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CHAPTER I 
 

 

INTRODUCTION 

 

 

Pipelines are the primary means of transporting crude and refined petroleum products in the 

United States.  Pipelines accounted for 83% of all crude oil transportation and 62% of all refined 

product transported in 2008 (AOPL 2011).  They are also used for transporting other type of 

goods in the country and account for around 17% of all cargo transportations, while amounting to 

just over 2% of the transportation bills (Rabinow 2004).  As an illustration of the cost 

effectiveness of pipelines, AOPL (2011) reported a transportation cost of less than 3¢ for moving 

a gallon of gasoline from Houston, Texas to New York Harbor.  In addition to being cost 

effective and efficient, pipelines are also recognized as one of the safest modes of transportation 

in the oil and gas industry.   

The refined oil pipeline network in the United States spans over 200,000 miles in length 

across all 50 states, transporting over 14 billion barrels (600 billion gallons) of product every year 

(Trench 2001).  Pipelines may be small (8~12'' diameter) or large, up to 48'' in diameter (Trans-

Alaska Pipeline System, TAPS) and ranging over a 1000 miles in length extending across 

multiple states in the country.  Some of the well-known oil transportation lines in the country 

include the Plantation pipeline (6~30'', 3100 miles), Colonial pipelines (36~40'', 5500 miles), 

Centennial pipeline (24~26'', 795 miles), and Calnev pipeline (8~14'', 550 miles).   
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The process of batching is one of the main reasons why pipelines are highly efficient and 

cost effective.  Batching consists of transporting different types of products or different grades of 

the same product in batches in the pipe.  A typical large pipeline in the United States carries on an 

average 30~50 different products or grades of products in each transport cycle (10~15 days) and 

has the capability to handle up to 100~120 product batches per cycle (Rabinow 2004).  The size 

of each batch being transported depends on the logistics and demand of the product at the 

distributor’s end downstream.  Batching enables the refineries to quickly and efficiently transport 

the products to local distributors and helps meet the increasing energy demands of the nation.  

While batching makes pipelines a highly cost effective method of transportation, it also results in 

loss of product or product quality due to contamination by product mixing.  Once contaminated, 

the product can either be passed off as a lower grade product (downgraded) if possible, or be re-

refined to recover the pure products.  This results in inflation in the final retail price of the 

product in the market.  The financial losses because of product contamination are enormous 

considering that over 600 billion gallons of oil is transported in at least 26 transport cycles in a 

year.  As an illustration, Kinder Morgan L.P., reported lost revenues amounting to around $1.5 

billion per year because of product contamination, while another source (Bennett Jr. and Taylor 

III 2000) reported lost revenues of around $1 million per month for a southern Texas pipeline.   

Oil pipeline operation 

The pipelines that move oil from the refineries to the final consumer are not individual 

lines that transport oil from one particular refinery to a particular location.  The oil transportation 

industry consists of a network of pipelines that are connected by nodes referred to as logistic 

hubs.  These logistic hubs serve as the intermediate connection points and are often accompanied 

by extensive storage capabilities.  The initial part of the transportation process consists of moving 

refined petroleum products from refineries to major hubs in the network.  These logistic hubs then 

supply the products to other smaller (sub-) hubs through pipelines and also to the local 



3 

 

distributors over short distances by means of rails and trucks.  This system of hub-to-hub 

progression provides the oil transportation industry the flexibility to increase or decrease the 

amount of oil transported to a specific location based on the changing price-levels and demands.  

Examples of major logistic hubs include the New York Harbor, NY, which supplies many 

distributors in the northeast, northwest and west, and the hub at Chicago, IL that supplies the 

Midwest.   

 The oil is generally moved through the extensive length of pipes by pumping stations that 

are located at every 20 to 100 mile intervals (Trench 2001).  Centrifugal pumps are employed for 

moving liquids, while compressors are used for moving gases.  Depending on the topology, pipe 

design and construction, and the characteristics of the fluid being transported, transportation 

speeds of 3~8 miles per hour are common in refined products pipelines (Trench 2001).  Most of 

the products pipelines are operated throughout the year and are continuously monitored for 

changes in process conditions such as pipe pressures, flow rates, transportation speed, and 

product qualities.   

 Maintaining product quality, and reducing contamination and spillage losses are the most 

important and difficult problems encountered in the oil transportation industry.  Product quality is 

the most important specification in the oil industry.  Even the slightest of contaminations can 

reduce the product’s resale value or, in the worst case render the product commercially unviable.  

Loss in product quality might occur because of various reasons including improper switching of 

valves when segregating the products arriving from the pipelines into separate storage tanks, 

environmental contaminations, and interfacial mixing in the pipelines.  Interfacial mixing in 

particular has been an unavoidable problem in the industry as it is a direct consequence of 

batching, a process that makes transportation using pipelines efficient.  Various techniques have 

been tested for reducing the extent of contamination such as, use of solid/rigid separators at the 

products interface, liquid/gel/flexible separators at the interface, advanced scheduling algorithms 
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that determine the best combination for the pumping sequence of the products based on a set of 

predefined heuristics, and advanced batch cutting techniques.  These methods have only been 

marginally successful at alleviating interfacial contamination or have resulted in unnecessary 

secondary problems.   

Batching 

Batching basically involves transporting batches of different grades (or types) of products 

one after the other, sequentially through a pipeline.  Each batch is regularly dissimilar to the 

immediately preceding and the following batches.  The products mix at the interface between 

successive batches when no separating mediums are employed, resulting in loss of a portion of 

the products forming the interface.  This interface is a mixture of the products in the two batches 

and is commonly referred to as transmix, and it grows in volume as the products moves 

downstream.   

Transmix is a product that is off specification because, with respect to quality, it matches 

neither the leading batch nor the trailing one.  It is therefore downgraded and mixed with the 

batch having the lower grade product (when the two batches are different grades of the same 

product) or is isolated into a separate tank and shipped back for reprocessing.  Both the above-

mentioned cases result in a decrease in the revenue of the shipper, with the latter being of higher 

concern.  The problem of interfacial mixing increases considerably in case of large capacity 

pipelines that transport huge batches and wide variety of products.  Such lines result in a large 

number of interfaces being formed and therefore higher loss of valuable product.   
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Figure 1.1: Transmix growth in a products pipeline as the interface travels downstream. 

Figure 1.1 illustrates the process of batching in a uniform, constant diameter products 

pipeline without bends or fittings.  Consider a batch of product-A being pumped into the pipeline 

followed by product-B.  A contaminated/mixed interface forms between the two products as soon 

as product B enters the pipeline and this interface travels downstream with the products.  The 

extent of mixing (volume or length of contamination) is low at the beginning and it increases as 

the interface travels farther downstream.  The contamination volume (also termed as transmix 

volume) can be visualized as a section of the mixed product that gradually varies in concentration 

as we proceed from one edge of the interface to the other.  As a general rule of thumb 

contamination volume is directly proportional to the square root of the pipe length.   

The problem of interfacial mixing becomes particularly acute when laws and regulations 

concerning additives in the products change.  One of the earliest occurrences of such a situation 

was during the 1980s when leaded gasoline was being phased out from production and the 

pipeline operators had to pay close attention to the intermixing process between leaded and 

unleaded products.   In recent years, the focus has shifted to eliminating sulfur-based fuels as they 

result in lower gas mileage and other environmental issues.  The Environmental Protection 

Agency (EPA) issued a regulation in the early 2000s that required a reduction in the amount of 

sulfur from 50 ppm to 30 ppm in some petroleum fuels.  The products therefore had to be 

segregated based on their sulfur content before transportation, in order to reduce mixing of the 

low sulfur content batches and the high sulfur content batches.  This issue has become more 
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important ever since the introduction of the Ultra-Low Sulfur Diesel (ULSD) regulation by the 

EPA and the amount of transmix is expected to increase specifically for interfaces involving 

diesel.   

Interfacial mixing of petroleum products in pipelines has been a long standing and an 

economically significant issue in the oil transportation industry.  It influences the design 

considerations for pipeline constructions, as well as the scheduling for pipeline operation.  Faulty 

design and operation of a pipeline might result in higher degree of product loss through interfacial 

mixing.  An improperly designed pipeline would add to the expenses of lost products in addition 

to other operation costs.  Parameters such as pipe dimensions, flow regimes, and valve switching 

are of high importance, and operators and designers need to know the effect of these parameters 

on transmix volume.  This causes major economic damage to the industry by increasing the cost 

of the products.  It is therefore important to estimate and minimize the amount of mixing that 

occurs between two products in order to improve the economics of batching.   

A timeline of investigators 

The earliest investigations (Fowler and Brown 1943; Birge 1947; Smith and Sulze 1948; 

Smith and Sulze 1948) on longitudinal contamination of petroleum fluids were predominantly 

empirical in nature.  The observed growth in the contaminated region was characterized as a 

function of various system parameters.  Pipe volume, fluid properties (density and viscosity), and 

flow velocity were reported as major parameters influencing longitudinal contamination in 

pipelines.  Observations reveal higher contaminations in longer pipes at lower flow rates.  The 

contamination length has been reported to be directly proportional to the pipe length and 

inversely proportional to the flow velocity and therefore the Reynolds number.  Most of these 

investigations were system specific owing to their empirical background.  The model parameters 

from one such investigation would therefore not be applicable to a different investigation.  All 
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investigations however reported numbers similar enough to provide a glimpse of the theories 

involved.  Many investigators tried to provide explanations to such observations and connect it to 

the theoretically known diffusion equations.   

One of the earliest theoretical analysis of axial dispersion, a term synonymous with 

Taylor (1953) and Aris (1956), was first  reported in 1922 (Taylor 1922).  The term axial 

dispersion denotes the longitudinal spreading of a contaminant due to the convective and 

diffusive effects prevalent in the flow.  It has been widely suggested as the phenomenon 

governing the process of interfacial mixing in petroleum pipelines.  Axial contamination was first 

thought of being a consequence of just the convective transport of the contaminant due to 

turbulent velocity fluctuations in the system (Taylor 1922).  The contamination growth equation 

(Equation 1.1) was represented in terms of the flow velocity and a correlation coefficient for the 

velocity at a particular point with time. 

 

2 2

2
2

2
d X

u R
dt ξ

    =    (1.1) 

Where X is the distance travelled by a particle in a particular amount of time, u is the particle 

velocity and Rξ is the correlation coefficient for the particle velocity (u) at any time t to the 

particle velocity after an interval of time ξ.   

The period between the mid-1940s and the mid-1960s was especially productive in terms 

of developments in the area of longitudinal mixing.  The first major breakthrough on the 

theoretical aspect of this topic was reported by Taylor (1953) for mixing under laminar flow 

conditions, followed by a separate analysis for turbulent flow (Taylor 1954).  Taylor (1953; 1954) 

modeled the system as a transient molecular diffusion process, with the diffusion coefficient for 

the model being estimated as a combination of both diffusive mixing (molecular for laminar and 

eddy for turbulent flow) and convective mixing due to the velocity profiles inherent in the two 
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flow regimes.  Taylor’s analyses reveal that the axial dispersion coefficient normalized by the 

pipe diameter and flow velocity would decrease with Reynolds number in the turbulent regime as 

opposed to an increasing trend observed in the laminar flow regime.  The concepts introduced by 

Taylor (1922; 1953; 1954) have been extensively examined in the following years and have been 

used as a starting point in most of the axial dispersion studies since, including this work.   

Most investigators since have stuck to the idea of obtaining independent equations for the 

laminar and turbulent flows.  Such independent analyses for the laminar and turbulent flow 

regime would require a sudden shift from purely laminar flow to complete turbulence.  An abrupt 

shift does not make sense as turbulent flows are characterized by near plug flow type velocity 

profiles as opposed to the parabolic velocity profiles in the laminar flow regime.  Experimental 

data show that the dispersion coefficient in its dimensionless form attains a maximum at the cusp 

of the laminar-turbulent transition and reduces gradually in a hyperbolic manner to a lower 

asymptotic value at higher Reynolds numbers.  A sudden switch from laminar to turbulent flow at 

a specific Reynolds number in the models would suggest an accompanying discontinuity in the 

predictions for axial dispersion coefficient.  This is not observed in the experimental data.  In 

addition to the disagreement with the experimental data, the models also overlook a fundamental 

concept that the transition from laminar to turbulent regime does not necessarily occur at one 

particular Reynolds number but over a range of Reynolds numbers.   

Further investigations on Taylor’s turbulent dispersion analysis have shown that 

molecular diffusivity (Aris 1956) and Schmidt number (Levenspiel 1958; Flint and Eisenklam 

1969; Flint and Eisenklam 1970) also play an important role for specific systems such as gases 

and other low density systems, where the Schmidt number could be considerably less than 1.  

Other investigators have questioned the validity of the velocity profile employed by Taylor 

(1954) in his models (Tichacek, Barkelew et al. 1957; Flint and Eisenklam 1969; Chatwin 1971; 

Krantz and Wasan 1974; Maron 1978; Rachid, Araujo et al. 2002) as well as the applicability of 
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the Reynolds analogy (Sjenitzer 1958; Flint and Eisenklam 1969) to certain situations; suggesting 

that a more accurate velocity profile would improve the dispersion coefficient predictions.  

Attempts have also been made to improve the model rangeability by accounting for anisotropy in 

the diffusion coefficient due to progressive mixing (Krantz and Wasan 1974; Rachid, Araujo et 

al. 2002; Ekambara and Joshi 2003); thus adding to model complexity without adequate 

improvement in the predictions.   

Most subsequent investigations (Gill 1966; Gill and Sankarasubramanian 1970; Soltanieh 

and Sadraei 1991) on axial dispersions have been directed towards axial dispersion in short pipes 

for which Taylor’s equations (Taylor 1953; Taylor 1954) are not valid.  In addition to transient 

dispersion conditions, dispersion in the presence of strong centrifugal forces on the flow field has 

also been extensively investigated (Aunicky 1970; Johnson and Kamm 1986; Castelain, Mokrani 

et al. 1997; Zhao and Bau 2007).  Such scenarios are common for flow through helical tubes and 

closely stacked pipe bends or fittings.   

Austin and Palfrey (1964) published one of the major developments in axial dispersion 

investigations.  They assembled experimental data on axial dispersion available in the open 

literature and proposed the existence of two distinct mechanisms that would contribute to 

dispersion in turbulent flow.  This suggests that the dispersion regions can be divided into three 

sections namely the laminar, the low Reynolds number turbulent, and the high Reynolds number 

turbulent dispersion regions.  Other investigators (Chatwin 1973; Chikwendu and Ojiakor 1985; 

Smith 1987) have proposed models that incorporate the above observations by dividing the flow 

cross-section into multiple sections and using varied velocity profiles and diffusion characteristics 

in each region.  Modeling the flow field as multiple layers each with its own characteristics is 

fundamentally consistent with the theories of fluid dynamics.  The general trend of such 

investigations has been to obtain regressed values for the various parameters describing a 

collection of systems.  As a consequence, these models only apply to specific cases.  It is 
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extremely important that the models associate the characteristics of each layer to that observed in 

theory, as opposed to obtaining regressed values for these parameters that fit the observed 

experimental data.   

In line with the above observations, this study hypothesizes that the viscous sublayer 

plays a vital role in the phenomenon of axial dispersion and can be used to adequately quantify 

the extent of transmix growth.  Incorporating the viscous sublayer as one of the parameters in the 

model will ensure smooth transition between the two dispersion regimes reported for turbulent 

flows in the literature (Austin and Palfrey 1964) and thus result in more reliable turbulent 

dispersion models.  Additionally, developing a model based on commonly observed phenomena 

in turbulent flows will provide a theoretical basis to the model, which is lacking in the models 

currently available in open literature.   

Scope of this work 

Convective-diffusion has been the most commonly used framework to describe the 

phenomena of axial dispersion in both the laminar and turbulent flow regimes.  The present work 

couples the fundamental equations of bulk transport with the concepts of viscous boundary layer 

theory to provide an improved model for transmix predictions.  The model employs the 

commonly accepted linear near-wall velocity profile for the viscous sub-layer.  A standard 

version of the universal velocity profile employed by Taylor (1954) is used to model the turbulent 

core.  The steady state thickness of the viscous sublayer (Schlichting and Gersten 2000) is then 

used to estimate the contributions of the viscous sublayer and the turbulent core to effective 

contamination rate.   

The current investigation analyzes the models available in the literature and explains the 

reasons for their failure to accurately estimate the axial dispersion coefficient at low to moderate 

turbulent Reynolds numbers (Re ≤ 70,000).  The  model developed in this investigation is based 
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on Taylor’s theory (1954) for the turbulent axial dispersion coefficient.  It includes modifications 

that would allow Taylor’s equations to be employed through all Reynolds numbers in the 

turbulent flow regime.  The improvement in the prediction accuracy and the applicability would 

be especially discernible in the lower Reynolds number turbulent flow region.   

  This investigation attempts to provide explanations for the various unanswered 

questions in the development of Taylor’s turbulent axial dispersion model, such as the validity of 

using Reynolds analogy for the estimations.  Furthermore, this study aims to examine the effects 

of the turbulent bursting phenomena (commonly observed in the near wall region of turbulent 

flows) on axial dispersion in liquids.  A mechanistic term explaining the physical occurrences in 

transport pipelines is developed based on the theory of turbulent bursts.  The effect of turbulent 

bursts on the overall mass transfer rates is captured and used as a parameter to determine the 

dispersion coefficient.   

The presence of bends and other auxiliary units in a pipeline is known to increase 

longitudinal dispersion effects (Smith and Sulze 1948; Davidson, Farquharson et al. 1955; Carter 

and Bir 1962; Aunicky 1968; Cassell and Perona 1969; Park and Gomezplata 1971).  At the same 

time, flows through helical coils resulting in secondary flows have also been known to reduce 

longitudinal dispersion (Koutsky and Adler 1964; Cassell and Perona 1969).  An analysis of the 

available literature on flow through bends will be performed and a model/methodology will be 

proposed to incorporate the effects of bends, elbows and other such units on transmix growth.   

The scientific contributions from this work include – (a) understanding the importance of 

the near-wall region in bulk transport, (b) a methodology to combine the convective-diffusion 

equations with boundary layer theory, (c) comprehending the effects of turbulent bursts on axial 

dispersion, and (d) a methodology to capture the effects of auxiliary units such as bends and 

elbows in the model.  The analysis presented provides a physical backing to Taylor’s theory 
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(1953; 1954) while providing new conceptual visualizations of the processes governing axial 

dispersions.  Furthermore, this research could also be used in identifying techniques to help 

reduce axial dispersion in straight pipes.  This investigation will also benefit the oil pipeline 

companies as every gallon of product that can be saved equates to higher revenue.  Apart from 

resolving the aforementioned issues, the results of this study would also help in optimizing 

pipeline capacities and scheduling; thereby help improve the overall pipeline infrastructure.   
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CHAPTER II 
 

 

STUDIES ON AXIAL DISPERSION 

 

 

Axial dispersion is a compound phenomenon that depends on various parameters such as the 

types of fluids involved, the hydrodynamic conditions, dimensions of the pipe, the pipe network 

geometry, etc.  Some of these parameters are known to have considerable influence on the extent 

of dispersion, while not enough information is available to discern the effect of some of the other 

parameters.  The experimental data available in literature is diverse and data from different 

sources seem to indicate conflicting observations.  The varied nature of the experimental 

observations has led to the application of different types of modeling techniques to describe the 

process of axial dispersion.   

There are a number of models available in the literature aimed at approximating the 

extent of interfacial mixing.  Empirical models have been by far the preferred method to tackle 

this problem.  Models relating the various system parameters such as pipe length, diameter, fluid 

properties and transmix volume, have been proposed using data obtained from laboratory and 

field experiments.  These models however vary in their predictions and have a very narrow scope 

of applicability.  In addition to this, most of the empirically fit equations have been focusing on 

parameters that are known to directly affect transmix volume, while neglecting other parameters 

that influence transmix growth, such as velocity, concentration, and pressure gradients, etc.  Most 
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of the parameters neglected are ones that define the flow pattern and the physical chaotic mixing 

characteristics observed in flowing liquids.  Hence, these models are unable to explain certain 

characteristic observations seen in petroleum transportation pipelines.  Some questions that arise 

in this context are: Which model to use? What are the predictive capabilities of the model? Does 

the model explain the phenomenon properly? Unfortunately, none of the theories or models 

available in literature is able to completely describe this phenomenon or provide a proven 

methodology that would be applicable for predicting axial dispersion in all transport systems.   

This chapter provides a review of the experimental data and the accompanying 

observations that have been reported by previous investigators.  In addition, Taylor’s theories 

(1953; 1954) and models on axial dispersion, which have been considered as a fundamental base 

by most researchers, are also discussed.  Furthermore, this section also presents a comprehensive 

survey of the other modeling techniques that have been employed in transmix estimations.  

Aspects such as, the dependence of transmix growth on various system parameters, and the 

theoretical frameworks that have been employed have been included in the discussion.  An 

analysis of the research gaps in current literature and an approach strategy are also presented.   

Published data on axial dispersion 

 A large amount of experimental data on axial dispersion is available in the literature.  

This includes data from lab-scale, pilot-scale, and field experiments (Fowler and Brown 1943; 

Birge 1947; Smith and Sulze 1948; Smith and Sulze 1948; Hull and Kent 1952; Taylor 1954; 

Sjenitzer 1958; Austin and Palfrey 1964).  The data consists of axial dispersion measurement for 

pipes 0.124'' to 40'' in diameter and 0.8 ft. to 2270000 ft. in length using water-water (with 

solute), kerosene-gasoline, and gasoline-fuel oil interfaces.  There are more data available in the 

literature pertaining to experiments with gases, helical pipes, short pipe lengths or pipes with 

small length to diameter ratios, etc.  These have not been considered as the current research 
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focuses on investigating axial dispersion in liquids flowing through systems of circular cross-

sections with large length to diameter ratios.  A small number of experimental data consisting of 

results obtained in pipe systems with bends or pipes with small length to diameter ratios have 

been included in the current investigation.  Such data have been included to obtain an estimate for 

the accuracy (or inaccuracy) of the proposed model and other models from published literature 

for these systems.  Table 2.1 lists the various sources for the experimental data and the variety of 

the system conditions used in the current investigation.  The data assembled covers an extensive 

breadth of information.  It consists of axial dispersion results from experiments using a wide 

range of pipe lengths and diameters.  The experimental data encompasses Reynolds numbers 

spread over what is generally accepted as transition region for practical purposes to fully 

turbulent flows, and with different types of fluid combinations.   

Empirical studies and key parameters 

Empirical modeling has been a popular and effective mode of analysis in transmix 

research.  Investigators employing such techniques have identified a list of parameters that affect 

axial dispersion and put forth equations based on the extent to which each of these parameters 

influenced the process.  The empirical coefficients for the models are then regressed from 

experimental data, which usually is in the form of transmix growth rate (length or volume basis).  

Appendix-A contains a list of empirical correlations that are currently available in open literature.  

Empirical models, though system specific, provide essential knowledge of transmix growth as an 

independent or combined function of the system parameters.  The experimental observations and 

results reported in open literature reveal distinct trends when analyzed individually, thus 

providing useful insights on the dynamics of axial dispersion.  The parameters commonly listed 

in literature are discussed in this section.   
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Table 2.1:  Experimental data matrix. 

Source Diameter (in.) Pipe Length (ft.) Reynolds Number # of Data Points 

Austin and Palfrey (1964) 20 – 40 355 – 1,230,000 128,000 – 970,000 12 

aFowler and Brown (1943) 0.124 – 0.313 5 – 105.6 2,220 –   19,800 27 

aBirge (1947) 4 – 12 140,000 – 227,000 67,000 – 538,000 8 

aHull and Kent (1952) 8 – 10 72,000 – 970,000 24,000 – 300,000 6 

Smith and Schulze (1948) 2 – 12 2,500 – 2,033,803 14,160 – 591,000 62 

aSjenitzer (1958) 8 – 10 3,000 – 246,000 8,000 –   52,000 7 

Taylor (1954) 0.375 0.8 – 5.35  11,800 –   19,300 4 

aPart of the data taken from Austin and Palfrey 
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Pipe length: The residence time of a fluid interface in a pipe, which is equivalent to 

the length of the pipe, is an important parameter governing transmix growth.  Transmix volume 

or length is known to be higher in longer pipes as compared to shorter pipes.  Experimental 

evidence reveals that transmix growth is a non-linear function of the pipe length.  This 

dependence is commonly expressed in the form of a power law equation, with the values of the 

exponent varying between 0.3 and 0.62 based on the experimental data employed for regression 

(Birge 1947; Smith and Sulze 1948; Smith and Sulze 1948; Sjenitzer 1958).  This information 

supports the theoretically estimated value of 0.5 for the exponent (Taylor 1922; Fowler and 

Brown 1943; Hull and Kent 1952; Taylor 1953; Taylor 1954; Levenspiel and Smith 1957; 

Levenspiel 1958; Austin and Palfrey 1964; Aunicky 1970).   The variation in the pipe length 

exponent can be attributed to researchers overlooking certain parameters such as system 

geometry, entrance effects, and other unavoidable errors in the experiments.  The structure of an 

experimental setup has considerable influence on the axial dispersion data.  It can be inferred 

through intuition that the presence of bends, elbows and other kinds of pipe fittings would 

enhance the mixing characteristics of the systems and therefore intensify axial dispersion.  

Similar observations have also been reported in the literature (Smith and Sulze 1948; Smith and 

Sulze 1948), suggesting a higher value for the pipe length exponent for flow through such 

systems.  Nonetheless, all experimental results confirm that a plot of the transmix growth (in an 

ideal straight pipe) against pipe length would be a straight line with a slope of around 0.5 on a 

semi-log graph.   

Pipe diameter: Most of the experiments on axial dispersion that are reported in the 

literature were performed using setups with pipes of fixed cross-sectional area.  The pipe 

diameter is therefore a less common feature in most empirical models.  Some empirical models 

do account for the effect of pipe diameters, either directly or indirectly in the form of pipe 

volume.  The effect of pipe diameter has also been included in the form of Reynolds number in 
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some of the studies.  Most of these correlations have the diameter manipulated using complex 

non-linear relationships, thus making it difficult to separate out its effect on transmix growth 

(Fowler and Brown 1943; Sjenitzer 1958; Austin and Palfrey 1964).  Some empirical 

investigations also indicate a near square root dependence of the transmix growth rate on pipe 

diameter.  Austin and Palfrey (1964) analyzed experimental data for turbulent dispersion from 

various sources and concluded that the transmix growth rate is more sensitive to the variations in 

the pipe diameter at lower Reynolds number as compared to higher Reynolds numbers.  Other 

researchers have (Taylor 1954; Sjenitzer 1958; Aunicky 1970) also reported similar observations 

through separate theoretical and regression analyses.   

Reynolds number and flow regime: The flow hydraulics of a system has a defining 

impact on the extent of axial dispersion.  Conventionally, turbulence is known to enhance the 

mixing characteristics.  The effect of Reynolds number and therefore the flow regime on axial 

dispersion though is rather contrary to this convention.  Turbulence, especially at higher Reynolds 

numbers, is known to diminish axial dispersion.  The empirical equations for axial dispersion use 

either the Reynolds number or the flow velocity to account for the effects of the flow regime.  

Similar to the formulations using pipe length and diameters, most empirical equations employ a 

power law term for the Reynolds number.  The power law formulations using the Reynolds 

number however provide reasonable estimations only at higher Reynolds number.  Some 

investigators (Austin and Palfrey 1964; Flint and Eisenklam 1969; Udoetok and Nguyen 2009) 

have proposed more complicated formulations to improve the prediction accuracy at lower 

Reynolds numbers.  The experimental evidence indicates that transmix growth is relatively slow 

in the turbulent flow regime as compared to laminar flow, with all the other parameters remaining 

constant (Fowler and Brown 1943; Flint and Eisenklam 1969; Aunicky 1970; Flint and 

Eisenklam 1970).  The exact dependence of transmix growth on Reynolds number is however, yet 

to be established.   
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Secondary parameters: The three parameters discussed earlier are known to directly 

affect axial dispersion as compared to other parameters such as fluid properties, pressure gradient, 

friction, etc.  These parameters have therefore been explored in less detail as compared to pipe 

diameter, length and the flow Reynolds number.  It could be argued that some of these secondary 

parameters have been indirectly included in the equation through the Reynolds numbers.  

However, some investigators (Birge 1947; Levenspiel 1958) suggest a need to incorporate them 

as primary parameters in the axial dispersion equations.   

 Experimental data as well as theoretical analysis of axial dispersion imply that friction 

factor and consequently pressure drop will play an important role in transmix predictions.  

Friction factor decreases with increasing Reynolds number and exhibits a distinct discontinuity 

when plotted against the Reynolds number.  Friction factor has therefore been attributed as a 

possible explanation for the discontinuity observed in the transmix length vs. Reynolds number 

curves (Austin and Palfrey 1964).  Aunicky (1970) and Austin and Palfrey (1964) suggested the 

use of two separate equations, one  on either side of the discontinuity to model this observation.   

 Axial dispersion data from some field experiments also seem to indicate some variations 

in the extent of axial mixing for different fluid combinations (Birge 1947; Weyer 1962).  

Investigations have reported higher intermixing for systems comprised of lower density fluids 

(Birge 1947), while viscosity has been reported to have an opposite effect.  Birge (1947) and 

Weyer (1962) from their independent investigations suggest that differences in the specific 

gravities of the fluids forming the interface would also have a significant effect on transmix 

growth rate.  However, no experimental evidences are provided to support this theory.  Other 

parameters such as fluid sequence and presence of bends have also been studied by a few 

researchers.  Such studies however have been mostly ignored with the assumption that these 

parameters do not contribute significantly to transmix growth.   
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Austin and Palfrey empirical model 

The Austin and Palfrey empirical model (Austin and Palfrey 1964) for estimating 

transmix length is one of the more robust models available in the literature.  The equations 

proposed by the investigators are based on their analysis of a large database consisting of 

laboratory scale, pilot scale and field data that were available in open literature.  The application 

of this model is therefore not restricted to a select set of systems and can be considered 

comprehensive and reliable for predicting transmix length over a wide range of conditions.   

 

Figure 2.1:  Dimensionless contamination length vs. Reynolds number for 2'' and 8'' diameter 

pipes.  Adapted from Austin and Palfrey (1964). 

Austin and Palfrey noted that the empirically estimated constants in their equations bore a 

remarkable resemblance to the constants commonly used in momentum transport equations. They 

suggested that viscous effects, which are dominant in the near-wall regions, play a significant role 

in axial dispersion.  Austin and Palfrey identified two distinct dispersion curves for Reynolds 

numbers in the turbulent regime (Figure 2.1).  In the low Reynolds number region, the rate of 
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axial dispersion decreases rapidly with increasing Reynolds number and beyond a certain critical 

value it flattens out and appears to be only slightly dependent on variations in the Reynolds 

number.  Based on this observation, they proposed the existence of two distinct mechanisms in 

the turbulent regime and suggested viscous dispersion to be one of the mechanisms. 

  Their model for estimating contamination length consisted of two separate equations, 

Equation (2.2) for Reynolds numbers below a critical value (Equation 2.1) and Equation (2.3) for 

transmix length estimations at higher Reynolds numbers.  Their analysis of the experimental data 

suggested the critical Reynolds number to be a function of the pipe diameter.   

 1.52Re 10,000 d
C e=  (2.1) 

 0.9 1.2118,420 Re dS d L e−= ⋅  (2.2) 

 
0.111.75 ReS d L −= ⋅  (2.3) 

The empirical constants used in the above equations were determined based on the 

calculations of contamination length (S) defined as the distance between two points in the 

interface along which the mixture composition varies from 1% to 99% of either product.  They 

point to the similarity between a popular equation for estimating the viscous sublayer thickness 

(Equation 2.4) and the proposed empirical relation for axial dispersion in turbulent flow 

(Equation 2.2) to support their claim.  They also argued the significance of viscous effects by 

pointing out experimental results showing an increase in contamination length with increasing 

pipe diameters at the same Reynolds number. 

 0.875ReV ddδ −∝  (2.4) 

 The similarities between the two phenomena are clearly discernible.  There are however 

no other evidences or theories explaining the change in slope of the curves at the so called critical 
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Reynolds number.  Austin and Palfrey’s supposition of the viscous sub-layer being an important 

parameter in the process seems reasonable as the viscous sub-layer thickness also displays a 

similar trend with increasing Reynolds numbers.   

Theoretical developments on axial dispersion 

Danckwerts (1953) was among the earliest investigators to conduct theoretical studies on 

longitudinal dispersion.  He suggested the application of age- and time-distribution functions for 

solving such estimations.  Danckwerts (1953) recognized that the assumption of plug flow for 

such systems would be incorrect and argued that the velocity profile and consequently the near-

wall dynamics will affect longitudinal dispersion.  Klinkenberg and Sjenitzer (1956),  Lee (1960), 

Levenspeil and Smith (1957) and Bischoff and Levenspiel (1962; 1962) have elaborated on this 

theory and pointed out the existence of an error function profile type skew in the distribution 

curves as opposed to the more common standard Gaussian profiles to represent the contamination 

distribution.  Klinkenberg and Sjenitzer (1956) investigated the mechanisms proposed by 

previous researchers and based on statistical reasoning suggested that the effects of multiple 

mechanisms contributing to longitudinal dispersion will be additive.  This effect in axial 

dispersion is very similar to the additive nature of the pressure drops through packed beds as 

observed by Darcy and expanded by Forchheimer and later Ergun (1952).  Levenspiel and Smith 

(1957) suggested the use of Peclet numbers as a similarity criterion for fluid self-mixing and 

conducted statistical analysis of tracer studies.  They proposed the use of Equation (2.5) to 

estimate longitudinal dispersion coefficient based on measured spread of the contaminant.   

 ( )21
8 1 1

8
ED

Pe
uL

σ= = + −  (2.5) 

Levenspiel and Smith (1957) also discussed the effect of flow parameters, geometry 

parameters, and axial dispersion coefficient on distribution functions.  They noted that shorter 
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residence times and higher axial dispersion coefficients skew the normal distribution functions 

observed for such systems, with the distributions approaching Gaussian error curves for higher 

axial dispersion coefficient values.  It is important to notice that the dispersion coefficients are 

assumed to be uniform across the flow cross-sectional area and that such an assumption will only 

be valid at high Reynolds numbers i.e. at high flow rates.   

Taylor’s theory of axial dispersion 

Taylor (1953; 1954) suggested that velocity profile plays a significant role in the 

dispersion of matter in the axial direction and proposed a model similar to the conventional 

diffusion equation to determine the extent of axial dispersion.  Taylor (1953; 1954) performed 

separate theoretical analysis on flow through pipes in laminar and turbulent regimes, and 

conceptualized a parameter referred to as the axial dispersion coefficient.  The axial dispersion 

coefficient is similar to the conventional diffusion coefficient used in the one-dimensional 

transient diffusion equation (Equation 2.6).  It governs the rate of spreading of a contaminant in 

the longitudinal direction.   
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 Taylor (1953) visualized axial dispersion to be a two-step process.  The first step consists 

of the contaminant concentration profile being skewed into a parabolic shape (in laminar flow) 

due to the velocity gradient, with diffusion across the cross-section smoothing out the radial 

concentration variations in the second step (Figure 2.2).   

 

Figure 2.2:  Taylor’s proposed diffusion mechanism. 
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Taylor (1953; 1954) solved the convective-diffusion equation (Equation 2.7) using the 

velocity profile across the flow cross section and obtained an estimate for the longitudinal 

dispersion coefficient to be used in a transient diffusion model (Equation 2.6).  Taylor (1953; 

1954) conducted independent analysis for the laminar and turbulent flow conditions and reported 

separate equations to estimate axial dispersion coefficients in the two flow regimes.   

 ( )
2

2

1C C C C
u U D r

t x x r r r

 ∂ ∂ ∂ ∂ ∂ + − = +  ∂ ∂ ∂ ∂ ∂  
 (2.7) 

Axial dispersion in laminar flow 

A parabolic velocity profile (Equation 2.8) was employed for solving the convective-

diffusion equation in the laminar flow regime.  In such flows, the longitudinal dispersion can be 

considered to occur entirely due to the velocity differences between streamlines, and the resulting 

radial molecular diffusion.  Taylor solved the convective-diffusion equation assuming 

instantaneous radial diffusion and a concentration independent diffusion coefficient to obtain the 

axial concentration gradient (∂C/∂x).  The axial concentration gradient was integrated across the 

flow cross-section to reflect the rate of transport of contaminant across the cross section and 

therefore the axial dispersion coefficient (Equation 2.9).   
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Axial dispersion in turbulent flow 

The turbulent axial dispersion coefficient was estimated using a universal velocity profile 

for the velocity term in the convective-diffusion equation (Equation 2.7).  The universal velocity 

profile in its dimensionless form is given as  

 ( ) 0u u
f z

u
τ

τ

−
=  (2.10) 

where, 
r

z
R

=  and Wuτ τ ρ=  (2.11) 

with f(z) being the dimensionless velocity and τW is the wall shear stress.  The values for the 

dimensionless velocity function (Figure 2.3) were determined from a mean curve using data 

reported by Stanton and Pannell, and Nikuradse (Taylor 1954).   

 

Figure 2.3: Velocity profile as a function of distance away from the wall, used in Taylor’s 

estimation of the turbulent axial dispersion coefficient. 

Assuming Reynolds theory of the analogous nature of mass, momentum and heat 

transfer, Taylor expressed the radial eddy diffusivity in terms of the shear and velocity profiles 

across the cross-section of the flow field.  Replacing the diffusion coefficient (D) in the 

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

f(z)

1 - z



26 

 

convective-diffusion equation with eddy diffusivity, and solving Equation (2.7) in the same 

manner as for laminar dispersion gives the final expression for the axial dispersion coefficient.   

 10.1TK Ruτ=  (2.12) 

Taylor (1953; 1954) conducted the axial dispersion analyses assuming an equilibrium 

between the axial convective and radial diffusive transport.  Such a condition requires the 

interface to reside in the pipe for a certain amount of time as specified by Equation (2.13) for 

laminar flow systems (Taylor 1953).  Therefore, Taylor’s equations (Equation 2.9, Equation 2.12) 

yield asymptotic values for the axial dispersion coefficient.  Equation (2.9) and Equation (2.12) 

are only applicable in cases where the interface has resided in the pipe for a sufficiently long 

period of time and therefore cannot be applied to short pipes.  A similar argument can be 

proposed for axial dispersion in turbulent flow.  It is assumed that Equation (2.13) also holds for 

turbulent flow, albeit with the diffusion coefficient being replaced with eddy diffusivity (ε).   
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Taylor’s results for axial dispersion estimations (Equations 2.9 and Equation 2.12) are 

excellent in predicting the general trends observed in the process.  The magnitudes of the 

predictions are however consistently lower than the experimental results (Figure 2.4).  Austin and 

Palfrey (1964) showed through quantitative analysis that Taylor’s expression for turbulent flow 

(Equation 2.12) under-predicts axial dispersion coefficient by a huge extent (order of magnitude 

differences) at low Reynolds numbers (≤ 5000).  Similar comparisons at higher Reynolds number 

(≥ 100000) showed better agreement with experimental data, though Taylor’s analysis (Equation 

2.12) still under-predicts the extent of contamination.  Austin and Palfrey (1964) suggested the 

inadequacies of Taylor’s analysis (1954) in incorporating “tailing” effects as the reason for the 

slight deviation at high Reynolds numbers.   
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Figure 2.4: Performance of Taylor’s turbulent dispersion equation (Equation 2.12).
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Aris (1956) pointed out that Taylor’s expressions were obtained assuming Reynolds 

analogy for mass and momentum transport, and hence, are only valid for systems with a Schmidt 

number of one.  Aris (1956) then corrected Taylor’s expression (Equation 2.9) by adding 

molecular diffusivity to the axial dispersion coefficient and improved the predictions for low 

Schmidt number systems (gases) and laminar flow conditions.  For Schmidt numbers higher than 

one, which is the case with liquids, the effect of molecular diffusivity is negligible and can 

therefore be ignored.  This was shown to be true at higher Reynolds numbers using the data 

assembled by Levenspiel (1958), and Flint and Eisenklam (1969; 1970).  Many researchers 

(Tichacek, Barkelew et al. 1957; Flint and Eisenklam 1969; Atesman, Baldwin et al. 1971; 

Chatwin 1971; Krantz and Wasan 1974; Maron 1978; Rachid, Araujo et al. 2002) also suggest 

Taylor’s (1954) use of the universal velocity profile and concentration independent diffusion 

coefficients as reasons for this eccentricity.  Tichacek et al. (1957) evaluated the convective-

diffusion equation with different velocity profiles and showed that even a 3% variation in the 

velocity profile resulted in a deviation of around 50% in the dispersion coefficient.  Flint and 

Eisenklam (1969) reworked Taylor’s analysis (1954) for turbulent axial dispersion in gases and 

reported similar observations.   

Multilayer models 

The deviation of Taylor’s turbulent dispersion predictions at lower Reynolds numbers is 

well documented.  Investigators have proposed various techniques to overcome this ambiguity.  

One technique (Chatwin 1971; Chatwin 1973; Chikwendu and Ojiakor 1985; Smith 1987) to 

model such variations would be by splitting the flow cross-section into multiple regions 

(concentric cylinders for pipes and layers for open channel flow), and modeling each region with 

the characteristics specific to those observed in the actual processes.  This technique is based on 

the premise that velocity is not constant across the entire cross-section of the flow.  Accounting 
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for these variations should result in better dispersion models, especially for low Reynolds number 

turbulent flows.   

Chikwendu and Ojiakor (1985) proposed a multilayer model for flow in open channels, 

with each layer having different diffusion characteristics and velocity profiles (Figure 2.5).  The 

convective-diffusion equation (Equation 2.7) was applied separately to the regions and an 

empirically estimated lateral diffusion coefficient was employed to model the transport of 

material between the two layers.  The concentration distribution functions obtained from the 

separate solutions for the two layers were then superimposed to give the effective distribution 

expected in the system.  Employing more than two layers would improve the model accuracy 

(Smith 1987); though, this would also increase the number of empirical constants in the model, 

making the equations significantly more complex.   

 

Figure 2.5: Multilayer model schematic.  Adapted from Chikwendu and Ojiakor (1985). 

Chatwin (1971; 1973) had proposed similar multilayer concepts prior to Chikwendu and 

Ojiakor (1985) and suggested to model a two layer system with the viscous sub-layer and the 

turbulent core as the two layers.  Chatwin (1971) solved the convective-diffusion equation using a 

linear velocity profile for the viscous sub-layer region (non-dimensional wall units, y+ ≤ 5) and 

the log law profile in the turbulent core region to obtain a 20% increase in the dispersion 

coefficient calculated using Taylor’s turbulent dispersion equation.  However, the equations still 

under-predict the overall dispersion coefficient and Chatwin (1971) attributed this to the 
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incompetency in modeling the viscous effects.  Chatwin (1973) later reported a detailed analysis 

for open channel flows and obtained an expression for the effective dispersion coefficient 

(Equation 2.14) as a function of the height of the viscous sub-layer, using a linear velocity profile 

across the flow cross-section.   

 
( )22

10

1 2

10 1

30E

h hu h
D

D D

  
= + 

  
 (2.14) 

where, D1 and D2 represent the radial diffusion coefficients in the viscous sub-layer and the 

turbulent layer, h1 and h indicate the thickness of the viscous sub-layer and the total channel 

height respectively, and u0 is the maximum flow velocity (open surface).   

Research strategy and timeline 

 The available literature reveals that further research is necessary to effectively describe 

the phenomenon of axial dispersion in liquid petroleum pipelines.  Most of the models currently 

available in the literature are empirical; they do not have an established theoretical basis, are 

accurate only for select systems and therefore lack generality.  Taylor (1953; 1954) proposed 

robust theoretical concepts for axial dispersion, the resulting model equations though are only 

applicable for asymptotic conditions of high Reynolds number turbulent flows.  Subsequent 

investigations on Taylor’s theories have led to some developments in the field.  The improved 

theoretical models however exhibit similar inconsistencies in accurately predicting the 

experimental results, as observed in the original.   

Apart from Taylor’s analysis (1953; 1954), almost all other studies involve solving 

complex equations using numerical simulation techniques.  The models have been developed 

assuming a uniform flow field and are solved by considering either the laminar flow regime or the 

turbulent flow regime as the controlling factor.  These models therefore tend to be erroneous for 
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conditions when both the viscous and the turbulent effects are significant.  The models that 

employ improved velocity profiles fare slightly better, but the discrepancies still exist.  The 

various theoretical and empirical models discussed earlier are known to predict transmix growth 

with less than 20% deviation for systems that are similar to the study conditions.  The same 

models however also differ by over 200% for cases that were not included for developing the 

model.  The empirical model proposed by Austin and Palfrey (Equations 2.1-2.3) is obtained 

from the analysis of experimental data from many different investigations and hence is more 

generalized as compared to the other empirical models.  This model has also been used to 

successfully predict transmix volume for other independent experimental investigations (Shaker 

and Mansour 1999).  The Austin and Palfrey model however fails to provide insights on the 

phenomenon governing axial dispersion.   

The above discussion clearly indicates the need for a theoretical model for transmix 

growth predictions.  The new theoretical models would most likely build on Taylor’s theories of 

axial dispersion and provide explanations on the divergence of Taylor’s model equation 

(Equation 2.12) from experimental observations in the low Reynolds number turbulent regime.  

Furthermore, the models should also be able to describe the role of turbulence mechanics in axial 

dispersion studies.  Such models would provide a vision to what could be happening in the 

system during the process of pipeline transport and help identify techniques to help reduce axial 

dispersion.  The most important aspect though, would be to develop a generalized model with 

better accuracy than the ones currently available in literature.   

A theory that has been suggested to explain the deviations in Taylor’s analysis (Taylor 

1954) for low Reynolds number turbulent flow is the inattention to viscous effects in the near 

wall region.  Austin and Palfrey (1964) and Chatwin (1973) were among the first to investigate 

this hypothesis and report encouraging observations.  The experimental data reported by other 

investigators also validates this theory.  The extent of longitudinal contamination depends upon 
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the operating flow rate or Reynolds number (Figure 2.6A).  At Reynolds numbers approaching 

zero, the system approaches stagnation and in this region axial dispersion coefficient approaches 

the molecular diffusivity and convection is no longer a significant factor.  Reynolds number 

seems to have an opposite effect on axial dispersion in the turbulent regime.  The dimensionless 

axial dispersion coefficient seems to decrease rapidly with increasing Reynolds number at lower 

values of turbulent Reynolds numbers.  This then changes to a gradual reduction beyond a certain 

higher Reynolds number, approaching an asymptote to the turbulent eddy diffusivity.  The above 

observation can be explained by considering the effects of the viscous boundary layer.  For fully 

developed laminar flow, the viscous boundary layer covers the entire cross section of the pipe.  

This changes as the flow enters into transition and then turbulence.  The viscous layer thickness 

decreases as a hyperbolic function of the Reynolds number (Figure 2.6B), with the pipe diameter 

as an asymptote for the Reynolds number at onset of turbulence, and zero as the other asymptote 

at infinite Reynolds number.  The values for the dimensionless viscous sub-layer thickness shown 

in Figure 2.6B were calculated using the equation (Schlichting and Gersten 2000)  
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where G is a monotonically decreasing function of the Reynolds number, which tends to one at 

infinite values of the Reynolds number.  This phenomenon is very similar to the observations on 

axial dispersion.  Viscous region effects can therefore be considered as a possibly significant 

parameter in dispersion studies.   
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Figure 2.6: A) Dimensionless dispersion coefficient and, B) dimensionless viscous sublayer 

thickness, as a function of the Reynolds number.  

 The current work builds on this similarity observed between the axial dispersion 

coefficient and the viscous sub-layer variations to foster a new model for axial dispersion 

estimations.  Initial modeling efforts concentrate on establishing a direct dependence of axial 

dispersion on the viscous sub-layer thickness and investigate the possibility of empirically 

relating the two quantities.  This empirical model was analyzed to learn about any obvious 

correlations or equivalence to other theoretical or well-established relations in mass and 

momentum transport studies.  The knowledge thus gathered was then applied to put together 

theoretical concepts that might be contributing to axial dispersion.   

 The definitive contribution of this work to the state-of-the-art is a model that combines 

Taylor’s theories on axial dispersion and the theories of boundary layer flow.  The concepts for 

this contribution were conceived and developed as a consequence of continuous work, which 

resulted in other intermediate models in addition to the main model.  A pipe wall scraper model 

and a tank-in-series model were among the most promising of the various theories of solutions 

strategies that were investigated.  The various observations, inaccuracies and inadequacies of 

these models helped redirect this work in subsequent path that lead to the eventual development 

of the combined model.   
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Organization 

Chapter III of this report presents a detailed review of the various checkpoints 

encountered in this work and discusses the development of the final axial dispersion model.  

Chapter IV discusses the contributions of the near-wall turbulent bursting events on axial 

dispersion and proposes a methodology to mathematically incorporate these effects into the axial 

dispersion equation.  Chapter IV also deliberates on the various concepts and assumptions in 

Taylor’s analysis based on the analysis including the turbulent bursting mechanisms.  The 

concepts discussed in the previous chapters are used to perform rigorous recalculations of the 

convective-diffusion equations employed by Taylor (1954) using the commonly accepted velocity 

profiles for turbulent flows in the contemporary world.  Finally, a methodology to include the 

effects of pipe fittings, specifically elbows and bends is enumerated in Chapter V.  

Recommendations for advancing the concepts proposed in the current work to improve the axial 

dispersion predictions and also to other areas are discussed in concluding Chapter VI.   
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CHAPTER III 
 

 

MODELS FOR AXIAL DISPERSION IN STRAIGHT PIPES 

 

 

The viscous sublayer has been stated to be heavily involved in the process of axial dispersion and 

suggested to be a potentially significant factor by many investigators (Austin and Palfrey 1964; 

Chatwin 1971; Chatwin 1973; Dewey and Sullivan 1977; Chikwendu and Ojiakor 1985; Smith 

1987; Udoetok and Nguyen 2009).  Most researchers have tried to provide a phenomenological 

explanation of how the viscous sublayer might contribute to, or enhance axial dispersion.  

Various theories have been proposed and researchers have published mathematical formulations 

based on these theories.  Though the viscous sublayer has been noted as a significant factor, the 

magnitudes of its contributions to axial dispersion remain relatively unknown.  This is mainly 

because the viscous sublayer thickness is not a primary measured variable such as flow rate, 

pressure or temperature.  Most mathematical formulations available in literature therefore do not 

employ the sublayer thickness as a separate parameter.   

The significance of the viscous sublayer seems obvious when analyzing Taylor’s theories 

on axial dispersion.  The idea that the flow in the near-wall region is slower and results in 

enhanced mixing at an interface seems a logical explanation for axial dispersion.  In addition to 

this, the success of Taylor’s model equation in predicting the general trend of the process has 

simply bolstered this idea.  This work focuses on expanding on Taylor’s theories of axial mixing 
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and explores the hypothesis that employing the viscous sublayer thickness as a direct parameter in 

axial dispersion equations would improve the prediction accuracy of such models.  Although 

having more accurate axial dispersion estimation equations is convenient, understanding the 

concepts governing these processes are equally, if not more vital.  The objective of this work has 

therefore always been to put forward models and equations that reveal the functioning of the 

underlying physics.   

The current chapter provides a chronological recount of the three axial dispersion models 

that were developed in this work.  The three techniques described include a Scraper and wash-off 

model, a Tank-in-Series modeling approximation, and a combined Taylor model also referred to 

as the model of viscous and turbulent contributions.  Each model in the order of their progression 

played a significant part in the conceptualization and realization of all subsequent models.   

Scraper and wash-off model 

The scraper and wash-off model is an empirical formulation that was realized during the 

efforts to confirm the dependence of axial dispersion on the near-wall viscous region thickness.  

This model has been developed based on the assumption that any mixing in the axial direction is 

solely an effect of the slow moving liquid in the near-wall region of the flow.  The liquid adjacent 

to the pipe walls move slower than the bulk flow and therefore lag behind the interface and into 

the trailing liquid.  The trailing liquid then washes off this thin layer of the leading liquid from the 

pipe walls, resulting in a mixed region in-between the two pure liquids.  The length of the mixing 

region would be dependent on the rate at which the trailing liquid is able to clear the pipe wall off 

the layer left behind by the leading liquid.   

A schematic visualization of the scraper and wash-off concept is shown in Figure 3.1.  

The schematic shows the heavier, more viscous of the two liquids involved in the interface as the 

leading liquid and the lighter, less viscous liquid as the trailing liquid.  Based on fundamental 
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knowledge, the heavier, thicker (more viscous) liquid would have a thicker viscous region as 

compared to the thinner (less viscous) and lighter liquid.  The exact opposite would be true for the 

central turbulent core in the two regions.  It is theorized that the central core of the trailing liquid 

being broader, would only allow a certain part of the annular region left behind by the leading 

liquid into the trailing liquid region.  This annular region forms a part of the mixed interface that 

results between the two liquids.  The amount of leading liquid that would be available to form the 

contaminated interface would therefore be defined by the viscous sublayer thickness for the 

thinner, lighter liquid.  The same logic also applies for the case when the lighter, thinner liquid is 

followed by the heavier, thicker liquid.  In such a case, the annular region left behind by the 

leading liquid would be thinner than the one from the trailing liquid.  The extent of mixing would 

therefore still be defined based on the viscous sublayer thickness of the thinner, lighter liquid.   

 

Figure 3.1: Process schematic for the scraper and wash-off model. 

Preliminary model equations 

The annular region would be as thick as the viscous sublayer of the thinner, lighter fluid.  

The volume of the leading liquid that contributes to the mixed interface can therefore be 

estimated using basic geometry (Equation 3.1).   

 ( )22
Annulus vV R R Lπ π δ = − − ⋅   (3.1) 
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where, R and L indicate the pipe radius and length, and δv is the thickness of the viscous sublayer 

of the thinner, lighter liquid.  Many different approximations are available to estimate the 

thickness of the viscous sublayer.  The current model employs an approximate relation stated in a 

book by Schlichting and Gersten (2000) for this purpose (Equation 2.15).   
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The G in the above equation is a function of the Reynolds number and is calculated using 

 2ln
G G

Λ Λ + − ∆ = Λ 
 

 (3.2) 

with Λ=2·ln(Re) and ∆=-0.17 for smooth pipes.  The above two equations are known to be 

applicable for Reynolds numbers in the range 2300 ≤ Re ≤ 107.  The transmix length can therefore 

be calculated by dividing Equation (3.1) with the cross-sectional area of the pipe to give 
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The annular volume calculated based on the equations listed above can be used to 

estimate the extent of contamination.  An equi-volume mixture of this annular volume with the 

trailing liquid was one of the combinations investigated.  Some investigators have revealed no 

observable trends in contamination volume when related to the properties of individual fluids.  

The properties of an equi-volume mixture of the fluids however does seem to have a significant 

effect on the contamination growth.  Almost all model equations available in the literature use 

equi-volume properties of the two fluids to estimate the Reynolds number and therefore the extent 

of axial dispersion (contamination).  The total contaminated volume therefore becomes twice the 
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volume of the annular film due to the thinner, lighter liquid.  This is represented by the constant 

multiplying factor 2 in Equation (3.3).   

Preliminary Results 

The use of the viscous sublayer thickness (Equation 2.15) enables Equation (3.3) to 

capture the trends observed in contamination length for variations in the Reynolds number 

(Figure 3.2A).  Equation (3.3) suggests that the total contaminated length (extent of axial 

dispersion) would increase with increasing pipe length.  This agrees with the experimental 

observations reported in the literature.  The equation however suggests a linear trend with respect 

to the pipe length, which is contradictory to the observed square root behavior, thus rendering the 

model incomplete.   

 

Figure 3.2: A) Transmix length predicted using Equation (3.3) as a function of Re, and B) percent 

deviations in the model predictions as a function of Re and pipe length.  

Udoetok and Nguyen (2009) proposed a similar concept wherein they considered that the 

central turbulent core acted similar to a pig separator and does not allow mixing in the central 

region.  Any contamination that occurs is solely on account of the leading liquid that lags behind 

the imaginary disc pig separator through an annular region adjoining the pipe wall.  The thickness 

of the annular region was assumed to be the distance from the pipe wall where the localized flow 

velocity is 58.5% of the centerline velocity (empirically estimated number based on experimental 
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data from the Colonial Pipeline Co.).  A local velocity of 58.5% of the centerline velocity lies in 

the vicinity of a radial distance that defines the viscous sublayer in pipe flow.  They proposed the 

contamination volume would be equal to the ratio of the area of annular region to the total cross-

sectional area of the pipe multiplied by the pipe volume (Equation A.18).  This is equivalent to 

saying that the contamination length is directly proportional to the pipe length.  The disc pig 

model therefore also suffers from the same problems as Equation (3.3) because of its inability to 

correctly capture the dependence of transmix length on pipe length.  

The trend in percent deviation of the model predictions (Equation 3.3) from the 

experimentally generated contamination lengths reported in the literature are presented in Figure 

3.2B.  The model tends to show comparatively better accuracy for shorter pipe lengths and higher 

Reynolds numbers.  The deviations though higher at lower Reynolds number (Re ≤ 15,000), the 

accuracy gradually improves with increasing Reynolds numbers asymptotically tending to zero 

for infinite values of the Reynolds number.  The general trend observed in Figure 3.2B suggests 

that the total contamination volume would be equivalent to twice the volume of the viscous 

sublayer at higher velocities, though this is not necessarily true for low velocity.  The 

performance of Equation (3.3) for varying pipe lengths is shown in Figure 3.3.  A near straight 

line on a log-log plot indicates higher dependence of contamination length on the pipe length for 

longer pipes, advocating the need for a power law type relation.  Also, the different intercepts for 

these straight lines for varying Reynolds number suggests a dependence of the length exponent 

(k) on Reynolds number.   
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Figure 3.3: Percent deviation of the contamination lengths predicted using Equation (3.3) versus 

pipe length. 

Modification and improved results 

Based on the above observations, a power law exponent is added to the length term in 

Equation (3.3).  The contamination length equation therefore becomes 
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where, k is a function of the Reynolds number.  The values of the length exponent (k) were back 

calculated from the experimental data on axial dispersion (Table 2.1).  These experimentally 

estimated values are plotted against the Reynolds number in Figure 3.4.  The values of the length 

exponent exhibit a trend similar to that observed for the ratio of the average velocity to centerline 

velocity in turbulent flow conditions against the Reynolds number (Figure 3.4B).   
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Figure 3.4: Regressed values of the length exponent (k) in Equation (3.4) as a function of the 

Reynolds number, A) on a semi-log plot, B) in normal scale. 

The exponent values for all different pipe dimensions seem to collapse into a single line 

on a semi-log plot (Figure 3.4A) indicating minor or no impact of the pipe dimensions on the 

value of the exponent.  Many different relationships for the length exponent as a function of the 

flow Reynolds numbers were investigated and Equation (3.5) is proposed to estimate the length 

exponent for the Reynolds numbers (50-50 by volume mixture) less than 1,000,000.   
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In the above equation, ReHigh is the Reynolds number of the lighter, thinner liquid, 0.9 is an 

empirically calculated parameter, and Recr is the Reynolds number based on the properties of a 

50-50 by volume mixture.  The ratio of the average flow velocity to the centerline velocity in a 

pipe can be estimated using Prandtl’s power law exponent (n) as, 
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with the exponent n being estimated as the inverse of the square root of the friction factor.  Figure 

3.5 compares the length exponent values predicted using Equation (3.5) against the expected 
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exponent values back calculated from the experimental data.  Equation (3.5) does a commendable 

job in predicting the exponent value for Reynolds number greater than 20,000.  The prediction 

accuracy however appears to drop at lower Reynolds numbers.  Furthermore, the model 

consistently under-predicts the exponent value at these lower turbulent Reynolds numbers and 

can therefore be labeled to be biased for this region.  The estimated absolute average deviations 

(AAD) of the model from the experimental data increases to as high as 28% at a Reynolds number 

of 4,000.   

 

Figure 3.5: Performance of Equation (3.5) over a range of Reynolds numbers, A) on a semi-log 

plot, and B) in normal scale. 

The bias in the predictions is rather distinct at Reynolds number less than 20,000 and 

there exists a very visible trend in the extent of deviation as the Reynolds number increases in this 

region (Figure 3.6).  The prediction accuracy of Equation (3.5) gradually improves with 

increasing Reynolds numbers, settling down to an AAD of less than 5% beyond a Reynolds 

number of 20,000.  The nature of the bias could be attributed to the inability of Equation (2.15) to 

accurately estimate the viscous sublayer thickness in this region.  Equation (2.15) is however 

known to be fairly accurate for all Reynolds numbers in the range 2,300 ≤ Re ≤ 107.  It is 

hypothesized that the loss in prediction accuracy is due the inability of the equations to model the 

enhanced contributions of viscous stresses for Reynolds numbers less than 20,000.  This is a 
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reasonable hypothesis considering that the contributions of the viscous stresses would be higher 

at lower Reynolds numbers and would gradually decrease as the Reynolds number increases, 

which is similar to the trend observed in Figure 3.6.   

 

Figure 3.6:  Nature of bias of the predictions from Equation (3.5) as a function of Re. 

Figure 3.7A is a parity plot comparing the length exponent predicted using Equation (3.5) 

against the experimentally determined exponent values.  Figure 3.7B shows the parity plot for the 

case when the empirical parameter in Equation (3.5) is adjusted for Reynolds numbers less than 

2,000 in order to achieve a better fit.  A value of one for the adjustable parameter improves the 

predictions at lower Reynolds numbers.  The bias though reduced, still exists and follows the 

same trend observed in Figure 3.6.  The justification for such an adjustment is an increase in the 

applicable Reynolds number range of Equation (3.5), which can now be employed for 

contamination growth estimations at all Reynolds numbers greater than 10,000.   
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Figure 3.7: Parity plots highlighting model performance.  A) Equation (3.5) before modification, 

and B) Equation (3.5) after modification. 

Equation (3.4) in combination with Equation (3.5) provides better estimates of the 

contamination length (or volume) when compared with Equation (3.3) and Equation (A.18).  The 

equation is however still unreliable considering that even a 5% uncertainty in predicting the 

length exponent can magnify to a 50% or even a 100% uncertainty when converted to 

contamination length.  This is particularly a problem for estimations involving higher pipe 

lengths, which is almost always the case with petroleum transportations.  The absolute average 

deviation of the predictions for contaminated length S using Equation (3.4) is around 30%.   

Moving plug model 

The deductions from the Scraper and wash-off model and other investigations in the 

literature indicate that transmix estimations can be improved by incorporating the contributions of 

viscous and turbulent regions in the flow field as independent influences.  The moving plug 

model is a variation of the tank-in-series (T-I-S) modeling approach that is commonly employed 

in residence time distribution studies of plug flow reactors.  The basic idea of the T-I-S approach 

involves dividing the plug flow reactor (pipe) into multiple sections of well mixed regions 
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(Continuous Stirred Tank Reactors, CSTR) placed in series, with the outlet of one being the inlet 

of the next.  The moving plug model uses a similar concept though with a slightly different 

modeling perspective.  A schematic of the moving plug visualization is presented in Figure 3.8.   

 

Figure 3.8: A schematic of the first step in the moving plug flow model. 

The phenomenon of axial dispersion is divided into multiple steps, with each step 

resulting in a contaminated interface moving a short distance down the pipe.  Figure 3.8 depicts 

the occurrences in the system at the end of the first step and before the second step commences.  

The objective of the model is to capture snapshots of the process at predefined time intervals as 

the two fluids mix and move downstream.  Consider a case when the pipe is initially filled with 

fluid 1 moving downstream at a set velocity.  At a particular time (t = 0), the inlet to the pipe is 

switched from fluid 1 to fluid 2.  The process is allowed to progress for an infinitesimal period 

(∆t), during which time a thin, disc shaped plug of fluid 2 enters the pipe.  The new fluid (fluid 2) 

entering the pipe instantaneously mixes with a thin annular volume of fluid 1 that had originally 

occupied the region.  The mixing results in a mixed fluid region as shown in the middle picture of 

Figure 3.8.  It is assumed that the two fluids do not mix through the central cylindrical region of 

the flow.   

 

 



47 

 

Model equations 

The annular film of fluid 1 lagging behind the bulk flow is hypothesized to be the result 

of the viscous sublayer of fluid 1.  The volume of this annular film would therefore be equivalent 

to the cross-sectional area occupied by the viscous sublayer multiplied by the length of the plug 

of fluid 2 that has entered the pipe.  The volume of the annular region can therefore be calculated 

using Equation (3.1) by replacing pipe length (L) with the distance travelled by the interface in 

one time increment.  Assuming ideal mixing rules apply, the density of the mixed region can be 

estimated as 

 1 1 2 2MIX x xρ ρ ρ= +  (3.7) 

where, ρMIX is the density in the mixed region, ρi is the density of fluid i, and x1 is the volume 

fraction of the annular region and x2 is the volume fraction of the central turbulent core.  Both x1 

and x2 are determined based on the properties of fluid 1, the leading fluid.  The volume fraction of 

fluid 1 in the mixed region (x1) can be estimated as the ratio of the annular volume of the mixed 

region to the total volume of the mixed region.   

 

Figure 3.9: Second step of the moving plug flow visualization. 

Figure 3.9 depicts the occurrences at the end of the second time step and before the start 

of the third step of the process.  More fresh fluid 2 enters the pipe pushing the mixed fluid region 

from step 1 along with the uncontaminated fluid 1 farther downstream.  As the mixed fluid from 
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step 1 moves into position, it mixes with the uncontaminated fluid 1 in the annular region, 

increasing the fraction of fluid 1 in this region.  Fresh fluid 2 then enters the spot vacated by the 

mixed fluid and combines with the fluid in the annular region to form a separate mixed fluid 

region, concentrated with fluid 2.  This process continues as the two fluids flow downstream and 

exit the pipe in the form of bands that vary from the composition of fluid 1 to the composition of 

fluid 2.  The composition of each of the bands can be estimated in a manner similar to Equation 

(3.7).  Equation (3.7) can be generalized and rewritten based only on the compositions of the 

leading and trailing fluid as shown below 
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The ρj(m) in Equation (3.8) refers to the density of the mixed fluid in the jth plug after m time 

steps, v is the volume of the annular region left behind by the fluid in the previous plug and V is 

the total volume of each plug.  The above equation has been formulated considering the entire 

pipe to be split into a series of equal volume plugs.  The volume for each plug is estimated using 

the cross-sectional area of the pipe and the distance travelled by a plug in one time increment 

(Figure 3.10).   

 

Figure 3.10: Transverse view of the pipe divided into multiple plugs. 
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The total number of plugs in the pipeline can be calculated from the value of the time 

increment to be used in the solution.  The value for the time increment would ideally be 

equivalent to the time taken by the annular region to mix completely with the inrushing fluid in 

turbulent flow.  Such a model would identify the exact concentration profile in the mixed region 

in addition to estimating the length of the contaminated region.   

Discussion 

The initial objective was to use this model and back calculate values of the time 

increment (∆t) that would give the best possible match for the experimentally observed transmix 

lengths (similar to the estimations for the length exponent in the Scraper and wash-off model).  

During the initial estimations it was observed that the value of ∆t necessary to fit the experimental 

data was extremely small in comparison with the total residence time of the interface in the 

pipeline.  Such an observation seems reasonable considering that ∆t would be the time required 

for a small amount of annular liquid to be completely mixed with an incoming turbulent plug.  

The smaller the value of ∆t, the larger the number of plugs in the pipeline and therefore more the 

number of calculations.  It should also be noted that Equation (3.8) is for a single plug (j) at a 

particular time instance defined by the number of time steps (m) elapsed after the second fluid 

enters the pipeline.  Therefore, if a particular pipeline has 1000 plugs, the total number of time 

steps would be much higher than 1000, making the total number of computations exceed 1 

million.  Applying such a model to a 1000 mile pipeline would be computationally unreasonable.   

Though computationally demanding, the theory of moving plug model is extremely 

important because of its ability to predict the S-curve concentration profiles that are commonly 

observed in longitudinal mixing.  Furthermore, the model builds on the idea of a slow moving 

near-wall region mixing with an inrushing fluid, which by most researchers is believed to be the 

mechanism resulting in axial dispersion.  It should also be noted that the incorporation of the 
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viscous sublayer concept (Equation 2.15) allows the model to predict the variations in axial 

dispersion with changing Reynolds number.  The mathematical formulation given by Equation 

(3.8) was rejected due to the associated extreme computational burden.  The concept of the 

moving plug model however bolstered the hypothesis that formulating the viscous and turbulent 

core as separate entities can be used for axial dispersion estimations.  The theories involved in the 

Scraper and wash-off model and the moving plug model form the base for the combined Taylor 

model of viscous and turbulent contributions.  The two models also assist in visualizing how 

turbulence mechanics influence axial dispersion.   

Combined Taylor model of viscous and turbulent contributions 

Taylor (1953; 1954) reported independent theoretical investigations to calculate the axial 

dispersion coefficient in the laminar and turbulent regimes.  As stated in Chapter II, these 

expressions perform very well for fully laminar flow and very high Reynolds number turbulent 

flows.  Their accuracy however drops in the transitional low Reynolds numbers and moderate 

Reynolds number flow regimes, indicating a need for some sort of corrections in these regions.  

The examination of literature data and the observations from the earlier two models direct 

towards a combined axial dispersion model that unifies the two independent equations proposed 

by Taylor (1953; 1954).  The resulting unified equation would collectively account for both the 

viscous and turbulent effects for axial dispersion estimations.   

The model proposed derives inspiration from the shear stress distribution observed across 

a cross section in turbulent flow, and also from the pressure drop analysis proposed by Darcy and 

extended by Forchheimer, and later by Ergun (1952) for turbulent flow through packed beds.  The 

shear stress for turbulent flow can be segregated into two components a) shear due to laminar or 

viscous effects and b) shear due to turbulent Reynolds stresses (Figure 3.11).  The viscous effects 

entirely constitute for the total shear at the wall, and its contribution falls rapidly as one proceeds 
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away from the wall towards the turbulent core.   In contrast, the contribution of turbulent effects 

to the total shear stress is zero at the wall as all fluctuations go to zero at the wall.  The 

contributions of the turbulent effects to the total shear stress increase with increasing distance 

away from the boundary, farther towards the center of the pipe.  Thus, the total shear stress 

experienced by the flow depends on both the viscous and turbulent contributions.  This has been 

widely accepted and confirmed through many experimental investigations (Pope 2000).   

 

Figure 3.11: Profiles for contributions of the viscous and Reynolds shear stresses to the total 

stress in turbulent channel flow.  Adapted from Pope (2000). 

Taylor’s theories (1953; 1954) indicate a clear dependence of axial dispersion on the 

shear stress distribution across the flow cross section.  Hence, it would not be farfetched to 

suggest that the viscous contributions will also have a major effect on axial dispersion coefficient.  

The effects of viscous stresses would be pronounced in the lower Reynolds number region as the 

viscous sublayer would be thicker in this region.  Neglecting the viscous contributions would 

therefore have a proportionally higher impact on calculations in this region as compared to 

calculations in the higher Reynolds numbers region.  This behavior fits very well with the 

observed higher deviations of Taylor’s analysis (Taylor 1954) from experimental data in the low 

Reynolds number turbulent regime (Austin and Palfrey 1964).  Based on this analysis, Taylor’s 

expression (Taylor 1954) can also be expected to under-predict axial dispersion coefficient for 

higher Reynolds number, though to a lesser extent.  This also agrees with the observations 
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presented by other investigators (Austin and Palfrey 1964; Flint and Eisenklam 1969; Flint and 

Eisenklam 1970; Chatwin 1971; Chatwin 1973).   

Model equations 

The shortcomings in Taylor’s analysis (1954) can be resolved by selectively adding the 

contributions of the viscous and the turbulent stresses.  Similar concepts have also been employed 

for pressure drop calculations.  Pressure drop, like axial dispersion is an outcome of the shear due 

to a solid wall.  The shear stress distribution across the flow cross-section would therefore have a 

similar effect on both these quantities.  Ergun (1952) proposed the concept of estimating the 

coefficients in the Darcy-Forchheimer equation (Equation 3.9) by considering the multiplying 

terms (a and b) to be a consequence of the viscous and turbulent effects in the system.   

 2P
a U b U

L
ν ρ

∆
= +  (3.9) 

The first term in Equation (3.9) represents the contribution of viscosity to the pressure 

drop, while the second term was explained as the pressure drop resulting due to eddy momentum 

transfer.  On similar lines, the overall or effective axial dispersion coefficient across a cross 

section of the flow can be determined as 

 ( )1E V TK a K a Kδ δ= + −  (3.10) 

In the above equation, aδ is a constant representing the contributions of the viscous dispersion 

coefficient (KV) to the overall axial dispersion coefficient (KE).  The value for aδ being determined 

based on the thickness of the region where viscous effects contribute significantly to KE.  The 

laminar dispersion coefficient (Equation 2.9) is used to represent the contributions of viscous 

stresses to the effective dispersion coefficient and the turbulent axial dispersion equation 

(Equation 2.12) is employed to model turbulent dispersion.   
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The contribution coefficient (aδ) in Equation (3.10) is the fraction of the flow area 

dominated by viscous characteristics, and is expressed as a ratio of the area occupied by the 

viscous region to the total cross-sectional area of the pipe (Equation 3.12).  The viscous region 

occupies the annular space extending from the pipe walls to a certain thickness into the flow.  The 

viscous layer thickness (δ) expressed in terms of the non-dimensional wall units (y+) can be 

written as 
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δ
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=  (3.11) 
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δ

δ

δ = = −  
 (3.12) 

A value of y+ = 5 is commonly accepted for the viscous sublayer thickness (Pope 2000).  

However, the cross-sectional area denoted by this value does not necessarily cover the entire 

region of appreciable viscous effects (Figure 3.11).  It is a commonly accepted fact that the 

turbulent and viscous contributions to total shear stress are nearly equal at y+ of about 12 and the 

viscous contributions are known to be appreciable even at higher values of  y+ (about 30~50) 

(Pope 2000).  Therefore, a value of y+ = 30, which is generally accepted as the thickness of the 

buffer layer, is selected for the model (Pope 2000).   

Taylor’s equation for KV (Equation 2.9) is based on the entire flow cross-section and the 

maximum or centerline flow velocity.  This expression needs to be modified before it can be used 
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for calculating the extent of dispersion in the viscous region of the cross-section.  Equation (2.9) 

can be rewritten using the maximum velocity in the viscous region to give 

 
2 2

192V

R u
K

D
δ=  (3.13) 

where, uδ refers to the velocity at the boundary of the viscous region (y+ = 30).  An approximate 

value for this velocity can be calculated using Prandtl’s power law velocity profile (Equation 

3.14).  The exponent (n) in Equation (3.14) is a function of the Reynolds number and can be 

calculated as the inverse of the square root of the friction factor (f).  A more appropriate relation 

to estimate this velocity at y+ = 30 would be the log-law velocity profile (Buschmann and Gad-El-

Hak 2003).  The power law profile though less accurate at higher Reynolds numbers, is preferred 

as it allows a compact, single equation formulation for axial dispersion, as opposed to when using 

the log-law profile.  The final accuracy of the axial dispersion equation would not be 

compromised as the power law profile is known to provide a good estimate of the local velocity 

in the y+ = 30 region at low Reynolds numbers (Buschmann and Gad-El-Hak 2003).  The 

deviation of the power-law profile at higher Reynolds numbers would not have a significant 

effect on the overall axial dispersion calculations as the contribution of viscous dispersion is 

negligible when compared to turbulent dispersion in this region.   

 

1

0

n

u u
Rδ

δ =  
 

 (3.14) 

Equation (3.13) represents the dispersion coefficient for a fluid flowing with a velocity uδ through 

a pipe of diameter 2R.  This equation would therefore overestimate the value of KV and requires 

modification to appropriately represent the dispersion in the annular region.  This can be done by 

correcting the velocity from Equation (3.14) using a ratio of the boundary layer Reynolds number 

(Reδ) to the overall flow Reynolds number (Red).  Equation (3.14) can therefore be revised to give 
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where Reδ refers to the Reynolds number based on the thickness of the viscous layer, and Red is 

the standard flow Reynolds number based on the pipe diameter.   
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Substituting Equation (3.14) into the above expression then yields 
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 (3.18) 

We know that the average velocity in a pipe can be related to the maximum centerline velocity 

using Equation (3.19).   
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Substituting this relation in Equation (3.18) gives 
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 (3.20) 

Re-substituting Equation (3.14) in the above equation results in 
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The uδ in Equation (3.13) can then be replaced with uδ,corr (Equation 3.22) to represent the final 

form of the dispersion coefficient due to viscous effects.   
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Taylor’s expression (Taylor 1954) for axial dispersion in turbulent flow can be used in its 

original form in Equation (3.10), with the friction factor (f) being calculated using the Swamee-

Jain (1976) or any other commonly employed equations.  The use of the entire pipe diameter in 

the equation for turbulent dispersion can be argued to over-predict the turbulent contributions to 

the overall dispersion coefficient.  This increase would however be negligible considering that the 

viscous region thickness (δ) is much smaller compared to the diameter and would therefore have 

no appreciable effect on the calculated effective dispersion coefficient.  The final completed 

equation for the effective axial dispersion coefficient can be written as 

 ( )
2 22 2

, 1
1 1 1 3.57

192
corrE

R uK
f

Ud R D Ud R
δδ δ     = − ⋅ + − − ⋅             

 (3.24) 

Figure 3.12 depicts the contribution of each of the two terms in the above equation as a 

function of the Reynolds number of a 50-50 by volume mixture of the fluids forming the 

interface.  At lower Reynolds numbers (2,300 ≤ Re ≤ 10,000) the viscous dispersion term almost 

entirely constitutes the effective dispersion coefficient.  As the Reynolds number increases, the 

magnitude of the viscous term drops gradually and so does its contribution to the effective 

dispersion coefficient.  The turbulent dispersion term then begins to dominate and almost entirely 

constitutes the effective axial dispersion coefficient beyond a Reynolds number of 100,000.   
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Figure 3.12: Significance of the viscous and turbulent dispersion terms in the dimensionless 

effective axial dispersion coefficient (Equation 3.24).   

Statistical analysis and comparison to literature data 

Most sources (Fowler and Brown 1943; Birge 1947; Smith and Sulze 1948; Smith and 

Sulze 1948; Austin and Palfrey 1964; Aunicky 1970) in the literature express the axial dispersion 

data in terms of measured contamination lengths at the pipe exit.  The axial dispersion coefficient 

obtained from the proposed model is therefore translated into a contamination length form for 

comparison purposes.  This can be done by using the effective axial dispersion coefficient 

(Equation 3.24) to solve the transient diffusion equation (Equation 2.6) to give 
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where, k’ is a constant multiplier dependent on the interface concentration cut-off points (k' ≈ 

6.57 if contamination length is limited to the region where the interface composition varies 

between 1-99% of either product).  The contamination lengths reported in the literature are based 

on different interface concentration cut-off basis in each investigation.  They therefore need to be 

converted to a common basis for impartial comparisons.  Austin and Palfrey (1964) performed 

such corrections using a ratio of inverse error function of the differences in purities.  Similar 

conversions were performed in the current investigation to translate the contamination lengths 

reported in the literature to a common 1-99% interface cut-off basis.  The derivation of Equation 

(3.25) from Equation (2.6) is given in Appendix-B.   

Another item of note concerns data for the 2'' pipeline (Smith and Sulze 1948; Austin and 

Palfrey 1964).  Smith and Schulze (1948) employed a loop-like facility for their experiments, 

which consisted of a complicated network with multiple bends and pumps.  The effect of the 

bends and pumps in particular cannot be quantified and therefore the data obtained from this 

source cannot be directly used for comparison with the model calculations.  However, this issue 

can be resolved by correcting the reported lengths to be applicable to straight pipes.  Smith and 

Schulze (1948) provide a set of Reynolds number dependent contamination length curves 

standardized in terms of the pipe diameter.  These contamination curves can be used to 

approximate the contamination lengths for shortened pipe lengths, which would be more 

indicative of mixing in straight pipes.  In spite of this, some of the experimental results from the 

loop experiments were included in the analysis in order to demonstrate the effects of pumps and 

fittings on contamination lengths.   

The values for KE (and S) were evaluated using the model equations (Equations 3.24-

3.25) for each of the 126 data points listed in Table 2.1.  These values were then converted to 

percent deviation (%D) form using Equation (3.26).  Owing to the large quantity of experimental 

data, only overall comparisons expressed in terms of percent absolute average deviation (%AAD) 
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and segregated based on pipe diameters are listed as part of the main text, while the comparison 

for each individual case is listed in Appendix-C.   

 % 100
Estimated Experimental

D
Experimental

−
= ×  (3.26) 

 
1

% %AAD D
n

= ∑  (3.27) 

where, n is the number of data point considered to estimate the %AAD.   

Dispersion in long pipes 

The physical properties of equi-volume mixtures of the leading and trailing fluids were 

employed for determining the Reynolds number and for subsequent calculations.  Table 3.1 lists 

the %AAD values for calculations using the proposed model and the Austin and Palfrey (1964) 

model.   

Table 3.1:  Comparison of model performance for pipes of varying diameters. 

d (in.) 0.124 0.313 2 4 6 8 10 12 20 40a 

%AAD 64.2 62.5 13.4 8.9 4.1 5.4 7.7 6.3 22.2 0.6 

%AADb 8.3 8.2 28.8 7.2 1.8 15.0 7.9 4.1 17.3 1.7 

aOnly a single data point, bAustin and Palfrey model (1964) 

The proposed model provides reasonable agreement with the experimental results for all 

diameters 2'' and above, except for the 20'' pipe case.  Figure 3.13 compares the predictions for 

transmix length estimated using the proposed model (Equations 3.24-3.25) against the predictions 

of the Austin and Palfrey model (Equations 2.1-2.3) and Taylor’s turbulent dispersion equation 

(Equation 2.12).  Both, the proposed model and the Austin and Palfrey model predict the correct 

trend for the variations in axial dispersion with Reynolds numbers.  The Austin and Palfrey model 
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exhibits a distinct discontinuity at an intermediate Reynolds number because of the use of 

separate equations for each region.  The proposed model exhibits a more gradual curvature in 

comparison to the Austin and Palfrey equations.  The Austin and Palfrey model suggests that the 

dimensionless dispersion coefficient would vary with pipes of different diameters for the same 

Reynolds numbers, which contradicts theory and experimental observations.  The proposed 

model on the contrary remains fairly similar for different pipe diameters (Figure 3.13B).   

 

Figure 3.13: Prediction capabilities of the proposed model (Equation 3.24) in comparison with the 

Austin and Palfrey (1964) model and Taylor’s turbulent dispersion (1954) model. 

The proposed model however overestimates the amount of contamination in the 0.124'' 

and 0.313'' diameter pipelines.  One possible explanation for this discrepancy might be the short 

pipe lengths used in the experiments for these cases.  The current section will focus on discussing 

the results for the long pipe experiments, while the short pipe cases of 0.124'' and 0.313'' will be 

discussed in a later section titled “Dispersion in short pipes.”  Table 3.2 compares the 

performance of the proposed model against Taylor’s turbulent dispersion model (Taylor 1954).   

Table 3.2:  Comparison of model performance against Taylor’s (1954) model. 

d (in.) 2 4 6 8 10 12 20 40a 

%AAD 13.4 8.9 4.1 5.4 7.7 6.3 22.2 0.6 

%AADb 58.5 11.6 6.0 20.6 25.9 6.3 23.6 0.7 

aOnly a single data point, bTaylor’s turbulent dispersion model (Equation 2.12) 
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The improvements are easily discernible for all the diameters under investigation.  It 

should be noted that Taylor’s model (Taylor 1954) under-predicted the axial dispersion 

coefficient for all the data points, with higher deviations observed at lower Reynolds number.  

The proposed model on the contrary is fairly unbiased over a large Reynolds number range 

(Figure 3.14B).   

  

Figure 3.14: A) Dimensionless axial dispersion coefficients predicted using Equation (3.24) as a 

function of the Re, B) Bias plot for predictions using Equation (3.24) against Re. 

The total %AAD for the 99 data points including the data  from the loop experiments of 

Smith and Schulze (1948; 1948) falls around 11.5%.  This drops to 10.5% when excluding the 

data from the loop experiments.  Apart from the loop experiments, some data points in the higher 

Reynolds number range (around 150,000) also lay outside the 10.5 %AAD area.  These belong to 

the 20'' pipe experiments, indicating the poor performance of the model for this system.  The 

proposed model performs fairly evenly through the entire range, with around 70% of the data 

points falling within a %AAD of 10% (and greater than 80% excluding loop experiment results 

and 20'' pipe results).  The model predictions for the loop experiments are represented using 

transparent squares ( ) in Figure 3.14B.  An obvious trend can be observed in the loop 

experiment predictions, with the model performance declining progressively as the Reynolds 

number deviates from about 13,000.  The presence of pipe fittings in the experimental setup 

would result in enhanced mixing at higher Reynolds numbers.   
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The model consistently underperforms for the 20'' experiments.  An analysis of the 

calculations indicates that the contribution of the viscous dispersion coefficient for this system is 

an order of magnitude less than the turbulent coefficient, which is reasonable considering the high 

Reynolds numbers employed.  This suggests that Taylor’s predictions (Equation 2.12) for 

turbulent dispersion coefficient themselves are lower than those indicative of the experimental 

results.  Likewise, the Austin and Palfrey (1964) empirical model does not improve the 

predictions by a significant margin.  Austin and Palfrey (1964) attribute this disparity in the 

predictions to the presence of complicated pipe networks and valve switching at the inlet and exit.  

This seems a reasonable suggestion, as complicated pipe networks, fittings, pipeline debris, and 

valve switching tend to increase the flow friction factor, which will result in increased turbulent 

dispersion coefficient (Equation 2.12).  This hypothesis was tested for the 20'' pipe diameter case 

by increasing the wall roughness, which results in higher friction factors.  It was found that 

increasing the wall roughness did result in higher turbulent dispersion coefficient and therefore 

higher contamination lengths, thereby reducing the percent deviation from the experimentally 

measured results.  An equivalent roughness value of 0.36'' corresponding to riveted steel reduced 

the %AAD to around 6.3%, with reduced bias.   

Figure 3.15 shows a comparison of the predicted contamination lengths and the 

experimentally measured lengths.  As discussed in the previous sections, contamination lengths 

increase with increasing pipe lengths.  Figure 3.15 can therefore be considered as an indicator of 

the performance of the model with increasing pipe lengths.  The data is fairly evenly distributed 

across the 45o line (Slope ~ 0.94 for all data points) indicating that the model is reasonably 

impartial for increasing pipe lengths.  The experimental results from the loop experiments are 

clearly higher than the predicted values and therefore lie outside the 10.5% deviation lines.  

Except for the data for the 20'' pipeline (circled out in Figure 3.15) and a couple of other points 

(possibly outliers), most lie close to the area covered by the 10.5% deviation lines indicating the 
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robustness of the model.  A slope less than one suggests that the model under-predicts the extent 

of contamination for higher pipe lengths.  However, this is because of the discrepancies with the 

20'' pipeline data, excluding which results in a more favorable slope of 0.97. 

 

Figure 3.15: Comparison of predicted contamination lengths against experimental results. 

Dispersion in short pipes 

Taylor (1953; 1954) conducted the axial dispersion analysis assuming an equilibrium 

exists between the axial convective and radial diffusive transport.  Such a condition requires the 

interface to reside in the pipe for a certain amount of time as specified by the equation given 

below (Equation 3.28) for laminar flow systems (Taylor 1953).  Taylor’s laminar dispersion 

equation (Equation 2.9) is only valid for interface residence times greater than the value of T 

estimated using Equation (3.28).  Taylor’s equations would over predict axial dispersion 

coefficient for all interface residence times less than this value.   
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Levenspiel (1958) by means of statistical analysis showed that Taylor’s laminar 

dispersion equation over-predicts the results for Fowler and Brown’s laminar flow data (Fowler 

and Brown 1943) because of the short pipe lengths employed in the experiments.  A similar 

argument can be proposed for axial dispersion in turbulent flow.  It is assumed that an equation 

similar to Equation (3.28) also holds for turbulent flow, albeit with the diffusion coefficient (D) 

being replaced with the radial eddy diffusivity (εr).  It is common knowledge that eddy diffusivity 

increases with increasing Reynolds number and consequently the value for T would decrease with 

increasing Reynolds number.  The proposed model is a variation on Taylor’s analysis and 

therefore the above theory should also apply to the current model.  Based on this theory, for a 

pipe with constant dimensions, the model prediction must improve considerably with increasing 

Reynolds numbers.  Such a trend is observed in the model predictions for the turbulent flow data 

provided by Fowler and Brown (1943).  Figure 3.16 shows the percent average deviation for the 

experimental data obtained in a 20.6 ft. long 0.313'' diameter glass tubes.   

 

Figure 3.16:  Percent deviation vs. Reynolds number for 20.6 ft. long, 0.313'' diameter pipe. 
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It can therefore be concluded that the 0.313'' experimental setups are possibly shorter 

than that required for the proposed model to be applicable.  Similar explanation could be provided 

for the 0.124'' lines.  This however could not be quantitatively verified due to the lack of reported 

measurements from experiments with the same pipe length (Fowler and Brown 1943).  Many 

investigators have proposed transient dispersion models for such scenarios (Gill 1966; Gill and 

Sankarasubramanian 1970; Dewey and Sullivan 1977; Soltanieh and Sadraei 1991).  In these 

models, the axial dispersion coefficient is determined as a fraction (time dependent) of Taylor’s 

axial dispersion coefficient calculated using Equation (3.24).   

Soltanieh and Sadraei (1991) proposed a simple first order growth type exponential 

relationship to estimate the axial dispersion coefficient for short pipe lengths.  The time 

dependent axial dispersion coefficient was expressed as  

 ( ) ( )1 t TK t K e−
∞= ⋅ −  (3.29) 

where K∞ is the steady state value of the axial dispersion coefficient, t is the residence time of the 

fluid in the pipe, and T is the time required to achieve steady state.  Soltanieh and Sadraei (1991) 

performed mathematical manipulations on laminar flow dispersion equation and showed that the 

value of T should be estimated using Equation (3.28).  Such an analysis was out of the scope of 

this investigation; however, simple trial-and-error estimations were carried out and dispersion 

fractions of 0.35 and 0.31 were determined for the 0.124'' and 0.313'' cases respectively.  The 

steady state axial dispersion coefficients were estimated using these fractions and the axial 

dispersion coefficient values calculated from the short pipe experimental data (Figure 3.17).  The 

proposed model (Equation 3.24) was able to predict the calculated steady state axial dispersion 

values with an accuracy of up to 5.1% AAD for the 0.124'' pipe data and 8.2% AAD for the 0.313'' 

pipe data.  It should be noted that the above results were obtained by applying a constant value of 

the dispersion fraction to all experimental data for a particular pipe diameter.  This however 
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would just be an approximation as the dispersion fractions should vary with the experimental pipe 

length.  It would therefore be reasonable to suggest that better estimates for the dispersion 

fractions will reduce the bias and improve the accuracy of the current model.   

 

Figure 3.17: Model (Equation 3.24) performance on corrected short pipe experimental data 

(Fowler and Brown 1943). 

Dewey and Sullivan (1977) in a separate investigation performed mathematical analysis 

to determine order of magnitude estimates (Equation 3.30) for the steady state time (T).  Equation 

(3.30) resulted in values of T of the order of 5 sec for the conditions in the 0.124'' experimental 

data and around 30 sec for the conditions in the 0.313'' pipe data.  Using these values of T in 

Equation (3.29) gives dispersion fractions in the order of 0.3 for the 0.124'' pipe data and around 

0.1 for the case of 0.313'' pipe conditions respectively.  These numbers are reasonably similar to 

the dispersion fractions estimated through trial-and-error procedures.   
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where, O denotes the order-of-magnitude operator, Reτ is the Reynolds number based on the 

friction velocity instead of the average flow velocity.   

Summary 

This study was aimed at providing an insight into the effects of viscous forces on axial 

dispersion, while suggesting possible methodologies for incorporating the same in a mathematical 

form.  The experimental results and their comparisons with the theory of wall bounded shear 

flows reveal a significant contribution of viscous effects to axial mixing during batched fluid 

transportations.  A straightforward model has been proposed for predicting the axial dispersion 

coefficient (extent of contamination) for flow through straight pipes of circular cross-section 

without considering the effects of pipe fittings and other transport devices.  The model builds on 

the basic theory of dispersion (Taylor 1922; Taylor 1953; Taylor 1954) by combining the 

convective-diffusion transport equation and boundary layer theory.   

One possible technique for integrating the viscous and the turbulent effects into a single 

equation is to selectively add the contributions from the two effects.  The resultant increase in the 

axial dispersion coefficient was more evident in transitional, low Reynolds number turbulent flow 

and it decreased rapidly at higher Reynolds numbers.  This is very much in concurrence with the 

experimental observations.  A value of 30 non-dimensional wall units has been proposed for 

approximating the thickness of the viscous region.  It should be noted that the proposed model is 

a variation of Taylor’s equations (Equation 2.9 and Equation 2.12) and the assumptions in 

Taylor’s analysis (Taylor 1953; Taylor 1954) also apply to the current model.  Therefore, the 

model would not be applicable for short pipe lengths where the convective and diffusive 

transports have not reached equilibrium.   

As expected, the model performs much better than Taylor’s turbulent dispersion analysis 

for low Reynolds number turbulent flows and its performance is also comparable with that of the 
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Austin and Palfrey empirical model (Equations 2.1-2.3).  The predictions exhibit little or no bias 

in the contamination predictions over the range of Reynolds number and pipe dimensions 

investigated, signifying the robustness of the model.  This is a substantial improvement for a 

conceptual model that does not use any of the experimental evidence on axial dispersion to 

formulate the equations.  It should also be noted that the model is not completely theoretical in 

nature on account of the indirect empiricisms introduced by use the of the power-law velocity 

profile and friction factor correlations.   

 



69 

 

CHAPTER IV 
 

 

ROLE OF TURBULENCE MECHANICS IN AXIAL DISPERSION 

 

 

Axial dispersion is highly sensitive to variations in the Reynolds number and velocity profile.  

The extent or intensity of turbulence also has a significant influence on the process.  A relatively 

slow moving, viscosity dominated near-wall region of the flow (the viscous sublayer) has been 

demonstrated to have a significant influence on axial dispersion (Chapter III, Combined Taylor 

model of viscous and turbulent contributions).  Also, recent advancements in the field of 

turbulent flow have shown the viscous sublayer to be highly unsteady and constantly 

experiencing disturbances that result in ejections of the slow moving fluid from the viscous 

region into the faster moving turbulent core.  Prior researches (Tichacek, Barkelew et al. 1957; 

Flint and Eisenklam 1969; Chatwin 1973; Krantz and Wasan 1974; Rachid, Araujo et al. 2002; 

Ekambara and Joshi 2003) have largely focused on improving the material transport property 

predictions and using improved velocity profile predictions.  Not much effort has been devoted to 

quantifying the effects of the near-wall turbulence producing mechanisms on axial dispersion.  In 

this work, it is hypothesized that the radial diffusion mentioned by Taylor (1954) in his 

visualization of the phenomenon, is a consequence of the ejection of materials from the viscous 

sublayer into the turbulent core.  This chapter offers a phenomenological account of the influence 

of the near-wall turbulence producing bursts on longitudinal mixing.   The purpose of this work is 
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to provide a framework that incorporates the turbulence producing events into the axial dispersion 

equation and thereby analyze the viability of the assumptions made in Taylor’s (Taylor 1953; 

1954) visualization of the phenomena.   

Coherent structures in turbulent flow 

Studies (Fage and Townsend 1932; Kline, Reynolds et al. 1967; Corino and Brodkey 

1969; Kim, Kline et al. 1971; Morrison, Bullock et al. 1971; Narahari Rao, Narasimha et al. 1971; 

Wallace, Brodkey et al. 1972; Eckelman.H, Wallace et al. 1974; Wallace, Brodkey et al. 1977; 

Blackwelder and Haritonidis 1983; Tiederman 1988; Robinson 1991; Antonia and Krogstad 

1993; Metzger, McKeon et al. 2010) on the production and dissipation of near-wall or boundary-

layer turbulence have shown that the near-wall region contributes significantly to the total 

turbulent stress in a flow system.  Studies report flow visualizations that identify the presence of 

turbulent structures arising from spanwise vortices in the viscous sublayer, with a hairpin or 

worm shaped head at the top end of these structures.  These structures are not completely random; 

they have characteristic periodic and spatial patterns associated to their presence.  The term 

turbulent bursts was first used by Kim et al. (1971) to describe a process in which slow moving 

fluid from near the wall suddenly lift upwards into the high speed flow that exists farther towards 

the pipe center, and break up releasing low momentum fluid into the outer region of the turbulent 

boundary layer.  The phenomenon of turbulent bursts along with turbulent sweeps is collectively 

termed as a turbulent bursting event.  Turbulent sweeps refer to a large scale motion of the high 

speed fluid in the outer region, moving towards the wall (Corino and Brodkey 1969).  Turbulent 

bursting events contribute to almost all of the turbulent production in the near-wall region (Kim, 

Kline et al. 1971; Metzger, McKeon et al. 2010), and are therefore extremely important in 

understanding the physics of turbulence.   
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Many different theories (Kline, Reynolds et al. 1967; Kim, Kline et al. 1971; Robinson 

1991) have been proposed for the generation of hairpin and worm vortices that lead to the 

turbulent bursting events.  One commonly discussed mechanism for generation of hairpin vortices 

involves a sudden streamwise perturbation disturbing the spanwise vortices commonly visualized 

in the viscous near-wall region.  Figure 4.1 depicts a typical sequence for a bursting event.  The 

incoming streamwise disturbances bend the unperturbed spanwise vortices into arcs that resemble 

a hairpin.  This influences the vortices to rotate in the streamwise direction and push the slow 

moving fluid in the viscous region away from the wall.  The fluid elements that are pushed 

upwards, initially travel slowly away from the wall and soon reach a region with a higher mean 

stream velocity, stretching even further and leading to a sudden loss of stability, resulting in 

violent bursts.  It should be noted that the above description of generation of a turbulent burst is 

highly idealized, and is one of the commonly cited theories in literature.  Alternative theories for 

turbulent bursts can be found in literature (Robinson 1991) and are not considered for further 

discussion as they fall outside the scope of this study.   

 

Figure 4.1: Cycle of events resulting in turbulent bursts.  Adapted from Davidson (2004). 

Turbulent bursts are considered as a major contributor to momentum (kinetic energy) 

transfer from the near-wall region into the turbulent core.  Similar conclusions can also be made 

on the influence of bursting events on transport of mass from the viscous region to the turbulent 

core.  Turbulent bursting events result in ejection of slow moving fluid from the viscous region in 

a direction away from the wall.  They therefore can be considered as a major contributor to the 

transport of mass (and energy), in addition to that of momentum from the viscous region into the 
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turbulent core.  Models incorporating turbulent bursting events have been employed with a 

certain degree of success in depicting the transport of sedimentary particles in river beds (Cleaver 

and Yates 1973; Cao 1997) and for convective heat transfer calculations (Hetsroni, Yarin et al. 

1996; Chen 2007) in turbulent flow.  The success of these models bolsters the notion that the 

theory of transport caused by turbulent bursts should also be applicable to axial dispersion, and 

probably is one of the significant mechanisms that control the extent of longitudinal dispersion.   

Estimation of the exact contribution of the bursting mechanism to mass transport would 

require information pertaining to the spatial and periodic distribution of turbulent bursts in a flow 

field.  Numerous investigators (Fage and Townsend 1932; Kline, Reynolds et al. 1967; Kim, 

Kline et al. 1971; Narahari Rao, Narasimha et al. 1971; Wallace, Brodkey et al. 1972; Wallace, 

Brodkey et al. 1977; Smith and Metzler 1983) have performed flow visualization experiments to 

study the structure of the viscous region in turbulent flow conditions.  Coherent structures and 

slow moving streaks are observed at distances as close as 3 non-dimensional wall units (y+) from 

the wall (Wallace, Brodkey et al. 1972), as well as some reporting streaks visualized to distances 

of y+ ~ 100 from the wall (Kline, Reynolds et al. 1967; Corino and Brodkey 1969; Morrison, 

Bullock et al. 1971; Wallace, Brodkey et al. 1972).  Most streaks and coherent structures, though, 

are observed up to a distance of around 10-40 wall units from the wall (Corino and Brodkey 

1969; Morrison, Bullock et al. 1971), which has been reported as a statistical average in some 

studies.  From the various quantities reported in the literature, a typical coherent structure (hairpin 

shaped vortex) that ends in a turbulent burst can be approximated as rectangular jets with a cross-

section spanning 40 × 25 wall units (or cylindrical jets with diameters of about 25 wall units), 

inclined at around 40 ~ 50o to the wall surface, the angle of inclination of the legs of the hairpin 

(Kline, Reynolds et al. 1967; Kim, Kline et al. 1971; Narahari Rao, Narasimha et al. 1971; 

Wallace, Brodkey et al. 1972).  This information on the size of the coherent structures is useful in 

quantifying the amount of material being transported per burst in a turbulent flow environment.   
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Kline et al. (1967), Morrison et al. (1971), and Fage and Townsend (1932) have all 

reported the presence of characteristic spatial patterns to the bursting streaks.  Kline et al. (1967) 

reported the average value of spanwise streak spacing to be approximately 100~130 wall units, 

with Morrison et al. (1971) also reporting a similar number (~ 135).  There exists some deviation 

in literature on the streamwise wavelength (spacing) of the bursting streaks.  Morrison et al. 

(1971) from their measurements estimated the streamwise spacing of the streaks to be 630 wall 

units, while Kline et al. (1967) suggests that the structures could grow to as long as 1000 wall 

units in the streamwise direction before disintegrating and begin the formation of the next streak.  

Other researchers have reported numbers varying in the range x+ = 250~600, with Pope (2000) 

reporting a value of 80δV-120 δV (400~600 wall units), which are similar to numbers reported by 

Morrison et al. (1971) for the streamwise spacing between the streaks.  For consistency, the streak 

wavelengths as reported by Morrison et al. (1971) for flow through pipes will be used in this 

study.   

A large number of studies (Runstadler, Kline et al. 1963; Laufer and Badri Narayan 1971; 

Strickland and Simpson 1975; Blackwelder and Kaplan 1976; Bandyopadhyay 1982; Luchik and 

Tiederman 1987; Alfredsson and Johansson 1988; Shah and Antonia 1989) have been conducted 

to quantify the time scales related to bursting, as compared to the spatial distributions of the 

bursts.  Turbulent bursts are random events and there exist no defined relation to quantify the 

time between two consecutive bursts (Tiederman 1988).  Multiple burst detection methods are 

available in literature; these include the U-level method, Quadrant method, Variable Integral 

Time Average (VITA) method, and the modified U-level method.  Each method uses a unique 

technique to detect bursting events and therefore the data obtained from each of these analyses 

are varied in nature.  These variation in determining the average turbulent burst period (T‾ ) have 

resulted in significant scatter in the information available in the literature (Bandyopadhyay 1982; 

Robinson 1991).  Even though extensive investigations have been carried out; there exists a 



74 

 

considerable debate on scaling aspects for turbulent bursting event time scales.  Several different 

parameters have been identified for scaling the average time between the turbulent bursts in a 

boundary layer.  The scaling can be carried out in terms of inner variables, outer variables, or a 

mixture of the two or based on Taylor microscales.  Different authors report different findings 

based on the observations from their respective experiments.  The inner and the mixed variables 

have been frequently reported to be successful in scaling the burst frequency for high Reynolds 

number turbulent flows.  Recent studies on rough wall boundary layers though indicate otherwise 

(Antonia and Krogstad 1993).  Certain investigations (Metzger, McKeon et al. 2010) also report 

that the Reynolds number and wall normal trends observed in the outer and inner variable scaling 

techniques can be eliminated by using Taylor microscales for scaling the burst period.  This lack 

of agreement has been commonly attributed to the scatter in the turbulent bursting period data 

obtained from different burst detection techniques (Blackwelder and Haritonidis 1983).  A 

detailed discussion of the different scaling techniques in literature would be outside the scope of 

this study.  The turbulent burst period obtained based on inner (viscous wall) variables will be 

employed in the current study and a commonly quoted value in the range 60-90 would be used as 

the non-dimensional bursting period (Narahari Rao, Narasimha et al. 1971; Cleaver and Yates 

1973; Kim and Spalart 1987; Luchik and Tiederman 1987; Hetsroni and Mosyak 1996).   

Role of turbulent bursts in axial dispersion 

Experimental visualizations reveal a distinct persistence in the pattern of how low-speed 

streaks appear in the near-wall region of shear flows.  Knowledge of the structure of low-speed 

streaks and turbulent bursts as obtained from experimental evidence can be used to estimate the 

total amount of lateral or radial mixing that might occur in a system.  An idealized picture of the 

experimental visualizations is considered in the current analysis.  The pipe cross-section is 

considered to be composed of two distinct areas visualized as concentric pipes.  The inner 

cylinder in the cross-section representing the turbulent core, and the area in the annulus 
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considered to represent the viscous wall region.  It is assumed that the surface of the viscous wall 

region is covered with upward rising jets that eject fluid from the viscous region in the turbulent 

core.  Each jet represents a coherent structure in the near-wall region that develops into a bursting 

event farther away from the pipe wall (Figure 4.2).  The size and distribution of these jets of 

fluids can be approximated from the visualizations of the coherent structures and the slow moving 

streaks that have been summarized in the previous section.   

 

Figure 4.2: Elevation and plan view of the modeled visualization of the distribution of the 

coherent structures and slow moving streaks. 

Turbulent bursts affect the extent of axial dispersion by directly influencing the 

magnitude of radial mixing.  According to Taylor’s visualization of axial dispersion (Taylor 

1953; Taylor 1954), the amount of radial diffusion of materials between the layers of fluid 

moving at different velocities in the flow field regulates axial dispersion.  Taylor’s theory of axial 

dispersion, being sensitive to radial mixing, has been experimentally and theoretically supported 
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by investigations that study the effect of secondary flow on axial dispersion (Koutsky and Adler 

1964; Aunicky 1968; Cassell and Perona 1969; Zhao and Bau 2007).  The onset of secondary 

flow results in circular motions in the fluid, resulting in rapid mixing across the cross-section.  

Studies have shown that secondary flow in pipes results in increased radial mixing and therefore a 

reduction in axial dispersion as compared to cases without secondary flow (Koutsky and Adler 

1964; Aunicky 1968; Cassell and Perona 1969; Zhao and Bau 2007).   

As described earlier, slow moving vortex tubes that culminate in turbulent bursts pull 

liquid from the viscous region and eject them into the turbulent core.  The total size (or intensity) 

and frequency of these bursts would therefore directly influence the amount of material being 

pushed in the radial direction, thereby dictating the total intensity of radial mixing.  Turbulent 

bursting events can consequently be believed to have a significant influence on the extent of axial 

dispersion and quantifying these effects would be crucial in accurate estimation of the axial 

dispersion coefficient.   

The intensity of radial mixing caused by turbulent bursts can be expressed as the volume 

of liquid being ejected from the bursts, per unit area of the bursting surface.  The total volume of 

liquid being ejected from a single burst can be calculated as 

 ( )( )( )Ejected b b bV Burst l u w u h uτ τ τν ν ν+ + +=  (4.1) 

This volume of liquid ejected per burst multiplied by the spatial frequency of the bursts would 

give the total volume of liquid ejected into the turbulent core per unit area of the bursting surface.  

The spatial distribution of the bursts can be determined based on the experimentally observed 

burst spacing/wavelengths.  Typically, one turbulent ejection is observed in an area defined by the 

longitudinal and transverse wavelengths.  The spatial frequency can therefore be estimated as 

 ( )( )1 1b x zBurst Area A u uτ τλ ν λ ν+ += =  (4.2) 
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The total volume of fluid ejected per unit area per unit time can therefore be given using 

 
( )( )( )

( )( )
b b b b b b

b
x zx z

l u w u h u l w h
V A

u Tu u T

τ τ τ

ττ τ

ν ν ν ν
λ λλ ν λ ν

+ + + + + +

+ ++ +

 ⋅ ⋅
= =  

⋅ 
&  (4.3) 

where, T‾  is the average time between two burst (inverse of the periodic bursting frequency).  

This can be further simplified using the expression for the bursting period in terms of the inner 

variables, the friction velocity, and viscosity to give 

 
2

b b b b b b
b

x z b x z b

l w h u l w h
V A u

u T T
τ

τ
τ

ν
λ λ ν λ λ

+ + + + + +

+ + + + + +
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= =   

⋅ ⋅ ⋅   
&  (4.4) 

The total radial eddy diffusivity can therefore be estimated by assuming the same constant rate of 

volume ejection from one layer in the turbulent core to the next.   

 ( )2 2b b b
r

x z b

l w h
u R u R k

T τ τε π π
λ λ

+ + +

+ + +

 ⋅ ⋅
′′= ⋅ = ⋅ 

⋅ ⋅ 
 (4.5) 
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x z b

l w h
k

Tλ λ

+ + +

+ + +

 ⋅ ⋅
′′ =  
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 (4.6) 

where, k'' is a constant, used to consolidate the burst terms into a single parameter.   

Estimation of turbulent axial dispersion coefficient 

The expression for radial mixing due to the turbulent bursting structures can be translated 

into axial dispersion coefficient by substituting Equation (4.5) for the eddy diffusivity term for D 

in the convective-diffusion equation (Equation 2.7).   

 ( )
2

2

1C C C C
u U D r

t x x r r r

 ∂ ∂ ∂ ∂ ∂ + − = +  ∂ ∂ ∂ ∂ ∂  
 (2.7) 
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Use of Equation (4.5) as the only source of diffusion coefficient is justified as the contribution of 

molecular diffusivity to radial mixing in the turbulent core would be negligible compared to the 

mixing due to turbulent bursts.  It should be noted that Taylor (1954) used Reynolds analogy to 

approximate the eddy diffusivity in turbulent flow systems.  This investigation solves the 

convective-diffusion equation using the same velocity profile used in Taylor’s analysis (1954), so 

as to focus on the improvements to the analysis purely from the turbulent burst perspective.  The 

convective-diffusion equation for the transport of concentration in the axial direction (x) using the 

eddy diffusivity determined from turbulent structures can therefore be written as 

 
1

r

C C C
u r

t x r r r
ε

∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
 (4.7) 

 
1

2
C C C

u u Rk r
t x r r rτπ

∂ ∂ ∂ ∂ ′′∴ + =  ∂ ∂ ∂ ∂ 
 (4.8) 

Replacing the radius terms with its scaled form gives 

 2
C C C

Rz u u k z
t x z zτπ

∂ ∂ ∂ ∂   ′′+ =   ∂ ∂ ∂ ∂   
 (4.9) 

where, z = r / R.  Transforming the above equation to an axis that moves with the mean speed of 

flow (U‾ ) results in 

 ( )
1 1

2
C C C

Rz u U u k z
t x z zτπ

 ∂ ∂ ∂ ∂ ′′+ − =   ∂ ∂ ∂ ∂  
 (4.10) 

 
1

C C C
U

t t x

∂ ∂ ∂
= +

∂ ∂ ∂
 (4.11) 

where, x1 is the moving axis calculated as: x1 = x - U‾ t.  Now, substituting the scaled velocity 

profile in the above equation for the case of ∂C/∂t|1→ 0, results in, 
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 ( ){ }0
1

2
C C

Rz u f z u U u k z
x z zτ τπ

∂ ∂ ∂ ′′− − + =  ∂ ∂ ∂ 
 (4.12) 

with, the velocity profile being expressed using Equation (2.10) and u0 being the pipe centerline 

velocity.  Expressing the mean flow velocity in terms of the centerline velocity and the friction 

velocity (refer to Taylor (Taylor 1954) for details) the above equation can be rewritten as 

 ( ) ( ){ }
1

10

2
2

C Rz C
z f z zf z dz

z z k xπ

 ∂ ∂ ∂  ∴ = − −   ′′∂ ∂ ∂    
∫  (4.13) 

 ( ){ }
1

0 0

0

2 4.25U u u zf z dz u uτ τ= − ⋅ = −∫  (4.14) 

 ( ) 0u u
f z

u
τ

τ

−
=  (2.10) 

The solution for the concentration profile (Cz) across the cross section of the pipe can be obtained 

by solving Equation (4.13), assuming ∂C/∂x1 to be constant across the cross-section of the pipe.  

The numerical calculations involved in the solution to above equation are listed in Table 4.1.  

Each column in Table 4.1 lists the value of a particular expression as a function of the scaled 

radius (z).  The function terminologies are chosen so as to be consistent with Taylor’s solution 

(Taylor 1954).   

 ( ) ( ) ( ){ }
1

0 0

2
z

z z f z zf z dz dzφ
 

= − 
 

∫ ∫  (4.15) 

 ( ) ( )z z zψ φ=  (4.16) 

 ( ) ( )
1 1

1
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RuC C R C
z z

z z k x k x
τ φ ψ
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   ∂ ∂ ∂

∴ = − = −   ∂ ∂ ∂   
 (4.17)
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Table 4.1: Calculations to solve the convective-diffusion equation. 

z f(z)
 

f '(z)
 

zf(z)
 

∫zf(z)
 

f(z)-2∫zf(z)
 

φ(z)
 

∫φ(z)
 

-∫φ(z)
 

1/z
 

-ψ(z)
 

-∫ψ(z)
 

χ(z)
 

∫χ(z)
 

0.00 0.00 0.00 0.00 0.00 -4.70 0.00 0.00 0.00 - - 0.00 0.00 0.00 

0.10 0.059 1.18 0.01 0.00 -4.64 -0.46 -0.05 0.05 10.00 0.46 0.05 0.02 0.00 

0.20 0.236 2.36 0.05 0.01 -4.46 -0.89 -0.14 0.14 5.00 0.68 0.11 0.10 0.01 

0.30 0.53 3.43 0.16 0.02 -4.17 -1.25 -0.26 0.26 3.33 0.87 0.20 0.25 0.04 

0.35 0.75 4.8 0.26 0.03 -3.95 -1.38 -0.33 0.33 2.86 0.94 0.25 0.34 0.05 

0.40 1.01 5.4 0.40 0.05 -3.69 -1.47 -0.40 0.40 2.50 1.01 0.30 0.44 0.08 

0.45 1.29 6.1 0.58 0.08 -3.41 -1.53 -0.48 0.48 2.22 1.07 0.35 0.54 0.10 

0.50 1.62 7.1 0.81 0.12 -3.08 -1.54 -0.56 0.56 2.00 1.11 0.41 0.63 0.13 

0.55 2 8 1.10 0.18 -2.70 -1.48 -0.63 0.63 1.82 1.15 0.46 0.69 0.17 

0.60 2.42 8.9 1.45 0.25 -2.28 -1.37 -0.70 0.70 1.67 1.17 0.52 0.71 0.20 

0.65 2.89 9.8 1.88 0.35 -1.81 -1.17 -0.76 0.76 1.54 1.17 0.58 0.68 0.24 

0.70 3.4 11.6 2.38 0.46 -1.30 -0.91 -0.80 0.80 1.43 1.15 0.64 0.58 0.27 

0.75 4.05 14 3.04 0.62 -0.65 -0.48 -0.83 0.83 1.33 1.10 0.69 0.34 0.28 

0.80 4.8 17.4 3.84 0.81 0.10 0.08 -0.82 0.82 1.25 1.03 0.75 -0.06 0.28 

0.85 5.79 23 4.92 1.05 1.09 0.93 -0.78 0.78 1.18 0.91 0.79 -0.74 0.24 

0.90 7.1 26.71 6.39 1.37 2.40 2.16 -0.67 0.67 1.11 0.74 0.83 -1.79 0.16 

0.92 7.66 31.75 7.05 1.51 2.96 2.73 -0.61 0.61 1.09 0.67 0.84 -2.30 0.11 

0.94 8.37 42.5 7.87 1.67 3.67 3.45 -0.54 0.54 1.06 0.58 0.85 -2.95 0.05 

0.96 9.36 58 8.99 1.85 4.66 4.48 -0.46 0.46 1.04 0.47 0.86 -3.86 -0.03 

0.97 10.11 88 9.81 1.95 5.41 5.25 -0.40 0.40 1.03 0.42 0.87 -4.55 -0.07 

0.98 11.12 137 10.90 2.06 6.42 6.30 -0.34 0.34 1.02 0.35 0.87 -5.48 -0.13 

0.99 12.85 250 12.72 2.19 8.15 8.07 -0.26 0.26 1.01 0.26 0.87 -7.05 -0.20 

1 16.12 327 16.12 2.35 11.42 11.42 -0.14 0.14 1.00 0.14 0.87 -9.99 -0.2975 
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1 02
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z

R C
C z

k x
ψ

π
 ∂

∴ = − ′′ ∂ 
∫  (4.18) 

Simple numerical techniques are used in the calculations of these parameters.  The derivatives are 

estimated using the forward or central difference approximations, while the integration is carried 

out using the rectangular rule of integration.   

The total transport of the material across the pipe cross section can therefore be 

calculated as 

 ( ) ( )
1

2

0

2 zQ R u U zC dzπ= −∫  (4.19) 

 

( )
1

2

1 0

2
2

R C
Q R z dz

k x
π χ

π
 ∂

∴ =  ′′ ∂ 
∫  (4.20) 

where, ( ) { } ( )
0

( ) 4.25
z

z u z f z z dzτχ ψ= − − ∫  

The overall axial dispersion coefficient can be calculated by dividing the total transport of the 

material across the cross section (Q) by the concentration gradient and the cross-sectional area.   

 ( )2

1
T

C
Q R K

x
π

∂
= −

∂
 (4.21) 

 ( )
1

0

1
TK z dz Ru

k τχ
π

 
∴ = − ′′ 

∫  (4.22) 

The structure of the above axial dispersion equation is very similar to the one proposed by Taylor 

(1954) for turbulent flow, with the difference that the constant number in Taylor’s equation 

(Equation 2.12) is replaced with the bracketed term in Equation (4.22).  The value of this term 
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would be obtained from the characteristics of the turbulent bursting structures.  Substituting 

Equation (4.6) in the above expression gives, 

 

( )
1

0

1 x z b
T

b b b

T
K z dz Ru

l w h τ

λ λ
χ

π

+ + +

+ + +

  ⋅ ⋅
= −  

⋅ ⋅   
∫  (4.23) 

The value for ∫χ(z)dz is estimated using numerical approximations (Table 4.1) to be -0.2975.  

Substituting this number, and dividing with the value of π reduces Equation (4.23) to 

 0.0947 x z b
T

b b b

T
K Ru

l w h τ

λ λ+ + +

+ + +

 ⋅ ⋅
=  

⋅ ⋅ 
 (4.24) 

This equation can be further simplified by inserting values for the various characteristic 

dimensions of the low-speed streaks to obtain the final form of the axial dispersion equation 

similar to the one proposed by Taylor (1954).  Using the values of the turbulent burst 

characteristic dimensions listed in Table 4.2, the axial dispersion coefficient equation reads 

 14.238TK Ruτ=  (4.25) 

Table 4.2: Characteristic scales used in axial dispersion coefficient estimation (Equation 4.25). 

Burst Characteristic Value (dimensionless) Scaling Equation 

Longitudinal Spacing ( xλ+ ) 630 x xuτλ λ ν+ =  

Lateral Spacing ( zλ+ ) 135 z zuτλ λ ν+ =  

Period ( bT + ) 75 2
bT Tuτ ν+ =  

Angle (degrees) 45  

Length ( bl
+ ) 40 b bl l uτ ν+ =  

Width ( bw+ ) 25 b bw w uτ ν+ =  

Height ( bh+ ) 30 / Sin(45o) b bh h uτ ν+ =  
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Comparison with Taylor’s dispersion equation 

The current equation for axial dispersion coefficient (Equation 4.23), which has been 

developed considering the influence of turbulent bursting events suggests the axial dispersion 

coefficient to be directly proportional to pipe diameter, the average velocity in the pipe and the 

friction factor.  This is exactly the same as proposed by Taylor (1954) in his analysis, assuming 

Reynolds analogy for equivalence between mass and momentum transport.  The similarity to 

Taylor’s analysis seems reasonable considering that turbulent bursts have been suggested to be a 

major contributor to transport of momentum from the near-wall regions to the turbulent core.  If 

such a scenario does exist, it can be concluded that the same mechanism results in the transport of 

momentum, mass, and even energy from the wall to the turbulent core, thereby supporting 

Taylor’s (1954) assumption of the Reynolds analogy in his initial development of axial dispersion 

coefficient in turbulent flow of liquids through straight pipes.   

The proposed model differs from Taylor’s equation for axial dispersion (Equation 2.12) 

in just the constant multiplying term.  It should however be noted that the constant of 

proportionality is of the same order of magnitude as in Taylor’s (1954) equation, though higher 

by around 40%.  The reason for the increased magnitude of prediction is the influence of the 

viscous region, which was excluded by Taylor in his analysis.  Similar deviations from Taylor’s 

model (Equation 2.12) have also been reported by Chatwin (Chatwin 1971; Chatwin 1973), 

Tichacek et al. (1957), Flint and Eisenklam (1970), and Chikwendu and Ojiakor (1985) through 

their respective investigations.  Tichacek et al. (1957) reported deviations in the order of 50% in 

the axial dispersion coefficient prediction when solving the convective-diffusion equation, 

resulting from as little as 3% variations in the velocity profile.  Employing the correct velocity 

profile however does not improve the accuracy of the predictions at lower Reynolds numbers, 

where deviations as high as 1000% (from Taylor’s equation (Equation 2.12)) have been observed.  

Such deviations can only be explained by the absence of the viscous molecular diffusion 
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parameter, which would play a significant role in the viscosity dominated near-wall regions of the 

flow.   

The proposed equation (Equation 4.23) only partially considers the effects of viscous 

dispersion (diffusion), and would therefore not improve the predictions for low Reynolds number 

turbulent flows similar to Taylor’s analysis (Equation 2.12).  Improved predictions in the low 

Reynolds number turbulent flow regions will require the model to consider separate 

diffusion/mixing characteristics in the viscosity dominated region of the flow.  These parameters 

have not fully considered in the proposed equation.  One way to incorporate the effects of viscous 

mixing on axial dispersion would be by modeling the overall axial dispersion as an area weighted 

average of the turbulent dispersion and viscous dispersion coefficients as described in Chapter III 

(Combined Taylor model of viscous and turbulent contributions).   

The magnitude of axial dispersion coefficient estimated by the current model uses 

empirical values for several parameters, specifically the turbulent bursting characteristic scales.  

In addition to the empirical nature of these parameters, literature sources (Fage and Townsend 

1932; Kline, Reynolds et al. 1967; Kim, Kline et al. 1971; Narahari Rao, Narasimha et al. 1971; 

Wallace, Brodkey et al. 1972; Wallace, Brodkey et al. 1977; Smith and Metzler 1983) listing the 

values of these parameters do not agree on a single value but rather a range of values that might 

be possible for each characteristic scale.  It would therefore not be correct to highlight the 

similarity of magnitude of proposed calculations to Taylor’s (1954) equations; it would however 

be reasonable to suggest that the model vindicates Taylor’s assumptions, while providing a 

mechanistic standpoint to the phenomenon resulting in axial dispersion.  From a physical 

perspective, the mechanism indicates that increasing the Reynolds number of flow will result in 

quicker, closely spaced bursts than at a lower Reynolds number, thus resulting in uniform mixing 

of the material in the viscous and turbulent core regions and therefore lower axial dispersion.   
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Rigorous recalculations in the viscous sublayer region 

Taylor’s technique (Taylor 1954) of deriving an expression for axial dispersion 

coefficient as a function of the diffusion characteristics and velocity profile can be reformulated 

to obtain better accuracy even in the low Reynolds number turbulent regime.  Chapter III 

introduced a straight-forward technique to estimate an effective axial dispersion coefficient as a 

combination of Taylor’s laminar (Equation 2.9) and turbulent (Equation 2.12) axial dispersion 

equations (Taylor 1953; Taylor 1954).  The model presented in Chapter III was based on 

elementary mathematical manipulations using the concepts of transport phenomena, as opposed 

to rigorous solutions of the fundamental convective-diffusion equation (Equation 2.7).  Various 

articles (Tichacek, Barkelew et al. 1957; Atesman, Baldwin et al. 1971; Chatwin 1971; Chatwin 

1973; Maron 1978; Ekambara and Joshi 2003) are available in the literature that have reported 

such estimations.  The use of accurate velocity profiles along with a multi-layer type formulation 

has been suggested to significantly improve predictions for axial dispersion coefficient (Chatwin 

1971; Chatwin 1973; Udoetok and Nguyen 2009).  Most of the multi-layer models have been 

solved using different velocities at the various layers, but the same diffusion characteristics 

(turbulent diffusivity) and therefore do not provide accurate estimations.  The success of the 

combined Taylor model from Chapter III suggests that the use of molecular diffusivity in the 

viscous region and turbulent diffusivity in the central region would improve the model 

predictions.  This section presents an attempt to verify if an equation of similar structure to 

Equation (3.24) can be derived directly from the convective-diffusion equation as opposed to a 

direct modification as presented in Chapter III.   

Velocity profile 

The velocity profile employed in the calculations would play a significant role when 

performing rigorous estimations to include the viscous effects.  Taylor (1954) employed the 
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universal velocity profile for all estimations in the turbulent regime and assumed that this velocity 

profile would remain the same for all Reynolds numbers in turbulent flow.  This however would 

not be correct as the velocity profile is known to change drastically with varying Reynolds 

numbers, and this is especially true for the near-wall region of the flow.  In addition to the 

velocity profiles, it is also common knowledge (Pope 2000) that the thickness of the various 

regions of the flow-field (viscous sublayer, buffer layer, etc.) change with the Reynolds number 

(Figure 4.3).  Since the basic idea of this work is to employ a multi-layer type of framework, the 

thicknesses of the various layers in the flow field are of extreme importance.  It is therefore 

imperative that better formulations of the velocity profiles are employed in axial dispersion 

estimations.   

 

Figure 4.3: Thickness of various regions of a flow-field in turbulent channel flow as a function of 

the Reynolds number.  Adapted from Pope (2000). 
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A commonly employed version of the universal turbulent velocity equations (McCabe, 

Smith et al. 2005) are used to estimate the velocity profile over the cross-section for the current 

set of axial dispersion calculations.  The equations based on three layers observed in a turbulent 

flow cross-section are given as 

 u y+ +=  (4.26) 

 ( )5.00 ln 3.05u y+ += ⋅ −  (4.27) 

 ( )2.5 ln 5.5u y+ += ⋅ +  (4.28) 

where, u+ is the dimensionless velocity quotient defined as a ratio of the local velocity (u) to the 

friction velocity (uτ).  Equation (4.26) is applicable in the viscous sublayer (y+ ≤ 5), Equation 

(4.27) in the buffer layer (y+ ≤ 30), and Equation (4.28) for the turbulent core (y+ > 30) extending 

up to the center of the pipe.   

The variations in the velocity profile (Equation 2.10) for different Reynolds numbers is 

given in Figure 4.4.  The universal velocity profile employed by Taylor is also added to the figure 

in order to compare the extent of deviation from the currently used equations.  The velocity 

profiles do not deviate by much for the different Reynolds numbers in the central turbulent core 

(1 - z > 0.2).  The deviations in the velocity profile are however very noticeable in the near-wall 

regions of the flow.  The deviations are particularly noticeable for the low Reynolds number (Re 

= 4119) case, where the steep velocity profile region extends up to around a dimensionless 

distance of 0.1 from the wall as opposed to the velocity profile employed by Taylor.   
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Figure 4.4: Comparison of dimensionless velocity profiles (Equation 2.10) for flow through a 12'' 

pipe at various Reynolds numbers against the universal velocity profile in Taylor’s analysis. 

The turbulent core velocity profile (Equation 4.28) results in a discontinuity in the 

velocity profile at the center of the pipe.  This is because the observed mean velocity in this 

region (defect layer, y/δ > 0.2) deviates from the log-law and needs to be corrected according to 

the velocity-defect equation.  Applying this correction would not make much of a difference to 

the final axial dispersion estimations simply because the velocity profile in the central core is a 

less significant factor as compared to the velocity profile in the inner wall regions.   

Recalculations of the axial dispersion coefficient 

The convective-diffusion equation will be re-evaluated with the velocity profile described 

by Equations (4.26-4.28) and an expression of axial dispersion coefficient will be determined 
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using numerical approximations.  It has been assumed that the flow field can be divided into two 

distinct regions, a) the near-wall viscous flow region dominated by molecular diffusion, and b) 

the central turbulent flow region dominated by eddy diffusion due to velocity shear.  The axial 

dispersion coefficient for purely turbulent flow has been derived in the previous section 

(Estimation of turbulent axial dispersion coefficient).  This section will focus on solving the 

convective-diffusion equation (Equation 4.7) in just the viscous region of the flow.  The 

convective-diffusion equation can be rewritten for the viscous region by replacing the eddy 

diffusivity term in Equation (4.7) with the molecular diffusivity.  The convective-diffusion 

equation therefore takes the form 

 
1C C C

u Dr
t x r r r

∂ ∂ ∂ ∂ + =  ∂ ∂ ∂ ∂ 
 (4.29) 

where, D is the molecular diffusion coefficient.  Transforming the above equation to an axis 

moving with the mean speed of flow given by x1 = x - U‾  t and converting the radius to its 

dimensionless form (z = r / R) gives 

 ( ) 2
1

C D C
u U z

x zR z z

∂ ∂ ∂ − =  ∂ ∂ ∂ 
 (4.30) 

Substituting for the local velocity in in terms of dimensionless velocity function (Equation 2.10) 

and using Equation (4.14) to represent the average velocity, we have 

 ( ) ( ){ }
1

2
10

2
C D C

u f z zf z dz z
x zR z zτ

  ∂ ∂ ∂ − − =   ∂ ∂ ∂  
∫  (4.31) 

 ( ){ }
1

0

0

2U U u zf z dzτ= − ⋅ ∫  (4.14) 
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 ( ) 0u u
f z

u
τ

τ

−
=  (2.10) 

Equation (4.31) can be rearranged to the form 

 ( ) ( ){ }
1 2

10

2
R uC C

z z f z zf z dz
z z D x

τ
   ∂ ∂ ∂  = − − ⋅ ⋅    ∂ ∂ ∂    

∫  (4.32) 

The same terminology as listed in Equations (4.15-4.16) can be used to integrate the above 

equation and the concentration gradient in the radial direction can be estimated as 

 

( ) ( )
2 2

1 1

1 R u R uC C C
z z

z z D x D x
τ τφ ψ

   ∂ ∂ ∂
∴ = − ⋅ = − ⋅   ∂ ∂ ∂   

 (4.33) 

 ( ) ( ) ( ){ }
1

0 0

2
z

z z f z zf z dz dzφ
 

= − 
 

∫ ∫  (4.15) 

 ( ) ( )z z zψ φ=  (4.16) 

Equation (4.33) can be considered as an estimate for the rate of mass transfer across the layers.  

The concentration in the viscous region can therefore be estimated by integrating this equation 

from the dimensionless radial distance (zV) at the cusp of the viscous region to the pipe wall        

(z = 1).   

 ( )
2

1 V

z

z
z

R u C
C z

D x
τ ψ

 ∂
∴ = − ⋅ ∂ 

∫  (4.34) 

The radial concentration profile can be used to estimate the axial dispersion coefficient using the 

procedure listed in Equations (4.19-4.22).  The axial dispersion coefficient in the viscous region 

thus comes out to be 
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 ( )
12 22

V

V

z

u R
K z dz

D
τ χ= − ∫  (4.35) 

where, ( ) ( ){ } ( )
1

0

( ) 2
V

z

z

z u z f z zf z dz z dzτχ ψ
 

= − − 
 

∫ ∫  

Note that the limits on the integration of χ(z) range from the viscous region (z = zV) to the pipe 

wall (z = 1).  The above equation can be written as 

 
2 2

V

R u
K c

D
τ=  (4.36) 

 
2 2

48L

R U
K

D
=  (2.9) 

where, c would be a number depending on the velocity profile (and therefore the Reynolds 

number of the system).  The above equation is very similar to the laminar dispersion equation 

proposed by Taylor (Equation 2.9).  The multiplying term in the above equation would however 

be different from that in Equation (2.9) because, a) the above equation is in terms of the friction 

velocity (uτ) as opposed to Equation (2.9), which is in terms of the average flow velocity, and b) 

the above equation is only applicable to the near-wall regions of the flow and not the entire flow 

cross-section as is the case with Equation (2.9).  The effective axial dispersion coefficient for the 

system can therefore be estimated as the sum of the viscous (Equation 4.35) and turbulent 

(Equation 4.23) axial dispersion coefficients and can be written as 

 ( ) ( )
1 1

0

2 1

V

x z b
E

b b bz

u R T
K Ru z dz z dz

D l w h
τ

τ

λ λ
χ χ

π

+ + +

+ + +

  ⋅ ⋅
= − ⋅ +  ⋅ ⋅   

∫ ∫  (4.37) 
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The terms on the left of the addition sign in the above equation represents the viscous term, while 

the terms on the right represent the turbulent dispersion terms.  The above equation expressed in 

the form of dimensionless axial dispersion coefficient is 

 ( ) ( )
1 1

0

1 1
2 2 2

V

x z bE

b b bz

TK f Ud f
z dz z dz

Ud D l w h

λ λ
χ χ

π

+ + +

+ + +

  ⋅ ⋅
= − ⋅ +  ⋅ ⋅   

∫ ∫  (4.38) 

since uτ = U‾  (f / 2)0.5, where f is the friction factor.   

The value of zV in the above equations would be the dimensionless radial distance beyond 

which the flow is highly streamline in nature and where viscous effects are dominant.  It is more 

common to denote the thickness of the various regions in a flow field in terms of the 

dimensionless distance away from the wall.  The dimensionless radial distance as a function of 

the dimensionless distance from the wall can be expressed as 

 
( )1 z Ru

y τ

ν
+ −

=  (4.39) 

where, y+ is the dimensionless distance from the pipe wall.  The parameter zV should therefore 

ideally be the dimensionless radial distance of the viscous sublayer (y+ ≈ 5) from the pipe center.  

The value for zV however might be slightly higher than that estimated using y+ = 5, as the flow 

slightly above the viscous sublayer is also considerably close to streamline conditions.   

Evaluation of the model performance 

Table 4.3 lists the various calculations involved with the estimations for the effective 

axial dispersion coefficient.  In order to obtain a reasonable accuracy, estimations were performed 

at z increments of 0.005 in the range 0 ≤ z ≤ 0.8, increments of 0.002 were employed in the range 

0.8 < z < 0.999, and increments of 0.001 beyond z = 0.999.  This resulted in a total of 266           

z-locations where the calculations had to be performed.  All calculations in Table 4.3 were
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Table 4.3: Calculations to solve the convective-diffusion equation in the viscous sublayer. 

z y+ u f(z)
 

zf(z)
 

∫zf(z)
 

-φ (z)
 

1/z
 

-ψ(z)
 

-∫ψ(z)
 

χ(z)
 

∫χ(z)
 

0.938 5.0 0.0241 11.4767 10.7651 1.7560 0.5449 1.0661 0.5809 0 0 0 
0.94 4.8 0.0233 11.6379 10.9396 1.7778 0.5328 1.0638 0.5668 0.0011 -0.0069 -1.37×10-5 
0.942 4.7 0.0225 11.7991 11.1147 1.8001 0.5203 1.0616 0.5524 0.0022 -0.0139 -4.15×10-5 
0.944 4.5 0.0218 11.9603 11.2905 1.8226 0.5076 1.0593 0.5377 0.0033 -0.0211 -8.38×10-5 
0.946 4.4 0.0210 12.1215 11.4669 1.8456 0.4945 1.0571 0.5227 0.0044 -0.0285 -1.41×10-4 
0.948 4.2 0.0202 12.2826 11.6439 1.8689 0.4811 1.0549 0.5075 0.0054 -0.0361 -0.0002 
0.95 4.0 0.0194 12.4438 11.8216 1.8925 0.4673 1.0526 0.4919 0.0064 -0.0437 -0.0003 
0.952 3.9 0.0187 12.6050 12.0000 1.9165 0.4532 1.0504 0.4761 0.0073 -0.0515 -0.0004 
0.954 3.7 0.0179 12.7662 12.1790 1.9409 0.4388 1.0482 0.4600 0.0082 -0.0594 -0.0005 
0.956 3.5 0.0171 12.9274 12.3586 1.9656 0.4240 1.0460 0.4436 0.0091 -0.0673 -0.0007 
0.958 3.4 0.0163 13.0886 12.5389 1.9907 0.4089 1.0438 0.4269 0.0100 -0.0753 -0.0008 
0.96 3.2 0.0155 13.2498 12.7198 2.0161 0.3935 1.0417 0.4099 0.0108 -0.0833 -0.0010 
0.962 3.1 0.0148 13.4110 12.9014 2.0419 0.3777 1.0395 0.3926 0.0116 -0.0914 -0.0012 
0.964 2.9 0.0140 13.5722 13.0836 2.0681 0.3616 1.0373 0.3751 0.0123 -0.0994 -0.0014 
0.966 2.7 0.0132 13.7334 13.2664 2.0946 0.3451 1.0352 0.3572 0.0130 -0.1074 -0.0016 
0.968 2.6 0.0124 13.8946 13.4499 2.1215 0.3283 1.0331 0.3391 0.0137 -0.1154 -0.0018 
0.97 2.4 0.0117 14.0557 13.6341 2.1488 0.3111 1.0309 0.3207 0.0144 -0.1233 -0.0020 
0.972 2.3 0.0109 14.2169 13.8189 2.1764 0.2936 1.0288 0.3020 0.0150 -0.1311 -0.0023 
0.974 2.1 0.0101 14.3781 14.0043 2.2044 0.2757 1.0267 0.2831 0.0155 -0.1388 -0.0026 
0.976 1.9 0.0093 14.5393 14.1904 2.2328 0.2575 1.0246 0.2638 0.0161 -0.1463 -0.0029 
0.978 1.8 0.0085 14.7005 14.3771 2.2616 0.2389 1.0225 0.2443 0.0165 -0.1537 -0.0032 
0.98 1.6 0.0078 14.8617 14.5645 2.2907 0.2200 1.0204 0.2245 0.0170 -0.1608 -0.0035 
0.982 1.5 0.0070 15.0229 14.7525 2.3202 0.2007 1.0183 0.2044 0.0174 -0.1678 -0.0038 
0.984 1.3 0.0062 15.1841 14.9411 2.3501 0.1811 1.0163 0.1840 0.0178 -0.1745 -0.0042 
0.986 1.1 0.0054 15.3453 15.1304 2.3803 0.1611 1.0142 0.1634 0.0181 -0.1810 -0.0046 
0.988 1.0 0.0047 15.5065 15.3204 2.4110 0.1407 1.0121 0.1424 0.0184 -0.1871 -0.0049 
0.99 0.8 0.0039 15.6676 15.5110 2.4420 0.1200 1.0101 0.1212 0.0186 -0.1929 -0.0053 
0.991 0.7 0.0035 15.7482 15.6065 2.4576 0.1096 1.0091 0.1105 0.0187 -0.1958 -0.0055 
0.992 0.6 0.0031 15.8288 15.7022 2.4733 0.0990 1.0081 0.0998 0.0188 -0.1985 -0.0057 
0.993 0.6 0.0027 15.9094 15.7981 2.4891 0.0884 1.0070 0.0890 0.0189 -0.2012 -0.0059 
0.994 0.5 0.0023 15.9900 15.8941 2.5050 0.0777 1.0060 0.0781 0.0190 -0.2037 -0.0061 
0.995 0.4 0.0019 16.0706 15.9903 2.5210 0.0669 1.0050 0.0672 0.0191 -0.2062 -0.0063 
0.996 0.3 0.0015 16.1512 16.0866 2.5371 0.0559 1.0040 0.0562 0.0191 -0.2085 -0.0065 
0.997 0.2 0.0012 16.2318 16.1831 2.5533 0.0450 1.0030 0.0451 0.0192 -0.2108 -0.0067 
0.998 0.2 0.0008 16.3124 16.2798 2.5695 0.0339 1.0020 0.0339 0.0192 -0.2129 -0.0070 
0.999 0.1 0.0004 16.3930 16.3766 2.5859 0.0227 1.0010 0.0227 0.0192 -0.2149 -0.0072 

1 0.0 0 16.4736 16.4736 2.6024 0.0114 1.0000 0.0114 0.0192 -0.2168 -0.0074 
 



94 

 

performed for a fluid flowing in a 2'' pipe at a Reynolds number of around 2,000.  The velocity 

profile and therefore the dimensionless velocity function, f(z) was estimated using Equations 

(4.26-4.28) based on the value of y+ from Equation (4.39).  The values for the various functions 

such as φ and ψ were estimated using Equation (4.15) and Equation (4.16) respectively.  The 

values of the integral of the functions ψ and χ for 0 ≤ z ≤ 1 were estimated to be -0.785 and -0.44 

respectively (Appendix D).  This information is however not included in Table 4.3 because only 

the integrals of the functions ψ and χ from the range zV ≤ z ≤ 1 (0 ≤ y+ ≤ 5) is required for 

calculations in the viscous region.  Based on these calculations, Table 4.3 suggests the value of 

the integrals of the functions ψ and χ for zV ≤ z ≤ 1 to be -0.01924 and -7.385×10-3 respectively.  

Substituting the values of χ in Equation (4.38) gives 

 ( ) ( )31
7.385 10 0.4398

2 2 2
x z bE

b b b

TK f Ud f

Ud D l w h

λ λ+ + +
−

+ + +

  ⋅ ⋅
= ⋅ × +  

⋅ ⋅   
 (4.40) 

Using a value for the friction factor determined using the Swamee-Jain equation and substituting 

for the values of the turbulent burst characteristics from Table 4.2 into the above equation results 

in a value of 19.071 for the dimensionless effective dispersion coefficient.   

Similar estimations have been performed for other Reynolds numbers in the range     

2,000 ≤ Re ≤ 1,000,000.  Dimensionless dispersion coefficients are reported in Table 4.4.  The 

pattern of the dimensionless dispersion coefficient follows the trend observed in the experimental 

data, with a rapid decrease in the dispersion coefficient at lower Reynolds numbers (Re ≤ 20,000) 

and a gradual decrease beyond this point.  Table 4.4 also illustrates how the different axial 

dispersion equations available in literature perform in comparison with the current theory and the 

simplified model presented in Chapter III (Equation 3.24). 
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Table 4.4: Comparison of the dimensionless dispersion coefficients determined using Equation 

(4.38) against Equation (3.24) and other models available in the literature. 

Re Eq. (4.38) Eq. (3.24) 
Taylor,  

Eq. (2.12) 

Austin and Palfrey, 

Eq. (2.1-2.3) 

Fowler and 

Brown, Eq. (A.2) 

2000 19.07 50.21 0.39 24.21 47.05 

3000 11.63 24.98 0.37 11.63 21.33 

4000 8.38 15.10 0.36 6.93 13.21 

5000 6.31 10.18 0.35 4.65 9.48 

6000 4.81 7.38 0.34 3.35 7.41 

7500 3.50 4.99 0.33 2.24 5.63 

9000 2.91 3.64 0.33 1.61 4.58 

10000 2.55 3.04 0.32 1.33 4.10 

15000 1.46 1.56 0.31 0.64 2.80 

20000 1.01 1.01 0.30 0.44 2.22 

30000 0.66 0.61 0.29 0.41 1.68 

50000 0.43 0.39 0.28 0.37 1.27 

75000 0.33 0.31 0.27 0.34 1.05 

90000 0.30 0.30 0.27 0.33 0.98 

100000 0.29 0.29 0.26 0.32 0.94 

150000 0.26 0.27 0.26 0.30 0.83 

250000 0.23 0.26 0.26 0.27 0.72 

500000 0.22 0.25 0.25 0.23 0.62 

750000 0.21 0.25 0.25 0.21 0.59 

1000000 0.21 0.25 0.25 0.20 0.56 

 

Figure 4.5 compares the dimensionless effective axial dispersion coefficient estimated 

using Equation (4.38) against experimental data from the literature.  The model (Equation 4.38) 

performance is excellent at moderate to higher Reynolds numbers (Re ≥ 10,000).  There seems to 

be a discontinuity (abrupt change of slope) in the model prediction at Reynolds number of around 

10,000.  The slope of the line seems to decrease slightly, which seems opposite to the observed 

trend.  The model therefore under-predicts axial dispersion at very low turbulent Reynolds 

number (Re ≤ 4,000).  One possible explanation for this could be the inaccuracies of the velocity 
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equations (Equation 4.26-4.28) used to represent the velocity profile in the model calculations.  

These equations are known to lose their precision at low Reynolds numbers, Re < 10,000 

(McCabe, Smith et al. 2005) and therefore could add to the inaccuracy in the estimation of the 

axial dispersion coefficient.   

 

Figure 4.5: Dimensionless axial dispersion coefficient (Equation 4.38) against Reynolds number. 

The deviations could also be due to the extent of resolution available at the low Reynolds 

numbers.  Higher resolution (smaller z increments), especially in the viscous region (y+ ≤ 30) 

might help improve the prediction accuracy at these Reynolds numbers.  Another reason worth 

consideration is the enhanced effects of the viscous sublayer at these Reynolds numbers.  As 

stated earlier in this section, a slightly higher value of the viscous region thickness (y+ ≤ 6) at 

these higher Reynolds number would also help reduce the deviations.  This however would not be 

technically correct as a value of y+ = 5 is universally accepted as the demarcation for the viscous 

sublayer.  Opting for an accurate velocity profile equation at lower Reynolds numbers should 

therefore be the preferred choice instead.   
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Summary 

This study tries to provide a mechanistic viewpoint to Taylor’s analysis (Taylor 1954) of 

axial dispersion and derives an expression for axial dispersion coefficient as a function of the 

characteristic dimensions of the near-wall structures and turbulent bursts.  It is assumed that the 

mechanism of development of the slow moving streaks in the near-wall region, which ultimately 

culminate into violent turbulent bursting events, is instrumental to the process of axial dispersion 

and can be used to predict the magnitude of the dispersion coefficient.  The consequent relation 

obtained for the dispersion coefficient tallies with Taylor’s theory (Equation 2.12) that was 

developed assuming the Reynolds analogy (Taylor 1954).  The study thus justifies Taylor’s 

(1954) assumption.  The analysis presented provides a physical backing to Taylor’s theory 

(Taylor 1954) while providing new conceptual visualizations of the processes governing axial 

mixing of fluids in a straight pipe.  It has also been revealed that the accuracy of the axial 

dispersion coefficient prediction in the lower Reynolds number turbulent regime can be improved 

by performing rigorous calculations in the viscous sublayer employing the molecular diffusion 

coefficient along with a turbulent dispersion coefficient determined from the theory of turbulent 

bursts.   

The model proposed in this chapter (Equation 4.38) like the counterpart from Chapter III 

(Equation 3.24) though based on theoretical concepts, is also dependent upon indirect 

empiricisms.  The various turbulent burst scales, turbulent flow-field region thicknesses, velocity 

profiles, etc. all contribute to the empiricisms of the current equation.  The model can therefore be 

termed semi-empirical at best.  However, the concepts proposed in this chapter meet the basic 

objective of this work, which is to provide an understanding of the physics resulting in axial 

dispersion in liquids flowing through a straight pipe.  It should be noted that with precise 

information of the fluid densities and viscosities, the concept can also be applied to estimate axial 

dispersion coefficient for the flow of gases through a straight pipe.  Furthermore, the proposed 
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concept could also be used in identifying techniques to help reduce axial dispersion in straight 

pipes.   
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CHAPTER V 
 

 

AXIAL DISPERSION IN FLOW THROUGH PIPE BENDS 

 

 

Most axial dispersion studies available in the literature as well as those presented in the previous 

chapters of this work were mostly formulated for axial mixing through straight pipes.  The 

idealized studies need to be modified to include the effects of non-idealities such as the presence 

of bends and other fittings.  The petroleum pipeline network in the United States is approximately 

200,000 miles long spanning all 50 states and carries more than 14 billion barrels (over 600 

billion gallons) of product every year (Trench 2001; Rabinow 2004).  These lines might have 

long sections of essentially straight piping, but are not always straight.  Practical applications 

always have bends and fittings associated with pipelines for various reasons – to counter thermal 

expansions and contractions due to climate changes, to bypass immovable bodies (lakes, rivers, 

etc.), land constraints, etc.  Flow through bends is therefore a very important aspect from a 

practical point of view when dealing with petroleum transportation.   

Only a handful of studies (Smith and Sulze 1948; Taylor 1954; Davidson, Farquharson et 

al. 1955; Carter and Bir 1962; Bischoff 1964; Koutsky and Adler 1964; Gomezplata and Park 

1966; Aunicky 1968; Cassell and Perona 1969; Park and Gomezplata 1971; Castelain, Mokrani et 

al. 1997) on the influences of bent pipes on axial dispersion are available in the literature.  Most 
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of the work reported in the literature concentrate on axial mixing for flow through helical 

systems.  Even among these, fewer investigations (Smith and Sulze 1948; Carter and Bir 1962; 

Aunicky 1968; Cassell and Perona 1969; Park and Gomezplata 1971) have reported experimental 

data for axial dispersion in the presence of conventional bends and pipe fittings.  The influences 

of bends and fittings on axial dispersion are therefore a relatively unknown quantity.  This chapter 

gives an account of the various techniques and mathematical formulations proposed to 

incorporate the effects of bends on axial dispersion at the interface formed between two liquids.  

The information collected from literature studies is utilized to propose a more accurate empirical 

formulation to estimate axial dispersion coefficient in pipes with conventional bends.   

Studies on axial mixing in bent pipes 

Studies (Taylor 1954; Carter and Bir 1962; Koutsky and Adler 1964; Aunicky 1968; 

Cassell and Perona 1969; Park and Gomezplata 1971; Castelain, Mokrani et al. 1997) on axial 

dispersion in bends report varied and contradicting findings.  Experiments (Smith and Sulze 

1948; Carter and Bir 1962; Aunicky 1968; Park and Gomezplata 1971) carried out on systems 

with straight pipes and conventional bends have generally shown an increase in the extent of axial 

dispersion, while experiments (Koutsky and Adler 1964; Cassell and Perona 1969; Castelain, 

Mokrani et al. 1997) on unconventional systems mimicking helical coils result in a reduction in 

the axial dispersion coefficient.  These contrasting observations can be explained by the fact that 

multiple mechanisms are contributing to axial dispersion during flow through bends and curved 

pipes.  The viscous effects and bend geometry result in a skewed, non-uniform velocity profile, 

which according to Taylor’s hypothesis enhances axial dispersion.  At the same time, chaotic 

mixing across the cross-section due to turbulent eddies and secondary flows result in a reduction 

in axial mixing (Koutsky and Adler 1964; Cassell and Perona 1969; Zhao and Bau 2007).  The 

net effect observed is therefore sensitive to the configuration and orientation of the system, which 

influences the magnitude of the contributions from each of the two mechanisms listed above.   
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Taylor’s formulation of axial dispersion (Taylor 1953) does not include the effects of 

secondary flows as these effects are not observed for ideal flow through straight pipes.  

Secondary flow refers to the circular motion of fluid in a plane perpendicular to the observed 

direction in a flowing system.  Secondary flow patterns usually occur in flow through curved 

pipes, resulting due to increased centripetal forces on the flow field.  The onset of secondary flow 

results in circular motions of the fluid molecules (Figure 5.1), leading to rapid mixing across the 

cross-section of the pipe and therefore a reduction in the radial concentration gradient (Koutsky 

and Adler 1964).  In accordance with Taylor’s theories (Taylor 1953; 1954), radial mixing is one 

of the primary governing factors in longitudinal dispersion.  Enhanced radial mixing due to 

secondary flows will reduce the concentration gradients across the cross-section of the pipe and 

therefore lead to lower than expected axial dispersion.   

 

Figure 5.1: Secondary flow lines along the cross-section of a circular pipe.  Adapted from 

Koutsky and Adler (1964). 

The effects of secondary flow on axial dispersion coefficient have also been validated 

using experimental analysis (Koutsky and Adler 1964; Cassell and Perona 1969; Castelain, 

Mokrani et al. 1997; Zhao and Bau 2007; Vashisth and Nigam 2008).  The experiments reveal a 

significant reduction in the axial dispersion coefficient for systems that experience sustained 

secondary flow effects.  For cases with isolated conventional bends, secondary flow, though 

generated, is not a continuous influence and therefore is less significant.  Zhao and Bau (2007) 
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report the isolated effects of secondary flow without secondary flow producing mechanisms such 

as flow through curved pipes, bends, etc.  They induced secondary flow in a straight pipe by 

electro-kinetic and electro-osmotic means and controlled the intensity of secondary flow with the 

intensity of the electric field.  They demonstrated a substantial reduction in the axial dispersion 

coefficient in systems with continuous, high intensity secondary flow currents.   

As stated earlier, high intensity, continuous secondary flow currents are only possible for 

systems inducing near continuous centripetal forces on the flow field.  Such effects are not 

encountered in systems with isolated conventional bends, where the effect of one bend is not 

discernible farther downstream and secondary flow is only persistent for a short duration of time.  

Takeuchi and Murai (2010) carried out CFD simulations for flow of gases through isolated bends 

and observed that the reduction in the axial dispersion coefficient due to secondary flow currents 

would be insignificant in comparison with the increase in axial dispersion because of the skewed 

velocity profiles and other non-idealities resulting because of the pipe curvature.  Petroleum 

pipelines would most commonly have conventional bends as opposed to helical configurations 

and thus would not experience significant secondary flow effects.  Secondary flow effects are 

therefore ignored in axial mixing estimations proposed in this work.   

Studies on flow through pipes with conventional bends are scarce in the literature.  The 

present study analyzes the experimental data that has been published in open literature (Smith and 

Sulze 1948; Carter and Bir 1962; Cassell and Perona 1969; Aunicky 1970) and proposes a model 

equation that builds on the theories and observations presented by Bischoff (1964), Gomezplata 

and Park (1966), Park and Gomezplata (1971), and Cassell and Perona (1969).   

Most of the investigations on axial mixing in bent pipes are variations of a combined 

mixed model proposed by Bischoff (1964).  Bischoff (1964) utilized the additive nature of the 

various phenomena contributing to axial dispersion and proposed to model systems with bends as 
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a combination of ideal plug flow to model the straight section followed by a perfect mixer to 

model the bends.  The system would therefore act like a tank-in-series model, with the first tank 

being replaced by a straight pipe region.  Bischoff (1964) then estimated the first and second 

moments of the concentration distribution for each of the two regions (plug flow and well mixed).  

The systems-in-series type of formulation allows the moments of the concentration to be additive, 

resulting in 
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where, LB,Eq is the length of a straight pipe that would result in the same amount of mixing as the 

bend (equivalent length), n is the number of repeating sections in the system consisting of a single 

straight pipe and a bend, and L being the effective length of the system (LSP + LB,Eq).  Bischoff 

(1964) applied this equation to the experimental data reported by Carter and Bir (1962) and 

estimated the value for the equivalent bend length to be around 26 pipe diameters, which is 

similar to the number used for equivalent length for pressure drop calculations.  During the course 

of his analysis, Bischoff (1964) noted the inability of the above model to incorporate the 

variations in axial dispersion in bends with changing Reynolds numbers and suggested the need 

for further experimental work to obtain improved estimations.   

Cassell and Perona (1969) performed experiments on systems with closely spaced 90o 

bends for different sets of configurations and published a list of equivalent length values 

applicable to Bischoff’s model (Equation 5.1).  They noted the equivalent bend length to be a 

non-linear function of the Reynolds number and more importantly the configuration of the 

system.  The dependence on the system configuration can be attributed to the closely positioned 

bends, which would lead to the effects of the upstream bend on the flow field being transmitted to 

the downstream bend.   
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Park and Gomezplata (1971) extended this analysis by suggesting that the amount of 

mixing in a pipe bend would be in direct proportion to the axial dispersion in the straight section 

(Equation 5.2).  They suggested the proportionality factor in Equation (5.2) to be a function of the 

Reynolds number, similar to the coefficients employed in pressure drop estimations (drag 

coefficient, discharge coefficient, etc.).   
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where, F(Re) is the proportionality factor.  Park and Gomezplata (1971) performed experiments 

for varying Reynolds number and obtained system specific values for the proportionality 

constant.  They observed F(Re) to be nearly constant (slight downward trend) for increasing 

Reynolds number in the experimental range and suggested a constant value of 3 for the range 

4000 ≤ Re ≤ 10000.  Based on this number for F(Re), they found the equivalent bend length to be 

similar to that used in pressure drop estimations (around 30 pipe diameters).   

Aunicky (1968) in a separate investigation carried out a set of experiments for flow 

through different types of bends at Reynolds numbers in the range 15,000 to 90,000.  The results 

from these experiments were translated to a set of empirical equations to correct the axial 

dispersion coefficient as a function of the bend angle, radius of curvature, and Reynolds number.  

The equations suggested are applicable for flow through bends with bend angle up to 90o.  

Aunicky (1968) suggested that the flow through a single bend would almost always results in 

enhanced axial dispersion, with the extent of increase depending upon the system parameters.   

All of the above models were formulated and tested on one particular type of system 

based on the experiments carried out by the investigators.  They therefore only perform well for 

the system considered in the analysis and are not sufficiently consistent when tested on other 
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axial dispersion data available in the literature.  This clearly evident need for a generalized 

formulation for axial dispersion estimations for flow through bends is addressed in this work.   

Model development 

The developments and evidences reported by Bischoff (1964), Cassell and Perona (1969), 

and Park and Gomezplata (1971) are utilized to propose a comprehensive mathematical 

formulation to estimate axial mixing in systems with bends.  The model is built on the assumption 

that the effects of the bends and the straight pipes are additive and proposes an equation similar to 

Equations (5.1-5.2) for the effective axial dispersion coefficient for system with bends.  The 

investigations available in the open literature (Bischoff 1964; Gomezplata and Park 1966; Cassell 

and Perona 1969; Park and Gomezplata 1971) suggest an obvious similarity between axial mixing 

and pressure drop estimates for flow through pipe bends.  Furthermore, as revealed in the 

previous chapters of this work, both axial mixing and pressure drop are effects of shear 

distribution across the flow field and therefore similar techniques and parameters can be used for 

calculating the magnitude both these quantities.   

Taylor’s analysis (1954) for axial dispersion through straight pipes suggests that the 

dimensionless axial dispersion coefficient would be directly proportional to the square root of the 

friction factor in turbulent flow.  If the axial mixing in bends is considered to be entirely caused 

by turbulent chaotic mixing, Taylor’s equation for axial dispersion can be rewritten for the bend 

region as 
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where, fB would represent the friction factor based on the losses in pipe bends, fSP is the friction 

factor through a straight pipe and Kf,B is the loss coefficient for the bend/fitting.  The total friction 

loses in a pipe fitting (ef,B) can be expressed as a function of the loss coefficients (Equation 5.4).  

In crude terms, the apparent friction factor in a pipe is directly proportional to the loss coefficient 

for that particular fitting.  Equation (5.3) can therefore be rewritten as 

 ,
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f B
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Standardized values and equations for estimating the loss coefficients for pressure drop 

calculations in different types of pipe fittings are available in abundance in the literature (Perry 

and Green 1997).  The 3-K method (Equation 5.6) suggested by Darby (2001) is employed for 

loss coefficient estimations in this work.   
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where, K1, Ki and Kd are empirical constants for various bends and fittings that have been 

estimated and summarized by Darby (2001).   

Equation (5.5) conforms with the deduction that the axial dispersion coefficient for flow 

through a bend is directly proportional to the axial dispersion coefficient for flow through a 

straight pipe (Park and Gomezplata 1971).  Furthermore, the variations in the loss coefficient with 

the Reynolds number (Equation 5.6) would translate to Equation (5.5) thus enabling a Reynolds 

number dependent formulation for the axial dispersion coefficient for flow through bends 

(Bischoff 1964; Aunicky 1968; Cassell and Perona 1969).   

Equation (5.5) represents the value of the axial dispersion coefficient for flow through the 

bent sections of the system.  The axial dispersion coefficient obtained from Equation (5.5) can 

therefore only be applied to the part of the system affected by the presence of bends.  An effective 
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axial dispersion coefficient estimated by adding Equation (5.5) to the axial dispersion coefficient 

for flow through the straight sections of the system would therefore overestimate the amount of 

dispersion in the system.   

The non-idealities and turbulence introduced by a bend are not confined to just the actual 

volume occupied by the bend, but extend up to a certain distance downstream of the bend 

depending on the radius of curvature and the central bend angle (Figure 5.2).  Since part of the 

straight section downstream of the bend is affected by the presence of the bend, this volume can 

be considered to be part of the region where the bend dispersion equations would be applicable.  

The effective length of the straight section where the straight pipe dispersion equation can be 

applied would therefore be reduced by an equivalent amount.   

 

Figure 5.2: Schematic of the effective influence of a bend in the downstream section (shaded). 

The more the number of bends in the system, the longer would be the time spent by the 

interface travelling through the regions under the influence of the bends, and therefore the higher 

the contribution of bends to the extent of mixing.  The effective axial dispersion coefficient for 

the system can therefore be estimated based on the fraction of time the interface would spend in 

the bend section as opposed to the straight section.  The effective axial dispersion coefficient for a 

system with bends can therefore be estimated by 
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where, tB indicates the time spent by the interface in the bend regions and tT indicates the total 

time spent by the interface in the system (straight and bend regions).  Equation (5.7) can also be 

written by replacing the time ratios (tB/tT) with the easily quantifiable length ratios (LB/LT).  The 

parameter LB would represent the total length of the downstream straight section that is under the 

influence of the bend.  Assuming the actual volume occupied by the bend to be insignificant in 

comparison to length of the straight section, the length ratio would be (LB/LSP), where LSP is the 

length of the straight pipe section in the system.  Substituting for the dimensionless dispersion 

coefficients in terms of the friction factors, Equation (5.7) can be rewritten as 
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where, α is the proportionality constant for flow through a straight pipe, given as 3.57 in Taylor’s 

analysis (1954) and β is the proportionality constant for flow through a bend.  For a 90o elbow, 

the influence of the bend can last up to as far as 30 pipe diameters downstream of the bend, which 

is also the equivalent length used for pressure drop estimations.  The value of β is empirically 

estimated to be around 1.2 when using the equivalent length (LB,Eq) for the length of the straight 

pipe being affected by the bend (LB).  For the case of a liquid interface, the values for the straight 

pipe dimensionless dispersion coefficient (KSP/U‾  d) can be estimated using Equation (3.24) or 

directly taken from Figure 3.14A.   

Equation (5.8) is defined for a system that only consists of a single bend.  For systems 

comprising multiple bends, the effective loss coefficient (ΣKf,B) and the effective equivalent 

length (ΣLB,Eq) should be used instead of Kf,B and LB respectively (Equation 5.9).   
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ΣLSP in the above equation refers to the summation of the lengths of all straight sections in the 

system under investigation.   

Comparison of model estimates against experimental data 

Axial dispersion experimental data for systems with 90o elbows and 180o return bends 

have been reported by Carter and Bir (1962), Smith and Schulze (1948) and Park and Gomezplata 

(1971).  The data provided by Park and Gomezplata (1971) were based on experiments on short 

pipes, which need to be corrected to accurately represent the axial dispersion that would exist in 

long pipes.  These corrections (fraction of steady state straight pipe dispersion) were estimated 

based on the data provided by Park and Gomezplata (1971) for their experiments using the initial 

straight pipe section of their experimental setup.  The corrections were then translated to the 

measurements reported for axial dispersion coefficient in the downstream bend section of the 

setup.  A detailed description of the correction calculations are provided in Appendix-E.   

Two other experimental investigations (Aunicky 1968; Cassell and Perona 1969) on 

setups with conventional 90o elbows available in the literature have not been considered in this 

work.  Cassell and Perona (1969) performed experiments on setups with high bend region to 

straight section ratios.  In such cases, the influence of one bend would transmit to the following 

bend resulting in complicated effects such as secondary flows.  The experimental data reported by 

Aunicky (1968) has been ignored due to the insufficient description of the experimental setup and 

the absence of adequate details on measured quantities such as the straight pipe axial dispersion 

coefficient.   

Carter and Bir (1962) experimental data 

Figure 5.3A depicts the performance of the model (Equation 5.9) in comparison to the 

experimental data reported by Carter and Bir (1962).  Equation (5.9) is able to accurately estimate 

the effective axial dispersion coefficient at higher Reynolds numbers (> 20,000).  The 
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performance of the model though seems to deteriorate at lower Reynolds numbers (≤ 20,000), 

with the predictions being consistently higher than the observed axial dispersion coefficient.  This 

discrepancy is caused by the use of the straight pipe dispersion coefficient from Figure 3.14A, 

which corresponds to liquid interfaces estimated for Schmidt number of the order of 1000.  

Higher Schmidt numbers indicate lower molecular diffusivities and therefore higher mixing at 

lower Reynolds numbers.  The axial dispersion data reported by Carter and Bir (1962) were 

obtained for experiments using high pressure ethylene in supercritical conditions.  The molecular 

diffusivities would be much higher under such conditions, thus resulting to lower Schmidt 

numbers (order of magnitude differences).  Furthermore, as explained in the previous chapters, 

higher molecular diffusivity (radial direction) would lead to lower axial dispersion.  Figure 5.3B 

depicts the estimates for the effective axial dispersion coefficient using Equation (5.9) at different 

Schmidt numbers.  The solid line in Figure 5.3 indicates the axial dispersion coefficient in a 

straight pipe and the dotted and dashed lines represent the axial dispersion coefficient in the 

presence of bends.   

  

Figure 5.3:  A) Comparison of model predictions (Equation 5.9) against Carter and Bir (1962) 

experimental data, B) Effect of the Schmidt number on axial dispersion predictions. 

The presence of bends in the system appears to enhance the axial dispersion coefficient 

by a constant magnitude at higher Reynolds number.  Bischoff (1964) reached a similar 

conclusion based on his analysis assuming the bend regions to act similar to perfect mixers.  The 
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increase in the axial dispersion coefficient estimated using Bischoff’s model (1964) is higher than 

that estimated using Equation (5.9).  Such an observation is expected considering the perfect 

mixer (CSTR) assumption in Bischoff’s analysis (1964).   

Park and Gomezplata (1971) experimental data 

Park and Gomezplata (1971) performed experiments on a short length experimental unit, 

which resulted in axial dispersion coefficients lower than the actual equilibrium values observed 

in long pipes.  The experimental data were therefore amended to indicate their equivalent steady 

state values for dispersion in long pipes (Appendix-E).  The amended steady state values were 

used for comparison with the effective axial dispersion coefficient predictions using Equation 

(5.9).  A comparison of the predictions using Equation (5.9) against the reported experimental 

data is presented in Figure 5.4.   

 

Figure 5.4: Comparison of model predictions (Equation 5.9) against experimental data reported 

by Park and Gomezplata (1971), with A) one bend, B) two bends, C) three bends. 
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The model prediction agrees with the experimentally observed reduction in the 

dimensionless axial dispersion coefficient in the investigated Reynolds number range.  Equation 

(5.9) also correctly demonstrates the change in slope of the dispersion coefficient curves observed 

in the experimental data.  These encouraging results are however only a crude approximation 

considering the simplistic procedures employed for amending the available data to represent axial 

dispersion coefficient in long pipes.  Additionally, the experimental data used for comparison 

were taken from log-log plots from the original article and therefore can be said to exhibit a 

higher degree of uncertainty on top of the uncertainties introduced from experimental errors.   

Smith and Schulze (1948) experimental data 

Smith and Schulze (1948) reported experimental data for mixed interface lengths 

collected on a 5000 ft., 2'' diameter pilot-scale pipe loop.  The experiments were performed by 

introducing two fluids into the loop setup.  The interface formed between the two fluids was 

continuously pumped around the loop.  The total pipe length traveled by the interface is estimated 

based on the number of times the interface circles around the loop.  The setup consisted of 

roughly twelve 90o elbows and four 180o return bends.  If an interface is pumped though the loop 

ten times, the interface would have the collective influence of 120 elbows and 40 return bends.  

The axial dispersion coefficient would therefore not be independent of the pipe length as would 

be the case for a fixed experimental setup (Carter and Bir (1962) and Park and Gomezplata 

(1971)).  All comparisons for the model performance are therefore in terms of the predicted 

interface length instead of the axial dispersion coefficients, which were used in the previous two 

comparisons.   

The calculations for the interface lengths were estimated using Equation (3.25) by 

substituting the value of the axial dispersion coefficient estimated using Equation (5.9).  Table 5.1 

compares the predictions for the calculated interface length against the data for gasoline-
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kerosene, gasoline-gasoline, and gasoline-fuel oil interfaces reported by Smith and Schulze at 

three Reynolds numbers.  The model over predicted the interface length at a Reynolds number of 

14,160, while it performed reasonably for the Reynolds numbers of 25,420 and 121,000.  The 

reason for the discrepancy at 14,160 is that the prediction for the straight pipe dispersion 

coefficient itself is higher than the reported experimental data.  Possible reasons for the 

disagreement with the straight pipe equation are the differences in the transport properties of the 

fluids used in the experiments to the ones used in the model estimations or errors in the reported 

data at this particular Reynolds number.  The model also appears to, slightly but consistently 

under predict the contamination length at the Reynolds numbers of 26,420 and 121,000.  This 

tendency of the model can be attributed to the other minor pipe fittings such as valves that have 

not been considered in the estimations.  It should however be noted that the model predictions for 

the contamination length never differs from the experimental data by more than 10%.   

Table 5.1: Comparison of model predictions against Smith and Schulze (1948) experimental data. 

Reynolds 

Number 

Pipe Travel    

Length (ft.) 

Percent deviations in interface length 

Eq. (3.24) and Eq. (3.25) Eq. (5.9) and Eq. (3.25) 

14,160 50,000 24.44 32.81 

14,160 100,000 16.71 28.17 

14,160 150,000 10.85 24.30 

26,420 50,000 -14.83 -0.52 

26,420 100,000 -20.16 -1.42 

26,420 150,000 -23.66 -2.01 

26,420 200,000 -25.00 -0.76 

121,000 100,000 -39.64 -7.66 

121,000 200,000 -44.59 -5.56 

121,000 300,000 -47.37 -3.85 
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Summary 

An empirical model has been proposed to estimate axial dispersion in systems involving 

long straight pipe regions with intermittent bends and pipe fittings.  The foremost intention of this 

work has been to test the applicability of conventional techniques used for pressure drop 

estimations for flow through bends to axial dispersion estimations.  A mathematical formulation 

that employs the loss coefficient (ΣKf,B) and equivalent length (ΣLB,Eq) concepts has been 

proposed (Equation 5.9) and tested on experimental data reported in three separate investigations 

(Carter and Bir 1962; Bischoff 1964; Park and Gomezplata 1971).  A comparison of the model 

predictions to the reported data demonstrates the applicability of the concepts and empirical 

parameters used in pressure drop estimations to axial dispersion calculations.  Though 

encouraging results are obtained, it is important to note that the model has only been tested on 

three sets of experimental data.  Further validations by comparing with other experimental data 

are necessary before any conclusions regarding the practical applicability of the model can be 

reached.  The availability of insufficient open literature experimental axial dispersion data for 

flow through systems with isolated bends is a major contributing factor for insufficient validation 

of the proposed model.  The ability to estimate axial dispersion for systems with bends is critical 

from a practical stand point.  A model can only be classified trustworthy if it has been validated 

using experimental measurements.  There is therefore a significant need to perform further 

experimental work to obtain data on dispersion in non-ideal systems.   
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CHAPTER VI 
 

 

CONCLUDING REMARKS AND FUTURE WORK 

 

 

The topic of axial dispersion in turbulent flow processes has been a widely investigated area in 

fluid mechanics.  Taylor was one of the first to provide a logical explanation of the processes 

governing axial dispersion.  Most studies thereafter have focused on expanding on Taylor’s 

theories, albeit with limited success.  Theoretical investigation of axial dispersion seemed to have 

reached saturation, resulting in more recent investigative efforts directed towards empirical 

modeling of the process.  The literature review presented in Chapter II of this work reveals that 

most investigations kept revolving around Taylor’s analysis and are unable to break away from 

this circular pattern.  The few investigations that have been able to branch away were either 

extremely complicated or did not provide a mathematical formulation.  This work is an attempt to 

connect the dots and branches provided by previous investigators to Taylor’s theories on axial 

dispersion.  A simplified mathematical formulation describing axial dispersion has been 

developed by integrating the fundamental convective-diffusion equation employed by Taylor, 

together with the concepts of boundary layer theory and near-wall turbulence mechanisms in flow 

through pipes.  The concepts introduced in this work provide a direction for uncovering what 

might be considered as the missing link in Taylor’s analysis.  This Chapter summarizes the 

various outcomes of this investigation and provides a brief overview of the direction of future 
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work in topics associated with axial dispersion and other related phenomena. 

Major findings and contributions 

This work focuses on theoretical aspects of axial dispersion.  A mathematical formulation 

to accurately represent the extent of axial mixing is the most visible contribution of this work.  

Furthermore, the investigation also introduces concepts that had not been considered earlier in 

modeling axial dispersion processes.  The various contributions of this investigation are 

enumerated below. 

a) This investigation provides definitive mathematical evidence linking the extent of 

axial dispersion (dispersion coefficient and contamination length) to viscous sublayer 

thickness and related boundary layer parameters.  Prior researchers had only 

hypothesized this as a crucial factor to axial dispersion. 

b) Taylor’s formulations for axial dispersion coefficient provide an accurate 

representation of the process under idealized flow conditions, namely ideal viscous 

laminar and turbulent flows with negligible viscous stresses.  They however lose their 

accuracy when applied to real systems, where turbulent flows are not in their ideal 

state. 

c) A weighted addition of Taylor’s idealized formulations for the laminar and turbulent 

flow systems can be used to describe axial dispersion in real turbulent flows.  The 

weighting coefficient being a means to account for the viscous effects present in 

turbulent flow, which were not considered by Taylor.  An expression for the 

weighted coefficient has been developed based on boundary layer theory and the pipe 

geometry. 
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d) Taylor’s assumption of the Reynolds analogy in formulating the expression for 

turbulent axial dispersion coefficient has been validated to be accurate.  This   

however is only applicable to highly idealized systems flowing at high Reynolds 

numbers (Re > 100,000). 

e) Near-wall turbulent mechanics play an important role in axial dispersion.  Turbulent 

bursting events resulting in ejections from the near wall regions into the central 

turbulent core can be considered to be one of the stages contributing to axial 

dispersion.  The characteristic scales of these turbulent bursting events have been 

employed to develop a phenomenological mathematical formulation of the axial 

dispersion process. 

f) Pressure drop and axial dispersion are both a consequence of the shear stress exerted 

by the flowing fluid.  The theories and equation applicable to pressure drop 

calculation in pipes are therefore also applicable, albeit with some modifications to 

axial dispersion estimations.   

g) High accuracy mathematical formulations of axial dispersion coefficient for flow 

through pipes with bends have been developed using friction parameters used for 

estimating pressure drop through pipe bends.  The mathematical formulations thus 

developed resemble very closely the semi-empirical relations proposed by prior 

researchers for such systems. 

Pipeline heuristics and economic impact 

Transmix volume estimation in multiproduct pipeline transport is the motivation behind 

this work.  It therefore also serves as one of the major applications of the various theories and 

models that have been developed by means of various investigations conducted as part of this 

work.  Identifying the causes of transmix formation and providing logical explanation to the 
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various empirical heuristics employed in the industry for transmix growth has been one of the 

objectives of this work.  This section discusses in detail the theories behind the heuristics, and 

provides an overview of the applications and the economic impact of the dispersion models 

proposed in this work.   

Transmix estimation heuristics based on five major system parameters are described 

below.  Of these, four parameters have been conventionally known to be of significance to 

transmix contamination.  The fifth parameter discussed has been a less common feature in 

comparison to the other four.   

Pipe diameter and length:  Contamination volume is known to increase with increasing 

pipe lengths and diameters.  The square root dependence on pipe length has been well explained 

by previous investigators, with the square root power being a result of a diffusion type of process.  

Some investigators suggested that the square root dependence on pipe diameter could be related 

to the near-wall viscous region, but did not provide any conclusive evidences.  The theoretical 

models and the mathematical validation presented in this work suggest that contamination volume 

follows a square root behavior with respect to the pipe diameter.  This dependence is directly 

associated to the near-wall viscous sublayer thickness.  Increasing pipe diameter (all other 

parameters constant) results in larger viscous sublayer thicknesses, which in turn results in 

enhanced axial dispersion.   

Velocity:  A distinct discontinuity has been observed in the axial dispersion coefficient 

curve with increasing Reynolds numbers for a pipeline of constant diameter.  This has led to 

suggestions of two separate mechanisms governing the process.  This study suggests that the 

viscous and turbulent flow effects are the two mechanisms described by prior researchers, and 

that the observed discontinuity in dispersion predictions can be attributed to the sublayer 

thickness.  The viscous sublayer has been suggested to be an important parameter by some 
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investigators but without any conclusive evidence.  The accuracy and robustness of the models 

developed in this work provide the necessary evidence to bolster this argument.  Velocity also 

indirectly affects axial dispersion by influencing the near-wall turbulence mechanisms.  The 

frequency and strength of turbulent bursts are shown to be important in axial dispersion studies 

(Chapter IV).  Furthermore, these parameters are dependent on the mean stream velocity of the 

system.  Velocity is therefore correctly considered as one of the more significant parameters in 

the empirical studies.   

Kinematic viscosity and density differences:  Fluid properties influence contamination 

growth by affecting the near-wall turbulent bursting events.  Increasing the kinematic viscosity of 

the fluid at a constant Reynolds number will result in reduced radial mixing and therefore higher 

axial dispersion in a pipe of similar dimension.  On the contrary, increasing the kinematic 

viscosity with the velocity and diameter held constant will result in reduced dispersion.  Based on 

the analysis presented in Chapter IV, the density difference between the two liquids forming the 

interface would influence the extent of axial dispersion.  However, the transmix formed between 

the fluids greatly reduces the influence of this parameter.  These effects would therefore only be 

significant in short pipe systems, where the contaminated region would not be large enough to 

buffer the variation in densities.  Density differences would also be significant for cases of 

multiphase flow.  These systems are however outside the scope of this work.   

Pipe roughness:  The pipe roughness is a significant parameter and should be considered 

in all axial dispersion studies.  Pipe roughness affects axial dispersion in two ways, a) by 

introducing turbulence and increasing the friction factor, and b) by reducing or eliminating the 

effect of the viscous sublayer.  Eliminating the influence of the viscous sublayer would help 

reduce axial contamination, as viscous effects play a major role at Reynolds numbers under 

100,000.  The pipe roughness can therefore be considered an effective means to contain axial 
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dispersion.  It should also be noted that increasing the pipe roughness can result in higher 

pressure drop and therefore adversely affect the economics of the transport.   

A direct application of the models developed in this investigation is the optimization of 

batch scheduling operations.  The sequence and size of the batches to be transported through a 

pipeline are estimated based on the demand of the products at the distributor end.  The batch 

scheduling algorithms are programmed so as to move the batches at minimum possible operating 

costs incurred during transportation.  Most scheduling algorithms employed currently ignore the 

dynamic nature of contamination growth and assign a constant value to account for the interfacial 

losses in products.  This is mainly because current transmix estimation models are unreliable over 

the entire flow rate (Reynolds number) of operation.   

Multiproduct pipelines are known to operate at Reynolds numbers ranging from 10,000 

up to 500,000.  Prior axial dispersion models are only known to provide an acceptable accuracy 

of ±10% at Reynolds numbers greater than 100,000.  Their prediction accuracy however 

deteriorates as the Reynolds number decreases; with errors ±30% or more being very common.  

The operations of the Plantation and Calnev pipelines are used as a case study to analyze the 

effectiveness of the proposed model.  Depending on the liquids being transported and the pipe 

diameter, the operating Reynolds numbers range from 25,000 to 350,000 for the Plantation 

pipeline and around 50,000 to 300,000 for the Calnev pipeline.  Table 6.1 provides a comparison 

of the difference in barrels of transmix and the cost of the products lost as predicted by the Taylor 

model (Equation 2.12), the Austin and Palfrey model (Equations 2.1-2.3) and the model proposed 

in the current study (Equation 3.24).   
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Table 6.1: Comparison of transmix volume estimated using the proposed model (Equation 3.24) 

against the predictions using the Austin and Palfrey (1964) model and the Taylor (1954) model. 

Reynolds 

Number 

Pipeline 

Diameter 

(in.) 

Barrels of transmix %D from Eq. (3.24) 

Proposed model 

(Eq. 3.24) 

Austin & Palfrey 

(Eq. 2.1-2.3) 

Taylor 

(Eq. 2.12) 

Austin & 

Palfrey 

Taylor 

Plantation pipeline 

25000 30 21910 45774 11580 108.9 -47.2 

150000 30 11048 11886 10542 7.6 -4.6 

350000 6 190 196 189 3.2 -0.5 

Calnev pipeline 

50000 14 1547 1408 1175 -8.9 -24.1 

200000 8 282 300 276 6.4 -2.1 

300000 8 275 288 273 4.7 -0.7 

 

Three Reynolds numbers comprising of a low, a moderate and a high value are 

considered for comparison in each of the two case studies.  All three models provide comparable 

results at extremely high Reynolds numbers.  The Taylor model (Equation 2.12)_consistently 

under-predicts the contamination volumes in comparison to the other two models at all Reynolds 

number.  The differences in the barrels of lost product estimated using the three equations is 

clearly visible at the low Reynolds number cases and these become more prominent for higher 

diameter pipelines.  The model predictions at higher Reynolds numbers differ by ±10%.  It should 

be noted that even a 10% deviation from the actual transmix volume can have a major effect on 

the final optimized solution for scheduling, leading to losses in hundreds of thousands or even 

millions of dollars. 
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Incorporating the proposed axial dispersion model in pipeline scheduling calculations 

would significantly improve the predictions at lower Reynolds numbers.  The model also fine-

tunes the predictions at higher Reynolds numbers thus providing a robustness that has been 

missing in the other models.  Apart from the accuracy, the theoretical background employed for 

the development of the model facilitates understanding of the complete process resulting in 

interfacial contamination, thus making the model a very exciting prospect for industrial 

application.   

The proposed model also finds a direct application in designing of new multiproduct 

pipelines.  The model equation can be employed to estimate the pipe dimensions that best reduce 

interfacial mixing and thus improve the economics of transportation.  In crude terms, the 

proposed model suggests that building of small diameter pipelines that operate at high Reynolds 

numbers would minimize axial contamination.  Operating smaller diameter pipelines at higher 

Reynolds numbers would however result in an increase in the pumping costs.  It is therefore 

necessary to choose an optimum pipe diameter that would provide a reduction in the extent of 

axial contamination at reasonable energy consumption rates.  The various outcomes of this work 

will also prove useful in studies involving convective heat transfer for heat exchanger design, 

RTD studies for design of chemical reactors, and mixing in water supply lines and other 

convective processes. 

Conclusions 

Taylor provided mathematical formulations to mimic the asymptotic conditions of axial 

dispersion.  The simplicity, robustness, and the theoretical background involved make Taylor’s 

formulation of axial dispersion the closest approximation to the actual process.  The amount of 

insight involved in coming up with the visualization and the subsequent concepts is incredible, 

considering the resources and knowledgebase available in those times.  Taylor’s concepts on axial 
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dispersion are therefore rightly considered as the initial stage for all subsequent studies on axial 

dispersion.   

Taylor’s models are however only applicable to the asymptotic extreme conditions, while 

many actual systems operate in the non-asymptotic low to moderate Reynolds number region.  

The fundamental convective-diffusion equations employed in formulating Taylor’s formulations 

can be combined with the concepts of boundary layer theory to model the non-asymptotic 

Reynolds number region of the process.  The model equations proposed in this work are 

developed based on phenomenological concepts and they provide theoretical and mathematical 

justifications to the importance of accounting the viscous region in turbulent transport studies.  

The proposed model is robust and has the effectiveness to replace current axial dispersion models 

available in the open literature.   

Reynolds analogy of similarity between mass, momentum, and heat transfer, while true, 

provides an incomplete description of the processes involved and therefore is only applicable to 

specific idealized systems.  The concept of the turbulent bursting event is suggested to be the 

answer to complete the picture of studies involving convective processes.  It is revealed that 

Reynolds analogy when employed together with the principles of turbulent bursts is applicable to 

model heat, mass, and momentum transfer across the entire flow field even for low to moderate 

Reynolds number systems.   

The concepts and model equations proposed in this work are developed from 

conventional theories.  The results obtained are therefore very similar to the concepts that have 

been introduced in other aspects of transport studies.  The model equations and plots developed in 

this study bear a remarkable resemblance to the Darcy, Forchheimer and Ergun equation for 

pressure drop through packed beds, the Lockhart-Martinelli plots, shear stress distribution plots, 

friction factor charts, and empirical relations for convective heat transfer.  Such similarity 
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suggests that all convective processes might be governed by a common set of occurrences or 

events and can therefore be described using universal theories and equations.  The applicability of 

Reynolds analogy integrated with the principles of turbulent bursts to axial dispersion studies is a 

promising clue.  This information could form the base for future investigations involving 

convective processes.   

Direction of future studies 

A number of questions remain unanswered despite of the new concepts and solution 

techniques introduced in this work.  Most of these questions remain unanswered on account of the 

lack of experimental data for experiments based on various untraditional parameters associated 

with axial dispersion such as pipe roughness, density and viscosity differences, entrance lengths, 

etc.  Also, most data available in the open literature are based on gasoline-kerosene, water-water 

(with solute), and gasoline-gasoline systems and additional data on other types of fluid 

combinations will help bolster the validity of the proposed model.   

The current investigation focuses on furthering the understanding of axial dispersion in 

long straight pipes and therefore not much effort is directed towards studies involving axial 

mixing in short pipes, eccentric pipes or pipes with bends.  Most prior studies on these topics, like 

dispersion in straight pipes are empirical and not enough theoretical evidences exist to describe 

these systems.  Furthermore, only a limited number of investigations in open literature report 

experimental data for such systems, thereby restricting the overall understanding of how nature 

works in such conditions.  Experimental data on axial dispersion in pipe bends is especially 

lacking and future works should focus on generating such data.  Investigations should focus on 

obtaining experimental data for axial dispersion in short pipes of varying lengths, systems with 

varying number of bends located at different distances from each other, and dispersion in bends 

of varying curvature and bend angles to name a few.  Developing the theoretical or 
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phenomenological understanding of axial dispersion in such systems should also be investigated.  

The proposed axial dispersion model and the various findings reported in this work may be put 

into immediate use by the petroleum industry by designing new multiproduct pipelines on 

experimental basis.  These experimental systems should be continuously monitored and should be 

used for generation of experimental data.  This will help improve the understanding of the process 

and eventually in the development of axial dispersion models with higher efficiency and 

accuracy.   

The current investigation provides a theoretical perspective to the significance of near-

wall turbulence mechanics in axial dispersion studies.  The ideas introduced are however merely 

conceptual in nature, though with a strong logical and theoretical backing.  Visual confirmation of 

the involvement of turbulent bursting events on axial dispersion would help strengthen the 

concepts proposed in this study.  Furthermore as described in Chapter IV, the understanding of 

turbulent bursting events and the characteristic scales involved in these events is still an area of 

science that is not completely understood and further developments in this area would definitely 

assist in accelerating the developments in the field of axial dispersion.   

The concepts proposed in this work direct towards the existence of a universal 

phenomenon governing all convective processes.  Future investigations should focus on making 

inroads to developing this universal theory, if such a theory exists.  The concepts proposed in this 

work could also be used to explain the characteristic features of the Nikuradse friction factor 

charts and its differences from the Moody charts.  The turbulent bursting events seem to be a 

major influence on most of the characteristic behavior associated with turbulent flow processes.  

The current research in association with prior information has illustrated a technique that could be 

successfully used to capture these effects into a mathematical form, though in a skeletal form.  

Further investigations are however necessary to provide supplementary meat and skin.   
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APPENDIX A 
 

 

EMPIRICAL CORRELATIONS FOR AXIAL DISPERSION ESTIMATION 

 

 

Fowler and Brown (1943) 

 0.4 0.610CS d L=  (A.1) 

 ( )
0.2

20.023 10 CEK L

ud d
 = ⋅  
 

 (A.2) 

where, C is an empirically determined as a function of the Reynolds number and the cut-of 

composition defining the interface. 

Birge (1947) 

 bS aL=  (A.3) 

 ( ) 2 2 10.023 bEK
a L

ud
−= ⋅  (A.4) 

where, a and b are empirically determined constants dependent on the two fluids forming the 

interface.  The value of 2b-1 in the dimensionless dispersion coefficient equation comes out to be 

0.058 for a Kerosene-Gasoline interface and -0.036 for a Gasoline-Gasoline interface in an 8” 

pipeline.   
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Smith and Schulze (1948) 

 0.62
0.87

1.075
0.55

Re
S L = + ⋅ 

 
 (A.5) 

 
2

0.24 1
0.87

1.075
0.023 0.55

Re
EK

L d
ud

− = ⋅ + ⋅ ⋅ 
 

 (A.6) 

 

Sjenitzer (1958) 

 ( ) 1.8 0.57 0.437300S f L d= ⋅ ⋅ ⋅  (A.7) 

 ( )
0.141

7 3.61.32 10EK L
f

ud d
 = × ⋅ ⋅ 
 

 (A.8) 

Austin and Palfrey (1964) 

 1.52Re 10,000 d
C e=  (A.9) 

 0.9 1.2118,420 Re dS d L e−= ⋅  for Re < ReC (A.10) 

 ( )6 2.42 1.87.84 10 RedEK
e

ud
−= × ⋅ ⋅  (A.11) 

 
0.111.75 ReS d L −= ⋅  for Re ≥ ReC (A.12) 

 ( ) 0.23.188 ReEK

ud
−= ⋅  (A.13) 
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Sittel et al. (1968) 

 ( ) 0.3820.04 Re
L

S
u

= ⋅ ⋅  (A.14) 

 ( )
0.764

5 Re
3.87 10EK

ud ud
−= × ⋅  (A.15) 

Aunicky (1970) 

 
( ) ( ) 0.2987

0.50.805
0.887min Re

max

0.455 1 0.0234 log 100 Re
C L

S L
C u

 
 
 

    = ⋅ − ⋅ ⋅ ⋅ ⋅    
    

 (A.16) 

 ( ) 0..2987

1.61 0.8172
Re Re

0.0031EK
L

ud ud

 
 
 = ⋅ ⋅  (A.17) 

where, Cmin and Cmax are the minimum and maximum concentrations of the fluids considered in 

percent of weight. 

Udoetok and Nguyen (2009) 

 ( )( )

2
20.585 2

1 1
2 1 1

n

n
S L

n n

   ×  = − − ⋅    + +     

 (A.18) 

 ( )
( )( )

22
20.585 2

0.023 1 1
2 1 1

n

EK L n

ud d n n

   ×    = ⋅ ⋅ − −       + +       

 (A.19) 

where, n is the power law exponent in Prandtl’s velocity profile model and is estimated as the 

inverse of the square root of the friction factor. 
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APPENDIX B 
 

 

DERIVATION OF THE CONTAMINATION LENGTH EQUATION 

 

 

Derivation for contamination length from transient diffusion equation (Equation 2.6) 

Taylor proposed the use of a fictional axial dispersion coefficient (K) to model interfacial mixing 

in flow through pipes.  Taylor started with the convective-diffusion equation to derive a 

simplified expression for the dispersion coefficient that takes into account both the convective 

and diffusive effects prevalent in such processes.  Taylor suggested that the axial dispersion 

coefficient thus obtained could be employed to model the convective-diffusion system as a simple 

transient diffusion problem.  The transient diffusion equation in its conventional one dimensional 

(1-D) form can be written as 

 
2

2

C C
K

t x

∂ ∂
=

∂ ∂
 (2.6) 

with, the boundary conditions for the case of one fluid following another in flow through a pipe 

being 

 0 0,C C at x all t= =  (B.1) 

 0 ,C as x all t= → ∞  (B.2) 
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where, x indicates the direction of mass transfer and t is the time elapsed.  The solution to 

Equation (2.6) gives the concentration profile in the x-direction.  The concentration profile could 

be rearranged to obtain the total distance that the diffusing species has penetrated the medium, 

which would be equivalent to the contamination length for interfacial mixing in a straight pipe.   

Equation (2.6) in the non-dimensional form is given by 

 
( ) ( )2

2

, ,G x t G x t
K

t x

∂ ∂
=

∂ ∂
 (B.3) 

where, G(x, t) = C/Co, Co being the concentration of the diffusing species at the boundary (Figure 

B.1).   

 

Figure B.1: Schematic for transient 1-D diffusion in an infinite medium. 

The above partial differential equation (PDE) can be converted into an ordinary 

differential equation (ODE) by combining the two independent variables x and t into a single 

similarity variable η as follows 

 ( )
0

C
g

C
η=  (B.4) 

 
 

 

C
0
 

x 

C 

Medium Diffusing 

Species 
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Assuming a trial form for the similarity variable
 

 n

x
A

t
η =  (B.5) 

where, A is a constant to make η dimensionless. Equation (2.6) can be converted from its PDE 

form to an ODE 

 0

C dg
C

t d t

η
η

∂ ∂
=

∂ ∂
 (B.6) 

using the relation for η from Equation (B.5) gives 

 0 1n

C dg nax
C

t d tη +

∂  = − ∂  
 (B.7) 

The term in the parenthesis can be expressed in terms of η (Equation B.5) to give 

 0 0nC nCC dg
g

t t d t

η η
η

− −∂     ′∴ = =   ∂    
 (B.8) 

Similarly, Equation (B.4) can be differentiated twice with respect to x to give 

 
2 22 2

0 0
2 2 2 2n n

C A C AC d g
g

x t d tη
∂

′′∴ = =
∂

 (B.9) 

Substituting Equations (B.8-B.9) in Equation (2.6) results in 

 
2

0 0
2n

nC C A
g K g

t t

η  −  ′ ′′=   
   

 (B.10) 
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Rearranging into the standard form, 

 2 1
2

0nn
g t g

K A

η −⋅ ′′ ′+ = ⋅ 
 (B.11) 

The above equation is not in the standard form yet.  Eliminating variable t from the above 

equation using n = 1/2 will give 

 
2

1
0

2
g g

K A

η ′′ ′+ = ⋅ 
 (B.12) 

For n = 1/2, Equation (B.5) becomes 

 
x

A
t

η =  (B.13) 

With the above form of η, (Equation B.4) can only be dimensionless if 

 
1

2
A

K
=  (B.14) 

The constant two in the above expression is chosen for convenience. Equation (B.13) can 

therefore be rewritten as 

 
2

x

K t
η =

⋅
 (B.15) 

Substituting Equation (B.15) in Equation (B.12) gives the final ODE representation of Equation 

(2.6), 

 2 0g gη′′ ′+ =  (B.16) 
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The boundary conditions (Equations B.1-B.2) would therefore transform to 

 ( ) 1 0g atη η= =  (B.17) 

 ( ) 0g asη η→ → ∞  (B.18) 

Equation (B.16) along with the boundary conditions Equations (B.17-B.18) is a non-linear second 

order ODE that can be solved with standard solution techniques to give 

 ( ) ( ) ( )1g erfc erfη η η= = −  (B.19) 

where, erf(η) and erfc(η) are the error function and complementary error function of the 

similarity variable η.   

The concentration profile can therefore be obtained by substituting Equation (B.19) in 

Equation (B.4).  The concentration at a point x, at a time t can therefore be estimated as 

 0 1
2

x
C C erf

Kt

  
= −  

  
 (B.20) 

Assuming the concentration at the center of the interface to be 0.5, and S/2 is the length of the 

interface into one particular direction in the fluid for 0.01 < C < 0.99, Equation (B.20) can be 

rearranged to give 

 
2

0.01 0.5 1
2

S
erf

Kt

  
= −  

  
 (B.21) 

 0.98
4

S
erf

Kt

 
∴ = 

 
 (B.22) 
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From the error function tables, erf(1.645) = 0.98 

 1.645
4

S

Kt
∴ =  (B.23) 

 6.57 6.57
K L

S Kt
U

⋅
∴ = =  (B.24) 

where, t is the total residence time of the fluids in the pipe, which can also be expressed in terms 

of the pipe length L and the average flow velocity U‾  as in Equation (B.24). 
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APPENDIX C 
 

 

MODEL (EQUATION 3.24) VALIDATION 

 

 

 

 

 

 

Page left blank intentionally.  Turn to next page for the table with comparison of model 
predictions against each individual experimental data. 
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Re 
Pipe Length 

(ft.) 
Contamination Length (ft.) 

%D %AD 
Predicted (Eq. 3.24) Experimental 

 

Diameter = 0.124'' 

      
2220 105.60 20.07 21.72 -7.60 7.60 
2320 105.60 19.34 20.02 -3.40 3.40 
2380 50.25 13.06 13.90 -6.07 6.07 
2530 22.00 8.20 9.67 -15.16 15.16 
3040 105.60 15.38 14.86 3.49 3.49 
3490 50.25 9.43 9.65 -2.27 2.27 
3660 50.25 9.06 10.71 -15.45 15.45 
4290 8.12 3.18 3.21 -0.96 0.96 
4830 8.12 2.87 2.86 0.50 0.50 
5650 22.00 4.14 4.07 1.81 1.81 

    %AAD 5.67 

      
Diameter = 0.313'' 

      
2300 4.98 6.22 7.38 -15.68 15.68 
2531 4.98 5.74 6.90 -16.82 16.82 
3800 10.33 5.85 5.48 6.74 6.74 
4430 4.98 3.56 3.48 2.40 2.40 
4960 20.61 6.58 6.70 -1.72 1.72 
5060 20.61 6.47 6.23 3.92 3.92 
5300 20.61 6.23 5.82 6.97 6.97 
5440 10.33 4.31 4.30 0.28 0.28 
6270 15.60 4.70 4.32 8.87 8.87 
6570 10.33 3.68 3.89 -5.37 5.37 
6950 20.61 4.96 4.83 2.73 2.73 
7530 4.97 2.28 2.74 -16.74 16.74 
8640 10.33 2.94 3.48 -15.46 15.46 
9400 15.60 3.38 3.48 -2.86 2.86 
9935 20.61 3.72 3.72 0.00 0.00 

10635 20.61 3.53 3.84 -8.11 8.11 
19800 20.61 2.29 3.02 -24.12 24.12 

    %AAD 8.16 
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Re 
Pipe Length 

(ft.) 
Contamination Length (ft.) 

%D %AD 
Predicted (Eq. 3.24) Experimental 

 

Diameter = 2'' 

 

4000 2500 519.61 503.46 3.21 3.21 
5000 2500 426.84 403.05 5.90 5.90 
6000 2500 363.47 346.48 4.90 4.90 
6000 100000 2298.77 2121.32 8.37 8.37 
6000 300000 3981.59 3676.96 8.28 8.28 
6000 500000 5140.21 4808.33 6.90 6.90 
6000 700000 6081.98 5656.85 7.52 7.52 
7000 2500 317.45 302.64 4.89 4.89 
8000 2500 282.54 268.70 5.15 5.15 
8000 100000 1786.92 1697.06 5.30 5.30 
8000 200000 2527.09 2404.16 5.11 5.11 
8000 400000 3573.85 3394.11 5.30 5.30 
8000 600000 4377.05 4242.64 3.17 3.17 
8000 800000 5054.18 4808.33 5.11 5.11 
8000 1000000 5650.75 5374.01 5.15 5.15 

11000 2500 215.14 202.23 6.38 6.38 
13000 2500 187.37 172.53 8.60 8.60 
14160 2500 174.90 137.20 27.48 27.48 
14160 50000 782.19 630.00 24.16 24.16 
14160 100000 1106.19 950.00 16.44 16.44 
14160 150000 1354.80 1225.00 10.60 10.60 
15000 2500 167.11 144.25 15.84 15.84 
26400 2500 112.22 125.87 -10.84 10.84 
26420 50000 501.65 590.00 -14.97 14.97 
26420 100000 709.45 890.00 -20.29 20.29 
26420 150000 868.89 1140.00 -23.78 23.78 
26420 200000 1003.31 1340.00 -25.13 25.13 
121000 2500 70.61 74.00 -4.58 4.58 
121000 100000 446.57 740.00 -39.65 39.65 
121000 200000 631.55 1140.00 -44.60 44.60 
121000 300000 773.48 1470.00 -47.38 47.38 
250000 2500 68.05 70.00 -2.78 2.78 

    %AAD 13.37 
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Re 
Pipe Length 

(ft.) 
Contamination Length (ft.) 

%D %AD 
Predicted (Eq. 3.24) Experimental 

 

Diameter = 4'' 

 

67000 447000 1456.32 1590.00 -8.41 8.41 
165000 447000 1333.71 1530.00 -12.83 12.83 
202000 447000 1324.84 1400.00 -5.37 5.37 

    %AAD 8.87 

      
Diameter = 6'' 

      
90000 3100 140.99 148.00 -4.74 4.74 
123000 3100 136.38 143.00 -4.63 4.63 
135000 11600 261.97 270.00 -2.97 2.97 
143000 299060 1325.11 1401.00 -5.42 5.42 
143000 517440 1743.02 1850.00 -5.78 5.78 
183000 3100 133.21 132.00 0.92 0.92 

    %AAD 4.08 

      
Diameter = 8'' 

      
8000 246000 5635.91 5662.00 -0.46 0.46 

16000 246000 3176.09 3452.00 -7.99 7.99 
26000 246000 2263.03 2466.00 -8.23 8.23 
40000 246000 1805.41 1973.00 -8.49 8.49 
49000 292000 1818.28 1853.00 -1.87 1.87 
49000 607000 2621.58 2460.00 6.57 6.57 
49000 903000 3197.52 3310.00 -3.40 3.40 
52000 246000 1636.25 1650.00 -0.83 0.83 
86700 606514 2281.56 2422.00 -5.80 5.80 
86700 895488 2772.31 3080.00 -9.99 9.99 
86700 1168147 3166.37 3460.00 -8.49 8.49 
218800 291298 1464.47 1406.00 4.16 4.16 
218800 606514 2113.16 2070.00 2.09 2.09 
218800 895488 2567.69 2520.00 1.89 1.89 
218800 1168147 2932.66 3435.00 -14.62 14.62 
300000 129500 967.53 960.00 0.78 0.78 

    %AAD 5.4 

 



149 

 

 

Re 
Pipe Length 

(ft.) 
Contamination Length (ft.) 

%D %AD 
Predicted (Eq. 3.24) Experimental 

 

Diameter = 10'' 

 

8000 3000 699.70 780.00 -10.29 10.29 
24000 72850 1459.16 1414.00 3.19 3.19 
24000 227520 2578.68 2693.00 -4.25 4.25 
24000 572760 4091.42 4523.00 -9.54 9.54 
24000 660000 4391.98 4400.00 -0.18 0.18 
24000 688512 4485.84 5159.00 -13.05 13.05 
24000 968700 5320.87 5790.00 -8.10 8.10 
176000 1885000 4175.61 4200.00 -0.58 0.58 
280000 1650898 3834.19 3970.00 -3.42 3.42 
299000 1883746 4088.29 4350.00 -6.02 6.02 
448000 1885000 4056.23 4520.00 -10.26 10.26 
485000 289915 1588.89 2050.00 -22.49 22.49 
486000 591730 2269.90 2510.00 -9.57 9.57 
482000 859003 2735.22 2970.00 -7.90 7.90 
485000 1134250 3142.77 3460.00 -9.17 9.17 
489000 1393867 3483.52 3695.00 -5.72 5.72 

    %AAD 7.73 

      
Diameter = 12'' 

      
375000 2270000 4854.66 4600.00 5.54 5.54 
538000 2270000 4823.88 4720.00 2.20 2.20 
590000 322186 1815.08 1700.00 6.77 6.77 
576500 611109 2500.54 2430.00 2.90 2.90 
584000 1018301 3227.30 2890.00 11.67 11.67 
591000 1402896 3787.45 3500.00 8.21 8.21 
579000 1726085 4202.24 3890.00 8.03 8.03 
579000 2033803 4561.46 4350.00 4.86 4.86 

    %AAD 6.27 
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Re 
Pipe Length 

(ft.) 
Contamination Length (ft.) 

%D %AD 
Predicted (Eq. 3.24) Experimental 

 

Diameter = 20'' 

 

140000 420000 2795.16 4230.00 -33.92 33.92 
136000 420000 2803.27 3710.00 -24.44 24.44 
134000 716000 3665.71 4340.00 -15.54 15.54 
134000 716000 3665.71 4540.00 -19.26 19.26 
128000 1230000 4828.23 5630.00 -14.24 14.24 
274000 420000 2676.01 3310.00 -19.15 19.15 
271000 420000 2677.23 3670.00 -27.05 27.05 
264000 716000 3499.44 4680.00 -25.23 25.23 
266000 716000 3498.31 4530.00 -22.77 22.77 
254000 1230000 4594.44 6530.00 -29.64 29.64 
262000 1230000 4588.15 5260.00 -12.77 12.77 

    %AAD 22.18 

      
Diameter = 40'' 

      
970000 355 104.22 103.60 0.60 0.60 

    %AAD 0.60 

 

 



151 

 

APPENDIX D 
 

 

NUMERICAL SOLUTION OF THE CONVECTIVE-DIFFUSION EQUATION 

 

 

 

 

 

Page left blank intentionally.  Turn to next page for the numerical calculations to solve the 

convective-diffusion equation for the entire pipe cross-section. 
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z y+ u f(z)
 

zf(z)
 

∫zf(z)
 

-φ(z)
 

1/z
 

-ψ(z)
 

-∫ψ(z)
 

χ(z)
 

∫χ(z)
 

0 80.6 0.0795 0 0 0 0 - - 0 0 0 
0.005 80.2 0.0794 0.0125 6.27×10-5 3.13×10-7 1.30×10-4 200 0.0260 1.30×10-4 3.37×10-6 1.68×10-8 
0.01 79.8 0.0793 0.0251 2.51×10-4 1.57×10-6 3.89×10-4 100 0.0389 3.24×10-4 1.68×10-5 1.01×10-7 
0.015 79.4 0.0793 0.0378 5.67×10-4 4.40×10-6 0.0008 66.6667 0.0518 5.83×10-4 4.52×10-5 3.27×10-7 
0.02 79.0 0.0792 0.0505 0.0010 9.45×10-6 0.0013 50 0.0646 0.0009 9.34×10-5 7.94×10-7 
0.025 78.6 0.0791 0.0633 0.0016 1.74×10-5 0.0019 40 0.0774 0.0013 1.66×10-4 1.62×10-6 
0.03 78.2 0.0791 0.0761 0.0023 2.88×10-5 0.0027 33.3333 0.0901 0.0017 2.68×10-4 2.97×10-6 
0.035 77.8 0.0790 0.0891 0.0031 4.44×10-5 0.0036 28.5714 0.1028 0.0023 4.04×10-4 4.99×10-6 
0.04 77.4 0.0790 0.1021 0.0041 6.48×10-5 0.0046 25.0000 0.1155 0.0028 0.0006 7.88×10-6 
0.045 77.0 0.0789 0.1151 0.0052 9.07×10-5 0.0058 22.2222 0.1281 0.0035 0.0008 1.19×10-5 
0.05 76.6 0.0788 0.1282 0.0064 1.23×10-4 0.0070 20 0.1407 0.0042 0.0011 1.72×10-5 
0.055 76.2 0.0788 0.1414 0.0078 1.62×10-4 0.0084 18.1818 0.1532 0.0049 0.0014 2.40×10-5 
0.06 75.8 0.0787 0.1547 0.0093 2.08×10-4 0.0099 16.6667 0.1657 0.0058 0.0017 3.28×10-5 
0.065 75.4 0.0786 0.1680 0.0109 2.63×10-4 0.0116 15.3846 0.1781 0.0067 0.0022 4.37×10-5 
0.07 75.0 0.0786 0.1814 0.0127 3.26×10-4 0.0133 14.2857 0.1905 0.0076 0.0027 5.71×10-5 
0.075 74.6 0.0785 0.1949 0.0146 3.99×10-4 0.0152 13.3333 0.2029 0.0086 0.0032 7.33×10-5 
0.08 74.1 0.0784 0.2085 0.0167 4.83×10-4 0.0172 12.5000 0.2152 0.0097 0.0039 9.27×10-5 
0.085 73.7 0.0784 0.2221 0.0189 0.0006 0.0193 11.7647 0.2274 0.0108 0.0046 1.16×10-4 
0.09 73.3 0.0783 0.2358 0.0212 0.0007 0.0216 11.1111 0.2396 0.0120 0.0054 1.43×10-4 
0.095 72.9 0.0782 0.2496 0.0237 0.0008 0.0239 10.5263 0.2518 0.0133 0.0063 1.74×10-4 
0.1 72.5 0.0782 0.2634 0.0263 0.0009 0.0264 10 0.2639 0.0146 0.0072 2.10×10-4 

0.105 72.1 0.0781 0.2773 0.0291 0.0011 0.0290 9.5238 0.2760 0.0160 0.0083 2.51×10-4 
0.11 71.7 0.0780 0.2913 0.0320 0.0012 0.0317 9.0909 0.2880 0.0174 0.0094 2.99×10-4 
0.115 71.3 0.0780 0.3054 0.0351 0.0014 0.0345 8.6957 0.3000 0.0189 0.0107 3.52×10-4 
0.12 70.9 0.0779 0.3196 0.0384 0.0016 0.0374 8.3333 0.3119 0.0205 0.0120 4.12×10-4 
0.125 70.5 0.0778 0.3338 0.0417 0.0018 0.0405 8.0000 0.3238 0.0221 0.0135 4.79×10-4 
0.13 70.1 0.0778 0.3482 0.0453 0.0020 0.0436 7.6923 0.3356 0.0238 0.0150 0.0006 
0.135 69.7 0.0777 0.3626 0.0489 0.0023 0.0469 7.4074 0.3474 0.0255 0.0167 0.0006 
0.14 69.3 0.0776 0.3771 0.0528 0.0026 0.0503 7.1429 0.3591 0.0273 0.0185 0.0007 
0.145 68.9 0.0776 0.3916 0.0568 0.0028 0.0538 6.8966 0.3708 0.0292 0.0204 0.0008 
0.15 68.5 0.0775 0.4063 0.0609 0.0031 0.0574 6.6667 0.3824 0.0311 0.0224 0.0009 
0.155 68.1 0.0774 0.4210 0.0653 0.0035 0.0611 6.4516 0.3940 0.0331 0.0245 0.0011 
0.16 67.7 0.0774 0.4359 0.0697 0.0038 0.0649 6.2500 0.4056 0.0351 0.0268 0.0012 
0.165 67.3 0.0773 0.4508 0.0744 0.0042 0.0688 6.0606 0.4170 0.0372 0.0292 0.0013 
0.17 66.9 0.0772 0.4658 0.0792 0.0046 0.0728 5.8824 0.4285 0.0393 0.0317 0.0015 
0.175 66.5 0.0771 0.4809 0.0842 0.0050 0.0770 5.7143 0.4398 0.0415 0.0343 0.0017 
0.18 66.1 0.0771 0.4961 0.0893 0.0054 0.0812 5.5556 0.4512 0.0438 0.0371 0.0019 
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0.185 65.7 0.0770 0.5114 0.0946 0.0059 0.0856 5.4054 0.4624 0.0461 0.0400 0.0021 
0.19 65.3 0.0769 0.5268 0.1001 0.0064 0.0900 5.2632 0.4737 0.0485 0.0431 0.0023 
0.195 64.9 0.0768 0.5423 0.1057 0.0070 0.0945 5.1282 0.4848 0.0509 0.0463 0.0025 
0.2 64.5 0.0768 0.5579 0.1116 0.0075 0.0992 5 0.4959 0.0534 0.0496 0.0028 

0.205 64.1 0.0767 0.5735 0.1176 0.0081 0.1039 4.8780 0.5070 0.0559 0.0531 0.0030 
0.21 63.7 0.0766 0.5893 0.1238 0.0087 0.1088 4.7619 0.5180 0.0585 0.0567 0.0033 
0.215 63.3 0.0765 0.6052 0.1301 0.0094 0.1137 4.6512 0.5290 0.0611 0.0605 0.0036 
0.22 62.9 0.0765 0.6212 0.1367 0.0100 0.1188 4.5455 0.5399 0.0638 0.0644 0.0039 
0.225 62.5 0.0764 0.6372 0.1434 0.0108 0.1239 4.4444 0.5507 0.0666 0.0684 0.0043 
0.23 62.1 0.0763 0.6534 0.1503 0.0115 0.1291 4.3478 0.5615 0.0694 0.0726 0.0046 
0.235 61.7 0.0762 0.6697 0.1574 0.0123 0.1345 4.2553 0.5722 0.0723 0.0770 0.0050 
0.24 61.3 0.0761 0.6861 0.1647 0.0131 0.1399 4.1667 0.5829 0.0752 0.0815 0.0054 
0.245 60.8 0.0761 0.7026 0.1721 0.0140 0.1454 4.0816 0.5935 0.0781 0.0862 0.0059 
0.25 60.4 0.0760 0.7192 0.1798 0.0149 0.1510 4 0.6041 0.0812 0.0910 0.0063 
0.255 60.0 0.0759 0.7359 0.1877 0.0158 0.1567 3.9216 0.6146 0.0842 0.0960 0.0068 
0.26 59.6 0.0758 0.7528 0.1957 0.0168 0.1625 3.8462 0.6250 0.0874 0.1011 0.0073 
0.265 59.2 0.0757 0.7697 0.2040 0.0178 0.1684 3.7736 0.6354 0.0905 0.1064 0.0078 
0.27 58.8 0.0757 0.7868 0.2124 0.0189 0.1743 3.7037 0.6457 0.0938 0.1118 0.0084 
0.275 58.4 0.0756 0.8040 0.2211 0.0200 0.1804 3.6364 0.6560 0.0970 0.1174 0.0090 
0.28 58.0 0.0755 0.8213 0.2300 0.0211 0.1865 3.5714 0.6662 0.1004 0.1232 0.0096 
0.285 57.6 0.0754 0.8387 0.2390 0.0223 0.1928 3.5088 0.6763 0.1037 0.1291 0.0102 
0.29 57.2 0.0753 0.8562 0.2483 0.0236 0.1991 3.4483 0.6864 0.1072 0.1352 0.0109 
0.295 56.8 0.0752 0.8739 0.2578 0.0249 0.2054 3.3898 0.6964 0.1107 0.1414 0.0116 
0.3 56.4 0.0752 0.8917 0.2675 0.0262 0.2119 3.3333 0.7064 0.1142 0.1478 0.0124 

0.305 56.0 0.0751 0.9096 0.2774 0.0276 0.2185 3.2787 0.7163 0.1178 0.1543 0.0131 
0.31 55.6 0.0750 0.9277 0.2876 0.0290 0.2251 3.2258 0.7261 0.1214 0.1610 0.0139 
0.315 55.2 0.0749 0.9458 0.2979 0.0305 0.2318 3.1746 0.7359 0.1251 0.1678 0.0148 
0.32 54.8 0.0748 0.9642 0.3085 0.0321 0.2386 3.1250 0.7456 0.1288 0.1748 0.0156 
0.325 54.4 0.0747 0.9826 0.3193 0.0337 0.2454 3.0769 0.7552 0.1326 0.1819 0.0166 
0.33 54.0 0.0746 1.0012 0.3304 0.0353 0.2524 3.0303 0.7648 0.1364 0.1892 0.0175 
0.335 53.6 0.0745 1.0199 0.3417 0.0370 0.2594 2.9851 0.7743 0.1403 0.1967 0.0185 
0.34 53.2 0.0744 1.0388 0.3532 0.0388 0.2665 2.9412 0.7837 0.1442 0.2043 0.0195 
0.345 52.8 0.0744 1.0578 0.3649 0.0406 0.2736 2.8986 0.7931 0.1482 0.2120 0.0206 
0.35 52.4 0.0743 1.0770 0.3769 0.0425 0.2809 2.8571 0.8024 0.1522 0.2199 0.0217 
0.355 52.0 0.0742 1.0963 0.3892 0.0444 0.2881 2.8169 0.8117 0.1562 0.2279 0.0228 
0.36 51.6 0.0741 1.1157 0.4017 0.0464 0.2955 2.7778 0.8208 0.1603 0.2360 0.0240 
0.365 51.2 0.0740 1.1353 0.4144 0.0485 0.3029 2.7397 0.8299 0.1645 0.2443 0.0252 
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0.37 50.8 0.0739 1.1551 0.4274 0.0507 0.3104 2.7027 0.8390 0.1687 0.2528 0.0265 
0.375 50.4 0.0738 1.1750 0.4406 0.0529 0.3180 2.6667 0.8479 0.1729 0.2613 0.0278 
0.38 50.0 0.0737 1.1951 0.4541 0.0551 0.3256 2.6316 0.8568 0.1772 0.2700 0.0291 
0.385 49.6 0.0736 1.2153 0.4679 0.0575 0.3333 2.5974 0.8657 0.1815 0.2788 0.0305 
0.39 49.2 0.0735 1.2357 0.4819 0.0599 0.3410 2.5641 0.8744 0.1859 0.2878 0.0320 
0.395 48.8 0.0734 1.2563 0.4962 0.0624 0.3488 2.5316 0.8831 0.1903 0.2968 0.0334 
0.4 48.4 0.0733 1.2771 0.5108 0.0649 0.3567 2.5000 0.8917 0.1948 0.3060 0.0350 

0.405 48.0 0.0732 1.2980 0.5257 0.0675 0.3646 2.4691 0.9002 0.1993 0.3153 0.0366 
0.41 47.6 0.0731 1.3191 0.5408 0.0702 0.3725 2.4390 0.9087 0.2038 0.3247 0.0382 
0.415 47.1 0.0730 1.3404 0.5562 0.0730 0.3806 2.4096 0.9170 0.2084 0.3342 0.0399 
0.42 46.7 0.0729 1.3618 0.5720 0.0759 0.3886 2.3810 0.9253 0.2130 0.3439 0.0416 
0.425 46.3 0.0728 1.3835 0.5880 0.0788 0.3968 2.3529 0.9335 0.2177 0.3536 0.0433 
0.43 45.9 0.0727 1.4053 0.6043 0.0819 0.4049 2.3256 0.9417 0.2224 0.3634 0.0452 
0.435 45.5 0.0726 1.4273 0.6209 0.0850 0.4131 2.2989 0.9497 0.2272 0.3733 0.0470 
0.44 45.1 0.0725 1.4495 0.6378 0.0881 0.4214 2.2727 0.9577 0.2320 0.3833 0.0489 
0.445 44.7 0.0724 1.4720 0.6550 0.0914 0.4297 2.2472 0.9656 0.2368 0.3933 0.0509 
0.45 44.3 0.0722 1.4946 0.6726 0.0948 0.4381 2.2222 0.9735 0.2417 0.4035 0.0529 
0.455 43.9 0.0721 1.5174 0.6904 0.0982 0.4464 2.1978 0.9812 0.2466 0.4137 0.0550 
0.46 43.5 0.0720 1.5405 0.7086 0.1018 0.4549 2.1739 0.9889 0.2515 0.4239 0.0571 
0.465 43.1 0.0719 1.5637 0.7271 0.1054 0.4633 2.1505 0.9964 0.2565 0.4343 0.0593 
0.47 42.7 0.0718 1.5872 0.7460 0.1091 0.4718 2.1277 1.0039 0.2615 0.4446 0.0615 
0.475 42.3 0.0717 1.6109 0.7652 0.1130 0.4804 2.1053 1.0113 0.2666 0.4550 0.0638 
0.48 41.9 0.0716 1.6348 0.7847 0.1169 0.4889 2.0833 1.0186 0.2717 0.4655 0.0661 
0.485 41.5 0.0715 1.6590 0.8046 0.1209 0.4975 2.0619 1.0259 0.2768 0.4760 0.0685 
0.49 41.1 0.0713 1.6834 0.8248 0.1250 0.5062 2.0408 1.0330 0.2819 0.4865 0.0709 
0.495 40.7 0.0712 1.7080 0.8455 0.1293 0.5148 2.0202 1.0400 0.2871 0.4970 0.0734 
0.5 40.3 0.0711 1.7329 0.8664 0.1336 0.5235 2.0000 1.0470 0.2924 0.5076 0.0759 

0.505 39.9 0.0710 1.7580 0.8878 0.1380 0.5322 1.9802 1.0539 0.2977 0.5181 0.0785 
0.51 39.5 0.0709 1.7834 0.9095 0.1426 0.5409 1.9608 1.0606 0.3030 0.5286 0.0812 
0.515 39.1 0.0707 1.8090 0.9316 0.1472 0.5497 1.9417 1.0673 0.3083 0.5391 0.0839 
0.52 38.7 0.0706 1.8349 0.9542 0.1520 0.5584 1.9231 1.0739 0.3137 0.5496 0.0866 
0.525 38.3 0.0705 1.8611 0.9771 0.1569 0.5672 1.9048 1.0804 0.3191 0.5601 0.0894 
0.53 37.9 0.0703 1.8876 1.0004 0.1619 0.5760 1.8868 1.0868 0.3245 0.5705 0.0923 
0.535 37.5 0.0702 1.9143 1.0241 0.1670 0.5848 1.8692 1.0931 0.3300 0.5809 0.0952 
0.54 37.1 0.0701 1.9413 1.0483 0.1723 0.5936 1.8519 1.0993 0.3355 0.5912 0.0981 
0.545 36.7 0.0700 1.9686 1.0729 0.1776 0.6024 1.8349 1.1054 0.3410 0.6014 0.1011 
0.55 36.3 0.0698 1.9963 1.0979 0.1831 0.6113 1.8182 1.1114 0.3465 0.6115 0.1042 
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0.555 35.9 0.0697 2.0242 1.1234 0.1887 0.6201 1.8018 1.1173 0.3521 0.6216 0.1073 
0.56 35.5 0.0696 2.0525 1.1494 0.1945 0.6289 1.7857 1.1231 0.3577 0.6315 0.1105 
0.565 35.1 0.0694 2.0810 1.1758 0.2004 0.6377 1.7699 1.1287 0.3634 0.6414 0.1137 
0.57 34.7 0.0693 2.1099 1.2027 0.2064 0.6466 1.7544 1.1343 0.3691 0.6510 0.1169 
0.575 34.3 0.0691 2.1392 1.2300 0.2125 0.6554 1.7391 1.1398 0.3748 0.6606 0.1202 
0.58 33.8 0.0690 2.1688 1.2579 0.2188 0.6642 1.7241 1.1451 0.3805 0.6700 0.1236 
0.585 33.4 0.0688 2.1987 1.2862 0.2252 0.6730 1.7094 1.1504 0.3862 0.6792 0.1270 
0.59 33.0 0.0687 2.2290 1.3151 0.2318 0.6817 1.6949 1.1555 0.3920 0.6883 0.1304 
0.595 32.6 0.0686 2.2597 1.3445 0.2385 0.6905 1.6807 1.1605 0.3978 0.6971 0.1339 
0.6 32.2 0.0684 2.2907 1.3744 0.2454 0.6992 1.6667 1.1654 0.4036 0.7057 0.1374 

0.605 31.8 0.0683 2.3222 1.4049 0.2524 0.7080 1.6529 1.1702 0.4095 0.7142 0.1410 
0.61 31.4 0.0681 2.3540 1.4360 0.2596 0.7167 1.6393 1.1749 0.4154 0.7223 0.1446 
0.615 31.0 0.0679 2.3863 1.4676 0.2670 0.7253 1.6260 1.1794 0.4213 0.7302 0.1483 
0.62 30.6 0.0678 2.4190 1.4998 0.2745 0.7340 1.6129 1.1838 0.4272 0.7378 0.1520 
0.625 30.2 0.0676 2.4521 1.5325 0.2821 0.7426 1.6000 1.1881 0.4331 0.7452 0.1557 
0.63 29.8 0.0672 2.5477 1.6050 0.2901 0.7509 1.5873 1.1920 0.4391 0.7350 0.1594 
0.635 29.4 0.0668 2.6157 1.6610 0.2984 0.7592 1.5748 1.1955 0.4451 0.7317 0.1630 
0.64 29.0 0.0665 2.6847 1.7182 0.3070 0.7672 1.5625 1.1988 0.4511 0.7275 0.1666 
0.645 28.6 0.0662 2.7546 1.7767 0.3159 0.7751 1.5504 1.2017 0.4571 0.7223 0.1703 
0.65 28.2 0.0658 2.8255 1.8366 0.3251 0.7829 1.5385 1.2044 0.4631 0.7162 0.1738 
0.655 27.8 0.0655 2.8975 1.8978 0.3346 0.7904 1.5267 1.2067 0.4691 0.7090 0.1774 
0.66 27.4 0.0651 2.9704 1.9605 0.3444 0.7978 1.5152 1.2088 0.4752 0.7007 0.1809 
0.665 27.0 0.0648 3.0445 2.0246 0.3545 0.8050 1.5038 1.2105 0.4812 0.6913 0.1843 
0.67 26.6 0.0644 3.1197 2.0902 0.3650 0.8120 1.4925 1.2119 0.4873 0.6807 0.1877 
0.675 26.2 0.0640 3.1961 2.1573 0.3758 0.8187 1.4815 1.2129 0.4933 0.6689 0.1911 
0.68 25.8 0.0637 3.2736 2.2260 0.3869 0.8253 1.4706 1.2137 0.4994 0.6558 0.1944 
0.685 25.4 0.0633 3.3523 2.2963 0.3984 0.8316 1.4599 1.2141 0.5055 0.6414 0.1976 
0.69 25.0 0.0629 3.4323 2.3683 0.4102 0.8378 1.4493 1.2141 0.5116 0.6256 0.2007 
0.695 24.6 0.0625 3.5136 2.4420 0.4224 0.8436 1.4388 1.2139 0.5176 0.6084 0.2038 
0.7 24.2 0.0621 3.5963 2.5174 0.4350 0.8493 1.4286 1.2132 0.5237 0.5896 0.2067 

0.705 23.8 0.0617 3.6803 2.5946 0.4480 0.8546 1.4184 1.2123 0.5298 0.5693 0.2095 
0.71 23.4 0.0613 3.7658 2.6737 0.4614 0.8597 1.4085 1.2109 0.5358 0.5474 0.2123 
0.715 23.0 0.0609 3.8527 2.7547 0.4751 0.8646 1.3986 1.2092 0.5419 0.5238 0.2149 
0.72 22.6 0.0604 3.9412 2.8377 0.4893 0.8691 1.3889 1.2071 0.5479 0.4984 0.2174 
0.725 22.2 0.0600 4.0313 2.9227 0.5039 0.8734 1.3793 1.2047 0.5539 0.4712 0.2198 
0.73 21.8 0.0596 4.1231 3.0098 0.5190 0.8773 1.3699 1.2018 0.5599 0.4421 0.2220 
0.735 21.4 0.0591 4.2165 3.0991 0.5345 0.8810 1.3605 1.1986 0.5659 0.4111 0.2240 
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0.74 21.0 0.0587 4.3118 3.1907 0.5504 0.8843 1.3514 1.1950 0.5719 0.3779 0.2259 
0.745 20.6 0.0582 4.4089 3.2846 0.5668 0.8872 1.3423 1.1909 0.5778 0.3426 0.2276 
0.75 20.1 0.0577 4.5079 3.3809 0.5838 0.8898 1.3333 1.1865 0.5838 0.3051 0.2291 
0.755 19.7 0.0572 4.6089 3.4797 0.6012 0.8921 1.3245 1.1816 0.5897 0.2653 0.2305 
0.76 19.3 0.0567 4.7120 3.5811 0.6191 0.8940 1.3158 1.1763 0.5956 0.2230 0.2316 
0.765 18.9 0.0562 4.8173 3.6852 0.6375 0.8955 1.3072 1.1705 0.6014 0.1783 0.2325 
0.77 18.5 0.0557 4.9248 3.7921 0.6564 0.8965 1.2987 1.1643 0.6072 0.1309 0.2331 
0.775 18.1 0.0552 5.0347 3.9019 0.6760 0.8972 1.2903 1.1577 0.6130 0.0808 0.2335 
0.78 17.7 0.0546 5.1470 4.0147 0.6960 0.8974 1.2821 1.1505 0.6188 0.0279 0.2337 
0.785 17.3 0.0541 5.2620 4.1307 0.7167 0.8972 1.2739 1.1429 0.6245 -0.0280 0.2335 
0.79 16.9 0.0535 5.3796 4.2499 0.7379 0.8965 1.2658 1.1348 0.6302 -0.0871 0.2331 
0.795 16.5 0.0529 5.5001 4.3726 0.7598 0.8953 1.2579 1.1262 0.6358 -0.1493 0.2324 
0.8 16.1 0.0523 5.6236 4.4989 0.7823 0.8937 1.2500 1.1171 0.6414 -0.2149 0.2313 

0.802 16.0 0.0521 5.6738 4.5504 0.7914 0.8929 1.2469 1.1133 0.6436 -0.2421 0.2308 
0.804 15.8 0.0518 5.7246 4.6026 0.8006 0.8921 1.2438 1.1095 0.6458 -0.2699 0.2303 
0.806 15.6 0.0516 5.7759 4.6554 0.8099 0.8911 1.2407 1.1056 0.6480 -0.2983 0.2297 
0.808 15.5 0.0513 5.8277 4.7088 0.8193 0.8901 1.2376 1.1017 0.6502 -0.3273 0.2290 
0.81 15.3 0.0511 5.8801 4.7628 0.8288 0.8890 1.2346 1.0976 0.6524 -0.3569 0.2283 
0.812 15.2 0.0508 5.9330 4.8176 0.8385 0.8879 1.2315 1.0934 0.6546 -0.3871 0.2275 
0.814 15.0 0.0506 5.9864 4.8730 0.8482 0.8866 1.2285 1.0892 0.6568 -0.4179 0.2267 
0.816 14.8 0.0503 6.0405 4.9290 0.8581 0.8852 1.2255 1.0848 0.6590 -0.4494 0.2258 
0.818 14.7 0.0501 6.0951 4.9858 0.8681 0.8838 1.2225 1.0804 0.6611 -0.4815 0.2248 
0.82 14.5 0.0498 6.1504 5.0433 0.8781 0.8822 1.2195 1.0759 0.6633 -0.5143 0.2238 
0.822 14.3 0.0495 6.2063 5.1015 0.8883 0.8806 1.2165 1.0713 0.6654 -0.5478 0.2227 
0.824 14.2 0.0492 6.2628 5.1605 0.8987 0.8788 1.2136 1.0665 0.6676 -0.5820 0.2215 
0.826 14.0 0.0490 6.3199 5.2202 0.9091 0.8770 1.2107 1.0617 0.6697 -0.6168 0.2203 
0.828 13.9 0.0487 6.3777 5.2807 0.9197 0.8750 1.2077 1.0568 0.6718 -0.6524 0.2190 
0.83 13.7 0.0484 6.4362 5.3420 0.9304 0.8730 1.2048 1.0518 0.6739 -0.6888 0.2176 
0.832 13.5 0.0481 6.4954 5.4041 0.9412 0.8708 1.2019 1.0467 0.6760 -0.7259 0.2162 
0.834 13.4 0.0478 6.5552 5.4671 0.9521 0.8686 1.1990 1.0415 0.6781 -0.7637 0.2146 
0.836 13.2 0.0475 6.6158 5.5308 0.9632 0.8662 1.1962 1.0362 0.6802 -0.8023 0.2130 
0.838 13.1 0.0472 6.6772 5.5955 0.9743 0.8638 1.1933 1.0307 0.6822 -0.8418 0.2113 
0.84 12.9 0.0469 6.7393 5.6610 0.9857 0.8612 1.1905 1.0252 0.6843 -0.8820 0.2096 
0.842 12.7 0.0466 6.8022 5.7275 0.9971 0.8585 1.1876 1.0196 0.6863 -0.9231 0.2077 
0.844 12.6 0.0463 6.8659 5.7948 1.0087 0.8557 1.1848 1.0139 0.6883 -0.9650 0.2058 
0.846 12.4 0.0460 6.9304 5.8631 1.0204 0.8528 1.1820 1.0080 0.6903 -1.0078 0.2038 
0.848 12.3 0.0457 6.9958 5.9324 1.0323 0.8497 1.1792 1.0021 0.6923 -1.0515 0.2017 
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0.85 12.1 0.0454 7.0620 6.0027 1.0443 0.8466 1.1765 0.9960 0.6943 -1.0961 0.1995 
0.852 11.9 0.0451 7.1291 6.0740 1.0565 0.8433 1.1737 0.9898 0.6963 -1.1416 0.1972 
0.854 11.8 0.0447 7.1971 6.1464 1.0688 0.8399 1.1710 0.9835 0.6983 -1.1881 0.1948 
0.856 11.6 0.0444 7.2661 6.2198 1.0812 0.8364 1.1682 0.9771 0.7002 -1.2356 0.1924 
0.858 11.4 0.0441 7.3360 6.2943 1.0938 0.8327 1.1655 0.9705 0.7022 -1.2840 0.1898 
0.86 11.3 0.0437 7.4070 6.3700 1.1065 0.8289 1.1628 0.9639 0.7041 -1.3335 0.1871 
0.862 11.1 0.0434 7.4789 6.4468 1.1194 0.8250 1.1601 0.9571 0.7060 -1.3840 0.1844 
0.864 11.0 0.0430 7.5519 6.5248 1.1325 0.8209 1.1574 0.9502 0.7079 -1.4356 0.1815 
0.866 10.8 0.0427 7.6260 6.6041 1.1457 0.8168 1.1547 0.9431 0.7098 -1.4883 0.1785 
0.868 10.6 0.0423 7.7012 6.6846 1.1590 0.8124 1.1521 0.9360 0.7117 -1.5421 0.1754 
0.87 10.5 0.0419 7.7775 6.7664 1.1726 0.8079 1.1494 0.9287 0.7135 -1.5971 0.1722 
0.872 10.3 0.0416 7.8550 6.8496 1.1863 0.8033 1.1468 0.9212 0.7154 -1.6533 0.1689 
0.874 10.2 0.0412 7.9338 6.9341 1.2001 0.7986 1.1442 0.9137 0.7172 -1.7107 0.1655 
0.876 10.0 0.0408 8.0138 7.0201 1.2142 0.7936 1.1416 0.9060 0.7190 -1.7693 0.1620 
0.878 9.8 0.0404 8.0951 7.1075 1.2284 0.7886 1.1390 0.8981 0.7208 -1.8292 0.1583 
0.88 9.7 0.0400 8.1777 7.1964 1.2428 0.7833 1.1364 0.8901 0.7226 -1.8905 0.1545 
0.882 9.5 0.0396 8.2618 7.2869 1.2574 0.7779 1.1338 0.8820 0.7244 -1.9531 0.1506 
0.884 9.3 0.0392 8.3472 7.3789 1.2721 0.7724 1.1312 0.8737 0.7261 -2.0171 0.1466 
0.886 9.2 0.0388 8.4342 7.4727 1.2871 0.7667 1.1287 0.8653 0.7278 -2.0825 0.1424 
0.888 9.0 0.0383 8.5227 7.5681 1.3022 0.7608 1.1261 0.8567 0.7296 -2.1495 0.1381 
0.89 8.9 0.0379 8.6128 7.6654 1.3175 0.7547 1.1236 0.8480 0.7313 -2.2180 0.1337 
0.892 8.7 0.0375 8.7045 7.7644 1.3331 0.7485 1.1211 0.8391 0.7329 -2.2880 0.1291 
0.894 8.5 0.0370 8.7980 7.8654 1.3488 0.7420 1.1186 0.8300 0.7346 -2.3597 0.1244 
0.896 8.4 0.0366 8.8932 7.9683 1.3647 0.7354 1.1161 0.8208 0.7362 -2.4331 0.1195 
0.898 8.2 0.0361 8.9903 8.0733 1.3809 0.7286 1.1136 0.8114 0.7379 -2.5083 0.1145 
0.9 8.1 0.0356 9.0893 8.1804 1.3972 0.7216 1.1111 0.8018 0.7395 -2.5852 0.1093 

0.902 7.9 0.0351 9.1903 8.2897 1.4138 0.7144 1.1086 0.7921 0.7410 -2.6640 0.1040 
0.904 7.7 0.0346 9.2934 8.4013 1.4306 0.7070 1.1062 0.7821 0.7426 -2.7448 0.0985 
0.906 7.6 0.0341 9.3987 8.5152 1.4476 0.6994 1.1038 0.7720 0.7441 -2.8275 0.0929 
0.908 7.4 0.0336 9.5062 8.6317 1.4649 0.6916 1.1013 0.7617 0.7457 -2.9124 0.0870 
0.91 7.3 0.0331 9.6161 8.7507 1.4824 0.6836 1.0989 0.7512 0.7472 -2.9994 0.0810 
0.912 7.1 0.0325 9.7285 8.8724 1.5002 0.6754 1.0965 0.7405 0.7487 -3.0887 0.0749 
0.914 6.9 0.0320 9.8434 8.9969 1.5182 0.6669 1.0941 0.7296 0.7501 -3.1803 0.0685 
0.916 6.8 0.0314 9.9611 9.1244 1.5364 0.6582 1.0917 0.7185 0.7516 -3.2744 0.0620 
0.918 6.6 0.0308 10.0816 9.2549 1.5549 0.6492 1.0893 0.7072 0.7530 -3.3710 0.0552 
0.92 6.4 0.0302 10.2050 9.3886 1.5737 0.6400 1.0870 0.6957 0.7544 -3.4702 0.0483 
0.922 6.3 0.0296 10.3316 9.5258 1.5927 0.6306 1.0846 0.6839 0.7557 -3.5723 0.0411 
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0.924 6.1 0.0290 10.4615 9.6664 1.6121 0.6208 1.0823 0.6719 0.7571 -3.6773 0.0338 
0.926 6.0 0.0284 10.5949 9.8108 1.6317 0.6109 1.0799 0.6597 0.7584 -3.7853 0.0262 
0.928 5.8 0.0277 10.7318 9.9592 1.6516 0.6006 1.0776 0.6472 0.7597 -3.8965 0.0184 
0.93 5.6 0.0270 10.8727 10.1116 1.6718 0.5901 1.0753 0.6345 0.7610 -4.0111 0.0104 
0.932 5.5 0.0263 11.0176 10.2684 1.6924 0.5792 1.0730 0.6215 0.7622 -4.1293 0.0021 
0.934 5.3 0.0256 11.1669 10.4299 1.7132 0.5681 1.0707 0.6082 0.7634 -4.2512 -0.0064 
0.936 5.2 0.0249 11.3208 10.5962 1.7344 0.5566 1.0684 0.5947 0.7646 -4.3770 -0.0151 
0.938 5.0 0.0241 11.4767 10.7651 1.7560 0.5449 1.0661 0.5809 0.7658 -4.5050 -0.0241 
0.94 4.8 0.0233 11.6379 10.9396 1.7778 0.5328 1.0638 0.5668 0.7669 -4.6375 -0.0334 
0.942 4.7 0.0225 11.7991 11.1147 1.8001 0.5203 1.0616 0.5524 0.7680 -4.7707 -0.0430 
0.944 4.5 0.0218 11.9603 11.2905 1.8226 0.5076 1.0593 0.5377 0.7691 -4.9045 -0.0528 
0.946 4.4 0.0210 12.1215 11.4669 1.8456 0.4945 1.0571 0.5227 0.7701 -5.0391 -0.0628 
0.948 4.2 0.0202 12.2826 11.6439 1.8689 0.4811 1.0549 0.5075 0.7711 -5.1742 -0.0732 
0.95 4.0 0.0194 12.4438 11.8216 1.8925 0.4673 1.0526 0.4919 0.7721 -5.3100 -0.0838 
0.952 3.9 0.0187 12.6050 12.0000 1.9165 0.4532 1.0504 0.4761 0.7731 -5.4463 -0.0947 
0.954 3.7 0.0179 12.7662 12.1790 1.9409 0.4388 1.0482 0.4600 0.7740 -5.5833 -0.1059 
0.956 3.5 0.0171 12.9274 12.3586 1.9656 0.4240 1.0460 0.4436 0.7749 -5.7208 -0.1173 
0.958 3.4 0.0163 13.0886 12.5389 1.9907 0.4089 1.0438 0.4269 0.7757 -5.8589 -0.1290 
0.96 3.2 0.0155 13.2498 12.7198 2.0161 0.3935 1.0417 0.4099 0.7766 -5.9975 -0.1410 
0.962 3.1 0.0148 13.4110 12.9014 2.0419 0.3777 1.0395 0.3926 0.7773 -6.1366 -0.1533 
0.964 2.9 0.0140 13.5722 13.0836 2.0681 0.3616 1.0373 0.3751 0.7781 -6.2762 -0.1658 
0.966 2.7 0.0132 13.7334 13.2664 2.0946 0.3451 1.0352 0.3572 0.7788 -6.4163 -0.1787 
0.968 2.6 0.0124 13.8946 13.4499 2.1215 0.3283 1.0331 0.3391 0.7795 -6.5568 -0.1918 
0.97 2.4 0.0117 14.0557 13.6341 2.1488 0.3111 1.0309 0.3207 0.7801 -6.6977 -0.2052 
0.972 2.3 0.0109 14.2169 13.8189 2.1764 0.2936 1.0288 0.3020 0.7807 -6.8390 -0.2189 
0.974 2.1 0.0101 14.3781 14.0043 2.2044 0.2757 1.0267 0.2831 0.7813 -6.9807 -0.2328 
0.976 1.9 0.0093 14.5393 14.1904 2.2328 0.2575 1.0246 0.2638 0.7818 -7.1228 -0.2471 
0.978 1.8 0.0086 14.7005 14.3771 2.2616 0.2389 1.0225 0.2443 0.7823 -7.2652 -0.2616 
0.98 1.6 0.0078 14.8617 14.5645 2.2907 0.2200 1.0204 0.2245 0.7828 -7.4079 -0.2764 
0.982 1.5 0.0070 15.0229 14.7525 2.3202 0.2007 1.0183 0.2044 0.7832 -7.5508 -0.2915 
0.984 1.3 0.0062 15.1841 14.9411 2.3501 0.1811 1.0163 0.1840 0.7835 -7.6940 -0.3069 
0.986 1.1 0.0054 15.3453 15.1304 2.3803 0.1611 1.0142 0.1634 0.7839 -7.8375 -0.3226 
0.988 1.0 0.0047 15.5065 15.3204 2.4110 0.1407 1.0121 0.1424 0.7841 -7.9811 -0.3385 
0.99 0.8 0.0039 15.6676 15.5110 2.4420 0.1200 1.0101 0.1212 0.7844 -8.1249 -0.3548 
0.991 0.7 0.0035 15.7482 15.6065 2.4576 0.1096 1.0091 0.1105 0.7845 -8.1969 -0.3630 
0.992 0.6 0.0031 15.8288 15.7022 2.4733 0.0990 1.0081 0.0998 0.7846 -8.2690 -0.3713 
0.993 0.6 0.0027 15.9094 15.7981 2.4891 0.0884 1.0070 0.0890 0.7847 -8.3410 -0.3796 
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0.994 0.5 0.0023 15.9900 15.8941 2.5050 0.0777 1.0060 0.0781 0.7848 -8.4131 -0.3880 
0.995 0.4 0.0019 16.0706 15.9903 2.5210 0.0669 1.0050 0.0672 0.7848 -8.4853 -0.3965 
0.996 0.3 0.0016 16.1512 16.0866 2.5371 0.0559 1.0040 0.0562 0.7849 -8.5574 -0.4051 
0.997 0.2 0.0012 16.2318 16.1831 2.5533 0.0450 1.0030 0.0451 0.7849 -8.6296 -0.4137 
0.998 0.2 0.0008 16.3124 16.2798 2.5695 0.0339 1.0020 0.0339 0.7850 -8.7017 -0.4224 
0.999 0.1 0.0004 16.3930 16.3766 2.5859 0.0227 1.0010 0.0227 0.7850 -8.7739 -0.4312 

1 0.0 0.0000 16.4736 16.4736 2.6024 0.0114 1.0000 0.0114 0.7850 -8.8461 -0.4400 
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APPENDIX E 
 

 

CORRECTIONS TO PARK AND GOMEZPLATA (1971) EXPERIMENTAL DATA 

 

 

Park and Gomezplata (1971) performed experiments on setups consisting of short straight pipe 

sections connected by 90o elbows.  The data obtained from these experiments cannot be directly 

used for validation purposes as the dispersion coefficient reported would not be at steady state 

conditions.  The data reported by Park and Gomezplata (1971) can be approximated to their 

steady state values using the technique outlined below.  The experimental data reported for a 

setup with three bends at a Reynolds number of 3840 is used to illustrate the calculations. 

The experimental setup consisted of an initial straight section 149'' in length.  Park and 

Gomezplata (1971) reported experimental data for this initial straight section at seven different 

Reynolds number.  The values of axial dispersion coefficient reported are much lower than the 

values predicted using Equation (3.24).  Assuming no major error in the experimental procedure, 

the data can be considered for short pipe systems.  The reported data along with the steady state 

axial dispersion data (Equation 3.24) can be substituted in Equation (3.29) to calculate the time 

required to attain steady state (T).  Park and Gomezplata (1971) reported a dimensionless axial 

dispersion coefficient value of 2.45 for the initial straight section at a Re = 3840.  Substituting this 

in Equation (3.29) along with the dimensionless steady state value of 8.47 gives T = 65.65 sec.  

Table E.1 lists the values of T for the different Reynolds numbers reported.   
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Table E.1: Steady state time (T) estimations for Park and Gomezplata (1971) experimental data 

on a 0.824'' diameter, 149'' long tube. 

Reynolds Number Velocity (ft./sec) K/U‾ d   Equation 

(3.24) 

K/U‾ d 

Reported 

T (sec) 

3840 0.17 8.7 2.45 65.65 

5120 0.23 6 1.6 52.51 

6400 0.29 4.3 1.2 39.82 

7680 0.35 3.3 1.02 29.36 

8960 0.41 2.9 0.85 26.83 

10240 0.47 2.3 0.8 19.05 

11520 0.53 2.02 0.785 14.71 

 

The value of T thus obtained is independent of the pipe length.  It can therefore be 

employed to estimate the straight pipe axial dispersion coefficients for other pipe lengths.  The 

total length of the system with three bends is 250.5''.  Substituting this value in Equation (3.29) 

along with the value of T listed above gives a value of 3.67 for the dimensionless dispersion 

coefficient in the straight section of the setup.  The reported value of the dimensionless dispersion 

coefficient minus the estimated straight pipe dispersion coefficient comes to 0.29.  This number 

represents the enhanced dispersion on account of the three bends.  Assuming the contribution of 

the bends to be independent of the straight section lengths, the effective dispersion at steady state 

can be estimated by adding 0.29 to the dimensionless steady state dispersion value of 8.7.  The 

effective dimensionless dispersion coefficient for the experiment at steady state is therefore 

estimated to be 8.99.   
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