= − − − − −y f y y u uL L (3.24)

where, the MIMO model has n outputs and m inputs. The output and input vectors, y(t)

and u(t) are defined by

() () ()

() () ()

1

1

T

n

T

m

t y t y t

t u t u t

 =  

 =  

y

u

L

L
 (3.25)

The above model structure implicitly assumes that the dynamic orders in all yi

(i=1,…,n) and uj(j=1,…,m) for each output yk(t) are ny and nu respectively. A universal

time delay is also assumed between each pair of uj and yk. The universal order

assumption is in general not true in practice. However, a MIMO GTSK in discrete time

model could be modified to have such a universal-order structure by adding zeros if

necessary. A regressor vector x(t) is defined to collect all input arguments in Equation

(3.24)

27

() () () () ()1 1
TT T T Tt t t ny t d t d nu = − − − − − x y y u uL L (3.26)

where the dimension of x(t) is nx+1 with nx = n×ny+(m+1)×nu. The model is then

defined as below

() ()() () ()

() ()() () ()

1 1 1 1 1ˆis in ,

ˆis in ,M M M M M

t R t t

t R t t

=

=

IF c o P THEN y θ x

IF c o P THEN y θ x

M

(3.27)

The model in Equation (3.27) is almost identical to that in Equation (3.14). oi and

Pi have the same meaning. Antecedent variables are included in vector c(t), which is also

a subset of x(t). The only difference is that local models in Equation (3.28) are multiple-

output. The vector ŷi collects the n output predictions by the local model in the ith rule

1ˆ ˆ ˆi i i T
ny y =  y L (3.28)

Consequently, local model parameters are organized in a matrix ()1Rn nxi × +∈θ defined by

1,0 1,1 1,

,0 ,1 ,

i i i
nx

i

i i i
n n n nx

θ θ θ

θ θ θ

 
 

=  
  

θ

L

M M O M

L

 (3.29)

 Each row of θi corresponds to an output and every column of θ
i is related to a

regressor. It is possible to decompose θ
i in terms of columns or rows as below

1

0 ;

i

i i i i
nx

i
n

 
  = =   
  

θ

θ θ θ θ

θ

L M (3.30)

Where i
jθ (j=0,…,nx) represents the jth column in matrix θi and rows i

kθ

represents the kth row in θi (k=1,…,n)

28

The computation in Equation (3.22) is then extended as below to deal with a

multiple-output model.

()

()
() ()

1 1

1

ˆ

ˆ

i

M
i

i i
n n

y t

w t t

y t
=

  
  

=   
  

   

∑
θ

x

θ

M M (3.31)

Equation (3.31) could be viewed as a collection of n single-output models. For

instance, the computation for the kth output is

() () ()
1

ˆ
M

i i
k k

i

y t w t t
=

=∑ θ x (3.32)

where i
kθ defined in Equation (3.30) is the kth row of matrix θi. It then is possible to

define a single output GTSK model for the kth output only by

() ()() () ()

() ()() () ()

1 1 1 1 1ˆis in ,

ˆis in ,

k k

M M M M M
k k

t R y t t

t R y t t

=

=

IF c o P THEN θ x

IF c o P THEN θ x

L (3.33)

 Comparing the single-output model for output yk with that in Equation (3.14),

equivalence is established by equating kθ
i in Equation (3.33) to θi in Equation (3.14).

However, two models are different. Model in Equation (3.14) is SISO while that in

Equation (3.33) is MISO. The x(t) in Equation (3.33) actually collects the lagged multiple

inputs and lagged multiple outputs. Fortunately, the difference in contents in x(t) has no

impact on evaluation of the first and second order derivatives to be presented later. The

computation of gradients and Hessian matrices for a SISO GTSK model can be extended

directly to each MISO element in a MIMO GTSK model.

A matrix kθ is defined to collect all local model parameters for the kth output.

1
k

k
r

k

 
 

=  
  

θ

θ

θ

M (3.34)

29

The above decomposition can facilitate estimation of model parameters in terms of

evaluation of derivatives if a decomposable performance index is used. Simply, the

centroids and shape matrices have global influence on a GTSK model. Their influence on

all outputs should be accumulated. To the contrary, the consequent parameters, kθ have

only local influence on its corresponding output yk. It then could be expected that the

interactions between kθ and lθ (k≠l) is zero. The representation of a MIMO GTSK model

by several single-output GTSK models will be exploited in Chapter 5 to derive the first

and second order derivatives of an objective function with respect to model parameters.

30

CHAPTER IV

DYNAMIC ORDER DETERMINATION AND

NONLINEAR COMPONENT DETECTION

Determination of dynamic orders (ny, nu and d in Equation (3.1)) is the first step

in system identification. Order determination is in general difficult for nonlinear system

identification due to the interaction of model structure (unknown orders) and unknown

nonlinearity. If the attenuation of unknown nonlinearity is possible, different model

structures could then be fairly compared. Guided by this concept, the work in this chapter

uses a recursive estimation to reduce the effect of the underlying nonlinearity on

parameter variation, and proposes a sequential nearest neighbor rearrangement to

enhance the reduction. The “best” dynamic order will minimize a final prediction error

with the consideration of the locality of the model parameters. In addition to determining

dynamic orders, the sequential nearest neighbor rearrangement is also extended to detect

nonlinear components, which are regressors responsible for parameter variation if a

nonlinear dynamic model is converted to a liner time-varying dynamic model. The result

from Chapter 4 could be viewed as the preliminary analysis for building a GTSK model

to be presented in Chapter 5. The dynamic order determination defines the overall

dimension of a model. The nonlinear component detection selects antecedent variables

for the model.

31

4.1 Dynamic Order Determination

The dynamic orders ny, nu and delay d are described in Equation (3.1). The

difficulty in discovering the dynamic orders for a nonlinear dynamic model is caused by

the unknown nonlinearities. Even if f is known to be nonlinear, the richness of

nonlinearity would keep users from exhausting all possible nonlinear forms, making it

difficult to find ny, nu and d. If the unknown nonlinearity is not a problem or at least not

as severe as it was, it is possible to devise a procedure for dynamic order analysis for a

NARX. The objective of the following methodology is to detangle the nonlinearity and

dynamic orders, which makes it possible to define model orders. The methodology

simply involves two stages of works. The first is to attenuate the unknown nonlinearity.

The second is search for dynamic orders.

4.1.1 Nonlinearity Representation

Nonlinearity could be explicitly or implicitly expressed. It is possible to transform

a nonlinear dynamic model into a linear one if the nonlinear function is known. For

instance, the following nonlinear dynamic model

() () () ()3 3
0.4 1 1y t y t u t e t= − + − + (4.1)

could be redefined as a linear dynamic model by static transformation z(t) = y(t-1)3, v(t) =

u(t-1)3

Unknown nonlinearity could be addressed by using structure-rich models such as

neural network models, basis function models and fuzzy systems. These models are all

universal approximators and able to capture almost any nonlinearity given enough

flexibility. If a neural network model is used, one then could use the following procedure

to find proper dynamic orders. A neural network is tried for different sets of ny, nu and d

and the best set is then reported. Due to the application of a neural network, the

nonlinearity is presumably addressed. The only affecting factors for modeling

performance are ny, nu and d. It then is possible to find the set with the best performance.

This approach is very general and could be applied to any scenarios, any nonlinear

32

dynamic models by any universal approximators. The drawback is the computational

burden in terms of training ‘big’ models and efforts put to select appropriate network

architecture (number of layers, nodes in each layer in neural networks; number of fuzzy

subsets, number of rules in a fuzzy system).

If simple models are preferred such as linear models, nonlinearity could be

addressed by adaptation. Model parameters are recursively updated to track the model

parameter variation caused by nonlinearity. Linear models with parameter adaptation

require much less computation compared to ‘big’ models. The following example shows

how convert a nonlinear dynamic process to a linear format. The example uses a NARX

model defined by

() ()
()

() ()3

3

1
1

1 1

y t
y t u t e t

y t

−
= + − +

+ −
 (4.2)

which could be represented in a linear format

() () () () () ()1 01 1y t a t y t b t u t e t= − + − + (4.3)

where a1(t) and b0(t) are time-varying model parameters and are defined in Equation (4.4)

as functions of y(t-1) and u(t-1) to establish one-to-one correspondence between Equation

(4.3) match Equation (4.2)

()
()

() ()2

1 02

1
, 1

1 1
a t b t u t

y t
= = −

+ −
 (4.4)

In general, the nonlinear dynamic model in Equation (3.1) could be expressed in

the following linear format

() () () () ()
() () () () ()

1

0

1 ny

nu

y t a t y t a t y t ny

b t u t d b t u t nu d e t

= − + + − +

− + + − − +

L

L
 (4.5)

33

The linear format could be established from a known nonlinear dynamical model

by one-to-one correspondence as shown in Equation (4.4). However, the linear format is

not always unique and one could have options. For instance, given a NARX model

defined in Equation (4.6)

()
() () ()()

() ()
() ()2 2

1 2 1 2.5
1

1 1 2

y t y t y t
y t u t e t

y t y t

− − − +
= + − +

+ − + −
 (4.6)

It is possible to define a linear format

() () () () () ()1 01 1y t a t y t b t u t e t= − + − + (4.7)

with

 ()
() ()()

() ()
()1 02 2

2 1 2.5
, 1

1 1 2

y t y t
a t b t

y t y t

− − +
= =

+ − + −

another possibility is defined in Equation (4.8) with a different set of time-varying model

parameters

() () () () () () () ()1 2 01 2 1y t a t y t a t y t b t u t e t= − + − + − + (4.8)

with

() ()
() ()

() ()
() ()

()
2

1 2 02 2 2 2

2.5 2 1
, , 1

1 1 2 1 1 2

y t y t
a t a t b t

y t y t y t y t

− −
= = =

+ − + − + − + −

In general, it is rather difficult (maybe impossible) to extract the exact parameter

functions as defined in Equation (4.4) from data only. There are few exceptions such as

the one mentioned in (Young, 1993), where a1(t) and b0(t) are known to be linear

functions of y(t-1) and u(t-1).

34

The nonlinear dynamic model in Equation (3.1) could also be approximately

expressed by the following time-varying model

() () () () () ()
() () () () ()

1

0

1 ny

nu

y t k t a t y t a t y t ny

b t u t d b t u t nu d e t

≈ + − + + − +

− + + − − +

L

L
 (4.9)

The approximation is due to the first-order Taylor expansion of Equation (3.1)

with following definitions

() ()
()

()
()

()

()
()

()
()

0 0

0 0

0 0 0

0 0

1
1

1

t t

t t

f f
k t y t y t y t ny

y t y t ny

f f
u t u t nu d

u t d y t ny

∂ ∂
= − − − − − −

∂ − ∂ −

∂ ∂
− − − − −

∂ − ∂ −

L

L

()
()

()
()

0

0

1 1 t

ny t

f
a t

y t

f
a t

y t ny

∂
=
∂ −

∂
=
∂ −

M (4.10)

()
()

()
()

0

0

0 t

nu t

f
b t

u t d

f
b t

u t nu d

∂
=
∂ −

∂
=
∂ − −

M

where, t0 represents the reference point that the Taylor expansion is based on.

The representation of Equation (3.1) by Equation (4.5) or (4.9) are different,

although both share the same notations for time-varying model parameters a(t) and b(t).

Equation (4.5) is due to the one-to-one correspondence to Equation (3.1), while Equation

(4.9) is based on one-to-one correspondence to the first-order Taylor expansion of

Equation (3.1). The only difference is the additional time-varying intercept term k(t) in

35

Equation (4.9) and the following presented order determination procedure is applicable to

both structures.

4.1.2 Recursive Estimation for Time Varying Parameters

Equation (4.5) or (4.9) could be represented in a more compact format

() () () ()Ty t t t e t= +x θ (4.11)

with

() () () () () ()1 0

T

ny nut k t a t a t b t b t =  θ L L

() () () () ()1 1
T

t y t y t ny u t d u t nu d = − − − − − x L L

where, the constant regressor will be dropped if format in Equation (4.5) is used. The

output prediction is then defined using the estimates of time-varying parameters

() () ()ˆˆ Ty t t t= x θ (4.12)

There are several different ways to estimate θ(t). Recursive estimation attempts to

estimate local model parameters instantaneously. Another approach uses stochastic

models to describe parameter variation if the statistics regarding parameter variation is

assumed known. Among them, the simplest one is a random walk model. A Kalman filter

is then used to estimate the time-varying parameter values as the states in the stochastic

model. The second approach will not be investigated in this work since we assume the

lack of knowledge on the statistics of parameter variation.

Recursive estimation for parameter values, θ(t), is based on a time-varying

weighted quadratic performance as below

() () ()() ()
2

1

,
t

J t y y w t
τ

τ τ τ
=

= −∑) (4.13)

36

where w(τ,t) is a weighting function. Commonly used weighting functions include

rectangular window weighting and exponential weighting (Ljung & Soderstrom, 1986).

In this work, the exponential weighting is used and described by,

(), , 0,1, ,tw t Nττ α τ−= = L (4.14)

where the variable, α, a scalar between 0 and 1, is termed as forgetting factor. Figure 4.1

illustrates a particular exponential weighting with α = 0.95.

Figure 4.1. Exponential weighting with α = 0.95

Using exponential weighting, the following equations (Young, 1984) are used to

update model parameters from ()ˆ 1N −θ to ()ˆ Nθ

() () ()

() () () () () ()()
() () () () ()()

() () () () ()()

1

ˆˆ 1

1 1

ˆ ˆ ˆ1

1
1 1

T

T

T

y t t t

t t t t t t

t t t y t y t

t t t t t

α

α

−

= −

= − − +

= − − −

= − − −

x θ

H P x x P x

θ θ H

P P H x P

 (4.15)

The forgetting factor, determines the influence of data in the past to the current

estimation. The suggested range for α is between 0.9 and 0.99 (Young, 1984). In practice,

trials for α might be needed for a balanced performance for nonlinearity adaptation speed

and parameter estimation precision.

0.2

0.4

0.6

0.8

1

10 12 14 16 18 20 22 24 26 28 30

w
(τ

, 3
0

)

τ

37

4.1.3 Sequential Nearest Neighbor Rearrangement

In the recursive estimation with exponential weighting, the tuning variable is the

forgetting factor. When adjusting the forgetting factor, one should be aware of its

conflicting affects on parameter estimates. The forgetting factor relates to the rate of

variation. A smaller forgetting factor is expected for faster parameter variation. On the

other hand, the precision of parameter estimates is determined by the size of data

included in an “effective” window. The length of the window is also a function of the

forgetting factor. Smaller is the tuning factor (shorter window), fewer data are included

for estimation. In turn, the variance in estimates is high. Therefore, a larger forgetting

factor should be preferred for higher estimation precision. However, a larger forgetting

factor is only a good choice for slow parameter variation. The above argument verifies

the suggested range for forgetting factor over 0.90, where the precaution is also

mentioned for using exponential recursive estimation for slow variation at best (Young,

1984).

As a result of the conflicting influence of forgetting factor on parameter estimates,

dynamical nonlinear processes being dealt are expected to have slow parameter variation.

Unfortunately, the nonlinearity is inherited in the data and determined by the nature of

the process to be investigated. There is nothing one can possibly do to alter the nature of

the process given only access to test it and generate input-output data. However, the

nonlinearity is in fact not really the difficulty that we are aiming at but the source of

difficulty, the parameter variation. The nonlinearity is believed to be the cause of

parameter variation. It is desired to get around the inherited and inaccessible nonlinear

nature of a process to change the parameter variation directly. If it is possible, the

improvement of the recursive estimation becomes probable. As proposed below is an

approach to manipulate raw data in time sequence to create an artificial sequence of data

with slowed parameter variation. The following elaboration starts by defining parameter

variation explicitly

() () ()
() () ()

1 1, ,

1 0, ,

i i i

i i i

a t a t a t i ny

b t b t b t j nu

∆ = − − =

∆ = − − =

L

L
 (4.16)

38

with the definition, the following vector collecting variations for all parameters is defined

() () ()

() () () ()1 0

1
T

ny nu

t t t

a t a t b t b t

∆ = − −

 = ∆ ∆ ∆ ∆ 

θ θ θ

L L
 (4.17)

 The parameter variation at t could then be quantified by ()t∆θ , where norm is

not specified. The parameter variation (pv) for the entire data set is

()
2

N

t

pv t
=

= ∆∑ θ (4.18)

 If it is possible to minimize pv, it is then expected that resultant data set would be

more suitable for a recursive estimation. The optimal solution would be a permutation of

a sequence of number (1, …, N). Find the right permutation is like to solve a travelling

salesman problem to find the shortest path traveling through all cities and visiting each

city only once. The optimization problem is NP-complete. In this work, a suboptimal

solution is pursued rather than the exact optimal solution. The suboptimal solution is the

result of a greedy procedure (Cormen, Leiserson, Rivest & Stein, 2001), where

minimization of pv is decomposed into N-1 simpler minimization problems.

() () ()()

() () ()

min 2 3

min 2 min 3 min

N

N

∆ + ∆ + + ∆

≤ ∆ + ∆ + + ∆

θ θ θ

θ θ θ

L

L
 (4.19)

where N-1 minimization problems are slightly dependent to each with dependence in

every two consecutive tasks.

 The greedy procedure is then conduced as below. Assuming θ(1) is known, then

θ(2) is searched for the problem of min ||θ(1)-θ(2)||, which in turn determines θ(2).

Subsequently, ||θ(2)-θ(3)|| is minimized and θ(3) is determined. The procedure stops

when θ(N) is determined. Two fundamental steps are involved in this procedure,

determination of θ(1) and solving the problem of min ||θ(k-1)-θ(k)|| to determine θ(k).

39

With known θ(k-1), the problem of min ||θ(k-1)-θ(k)|| is fully expanded as below

() ()

() () () ()

() ()

1 0

1 0

min 1

min , , , , ,

min min

T

ny nu

ny nu

i j
i j

k k

a k a k b k b k

a k b k
= =

− −

 = ∆ ∆ ∆ ∆ 

≤ ∆ + ∆∑ ∑

θ θ

L L

 (4.20)

The bound is due to the triangular inequality. The minimization of ||θ(k-1)-θ(k)||

is then translated to minimize ny+nu+1 smaller objectives simultaneously. Given a time-

varying model, the parameters ai(k) and bj(k) can be expressed as functions of all states

()
() ()
() ()

1 , , ,

, ,
i i

y t y t ny
a k a

u t d u t nu d

− − 
=   − − − 

L

L
 (4.21)

The expression for bj(t) is similar. Note that the indices are different in both sides

of Equation (4.21), which simply means that the kth sample in the optimal result is the tth

sample in time order. If ai(k-1) is known and its correspondence sample in time order is τ.

 ()
() ()
() ()

1 , , ,
1

, ,
i i

y y ny
a k a

u d u nu d

τ τ

τ τ

− − 
− =   − − − 

L

L

The exact functional form of ai is unknown. If its continuity and differentiability

are assumed and its high order derivatives are assumed to be negligible, the difference

between ai(k-1) and ai(k) could be approximated b

() ()
()

() ()()

()
() ()()

0

0

1

0

1
ny

i
i i t

i

nu
i

t
j

a
a k a k y i y t i

y t i

a
u j d u t j d

u t j d

τ

τ

=

=

∂
− − ≈ − − −

∂ −

∂
+ − − − − −

∂ − −

∑

∑
 (4.22)

If the first order derivative is bounded by a constant Gai, the minimization of

||ai(k-1) - ai(k)|| could be approached by

40

 () () () ()min 1 mini i i
t

a k a k Ga t
τ

τ
≠

− − ≤ −x x (4.23)

where, x is defined in Equation (4.11) and t becomes the decision variable. Since the

functional form is uniformly assumed for all parameter functions, the solution of Problem

(4.23) will simultaneously minimize the all upper bounds. In this work, the Euclidean

norm is used and described by

() () () ()() () ()()2 2

2
1 0

ny nu

i i

t y i y t i u d i u t d iτ τ τ
= =

− = − − − + − − − − −∑ ∑x x (4.24)

A nearest neighbor will define the solution for Problem (4.20). The solving

procedure is then termed as Sequential Nearest Neighbor Rearrangement (SNNR). The

resultant regressor and output are labeled as xsnnr and ysnnr . The rearrangement starts

letting xsnnr(1) = x(1) and ysnnr(1) = y(1). If the nearest neighbor of xsnnr(1) is found to be

x(t), x(t) and y(t) is then added to the rearranged data set by letting xsnnr(2) = x(t) and

ysnnr(2) = y(t). Then the nearest neighbor of xsnnr(2) is found and added to the rearranged

data set. The procedure continues until the xsnnr(N) is found.

 By conducting the SNNR, the raw data in time-sequence is reorganized in spatial-

order. The treatment is expected to reduce the parameter variation, which enables the

choice of a larger forgetting factor, α which in turn improves the parameter estimates.

The results of the SNNR procedure are the basis for the analysis in the following section

for dynamic order determination.

However, first is a demonstration of the impact of the SNNR procedure on

parameter variation as well as recursive estimation. The demonstration is based on the

deterministic nonlinear dynamic model in Equation (4.25)

() ()
()

()3

2

1
1

1 1

y t
y t u t

y t

−
= + −

+ −
 (4.25)

41

 Figure 4.2 shows the first 1000 out of 5000 samples generated from the

deterministic model when u(t) is driven by a “skyline” function.

Figure 4.2. Data generated from the model in Equaiton (4.25)

 The time-varying model parameters a1(t) and b0(t) are defined in Equation (4.4)

and their variation over time is shown in Figure 4.3.

Figure 4.3. Time varying parameters a1(t) and b0(t) in Equation (4.4)

The parameter variation (pv) defined Equation (4.18) is then evaluted using the

0 200 400 600 800 1000
-1

0

1

u(
t)

0 200 400 600 800 1000
-2

0

2

y(
t)

0 200 400 600 800 1000
0

0.5

1

a1
(t

)

0 200 400 600 800 1000
0

0.5

1

b0
(t

)

42

Euclidean norm, () ()() () ()()
5000

2 2

1 1 0 0
2

1 1
t

pv a t a t b t b t
=

= − − + − −∑ . The obtained pv is

99.25. The mean squared error (MSE) resulted from a recursive estimation on the time-

sequenced data is 0.0044.

 The SNNR operation is illustrated on a segment of data with 10 samples. The raw

data in time sequence is shown in Table 4.1 indexed by t.

Table 4.1. A segment of 10 data samples in time sequence

t 1 2 3 4 5 6 7 8 9 10

y(t-1) 0 0.2488 -0.8683 0.7200 -0.3775 -1.1465 -0.2815 -0.1014 -0.8542 0.1648

u(t-1) 0 0.2076 0.7200 0.7603 0.3617 0.8668 -0.0913 -0.3199 0.7120 -0.2645

 The SNNR rearranged data is shown in Table 4.2 and indexed by k. The index t in

Table 4.2 tracks the rearrangement and relates the kth data sample in Table 4.2 to its

original position in Table 4.1. Two regressors in Table 4.2 are denoted by y1 and u1 rather

than the time-lagged notations in the original time sequence data set.

Table 4.2. SNNR rearranged data for the time-sequence data in Table 4.1

k 1 2 3 4 5 6 7 8 9 10

t 1 7 8 10 2 5 9 3 4 6

y1 0 -0.2815 -0.1014 0.1648 0.2488 -0.3775 -0.8542 -0.8683 -0.9385 -1.1465

u1 0 -0.0913 -0.3199 -0.2645 0.2076 0.3617 0.7120 0.7200 0.7603 0.8668

 Figure 4.4 shows the first 1000 samples of SNNR rearranged data for the time-

sequenced data in Figure 4.2. It is observed that the abrupt transition between adjaent

levels in Figure 4.2 for both u(t) and y(t) is replaced by a smooth transition in both u1 and

y1 in Figure 4.4.

43

Figure 4.4. SNNR Rearranged regressors from the time-sequence data in Figure 4.1

 For the rearranged data, the varying parameters are redefined in terms of u1 and y1

() ()()
12

1 11a k y k
−

= + () ()2

0 1b k u k=

 The variation of a1(k) and b0(k) is shown in Figure 4.5, which results in a

parameter variation of 32.03, only about a third of that in the time-sequence data. The

mean squared error (MSE) resulted from a recursive estimation on the rearranged data is

0.0022, which is half of that in the time-sequence data.

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

y1

0 200 400 600 800 1000
-1

-0.5

0

0.5

u1

44

Figure 4.5. Varying parameters for the SNNR rearranged data.

 The same test and comparison is conducted on 6 deterministic models, their

stochastic versions are defined in Equations (4.40~4.45). The results are summarized in

Table 4.3.

Table 4.3. MSE for a recursive estimation

 Time Sequence SNNR

Model 1 0.0148 0.0112

Model 2 0.0486 0.0084

Model 3 0.0044 0.0025

Model 4 0.0022 0.0017

Model 5 0.0064 0.0034

Model 6 7.38e-8 3.57e-5

As observed in Table 4.3, SNNR is able to reduce the MSE in the Models 1~5.

0 200 400 600 800 1000

0.7

0.8

0.9

1

a1

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

b0

45

Increase of MSE is however observed in the Model 6 test, where the tested model is

linear. Therefore, the increase of MSE might signal the ineffectiveness of SNNR

treatment and imply that the model is linear. Using this feature, one might use the SNNR

to tell if a given process is linear or nonlinear.

4.1.4 Model Comparison Criterion

The methodology for determination of dynamic orders could be trying different

sets of ny, nu and d and find the best values. Given a set of ny, nu and d, regressors are

determined first on the original time-sequenced data, x(t). A SNNR is then conducted on

x(t) and y(t) producing xsnnr(t) and ysnnr(t), to which an exponential weighting recursive

estimation will be applied. The quality of the hypothesized ny, nu and d will then be

evaluated by a criterion considering both fitting and generalization performance. In this

work, the evaluation is based upon a modified final prediction error (FPE) criterion. The

original FPE (Ljung, 1999) is defined for a linear model with N samples by

 ()2

1

1 ˆt,
N

N
t

N np
FPE

N np N
ε

=

+
=

− ∑ θ (4.26)

Equation (4.26) can be interpreted as a weighted mean squared error where the weighting

is determined by N, the size of data set as well as the model complexity, np, the number

of parameters. The FPE criterion results from the performance index

 ()2

1

ˆt,
N

N N
t

V ε
=

=∑ θ (4.27)

In application to exponentially-weighted recursive estimation, the definition of

FPE is modified according to the exponentially weighted performance index

 ()t 2

t 1

ˆt,
k

k
k kV α ε−

=

=∑ θ (4.28)

where Vk is varying, and progressively includes more data. The weighting factor, αk-t

would become very small for long-past data sets, making the remote error

46

inconsequential in estimating θk. A critical number L is hence introduced to decompose

Vk as below

() ()

()

t 2 t 2

t 1 t 1

t 2

t 1

ˆ ˆt, t,

ˆt,

k L k
k k

k k k
k L

k
k

k
k L

V α ε α ε

α ε

−
− −

= = − +

−

= − +

= +

≈

∑ ∑

∑

θ θ

θ

 (4.29)

where, Vk is approximated by its recent portion. By this approximation, the number of

data involved in Vk is a constant, L. Subsequently, the FPE based on Vk is redefined

 () ()t 2

t 1

1 ˆt,
k

k
k

k L

L np
FPE k

L np L
α ε−

= − +

+
=

− ∑ θ (4.30)

where, the implicit constraints on t by k-L+1≥1 and k≤N bound k between L and N. The

average of FPE(k) over all k is then defined

()

()t 2

t 1

1

1

ˆt,
1

N

k L

N k
k

k
k L k L

FPE FPE k
N L

L L np

N L L np
α ε

=

−

= = − +

=
− +

+
=

− + −

∑

∑ ∑ θ

 (4.31)

where, the double sum is decomposed into three parts after being switched

() ()

() ()

1 t 1
t 2 t 2

t 1 t 1

1 t 1
t 2 t 2

t t t 2 t

ˆ ˆt, t,

ˆ ˆt, t,

N k L L
k k

k k
k L k L k L

N L L N N
k k

k k
L k N L k

α ε α ε

α ε α ε

− + −
− −

= = − + = =

− + + −
− −

= = = − + =

=

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

θ θ

θ θ

(4.32)

The recursive estimation works well if parameter variation within a local range is

assumed to be small

t 1 t 2 t
ˆ ˆ ˆ

L L+ − + −≈ ≈ ≈θ θ θL (4.33)

which in turn results in the following approximation

47

 () () ()2 2 2
t 1 t 2 t

ˆ ˆ ˆt, t, t,L Lε ε ε+ − + −≈ ≈ ≈θ θ θL (4.34)

The double sum is then simplified to

() ()

() ()

1 t 1
t 2 2 t

t 1 t 1

1 t 1
2 t 2 t

t t t 2 t

ˆt t,

ˆ ˆt, t,

N k L L
k k

t
k L k L k L

N L L N N
k k

t t
L k N L k

α ε ε α

ε α ε α

− + −
− −

= = − + = =

− + + −
− −

= = = − + =

=

+ +

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

θ

θ θ

 (4.35)

If N is large, the second part dominates, which results in a further simplified

average FPE as

 ()
1

1
20

t

ˆt,
1

L
k

N L
k

t
L

L
L np

FPE
N L L np

α
ε

−

− +
=

=

+
≈

− + −

∑
∑ θ (4.36)

 The average FPE in Equation (4.36) is similar to the original one in Equation

(4.26), and has the same interpretation as a weighted prediction error, except that the

weighting is different. Once L is chosen, the first term on the right-hand side of Equation

(4.36) is a constant. Then Equations (4.26) and (4.36) are similar, with L the data

window length, replacing N, the total number of data. A simplified FPE in Equation (4.37)

is used in this work and will continue to be denoted as FPE

 ()
1

2 ˆ,
N L

t
t L

L np
FPE t

L np
ε

− +

=

+
=

− ∑ θ (4.37)

The value of L is related to the decomposition by Equation (4.29) and determined

by considering αL small enough to be negligible. In this work, L is determined as below

4

1
L

α
=

−
 (4.38)

where (1-α)-1 is termed as memory time-constant (Ljung, 1999). As shown in Figure 4.6 ,

the specification of L in Equation (4.29) will ignore the past data with weights less than

48

0.02. Additionally, the number α4/(1-α) remains relatively constant between 0.016 and

0.018 if α is over 0.9, which is a common choice for a forgetting factor.

Figure 4.6. α vs. α4/(1- α) (the weight for the most remote data)

4.1.5 Regressor Selection Procedure

Given several sets of ny, nu and d, their FPEs are evaluated. The set with the

minimum FPE on SNNR data is reported including the determined orders. The

determination procedure could be conducted in an exhaustive approach for all possible

combinations of different ny, nu and d given pre-defined max_ny, max_nu and max_d for

possible maximum ny, nu and d. The pseudo-code for the exhaustive search is shown in

Figure 4.7.

Figure 4.7. Exhaustive dynamic order search

0.014

0.015

0.016

0.017

0.018

0.019

0.9 0.92 0.94 0.96 0.98 1

α
4/

(1
-α

)

α

Exhaustive order selection

for ny = 1 to max_ny
 for nu = 0 to max_nu

for d = 1 to max_d
 Compute FPE(ny,nu,d)
 Keep the minmum FPE
 end loop

 end loop
end loop
return the ny,nu and d with minimum FPE

49

 One concern with the exhaustive search is the computational burden. The pay off

of the expensive exhaustive search is optimality of the final solution. Suboptimal search

techniques are available in a subset selection for linear regression. Subset selection

methods include forward selection, backward elimination, cycling replacement as well as

heuristic combinatorial search (Miller, 1990). For linear regression problems, one could

fully exploit the superposition feature in a linear model to simplify a search. It explains

that subset selection method is always accompanied by orthogonalization. An

orthogonalization procedure removes the redundant components of two regressors and

eliminates the candidate regressors that are highly correlated with selected regressors.

 In nonlinear systems with unknown nonlinearity, orthogonalization is not

possible. However, it does not mean that the subset selection is inapplicable. In this work,

a forward selection procedure combing the above mentioned recursive estimation on

spatially ordered data is proposed to find important regressors. The procedure starts with

users’ input max_ny, max_nu and max_d. Then, a number of candidate regressors are

generated and denoted as [x1 x2 x3 … xm xrandom]. xrandom is a random regressor that

presumably contains no meaningful information to predict output. At first, m+1 FPEs are

computed for (y,[x1]), (y, [x2]), … , (y, [xm]), (y, [xrandom]), where y is the output and xi in

bracket is the regressor in consideration. The regressor with the minimum FPE is selected.

If x2, for instance, is the first selected regressor, there will be other m FPEs to be

evaluated for (y, [x2, x1]), (y, [x2, x3]), …, (y, [x2, xm]), (y, [x2, xrandom]). Each bracket

contains a combination of x2 (first selected) with the rest. The regressor combination with

the minimum FPE is then kept. The selection continues until the minimum FPE increases

or the xrandom is selected. The injection of a random regressor is mentioned in (Miller,

1990) as a stopping criterion. The selection of xrandom signifies that the rest of candidates

are less influential on y(t) than a presumably irrelevant one.

The selected regressors might define values of ny, nu and d if selected regressors

are consecutive due to implicit constraint on the model structure in Equation (3.1), which

requires consecutive regressors. For instance, a set of regressors [y(t-1), y(t-2), u(t-1), u(t-

2)] defines ny=2, nu=1, and, d=1. Absences, however, could exist in selected regressors

such as [y(t-1) y(t-4) u(t-1) u(t-3)], which does not correspond a set of ny, nu and d.

50

It seems unlikely in most situations that y(t-2), y(t-3) and u(t-2) should not be

included. However, if there are strong correlations or recycle phenomena, those missing

variables may be redundant, and the particular selection may not be unique. Another

realization of excitement and noise, might select another subset from the correlated

variables. The inclusion of redundant variables increases the model complexity. However,

for database management simplicity, in this work, if the situation with absence occurs, a

further comparison is executed on different order values. For the illustrated example, an

exhaustive comparison is conducted on possible values of ny=1, 2, 3 or 4 combined the

possible values of nu=0, 1, or 2, with d = 1. However, the extra computation would be

unnecessary if the constraint on having consecutive regressors is dropped.

4.2 Nonlinear Component Detection

There is an implicit assumption made on the above SNNR operation. The time-

varying parameters are functions of all regressors. The assumption is valid for the

dynamic model in Equation (4.2), where parameters are functions of two regressors, u(t-

1) and y(t-1). The model in Equation (4.6) has regressors y(t-1), y(t-2) and u(t-1).

However the parameters a1 and a2 are functions of only y(t-1) and y(t-2). The regressor

u(t-1) has no impact on parameter variation. It is then expected that the SNNR on [y(t-1)

y(t-2)] might reduce more parameter variation than operating SNNR on [y(t-1) y(t-2) u(t-

1)]. The further reduction in parameter variation should be revealed by a smaller MSE

resulted from a recursive estimation.

An extension of the SNNR-based order determination procedure is the used to

detect the regressors that are affecting the output nonlinearly. The detected regressors are

termed as nonlinear components and to be used as antecedent variables in Chapter 5. The

purpose of conducting SNNR is to reduce parameter variation so that the recursive

estimation is able to capture the variation better, which in turn, results in a smaller MSE.

The SNNR mentioned above rearranges data based on all the regressors in order to

compare different sets of ny, nu and d. However, it is possible that only a subset of

regressors is affecting time-varying parameters. The subset is denoted by [c1,...,cnc]. It is a

subset of selected regressors denoted by [x1,…,xnx]. The regressors not included in

51

[c1,...,cnc] have no affect on parameter variation. It is then expected that a SNNR on

[c1,...,cnc] only would be able to reduce more parameter variation and produce an smaller

MSE. There are totally 2nx-1 subsets in [x1,…,xnx] excluding the empty one. Each subset

from [x1,…,xnx] is considered as a candidate set of nonlinear components, [c1,...,cnc], on

which the SNNR is conducted and a corresponding MSE is computed. The subset with

minimum MSE is reported to contain the nonlinear components.

4.3 Extension to MIMO Processes

Extending the above technique to a MIMO(m,n) (m inputs and n outputs) process

is straight forward. The SISO model in Equation (3.1) is expanded as below for the kth

output by including more regressors.

()

() ()

() ()

() ()
() ()

() ()

()

1 1 1 1 1

1

1 1 1 1 1

1 ,

, , ,

, ,

, ,

, ,

k k kk

y y
k k k

y y
k k n kn kn kn k

u u
k k k

u u
m km m km km

y t y n ny

y t d y t ny d

y t f y t d y t ny d e t

u t d u t nu d

u t d u t nu d

 − −
 
 − − −
 
 
 

= − − − + 
 

− − − 
 
 
  − − − 

L

L

L

L

L

L

L

(4.39)

where dynamic orders include nyk1, .., nykn and nuk1, …, nukm, and delay
1, ,y y

k knd dL

between yk and other outputs as well as delay
1, ,u u

k kmd dL between yk and all inputs. All of

these numbers are to be determined using the above method for the single output case.

The nonlinear components for yk are then selected after orders are determined.

4.4 Simulations and Discussions

4.4.1 Testing Models and Processes

The proposed order determination and nonlinear component detection method are

tested on data generated by several nonlinear dynamic models, an experimental unit and a

distillation column simulator. The first five models are nonlinear autoregressive with

exogenous inputs models (NARX). They are different in terms of nonlinear interactions

52

between inputs and outputs. Model 1 has nonlinearity only in the lagged input, u(t-1).

Model 2 is nonlinear in lagged output only. Model 3 is nonlinear in both lagged input and

output, u(t-1) and y(t-1). Model 4 is also nonlinear in both lagged input and output but

have more regressors included than Model 3. Like Model 1, Model 5 is another model

with nonlinearity in the lagged input, u(t-1). The nonlinear function with respect to u(t-1)

is, however, different in both models. Model 6 is a linear ARX model used only once to

demonstrate the impact of SNNR on recursive estimation with result in Table 4.3.

The input signals used in the first five models are generated by a skyline function

and bounded between -1 and 1. The shortest and longest durations are 20 and 50 samples

respectively. Output signals are initialized as zeros. The noise e(t) is subject to a normal

distribution, N(0,σ2). The value of σ is different in each model and specified such that e(t)

has a small magnitude compared to outputs. As below, a portion of input-output data for

the first five models is illustrated along with model equations. A total of 5000 samples

are generated and used in order determination and nonlinear component detection.

Model 1 (Narendra & Parthasarathy, 1990)

() () () ()() ()()
()() ()

0.3 1 0.6 2 0.6sin 1 0.3sin 3 1

0.1sin 5 1

y t y t y t u t u t

u t e t

π π

π

= − + − + − + − +

− +
 (4.40)

where e(t)~N(0,0.52)

Figure 4.8. Input-output data generated for Model 1 in Equation (4.40)

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

u

0 100 200 300 400 500 600 700 800 900 1000
-10

0

10

t

y

53

Model 2 (Narendra & Parthasarathy, 1990)

()
() () ()()

() ()
() ()2 2

1 2 1 2.5
1

1 1 2

y t y t y t
y t u t e t

y t y t

− − − +
= + − +

+ − + −
 (4.41)

where e(t)~N(0,0.52)

Figure 4.9. Input-output data generated for Model 2 in Equation (4.41)

Model 3 (Narendra & Parthasarathy, 1990)

() ()
()

() ()3

2

1
1

1 1

y t
y t u t e t

y t

−
= + − +

+ −
 (4.42)

where e(t)~N(0,0.52)

Figure 4.10. Input-output data generated for Model 3 in Equation (4.42)

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

u

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

t

y

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

u

0 100 200 300 400 500 600 700 800 900 1000
-2

0

2

4

t

y

54

Model 4 (Narendra & Parthasarathy, 1990)

()
() () () () ()() ()

() ()
()2 2

1 2 3 2 3 1 1

1 3 2

y t y t y t u t y t u t
y t e t

y t y t

− − − − − − + −
= +

+ − + −
(4.43)

where e(t)~N(0,0.052)

Figure 4.11. Input-output data generated for Model 4 in Equation (4.43)

Model 5 (Narendra & Parthasarathy, 1990)

() () ()() () ()() ()0.8 1 1 0.8 1 1 0.5y t y t u t u t u t e t= − + − − − − + +

(4.44)

where e(t)~N(0,0.12)

Figure 4.12. Input-output data generated for Model 5 in Equation (4.44)

0 200 400 600 800 1000
-1

0

1

t

u

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

t

y

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

u

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

y

55

Model 6:

() () () ()0.8 1 0.6 2 0.4 1y t y t y t u t= − + − + − (4.45)

Models 7 and 8 are two deterministic nonlinear dynamic models.

Model 7

 () () ()2
0.8 1 1y t y t u t= − + − (4.46)

Model 8

 () () ()()0.8 1 cos 1y t y t u tπ= − + − (4.47)

Different from Models 1-5, Model 7 has a quadratic term u(t-1), where u(t) is also

generated by a “skyline” function between -1 and 1. The effect of u(t) on y(t) would be

missed in average. As below, Equation (4.48) is the linear time-varying model for Model

7 with a1(t)=0.8 and b0(t)=u(t-1). In average, the effect of u(t-1) in Equation (4.48) is

reflected by E(b0(t)). In this case, E(b0(t)) is 0 since u(t) is a random signal between -1

and 1.

 () () () () ()1 01 1y t a t y t b t u t= − + − (4.48)

Therefore, the regressor u(t-1) would be missed if a recursive estimation is

conducted in time sequence, where b0(t) is a random number between -1 and 1 in time

sequence The recursively estimated b0(t) would be wandering around zero. However, the

proposed SNNR is able to reveal the impact of u(t-1) on model output. By rearrangement,

the randomness in u(t-1) is eliminated. Consequently, the varying parameter, b0, is no

longer a random variable but gradually increases from -1 to 1. A recursive estimation on

the rearranged data is then able to reflect the impact of u(t-1) on y(t). Model 8 has a

quadratic-like term cos(πu(t-1)) and will be used to test the proposed order determination

technique.

Model 9 in Equation (4.49) is used to demonstrate the non-uniqueness of obtained

result as discussed in Section 4.1.1. By observing Equation (4.49), the nonlinear

component could be either y(t-1) or y(t-2). A detailed test will reveal the observation.

56

Model 9

 () () () ()0.2 1 2 1y t y t y t u t= − − + − (4.49)

Models 10 and 12 are deterministic nonlinear autoregressive (NAR) models in

(Molina, Sampson, Fitzgerald & Niranjan, 1996) and used for method comparison.

Models 11 and 13 are derived from Models 10 and 12 with noise added to the output and

used to compare the influence of noise on different methods. The noise e(t) in Models 11

and 13 has a small magnitude compared to output signals and is subject to N(0,σ2), where

σ
2
 is set to about one thousandth of the average magnitude of output signal in the

corresponding deterministic models.

Model 10 (Molina, Sampson, Fitzgerald & Niranjan, 1996)

() () ()()4 1 1 1y t y t y t= − − − (4.50)

Model 11:

() () ()()
() () ()

4 1 1 1o o o

o

y t y t y t

y t y t e t

= − − −

= +
 (4.51)

where e(t)~N(0,0.02252)

Figure 4.13. Data generated for Model 10 in Equation (4.50)

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

t

y

57

Model 12 (Molina, Sampson, Fitzgerald & Niranjan, 1996)

() () ()2
1 1.4 1 0.3 2y t y t y t= − − + − (4.52)

Model 13:

() () ()
() () ()

2
1 1.4 1 0.3 2o o o

o

y t y t y t

y t y t e t

= − − + −

= +
 (4.53)

where e(t)~N(0,0.02722)

Figure 4.14. Data generated for Model 12 in Equation (4.52)

Model 14: Two-phase flow process

 Figure 4.15 shows an experiment setup of a two-phase flow process in the unit

operation lab in the School of Chemical Engineering at Oklahoma State University. This

unit is managed by a laboratory scale distributed control system, Camile. The schematic

diagram of the process is shown in Figure 4.16. Both bottom and top pressures of the

vertical pipe are measured. There are two air flow supplies labeled as ‘Small air’ and

‘Large air’ in Figure 4.16. Air from the two pipes merges and flows to a T, whose outlet

end is connected to the bottom of the vertical pipe. The other inlet end of the T is

connected to the water pipe labeled as ‘water’ in Figure 4.16.

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

1

1.5

t

y

58

 In this work, this unit is used to study the dynamics between mixed air & water

and the pressure drop across the vertical pipe. Experiment is conducted in an open loop

and only the air valve opening (‘Large air’ pipe) is manually changed. The ‘Small air’

pipe is closed. The ‘water’ pipe is controlled at 20 lbmol/hr. The measurements of the

water flowrate in the ‘water’ pipe are shown in Figure 4.17.

Figure 4.15. The two-phase flow experiment setup

Pressure
transducer

“T”

Solenoid
valve

Pressure tap

Water Small air Large air

59

Figure 4.16. The schematic diagram for the two phase flow experiment

Figure 4.17. Water flowrate measurements with set point at 20 lbmol/hr

0 500 1000 1500 2000 2500 3000 3500 4000 4500
18

19

20

21

22

t

w
at

er

60

 The process could be defined differently by taking signals from different channels.

Figure 4.18(a) shows a possible choice. The input, u is chosen to be the measurement of

the air flowrate. The output, y is the measuremtn of pressure drop, the difference between

top and bottom pressure shown in Figure 4.16. A portion of 4500 measurements are

displayed in Figure 4.18(b). There are totally 8830 measurements are recorded. Although

the control interval was 0.1 second, the sampling rate for this data was chosen as 0.5

second.

(a)

(b)

Figure 4.18. A choice of input and output channels; input, u is the measurement of air
flowrate and output, y is the pressure drop measurement. a) The flowchart; b) The

corresponding input and output data

 As observed in Figure 4.18(b), the pressure drop measurement at low values is

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

t

u

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

300

t

y

61

noisier than at high values of y. A first-order filter is added in the data acquisition and

control devise (a Camile 2000 unit) to suppress some noise in y for observation

convenience. With the filter included, Figure 4.19(a) shows another possible process

definition. The input, denoted as us is the command signal for the air valve opening,

which as shown precedes the air flowrate measurement. The output becomes the filtered

pressure drop measurement and denoted as yf. The data is shown in Figure 4.19(b).

(a)

(b)

Figure 4.19. A choice of input and output channels; input, us is the signal to the air valve
opening and output, yf is the filtered pressure drop measurement. a) The flowchart; b) The

corresponding input and output data

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

50

100

t

u

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

100

200

t

y

62

Model 15: Binary distillation column

Model 15 is a methanol-water binary distillation column simulator (Ou &

Rhinehart, 2002) modified to have 20 trays. The distillation column simulator is a MIMO

process. Two inputs are reflux flowrate (gmol/hr), u1, and reboiler heating percentage

(TY%), u2. The sample interval is 30 seconds. The reflux flowrate varies between 50 and

90 (gmol/hr) and heating percentage is between 40% and 55%. The duration time for

each step change randomly varies between 0.05 and 1 hour. The first 1000 samples of

inputs are illustrated in Figure 4.20.

Figure 4.20. Reflux flowrate (solid line) and reboiler heat rate (dash line)
Inputs to the distillation column

Two outputs, y1 and y2, are the overhead and bottom concentrations of methanol

xD and xB, in mole faction. The first 1000 output samples are shown in Figure 4.21.

30

40

50

60

70

80

90

0 200 400 600 800 1000

time (sampling numbers)

Reflux (lbmol/hr) TY (%)

63

Figure 4.21. The xD (solid line, left scale) and
xB (dash line, right scale) in distillation column experiments

4.4.2 Testing on Dynamic Order Determination

An example is presented at first to demonstrate the details in order determination.

The example is based on the deterministic version of Model 2. The first 1000 data

samples are shown in Figure 4.22 and a total 5000 data are generated and used for the

order determination.

Figure 4.22. Data generated for the determinist version of model in Equation (4.42)

 In using forward selection to select important regressors, the maximum ny, nu and

0

0.02

0.04

0.06

0.08

0.1

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

time (sampling numbers)

xD xB

0 100 200 300 400 500 600 700 800 900 1000
-1

0

1

t

u

0 100 200 300 400 500 600 700 800 900 1000

0

2

4

t

y

64

maximum d are set to 5, 4 and 1 respectively. The selection procedure is collected in

Table 4.4. Regressor forward selection for data in Figure 4.22

Step y(t-1) y(t-2) y(t-3) y(t-4) y(t-5) u(t-1) u(t-2) u(t-3) u(t-4) u(t-5) random

1 0.0516 0.1248 0.2360 0.3572 0.4907 0.4246 0.3697 0.3243 0.3323 0.3661 3.348

2 0.0408 0.0390 0.0400 0.0429 0.0131 0.0371 0.0411 0.0510 0.0534 0.0551

3 0.0045 0.0060 0.0082 0.0146 2.1E+56 0.0117 0.0089 0.0114 0.0193

4 0.0057 0.0073 0.0055 0.0043 0.0093 0.0035 0.0059 0.0098

5 0.0068 0.0042 0.0062 0.0062 1.9E+10 0.0043 0.0105

In Table 4.4, there are 11 regressors including 10 time-lagged regressors and a

random regressor, the last one. At the first run, all 11 regressors are tried one by one.

Their corresponding FPEs are recorded in the first row. Among them, the one with the

smallest FPE at 0.0516 is chosen, and the related regressor is y(t-1). In the next step, the

selected regressor, y(t-1) is combined with the rest of 10 regressors. The results of 10

trials are in row 2, where the minimum FPE is due to u(t-1) at 0.0131. The blank for y(t-

1) in row 2 only indicates that y(t-1) has been included. Continuing on this procedure, we

then need have both y(t-1) and u(t-1) included and try their combinations with rest of 9

candidate regressors. The next minimum FPE is 0.0045 for y(t-2). Then y(t-2) is included.

The next discovery is u(t-4) with FPE at 0.0035. At the fifth step, the minimum FPE is

0.042, which is however greater than the previous minimum FPE of 0.035. The increase

in FPE signals to terminate the forward selection.

The above forward selection selects the four regressors [y(t-1) y(t-2) u(t-1) u(t-4)].

In theory, one could create an arbitrary model including these regressors. In practice, it is

however unlikely to exclude u(t-2) and u(t-3) while having u(t-4) is included. In addition,

the objective of this work is to determine dynamic orders, ny and nu. In order to include

u(t-4), nu and d should be set to 3 and 1 respectively. This configuration however

contains additional regressors u(t-2) and u(t-3), which are however rejected by the

forward selection. In this work, a minor exhaustive search is conducted to compare

different values for several values for nu, 0, 1, 2 and 3 with fixed ny at 2 and d at 1. The

result is collected in Table 4.5, where the best value for nu is 0 with the minimum FPE of

65

0.0045. Therefore, the determined regressors are [y(t-1) y(t-2) u(t-1)] with ny=2, nu=0,

d=1.

Table 4.5. Exhaustive search on nu with ny=2, d=1 for data in Figure 4.22

nu 0 1 2 3

FPE 0.0045 0.0275 0.0066 0.0378

 The above order determination procedure by a forward selection followed by a

minor exhaustive search uses SNNR rearranged data in recursive estimation. To reveal

the impact of SNNR on order determination, the forward selection procedure is repeated

for the same data set without using SNNR. The details of selection are collected in Table

4.6. The selected regressors are y(t-1), u(t-1) and u(t-2). No minor exhaustive search is

needed. Compared the model definition in Equation (4.2), the result misses y(t-1) while

find u(t-2) that is not presented in the deterministic model. We simply state that the result

include two ‘mistakes’.

Table 4.6. Regressor forward selection for data in Figure 4.22 using time-sequence data

Stepy(t-1) y(t-2) y(t-3) y(t-4) y(t-5) u(t-1) u(t-2) u(t-3) u(t-4) u(t-5) random

1 0.0526 0.1260 0.2367 0.3611 0.5010 1.6116 1.5373 1.4841 1.4906 1.5271 5.7726

2 0.0556 0.0521 0.0533 0.0530 0.0462 0.0557 0.0634 0.0619 0.0588 0.0555

3 0.0515 0.0508 0.0506 0.0502 0.0301 0.0501 0.0493 0.0493 0.0484

4 0.0352 0.0325 0.0322 0.0317 0.0402 0.0401 0.0372 0.0316

The order determination method is also applied to other deterministic models,

deterministic versions of models in Equations (4.40~4.44). The results are summarized in

Table 4.7, which also include the results using original time-sequence data for

comparison.

66

Table 4.7. Regressors determined for deterministic versions of Models 1-5

Model Time Sequence SNNR Truth

1 y(t-1)y(t-2)y(t-3) y(t-1)y(t-2)y(t-3)u(t-1) y(t-1)y(t-2)u(t-1)

2 y(t-1)u(t-1)u(t-2) y(t-1) y(t-2) u(t-1) y(t-1)y(t-2)u(t-1)

3 y(t-1) u(t-1) y(t-1)u(t-1) y(t-1) u(t-1)

4 u(t-1) y(t-1)y(t-2)y(t-3)u(t-1) y(t-1)y(t-2)y(t-3)u(t-1)u(t-2)

5 y(t-1)y(t-2) y(t-1)u(t-1) y(t-1)u(t-1)

As observed in Table 4.7, both approaches are tied in the Model 3 test. In the

Model 1 test, the ‘Time Sequence’ misses u(t-1) but adds y(t-3), making 2 mistakes,

while the ‘SNNR’ adds y(t-3), making 1 mistake. In the Model 2 test, the ‘Time Sequence’

misses y(t-2) but adds u(t-2), making 2 mistakes. The ‘SNNR’ makes 1 mistakes in the

Model 4 test while ‘Time Sequence’ makes 4 mistakes by finding only u(t-1). In the

Model 5 test, ‘Time Sequence’ adds y(t-2) but misses u(t-1). For the first 5 tests, the

‘SNNR has 2 mistakes while the ‘Time Sequence’ makes 10 mistakes. Illustrated by this

comparison, neither approach is perfect, but the ‘SNNR’ outperforms the ‘Time

Sequence’ in terms of number of mistakes made.

Tables 4.8 collects the comparison results using time-sequence and SNNR

rearranged data for stochastic models in Equations (4.40~4.44) with example data shown

in Figures 4.8~4.12.

Table 4.8. Regressors determined for Models 1-5

Model Time Sequence SNNR Truth

1 y(t-1)y(t-2)u(t-1) y(t-1)y(t-2)u(t-1) y(t-1)y(t-2)u(t-1)

2 y(t-1)y(t-2)y(t-3)u(t-1) y(t-1) y(t-2) u(t-1) y(t-1)y(t-2)u(t-1)

3 y(t-1) u(t-1) y(t-1)u(t-1) y(t-1) u(t-1)

4 u(t-1) y(t-1)y(t-2)y(t-3)u(t-1) y(t-1)y(t-2)y(t-3)u(t-1)u(t-2)

5 y(t-1)u(t-1) y(t-1)u(t-1) y(t-1)u(t-1)

Observed in Table 4.8, the ‘SNNR’ performs better with 1 mistake while ‘Time

67

Sequence’ makes 5 mistakes. It is also observed that only the result for the Model 1 is

different in both Tables 4.7 and 4.8 for the ‘SNNR’ while the results for Models 1, 2, 3

and 5 are different in both tables for the ‘Time Sequence’. It seems that the result due to

‘SNNR’ is less influenced by the additional noise than the ‘Time Sequence’. It might be

difficult to draw a general conclusion on the observation. Intuitively, the noise term will

affect how model parameters vary, which in turn affects the performance of recursive

estimation. Consequently, the order determination results, which are based on recursive

estimation, should also be affected. On the other hand, the additional parameter variation

after the noise being injected could be attenuated by the ‘SNNR’, which reduces the

influence of noise on parameter variation then subsequently on order determination.

The details of regressor selection for Models 7-8 are shown in Tables 4.9 and 4.10,

where an extra regressor y(t-2) is found for each. It implies that the regressor y(t-2) has

influence on y(t). In Equations (4.46) and (4.47), although y(t) is not directly related to

y(t-2), the regressor y(t-2) is able to affect y(t) via y(t-1). More importantly, Tables 4.9

and 4.10 show that the regressor u(t-1) is found for both models.

Table 4.9. Regressor selection for Model 7

 y(t-1) y(t-1)u(t-1) y(t-1)u(t-1)y(t-2) y(t-1)u(t-1)y(t-2)y(t-4)

FPE 0.01370.0028 0.0025 0.0032 (Stop)

Table 4.10. Regressor selection for Model 8

 y(t-1) y(t-1)y(t-2) y(t-1)y(t-2)u(t-1) y(t-1)y(t-1)u(t-1)y(t-4)

FPE 0.07870.0293 0.0188 0.0222 (Stop)

The proposed order determination is also compared to the geometric

method .(Molina, Sampson, Fitzgerald & Niranjan, 1996) The testing is conducted on

Models 10-13, and results are summarized in Table 4.11. As observed, the geometric

method is able to extract correct orders for deterministic nonlinear AR models while

performs poorly with the presence of additive noise. The geometric method makes a total

of four mistakes for both Models 11 and 13. The proposed order determination makes

68

one mistake for Model 12.

Table 4.11. Regressors determined for Models 10-13

Model SNNR Geometric Truth

10 y(t-1) y(t-1) y(t-1)

11 y(t-1) y(t-1) y(t-2) y(t-3) y(t-1)

12 y(t-1) y(t-2) y(t-3) y(t-1) y(t-2) y(t-1)y(t-2)

13 y(t-1) y(t-2) y(t-1) y(t-2)y(t-3)y(t-4) y(t-1)y(t-2)

 The dynamic order determination is applied to the two-phase flow process with

two possible input-output selections in Figures 4.18 and 4.19. The results are collected in

Table 4.12.

Table 4.12. Regressors determined for the two-phase flow process

Input Output

Air flowrate Pressure drop y(t-1) y(t-2) u(t-1)

Air valve opening signal Filtered pressure drop yf(t-1) yf(t-2) yf(t-3) us(t-4)

For the input and output defined in Figure 4.18, the recognized regressors are [y(t-

1) y(t-2) u(t-1)]. The regressors determined for the input and ouput defined in Figure 4.19

include [yf(t-1) yf(t-2) yf(t-3) us(t-4)]. Unlike the previous examples, it is not possible to

justify the obtained results by ‘true’ dynamic orders for the two phase flow process,

which are unknown. However, the difference expressed in results can be justified by our

empirical knowledge regarding the process. The dynamic order in yf in Figure 4.19 is one

order higher than that in the output, y in Figure 4.18. The extra order in yf is due to the

first order filtering operation applied to the output, y. In two input channels, difference is

in delay, which is consistent with the physical process. The signal us ‘command to the

valve’ precedes the signal, u, air flowrate measurement. There are few steps between us

and u. The signal, us is generated manually and recorded. It then is converted to a 3~15

psi pneumatic signal. The variation in the pneumatic signal changes the pressure on the

diaphragm, which then pushes or releases the stem connected to the valve plug. The air

69

flowrate is then altered and measured. The measurement is u. The delay difference of 3

between u and us should be considered as an average difference over the entire data set.

The exact difference might be different sample by sample.

Applying the proposed order determination to Model 15, the result obtained using

the procedure extended in Section 4.3 and is summarized in Table 4.13 for both outputs.

Table 4.13. Results of order determination for the distillation column

Output y1, distillate (xD) Output y2, bottoms (xB)

FPE Forward Selection FPE Forward Selection

2.11e-4 y1(t-1) 7.02e-7 y2(t-1)

3.83e-5 y1(t-2) 1.52e-7 y2(t-4)

3.55e-5 u1(t-3) 1.17e-7 u2(t-1)

3.52e-5 y1(t-3) 1.13e-7 u1(t-3)

3.43e-5 y2(t-3) 1.13e-7 u2(t-3)

3.62e-5 y2(t-4)

The selected regressors for y1(t) are [y1(t-1) y1(t-2) y1(t-3) y2(t-3) u1(t-3)] and the

selected regressors for y2(t) are [y2(t-1) y2(t-4) u1(t-3) u2(t-1)]. For the output y2, the value

of ny needs to be 4 if y2(t-4) is included. It would also include both y2(t-2) and y2(t-3).

Therefore, a minor exhaustive search is needed to compare several different values of ny

and the result is summarized in Table 4.14.

Table 4.14. Exhaustive search on ny for y2

ny 1 2 3 4

FPE 1.25E-07 1.17E-07 1.23E-07 1.28E-07

 Then the regressors determined for output y2 is [y2(t-1) y2(t-2) u1(t-3) u2(t-1)].

70

4.4.3 Testing on Nonlinear Component Detection

The nonlinear component detection will be based on the results in the above order

determination. The implementation detail of nonlinear component detection is given for

the Model 1 in Equation (4.40) with selected regressors [y(t-1) y(t-2) u(t-1)]. The result is

recorded in Table 4.15, wherein the numbers for the row “Subsets” represent the

combination of the 1st(y(t-1)) , 2nd(y(t-2)), and 3rd(u(t-1)) regressors.

Table 4.15. Exhaustive search for nonlinear components for Model 1

Subsets 1 2 3 1&2 1&3 2&3 1&2&3

MSE 0.3328 0.3366 0.2747 0.3373 0.2987 0.3006 0.3195

In the first trial, the entry for Subset “1”, the SNNR procedure is conducted based

on y(t-1). The resultant data is then used in a recursive estimation that results in a MSE of

0.3328. The trial continues until all combinations of regressors are exhausted. The

minimum MSE is 0.2747, which corresponds to the third regressor, u(t-1). According to

the result, the time-varying model could be described as below using the detected

nonlinear component u(t-1).

() ()() () ()() () ()() () ()1 1 01 1 1 2 1 1y t a u t y t a u t y t b u t u t e t= − − + − − + − − +

The results of nonlinear component detection for the first five models in

Equations (4.40~4.44) are summarized in Table 4.16.

Table 4.16. Results for nonlinear component detection for Models 1~5

Model Detected nonlinear components

1 u(t-1)

2 y(t-1), y(t-2)

3 y(t-1), u(t-1)

4 y(t-2)

5 u(t-1)

71

Observed from Table 4.16, it seems that the difference between detected and

desired nonlinear components is clear in the Model 4 test. It seems that in Equation (4.43),

every regressor is nonlinear. However, only y(t-2) is reported to be a nonlinear

component while others are perhaps ignored. However, the result should not be

interpreted that only y(t-2) is nonlinearly expressed in the Model. Since we are only

reporting the minimum MSE as shown in Table 4.16, the results include only the

‘dominant’ nonlinear components.

Table 4.17 shows the details for nonlinear component detection for Model 4. The

last row in Table 4.17 is the MSE on the raw data without SNNR operation. The first

observation is that the minimum MSE is due to the regressor y(t-2), which is the reported

nonlinear component in Table 4.16. On the other hand, it is observed in the last row that

the MSE without SNNR is the maximum, which implies that every regressor has impact

on parameter variation. It then indicates that every regressor is nonlinearly expressed in

the model. However, the regressor, y(t-2) seems to dominate others in this test.

Table 4.17. Exhaustive search for nonlinear components for Model 4

Regressors MSE Regressors MSE

y(t-1) 0.004021 y(t-2)u(t-1) 0.003668

y(t-2) 0.003241 y(t-3)u(t-1) 0.00343

y(t-3) 0.003579 y(t-1)y(t-2)y(t-3) 0.00349

u(t-1) 0.005035 y(t-1)y(t-2)u(t-1) 0.003711

y(t-1)y(t-2) 0.003353 y(t-1)y(t-3)u(t-1) 0.003571

y(t-1)y(t-3) 0.003312 y(t-2)y(t-3)u(t-1) 0.003453

y(t-1)u(t-1) 0.004086 y(t-1)y(t-2)y(t-3)u(t-1) 0.003509

y(t-2)y(t-3) 0.003365 No SNNR 0.005578

The details of nonlinear component detection for Model 9 with regressors 1st(y(t-

1)) , 2nd(y(t-2)), and 3rd(u(t-1)) are collected in Table 4.18.

72

Table 4.18. Details of nonlinear components detection for Model 9

Subsets 1 2 3 1&2 1&3 2&3 1&2&3

MSE (10-3) 0.0144 0.0143 0.6442 0.1266 0.2186 0.2007 0.3159

In Table 4.18, the minimum MSE, 0.0143 corresponds the regressor y(t-2).

Interestingly, the corresponding MSE for regressor y(t-1) is 0.0144 and very close to that

due to y(t-2). It would be fair to conclude that both regressors are equally good, which is

consistent with model structure in Equation (4.49)

 The nonlinear component detection results for the two-phase process are collected

in Table 4.19 for two different choices of input and output channels. The results are

reasonable and both include lagged input and output signals.

Table 4.19. Nonlinear components detected for the two phase flow process

Input Output Nonlinear components

Air flowrate Pressure drop y(t-2) u(t-1)

Air valve opening signal Filtered pressure drop yf(t-1) yf(t-2) us(t-4)

The nonlinear component results for the distillation column test are listed in Table

4.20. For each output, competing choices are listed in terms of dimension and error. For

y1, the minimum MSE = 3.153e-5 is to have [y1(t-2) y2(t-3)] as nonlinear components.

The next minimum MSE is 3.155e-5 that has only one nonlinear component, y2(t-3). The

second choice features a low dimension while the first one has a lower MSE. For y2, two

competing choices are listed. The minimum MSE = 9.10e-8 corresponds to the selection

of [y2(t-1) u2(t-1)] as nonlinear components. The next minimum MSE is 1.06e-7, which

has only one nonlinear component [u2(t-1)] included. All listed choices for nonlinear

components will be further investigated and tried in creating GTSK models.

Table 4.20. Choices of nonlinear components for the distillation column

Output y1, distillate (xD) Output y2, bottoms (xB)

MSE MSE

3.15e-5 [y1(t-2) y2(t-3)] 9.10e-8 [y2(t-1) u2(t-1)]
3.16e-5 y2(t-3) 1.06e-7 [u2(t-1)]

73

CHAPTER V

PARAMETER ESTIMATION FOR GTSK MODELS

In this chapter, a two-stage approach is described to estimate model parameter

values for the GTSK model described in Chapter 3 with selected antecedent and

consequent variables in Chapter 4. Model parameters include both antecedent parameters,

centorid (o), shape matrix (P) and coefficients for local linear relations (θ) for each rule.

A brief summary of all parameters could be found in Equation (3.14). In Chapter 5, a

constrained optimization problem with matrix inequalities is defined to estimate model

parameter values, which are initialized by a proposed heuristic approach. The following

elaboration focuses on a SISO model. The extension to MIMO models will be provided

at the end of each section if necessary.

5.1 Parameter Estimation by Newton’s Method

5.1.1 A Constrained Optimization Problem

Estimation of model parameter values is generally treated in an optimization

scheme by minimizing a performance index defined over a data set. The entire data set is

collectively denoted by [y C X] as output, antecedent and consequent variables. In detail

the denotation is described by

[]
()

()

() ()

() ()

() ()

() ()

1 0

1 0

1 1 1 1 1

| | | |
nc nx

nc nx

y c c x x

y N c N c N x N x N

 
 ≡  
  

y C X

L L

M M O M M O M (5.1)

where x0 is the constant regressor in Equation (3.13). Variables, x1 ~ xnx are regressors

due to the determined dynamic orders ny, nu and pure delay, d in Chapter 4. Variables, c1

~ cnc are antecedent variables as the nonlinear components determined also in Chapter 4.

74

The following optimization problem is then defined given the number of rules, M

is known.

() ()()2

, , 1

ˆminimize

subject to

, 1, ,

i i i

N

t

i

J y t y t

i M

=

= −

> =

∑
o P θ

P 0 L

 (5.2)

where, the computation of ŷ is described in Equation (3.22). Inequality constraints signify

that all shape matrices Pi are positive definite. The following matrix function with respect

to Pi is used to convert the constrained optimization to an unconstrained one (Boyd,

Balakrishnan, Feron & Ghaoui, 1994)

() ()()1
logdet

else.

i i
iφ

− >
= 
∞

P P 0
P (5.3)

Then, the augmented objective performance index is defined by

() ()aug
1

=
M

i

i

J s sJ φ
=

+∑ P (5.4)

where the scalar s is used to adjust the relative importance of J with respect to the sum of

()iφ P . The treatment of matrix inequality is borrowed from the interior-point method to

solve a convex linear matrix inequality optimization problem (Boyd & Vandenberghe,

2004), although the optimization problem in Equation (5.2) is not convex.

 The first and second-order derivatives of Jaug(s) to model parameters consist of

those from the performance index and the penalty function. The derivatives due to the

penalty function is described as below aided by the parameterization of Pi in Equation

(3.19)

75

() ()()
()

1
Tr

1, , ; 1, , 1 2

i

i
ji

jp

i M j nc nc

φ −∂
= −

∂

= = +

P
P B

L L

 (5.5)

() () ()()
()

1 1
Tr

1, , ; , 1, , 1 2

i

i i
j bi i

j bp p

i M j b nc nc

φ − −∂
=

∂ ∂

= = +

P
P B P B

L L

 (5.6)

where Tr is the trace of a matrix. Clearly, ()iφ P is independent of centroid, oi and local

model parameters, θi.

The first-order derivatives of J to model parameters are described by

() ()() () ()
1

ˆ2 , 1, ,
N

i
i

t

J
y t y t w t t i M

=

∂
= − − =

∂ ∑ x
θ

L

 (5.7)

() ()() () ()() () ()()
1

ˆ ˆ ˆ4 ,

1, ,

N
i i i i

i
t

J
y t y t y t y t w t t

i M
=

∂
= − − − −

∂

=

∑ P c o
o

L

 (5.8)

() ()() () ()() () ()() ()()

()
1

ˆ ˆ ˆ2

1, , ; 1, , 1 2

N Ti i i i
ji

tj

J
y t y t y t y t w t t t

p

i M j nc nc

=

∂
= − − − −

∂

= = +

∑ c o B c o

L L

 (5.9)

 The gradient vector is then described by

1

aug aug aug, with i
i i i

M

J J J
 

∂ ∂ ∂  
= =    ∂ ∂ ∂  
 

g

g g
o P θ

g

M

 (5.10)

where ()()1aug aug aug; Tr ;i
ji i i i i i

j j

J J JJ J J
s s s

p p

−∂ ∂ ∂∂ ∂ ∂
= = − =

∂ ∂ ∂ ∂ ∂ ∂
P B

o o θ θ

76

 The Hessian matrix is then defined by

2 2 2
aug aug aug

2

2 2 2
aug aug aug

2

2 2 2
aug aug aug

2

J J J

J J J

J J J

 ∂ ∂ ∂
 

∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂

=  
∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂  

o o P o θ

H
P o P P θ

θ o θ P θ

 (5.11)

The element-wise calculation of the second-order derivatives of J to model

parameters are described by

() () ()() () ()() ()()

() () ()() () ()() ()()

() ()() () ()() () ()() ()()

2

1

1

1

ˆ
ˆ ˆ2

ˆ
ˆ2

ˆ ˆ ˆ2

N Ti i i i
ji a a

tj b b

N Ti i i
ja

t b

iN Ti i i
ja

k b

y tJ
y t y t w t t t

p p p

y t
y t y t w t t t

p

w t
y t y t y t y t t t

p

=

=

=

∂∂
= − − − −

∂ ∂ ∂

∂
− − − −

∂

∂
+ − − − −

∂

∑

∑

∑

c o B c o

c o B c o

c o B c o

(5.12)

() () ()() () ()()

() ()() () () ()()

() ()() () ()() () ()()

() () ()() () ()() () ()()

2 2

1

1

1

1

ˆ
ˆ ˆ4

ˆ
ˆ4

ˆ ˆ ˆ4

ˆ ˆ ˆ4

a i i a
b b

N
i i i i

a
t b

N
i i i

a
t b

iN
i i i

a
t b

N
i i i

b
t

J J

p p

y t
y t y t w t t

p

y t
y t y t w t t

p

w t
y t y t y t y t t

p

i a y t y t y t y t w t tδ

=

=

=

=

∂ ∂
=

∂ ∂ ∂ ∂

∂
= − −

∂

∂
+ − −

∂

∂
− − − −

∂

− − − − −

∑

∑

∑

∑

o o

P c o

P c o

P c o

B c o

 (5.13)

() () () () ()() () ()

2 2

1 1

ˆ
ˆ2 2

a i a i
b b

iN N
i

a a
t tb b

J J

p p

y t w t
w t t y t y t t

p p= =

∂ ∂
=

∂ ∂ ∂ ∂

∂ ∂
= − −

∂ ∂∑ ∑

θ θ

x x

 (5.14)

77

() ()() () ()() ()

() ()() () ()() ()

() ()() () ()() ()() ()

() () ()() () ()() ()

2

1

1

1

1

ˆ
ˆ ˆ4

ˆ
ˆ4

ˆ ˆ ˆ4

ˆ ˆ ˆ4

T
N

i i i i
i a a

t

T
N

i i
i a

t

TiN
i i

i a
t

N
i i i

t

y tJ
y t y t w t t

y t
y t y t w t t

w t
y t y t y t y t t

i a y t y t y t y t w tδ

=

=

=

=

 ∂∂
= − −  

∂ ∂ ∂ 

 ∂
+ − −  

∂ 

 ∂
− − − −   ∂ 

+ − − −

∑

∑

∑

∑

P c o
o o o

P c o
o

P c o
o

P

(5.15)

() () () () ()() () ()2

1 1

ˆ
ˆ2 2

TT iN N
i

a i a a
t t

y t w tJ
w t t y t y t t

= =

  ∂ ∂∂
= − −     ∂ ∂ ∂ ∂   
∑ ∑x x

o θ o o

(5.16)

() () () ()
2

1

2
N

Ti a
i a

t

J
w t t t w t

=

∂
=

∂ ∂ ∑ x x
θ θ

(5.17)

with

() () ()

()
1

i a i

ra a
ib b

i

w t TA t w t

p p
TA t

=

∂ ∂
= −

∂ ∂ ∑

() () ()

()
1

i a i

ra a
i

i

w t TA t w t

TA t
=

∂ ∂
= −

∂ ∂ ∑o o

 (5.18)

() () () ()

()
1

ˆ ˆ ˆa i

ra a
ib b

i

y t TA t y t y t

p p
TA t

=

∂ ∂ −
=

∂ ∂ ∑

() () () ()

()
1

ˆ ˆ ˆa i

ra a
i

i

y t TA t y t y t

TA t
=

∂ ∂ −
=

∂ ∂ ∑o o

 (5.19)

() () ()() ()()
a

Ta a a
ba

b

TA t
TA t t t

p

∂
= − − −

∂
c o B c o

 (5.20)

() () ()()2
a

a a a
a

TA t
TA t t

∂
= −

∂
P c o

o
 (5.21)

With the above computed gradient vector and Hessian matrix. Newton’s method

will be applied to optimize the model parameters by solving a sequential of quadratic

optimization problems. The solving procedure is summarized in the Algorithm 5.1

78

The algorithm involves two loops. The inner loop uses Newton’s method to solve

an unconstrained optimization problem with a given s. The scalar s is increased by µ in

the outer loop to make the performance index J more important. The algorithm stops

when s is sufficiently large. The scalar m in the outer loop stopping criterion is the

number of model parameters. In the convex optimization (Boyd & Vandenberghe, 2004),

it is shown that m/s quantifies the quality of a suboptimal solution and defined as the

upper bound of the difference between the true optimal function value and the actual

solution.

5.1.2 Interpretation of Local Optimal Solutions

 Based on the Algorithm 5.1, the scalar s becomes sufficiently large at the end,

which lets performance index dominate the penalty term. It is then possible to derive

solutions at equilibrium conditions by considering only performance index. By letting

Equation (5.7) equal to zero, we then have

() ()() () ()
1

ˆ2 0, 1, ,
N

i

t

y t y t w t t i M
=

− − = =∑ x L

 (5.22)

A possibility is to let wi(t) be zero for all t. The trivial solution could be reached if

oi is set to be sufficiently far from all c(t), which as shown in Equations (3.7) and (3.23)

Algorithm 5.1
0. Algorithm configuration: s=10, µ=2,ε=1e-3

1. Initial guess: v(0)= [o(0), P(0), θ(0)]

Repeat
2. Newton method

Repeat
2.1. Evaluate g and H
2.2. Compute the search direction: (∆v = H-1g)
2.3. Linear search for λ and update: v=v+λ∆v
2.4 Stop if || λ∆v ||2 < ε

3. Increase s: s=µs;
4. Stop if m/s<ε

79

will make TAi(t) and wi(t) very small. Otherwise, the equilibrium condition will be

satisfied in a complex way. With ŷ(t) replaced by Equation (3.22), the equilibrium

condition becomes

() () () () ()
1 1

ˆ2 0
N M

j j i

t j

y t w t y t w t t
= =

 
− − = 

 
∑ ∑ x

 (5.23)

which could be simplified if the following assumption holds

() ()
() () ()

0,

,

i j

i j i

w t w t j i

w t w t w t j i

≈ ≠

≈ =
 (5.24)

the assumption makes the cross product of weights in different rules negligible and let

() () () () ()
1

ˆ ˆ
M

i j j i i

j

w t w t y t w t y t
=

≈∑

Roughly speaking, the assumption is satisfied if rules in a GTSK model are

relatively independent with wi(t) ≈0 or wi(t) ≈1. With the assumption, the equilibrium

condition is simplified to

() ()() () ()
1

ˆ2 0
N

i i

t

y t y t w t t
=

− − ≈∑ x

 (5.25)

The approximated equilibrium condition could be interpreted as a result of solving

the following weighted least square

() ()() ()
2

1

ˆ
N

i i i

t

J y t y t w t
=

= −∑ (5.26)

 The equilibrium condition for centroids is achieved by letting Equation (5.8)

equal to zero

80

() ()() () ()() () ()()
1

ˆ ˆ ˆ4 0
N

i i i i

t

y t y t y t y t w t t
=

− − − − =∑ P c o (5.27)

 Clearly, the trivial solution with all zero wi(t) due to a distant oi is able to satisfy

the equilibrium condition. The trivial solution is however undesired. Another possibility

is to let the product of (ŷi(t) - ŷ(t))wi(t) equal to zero

everywhere, which will be

approximately satisfied if the assumption in Equation (5.24) is made again. The product

is about zero if wi(t) ≈ 0. Otherwise, the expression of (ŷ
i(t) - ŷ(t)) is about zero if wi(t) ≈

1. Therefore, if rules in a GTSK model are relatively independent to each other, the

equilibrium condition for the centroid is approximately satisfied.

 Similarly, the equilibrium condition on the shape matrix parameters could also be

approximately satisfied if rules are assumed relatively independent.

5.1.3 Random Parameter Initialization

An important factor affecting a nonlinear optimization is the initial guesses of

decision variable values. Often times, initial guesses are randomly set. However, for the

proposed GTSK model, random initialization might result in trivial or even infeasible

solutions. Algorithm 5.1 requires feasible initial guesses. Since there are only constraints

on Pi, users might initialize Pi as identity matrix and randomize oi and θi to avoid

infeasible initializations.

 Care needs also to be taken to initialize the centroid, oi especially for higher

dimensional antecedents in order to prevent trivial wi(t) (all wi(t) are close to zero). As

discussed in Section 5.1.2, trivial wi(t) will immediately satisfy the equilibrium

conditions for both antecedent and consequent parameters. An illustration is shown in

Figure 5.1 with a collection of antecedent samples as [y(t-3) u(t-9)]. y(t-3) is between 50

and 160 while u(t-9) is between 20 and 100. Define an area by [100<y(t-3)<160, 50<u(t-

9)<100] as shown as the dashed box in Figure 5.1. Anywhere in that box is claimed to be

distant from all observed samples. The box covers about 34% of the entire antecedent

space. Therefore, there is about 34% likelihood to generate a trivial random centroid.

Even if nontrivial centroids are initialized, the optimization is still subject to local optimal

81

solutions. Many random trials are needed to increase the probability of obtaining a global

solution. In (Iyer & Rhinehart, 1999), statistical analysis is provided to estimate number

of random trials given the probability of convergence region for a global optimal

solution.

Figure 5.1. Antecedent space defined by antecedent variables u(t-9) and y(t-3)

Alternatively, centroids might be randomly drawn from observed samples. This

approach guarantees that every centroid is at least significantly expressed once. However,

care has to be taken to make sure that drawn random centroids spread wide enough in

order to cover the entire antecedent space effectively. Otherwise, it is possible that all

drawn centroids are too concentrated. It could happen when distribution of data samples

are significantly uneven over antecedent space. In Figure 5.1, there are 5000 points, 90%

of them are distributed in the right-bottom corner. The rest of points are scattered in the

both tails, assuming 200 and 300 points at both tails respectively. The likelihood of

drawing one from the right-bottom corner is 90%. If the desired centroid distribution is to

30 40 50 60 70 80 90

60

80

100

120

140

160

u(t-9)

y(
t-

3)

82

have at least one centroid in each portion of data in Figure 5.1 (the top tail, the bottom-

right corner, the bottom tail), the likelihood is L If N random centroids are drawn.

1

1

1 1

1 1

1 0.9 0.04 0.06 0.9 0.04

0.9 0.06 0.04 0.06

N
N N N N k k

k

N N
N k k N k k

k k

L
−

−

=

− −
− −

= =

= − − − −

− −

∑

∑ ∑
 (5.28)

Figure 5.2 shows the evaluation of the L in Equation (5.28) with respect to N. It

indicates that least 45 random centroids need to be generated to assure the above

mentioned initialization requirements with 0.99 likelihood. N will be increased if more

centroids are required for the sparser areas, which is often necessary for data-rich-but-

information-poor chemical processes, where a large amount of data is recorded at steady

state operation. For describing a chemical process around a steady state condition, one

linear model will be sufficient. Nonlinearity is observed during transition between

operating conditions, which however only generate a limit amount of data although more

rules are needed to describe nonlinear behavior. In practice, it is hard to tell if N is

sufficiently large, one might have to try to find the right value.

Figure 5.2. Evaluation of function in Equation (5.28)

20 40 60 80
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N

L

83

5.2 Parameter Estimation for MIMO GTSK Models

Readers might choose to skip this section now and interested readers could come

back to revisit this section when dealing with models.

The following constrained quadratic performance index is used for a MIMO

GTSK model

()
() ()() () ()()

, , 1 1

ˆ ˆminimize

subject to

0

i i i

N
T

i M t

i

J t t t t
≤ ≤ =

= − −

>

∑
o P θ

y y Q y y

P

 (5.29)

where, the weighting matrix Q is a positive definite diagonal matrix used to reflect the

relative importance of each output or to make them comparable by adjusting scales

1 0

0 n

q

q

 
 =  
  

Q

L

M O M

L

 (5.30)

Q(i,j) is set to zero (i≠j). Otherwise, yi and yj are coupled. Since Q is only a diagonal

matrix, the performance index J can be decomposed as below

1

n

k
k

J J
=

=∑

(5.31)

with () ()()2

1

ˆ
N

k k k k
t

J q y t y t
=

= −∑

The derivatives of J with respect to model parameters are then defined by

1 1 1

; ;
n n n

k k k

k k kk k

J J JJ J J

= = =

∂ ∂ ∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑o o P P θ θ
 (5.32)

where the derivative to kθ could be further simplified due to its local influence on Jk only

84

k

k k

JJ ∂∂
=

∂ ∂θ θ
 (5.33)

 The second order derivatives are defined by

2 2 22 2 2

2 2
1 1

2 22 2

2 2
1

22

2 2

; ;

;

n n
k k k

k k k k

n
k k

k k k

k

k k

J J JJ J J

J JJ J

JJ

= =

=

∂ ∂ ∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂ ∂ ∂

∂∂
=

∂ ∂

∑ ∑

∑

o o o P o P o θ o θ

P P P θ P θ

θ θ

 (5.34)

It shows that the evaluation of the first and second derivatives for a single-output

GTSK model is only needed. Simple arithmetic operations and matrix stacking would be

able to recover the derivates and Hessian matrix for a MIMO GTSK model.

The Hessian matrix is then expected to have a diagonal sub-matrix in its right-

bottom corner.

2 2 2 2

2
1

2 2 2 2

2
1

2 2 2

2
1 1 1

2 2 2

2

0

0

n

n

n n n

J J J J

J J J J

H J J J

J J J

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 = ∂ ∂ ∂ 
∂ ∂ ∂ ∂ ∂ 

 
 
 ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ 

o o P o θ o θ

P o P P θ P θ

θ o θ P θ

θ o θ P θ

L

L

L

M M M O M

L

 (5.35)

5.3 Overview of the Proposed Parameter Initialization

A constrained nonlinear optimization problem is described above to estimate model

parameters. The performance of the optimization is subject to the quality of initial

guesses of decision variable values. One might need to try many different random

initializations and find an acceptable result. At the same time, randomization has to be

85

carefully conducted to avoid poor centroid locations and distributions. In addition to the

initialization problem, it is assumed in the above elaboration that the number of rules, M

is known. However, this number is unknown and should be related to the complexity of

the functional behavior. In practice, determination of M often requires trials for an

appropriate choice with balanced model accuracy and complexity.

The above optimization procedure takes a ‘global’ approach to estimate parameter

values for a GTSK model and adjust all parameters simultaneously. This approach has

the advantage to fully consider interactions among all parameters while suffers the above

mentioned initialization difficulties. On the other hand, a GTSK model could be viewed a

collection of rules. As shown in Figure 3.6, a GTSK model consists of 4 rules, where

each rule is designated to an ellipsoidal area. An alternative approach to identify a GTSK

model is then to identify its rules individually. A rule is identified if its antecedent and

consequent parameters are estimated. As shown in Figure 3.6, antecedent identification

will be to recognize an ellipsoid in terms of a centroid and a shape matrix. Consequent

model identification is reduced to an estimation of a local linear model in the

corresponding antecedent area. A rule is identified if it is known where the rule is needed

in terms of a region in antecedent space. The antecedent space in this work is simply

defined as a minimum hypercube that contains all antecedent samples. The problem is

then to define regions in antecedent space to place rules. In this work, rule regions are

generated out of an antecedent space by partition. An illustrating example for the Figure

3.6 is shown below, where four regions are defined by three linear splitting boundaries

(dashed lines).

Figure 5.3. An antecedent space partitioned by three linear boundaries

86

In this work, boundaries are iteratively placed in an antecedent space as below.

Figure 5.4. An iterative procedure to partition an antecedent space

The antecedent space partition procedure could also be represented by a

regression tree (Breiman, Friedman, Olshen & Stone, 1984) as shown in Figure 5.5(a),

where t1 is the where the tree starts and is termed as a root node. Every tree has only one

root that represents the original undivided antecedent space. Underneath t1 is the first split

boundary, a linear inequality, sTc≥s0, which divides the space t1 into two disjointed parts.

To the left of t1 is a branch node, t2, which includes all the data fulfilling the inequality.

The rest of data from t1 is contained in another branch node t3. Underneath t2, another

split boundary is presented that further divides t2 into other two disjointed parts. Two

nodes, t4 and t5 are then generated. No further splits are conducted on t4 and t5 that then

make them terminal nodes. To the right of t1, a similar splitting process is conducted,

which results two branch nodes t6 and t7 as well as three terminal nodes t5, t8 and t9.

87

(a) (b)

Figure 5.5. Antecedent space partition by a regression tree

The rectangle in Figure 5.5(b) outlines the range of variables c1 and c2 which are

the two regressors identified as providing nonlinear functionality. These are the

antecedent variables. Initially, the rectangle defines a space, t1. The first split is indicated

by the line labeled l1, which split region t1 into two regions which were labeled t2 and t3.

However, region t2, was split by line l2, creating regions t4 and t5. Similarly, region t3,

was split by line l3, creating regions t6 and t7. Then region t7, was split by line l4, creating

regions t8 and t9.

Note that in this approach, it is no longer necessary to assume the number of

rules, M. It is, however, determined along with the space partitioning procedure.

The concept of recursive space partition is also seen in (Nelles, 2001; Nelles &

Isermann, 1996), where only boundaries along with axes are allowed and must pass the

centroid of the space to be partitioned. In (Hartmann & Nelles, 2009; Nelles, 2006), a

more general partition is defined in a sigmoid function to construct hierarchical models,

which requires careful initializations of the smoothness of the sigmoid function, and

1c

2c

4t
2l

5t
1l

4l 3l

8t 9t

6t

88

splitting position and direction to avoid trivial solutions. The partition defined in a

sigmoid function could be considered as a ‘soft’ partition to be seen below. In this work,

a ‘sharp’ partition is instead defined, analyzed and solved. In the meantime, the ‘soft’

partition is also investigated. The impact of the initial smoothness of a sigmoid function

on a ‘soft’ partition is demonstrated to be complex and illustrated in Figure 5.29.

5.4 A Splitting and Regression Problem

5.4.1 Description of the Splitting and Regression Problem

The fundamental step to obtain an antecedent space partition is to solve a splitting

and regression problem (SRP). An example SRP on a two dimensional antecedent space

is illustrated in Figure 5.6. The objective is to minimize the modeling error of the

partitioned data by the two linear models by placing a linear separation boundary (the

bold dashed line) in the antecedent space, which results in two regions A and B. Each

region has a local linear model. The two linear models shown use all relevant regressors,

not just the two (c1 and c2) chosen to express nonlinear behavior. The separation

boundary is chosen here to be linear, and is a function of c1 and c2.

Figure 5.6. Parameters to be estimated in solving a SRP

c1

c2

A

B

() () ()0 1 1
b

nx nxy t b bx t b x t= + + +L

() ()0 1 1 2 2 0s s c t s c t+ + =

() () () ()0 1 1
a

nx nxy t a t ax t a x t= + + +L

89

The belongingness of data sample to region A is determined by l(t) and φ(t) as below

() () ()0 1 1t t tnc ncl s s c s c= + + +L (5.36)

()
()
()

0, t 0
t

1, t 0

l

l
ϕ

 <
= 

≥
 (5.37)

where s0,…,snc defines a separation boundary in Figure 5.6. The value of l(t) is

2 2
1 ncs s+ +L times of distance of a point, [c1(t),…,cnc(t)] to the linear separation

boundary. However, Equation (5.37) implies that only the sign of l(t) matters. In Figure

5.6, the points in category A have negative values for l(t) while B category has positive

l(t). In Figure 5.6, two local linear models are

() () ()
() () ()

0 1 1

0 1 1

y t t t

y t t

a
nx nx

b
nx nx

a a x a x

t b b x b x

= + + +

= + + +

L

L
 (5.38)

Combing Equation (5.37) with the Equation (5.38), the output prediction is then

computed by

 () ()() () () ()ŷ t 1 t y t t ta byϕ ϕ= − + (5.39)

The SRP is then solved by minimizing the following performance index J

()2

, ,
1

min t
N

t

J ε
=

=∑
s a b

 (5.40)

where, ε(t) = y(t) - ŷ(t) is the residual, and parameter values to be estimated include a and

b in Equation (5.38), and s in Equation (5.36),

5.4.2 SRP is Not a Clustering Problem

The problem described above includes a linear separation boundary and also a

learning perspective. The SRP problem needs to minimize a performance index, which

90

makes it a supervised learning problem. If we only focus on the linear separation part, it

seems to be a clustering problem to separate un-categorized data, which is a typical

unsupervised learning problem and can be solved in different ways (Hastie, Tibshirani &

Friedman, 2001). The following illustration is used to indicate the difference between a

separation boundary due to an unsupervised learning and the boundary for the SRP. The

function used for the illustration is defined in Equation (5.41) and Figure 5.7 shows a

collection of random samples

1
1 2 1 2

2
1 2 1 2

5 ,

5 ,

y x x x x
y

y x x x x

 = + ≥
≡ 

= + <
 (5.41)

Figure 5.7. Data samples for Equation (5.41)

The antecedent space is shown in Figure 5.8.

-2
0

2
4

6

-2
0

2
4

6
-10

0

10

20

30

x1x2

y

91

Figure 5.8. Data samples in antecedent space for Equation (5.41)

 Figure 5.9 shows the result of an unsupervised learning, which separates data to

two clusters based on their geometric distribution. This type of data segregation is

however inconsistent with the underlying nonlinearity in the function. The desired data

segregation due to the function definition is shown in Figure 5.10. Therefore, the problem

to be solved is not purely an unsupervised learning problem. The boundary is not placed

based on geometric distribution of data but on the function nonlinearity embedded in data.

Figure 5.9. A linear boundary based on data distribution

-2 0 2 4 6
-2

0

2

4

6

x1

x2

-2 0 2 4 6
-2

0

2

4

6

x1

x2

92

Figure 5.10. A linear boundary according to function nonlinearity

There are a number of methods proposed to initialize or identify a fuzzy model by

unsupervised learning in either an input space or an input-output space (Dickerson &

Kosko, 1996). Unsupervised learning is however relied on data distribution but not

function nonlinearity. The above illustration shows why we should not do that.

5.4.3 Analysis of the Splitting and Regression Problem

The minimization problem in Equation (5.40) is nonlinear since the model

parameters a or b are nonlinearly coupled with separation boundary parameters, s. The

objective function in Equation (5.40) is discontinuous due to the discontinuity in the

separation boundary in Equation (5.37). In order to derive more compact analytical

expressions for first and second-order derivatives for analysis, Equation (5.37) is replaced

by a sigmoid function

 () ()
1

1
l t

t

e τ

ϕ
−

=

+

 (5.42)

where, τ is introduced to adjust the ‘sharpness’ of the separation boundary. The impact of

τ on Equation (5.42) is illustrated in Figure 5.11.

-2 0 2 4 6
-2

0

2

4

6

x1

x2

93

Figure 5.11. Illustration of Equation (5.42) with different τ

In this work, the original separation boundary in Equation (5.37) is called a “sharp”

boundary. The modified one for analysis is a “soft” boundary. The sharp boundary is

recovered from the soft one at τ approaches to zero.

With the soft separation boundary defined, it is then possible to compute the

gradients defined by

TT T T
J J J ∂ ∂ ∂     =       ∂ ∂ ∂       

g
a b s

 (5.43)

where, g is a concatenation of three gradient vectors. Among them, for instance, the

gradient of J to a is defined by

0

T

nx

J J J

a a

 ∂ ∂ ∂
=  ∂ ∂ ∂ a

L (5.44)

 The derivative of J to ak is derived as below

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

φ
(t

)

l(t)

soft: τ=0.1

soft: τ=0.4

sharp

94

() ()

() ()

() ()() ()

() ()() ()

1

1

1

1

ˆ

1

1

N

tk k

N

t k

aN

t k

N

k
t

tJ
t

a a

y t
t

a

y t
t t

a

t t x t

ε
ε

ε

ε ϕ

ε ϕ

=

=

=

=

∂∂
=

∂ ∂

∂
= −

∂

∂
= − −

∂

= − −

∑

∑

∑

∑

 (5.45)

In the similar approach, the first order derivative of J to bk is described

 () () ()
t 1

t t
N

k
k

J
t x

b
ε ϕ

=

∂
= −

∂ ∑ (5.46)

The first order derivative of J to sk is computed as below

() ()
()()

() () ()
1 1

1N N
a b

t tk k k

t tJ
t y t t y t

s s s

ϕ ϕ
ε ε

= =

∂ − ∂∂
= − −

∂ ∂ ∂∑ ∑ (5.47)

with the following equality derived from Equation (5.42)

() () ()() ()
1 k

k

t c t
t t

s

ϕ
ϕ ϕ

τ
∂

= −
∂

 (5.48)

the derivative to sk is concluded by

() () ()() () ()
t 1

t
t 1 t t

N
k

k

cJ
t w

s
ε ϕ ϕ

τ=

∂
= −

∂ ∑ (5.49)

where w(t) = ya(t)-yb(t) is the prediction difference between two local models.

The second-order derivative is collected in the following Hessian matrix,

95

2 2 2

2 2 2

2 2 2

T T T

T T T

T T T

J J J

J J J

J J J

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ 

=  ∂ ∂ ∂ ∂ ∂ ∂ 
∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂ ∂ 

a a a b a s

H
b a b b b s

s a s b s s

 (5.50)

where for instance, H(1,2) is a nx+1 by nx+1 matrix as defined by

2 2

0 0 02

2 2

0

nx

T

nx nx nx

J J

a b a b
J

J J

a b a b

 ∂ ∂
 ∂ ∂ ∂ ∂ ∂  =

∂ ∂  
∂ ∂ 

 ∂ ∂ ∂ ∂ 

a b

L

M O M

M

 (5.51)

the definitions for other block matrices are similar. The explicit derivations of each

matrix element are given as below

()() () ()
2

2

t 1

1 t t t
N

k l
k l

J
x x

a a
ϕ

=

∂
= −

∂ ∂ ∑

 (5.52)

() ()() () ()
2

t 1

t 1 t t t
N

k l
k l

J
x x

a b
ϕ ϕ

=

∂
= −

∂ ∂ ∑ (5.53)

() ()() () () ()

() ()() () () ()

() () ()() () ()

2

t 1

2

t 1

t 1

t
t 1 t t t

t
t 1 t t t

t
t t 1 t t

N
l

k
k l

N
l

k

N
l

k

cJ
x w

a s

c
x w

c
x

ϕ ϕ
τ

ϕ ϕ
τ

ε ϕ ϕ
τ

=

=

=

∂
= − −

∂ ∂

+ −

+ −

∑

∑

∑

 (5.54)

 () () ()
2

2

t 1

t t t
N

k l
k l

J
x x

b b
ϕ

=

∂
=

∂ ∂ ∑ (5.55)

96

() ()() () () ()

() () ()() () ()

2
2

t 1

t 1

t
t 1 t t t

t
t t 1 t t

N
l

k
k l

N
l

k

cJ
x w

b s

c
x

ϕ ϕ
τ

ε ϕ ϕ
τ

=

=

∂
= − −

∂ ∂

− −

∑

∑
 (5.56)

() ()() () () ()

() () ()() () () ()

() () ()() () () ()

2
22 2

2
t 1

2

2
t 1

2
2

t 1

t t
t 1 t t

t t
t t 1 t t

t t
t t 1 t t

N
k l

k l

N
k l

N
k l

c cJ
w

s s

c c
w

c c
w

ϕ ϕ
τ

ε ϕ ϕ
τ

ε ϕ ϕ
τ

=

=

=

∂
= −

∂ ∂

+ −

− −

∑

∑

∑

 (5.57)

 Once the gradients and Hessian matrix are obtained, it is then possible to analyze

local solutions. The “soft” boundary is an approximation of the “sharp” boundary. As

mentioned above, the “sharp” boundary is recovered from the “soft” one as τ approaches

to zero. It is then possible to obtain the gradients and Hessian matrix for the “sharp”

boundary by computing the limits of Equations (5.43) and (5.50) for the “soft” one.

0
0

0 0

lim

lim
τ

τ

→

→

=

=

g g

H H
 (5.58)

where, the following limit appearing in Equations (5.49, 5.53, 5.54, 5.56 and 5.57) needs

to be evaluated

() ()() ()

()()
()

()

()
()

()()

() ()

1

1

1

20 0

1

0

'

1
lim lim

1

lim let

'
lim lim

1
lim 0

l t

l t

l t

ul tu u ul t

ul tu

t t e

e

e
u

uu

e e

l t e

τ

τ τ τ

τ

τ

ϕ ϕ

τ τ

τ
τ

−

−

−

−

→ → −

−
−

→

→∞ →∞

→∞

−
=

+

= =

= =

= =

 (5.59)

97

 Using above evaluation, the gradients are then reevaluated by

() ()
1

Na
a a
i k i

ik

J
t x t

a
ε

=

∂
= −

∂ ∑

(5.60)

() ()
1

Nb
b b
j k j

jk

J
t x t

b
ε

=

∂
= −

∂ ∑

(5.61)

0
k

J

s

∂
=

∂
 (5.62)

Where (){ }0a aNa t tϕ= = and (){ }1b bNb t tϕ= = . Na collects data belonging to group

A while Nb collects data in group B. Second-order derivatives are evaluated by

() ()
2

1

Na
a a

k i l i
ik l

J
x t x t

a a =

∂
=

∂ ∂ ∑ (5.63)

2

0
k l

J

a b

∂
=

∂ ∂
 (5.64)

2

0
k l

J

a s

∂
=

∂ ∂
 (5.65)

() ()
2

1

Nb
b b

k j l j
jk l

J
x t x t

b b =

∂
=

∂ ∂ ∑ (5.66)

2

0
k l

J

b s

∂
=

∂ ∂
 (5.67)

2

0
k l

J

s s

∂
=

∂ ∂
 (5.68)

Equilibrium solutions are defined if Equations (5.60) and (5.61) are zero. The

equilibrium condition on sk is automatically satisfied in Equation (5.62). One possible

98

solution is to have all φ(t) = 0 (or φ(t) = 1) for all t, then the equilibrium condition is

() ()
1

0
N

k
t

t x tε
=

=∑

which is resulted from a least square estimation of model parameters for one linear model.

The φ(t)=0 for all t implies that all data belong to group A and no data is in B. The

corresponding Hessian matrix is then described by

0

0 0

T 
=  
 

X X
H (5.69)

where, X is defined in Equation (5.1). XTX is positive semi-definite if X has linear

independent columns, which is a reasonable assumption for a linear regression problem.

H is hence positive semi-definite and the solution with φ(t) = 0 is stable. The same

conclusion is also available for φ(t) =1. These two situations define trivial solutions for

the SRP problem since no separation is obtained.

On the contrary, a non-trivial separation will have both zero and non-zero φ(t).

The equilibrium condition is described by

() ()
1

0
Na

a a
i k i

i

t x tε
=

=∑

() ()
1

0
Nb

b b
j k j

j

t x tε
=

=∑

where, two equations are independent to each other, each of which is satisfied if model

parameters are estimated by a least square estimation. The corresponding Hessian matrix

then becomes

0 0

0 0

0 0 0

T
A A

T
B B

 
 

=  
  

X X

H X X

 (5.70)

99

where XA denote the portion of X being assigned to model A and is described by

() ()

() ()

1 1 1

1

1

1

a a
nx

a a
Na nx Na

x t x t

x t x t

 
 

=  
 
  

AX

L

M M O M

L

 (5.71)

Then the Hessian matrix in Equation (5.70) is also positive semi-definite and

indicates a stable solution.

Based on the above analysis, it can be concluded that the SRP has many local

minima. A local minimum could be trivial if the separation happens outside the

antecedent space. If the separation is placed inside, two local models are then obtained. It

then provides a two-step procedure to reach an equilibrium solution starting from an

arbitrary separation boundary followed by least square estimation on one or two models

depending on the location of the boundary. In a searching space with many stable local

minima, a gradient based optimization method, which optimizes both separation and local

model parameters simultaneously, can easily get trapped. On the other hand, obtaining a

local optimal solution is however often good enough to be expected in practice. In the

following, we will follow a heuristic procedure to obtain a particular local optimal

solution, which, as will be demonstrated in section 5.5.5, tends to be a global solution

compared with solutions obtained from other methods.

5.5 Solving of the Splitting and Regression Problem

5.5.1 Initialization of Data Segregation

As analyzed in 5.4, the SRP problem has many local optimal solutions. A local

solution is obtained when a random boundary is given. A trivial solution is obtained if the

boundary is outside the antecedent space.

The SRP is solved in this work by a heuristic suboptimal approach. The heuristic

approach is based on the assumption that the entire data set could be described by two

local linear models. The entire data set is denoted by [y C X] in Equation (5.1).

100

A separation is specified by s defined in Equation (5.36). We then have the

following expression for a separation. Given a separation defined by s, it results in a split

of data [y C X] into A and B groups as [yA CA XA] and [yB CB XB] with definitions for

group A as shown below. The definition for XA is described in Equation (5.71), and yA

and CA are defined by

()

()

1
a

a
Na

y t

y t

 
 

=  
 
  

Ay M

() ()

() ()

1 1 1

1

a a
nc

a a
Na nc Na

c t c t

c t c t

 
 

=  
 
  

AC

L

M O M

L

 (5.72)

 The model with two underlying linear models are defined by

() ()

() ()

() ()2 2

with

1

1

: 0, ; : 0,

Ta a
A

Tb b
B

y y N

y y N

N Nσ σ

= +

= +

 =  

 =  

A A A

B B B

A

B

A A B B

y X a e

y X b e

y

y

e I e I

L

L

 (5.73)

 The corresponding model parameters a and b are estimated.

()
()

1

1

ˆ

ˆ

T T

T T
B

−

−

=

=

A A A A

B B B

a X X X y

b X X X y

 (5.74)

the residual for model A could then be evaluated by

ˆ= −A A Aε y X a (5.75)

substituting Equations (5.74) and (5.75) for â and yA the residual terms is then described

101

()() ()

()()

1

1

T T
A A A A A A A A A

T T

−

−

= + − +

= − A A A A A

ε X a e X X X X X a e

I X X X X e

(5.76)

The residual is then used to compute a quadratic performance criterion, JA for

model A by

T
A A AJ E  =  ε ε

 (5.77)

where, εT ε is equal to the trace of a matrix εεT.

()T
A A AJ E Tr =  ε ε

(5.78)

with definition of εA in Equation (5.76)

()() ()()()
()()

1 1

21

T T T T T
A A A A A A A A A A

T T T
A A A A A A

J E Tr

E Tr

− −

−

 = − −  

  
= −  

  

A I X X X X e e I X X X X

I X X X X e e

 (5.79)

where the cyclic operation in Trace is used to obtain the above equality. In addition, it

can be verified that

()()
() () ()
() ()

()

21

1 1 1

1 1

1

2

2

T T
A A A A

T T T T T T
A A A A A A A A A A A A

T T T T
A A A A A A A A

T T
A A A A

−

− − −

− −

−

−

= − +

= − +

= −

I X X X X

I X X X X X X X X X X X X

I X X X X X X X X

I X X X X

then JA is expressed in terms of XA and σA by.

102

()()()
()()()
()()()
()()

1

1

1 2

1 2

T T T
A A A A A A

T T T
A A A A A A

T T
A A A A A

T T
A A A A A

J E Tr

Tr E

Tr

Tr

σ

σ

−

−

−

−

 = −  

 = −  

= −

= −

A I X X X X e e

I X X X X e e

I X X X X I

I X X X X

 (5.80)

where, the Trace term is evaluated as below

()()
() ()()

()()
()

1

1

1

1

1

T T

T T

T T

nx

Tr

Tr I Tr

Na Tr

Na Tr I

Na nx

−

−

−

+

−

= −

= −

= −

= − −

A A A A

A A A A

A A A A

I X X X X

X X X X

X X X X

then

() 2

2

1J Na nx

Na

σ

σ

= − −

≈

A A

A

 (5.81)

where, it is assumed that that Na >> nx.

In the same manner, the performance criterion for model B is described by

()()1 2T TJ Tr σ
−

= −B B B B B BI X X X X and approximated by 2J Nbσ≈B B . Then the quadratic

performance is expressed as a weighted sum of σA and σB by

2 2

J J J

N Nσ σ

= +

≈ +
A B

A A B B

(5.82)

where, if φ(t) in Equation (5.37) is known, NA and NB can be calculated by

103

() ()
1 1

,
N N

t t

N t N N tϕ ϕ
= =

= = −∑ ∑A B

(5.83)

additionally, the unknown 2σ A
and 2σ B

are to be replaced by their estimates by

() ()()

()

()() ()()

()()

2

2 1

1

2

2 1

1

ˆ

1
ˆ

1

N

t
N

t

N

t
N

t

t y t

t

t y t

t

ϕ µ
σ

ϕ

ϕ µ
σ

ϕ

=

=

=

=

 − 
=

 − − 
=

−

∑

∑

∑

∑

A

A

B

B

(5.84)

where µA and µB are unknown means of yA and yB in groups A and B. Substituting

Equations (5.83) and (5.84) to Equation (5.82), the minimization problem to be solved is

described by

()
() ()() ()() ()()

()

2 2 22

, ,
1

minmize 1

subject to

0,1; 1, ,

N

t
t

J t y t t y t

t t N

µ µ ϕ
ϕ µ ϕ µ

ϕ

=

= − + − −

= =

∑
A B

A B

L

 (5.85)

where, there are N+2 decision variables, N belongingness values, φ(t), µA and µB. Since

the φ(t) are not coupled, it can be solved individually by solving a simple optimization

problem for the objective J(t) if and µA and µB are assumed to be known

() () ()() ()() ()()2 2 22 t 1 t tJ t y t yϕ µ ϕ µ= − + − −A B
 (5.86)

Where

()
()

() ()() ()() ()()

()
()

()() ()()

2 2

2
2 2

2

2 2 1

2 2

J t
t y t t y t

t

J t
y t y t

t

ϕ µ ϕ µ
ϕ

µ µ
ϕ

∂
= − − − −

∂

∂
= − + −

∂

A B

A B

104

By equating the first-order derivative to zero, φ(t) is then solved by

()
()()

()() ()()

2

2 2

y t
t

y t y t

µ
ϕ

µ µ

−
=

− + −

B

A B

(5.87)

Where the second-order derivative is always positive assuming that µA and µB are not

equal to y(t) at the same time. It then verifies that the solution of φ(t) in Equation (5.87) is

a global optimal solution for the J(t) in Equation (5.86) minimizes J(t).

Combining Equations (5.85) and (5.87) defines the minimization problem in

terms of µA and µB only by.

()() ()()
()() ()()

2 2

2 2,
t 1

t t
minmize

t t

N y y
J

y yµ µ

µ µ

µ µ=

− −
=

− + −
∑

A B

A B

A B
 (5.88)

the objective function in Equation (5.88) has only two decision variables µA and µB,

which is to be found using a Newton’s method. The first order derivatives of J to µA and

µB are computed by

()() ()()
()() ()()()

()() ()()
()() ()()()

4

22 2
1

4

22 2
1

2

2

N

t

N

t

y t y tJ

y t y t

y t y tJ

y t y t

µ µ

µ µ µ

µ µ

µ µ µ

=

=

− − −∂
=

∂ − + −

− − −∂
=

∂ − + −

∑

∑

A B

A
A B

A B

B
A B

 (5.89)

And the second-order derivatives are described by

105

()() ()() ()()
()() ()()()

()() ()() ()()
()() ()()()
()() ()()

()() ()()()

6 2 4
2

32 2 2
1

6 2 4
2

32 2 2
1

3 3
2

32 2
1

2 6

2 6

8

N

t

N

t

N

t

y t y t y tJ

y t y t

y t y t y tJ

y t y t

y t y tJ

y t y t

µ µ µ

µ µ µ

µ µ µ

µ µ µ

µ µ

µ µ µ µ

=

=

=

− − − −∂
=

∂ − + −

− − − −∂
=

∂ − + −

− −∂
=

∂ ∂ − + −

∑

∑

∑

B A B

A
A B

A B A

B
A B

A B

A B
A B

(5.90)

Using the gradient and Hessian matrix, a version of Newton’s method modified

for non-convex quadratic problem in (Han, Pardalos & Ye, 1992) is used to minimize J

,and find µA and µB since it is possible that resultant Hessian matrix might be indefinite

(containing both positive and negative eigenvalues).

Once J is minimized, φ(t) is determined by Equation (5.87) and automatically lies

between 0 and 1. The resultant φ(t) takes any value within 0 and 1 instead of 0 and 1 only

as defined in Equation (5.37). The following Equation (5.91) will convert the φ(t) to a

two-value indicator (0,1)

()
()
()

0, 0.5

1, 0.5

t
t

t

ϕ
ϕ

ϕ

 <
= 

≥

(5.91)

which assigns each data sample to either group A or B.

 5.5.2 Solving for a Linear Boundary

Note the solving procedure mentioned above does not use a linear separation

boundary. φ(t) is obtained by minimizing J in Equation (5.88) but not confined to a linear

separation boundary defined in Equation (5.36). Now the problem to be solved comes

down to find a linear boundary segregating data with known categories, 0 and 1 due to

Equation (5.91). There are many ways to place a linear separation boundary in data with

known classifications. Perceptron neural network, logistic regression and linear

discriminate are all possible methods to find a linear separation boundary. However,

106

these methods are only effective if the classification problem is linear separable.

Multi-layer perceptrons (Hagan, Demuth & Beale, 2002) can be used for linear

inseparable classifications assuming the number of linear boundaries is known. Linear

regression can be used to fit a linear separation model for a two-value function. The

resultant separation boundary is often not robust. A more robust approach way to find a

linear separation boundary is by solving a support vector machine (SVM) (Hastie,

Tibshirani & Friedman, 2001). The following version of SVM is used in this work to find

the linear separation parameters s based on obtained φ(t)

() ()
() ()

2

0 1 1

0 1 1

0 1 1

minimize

subject to

1 , 1

1, 1

, 0

a bN Nnc
a b

k i j
k i j

a a a
i nc nc i i a

b b b
j nc nc j j b

a a
i i

s r

s s c t s c t i N

s s c t s c t j N

ξ ξ

ξ

ξ

ξ ξ

= = =

 
+ + 

 

+ + + ≥ − =

+ + + ≤ − =

≥

∑ ∑ ∑

L L

L L

(5.92)

where ‘slack’ variables ξ are introduced to take care of misclassification if the problem is

non-separable. A misclassification is indicated by ξ > 1. The scalar r is used to penalize

the total amount of misclassification.

In implementing the above procedure to find a separation boundary in practice,

one practical problem is encountered when a trivial solution is obtained via solving the

SVM. The trivial solution is defined by letting all separation parameters be zero. One

possible situation to have a trivial solution is when the problem is equally mixed. A

different approach is then taken to find a separation boundary if a zero boundary is

obtained out of the SVM.

 The following several examples show progressively how a trivial solution is

obtained. Figure 5.12(a) shows a linearly separable example; the obtained separation

boundary due to SVM is shown in Figure 5.12(b). In fact, the obtained boundary is same

as that due to a linear discriminate method.

107

(a) (b)

Figure 5.12. A linear boundary generated for liner separable data

 A little mixed example (linear non-separable) is shown in Figure 5.13, where 5

solid dots are mixed with circles. The solid separation boundary is due to a SVM solution

and the dashed line is due to a linear discriminate method. Two methods can be compared

based on the number of misclassifications. The SVM method performances better with 10

misclassification than the linear discriminate with 16 misclassifications.

Figure 5.13. A linear non-separable case;
(solid line by SVM, dashed line by liner discriminate)

 A more mixed or non-separable case is shown in Figure 5.14, where a set of dots

-1 -0.5 0 0.5 1
-0.5

0

0.5

c1

c2

-1 -0.5 0 0.5 1
-0.5

0

0.5

c1

c2

-1 -0.5 0 0.5 1
-0.5

0

0.5

c1

c2

108

are followed by a set of equal number circles. The pattern then repeats.

Figure 5.14. A liner non-separable example with equally mixed points

The resultant values of separation parameters are all zeros by either SVM or

linear discriminate method. The dots and circles are equally mixed. Any linear boundary

through the center of region will end up with same number misclassification. In the

objective function of Equation (5.92), the penalty term for the non-separability is a

constant. Therefore, the only quantity can be minimized is the norm of separation

parameter vector. Its minimum is zero with all separation parameters being zero.

On the other hand, it is clear from Figure 5.14 that two categories of data exist,

dots and circles. Separation has to be defined. In this situation, a technique based on a

special type of neural network, liner vector quantization (LVQ) (Hagan, Demuth &

Beale, 2002) is used to find a suitable linear boundary. LVQ is a clustering technique

used to recognize clusters in the categorized data. A separation boundary could be

defined by connecting centers of two clusters for different categories. Figure 5.15 shows

the result of the implementation of LVQ for the problem in Figure 5.14. As shown, there

are 10 clusters (triangles) recognized for dots and 10 clusters (stars) for circles. There are

hence totally 100 possible linear separation boundaries. The best one is reported as the

found separation boundary.

-1 -0.5 0 0.5 1
-0.5

0

0.5

c1

c2

109

Figure 5.15. Clusters found by LVQ for data in Figure 5.14

5.5.3 Boundary Refinement

The solved s is then applied to Equations (5.36) and (5.37) to update φ(t), which is

now confined a linear separation boundary. The resultant φ(t) defines a split, [yA CA XA]

and [yB CB XB]. Then a and b are estimated by Equation (5.74). It then is able to evaluate

residuals εA and εB explicitly by Equation (5.75). The belongingness values of φ(t) are

then updated by minimizing the following J with replacement of (y(t)-µA) and (y(t)-µB) in

Equation (5.88) by εA(t) and εB(t)

() () ()() ()
22 2 2

1

1
N

t

J t t t tϕ ε ϕ ε
=

= + −∑ A B

(5.93)

where, φ(t) is solved by

() ()
() ()

2

2 2

t
t

t t

ε
ϕ

ε ε
=

+
B

A B

(5.94)

The new φ(t) is then converted to 0 and 1 by Equation (5.91) and the SVM is solved

again. Subsequently, a and b are re-estimated. The flowchart in Figure 5.16 illustrates the

procedure to solve the SRP.

-1 -0.5 0 0.5 1
-0.5

0

0.5

c1

c2

110

Figure 5.16. Flowchart for solving a SRP

5.5.4 Testing and Demonstration

The following examples are used to demonstrate how to implement the proposed

technique to solve a SRP in practice. The first example is a piecewise linear function

defined as below and illustrated in Figure 5.17(a)

1

2

9 47.5 0 2.5

10 2.5 4

y x x
y

y x x

 = − + ≤ ≤
≡ 

= − < ≤
(5.95)

where, the separation is at x=2.5. Solving the problem of Equation (5.88), the solved µA

and µB are -32.4915 and 36.5139 and the φ due to Equation (5.87) separate the function is

shown in Figure 5.17(a), where dots and circles represent two different groups.

SRP

Solve µA and µB (5.88)

Solve φ(t) (5.87) and Convert (5.91)

Solve a SVM for s (5.92) or Try LVQ

Compute φ(t) (5.36), (5.37)

Estimate a and b (5.74)

Solve φ(t) (5.94) and Convert (5.91)

Converge ?

END

No

Yes

111

(a) (b)

Figure 5.17. a) Initialization of data segregation for Equation (5.95);
b) A linear separation boundary found for the initial data segregation

The initial separation is consistent with the piece-wise function. The resultant

separation boundary is shown as the vertical line in Figure 5.17(b).This problem has a

very particular piece-wise function, which has very distinct values in each region. The

problem is actually solved at the first iteration. The initial data segregation is consistent

with the underlying function nonlinearity.

 The second example is defined by

1

2

9 47.5 0 2.5

5 2.5 4

y x x
y

y x x

 = − + ≤ ≤
≡ 

= − < ≤
 (5.96)

where, the difference to the first example is in the second linear function. The separation

is also at x=2.5. The found optimal µA and µB of y, are 17.4742, 38.5195. The resultant

segregation of data is shown in Figure 5.18(a), where the segregation is not totally

consistent with the desired separation according to the function definition. 5 circles

before x=2.5 should be dots. The misclassification illustrates the mismatch between an

unsupervised learning and the desired classification. The first separation boundary by

solving a SVM is shown as the dot-dashed vertical line (the leftmost one) in Figure

5.18(b), which separates circles from dots. Then two linear models are obtained. One of

0 1 2 3 4
-40

-20

0

20

40

x

y

0 1 2 3 4
-40

-20

0

20

40

x

y

112

linear models actually (dots) matches the true model exactly since dots are all resulted

from one linear function. Residuals are computed after two linear models are obtained

and the separation boundary is then updated, which is shown as the dashed vertical line

(the rightmost one) in Figure 5.18(b). Clearly, it is closer to the desired solution at x=2.5

than the initial boundary. The dashed line resulted in a better separation and two better

local models. Using the improved local models, residuals are updated, which in turn

results in another step of improvement of separation boundary. The third separation is

shown as the solid vertical line (middle one) in Figure 5.18(b). The solution is at x = -

2.4757. In this simulation, further iteration results in no improvement. Actually, there are

infinite number of global solutions between two margin points, the last point from the left

line equation and first point from the right one. The resultant one is due to the SVM

solution, which is expected to be robust with equal distance between two margin points.

(a) (b)

Figure 5.18. a) Initialization of data segregation for Equation (5.96)
b) Initial linear boundary and its variation over iteration

 The third example is more confusing at the initial step than the first two and

defined by

1

2

9 47.5 0 2.5

5 2.5 4

y x x
y

y x x

 = − + ≤ ≤
≡ 

= − < ≤
(5.97)

0 1 2 3 4

15

20

25

30

35

40

45

x

y

0 1 2 3 4

15

20

25

30

35

40

45

x

y

113

The initial separation is shown in Figure 5.19(a) with two recognized centers µA =

35.1792 and µB = 34.7254, which separates high value y from low values. However, the

initial separation does not match the underlying nonlinearity in the piecewise function.

The initial boundary solved is the dot-dashed line (the leftmost one) shown in Figure

5.19(b). Another iteration brings the separation boundary to the right of x=2.5 (the dashed

line in Figure 5.19(b). The final separation boundary is shown as the solid vertical line at

x=-2.4757 in Figure 5.19(b).

(a) (b)

Figure 5.19. a) Initialization of data segregation for Equation (5.97)
b) Initial linear boundary and its variation over iteration

Note that the nonlinear optimization problem in Equation (5.88) is subject to the

initial guesses of µA and µB (a common problem for all nonlinear optimization problems).

Figure 5.20 shows an initial separation due to estimated µA(0) = 35.4836 and µB(0) =

57.9810. It appears that a linear boundary might not be needed since all data points

appear to belong to one category with only two dark dots are observed in the upper-left

corner in Figure 5.20. Solving a SVM based on the initial categorization results in a

trivial separation with s0=-1, s1 = 0, which means no separation. Clearly, the initial

categorization of data is not consistent with the underlying nonlinear function.

0 1 2 3 4
25

30

35

40

45

x

y

0 1 2 3 4
25

30

35

40

45

x

y

114

Figure 5.20. An initial data segregation for Equation (5.97) fails a SVM solver

As mentioned above, a LVQ based method will be applied when SVM fails. For

this case, a linear quantization vector (LVQ) is solved to recognize some clusters in each

category. The result is shown in Figure 5.21, where one cluster (star) is identified for the

two solid dots and 16 clusters (triangles) are identified for the circles. Given the solved

LVQ, the next step is to try all possible separation boundaries. One boundary at x=0.9160

defined by two clusters of x=0.0312 (star) and x=1.8 (triangle) is shown in Figure 5.21.

In this case, 16 separation boundaries are tried (one star and 16 triangles).

Figure 5.21. Clusters recognized using LVQ for the initial segregation in Figure 5.20

 The best of 16 trials is shown as the dot-dashed vertical line (the leftmost) in

Figure 5.22. The dashed and solid linear boundaries are obtained in the next two

iterations. Convergence is obtained at x = -2.4757.

0 1 2 3 4
25

30

35

40

45

x
y

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.5

0

0.5

1

x

φ

115

Figure 5.22. Initial boundary from clusters in Figure 5.21 and its variation in iterations

 As shown in Figure 5.23 is a SRP applied to a linear piecewise function with three

pieces. The resultant separation is the solid vertical line (the leftmost one) in Figure 5.23.

One can imagine that subsequent steps will be to solve two SRPs for data on both sides of

the first separation. Following the procedure, an antecedent space is progressively

partitioned.

Figure 5.23. Liner boundary solved for a three-piece piecewise function

 Figure 5.24 shows results for a quadratic function after eight iterations. Unlike the

piece-wise linear functions, it is hard to tell how ‘optimal’ the solution is. Solutions for

0 1 2 3 4
25

30

35

40

45

x
y

0 1 2 3 4
35

40

45

50

55

60

x

y

116

the two-piece piecewise linear functions can be easily verified as global optimal solutions

since obtained separation matches the separations defined in original functions.

Figure 5.24. Linear boundary solved for a quadratic function

 The sum of squared error (SSE) with respect to different separation boundary

locations is shown in Figure 5.25 for the quadratic function. As shown, the optimization

problem appears to have a ‘global’ minimum around 1, which matches the converged

solution shown in Figure 5.24.

Figure 5.25. SSE with respect to the separation locations for the quadratic function

-4 -2 0 2
0

5

10

15

x

y

-4 -2 0 2
0

200

400

600

800

1000

w

ss
e

117

Figure 5.26 shows a one-period of Sin function, where the convergence is

obtained at -2.5741. The solution is also shown in Figure 5.27 for the performance

function (SSE) with respect to separation. The performance function is more complex

than that in Figure 5.25. As shown in Figure 5.27, the resultant separation boundary is at

the right edge of the valley of the performance function.

Figure 5.26. Initial linear boundary and its variation over iteration

Figure 5.27. SSE with respect to the separation locations for Sin(x)

0 2 4 6

-0.5

0

0.5

x

y

0 2 4 6
8

10

12

14

16

18

20

22

w

ss
e

118

5.5.5 Comparison to Other Methods

In this section, the above mentioned SRP solving procedure is compared to two

other methods. One is to use Newton’s method to optimize the separation parameters, s,

and local model parameters a and b simultaneously using a “soft” boundary. The other

one is the Nelder-Mead method to search for separation parameters only. The following

comparison is based on the piece wise linear function in Equation (5.97) and the function

defined in Equation (5.98)

a. Newton’s method to solve a SRP

The first and second order derivatives for using a Newton’s method are described

in Equations (5.43) and (5.50). One tuning factor is τ for the sharpness of a boundary,

which has to be carefully chosen for a satisfactory result. The parameters, s0, a and b are

randomly initialized. In order to avoiding out-of-antecedent-space initial separation

boundaries, the parameter s1 is set such at the initial separation boundary location is at

x=3.2040. The following gradients (g) and Hessian matrix (H) are evaluated for a very

small τ = 1e-6 (τ = 0 will give indefinite evaluations numerically)

[]2110.3 2963.9 558.41 2032.4 0 0
T

= − − − −g

65 104 0 0 0 0

104 223.6 0 0 0 0

0 0 16 58 0 0

0 0 58 211.1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T
 
 
 
 

=  
 
 
 
 

H

where the gradients and Hessian matrix to s are all zeros, which verifies the derivations in

Equations (5.62, 5.64, 5.65, 5.67 and 5.68). Therefore, separation parameters cannot be

updated. The performance indexes over iterations are

J = [45745 215.05 215.04]

119

which implies that Newton’s method converges after one step. The separation boundary

is still at x=3.2024 and the improvement is achieved only by adjusting the local model

parameters a and b. The procedure is same as to conduct two linear regressions on both

sides of a random linear separation boundary. Although the boundary is far from the

desired, the solution is still a local optimum.

The following g and H are evaluated at τ = 0.1, where evaluations for separation

parameters become significant.

[]2105.2 2956.8 564.29 2041.2 3800.6 1179.6
T

= − − − −g

62.58 96.573 1.9995 6.4058 1860.8 577.7

96.573 200.78 6.4058 20.588 6012.7 1860.8

1.9995 6.4058 14.421 52.615 1987.3 617.12

6.4058 20.588 52.615 192.74 6419.8 1987.3

1860.8 6012.7 1987.3 6419.8 13106 2892.3

577.7 1860.8 6

− −
=

− −

− − − −

−

H

17.12 1987.3 2892.3 534.21

T
 
 
 
 
 
 
 
 

− − − 

 The performance index over iterations is shown in Figure 5.28 Newton’s method

converges after 5 iterations.

Figure 5.28. Objective function converges using Newton’s method to solve a SRP

5 10 15
0

1

2

3

4

x 10
4

k

ob
j

120

The separation boundary converges x=3.2680 and the final performance index is

250.9310, which is however larger than 215.04 due to τ =1e-6. Several tests are

conducted on various τ values and the results are collected in Table 5.1. Figure 5.29

shows the converged objective function values with respect to τ. If an extra layer of

optimization is introduced to optimize the scalar τ, Figure 5.29 implies that the

optimization will be subject to local optimal solutions.

Table 5.1. Solution for a SRP using different τ values

τ obj(final) Separation boundary τ obj(final) Separation boundary

1e-6 215.0415 3.2040 0.6 2.7419 2.6838

1e-3 215.0421 3.2000 0.7 0.0003 2.5062

0.01 181.7927 3.2000 0.8 0.0014 2.5004

0.1 250.9310 3.2680 0.9 28.4969 2.6215

0.2 155.3974 2.0837 1.0 46.8515 3.2997

0.3 3.8066 2.7486 1.5 8.5687 3.0385

0.4 1.3362 2.5848 2.0 9.6278 3.0246

0.5 16.3559 2.7133

Figure 5.29. Converged objective function value with respect to τ

0

50

100

150

200

250

0 0.5 1 1.5 2

o
b

j(
fin

al
)

τ

121

b. Nelder-Mead method to solve a SRP

A Nelder-Mead method searches for separation boundary parameters only. For

each tried separation boundary, two local linear models are then estimated by least square

regression. Figure 5.30 is the pseudo code for the Nelder-Mead to solve a SRP.

() () ()
() ()

1 2

1

0

1, 2, 0.5, 0.5, 0.001
While (1)

/ / ordering all the vertices
J J J
IF J J Then

return
End IF
/ / compute the center of the best m-1 vertices

11=
1 1

//compute the refletion of the wors

m

m

k

m

m k

α ρ γ σ ε

ε

= = = = =

≤ ≤ ≤
− ≤

−
∑− =

s s s

s s

s s

L

()
() () () ()

() ()

()
() ()

0 0

1 1

1

0 0

t vertex to the center
=

IF And Then
replace by

Else IF Then
/ / compute the expansion vertex

IF Then
replace by

Else
replace by

End IF
Els

r m

r r m

m r

r

e m

e r

m e

m r

J J J J

J J

J J

α

γ

−

+ −
< <

<

= + −
<

s s s s

s s s s

s s

s s

s s s s

s s

s s

s s

()
() ()

()
()

0

1 1

e
/ / contraction

1

IF Then
Replace by

Else
//Shrink
For each 1, ,

End For
End IF

End IF
End While

c r

c r

m c

i

i i

J J

i m

ρ ρ

σ

= + −
≤

=
= + −

s s s

s s

s s

s

s s s s

L

Figure 5.30. Nelder-Mead algorithm to solve a SRP

122

where, m is the number of vertices and defined by nc+1.

Unlike the above mentioned Newton’s method, the Nelder-Mead adjusts only

separation parameters while the former optimizes both separation parameters and local

model parameters at the same time. There are many factors affecting a Nelder-Mead

method such as values for α, ρ and γ in the pseudo code. More importantly, the Neader-

Mead method is also subject to initial guesses. Shown in Figure 5.31 is the performance

index with respect to the location of a separation boundary. The performance is defined

by SSE error reduction by having two local linear models

Figure 5.31. SSE with respect to the separation locations for Equation (5.97)

Figure 5.31 shows that the problem to be solved by the Nelder-Mead method has

only one local optimal solution, which is also the global solution. As expected, the

Nelder-Mead method should be able to locate the global optimal solution. Figure 5.32

shows 50 trials of the Nelder-Mead starting from random initial guesses, where global

solution is found 48 times.

0 1 2 3 4

-2000

-1500

-1000

-500

0

w

er
ro

r
re

du
ct

io
n

123

Figure 5.32. Separation locations for Equation (5.97) by Nelder-Mead method

The second function to be tried is defined as below (Zhang, Chen, Ansari & Shi,

2004) and plotted in Figure 5.33

() () () () () ()1 0.5 sin 2 1 0.4 cos 1 0.1 sin 3 ; 0 5y x x x x x x xπ π π= − + + + + ≤ ≤ (5.98)

Figure 5.33. Illustration of the function in Equation (5.98)

0 10 20 30 40 50
1.5

2

2.5

3

3.5

4

k

w

0 1 2 3 4 5

-3

-2

-1

0

1

2

3

x

y

124

The performance index with respect to the location of separation boundary is

shown in Figure 5.34, where several local optimal solutions are observed

Figure 5.34. SSE with respect to separation locations for Equation (5.98)

Figure 5.35 shows the solutions obtained by the Nelder-Mead method out of 50

trials. Among them, 15 solutions are around the global solution at w=3.47.

Figure 5.35. Separation locations for Equation (5.98) by Nelder-Mead method

0 1 2 3 4 5

-80

-60

-40

-20

0

w

er
ro

r
re

du
ct

io
n

0 10 20 30 40 50
0

1

2

3

4

5

k

w

125

The 50 trials by solving the SRP using the proposed procedure are shown in

Figure 5.36. The scattering of solutions shown in Figure 5.35 is not observed in Figure

5.36. Instead, two groups of solutions could be visually recognized. There are 35

solutions around the global solution. The other 15 solutions concentrate around w = 3.7

and a little away from the global solution.

Figure 5.36. Separation locations for Equation (5.98) by the proposed SRP solver

As a conclusion, the proposed solving procedure for a SRP is more robust and

problem independent. The Newton’s method depends the ‘sharpness’ factor, τ, whose

impact on the algorithm is shown complex. Direct search methods such as the Nelder-

Mead method are subject to algorithm configurations and could get trapped by local

optimal than the proposed SRP solver.

5.6 Extension to Multiple-Output Processes

Readers might choose to skip this section and come back for details when dealing

with MIMO models.

The above SRP is for single-output models. Several functions need to be extended

for models with multiple outputs. One of them is the performance index in Equation

(5.85), which is redefined for multiple outputs by

0 10 20 30 40 50
0

1

2

3

4

5

k

w

126

()
() ()() ()() ()() ()() ()()

()

22

, ,
1

minmize 1

subject to

0,1; 1, ,

N
T T

t
t

J t t t t t t

t t N

µ µ ϕ
ϕ ϕ

ϕ

=

= − − + − − −

= =

∑
A B

A A A B B By µ R y µ y µ R y µ

L

(5.99)

where scalar y(t) is replaced by a vector y(t) with dimension of n. Scalars of µA and µB

are also replaced by their vector versions. Two diagonal weighting matrices RA and RB

are introduced to adjust the scale of each output in each group (all weights are positive

numbers).

 φ(t) in Equation (5.87) is then solved by

()
()() ()()

()() ()() ()() ()()

T

T T

t t
t

t t t t
ϕ

− −
=

− − + − −

B B B

A A A B B B

y µ R y µ

y µ R y µ y µ R y µ

 (5.100)

and described by

() B

A B

E
t

E E
ϕ =

+
 (5.101)

with

()() ()()
()() ()()

T

T

E t t

E t t

= − −

= − −

A A A A

B B B B

y µ R y µ

y µ R y µ

It can also be verified that φ(t) in Equation (5.100) minimizes the objective

funtion in Equation (5.99). With the definition of φ(t) by µA and µB, the optimization

problem is converted to a problem with only decision variables of µA and µB. The first-

order derivatives of J to µA and µB are described by

127

() () () ()() ()

() () ()() ()() ()

2

1

2

1

2 2 1

2 1 2 1

N
A

A
t

N

A
t

t tEJ
t E t t E

t tEJ
t E t t E

ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ ϕ

=

=

∂ ∂∂∂
= + − −

∂ ∂ ∂ ∂

∂ ∂∂∂
= + − − −

∂ ∂ ∂ ∂

∑

∑

B
A A A A

B
B

B B B B

µ µ µ µ

µ µ µ µ

 (5.102)

 The second-order derivatives are described by

() () () () () () ()()
()

() ()
()

()() ()() ()

2

2 2
1

2
3

1
2 4 4

16 2

T TN

t

T T

t E t Et t t EJ
E E t E R

E E

t E t E E
E R y t y t R R t

E E

ϕ ϕϕ ϕ ϕ
ϕ

ϕ ϕ
ϕ

=

 − − ∂ ∂ ∂  ∂∂  = + + +    ∂ ∂ ∂ ∂  ∂ +    

+ −
+ − − +

+

∑ A BB
A B B A

A A A AA A B

A B B
B A A A A A

A B

µ µ µ µµ

µ µ

(5.103)

() () () ()() () () ()()
()

() ()
()

()() ()() ()()

2

2 2
1

2

3

1
2 4 1 4

16 2 1

T TN

t

T T

t E t Et t t EJ
E E t E R

E E

E t E t E
E R y t y t R R t

E E

ϕ ϕϕ ϕ ϕ
ϕ

ϕ ϕ
ϕ

=

 − − ∂ ∂ ∂  ∂∂  = + + − +    ∂ ∂ ∂ ∂  ∂ +    

− −
+ − − + −

+

∑ A BB
A B A B

B B B BB A B

B A B
A B B B B B

A B

µ µ µ µµ

µ µ

 (5.104)

() () () () () ()() ()

()() ()
()

() ()()
()

()() ()()

2

1

2

2 3

2 2 2 1

1 1
8 16

T T TN

t

T T

t t t tE EJ
E E t t

t E t E t E E t E
R y t y t R

E E E E

ϕ ϕ ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ

=

 ∂ ∂ ∂ ∂   ∂ ∂∂
= + + − −      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂     

 − − − −
 + + − −
 + + 

∑ A B
A B

A B B A A BA B

B A A B B
A A B B

A B A B

µ µ µ µ µ µµ µ

µ µ

(5.105)

where, the derivatives of EA and EB to µA and µB are defined respectively

()()

()()

1

2

2

2

A

B

B

E
t

E
t

∂
= − −

∂

∂
= − −

∂

A
A

B

R y µ
µ

R y µ
µ

 (5.106)

and the derivatives of φ(t) to µA and µB are defined by

128

()
()

()
()

2

2

A
t E E

E E

t E E

E E

ϕ

ϕ

∂ − ∂
=

∂ ∂+

∂ ∂
=

∂ ∂+

B

A AA B

B B

B BA B

µ µ

µ µ

 (5.107)

 The problem is non-convex. The same optimizer using the revised Newton’s

method for non-definite quadratic problems is used.

5.7 Recursive Partition by Growing a Binary Tree

The above mentioned SRP finds a linear separation boundary. A tree growth

procedure is defined to recursively solve SRPs in obtained regions, which at the end

defines a partition in an antecedent space. The procedure should end when stopping

criteria are satisfied. As shown in Figure 5.23, it is clear to observe that one more SRPs

on either side of the first separation boundary is required to complete the partition. Then,

the growth procedure stops when modeling error is zero. The simple stopping criterion is

only suitable for a piece-wise linear model. For a nonlinear model as shown in Figure

5.24, the tree growth cannot be stopped by the zero-modeling-error stopping criterion

given sufficient number of data points in each region for parameter estimation.

Practically, the growth has to be stopped at least for the minimal number of data points in

a region to estimate local model parameters.

In this work, a scalar αM is used to determine if a splitting is acceptable. The

threshold number determines the minimum number of data points in a region. A splitting

is rejected if either resultant region contains less than αM data points. The threshold

number is not directly set by users but resulted from a predefined number, M .

M

N

M
α = (5.108)

where N is the number of data points and M could be roughly interpreted as the

anticipated maximum number of regions (rules). It is expected that the number M is

129

more relevant for users’ anticipation of the modeling complexity, number of rules. Lack

of fit should be expected if the M is chosen too small while a too largeM will result in

over fit. Trials could be taken to find a suitable M . More aggressively, a linear search

could be conducted to find an optimal M .

 Different M are tried for function y=x2 over [-4,4]. The results for M = 3,5,10

and 15 are shown in Figure 5.37. Table 5.2 collects the number of regions and SSE for

each M . Without any split, the SSE is 3755.37. The reduction rate of SSE is 93.72 % at

M = 3 with one split. Another 5.81% improvement is achieved at M = 5 with another

two splits. 0.38% improvement is gained at M = 10 with another three splits. Trials could

be made for different M .

 (a) M =3 (b) M =5

 (c) M =10 (d) M =15

Figure 5.37. Antecedent partition using different M

-4 -2 0 2 4
0

5

10

15
2

3

x

y

-4 -2 0 2 4
0

5

10

15
4

5

6

7

x

y

-4 -2 0 2 4
0

5

10

15
4

8

9

10
11

12
13

x

y

-4 -2 0 2 4
0

5

10

15
8

9

10

12
13

14
16

17
18

19

x

y

130

Table 5.2. The number of rules and SSE resulted from different M

M 3 5 10 15 20

M 2 4 7 10 14

SSE 235.67 17.16 2.94 0.9428 0.1526

In this work, M is not searched. Instead, a large M is chosen on purpose, which

might result in a ‘large’ model with ‘too’ many rules’. Then a tree trim procedure is

conducted to cut off unnecessary tree branches to reduce model complexity.

5.8 Removal of Insignificant Partitions by Trimming a Tree

As mentioned above, an appropriate M is needed to generate a suitable size

GTSK model with reasonable number of rules. Trials could be made to find a proper M .

In this work, M is not tried. Instead, a ‘large’ M is used, which will purposely over-

partition an antecedent space. By doing that, the problem to be solved can only be over-

fitting but not under-fitting. Subsequently, some regions in the over-partitioned spaces

are merged via removing some unnecessary boundaries, which has the least model

improvement per model complexity efficiency. Therefore, the under-fitting and over-

fitting are addressed in two stages.

Using a large M could also be considered as an attempt to find a ‘global’ solution

out of one obtained in a step-wise manner. Ideally, the partition problem should be solved

by considering all separation boundaries together in order to get a global optimal partition

in terms of both modeling complexity and errors. Rather than attempting to solve such a

difficulty problem, the recursive procedure in this work is to solve a separation a time.

Together, separations from each step build up the solution. The resultant solution is a

step-wise partition, which is expected to be different from a solution obtained from

‘global’ procedure if it ever exists. If a large M is used, it is hoped that the resultant step-

wise solution contains a ‘global’ solution. If considering a tree structure, the ‘global’

optimal tree is contained in the excessively large tree due to a large M . The problem

131

remains to be solved is to find the ‘global’ tree by removing unnecessary branches and

leaves from the ‘big’ tree.

A tree trim procedure is then operated to remove unnecessary branches. Branches

to be removed should have low model improvement per model complexity efficiency. As

shown in Figure 5.38(a), there are three branches with branch nodes t2, t3 and t7. A branch

is denoted by Bt, for instance, branch Bt3 extracted from Figure 5.38(a) is shown in

Figure 5.5.

Figure 5.38. The branch Bt3 from Figure 5.5(a)

A branch Bt is defined as a set of leaf nodes that are decedents of Bt. For

instance, Bt3 in Figure 5.38 is defined by []3 6 8 9, , .Bt t t t=

At the tree-growth stage, the node t3 is split into two nodes t6 and t7. The split is

accepted if the modeling error is reduced, and t6 and t7 contain sufficient amount of data

points. Therefore, the comparison is only made between t3 and its two immediate

decedents. The comparison can be extended to include later generation decedents. As

shown in Figure 5.38, node t3 is split into 3 leaf nodes. An extended comparison could be

made to evaluate if the split of t3 to [t6,t8,t9] is necessary. However, the extended

comparison is only applicable when the branch Bt3 for t3 is known. It is why the

following procedure is implemented after the tree-growth procedure is finished.

132

A performance index for a branch Bt is defined by

 () ()
Bt

R Bt R
τ

τ
∈

=∑ (5.109)

Where R(τ) is the SSE of the local linear model for the node, τ. Its regularization with

considering model complexity is defined by

() ()R Bt R Bt Btα α= + (5.110)

 where |Bt| represents the complexity of branch Bt. A regularization performance index is

also defined for the branch node t

() ()R t R t tα α= + (5.111)

where |t| is the complexity for the model to the node t. In this work, the complexity is

simply defined as the number models in a branch. Therefore, |t| is always 1 since it

contains only one model while |Bt| is the number of leaf nodes.

The branch Bt will be kept (all splits are accepted) if () ()aR Bt R tα < . The

inequality however depends on α, which reaches a critical α, αc(t), when () ()aR Bt R tα = .

The variable αc (t) is hence defined by (5.112)

 ()
() ()

, is a branch node

, is a leaf or root node
c

R t R Bt
t

t Bt t

t

α

 −


= −
∞

 (5.112)

The critical value αc(t) hence reveals the performance improvement per

complexity increment efficiency for the branch node, t. Clearly, larger αc(t) is preferred

and less efficient branch should be removed. At every step, αc for all branch nodes are

computed. The branch node with the minimum αc is defined by tp

133

 () () ()
1

minc p t Bt

R t R Bt
a t

Bt t∈

−
=

−
 (5.113)

where, Bt1 is a abuse of the branch notation and represents the entire tree (a branch from

the root node). The branch Btp is then hypothetically removed. Then, αc is reevaluated for

all left branch nodes, and another tp is found and hypothetically removed. The procedure

continues until the root node, t1, is reached. It is shown that αc(tp) value will be

monotonically decreasing (Breiman, Friedman, Olshen & Stone, 1984), which implies

that worse branches are removed first and the removal sequence is optimal.

The above procedure will generate a sequence of αc(tp), which is the minimum in

each step. Nodes with αc (tp) lower than a threshold number will be actually removed and

a trimmed tree is then obtained. In this work, the threshold number is tried for an

appropriate level of complexity.

The corresponding tree structure for the Figure 5.37(c) is shown in Figure 5.39,

where the number under each box is the sum of squared error and solid boxes are for leaf

nodes.

Figure 5.39. The tree structure for the antecedent partition in Figure 5.37 (c)

1
3755

2
114

3
121

4
2

5
6

6
2

7
7

8
0

9
0

10
0

11
0

12
0

13
0

134

Table 5.3. The value αc for branch nodes shown in Figure 5.39

αc t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13

1 ∞ 55.69 40.12 ∞ 5.90 1.70 6.62 ∞ ∞ ∞ ∞ ∞ ∞

2 ∞ 55.69 59.32 ∞ 5.90 ∞ 6.62 ∞ ∞ ∞ ∞ ∞ ∞

3 ∞ 105.48 59.32 ∞ ∞ ∞ 6.62 ∞ ∞ ∞ ∞ ∞ ∞

4 ∞ 105.48 112.03 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

5 ∞ ∞ 112.03 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

6 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

As shown in Figure 5.39, there are 5 branch nodes, t2, t3, t5, t6 and t7. At the first

step, the minimum αc is found for t6 with 1.7032. Then branch Bt6 is hypothetically

removed. The removal is simply operated by changing the branch node t6 to a leaf node.

At next step, the branch node with minimum αc is t5 with 5.8971. The procedure

continues until all branch nodes are hypothetically removed. The largest αc is 112.03 and

its 10%, 11.20 is set as the threshold number to remove insignificant branch nodes. In this

example, branches underneath branch nodes t5, t6, and t7 will be permanently removed.

The resultant trimmed tree is shown in Figure 5.40(a). The corresponding splitting is

shown in Figure 5.40(b), where light-colored vertical lines represented removed splits.

The result is same as that shown in Figure 5.41(b) with M = 5.

(a) (b)

Figure 5.40. Antecedent space partition after removing splits under branch nodes t5, t6

and t7 in Figure 5.39; light lines represent removed splits

1

3755

2

114

3

121

4

2

5

6

6

2

7

7 -4 -2 0 2 4
0

5

10

15

x

y

4

5

6

7

135

The results for trimmed trees due to M = 15 and 20 are also shown in Figure 5.41

for comparison, where the threshold is also set as the 10% of the largest αc. It is observed

that trimmed trees are identical regardless the value of M . Therefore, an excessive large

M could be used to generate a large tree and a tree-trim procedure is used to remove

unnecessary branches. Certainly, more computation is needed for generating a bigger

tree, which however gives a better chance to contain an ‘optimal’ tree.

(a) (b)

Figure 5.41. Antecedent space partitions after remove some unimportant splits (light
lines) for a) Figure 5.37 (c); b) Figure 5.37 (d)

5.9 Rule Antecedent Parameter Estimation

The tree growth procedure generates a number of separation boundaries that

partition the antecedent space. Given a partitioned antecedent space, there are many

views on recognizing a local region. One way is to consider the local region as a

polyhedron consisting of several separation boundaries. Another way is to consider the

local region to be a set of points. Each way has its corresponding methods to identify

centers and ellipsoids. Within a polyhedron, a maximum volume ellipsoid could be found.

A minimum volume ellipsoid could be found containing a set of points. Both problems

can be solved efficiently by convex optimization (Boyd & Vandenberghe, 2004). A

dynamic search approach in (Pronzato, Wynn & Zhigljabsky, 2000) can also be used to

-4 -2 0 2 4
0

5

10

15

x

y

4

5

6

7

-4 -2 0 2 4
0

5

10

15

x

y

4

5

6

7

136

identify ellipsoids.

The above mentioned techniques are sound choices. However, and perhaps

unnecessarily, this work also considers the quality of each data point. The quality is

related to the prediction error for each data sample. For instance, the solid dots in Figure

5.42 represent data points with small residuals while the circles represent data points with

larger residuals.

Figure 5.42. A local region in an antecedent space; dark dots represent data points with

smaller residuals while circles represent points with higher residuals

A rule antecedent in fact represents the region where the consequent model is

expected to be accurate. It is then reasonable to use only data samples with smaller

residuals to estimate the antecedent parameters. There are many approaches for

weighting the importance of data. This work uses a simple approach, where weighting is

defined by the residual

()

()

2

exp
r r

ir
i Tr

N ε
β

 
 = −
 
 ε ε

 (5.114)

where Nr is the number of data points in region r. The script (r,i) represents the ith data in

region r. r
iβ reaches the highest value at 1 when r

iε is zero.

1c

2c

137

The centroid or is estimated by

1

1

r

r

N
r r
i i

r i

N
r
i

i

β

β

=

=

=
∑

∑

c
o (5.115)

and the matrix Pr is defined by its inverse

 ()
()()

1
1

1

P

r

r

N Tr r r r r
i i i

r i

N
r
i

i

β

β

−
=

=

− −
=
∑

∑

c o c o
 (5.116)

138

CHAPTER VI

RESULTS FOR TESTING PROBLEMS

The objective of Chapter 6 is to test the proposed procedure to create GTSK

models for function approximation in Section 6.1 and nonlinear dynamic process

modeling in Section 6.2. The GTSK models to be created use the generalized antecedent

structure proposed in Chapter 3. In modeling nonlinear dynamic processes, the dimension

of a GTSK model (both antecedent and consequent dimensions) is specified by the

determined dynamic orders and detected nonlinear components in Chapter 4. The model

parameters are determined by parameter estimation procedure presented in Chapter 5.

6.1 Function approximation

Function 1

The first function to be approximated is defined by

() ()()()3 1 1.9 0.7 1.8 , -2.1 x 2.1y x x x x x= − − + + ≤ ≤ (6.1)

Function 1 is used in (Dickerson & Kosko, 1996) as a primary example to demonstrate a

function approximation procedure using GTSK models. The procedure starts initializing

membership functions for both x and y by projecting recognized ellipsoidal patches onto

x-y coordinates. The patch reorganization is an unsupervised learning procedure.

Following the heuristic initialization, model parameters are refined using a steepest

decent optimizer. The algorithm in (Dickerson & Kosko, 1996) works fine for Function

1. As demonstrated in Section 5.4.2, unsupervised learning might result in inappropriate

initialization since it uses measures based on data distribution rather on nonlinearity.

139

Since the function has only one input, it should be included in both antecedent and

consequent. There are 412 points uniformly sampled from the function. The scalar M in

Equation (5.108) is set to 50, which implies that a region should no longer be split if it

contains less than 412/50 ≈ 8 data points.

 With the above configuration, 30 branch nodes are generated, each of which is

associated with an efficiency index, αc defined in Equation (5.113). Values of αc for all

branch nodes are shown in Figure 6.1.

Figure 6.1. Values of αc for antecedent space partition for Equation (6.1)

At this point, it should be subject to users’ judgment to select an approximate value

level in αc to discard unimportant splits. In this testing, we choose to keep first 5 branch

nodes. Among them, the lowest αc value is 68.70, to which the next lower αc value is

13.80. The resultant antecedent space partition is shown in Figure 6.2, which also shows

the membership function initialization for an 8-rule GTSK model. The membership

functions are initialized using Equations (5.115) and (5.116)

0

500

1000

1500

2000

0 5 10 15 20 25 30 35

α
c

k

140

Figure 6.2. Antecedent space partition and TAs based on Equation (6.1)

 The initialized GTSK model is fully described in Equation (6.2)

()()
()()
()()
()()
()()

1 1

2 2

3 3

4 4

5 5

6

is in 2.0,470.6 133.59 248.59

is in 1.9,371.5 76.37 137.48

is in 1.6,142.9 24.53 46.57

is in 1.0,10.9 12.65 8.34

is in 0.2,8.9 4.97 0.12

is in 1.2,

x R y x

x R y x

x R y x

x R y x

x R y x

x R

− = +

− = +

− = +

− = − −

= +

IF THEN

IF THEN

IF THEN

IF THEN

IF THEN

IF ()()
()()
()()

6

7 7

8 8

17.4 12.70 12.42

is in 1.7,153.3 15.10 31.23

is in 2.0,177.8 68.57 130.30

y x

x R y x

x R y x

= − +

= −

= −

THEN

IF THEN

IF THEN

 (6.2)

where, R1(-2.0,470.6) defines the region for the first rule (the leftmost in Figure 6.2) with

o1 = -2.0 and P1 = 470.6. Both o and P are introduced in Equation (3.7). In the first rule,

the linear consequent model is, y1 = 133.59x+248.59. Note that the linear consequent

model might not necessarily represent the local behavior of the original nonlinear

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-30

-20

-10

0

10

x
y

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

T
A

141

function due to linearization. The interpretation of linear consequent models depends on

the interactions in rules and is discussed later in detail

The GTSK model is then used to approximate the function. The approximation is

shown as dashed line in Figure 6.3. The mean squared error (MSE) for the approximation

is 0.21, which is lower than that mentioned in (Dickerson & Kosko, 1996).

Figure 6.3. Function approximation by the 8-rule GTSK model in Figure 6.2

Figure 6.4 shows for each rule the normalized truth of antecedent, w defined in

Equation (3.23), which could be used to visualize the interaction between rules and local

interpretability in each rule. For instance, the 4th rule almost works alone for x between -

1.4 and -0.6, where the valve of w for the 4th rule is about one. Therefore, the consequent

model in the 4th rule could be interpreted as a local linear approximation for the nonlinear

function over the above mentioned region. Following the similar procedure, it is possible

to interpret consequent models in all rules as local linear approximation for the nonlinear

function and identify the approximation region respectively. Interactions between rules

are signified by the value w a little far away from both 0 and 1. For instance, interaction

between the 4th and 5th rules is observed for x between -0.6 and -0.2, where there are

about 15 points with the value of w between 0.2 and 0.8. The assumption made on w in

Equation (5.24) would not hold due to the presence of many interactions in rules.

Therefore, it might be possible to use Newton’s method (Algorithm 5.1) to further adjust

model parameters to reduce the approximation error.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-30

-20

-10

0

10

x

y

142

Figure 6.4. Normalized TAs for those in Figure 6.2

 Figure 6.5 shows the optimized membership functions by Algorithm 5.1 starting

from the above initialization. The resultant function approximation is shown in Figure 6.6

with the MSE reduced to 0.12. The improvement in terms of MSE is clear. Some

noticeable large approximation error in Figure 6.3 (around x=-1.5, -0.5, 0.7) are

significantly reduced. The approximation in Figure 6.6 becomes also smoother, which is

due to the increase of overlap between adjacent membership functions. For instance, the

4th and 5th (from the left) membership functions in Figure 6.5 share a significant portion

of overlap, which is not observed in Figure 6.3. The increase of overlapping is also

observed in other adjacent membership function pairs, between 2nd and 3rd, and between

7th and 8th.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

w

143

Figure 6.5. Optimized TAs from initialization in Figure 6.2

Figure 6.6. Function approximation by the optimized 8-rule GTSK model

 The MSE reduction is achieved at the cost of interaction increase between rules.

Rules resulted from the initialization shown in Figure 6.3 are relatively independent. The

independence can be verified by the value w in Figure 6.4, which is close to 1 for the

majority of data. The independence implies that the behavior of each rule represents the

local behavior of the GTSK model. In other words, each rule is locally interpretable with

respect to the GTSK model. In Figure 6.5, membership functions are more coupled. The

increased interactions between rules are evidently observed in Figure 6.7. Rule 4 and 5

become less interpretable in terms of local behavior of the GTSK model. Both rules need

to be considered together to explain a perhaps local quadratic behavior.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

TA

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-30

-20

-10

0

10

x

y

144

In general, approximation error and model interpretability are two conflicting goals.

The illustrated interaction increase in rules should be expected in general when model

parameters are optimized by the Newton’s method (Algorithm 5.1), which will result in

GTSK models consisting of less interpretable rules due to poor modularity. On the other

hand, one might be able to preserve interpretability by forcing a certain distance between

centroids or limiting the overlap between membership functions.

Figure 6.7. Normalized TAs for those in Figure 6.5

 The two-stage parameter estimation procedure in Chapter 5 is also compared with

the following one with random initialization. Figures 6.8 and 6.9 show the best result out

of 50 trials. It represents a typical undesired result, stronger overlap but higher MSE

(0.41).

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

w

145

Figure 6.8. Optimized TAs starting from random initialization

Figure 6.9. Function approximation by the 8-rule GTSK model in Figure 6.8

In approximating Function 1, the αc is chosen to give an 8-rule GTSK model in

order to compare the 8-rule fuzzy model in (Dickerson & Kosko, 1996). Certainly, one

might need to have several trials to decide an appropriate value. In the following two

function approximation examples, we will demonstrate what one may expect when the

number of rules is progressive increased in a GTSK model.

Function 2 (Zhang, Chen, Ansari & Shi, 2004)

 The second function to be tested is defined by

() () ()sin 4 1 0.4 cos , 0 5y x x x xπ π= + + ≤ ≤ (6.3)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

TA

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-30

-20

-10

0

10

x

y

146

Figure 6.10 shows four different antecedent space partitions and membership

function initializations. The partition in Figure 6.10(b) has one more split than that in

Figure 6.10 (a). The additional split is added to the second region in Figure 6.10 (b),

which then generates two linear approximations. One more split is added in Figure 6.10

(c) to its leftmost region, which exhibit strong nonlinear behavior. In Figure 6.10 (d) two

more splits are added to split the 2nd and 9th regions in Figure 6.10 (c). It is observed in

Figure 6.10 (d) that more splits are placed in the left part of the function. The function is

uneven in terms of nonlinear behavior in different regions. Its left part is more nonlinear

than its other parts. Therefore, the obtained partition is desired, which distribute rules

according to nonlinearity.

 (a) 8-rule (b) 9-rule

(a) 10-rule (d) 13-rule

Figure 6.10. Antecedent space partition and TAs on Equation (6.3)

0 1 2 3 4 5

-2

0

2

x

y

0 1 2 3 4 5
0

0.5

1

x

T
A

0 1 2 3 4 5

-2

0

2

x

y

0 1 2 3 4 5
0

0.5

1

x

T
A

0 1 2 3 4 5

-2

0

2

x

y

0 1 2 3 4 5
0

0.5

1

x

T
A

0 1 2 3 4 5

-2

0

2

x

y

0 1 2 3 4 5
0

0.5

1

x

T
A

147

Function 3

 The third function to be tested is a two-dimensional quadratic function.

2 2
1 2 1 2, 2 , 2y x x x x= + − ≤ ≤ (6.4)

There are 441 points uniformly sampled. With M set at 100, there are 55 branch

nodes generated and their corresponding alphas are shown in Figure 6.11.

Figure 6.11. Values of αc for antecedent space partition for Equation (6.4)

The values of the first two αcs is much higher than others. It would be reasonable to

keep both if either one is to be kept. Figure 6.12 shows the resultant antecedent space and

the corresponding antecedents in terms of ellipsoids with TA=0.05

(a) (b)

Figure 6.12. a) Antecedent space partition by αc > 117; b) Ellipsoids (TA = 0.05)

0
20
40
60
80

100
120
140

0 10 20 30 40 50 60

α
c

k

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-2 -1 0 1 2
-2

-1

0

1

2

148

Figure 6.13 shows the normalized truth of antecedent for all rules, where limited

interactions are observed. It indicates that rules have good interpretability for the local

behavior of the nonlinear function. In this example, the optimization by Algorithm 5.1

reduces the MSE from 0.125 to 0.121 (3.2% improvement). The negligible improvement

is probably due to the distribution of w for each rule. Figure 6.13 shows that the values of

w for each rule are either high or low. The values of w for the rule in left-front corner are

plotted in Figure 6.14, where 424 out of 441 points have w outside the range of (0.1, 0.9).

Other 17 points cluster around either 0.8 or 0.2. Not much intermediate values are

observed for w. The observation might be able to make the assumption in Equation (5.24)

approximately hold. It then indicates that the initialization almost reaches a local solution.

Figure 6.13. Normalized TAs for those in Figure 6.12

-2
-1

0
1

2

-2

-1

0

1

2
0

0.2

0.4

0.6

0.8

1

x1
x2

w

149

Figure 6.14. Normalized TAs for the left-front rule in Figure 6.13

The obtained model is an 8-rule GTSK model, which approximates the quadratic

function using 8 planes. The approximation is shown in Figure 6.15 with MSE of 0.125.

Figure 6.15. Quadratic function approximation by the GTSK model in Figure 6.12

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

k

w

-2
-1

0
1

2

-2

0

2
-2

0

2

4

6

8

x1x2

y

150

Certainly, one can manage to discard the branch node with the second highest αc in

Figure 6.11. The resultant partition is shown in Figure 6.16, which is uneven and only

have the right portion of the antecedent space partitioned. It then suggests to keeping

branch nodes with like αc values.

Figure 6.16. Antecedent space partition by αc > 130

 The same procedure is practiced if users manage to increase the number of rules.

Figure 6.17 shows the values of the rest of αc and clearly indicates two groups with

difference at least one order of magnitude. It suggests that one should keep all αc between

3 and 8, if any of them is going to be kept.

Figure 6.17. A portion of αc in Figure 6.11 with values less than 118

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40 50 60

α
c

k

151

 The resultant antecedent partition is shown in Figure 18, which adds an additional

split to each region in Figure 6.12. The observation is reasonable. Unlike Function 2 in

Equation (6.3) whose nonlinearity is uneven, the two-dimensional quadratic function is

uniformly nonlinear in every direction. Due to the uniformity, the antecedent space

should be evenly partitioned. The increased rules will enable the GTSK model to

approximate function in a finer scale. The 16 recognized antecedents are shown in Figure

6.18(a) and Figure 6.18(b) shows the approximation by the 16-rule GTSK model with

MSE of 0.0153.

Figure 6.18. a) Antecedent space partition by αc > 3; b) Ellipsoids (TA = 0.05)

Figure 6.19. Quadratic function approximation by the GTSK model in Figure 6.18

-2 -1 0 1 2
-2

-1

0

1

2

x1

x2

-2 -1 0 1 2
-2

-1

0

1

2

-2
-1

0
1

2

-2

0

2
-2

0

2

4

6

8

x1x2

y

152

 One might follow the above procedure to further increase the number of rules by

including branch nodes with smaller αc as shown in Figure 6.20. The distinction between

different levels is not as clear as shown in Figure 6.11 and 6.17. One might need try

several values and find an appropriate one

Figure 6.20. A portion of αc shown in Figure 6.11 with values less than 3

It is also observed that splits in Figures 6.12 and 6.18 are along with the coordinate

directions. The observation is reasonable since the symmetric quadratic function is

uniformly nonlinear in all directions.

The above procedure is compared against the following one with random

initializations. It is found that some GTSK models due to random initialization produce

smaller MSE. One of typical good approximation result is shown in Figure 6.21 with

MSE of only 0.0051.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 10 20 30 40 50

α

k

153

Figure 6.21. Quadratic function approximation by the GTSK model in Figure 6.22

 The corresponding antecedents of 16 rules due to random initialization are shown

in Figure 6.22, where very strong and complex coupling among rules are observed.

Modularity in rules does not seem to exist and interpretation of rules with respect to local

behavior of the model is impossible.

Figure 6.22. Optimized TAs for a 16-rule GTSK model from random initialization

-2
-1

0
1

2

-2

0

2
-5

0

5

10

x1x2

y

-2 -1 0 1 2
-2

-1

0

1

2

154

Function 3 is uniformly nonlinear in all directions. The resultant ellipsoids shown

in Figures 6.12 and 6.18 are oriented along with coordinates. The next example will

demonstrate how ellipsoids are to be oriented if the function is unevenly nonlinear in

different directions.

Function 4 (Zhang, Chen, Ansari & Shi, 2004)

 The fourth function to be approximated is defined below and shown in Figure

6.23(a)

()()()1 2 1 2

1
exp cos 4 , 0 , 1

2
y x x x x= + ≤ ≤ (6.5)

Figure 6.23(b) is the contour plot of the function, which shows that the function

behaves linearly along the main-diagonal direction from (0,1) to (1,0).

(a) (b)

Figure 6.23. Illustration of the function in Equation (6.5) and its contour plot

A total of 441 points are uniformly sampled. With M of 50, there are 29 branch

nodes generated and their corresponding αc are shown in Figure 6.24.

0

0.5

1
0

0.5

1

0

0.5

1

1.5

x2x1

y

x1

x2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

155

Figure 6.24. Values of αc for antecedent space partition on Equation (6.5)

By including the first 5 branch nodes, the resultant antecedent partition is shown in

Figure 6.25. The partition slices the antecedent space along the main diagonal direction,

which matches the nonlinear orientation shown in Figure 6.23(b). The corresponding

initialization of rule antecedents is shown in Figure 6.25. The approximation due to the 8-

rule GTSK model has a MSE of 0.0015.

(a) (b)

Figure 6.25. a) Antecedent space partition by αc > 0.1;b) Ellipsoids (TA=0.05)

 Improvement of MSE is achieved by further tuning the model parameters using

Algorithm 5.1. Obtained rules are shown in Figure 6.26, where centroids of rules are

0

5

10

15

20

25

0 5 10 15 20 25 30
α

c

k

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x1

x2

156

significantly changed. However, the direction of each antecedent is still kept in the main

diagonal direction while the length and width of each ellipsoid are changed.

Figure 6.26. Optimized TAs of a 8-rule GTSK model for Equation (6.5)

The resultant function approximation is shown in Figure 6.27 with reduced MSE of

0.0003. Again, the reduction of MSE is at the cost of interpretability in individual rules.

Figure 6.27. Approximation of Equation (6.5) by the GTSK model in Figure (6.26)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

0

0.5

1

1.5

x2x1

y

157

The local models in the above four examples are linear. In fact, there is no

restriction on types of local models. Roughly speaking, one should expect better

approximation and less number of rules if more complex local models are used. In the

next example, linear and quadratic local models are compared.

Function 5

 The fifth function (Zhang, Chen, Ansari & Shi, 2004) to be approximated is

defined

() () ()2 2
1 2

1 2 1 2cos 2 cos 2 e , 1 , 1
x x

y x x x xπ π
− +

= − ≤ ≤ (6.6)

The function and its contour plot are shown in Figure 6.28.

(a) (b)

Figure 6.28. Illustration of function in Equation (6.6) and its contour plot

 In this example, there are 1681 points sampled from the function. With M of 100,

there are 53 branch nodes are generated. The values of αc for all branch nodes are shown

in Figure 6.29.

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

x1
x2

y

x1

x2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

158

Figure 6.29. Values of αc for antecedent space partition on Equation (6.6)

 Figure 6.30 shows the obtained antecedent partition by accepting branch nodes

with alpha greater than 0.81. A 34-rule GTSK model is then initialized. Figure 6.30

shows the final result after implementing Algorithm 5.1 to tune model parameters. The

function approximation and corresponding contour plot are shown in Figure 6.31. The

MSE for the function approximation is 0.0069.

(a) (b)

Figure 6.30.a) Antecedent space partition by αc>0.81; b) Ellipsoids (TA=0.05)

0

5

10

15

20

25

0 10 20 30 40 50 60

α
c

k

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x1

x2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

159

(a) (b)

Figure 6.31. Function approximation by the model in Figure 6.30 and the contour

 One could further increase the number of rules to reduce the approximation error.

Alternatively, users might increase the complexity of local models. In the flowing

example, quadratic local models are used instead. The obtained αc values for all branch

nodes are shown in Figure 6.32.

Figure 6.32. Values of αc for antecedent space partition for Equation (6.6) with
quadratic local models

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

x1x2

y

x1

x2

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0

2

4

6

8

10

12

14

16

0 10 20 30 40 50 60

α
c

k

160

 With threshold for αc set at 1.5, the following partition is obtained in Figure

6.33(a). The optimized antecedents are shown in Figure 6.33(b). The resultant function

approximation and contour plot are shown in Figure 6.34. The MSE is 0.0049.

(a) (b)

Figure 6.33.a) Antecedent space partition by αc >1.5; b) Ellipsoids (TA=0.05)

(a) (b)

Figure 6.34. Function approximation by the model in Figure 6.33 and the contour

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x1

x2

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1
-0.5

0
0.5

1

-1

0

1
-1

-0.5

0

0.5

1

x1x2

y

x1

x2

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

161

The number of model parameters in the 16-rule GTSK model with quadratic local

models is 176. On the other hand, the number of parameters is 272 in the 34-rule GTSK

model with local linear models. It indicates that using more complex local models can

significantly reduce the number of rules and overall model parameters while improving

function approximation performance. However, complex local models might be difficult

for interpretation, which is however subject to users’ knowledge.

The above testing focuses on function approximation. The following several testing

will be about nonlinear dynamic modeling, which is actually not very much different

from function approximation in this work since the dynamic model structure is restricted

to ARX structure. Users then have full access to all model inputs. The structure

information for a nonlinear dynamic model is assumed known and determined in Chapter

4 by the proposed order determination technique. The antecedent variables are also

selected in Chapter 4. In several following examples, we will validate the antecedent

variable selection made in Chapter 4. For the convenience of presentation, we might

reproduce some equations in Chapter 4. It is observed in Section 6.1 that modularity and

local interpretability in initialized rules are reduced by further parameter tuning using

Newton’s method due to interaction increase between rules. In the following testing,

results are based on parameter estimates extracted from partitioned antecedent space.

6.2 Dynamic Nonlinear Modeling

Model 1 (Narendra & Parthasarathy, 1990)

() () () ()() ()()
()() ()

0.3 1 0.6 2 0.6sin 1 0.3sin 3 1

0.1sin 5 1

y t y t y t u t u t

u t e t

π π

π

= − + − + − + − +

− +
 (6.7)

The order determination was conducted on Model 1 in Chapter 4. The determined

regressors are [y(t-1) y(t-2) u(t-1)] in Table 4.8. The detected nonlinear component is u(t-

1) that will be the antecedent variable. In order to verify the choice of antecedent variable,

the following experiment is conducted to try different antecedent variables. The

experiment result is collected in Table 6.1. The performance is evaluated by the sum of

square error (SSE) between the output y and its prediction. The SSE without any splitting

is 1544. The first row of Table 6.1 have the number of rules and resultant SSE due to

162

having only u(t-1) in the antecedent. In order to compare each choice of antecedent

variable fairly, each resultant GTSK model is configured to have the same number of

rules; 3 in this experiment. It is observed in Table 6.1, the best choice of antecedent

variable is u(t-1). The other two choices, either y(t-1) or y(t-2), barely reduce the SSE.

The experiment is then able to validate the choice of u(t-1) as the antecedent variable.

Table 6.1.Trials of antecedent variables for Model 1 in Equation (6.7)

Antecedent Number of rules SSE

u(t-1) 3 1325

y(t-1) 3 1540

y(t-2) 3 1538

 A GTSK model could include different number of rules by accepting different

levels of αc. In the following, each choice of number of rules is validated by a separate

data set (validation data set). The results are collected in Table 6.2. The training data

include 5000 samples while validation data include 3000 samples. The ‘Model Error’ is

the sum of training and validation MSE. It is observed that Model Error start increasing

when M is over 8. Based on the experiment results in Table 6.2, it actually makes no

difference by choosing M as 7 or 8. In the following illustration, M=8 is chosen.

Table 6.2. Trials of a GTSK model for Model 1

M
MSE

Model Error
Training Validation

2 0.272 0.276 0.547

3 0.265 0.269 0.534

4 0.259 0.261 0.520

5 0.253 0.257 0.510

6 0.252 0.257 0.509

7 0.251 0.256 0.507

8 0.251 0.256 0.507

9 0.251 0.259 0.509

163

 Having u(t-1) in the antecedent with M=8, the resultant antecedent partition and

membership function initializations are shown in Figure 6.35, where the number in each

region indicates the order that regions are generated in a binary tree.

Figure 6.35. Antecedent space partition and TAs for Model 1

Figure. 6.36 shows the separations in the nonlinear part of Model 1, g(u(t-1)), the

sum of three Sine functions of u(t-1), which behaves relatively linearly in local regions.

Figure 6.36. The separation boundaries shown for the nonlinear part in Model 1

The resultant GTSK model is fully described in Equation (6.8) and listed from the

left to right in Figure 6.35.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-5

0

5

1 23 456 78

u(t-1)

y

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

0.5

1

u(t-1)

T
A

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.5

0

0.5

u(t-1)

g(
u(

t-
1)

)

164

() ()() () () () ()

() ()() () () () ()

() ()() () () () ()

3 3

6 6

5 5

ˆ3 : 1 is in 0.9,227.5 3.02 0.34 1 0.56 2 2.88 1

ˆ6 : 1 is in 0.6,100.0 0.33 0.31 1 0.60 2 0.11 1

ˆ5 : 1 is in 0.3,145.5 0.82 0.29 1 0.61 2 1.06 1

1:

u t R y t y t y t u t

u t R y t y t y t u t

u t R y t y t y t u t

u

− − = − + − + − − −

− − = − + − + − + −

− − = − + − + − − −

IF THEN

IF THEN

IF THEN

IF () ()() () () () ()

() ()() () () () ()

() ()() () () () ()

()

1 1

4 4

8 8

7

ˆ1 is in 0.0,533.3 0.03 0.30 1 0.60 2 5.32 1

ˆ4 : 1 is in 0.1,567.1 0.22 0.26 1 0.63 2 3.25 1

ˆ8 : 1 is in 0.3,299.6 0.78 0.30 1 0.61 2 1.13 1

7 : 1 is in

t R y t y t y t u t

u t R y t y t y t u t

u t R y t y t y t u t

u t R

− − = − + − + − + −

− = + − + − + −

− = + − + − − −

−

THEN

IF THEN

IF THEN

IF ()() () () () ()

() ()() () () () ()

7

2 2

ˆ0.5,129.0 0.31 0.31 1 0.58 2 0.19 1

ˆ2 : 1 is in 0.9,141.1 2.72 0.33 1 0.58 2 2.64 1

y t y t y t u t

u t R y t y t y t u t

= + − + − + −

− = + − + − − −

THEN

IF THEN

(6.8)

It is observed in Equation (6.8) that coefficients for u(t-1) experiences both

magnitude variation and sign change. However, coefficients for either y(t-1) or y(t-2) do

not seem to vary too much. It seems that the variation in the coefficient for u(t-1) is

sufficient to verify the nonlinearity of the model. A more detail address of coefficient

value variation across rules needs to however consider the variance of model parameter

estimates. The covariance of local model parameters is estimated by

() () ()()
12ˆ ˆ

Ti i i iCov σ
−

=θ X X (6.9)

where the matrix X i collects all regressors in region i. ()2
ˆ iσ is the variance estimate for

the noise in region i and is computed via the residuals, εi by

() ()()2 2

1

1
ˆ

iN
i i

i
t

t
N

σ ε
=

= ∑

(6.10)

where Ni is the data number in region i. The 95% confidence interval for i
jθ is defined by

()ˆ ˆ ˆ1.96 ,i i i i
j j j jCovθ θ θ θ= ±

(6.11)

Equation (6.11) is for Gaussian distribution for a known variance. One might use

Student distribution if variance is an estimate. The difference could however be ignored

165

for sufficient number of data, likely over 50 data points (Box, Jenkins & Reinsel, 1994).

The coefficients and their 95% confidence interval for 8 rules are shown in Figure 6.37.

Figure 6.37. Coefficients for local models in the GTSK model in Figure 6.35

 In Figure 6.37, θ0 to θ3 are coefficients for regressors, 1, y(t-1), y(t-2) and u(t-1).

Strong variation is observed for both θ0 and θ3. The variation in θ3 indicates a change of

model behavior in different regions. On the other hand, the confidence intervals for θ1 in

different rules have overlaps. The same phenomenon is also observed for θ2. The

observations might imply constant coefficients for regressors, y(t-1) and y(t-2) for all

rules, which then suggests that it might be unnecessary to include y(t-1) and y(t-2) in a

GTSK model. It is then possible to simply the structure of the GTSK model as a hybrid

with an explicit linear structure.

() () () ()()1 21 2 1y t a y t a y t f u t= − + − + −

(6.12)

The obtained GTSK model is compared to other modeling possibilities. In this

work, a radial basis network model (RB) and a feed-forward neural network model

(FFNN) are considered. In order to have a common basis for comparison, the architecture

for each model is chosen such that the number of parameter in each model is close. In the

comparison, 5000 data points are used to obtain the model parameters that gives a

0 2 4 6 8

-2

0

2

r

θ 0

0 2 4 6 8

0.2

0.25

0.3

0.35

r

θ 1

0 2 4 6 8

0.55

0.6

0.65

0.7

r

θ 2

0 2 4 6 8

-2

0

2

4

6

r

θ 3

166

‘training error’ and 2500 data points are used to give a ‘validation error’. Both ‘training’

and ‘validation’ errors are summed-square of residuals. The comparison detail is

collected in Table 6.3.

Table 6.3 Comparison of the GTSK with RB and FFNN for Model 1
Model ArchitectureTraining (SSE) Validation (SSE) # of Parameters

GTSK 8 1253.6 639.7 48

FFNN (3,5,6,1) 1252.9 639.2 63

FFNN (3,2,12,1) 1256.6 640.6 57

FFNN (3,8,4,1) 1254.2 647.4 73

RB 11 4564.8 3209.6 56

In Table 6.3, the architecture for GTSK is the number of rules. In the FFNN

models, the architecture represents the number of inputs, number of neurons in each of

two hidden layers, and the number of outputs. The architecture in the RB model is the

number of neurons. The RB model gives the highest training and validation errors. On the

other hand, there is no significant difference between GTSK and FFNN.

Training a neural network is a nonlinear optimization process. In practice, one

often has to try many times of training from random initialization to obtain an acceptable

solution. The result in Table for each FFNN is the best out of 50 trials while GTSK needs

only one trial. In addition, the architecture information for a FFNN is not automatically

available. In practice, one needs to try different architecture, and for each multiple

regressors to find the probably best model. Three attempts are revealed in Table 6.3.

The GTSK model is more informative than a FFNN model. Parameter values in a

FFNN model can hardly reveal any knowledge about the process to be described.

Observed in Figure.6.37, the values of local model coefficients indicate to decouple y(t-1)

and y(t-2) from a nonlinear function of u(t-1).

Model 3 (Narendra & Parthasarathy, 1990)

() ()
()

() ()3

2

1
1

1 1

y t
y t u t e t

y t

−
= + − +

+ −
 (6.13)

167

 The determined order is defined by ny=1,nu=0 and d=1. The result of nonlinear

component detection indicates that both u(t-1) and y(t-1) should be included in

antecedents. The antecedent space is shown in Figure 6.38

Figure 6.38. Two-dimension antecedent space for Model 3

The results for trials of GTSK models with different complexity are collected in

Table 6.4, where the minimum Model Error is due to a 10-rule GTSK model.

Table 6.4. Trials of a GTSK model for Model 3

MSE

M Training Validating Model Error

2 0.277 0.278 0.555

3 0.268 0.271 0.540

4 0.265 0.266 0.530

5 0.261 0.264 0.525

6 0.259 0.262 0.521

8 0.257 0.260 0.516

9 0.256 0.260 0.516

10 0.255 0.259 0.514

11 0.255 0.260 0.515

 Figure 6.39(a) shows the antecedent space partition with 10 regions. Figure

-1 -0.5 0 0.5 1
-2

-1

0

1

2

u(t-1)

y(
t-

1)

168

6.39(b) shows the ellipsoids with TA = 0.05 for initialized 10 rules.

(a) (b)

Figure 6.39. a) Antecedent space partition by αc > 10; b) Ellipsoids (TA=0.05)

 The estimated local model coefficients and their 95% confidence interval are

shown in Figure 6.40 for the 10-rule GTSK model. θ0, θ1 and θ2 are coefficients for

regressors, 1, y(t-1) and u(t-1). It is found after comparing each pair of local models that

the rule 8 and 10 might have same local models. Confidence intervals for each pair of

corresponding local model coefficients have overlap in rule 8 and 10. The observation

could be verified by observing Figure 6.39. Regions 8 and 10 are next to each at about

the same level of y(t-1), which makes both have about the coefficient for y(t-1). On the

other hand, region 8 and 10 contain data with opposite signs on u(t-1) around 0. The term

of u(t-1)3 in Equation (6.11) may be expressed by θ2 (t)u(t-1) with θ2 (t) = u(t-1)2, which

eliminates the effect of signs in u(t-1).

Based on the above comparison, one may decide to merge rules 8 and 10 to one

rule. The merge can be easily operated by remove the line boundary between 8 and 10.

Note that the merge operation on regions 8 and 10 only is not possible by choosing a

different level of αc since both regions are resulted from different branch nodes.

-1 -0.5 0 0.5 1
-2

-1

0

1

2

1

2

3

4

5

6

7
8

9 10

u(t-1)

y(
t-

1)

-1 -0.5 0 0.5 1
-2

-1

0

1

2

u(t-1)

y(
t-

1)

169

Figure 6.40. Coefficients for local models in the GTSK model in Figure 6.39

The selected antecedent variables u(t-1) and y(t-1) are due to nonlinear

component detection in Chapter 4. In the following, experiments are conducted to try

other antecedents with different complexity to verify the result. The comparison is

collected in Table 6.5. Note the MSE without split is 0.289.

Table 6.5.Trials of antecedent variables for Model 3

Antecedent Number of rules MSE (Training)

y(t-1) 5 0.271

y(t-1) 19 0.266

u(t-1) 11 0.267

 Reduction in MSE is observed for each trial. However, the maximum

improvement in MSE is achieved for the GTSK model with the two-dimensional

antecedent. In Table 6.3, the training MSE for a 10-rule GTSK model is 0.255, which is

smaller than those obtained for either a 19-rule model with antecedent variable, y(t-1) or

a 11-rule model with antecedent variable u(t-1).

0 1 2 3 4 5 6 7 8 9 10 11

-1

0

1

r

θ 0

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

r

θ 1

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

r

θ 2

170

 The above two nonlinear modeling examples use the results on order

determination and nonlinear component detection from Chapter 4 to construct GTSK

models. It is noticed that the results for Model 1 and 3 from Chapter 4 match the ‘truth’.

In Chapter 4, we also mentioned the ‘mistakes’ that the order determination could make

such as the missing of u(t-2) for Model 4. Also, the detected nonlinear components

contain only the most dominating one such as the y(t-2) for Model 4. In the following the

example, a GTSK model for Model 4 based on determined orders and detected nonlinear

components will be created and compared with one based on the ‘truth’.

Model 4 (Narendra & Parthasarathy, 1990)

()
() () () () ()() ()

() ()
()2 2

1 2 3 2 3 1 1

1 3 2

y t y t y t u t y t u t
y t e t

y t y t

− − − − − − + −
= +

+ − + −
(6.14)

The dynamic order analysis in Chapter 1 determines the following values, ny=3,

nu=0 and d=1 as shown in Table 4.8. The detected nonlinear component is y(t-2).

The trial for different level of complexity is collected in Table 6.6, which suggests

an 8-rule GTSK model for its minimum Model Error, although other choices for M being

6 and 7 might be also acceptable.

Table 6.6. Trials of a GTSK model for Model 4

M
MSE

Model Error
Training Validating

2 0.0037 0.0041 0.0078

3 0.0031 0.0035 0.0066

4 0.0029 0.0032 0.0061

5 0.0029 0.0031 0.0060

6 0.0028 0.0031 0.0059

7 0.0028 0.0031 0.0059

8 0.0028 0.0031 0.0058

9 0.0028 0.0031 0.0059

171

Figure 6.41 shows the resultant antecedent partition and membership functions.

The resultant parameter estimates for local models are shown in Figure 6.42 along with

the 95% confidence interval.

Figure 6.41. Antecedent space partition and TAs for Model 4

Figure 6.42. Coefficients for local models in the GTSK model in Figure 6.41

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

y(t-2)

y

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

y(t-2)

T
A

0 2 4 6 8

-0.2

0

0.2

0.4

r

θ 0

0 2 4 6 8
0

0.2

0.4

0.6

r

θ 1

0 2 4 6 8
-0.6
-0.4
-0.2

0
0.2
0.4

r

θ 2

0 2 4 6 8

-0.2

0

0.2

r

θ 3

0 2 4 6 8

0.5

0.6

0.7

0.8

0.9

r

θ 4

172

The comparison is made to build a GTSK model with ny=3, nu=1 and d =1, which

are ‘truth’ in the Model 4. The antecedent variables are [u(t-1) u(t-2) y(t-1) y(t-2) y(t-3)]

since they are all nonlinearly expressed in Model 4. The trial results for GTSK models

with different complexity are collected in Table 6.7.

Table 6.7. Trials of a GTSK model for Model 4 with all regressors included

M
MSE

Model Error
Training Validating

2 0.0036 0.0039 0.0075

4 0.0032 0.0035 0.0067

5 0.0029 0.0032 0.0067

6 0.0032 0.0034 0.0066

7 0.0031 0.0034 0.0065

8 0.0031 0.0034 0.0065

11 0.0031 0.0034 0.0065

12 0.0031 0.0034 0.0065

The maximum number of rules is 12 due to the choice of M being 50. It is

interesting to note at first that the number of rules does not change much when antecedent

dimension is increased from 1 to 5. Antecedent variables have different values in each

rule. For instance, the antecedent variable u(t-1) has 12 levels. In the conventional TSK

fuzzy models, 12 levels implies 12 fuzzy subsets for u(t-1). In the conventional

combinatorial antecedent structure, one might expect to create a fuzzy model out of 512

possible rules. The example shows that the generalized antecedent structure can largely

improve the capability of modeling by efficiently representing an antecedent space.

More importantly in this example is to observe that the minim Model Error in

Table 6.7 is higher than that in Table 6.6. The model does not become better by using

‘true’ dynamic orders. It provides a piece of evidence to show that the order

determination and nonlinear component detection techniques in Chapter 4 are appropriate

to provide the structure information for dynamical nonlinear modeling.

173

The two-phase flow

There are two sets of input-output definitions for the two phase flow process. In the

following test, the input is taken as the air flowrate measurement and the output is the

pressure drop measurement. According the Table 4.12, the determined order is defined by

ny=2, nu=0 and d=1. The antecedent variables are detected nonlinear components y(t-2)

and u(t-1). Figure 6.43 shows the antecedent space.

Figure 6.43. Two-dimension antecedent space for the two-phase process

The training data set include 8830 samples. The validation data set include 3000

samples shown in Figure 6.44.

Figure 6.44. Validation data set for the two-phase flow process

0 5 10 15 20 25

50

100

150

200

u(t-1)

y(
t-

2)

0 500 1000 1500 2000 2500 3000
0

10

20

30

t

u

0 500 1000 1500 2000 2500 3000
-100

0

100

200

t

y

174

The trial results for different model complexity are collected in Table 6.8, where

the 6-rule model has the minimum Model Error.

Table 6.8. Trials of a GTSK model for the two phase process

M
MSE Model

Error Training Validating

1 1.74E+02 1.23E+02 2.97E+02

5 1.50E+02 9.52E+01 2.45E+02

6 1.46E+02 9.72E+01 2.43E+02

Figure 6.45(a) shows the obtained partition of the antecedent space into 6 regions.

The initialized truth of antecedent with TA = 0.05 is illustrated in Figure 6.45(b).

(a) (b)

Figure 6.45. a) Antecedent space for two phase flow process; b) Ellipsoids (TA=0.05)

The coefficients for local models are shown in Figure 6.46.

0 5 10 15 20 25

50

100

150

200

1

2

3

4
5

6

u(t-1)

y(
t-

2)

0 5 10 15 20 25

50

100

150

200

u(t-1)

y(
t-

2)

175

Figure 6.46. Coefficients for local models in the GTSK model in Figure 6.45

The nonlinearity of the process could be verified by the evident coefficient

variation across rules shown in Figure 6.46. Rule 1 covers the most of the antecedent

space and describes the process behavior operated under high air flowrate. High air flow

blows water out of the vertical pipe creating an annular flow pattern. Varying the air

flowrate when water is out barely affects the pressure drop. The negligible effect is

reflected by the small coefficient value of θ3 in Rule 1. When the process is operated in

an intermediate air flowrate, with air and water coexisting in the pipe, varying the air

flowrate will affect the density of the air-water mix, which in turn affects the pressure

drop. The process behavior observed in intermediate air flowrate is primarily described

by Rule 4. The other Rules, 2, 3, 5 and 6 describe the process behavior operated under

low air flowrate and transition behavior from intermediate air flowrate to low. When the

air flowrate is further decreased from the intermediate region, not only the density of the

air-water mix is changed but also water starts accumulating in the pipe. With the

increased water holdup, pressure drop is increased. Part of the water accumulation

operation is described by Rule 3 and 5. Rule 6 features low pressure drop and low air

flowrate. The low pressure drop is due to previous high air flowrate conditions, which

0 2 4 6

0

50

100

r
θ 0

0 2 4 6

-0.2

0

0.2

0.4

0.6

r

θ 1

0 2 4 6

0

0.2

0.4

0.6

0.8

1

r

θ 2

0 2 4 6

-20

-10

0

10

20

r

θ 3

176

blows water out of pipe. Therefore, Rule 6 describes the transitional behavior from high

to low air flowrate. Rule 2 is also featured with low air flowrate but it has high pressure

drop. Therefore, Rule 2 describes the process behavior of further reducing the airflow

rate when a certain amount of water has been accumulated in the pipe.

Distillation Column

The parameter value estimation for the distillation column is also based on the

previously determined dynamic order and selected nonlinear component candidate sets in

Chapter 3. The parameter value estimation is conducted for each output.

Overhead Concentration, xD (= y1)

For the output y1, the determined regressors are [y1(t-1) y1(t-2) y1(t-3) y2(t-3) u1(t-

3)], and antecedent variables are to be chosen from [y1(t-2) y2(t-3)] or [y2(t-3)]. Five

thousand data samples in the training set are used to identify a GTSK model and another

set of 3000 are used for validation. Both data set are used to compare different choices of

antecedent variables and model complexity in terms of number of rules. The result is

summarized in Table 6.9.

Table 6.9. Training and validation results for the GTSK model on y1

Antecedent No. of Rules Training (MSE) Validation (MSE) Total MSE

[y1(t-2) y2(t-3)]

2 2.71e-5 2.76e-5 5.48e-5

3 2.68e-5 2.75e-5 5.43e-5

4 2.65e-5 2.74e-5 5.40e-5

6 2.62e-5 2.85e-5 5.47e-5

[y2(t-3)]

2 2.70e-5 2.80e-5 5.50e-5

3 2.67e-5 2.76e-5 5.43e-5

4 2.65e-5 2.77e-5 5.42e-5

5 2.64e-5 2.77e-5 5.41e-5

10 2.62e-5 2.81e-5 5.43e-5

177

Observed from Table 6.9, the best one is a 4-rule GTSK model with both y1(t-2)

and y2(t-3) included in the antecedent. The antecedent space is shown in Figure 6.47. The

corresponding antecedent space partition and the truth of antecedent at TA =0.05 for each

rule are shown in Figure 6.48.

Figure 6.47. Two-dimension antecedent space for y1 of the distillation column

Figure 6.48. a) Antecedent space partition for y1 of the distillation column;
b) Ellipsoids (TA=0.05)

Figure 6.49 shows the local model coefficients and their 95% confidence interval.

It seems possible to simplify the GTSK model by merging rule 2 and rule 3 due to the

same argument mentioned above to merge rule 8 and 10 in Figure 6.39.

0.8 0.85 0.9 0.95 1 1.05
0

0.02

0.04

0.06

0.08

y1(t-2)

y 2(t
-3

)

0.8 0.85 0.9 0.95 1 1.05
0

0.02

0.04

0.06

0.08

1

2

3

4

y
1
(t-2)

y 2(t
-3

)

0.8 0.85 0.9 0.95 1 1.05
0

0.02

0.04

0.06

0.08

y
1
(t-2)

y 2(t
-3

)

178

Figure 6.49. Coefficients for local models in the GTSK model in Figure 6.48

Confidence interval overlaps are observed for θ1 and θ3 across all rules. The

observation may indicate constant coefficients for regressors y1(t-1) and y1(t-3). Then a

hybrid model structure may be defined

() () () () () ()()1 1 2 1 1 2 11 3 2 , 3 , 3y t a y t a y t f y t y t u t= − + − + − − −

(6.15)

Overlap of confidence interval is also observed for θ2. One might also decide that

coefficient for y1(t-2) is a constant across all rules. However, a constant coefficient to

y1(t-2) is unable to take y1(t-2) out of the nonlinear part and add another linear term like

a3y1(t-2) since the regressor, y1(t-2) is included in the antecedent. One possibility is to

take y1(t-2) out of antecedent such as the second best model in Table 6.9. It is a 5-rule

model with only one antecedent variable y2(t-3). The corresponding antecedent partition

is shown in Figure 6.50. Confidence interval overlap for θ1, θ2 and θ3 is observed in

Figure 6.51. Since y1(t-2) is no longer included in the antecedent, it is then possible to

take y1(t-2) out of the nonlinear part in Equation (6.13) and redefine a hybrid model by

0 1 2 3 4 5

0.05

0.1

r

θ 0

0 1 2 3 4 5

0.3

0.35

0.4

r

θ 1

0 1 2 3 4 5
0.2

0.3

0.4

r

θ 2

0 1 2 3 4 5
0.2

0.3

r

θ 3

0 1 2 3 4 5

0.2

0.4

r

θ 4

0 1 2 3 4 5

1

2

3

x 10
-4

r

θ 5

179

() () () () () ()()1 1 2 1 3 1 2 11 2 3 3 , 3y t a y t a y t a y t f y t u t= − + − + − + − −

(6.16)

Figure 6.50. Antecedent space partition and TAs for y1 of the distillation column

Figure 6.51. Coefficients for local models in the GTSK model in Figure 6.50

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.8

0.9

1

y2(t-3)

y

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0

0.2

0.4

0.6

0.8

1

y2(t-3)

T
A

0 2 4 6

0.05

0.1

0.15

r

θ 0

0 2 4 6
0.2

0.3

0.4

r

θ 1

0 2 4 6

0.2

0.4

r

θ 2

0 2 4 6
0.2

0.3

0.4

r

θ 3

0 2 4 6

0

0.2

0.4

r

θ 4

0 2 4 6

-1
0
1
2
3

x 10
-4

r

θ 5

180

Bottom Concentration, xB (= y2)

The same procedure is also applied to the output, y2. For the output y2, the

determined regressors are [y2(t-1) y2(t-2) u1(t-3) u2(t-1)]. There are two sets of antecedent

variables to be compared; [y2(t-1) u2(t-1)] and [u2(t-1)]. The result is summarized in Table

6.10.

Table 6.10. Training and validation results for the GTSK model on y2

Antecedent No. of Rules Training (MSE) Validation (MSE) Model Error

[y2(t-1) u2(t-1)]

1 1.36e-7 1.10e-7 2.46e-7

2 1.17e-7 9.70e-8 2.14e-7

3 1.13e-7 1.05e-7 2.19e-7

[u2(t-1)]

1 1.36e-7 1.10e-7 2.46e-7

2 1.17e-7 9.80e-8 2.15e-7

3 1.14e-7 1.05e-7 2.19e-7

Observed from Table 6.10, the best one is a 2-rule model with both y2(t-1) and

u2(t-1) as antecedent variables. The next choice is a 2-rule model with only u2(t-1) as the

antecedent variable. We first explore the best choice. The resultant antecedent space

partition and the truth of antecedent at TA =0.05 are shown in Figure 6.52.

Figure 6.52. Two-dimension antecedent space for y2 of the distillation column

42 44 46 48 50 52 54
0

0.02

0.04

0.06

0.08

u2(t-1)

y 2(t
-1

)

181

(a) (b)

Figure 6.53. a) Antecedent space partition output y2 of the distillation column;
b) Ellipsoids (TA=0.05)

It is observed in Figure 6.53, the separation boundary is almost vertical. The

observation suggests a lower antecedent dimension with only u2(t-1), which in this case

matches the second best choice in Table 6.9. Figure 6.54 shows the resultant antecedent

space partition with only one antecedent variable, u2(t-1). Figure 6.55 shows the local

model coefficients and their 95% confidence interval for the 2-rule model.

Figure 6.54. Antecedent space partition and TAs for y2 of the distillation column

42 44 46 48 50 52 54
0

0.02

0.04

0.06

0.08

u
2
(t-1)

y 2(t
-1

)

42 44 46 48 50 52 54
0

0.02

0.04

0.06

0.08

u
2
(t-1)

y 2(t
-1

)

42 44 46 48 50 52 54
0

0.02

0.04

0.06

0.08

u
2
(t-1)

y

42 44 46 48 50 52 54
0

0.2

0.4

0.6

0.8

1

u2(t-1)

T
A

182

Figure 6.55. Coefficients for local models in the GTSK model in Figure 6.50

 Figure 6.55 shows that the nonlinearity in the 2-rule model is due to nonlinear

coupling between u1(t-3) and u2(t-1). Coefficients for regressors, y2(t-1) and y2(t-2) could

be considered as constants. The following hybrid structure could then be defined for

output, y2.

() () () () ()()1 2 2 2 1 21 2 3 , 1y t a y t a y t f u t u t= − + − + − −

(6.17)

A MIMO (2,2) Model

The above procedure treats each output individually. Output y1 is described by a

5-rule model, where the only antecedent variable is y2(t-3). The antecedent space partition

is shown in Figure 6.50. Output y2 is described by a 2-rule model, which has an

antecedent variable u2(t-1) with the antecedent space partition shown in Figure 6.54.

These two GTSK models could then be considered a MIMO(2,2) model with two inputs

and outputs. It is possible to construct a more compact MIMO (2,2) GTSK model from

the obtained two GTSK models. The construction starts by compounding the antecedent

space. The antecedent space in a MIMO(2,2) GTSK model will have dimension 2, which

0 1 2 3
0.01

0.012

r
θ 0

0 1 2 3
0.85

0.9

0.95

r

θ 1

0 1 2 3

0

0.05

0.1

r

θ 2

0 1 2 3

2

3

4

x 10
-5

r

θ 3

0 1 2 3

-3.2
-3

-2.8
-2.6
-2.4
-2.2

x 10
-4

r

θ 4

183

includes antecedent variables from both single-output GTSK models.

Figure 6.56. Two-dimension antecedent space for the MIMO(2,2) GTSK model

The extended antecedent space (y2(t-3), u2(t-1)) will be partitioned by linear

boundaries resulted from an exhaustive combination of obtained linear boundaries for

both antecedent variables y2(t-3) and u2(t-1). Figure 6.57 shows the partitioned antecedent

space for the MIMO(2,2) model.

Figure 6.57. Antecedent space partition for the MIMO(2,2) GTSK model

42 44 46 48 50 52 54
0

0.02

0.04

0.06

0.08

u2(t-1)

y 2(t
-3

)

42 44 46 48 50 52 54
0

0.02

0.04

0.06

0.08

u2(t-1)

y 2(t
-3

)

184

Local models for each region in Figure 6.56 will be taken from individual models

respectively. Note that the above mentioned construction only provides a more compact

model description but not extra modeling accuracy or interpretability. Actually, the

interpretability is reduced. From either single-output GTSK model, it is clear to tell

which regressor has the dominant affect on the nonlinearity for the corresponding output.

In this case, y2(t-3) affects y1 nonlinearly and u2(t-1) affects y2 nonlinearly. The

decoupled connection is however smeared in the MIMO format, one can only tell that

both y2(t-3) and u2(t-1) are affecting y1 and y2 nonlinearly. The advantage of having a

MIMO format is to provide a general model description for the subsequent analysis and

applications.

If both individual models share same antecedent variables, one could create

MIMO models directly by solving the MIMO version of SRP in Section 5.6. It is

however not the case for the distillation column example.

185

CHAPTER VII

SUMMARY, CONCLUSIONS AND

FUTURE RESEARCH RECOMMENDATIONS

7.1 Summary

 In this work, a generalized antecedent structure is proposed to replace the

conventional combinatorial structure in a TSK fuzzy model. One of new features in the

proposed antecedent structure is the extra degree of freedom in angle, which makes it

possible to rotate the active region of a rule. In this work, active regions have the shape of

ellipsoids. The rotation improves the coverage efficiency of rules. The improvement is

achieved by allowing active regions to be more flexibly shaped according to function

nonlinearity, which replaced the forced shapes oriented along with coordinates in the

conventional antecedent structure. As a consequence, the improved rule coverage

efficiency is expected to extend the application of TSK fuzzy models to higher dimension

problems.

 Another feature in the proposed antecedent structure is the separation of

antecedent dimension from the overall dimension for a GTSK model. The distinction is a

direct effort to deal with “the curse of dimensionality” and makes it even possible to

apply the conventional TSK fuzzy models to high dimension problems so long as the

corresponding antecedent dimension is acceptable. More importantly, the dimension

separation is made applicable in this work by the proposed method to detect nonlinear

components, which defines antecedent variables and antecedent dimension.

One focus of this work is to use the resultant GTSK model featured with the

proposed antecedent structure to model nonlinear dynamic processes. A systematic

approach is provided to create a GTSK model from input-output data. The overall

dimension of a GTSK model defined by dynamic orders is determined by a selection

procedure based on the recursive estimation of spatially rearranged data using the

proposed SNNR method. The recursive estimation on SNNR treated data is also used to

detect nonlinear components, which in this work refer to the regressors having

dominating impact on the nonlinear behavior of a process.

The parameter estimation for the GTSK model with the proposed antecedent

structure is initialized by recognizing ellipsoids out of a partitioned antecedent space. The

partition in this work is conducted recursively. In each step, a spliiting and regression

problem is solved by the proposed procedure. It is shown at least that the solution is a

local optimum for the defined problem. Model parameters can be further tuned by a

Newton’s method that solves a constrained optimization problem. Constraints are

imposed on the positive definiteness of shape matrices in the proposed antecedent

structure.

7.2 Conclusions

The proposed SNNR method rearranges time-sequenced raw data by spatial order.

The SNNR treatment is demonstrated to be able to artificially reduce the parameter

variation caused by nonlinearity. The effectiveness of SNNR is verified by the reduced

MSE on rearranged output and its prediction. It should be noted that the SNNR used in

this work is only to prepare raw data for subsequent analysis on dynamic order

determination and nonlinear component detection. The reduced MSE due to SNNR by no

means suggests an alternative approach for recursive estimation for better prediction.

Simply, prediction is a temporal concept and only applicable for the time-sequenced data,

using past observation to predict the future behavior. However, the time sequence is no

longer preserved in SNNR treated data, where the computation using recursive estimation

equations should not be interpreted as prediction.

187

The proposed dynamic order determination based on SNNR is able to discover

influential regressors. The method is however not perfect and makes ‘mistakes’. However,

it provides better results in terms of number of ‘mistakes’ and sensitivity to noise,

compared to the method using time-sequenced data. Comparing to other methods like

geometric method, the proposed method performs less affected by noise.

The nonlinear components detection finds the regressors that exhibit dominating

impact on process nonlinearity. The obtained results are verified by comparing to testing

models and further verified in Chapter 6 by trying different antecedent variables in GTSK

models.

The proposed solving procedure for separation boundaries shows better

performance than other solvers (Newton’s method and Nelder-Mead) in terms of locating

a global optimal solution for a given multimodal optimization problem. However, the

proposed solver is highly designated to the separation and regression problem defined in

this work. It should not be understood that a better optimizer is offered to replace

Newton’s or Nelder-Mead method in general.

Model parameters for antecedents and consequents are initialized once the

antecedent space partition is achieved. The initialization uses only data confined in a

recognized subspace to compute for the corresponding rule, centroid, shape matrix and

local model coefficients. Therefore, it is not surprising to observe that initialized rules

exhibit limited interactions, which make rules more modular and interpretable. The

interpretability could be verified by comparing the behavior of a rule with the local

behavior of the nonlinear model.

The overall modeling accuracy of a GTSK model could be improved by further

adjusting model parameters in an optimization scheme, which is conducted in this work

by solving a constrained optimization problem. As observed in this work, the

improvement in terms of modeling accuracy is achieved by interaction increase between

rules. The observation is intuitively reasonable and increased interaction can at least

make the GTSK model behave smoother. On the other hand, interaction increase reduces

188

the modularity. A rule alone is not sufficient to describe the local behavior of a nonlinear

process. Therefore, individual rules become less interpretable. Users should be aware of

the effect of parameter optimization on modularity and interpretability. If preference is

set on modeling accuracy, one might accept a less interpretable model. On the other hand,

one might prefer a modular model if, for instance, model management is concerned. It is

possible that the obtained model might be augmented by deleting obsolete rules or adding

new rules in the model management phase. It is then desired that any alteration has only

local impact, which is possible if coupling between modules is limited.

The proposed parameter estimates are much better in terms of modularity

compared to those estimated based on random initialization. The rules in GTSK models

resulted from optimization starting from random initialization barely retain any

modularity.

The obtained GTSK models exhibit desired behavior with ellipsoids expressing

the truth of antecedent oriented according to function nonlinearity. The rule distribution

in a GTSK model is also reasonable. Rules are given to more nonlinear portion of a

function or to approximate a nonlinear function in a finer scale. These observations imply

that the complexity of the resultant GTSK models in this work is determined by function

nonlinearity rather than problem dimension. This is desired behavior, which could be the

basis to support applying GTSK models to high dimension problems.

The conventional interpretability in individual antecedent variables will be lost

due to the additional degree of freedom that combines all antecedent variables. However,

the interpretability of the antecedent as a whole is still meaningful. A rule antecedent can

be interpreted as a function that defines active region for the consequent model. It is also

shown that it is possible to regain the conventional interpretability by converting the new

GTSK model into the conventional format by defining several new variables. Then,

interpretation in new variables could be defined.

7.3 Future Research Recommendations

This work provides a systematic approach starting from detecting data structure

189

and ending at a GTSK model. Many aspects in this work could be further investigated.

In this work, the dynamic order determination method is limited to the ARX type

of nonlinear dynamic processes. The limitation is due to the SNNR operation that needs

access to measurements. It is desired that the order determination technique could be

generalized to include a broader range of model structures, where lagged prediction or

residuals might be included as candidate regressors to be tried. They are, however,

unavailable from measurements directly. A recommended procedure is to start the

generalization by first considering an ARX structure. The obtained prediction for the

rearranged data could then be used to compute residuals. Then, the SNNR operation on

prediction and residuals becomes possible.

The SNNR operation is this work is conducted in a brute-force manner, which

finds the exact nearest neighbor to a point in each step by computing its distance to all

other points and finding the minimum. Further investigation is desired to improve the

efficiency of the SNNR operation.

The nonlinear component detection in this work uses an exhaustive search to try

all possible combinations of regressors, which would cause scalability problem when

dealing with high dimension problem. Therefore, improving the search method for

nonlinear component detection is also worthy of further investigation.

 The order determination method is not perfect. The order determination is based

on spatially rearranged data. The rearrangement is however based on the assumption of

negligible high-order influence of regressors on parameter variation. It is then a research

focus in the future to relax the assumption by considering higher order influence, or it is

more desired to find an approach to test the assumption.

This work used all variables up to a certain order, not just the sparse subset found

as important. Next pursuit should explore using only the variables found to be regressors.

 Algorithms to solve the separation and regression problems could also be a

research topic. A heuristic method appearing in a recent paper by (Magnani & Boyd,

190

2009) might be an alternative to solve the problem and worthy of investigation.

This work suggested that the obtained GTSK models can be further simplified by

merging parameter-like rules or being redefined as a hybrid including an explicit linear

structure. The later practice could be unified with the dynamic order determination and

nonlinear component detection to allow users to gain more insight into the model

structure embedded in data.

Another future research topic is on model management to let the model

automatically adjust according to the dynamic behavior variation of the process to be

modeled. One could adapt the local model coefficients or modify the interaction between

rules to eliminate the mismatch. It is also possible to add new rules if mismatch is caused

by never observed behavior. It is desired in the future study to find a systematic approach

to reduce the mismatch and preserve interpretability by minimum modification of a

model via evaluating all possible modifications. Retaining interpretability will need extra

constraints to restrict the interaction between rules.

 The proposed modeling approach is tested on several benchmark problems and a

laboratory scale process. A possible future investigation is to broaden its application to

industrial scale problems. The application could focus on different aspects. GTSK models

could be used only for prediction and monitoring. One might be interested only in finding

the overall problem dimension. It is also possible to investigate the structure embedded in

input-output data expressed by a hybrid structure with both linear and nonlinear parts. A

very important application is to use obtained GTSK models to design controllers (Sala,

Guerra & Babuška, 2005). There have been many different ways proposed to design

fuzzy model based controllers; adaptive nonlinear control using feedback linearization

(Feng 2002; Feng and Chen 2005; Qi and Brdys 2008), linear matrix inequalities based

parallel distributed compensator (Tanaka & Wang, 2001), gain scheduling-like multiple

model approach (Hunt & Johansen, 1997) and nonlinear model predictive control

(Abonyi, Nagy & Szeifert, 2001; Fischer, Schmidt & Kavsek-Biasizzo, 1997; Huang,

Lou, Gong & Edgar, 2000). A comprehensive investigation and comparison of these

methods is desired.

191

REFERENCES

Abonyi, J., Nagy, L. & Szeifert, F. (2001). "Fuzzy model-based predictive control by
instantaneous linearization." Fuzzy Sets and Systems 120(1): 109-122.

Andersen, H. C., Lotfi, A. & Westphal, L. C. (1998). "Comments on “Functional
Equivalence Between Radial Basis Function Networks and Fuzzy Inference Systems”."
IEEE Transactions on Neural Networks 9(6): 1529-1531.

Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. (1994). Time Series Analysis: Forecasting
and Control. Englewood Cliffs, Prentice-Hall.

Boyd, S. P., Balakrishnan, V., Feron, E. & Ghaoui, L. E. (1994). Linear matrix
inequalities in system and control theory. Philadelphia Society for Industrial and Applied
Mathematics.

Boyd, S. P. & Vandenberghe, L. (2004). Convex Optimization. New York, Cambridge
University Press.

Breiman, L., Friedman, J. H., Olshen, R. A. & Stone, C. J. (1984). Classification and
regression trees. Belmont, Wadsworth International Group.

Cordon, O., Herrera, F., Gomide, F., Hoffmann, F. & Magdalena, L. (2001). Ten years of
genetic fuzzy systems: current framework and newtrends. IFSA World Congress and 20th
NAFIPS International Conference, 2001. Joint 9th

Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. (2001). Introduction to
algorithms. New York, The MIT Press.

Dickerson, J. A. & Kosko, B. (1996). "Fuzzy function approximation with ellipsoidal
rules." IEEE Transactions On Systems, Man, And Cybernetics - Part B: Cybernetics
26(4): 542 - 560.

Du, H. & Zhang, N. (2008). "Application of evolving Takagi–Sugeno fuzzy model to
nonlinear system identification." Applied Soft Computing 8(1): 676-686.

Fischer, M., Nelles, O. & Isermann, R. (1998). "Adaptive predictive control of a heat
exchanger based on a fuzzy model." Control Engineering Practice 6: 259-269.

192

Fischer, M., Schmidt, M. & Kavsek-Biasizzo, K. K. (1997). Nonlinear predictive control
based on the extraction ofstep-response models from Takagi-Sugeno fuzzy systems.
American Control Conference, Albuquerque, NM, USA.

Guenounou, O., Belmehdi, A. & Dahhou, B. (2009). "Multi-objective optimization of
TSK fuzzy models." Expert Systems with Applications 36(4): 7416-7423.

Haber, R. & Unbehauen, H. (1990). "Structure identification of nonlinear dynamic
systems - A survey on input/output approaches." Automatica 26(4): 651-677.

Hagan, M. T., Demuth, H. B. & Beale, M. H. (2002). Neural Network Design. Boston,
PWS Pub.

Han, G. G., Pardalos, P. & Ye, Y. (1992). "On the Solution of Indefinite Quadratic
Problems using an Interior-Point Algorithm." Informatica 3: 474-496.

Hartmann, B. & Nelles, O. (2009). On the smoothness in local model networks.
American Control Conference. St. Louis.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). The elements of statistical learning. New
York, Springer.

He, X. & Asada, H. (1993). A new method for identifying orders of input-output models
for nonlinear dynamic systems. Proceedings of the American Control Conference.

Huang, Y. L., Lou, H. H., Gong, J. P. & Edgar, T. F. (2000). "Fuzzy model predictive
control." IEEE Transactions on Fuzzy Systems 8(6): 665-678.

Hunt, K. J. & Johansen, T. A. (1997). "Design and analysis of gain-scheduled control
using local controller networks." International Journal of Control 66(5): 619 - 651.

Iyer, M. S. & Rhinehart, R. R. (1999). "A Method to Determine the Required Number of
Neural Network Training Repetitions." IEEE Transactions on Neural Networks 10(2):
427 - 432.

Johansen, T. A. & Foss, B. A. (1993). "Constructing NARMAX models using ARMAX
models." International Journal of Control 58(5): 1125-1153.

Kawamoto, S. (1992). An approach to stability analysis of second order fuzzy systems.
First IEEE international conference on fuzzy systems.

Kosko, B. (1994). "Fuzzy systems as universal approximators." IEEE Transactions On
Computers 43(11): 1329 - 1333.

Lee, E. S. & Zhu, Q. (1995). Fuzzy and evidence reasoning. Heidelberg, Physica-Verlag.

193

Lee, M. L., Chung, H. Y. & Yu, F. M. (2003). "Modeling of hierarchical fuzzy systems."
Fuzzy Sets and Systems 138: 343-361.

Leith, D. J. & Leithead, W. E. (1999). "Analytic framework for blended multiple model
systems using linear local models." International Journal of Control 72(7/8): 605 - 619.

Lin, C. (2008). "An efficient immune-based symbiotic particle swarm optimization
learning algorithm for TSK-type neuro-fuzzy networks design." Fuzzy Sets and Systems
159(21): 2890-2909.

Lin, C. & Xu, Y. (2006). "A hybrid evolutionary learning algorithm for TSK-type fuzzy
model design." Mathematical and Computer Modelling 43(5-6): 563-581.

Lind, I. & Liung, L. (2008). "Regressor and structure selection in NARX models using a
structured ANOVA approach." Automatica 44: 383 - 395.

Liu, P. & Li, H. (2005). "Hierarchical TS fuzzy system and its universal approximation."
Information Sciences 169: 279-303.

Ljung, L. (1999). System identification: Theory for the user. New York, Prentice Hall
PTR.

Ljung, L. & Soderstrom, T. (1986). Theory and Practice of Recursive Identification.
Cambridge, The MIT Press.

Magnani, A. & Boyd, S. P. (2009). "Convex piecewise-linear fittting." Optim Eng 10: 1-
17.

Mamdani, E. H. (1974). Application of fuzzy algorithms for control of a simple dynamic
plant. Proceedings IEEE.

Mastorocostas, P. A. & Theocharis, J. B. (2002). "A Recurrent Fuzzy-Neural Model for
Dynamic System Identification." IEEE Transactions on Systems, Man and Cybernetics -
Part B: Cybernetics 32(2): 176-190.

Miller, A. J. (1990). Subset selection regression. New York, Chapman and Hall.

Molina, C., Sampson, N., Fitzgerald, W. J. & Niranjan, M. (1996). Geometric techniques
for finding the embedding dimension of time series. Neural Networks for signal
processing [1996] VI. Proceedings of the 1996 IEEE signal processing society workshop.
1: 161 - 169.

Narendra, K. S. & Parthasarathy, K. (1990). "Identification and control of dynamical
systems using neural networks." IEEE transactions on neural network 1(1): 4 - 27.

Nelles, O. (2001). Nonlinear System Identification. Berlin, Springer.

194

Nelles, O. (2006). Axes-oblique partitioning strategies for local model networks. IEEE
International Symposium on Intelligent Control. Munich, Germany: 2378-2383.

Nelles, O. & Isermann, R. (1996). Basis function networks for interpolation of local
linear models. IEEE Conference on Decision and Control (CDC). Kobe, Japan: 470-475.

Ou, J. (2001). Grouped neural network model-predictive control and its experimental
distillation application Chemical Engineering. Stillwater, Oklahoma State University.
Ph.D.

Ou, J. & Rhinehart, R. R. (2002). "Grouped Neural Network Modeling for Model
Predictive Control." ISA Transactions 41(2): 195 - 202.

Pomares, H., Rojas, I., González, J. & Prieto, A. (2002). "Structure Identification in
Complete Rule-Based Fuzzy Systems." IEEE Transactions on fuzzy systems 10(3): 349 -
359.

Pronzato, L., Wynn, H. P. & Zhigljabsky, A. A. (2000). Dynamic search - Applications
of dynamical systems in search and optimization. New York, Chapman & Hall.

Rhodes, C. & Morari, M. (1995). Determining the model order of nonlinear input/output
systems directly from data. Proceedings of the American Control Conference.

Roger, J. S. & Sum, C. T. (1993). "Functional equivalence between radial basis function
networks and fuzzy inference system." IEEE Transactions on Neural Networks 4(1): 156-
159.

Sala, A., Guerra, T. M. & Babuška, R. (2005). "Perspectives of fuzzy systems and
control." Fuzzy Sets and Systems 156(3): 432-444.

Seborg, D. E. & Henson, M. A. (1996). Nonlinear Process Control. New York, Prentice
Hall.

Shorten, R., Smith, R. M.-., Bjorgan, R. & Gollee, H. (1999). "On the interpretation of
local models in blended multiple model structures." International Journal of Control
72(7/8): 620 - 628.

Smith, R. M. & Johansen, T. A., Eds. (1997). Multiple Model Approaches to Modeling
and Control. New York, Taylor & Francis.

Sugeno, M. & Kang, G. T. (1986). "Fuzzy modeling and control of multilayer
incinerator." Fuzzy Sets and Systems 18: 329-346.

195

Takagi, T. & Sugeno, M. (1985). "Fuzzy identification of systems and its application to
modeling and control." IEEE Transactions on Systems, Man and Cybernetics 15: 116-
132.

Tanaka, K. & Wang, H. O. (2001). Fuzzy control systems design and alaysis: A linear
matrix inequality approach. New York, John Wiley & Sons, Inc.

Vernieuwe, H., Baets, B. D. & Verhoest, N. E. C. (2006). "Comparison of clustering
algorithms in the identification of Takagi–Sugeno models: A hydrological case study."
Fuzzy Sets and Systems 157(21): 2876-2896.

Wang, N. & Yang, Y. (2009). "A fuzzy modeling method via Enhanced Objective
Cluster Analysis for designing TSK model." Expert Systems with Applications 36(10):
12375-12382.

Yen, J. & Wang, L. (1999). "Simplifying fuzzy rule-based models using orthogonal
transformation methods." IEEE Transactions On Systems, Man, And Cybernetics - Part
B: Cybernetics 29(1): 13 - 24.

Young, P. (1984). Recursive estimation and time-series analysis: An introduction
New York, Springer - Verlag.

Young, P. (1993). Time variable and state dependent modeling of non-stationary and
nonliner time series. Development in time series analysis. T.S.Rao. New York, Chapman
and Hall: 374 - 413.

Zadeh, A. (1965). "Fuzzy Sets." Information and Control 8: 338-353.

Zeng, X.-J. & Keane, J. A. (2005). "Approximation capabilities of hierarchical fuzzy
systems." IEEE Transactions on Fuzzy Systems 13(5): 659-672.

Zhang, X. M., Chen, Y. Q., Ansari, N. & Shi, Y. Q. (2004). "Mini-max initialization for
function approximation " Neurocomputing 57: 389-409.

VITA

Ming Su

Candidate for the Degree of

Doctor of Philosophy

Thesis: A GENERALIZED RULE ANTECEDENT STRUCTURE FOR TSK TYPE

OF DYNAMIC MODELS: STRUCTURE IDENTIFICATION AND
PARAMETER ESTIMATION

Major Field: Chemical Engineering

Biographical:

Personal Data: Born in Jiangyou, Sichuan, P. R. China on November 19, 1977,
the son of Wenxin Su and Minghua Du.

Education: Received Bachelor and Master Degrees in Chemical Engineering

from East China University of Science and Technology, China in May
2000 and May 2003, respectively. Completed the requirements for the
Doctor of Philosophy in Chemical Engineering at Oklahoma State
University, Stillwater, Oklahoma in December, 2009.

Experience: Employed as a graduate assistant in East China University of

Science and Technology from 2000 to 2003. Employed as a research
assistant at Oklahoma State University from Fall, 2003 to present.
Employed as a teaching assistant at Oklahoma State University from
Spring, 2004 to Spring, 2009.

ADVISER’S APPROVAL:

Name: Ming Su Date of Degree: December, 2009

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: A GENERALIZED RULE ANTECEDENT STRUCTURE FOR TSK

TYPE OF DYNAMIC MODELS: STRUCTURE IDENTIFICATION
AND PARAMETER ESTIMATION

Pages in Study: 195 Candidate for the Degree of Doctor of Philosophy

Major Field: Chemical Engineering

Scope and Method of Study: A novel rule antecedent structure is proposed to generalize

TSK type of dynamic fuzzy models to deal with the problem of curse of
dimensionality in conventional TSK fuzzy models. The proposed antecedent
structure uses only nonlinear variables, which directly reduce the number of
possible rules by reducing antecedent dimension. Additionally, one more degree
of freedom is introduced to design antecedents to cover an antecedent space more
efficiently, which further reduces the number of rules. The resultant GTSK model
is identified in two stages. A novel recursive estimation based on spatially
rearranged data is used to determine the consequent and antecedent variables.
Model parameter values are obtained from partitioned antecedent space, which is
the result of solving a series of splitting and regression problems.

Findings and Conclusions: The proposed rule antecedent structure is able to substantially

reduce the complexity in a TSK type of dynamic model. The proposed dynamic
order determination and nonlinear component detection methods are tested to be
able to identify model structures and shown to be less sensitive to noise than other
methods. Instead of directly estimating model parameters, the proposed approach
solves a series of splitting and regression problems to partition the antecedent
space as well as compute the antecedent and consequent parameters. The resultant
antecedent partition is meaningful. The boundaries divide an antecedent space
into regions, within which a linear relation is valid. The resultant GTSK model is
tested on several nonlinear dynamic processes and shown to be more interpretable
and informative than other modeling methods without loss of accuracy.

