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CHAPTER 1 

INTRODUCTION 

 Control loop performance monitoring and assessment is becoming the basis of 

operational excellence in the chemical and allied industry and a typically large process 

operation in most of these industries consists of hundreds of control loops, often 

operating under varying conditions.  Maintenance of these loops is generally the 

responsibility of either a lead operator, control engineer, or an instrument technician; but 

other responsibilities, coupled with the tediousness of consistently monitoring a large 

number of loops, often result in control problems being overlooked for long periods of 

time (Hugo, 2000).  Moreover, recent corporate acquisitions coupled with downsizing in 

human resource needs have led to a situation where very few technical personal are left to 

operate or monitor too many corporate assets. 

 For process safety, product quality, and profitable manufacturing practice, good 

control performance is a necessary requirement.  In most chemical and allied industries 

today, real time detection and diagnosis of faults have become an integral part of process 

design (Ralston, et al., 2001).  Tatara, et al., 2002 have indicated that among the various 

methods for detecting changes in an industrial process, statistical methods generally 

predominate due to the accuracy involved in using sampled data for decision analysis.  A 

primary difficulty of controller performance analysis is the number of loops in a process.

 1



 Hugo, (2000) also revealed that anywhere between 66-88% of industrial process 

controllers do not perform as well as they should.  Also, according to Desborough, et al., 

2001 only about a third of industrial controllers provide an acceptable level of 

performance, in spite of the performance measures developed in the past 10 years.  In fact, 

surveys available suggest that a vast majority of industrial control loops perform far less 

than optimal.  

 In a recent article, Merritt, 2003 discussed a study by Honeywell Process 

Solutions in which the company, using its controller performance software, Loop Scout, 

reported performance results of over 100,000 process control loops at 350 manufacturing 

facilities.  Their results indicated that of all the process control loops that were analyzed, 

nearly 49% were found to be performing poorly, about 32% were rated as having 

common oscillation problems, 16% had valve stiction problems and only about 4.4% of 

the loops had been retuned within the last two years. Using statistical analysis, 

Honeywell further determined that almost 63% of all the control loops have poor 

performance ratings.  This further buttresses the claim by previous researchers that only 

about a third if not fewer of all control loops have good performance ratings. 

 Among the reasons for the dismal performance of process controllers are poor 

controller tuning, deficiencies in the control structure, valve malfunctions, nonlinearities 

and poor process design.  Even when a loop performs well at the time of commissioning, 

its performance deteriorates over time due to changing operating conditions - a good 

controller becomes a bad one.  

 In any control scheme, a deviation from setpoint is a function of both controller 

performance and the plant disturbance spectrum, and it is a general requirement that any 
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controller performance assessment technique should have at least the following basic 

attributes (Hugo, 2000): 

1. Be independent of disturbance or setpoint spectrums.  

2. Able to be automated.  

3. Require minimum specification of process dynamics. 

4. Be sensitive to detuning or process model mismatch. 

 It is well established that it is not just adequate to describe the performance of a 

control system with simple statistics like the mean and variance of manipulated and 

controlled variables.  While these are important performance measures, a comprehensive 

approach (Harris, et al., 2001) for controller performance monitoring usually includes the 

following: 

1. Determination of the best performance capability of the control system 

2. Development of suitable statistics for monitoring the performance of 

the existing system, and 

3. Development of methods for diagnosing the underlying causes for changes 

in performance of the control system. 

 With the easy availability of plant data today, it has become more appropriate and 

useful to develop tools and procedures for assessing the performance of control loops and 

possibly to determine the causes of poor performance. 

 The past 20-30 years has seen very dramatic changes in the process industries due 

to the significant improvement in process control techniques and strategies.  That 

industry needs an efficient means to monitor the goodness of performance of process 

controllers is evident in the number independent approaches being pursued.   According 
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to Merritt, (2003) it is generally not easy to locate poor performing control loops; and 

while control loops do not fail like pumps, their continuous deterioration toward poor 

performance erodes operating profit.  Though some plants live with situations like this, 

unfortunately it is not a good manufacturing practice. 

 Numerous control techniques have been developed to improve and or enhance 

controller performance and increase economic output.  Nevertheless, as indicated earlier, 

estimates of the percentage of industrial process controllers with performance problems 

are surprisingly high and efficient techniques to detect and arrest poor controller 

performances have not been completely explored to make the situation any better. 

Moreover, current applications available for detecting poor controller performance are 

either too expensive, cumbersome to use or are themselves fraught with inherent 

difficulties. 

 Currently, millions of dollars are lost in industry because faults are not detected 

and identified on time.  In the United States of America alone, it is estimated that 

petrochemical industries lose almost $20 billion annually due to poor monitoring and 

control of abnormal situations (Venkatasubramanian, 2003).  It is further estimated that 

this cost is much more when similar situations in other industries such as pharmaceutical, 

specialty chemicals, power, etc. are included.  

 Present commercial mechanisms available for monitoring controller performance 

are done using data from the plant “historian”.  This implies that, in real-time, there is no 

simple approach, by which the goodness of a process controller can be assessed. The 

outcome of this work seeks to contribute in addressing this problem.   
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 This work is an extension of the work by Li et al., 2004 who used the run length 

of the actuating errors between consecutive zero crossings coupled with the chi-squared 

goodness-of-fit statistics to develop a performance monitoring technique.  In a private 

communication, Dr. R. G. Ingalls reviewing Li’s work suggested the use of Markov 

chains.  Dr. Ingalls and Dr. Avery also submitted an MCEC proposal in which they 

demonstrated the Markov chain approach.  This work was born out of those ideas and 

seeks to improve on Li’s work by coupling the Markov chain technique with binomial 

statistics.  The work was sponsored by the measurement control and engineering center 

(MCEC), a consortium of industrial companies and academic experts whose primary 

objective, among others is to carry out research in technological areas related to process 

control in response to and in support of the needs of its industrial sponsors.  

 This work hypothesizes the development of a novel method that can inform an 

operator to a high level of certainty and in real time if a controller is healthy (i.e., 

performing optimal) or not.  

1. The use of Markov chain analysis in monitoring controller performance: a major 

embodiment in this work is expected to introduce efficiency into controller 

monitoring techniques.  In general, the Markov chains provide a solution for 

determining the dynamic behavior of a system in occupying states that it can 

occupy.  As a result, the use of Markov chains is expected to provide an easy and 

simple benchmark for checking the health of process controllers, inferential 

sensors, and in-fact any system with process output that can be compared to a 

setpoint or a model output to a process output.  It is expected that it will utilize 

 5



minimal computer storage space and time and, yet, will be efficient in monitoring 

the goodness of performance of process controllers. 

2. The binomial distribution is probably the best known and most commonly used of 

the discrete probability distributions (NIST).  It arises any time an event with 

exactly two outcomes is repeated over and over again.  It gives the likelihood of 

finding the number of successes or failures in a given number of observations.  
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CHAPTER 2 

2.0 CONTROL LOOP PERFORMANCE MONITORING 

2.1 Literature Review 

 A common benchmark for controller performance assessment is the minimum 

variance control (MVC).  The MVC and similar techniques have received much attention 

as a popular standard that greatly reduces the amount of process knowledge required for 

control performance evaluation.  Based on the work of Harris, et al., (1989) the MVC, 

also referred to as the Harris index (HI), compares the ratio of the variance of the 

actuating error signal to the minimum variance ideally achievable by a perfect controller.  

It is denoted as:  

(
( )

Current Error VarianceHI )
Minimum Acheivable Variance

=       (2.1) 

Where Error = Setpoint – Control Variable; 

In this format the HI indicates perfect control when HI =1 and bad or degrading 

control when HI is large.  Another form of the minimum variance index also introduced 

by Harris is the closed loop performance assessment (CLPA).  The CLPA is normalized 

between 0 and 1 as: 

 1CPLA = 1- 
HI

          (2.2) 
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In this format, 0 denotes perfect control and 1 poorest control.  The advantage of 

the Harris index is that it does well in indicating loops that have oscillation problems.  In 

general, when loops have oscillations, the error variance about the mean is large and 

therefore the HI will be large and CPLA will approach 1. 

 Unfortunately, the HI may consider loops that are sluggish to be just fine because 

when loops are sluggish their error variance is small and the HI will approach 1.  Hence, 

the HI may not detect loops that have been detuned to the point of sluggishness.  

Moreover, a controller not even running in automatic may give a small value of the HI 

since without the valve moving much, the variance is low.  Because small values are 

generally good, the HI index may not flag such sluggish loops.  Thus, in a typical plant, 

the Harris Index will easily identify loops that are oscillating because of valve hardware 

problems or over aggressive tuning.  On the other hand, a typical operator response to 

oscillating loops is to detune it.  If it is detuned to the point of sluggishness, the HI may 

not catch this.  This is a limitation in the minimum variance control.   

 In addition, the delay associated with the process must be known in order to 

describe the process model from which the variance and perfect control can be evaluated.  

However, processes change during routine operation and so do the delay associated with 

them and online estimation of the process delay is cumbersome to estimate. 

 Further, “perfect” control from a controlled variable (CV) measure means 

excessive manipulated variable (MV) action.  Such perfect control is not desired.  

Therefore a CPLA value of zero is never attained.  Moreover, neither the HI nor CPLA 

value has absolute meaning.  A 0.3 may be good for one loop while a 0.5 may be the 

perfect balance for another. 
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 Hägglund, (1995) has proposed a method in the time domain, which considers the 

integrated error (IE) between all zero-crossings of the signal.  If the IE is large enough, a 

counter is increased.  If this counter exceeds a certain number then an oscillation is 

indicated.  Nevertheless, the question here is the quantification of what “large enough” is.  

In other to quantify what large enough means, the author used the ultimate frequency of 

the loop in question.  Alternatively, one may use the integral time of the controller 

assuming the controller is optimally tuned.  This method is very appealing in that it is 

able to quantify the size of the oscillation.  However, it assumes that the loop oscillates at 

its ultimate frequency which may not be entirely true, for instance in the case of stiction.  

Moreover, the ultimate frequency is not always available and the integral time may be a 

bad indicator of the ultimate period.  These constitute a major limitation in this technique. 

 Ko and Edgar, (1998) suggested an index that computes the ratio of the actual 

variance and the minimum achievable variance using a PI-controller.  However, this 

approach assumes that a process model is available.  Since processes continuously 

change response dynamics, any model used would need to be continuously updated. 

Other mathematically rigorous controller performance assessment criteria such as 

the integral absolute error (IAE), integral squared error (ISE), integral time-weighted 

absolute error (ITAE), and integral time-weighted squared error, (ITSE), have all 

received much attention.  However, the problem with these assessment methods is that, 

they are very tedious to implement and rely on models for processes, sensors, and final 

control elements, which may not be exactly known (Stephanopoulos, 1984).  In addition, 

they are scale dependent with process specific values, which must be determined 
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 Rhinehart, (1995) developed an automated, goodness of control performance 

monitor using the r-statistic, which could indicate when a constraint or a performance 

limit was violated.  The r-statistic was defined as the ratio of the expected variance of the 

deviation of the controlled variable from the setpoint to one half of the expected variance 

of the deviation of two consecutive process measurements.  It then compares the current 

r-statistic value with some critical values to indicate performance changes. This technique 

however, just like other performance monitoring techniques compared a single index 

value to a trigger value to judge the performance.   

 Mathematically, the r-statistic was defined as  

 
2
1

2
2

y
w

y

r
σ
σ

=          2.3 

Where the variance 2
1yσ  is obtained from ( )2 2

1 1
1

1
1

N

y
i

e i
N

σ
=

=
− ∑ , and  is the deviation 

of controlled variable sample i from setpoint value.  The variance 

( )2
1e i

2
2yσ  is obtained from 

( ) ( )2 2
2 2

1

1
2 1

N

y
i

e i
N

σ
=

=
− ∑ , where ( )2e i  is the distance between two consecutive samples.  

A performance problem is indicated if both variance estimates differ such that the ratio is 

larger than rw = 3.  Rhinehart (private communication) realized that it did not consider the 

distribution of index values and, therefore, the r-statistic was not accepted as a good 

statistical approach for performance assessment.   

A relative variance index (RVI) was proposed by Bezergianni et al., (2000).  The 

RVI technique compares the closed-loop performance with the minimum-variance 

control and open-loop control.  They defined the RVI as:  
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2 2

2 2
OL y

OL MV

RVI
σ σ

σ σ
−

=
−

        (2.4) 

Where, 2
OLσ is the output variance if the controller is removed (i.e. placed in open 

loop).  The RVI is equal to zero if the current performance 2
yσ  is equal to the open-loop 

performance 2
OLσ .  It is equal to one if the current performance 2

yσ  is equal to the 

minimum-variance control 2
MVσ .  The limitation in this technique is that the process, 

controller and noise models must all be known. 

Kadali, et al., (2002) proposed the use of Linear Quadratic Gaussian (LQG) 

benchmark as a more appropriate tool for assessing the performance of controllers.  

However, calculation of the LQG benchmark requires a complete knowledge of the 

process model, which is often a demanding requirement or simple not possible for on-line 

assessment. 

A problem with all the above methods is that they consider integrated metric over 

a fixed window or time scale.  In any, one can easily create higher or lower frequency 

upsets which would not be discovered.  While they can detect some upsets, they will miss 

others.  The progression of Rinehart’s studies reveals that a fully functional monitor must 

observe the process at multiple time scales. 

 Li, et al., (2003) recently proposed the use of the chi-squared goodness-of-fit 

statistic to compare the distribution of a performance index (run length) within a window 

of data to a reference run length distribution in order to determine the performance of a 

controller.  A statistically significant change in any section of the distribution, not just an 

average value is indicative of a significant change in controller performance.  The 
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technique uses only routine plant data and is suited for online application.  Although it 

uses the generally robust chi-squared test, the theoretical foundation was not exact. 

The technique proposed and developed in this work also uses run length 

distribution of data.  However, the metric used, state transition probability is based on 

binomially distributed variables, and the analysis using Markov Chains coupled with 

Binomial Statistics is not only ideal but also more satisfying.  The original idea was 

proposed by Ms. Sherri S. Avery now Dr. Avery, and Dr. R G. Ingalls (2001) in their 

analysis of Li’s work.  The objective of this work is set out below. 

 

 2.2 Objective 

The main objective of this project is to develop a new and novel method, with a 

high degree of accuracy based on Markov analysis and binomial statistics to 

automatically identify poor performance of process controllers, inferential sensors and 

any model of process output.  

The procedures based on this objective are: 

1. Measure deviations from setpoint (ysp – y) 

2. Model a characteristic of the errors (runs) as states in a Markov chain 

3. Determine transition probabilities between states 

4. Use binomial statistics to detect significant changes in performance from  

 an operator chosen good period 
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2.3 The Concept of Markov Chains 

 Markov chains is named after the Russian mathematician Andrey Andreyevich 

Markov or “Markoff” (June 14 1856 - July 20 1922).  Markoff's name “isn't spelled 

consistently” in English language mathematical literature.  Some authors prefer 

"Markov", "Markov number", "Markov numbers", and "Markov equation".  The question 

that has often arisen is should “Markoff” be spelled -off or -ov?  In general, "Markoff" is 

more often used when discussing his, work in number theory (e.g., Markoff numbers); 

while "Markov" tends to be used when discussing his work in probability (e.g. Markov 

chains).  When in doubt though experts recommend just writing                                        . 

Markov's early work was mainly in number theory and analysis, continued 

fractions, limits of integrals, approximation theory and the convergence of series.  For 

instance, a “Markoff” number is number that appears in a positive integer solution to the 

equation 2 2 2 3x y z xy+ + = z (known as the “Markoff” equation).  For example (1,1,1), 

(1,1,2) (1,2,5), and (2,169,985), etc, are Markoff numbers and these numbers form part of 

the vertices of a tree like structure (http://www.minortriad.com/mref.html#spelling). 

Nevertheless, Markov is particularly remembered for his study of Markov chains, 

sequences of random variables in which the future state of a variable is determined by the 

present state of the variable but is independent of the way in which the present state arose 

from its predecessors.  This work launched the theory of stochastic processes.    

 Markov chains find widespread use in many areas of science and technology such 

as Polymers, Biology, Physics, Astronomy, Astrophysics, Chemistry, Operations 

Research, Economics, Communications, Computer Networks, and others.  Markov chains 

have many advantages.  Among these are their ability to be used in the representation of 
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physical systems in a unified description via state vector and one-step transition 

probability matrix.  They also provide simple solutions to complicated problems by way 

of Markov chain finite difference equations where exact solutions to models are not 

available.  However, despite their many advantages, the application of Markov chains in 

modeling chemical and control engineering systems has been relatively meager to non-

existent.  

 Simply put, Markov chains enable one to predict the future state of a system given 

knowledge of its present state, ignoring its history.  It provides a solution for determining 

the dynamic behavior of a system in occupying various locations (states) that it can 

occupy (Tamir, 1998).  In a stochastic sense, a Markov chain is a probabilistic model 

describing the state transition of a system where the immediate future state depends only 

on the present state and not on the manner the system arrived at this particular present 

state.  This is called the “memoryless” property and it can be stated mathematically as  

( ) ( )1 1 1 0 0 1; ;... , ,n n n n n n n nP X j X i X i X i P X j X i j n i+ − − += = = = = = = ∀ n  (2.5) 

Where X denotes a token whose location in time is changing from one place to another 

 P is the probability of the token X moving from one state to another 

 j is the next state to be visited at the next transition (n + 1) 

 i denotes a state that has been visited already 

n is an index indicating the location of a token as it moves from one state to  

another 

 Thus, Equation (2.5) can be explained as the probability of the token X, 

occupying the state j at the (n +1)th transition given that it is presently in the state i(n) at 

the nth transition and just prior to that was in the state i(n-1) at the (n-1)th transition and 
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before that also, it was in the state i(n-2) at the (n-2)th transition and so on and so forth is 

the same as the probability of the token occupying the state j at the (n+1)th transition 

given that presently it is in the state in at the nth transition. 

 The basic concepts of Markov chains are; “system” and “state transition”.  A 

system is the set of all possible states (i.e. positions or locations) that a token can occupy.  

The system (also referred to as the state space (SS)), (Tamir, 1998), is designated by SS = 

{S±1, S±2, S±3, S±4, ..., S±k} where Sk, denotes the state.  A state is (or must be) real.  It is a 

location that can be occupied by the token.   States are exclusive of one another, that is, 

no two states can occur or be occupied simultaneously. 

 The movement of the token from one state to another in the chain is referred to as 

transition.  Transitions occur within a system from state to state and are referred to as 

state transitions.  Thus, a state transition is the transfer of an event or observation of an 

event from one state to another.   

 If the state space is finite (i.e. SS = {±1, ±2, …, ±N}, where N is a fixed number), 

then the chain is said to be a finite Markov chain.  On the hand, if the chain has no 

defined bounds, as in birth-death processes (where states take on all non-negative integer 

values), then the chain is referred to as an infinite Markov chain.  Graphically, the 

allowable transitions link states, often resulting in a chain like appearance.  Transitions 

are governed by the probability of the system to occupy or visit a state or not to occupy it.  

In his writings, William Shakespeare captured this literally in his poetic piece “The 

Hamlet” as:  “To be (in a state) or not to be (in a state), that is the question”. 

Often, the basic aim of Markov chain analysis is to answer questions such as: 

1. What is the unconditional probability that at some step n, the system is occupying 
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or will occupy some state given that the first occupation of this state has occurred  

already? 

2.  What is the probability of going from state j to state k in n steps 

3. Is there a steady state behavior? 

4. If the Markov chain terminates, when it reaches a state k, defined as absorbing or  

dead state, then what is the expected mean time to reach k (hence terminate the  

movement of the chain) given that the chain started in some particular state j. 

 However, this work does not intend to provide answers to all these questions but 

rather to explore Step 2 for the one-step transition probability of a system and utilize it 

for further analysis. 

 A Markov chain may be time homogenous or non-homogenous.  It is time 

homogenous or simply homogenous if its dynamics depend on the time interval but not 

the time itself.  

 For instance, the one step transition probability function for a time dependent 

process can be written as  

( ) { }, 1, 1 P , ,i j t tP t t X j X i j i t++ = = = ∀      (2.6) 

Equation (2.6) describes the phenomena that, given that a token X, is in a state  at time t, 

what is the probability that it will visit the state j at the next sampling instant (t +1).  

Such a process is non-homogenous or time-dependent.   

i

On the other hand, given that: 

{ }, 1Pi j n nP X j X i j i+= = = ∀ , , n ,      (2.7) 
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Then it can be noticed that the Equation (2.7) now describes a situation where given that 

the token X, visited or occupied the state i  at the nth transition, then what is the 

probability that it will visit the state j at the next transition (n+1) irrespective of time. 

Thus, for a time homogenous Markov chain, the probability of transition in a 

single step from one given state to another depends on the two states and not on time 

itself.  Put another way, is time homogenous or stationary if it satisfies: ,i jP

,i jP =  Function (time interval between state i and state j), and non-homogenous if it 

satisfies: 

( ), , 1i jP t t + =  Function (time to start from state and time when will visit state j) i

Let the n-step transition probability function for a stationary Markov chain be 

denoted by , where  is a function that gives the probability of a token going to a 

state j in exactly n-steps given that it occupied or is currently occupying the state i on the 

on the k

n
jiP ,

n
jiP ,

th transition.  Thus:  

{ },
n

i j k n k i j k nP P X j X i+= = = ∀ , , ,      (2.8) 

 If n = 1, then the one-step stationary transition probability , generally 

represented as  is given by:  

1
, jiP

jiP , { }, 1i j k k i j kP P X j X i+= = = ∀ , ,

, , ,∀

  

   

The discrete Chapman-Kolmogorov (C-K) equation provides a method for calculating the 

transition probability of a token in moving from state i to j in exactly n steps.  The C-K 

equation is given as: 

, , , ,
1

*
z

nn m m
i j i k k j i j k m n

k

P P P+

=

= ∑      (2.9) 
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Where z is the total number of states and n, m denote the number of transitions.  Equation 

(2.9) represents the probability that, starting in i, a token will go to state j in (m + n) 

transitions through a path that takes it to state k, at the nth transition before arriving at the 

state j after m additional transitions.  If P denotes the matrix of the one-step transition 

probabilities , and PjiP ,
(n) denotes the matrix of the n-step transition probabilities , then 

Equation (2.9) can be expressed in matrix form as:  

,i j

nP

 P(n+m) = P(n)*P(m)        (2.10)  

Thus, for instance P(5) = P(3 + 2) = P(3)*P(2) and by induction, P(n) = P(n -1 + 1) = P(n-1)*P 

In other words, the n-step transition probabilities of a process may be obtained by 

multiplying the one-step transition probability matrix P by itself n times. 

 

  2.3.1 Classification of states and their behavior 

 All states of a Markov chain fall into distinct types according to their limiting 

behavior.  Suppose that a system is initially in a given state.  If the ultimate occupation of 

the state is certain again at some time later, then the state is said to be recurrent with a 

probability of unity.  In other words, let, ( )jjf =Prob ever visit state j start from j , then state 

j is recurrent if fjj = 1.  If a state is recurrent, then it is said to be positive recurrent if 

starting in i, the expected number of steps (transitions) until the process returns to state i 

again is finite.  Otherwise, it is null-recurrent (Ross, 2003).  If the ultimate return to the 

state has probability less than unity, then the state is called transient with fjj < 1.  Thus, 

the current return to the state is uncertain. 

 A state k is accessible from state j if there exists some positive integer n, such that 

Pjk(n) > 0.  If a state j is accessible from another state k in a finite number of transitions, 
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then the two are said to communicate.  If state j is accessible from state k and state k is 

accessible from state i, then j is accessible from i. 

 One of the most important concepts of Markov chains is irreducibility.  A Markov 

chain is said to be irreducible if all states communicate.  That is, Pij > 0.  In other words, 

every state can be reached from every other state.  An irreducible section of a Markov 

chain is referred to as a class.  Thus, from above, if a set of states communicate, then they 

form a class.  In addition, since a class is irreducible, it implies that communication is a 

class property. 

 If the occupation of a state is such that the transition probability where 

( )jjP =Prob occupying  state j after 1 transition start from j 1= , then the state is said to 

be an absorbing (dead or trapping) state.  In other words, once the system occupies this 

state, it remains there forever.  A typical example of this phenomenon may be identified 

in a control loop when a valve is saturated (i.e. a fully opened or filly closed valve) for an 

extended period. 

 Suppose a chain starts in a state Sj.  Subsequent occupations of Sj can only occur 

at steps (times) 1ν, 2ν, 3ν, 4ν,… where ν is an integer.  If ν > 1 and the chain is finite, 

then Sj is periodic. If ν = 1 and the chain is finite, then Sj is aperiodic.  A finite 

irreducible, positive recurrent, aperiodic Markov chain is called ergodic.  Ergodicity is an 

important concept that helps in estimating the limiting or stationary distribution of 

stochastic processes modeled with a Markov chain.   

 For an irreducible ergodic Markov chain, the nlim n
ijp→∞ , exist and is independent 

of the initial state i.  Thus, if , ,n
= lim 1n

j ij i j npπ
→∞

∀ ≥ , then jπ  is the unique non- 

negative solution of: 
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i
i=1

=j pπ π
∞

∑ ij          (2.11) 

and  

j
i=1

1π
∞

=∑           (2.12) 

Where, jπ  is the limiting probability describing the fraction of instances that a 

process will be in a state j.  As an illustration, consider the Markov chain where: 

,

0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

i jP =  

If the process is ergodic, then the stationary distribution π must exist and must satisfy 

Equations (2.11) and (2.12): 

1 1 2

2 1 2

3 1 2

1 2 3

1: 0.5 0.3 0.2
2 : 0.4 0.4 0.3
3 : 0.2 0.3 0.5

1

For j
j
j

3

3

3

π π π π
π π π π
π π π

π π π

= = + +
= = + +
= = + +

+ + =
π

 

Solving gives 1 2 321/ 62, 23/ 62, 18 / 62π π π= = =  

Thus, the asymptotic probability of being in the state of 1, is 21/62, in state 2, is 23/62 

and in state 3, is 18/62. 

 2.4 The Binomial Distribution 

 The binomial probability distribution applies only to sampling that satisfies the 

conditions of a binomial experiment.  A binomial experiment is one that exhibits or 

possesses certain key properties (shown below).  It is defined under the conditions where 

a random experiment consisting of ‘n’ repeated trials is performed such that: 

1. The number of trials ‘n’ is fixed. 
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2. Each experimental unit results in only two possible outcomes.  Of the two  

characteristic events or outcomes, the one of interest is often referred to as success  

and the other failure. 

3. The probability of success on each trial, denoted as p, remains constant. 

4. The outcome for any one experimental unit is independent of the outcome for any 

other experiment unit. 

5. The random variable x, counts the number of  “successes” in n trials 

 In the limiting case when n = 1, a binomial random variable is often referred to as 

a Bernoulli random variable.  In such a case the binomial experiment is referred to as a 

Bernoulli trial. Also, it is worth mentioning that a more general distribution, which 

includes the binomial as a special case is the multinomial distribution.  For a binomial 

experiment, a random variable x say, is used to denote the number of trials that result in a 

success or an event of interest.  This random variable has a binomial distribution with 

parameters p (0 ≤ p ≤1), and n = 1, 2, 3, 4, …  

 Consider for instance, the tossing of a fair coin repeatedly for n times.  At each 

toss, there could be a head or a tail.  The chance of getting a head or a tail at each toss is 

the same at any instance.  The event that a head or tail was obtained in the previous trial 

has no influence on the outcome at the next tossing.  Such a process that has all the above 

properties can be described as a binomial experiment.   

 For any binomial experiment, given that, there are x successful outcomes in n 

total trials, the probability distribution of x in such an experiment is called the binomial 

probability distribution.  The probability of getting exactly x successes in n trials is given 

by the binomial relation: 
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where the notation
( )

n !
x ! !

n
n x x

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

, denotes the total number of different sequences of 

trials that contain x success and (n-x) failures.  Thus, the total number of different 

sequences that contain x successes and (n-x) failures times the probability of each 

sequence equals probability P(x), of obtaining a desired outcome x number of times in n 

total trials. 

 The probability expression above leads to a very useful relation called the 

binomial expansion.  For constants a and b the binomial expansion is given by: 
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k

n
a b a b
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−

=

⎛ ⎞
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∑         (2.14) 

Let a = p and b = 1-p, then the equation becomes 

( ) ( )( )
0

1 1
n nn kk

k

n
p p p p

k
−

=

⎛ ⎞ 1− = + − =⎜ ⎟
⎝ ⎠

∑       (2.15) 

Thus, the sum of the probabilities for a binomial random variable is always equal to one. 

 

  2.4.1 Moments of the Binomial Distribution 

The moments of the binomial distribution depend only on the parameters p, the 

proportion or probability of success and n, the number of trials.  The first moment (also 

referred to as the mean or expectation) of the random variable x is given by: 

( )
0

( )
n

x
E x xP

=

= ∑ x         (2.16) 
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x
n x−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑       (2.17) 

( ) ( )
( )0

1 ! (1 )
!( 1)!

x nn

x

xn n p p
E x

x n x x

x−

=

− −
=

− −∑       (2.18) 

Simplifying 

( ) ( )
( )

1 (( 1) (1

1

1 ! (1 )
( 1) ( 1) !( 1)!

x nn

x

n p p
E x np

n x x

− − −−

=

− −
=

− − − −∑
1))x−

)

     (2.19) 

( ) ( )
1

(( 1) ( 1))( 1)

1

1
1

1

n
n xx

x

n
E x np p p

x

−
− − −−

=

−⎛ ⎞
= −⎜ ⎟−⎝ ⎠

∑      (2.20) 

Let k = x-1, and N = n-1, then 

( ) ( )(

0

1
N

N kk

k

N
E x np p p

k
−

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑       (2.21) 

Recall from Equation (2.14), for two variables a and b, 

( )
0

N
N k N k

k

N
a b a b

k
−

=

⎛ ⎞
+ = ⎜ ⎟

⎝ ⎠
∑ , Where, a = p and b = 1-p 

( ) ( )1 NE x np p p= + −        (2.22) 

( ) xE x npµ= =         (2.23) 

Thus the expected value or mean of the binomial random variable x, is given by 

the product of the number of trials and the probability of the event of success. 

The second central moment about the mean namely the variance of x, is given 

by ( ) ( )( )22 2E x E xσ = − , but E(x) is given by Equation (2.23), and E(x2) is given by 

( )2 2

0
( )

n

x
E x x p

=

= ∑ x         (2.24) 
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1
n

n xx

x

n
E x x p p

x
−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ −       (2.25) 

( ) [ ] ( )2

0

( 1) 1
n

n xx

x

n
E x x x x p p

x
−

=

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
∑      (2.26) 

( ) [ ] ( ) ( )2

0 0

( 1) 1 1
n n

n x n xx x

x x

n n
E x x x p p x p p

x x
− −

= =

⎛ ⎞ ⎛ ⎞
= − − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑   (2.27) 

( ) ( ) (
2

(( 2) ( 2))2 2 2

2

2
( 1) 1

2

n
n xx

x

n
E x n n p p p E x

x

−
− − −−

=

−⎛ ⎞
= − − +⎜ ⎟−⎝ ⎠

∑ )

)

   (2.28) 

Let k = x-2, and N = n-2, then 

( ) ( ) (2 2

0

( 1) 1
N

N kk

k

N
E x n n p p p E x

k
−

=

⎛ ⎞
= − − +⎜ ⎟

⎝ ⎠
∑     (2.29) 

( ) ( ) 22 2( 1) 1 nE x n n p p p np−= − + − +      (2.30) 

( ) ( )22E x np np np= − +2        (2.31) 

( ) ( ) ( )22 1E x np np p= + −        (2.32) 

Recall that ( ) ( )( )22 2E x E xσ = −  

( ) ( ) ( )22 1np np p npσ = + − − 2

)

      (2.33) 

 

(2 1np pσ = −         (2.34) 

The third central moment about the mean of the binomial random variable gives 

the skewness of the distribution.  The skewness gives the degree of symmetry of the 

probability distribution.  If a distribution is normal, the value of skewness is zero.  If it is 

skewed to the left, it has a negative value for skewness and if it is skewed to the right, it 

has a positive value for skewness.  The skewness of a binomial distribution can be 
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derived by going through similar steps as before, but it is given here without derivation 

as: 

( )
( )

1 2 1 2
1

p pS
np p σ

− −
= =

−
       (2.35) 

Similarly, the fourth central moment about the mean of a binomial random 

variable gives the Kurtosis of the distribution.  Kurtosis is a measure of the peakedness of 

the probability distribution.  It can be shown that Kurtosis of a binomial distribution is 

given by: 

( )
( )

( )
2

1 6 1 1 6 1
1

p p p p
K

np p σ
− − − −

= =
−

      (2.36) 

 

 2.5 The Normal Distribution 

Perhaps, the most widely used distribution for modeling random experiments is 

the normal distribution.  It is also known as the bell-shaped curve, and Gaussian 

distribution, and can be developed by considering the basic model for a binomial random 

variable as the number of trials becomes large (Montgomery, et al., 1998; Devore, 1995). 

In general a random variable x is said to have a normal distribution with 

parameters µ and σ2 where µ−∞ < < ∞  and , if the probability density function 

(pdf) is given by 

2 0σ >

( ) ( ) ( )2 221
2

xf x e µ σ

πσ
− −

=  x−∞ < < ∞      (2.37) 

Thus, =( ) ( )
b

a
P a x b f x dx≤ ≤ = ∫

( ) ( )2 221
2

b x

a
e dxµ σ

πσ
− −

∫   (2.38) 
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The statement that x is normally distributed with parameters µ  and 2σ is often 

abbreviated as ( 2~ ,x N )µ σ .  Equation (2.38) cannot be solved with analytical 

integration techniques.  However, when the parameter values µ = 0 and σ2 =1, the normal 

distribution is referred to as the standard normal distribution with random variable often 

denoted z.  The pdf of z is given by 

 ( ) ( ) ( )2 21
2

zf z e
π

−=    z−∞ < < ∞    (2.39) 

Probabilities involving the random variable x are therefore determined by 

standardizing.  The standardizing shifts the mean from µ to zero, and then scales the 

variable so that the standard deviation is unity rather than σ.  In general, xz µ
σ
−

=  and by 

standardizing, any probability involving the random variable x, can be expressed as a 

probability involving the standard normal random variable z.  Thus, Equation (2.39) is 

often evaluated numerically after standardizing the random variable x using given values 

of the mean µ and standard deviation σ.   

The cumulative density function (cdf) of Z is  and is often 

denoted by  Φ(z).  In general,  

( )
z

-
 P(Z  z) = f z dz

∞
≤ ∫

         (2.40) ( )
z

-
(z) = f z dzφ

∞∫

 

 2.6 Sample Proportions 

 For a given a binomial random variable x, if n is the number of trials of an 

experiment and  denotes the sample proportion of successes, where success identifies p̂
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that the outcome of an event has some specified property of interest.  The proportion of 

successes is given by ˆ xp
n

= .  Thus, 

( ) ( )1ˆ x npE P E E x p
n n n

⎛ ⎞= = = =⎜ ⎟
⎝ ⎠

      (2.41) 

 The above Equation indicates that provided x is a binomial random variable with 

population parameters n and p, then value of the parameter p that maximizes the chance 

of success is given by the sample proportion ˆ xp
n

= .  In other words, ˆ xp
n

=  is an 

unbiased estimator of the population mean, p.  From Equation (2.34), the variance of the 

distribution of the number of successes x, is given by ( ) ( )( )22 2 ( (1 )X E x E x n p pσ = − = − .  

However, for the proportion of successes , the variance of the distribution is given by:  p̂

 ( ) ( )( )
22

22 2
ˆ ˆ ˆp

xE p E p E E
n n

σ
⎛ ⎞ ⎛⎛ ⎞ ⎛ ⎞= − = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

x ⎞
⎟     (2.42) 

 ( ) ( )( )( ) ( ) ( )
ˆ

22 2
2 2

1 11
P

np p p p
E x E x

n n
σ

n
− −

= − = =     (2.43) 

 

 Often, the population mean p, is a parameter that is not known.  Hence, from 

Equation (2.41-), since  is an unbiased estimator of p, the variance of a sample 

proportion can be estimated as: 

p̂

( ) ( )2 2
ˆ

ˆ ˆ1
ˆp

p p
E p

n
σ

−
= =         (2.44) 
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 2.7 Test of Hypothesis 

 A statistical hypothesis, or hypothesis, is a claim about the value(s) of one or 

more population characteristic(s).  In any hypothesis testing, two contradictory statements 

are often proposed.  The objective is then to decide which of the two statements about the 

population is more likely or correct based on sample information.  The statements are 

often formulated so that one of the claims is initially favored.  The initially favored claim 

will not be rejected in favor of the alternative claim unless sample evidence confidently 

contradicts it and provides strong support for the alternative assertion.  The claim initially 

favored and believed to be more likely is referred to as the null hypothesis.  It is often 

denoted by H0.  The other claim is referred to as the alternative or research hypothesis 

and is often denoted by Ha (Devore, 1995; Montgomery, et al., 1998; Mendenhall, et al., 

1982)  

 

 2.8 Errors in Hypothesis Testing 

The decision to accept or reject a claim on the null hypothesis is based on 

information often contained in a sample drawn from the population of interest.  The 

sample values are used to compute a single number corresponding to a point on a line.  

This number, referred to as the test statistic, is usually used by experimenters in making 

statistical decisions.  The entire range of values that the test statistic may assume is 

divided into two sets, or regions.  One corresponds to the rejection region and other the 

acceptance region.  If the test statistic computed from a particular sample assumes a value 

in the rejection region (also called the critical region), then the null hypothesis is rejected 

in favor of the alternative hypothesis.  On the other hand, if the test statistic falls in the 
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acceptance region, then the null hypothesis is accepted (but not proven truth).  The 

circumstances leading to either of these decisions vary are discussed below.  In statistical 

tests, it is possible to make an error that involves rejecting the null hypothesis when in 

fact it is true and should not be rejected.  The probability of making such an error is 

referred to as a Type-I error.  It is also often referred to as the significance level and is 

usually denoted by α.   

( ) ( )0 0P Type I error P Reject H H is trueα = − =     (2.45) 

Another type of error involves accepting the null hypothesis (i.e. failing to reject 

the null hypothesis) when it is false and the alternative hypothesis is true.  The probability 

of making such an error is referred to as a Type-II error and is often denoted by β.   

( ) ( )0 0P Type II error P Accept H H is falseβ = − =     (2.46) 

In typical applications, a Type-I error, results in a false alarm while a Type-II 

error results in a missed alarm.  Table 2.1 is a summary of the decisions generally made 

in Hypothesis testing. 

 

Table 2.1 Decisions in Hypothesis Testing 
 

Decision H0 is true H0 is False 
Fail to Reject 

H0
Correct decision Type-II error 

β 

Reject H0
Type-I error 

α 
Correct decision 

Power = 1-β 
 

Where Power is the probability of rejecting H0, if H0 is false. 

 Figure 2.1 is a graphical illustration of the occurrence of a Type-I error.  The 

shaded region between the lower control limit (i.e. critical value below which distribution 
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is out of control, (LCL)) and the upper control limit (i.e. the critical value above which 

the distribution is out of control, (UCL)) gives the range or area within which a test 

statistic must lie before it is accepted. 
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Figure 2.1 Probability Distribution of x successes in n trials (n = 50, Po = 0.5) 
 

 

 If a test statistic falls in this range and it is truly within the range, then a correct 

decision will be made by accepting the null hypothesis.  However, it a possible that a test 

statistic that lies in the shaded region could be ignored or rejected based on a claim that it 

lies outside the shaded region.  The probability of erroneously rejecting the true outcome 

of an hypothesis is the value of a Type-I error.  From Figure 2.1 the probability of 

making a Type-I error is given by the sum of the areas in the tails outside the shaded 

region.   

 Furthermore, during experimental analysis, the mean value the distribution 

changes.  If the change is significantly different from the hypothesized value µ, it implies 
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that the new mean value comes from a significantly different distribution.  It is essential 

that a decision be made to reject this new mean value.  Using Figure 2.2, let graph A be 

the hypothesized distribution. 
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Figure 2.2 Probability Distribution of X successes in n trials (n = 50, Po = 0.5,  
Pa1 = 0.35, Pa2 = 0.65) 

 
 
   However, if a value belongs to the distribution shown by C it is possible that 

some of the test statistics that belong to C may also appear in distribution A and what is a 

false or spurious value may get accepted.  The same situation may occur between 

distribution A and B.  The frequency or rate of not detecting false values lead to the 

occurrence of Type-II errors.  The probability of a Type-II error is given by the area of 

the shaded region in each of the distributions A or B. 

  The goodness of a statistical test of an hypothesis is measured by the probabilities 

of making a Type-I or a Type-II error (Mendenhall, 1982). 
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• The size of the critical regions, and consequently the probability of a Type-I error 

α, can always be reduced by appropriate selection of the critical values. 

• The Type-I and Type-II errors are related. A decrease in the probability of one 

type of error always results in an increase in the probability of the other, provided 

the sample size does not change. 

• An increase in sample size will generally reduce both α and β provided that, the 

critical values are held constant. 

• When the null hypothesis is false, β increases as the true value of the parameter 

approaches the hypothesized value in the null hypothesis.  The value of β 

decreases as the difference between the true mean and the hypothesized value 

increases. 

 Very often, the probability of a Type-I error is controlled by the researcher or 

analyst when the critical values are selected. Thus, it is usually easy to set a Type-I error 

rate or probability α, at or near some desired value.  On the other hand, the probability of 

a Type-II error rate β, is not constant.  It depends on the true value of the population 

parameter P0, the sample size n, the new population variance, and the extent to which the 

null hypothesis H0 is false.  The probability of correctly rejecting a false null hypothesis 

is referred to as Power and is given by 

( 0 0 1Power P Reject H H is false) β= = −      (2.47) 

 The Power of a statistical test is a very descriptive and concise measure of the 

sensitivity of the test (i.e. the ability of the test to detect differences).  If a test of 

hypothesis is designed to detect difference on both sides of the true mean µ0, then it is 

called a two-tailed test.  In such a test, the conventional approach is that the critical 
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region is split into two parts with equal probability placed in each tail of the distribution 

of the test statistic [Montgomery, et al., 1998].   Such tests are formulated as:  

0

0

:
:a

H
H

0µ µ
µ µ

=
≠

         (2.48) 

If the hypothesis-testing is on only one side of the true population mean µ0, then it 

is referred to as a one sided alternative hypothesis formulated as: 

0

0

:
:a

H
H

0µ µ
µ µ

=
≥

         (2.49) 

or 0

0

:
:a

H
H

0µ µ
µ µ

=
≤

         (2.50) 

 2.9 Analysis of Type-I errors Using Binomial Distribution 

 As indicated earlier, a Type-I error occurs when a true null hypothesis is rejected.  

Figure 2.3 illustrates the occurrence of a Type-I error 
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1-α 

Figure 2.3. Probability Distribution Showing a Type-I Error Occurrence 
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 In general, for the binomial distribution, Equation (2.13), where 

   ( ) ( )
n

1 1, 2,3,...,
x,p,n = x

0

n xx

x

p p x n
P

Otherwise

−⎧⎛ ⎞
− =⎪⎜ ⎟

⎨⎝ ⎠
⎪
⎩

can be used to estimate the probability of a Type-I error.  The probability of rejecting the 

null hypothesis when it is true is given by α, and for a two-tailed test, each side has equal 

probability of α/2.  The left side rejection region is given by: 

( ) (
0

0,1,2...
2

Lx

L
x

P x x P x xα
=

= ≤ = =∑ )L        (2.51) 

( )0 0
0

1
2

Lx
n xx

x

n
P P

x
α −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑         (2.52) 

where XL is the number of discrete samples that define the rejection region to the left of 

Figure 2.3.  The right side rejection is also given by: 

 ( ) ( , 1, 2...
2

H

n

H H H H
x x

)P x x P X x x x nα
=

= ≥ = = + +∑     (2.53) 

 ( )0 01
2

L

n
n xx

x x

n
P P

x
α −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑        (2.54) 

 Either of Equation (2.52) and (2.54) can be used to estimate the probability of a 

Type-I error in either tail of the probability distribution knowing the reference probability 

P0 and the number of samples x, that indicate the particular region. 

 

 2.10 Analysis of Type-II errors Using Binomial Distribution 

 A Type-II error occurs when a false null hypothesis is not rejected.  This is 

illustrated in Figure 2.4 where the probability of a Type-II error, β, is represented by the 
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diamond shaded area under the probability distribution curve when P = Pa ≠ P0.  From 

Figure 2.4,  

( ) ( ) (
0 0

0,1,2, 0,1,2,
H Lx x

)L H a H
x x

LP x x x P P P x x P x xβ
= =

= ≤ ≤ = = = − =∑ ∑    (2.55) 

Using Equation 2.52 in Equation 2.55 gives, 

( ) ( )
0 0

1
H Lx x

n x n xx x
a a a a

x x

n n
P P P P

x x
β −

= =

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ 1 −
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proportion of failures (n(1-p)) is greater than or equal to five.  If np < 5 and n(1-p) <  5, 

then the binomial distribution is too skewed for the normal distribution to give accurate 

approximations (Devore, 1995).  Given the hypothesis, 

H0: P = P0  Ha: P ≠ P0 
 
When the null hypothesis is H0, is true: 

( )0
0 / 2

1 0P P
C L P Z

nα

−
= ±        (2.57) 

 Where CL denotes the confidence limits, / 2Z α  denotes the boundaries marking 

the critical region for a two-tailed test and 0P represents the reference probability.  The 

upper confidence limit (UCL) is given by 

( )0 0
0 /2

1P P
UCL P Z

nα

−
= +         (2.58) 

While the lower confidence limit (LCL) is  

( )0 0
0 / 2

1P P
LCL P Z

nα

−
= −        (2.59) 

When the alternative hypothesis Ha is true, the UCL is again given by 

( )1a a
a

P P
UCL P Z

nβ

−
= +        (2.60) 

Where Z β denotes the critical boundaries on the left and right of the distribution 

( )1a a
a

P P
LCL P Z

nβ

−
= −        (2.61) 

Solving Equations (2.58) and (2.60) and then Equations (2.59) and (2.61) gives  
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      (2.63) 

( ) ( )Z Zββ φ φ+= − β−         (2.64) 
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β φ φ

⎡ ⎤ ⎡− −
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2
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⎥
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⎥⎦

  (2.65) 

Where, (z)φ is given by Equation (2.40), after substituting Equation (2.39), to get 

( ) 2( 2)1 exp
2

z Uzφ
π

−

−∞
= ∫ dU        (2.66) 

 To solve Equation 2.66, let 
2

Ut = , then 2dt dU=  and 
2

2

2
Ut = .  In addition, the 

upper limit changes to
2
z

, while the lower limit becomes
2

−∞
= −∞.  Substituting in 

Equation 2.66), 

( ) 2( )21 2
2

z
tz exp dtφ

π
−

−∞
= ∫        (2.67) 

( ) 2( )21 z
tz exp dtφ

π
−

−∞
= ∫         (2.68) 

( ) 20 ( ) ( )2
0

2 2
2 2

z
tz exp dt exp dtφ

π π
−

−∞
= +∫

2t−∫     (2.69) 
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( ) 20 ( ) ( )2
0

1 22
2 2

z
tz exp dt exp dtφ

π π
−

−∞
= +∫

2t−∫     (2.70) 

The first integral term of Equation (2.70), can be simplified by reason of 

symmetry of the normal distribution as  

2 20 ( ) ( )

0

1 12
22 2

t texp dt exp dt
π π

∞− −

−∞
=∫ ∫

12 =      (2.71) 

The second integral term can also be simplified using the error function (erf) 

approximation as  

2( )2
0

1 2 1
22 2

z
t zexp dt erf

π
−⎛ ⎞ ⎛= ⎜⎜ ⎟ ⎝ ⎠⎝ ⎠∫ ⎞

⎟       (2.72) 

Hence, 

( ) 1 1
22

zz erfφ ⎛ ⎞⎛= + ⎜⎜ ⎝ ⎠⎝ ⎠
⎞
⎟⎟         (2.73) 

Equation (2.73) can thus be used to find a solution for Equation (2.65) knowing P0, Pa, 

and n.  Conversely, Equation (2.73) can be used to estimate the critical boundaries given 

the values of ( )zφ  as: 

 ( )2 ( ) 1 2z erfinv zφ= −         (2.74) 

It is worth mentioning that Equation (2.66) can also be approximated using the series 

relation in Equation (2.75). 

( ) ( ) ( )

( )

2 1

0

11 1
2 2 1 22

k k

k
k

z
z

k k
φ

π

+∞

=

⎧ ⎫⎡ ⎤−⎪ ⎪= + ⎢⎨ +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
∑ !

⎥⎬       (2.75) 
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CHAPTER 3 

3.0 Development of the Health Monitor  

3.1 Model States as a Markov Chain 

 When a controller is in operation, the actuating errors (Setpoint minus Controlled 

Variable) are generated sequentially as shown in Figure 3.1. 

Figure 3.1  Actuating Error Signals in a Time series of Controlled Data 

 39



 Labeled in Figure 3.1 is a period of good control when a controller is able to 

desirably manipulate a controlled variable in order to make the process stable and 

minimize deviations of the process output variable from the process setpoint.  The Figure 

also illustrates a period when a controller is aggressive, resulting in increased oscillations 

in the process output.  Lastly, a period of sluggish control is labeled.  Not shown 

however, are other examples of constraint encounters, stiction, or continuous 

disturbances, all of which are possible nuisances that can occur in a control loop and are 

analyzed by the proposed method in this work.   

 The actuating errors (Setpoint-Controlled Variable) as they occur are labeled 

showing their run length in Figure 3.2.  Errors above the mean value of zero are labeled 

as positive and those below are labeled as negative.  If the actuating error persists on one 

side of the mean, the run length numbering continues on that side with the appropriate 

sign.  However, anytime a zero crossing occurs, it signifies a sign change, and the run 

numbering also changes from positive to negative (or vice versa) and begins again with 

either +1 or –1 as appropriate.  If the error has a value of zero, by definition in this work, 

it is not a zero crossing, and the run length continues to increase, with the run number 

bearing the same sign as the prior run.  A run characterized by a positive (+) or negative 

(-) sign is referred to as a state.  Shown in Figure 3.2, for illustration, the maximum state 

number is 4.  Hence, the number of states will vary between -4 and +4 inclusive but 

excluding zero.  This means that runs of 5, 6, or more, remain in a state of either +4 or -4 

depending on the sign characterizing the run.  Thus, when the actuating error visits a state 

that is higher than the maximum number, the run length increases but the state does not 
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change.  Another characteristic of the data in Figure 3.2 is that each transition is 

binomially distributed. 

 For instance, given that an actuating error run is in a state of , it only has 2 (i.e. 

binomial) transition options for the next observation.  It can either move from the state of 

 to the state of  or make a zero crossing to a state of -1.  If it is in a state of 

i+

i+ +i+1 i− , it 

also has 2 options of either moving to a state of , or making a zero crossing to a state 

of +1.  

-i-1 

 
 
 

Time E
rro

r

+ 

- 

Exactly zero, (not a zero 
crossing) 

1, +1

8,-4 zero crossing from 
state of –4 to +1 

3, +3

 2, +2 

 1, +1 

  4, -4 

 3, -3 

2, -2

1, -1

7, +4

6, +4

5, +4

4, +4
3, +3

2, +2

7,-4

 6,-4 

5,-4
4,-4 

Run Length  state 

2,-2 3,-3 

  3,+3 

2,+2 

1,+1 

zero crossing and transition 

from state of +3 to -1 

1,-1 

Transition from a state of +1 to a state of +2 
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 Thus once the actuating error has visited a particular state, its next transition is not 

governed by how it got to this state.  It is entirely dependent on the present state only.  In 

other words, whether the next transition will result in a zero crossing or not has nothing 

to do with visits to a prior state or states.  However, the next transition is entirely 

dependent on this present location of the data.  This is the Markov property, which forms 

the broad basis for this work.  The directed paths in Figure 3.2, which indicate the state 

transitions, are modeled with k total states (k = 8) also referred to as the run length.  In 

general, the run length can be any number, but for practical purposes, it is appropriate to 

limit states.  Any run length higher than the extreme state (+E) remains in the extreme 

state.  The Markov chain Model is shown diagrammatically in Figure 3.3.   

In general, let  denote the total number of samples (transitions) that have ever 

visited (entered) the state of i , (  could be

in

i ± ).  For all interior states, this number of 

samples also denotes the total number of samples in that state.  The only exceptions to 

this involve the states of ±1 and the extreme state of ±E.  For this model, except for the 

extreme states, once a state is occupied or visited, the data cannot occupy that state again 

at the next immediate transition.  Although, a state can be visited or occupied infinitely 

often, future visits to all interior states do not occur immediately at the next transition but 

rather at some time in the future.  The only exception to this is the extreme state.   

All states are positive recurrent and the entire model once defined forms a class.  This 

is because all states communicate and the chain is irreducible as can be seen in Figure 

3.3.   
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 Once states have been modeled as a Markov chain, the states transition 

probabilities can be determined as follows.  Let  denote the number of samples that do 

not make a zero crossing but rather leave the state of i and enter the state , (i.e. j not 

equal ±1).  Also, let  denote the number of samples that have ever visited the state of 

 respectively.  Furthermore, for the general case in Figure 3.3, let  denote the 

transition probability of the number of samples exiting the state of +i and entering the 

state of -1.  Then, 

,i jT

j

in±

i± +i P

( ) , 1

( )

( ) i i i

i

n T
P i

n
+ + + +

+

−
+ =         (3.1) 

Similarly, if denotes the probability of transition from a state of -i to a state of +1, 

then 

-i P

( ) , 1

( )

( ) i i i

i

n T
P i

n
− − −

−

−
− = −         (3.2) 

 Unlike all interior states, state transitions from the extreme states differ.  Whereas 

transitions from all interior states either make a zero crossing or move to the next 

absolute higher state, transitions from the extreme states either make a zero crossing or 

re-enter themselves.  Let ±E denote the positive or negative extreme states, and PE denote 

the proportion of samples that leave the extreme and make a zero crossing to the state of 

±1 respectively.  Then, the transition probability from the state +E to the state -1 say is 

given by: 

1,( ) E E

E

T
P E

n
+ − +

+

+ =         (3.3) 

Similarly, the transition probability from the state of –E to the state +1 is given by: 
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1,( ) E E

E

T
P E

n
− − −

−

− =         (3.4) 

 The transition probabilities associated with each state can be illustrated in an array 

as shown in Table 3.1.  From Table 3.1 and using row 3 for instance, if the actuating error 

is in a state of +1, then it can only visit the state of +2 with a probability 1-P(+1) or make 

a zero crossing to the state of -1 with a probability of P(+1).  Similarly, considering row 8 

for instance, if the actuating error is in a state of -2, then it has only two options of either 

visiting the state of -3 with a probability of 1-P(-2) or making a zero crossing to visit the 

state of +1 with a probability P(-2). 

 

Table 3.1 Markov Transition Probability Matrix (Shown Only for 8 Total 
  States) 
 

To State 
 +1 +2 +3 +4 -1 -2 -3 -4 
+1 0 1-P(+1) 0 0 P(+1) 0 0 0 
+2 0 0 1-P(+2) 0 P(+2) 0 0 0 
+3 0 0 0 1-P(+3) P(+3) 0 0 0 
+4 0 0 0 1-P(+4) P(+4) 0 0 0 
-1 P(-1) 0 0 0 0 1-P(-1) 0 0 
-2 P(-2) 0 0 0 0 0 1-P(-2) 0 
-3 P(-3) 0 0 0 0 0 0 1-P(-3) 

 
 
 
 
From 
State 

-4 P(-4) 0 0 0 0 0 0 1-P(-4) 
 

 Where the transitions probabilities are zero in Table 3.1 indicate that such visit are 

not allowed.  For instance, an actuating error in a state of  cannot visit itself if i  is an 

interior state.  Neither can it visit a state 

±i 

( )+i +2 or ( )-i -2  say, in just one step.  

Transitions are either from a state of  to a state of  or from -i  to or make 

a zero crossing.  It is only in the extreme state that transitions occur from the state of ±E  

+i ( + i  +1)  (-i -1)
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to the state ±E  with respective probabilities of either 1- or 1- P(  or make a zero 

crossing with probabilities of either  or . 

P(+E) -E)

P(+E) P(-E)

 Appendix H provides a brief description on the deference between state space 

modeling of a time series data and state modeling of a data in a Markov chain. 

 

3.2 Overall Structure of the Health Monitor 
 

 In this section, the general development of the monitor is discussed.  In order to 

obtain the information used for hypothesis testing and hence making decisions, data must 

be collected for a period during which controller performance is judged by operators or 

engineers to be acceptable.  The data collected during this period will be referred to as 

reference data.  Once the reference data has been collected, it is used to determine the 

transition probabilities associated with each state, the number of samples that need to 

visit a particular state if control performance is good, a window of data that need to be 

used for statistical comparison and control limits associated with each state by the 

following procedure:     

 

  3.2.1 Estimate the Sampling Ratio 

 The health monitor is initialized to run with 8 total states (4 on both the “+” and “-

“ runs) at a sampling frequency equal to controllers sampling frequency.  This means that 

the ratio of number of data from the controller to the number of data sampled by the 

monitor is unity.  This ratio will be referred to as the sampling ratio.  Hence, a sampling 

ratio of unity denotes that the controller and the health monitor both sample data at the 

same rate or frequency.  For instance, a sampling ratio of three means that, for every 
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three controller actuating error samples, the health monitor samples one actuating error to 

analyze.  The relation between sampling ratio, controller sampling time interval and 

monitor sampling time interval is discussed below. 

 Let fc denote the controller sampling frequency, in units of number of controller 

samples/time.  Also, let fH denote the sampling frequency of the health monitor also in 

units of number of health monitor samples/time.  Moreover, let SR denote the sampling 

ratio.  Then,  

 /
/

Number of Controller Samples TimeSR
Number of HealthMonitor Samples Time

=     (3.5)  

 c

H

fSR
f

=          (3.6) 

But  1
c

c

f
Controller Sampling Time Interval T

=
1

=
∆

    (3.7) 

And  1
H

1

H

f
Health Monitor Sampling Time Interval T

= =
∆

   (3.8) 

Hence, 
1

1 *1 1
c H

c
H

TSR
TT

∆ T∆
= =

∆
∆

       (3.9) 

Or  

 *         (3.10) H cT T S∆ = ∆ R

 Thus, the health monitor sampling time interval is given by the product of the 

controller sampling time interval and the sampling ratio.  Alternatively, the sampling 

frequency of the health monitor is given by: 

 c
H

ff
SR

=          (3.11) 
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 The monitor is automated to analyze any length of data until all the transition 

probabilities lie between a desired range such that they are not too close to zero or unity.  

For the analysis in this work, the range is chosen to lie between 0.25 and 0.75 inclusive.  

If at the end of the first iteration, any transition probability is outside this range, the 

monitor automatically adjusts the sampling ratio from 1 to 2 and then determines the 

transition probabilities again.  This process iteratively continues, until all the state 

transition probabilities for the initial 8 total states lie within the pre-chosen range.  The 

reason for choosing this range initially is to avoid a situation where control limits, which 

are to be determined, lie too close to unity or zero because the reference probabilities 

were already that close.  Once all transition probabilities lie within the chosen range, the 

monitor then adjusts the total number of states until at most 10 percent of the entire data 

lie in the extreme states.  This is explained below.  

 

  3.2.2 Estimate the Number of States 

 In general, when a controller is performing optimally well, its actuating errors 

should be characterized by frequent zero crossings such that as time progresses the mean 

error is approximately close to zero.  However, in practice this does not actually happen 

unless the noise effect in the data is purely white, which is independent of each other and 

identically distributed (IID).  This means that ideally, if every thing was perfect for a 

well-tuned control loop, then the distribution of the actuating error samples will be 

approximately Gaussian, normal and independently distributed (NID).  This will cause 

lower states to be populated with more samples than higher states as shown in Figure 3.4. 
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 This implies that for eight (8) total states, if N denotes the total number of 

samples in each of the lowest states (i.e. +1 and -1 states), then the states of +2, +3 say, 

will each have approximately 2
N  and 4

N samples respectively.  This is because, since 

the data is IID, there is no correlation between them.  Hence, each transition has equal 

chance of about 50% to either make a zero crossing or visit the next absolute higher state.  

This means that the number of samples in adjacent higher states will differ from their 

adjoining lower state by a factor of 0.5.  All run lengths equal to or exceeding the 

extreme state stay in that state and since the state of +4 is an extreme state, all sample 

sizes from 8
N , 16

N , 32
N , etc., will all be cumulative parts of the samples visiting the 
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state of +4.  Consequently, if n+E denotes the total number of samples in the extreme state 

of +4, then  

 4 5 6 ...En n n n n θ+ + + += + + + + +  

Where, θ denotes the largest run length that would have occurred if states were 

not limited to E±  

 ...
8 16 32E
N N Nn+ = + + +        (3.12) 

If N+p denotes the total number of samples in all the positive states, then 

  1 2 3p EN n n n n+ + + += + + + +

 ( ) ...
2 4 8 16p
N N N NN N+

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Thus, the total number of samples in the extreme state can be estimated as the sum of a 

geometric series as: 

 ( 4 5 6 ...limEn n n n )nθ
θ

+
→∞

= + + + +       (3.13) 

 1 1 11 ...
8 2 4 8limE
Nn

θ
+

→∞

⎡ ⎛= + + + +⎜⎢ ⎝ ⎠⎣ ⎦

⎤⎞
⎟⎥       (3.14) 

 
( )

( )
111 1 1 21 ...
18 2 4 8 8 1 2

limE
N Nn

θ

θ
+

→∞

⎛ ⎞−⎡ ⎤⎛ ⎞ ⎜= + + + =⎜ ⎟⎢ ⎥ ⎜⎝ ⎠⎣ ⎦ −⎜ ⎟
⎝ ⎠

⎟
⎟     (3.15) 

 
4E
Nn+ =          (3.16) 

 The number of samples in the other extreme sate of –E will be approximately 

same as Equation (3.16).  Now, for the entire positive states’ side of the chain starting 

from +1, +2, … , +E-1, and +E, it can be shown that: 
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 ( ) ( ) ( ) ( )1 2 3 4 5 6 ...pN n n n n n n n θ+ + + + + + += + + + + + +   

        (3.17) ( )( 1 2 3pN n n n n+ = + + + )E+

 
2 4 4p
N N NN N+

⎛= + + +⎜
⎝ ⎠

⎞
⎟

N

N

       (3.18) 

          (3.19) 2pN+ =

 Notice that, the actuating error samples are geometrically distributed on each half 

of Figure 3.4 (i.e. from -1 to -4 and +1 to +4) for the 8-state case under discussion.  Since 

the distribution of samples in one half is identical to the other half, the total number of 

samples for the entire chain can be approximated as:  

         (3.22) 2 4total pN N= =

Hence, if “rp” denotes the ratio of the number of samples in any of the extreme states to 

the total number of samples in the entire chain, then “rp” is given by: 

 14 0.0625 6.25%
4 16

N
rp

N
= = ≅ =       (3.23) 

 Thus, ideally about 6.25 percent of the total number of samples analyzed will lie 

in each of the extreme states in an 8-state model, assuming that the distribution of 

actuating error samples was independent.  Intuitively then, a value of 10 percent is 

proposed as an approximation of the fraction of the number of samples that should lie in 

any of the extreme states. 

 Therefore, during analysis of the reference data, if after using the initial total 

number of states for analysis, it is determined that more than 10 percent of the total data 

is in the extreme states, the total number of states is updated by 2 (one positive and one 
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negative state are added) and the analysis repeated.  This process is repeated until the 

monitor finds the number of states that satisfy the ten percent condition. 

 After a set of states is determined such that not more than 10% of the data lie in 

the extreme state, it is often possible that some of the transition probabilities associated 

with any newly added states may lie outside the chosen range.  Consequently, the monitor 

updates the sampling ratio and analyzes the data again so that all the transition 

probabilities lie within the chosen range.  This procedure is illustrated in Figure (3.5a to 

d).  For instance, Figure (3.5a) illustrates the nominal analysis of the reference data 

starting with a sampling ratio of unity and 8 total states.  As can be seen, after the initial 

data was analyzed, some of the transition probabilities were greater than the desired 

upper limit 0.75.  Hence, the sampling ratio was updated from unity to 2 and the entire 

process repeated.  After analysis of the data using the new sampling ratio, all the 

transition probabilities fell below 0.75 as shown in Figure (3.5b).  Nevertheless, the 

extreme states are too populated with data, therefore the monitor adjusts the number of 

states from 8 to a total of 10 (1 new positive state and 1 new negative state on each side) 

and repeats the analysis using this new number of states but keeping the sampling ratio at 

the prior value.  This process is repeated until no more than 10% of the total number of 

samples being analyzed is in the extreme states.  For this example, 12 total states (± 6) 

were determined by the monitor to be enough in order to achieve the user-desired 

conditions.  This is shown in Figure (3.5c).  It can however be noticed in Figure (3.5c) 

that the transition probabilities in the extreme states of “-6” is outside the desired range.  

Therefore, the monitor adjusts the sampling ratio again until all the probabilities fall 

between 0.25 and 0.75 inclusive as shown in Figure (3.5d). 
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3.2.3 Identify States Containing the Least Number of Reference 
    Samples 

 Generally, after the reference data is analyzed, the minimum number of samples 

would lie either in the extreme state or in the penultimate state.  It is important for 

statistical analysis that number of samples in the state having the least number of samples 

be significantly large enough in order to minimize statistical errors, namely Type-1 and 

Type-II errors.  Essentially, after determining the transition probabilities using the 

reference data, the monitor observes all the states to determine the state (on each half of 

the chain) that contains the least number of samples.  It is possible for the minimum 

number of samples to be located in the extreme state on one half while on the other half, 

it will occur in the penultimate state.  It is also possible that the minimum number of 

samples will be located in the penultimate state in both halves or in the extreme in both 

halves.  Either way all that the monitor needs to know is the state in which this minimum 

number of samples is located.  Once this state is known, the monitor calculates the 

number of samples that need to be in that states in order to meet the user specified criteria 

on Type-I and Type-II errors.  Given that the level of significance associated with the 

state that is identified to contain the minimum number of samples is αk, since statistical 

errors can occur in either tail of the distribution, a two-tailed test analysis is conducted.  

This implies that for each tail the level of significance will be given by
2

kα .  This is 

illustrated in Figure 3.6.   
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Figure 3.6 Analysis of Type-I Error Rate for State with Least Number of  
  Reference Data 
 

 Hence, the number of samples XL, required to obtain the cumulative probability 

2
kα  in the left hand tail, is given by the Equation (2.52) as: 

 ( )0 0
0

1
2

Lx
n xxk

x

n
P P

x
α −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑        (3.24) 

 Similarly, the number of samples XH, that give the cumulative probability
2

kα , in 

the right hand tail is given by Equation (2.54) as: 

 ( )0 01
2

H

n
n xxk

x x

n
P P

x
α −

=

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑       (3.25) 
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Equation (3.25) can be written in another form as  

 ( )0 0
0

1 1
2

HX
n xxk

x

n
P P

x
α −

=

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
∑      (3.26) 

 Thus if αk (Type-I error rate for a particular state), and the number of samples, XL 

and XH required to give αk are all known, then Equations (3.24) and (3.26) can be used to 

determine the number of samples “n” to place in a particular state in order to obtain a 

desired error rate.  There are however, four unknown variables namely the type one error 

rate associated with a particular state αk, the number of samples XL, that give the lower 

control limit, the number of samples XH, that give the upper control limit, and total 

number of samples n, in that state).  Nevertheless, there are only two Equations making 

solution of Equations (3.24) and (3.26) impossible at first sight.  One way to get around 

this is to select a desired Type-II error rate when future transition probabilities deviate by 

some amount and develop and a third equation involving both the desired Type-I and 

Type-II error rates.  For the examples in this work, a desired Type-II error rate equal to 

the overall Type-I error is set when the Transition probability differ from the reference 

value by 90 percent. 

 Let Pa denote some future transition probability (different from the reference 

transition probability P0), and which is desired to be detected with a Type-II error rate 

specified.  Also, let β denote the Type-II error rate when P is equal to Pa.  Then from 

Figure 3.7, the shaded area gives the Probability of a Type-II error. 

 With reference to Equation 2.56, the Type-II error rate for the chosen state can be 

estimated using 
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− −

= =

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟
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∑ ∑    (3.27) 

 With β known, there are now three nonlinear Equations and four unknown 

variables (XL, XH, αk, and n).  Thus, there is one more variable than the number of 

Equations.  A straight form solution can still not be determined at this stage.  In addition, 

at this stage, the Type-I error rate associated with each state is not known.  However, it 

can be estimated if the overall Type-I error rate for the entire experiment is known.  The 

Type-I error rate for each state is determined below.   

β = P(Type-II 
Error) 

P0
Pa

Figure 3.7 Analysis of Type-II Error for State with Least Number of Reference  
Data 

 

Let αT, denote the entire Type-I error rate desired by the engineers or operators for the 

entire test.  However, each window or chain contains ‘NS’ total states where 
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and each state transition is associated with a level of significance denoted 

by αk.  The health monitor flags if any one transition is in any of critical regions of the 

probability distribution associated with any state as shown in Figure 3.7.   

Given the null hypothesis:  H0: P = P0 and Ha: P ≠ P0

Where, H0 is the null hypothesis that all future state transition probabilities are equal to 

the reference transition probability P0.  Let P(Ti) =  probability of the ith transition that is 

not in the extreme region.  Then; 

P(H0) = P(T-E is not extreme and T-E+1 is not extreme and ••• T-1 is not extreme and T+1 is  

not extreme ••• and T+E is not extreme). 

P(H0) =  P(T-E is not extreme)* P(T-E+1 is not extreme)*•••* P(T-1 is not extreme)* 

P(T+1 is not extreme)* •••* P(T+E-1 is not  extreme)* P(T+E is not  extreme)  

But P(H0) =  1 - αT

Hence,  

1 - αT  =   [1-P(T-E is extreme)]*…* [1-P(T-1 is extreme)]*[1-P(T+1 is extreme)]* •••* [1- 

P(T+6 is extreme)] 

But, P(T-k is extreme) = αk, Therefore, 

1 11 [1 ]*...*[1 ]*[1 ]*...*[1 ]T Eα α α α− − +− = − − − −α+   (3.28) 

 For the binomial distribution, a necessary requirement is that: each trial must be 

independent, each trial must result in only two possible outcomes, the probability of 

success on each trial must remain constant and all trials must be identical.  Hence, if all 
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future transitions are identical, the Type-I error rate for each of the “k” states can be 

assumed identical.  Hence, 

 1 (1 ) * (1 ) * (1 ) *.T k k k ..α α α α− = − − −     (3.29) 

 1 (1 ) sN
T kα α− = −         (3.30) 

Solving for αk gives: 

 1 (1sN
k )Tα α= − −         (3.31) 

 Where, NS denotes the total number of states and k denotes each individual state.  

Equation (3.31) can be used to determine the Type-I error rate associated with each state, 

given the overall Type-I error rate for the entire test.  It is worthwhile to mention here 

that Equation (3.31) can be further approximated using a Taylor series expansion to give 

the Bonferroni approximation that is used in multiple hypotheses testing in experimental 

analysis.  From Equation (3.31), let 

 (1k f )Tα α= −         (3.32a) 

Where  ( ) (1 )sN
Tf Tα α= −         (3.32b) 

Using, a Taylor series approximation and expanding Equation (3.32b) about a reference 

value 0α , ( )Tf α can be written as 

 ( ) ( ) ( ) ( )
2

' 0
0 0 0

( )( )
2

T
T Tf f f fα α ''

0α α α α α α−
= + − + +…   (3.33) 

Ignoring the second order and higher terms and letting 0 0α = , Equation (3.33) can be 

simplified as 

 ( ) ( ) ( )'
0 0( )T Tf f f 0α α α α α= + −       (3.34) 

But, from Equation (3.32b), the first derivative of ( )
T oTf α αα =  
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−

=

−
= −       (3.35) 

Setting 0 0α = in Equation (3.35) 

 ( )' 1
o

S

f
N

α = −         (3.36a) 

Also, 

 ( )0 (1 0) 1sNf α = − =         (3.36b) 

Substituting Equations (3.36a) and (3.36b) in Equation (3.34) gives 

 ( ) 11 ( 0) 1 T
T T

S S

f
N N

αα α
⎛ ⎞ ⎛

= + − − = −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

     (3.37) 

Substituting Equation (3.37) in Equation (3.32a) gives 

 
( )1 1 T

k
sN

α
α

⎛ ⎞
= − −⎜

⎝ ⎠
⎟         (3.38a) 

Equation 3.38a simplifies to 

 T
k

sN
αα =          (3.38b) 

 Equation 3.38b is the well-known Bonferroni approximation.  It must be 

mentioned that since the Taylor series is truncated after the second order term, it means 

that the general error involved in the approximation in Equation (3.38b) is of the order 

( 1
0TO )λ

α α
+

− where λ is the order of the highest derivative used in the Taylor series 

estimate (i.e. 1λ = ).  However, the approximation gets better as the number of states NS 

becomes large and the error rate Tα , gets smaller.  Consequently, for this work, the exact 

form of Equation (3.31) is used in all the calculations of kα for the monitor rather than 
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Equation (3.38b).  Table 3.2 illustrates the difference between the exact calculation for 

determining kα and the Bonferroni approximation ( Bα ) for determining same, for various 

values of the overall Type-I error rate Tα , and different values of total number of states 

Ns.  It can be noticed that for a given Tα , the difference between kα  and Bα , decreases as 

Ns increases with the relative error also increasing.  Also, for a given Ns, as Tα  decreases, 

both kα and Bα  decrease and the relative error also decreases.  In all cases, it is seen that 

the difference between kα  and Bα  becomes negligibly small as Ns increase and Tα  

decrease.  In order to avoid ambiguities as to where the approximation is best, kα  is used 

for all estimates in this work. 
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 Once kα is known, Equations (3.24), (3.26) can be solved simultaneously by first 

guessing a value for value for “n” and solving for XL and XH.  Once XL and XH are 

known, use them together with the value of “n” to find a solution for Equation (3.27).  If 

the solution agrees with the pre-chosen value of β, then the value of “n” is the desired 

minimum to place in the chosen state in order to achieve the set error rates.  if not, then 

update the value of “n” by one and repeat the entire process.  The algorithm for this 

process is shown in the flow chart in Figure 3.8 
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Determine XL and XH from Equations (3.24) and (3.26) 
respectively 

Use the values of XL and XH and “n” in Equation 
(3.27) to find βk

Stop

Yes

Does βk satisfy the pre-chosen 
condition? 

No

n = n + 1 

Provide αk (Determined previously based on # of states 
and αT), βk for state with least reference # of samples, λ, 
and initialize “n” (start with n = 5 say) 

Begin

Figure 3.8 Flowchart for Determining the Number of Samples to Place in the  
  State Haven the Least Number of Reference Data in order to balance  
  Type-I and Type-II error 
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  3.2.4 Estimate the Window Length 

 Once the number of samples “n” for the state with least number of reference data 

has been determined, the number of samples that need to be placed in all the other states 

are determined based on “n”.  The window length is estimated by considering each half 

of the chain separately (see Figure 3.3).  Consider first the positive transition states and 

recalling that for all interior states: 

( ) , 1

( )

( ) i i i

i

n T
P i

n
+ + + +

+

−
+ = , but for all interior states, , 1 1i i iT n+ + + + += , Hence, 

 ( ) 1

( )

( ) i i

i

n n
P i

n
+ + +

+

−
+ =          (3.39) 

For the penultimate state, let 'En+ denote the number of samples leaving that state and 

moving into the extreme state, then 1, 'E E ET n+ − + += .  Hence,  

 
1

( 1)
1

'E E
E

E

n nP
n

+ − +
+ −

+ −

−
=         (3.40) 

Therefore, for the extreme state, 

 
'

( )
E

E
E

nP
n

+
+

+

=         (3.41) 

Case 1, 

Assuming that the least number of reference data occurs in the extreme state (+E), then 

from Equation 3.40,  

 ( ) ( ) ( ) '1 1 1 EE E EP n n n++ − + − + −= −        (3.42) 

 ( ) ( )( ) '1 11 EE En P ++ − + −− = n         (3.43) 
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 ( )
( )( )

'
1

11
E

E
E

nn
P
+

+ −

+ −

=
−         (3.44) 

From Equation (3.41), , substituting this in 3.44 gives 'E En n P+ += E+

) ( )
( )(1

11
E E

E
E

n Pn
P

+ +
+ −

+ −

=
−         (3.45) 

 So, for the case where the least number of reference data is in the positive extreme 

state, set  (where “n” has been determined as per the algorithm in Figure 3.8).  

Then use Equation (3.45) to find

En+ = n

1En+ − .  Thus,  

          (3.46) En+ = n

) (1
11

E
E

E

nPn
P

+
+ −

+ −

=
−         (3.47) 

From Equation (3.39), ( ) 1

( )

( ) i i

i

n n
P i

n
+ + +

+

−
+ = , Hence, ( )

( )( 2) 1
2

( 2)

E E
E

E

n n
P

n
+ − + −

+ −
+ −

−
= , Rearranging 

gives 

 

( )

( )( )
1

( 2)

21
E

E

E

n
n

P
+ −

+ −

+ −

=
−

         

 ( )

( )( ) ( )( )( 2)

2 11 1
E

E

E E

nP
n

P P
+

+ −

+ − + −

=
− −

      (3.48) 

Similarly,  

 ( )

( )( )
2

( 3)

31
E

E

E

n
n

P
+ −

+ −

+ −

=
−

 

 ( )

( )( ) ( )( ) ( )( )( 3)

1 21 1 1
E

E

E E E

nP
n

P P P
+

+ −

+ − + − + −

=
− − − 3

     (3.49) 
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Continuing, 

 ( )

( )( )
4

( 3)

31

n
n

P
+

+

+

=
−

 

 ( )

( )( ) ( )( ) ( )( ) ( )( )( 3)

1 2 31 1 1 ... 1
E

E E E

nP
n

P P P P
+

+

+ − + − + − +

=
− − − − 3

    (3.50) 

Moreover, 

 ( )

( )( )
3

( 2)

21

n
n

P
+

+

+

=
−

 

 ( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( 2)

1 2 3 31 1 1 ... 1 1
E

E E E

nP
n

P P P P P
+

+

+ − + − + − + +

=
− − − − − 2

  (3.51) 

Furthermore, 

( )

( )( )
2

( 1)

11

n
n

P
+

+

+

=
−

 

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )( 1)

1 2 3 3 21 1 1 ... 1 1 1
E

E E E

nP
n

P P P P P P
+

+

+ − + − + − + + +

=
− − − − − − 1

  (3.52)  

 Thus, on the positive states side of the chain for this case, the window length, 

WdL+ is given by: 

+
1 2 3WdL ... En n n n+ + + += + + + +  
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( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )

( )( ) ( )( ) ( )( ) ( )( )
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( )( )

1 2 3 3 2

1 2 3 3 2

1 2 3 3

1

1 1 1 ... 1 1 1

1 1 1 ... 1 1

1 1 1 ... 1

1

E

E E E

E

E E E

E

E E E

E
E

E

nP
WdL

P P P P P P

nP

P P P P P

nP

P P P P

nP
n

P

++

+ − + − + − + + +

+

+ − + − + − + +

+

+ − + − + − +

+
+

+ −

= +
− − − − − −

+
− − − − −

+ ••• +
− − − −

+
−

1

 (3.53) 

Factoring out the first term 

 

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ){ } ( )( ) ( )( ){ } ( )( ) ( )( ) ( )( ){ }

( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }
( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }
( )( ) ( )( ) ( )( ) ( )( ) ( )( ){ }

1 2 3 3 2 1

1 1 2 1 2 3

1 2 3 5 4

1 2 3 4 3

1 2 3 3 2

*
1 1 1 ... 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

E

E E E

E E

E E

E E

nP
WdL

P P P P P P

P P P P P P

P P P P P

P P P P P

P P P P P

++

+ − + − + − + + +

+ + + + + +

+ + + + − + −

+ + + + − + −

+ + + + − + −

=
− − − − − −

⎡ ⎤+ − + − − + − − − +
⎢ ⎥
⎢ ⎥
•••+ − − − ••• − − +⎢

⎢
⎢ − − − ••• − − +
⎢
⎢ − − − ••• − −⎢⎣ ⎦

En+

⎥
+⎥

⎥
⎥
⎥
⎥

 (3.54) 

Let q(i)  = 1-P(i), then 

 

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ){ } ( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 2 3 3 2 3

1 1 2 1 2 3

1 2 4 1 2 3

1 2 2

*

1

E

E E E

EE E

E

nP
WdL

q q q q q q

q q q q q q

q q q q q q n

q q q

++

+ + + + − + − + −

+ + + + + +

++ + + − + + + −

+ + + −

=

⎡ ⎤+ + + +
⎢ ⎥
⎢ ⎥• • • + • • • + • • • +⎢ ⎥
⎢ ⎥
+ • • •⎢ ⎥⎣ ⎦

 (3.55) 

Equation 3.55 can be further simplified to give 
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( )

( )

( )

11

1
1 1

1

1
EE

E
EjE

k j
i

i

nP
WdL q n

q

+ −+ −
++

++ −
= =

=

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎢ ⎝ ⎠⎣
∑ ∏

∏ ⎥⎦      (3.56) 

 On the negative state side of the chain, if the least number of samples occurs in 

the extreme state then the number of samples to place in each state can be deduced by 

similarly reasoning as above.  Again, set n-E equal to “n” after going through the 

algorithm in Figure 3.8 for the negative side of the chain.  It can be shown that the total 

number of samples to place in the negative states, WdL- is given by    

 

( )

( )

( )

11

1
1 1

1

1
EE

E
n EjE

k j
i

i

nP
WdL q n

q

− +− +
−

−− +
= =

=

⎡ ⎤⎛ ⎞
= + +⎢ ⎥⎜ ⎟

⎢ ⎝ ⎠⎣
∑ ∏

∏ ⎥⎦      (3.57) 

Summing up Equations 3.56 and 3.57 gives the total window length  as  TWdL

[ ] [ ]T P nWdL WdL WdL= +  

( )

( )

( )
( )

( )

( )

1 11 1

1 1
1 11 1

1 1

1 1
E EE E

E E
T Ej jE E

k kj j
i i

i i

nP nP
WdL q n q n

q q

+ − − ++ − − +
+ −

+ −+ − − +
= == =

= =

⎡ ⎤ ⎡
⎢ ⎥ ⎢⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢= + + + + +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢⎣ ⎦ ⎣

∑ ∑∏ ∏
∏ ∏

E

⎤
⎥
⎥
⎥
⎥⎦

(3.58) 

  

Case 2 

 If the least number of reference data occurs in any of the penultimate states, then 

use the algorithm in Figure 3.8 to place the number of samples “n” that minimizes the 

rate of Type-I and Type-II error in the penultimate state.  Thus for the positive side of the 

chain say, set n+E-1 = n. Then re-arranging Equation (3.45), gives 

 ( )
( )1 1E E

E
E

n P
n

P
+ − + −

+
+

−
= 1

       (3.59) 
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Again, from Equation (3.39), ( ) 1

( )

( ) i i

i

n n
P i

n
+ + +

+

−
+ = , Hence, ( )

( )( 2) 1
2

( 2)

E E
E

E

n n
P

n
+ − + −

+ −
+ −

−
= , 

Rearranging gives,  

 

( )

( )( )
1

( 2)

21
E

E

E

n
n

P
+ −

+ −

+ −

=
−

        (3.60) 

Similarly, 

 ( )

( )( )
2

( 3)

31
E

E

E

n
n

P
+ −

+ −

+ −

=
−

 

 ( )

( )( ) ( )( )
1

( 3)

3 21 1
E

E

E E

n
n

P P
+ −

+ −

+ − + −

=
− −

      (3.61) 

For the state of +E-4, 

 ( )

( )( ) ( )( ) ( )( )
1

( 4)

4 3 21 1 1
E

E

E E

n
n

P P P
+ −

+ −

+ − + − + −

=
− − − E

     (3.62) 

Continuing in a similar fashion down to the state +3 say,  

 ( )

( )( ) ( )( ) ( )( ) ( )( )
1

( 3)

3 4 31 1 1 1
E

E E

n
n

P P P P
+ −

+

+ + + − + −

=
− − ••• − − 2

   (3.63) 

For the state of +2 

 ( )

( )( ) ( )( ) ( )( ) ( )( )
1

( 2)

2 3 31 1 1 1
E

E E

n
n

P P P P
+ −

+

+ + + − + −

=
− − ••• − − 2

   (3.64) 

And for the state of +1,  

( )

( )( ) ( )( ) ( )( ) ( )( )
1

( 1)

1 2 31 1 1 1
E

E E

n
n

P P P P
+ −

+

+ + + − + −

=
− − ••• − − 2

    (3.65) 

Summing all the numbers in each state for the positive side of the chain, 
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1 2 3 1WdL ... E En n n n n+ + + + − += + + + +      (3.66) 

 

( )

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )

( )( ) ( )( ) ( )( ) ( )( )
( )

( )( ) ( )( ) ( )( ) ( )( )

( )
( ) ( )( )

1

2 3 3 2

1

2 3 3 2

1

2 3 4 3

1 1
1

1 1 ... 1 1 1

1 1 ... 1 1

1 1 ... 1 1

1

E

E E

E

E E

E

E E

E E
E

E

n
WdL

P P P P P

n

P P P P

n

P P P P

n P
n

P

+ −+

+ − + − + + +

+ −

+ − + − + +

+ −

+ − + − + +

+ − + −

+ −
+

= +
− − − − −

+
− − − −

+ ••• +
− − − −

−
+

1

  (3.67) 
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    (3.69) 

 
 Equation (3.69) gives the number of samples that will make up the window length 

on the positive side of the chain provided the least number of reference samples occurred 

in the positive penultimate states.  If on the negative side of the chain, the least number of 

reference samples occurs in the penultimate state, then it can also be shown that the 

window length on that side is given by 
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Again, summing up Equations (3.69) and (3.70) gives the total window length  as  TWdL

 [ ] [ ]T P nWdL WdL WdL= +  
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∑ ∑∏ ∏
∏ ∏

n q  (3.71) 

 In summary, after analysis of the reference data, the monitor is designed to 

identify the two states (one on each half of the chain) that contain the least number of 

reference data.  After that, it uses the appropriate relation from among the four Equations, 

namely, Equations (3.56), (3.57), (3.69) and (3.70) to estimate the widow length of 

samples for each half of the chain and then sum the two up to estimate the desired 

window length for the entire monitor.   

 While the analysis above uses the information from the least populated states 

from each half of the chain, it is also possible to use information from the overall least 

populated state in the entire chain to obtain the number of samples that meets the desired 

Type-I (α) and Type-II (β) error rates for that state.  Then, use that number of samples to 

obtain the number of samples that need to be in all other states.  This approach however, 

leads to excessive number of samples in other states, making α and β for all other states 

more conservative than specified. 

 

 

 

 72



  3.2.5 Estimate the Control Limits for Each State 

 Once the number samples in each state has been estimated, the upper and lower 

control limits for each state must be determined.  At the start of the analysis, the user 

provides the overall Type-I error αT.  As was discussed in Section 3.2.3, the monitor uses 

this information together with the total number of states to estimate the Type-I error rate 

that will be associated with transitions to and from each state as per Equation (3.31).  

Having estimated the Type-I error rate for each state, the upper and lower control limits 

for each state are estimated as follows.   

 Let X, denote number of transitions within the control limits (CL) given the null 

hypothesis H0.  Also, let Nk = Total number of transitions into a state, then using the 

binomial Equation: 

 ( ) ( ) ( )( )( )! 1
!( ) !

k kk N XXk
k k k k

k k k

NP X N P T P T
X N X

−
= −

−
  (3.71) 

Where “k” denotes a particular state and 0 ≤ Xk ≤ Nk.   

 Figure 3.9 is a graphical representation of how the control limits are determined.  

The lower control limit for which (
02

k

k

LCL
k

k k
X

P X Nα
=

= ∑ ) , is determined by finding the 

cumulative sum of ( )k kP X N  until two cumulative density values denoted by CN and CO as 

shown in Figure 3.9 bound the lower control value 
2

kα .  Once that is established, the 

lower control limit, LCLk, for a particular state “k” is given by interpolation as:  

 
( )
( )

2k O
O

N Ok
k

k k

C
X

C CXL C L
N N

α⎡ ⎤−
+ ⎢ ⎥−⎣ ⎦= =       (3.72)
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Figure 3.9 Binomial Cumulative Density Function for Calculating Control Limits 
 
 

 

 Similarly, to find the upper control limits for which ( )
0

1 2
k

k

UCL
k

k k
X

P X Nα
=

− = ∑ , the 

cumulative sum of ( )k kP X N  is determined until two cumulative values, denoted earlier by 

CN and CO again bracket the upper control value 1 2
kα− .  Once that is established, the 

upper control limit for a particular is estimated by interpolation as: 
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α⎡ ⎤− −
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3.2.6 Estimate Type-II Error Rate and Power for all States and the  
 Entire Monitor 

 

 With control limits estimated for each state in the chain, the Type-II error rate that 

will occur for each state transition that is different from the reference transition 

probability can be easily estimated.  Using Figure 3.5 for illustration, the Type-II error 

rate (the rate of missed alarms) associated with state is estimated using Equation (3.27) as 

 ( ) ( )
0 0

1 1
H Lx x

n x n xx x
k a a a

x

n n
P P P P

x x
β a

− −

=

⎛ ⎞ ⎛ ⎞
= − − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ , where 

a oP P≠  

 However, it is important to know the total number of missed alarms (i.e. overall 

Type-II error rate) for the entire monitor.  Recall the Null hypothesis H0: P = P0 and the 

alternative hypothesis Ha: P ≠ P0.  Let βT denote the overall Type-II error rate.  Then, 

Type-II Error Rate = P(Transition probabilities are different from the reference value but  

   monitor does not flag) 

But, Overall the Type-II Error Rate = βT

 Conversely, The overall Power, PW = 1- βT  

PW = P(Transitions are significantly different from reference value P0, and monitor flags) 

  = 1-βT 

Thus, PW = P(Ha is true and monitor flags) 

PW = P(P-E is different from P0 and monitor flags and P-E+1 is different from P0 and  

 Monitor flags … and P-1 is different from P0 and monitor flags and P+1 is  

 Different from P0 and monitor flags and … and P+E-1 is different from P0 and  

 Monitor flags and P+E is different from P0 and monitor flags) 

PW = P(P-E is different from P0 and monitor flags)*P(P-E+1 is different from P0 and  
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 Monitor flags)*…* P(P-1 is different from P0 and monitor flags)*P(P+1 is  

 Different from P0 and monitor flags)* …*P(P+E-1 is different from P0 and  

 Monitor flags)*P(P+E is different from P0 and monitor flags) 

PW = [1-P(P-E is different from P0 and monitor does not flag)]*[1-P(P-E+1 is different from  

 P0 and monitor does not flag)]*…* [1-P(P-1 is different from P0 and monitor does 

 not flag)]* [1-P(P+1 is different from P0 and monitor does not flag)]*…*[1-P(P+E-1  

 is different from P0 and monitor does not  flag)*[1-P(P+E is different from P0 

 and monitor does not flag)] 

 w -E -E+1 -1 +1 +E-1P  =  (1-  )(1- )*...*(1- )(1- )*...*(1- )(1- )+Eβ β β β β β  (3.74) 

 -E -E+1 -1 +1 +E-1 +E1-  =  (1-  )(1- )*...*(1- )(1- )*...*(1- )(1- )Tβ β β β β β β  (3.75) 

Hence, 

 
L

k
k=1

 = 1-  (1-  )Tβ β∏         (3.76) 

Equation (3.76) can be used to estimate the overall Type-II error rate and hence the 

overall power for the entire test.  

 T = 1-WP β          (3.77) 

If the power of the test (Pwk) associated with each state transition is desired, it can also be 

estimated as k = 1-wkP β  where kβ is known from Equation (3.27). 

 In using Equation (3.76) to estimate the Type-II error rate, it must be mentioned 

that future transition probabilities (Pa) associated with each state may differ from their 

reference values (Po) by different amounts at particular instances.  Consequently, there is 

no simple concept as the Type-II error rate for an entire test because it depends on the 

deviation.  For this work, a limiting assumption is made where the transition probabilities 
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Pa associated with each state are assumed to differ from the reference value P0 associated 

with that state by equal amounts at some instance.  Although this is an ideal assumption, 

it is not a limitation in any way and it provides a good basis for one to assess the rate at 

which alarms will be missed if future transition probabilities were to differ by the 

fractional amounts λ indicated in Table 3.3. 

       (3.78) 
( )

0

0 0

 = 
P 1a

P P
P

P P P
λ

λ
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⎨ + − >⎪⎩
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 In Table 3.3, the values of λ , the fractional amounts by which future transition 

probabilities Pa, differ from the reference value P0 are given in row 2 columns 4 to 14. 

The values in the Table are from 0.1 to 1.0.  The values in rows 3 to 10 of column 1 are 

the states, rows 3 to 10 of column 2 are the number of samples in the corresponding state 

in column 1 and column 3 rows 3 to 10 are the reference transition probabilities 

associated with the state.  The data in rows 3 to 10 and columns 4 to 14 represent the 

Type-II error rate β for each state.  For instance, in row 4 column 4, the value of 0.9955 

indicates that for the state of –3, if during test analysis transition probabilities differ from 

the reference by 10% (0.10), then there is a 99.55% chance that it will not be detected.  

Similarly, if for that same state, transition probabilities differ from the reference by 90% 

(0.9), then, there is a 0.0488% chance that it will not be detected   Thus as the extent of 

deviation from the reference probability increase, the chances of failing to detect that the 

values are significantly different from the reference value decreases.  In other words, the 

ability to detect that a data is significantly different from the reference value P0 increases 

as the deviation of Pa from P0 increases.  The same explanation holds for all the values in 

that range.  In row 11, columns 4 to 14, the values represent the composite or cumulative 

Type-II error rate for all the states while the values in the last row and columns 4 to 14 

represent the entire power.  On the last row in column 10, the value of 99.724% 

(0.99724) means that if future transition probabilities associated with all the states were 

deviated from the reference values by 95% ( λ =0.95), then there is 99.724% chance that 

transition probability values will be detected as belonging to a different distribution and 

the likelihood of not missing an alarm is high. 
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 In summary, before using the monitor for test analysis, user must define a good 

control period and collect data for some duration.  User must also provide the Type-I 

error rate α, the Type-II error rate β, and deviation (λ) from the reference transition 

probability (P0) at which β is desired.  The initialization of the monitor uses the data from 

the good period, an initial sampling ratio (SR) and initial number of states (Ns) both of 

which can be adjusted to meet two criteria:  

1. That, all transition probability lie between 0.25 and 0.75 (for this work) and  

2. That no more than 10% of the data lie in the extreme states 

 The initialization then uses α, β, λ, to determine a window length and then an 

upper and lower control limit on each reference transition probability.  The flow chart in 

Figure 3.10 illustrates the procedure described above. 
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NS = NS+2 
(Re- Analyze Reference 

data) 

Yes

Identify historical period of good control 
data

Initialize Sampling Ratio (SR) and Number of 
States (NS) {Start with 8 total states}. 

Provide desired α and β (if known) 

Analyze Reference Data 

Extreme states 
contain at least 10% 

of the data? 

Combine the samples in all states to get an estimate 
for the window length to be used test analysis. 

All Probs.  
0.25≤P≤ 0.75? 

NO 

SR=SR+1 

Yes 

No Identify state with least number 
of Samples 

Use Binomial Statistics to estimate the 
optimal number of sample to place in 

that state, given α and β 

Use Transition Probabilities to estimate the 
number of samples to place in all other 

states for test analysis 

All Probs.  
0.25≤P≤ 0.75? 

Yes 

No 

Stop

Begin 

Figure 3.10 Flow Chart for Determining Ideal Window length 
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3.3 Moving Window Statistics 

 Now, in the moving window of data, the total count of samplings forming the 

window that was used in calculating the control limits must be maintained.  However, the 

indexing (where index refers to the various cells containing state data values) and 

calculation of transition probabilities for the entire window at each sampling is a 

computational burden.  To minimize this, the array in Table 3.4 and the “clock” data 

structure illustrated in Figure 3.11 with a pointer are used.  State measurements are stored 

in an array as in Table 3.4.  

 

Table 3.4 Array of State Measurements and Their Indexes 
 

Index 1 2 3 4 5 6 7 8 9 10 . . . N-2 N-1 N 

State +1 -1 -2 +1 -1 -2 1+ +2 3 +4 . . . -1 +1 +2 

 

 

 During test analysis, data is indexed and stored in the array as shown in Table 3.4.  

As the data is been stored in the array, a record of the cumulative count of each state data 

is kept in another array, to be discussed shortly.  Once the window length of data (N) is 

collected, then at each new sampling, the oldest data in the window must be replaced 

with new data.  There must be N samples in the window at each sampling.  Before 

replacing the oldest data however, its state value is read.  Then decrease the cumulative 

state (count) of this oldest data by one.  Next, determine the state of the current data and 

store its state value at the current location (which is same as the location where the oldest 
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data is to be replaced).  Increment the cumulative state (count) of this new state by one.  

At the next sampling, repeat the entire process 

7

2

New Transition Data 
   (first a plus +3 , then a +4 
     is sampled and  then  

another +4 is sampled  
etc, etc.) +3

5 -1

6 -2

8
9

+1

+2

+3
+4+4

-1

-2 

 

 

-3

1011
12

N-3 

N-2
N-1 N 1

3

-4 

-4

  
  +1 

-1 
+1 +2 +1

-1

-2

16

15

14

13

State 

Index of Oldest Data 

+1
4

Oldest Data to be Removed 

+4

+4

Pointer, indicates 
location where new 
data is to be placed 

Figure 3.11 Statistics in a Moving Window 

 

 

 Looked at from another perspective, the array can be viewed as the face of a clock 

if the two ends of Table 3.4 are swung together.  In Figure 3.11, the pointer indicates the 

current location where the newest data that marks the end of the window length is to be 

placed in the array.  In practice, data is stored as the pointer moves clockwise until it gets 

to the end of the window (estimated previously).  Before the next new data is stored after 
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the window length is exceeded, the pointer is indexed to first read the state value of the 

oldest data (in this example, the oldest data now just after the Nth data was sampled is in 

location 1), and decrease the cumulative count (i.e. number of samples) of this oldest data 

by one.  Then determine the state of the current sampled data, store the state value at this 

location and increment the cumulative count of this new state by one.  An example of the 

cumulative count data is shown in Table 3.5. 

 

Table 3.5 Array of Cumulative State Measurements 
 

State -> -4 -3 -2 -1 +1 +2 +3 +4
Cumulative Count (just after Sampling a Window Length of data) 71 123 229 455 454 257 140 84 
Updated Cumulative Count (After Sampling +3 data) 71 123 229 455 453 257 141 84
Updated Cumulative Count (After Sampling +4 data) 71 123 229 454 453 257 141 85
Updated Cumulative Count (After Sampling another +4 data) 71 123 228 454 453 257 141 86
 
 
 

 ( ) ( 2) ( 3) 257 1402 0.4553
( 2) 257

Count Countp
Count
+ − + −

+ = = =
+

   (3.79) 

New Transition probability 257 141( 2) 0.4514
257

p −
+ = =     (3.80) 

  

 For instance in Figure 3.11, the monitor first checks the state of the data stored at 

the very beginning of the window, which is the oldest data at the beginning of the 

window (in the illustrated case, +1).  Therefore, the monitor removes one data from the 

cumulative count of +1 state.  If the new state is +3 say, then the monitor now replaces 

the old +1 data with the new data +3 data and adds one to the cumulative count of +3 

state.  At the next transition, the oldest state at the beginning of the window is the –1 data 

shown in the clock with index location 2.  Therefore, the monitor subtracts one from the 
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cumulative count of -1.  The new transition could be a state of +4 or a zero crossing to a 

state of –1.  Assuming it is +4, this new transition data will replace the oldest data in the 

location indexed as 2, and one added to the cumulative count of +4 state.  The process 

then continues in a similar fashion during monitoring.  In this way, a window of fixed 

length is always used for statistical comparison with the control limits at each sampling.   

 As indicated earlier, Table 3.5 shows the cumulative count data of all states in the 

moving window.  The first Row shows states in the window.  The second to fifth Rows 

show the cumulative count (i.e. number of samples) in each state.  From the data shown 

in Row 2 of Table 3.5, the transition probability of a sample in occupying the state of +3 

given that it was in the state of +2 previously is given by Equation (3.79).  After the 

window length is exceeded, the oldest data is identified and the cumulative count of that 

state decreased by one and then the oldest data is replaced with the new data.  For the 

example under discussion, the cumulative count of the +1 state is decreased by one from 

454 to 453.  The new data is +3, hence the cumulative count of the +3 is increased from 

140 to 141.  For illustration, this updated data is shown in the third row of Table 3.5. 

 Once the data in the array is updated, the new transition probability of a sample in 

occupying the state of +3 given that it was in the state of +2 previously is given by 

Equation (3.80).  Notice that, the +3 state is a penultimate state.  Assuming that prior to 

sampling the new transition data shown in Figure 3.11, 20 samples had left the 

penultimate state and visited the extreme state of +4.  Therefore, the probability of 

making a zero crossing given that the token is now occupying the state of +3 will be: 

( ) ( 3) ( 4 3 ) 140 203 0.8571
( 3) 140

Count Count prior
p

Count
+ − + + −

+ = = =
+

   (3.81) 

And for the +4 (i.e. extreme) state:  
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( ) ( 4 3 )( 4 1) 204 0.2381
( 4) ( 4) 84

Count priorCount top
Count Count

+ ++ −
+ = = = =

+ +
   (3.82) 

After sampling the new data (i.e. the +3 data) and updating the cumulative count, the 

new transition probability for making a zero crossing from a +3 state will be: 

( ) 141 203 0.8582
141

p −
+ = = ,       (3.83) 

And for the +4 state, ( ) 204 0.2381
84

p + = =       (3.84) 

 At the next sampling, the entire process is repeated.  Suppose that the new 

sampled data after the +3 data in Figure 3.11 is a +4 data.  Now the number of samples 

that have visited the state of +4 just after visiting the +3 state has increased by 1 to 21.  

The oldest data in the window now is a -1 data as shown in Table 3.4.  First, decrease the 

cumulative count of the –1 data by one, and then replace -1 with the new +4 data and 

then increase the cumulative count of the +4 data by one as shown in Row 4 of Table 3.5.  

Update all transition probabilities.  For instance, 

( ) ( 3) ( 4 3 ) 141 213 0.8511
( 4) 141

Count Count prior
p

Count
+ − + + −

+ = = =
+

   (3.85) 

and ( ) 214 0.2
85

p + = = 471        (3.86) 

 Furthermore, assume that the next sampled data is again a +4 state (i.e. token 

revisits +4 state, starting in +4 state).  Now the number of samples in the +4 state has 

increased by one to 86.  The oldest data now is –2 state data (See Table 3.4).  Decrease 

the cumulative count of the –2 state by 1, replace the -2 data with the new +4 data and 

increase the cumulative count of the new state (+4) data by 1 as shown in Row 5 of Table 

3.5.  Update all transition probabilities.  For the state of +4 say, this will be given by: 
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( ) 214 0.2442
86

p + = =         (3.87) 

 If during operation, the controller is adjusted in anyway, then it may be 

appropriate for the operator to collect new reference data and begin the analysis afresh.   

 

 3.4 Grace period 

 During monitoring, in the moving window of data, comparisons are made at each 

transition, between the probabilities and the control limits.  If the transition probabilities 

lie outside the control limits, it indicates the new data has a significantly different 

behavior.  This could be the result of a setpoint change or a disturbance.  The controller 

needs time to adjust to any such disturbance.  Hence, a grace period equal to the closed 

loop settling time (i.e. time from setpoint change to the time that the process variable 

response has settled within a certain percentage band of the final setpoint value, (usually 

2 to 5%, ISA, 1998) plus the window length (CLST + WL) is allowed during which a 

violation counter is invoked.  It is worth mentioning that the CLST is not a fixed a value.  

Every loop once tuned has it own settling time.  The user must therefore provide this 

value in determining the allowable grace period.  If after the grace period is exceeded, the 

controller has still not been able to adjust to the disturbance, then the monitor should raise 

a flag.  If the controller is able to adjust to the disturbance within the grace period, the 

violation counter is reset to zero. 

 

 3.5 Conducting Test Analysis 

 Once the reference data is analyzed and a window length (WL) has been 

estimated, the monitor can now be activated to perform test analysis.   
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 During test analysis, sample the test data, and at each sampling, calculate the 

transition probability.  Continue sampling until the sample size is equivalent to the 

window length estimated.  Once the sample size is equivalent to the window length, 

compare transition probabilities with the control limits.  If any control limit is violated, 

the monitor initializes a violation counter.  If the violation persists, then the counter is 

increased by one until it exceeds the grace period by one sample.  If that happens, then a 

flag is raised retroactively (by CLST + WL samples) to indicate the point of first 

recognition of a problem in the loop that the controller is unable to resolve.  Otherwise, if 

the transition probabilities fall within the control limit, then the violation counter is reset 

to zero and the analysis continues.  The algorithm is illustrated in Figure 3.12 
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Flag operator and indicate start of problem retroactively by 
grace period 

Reset violation 
counter to zero

Yes 

Increment test data and calculate transition 
probabilities and compare with control limits 

Is any control limit 
violated? 

Yes 

Increment violation counter 

Is grace period exceeded? 
No 

No 

Begin sampling test data for performance 
analysis

Figure 3.12 Flow Chart for Test Analysis 
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CHAPTER 4 

4.0 EVALUATION OF THE HEALTH MONITOR 

 In this section the performance output of the health monitor on computer 

simulations, unit operation experimental data as well as application on industrial data are 

discussed.   

4.1 Implementation Procedure 

 The procedure followed in implementing the health monitor is as follows: 
 

1. Tune the controller at some desired operating point.   

2. After tuning, observe the closed loop settling time from step changes in the 

setpoint. 

3. When control is identified to be desirably good, initialize the health monitor to 

collect data if running online or store data elsewhere for offline use later.  Collect 

good data over a period of time. 

4. Provide initial values for the sampling ratio, number of states, Type-I error rate, 

the desired Type-II error for state with least number of reference good data, and 

the difference from the reference transition probability at which this Type-II error 

rate is desired.  

5. Analyze the data using the procedures summarized in Chapter 3 to obtain the 

window length and control limits. 

6. Set grace period equal to the closed loop settling time plus the data window 

length.
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7. Once this information available, begin sampling data for controller performance 

analysis. 

 

4.2 Computer Simulation Evaluation 

 In this section, results of the performance output from computer simulations using 

the health monitor are discussed.  Results of various control schemes ranging from PID, 

IMC and MPC are shown and discussed. 

 

4.2.1 First-Order Plus Time Delay Process 

 The performance of the monitor was tested a first-order plus time delay (FOPTD) 

level control process.  A schematic diagram of the process is shown in Figure 4.1.  The 

transfer function for the process is ( )1s
p p pG K e t sθ−= + .  The process is controlled 

with a PI controller, which is tuned using the ITAE controller tuning rules.  The process 

parameters are given in Appendix A. 

 

 

CVSetpoint 
 +  

-
PI 

Controller
FOPTD 
Process 

MV

Transmitter

e 

e
Health 

Monitor 

Figure 4.1 Schematic Diagram of a First-Order Plus Time Delay Process (e =  
  Actuating Error, CV = Controlled variable, MV = Manipulated Variable) 
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 Tuning was done using the ITAE controller tuning method (See Appendix A).  

After performing step changes, the closed loop settling time was estimated to be about 50 

samplings.  Data collected during a period of good control was analyzed and is shown in 

Figure 4.2.  The sampling time interval for the controller was 0.25 units.  Based on the 

data analyzed, the algorithm determined that a sampling ratio of 1 (i.e. health monitor 

sampling time interval = 0.25 units) and a window length of 526 samples weres ideal for 

test analysis.  This implies that the grace period during test analysis will be (50 + 526) 

samples.  This implies that during test analysis, it will take approximately, 

(0.25 time units  * 576 monitor samples
monitor sample

⎛ ⎞
⎜ ⎟
⎝ ⎠

)  time units for the monitor to flag if a 

problem was detected in loop.   

 

 
 
Figure 4.2 Distribution of States and Transition Probabilities from Reference 
  Good Data (Window length = 526 samples; Sampling Ratio = 1) 
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 If time units is in seconds say, then this means the monitor will flag in 

approximately 2.4 minutes after detecting degrading performance in the loop.  The 

monitor was initialized with 8 total states (± 4 on each side).  However, the algorithm 

determined that 10 (± 5 on each side) total states were needed in order to meet the 

requirement of having no more than 10 % of the data in the extreme states.  Also, 

although the algorithm is developed to estimate the probability of making a zero crossing 

(i.e. ), the first chart in Figure 4.2 reflects the probability of exiting from one state and 

visiting the next absolute higher state (1-

i
p

±

i
p

±
).  

 After the analysis, and before estimating the window length, the algorithm selects 

the state with the least number of samples on each half of the Figure 4.2 and determines 

the number of samples to place in those states in order to meet the requirement on Type-I 

(α) and Type-II error (β).  For this example, it can be observed from Figure 4.2 that the 

states that have the least number of samples are the -4 state on the negative side and the 

+4 state on the positive side.  Only one of the two states (in this example -4 state) is 

chosen and discussed in Figure 4.3.  The number of samples that need to visit this state 

was determined to be 27, given choices of α and β, and the how far way from the 

reference transition probability that this β is desired.  Since this is a two-tailed test, there 

will be two confidence limits (i.e. a lower confidence limit and an upper confidence 

limit).  The lower confidence limit is denoted by XL, which indicates the minimum 

number of samples that need to leave the state and visit the next absolute higher state in 

order to reduce the Type-I error to the desired level.  The upper confidence limit is 

denoted by XH and indicates maximum number of samples that need to leave a state and 

visit the next higher state in order to reduce the Type-I error rate to the desired level.  For 
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the illustrated situation in Figure 4.2, XL = 6 and XH = 22.  Hence, in a given window (to 

be determined), out of a total of 27 samples that need to visit the state of -4 under ideal 

conditions, if fewer than 6 samples leave this state and visit the next absolute higher state 

(-5) or more than 22 samples leave this state and visit the next absolute higher, then a 

violation will occur.   

 

  XUCL =  22 XLCL = 6 

Figure 4.3 Analysis of Reference Data for State with Least Number of Samples.   
  (Distribution of Samples Leaving State and Entering the Next Absolute  
  Higher State Given the Reference Probability, α, β and λ) 
 

 

 Furthermore, Figure 4.3 illustrates that if future transition probabilities are the 

same as the reference value, then for example, 15% of the time, say, about 15 or 16 

samples will leave the state of -4 and visit next absolute higher state.  Also if future 

transition probabilities were to change significantly to say 0.95699 (i.e. Pref + λ(1-Pref)), 

where for this state, Pref = 0.56987 and λ = 0.9  in this example), then Figure 4.3 indicates 

that about 22% of the time, 25 samples will leave that state of -4 and visit the state of -5 

 94



and when it happens this will be outside the desired upper control limit of 22 and so a 

violation will occur. Similarly, if future transition probabilities were to change 

significantly to say 0.056987 (i.e. Pref(1 - λ), where for this state, Pref = 0.56987 and λ = 

0.9  in this example), then about 26% of the time only 3 samples will leave and visit the 

state of -5 and since this is outside the lower control limit of 6, a violation will occur.  

The chance of missing a violation as can be seen from the Figure 4.3 is negligibly small 

as desired.   

 After the analysis on this state is complete, it will be nice to know the probability 

distribution of the data in other states in order to observe how the Type-I and Type-II 

errors are minimized.  As a result, for this work, after the numbers of samples in all other 

states are determined, the algorithm selects one state at random and determines the 

statistical errors that are associated with it based on the choices made.  For this example, 

the algorithm selected the state of +3.  The probability distribution for this state is shown 

in Figure 4.4.  The explanation of Figure 4.4 is similar to that given for Figure 4.3.  

Notice that the algorithm estimated, based on the reference transition probability that, a 

total of 45 samples need to visit the state of +3. 

 In addition, if future transition where to differ from the reference value to say 

0.068761 (i.e. Pref(1 - λ), where for this state, Pref = 0.68761 and λ = 0.9), then 5 % of the 

time say, about 6 samples can be expected to leave the state of +3 and visit the state of 

+4.  Furthermore, if probabilities differ from the reference value to about 0.96876 (i.e. 

Pref + λ(1-Pref)), where for this state, Pref = 0.68761 and λ = 0.9), then about 13% of the 

time 42 samples may be expected to leave the state of +3 and visit the state of +4.  In 

both case, these number of visits are outside the control limits and so it will mean there is 
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an observed violation of the control limits.  Once all samples that need to visit all the 

states during a period of good control are known, the algorithm estimates the window 

length necessary for performance monitoring. 

 

 
Figure 4.4 Analysis of Reference Data for Randomly Selected State.  (Distribution  

of Samples Leaving State and Entering the Next Absolute Higher State  
Given the Reference Probability, α, β and λ) 

 

Once the window length is estimated, a power curve for the test is plotted based 

on the assumption that at some instance, all state transition probabilities are equally 

deviated from their reference probabilities by some equal value ranging between 0 and 

100%.  This is shown in Figure 4.5 using a smooth graphical function option to mask 

break points at the discrete allowable abscissa values.  It must be mentioned here that the 

smooth background curve in Figures 4.3 and 4.4 are not normal distribution curves.  They 

are binomial distributions curves and were obtained using cubic spline interpolation 

between discrete points of the binomial distributions data and then plotting both a line 
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and a bar chart on the same graph.  This was done for validation purposes and that if the 

bar chart was correct, the smooth fit should pass through about the center of each bar.  

Future plots were done same way. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 Power Curve (Given α = 1% and β= 1% λ = 90%) 
 

s indicated earlier, this pre-monitoring information provides useful statistically 

xpected outcomes that enable a user determine the power and reliability of the test.  A 

igh power value when future transitions probabilities are significantly different from the 

ference value is an indication that when the monitor flags signaling a violation, then it 

 indeed an indication that something is not right in the loop and that the distribution of 

ew sampled data is different from the reference distribution.   

 

4.2.2 

he performance of the monitor is illustrated in Figure 4.6, which has seven 

different plots.  Starting at the top of the Figure 4.6, the first plot shows the controlled 
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Figure 4.6 Control Loop Performance Output (Sampling Period = 0.25 Time  

Units, Sampling Ratio = 1; Window length = 526 Samples, Startup Period  
= 0 Samples, Grace Period 576 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance (αT) = 1%).   
Performance Output (A = No nuisances in the loop B = Stiction in Valve,  
C = Controller made sluggish by decreasing gain) 

e and setpoint as a function of time.  The second plot shows the actuating error as 

a function of time.  The third shows the manipulated variable as a function of time.  The 

fourth plot shows the violation counter and flag as a function of time.  The last three plots 

labeled “A”,”B” and “C”, are state transition probabilities and control limits as a function 

of state at particular points in time and illustrate how the transition probabilities compare 

with the control limits.   
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At sample numbers 4000, 8000 and 12000, setpoint changes were made.  The 

controller was able to place the controlled variable at setpoint rapidly, so the run length 

distribution did not violate a control limit and the violation counter did not start counting. 

Between sampling 16,000 and sampling 22000, a stiction effect was invoked in 

the control valve.  The controller had difficulty keeping the controlled variable at setpoint  

and so the violation counter started counting once control limits were violated.  After th

grace period was exceeded and the violations were still present in the loop, the monitor

raised a flag retroactively to indicate the start of the problem.  Stiction was then removed 

and the flag turned off. 

Between sampling 26,000 and 34,000, the controller was made too aggressive by 

ncreasing the contr

e 

 

i er gain Kc by a factor e monitor detected this and started 

the violation counter. After the grace period was reached and the controller had still not 

 

controller or w

its original val

length  data 

 etween sampling 40,000 and 46,000, the controller was made sluggish by 

changin

the fact that the controller was attempting to place the controlled variable at the desired 

oll of 2.  Th

recovered, a flag was raised indicating something was seriously wrong either with the

ithin the control loop.  At sampling 34,000, the controller gain was reset to 

ue.  The monitor immediately detected that; and, within about one window 

of sampling, the monitor stopped flagging.   

B

g Kc by a factor of 1/3.  Again, the monitor detected that the controller was not 

performing well.  Notice that between sampling 41,000 to about 42,500, the monitor 

initialized the violation counter a couple of times and reset it to zero.  This is indicative of 
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setpoin

tored to normal mode at sampling 46,000. When the monitor 

detecte

t 

it 

00, 

wer and upper control limits, are 

t and to keep the loop in normal performance.  The on-off counting might be due 

to the response of the monitor to the deteriorating performance in the controller. 

 However, once performance deteriorated completely, the monitor started the 

violation counter again and after the grace period was exceeded and the violation was still 

present, the monitor flagged continuously for the rest of the duration of sluggish control.  

The controller was res

d a return to good control the flagging stopped.   

Other times when the counter started counting might also be due the fact tha

there is a 1% chance (αT = 1%) of the null hypothesis H0 being rejected when in fact 

should not (Type-I error).  But, in all such instances for instance around sampling 25,0

the flag was not raised because good control was recovered within the grace period, and 

the monitor reset the violation counter to zero.   

The determination of values of XL and XH, the lo

often done using normal statistics.  Rigorously, the binomial statistics should be used.  

This investigation found the two to have minor distinguishable differences and while 

calculations with the normal statistical assumptions are more convenient, the more 

rigorous binomial statistics is used entirely in this work.  A comparison analysis between 

using the exact binomial approach to estimate window length and using the normal 

approximation to the binomial relation (presented in Chapter 3) is discussed in Appendix 

F.  
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  4.2.3 A Second-Order Plus Time Delay Process (SOPTD) 

 In this section, a discussion of the application of the health monitor on a SOPTD 

non-interacting process is presented.  The SOPTD process is represented by the transfer 

function ( )( )( )1 21 1s
p p p pG K e t s t sθ−= + + .  A list of the process parameters is given in 

Appendix B.  Figure 4.7 is a schematic illustration of a PID control loop with the health 

monitor in tandem with a controller and sampling the actuating errors.  

 

 

re 4.7 Schematic Diagram of a Second Order Plus Time Delay Process (e =  
 Actuating Error, CV = Controlled variable, MV = Manipulated Variable) 

 
 
 After tuning (using the Cohen-Coon controller tuning technique) and performing 

step changes, the closed loop settling time was estimated to be about 50 samplings. Data 

collected during a period of good control was analyzed and is shown in Figure 4.8.  The 

sampling time interval for the controller was 0.25 time units.  Based on the data analyzed, 

the algorithm determined that a sampling ratio of 2 (i.e. health monitor sampling time 

interval = 0.5 time units) and a window length of 409 samples would be ideal for test 

 + 
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a s.  implies that the grace period during test analysis will be 459 samnalysi   This ples (50 + 

Figure 4.8 istribution of States and Transition Probabilities from Reference 
  Good Data (Window length = 409 Samples; Sampling Ratio = 2) 
 

  

409 = 459).  Thus, during test analysis, it will take approximately,  

 

 

 D

( )0.5 time units⎛ ⎞  * 459 monitor samples
to le⎜ ⎟

⎝ ⎠
 time units for the monitor to flag if a

moni r samp
 

roblem was detected in the loop.  Assuming time units to be in seconds say, then this 

eans 

the requirement of having no more than 10 % of the data in the extreme states.  Other 

p

m the monitor will flag in approximately 4 minutes after detecting degrading 

performance in the loop.  Violation counting, however, starts instantaneously.   

 In this example, the monitor was initialized with 6 total states (± 3 on each side, 

just to compare with the prior analysis in Chapter 3 where it was determined using 

random errors that it was adequate to initialize the monitor with 8 total states).  However, 

the monitor determined that 8 (± 4 on each side) total states were needed in order to meet 

 102



simulations performed, also revealed that 8 total or more states was always necessary in 

order to meet the user specified requirement in this work.  After the analysis, and before 

stimating the window length, the monitor selects the state with least number of samples 

n each half of the Figure 4.8 and determines the number of samples to place in those 

 

ber of 

nly 

alysis 

 

 

mples.  
  (Distribution of Samples Leaving State and Entering the Next Absolute  

 

 

 The algorithm estimated the number of samples that need to visit this state (i.e. -4 

state) to be 31 given choices of α and β and the how far way from the reference transition 

e

o

states in order to meet the requirement on Type-I (α) and Type-II (β) error.  For this

example, it can be observed from Figure 4.8 that the states that have the least num

sample are the + 4 state on the positive side and the –4 state on the negative side.  O

one of the two states (in this example -4 state) is chosen and Type-II error an

revealed in Figure 4.9.   

Figure 4.9 Analysis of Reference Data for State with Least Number of Sa

 XL = 3  XH = 18 

Higher State Given the Reference Probability, α, β and λ) 
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probability (λ) that this β is desired.  XL indicates the minimum number of samples that 

need to leave a state and visit the next absolute higher in order to avoid a Type-I error 

while XH indicates maximum number of samples that need to leave a state and visit the 

next absolute higher in order to avoid same. 

 For the illustrated case, XL = 3 and XH = 18.  Thus, out of a total of 31 samples 

that need to visit the state of -4 in a given window (to be determined), a violation will 

occur if fewer than 3 samples leave the state and visit the next absolute higher state or 

more than 18 samples leave the state and visit the next absolute higher state.  Moreover, 

Figure 4.9 shows that if future transition probabilities are not from the reference 

transition probability of 0.34945, then for example, 15% of the time say, about 11 

mples will leave the state of -4 and visit the next absolute higher state.  However, since 

e -4 state is an extreme state, it means about 15 % of the time 11 samples will leave the 

 to 

), where for this state, Pref = 

0.34945 and λ = 0.9  in this example), then it indicates that about 20% of the time, 28 

samples will leave that state of -4 and revisit it again and when it happens this will be 

outside the desired upper control limit of 18 and so a violation will occur.  Similarly, if 

future transition probabilities were to change significantly to say 0.034945 (i.e. Pref(1 - λ), 

where for this state, Pref = 0.34945 and λ = 0.9), then 20% of the time only 2 samples may 

ol 

mit of 3, a violation will occu

e Figure 4.9 is negligibly small as desired.  

sa

th

state of -4 and re-enter that state again.  Also, if future transition probabilities were

change significantly to say 0.93495 (i.e. Pref + λ(1-Pref

be expected to leave and revisit the state of -4 and since this is outside the lower contr

li r.  The chance of missing a violation as can be seen from 

th
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 After the analysis on this state is complete and the number of samples in all the 

other states are determined, the algorithm selects one state at random and determines the 

statistical errors that are associated with it based on the choices made.  For this example, 

the algorithm selected the state of +3 and the probability distribution is shown in Figure 

4.10.   

 

 

of Samples Leaving State and Entering the Next Absolute Higher State  

 

Again, the explanation of Figure 4.10 is similar to that given for Figure 4.9.  The 

algorithm determined, based on the reference transition probability that, a total of 33 

samples need to visit the state of +3.  In addition, if future transition where to differ from 

the reference value to say 0.05037 (i.e. P

Figure 4.10 Analysis of Reference Data for State Chosen at Random (Distribution 

Given the Reference Probability, α, β and λ) 

differ to about 0.95037 (i.e. Pref + λ(1-Pref), where for this state, Pref = 0.5037 and λ = 0.9  

ref(1 - λ), where for this state, Pref = 0.5037 and 

λ = 0.9  in this example), then about 6% of the time say, about 4 samples may be 

expected to leave the state of +3 and visit the state of +4.  Furthermore, if probabilities 
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in this example), then about 6% of the time 29 samples may be expected to leave that of 

+3 and visit the state of +4.  In both case, these number of visits are outside the control 

mits a

n the assumption that at some instance, all state transition probabilities are equally 

eviated from their reference probabilities by some equal value ranging between 0 and 

 

 

 

li nd so it will mean a violation of the control limits.  Once all samples that need to 

visit all the states during a period of good control are known, the monitor estimates the 

window length necessary for performance monitoring. 

Once the window length is estimated, a power curve for the entire test is plotted 

based o

d

100%.  This is shown in Figure 4.11.   

 

Figure 4.11 Power Curve (Given α = 1% and β= 1% λ = 90%) 
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4.2.4 Performance Monitor Demonstration 

The performance of the monitor is illustrated in Figure 4.12 with seven plots.  The 

first plot shows the controlled variable and setpoint as a function of time.  The second 

plot shows the actuating error as a function of time.   

 

 

A 
B

C 

UCL 

LCL

Transition Probability 

UCL 

LCL 

Transition Probability 

UCL 

LCL 

Transition Probability 

A 
B C

Figure 4.12 Control Loop Performance Output (Sampling Period = 0.25 Time Unit, 
Sampling Ratio = 2; Window length = 409 Samples, Startup Period = 0  
Samples, Grace Period 459 Samples, Violation Counter Trigger = Length  

Performance Output (A = No nuisances in the loop B = Stiction in Control  
Valve, C = Controller made aggressive by increasing gain) 

 

of Grace Period +1, Overall Level of Significance (αT) = 1%).   
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The thi he fourth plot shows the 

violatio

abilities compare with the control 

limits. 

Starting at the top of the page and referring to the first plot, at samples 4000, 8000 

and 12000, setpoint changes were made.  The controller was able to rapidly place the 

controlled variable at setpoint, so the run length distribution did not violate a control limit 

and the violation counter did not start counting as shown on the fourth plot.   

Between sampling 16,000 and sampling 22000, a stiction effect was invoked in 

the control valve.  The controller had difficulty placing the controlled variable at setpoint 

and so the violation counter started counting when control limits were first violated.  

After the grace period was exceeded and the violations were still present in the loop, the 

monitor raised a flag retroactively to indicate the start of the problem

after the stiction was removed. 

Between sampling 26,000 and 34,000, the controller was made too aggressive by 

increasing the controller gain Kc by a facto f 2. The monitor detected this and started 

the violation counter. After the grace period was reached and the controller had still not 

recovered from the aggressive condition, a flag was raised indicating something was 

 w

controller gain

and, within abo

rd shows the manipulated variable as a function.  T

n counter and flag as a function of time.  The last three plots labeled “A”,”B” and 

“C”, are state transition probabilities and control limits as a function of state at particular 

points in time and illustrate how the transition prob

  

.  The flag went off 

r o

wrong either he ith the controller or within the control loop.  At sampling 34,000, t

 was reset to its original value.  The monitor imme iately detd ected that, 

ut one window length of data sampling, the monitor stopped flagging.   
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hat the controller was attempting to place the controlled variable at the desired 

setpoin

avior of the 

violatio

t, any such instance was short-lived and a flag was not 

raised b

Between sampling 40,000 and 46,000, the controller was made sluggish by 

changing Kc by a factor of 1/3. Again, the monitor detected that the controller was not 

performing well.  Notice that between sampling 41,000 to about 42,500, the monitor 

initialized the violation counter a couple of times and rest it to zero.  This is indicative of 

the fact t

t and to keep the loop in normal performance.  However, once performance 

deteriorated completely, the monitor started the violation counter again and after the 

grace period was exceeded and the violation was still present, the monitor flagged 

continuously for the rest of the duration of sluggish control.  The on-off beh

n counter around sampling 45,000 might be due to the monitor’s response to the 

deteriorating performance in the controller.  The controller was restored to normal mode 

at sampling 46,000. When the monitor detected a return to good control the flagging 

stopped.  Other times when the counter started counting might also be due the fact that 

there is a 1% chance (αT = 1%) of the null hypothesis H0 being rejected when in fact it 

should not (Type-I error).  Bu

ecause good control was achieved within the grace period, and the monitor reset 

the counter to zero. 
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4.3 Application on Unit Operations Experimental Data 

  4.3.1 Description of Experimental Unit 

 The experimental unit is equipped with three control valves in all.  Two of the 

valves are airflow control valves (a large one and a small one).  The third valve is a water 

flow control valve.  The unit consists of a vertical column through which water and air 

flow upward, co-currently creating a two-phase flow.  The unit is designed with 

individual PID-Type control loops to manipulate both water and the airflow control 

valves to sustain either flow rate or pressure drop.  The unit is equipped with CamileTG 

2000 software for remote process control and data acquisition.  A schematic diagram of 

the experimental unit is shown in Figure 4.13. 

 The control loops in the two-phase flow unit can be configured in different 

schemes for studies.  For instance, pressure transducers at the top and bottom of the 

column enable the pressure drop in the column to be determined and controlled by 

manipulating air or water flow rate.  The different control schemes that were studied are 

discussed below.  

The procedure used was; first to tune the controller using the process reaction 

technique.  Once co

 

 

ntrol was judged optimum after tuning, collect data at a desired 

ampling rate.  The data-logging rate used for this work was 1sample/100 milliseconds.   

 After collecting good data, introduce disturbances in the loop such as setpoint 

changes, flow rate changes, controller gain changes, etc.  Collect data from the 

experimental unit and use the health monitor to analyze the data with the view to testing 

the ability of the monitor in detecting durations when there were control problems.   

s
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Figure 4.13 Two Phase Flow Experimental Unit with a Water Flow Control Loop  

Small Air Flow 
FC-1

Large Air Flow 
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Water Flow 
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Two-Phase flow column 
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4.3.2 Performance Monitoring for Pressure Drop Control by  
 Manipulating Signal to Water Flow Control Valve 

  

 The first experimented control scheme studied involved controlling the pressure 

drop in the column by manipulating the wa ce the controller was tuned, 

and control found to be good, data was collected for a period.  During this good period of 

control, the closed loop settling time was determined through setpoint changes to be 

about 50 samples.  The good or reference data is analyzed as shown in Figure 4.14.  After 

analysis of the reference data, the algorithm estimated that a sampling ratio of 2 would be 

ideal for test analysis.   

 

Figure 4.14  Distribution of States and Transition Probabilities from Reference  
  Good Data (Window length = 800 samples; Sampling Ratio = 2, αT =  
  1%, β = 1%, λ = 0.9) 
 

 

ter flow rate.  On
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Based l onitor 

ill sa ple data from the unit every 0.2 seconds i.e.

on the ogging rate of 0.1 seconds for the unit, it implies that the m

w m  2 controller samples 0.1 Seconds *
1 Monitor sample 1 controller sample

⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

comparisons was determined by the monitor 

pling rate of 0.2 seconds, the 

⎞
⎟
⎠
.   

In addition, the window length for statistical 

to be 800 samples.  This in effect means that at a sam

monitor will require ( )* 800 monitor  samples
monitor sample⎜ ⎟

⎝ ⎠

min) to sample one window length of data from the process.  Moreover, during 

performance monitoring, if a problem occurred in the loop it will take about this much 

time plus the closed loo

0.2 seconds⎛ ⎞ , or 160 Seconds (i.e. approx. 2.67 

p settling time before the monitor will flag.  The confidence level 

1-α)*100% used was 99% and the Type-II error rate (β) used for the state having the 

least number of reference samples was set at 1% when future transition probabilities 

 

 of 

op 

 the violation counter started counting.  After the 

(

during testing differ by 0.9 (λ) from the reference value.  Using information from 

analysis of the reference data, test data collected was analyzed as shown in Figure 4.15. 

The Figure shows 7 plots.  The first plot shows the controlled variable and setpoint as a 

function of time.  The second plot shows the actuating errors as a function of time. The 

third plot shows the manipulated variables as a function of time.  The fourth plot shows 

the violation counter and flagging as a function of time.  The last three plots show 

instances of the transition probabilities compared with the control limits as a function

state.   

The point marked “A” shows a period when there were no control limit violations. 

Around sampling 14000, marked “B”, no external disturbances were imposed on the lo

but control limits were violated and
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grace p

 

Figure 4.15 Control Loop Performance Output for Pressure Drop Control by  

0.1s, Sampling Ratio = 2; Window length = 800 Samples, Startup Period =  

Length of Grace Period +1, Overall Level of Significance (αT) = 1%). 

Loop, C = Stiction in Loop) 

 

stopped, and the violation counter was reset to zero as shown in the 4th plot.  Around 

eriod was exceeded and control limits were still been violated, the monitor raised 

a flag to indicate that there was a problem in the loop.    

 

Manipulating signal to Water Flow Control Valve (Sampling Period =  

0 Samples, Grace Period 850 Samples, Violation Counter Trigger =  

Performance Output (A = No nuisances in the loop B = Oscillations in  
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Transition 
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LCL

C

Transition 
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 Shortly there after, the oscillation that seemed to have caused the violations 

appeared to go off as depicted in the 3rd plot.  When the monitor detected this, flagging 
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sampling 21000, the violation counter started counting again but the violations detected 

were short lived and so the counter was reset to zero again.  Then around sampling 29000 

nd in the region marked “C”, the monitor detected violations again and so started 

counting again.  After the grace period was exceeded and the violations were still present 

in the loop, the monitor raised a flag again.  The flagging was sustained for as along as 

the violations were present.  The saw tooth behavior in the manipulated variable plot 

(plot number 3) and the square wave behavior in the controlled variable plot (plot number 

1) are typical signals to expect for a sticky valve.  The monitors ability to detect a sticky 

valve and flag during the entire period of stiction was a good indication of its efficiency 

to detect degrading control in a loop. 

 
 
 

Effect of Varying the Overall Type-I Error Rate on Window 
Length and Performance Monitoring 

  

 The overall Type-I error rate αT, was varied and the Type-II error rate kept same 

nce 

of the monitor

4.15.  The con zed 

again and the result is shown is Figure 4.16.  The algorithm estimated a window length of 

618 samples but the sampling ratio SR, was same as previous (SR = 2).   

The Type-II error rate used for the state having the least number of reference 

samples was kept unchanged at 1% when future transition probabilities during testing 

differ by 0.9 from the reference value.  Notice that despite the fact that the monitor 

a

4.3.3 

in order to study how changing αT affects the widow length and the overall performa

.  The analysis was done offline on the same data as that used for Figure 

fidence level was set at 95% (i.e. αT = 5%, the reference data was analy
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estimated a smaller window length for testing, it detected all instance of loop disturbance 

and nuances within the regions marked “A” “B”, and “C” respectively in Figure 4.17.   

 

Figure 4.16 Distribution of States and Transition Probabilities from Reference  
  Good Data (Window length = 800 samples;  Sampling Ratio = 2, α  = 5%,  
  

T

β = 1%, λ = 0.9) 
 
 

However, between sampling 15000 and about 28500, the monitor initialized the 

violation counter, started counting and reset to zero more often than was observed when 

α was 1%.  This is indicative of the user choice of the αT.  With αT set at 5%, it means 

for k = 8 total states, αk = ( )1 1k
Tα− −  = 0.639% for each state.  Consequently, 

approximately 0.639% of the time, there will be a false alarm associated with transitions 

from one state to the other.   

Previously, when αT was set at 1%, it meant for k = 8 total states, αk = 

( )1 1k
Tα− −  = 0.1255%.  In comparison, it means that when α  is increased from 1% to 

5%, the monitor starts counting about 5 times more frequently.  In Figure 4.18, αT was 

T
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changed to 10% and β kept at 1%, again the algorithm estimated a window length of 572

samples even smaller than when α

 

d 

umerous instances of spurious alarms due obviously to the choice of αT. 

 

 

0.1s, Sampling Ratio = 2; Window length = 618 Samples, Startup Period =  

all Level of Significance (αT = 5%).  
utput (A = No nuisances in the loop B = Oscillations in  

Loop, C = Stiction in Loop) 
 
 
 

T was 5% or 1%.  However, the test analysis showe

n
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Figure 4.17 Control Loop Performance Output for Pressure Drop Control by 
Manipulating signal to Water Flow Control Valve (Sampling Period =  

0 Samples, Grace Period 668 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Over
Performance O
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Figure 4.18  Co op Performanc t for Pressure Drop trol by  

Manipulating signal to Water Flow Control Valve (Sampling Period =  
0.1s, Sampling Ratio = 2; W  length = 572 Samples, Startup Period =  
0 Sam  Grace Period 612 S ples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance T = 10%).   
Performance Output (A = No nuisances in the loop B = Oscillations in  
Loop, C = Stiction in Loop 
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Figure 4.19 Distribution of States and Transition Probabilities from Reference  
  Good Data (Window length = 800 samples;  Sampling Ratio = 2, αT = 1%,  
  β = 10%, λ = 0.9) 

4.3.4 Effect of Varying the Type-II Error Rate on Window Length  
 and Performance Monitoring  

 

The Type-II error rate β, was varied keeping the Type-I error rate same in order to 

study how changing β, affects the window length and the overall performance of the 

monitor.  Using a confidence level of 99%, the reference data was analyzed again and the 

result is shown is Figure 4.19.  The monitor estimated a window length of 562 samples 

but the sampling ratio SR, was again same as previous (SR = 2).  The Type-II error rate 

used for the state having the least number of reference samples was changed from 1% to 

10% when future transition probabilities during testing differ by 0.9 from the reference 

value. 

   

 



The monitor d   

C” respectively of Figure 4.20.  However, notice from Figures 4.15, 4.17 and 4.18 that 

the fla

sis test resulting in frequent missed alarms.  This means that it is always essential 

provide a reasonably good value of αT and β, in order to reduce the 

number of missed and false alarms.  For loops where tight control is not desired, this  

etected all instance of loop upsets within the regions marked “A” “B”, and

“

gging of the violations in region “B” stopped at about sampling 16000.  

Nevertheless, in Figure 4.20 flagging stopped at almost 15000.  The reasons may be due 

to the short window length or that the monitor might be missing some alarms that should 

been detected.  Also, notice that the violation in region “C” appeared to go off although it 

can be seen from plot 3 of Figure 4.20 that the stiction effect was still present in the loop.  

This could be due to a missed alarm.  These two instances of missed alarm are related to 

the Type-II error set by the user.  Changing β from 1 to 10% reduces the Power of the 

hypothe

for the user to 

requirement can be relaxed but the user should expect frequent false and or missed 

alarms. 
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Figure 4.20 Control Loop Performance Output for Pressure Drop Control by  

Manipulating signal to Water Flow Control Valve (Sampling Period =  
0.1s, Sampling Ratio = 2; Window length = 562 Samples, Startup Period =  
0 Samples, Grace Period 612 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance (αT) = 1%). 
Performance Output (A = No nuisances in the loop B = Oscillations in  
Loop, C = Stiction in Loop) 

 

 

4.3.5 Performance Monitoring for Pressure Drop Control by  
 Manipulating Signal to Air Flow Control Valve 

 
The second control scheme studied involved controlling the pressure drop in the 

two-phase flow column by manipulating the airflow rate.  Again, the controllers were 

first tuned and when control was determined to be good, data was collected for sometime.  
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The reference data was analyzed and is shown in Figure 4.21.  After analysis of the 

reference data the algorithm estimated that a sampling ratio of 3 will be ideal for test 

analysis.  Based on a control loop data logging rate of 10 samples every second for the 

unit, it implies that the monitor will sample data from the loop every 0.3 seconds.  In 

addition, the window length for statistical comparisons was determined by the monitor to 

be 1723 samples.  This means that the monitor will sample a window length of data in 

approximately 8.6 min.  The confidence level used was 99% and the Type-II error rate 

used for the state having the least number of reference samples was set at 1% when future 

transition probabilities during testing differ by 0.9 from the reference value. 

 

Figure 4.21 Distribution of States and Transition Probabilities from Reference  
  Good Data (Window length = 1723 samples; Sampling Ratio = 3, αT =  

 1%, β = 1%, λ = 0.9) 
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 Using information from analysis of the reference data, test data collected was 

analyzed as shown in Figure 4.22.  At sampling 3000, in the region marked “A”, the 

controller gain was increased by 3 fold. The monitor detected that new data collected had 

different distribution from the reference data and so the violation counter started counting 

after control limits were violated.  At about sampling 8000, when the controller gain was 

reset to it’s nom l value, the violations went off and the monitor reset the counter to 

zero.  Around sampling 18000, in the region marked “B”, the controller was detuned by a 

factor of 0.5.  The violation counter did not start counting because it seemed that the 

controller was not detuned to the to the point of sluggishness and so the monitor 

determined that the data collected during that period was not significantly from the 

reference data so no violations were registered.  Around, sampling 55000 in the region 

marked “C”, the water flow rate was intent ally increased:  In response, notice the 

manipulated var le re pt to just the pressure drop the setpoint and 

e variation in the manipulated variable and controlled variable.  The monitor detected 

eg

water flow rat

counter was re

ina

ion

iab duce in an attem ad  to 

th

the control d radation in the loop and started the violation counter.  Again, when the 

e was reset to the nominal value the violations went off and the violation 

set to zero. 
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y 

manipulating the signal to the water flow control valve.  The controller was first tuned 

around a nominal setpoint of 10 kg/hr.  After control was determined to be good, data 

was collected for a period.  The reference data is analyzed as shown in Figure 4.23.  After 

Figure 4.22 Control Loop Performance Output for Pressure Drop Control by  
Manipulating signal to Air Flow Control Valve (Sampling Period =  
0.1s, Sampling Ratio = 3; Window length = 1723 Samples, Startup Period  
= 0 Samples, Grace Period 1773 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance (αT) = 1%). 
Performance Output (A = Controller gain increased, B = Controller gain  
reduced, C = Water flow Rate Increased) 

4.3.6 Performance Monitoring for Water Flow Control by  
 Manipulating Signal to Water Flow Control Valve 

 
The next control scheme studied involved controlling the water flow rate b
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analysis of the data, the monitor estimated a sampling ratio of 4.  Based on a data logging 

rate of 10 samples every second for the unit, it implies that the monitor will sample data 

from the unit every 0.4 seconds.  In addition, the window length for statistical 

comparisons was determined by the monitor to be 1227 samples so it will take 

approximately 8.16 minutes to sample a window length of data.  The confidence level 

used was 99% and the Type-II error rate used for the state having the least number of 

reference samples was set at 1% when future transition probabilities during testing differ 

by 0.9 from the reference value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

igure 4.23 Distribution of States and Transition Probabilities from Reference  
 Good Data (Window length = 1227 samples; Sampling Ratio = 4, αT =  
 1%, β = 1%, λ = 0.9) 

 

 

Using information from analysis of the reference data, test data collected was 

analyzed as shown in Figure 4.24.  At sampling 8000 and within the region marked “A” 

there was a setpoint change from 10 kg/hr to 20 kg/hr.  The controller was able place the 
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controlled variable at the desired setpoint rapidly and so no control limits were violated 

and the violation counter did not start.  At sampling 17000, the setpoint was changed 

again from 20 to 25 kg/hr.  At this new setpoint, oscillations were detected in the loop 

and the monitor detected this and started the violation counter.   

 

 

 
Figure 4.24  
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0.1s, Sampling Ratio = 4; Window length = 1227 Samples, Startup Period  
= 0 Samples, Grace Period 1277 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance (αT) = 1%). 
Performance Output (A = Controller gain increased, B = Controller gain  
reduced, C = Water flow Rate Increased) 
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It appears that this new setpoint was far removed from the nominal value used to 

tune the controller, and it was very near the maximum flow rate allowable for the valve.  

The monitor detected that data sampled during the period had a different distribution 

from the reference period and so once control limits were violated the monitor started the 

violation counter.  Around sampling 20000, within the region marked “B”, the setpoint 

was reset to 12 kg/hr.  However, just prior resting the setpoint, the monitor reset the 

violation counter to zero indicating that the controller might have been able to eliminate 

the oscillations encountered due to the setpoint change.  At sampling 39000 in Figure 

ed 

, it 

as 

a it 

f the 

t 

 

4.24, the controller was made aggressive but this aggressive period also did not exce

d

would have stopped prior to setting the flag.  Perhaps the high gain was not high enough 

to set the counter.  At sampling 50000, and in the region marked “C”, the controller w

detuned by a factor of 0.3.  The monitor detected a change in the distribution of the dat

was sampling, started the violation counter when control limits were violated and after 

the grace period was exceeded, a flag was raised retroactively to indicate the start o

problem.  Other instance when the violation counter started counting when it was no

supposed to may be attributed to the Type-I error rate of 1% used for the test. 

 
 Application of the Health Monitor on Qing Li’s Data   

 (Monitoring the Performance of Water Flow Control Loop by  
 Manipulating Signal to Water Flow Control Valve) 

 
As indicated earlier, this work is an extension of Li’s work (2002).  Li developed a 

ealth monitor using run length distribution of actuating errors between two consecutive 

ero crossings and detected changes in sample distribution using the Chi-square goodness 

the grace period.  Even if counting had been continuous during the high gain perio

4.3.7

h

z
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of fit test.  Li tested his monitor on unit operation data he collected at that time.  This 

ersion of the Health monitor also was tested on Li’s data in order to compare the 

erformance of his monitor and the monitor developed in this work. 

Li collected data from the two-phase flow experimental unit by controlling the 

ta 

econds.  He tuned the controller around a nominal 

operating point of 35 kg/hr.  After tuning, he determined the closed loop settling to be 

about 50 samples.  He collected data during which time he did not introduce any 

nuance(s) in the loop.  The reference data was analyzed using the monitor developed in 

this work and the result is shown in Figure 4.25.  The sampling ratio was estimated to be 

3 and the window length 1334 samples.  With a sampling ratio of 3, it means the monitor 

samples 10 data points every 3 seconds.  Thus, it will take about 6.67 minutes to collect a 

window of data and about same time for a flag to be raised during testing if a problem is 

detected.  

Using information from the good control period, a test data collected by Li in which 

he made several upsets in the loop was analyzed.  The results are shown in Figure 4.26.  

Between sampling 2100 and 4000, the setpoint was reduced from 35 to about 20 kg/hr, in 

gradual steps, but the controller was able to place the controlled variable at the setpoint at 

each change and so no violations were registered during that interval and the monitor did 

not start the violation counter.  Around sampling 4800, the setpoint was changed again to 

15 kg/hr.  This resulted in oscillations in the loop.  The violation counter started counting 

once control limits were violated and after the grace period was exceeded and the 

v

p

water flow rate while manipulating the signal to the water flow control valve.  Da

logging rate was 10 samples every s
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problem s still in the loop the monitor raised a flag.  For as along as the setpoint was 

ept at 15 kg/hr and below the monitor continued to flag.   

 

 

 

 

 

 

 
 
 
 
 
 

Figure 4.25 tion of States sition Probab m Reference  
  Good  (Window le ples; Sampling Ratio = 3, αT =  
  1%, λ = 0.9) 
 
 

However, around sampling 14000 when the flow rate was reset to the nominal 

n  

to zero. 

In compa  

ased approac amplings for statistical analysis 

as com

 wa

k

Distribu
Data

and Tran
ngth = 1334 sam

ilities fro

β = 1%, 

operating poi t, the oscillations stopped and monitor reset the flag and violation counter

rison with the run length based monitor, it was noted that the run length

b hed used a shorter window length of 129 s

pared with 1334 samplings needed by this approach.  Both techniques are able to 

detect problems when they should.  Nevertheless, the Chi-Square approach was noted to 

flag on and off even when nuances and instabilities are still known to be present in a loop 
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(during the entire 6000 to 12000 sampling period) while the technique used in this work 

flags on until the nuances detected (caused by low setpoint changes) are removed. 

 

 

A C B 

 
Figure 4.26 Control Loop Performance Output for Flow Rate Control by  

Manipulating signal to Water Flow Control Valve (Sampling Period =  
0.1s, sampling ratio = 3; Window length = 1334 Samples, Startup Period =  
0 Samples, Grace Period 1384 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance (αT) = 1%). 
Performance Output (A = Controller gain increased, B = Controller Gain  
Reduced, C = Water flow Rate Increased) 
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4.3.7 Application on Industrial Data 

 One of the industrial sponsors for this project (ExxonMobil) provided us with data 

from their plant to test this monitor offline.  The unit is shown schematically in Figure 

4.27.  It consists of a cascaded exothermic reaction process for the manufacturing 

polypropylene.  The reaction temperature is controlled by cooling the feed to the process 

using cooling water supplied via a heat exchanger arrangement.  The reaction 

temperature which is primary process variable (PVp) is transmitted to the primary 

controller (TC1) via the transmitter (TT1).  The desired process reaction setpoint (SPp) is 

provided via TC1 which compares SPp and PVp and then writes a secondary setpoint to 

the secondary controller (TC2).  The secondary controller is connected to the process 

stream flowing to the reactor via transmitter TT2.   

 

 

 

 

 

 

 

 

 

 
 

 
igure 4.27 Cascade Polymer Processing Unit: Reactor Temperature, PVp is  

  Controlled by Cooling the Feed Temperature, PVs   
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TC2 sends signals to the valve, which adjust the flow rate of cooling water used in 

manipulating the feed temperature.  The reference data was analyzed separately for the 

primary and secondary loops.  The data logging was done at 1 sample every 5 seconds.  

The reference analysis for the primary loop data is shown in Figure 4.28.  The algorithm 

estimated a sampling ratio of 34 and a window length of 833 samples.  With this 

sampling ratio, it implies that the monitor will require approximately 39.34 hrs, 

( )5s 34 ontroller samples141610 s; i.e.  * 833 monitor samples
1controller sample 1 monitor sample

c⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

 to sample a window length of 

data.  Based on this, the sampling ratio was judged to be too large.  A further 

e 

ontributing to the large sampling ratio.  In Appendix D, an attempt is made to 

investigate how the sampling ratio can be reduced by adjusting the extent of 

autocorrelation present in the data. 

 

investigation reveals that the data has strong autocorrelation, which perhaps may b

c

 132



Figure 4.28 Distribution of States and Transition Probabilities from Reference  
indow length = 833 samples; Sampling Ratio = 34, αT =  

1%, β = 1%, λ = 0.9) 
 

The test data was then analyzed as shown in Figure 4.29 for the primary control 

loop.  At sam

in the first 

plot in Figure 

to regulate the the 

controller was loop and place the controlled 

variable back at the setpoint. 

Around sampling 30000, the notes indicated that a pump used to supply cooling 

water was switched to a backup unit.  This led to oscillations in both primary and 

secondary loops.  In response, a control engineer detuned the gain on the secondary 

controller. 

Good Data (W

pling 15000, according to notes accompanying the data, there was an 

crease in production rate resulting in an overshoot in temperature as shown on 

4.29.  In response, the feed temperature dropped as shown in the third plot 

 reactor temperature.  The monitor did not show the nuance because 

 able to stabilize the disturbance in the 
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It appe r the secondary controller was 

 

igure 4.29 Control Loop Performance Output for Primary Loop Temparaure:  
ExxonMobil Data (Sampling Period = 5s, Sampling Ratio = 34; Window  

 
Period +1, Overall  

Level of Significance (αT) = 1%).  Performance Output (A = No Nuance  
in Loop, B = Oscillations in Loop, C = Oscillations in Loop) 

ared that the oscillations went off afte

detuned.  However, at sampling 40000, the monitor started the violation counter again but 

reset it back to zero after a short while. This was probably an indication that there were 

still some residual oscillations present in the loop.  According to the notes, about 90 % 

through the data, the integral time on the secondary controller (TC2) was changed in 

order to reduce oscillations in the process variable. 
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B C
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B

LCL 
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LCL LCL 

UCL UCL 
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F

Length = 833 Samples, Startup Period = 0 Samples, Grace Period 883 
Samples, Violation Counter Trigger = Length of Grace 
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not supposed to.   

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 4.30 Distribution of States and Transition Probabilities from Reference  
  Good Data (Window length = 513 samples; Sampling Ratio = 11, αT =  
  1%, β = 1%, λ = 0.9) 
 
 
 
 
 
 

Figure 4.30 shows analysis of the reference data for the secondary loop.  The 

monitor estimated a sampling ratio of 11 and a window length of 513 samples, which was 

used for the test analysis in Figure 4.31.  Notice that from sampling 30000 when the 

pump was switched through to about the end of the data when there were oscillations in 

the loop, the monitor flagged consistently after the grace period was exceeded.  This 

reveals that the monitor is able flag when it is supposed to and does not flag when it is 
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  Samples, Violation Counter Trigger = Length of Grace Period +1, Overall  

in Loop, B = Oscillations in Loop, C = Oscillations in Loop)

Figure 4.31 Control Loop Performance Output for Secondary Loop Temparaure:  

Length = 513 Samples, Startup Period = 0 Samples, Grace Period 563  

Level of Significance (α

  ExxonMobil Data (Sampling Period = 5s, sampling ratio = 11; Window  

T) = 1%).  Performance Output (A = No Nuance  
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4.4 Model Based Control (MBC) 

4.4.1 Simulation Using Internal Model Control 

This section discusses a simulated application of the health monitor on a process 

controlled using Internal Model Control (IMC) technique.  Details of the process 

description are provided in Appendix C.  Figure 4.32 is a schematic illustration of an 

IMC control loop with the health monitor in tandem

 

 

 with an IMC controller and sampling 

e actuating errors. 

 
 

 
Figure 4.32 Schematic Diagram of a Process Controlled with IMC Technique (e =  
  Actuating Error, CV = Controlled variable, MV = Manipulated Variable 
 
 
 
 Data collected during a period of good control was analyzed and is shown in 

Figure 4.33.  The sam  time interval for the controller was 0.25 time units.  Based on 

the data analyzed, the algorithm estimated a ampling ratio of 1 (i.e. health monitor 

sampling time interval = 0.25 time units) and a window length of 395 samples to be ideal 

for test analys

grace period d

take approxim s) time units 

th

 
 
 
 
 
 
 
 
 
 
 

Health 
Monitor

CV Setpoint 
 +  -

IMC 
Controller Process

Transmitter

MVe

e

Filter

pling

 s

is.  With a closed loop settling time of about 50 samples, it implies that the 

uring test analysis will be 445 samples and that during test analysis, it will 

ately, (0.25 time units/monitor samples)*(445 monitor sample
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for the monitor to flag if a problem was detected in the loop.  Assuming time units t

in seconds, it means it will take about 1.85 minutes before the monitor will flag.  

Violation counting however starts instantaneously. 

 

Figure 4.33  Distribution of States and Transition Probabilities from Reference

o be 

 
  Good Data (Window length = 395 Samples; Sampling Ratio = 1) 

 

 

The monitor was initialized with 8 total states (± 4 on each side), and the 

n 

0 % of the data in the extreme states.  After the analysis, and before estimating the 

indow length, the algorithm selects the state with least number of samples on each half 

f the Figure 4.33 and determines the number of samples to place in those states in order 

to meet the requirement on Type-I and Type-II error.  For this example, it can be 

 

algorithm estimated that it was enough to meet the requirement of having no more tha

1

w

o
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observed from Figure 4.33 that the states that have the least number of samples are the +3 

state on the positive side and the –3 state on the negative side.  Only one of the two states 

(in this example +3 state) is chosen and revealed in Figure 4.34.  

 

 

 

 

 The algorithm estimated the number of samples that need to visit this state (+3 

state) to be 26 given choices of α and β and the how far way from the reference transition 

probability that this β is desired.  XL indicates the minimum number of samples that need 

to leave the state and visit the next absolute higher in order to reduce the Type-I error rate 

to the desired level, while XH indicates maximum number of samples that need to leave a 

state and visit the next absolute higher in order to minimize the Type-I error rate to the 

Figure 4.34 s Analysis of Reference Data for State with Least Number of Sample
  (Distribution of Samples Leaving State and Entering the Next Absolute  
  Higher State Given the Reference Probability, α, β and λ) 
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desired leve , XL = 5 and XH = 20.  Thus out of a total of 

26 samples th (to be determined), a 

violatio

ll leave the state of +3 and visit next absolute higher state (i.e. +4).  

en about 23% of the time, 24 samples will leave that state of +3 and visit the state of +4 

nd when it happens this will be outside the desired upper control limit of 20 and so a 

n will cur. Similarly, if fu transition probabilities were to change 

gnific o say 0.05283, then about 24% of the time only 2 samples will leave the 

ate of +3 and visit the state of +4 and since this is outside the lower control limit of 5, a 

iolation will occur.  The chanc g a violation as can be seen from the Figure 

After the analysis on this state is complete and the number of samples in all the 

ther states are determined, the algorithm selects one state at random and determines the 

statistical errors that are associated with it based on the choices made.  For this example, 

the algorithm selected the state of +1 and based on the reference transition probability, it 

determined that 97 samples need to visit the state of +1 (see Figure 4.35).  In addition, if 

future transition where to differ from the reference value to say 0.050757, then about 

10% of the time say, about 7 samples may be expected to leave the state of +1 and visit 

the state of +2. 

l as well.  For the illustrated case

at need to visit the state of +3 in a given window 

n will occur if fewer than 5 samples leave the state and visit the next absolute 

higher state (i.e. +4) or more than 20 samples leave the state and visit the next absolute 

higher state.  Furthermore, Figure 4.34 illustrates that if future transition probabilities are 

not different from the reference value of 0.5283, then for example, 15% of the time, say, 

about 14 samples wi

In addition, if future transition probabilities were to change significantly to say 0.95283, 

th

a

violatio oc ture 

si antly t

st

v e of missin

4.34 is negligibly small, as desired. 

o
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Figure 4.35 Analysis of Reference Data for State Chosen at Random (Distribution  
  of Samples Leaving State and Entering the Next Absolute Higher State  

 Given the Reference Probability, α, β and λ) 
 

Furthermore, if probabilities differ to about 0.95076, then about 15% of the time 

ese number of visits are outside the control limits 33 on the lower side and 65 on the 

pper side and so it will mean a violation of the control limits.  Once all samples that 

90 samples may be expected to leave that of +1 and visit the state of +2.  In both case, 

th

u

need to visit all the states during a period of good control are known, the monitor 

estimates the window length necessary for performance monitoring.  Once the window 

length is estimated, a power curve for the entire test is plotted.  This is shown in Figure 

4.36.   
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Figure 4.36 Power Curve (Given α = 1% and β= 1% λ = 90%) 

 
 

4.4.2 Performance Evaluation of Health Monitor on the IMC  
   Process 

 
The performance of the health monitor is illustrated in Figure 4.37.  At sampling 

o 

pidly lace nge and so no 

ontrol limits were violated during these periods  

4000, 8000 and 12000, set point changes were made.  However, the controller was able t

ra  p the controlled variable at the new setpoint after each cha

c

Between sampling 16,000 and sampling 22000 and in the region labeled “A” in 

Figure 4.37, the filter time-constant was altered by a factor 0.2.  This made the controller 

aggressive resulting in degrading performance.  Control limits were violated, and so the 

monitor started the violation counter.  After the grace period was exceeded and the 

violations were still present in the loop, the monitor raised a flag retroactively for the 

entire duration when the filter time-constant was altered.  After the filter time-constant 
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was restored to the original value, the controller was able to restore stability in the loop 

and the violations were removed.  Once the monitor detected a return to good control, it 

stopped flagging and reset the violation counter to zero. 

 

 

A 
B C 

A C 
UCL 

UCL UCL 
B 

LCL 

Probabilities 

LCL LCL 

Transition 
Transition 
Probabilities 

Transition 
Probabilities 

Figure 4.37 Control Loop Performance Output (Sampling Interval = 0.25 Time 

= 0 Samples, Grace Period 445 Samples, Violation Counter Trigger =  
Length of Grace Period +1, Overall Level of Significance (α

Units, Sampling Ratio = 1; Window length = 395 Samples, Startup Period  

T) = 1%).  
Performance Output (A = Filter Time Constant Decreased, B = Process  

 Gain Increased, C = Process Gain Decreased) 
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Between sampling 26,000 and 34,000, labeled “B” in Figure 4.37, the process 

gain Kp, was increased by a factor of 10 to see if the monitor would be able to detect any 

changes in the performance of the controller, given a different process parameter than the 

one used for tuning.  Notice the change in performance during the period in the region 

labeled “B”.  Once control limits were continuously violated beyond the grace period, a 

flag was raised to indicate the degrading controller performance.  Notice that at some 

instances, the monitor reset the violation counter to zero due perhaps to the fact that the 

controller was attempting to restore good performance and the monitor detected that, but 

once performance deteriorated again the counter was invoked to start counting and a flag 

was raised once the grace period was exceeded.  At sampling 34,000, the process gain 

was reset to its original value.  Flagging stopped after the monitor sampled about a 

 etween sampling 40,000 and 46,000, labeled “C”, the process time constant was 

decreas

ance was viewed by the monitor to be acceptable around that period but shortly 

fter that, around sampling 45000 control limits were violated again.  The monitor 

detected the control limit violations, started counting and flagged retroactively again after 

window length of data and detected return to good control.   

B

ed by a factor of 0.1.  Again, notice the change in the controllers performance 

during that period.  Initially it appears that the controllers’ performance did not 

deteriorate much as to violate control limits except for occasional inception of the 

violation counter and resetting back to zero.  However, between sampling 43500 and 

about 44800, control limits were violated and so the monitor started counting and flagged 

after the grace period was exceeded and the violations were still present in the loop.  

After sampling 44800, the violation counter was reset to zero.  It seems that controller 

perform

a

 144



the grace period was exceeded and the violations were still present in the loop.  The 

process gain was restored to normal mode at sampling 46,000.  The monitor detected the 

change in loop performance and stopped flagging.  It must be mentioned that, it is 

possible that instances when the violation counter was reset to zero when there were still 

nuances in the loop could also be due to alarms being missed (Type-II errors). 
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4.4.3 Simulation Using Model Predictive Control 

 
 

This last simulation discussed in this work involves the application of the health 

monitor on a process controlled using Model Predictive Control (MPC) technique.  

Figure 4.38 is a schematic illustration of an MPC control loop.  The dynamics of the 

process is assumed to be inverse acting and second-order plus time delay.  It is 

represented by
)

( )
( )(1 2

1
1 1

s

p
p p

s e
G

t s t s

θλ −− +
=

+ +
.  A step response model used for determining the 

dynamic matrix was obtained after introducing a step change in the controller output 

signal and saving the process output over the entire prediction horizon.  Details of the 

process parameters and descriptions are provided in Appendix E. 

 

 
 
 
 
 
 
 
 
 
 
 
 

  
  

 
 
Figure 4.38 Schematic Diagram of a Process Controlled with MPC Technique (e =  

d  Actuating Error = Process Model Mismatch (Residuals), X = Controlle
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Figure 4.39 Distribution of States and Transition Probabilities from Reference 

 

 

 The monitor was initialized with 8 total states (± 4 on each side), and the 

algorithm determined that it was enough to meet the requirement of having no more than 

10 % of the data in the extreme states.  Prior to estimating the window length, the 

algorithm selects the state with least number of samples on each half of the Figure 4.39 

Data collected during a period of good control was analyzed and is shown in 

Figure 4.39.  The sampling time interval for the controller was 0.25 time unit.  The closed 

loop settling time (CLST) was estimated through step test to be about 30 samples.  The 

algorithm estimated that a sampling ratio of 1 (i.e. health monitor sampling time interval 

= 0.25 time unit) and a window length of 405 samples to be ideal for test analysis.   

 

 

   Good Data (Window length = 405 Samples; Sampling Ratio = 1) 
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and determines the number of samples to place in those states in order to meet the 

requirement on Type-I and Type-II error.  For this example, it can be observed from 

Figure 4.39 that the states that have the least number of samples are the +3 state on the 

positive side and the –3 state on the negative side.  Only one of the two states (in this 

example +3 state) is chosen and revealed in Figure 4.40.  The algorithm estimated the 

number of samples that need to visit this state (+3 state) to be 26 given choices of α and β 

and the how far way from the reference transition probability that this β is desired.  For 

this state, number of samples denoting the lower control limit is XL = 5 and the number 

of samples denoting the upper control limit is XH = 20.  Thus, out of 26 samples  

 
 
 

Figure 4.40 Analysis of Reference Data for State with Least Number of Samples 
  (Distribution of Samples Leaving State and Entering the Next Absolute  
  Higher State Given the Reference Probability, α, β and λ) 
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that need to vi  d), a violation will 

ccur if fewer than 5 samples leave the state and visit the next absolute higher state (i.e. -

4) or more than 20 samples leave the state and visit the next absolute higher state. 

 Furthermore, Figure 4.40 illustrates that if future transition probabilities are not 

different from the reference value of 0.51067, then for example, 15% of the time, say, 

about 13 samples will leave the state of +3 and visit the state of +4.  Also, if future 

time, 24 samples may be expected to leave the state of +3 and visit the state +4 and when 

it happens, this will be outside the desired upper control limit of 20 samples and so a 

violation will occur.  Moreover, if future transition probabilities were to change 

significantly to say 0.051067, then about 24% of the time only 2 samples may be 

expected to leave the state of +3 and visit the state of +4 and since this is outside the 

wer cont limi of 5 sa tion will occur.  Notice from Figure 4.40 that the 

hance of missing a violation is negligibly small, as desired. 

After the analysis on this state is complete and the number of samples in all the 

ther states are determined, the algorithm selects one state at random and determines the 

atistical errors that are associated with it based on the choices made.  For this example, 

e algorithm selected the state of +1 and based on the reference transition probability, 

etermined that 99 samples need to visit the state of +1 as shown in Figure 4.41.  Figure 

.41 re als th e 

to 33 xpected to 

ave the state of +1 and visit the state of +2.  Furthermore, if transition probabilities 

.95133, then about 10% of the time 92 samples may be expected to leave 

sit the state of +3 in a given window (to be determine

o

transition proba  significantly to say 0.95107 then about 23% of the bilities were to change

lo  rol t mples, a viola

c

o

st

th

d

4 ve at if future transition probability where to differ from the reference valu

say 0.051 1, then about 15% of the time say, about 6 samples may be e

le

differ to about 0
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the state of +1 and visit the state of +2.  In both cases, these numbers of visits are outside 

the control limits 34 on the lower side and 66 on the upper side and so it will mean a 

violation of the control limits.  Once all samples that need to visit all the states during a 

period of good control are known, the algorithm estimates the window length necessary 

for performance monitoring.  Once the window length is estimated, a power curve for the 

ntire test is plotted.  This is shown in Figure 4.42.   

 
 

igure 4.41 Analysis of Reference Data for State Chosen at Random (Distribution  
 of Samples Leaving State and Entering the Next Absolute Higher State  
 Given the Reference Probability, α, β and λ) 

e

 
F
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Figure 4.42 Power Curve (Given α = 1% and β= 1% λ = 90%) 

 
 

 

4.4.4 Performance Evaluation of Health Monitor on the MPC  
 Process 

 
The performance of the health monitor is illustrated in Figure 4.43.  At sampling 

2000, 4000 and 8000, setpoint changes were made.  The original Setpoint used during 

reference data sampling was 50.  At sampling 2000, it was reduced to 30 and then 

doubled at sampling 4000 to 60 and then finally restored back to 50 at sampling 8000.  

Notice that the setpoint changes at sampling 2000 and 4000 did result in control limit 

violations and so the violation counter was not invoked but the setpoint change at sample 

o 

ntroller placed 

 

8000 destabilized the loop some how resulting in control limit violations, but this was n

significant problem for the MPC controller to overcome.  The co
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controlled variable at setpoint rapidly within the grace period and the violations went off, 

and the counter was reset to zero 

 
 

 

= Length of Grace Period +1, Overall Level of Significance (αT) = 1%).  

Process Delay and Process Zeros, C = Change in Process Delay and  
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UCL 

UCL 

A

A B
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Figure 4.43 Control Loop Performance Output for MPC (Sampling Interval = 0.25 
Time unit, Sampling Ratio = 1; Window Length = 405 Samples, Startup  
Period = 0 Samples, Grace Period 435 Samples, Violation Counter Trigger  

Performance Output (A = Change in Process Delay, B = Change in  

Process Poles) 
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Between sampling 12,000 and sampling 16,000 and in the region labeled “A” in 

Figure 4.43, the delay associated with the process was changed from the original value of 

2 to 15.  Notice the resulting oscillations in the loop.  This resulted in control limit 

violations.  The monitor started the violation counter and after the grace period was 

exceeded, a flag was raised retroactively to indicate that the controller was having 

difficulty stabilizing conditions in the loop.  At sampling 16,000, the delay was restored 

to the original value of 2.  The violation counter was reset to zero and the flagging went 

off. 

Between sampling 24,000 and 32,000, in the region labeled “B” in Figure 4.43, 

the process zero was changed from 1/3 to 1/12 and the delay again changed from 2 to 15.  

Notice the ensuing oscillations in that region.  The monitor detected this and initialized 

the violation.  After the grace period was exceeded and the violations were still present, 

the monitor flagged retroactively to indicate the start of the problem.  At sampling 

32,000, the delay was restored to 2 and process zero reset to the original value of 1/3.  

Again, the violation counter was reset to zero and the flagging went off. 

 Between sampling 40,000 and 48,000, labeled “C”, one of the process poles was 

changed from the original value -1/2 to –1/30 and the delay changed to 15 again.  This 

tected the violations and after the nuances 

 

iginal values of –1/2 and 2, 

otice that the violation counter was reset to zero and the flagging went off. 

again resulted in oscillations.  The monitor de

had persisted in the loop beyond the grace period, a flag was raised.  At sampling 48,000

when the process pole and delay were restored to their or

n
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Summary 

A simple technique to detect and flag degrading control loop performance has 

been developed.  The technique uses normal plant operating data and a few user desired 

parameters.  These include, the desired Type-I and Type-II error rates and the how far 

away from a reference transition probability that the Type-II error rate is desired.  The 

algorithm is automated, but it must be initialized with a sampling ratio (SR) and a certain 

number of states (NS).  The monitor requires data from a reference period when control 

was judged to be good by operators or engineers.   

In the selection of the reference data, it is necessary to ensure that it includes 

cidents that are expected to be seen and not flagged as “bad” events. 

The m l 

mits.  Ideally, it will be desired that good control will be maintained throughout plant 

peration.  Nevertheless, process and plant conditions change and control is no longer 

good as was d

his dat

in

onitor uses this data to determine the transition probabilities and contro

li

o

esired.  The monitor continually determines the transition probabilities of 

t a at each sampling instant and if future probabilities differ significantly from that 

determined during the reference period as to violate any control limit, then a violation 

counter is initialized.  If the violations persist beyond a grace period then a flag is raised 

retroactively to indicate the start of the problem. 

For this work, the overall Type-I error rate (α) used was 1%.  The Type-II error 

rate (β) was also set at 1%.  The measure of how far way from the reference probability 

(Pref), that the Type-II error rate (λ) was desired, was set at 90%.  The algorithm was 

initialized with a sampling ratio of 1 and initial total number of states of 8.   

 154



The monitor was evaluated on simulation data, unit operation laboratory ((UOL) 

experimental data, and industrial data from one of the industrial sponsors for the project, 

xxonMobil. 

The results show that the monitor is able to detect poor and degrading control 

performance.  For instance, it was able to detect instances of valve stiction, and 

oscillations caused by external events, changing process conditions such as gain increases 

or decreases, time delays and poles and zeros.  Moreover, even in instances where 

changes in process conditions resulting in degrading control performance are not visible 

to the normal human perception, the monitor is able to detect when the distribution of 

data being analyzed is significantly different from that analyzed during the reference 

period and inform operators.  The monitor flags continuously for as long as a problem 

detected persists.  It does not flag when process conditions are good. 

In this work, the amplitude of a signal is ignored in characterizing the actuating 

errors.  The question has arisen as to whether this is a limitation or .  It be stated 

that if an incident changes the amplitude of a signal such that the Autoregressive Moving 

Average (ARMA) description is not affected, be unable to 

detect such changes.  On the other hand, if an event such as the process gain, process 

time-constant, controller gain and controller time-constant (See Appendix G), changes 

e amplitude of a signal, it will affect the natural frequency of oscillation of the signal 

 

oscillation of t

data sampled health 

monitor will detect the changes and flag when it has to. 

E

not must 

then perhaps the monitor may 

th

and hence the natural period of oscillation.  This will lead to differences in the period of

he data sampled in the reference stage and the period of oscillation of the 

during testing or performance monitoring.  For such cases, the 
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CHAPTER 5 
 
5.0 Conclusion and Recommendations 

 A simple and practicable technique capable of flagging poor and degrading 

control loop performance has been developed.  The conclusions are summarized in 

section 5.1 and a few recommendations for future work are presented in section 5.2. 

 

5.1 Conclusions 

 A control loop monitoring software is hereby proposed.  The proposed technique 

is able to detect and flag poor and degrading control loop performance.  The method uses 

only routine plant operating data.   

It does not require a-priori knowledge of the process (such as model or process 

deadtimes and delays) nor the controller.  It only requires the process setpoint and a 

representative data of the controlled variable during a period of good control.  For model-

based control such as model predictive control (MPC), it uses the residuals or process 

model mismatch for analysis. 

The method herein proposed provides a helpful autonomous tool for technicians 

and engineers in monitoring control loop performance more efficiently.  This will help 

reduce or avoid erroneous human decision.   

Simulations, unit operations, and industrial data testing, reveal that the health 

monitor can automatically detect and flag common control loop problems such as 
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oscillations, aggressive and sluggish control, and other constraints that degrade process 

conditions. 

 The technique is simple and easy to implement.  It only requires a few user 

specified parameters.  Once the required number of user-parameters is specified, the 

monitor automatically determines all other parameters needed for performance 

monitoring. 

 The monitor flags when during period of degrading or poor control.  It does not 

flag when control loop performance is good.   

 The technique has been developed to balance user desired Type-I and Type-II 

error rates in estimating the window length.  As a result, when the violation counter is 

initialized, it is a likely indication of degrading control loop performance and may require 

operators to pay attention or investigate what the cause might be.  Furthermore, when a 

grace period is exceeded and a flag is raised, then it is more than likely that something 

has gone wrong within the loop requiring instant operator attention or response. 

 Although, the technique has been developed using single input single output 

(SISO) system, this does not in anyway impair its application or extension to multiple 

input multiple output (MIMO) systems.  It is easily extensible to all applications where a 

target value can be compared to an output value. 

 The technique is easy to understand and implement.  It is non-intrusive in that it 

does temper with control loop activities.  It only samples data from the controller.  

Nevertheless, it is able to detect oscillations that are even not perceptible to the human 

eye.  It flags on when it is supposed to flag, and off when it is not supposed to.  This 

makes it sensitive and efficient. 
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5.2 Recommendations 

 Although the method flags on poor or degrading control it does not indicate the 

location of the problem that caused the nuance in the loop.  The objective of this work did 

not include identifying fault or problem location once the monitor detects a problem.  

However, it will be ideal to extend the application of the monitor to enable it report to 

operators the location of a problem once it detects bad or degrading control loop 

performance.  Such a utility will enhance process safety and reduce time spent by 

operators in attempting to identify the source of a problem in a complex plant with 

numerous interacting loops. 

 The technique has been tested extensively on unit operations and simulation data 

and found to be internally consistent.  Though the monitor was tested on one set of 

industrial data, it will be nice to test it on more external data from industry in order to 

claim external consistency as well. 

 This work utilized two arbitrary conditions: 

1. Desiring that transition probabilities lie between 0.25 and 0.75 to 

avoid getting controls limits that are zero, unity or very nearly so. 

2. Desiring that at most 10% of the data lie in the extreme state 

during analysis of the reference data. 

 While these conditions appeared to work fine for all the analysis explored in this 

study, no fundamental proof has been established for their usage.  It is recommended that 

further work be carried out to investigate a fundamental basis for theses choices or 

otherwise. 
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 The normal approximation to the binomial distribution is often used as a simple 

and easy way for estimating distributions involving binomially distributed variables.  

This work discovered differences in the use of the two distributions.  For rigorous usage 

and all applications involving this work, the binomial distribution is recommended. 

 It is recommended that further work be carried to investigate how amplitude 

changes that do not affect the natural frequency oscillation of a signal will affect the 

performance of the monitor. 

 An attempt was made to identify the effect of autocorrelation on sampling ratio in 

this work.  While it was noticed that autocorrelation does have an impact on the sampling 

ratio, the results may not be adequately conclusive.  It will be helpful to explore this 

effect further to identify how strong effects of autocorrelation actually affect the 

performance of the monitor. 
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APPENDIX A 
 
Controller Tuning for First-Order-Plus-Time Delay (FOPTD) Process 
 
 
 
 
 
 
 
 
 
 
 

Gc
CV Xsp

 +  
 - 

FOPTD Process MV e 

 
Figure A1 Schematic Diagram of a PID Control Loop for FOPTD Process 
 

 
 Transfer function for processes = 

( )1

s
p

p
p
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Kp = Process Gian 

tp = Process time constant 

θ = Transport (Time) delay 

The following process parameters are used:  

1 1 5pK =   

1 2 m i npt =  

1 0 . 1 m i nθ =  

Tuning is done using the ITAE PI controller tuning relations below for the controller gain 

Kc, the Integral time constant tI respectively as: 
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Where UO is the controller bias 
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APPENDIX B 
 
Controller Tuning for Second Order-Plus-Time Delay (SOPTD) Process 
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Figure B1 Schematic Diagram of Control Loop for SOPTD Process 
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Combining the two transfer functions gives: 
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Tuning is done using the Cohen-Coon PID controller tuning relations below for 

the controller gain Kc, the integral time constant, tI, and the derivative time constant, tD, 

respectively as: 
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Where UO is the controller bias 
 
The following process parameters are used: 
 

1 0 . 5pK = ; ;   
1 1 . 5 m i npt = 1 0 . 5 m i nθ =

2 1 . 0pK = ; ;  
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APPENDIX C 
 
Internal Model Control (IMC) Structure 
 

d̂  
ˆ
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m̂

ˆ r
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 ŵ
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Figure C1 Schematic Diagram of Control Loop with a Process Model (IMC) 
 

pG% = Process  
*
cG  = Internal Model Controller 

pG% = Process Model = G G+ −
% %  

G +
%  = Non-invertable part of process model (Contains all time delays and 

right-half  
    plane poles 
G −
% = Invertable part of process model 

 F = Filter = 
( )

1
1 n

wt s +
 

n  = filter order 
τw = filter time-constant 

ê  =  Mismatch between process and process model = ˆ ˆX y−  

d̂  = Disturbance to the process 
ˆ

spX = External setpoint to the process 

ˆ
sp

rX = Corrected setpoint to the process = ˆ ˆspX e−  

ŵ = Filter output
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m̂ = Controller Output 

 Figure C1 can be rearranged to get the equivalent structure in Figure C2 for the 

entire structure in the area marked with the broken lines represents the IMC controller 

shown in simplified form in Figure C3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C2 Equivalent Structure of Figure C1 
 
From Figure C2, 
 

ˆ ˆˆ spe X X= −  

  ˆˆ ˆpy G m=
ˆ ˆẑ e y= +  

ˆ ˆw Fz=  
*ˆ ˆCm G w=  

 
 
 
 
 
 
 
 

Figure C3 Simplified Structure of Figure C1 
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ˆ ˆˆ spe X X= −

ŵˆ
spX

 

ŷ

ẑ

X̂  

d̂

   + 
     - 

cG pG

     +  
  + 
     

 ˆ
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*
CG  is chosen as the reciprocal of the invertable part of pG ( i.e. 1/ ).  Hence G−

given 
( )1

s
p

p
p

K e
G

t s

θ−

=
+

, it implies that * 1
CG

G−

= where 
( )1

p

p

K
G

t s− = +
 and sG e θ−

+ =  

Hence ( )*
1p

C
p

t s
G

K
+

=  

Tunable parameters include: , ,p p wt K t  and . n

Since  is typically improper, the filter order, n is chosen so that *
cG ** cF G is proper.   

The following process parameters are chosen from lecture notes by Dr. R. R. Rhinehart.  

; 4 .3 m inpt = 0.8% /pK psi= ; 2.1minθ = .  Fro these, Rhinehart recommends of 

3 min (i. e. (t

wt

w + θ)/2), and “n” is chosen to be 1.   

( )
0.8

4.3 1
G

s− = +
; ( )* 4.3 1

0.8c

s
G

+
= ;  2.1sG e−

+ = ; 
( )

1
3 1

F
s

=
+

 

A simple algorithm for the IMC loop therefore is: 

spe X X= −  

 ( )* 0 .8 * 2 .1 1
4 .3 4 .3n e w o ld

T Ty m t∆ ∆⎛ ⎞ ⎛ ⎞= − + −⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦⎝ ⎠ ⎝ ⎠
y  

old newy y=  

newz e y= +  

1
3 3n e w o l d
T Tw z w∆ ∆⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

 

1 .25 5 .375 new oldw wm w
T
−⎛ ⎞= + ⎜ ⎟∆⎝ ⎠

 

old neww w=  

Output m 
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APPENDIX D 

 
AUTO-CORRELATION AND PARTIAL AUTO-CORRELATION ANALYSIS 
 

Given a time series of data, it is often useful to investigate if there is a relationship 

or correlation between the data points.  Investigation of the correlation between different 

values or signals within a data set is referred to as autocorrelation.  In this excursion of 

the work, it is desired to study how the presence of autocorrelation affects sampling ratio 

and number of states used for performance monitoring.  A study of autocorrelation often 

involves plotting a correlogram (i.e. a set of graphs showing the correlations in the data 

as a function of the lag).  In this work, the intent here is to investigate if the noise (i.e. 

actuating errors in this work) pattern: 

1. Is just random or not 

2. If not, is there a defined pattern or model that describes the errors 

3. And, if there is a defined pattern present in the actuating errors, 

a. How does the pattern affect the sampling ratio 

b. Can the pattern be removed and 

c. How does removing the pattern affect sampling ratio 

 In general, the extent to which two random variables vary together (co-vary) is 

measured by their covariance.  If the variation is about different values in the same data 

set then it is referred to as autocovariance.  It is established that the autocovariance 

between two points does not depend on time itself but on the difference between 2 times. 
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 In signal processing and time series analysis this difference is generally referred 

to as lag (Box et al., 1994; Shumway et al., 2000).  The autocovariance enables a 

calculation of the autocorrelation function, which enables one to determine if the noise 

present in a data set is just random or if a pattern exists.  A discussion of how to get the 

correlogram is presented below 

Given time series of data: 

1 1 2 2 3 3 ...t t t t p t p tx x x x x wα φ φ φ φ− − − −= + + + + + +      (D1) 

Where ( 1 2 31 ... p )α µ φ φ φ φ= − − − − −       (D2) 

µ is the sample mean and iφ  denotes the coefficient of xt-i and wt is white Gaussian noise.  

The covariance between samples or observations at time t and t + h is denoted by: 

( ) ( ) ( ) ( )( ), ,t t h t t t h t hCov x x t t h h E x x x xγ γ+ = + = = − −+ +     (D3) 

Where ( )
1

1 N

i

E x
N =

= ∑ x  and x = µ is the sample mean.  Hence: 

( ) ( )(
1

1 N

t t t h t h
t

h x x x
N

γ + +
=

= − −∑ )x        (D4) 

If the mean x , variance wσ and model coefficients iφ  are approximately constant over 

time, then the series is said to be stationary.  Thus t t hx x +=  

( ) ( )(t t t h th E x x x xγ += − − )         (D5) 

( ) ( 2
t t h t t hh E x x xx xx xγ + += ⋅ − − + )        (D6) 

( ) ( ) ( ) ( ) ( )2
t t h t t hh E x x E xx E xx E xγ + += ⋅ − − +      (D7) 

( ) ( ) ( ) ( ) ( )2
t t h t t hh E x x xE x xE x E xγ + += ⋅ − − +      (D8) 
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( ) ( ) ( ) ( 22
t t h t t h th E x x x E x x E xγ + += ⋅ − = ⋅ − )      (D9) 

( ) ( ) 2

1

1 N h

t t h
t

h x x
N

γ
−

+
=

= ⋅∑ x−         (D10) 

if h = 0, then ( ) ( ) ( ) ( )22 2 2

1

1,
N

t t t
t

t t E x E x x x
N

γ
=

= − = −∑   

( ) ( )2 2

1

10
N

t
t

x x
N

γ
=

= ∑ −         (D11) 

In general, for a given data set, the sample variance is estimated as:  

( 22

1

1ˆ
1

N

w t
t

)x x
N

σ
=

=
− ∑ −         (D12) 

2 2

1 1 1

1ˆ 2
1

N N N

w t t
t t t

2x x x x
N

σ
= = =

⎛= − +⎜− ⎝ ⎠
∑ ∑ ∑ ⎞

⎟        (D13) 

2 2 2

1

1ˆ 2
1

N

w t
t

2x Nx Nx
N

σ
=

⎛= − +⎜− ⎝ ⎠
∑ ⎞

⎟        (D14) 

2 2

1

1ˆ
1 1

N

w t
t

N 2x x
N N

σ
=

⎛ ⎞= −⎜ ⎟− −⎝ ⎠
∑        (D15) 

But lim 1
1N

N
N→∞

⎛ ⎞ =⎜ ⎟−⎝ ⎠
 and 1lim

1N N N→∞

⎛ ⎞ 1
=⎜ ⎟−⎝ ⎠

, hence 

2 2

1

1ˆ
N

w t
t

2x x
N

σ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ −          (D16) 

Thus, Equation (D11) and (D16) are same. Hence ( ) 20 ( ) wVariance xγ σ= =  

Thus, in general the autocovariance is given by: 

( )
( )

2

2

1

0
1 1

w
N h

t t h
t

h
h

x x x h
N

σ
γ −

+
=

⎧ =
⎪= ⎨

⋅ − ≥⎪
⎩

∑
       (D17) 
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 It is essentially the correlation coefficient between a value x and a time shifted 

version of itself.  Let ρ denote the autocorrelation at lag h.  Then 

( ) ( )
( )0
h

h
γ

ρ
γ

=          (D18) 

( )
( ) ( )

( )

( ) ( )

( )
1 1

22

11

1

1

N h N h

t t h t t h
t t

N hN h

tt
tt

x x x x x x x x
Nh

x xx x
N

ρ

− −

+ +
= =

−−

==

⎛ ⎞
− ⋅ − − ⋅ −⎜ ⎟

⎝ ⎠= =
⎛ ⎞ −−⎜ ⎟
⎝ ⎠

∑ ∑

∑∑
   (D19) 

Both the autocovariance and autocorrelation are even functions.  That is: 

( ) ( )h hγ γ= −  and ( ) ( )h hρ ρ= −  

 It is known that the Autocorrelation function (ACF) of a time series provides a 

significant amount of information about the order of the dependence when the process is 

a moving average (MA) Shumway et al., (2000).  The general MA process can be 

represented as: 

 1 1 2 2 3 3 ...t t t t q t qx w w w wµ ϕ ϕ ϕ ϕ− − −= + + + + + −

t k

   

Where wt is independently and identically distributed with mean zero and variance σ2
w 

 ( )( )2. . 0,t wi e w IID σ≈

 
0

q

t k
k

x wµ ϕ −
=

= +∑         (D20) 

 1 1 2 2 3 3 ...t h t h t h t h q t h qx w w w wµ ϕ ϕ ϕ ϕ+ + − + − + −= + + + + + + −

w + −

  

         (D21) 
0

q

t h j t h j
j

x µ ϕ+
=

= +∑
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 Where q is the maximum lag beyond which there is no significant correlation 

between observations and h is any lag between zero and q inclusive.  The covariance is 

given by 

 ( ) ( )( )t h th E x xγ µ+= − − µ

⎞
⎟

       (D22) 

       (D23) ( )
0 0

q q

j t h j k t k
j k

h E w wγ ϕ ϕ+ − −
= =

⎛ ⎞⎛
= ⎜ ⎟⎜

⎝ ⎠⎝ ⎠
∑ ∑

 ( ) ( )( )0 1 1 0 1 1... ...t h t h q t h q t t q t qh E w w w w w wγ ϕ ϕ ϕ ϕ ϕ ϕ+ + − + − −= + + + + + + −  (D24) 

In general, 

 ( )
2

,
0

w
i j

i j
E w w

i j
σ⎧ =

= ⎨
≠⎩

       (D25) 

Hence from Equation (D24) 

( ) ( )2

0

0

0

q h

w i i h
i

h q
h

h q

σ ϕ ϕ
γ

−

+
=

⎧
≤ ≤⎪= ⎨

⎪ >⎩

∑      (D26) 

Conventionally, 0ϕ is often assumed to be 1.  Hence from Equation (D26),  

( )

( )
( )
(

( )

2 2 2 2 2
1 2 3

2
1 1 2 2 3 1

2
2 1 3 2 4 2

2
1 1 2 2

1 ... 0

... 1

... 2

...

0

w q

w q q

w q q

w h h h q h q

h

h

hh

h q

h q

σ ϕ ϕ ϕ ϕ

σ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

σ ϕ ϕ ϕ ϕ ϕ ϕ ϕγ

σ ϕ ϕ ϕ ϕ ϕ ϕ ϕ

−

−

+ + −

⎧ + + + + =
⎪
⎪ + + + =
⎪
⎪ + + + == ⎨
⎪
⎪

+ + + =⎪
⎪ >⎩

M

)     (D27) 

Using ( ) ( )
( )0
h

h
γ

ρ
γ

=  
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( )
0

2

0

1
1

0

q h

j j h
j

q

k
k

h q
h

h q

ϕ ϕ

ρ
ϕ

−

+
=

=

⎧
⎪
⎪ ≤ ≤⎪= ⎨ +⎪
⎪

>⎪⎩

∑

∑
       (D28) 

Thus in general, if a series can be modeled as an MA process, then the ACF cuts off 

( ) after lag h.  Thus if the ACF plot in the correlogram cuts off after lag h, 

the process can be represented by an MA model.  However, if the series is 

autoregressive (AR) where: 

( ) 0hρ ≅

 1 1 2 2 3 3 ...t t t t p t p tx x x x x wµ φ φ φ φ− − − −= + + + + + + , or a combination of autoregressive 

and moving average (i.e. ARMA), then the ACF reveals very little about the order of 

dependence between the sample data points.   

For instance, consider the series 

1 1t t tx x wµ φ −= + +         (D29) 

( )2 1t t t tx x w wµ φ φ − −= + + +  

 2
2 1t t t tx x wµ φ φ− −= + + +w

t

 

( )2
3 2 1t t t tx x w w wµ φ φ φ− − −= + + + +  

3 2
3 2 1t t t t tx x w wµ φ φ φ− − −= + + + +w

t j

 

M  

1

0

k
k j

t t k
j

x xµ φ φ
−

−
=

= + +∑ w −        (D30) 

 In the limit as k→∞ , and assuming 1φ < , it implies 

1

0

k
j

t
j

t jx wµ φ
−

−
=

= +∑          (D31) 
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and 

1

0

k
j

t h t h j
j

x µ φ
−

+
=

= +∑ w + −         (D32) 

The Autocovariance is given by: 

 ( ) ( )( )t h th E x xγ µ µ+= − −  

( )
1 1

0 0

k k
j i

t h j t i
j i

h E w wγ φ φ
− −

+ − −
= =

⎛ ⎞⎛= ⎜ ⎟⎜
⎝ ⎠⎝ ⎠

∑ ∑ ⎞
⎟       (D33) 

Using the property from Equation D25 and simplifying gives 

( ) 2

0

j j h
w

j
hγ σ φ φ

∞
+

=

= ∑         (D34) 

( ) 2

0

h
w

j
h 2 jγ σ φ φ

∞

=

= ∑         (D36) 

But 2

0

j

j
φ

∞

=
∑  forms a geometric series, the sum of which is given by  

( )
( )

2

2

1

1

n

ns
φ

φ

−
=

−
 Which in the limit as n→∞ , simplifies to give 

( )2

1
1ns

φ
=

−
.  Equation 

(D36) can thus be written as  

( ) ( )
2

21

h
wh σ φγ
φ

=
−

  

Using ( ) ( )
( )0
h

h
γ

ρ
γ

=  

( ) ( ) ( )
2 2

2 21 1

h
w wh

0σ φ σ φρ
φ φ

=
− −

 

( ) 0hhρ φ= h ≥         (D37) 
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Furthermore, 

 ( ) 11 hhρ φ −− =          (D38) 

Dividing Equation (D37) by Equation (D38), and simplifying, it can shown that 

satisfies the recursive relations: ( )hρ

( ) ( )1h h hρ φρ= − 1≥        (D39) 

 From Equation (D38) and (D39), it can be noticed that the ACF of an 

autoregressive process does not cut off after lag h like an MA process. Thus, it is 

worthwhile to pursue a function that will behave like the ACF (of an MA series) but will 

represent an AR series.  Such a function is referred to as partial autocorrelation function 

(PACF) and is the correlation between time-indexed variables tx and t hx + with the effect 

of removed (Box et al., 1994; Shumway et al., 2000).  Let 1, 2, 3, 4, 1...t t t t t hx x x x x± ± ± ± ± − ˆtx  

denote the best linear predictor of tx based on { }1 2 3 1, , ,...,t t t t hx x x x− − − − + .  That is: 

 1 1 2 2 3 3 1 1ˆ ...t t t t hx x x x xβ β β β− − − −= + + + +        (D40) 

Where the β’s are chosen to minimize the mean square error ( )2
tE x x− .   

Also, let ˆt hx − denote the best linear predictor or regression of t hx − based on the future 

values of{ }1 2 3 1, , ,...,t t t t hx x x x− − − − + .  That is: 

 1 1 2 2 3 3 1ˆ ...t h t h t h t h h 1x x x x xβ β β β− − + − + − + −= + + + +       (D41) 

Where the β’s are again chosen to minimize the mean square error ( 2
t h )E x x− − .  The 

partial autocorrelation of tx , hhφ is defined as the correlation between the tx  and t hx − with 

the dependence chain between them removed and is denoted as:  

 178



( )ˆ ˆ,hh t t t h t hcor x x x x hφ − −= − − 1>

1=

       (D42)  

And 

( ) ( )11 1, 1t tcor x x hφ ρ−= =       (D43) 

 While Equations (D42) and (D43) illustrate the general idea behind the PACF, the 

determination of the function coefficients is often done by following the derivation of 

autocovariance function, then the autocorrelation function from which the PACF values 

hhφ are estimated.  Precisely, the estimate ĥφ  of the last coefficient of the ACF provides 

the estimated PACF coefficient value hhφ .  This is discussed below. 

Consider the general stationary series, 

1 1 2 2 3 3 ...t t t t p t p tx x x x x wφ φ φ φ− − − −= + + + + +      (D44) 

Where wt is independently identically distributed, IID (0, σ2
w), the autocovariance is 

expressed as: 

( ) ( )t t hh E x xγ += ⋅         (D45) 

( ) (( )1 1 2 2 3 3 ...t t t p t p t th E x x x x w xγ φ φ φ φ− − − − += + + + + + ⋅) h    (D46) 

( ) ( ) ( ) ( ) ( )1 1 2 2 ...t t h t t h p t p t h t t hh E x x E x x E x x E w xγ φ φ φ− + − + − + += ⋅ + ⋅ + + ⋅ + ⋅   (D47) 

Since wt is IID  

( ) ( ) ( ) ( )1 21 2 ... ph h h hγ φ γ φ γ φ γ= − + − + + − p      (D48) 

Dividing through by  gives ( )0γ

( ) ( ) ( ) ( )1 21 2 ... ph h h hρ φ ρ φ ρ φ ρ= − + − + + − p       (D49) 

 Equations (D48 and (D49) are the autocovariance and autocorrelation functions 

written in difference equation forms.  Let hjφ denote the jth coefficient in an autoregressive 
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representation of order h so that hhφ  is the last coefficient.  Then according to Box et al., 

(1994) hjφ  satisfy the set of equations: 

( ) ( ) ( ) ( ) (,1 ,2 , 1 ,1 2 ... 1h h h h h h )j j j j hρ φ ρ φ ρ φ ρ φ ρ−= − + − + + − + + −j h

.

.

.

h

  (D50) 

Equation (D50) can be arranged in a matrix form as: 

1 1

2 21

3 32 1

1 2 3 4 . . . 1

1
1

1
. .
. .
. .

h

h

h

h h h h hh

φ ρ
φ ρρ
φ ρρ ρ

ρ ρ ρ ρ φ ρ− − − −

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

  (D51) 

 The matrix can be represented as:  

R ρΓΦ =  from which 1R ρ
−Φ = Γ . The values of ρi’

s (the autocorrelation function 

values) are all known and so the coefficient matrix Φhh can be solved to get the partial 

autocorrelation function values.  For a large matrix, the solution of Equation (D51) 

may pose a computational burden.  So the algorithm below due to Durbin-Levinson 

(Box et al., 1994; Shumway et al., 2000) below is used to determine Φkk.  Where for 

index n≥ 1, 

And for 

( ) ( )

( )

1...3,2,1
2

1

,1,1

,1

1

1
,1

−=∨−=
≥

−

−−
=

−−−

−

−

=
−

∑

∑

nk
n

k

knn

knnnnknnk

kn

n

k
kn

nn

φφφφ

ρφ

ρφρ
φ

  (D52) 

 Specifically, the PACF are useful in identifying the order of an autogressive 

model which essentially reveals the extent to which the data points are correlated with 

each other and the how far back in the data the correlation exist. The PACF of an AR(P) 
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series is zero at lags p+1 and greater.  In this way, the PACF of an AR process resembles 

the ACF of an MA process.  In general, the PACF is often used in conjunction with the 

ACF in order to describe the data adequately.  Table A.1 is a summary of the behavior of 

ACF and PACF for a causal time series data (i.e. a series for which future data points 

depend only on previous or past points).   

 
Table D1 Behavior of the ACF and PACF for Causal an Invertible ARMA  
  Series (P is the lag for an AR process and q is the lag for an MA  
  Process) 
 

Function AR(p) MA(q) ARMA(p, q) 

ACF 
Tails off 

(Decreases gradually 
to zero, but may 

oscillate) 

Cuts off after lag q Tails of 

PACF Cuts off after lag p 
(Is Significantly zero) 

Tails off Tails off 

  (Shumway et al., 2000) 

 

 Often, if the sample ACF of a process indicates that an AR model may be 

appropriate to describe the data, then the sample PACF plot is examined to help identify 

the order.  In using the plot, it is useful to always look for lags where the autocorrelations 

essentially become significantly close to zero.  In doing so, a confidence interval 

equivalent to z
n

⎛±⎜
⎝ ⎠

⎞
⎟ , where “z” is the ordinate of the standard normal distribution and 

“n” is the sample size, is often placed on the chart and all correlations below this limit are 

deemed to be not significant.  In general, the most commonly used confidence limit is the 

95 % level and it is also used in this work to determine a cut off for the ACF and PACF.  

The 95 % confidence level has an approximate z-value band of ±1.96.  However, a value 
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of 
n

2± is often used in most applications for the ACF and PACF.  Figure D1 is a 

correlogram showing the sample autocovariance function, the autocorrelation function 

(ACF) and the partial autocorrelation function (PACF) plot using the actuating errors 

from the primary control loop of the ExxonMobil cascade data.   

 Notice the cycling effect in the autocovariance and autocorrelation function plots 

(the first two graphs respectively).  The plot in Figure D1 can be interpreted using Table 

D1, to mean that autocorrelation effect in the third plot significantly vanishes after lag 7.  

As a result the data was differenced such that get a new error data where err(k) = e(k+7)-

e(k). Where “e” is the actuating error prior to differencing and “err” is the actuating error 

after differencing.  The new actuating error from the reference period was analyzed using 

the health monitor.  The results are shown in Figure D2.  Notice that the sampling ratio 

reduced from 34 in Figure 4.28 to 29 in Figure D2.  

 

 
Figure D1 AFC, PACF of the Primary Control Loop data from  

  ExxonMobil Data 
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Figure D2 Distribution of States and Transition Probabilities from Reference 
  Good Data after Differencing the Data (Window Length = 510   
  Samples; Sampling Ratio = 29; Difference = 7; αT = 1%, β = 1%, λ  
  = 0.9) 

 

 
 Also the Window length decreased from 833 in Figure 4.28 to 510 in Figure D2.  

Moreover the number of states required was determined to be 6 (±3 states), which was 

less that required in Figure 4.28.  Figure D3 shows the performance output.  Notice how 

the monitor flagged the period when the controller was known to be experiencing 

difficulties.  Comparing Figures D3 and 4.29, it is noticed that there was no flagging in 

the case of Figure 4.29.  It is likely that the strong correlation present in the original data 

might have had an impact on the analysis resulting in a large sampling ratio and window 

length which may in turn be responsible for the missed observations. 
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 The analysis was repeated for the secondary loop by plotting the correlogram and 

studying the ACF and PACF shown in Figure D4.  It was noticed that The PACF cut-off 

after lag 12.  Hence, the data was differenced by 12 samples apart and analysis of the 

reference data is shown in Figure D5.  The algorithm estimated a sampling ratio of 3 and 

a window length of 457 samples in comparison with Figure 4.30 where the monitor 

estimated, for the original data, a sampling ratio of 11 and a window length of 513 

samples.  The performance output for the secondary loop is shown in Figure D6.  Notice 

that in addition to flagging within the same region, which was flagged in Figure 4.31, 

other areas were also flagged.  It turns out that, there were control problems in these 

regions as well that was probably not revealed in Figure 4.31 due perhaps, to the long 

window length and large sampling ratio. 

 In summary, the presence of autocorrelation in a data can have a significant 

impact on the sampling ratio and window length.  If it is identified that a strong 

autocorrelation exist in the data, it may be a good idea to study the correlogram and 

perhaps reduce or remove the extent of the correlation before carrying out performance 

analysis. 
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Figure D3 Control Loop Performance Output (Sampling Period = 5s,  
  Sampling Ratio = 1; Window length = 510 Samples, Startup Period =  
  0 Samples, Grace Period 560 Samples, Violation Counter Trigger =  
  Length of Grace Period +1, Overall Level of Significance αT) = 1%) 
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Figure D4 AFC, PACF of the Secondary Control Loop data from  
  ExxonMobil Data 

 

Figure D5 Distribution of States and Transition Probabilities from Reference 
  Good Data after Differencing the Data (Window Length = 457; 
   Samples; Sampling Ratio = 3; Difference = 7; αT = 1%, β = 1%, λ  
  = 0.9) 
 

 186



Figure D6 Control Loop Performance Output (Sampling Period = 5s, 
  Sampling Ratio = 1; Window length = 457 Samples, Startup Period =  
  0 Samples, Grace Period 507 Samples, Violation Counter Trigger =  
  Length of Grace Period +1, Overall Level of Significance (αT)) = 1%)  
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APPENDIX E 
 
Model Predictive Control (MPC) Details 
 

 d 
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   + 
   -  

MPC Controller 
(Optimization) 
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     +  
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 X̂

     +  
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m̂

Process Model Mismatch, Pmm 

 

ŷ

 
 
Figure E1 Schematic Diagram of a Process Controlled with MPC Technique (e =  
  Actuating Error = Process Model Mismatch (Residuals), X = Controlled  

  Variable, m = Manipulated Variable, 
pG% = Step Response Model, 

pG  =  
  Process, ˆ

spX  =  Desired Trajectory (Setpoint), d = Disturbance) 
 
 
 

Process Model: ( )
( )( )

33 1
2 1 5 1

s

p

s e
G

s s

−− +
=

+ +
      (E1) 

 

The parameters were used for the simulation: 

Move suppression factor, f = 10 

Prediction horizon “PH” = 40 samples 

Control horizon “CH” = ¼*PH  
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Number of controlled variables =1
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Number of input variables = 1 
 
Algorithm: 

At the start of the algorithm, obtain a prediction horizon and control horizon.  

Obtain the step response coefficients over the entire prediction horizon and determine the 

dynamic matrix ADMC and the dynamic controller matrix  KDMC (discussed elsewhere; 

Lee et. al, 1998; Brosilow et al, 2002; Ogunaike et al, 1994; Marlin 2002; Erickson et al, 

1999), where 

KDMC = (Transpose(ADMC)*ADMC + f^2)*(Transpose(ADMC)) 

Since the model does not account for disturbances and load changes.  To ensure 

better prediction, the prediction vector is corrected with the mismatch between the 

process and the model (i.e. process model mismatch, (Pmm)).  In this work, the process is 

assumed to be represented by a simulator.  The simulator is represented by the Equation 

(E1), and the output from the simulator (ysim), plus random noise is used to represent the 

true process measurement (X).  Also, obtain a vector of ones “Id” equal in length to the 

prediction horizon to be used for scalar to vector transformations.  Figure E2 is the step 

response output due to a unit step change in the controller output signal from which the 

response coefficients are obtained. 

 

1. Obtain the current process measurement “X” and initialize the prediction 

vector yp to that value. 

2. Estimate the disturbance or process model mismatch (i.e. Pmm = X*Id - yp). 

3. Correct the predicted vector yp with the Pmm (i.e. yp = yp + Pmm). 
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4. Determine the error (Err) between the corrected value of yp and the desired 

trajectory “Xsp” (i.e. Err = Xsp*Id - yp). 

 
 

Figure E2 Step Response of Second-Order plus Time Delay (SOPTD)  
  Process with Inverse Response 
 

 

5. Estimate the control action “∆U” as KDMC*Err and implement only the first 

element as U = U + ∆U(1,1) 

6. Allow the process to run and obtain the process measurement “X” as  

 X = ysim + noise.  (Where ysim, is the simulator output which is shown below) 

7. Update the prediction vector yp to compensate for the control move just 

implemented (i.e. yp = yp + ADMC*∆U) 

8. The first element in yp is not needed any more so shift all elements in yp up by 

one and replace the last element with the penultimate element. 

9. At the next sampling go to step 2 

 191



Process Simulator 

The process, which is represented by ( )
( )( )1 2

1
1 1

s

p
p p

s e
G

t s t s

θλ −+
=

+ +
 is first transformed into a 

differential equation and then solved using the fourth-order Runge-Kutta (RK4) method 

after decoupling the second order differential equation (obtained by inverting the model 

from the laplace domain to time domain), to two first-order differential equations that are 

solved for the process output, given the input signal from the MPC controller, and after 

applying the effect of the transport or time delay. 

( )
( )( )1 2

1( )
( ) 1 1

s

p
p p

s ey sG
U s t s t s

θλ −+
= =

+ +
       (E2) 

Considering the part of Equation (E2) that does not include the delay and expanding 

gives: 

( )( ) ( )1 21 1 ( ) 1p pt s t s y s s U sλ+ + = + ( )       (E3) 

( )( ) ( )2
1 2 1 2 1 ( ) 1 ( )p p p pt t s t t s y s s U sλ+ + + = +      (E4) 

Inverting Equation (E4) results in the second order differential equation: 

( )
2

1 2 1 22

( ) ( ) ( ) ( )p p p p
d y t dy t dut t t t y t u t

dt dt dt
λ+ + + = +      (E5) 

Let 1 2p pR t t=  and ( )1 2p pB t t= + , (0) 0y =  and (0) 0dy
dt

=  

2

2

( ) ( ) 1 1( ) ( )d y t Bdy t duy t u t
dt Rdt R Rdt R

λ
+ + = +       (E6) 

2

2

( ) ( ) 1 1( ) ( )d y t Bdy t duy t u t
dt Rdt R Rdt R

λ
= − − + +       (E7) 

Let ( )( ) dy tz t
dt

= , then 
2

2

( ) ( )dz t d y t
dt dt

= ,  (0) 0z =  
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( )( ) ( 1)1( ) ( ) ( )
u t u tdz B z t y t u t

dt R R R t R
λ − −

= − − + +
∆

1      (E8) 

Applying the time delay component, θ gives 

( )( ) ( 1)1( ) ( ) ( )
u t u tdz B z t y t u t

dt R R R t R
λ θ θ 1 θ

− − − −
= − − + + −

∆
   (E9) 

dy z
dt

=            (E10) 

Equations (E9) and (E10) are then solved using the Rk4 formulas for a second-order 

differential  equation decoupled into two first order differential equations below:  

Let ( )1 , , dzf t y z
dt

= , ( )2 , ,f t y z z= ,  then 

1z 1

1y 2

k  = f (t,y,z)
k  = f (t,y,z)

          (E11) 

 
2z 1 1y 1z

2y 2 1y 1z

k  = f (t+h/2,y+k /2,z+k /2)

k  = f (t+h/2,y+k /2,z+k /2)
       (E12) 

     

        (E13) 
3z 1 2y 2z

3y 2 2y 2z

k  = f (t+h/2,y+k /2,z+k /2)
k  = f (t+h/2,y+k /2,z+k /2)

    
          

4z 1 3y 3z

4y 2 3y 3z

k  = f (t+h,y+k ,z+k )
k  = f (t+h,y+k ,z+k )

    
        (E14) 

 
1z 2z 3z 4z

1y 2y 3y 4y

z = z + h*(k  + 2*k  + 2*k  + k )/6
y = y + h*(k  + 2*k  + 2*k  + k )/6

      (E15) 
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Where h = time step = sampling time interval,  

t = time and 

z = an intermediate variable 

y = Solution to Equation (E7) (and ysim = y)

The measured process output “X” in step 6 is sum of y plus random noise 

(X = y + noise). 

 

 194



APPENDIX F 
 
Comparison between Exact Binomial Analysis and the Normal Approximation to 
the Binomial Distribution 
 
 

This appendix is an attempt to clarify the reason why it is necessary to use the 

exact binomial distribution and not the normal approximation to the binomial distribution 

that was discussed in Chapter 3.   

Using the normal approximation to the Binomial relationship discussed in Chapter 

3, the data discussed in chapter 4, Section 4.2.1 was analyzed and the results are 

discussed below.  The output of the reference data analysis is shown in Figure F1.  The 

algorithm estimated a sampling ratio 1 and a window length of 380 samples.  In 

comparison when the exact binomial relation was used in Section 4.2.1 the sampling ratio 

was 1, but the algorithm estimated a window length of 526 samples (i.e. 146 samples 

more).  This seemed unexpected at first site since a short window length that also reduces 

the associated Type-I and Type-II errors is always desirable.  However, when the test 

data was analyzed as shown in Figure F2, it was observed that between sampling 40000 

to 46000 when the controller was made sluggish, the monitor flagged on and off.  This 

could be the result of numerous Type-II errors being made due to  a short window length. 

 

 

 194



 
 
Figure F1 Distribution of States and Transition Probabilities from Reference 
   Good Data Using Normal Approximation to the Binomial Distribution  
   Relation (Window length = 380 samples; Sampling Ratio = 1) 

 

 Again when the pressure drop data discussed in section 4.3.2 was analyzed using 

the normal approximation to the binomial, the monitor estimated a sampling ratio of 2 

(same as before in section 4.3.2), but a window length of 432 samples (368 samples less 

than previous) as shown in Figure F3.  When the test data was analyzed (Figure F4), the 

monitor flagged throughout the entire during of the testing.  However, it is known that 

there were instances when control performance was good and that performance 

degradation in the loop was gradual.  The performance output in Figure F4 reveals the 

possibility of excessive Type-I errors when the approximate methods is used. 
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Figure F2 Control Loop Performance Output (Sampling Period = 0.25s, Sampling  
  Ratio = 1; Window length = 380 Samples, Startup Period = 0 Samples,  
  Grace Period 430 Samples, Violation Counter Trigger = Length of Grace  
  Period +1, Overall Level of Significance (αT) = 1%) 
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Figure F3. Distribution of States and Transition Probabilities from Reference 
   Good Data Using Normal Approximation to the Binomial Distribution  
   Relation (Window length = 432 Samples; Sampling Ratio = 1) 
 
 
 
 

Figure F4 Control Loop Performance Output (Sampling Period = 0.25s, Sampling 
   Ratio = 1; Window length = 432 Samples, Startup Period = 0 Samples,  
   Grace Period 482 Samples, Violation Counter Trigger = Length of Grace  
   Period +1, Overall Level of Significance (αT) = 1) 
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APPENDIX G 
 

Why Ignoring Amplitude Does not Limit the General Performance of the Health 
Monitor 
 
 

gc(s) gp(s) 
ysp(s) y(s)

d 
gd(s)  

 

 

 

Figure G1  Schematic Diagram of First-Order Process with a PI Controller 

 

Consider the closed loop response of the simplified system above.  Let 

( )
1

p
p

p

K
g s

sτ
=

+
and for a PI controller, 1( ) 1c

I

g s K
sτ

⎛ ⎞
= +⎜

⎝ ⎠
⎟ , the closed loop response for 

the system in Figure 1 above is given by 

( )
1 1

c p d
sp

c p c p

g g gy s y d
g g g g

= +
+ +

       (H1)  

Assuming servo control, ( )
1

c p
sp

c p

g g
y s y

g g
=

+
      (H2) 

Substituting gp and gc, 

( )
( )

( )

11
1( )

11 1
1

p

Ip

psp

Ip

K
K

ssy s
Ky s

K
ss

ττ

ττ

⎛ ⎞
+⎜ ⎟+ ⎝

=
⎛ ⎞

+ +⎜ ⎟+ ⎝ ⎠

⎠        (H3)
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( )
( )

( )

1
1( )

11
1

p c I

Ip

p csp I

Ip

K K s
ssy s

K Ky s s
ss

τ
ττ

τ
ττ

⎛ ⎞+
⎜ ⎟+ ⎝

=
⎛ ⎞+

+ ⎜ ⎟+ ⎝ ⎠

⎠        (H4)  

Simplifying, 

( )

( )
( )

1
1( )

p c I

p I

sp

K K s
s sy s

y s

τ
τ τ

+

+
=
( )( ) ( )

( )
1 1

1
p I p c I

p I

s s K K s
s s

τ τ τ

τ τ

+ + +

+

      (H5) 

( )
( )

( )( ) ( )
1( )

1 1
p c I

sp p I p c I

K K sy s
y s s s K K s

τ
τ τ τ

+
=

+ + +
      (H6) 

( )
( )

( )2

1( ) p c I

sp p I I p c I p c

K K sy s
y s s s K K s K K

τ
τ τ τ τ

+
=

+ + +
      (H7) 

( )
( )

( )2

1( ) I

sp

c sy s
y s as bs c

τ
τ
+

=
+ +

        (H8) 

Where 

p Ia τ τ=  

( )1I pb Kτ= + cK  

p cc K K=  

Then, ( ) ( )2( ) 1Iy s as bs c c s yτ+ + = + sp       (H9) 

Consider a case where there is no change in setpoint, thus  

( )2( ) 0y s as bs c+ + = ,         (H10) 

Inverting this Equation gives 
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2

2 0d y dya b cy
dt dt

+ + =          (H11) 

Let ty eλ=  be a characteristic equation,  

Then, 2' ; "ty e y e tλ λλ= = λ  substituting in Equation H11above gives 

2 0t t ta e b e ceλ λ λλ λ+ + =         (H12) 

( )2 0cta b c eλ λ+ + = , but 0teλ ≠  therefore 

 (          (H13) )2 0a b cλ λ+ + =

The roots of Equation (H13) are given by 

2

1 2
4,

2
b b ac

a
λ λ − ± −

=         (H14) 

The system is oscillatory when the roots of this Equation are complex: i.e. 4ac > b2

Let 
2 4
2

b a
a

ω −
=

c ,          (H15) 

Then, 1 2,
2
b iλ λ −

= ± ω , Where 1i = −  

1 2,
2 2
b bi iλ ω λ ω− −

= − = +  

1 2
1 2;t ty e y eλ λ= =  

1 1 2 2y k y k y= +  

1 2
1 2;t ty e y eλ λ= =  

1 2
1 2

t ty k e k eλ λ= +  

( ) ( ).5 0.5
1 2

b i t b i ty k e k eω ω− − − += +      

( ) (0.5 0.5 0.5
1 2

bt i t bt i ty k e e k e eω− − −= + )ω        (H16) 
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(0.5 0.5 0.5
1 2

bt i t i ty e k e k eω− −= + )ω

)

        (H17) 

Equation (H17) can be further simplified as  

( ) ( )(0.5
1 2 1 2cos sinbty e k k t i k k tω ω−= + + −       (H18) 

Whereω is the natural frequency of oscillation.  From Equation (H15), 

2 4
2

b aω −
=

c , back substituting all the variables 

( )( )2
1 4

2
I p

p I

KpKc K Kτ τ
ω

τ τ

+ −
=

I p cτ
 

( )( )2

2 2 2 2

1 4
4 4

I p I p c

p I p I

KpKc K Kτ τ τ
ω

τ τ τ τ
+

= −  

2
1

2
p c

p p

K KKpKcω
Iτ τ τ

⎛ ⎞+
= −⎜ ⎟⎜ ⎟

⎝ ⎠
        (H19) 

This analysis reveals that, the natural frequency of oscillation ω is such that it 

depends on the process parameters, i.e. ( ), , ,c p I pf K Kω τ τ= .  Moreover, the natural 

period of oscillation T is related to the natural frequency as 2
T

πω = , hence, 

( , , ,c p I pT f K K )τ τ= .  While the analysis in this example considered a PI controller and 

a first-order process, other systems considered also show that the natural period of 

oscillation is a function of process parameters such as the process gain, process time 

constant and others.   

Therefore, if an event such as the process gain, process time constant, controller 

gain and controller time constant, changes the amplitude of a signal, it will affect the 

natural frequency of oscillation of the signal and hence the natural period of oscillation.  
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This will lead to differences in the period of oscillation of the data sampled in the 

reference stage and the period of oscillation of the data sampled during testing or 

performance monitoring and the health monitor will detect such changes.  It must 

however be stated that if an incident changes the amplitude of oscillation of a signal such 

that the period of oscillation is not affected, then perhaps the monitor may be unable to 

detect such changes.  
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APPENDIX H 

Distinguishing Between State Space Modeling in Time Series and State Modeling in 
a Markov chain 

Figure H1 Time Series of Controller Output Signal and Process response (y = 
Process Response, %MV = Change in controller output signal (u)) 

 
 

Considering Figure H1, the process response values can be modeled using the 

Autoregressive Moving Average (ARMA) representation in Equation (H1) as 

{1 1 2 2 0 1 1

2 2nd nd

i i i i i

Noiseorder AR order MA

y a y a y b u b u n− − −= + + + +
1442443 14243 i

s

      (H1) 

Where a  and  are coefficients and are determined by least square modeling.  

Without excitation (i.e. a change in u), the values of b cannot be estimated.  If noise 

dominates process output y, and there is no real change in y, the values of a, cannot be

' 'b s
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determined either.  If a process is oscillating naturally, then Equation H1 will be 

expressed in values of a. 

 If all one knows is that a y value equals 1 say, then one cannot know whether it is 

on the up path (and the next value is likely 2) or on the down path (and the next y value is 

likely -1).  However, if the history is known (i.e. the past y values), then one can 

confidently use the model in Equation H1 to predict the next y (with uncertainty of noise). 

By Contrast, using run length as a state value as shown Figure H2, a state of +1 

historically moves to a state of +2 with a 100% probability, a state of +3 moves to +4 

with 66.67% probability.  A state of +6 persists in that state with 50% probability. 
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Figure H2 Modeling Run Length as States in a Markov chain 

 

 The state value +1, +2, … , +6 contains the history.  A token cannot get to a state 

+6 without getting to state +1 then +2 … then +5.  Therefore, in Markov chain state 
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modeling, the past value is inconsequential.  Moreover, in this work, one is not looking 

for a relationship between y and u, so no excitation is required. 
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APPENDIX I 

Glossary of Some Terminologies Used in this Work 

Data:   Actuating error or process-model mismatch.   

Actuating error: The consecutive deviations of the desired variable from a target 

value  (e.g. Setpoint – Controlled Variable).  The units depend on 

the process and measurement. 

Run length:  The number of contiguous past data of like sign between  

consecutive zero crossings.  A run length is dimensionless. 

Zero Crossing: An event characterizing the switching of sign of the actuating  

errors from + to –, or – to +.  In the special case where the error is  

equal to zero, it does not signify a zero crossing and the same sign  

as the prior state is maintained. 

Transition:  An event involving the change in state from k to j, say. 

State:   In addition to the definition of a state as given prior, a state is 

identified by the characteristics of the sign of the data  

(i.e. actuating error).  A data characterized by a positive sign  

denotes a positive state. While, one characterized by a negative  

sign denotes a negative state.  If the number of states were limited 

to a maximum value of +3 or –3 for instance, then a run length of 5 

negative actuating errors would be in state of –3.  A state has no 

units.
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Transition Probability: The probability of moving from state k to state j at the next  

    observation. The elements of the Transition probability  

 must always satisfy the condition that .  It has no 

 units. 

0 kjP≤ ≤1

Count:   The number of times a state has been occupied (cumulative  

state value).  It has units of number of samples. 

Window:   Reference period of the past N samplings, which provide  

data for statistical comparison at each sampling).  It has  

units of number of samples. 

Sampling Ratio:  The ratio of the number of actuating error samples from the  

    controller to the number sampled by the health monitor  

for analysis.  The units are Number of Controller  

Samples/Health Monitor Sample. 
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