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CHAPTER 1

INTRODUCTION

Control loop performance monitoring and assessment is becoming the basis of
operational excellence in the chemical and allied industry and a typically large process
operation in most of these industries consists of hundreds of control loops, often
operating under varying conditions. Maintenance of these loops is generally the
responsibility of either a lead operator, control engineer, or an instrument technician; but
other responsibilities, coupled with the tediousness of consistently monitoring a large
number of loops, often result in control problems being overlooked for long periods of
time (Hugo, 2000). Moreover, recent corporate acquisitions coupled with downsizing in
human resource needs have led to a situation where very few technical personal are left to
operate or monitor too many corporate assets.

For process safety, product quality, and profitable manufacturing practice, good
control performance is a necessary requirement. In most chemical and allied industries
today, real time detection and diagnosis of faults have become an integral part of process
design (Ralston, et al., 2001). Tatara, et al., 2002 have indicated that among the various
methods for detecting changes in an industrial process, statistical methods generally
predominate due to the accuracy involved in using sampled data for decision analysis. A

primary difficulty of controller performance analysis is the number of loops in a process.



Hugo, (2000) also revealed that anywhere between 66-88% of industrial process
controllers do not perform as well as they should. Also, according to Desborough, et al.,
2001 only about a third of industrial controllers provide an acceptable level of
performance, in spite of the performance measures developed in the past 10 years. In fact,
surveys available suggest that a vast majority of industrial control loops perform far less
than optimal.

In a recent article, Merritt, 2003 discussed a study by Honeywell Process
Solutions in which the company, using its controller performance software, Loop Scout,
reported performance results of over 100,000 process control loops at 350 manufacturing
facilities. Their results indicated that of all the process control loops that were analyzed,
nearly 49% were found to be performing poorly, about 32% were rated as having
common oscillation problems, 16% had valve stiction problems and only about 4.4% of
the loops had been retuned within the last two years. Using statistical analysis,
Honeywell further determined that almost 63% of all the control loops have poor
performance ratings. This further buttresses the claim by previous researchers that only
about a third if not fewer of all control loops have good performance ratings.

Among the reasons for the dismal performance of process controllers are poor
controller tuning, deficiencies in the control structure, valve malfunctions, nonlinearities
and poor process design. Even when a loop performs well at the time of commissioning,
its performance deteriorates over time due to changing operating conditions - a good
controller becomes a bad one.

In any control scheme, a deviation from setpoint is a function of both controller

performance and the plant disturbance spectrum, and it is a general requirement that any



controller performance assessment technique should have at least the following basic
attributes (Hugo, 2000):

1. Be independent of disturbance or setpoint spectrums.

2. Able to be automated.

3. Require minimum specification of process dynamics.

4. Be sensitive to detuning or process model mismatch.

It is well established that it is not just adequate to describe the performance of a
control system with simple statistics like the mean and variance of manipulated and
controlled variables. While these are important performance measures, a comprehensive

approach (Harris, et al., 2001) for controller performance monitoring usually includes the

following:
1. Determination of the best performance capability of the control system
2. Development of suitable statistics for monitoring the performance of
the existing system, and
3. Development of methods for diagnosing the underlying causes for changes

in performance of the control system.

With the easy availability of plant data today, it has become more appropriate and
useful to develop tools and procedures for assessing the performance of control loops and
possibly to determine the causes of poor performance.

The past 20-30 years has seen very dramatic changes in the process industries due
to the significant improvement in process control techniques and strategies. That
industry needs an efficient means to monitor the goodness of performance of process

controllers is evident in the number independent approaches being pursued. According



to Merritt, (2003) it is generally not easy to locate poor performing control loops; and
while control loops do not fail like pumps, their continuous deterioration toward poor
performance erodes operating profit. Though some plants live with situations like this,
unfortunately it is not a good manufacturing practice.

Numerous control techniques have been developed to improve and or enhance
controller performance and increase economic output. Nevertheless, as indicated earlier,
estimates of the percentage of industrial process controllers with performance problems
are surprisingly high and efficient techniques to detect and arrest poor controller
performances have not been completely explored to make the situation any better.
Moreover, current applications available for detecting poor controller performance are
either too expensive, cumbersome to use or are themselves fraught with inherent
difficulties.

Currently, millions of dollars are lost in industry because faults are not detected
and identified on time. In the United States of America alone, it is estimated that
petrochemical industries lose almost $20 billion annually due to poor monitoring and
control of abnormal situations (Venkatasubramanian, 2003). It is further estimated that
this cost is much more when similar situations in other industries such as pharmaceutical,
specialty chemicals, power, etc. are included.

Present commercial mechanisms available for monitoring controller performance
are done using data from the plant “historian”. This implies that, in real-time, there is no
simple approach, by which the goodness of a process controller can be assessed. The

outcome of this work seeks to contribute in addressing this problem.



This work is an extension of the work by Li et al., 2004 who used the run length
of the actuating errors between consecutive zero crossings coupled with the chi-squared
goodness-of-fit statistics to develop a performance monitoring technique. In a private
communication, Dr. R. G. Ingalls reviewing Li’s work suggested the use of Markov
chains. Dr. Ingalls and Dr. Avery also submitted an MCEC proposal in which they
demonstrated the Markov chain approach. This work was born out of those ideas and
seeks to improve on Li’s work by coupling the Markov chain technique with binomial
statistics. The work was sponsored by the measurement control and engineering center
(MCEC), a consortium of industrial companies and academic experts whose primary
objective, among others is to carry out research in technological areas related to process
control in response to and in support of the needs of its industrial sponsors.

This work hypothesizes the development of a novel method that can inform an
operator to a high level of certainty and in real time if a controller is healthy (i.e.,
performing optimal) or not.

1. The use of Markov chain analysis in monitoring controller performance: a major
embodiment in this work is expected to introduce efficiency into controller
monitoring techniques. In general, the Markov chains provide a solution for
determining the dynamic behavior of a system in occupying states that it can
occupy. As a result, the use of Markov chains is expected to provide an easy and
simple benchmark for checking the health of process controllers, inferential
sensors, and in-fact any system with process output that can be compared to a

setpoint or a model output to a process output. It is expected that it will utilize



minimal computer storage space and time and, yet, will be efficient in monitoring
the goodness of performance of process controllers.

The binomial distribution is probably the best known and most commonly used of
the discrete probability distributions (NIST). It arises any time an event with
exactly two outcomes is repeated over and over again. It gives the likelihood of

finding the number of successes or failures in a given number of observations.



CHAPTER 2

20 CONTROL LOOP PERFORMANCE MONITORING

2.1  Literature Review

A common benchmark for controller performance assessment is the minimum
variance control (MVC). The MVC and similar techniques have received much attention
as a popular standard that greatly reduces the amount of process knowledge required for
control performance evaluation. Based on the work of Harris, et al., (1989) the MVC,
also referred to as the Harris index (HI), compares the ratio of the variance of the
actuating error signal to the minimum variance ideally achievable by a perfect controller.
It is denoted as:

HI = (Current Error Variance)

= 2.1
(Minimum Acheivable Variance) @)

Where Error = Setpoint — Control Variable;

In this format the HI indicates perfect control when HI =1 and bad or degrading
control when HI is large. Another form of the minimum variance index also introduced
by Harris is the closed loop performance assessment (CLPA). The CLPA is normalized

between 0 and 1 as:

CPLA=1- —— (2.2)
HI



In this format, 0 denotes perfect control and 1 poorest control. The advantage of
the Harris index is that it does well in indicating loops that have oscillation problems. In
general, when loops have oscillations, the error variance about the mean is large and
therefore the HI will be large and CPLA will approach 1.

Unfortunately, the HI may consider loops that are sluggish to be just fine because
when loops are sluggish their error variance is small and the HI will approach 1. Hence,
the HI may not detect loops that have been detuned to the point of sluggishness.
Moreover, a controller not even running in automatic may give a small value of the HI
since without the valve moving much, the variance is low. Because small values are
generally good, the HI index may not flag such sluggish loops. Thus, in a typical plant,
the Harris Index will easily identify loops that are oscillating because of valve hardware
problems or over aggressive tuning. On the other hand, a typical operator response to
oscillating loops is to detune it. If it is detuned to the point of sluggishness, the HI may
not catch this. This is a limitation in the minimum variance control.

In addition, the delay associated with the process must be known in order to
describe the process model from which the variance and perfect control can be evaluated.
However, processes change during routine operation and so do the delay associated with
them and online estimation of the process delay is cumbersome to estimate.

Further, “perfect” control from a controlled variable (CV) measure means
excessive manipulated variable (MV) action. Such perfect control is not desired.
Therefore a CPLA value of zero is never attained. Moreover, neither the HI nor CPLA
value has absolute meaning. A 0.3 may be good for one loop while a 0.5 may be the

perfect balance for another.



Higglund, (1995) has proposed a method in the time domain, which considers the
integrated error (IE) between all zero-crossings of the signal. If the IE is large enough, a
counter is increased. If this counter exceeds a certain number then an oscillation is
indicated. Nevertheless, the question here is the quantification of what “large enough” is.
In other to quantify what large enough means, the author used the ultimate frequency of
the loop in question. Alternatively, one may use the integral time of the controller
assuming the controller is optimally tuned. This method is very appealing in that it is
able to quantify the size of the oscillation. However, it assumes that the loop oscillates at
its ultimate frequency which may not be entirely true, for instance in the case of stiction.
Moreover, the ultimate frequency is not always available and the integral time may be a
bad indicator of the ultimate period. These constitute a major limitation in this technique.

Ko and Edgar, (1998) suggested an index that computes the ratio of the actual
variance and the minimum achievable variance using a Pl-controller. However, this
approach assumes that a process model is available. Since processes continuously
change response dynamics, any model used would need to be continuously updated.

Other mathematically rigorous controller performance assessment criteria such as
the integral absolute error (IAE), integral squared error (ISE), integral time-weighted
absolute error (ITAE), and integral time-weighted squared error, (ITSE), have all
received much attention. However, the problem with these assessment methods is that,
they are very tedious to implement and rely on models for processes, sensors, and final
control elements, which may not be exactly known (Stephanopoulos, 1984). In addition,

they are scale dependent with process specific values, which must be determined



Rhinehart, (1995) developed an automated, goodness of control performance
monitor using the r-statistic, which could indicate when a constraint or a performance
limit was violated. The r-statistic was defined as the ratio of the expected variance of the
deviation of the controlled variable from the setpoint to one half of the expected variance
of the deviation of two consecutive process measurements. It then compares the current
r-statistic value with some critical values to indicate performance changes. This technique
however, just like other performance monitoring techniques compared a single index
value to a trigger value to judge the performance.

Mathematically, the r-statistic was defined as

2
(o}

__¥
W= 2.3
oy,
. 2 . . 2 1 N 2 /- 2/:\ - ..
Where the variance o, is obtained from o, = —Zel (i), and € (i) is the deviation
N _1 i=1

of controlled variable sample | from setpoint value. The variance 052 is obtained from

1 X . o\ . .
oy, :WZef (i), where e, (i) is the distance between two consecutive samples.
- i=1

A performance problem is indicated if both variance estimates differ such that the ratio is
larger than ry, = 3. Rhinehart (private communication) realized that it did not consider the
distribution of index values and, therefore, the r-statistic was not accepted as a good
statistical approach for performance assessment.

A relative variance index (RVI) was proposed by Bezergianni et al., (2000). The
RVI technique compares the closed-loop performance with the minimum-variance

control and open-loop control. They defined the RVI as:
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RVI = (24)

Where, ¢, is the output variance if the controller is removed (i.e. placed in open

loop). The RVI is equal to zero if the current performance o

, 18 equal to the open-loop

performance ol . It is equal to one if the current performance o

, is equal to the

minimum-variance controloy, . The limitation in this technique is that the process,

controller and noise models must all be known.

Kadali, et al., (2002) proposed the use of Linear Quadratic Gaussian (LQG)
benchmark as a more appropriate tool for assessing the performance of controllers.
However, calculation of the LQG benchmark requires a complete knowledge of the
process model, which is often a demanding requirement or simple not possible for on-line
assessment.

A problem with all the above methods is that they consider integrated metric over
a fixed window or time scale. In any, one can easily create higher or lower frequency
upsets which would not be discovered. While they can detect some upsets, they will miss
others. The progression of Rinehart’s studies reveals that a fully functional monitor must
observe the process at multiple time scales.

Li, et al., (2003) recently proposed the use of the chi-squared goodness-of-fit
statistic to compare the distribution of a performance index (run length) within a window
of data to a reference run length distribution in order to determine the performance of a
controller. A statistically significant change in any section of the distribution, not just an

average value is indicative of a significant change in controller performance. The
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technique uses only routine plant data and is suited for online application. Although it
uses the generally robust chi-squared test, the theoretical foundation was not exact.

The technique proposed and developed in this work also uses run length
distribution of data. However, the metric used, state transition probability is based on
binomially distributed variables, and the analysis using Markov Chains coupled with
Binomial Statistics is not only ideal but also more satisfying. The original idea was
proposed by Ms. Sherri S. Avery now Dr. Avery, and Dr. R G. Ingalls (2001) in their

analysis of Li’s work. The objective of this work is set out below.

2.2  Objective

The main objective of this project is to develop a new and novel method, with a
high degree of accuracy based on Markov analysis and binomial statistics to
automatically identify poor performance of process controllers, inferential sensors and
any model of process output.

The procedures based on this objective are:

1. Measure deviations from setpoint (ys, —y)

2. Model a characteristic of the errors (runs) as states in a Markov chain

3. Determine transition probabilities between states

4. Use binomial statistics to detect significant changes in performance from

an operator chosen good period

12



2.3  The Concept of Markov Chains

Markov chains is named after the Russian mathematician Andrey Andreyevich
Markov or “Markoff” (June 14 1856 - July 20 1922). Markoff's name “isn't spelled
consistently” in English language mathematical literature. =~ Some authors prefer
"Markov", "Markov number", "Markov numbers", and "Markov equation". The question
that has often arisen is should “Markoff” be spelled -off or -ov? In general, "Markoff" is
more often used when discussing his, work in number theory (e.g., Markoff numbers);
while "Markov" tends to be used when discussing his work in probability (e.g. Markov
chains). When in doubt though experts recommend just writing AHﬂpeﬁ A Mapl{OB

Markov's early work was mainly in number theory and analysis, continued
fractions, limits of integrals, approximation theory and the convergence of series. For
instance, a “Markoff” number is number that appears in a positive integer solution to the
equation X’ + Yy’ +2° =3xyz (known as the “Markoff’ equation). For example (1,1,1),
(1,1,2) (1,2,5), and (2,169,985), etc, are Markoff numbers and these numbers form part of
the vertices of a tree like structure (http://www.minortriad.com/mref.html#spelling).

Nevertheless, Markov is particularly remembered for his study of Markov chains,
sequences of random variables in which the future state of a variable is determined by the
present state of the variable but is independent of the way in which the present state arose
from its predecessors. This work launched the theory of stochastic processes.

Markov chains find widespread use in many areas of science and technology such
as Polymers, Biology, Physics, Astronomy, Astrophysics, Chemistry, Operations
Research, Economics, Communications, Computer Networks, and others. Markov chains

have many advantages. Among these are their ability to be used in the representation of
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physical systems in a unified description via state vector and one-step transition
probability matrix. They also provide simple solutions to complicated problems by way
of Markov chain finite difference equations where exact solutions to models are not
available. However, despite their many advantages, the application of Markov chains in
modeling chemical and control engineering systems has been relatively meager to non-
existent.

Simply put, Markov chains enable one to predict the future state of a system given
knowledge of its present state, ignoring its history. It provides a solution for determining
the dynamic behavior of a system in occupying various locations (states) that it can
occupy (Tamir, 1998). In a stochastic sense, a Markov chain is a probabilistic model
describing the state transition of a system where the immediate future state depends only
on the present state and not on the manner the system arrived at this particular present
state. This is called the “memoryless” property and it can be stated mathematically as

P(Xpo = 01X, =i X =i 50X, =l ) = P(X,,, = j|X, =i,) Vi.n,i, (2.5)
Where X denotes a token whose location in time is changing from one place to another

P is the probability of the token X moving from one state to another

J 1s the next state to be visited at the next transition (n + 1)

i denotes a state that has been visited already

n is an index indicating the location of a token as it moves from one state to

another

Thus, Equation (2.5) can be explained as the probability of the token X,
occupying the state j at the (n +1)™ transition given that it is presently in the state iy, at

the n™ transition and just prior to that was in the state i1 at the (n-1)" transition and
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before that also, it was in the state i) at the (n-2)" transition and so on and so forth is
the same as the probability of the token occupying the state j at the (n+1)™ transition
given that presently it is in the state i, at the n™ transition.

The basic concepts of Markov chains are; “system” and “state transition”. A
system is the set of all possible states (i.e. positions or locations) that a token can occupy.
The system (also referred to as the state space (SS)), (Tamir, 1998), is designated by SS =
{Si1, Si2, Si3, Sy, ..., Sik} where Sy, denotes the state. A state is (or must be) real. Itisa
location that can be occupied by the token. States are exclusive of one another, that is,
no two states can occur or be occupied simultaneously.

The movement of the token from one state to another in the chain is referred to as
transition. Transitions occur within a system from state to state and are referred to as
state transitions. Thus, a state transition is the transfer of an event or observation of an
event from one state to another.

If the state space is finite (i.e. SS = {£1, £2, ..., #N}, where N is a fixed number),
then the chain is said to be a finite Markov chain. On the hand, if the chain has no
defined bounds, as in birth-death processes (where states take on all non-negative integer
values), then the chain is referred to as an infinite Markov chain. Graphically, the
allowable transitions link states, often resulting in a chain like appearance. Transitions
are governed by the probability of the system to occupy or visit a state or not to occupy it.
In his writings, William Shakespeare captured this literally in his poetic piece “The
Hamlet” as: “To be (in a state) or not to be (in a state), that is the question”.

Often, the basic aim of Markov chain analysis is to answer questions such as:

1. What is the unconditional probability that at some step n, the system is occupying

15



or will occupy some state given that the first occupation of this state has occurred

already?

2.  What is the probability of going from state j to state k in n steps

3. Is there a steady state behavior?

4. 1If the Markov chain terminates, when it reaches a state k, defined as absorbing or
dead state, then what is the expected mean time to reach k (hence terminate the
movement of the chain) given that the chain started in some particular state j.
However, this work does not intend to provide answers to all these questions but

rather to explore Step 2 for the one-step transition probability of a system and utilize it
for further analysis.

A Markov chain may be time homogenous or non-homogenous. It is time
homogenous or simply homogenous if its dynamics depend on the time interval but not
the time itself.

For instance, the one step transition probability function for a time dependent

process can be written as

P (Lt+1)=P{X,, = j|X, =i} Vj.it (2.6)
Equation (2.6) describes the phenomena that, given that a token X, is in a state i at time t,
what is the probability that it will visit the state j at the next sampling instant (t +1).

Such a process is non-homogenous or time-dependent.

On the other hand, given that:

P, =P{X,., =X, =i} vj,i,n, (2.7)
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Then it can be noticed that the Equation (2.7) now describes a situation where given that
the token X, visited or occupied the state i at the nt transition, then what is the
probability that it will visit the state j at the next transition (n+1) irrespective of time.
Thus, for a time homogenous Markov chain, the probability of transition in a
single step from one given state to another depends on the two states and not on time

itself. Put another way, P, ; is time homogenous or stationary if it satisfies:

B, = Function (time interval between state iand state j), and non-homogenous if it

satisfies:

P, (tt+ 1) = Function (time to start from state i and time when will visit state j)

Let the n-step transition probability function for a stationary Markov chain be

denoted by Pj, where P, is a function that gives the probability of a token going to a

state J in exactly n-steps given that it occupied or is currently occupying the state i on the

on the k™ transition. Thus:

P =P{X,,, = i|X, =i} \

1]

(2.8)

i,j.k,n
If n = 1, then the one-step stationary transition probability R}j, generally

represented as P, ; is given by: P.= P{Xk+1 =j|X, = i} Vi

1]

The discrete Chapman-Kolmogorov (C-K) equation provides a method for calculating the
transition probability of a token in moving from state I to j in exactly n steps. The C-K

equation is given as:

Pi,n;m = Z Pi,kn * Pkr,nj v (2.9)
k=1

i,j,k,m,n
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Where 7 is the total number of states and n, m denote the number of transitions. Equation
(2.9) represents the probability that, starting in i, a token will go to state j in (m + n)
transitions through a path that takes it to state k, at the n™ transition before arriving at the

state ] after m additional transitions. If P denotes the matrix of the one-step transition

probabilities P, ;, and P®™ denotes the matrix of the n-step transition probabilities Plr] , then

Equation (2.9) can be expressed in matrix form as:

p(*m) — p()xp(m) (2.10)
Thus, for instance P® = PC*2) = p@*p® and by induction, P™ = P 1+ 1 = p-Dxp
In other words, the n-step transition probabilities of a process may be obtained by

multiplying the one-step transition probability matrix P by itself n times.

2.3.1 Classification of states and their behavior
All states of a Markov chain fall into distinct types according to their limiting
behavior. Suppose that a system is initially in a given state. If the ultimate occupation of

the state is certain again at some time later, then the state is said to be recurrent with a

probability of unity. In other words, let, f;;=Prob (ever visit state j| start from j), then state

J is recurrent if fj = 1. If a state is recurrent, then it is said to be positive recurrent if
starting in i, the expected number of steps (transitions) until the process returns to state i
again is finite. Otherwise, it is null-recurrent (Ross, 2003). If the ultimate return to the
state has probability less than unity, then the state is called transient with f;; < 1. Thus,
the current return to the state is uncertain.

A state K is accessible from state j if there exists some positive integer n, such that

Pi(n) > 0. If a state ] is accessible from another state K in a finite number of transitions,
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then the two are said to communicate. If state | is accessible from state k and state K is
accessible from state i, then j is accessible from I.

One of the most important concepts of Markov chains is irreducibility. A Markov
chain is said to be irreducible if all states communicate. That is, P;; > 0. In other words,
every state can be reached from every other state. An irreducible section of a Markov
chain is referred to as a class. Thus, from above, if a set of states communicate, then they
form a class. In addition, since a class is irreducible, it implies that communication is a
class property.

If the occupation of a state is such that the transition probability where

ij=Prob(occupying state j after 1 transition| start from j) =1, then the state is said to

be an absorbing (dead or trapping) state. In other words, once the system occupies this
state, it remains there forever. A typical example of this phenomenon may be identified
in a control loop when a valve is saturated (i.e. a fully opened or filly closed valve) for an
extended period.

Suppose a chain starts in a state S;. Subsequent occupations of S; can only occur
at steps (times) 1v, 2v, 3v, 4v,... where v is an integer. If v > 1 and the chain is finite,
then S; is periodic. If v = 1 and the chain is finite, then S; is aperiodic. A finite
irreducible, positive recurrent, aperiodic Markov chain is called ergodic. Ergodicity is an
important concept that helps in estimating the limiting or stationary distribution of

stochastic processes modeled with a Markov chain.

For an irreducible ergodic Markov chain, the lim exist and is independent

n
n—o pij s

of the initial state i. Thus, if7z;=lim pj v

n—o

i.in>1, then 7z, is the unique non-

negative solution of:
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0
=2, 7Py
i=1

(2.11)
and

Zﬁj=1

(2.12)
i=1
Where, 7; is the limiting probability describing the fraction of instances that a

process will be in a state . As an illustration, consider the Markov chain where:

0.5 0.4 0.1
P, =[0.3 0.403
0.20.3 0.5

If the process is ergodic, then the stationary distribution 7 must exist and must satisfy

Equations (2.11) and (2.12):

For j=1: 7, =0.57,+037,+0.27,
j=2: 7, =047 +0.4rx,+0.37,
j=3: 7, =027,+0.37,+0.57,

oA,y =1

Solving gives m,=21/62, nx,=23/62, m,=18/62

Thus, the asymptotic probability of being in the state of 1, is 21/62, in state 2, is 23/62
and in state 3, is 18/62.

2.4 The Binomial Distribution

The binomial probability distribution applies only to sampling that satisfies the

conditions of a binomial experiment. A binomial experiment is one that exhibits or

possesses certain key properties (shown below). It is defined under the conditions where

a random experiment consisting of ‘n’ repeated trials is performed such that:

1. The number of trials ‘n’ is fixed.
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2. Each experimental unit results in only two possible outcomes. Of the two
characteristic events or outcomes, the one of interest is often referred to as success
and the other failure.

3. The probability of success on each trial, denoted as p, remains constant.

4. The outcome for any one experimental unit is independent of the outcome for any
other experiment unit.

5. The random variable X, counts the number of “successes” in n trials
In the limiting case when n = 1, a binomial random variable is often referred to as

a Bernoulli random variable. In such a case the binomial experiment is referred to as a
Bernoulli trial. Also, it is worth mentioning that a more general distribution, which
includes the binomial as a special case is the multinomial distribution. For a binomial
experiment, a random variable X say, is used to denote the number of trials that result in a
success or an event of interest. This random variable has a binomial distribution with
parameters p (0 <p<l),andn=1,2,3,4, ...

Consider for instance, the tossing of a fair coin repeatedly for n times. At each
toss, there could be a head or a tail. The chance of getting a head or a tail at each toss is
the same at any instance. The event that a head or tail was obtained in the previous trial
has no influence on the outcome at the next tossing. Such a process that has all the above
properties can be described as a binomial experiment.

For any binomial experiment, given that, there are X successful outcomes in n
total trials, the probability distribution of X in such an experiment is called the binomial
probability distribution. The probability of getting exactly X successes in n trials is given

by the binomial relation:
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Tlo-p)™t x=123,..n
P, (xpn)={lx )" VP 2.13)

0 Otherwise

. [n n! :
where the nota‘uon( J = W, denotes the total number of different sequences of
X n—Xx)ix!

trials that contain X success and (n-X) failures. Thus, the total number of different
sequences that contain X successes and (n-x) failures times the probability of each
sequence equals probability P(X), of obtaining a desired outcome X number of times in n
total trials.

The probability expression above leads to a very useful relation called the

binomial expansion. For constants @ and b the binomial expansion is given by:

(a+b)’ :i(makb”k (2.14)

Let a=p and b = 1-p, then the equation becomes

i[ﬂjpk (1-p)" " =(p+(1-p)) =1 (2.15)

k=0

Thus, the sum of the probabilities for a binomial random variable is always equal to one.

2.4.1 Moments of the Binomial Distribution
The moments of the binomial distribution depend only on the parameters p, the
proportion or probability of success and n, the number of trials. The first moment (also

referred to as the mean or expectation) of the random variable X is given by:

E(x):zn:xP(x) (2.16)
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E(x)zix@ p*(1- p)™

(2.17)
x=0
n _ | X _ n—Xx
() = xn(n-1)!'p*(1-p) 2.18)
= x(n=x)!(x-1)!
Simplifying
vt (n— 1V % (1~ p)-D-(x-1)
E(x)=np (n-1)tp™(1-p) (2.19)
= ((n=D=(x=D)U(x-1)!
o (-1 oo ((n=D=(x-1)
E(x)zan(X l]p( '(1-p) (2.20)
x=1 -
Let k= x-1, and N = n-1, then
LN (N=k)
E(x)=np), P (1-p) (2.21)
k=0
Recall from Equation (2.14), for two variables a and b,
N N
(a+b) =Z(k ]a"b“k, Where,a=pand b= 1-p
k=0
E(x)=np(p+1-p)" (2.22)
E(Xx)=u,=np (2.23)

Thus the expected value or mean of the binomial random variable X, is given by

the product of the number of trials and the probability of the event of success.

The second central moment about the mean namely the variance of X, is given

byo’ =E (X2 ) - ( E (X))2 , but E(x) is given by Equation (2.23), and E(x?) is given by

E(x’)= Z x> p(X) (2.24)
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E(xz):zn:xz(:](jpx(l— p)” (2.25)
E(x')= n [x(x—1)+x](2jpx(l— p)"” (2.26)
E(X)= Zn:[x(x—l)](gpx (1-p)"" +ix(§jp* (1-p)"" (2.27)

E(X’)=n(n-1) pzi@:i) P2 (1-p) "+ E(X) (2.28)

Let k =x-2, and N = n-2, then

E(xz):n(n—l)ng(kNJ p“(1-p)" " +E(x) (2.29)
E(x*)=n(n-1)p’(p+1-p)"~ +np (2.30)
E(x*)=(np) —np’+np (2.31)
E(x*)=(np)"+np(1-p) (2.32)

Recall that o* = E(Xz)_(E(X))Z

o’ :(np)2 +np(1—- p)—(np)2 (2.33)

o’ =np(1-p) (2.34)

The third central moment about the mean of the binomial random variable gives
the skewness of the distribution. The skewness gives the degree of symmetry of the
probability distribution. If a distribution is normal, the value of skewness is zero. If it is
skewed to the left, it has a negative value for skewness and if it is skewed to the right, it

has a positive value for skewness. The skewness of a binomial distribution can be
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derived by going through similar steps as before, but it is given here without derivation

as:

s (1-2p) _1-2p
\/np(l—p) o

(2.35)

Similarly, the fourth central moment about the mean of a binomial random
variable gives the Kurtosis of the distribution. Kurtosis is a measure of the peakedness of
the probability distribution. It can be shown that Kurtosis of a binomial distribution is

given by:

K = 1-6p(1-p) _ 1-6p(1-p)
np(1-p) o’

(2.36)

2.5  The Normal Distribution

Perhaps, the most widely used distribution for modeling random experiments is
the normal distribution. It is also known as the bell-shaped curve, and Gaussian
distribution, and can be developed by considering the basic model for a binomial random
variable as the number of trials becomes large (Montgomery, et al., 1998; Devore, 1995).

In general a random variable x is said to have a normal distribution with

parameters p and 6> where —oo < <0 and o’ >0, if the probability density function
(pdf) is given by

f(x)= L o ton/7) o x<oo (2.37)

" (x)ax=] a0 gy (2.38)

25



The statement that X is normally distributed with parameters x and ois often
abbreviated as x~ N ( ,u,az). Equation (2.38) cannot be solved with analytical

integration techniques. However, when the parameter values p = 0 and o* =1, the normal
distribution is referred to as the standard normal distribution with random variable often

denoted z. The pdf of z is given by

f(2)=— e /) —0 <2 <0 (2.39)

2z

Probabilities involving the random variable X are therefore determined by

standardizing. The standardizing shifts the mean from p to zero, and then scales the

X— i
O

variable so that the standard deviation is unity rather than 6. In general, z =

and by

standardizing, any probability involving the random variable X, can be expressed as a
probability involving the standard normal random variable z. Thus, Equation (2.39) is
often evaluated numerically after standardizing the random variable X using given values

of the mean p and standard deviation o.
The cumulative density function (cdf) of Zis P(Z < z) = IZ f (z) dz and is often

denoted by ®(z). In general,

#(z) = _[;f(z)dz (2.40)

2.6 Sample Proportions
For a given a binomial random variable X, if n is the number of trials of an

experiment and P denotes the sample proportion of successes, where success identifies
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that the outcome of an event has some specified property of interest. The proportion of

o X
successes is given by p=—. Thus,
n

E(ﬁ):E(szlE(x)zmzp (2.41)

The above Equation indicates that provided X is a binomial random variable with

population parameters n and p, then value of the parameter p that maximizes the chance

. . . A~ X L X
of success is given by the sample proportion p=—. In other words, p=— is an
n n

unbiased estimator of the population mean, p. From Equation (2.34), the variance of the
distribution of the number of successes X, is given by oy = E (x2 ) —(E (X))2 =n(p(-p).

However, for the proportion of successes f, the variance of the distribution is given by:

o’ =E(|@2)—(E(|@))2:E((%H—{EGD2 (2.42)

(E(xz)—(E(x))z):np(l_p): P(=P) (2.43)

Often, the population mean p, is a parameter that is not known. Hence, from

Equation (2.41-), since p is an unbiased estimator of p, the variance of a sample

proportion can be estimated as:

a%zE(ﬁz)z—ﬁ(ln_f’)

(2.44)
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2.7  Test of Hypothesis

A statistical hypothesis, or hypothesis, is a claim about the value(s) of one or
more population characteristic(s). In any hypothesis testing, two contradictory statements
are often proposed. The objective is then to decide which of the two statements about the
population is more likely or correct based on sample information. The statements are
often formulated so that one of the claims is initially favored. The initially favored claim
will not be rejected in favor of the alternative claim unless sample evidence confidently
contradicts it and provides strong support for the alternative assertion. The claim initially
favored and believed to be more likely is referred to as the null hypothesis. It is often
denoted by Hy. The other claim is referred to as the alternative or research hypothesis
and is often denoted by H, (Devore, 1995; Montgomery, et al., 1998; Mendenhall, et al.,

1982)

2.8 Errors in Hypothesis Testing

The decision to accept or reject a claim on the null hypothesis is based on
information often contained in a sample drawn from the population of interest. The
sample values are used to compute a single number corresponding to a point on a line.
This number, referred to as the test statistic, is usually used by experimenters in making
statistical decisions. The entire range of values that the test statistic may assume is
divided into two sets, or regions. One corresponds to the rejection region and other the
acceptance region. If the test statistic computed from a particular sample assumes a value
in the rejection region (also called the critical region), then the null hypothesis is rejected

in favor of the alternative hypothesis. On the other hand, if the test statistic falls in the
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acceptance region, then the null hypothesis is accepted (but not proven truth). The
circumstances leading to either of these decisions vary are discussed below. In statistical
tests, it is possible to make an error that involves rejecting the null hypothesis when in
fact it is true and should not be rejected. The probability of making such an error is
referred to as a Type-I error. It is also often referred to as the significance level and is

usually denoted by a.
a = P(Type—lerror)=P(Reject H,|H, istrue) (2.45)
Another type of error involves accepting the null hypothesis (i.e. failing to reject
the null hypothesis) when it is false and the alternative hypothesis is true. The probability
of making such an error is referred to as a Type-II error and is often denoted by f.
/8 =P (Type— Il error) = P( Accept H,|H,is false) (2.46)
In typical applications, a Type-I error, results in a false alarm while a Type-II

error results in a missed alarm. Table 2.1 is a summary of the decisions generally made

in Hypothesis testing.

Table 2.1 Decisions in Hypothesis Testing

Decision Ho is true Ho is False
Fail t?_l Reject Correct decision Type-él error
0
. Type-l error  Correct decision
Reject Ho o Power = 1-p

Where Power is the probability of rejecting Hy, if Hy is false.
Figure 2.1 is a graphical illustration of the occurrence of a Type-I error. The

shaded region between the lower control limit (i.e. critical value below which distribution
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is out of control, (LCL)) and the upper control limit (i.e. the critical value above which
the distribution is out of control, (UCL)) gives the range or area within which a test

statistic must lie before it is accepted.

0.12

01 /’\\

0.08 - P(H, is true)

0.06

0.04 -

P(H, is false) = a/2 P(H, is false) = a/2

Probability of Occurance

0.02 -

Figure 2.1  Probability Distribution of x successes in n trials (n =50, P, = 0.5)

If a test statistic falls in this range and it is truly within the range, then a correct
decision will be made by accepting the null hypothesis. However, it a possible that a test
statistic that lies in the shaded region could be ignored or rejected based on a claim that it
lies outside the shaded region. The probability of erroneously rejecting the true outcome
of an hypothesis is the value of a Type-I error. From Figure 2.1 the probability of
making a Type-I error is given by the sum of the areas in the tails outside the shaded
region.

Furthermore, during experimental analysis, the mean value the distribution

changes. If the change is significantly different from the hypothesized value p, it implies
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that the new mean value comes from a significantly different distribution. It is essential
that a decision be made to reject this new mean value. Using Figure 2.2, let graph A be

the hypothesized distribution.

0.14

0.12 A Pai P, P
0.1 -
0.08 1
0.06

0.04 -

0.02 -

0 | | LCL "UcL
O 5 10 15 20 25 30 35 40 45 50

Figure 2.2 Probability Distribution of X successes in n trials (n =50, P, = 0.5,
Pa1=0.35, P5; = 0.65)
However, if a value belongs to the distribution shown by C it is possible that
some of the test statistics that belong to C may also appear in distribution A and what is a
false or spurious value may get accepted. The same situation may occur between
distribution A and B. The frequency or rate of not detecting false values lead to the
occurrence of Type-II errors. The probability of a Type-II error is given by the area of
the shaded region in each of the distributions A or B.
The goodness of a statistical test of an hypothesis is measured by the probabilities

of making a Type-I or a Type-II error (Mendenhall, 1982).
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e The size of the critical regions, and consequently the probability of a Type-I error
o, can always be reduced by appropriate selection of the critical values.

e The Type-I and Type-II errors are related. A decrease in the probability of one
type of error always results in an increase in the probability of the other, provided
the sample size does not change.

e An increase in sample size will generally reduce both o and 3 provided that, the
critical values are held constant.

e When the null hypothesis is false,  increases as the true value of the parameter
approaches the hypothesized value in the null hypothesis. The value of B
decreases as the difference between the true mean and the hypothesized value
increases.

Very often, the probability of a Type-I error is controlled by the researcher or
analyst when the critical values are selected. Thus, it is usually easy to set a Type-I error
rate or probability a, at or near some desired value. On the other hand, the probability of
a Type-II error rate 3, is not constant. It depends on the true value of the population
parameter Py, the sample size n, the new population variance, and the extent to which the
null hypothesis Hy is false. The probability of correctly rejecting a false null hypothesis
is referred to as Power and is given by

Power = P(Reject H, |H, is false) =1- 3 (2.47)

The Power of a statistical test is a very descriptive and concise measure of the
sensitivity of the test (i.e. the ability of the test to detect differences). If a test of
hypothesis is designed to detect difference on both sides of the true mean po, then it is

called a two-tailed test. In such a test, the conventional approach is that the critical
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region is split into two parts with equal probability placed in each tail of the distribution

of the test statistic [Montgomery, et al., 1998]. Such tests are formulated as:

Hota=py

(2.48)
H, o g,

If the hypothesis-testing is on only one side of the true population mean p, then it

is referred to as a one sided alternative hypothesis formulated as:

H, :u=

0-H=H (2.49)
H, 12y,

H,:u=

o0 M= (2.50)
Hatp <

2.9  Analysis of Type-I errors Using Binomial Distribution
As indicated earlier, a Type-I error occurs when a true null hypothesis is rejected.

Figure 2.3 illustrates the occurrence of a Type-I error

P(H, is true)
l-a

P(Type-I error)

P(Type-I error) o2

o/2

Rejection region Rejection region

Number of Successes, X

Figure 2.3.  Probability Distribution Showing a Type-I Error Occurrence
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In general, for the binomial distribution, Equation (2.13), where

n X 1— n-x K=123 "
P, (xpm)=1lx )" (1-p) =1,2,3,...,

0 Otherwise
can be used to estimate the probability of a Type-I error. The probability of rejecting the
null hypothesis when it is true is given by «a, and for a two-tailed test, each side has equal

probability of o/2. The left side rejection region is given by:

%=P(XSXL)=ZLP(X=O,1,2...XL) (2.51)
x=0

%ZU RI(1-R) 252)

where Xy is the number of discrete samples that define the rejection region to the left of

Figure 2.3. The right side rejection is also given by:

%:P(XZXH)zZn:P(szH,xH+l,xH+2...n) (2.53)
(04 L n X n-x
5= )(:ZXL {X] R(1-R) (2.54)

Either of Equation (2.52) and (2.54) can be used to estimate the probability of a
Type-I error in either tail of the probability distribution knowing the reference probability

Py and the number of samples X, that indicate the particular region.

2.10  Analysis of Type-I1I errors Using Binomial Distribution

A Type-II error occurs when a false null hypothesis is not rejected. This is

illustrated in Figure 2.4 where the probability of a Type-II error, B, is represented by the
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diamond shaded area under the probability distribution curve when P = P, # P;. From
Figure 2.4,

X X

B=P(x <x<x,[P=P)=>"P(x=0,1,2,%,)-> P(x=0,12,x ) (2.55)

x=0 x=0

Using Equation 2.52 in Equation 2.55 gives,

- Zo@ IR Z@ =R (2:56)

x=0

P= P()
P=P,
M
P(H, is false)
p
P(Type-I error) x/ P(Type-I error)
a/2 \ a/2
k LCL x  UCL

Figure 2.4.  Probability Distribution Showing a Type-11 Error Occurrence

2.11  Normal Approximation to the Binomial Distribution

Although the binomial distribution is discrete and the normal distribution is
continuous, the normal distribution can be used as an approximation to the discrete
binomial probability distribution when the product of the number of trials and the

proportion of successes (Np) as well as the product of the number of trials and the
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proportion of failures (n(1-p)) is greater than or equal to five. If np <5 and n(1-p) < 5,
then the binomial distribution is too skewed for the normal distribution to give accurate
approximations (Devore, 1995). Given the hypothesis,

Hy: P =Py H.: P =Py

When the null hypothesis is Hy, is true:

P, (1-P
CL=P,+Z,, R (-R) (2.57)
n

Where CL denotes the confidence limits, Z denotes the boundaries marking

al2

the critical region for a two-tailed test and P, represents the reference probability. The

upper confidence limit (UCL) is given by

P(1-R
UCL=R+Z,, b(1-R) (2.58)
n
While the lower confidence limit (LCL) is
P(1-P
LCL=P,-Z,_, R(-R) (2.59)
n
When the alternative hypothesis H, is true, the UCL is again given by
P, (1 - Pa)
UCL=P,+Z, — (2.60)
Where Z ; denotes the critical boundaries on the left and right of the distribution
[P, (1-P
LCL=P,-Z, a(Ta) (2.61)

Solving Equations (2.58) and (2.60) and then Equations (2.59) and (2.61) gives
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, PP 2, =) (2.62)
a \/Paa— P.)
n

Py~ Py =2, [T (2.63)
z, = - :
. \/Pau—Pa)

n

p=4(2,.)-4(Z, ) (2.64)
P,(1-P,) a 3 P,(1-P,)
ﬂ _ ¢ Po — Pa + Z% 7n ~ ¢ F”0 Pa Z% 7]1 (265)
\/Pa(l—m \/Pa(l—m
n n

Where, ¢(z)is given by Equation (2.40), after substituting Equation (2.39), to get

1 z Ul
#(2) :ELoexp_( P du (2.66)

2

U U
To solve Equation 2.66, let t=$, then +2dt=dU and t’ =7. In addition, the

z —0
upper limit changes toE, while the lower limit becomes$=—00. Substituting in

Equation 2.66),

é(2) =ﬁjj V2exp /2t (2.67)
1 ¢? 2

¢(Z)=ﬁf£ Pexp dt (2.68)
\/5 0 e 2 72 (2

¢(z)=E Loexp( ot o+ i jof exp ©alt (2.69)
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_ Lo e 2 178 gy ®
¢(z)—\/§TL0exp Jadt + 2\/;.[0 exp " dt (2.70)

The first integral term of Equation (2.70), can be simplified by reason of

symmetry of the normal distribution as

exp 20t = exp 2t =% (2.71)

1 0 1 0
\/ZZ-J._OO \/ZZ--[O
The second integral term can also be simplified using the error function (erf)

approximation as

ll%ﬁ ~(t) :l (z j
2(\/;j0 exp dtj 2er|‘ /\/5 (2.72)

Hence,

#(2) =%(l+erf ( 7 ﬁD 2.73)

Equation (2.73) can thus be used to find a solution for Equation (2.65) knowing Py, P,,

and n. Conversely, Equation (2.73) can be used to estimate the critical boundaries given

the values of ¢(Z) as:

z=erfinv(2¢(2)-1) J2 (2.74)

It is worth mentioning that Equation (2.66) can also be approximated using the series

relation in Equation (2.75).

B 1 1 © (_1)k Z(2k+1)
¢(Z)_{E+@[§(Zk+l)2kk!} (&3)
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CHAPTER 3

3.0 Development of the Health Monitor

31 Model States as a Markov Chain
When a controller is in operation, the actuating errors (Setpoint minus Controlled

Variable) are generated sequentially as shown in Figure 3.1.

'd'I:I T T T T T T T

30 -

Aggressive

20 LEIIIFI'[I’EI|4>| 7

JT%_

Contraller Actuating Errors

Sluggish
CnntrDIAJ

_3|:| 1 1 1 | | | |
0 10 20 3a 40 S0 B0 70 aa
time
Figure 3.1 Actuating Error Signals in a Time series of Controlled Data
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Labeled in Figure 3.1 is a period of good control when a controller is able to
desirably manipulate a controlled variable in order to make the process stable and
minimize deviations of the process output variable from the process setpoint. The Figure
also illustrates a period when a controller is aggressive, resulting in increased oscillations
in the process output. Lastly, a period of sluggish control is labeled. Not shown
however, are other examples of constraint encounters, stiction, or continuous
disturbances, all of which are possible nuisances that can occur in a control loop and are
analyzed by the proposed method in this work.

The actuating errors (Setpoint-Controlled Variable) as they occur are labeled
showing their run length in Figure 3.2. Errors above the mean value of zero are labeled
as positive and those below are labeled as negative. If the actuating error persists on one
side of the mean, the run length numbering continues on that side with the appropriate
sign. However, anytime a zero crossing occurs, it signifies a sign change, and the run
numbering also changes from positive to negative (or vice versa) and begins again with
either +1 or —1 as appropriate. If the error has a value of zero, by definition in this work,
it is not a zero crossing, and the run length continues to increase, with the run number
bearing the same sign as the prior run. A run characterized by a positive (+) or negative
(-) sign is referred to as a state. Shown in Figure 3.2, for illustration, the maximum state
number is 4. Hence, the number of states will vary between -4 and +4 inclusive but
excluding zero. This means that runs of 5, 6, or more, remain in a state of either +4 or -4
depending on the sign characterizing the run. Thus, when the actuating error visits a state

that is higher than the maximum number, the run length increases but the state does not
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change. Another characteristic of the data in Figure 3.2 is that each transition is

binomially distributed.

For instance, given that an actuating error run is in a state of +i, it only has 2 (i.e.
binomial) transition options for the next observation. It can either move from the state of
+i to the state of +i+1 or make a zero crossing to a state of -1. If it is in a state of —i, it

also has 2 options of either moving to a state of -i-1 , or making a zero crossing to a state

of +1.
Transition from a state of +1 to a state of +2
Exactly zero, (not a zero

) crossing)

O
+ +1

3,43 2,42
0 1,+19 0

. : ” L+lo0 (3,43
o zero crdssing and transition 4
= U
w from stalte of +3 to -1 zero cropsing from

1,-1 074

2,2~ 3.3
O 0 6,-4

440 O
AN

Run Length

state

state of —4 to +1

O 4, ‘4
3,-3

-

Figure 3.2  Controller Run length, Zero Crossing, State and Transition State (O
Represents an Actuating Error Value (The Adjacent Number is the

State)
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Thus once the actuating error has visited a particular state, its next transition is not
governed by how it got to this state. It is entirely dependent on the present state only. In
other words, whether the next transition will result in a zero crossing or not has nothing
to do with visits to a prior state or states. However, the next transition is entirely
dependent on this present location of the data. This is the Markov property, which forms
the broad basis for this work. The directed paths in Figure 3.2, which indicate the state
transitions, are modeled with K total states (k = 8) also referred to as the run length. In
general, the run length can be any number, but for practical purposes, it is appropriate to
limit states. Any run length higher than the extreme state (+E) remains in the extreme
state. The Markov chain Model is shown diagrammatically in Figure 3.3.

In general, let n, denote the total number of samples (transitions) that have ever

visited (entered) the state ofi, (i could bex). For all interior states, this number of
samples also denotes the total number of samples in that state. The only exceptions to
this involve the states of +1 and the extreme state of £E. For this model, except for the
extreme states, once a state is occupied or visited, the data cannot occupy that state again
at the next immediate transition. Although, a state can be visited or occupied infinitely
often, future visits to all interior states do not occur immediately at the next transition but
rather at some time in the future. The only exception to this is the extreme state.

All states are positive recurrent and the entire model once defined forms a class. This
is because all states communicate and the chain is irreducible as can be seen in Figure

3.3.
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Once states have been modeled as a Markov chain, the states transition

probabilities can be determined as follows. Let T, ; denote the number of samples that do
not make a zero crossing but rather leave the state of iand enter the state j, (i.e. J not
equal £1). Also, let n,, denote the number of samples that have ever visited the state of

+i respectively. Furthermore, for the general case in Figure 3.3, let P,; denote the

transition probability of the number of samples exiting the state of +iand entering the

state of -1. Then,

. n(+i) _T+i,+i+1
P(+|):—n (3.1
(+1)

Similarly, if P, denotes the probability of transition from a state of -i to a state of +1,

then

. n(—i) _T—i,—i—l
P(-i)= e (3.2)
(=)

Unlike all interior states, state transitions from the extreme states differ. Whereas
transitions from all interior states either make a zero crossing or move to the next
absolute higher state, transitions from the extreme states either make a zero crossing or
re-enter themselves. Let £E denote the positive or negative extreme states, and Pg denote
the proportion of samples that leave the extreme and make a zero crossing to the state of
+1 respectively. Then, the transition probability from the state +E to the state -1 say is
given by:

T
P(+E)=—1%

+E

(3.3)

Similarly, the transition probability from the state of —E to the state +1 is given by:
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-
P(-E)=—E1-E

e (3.4)

The transition probabilities associated with each state can be illustrated in an array
as shown in Table 3.1. From Table 3.1 and using row 3 for instance, if the actuating error
is in a state of +1, then it can only visit the state of +2 with a probability 1-P(+1) or make
a zero crossing to the state of -1 with a probability of P(+1). Similarly, considering row 8
for instance, if the actuating error is in a state of -2, then it has only two options of either

visiting the state of -3 with a probability of 1-P(-2) or making a zero crossing to visit the

state of +1 with a probability P(-2).

Table 3.1 Markov Transition Probability Matrix (Shown Only for 8 Total

States)
To State
+1 +2 +3 +4 -1 -2 -3 -4
+1 0 1-P(+1) | 0 0 P(+1) |0 0 0
+2 0 0 1-P(+2) | O P(+2) 0 0 0
From | +3 0 0 0 1-P(+3) | P(+3) |0 0 0
State | +4 0 0 0 1-P(+4) | P(+4) 0 0 0
-1 P(-1) 0 0 0 0 1-P(-1) |0 0
-2 P(-2) 0 0 0 0 0 1-P(-2) | 0
-3 P(-3) 0 0 0 0 0 0 1-P(-3)
-4 P(-4) 0 0 0 0 0 0 1-P(-4)

Where the transitions probabilities are zero in Table 3.1 indicate that such visit are

not allowed. For instance, an actuating error in a state of £i cannot visit itself if i is an

interior state. Neither can it visit a state (+i+2)or (-i-2) say, in just one step.

Transitions are either from a state of +i to a state of (+; +1) or from -i to (-i -1) or make

a zero crossing. It is only in the extreme state that transitions occur from the state of +E
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to the state +E with respective probabilities of either 1- P(+E) or 1-P(-E) or make a zero
crossing with probabilities of either P(+E) or P(-E) .

Appendix H provides a brief description on the deference between state space

modeling of a time series data and state modeling of a data in a Markov chain.

3.2 Overall Structure of the Health Monitor

In this section, the general development of the monitor is discussed. In order to
obtain the information used for hypothesis testing and hence making decisions, data must
be collected for a period during which controller performance is judged by operators or
engineers to be acceptable. The data collected during this period will be referred to as
reference data. Once the reference data has been collected, it is used to determine the
transition probabilities associated with each state, the number of samples that need to
visit a particular state if control performance is good, a window of data that need to be
used for statistical comparison and control limits associated with each state by the

following procedure:

3.2.1 Estimate the Sampling Ratio
The health monitor is initialized to run with 8 total states (4 on both the “+” and “-
“runs) at a sampling frequency equal to controllers sampling frequency. This means that
the ratio of number of data from the controller to the number of data sampled by the
monitor is unity. This ratio will be referred to as the sampling ratio. Hence, a sampling
ratio of unity denotes that the controller and the health monitor both sample data at the

same rate or frequency. For instance, a sampling ratio of three means that, for every
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three controller actuating error samples, the health monitor samples one actuating error to
analyze. The relation between sampling ratio, controller sampling time interval and
monitor sampling time interval is discussed below.

Let f; denote the controller sampling frequency, in units of number of controller
samples/time. Also, let fi denote the sampling frequency of the health monitor also in

units of number of health monitor samples/time. Moreover, let SR denote the sampling

ratio. Then,
SR - Number of Controller Samples/Time (3.5)
Number of HealthMonitor Samples/Time '
f
SR=—% (3.6)
fH
But .= 1_ _ _ (3.7)
Controller Sampling Time Interval AT,
1 1
And f, = - — = (3.8)
Health Monitor Sampling Time Interval AT,
/AT 1 AT
Hence, SR = i € =7 * lH (3.9)
Jar, A
Or
AT, =AT_*SR (3.10)

Thus, the health monitor sampling time interval is given by the product of the
controller sampling time interval and the sampling ratio. Alternatively, the sampling

frequency of the health monitor is given by:

f, =—2 (3.11)
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The monitor is automated to analyze any length of data until all the transition
probabilities lie between a desired range such that they are not too close to zero or unity.
For the analysis in this work, the range is chosen to lie between 0.25 and 0.75 inclusive.
If at the end of the first iteration, any transition probability is outside this range, the
monitor automatically adjusts the sampling ratio from 1 to 2 and then determines the
transition probabilities again. This process iteratively continues, until all the state
transition probabilities for the initial 8 total states lie within the pre-chosen range. The
reason for choosing this range initially is to avoid a situation where control limits, which
are to be determined, lie too close to unity or zero because the reference probabilities
were already that close. Once all transition probabilities lie within the chosen range, the
monitor then adjusts the total number of states until at most 10 percent of the entire data

lie in the extreme states. This is explained below.

3.2.2 Estimate the Number of States

In general, when a controller is performing optimally well, its actuating errors
should be characterized by frequent zero crossings such that as time progresses the mean
error is approximately close to zero. However, in practice this does not actually happen
unless the noise effect in the data is purely white, which is independent of each other and
identically distributed (IID). This means that ideally, if every thing was perfect for a
well-tuned control loop, then the distribution of the actuating error samples will be
approximately Gaussian, normal and independently distributed (NID). This will cause

lower states to be populated with more samples than higher states as shown in Figure 3.4.
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Figure 3.4 Distributions of States for Historical Good Data

This implies that for eight (8) total states, if N denotes the total number of

samples in each of the lowest states (i.e. +1 and -1 states), then the states of +2, +3 say,
will each have approximately % and ’\% samples respectively. This is because, since
the data is 1ID, there is no correlation between them. Hence, each transition has equal
chance of about 50% to either make a zero crossing or visit the next absolute higher state.
This means that the number of samples in adjacent higher states will differ from their

adjoining lower state by a factor of 0.5. All run lengths equal to or exceeding the

extreme state stay in that state and since the state of +4 is an extreme state, all sample

sizes from l\y , l\%6 , ’\%2 , etc., will all be cumulative parts of the samples visiting the
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state of +4. Consequently, if n,g denotes the total number of samples in the extreme state

of +4, then

n.=n,+n,+n,+..+n,

Where, 0 denotes the largest run length that would have occurred if states were

not limited to +E

F—t—t... 3.12
16 32 ( )

N N N
+E E
If N+, denotes the total number of samples in all the positive states, then

N _=n

+p +1

N,, =(N)+(%)+(%]+(%+%+...)

Thus, the total number of samples in the extreme state can be estimated as the sum of a

+ n+2 + n+3 + n+E

geometric series as:

Ne =lim(n +ns+ng +...+n,) (3.13)
f—>x
N 1 1 1
Nne=lim| —| l+=+—+=-+... (3.14)
; 1321{8( 24 8 ﬂ

N, e :hm{%(l+%+l+lﬂ:% % (3.15)

ne=— (3.16)

The number of samples in the other extreme sate of —E will be approximately
same as Equation (3.16). Now, for the entire positive states’ side of the chain starting

from +1, +2, ..., +E-1, and +E, it can be shown that:
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N+p :(n+l)+(n+2)+(n+3)+(n4 +n+5 +n+6 +"'n+6’)

N,, =(n+n,+n+(n;)) (3.17)

N+p:(N+E+ﬁ+ﬂj (3.18)
2 4 4

N, =2N (3.19)

Notice that, the actuating error samples are geometrically distributed on each half
of Figure 3.4 (i.e. from -1 to -4 and +1 to +4) for the 8-state case under discussion. Since
the distribution of samples in one half is identical to the other half, the total number of
samples for the entire chain can be approximated as:

Nia = 2N, = 4N (3.22)

total
Hence, if “rp” denotes the ratio of the number of samples in any of the extreme states to

the total number of samples in the entire chain, then “rp” is given by:

N
rp = A ~ L~ 00625-625% (3.23)
4N 16

Thus, ideally about 6.25 percent of the total number of samples analyzed will lie
in each of the extreme states in an 8-state model, assuming that the distribution of
actuating error samples was independent. Intuitively then, a value of 10 percent is
proposed as an approximation of the fraction of the number of samples that should lie in
any of the extreme states.

Therefore, during analysis of the reference data, if after using the initial total
number of states for analysis, it is determined that more than 10 percent of the total data

is in the extreme states, the total number of states is updated by 2 (one positive and one
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negative state are added) and the analysis repeated. This process is repeated until the
monitor finds the number of states that satisfy the ten percent condition.

After a set of states is determined such that not more than 10% of the data lie in
the extreme state, it is often possible that some of the transition probabilities associated
with any newly added states may lie outside the chosen range. Consequently, the monitor
updates the sampling ratio and analyzes the data again so that all the transition
probabilities lie within the chosen range. This procedure is illustrated in Figure (3.5a to
d). For instance, Figure (3.5a) illustrates the nominal analysis of the reference data
starting with a sampling ratio of unity and 8 total states. As can be seen, after the initial
data was analyzed, some of the transition probabilities were greater than the desired
upper limit 0.75. Hence, the sampling ratio was updated from unity to 2 and the entire
process repeated. After analysis of the data using the new sampling ratio, all the
transition probabilities fell below 0.75 as shown in Figure (3.5b). Nevertheless, the
extreme states are too populated with data, therefore the monitor adjusts the number of
states from 8 to a total of 10 (1 new positive state and 1 new negative state on each side)
and repeats the analysis using this new number of states but keeping the sampling ratio at
the prior value. This process is repeated until no more than 10% of the total number of
samples being analyzed is in the extreme states. For this example, 12 total states (+ 6)
were determined by the monitor to be enough in order to achieve the user-desired
conditions. This is shown in Figure (3.5¢). It can however be noticed in Figure (3.5¢)
that the transition probabilities in the extreme states of “-6” is outside the desired range.
Therefore, the monitor adjusts the sampling ratio again until all the probabilities fall

between 0.25 and 0.75 inclusive as shown in Figure (3.5d).
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3.2.3 Ildentify States Containing the Least Number of Reference
Samples

Generally, after the reference data is analyzed, the minimum number of samples
would lie either in the extreme state or in the penultimate state. It is important for
statistical analysis that number of samples in the state having the least number of samples
be significantly large enough in order to minimize statistical errors, namely Type-1 and
Type-II errors. Essentially, after determining the transition probabilities using the
reference data, the monitor observes all the states to determine the state (on each half of
the chain) that contains the least number of samples. It is possible for the minimum
number of samples to be located in the extreme state on one half while on the other half,
it will occur in the penultimate state. It is also possible that the minimum number of
samples will be located in the penultimate state in both halves or in the extreme in both
halves. Either way all that the monitor needs to know is the state in which this minimum
number of samples is located. Once this state is known, the monitor calculates the
number of samples that need to be in that states in order to meet the user specified criteria
on Type-I and Type-II errors. Given that the level of significance associated with the
state that is identified to contain the minimum number of samples is o, since statistical

errors can occur in either tail of the distribution, a two-tailed test analysis is conducted.

This implies that for each tail the level of significance will be given by%. This is

illustrated in Figure 3.6.
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Figure 3.6  Analysis of Type-1 Error Rate for State with Least Number of
Reference Data

Hence, the number of samples X, required to obtain the cumulative probability

% in the left hand tail, is given by the Equation (2.52) as:

J P (1-R)"" (3.24)

Similarly, the number of samples Xy, that give the cumulative probability% , In

the right hand tail is given by Equation (2.54) as:

4 n n—x
%: Z[ jPOX(l—PO) (3.25)

X=Xy X
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Equation (3.25) can be written in another form as

(N
_%:Z(XJ R (I_Po) (3.26)

x=0
Thus if ok (Type-I error rate for a particular state), and the number of samples, X;.

and Xy required to give 0O are all known, then Equations (3.24) and (3.26) can be used to

determine the number of samples “n” to place in a particular state in order to obtain a
desired error rate. There are however, four unknown variables namely the type one error
rate associated with a particular state o, the number of samples X, that give the lower
control limit, the number of samples Xy, that give the upper control limit, and total
number of samples n, in that state). Nevertheless, there are only two Equations making
solution of Equations (3.24) and (3.26) impossible at first sight. One way to get around
this is to select a desired Type-II error rate when future transition probabilities deviate by
some amount and develop and a third equation involving both the desired Type-I and
Type-II error rates. For the examples in this work, a desired Type-II error rate equal to
the overall Type-I error is set when the Transition probability differ from the reference
value by 90 percent.

Let P, denote some future transition probability (different from the reference
transition probability Py), and which is desired to be detected with a Type-II error rate
specified. Also, let B denote the Type-II error rate when P is equal to P,. Then from
Figure 3.7, the shaded area gives the Probability of a Type-II error.

With reference to Equation 2.56, the Type-II error rate for the chosen state can be

estimated using
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(N nx (N n—x
P =Z( jPaX(l—Pa) —Z(Xj Pr(1-F.) (327)
x=0

With B known, there are now three nonlinear Equations and four unknown
variables (X, Xy, Ok, and n). Thus, there is one more variable than the number of
Equations. A straight form solution can still not be determined at this stage. In addition,
at this stage, the Type-I error rate associated with each state is not known. However, it

can be estimated if the overall Type-I error rate for the entire experiment is known. The

Type-I error rate for each state is determined below.

0.1k Py \
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=

=

[wn]
T
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)
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T
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0 | | _/ffﬂ
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Figure 3.7 Analysis of Type-11 Error for State with Least Number of Reference
Data

Let ar, denote the entire Type-I error rate desired by the engineers or operators for the

entire test. However, each window or chain contains ‘Ng’ total states where
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+E
(NS = Z kj and each state transition is associated with a level of significance denoted
k=-E

by 0x. The health monitor flags if any one transition is in any of critical regions of the
probability distribution associated with any state as shown in Figure 3.7.

Given the null hypothesis: Hy: P =P, and Ha: P # P,
Where, Hy is the null hypothesis that all future state transition probabilities are equal to
the reference transition probability Py. Let P(Tj) = probability of the ith transition that is
not in the extreme region. Then;

P(H,) = P(T ; is not extreme and T ., is not extreme and ¢ T, is not extreme and T, is
not extreme *** and T is not extreme).

P(H,) = P(Tj is not extreme)* P(T ., is not extreme)*es+* P(T | is not extreme)*
P(T,, is not extreme)* se«* P(T, , is not extreme)* P(T, is not extreme)

But P(Hp)= 1-ar

Hence,

1-or = [I-P(Tg1s extreme)]*...* [1-P(T, is extreme)]*[1-P(T,, is extreme)]* eeo* [1-

P(T,, is extreme)]

But, P(T, is extreme) = 0, Therefore,

— I % * %
l—og =[l-a J*.*[l-a,]* [1-a,]*.. " [1-a.,] (3.28)
For the binomial distribution, a necessary requirement is that: each trial must be

independent, each trial must result in only two possible outcomes, the probability of

success on each trial must remain constant and all trials must be identical. Hence, if all
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future transitions are identical, the Type-I error rate for each of the “k” states can be

assumed identical. Hence,
l-o; =(-a)*(-a)*(A-,)*... (3.29)
l-a; =(1-a,)" (3.30)
Solving for oy gives:

a, =1-"%(1-a) (3.31)

Where, Ns denotes the total number of states and k denotes each individual state.
Equation (3.31) can be used to determine the Type-I error rate associated with each state,
given the overall Type-I error rate for the entire test. It is worthwhile to mention here
that Equation (3.31) can be further approximated using a Taylor series expansion to give
the Bonferroni approximation that is used in multiple hypotheses testing in experimental

analysis. From Equation (3.31), let

o =1-f (o) (3.32a)

Where f (o )="%/(1-c%) (3.32b)
Using, a Taylor series approximation and expanding Equation (3.32b) about a reference

valuea,, f (o )can be written as

()= 1 (@) (s~ () + O )4 (3.33)

Ignoring the second order and higher terms and lettinger, =0, Equation (3.33) can be
simplified as
for)=f(a)+ (e —a)f (a) (3.34)

But, from Equation (3.32b), the first derivative of f (aT )

ar =ay
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(1 _ 0!0 )(I/stl)
= 3.35
— N (3.35)

S

f' (o)

Setting ¢, = 0in Equation (3.35)
fay)=—— (3.36a)

Also,

f(a,)="41-0)=1 (3.36b)

Substituting Equations (3.36a) and (3.36b) in Equation (3.34) gives

f (o )=1+(x —0)(—%]:( —“—TJ (3.37)

S NS
Substituting Equation (3.37) in Equation (3.32a) gives

a, :1—(1—(|0\j—T)j (3.38a)

S

Equation 3.38a simplifies to
o =—— (3.38b)

Equation 3.38b is the well-known Bonferroni approximation. It must be
mentioned that since the Taylor series is truncated after the second order term, it means

that the general error involved in the approximation in Equation (3.38b) is of the order
O(|0(T —0{0|)/1+1 where Ais the order of the highest derivative used in the Taylor series

estimate (i.e. 4 =1). However, the approximation gets better as the number of states Ng

becomes large and the error rate o, gets smaller. Consequently, for this work, the exact

form of Equation (3.31) is used in all the calculations of ¢, for the monitor rather than
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Equation (3.38b). Table 3.2 illustrates the difference between the exact calculation for

determining ¢, and the Bonferroni approximation (¢ ) for determining same, for various
values of the overall Type-I error ratecr; , and different values of total number of states
N;. It can be noticed that for a givene; , the difference between ¢, anda;, decreases as
N; increases with the relative error also increasing. Also, for a given N, as «; decreases,
both ¢, and a; decrease and the relative error also decreases. In all cases, it is seen that
the difference between ¢, and ap becomes negligibly small as N increase and o
decrease. In order to avoid ambiguities as to where the approximation is best, ¢, is used

for all estimates in this work.
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Once ¢, is known, Equations (3.24), (3.26) can be solved simultaneously by first
guessing a value for value for “n” and solving for X; and Xy. Once Xp and Xy are
known, use them together with the value of “n” to find a solution for Equation (3.27). If
the solution agrees with the pre-chosen value of f3, then the value of “n” is the desired
minimum to place in the chosen state in order to achieve the set error rates. if not, then
update the value of “n” by one and repeat the entire process. The algorithm for this

process is shown in the flow chart in Figure 3.8

63



( Begin )

A

Provide oy (Determined previously based on # of states
and ar), Bx for state with least reference # of samples, A,
and initialize “n” (start with n = 5 say)

Determine X; and Xy from Equations (3.24) and (3.26)
respectively

\ 4

Use the values of X; and Xy and “n” in Equation
(3.27) to find Bi

Does P satisfy the pre-chosen
condition?

Figure 3.8  Flowchart for Determining the Number of Samples to Place in the
State Haven the Least Number of Reference Data in order to balance
Type-I and Type-I1 error
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3.2.4 Estimate the Window Length
Once the number of samples “n” for the state with least number of reference data
has been determined, the number of samples that need to be placed in all the other states
are determined based on “n”. The window length is estimated by considering each half
of the chain separately (see Figure 3.3). Consider first the positive transition states and

recalling that for all interior states:

N~ T .
P(+i) =2 bt for all interior states, T

+i,+i+] =
Ny

n,.,, Hence,

. n(+i) Ny
P ) =~ (3.39)
(+1)

For the penultimate state, let n, .. denote the number of samples leaving that state and

moving into the extreme state, thenT .. =n_.. Hence,

P _ 'LEq —Ne

CEy =T (3.40)

n+ E-1
Therefore, for the extreme state,

n,e.

Pie) = 7 (3.41)
+ E

Case 1,
Assuming that the least number of reference data occurs in the extreme state (+E), then

from Equation 3.40,

P

(s ey = Ny =M (3.42)

+E-1

Mg (1 - P(+E—1) ) =N (3.43)
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N = (3.44
+E-1

(1 - P(+E—1)) )
From Equation (3.41), N, ¢ = N, ¢ P, ¢ | substituting this in 3.44 gives

n — n+EP+E
(+E-1) (1_ P(+E,1)) (345)

So, for the case where the least number of reference data is in the positive extreme

state, setn. =n (where “n” has been determined as per the algorithm in Figure 3.8).

Then use Equation (3.45) to find N, ,. Thus,

Ne=n (3.46)
__nPe
Ne, = (-P.) (3.47)
. Ny =Ny Mg~ Nieny :
From Equation (3.39), P(+i) = — Hence, P(+E_2) :n—, Rearranging
(+i) (+E-2)
gives
n
(+E-1)
n =
(+E-2)
(1=Rees)
Mg s = i (3.48)
(1 - P(+E—2) )(1 - I:)(-¢—E—l) )
Similarly,
n
(+E-2)
n =
(+E-3)
(l - P(+E—3))
nP
(+E)
N.g oy = (3.49)
(+E-3)
(1 - P(+E—1) )(1 - P(+E—2) )(1 - P(+E—3))
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Continuing,

- (+E) (3.50)
o (1=Peea (1= Pecs) (1= Py ) (1= Ras))
Moreover,
_ N
(1R
Ny = i (3.51)
(1=Peey ) (1= Peey J(1= Py ) (1P (1= Ry
Furthermore,
_ Ny
R
nP

n

o= (+E) (3.52)
(1= Raey J(1= Py ) (1= Paesy ) (1= Py ) (1= By ) (1= Py )

Thus, on the positive states side of the chain for this case, the window length,

WdL" is given by:

+
WdL =n,,+n,+n ;+...+n¢

67



WdL" = (+E) +
(1= Py ) (1= Py J(1=Rciy) ) (1= Ry ) (1= Ry ) (1= Py
Mt 4 (3.53)
(1P ) (1= Precy J(1=Pcsy ) (1= Py ) (1R )
nPHE) S Y Y =
(1_P(+E 1))(1 P(E—Z))<1 P(+E 3)) (l_P(s))
"Foe) +n,.
(1_P(+E 1)) '
Factoring out the first term
WL = Mo *

(1R ) (1R )(1=Ruey ) (1R ) (1R ) (1R )

_”{(1‘%)}+{(1‘Ff+l>)(I‘F?ﬂ))}+{(1‘P<+1))(1‘Ff+z>)(l‘F?+3) )} +

...+{(1—Fzﬂ))(1—Fg+2) (1‘%)“'(1—F?+Efs>)(1-FI+E,4))}+ . (3.54)
{(1 Py )(1-R.y)(1- %)"°(1_F?+E—4>)(1—FE+E_3)}+ e
I

(1R ) (1R )(1=Ry Joee(1-Rec

Let q(i) = 1-P(i), then

wdL" = F.e) R

A9 2) %) 9 e-3)de-2) Y e-3)

1400 + 960900 + A9 + (3.55)
eeet {q(+1)q(+z) oo q(+574)} + {q(+1)q(+z) *ee e 3)} +tNe

_+ {q(+1)q(+2) oo q(+ E—Z)}

Equation 3.55 can be further simplified to give
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nP(+E) +E-1{ +E-1
Wdl_Jr =? l+ q(,) +n+E
[1a =R (3.56)

On the negative state side of the chain, if the least number of samples occurs in
the extreme state then the number of samples to place in each state can be deduced by
similarly reasoning as above. Again, set ng equal to “n” after going through the

algorithm in Figure 3.8 for the negative side of the chain. It can be shown that the total

number of samples to place in the negative states, WdL" is given by

nP(7E) —E+1( —E+1
wdl, = |1+ Y. H Ay | [+ne
H q(l) k=1 j=1 (357)

Summing up Equations 3.56 and 3.57 gives the total window length WdL, as

wdL, =[wdL, ]+ [wdL, ]

nP(+E) +E-1( +E-1 np(iE) —E+1( —E+1
WdL, = ﬁ > TTag | [#ne |+ lE_[T 1+; Hq(j) +N_¢ (3.58)
G- 7

i=1 i=1

Case 2

If the least number of reference data occurs in any of the penultimate states, then
use the algorithm in Figure 3.8 to place the number of samples “n” that minimizes the
rate of Type-I and Type-II error in the penultimate state. Thus for the positive side of the

chain say, set ng.; = n. Then re-arranging Equation (3.45), gives

Ne (1-Pey)
Mgy =—— 05— (3.59)

+E
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n . —n. Neoy—Neo
Again, from Equation (3.39), P(+i)=—"—" " Hence, P - B GED

(+E-2) — ’
n(+i) n(+E—2)
Rearranging gives,
n
Moy = 7 (3.60)
(1-Pcn)
Similarly,
n
(+E-2)
N.ey =
v (1_ P(+E—3))
n
(+E-1)
n...= (3.61)
(+E-3)
(1 o P(+E—3))(1 o P(+E—2))
For the state of +E-4,
n
(+E-1)
n = (3.62)
(+E-4)
(1 - P(+E—4) )(1 - P(+E—3) )(1 - P(+E—2) )

Continuing in a similar fashion down to the state +3 say,

Nen
N (3.63)
(SR (R e
For the state of +2
Mg
N (3.64)
(RN (e B e
And for the state of +1,
n N (3.65)

) = (1_ P(H))(l— |:)(+2))000(1_ P(+Ef3))(l_ P(+E*2))

Summing all the numbers in each state for the positive side of the chain,
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WAL =n_ +n,+n +..n ¢ +n (3.66)

n
wdL* = GE-)
(=R )R (1R 1R (1= R)
e + (3.67)
(1P ) (1= Py ) (1P ) (1= P
n(+E—1) Leeet

(1=PReeey ) (1= Pecy (1= Ry J(1- Py

Mg (1 - P(+E—1))

N.ent
(El) I:)+E

N

%
(1= (1= Py ) (1P J(1 =Py J(1 =R

1+(1-P,)+(1-P,)(1-P,)+(1-P,)(1-P,)(1-P;) +eee+
(1_ P+1)(1_ P+2)"'(1_ P(+E—5))(1_ P(+E—4))+(1_ P+1)(1_ P+2)"' (3.68)

(1_ P(+E—4))(1_ P(+E—3))+(1_ P+1)(1_ P+2)"'(1_ P(+E*3))(l_ P(+E*2))

Ney (1_ P(+E—1))

wdL, =

—+

n +E-2/ +E-2 n+ e
WL, =5 [n > (H qkﬂ+—E ey (3.69)

(1-9,¢)

Equation (3.69) gives the number of samples that will make up the window length
on the positive side of the chain provided the least number of reference samples occurred
in the positive penultimate states. If on the negative side of the chain, the least number of
reference samples occurs in the penultimate state, then it can also be shown that the

window length on that side is given by
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n -E+2( -E+2 n
war, kel 8[| et 510
k=1 T M-E

i=1

Again, summing up Equations (3.69) and (3.70) gives the total window length WdL,; as

WL, =[wdL, ]+ [wdL, ]

n YE-2( +E-2 n n _E42( -E+2 n
WLy =| 5 {H > [H qkﬂ+ efoey || eeny {H > (H d j}r—“q(‘“‘) (3.71)
(I—CLE) H q, =1 k=1 (1—q75)

In summary, after analysis of the reference data, the monitor is designed to
identify the two states (one on each half of the chain) that contain the least number of
reference data. After that, it uses the appropriate relation from among the four Equations,
namely, Equations (3.56), (3.57), (3.69) and (3.70) to estimate the widow length of
samples for each half of the chain and then sum the two up to estimate the desired
window length for the entire monitor.

While the analysis above uses the information from the least populated states
from each half of the chain, it is also possible to use information from the overall least
populated state in the entire chain to obtain the number of samples that meets the desired
Type-I () and Type-II (B) error rates for that state. Then, use that number of samples to
obtain the number of samples that need to be in all other states. This approach however,
leads to excessive number of samples in other states, making o and [ for all other states

more conservative than specified.
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3.2.5 Estimate the Control Limits for Each State

Once the number samples in each state has been estimated, the upper and lower
control limits for each state must be determined. At the start of the analysis, the user
provides the overall Type-I error ar. As was discussed in Section 3.2.3, the monitor uses
this information together with the total number of states to estimate the Type-I error rate
that will be associated with transitions to and from each state as per Equation (3.31).
Having estimated the Type-I error rate for each state, the upper and lower control limits
for each state are estimated as follows.

Let X, denote number of transitions within the control limits (CL) given the null
hypothesis Hyg. Also, let Nx = Total number of transitions into a state, then using the
binomial Equation:

N, !
X (N, = X )!

P (X, [N, )= P(T)" (1-P(T))" 3.71)

Where “k” denotes a particular state and 0 < X < Ni.

Figure 3.9 is a graphical representation of how the control limits are determined.

LcL,
The lower control limit for which %: > P(X,|N,), is determined by finding the

X, =0
cumulative sum of P(X(‘N() until two cumulative density values denoted by Cy and Co as
shown in Figure 3.9 bound the lower control value az—k . Once that is established, the

lower control limit, LCLy, for a particular state “k” is given by interpolation as:

XO+{(ak/2_CO)}
Lor, = Xe o (Cyv-Co) (3.72)
N, N,
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Figure 3.9  Binomial Cumulative Density Function for Calculating Control Limits

ucL,
Similarly, to find the upper control limits for which 1 - 0‘% = > P(X,|N,), the
Xy =

0

cumulative sum of P(X |N,) is determined until two cumulative values, denoted earlier by
Cn and Cg again bracket the upper control value | _ « % . Once that is established, the

upper control limit for a particular is estimated by interpolation as:

X, + (1-a;/2)-C,)

UCLk:)l\jk: (EN‘Co) (3.73)
k k
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3.2.6 Estimate Type-Il Error Rate and Power for all States and the
Entire Monitor
With control limits estimated for each state in the chain, the Type-II error rate that
will occur for each state transition that is different from the reference transition
probability can be easily estimated. Using Figure 3.5 for illustration, the Type-II error

rate (the rate of missed alarms) associated with state is estimated using Equation (3.27) as
XH.( N nex L[N n—x
e S TR T
x=0 \ X 0 \ X
However, it is important to know the total number of missed alarms (i.e. overall

Type-II error rate) for the entire monitor. Recall the Null hypothesis Hyp: P = Py and the

alternative hypothesis H,: P # Py. Let Bt denote the overall Type-II error rate. Then,

Type-1I Error Rate = P(Transition probabilities are different from the reference value but

monitor does not flag)

But, Overall the Type-II Error Rate = Bt

Conversely, The overall Power, Py = 1- Bt

Pw = P(Transitions are significantly different from reference value Py, and monitor flags)

=1-BT

Thus, Pw = P(H, is true and monitor flags)

Pw = P(P_ is different from Py and monitor flags and P_g;, is different from P, and
Monitor flags ... and P_; is different from Py, and monitor flags and P, is
Different from Py and monitor flags and ... and P.g is different from Py and
Monitor flags and P is different from Py and monitor flags)

Pw = P(P_ is different from Py and monitor flags)*P(P_g; is different from P, and

75



Monitor flags)*...* P(P_; is different from Py and monitor flags)*P(Py; is
Different from Py and monitor flags)* ...*P(P.g.; is different from P, and
Monitor flags)*P(P,g is different from Py and monitor flags)

Pw = [1-P(P_s is different from Py and monitor does not flag)]*[1-P(P g4, is different from
Py and monitor does not flag)]*...* [1-P(P_; is different from P, and monitor does
not flag)]* [1-P(P4, is different from Py and monitor does not flag)]*...*[1-P(P.x.,
is different from Py and monitor does not  flag)*[1-P(P. is different from P,

and monitor does not flag)]

Pw = (l_ﬂ-E )(l_ﬁ-EH)*"'*(1-ﬂ-l)(1_ﬁ+1)*"'*(1'ﬂ+E-1)(1_ﬂ+E) (3.74)
1-4. = (I-Bg )A-Le )" *(1-B)A-L.)*.. * (=L )(1-Le) (3.75)

Hence,
Br = I'H (I-B.) (3.76)

Equation (3.76) can be used to estimate the overall Type-II error rate and hence the
overall power for the entire test.

Ry = 1-5; (3.77)
If the power of the test (Pyx) associated with each state transition is desired, it can also be

estimated as P,, = 1-£, where g, is known from Equation (3.27).

In using Equation (3.76) to estimate the Type-II error rate, it must be mentioned
that future transition probabilities (P,) associated with each state may differ from their
reference values (P,) by different amounts at particular instances. Consequently, there is
no simple concept as the Type-II error rate for an entire test because it depends on the

deviation. For this work, a limiting assumption is made where the transition probabilities
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P, associated with each state are assumed to differ from the reference value Py associated
with that state by equal amounts at some instance. Although this is an ideal assumption,
it is not a limitation in any way and it provides a good basis for one to assess the rate at
which alarms will be missed if future transition probabilities were to differ by the

fractional amounts A indicated in Table 3.3.

(3.78)

a

(4R P<P
|, +4(1-P,) P>P,
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In Table 3.3, the values of A, the fractional amounts by which future transition
probabilities P,, differ from the reference value Py are given in row 2 columns 4 to 14.
The values in the Table are from 0.1 to 1.0. The values in rows 3 to 10 of column 1 are
the states, rows 3 to 10 of column 2 are the number of samples in the corresponding state
in column 1 and column 3 rows 3 to 10 are the reference transition probabilities
associated with the state. The data in rows 3 to 10 and columns 4 to 14 represent the
Type-II error rate 3 for each state. For instance, in row 4 column 4, the value of 0.9955
indicates that for the state of —3, if during test analysis transition probabilities differ from
the reference by 10% (0.10), then there is a 99.55% chance that it will not be detected.
Similarly, if for that same state, transition probabilities differ from the reference by 90%
(0.9), then, there is a 0.0488% chance that it will not be detected Thus as the extent of
deviation from the reference probability increase, the chances of failing to detect that the
values are significantly different from the reference value decreases. In other words, the
ability to detect that a data is significantly different from the reference value Py increases
as the deviation of P, from P increases. The same explanation holds for all the values in
that range. In row 11, columns 4 to 14, the values represent the composite or cumulative
Type-1I error rate for all the states while the values in the last row and columns 4 to 14
represent the entire power. On the last row in column 10, the value of 99.724%
(0.99724) means that if future transition probabilities associated with all the states were
deviated from the reference values by 95% (4 =0.95), then there is 99.724% chance that
transition probability values will be detected as belonging to a different distribution and

the likelihood of not missing an alarm is high.
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In summary, before using the monitor for test analysis, user must define a good
control period and collect data for some duration. User must also provide the Type-I
error rate o, the Type-II error rate B, and deviation (A) from the reference transition
probability (Py) at which [ is desired. The initialization of the monitor uses the data from
the good period, an initial sampling ratio (SR) and initial number of states (Ns) both of
which can be adjusted to meet two criteria:

1. That, all transition probability lie between 0.25 and 0.75 (for this work) and
2. That no more than 10% of the data lie in the extreme states

The initialization then uses a, B, A, to determine a window length and then an

upper and lower control limit on each reference transition probability. The flow chart in

Figure 3.10 illustrates the procedure described above.
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Begin

Identify historical period of good control
data

A\ 4

Initialize Sampling Ratio (SR) and Number of
States (NS) {Start with 8 total states}.
Provide desired o and B (if known)

v

[ Analyze Reference Data ]

SR=SR+1

All Probs.
0.25<P< 0.75?

NS =NS+2

(Re- Analyze Reference
No data)

Identify state with least number
of Samples

Extreme states
contain at least 10%
of the data?

Use Binomial Statistics to estimate the
optimal number of sample to place in
that state, given a and 3

All Probs.
0.25<P< 0.75?

Use Transition Probabilities to estimate the
———»> number of samples to place in all other
states for test analysis

Combine the samples in all states to get an estimate
for the window length to be used test analysis.

Figure 3.10 Flow Chart for Determining Ideal Window length
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3.3  Moving Window Statistics

Now, in the moving window of data, the total count of samplings forming the
window that was used in calculating the control limits must be maintained. However, the
indexing (where index refers to the various cells containing state data values) and
calculation of transition probabilities for the entire window at each sampling is a
computational burden. To minimize this, the array in Table 3.4 and the “clock™ data
structure illustrated in Figure 3.11 with a pointer are used. State measurements are stored

in an array as in Table 3.4.

Table 3.4 Array of State Measurements and Their Indexes

Index | 1 |2 (3|4 |5]|6|7 |8 |9[10]|.].|-|N2|N-1|N

State | +1|-1|2|+1|-1]| 2|1+ 23| +]|.|.|.] -1 1]+ |+2

During test analysis, data is indexed and stored in the array as shown in Table 3.4.
As the data is been stored in the array, a record of the cumulative count of each state data
is kept in another array, to be discussed shortly. Once the window length of data (N) is
collected, then at each new sampling, the oldest data in the window must be replaced
with new data. There must be N samples in the window at each sampling. Before
replacing the oldest data however, its state value is read. Then decrease the cumulative
state (count) of this oldest data by one. Next, determine the state of the current data and

store its state value at the current location (which is same as the location where the oldest
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data is to be replaced). Increment the cumulative state (count) of this new state by one.

At the next sampling, repeat the entire process

New Transition Data
(first a plus +3 , then a +4

+4

is sampled and then

+4

another +4 is sampled
etc, etc.)

+3

Figure 3.11

Oldest Data to be Removed

ndex of Oldest Data

State

Pointer, indicates
location where new
data is to be placed

Statistics in a Moving Window

Looked at from another perspective, the array can be viewed as the face of a clock

if the two ends of Table 3.4 are swung together. In Figure 3.11, the pointer indicates the

current location where the newest data that marks the end of the window length is to be

placed in the array. In practice, data is stored as the pointer moves clockwise until it gets

to the end of the window (estimated previously). Before the next new data is stored after
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the window length is exceeded, the pointer is indexed to first read the state value of the
oldest data (in this example, the oldest data now just after the Nth data was sampled is in
location 1), and decrease the cumulative count (i.e. number of samples) of this oldest data
by one. Then determine the state of the current sampled data, store the state value at this
location and increment the cumulative count of this new state by one. An example of the

cumulative count data is shown in Table 3.5.

Table 3.5 Array of Cumulative State Measurements

State->|-4 -3 -2 -1 +1 +2 +3 +4

Cumulative Count (just after Sampling a Window Length of data) | 71 123 229 455 454 257 140 84
Updated Cumulative Count (After Sampling +3 data) 71 123 229 455 453 257 141 84
Updated Cumulative Count (After Sampling +4 data) 71 123 229 454 E 257 m 85
Updated Cumulative Count (Afer Sampling another <4 daa) | 71 123 228 454 453 257 141 86

_ Count(+2)-Count(+3) 257-140
Count(+2) 257

p(+2)

=0.4553 (3.79)

New Transition probability  p(+2) = % =0.4514 (3.80)

For instance in Figure 3.11, the monitor first checks the state of the data stored at
the very beginning of the window, which is the oldest data at the beginning of the
window (in the illustrated case, +1). Therefore, the monitor removes one data from the
cumulative count of +1 state. If the new state is +3 say, then the monitor now replaces
the old +1 data with the new data +3 data and adds one to the cumulative count of +3
state. At the next transition, the oldest state at the beginning of the window is the —1 data

shown in the clock with index location 2. Therefore, the monitor subtracts one from the
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cumulative count of -1. The new transition could be a state of +4 or a zero crossing to a
state of —1. Assuming it is +4, this new transition data will replace the oldest data in the
location indexed as 2, and one added to the cumulative count of +4 state. The process
then continues in a similar fashion during monitoring. In this way, a window of fixed
length is always used for statistical comparison with the control limits at each sampling.
As indicated earlier, Table 3.5 shows the cumulative count data of all states in the
moving window. The first Row shows states in the window. The second to fifth Rows
show the cumulative count (i.e. number of samples) in each state. From the data shown
in Row 2 of Table 3.5, the transition probability of a sample in occupying the state of +3
given that it was in the state of +2 previously is given by Equation (3.79). After the
window length is exceeded, the oldest data is identified and the cumulative count of that
state decreased by one and then the oldest data is replaced with the new data. For the
example under discussion, the cumulative count of the +1 state is decreased by one from
454 to 453. The new data is +3, hence the cumulative count of the +3 is increased from
140 to 141. For illustration, this updated data is shown in the third row of Table 3.5.
Once the data in the array is updated, the new transition probability of a sample in
occupying the state of +3 given that it was in the state of +2 previously is given by
Equation (3.80). Notice that, the +3 state is a penultimate state. Assuming that prior to
sampling the new transition data shown in Figure 3.11, 20 samples had left the
penultimate state and visited the extreme state of +4. Therefore, the probability of

making a zero crossing given that the token is now occupying the state of +3 will be:

(+3) = Count(+3) —Count(+4[+3 prior) _ 140-20
- Count(+3) 140

=0.8571 (3.81)

And for the +4 (i.e. extreme) state:
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_ Count(+4 to—1) _ Count(+4[+3 prior) 20
Count(+4) Count(+4) 84

p(+4)

=0.2381 (3.82)

After sampling the new data (i.e. the +3 data) and updating the cumulative count, the
new transition probability for making a zero crossing from a +3 state will be:

141-20

p(+3)

=0.8582, (3.83)

And for the +4 state, p (+4) = g =0.2381 (3.84)

At the next sampling, the entire process is repeated. Suppose that the new
sampled data after the +3 data in Figure 3.11 is a +4 data. Now the number of samples
that have visited the state of +4 just after visiting the +3 state has increased by 1 to 21.
The oldest data in the window now is a -1 data as shown in Table 3.4. First, decrease the
cumulative count of the —1 data by one, and then replace -1 with the new +4 data and
then increase the cumulative count of the +4 data by one as shown in Row 4 of Table 3.5.

Update all transition probabilities. For instance,

_ Count(+3) —Count(+4[+3 prior) 14121
- Count(+4) 141

=0.8511 (3.85)

p(+3)

and p(+4) :%: 0.2471 (3.86)

Furthermore, assume that the next sampled data is again a +4 state (i.e. token
revisits +4 state, starting in +4 state). Now the number of samples in the +4 state has
increased by one to 86. The oldest data now is —2 state data (See Table 3.4). Decrease
the cumulative count of the —2 state by 1, replace the -2 data with the new +4 data and
increase the cumulative count of the new state (+4) data by 1 as shown in Row 5 of Table

3.5. Update all transition probabilities. For the state of +4 say, this will be given by:
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p(+4):%:0.2442 (3.87)

If during operation, the controller is adjusted in anyway, then it may be

appropriate for the operator to collect new reference data and begin the analysis afresh.

3.4  Grace period

During monitoring, in the moving window of data, comparisons are made at each
transition, between the probabilities and the control limits. If the transition probabilities
lie outside the control limits, it indicates the new data has a significantly different
behavior. This could be the result of a setpoint change or a disturbance. The controller
needs time to adjust to any such disturbance. Hence, a grace period equal to the closed
loop settling time (i.e. time from setpoint change to the time that the process variable
response has settled within a certain percentage band of the final setpoint value, (usually
2 to 5%, ISA, 1998) plus the window length (CLST + WL) is allowed during which a
violation counter is invoked. It is worth mentioning that the CLST is not a fixed a value.
Every loop once tuned has it own settling time. The user must therefore provide this
value in determining the allowable grace period. If after the grace period is exceeded, the
controller has still not been able to adjust to the disturbance, then the monitor should raise
a flag. If the controller is able to adjust to the disturbance within the grace period, the

violation counter is reset to zero.

3.5  Conducting Test Analysis
Once the reference data is analyzed and a window length (WL) has been

estimated, the monitor can now be activated to perform test analysis.
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During test analysis, sample the test data, and at each sampling, calculate the
transition probability. Continue sampling until the sample size is equivalent to the
window length estimated. Once the sample size is equivalent to the window length,
compare transition probabilities with the control limits. If any control limit is violated,
the monitor initializes a violation counter. If the violation persists, then the counter is
increased by one until it exceeds the grace period by one sample. If that happens, then a
flag is raised retroactively (by CLST + WL samples) to indicate the point of first
recognition of a problem in the loop that the controller is unable to resolve. Otherwise, if
the transition probabilities fall within the control limit, then the violation counter is reset

to zero and the analysis continues. The algorithm is illustrated in Figure 3.12
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Begin sampling test data for performance
analysis

l

( Increment test data and calculate transition
probabilities and compare with control limits

v

No

Is any control limit
violated?

lYes

Increment violation counter

:

Is grace period exceeded?

Reset violation
counter to zero

Flag operator and indicate start of problem retroactively by
grace period

Figure 3.12 Flow Chart for Test Analysis
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4.0

CHAPTER 4
EVALUATION OF THE HEALTH MONITOR

In this section the performance output of the health monitor on computer

simulations, unit operation experimental data as well as application on industrial data are

discussed.

4.1 Implementation Procedure

The procedure followed in implementing the health monitor is as follows:

Tune the controller at some desired operating point.

After tuning, observe the closed loop settling time from step changes in the
setpoint.

When control is identified to be desirably good, initialize the health monitor to
collect data if running online or store data elsewhere for offline use later. Collect
good data over a period of time.

Provide initial values for the sampling ratio, number of states, Type-I error rate,
the desired Type-II error for state with least number of reference good data, and
the difference from the reference transition probability at which this Type-II error
rate is desired.

Analyze the data using the procedures summarized in Chapter 3 to obtain the
window length and control limits.

Set grace period equal to the closed loop settling time plus the data window

length.
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7. Once this information available, begin sampling data for controller performance

analysis.

4.2  Computer Simulation Evaluation

In this section, results of the performance output from computer simulations using

the health monitor are discussed. Results of various control schemes ranging from PID,

IMC and MPC are shown and discussed.

4.2.1 First-Order Plus Time Delay Process

The performance of the monitor was tested a first-order plus time delay (FOPTD)

level control process. A schematic diagram of the process is shown in Figure 4.1. The

transfer function for the process is Gp = er_673 (tpS +1). The process is controlled

with a PI controller, which is tuned using the ITAE controller tuning rules. The process

parameters are given in Appendix A.

Setpoint e

Health
Monitor

PI

MV

A 4

Controller

Transmitter

FOPTD
Process

Ccv

Figure4.1  Schematic Diagram of a First-Order Plus Time Delay Process (e =
Actuating Error, CV = Controlled variable, MV = Manipulated Variable)
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Tuning was done using the ITAE controller tuning method (See Appendix A).
After performing step changes, the closed loop settling time was estimated to be about 50
samplings. Data collected during a period of good control was analyzed and is shown in
Figure 4.2. The sampling time interval for the controller was 0.25 units. Based on the
data analyzed, the algorithm determined that a sampling ratio of 1 (i.e. health monitor
sampling time interval = 0.25 units) and a window length of 526 samples weres ideal for
test analysis. This implies that the grace period during test analysis will be (50 + 526)

samples.  This implies that during test analysis, it will take approximately,

( 0.25 time units

, *(576 monitor samples) time units for the monitor to flag if a
monitor sample

problem was detected in loop.

Transition Probabilities for The Historical Good Data
1 T T T T T T T T T

2 psl Sampling Ratio = 1 Mumber of Zera Crossings = 7189 _
=
Z 06l o
=4
o g )
5 04F Total Mumber Samplings = 20000 B
w
"_E 02rF Based on infarmation gathered a Window Length of 526 samples will be used for Test Analysis —
o 1 1 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 u] 1 2 3 4 5

] State
Distribution of States for Histoncal Good Data
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If time units is in seconds say, then this means the monitor will flag in
approximately 2.4 minutes after detecting degrading performance in the loop. The
monitor was initialized with 8§ total states (+ 4 on each side). However, the algorithm
determined that 10 (+ 5 on each side) total states were needed in order to meet the
requirement of having no more than 10 % of the data in the extreme states. Also,
although the algorithm is developed to estimate the probability of making a zero crossing

(i.e.p, ), the first chart in Figure 4.2 reflects the probability of exiting from one state and
visiting the next absolute higher state (1-p ).

After the analysis, and before estimating the window length, the algorithm selects
the state with the least number of samples on each half of the Figure 4.2 and determines
the number of samples to place in those states in order to meet the requirement on Type-I
(o) and Type-II error (B). For this example, it can be observed from Figure 4.2 that the
states that have the least number of samples are the -4 state on the negative side and the
+4 state on the positive side. Only one of the two states (in this example -4 state) is
chosen and discussed in Figure 4.3. The number of samples that need to visit this state
was determined to be 27, given choices of a and [, and the how far way from the
reference transition probability that this B is desired. Since this is a two-tailed test, there
will be two confidence limits (i.e. a lower confidence limit and an upper confidence
limit). The lower confidence limit is denoted by X, which indicates the minimum
number of samples that need to leave the state and visit the next absolute higher state in
order to reduce the Type-I error to the desired level. The upper confidence limit is
denoted by Xy and indicates maximum number of samples that need to leave a state and

visit the next higher state in order to reduce the Type-I error rate to the desired level. For
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the illustrated situation in Figure 4.2, X; = 6 and Xy = 22. Hence, in a given window (to
be determined), out of a total of 27 samples that need to visit the state of -4 under ideal
conditions, if fewer than 6 samples leave this state and visit the next absolute higher state
(-5) or more than 22 samples leave this state and visit the next absolute higher, then a

violation will occur.
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Figure 4.3  Analysis of Reference Data for State with Least Number of Samples.
(Distribution of Samples Leaving State and Entering the Next Absolute
Higher State Given the Reference Probability, o, f and A)

Furthermore, Figure 4.3 illustrates that if future transition probabilities are the
same as the reference value, then for example, 15% of the time, say, about 15 or 16
samples will leave the state of -4 and visit next absolute higher state. Also if future
transition probabilities were to change significantly to say 0.95699 (i.e. Py + A(1-Ppey)),
where for this state, Prer = 0.56987 and A = 0.9 in this example), then Figure 4.3 indicates

that about 22% of the time, 25 samples will leave that state of -4 and visit the state of -5
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and when it happens this will be outside the desired upper control limit of 22 and so a
violation will occur. Similarly, if future transition probabilities were to change
significantly to say 0.056987 (i.e. Pref(1 - A), where for this state, Prer = 0.56987 and A =
0.9 1in this example), then about 26% of the time only 3 samples will leave and visit the
state of -5 and since this is outside the lower control limit of 6, a violation will occur.
The chance of missing a violation as can be seen from the Figure 4.3 is negligibly small
as desired.

After the analysis on this state is complete, it will be nice to know the probability
distribution of the data in other states in order to observe how the Type-I and Type-II
errors are minimized. As a result, for this work, after the numbers of samples in all other
states are determined, the algorithm selects one state at random and determines the
statistical errors that are associated with it based on the choices made. For this example,
the algorithm selected the state of +3. The probability distribution for this state is shown
in Figure 4.4. The explanation of Figure 4.4 is similar to that given for Figure 4.3.
Notice that the algorithm estimated, based on the reference transition probability that, a
total of 45 samples need to visit the state of +3.

In addition, if future transition where to differ from the reference value to say
0.068761 (i.e. Pred(1 - 1), where for this state, Pres = 0.68761 and A = 0.9), then 5 % of the
time say, about 6 samples can be expected to leave the state of +3 and visit the state of
+4. Furthermore, if probabilities differ from the reference value to about 0.96876 (i.e.
Prer + A(1-Prer)), where for this state, P = 0.68761 and A = 0.9), then about 13% of the
time 42 samples may be expected to leave the state of +3 and visit the state of +4. In

both case, these number of visits are outside the control limits and so it will mean there is
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an observed violation of the control limits. Once all samples that need to visit all the
states during a period of good control are known, the algorithm estimates the window

length necessary for performance monitoring.
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n2s L LPprm= 00638761 1 i
Mumber of Samples =45 f

Random State Chosen =3

Probability Distribution

Pref = 068761

0 5 10 15 20 25 a0 35 40 45
Mumber of Samples MNot Making a Zero Crossing

Figure 4.4  Analysis of Reference Data for Randomly Selected State. (Distribution
of Samples Leaving State and Entering the Next Absolute Higher State
Given the Reference Probability, o, B and A)

Once the window length is estimated, a power curve for the test is plotted based
on the assumption that at some instance, all state transition probabilities are equally
deviated from their reference probabilities by some equal value ranging between 0 and
100%. This is shown in Figure 4.5 using a smooth graphical function option to mask
break points at the discrete allowable abscissa values. It must be mentioned here that the
smooth background curve in Figures 4.3 and 4.4 are not normal distribution curves. They
are binomial distributions curves and were obtained using cubic spline interpolation

between discrete points of the binomial distributions data and then plotting both a line
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and a bar chart on the same graph. This was done for validation purposes and that if the
bar chart was correct, the smooth fit should pass through about the center of each bar.

Future plots were done same way.

0.9 —

0.8 —

0.7 - —

0.6 —

0.5 —

Power

nab 4

031 —

0.2 —

01 —

. . . . . .
-1 0.8 0.8 0.4 oz a 0.z 0.4 0.8 o.g 1
Percent Deviated from Ref Prab.

Figure4.5  Power Curve (Given a. = 1% and = 1% A = 90%)

As indicated earlier, this pre-monitoring information provides useful statistically
expected outcomes that enable a user determine the power and reliability of the test. A
high power value when future transitions probabilities are significantly different from the
reference value is an indication that when the monitor flags signaling a violation, then it
is indeed an indication that something is not right in the loop and that the distribution of

new sampled data is different from the reference distribution.

4.2.2 Performance Monitor Demonstration
The performance of the monitor is illustrated in Figure 4.6, which has seven

different plots. Starting at the top of the Figure 4.6, the first plot shows the controlled

97



variable and setpoint as a function of time. The second plot shows the actuating error as
a function of time. The third shows the manipulated variable as a function of time. The
fourth plot shows the violation counter and flag as a function of time. The last three plots
labeled “A”,”B” and “C”, are state transition probabilities and control limits as a function
of state at particular points in time and illustrate how the transition probabilities compare
with the control limits.
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Figure4.6  Control Loop Performance Output (Sampling Period = 0.25 Time
Units, Sampling Ratio = 1; Window length = 526 Samples, Startup Period
= 0 Samples, Grace Period 576 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = No nuisances in the loop B = Stiction in Valve,
C = Controller made sluggish by decreasing gain)

98



At sample numbers 4000, 8000 and 12000, setpoint changes were made. The
controller was able to place the controlled variable at setpoint rapidly, so the run length
distribution did not violate a control limit and the violation counter did not start counting.

Between sampling 16,000 and sampling 22000, a stiction effect was invoked in
the control valve. The controller had difficulty keeping the controlled variable at setpoint
and so the violation counter started counting once control limits were violated. After the
grace period was exceeded and the violations were still present in the loop, the monitor
raised a flag retroactively to indicate the start of the problem. Stiction was then removed
and the flag turned off.

Between sampling 26,000 and 34,000, the controller was made too aggressive by
increasing the controller gain Kc by a factor of 2. The monitor detected this and started
the violation counter. After the grace period was reached and the controller had still not
recovered, a flag was raised indicating something was seriously wrong either with the
controller or within the control loop. At sampling 34,000, the controller gain was reset to
its original value. The monitor immediately detected that; and, within about one window
length of data sampling, the monitor stopped flagging.

Between sampling 40,000 and 46,000, the controller was made sluggish by
changing Kc by a factor of 1/3. Again, the monitor detected that the controller was not
performing well. Notice that between sampling 41,000 to about 42,500, the monitor
initialized the violation counter a couple of times and reset it to zero. This is indicative of

the fact that the controller was attempting to place the controlled variable at the desired
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setpoint and to keep the loop in normal performance. The on-off counting might be due
to the response of the monitor to the deteriorating performance in the controller.

However, once performance deteriorated completely, the monitor started the
violation counter again and after the grace period was exceeded and the violation was still
present, the monitor flagged continuously for the rest of the duration of sluggish control.
The controller was restored to normal mode at sampling 46,000. When the monitor
detected a return to good control the flagging stopped.

Other times when the counter started counting might also be due the fact that
there is a 1% chance (ar = 1%) of the null hypothesis Hy being rejected when in fact it
should not (Type-I error). But, in all such instances for instance around sampling 25,000,
the flag was not raised because good control was recovered within the grace period, and
the monitor reset the violation counter to zero.

The determination of values of X; and Xy, the lower and upper control limits, are
often done using normal statistics. Rigorously, the binomial statistics should be used.
This investigation found the two to have minor distinguishable differences and while
calculations with the normal statistical assumptions are more convenient, the more
rigorous binomial statistics is used entirely in this work. A comparison analysis between
using the exact binomial approach to estimate window length and using the normal
approximation to the binomial relation (presented in Chapter 3) is discussed in Appendix

F.
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4.2.3 A Second-Order Plus Time Delay Process (SOPTD)
In this section, a discussion of the application of the health monitor on a SOPTD
non-interacting process is presented. The SOPTD process is represented by the transfer

function g =K pe*“/((tpls F1)(t,,s + 1)) A list of the process parameters is given in

Appendix B. Figure 4.7 is a schematic illustration of a PID control loop with the health

monitor in tandem with a controller and sampling the actuating errors.

Health
e Monitor

Setpoint e PID MV SOPTD Ccv
Controller »|  Process _’O—’

A

A

Transmitter

Figure 4.7  Schematic Diagram of a Second Order Plus Time Delay Process (e =
Actuating Error, CV = Controlled variable, MV = Manipulated Variable)

After tuning (using the Cohen-Coon controller tuning technique) and performing
step changes, the closed loop settling time was estimated to be about 50 samplings. Data
collected during a period of good control was analyzed and is shown in Figure 4.8. The
sampling time interval for the controller was 0.25 time units. Based on the data analyzed,
the algorithm determined that a sampling ratio of 2 (i.e. health monitor sampling time

interval = 0.5 time units) and a window length of 409 samples would be ideal for test
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analysis. This implies that the grace period during test analysis will be 459 samples (50 +

409 = 459). Thus, during test analysis, it will take approximately,
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Figure 4.8  Distribution of States and Transition Probabilities from Reference
Good Data (Window length = 409 Samples; Sampling Ratio = 2)
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problem was detected in the loop. Assuming time units to be in seconds say, then this
means the monitor will flag in approximately 4 minutes after detecting degrading
performance in the loop. Violation counting, however, starts instantaneously.

In this example, the monitor was initialized with 6 total states (+ 3 on each side,
just to compare with the prior analysis in Chapter 3 where it was determined using
random errors that it was adequate to initialize the monitor with 8 total states). However,
the monitor determined that 8 (+ 4 on each side) total states were needed in order to meet

the requirement of having no more than 10 % of the data in the extreme states. Other
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simulations performed, also revealed that 8 total or more states was always necessary in
order to meet the user specified requirement in this work. After the analysis, and before
estimating the window length, the monitor selects the state with least number of samples
on each half of the Figure 4.8 and determines the number of samples to place in those
states in order to meet the requirement on Type-I (o) and Type-II (B) error. For this
example, it can be observed from Figure 4.8 that the states that have the least number of
sample are the + 4 state on the positive side and the —4 state on the negative side. Only
one of the two states (in this example -4 state) is chosen and Type-II error analysis

revealed in Figure 4.9.
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Figure 4.9  Analysis of Reference Data for State with Least Number of Samples.
(Distribution of Samples Leaving State and Entering the Next Absolute
Higher State Given the Reference Probability, a, B and 1)

The algorithm estimated the number of samples that need to visit this state (i.e. -4

state) to be 31 given choices of o and 3 and the how far way from the reference transition
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probability (A) that this 3 is desired. Xy indicates the minimum number of samples that
need to leave a state and visit the next absolute higher in order to avoid a Type-I error
while Xy indicates maximum number of samples that need to leave a state and visit the
next absolute higher in order to avoid same.

For the illustrated case, X; = 3 and Xy = 18. Thus, out of a total of 31 samples
that need to visit the state of -4 in a given window (to be determined), a violation will
occur if fewer than 3 samples leave the state and visit the next absolute higher state or
more than 18 samples leave the state and visit the next absolute higher state. Moreover,
Figure 4.9 shows that if future transition probabilities are not from the reference
transition probability of 0.34945, then for example, 15% of the time say, about 11
samples will leave the state of -4 and visit the next absolute higher state. However, since
the -4 state is an extreme state, it means about 15 % of the time 11 samples will leave the
state of -4 and re-enter that state again. Also, if future transition probabilities were to
change significantly to say 0.93495 (i.e. Prs + A(1-Pif), where for this state, P.s =
0.34945 and A = 0.9 in this example), then it indicates that about 20% of the time, 28
samples will leave that state of -4 and revisit it again and when it happens this will be
outside the desired upper control limit of 18 and so a violation will occur. Similarly, if
future transition probabilities were to change significantly to say 0.034945 (i.e. Pr(1 - 1),
where for this state, Prer = 0.34945 and A = 0.9), then 20% of the time only 2 samples may
be expected to leave and revisit the state of -4 and since this is outside the lower control
limit of 3, a violation will occur. The chance of missing a violation as can be seen from

the Figure 4.9 is negligibly small as desired.
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After the analysis on this state is complete and the number of samples in all the
other states are determined, the algorithm selects one state at random and determines the
statistical errors that are associated with it based on the choices made. For this example,
the algorithm selected the state of +3 and the probability distribution is shown in Figure

4.10.
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Figure 4.10 Analysis of Reference Data for State Chosen at Random (Distribution
of Samples Leaving State and Entering the Next Absolute Higher State
Given the Reference Probability, o, B and A)

Again, the explanation of Figure 4.10 is similar to that given for Figure 4.9. The
algorithm determined, based on the reference transition probability that, a total of 33
samples need to visit the state of +3. In addition, if future transition where to differ from
the reference value to say 0.05037 (i.e. Prf(1 - ), where for this state, Pr.r = 0.5037 and
A= 0.9 in this example), then about 6% of the time say, about 4 samples may be

expected to leave the state of +3 and visit the state of +4. Furthermore, if probabilities

differ to about 0.95037 (i.e. Prer + A(1-Pyrer), where for this state, Prr = 0.5037 and A = 0.9
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in this example), then about 6% of the time 29 samples may be expected to leave that of
+3 and visit the state of +4. In both case, these number of visits are outside the control
limits and so it will mean a violation of the control limits. Once all samples that need to
visit all the states during a period of good control are known, the monitor estimates the
window length necessary for performance monitoring.

Once the window length is estimated, a power curve for the entire test is plotted
based on the assumption that at some instance, all state transition probabilities are equally
deviated from their reference probabilities by some equal value ranging between 0 and

100%. This is shown in Figure 4.11.
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4.2.4 Performance Monitor Demonstration
The performance of the monitor is illustrated in Figure 4.12 with seven plots. The
first plot shows the controlled variable and setpoint as a function of time. The second

plot shows the actuating error as a function of time.
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Figure 4.12 Control Loop Performance Output (Sampling Period = 0.25 Time Unit,
Sampling Ratio = 2; Window length = 409 Samples, Startup Period = 0
Samples, Grace Period 459 Samples, Violation Counter Trigger = Length
of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = No nuisances in the loop B = Stiction in Control
Valve, C = Controller made aggressive by increasing gain)
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The third shows the manipulated variable as a function. The fourth plot shows the
violation counter and flag as a function of time. The last three plots labeled “A”,”B” and
“C”, are state transition probabilities and control limits as a function of state at particular
points in time and illustrate how the transition probabilities compare with the control
limits.

Starting at the top of the page and referring to the first plot, at samples 4000, 8000
and 12000, setpoint changes were made. The controller was able to rapidly place the
controlled variable at setpoint, so the run length distribution did not violate a control limit
and the violation counter did not start counting as shown on the fourth plot.

Between sampling 16,000 and sampling 22000, a stiction effect was invoked in
the control valve. The controller had difficulty placing the controlled variable at setpoint
and so the violation counter started counting when control limits were first violated.
After the grace period was exceeded and the violations were still present in the loop, the
monitor raised a flag retroactively to indicate the start of the problem. The flag went off
after the stiction was removed.

Between sampling 26,000 and 34,000, the controller was made too aggressive by
increasing the controller gain Kc by a factor of 2. The monitor detected this and started
the violation counter. After the grace period was reached and the controller had still not
recovered from the aggressive condition, a flag was raised indicating something was
wrong either with the controller or within the control loop. At sampling 34,000, the
controller gain was reset to its original value. The monitor immediately detected that,

and, within about one window length of data sampling, the monitor stopped flagging.

108



Between sampling 40,000 and 46,000, the controller was made sluggish by
changing Kc by a factor of 1/3. Again, the monitor detected that the controller was not
performing well. Notice that between sampling 41,000 to about 42,500, the monitor
initialized the violation counter a couple of times and rest it to zero. This is indicative of
the fact that the controller was attempting to place the controlled variable at the desired
setpoint and to keep the loop in normal performance. However, once performance
deteriorated completely, the monitor started the violation counter again and after the
grace period was exceeded and the violation was still present, the monitor flagged
continuously for the rest of the duration of sluggish control. The on-off behavior of the
violation counter around sampling 45,000 might be due to the monitor’s response to the
deteriorating performance in the controller. The controller was restored to normal mode
at sampling 46,000. When the monitor detected a return to good control the flagging
stopped. Other times when the counter started counting might also be due the fact that
there is a 1% chance (ot = 1%) of the null hypothesis Hy being rejected when in fact it
should not (Type-I error). But, any such instance was short-lived and a flag was not
raised because good control was achieved within the grace period, and the monitor reset

the counter to zero.
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4.3 Application on Unit Operations Experimental Data
4.3.1 Description of Experimental Unit

The experimental unit is equipped with three control valves in all. Two of the
valves are airflow control valves (a large one and a small one). The third valve is a water
flow control valve. The unit consists of a vertical column through which water and air
flow upward, co-currently creating a two-phase flow. The unit is designed with
individual PID-Type control loops to manipulate both water and the airflow control
valves to sustain either flow rate or pressure drop. The unit is equipped with CamileTG
2000 software for remote process control and data acquisition. A schematic diagram of
the experimental unit is shown in Figure 4.13.

The control loops in the two-phase flow unit can be configured in different
schemes for studies. For instance, pressure transducers at the top and bottom of the
column enable the pressure drop in the column to be determined and controlled by
manipulating air or water flow rate. The different control schemes that were studied are
discussed below.

The procedure used was; first to tune the controller using the process reaction
technique. Once control was judged optimum after tuning, collect data at a desired
sampling rate. The data-logging rate used for this work was 1sample/100 milliseconds.

After collecting good data, introduce disturbances in the loop such as setpoint
changes, flow rate changes, controller gain changes, etc. Collect data from the
experimental unit and use the health monitor to analyze the data with the view to testing

the ability of the monitor in detecting durations when there were control problems.
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Figure 4.13 Two Phase Flow Experimental Unit with a Water Flow Control Loop
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4.3.2 Performance Monitoring for Pressure Drop Control by
Manipulating Signal to Water Flow Control Valve
The first experimented control scheme studied involved controlling the pressure
drop in the column by manipulating the water flow rate. Once the controller was tuned,
and control found to be good, data was collected for a period. During this good period of
control, the closed loop settling time was determined through setpoint changes to be
about 50 samples. The good or reference data is analyzed as shown in Figure 4.14. After
analysis of the reference data, the algorithm estimated that a sampling ratio of 2 would be

ideal for test analysis.
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Based on the logging rate of 0.1 seconds for the unit, it implies that the monitor

will sample data from the unit every 0.2 seconds i.e. (2 controller samples |, 0.1 Seconds .
1 Monitor sample 1 controller sample

In addition, the window length for statistical comparisons was determined by the monitor

to be 800 samples. This in effect means that at a sampling rate of 0.2 seconds, the

monitor will require| _0-2seconds *(800 monitor samples)» OF 160 Seconds (i.e. approx. 2.67
monitor sample

min) to sample one window length of data from the process. Moreover, during
performance monitoring, if a problem occurred in the loop it will take about this much
time plus the closed loop settling time before the monitor will flag. The confidence level
(1-0)*100% used was 99% and the Type-II error rate () used for the state having the
least number of reference samples was set at 1% when future transition probabilities
during testing differ by 0.9 (A) from the reference value. Using information from
analysis of the reference data, test data collected was analyzed as shown in Figure 4.15.
The Figure shows 7 plots. The first plot shows the controlled variable and setpoint as a
function of time. The second plot shows the actuating errors as a function of time. The
third plot shows the manipulated variables as a function of time. The fourth plot shows
the violation counter and flagging as a function of time. The last three plots show
instances of the transition probabilities compared with the control limits as a function of
state.

The point marked “A” shows a period when there were no control limit violations.
Around sampling 14000, marked “B”, no external disturbances were imposed on the loop

but control limits were violated and the violation counter started counting. After the
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grace period was exceeded and control limits were still been violated, the monitor raised

a flag to indicate that there was a problem in the loop.
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Figure 4.15 Control Loop Performance Output for Pressure Drop Control by
Manipulating signal to Water Flow Control Valve (Sampling Period =
0.1s, Sampling Ratio = 2; Window length = 800 Samples, Startup Period =
0 Samples, Grace Period 850 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = No nuisances in the loop B = Oscillations in
Loop, C = Stiction in Loop)

Shortly there after, the oscillation that seemed to have caused the violations
appeared to go off as depicted in the 31 plot. When the monitor detected this, flagging

stopped, and the violation counter was reset to zero as shown in the 4 plot. Around
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sampling 21000, the violation counter started counting again but the violations detected
were short lived and so the counter was reset to zero again. Then around sampling 29000
and in the region marked “C”, the monitor detected violations again and so started
counting again. After the grace period was exceeded and the violations were still present
in the loop, the monitor raised a flag again. The flagging was sustained for as along as
the violations were present. The saw tooth behavior in the manipulated variable plot
(plot number 3) and the square wave behavior in the controlled variable plot (plot number
1) are typical signals to expect for a sticky valve. The monitors ability to detect a sticky
valve and flag during the entire period of stiction was a good indication of its efficiency

to detect degrading control in a loop.

4.3.3 Effect of Varying the Overall Type-I Error Rate on Window
Length and Performance Monitoring

The overall Type-I error rate ar, was varied and the Type-II error rate kept same
in order to study how changing ot affects the widow length and the overall performance
of the monitor. The analysis was done offline on the same data as that used for Figure
4.15. The confidence level was set at 95% (i.e. ar = 5%, the reference data was analyzed
again and the result is shown is Figure 4.16. The algorithm estimated a window length of
618 samples but the sampling ratio SR, was same as previous (SR = 2).

The Type-II error rate used for the state having the least number of reference
samples was kept unchanged at 1% when future transition probabilities during testing

differ by 0.9 from the reference value. Notice that despite the fact that the monitor
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estimated a smaller window length for testing, it detected all instance of loop disturbance

and nuances within the regions marked “A” “B”, and “C” respectively in Figure 4.17.
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Figure 4.16 Distribution of States and Transition Probabilities from Reference
Good Data (Window length = 800 samples; Sampling Ratio = 2, arr = 5%,
B=1%, A =0.9)

However, between sampling 15000 and about 28500, the monitor initialized the
violation counter, started counting and reset to zero more often than was observed when

o was 1%. This is indicative of the user choice of the ar. With ar set at 5%, it means

for k = 8 total states, ox = (1—.k/1—aT) = 0.639% for each state. Consequently,

approximately 0.639% of the time, there will be a false alarm associated with transitions

from one state to the other.

Previously, when oar was set at 1%, it meant for k = 8 total states, ox =

(1 —Xl-o; ) =0.1255%. In comparison, it means that when o is increased from 1% to

5%, the monitor starts counting about 5 times more frequently. In Figure 4.18, or was
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changed to 10% and B kept at 1%, again the algorithm estimated a window length of 572

samples even smaller than when ar was 5% or 1%. However, the test analysis showed

numerous instances of spurious alarms due obviously to the choice of ar.
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Control Loop Performance Output for Pressure Drop Control by
Manipulating signal to Water Flow Control Valve (Sampling Period =
0.1s, Sampling Ratio = 2; Window length = 618 Samples, Startup Period =
0 Samples, Grace Period 668 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ot = 5%).
Performance Output (A = No nuisances in the loop B = Oscillations in
Loop, C = Stiction in Loop)
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Figure 4.18 Control Loop Performance Output for Pressure Drop Control by
Manipulating signal to Water Flow Control Valve (Sampling Period =
0.1s, Sampling Ratio = 2; Window length = 572 Samples, Startup Period =
0 Samples, Grace Period 612 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar = 10%).
Performance Output (A = No nuisances in the loop B = Oscillations in
Loop, C = Stiction in Loop
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4.3.4 Effect of Varying the Type-Il Error Rate on Window Length
and Performance Monitoring

The Type-II error rate 3, was varied keeping the Type-I error rate same in order to
study how changing [3, affects the window length and the overall performance of the
monitor. Using a confidence level of 99%, the reference data was analyzed again and the
result is shown is Figure 4.19. The monitor estimated a window length of 562 samples
but the sampling ratio SR, was again same as previous (SR = 2). The Type-II error rate
used for the state having the least number of reference samples was changed from 1% to
10% when future transition probabilities during testing differ by 0.9 from the reference

value.
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Good Data (Window length = 800 samples; Sampling Ratio = 2, ot = 1%,
B=10%,1=0.9)
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The monitor detected all instance of loop upsets within the regions marked “A” “B”, and
“C” respectively of Figure 4.20. However, notice from Figures 4.15, 4.17 and 4.18 that
the flagging of the violations in region “B” stopped at about sampling 16000.
Nevertheless, in Figure 4.20 flagging stopped at almost 15000. The reasons may be due

to the short window length or that the monitor might be missing some alarms that should
been detected. Also, notice that the violation in region “C” appeared to go off although it
can be seen from plot 3 of Figure 4.20 that the stiction effect was still present in the loop.
This could be due to a missed alarm. These two instances of missed alarm are related to
the Type-II error set by the user. Changing 3 from 1 to 10% reduces the Power of the
hypothesis test resulting in frequent missed alarms. This means that it is always essential
for the user to provide a reasonably good value of ar and B, in order to reduce the
number of missed and false alarms. For loops where tight control is not desired, this
requirement can be relaxed but the user should expect frequent false and or missed

alarms.
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Figure 4.20 Control Loop Performance Output for Pressure Drop Control by
Manipulating signal to Water Flow Control Valve (Sampling Period =
0.1s, Sampling Ratio = 2; Window length = 562 Samples, Startup Period =
0 Samples, Grace Period 612 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = No nuisances in the loop B = Oscillations in

The second control scheme studied involved controlling the pressure drop in the
two-phase flow column by manipulating the airflow rate. Again, the controllers were

first tuned and when control was determined to be good, data was collected for sometime.
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4.3.5 Performance Monitoring for Pressure Drop Control by
Manipulating Signal to Air Flow Control Valve
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The reference data was analyzed and is shown in Figure 4.21. After analysis of the
reference data the algorithm estimated that a sampling ratio of 3 will be ideal for test
analysis. Based on a control loop data logging rate of 10 samples every second for the
unit, it implies that the monitor will sample data from the loop every 0.3 seconds. In
addition, the window length for statistical comparisons was determined by the monitor to
be 1723 samples. This means that the monitor will sample a window length of data in
approximately 8.6 min. The confidence level used was 99% and the Type-II error rate
used for the state having the least number of reference samples was set at 1% when future

transition probabilities during testing differ by 0.9 from the reference value.
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Using information from analysis of the reference data, test data collected was
analyzed as shown in Figure 4.22. At sampling 3000, in the region marked “A”, the
controller gain was increased by 3 fold. The monitor detected that new data collected had
different distribution from the reference data and so the violation counter started counting
after control limits were violated. At about sampling 8000, when the controller gain was
reset to it’s nominal value, the violations went off and the monitor reset the counter to
zero. Around sampling 18000, in the region marked “B”, the controller was detuned by a
factor of 0.5. The violation counter did not start counting because it seemed that the
controller was not detuned to the to the point of sluggishness and so the monitor
determined that the data collected during that period was not significantly from the
reference data so no violations were registered. Around, sampling 55000 in the region
marked “C”, the water flow rate was intentionally increased: In response, notice the
manipulated variable reduce in an attempt to adjust the pressure drop to the setpoint and
the variation in the manipulated variable and controlled variable. The monitor detected
the control degradation in the loop and started the violation counter. Again, when the
water flow rate was reset to the nominal value the violations went off and the violation

counter was reset to zero.
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Figure 4.22 Control Loop Performance Output for Pressure Drop Control by
Manipulating signal to Air Flow Control Valve (Sampling Period =
0.1s, Sampling Ratio = 3; Window length = 1723 Samples, Startup Period
= 0 Samples, Grace Period 1773 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = Controller gain increased, B = Controller gain
reduced, C = Water flow Rate Increased)

4.3.6 Performance Monitoring for Water Flow Control by
Manipulating Signal to Water Flow Control Valve

The next control scheme studied involved controlling the water flow rate by
manipulating the signal to the water flow control valve. The controller was first tuned
around a nominal setpoint of 10 kg/hr. After control was determined to be good, data

was collected for a period. The reference data is analyzed as shown in Figure 4.23. After
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analysis of the data, the monitor estimated a sampling ratio of 4. Based on a data logging
rate of 10 samples every second for the unit, it implies that the monitor will sample data
from the unit every 0.4 seconds. In addition, the window length for statistical
comparisons was determined by the monitor to be 1227 samples so it will take
approximately 8.16 minutes to sample a window length of data. The confidence level
used was 99% and the Type-II error rate used for the state having the least number of
reference samples was set at 1% when future transition probabilities during testing differ

by 0.9 from the reference value.
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Using information from analysis of the reference data, test data collected was
analyzed as shown in Figure 4.24. At sampling 8000 and within the region marked “A”

there was a setpoint change from 10 kg/hr to 20 kg/hr. The controller was able place the
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controlled variable at the desired setpoint rapidly and so no control limits were violated
and the violation counter did not start. At sampling 17000, the setpoint was changed
again from 20 to 25 kg/hr. At this new setpoint, oscillations were detected in the loop

and the monitor detected this and started the violation counter.
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Figure 4.24  Control Loop Performance Output for Flow Rate Control by
Manipulating signal to Water Flow Control Valve (Sampling Period =
0.1s, Sampling Ratio = 4; Window length = 1227 Samples, Startup Period
= 0 Samples, Grace Period 1277 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = Controller gain increased, B = Controller gain
reduced, C = Water flow Rate Increased)
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It appears that this new setpoint was far removed from the nominal value used to
tune the controller, and it was very near the maximum flow rate allowable for the valve.
The monitor detected that data sampled during the period had a different distribution
from the reference period and so once control limits were violated the monitor started the
violation counter. Around sampling 20000, within the region marked “B”, the setpoint
was reset to 12 kg/hr. However, just prior resting the setpoint, the monitor reset the
violation counter to zero indicating that the controller might have been able to eliminate
the oscillations encountered due to the setpoint change. At sampling 39000 in Figure
4.24, the controller was made aggressive but this aggressive period also did not exceed
the grace period. Even if counting had been continuous during the high gain period, it
would have stopped prior to setting the flag. Perhaps the high gain was not high enough
to set the counter. At sampling 50000, and in the region marked “C”, the controller was
detuned by a factor of 0.3. The monitor detected a change in the distribution of the data it
was sampling, started the violation counter when control limits were violated and after
the grace period was exceeded, a flag was raised retroactively to indicate the start of the
problem. Other instance when the violation counter started counting when it was not

supposed to may be attributed to the Type-I error rate of 1% used for the test.

4.3.7 Application of the Health Monitor on Qing Li’s Data
(Monitoring the Performance of Water Flow Control Loop by
Manipulating Signal to Water Flow Control Valve)
As indicated earlier, this work is an extension of Li’s work (2002). Li developed a

health monitor using run length distribution of actuating errors between two consecutive

zero crossings and detected changes in sample distribution using the Chi-square goodness
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of fit test. Li tested his monitor on unit operation data he collected at that time. This
version of the Health monitor also was tested on Li’s data in order to compare the
performance of his monitor and the monitor developed in this work.

Li collected data from the two-phase flow experimental unit by controlling the
water flow rate while manipulating the signal to the water flow control valve. Data
logging rate was 10 samples every seconds. He tuned the controller around a nominal
operating point of 35 kg/hr. After tuning, he determined the closed loop settling to be
about 50 samples. He collected data during which time he did not introduce any
nuance(s) in the loop. The reference data was analyzed using the monitor developed in
this work and the result is shown in Figure 4.25. The sampling ratio was estimated to be
3 and the window length 1334 samples. With a sampling ratio of 3, it means the monitor
samples 10 data points every 3 seconds. Thus, it will take about 6.67 minutes to collect a
window of data and about same time for a flag to be raised during testing if a problem is
detected.

Using information from the good control period, a test data collected by Li in which
he made several upsets in the loop was analyzed. The results are shown in Figure 4.26.
Between sampling 2100 and 4000, the setpoint was reduced from 35 to about 20 kg/hr, in
gradual steps, but the controller was able to place the controlled variable at the setpoint at
each change and so no violations were registered during that interval and the monitor did
not start the violation counter. Around sampling 4800, the setpoint was changed again to
15 kg/hr. This resulted in oscillations in the loop. The violation counter started counting

once control limits were violated and after the grace period was exceeded and the
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problem was still in the loop the monitor raised a flag. For as along as the setpoint was

kept at 15 kg/hr and below the monitor continued to flag.
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However, around sampling 14000 when the flow rate was reset to the nominal
operating point, the oscillations stopped and monitor reset the flag and violation counter
to zero.

In comparison with the run length based monitor, it was noted that the run length
based approached used a shorter window length of 129 samplings for statistical analysis
as compared with 1334 samplings needed by this approach. Both techniques are able to
detect problems when they should. Nevertheless, the Chi-Square approach was noted to

flag on and off even when nuances and instabilities are still known to be present in a loop
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(during the entire 6000 to 12000 sampling period) while the technique used in this work

flags on until the nuances detected (caused by low setpoint changes) are removed.
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Figure 4.26 Control Loop Performance Output for Flow Rate Control by

Manipulating signal to Water Flow Control Valve (Sampling Period =
0.1s, sampling ratio = 3; Window length = 1334 Samples, Startup Period =
0 Samples, Grace Period 1384 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = Controller gain increased, B = Controller Gain
Reduced, C = Water flow Rate Increased)
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4.3.7 Application on Industrial Data

One of the industrial sponsors for this project (ExxonMobil) provided us with data
from their plant to test this monitor offline. The unit is shown schematically in Figure
4.27. It consists of a cascaded exothermic reaction process for the manufacturing
polypropylene. The reaction temperature is controlled by cooling the feed to the process
using cooling water supplied via a heat exchanger arrangement. The reaction
temperature which is primary process variable (PV,) is transmitted to the primary
controller (TC1) via the transmitter (TT1). The desired process reaction setpoint (SP,) is
provided via TC1 which compares SP, and PV, and then writes a secondary setpoint to
the secondary controller (TC2). The secondary controller is connected to the process

stream flowing to the reactor via transmitter TT2.

Recycle
N
Heat Exchanger Product

Reactor

Feed ¢ > > e
NG | T

h |

X 'PV, .
' ' PV

Figure 4.27 Cascade Polymer Processing Unit: Reactor Temperature, PVp is
controlled by Cooling the Feed Temperature, PVs
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TC2 sends signals to the valve, which adjust the flow rate of cooling water used in
manipulating the feed temperature. The reference data was analyzed separately for the
primary and secondary loops. The data logging was done at 1 sample every 5 seconds.
The reference analysis for the primary loop data is shown in Figure 4.28. The algorithm
estimated a sampling ratio of 34 and a window length of 833 samples. With this
sampling ratio, it implies that the monitor will require approximately 39.34 hrs,

to sample a window length of

141610 s;i.e. 3s 34contrf)ller samples *(833 monitor samples)
1controller sample 1 monitor sample

data. Based on this, the sampling ratio was judged to be too large. A further
investigation reveals that the data has strong autocorrelation, which perhaps may be
contributing to the large sampling ratio. In Appendix D, an attempt is made to
investigate how the sampling ratio can be reduced by adjusting the extent of

autocorrelation present in the data.
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The test data was then analyzed as shown in Figure 4.29 for the primary control
loop. At sampling 15000, according to notes accompanying the data, there was an
increase in production rate resulting in an overshoot in temperature as shown on the first
plot in Figure 4.29. In response, the feed temperature dropped as shown in the third plot
to regulate the reactor temperature. The monitor did not show the nuance because the
controller was able to stabilize the disturbance in the loop and place the controlled
variable back at the setpoint.

Around sampling 30000, the notes indicated that a pump used to supply cooling
water was switched to a backup unit. This led to oscillations in both primary and

secondary loops. In response, a control engineer detuned the gain on the secondary

controller.
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It appeared that the oscillations went off after the secondary controller was
detuned. However, at sampling 40000, the monitor started the violation counter again but
reset it back to zero after a short while. This was probably an indication that there were
still some residual oscillations present in the loop. According to the notes, about 90 %
through the data, the integral time on the secondary controller (TC2) was changed in

order to reduce oscillations in the process variable.
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Figure 4.29 Control Loop Performance Output for Primary Loop Temparaure:
ExxonMobil Data (Sampling Period = 5s, Sampling Ratio = 34; Window
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Level of Significance (ar) = 1%). Performance Output (A = No Nuance
in Loop, B = Oscillations in Loop, C = Oscillations in Loop)
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Figure 4.30 shows analysis of the reference data for the secondary loop. The
monitor estimated a sampling ratio of 11 and a window length of 513 samples, which was
used for the test analysis in Figure 4.31. Notice that from sampling 30000 when the
pump was switched through to about the end of the data when there were oscillations in
the loop, the monitor flagged consistently after the grace period was exceeded. This
reveals that the monitor is able flag when it is supposed to and does not flag when it is

not supposed to.

Transition Probabilities for The Historical Good Data

1 T T T T T T T

2 pal Sampling Ratio = 11 Total Nurmber Samplings = 1818
= - Mumber of Zere Crossings = 1032
ZoglL _
<
S 04L
E 02F Based on information gathered a Window Length of 513 samples will be used for Test Analysis -

] | | | | | | |

-4 -3 -2 -1 0 1 2 5 4

State
Distribution of States for Historical Good Data

© O0F 7 T T T T L
z
I 4001 _
0]
O 300+ —
=
o
= 20} i
o
0 100
5 |

0

-4 -3 -2 -1 1 2 3 4
State

Figure 4.30 Distribution of States and Transition Probabilities from Reference
Good Data (Window length = 513 samples; Sampling Ratio = 11, ar =
1%, B=1%,1=0.9)

135



Ferformance Output

o 120 T T T T T
73]
Sampling Ratio=11 N n JRRPC S -
<z 100 | plh L | -
= gl 3 e v melimor
“~ &g 1 1 1 1 1
u] 1 2 3 4 5 5}
x 10%
E E‘) - 5 T T T T T
EZE 0 .
®= 5w
o0 5 1 1 1 1 1
a 1 2 3 4 =) B
4
® 10
B0 AN n C
/AN i L= LI T
= Pt +
= g e _
=
-0 1 1 1 1 1
1 2 3 4 =) B
4
® 10
E 2000 " _T T T T T
E Window Length =513 samples
2 8 1000 HConfidence Level = 99 % it |
SOBE e e o 1
2 0 ! ot L | |
=
u] 1 2 3 4 5 G
Time, Samplings 4

Eansitions
0.8 Probabilities

Transition Prababilitizs and Control Limits

o o - - o
State State State

Figure 4.31 Control Loop Performance Output for Secondary Loop Temparaure:
ExxonMobil Data (Sampling Period = 5s, sampling ratio = 11; Window
Length = 513 Samples, Startup Period = 0 Samples, Grace Period 563
Samples, Violation Counter Trigger = Length of Grace Period +1, Overall
Level of Significance (ar) = 1%). Performance Output (A = No Nuance
in Loop, B = Oscillations in Loop, C = Oscillations in Loop)
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4.4 Model Based Control (MBC)
4.4.1 Simulation Using Internal Model Control
This section discusses a simulated application of the health monitor on a process
controlled using Internal Model Control (IMC) technique. Details of the process
description are provided in Appendix C. Figure 4.32 is a schematic illustration of an
IMC control loop with the health monitor in tandem with an IMC controller and sampling

the actuating errors.

e Health
> Monitor
Setpoint e IMC MV Ccv
Filter » Controller —»| Process
Transmitter [«

Figure 4.32 Schematic Diagram of a Process Controlled with IMC Technique (e =
Actuating Error, CV = Controlled variable, MV = Manipulated Variable

Data collected during a period of good control was analyzed and is shown in
Figure 4.33. The sampling time interval for the controller was 0.25 time units. Based on
the data analyzed, the algorithm estimated a sampling ratio of 1 (i.e. health monitor
sampling time interval = 0.25 time units) and a window length of 395 samples to be ideal
for test analysis. With a closed loop settling time of about 50 samples, it implies that the
grace period during test analysis will be 445 samples and that during test analysis, it will

take approximately, (0.25 time units/monitor samples)*(445 monitor samples) time units
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for the monitor to flag if a problem was detected in the loop. Assuming time units to be
in seconds, it means it will take about 1.85 minutes before the monitor will flag.

Violation counting however starts instantaneously.

Figure 4.33 Distribution of States and Transition Probabilities from Reference
Good Data (Window length = 395 Samples; Sampling Ratio = 1)
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The monitor was initialized with 8 total states (+ 4 on each side), and the
algorithm estimated that it was enough to meet the requirement of having no more than
10 % of the data in the extreme states. After the analysis, and before estimating the
window length, the algorithm selects the state with least number of samples on each half
of the Figure 4.33 and determines the number of samples to place in those states in order

to meet the requirement on Type-I and Type-II error. For this example, it can be
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observed from Figure 4.33 that the states that have the least number of samples are the +3
state on the positive side and the —3 state on the negative side. Only one of the two states

(in this example +3 state) is chosen and revealed in Figure 4.34.
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Figure 4.34  Analysis of Reference Data for State with Least Number of Samples
(Distribution of Samples Leaving State and Entering the Next Absolute

Higher State Given the Reference Probability, o, B and 1)

The algorithm estimated the number of samples that need to visit this state (+3
state) to be 26 given choices of o and 3 and the how far way from the reference transition
probability that this B is desired. X indicates the minimum number of samples that need
to leave the state and visit the next absolute higher in order to reduce the Type-I error rate
to the desired level, while Xy indicates maximum number of samples that need to leave a

state and visit the next absolute higher in order to minimize the Type-I error rate to the
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desired level as well. For the illustrated case, X; = 5 and Xy = 20. Thus out of a total of
26 samples that need to visit the state of +3 in a given window (to be determined), a
violation will occur if fewer than 5 samples leave the state and visit the next absolute
higher state (i.e. +4) or more than 20 samples leave the state and visit the next absolute
higher state. Furthermore, Figure 4.34 illustrates that if future transition probabilities are
not different from the reference value of 0.5283, then for example, 15% of the time, say,
about 14 samples will leave the state of +3 and visit next absolute higher state (i.e. +4).
In addition, if future transition probabilities were to change significantly to say 0.95283,
then about 23% of the time, 24 samples will leave that state of +3 and visit the state of +4
and when it happens this will be outside the desired upper control limit of 20 and so a
violation will occur. Similarly, if future transition probabilities were to change
significantly to say 0.05283, then about 24% of the time only 2 samples will leave the
state of +3 and visit the state of +4 and since this is outside the lower control limit of 5, a
violation will occur. The chance of missing a violation as can be seen from the Figure
4.34 is negligibly small, as desired.

After the analysis on this state is complete and the number of samples in all the
other states are determined, the algorithm selects one state at random and determines the
statistical errors that are associated with it based on the choices made. For this example,
the algorithm selected the state of +1 and based on the reference transition probability, it
determined that 97 samples need to visit the state of +1 (see Figure 4.35). In addition, if
future transition where to differ from the reference value to say 0.050757, then about
10% of the time say, about 7 samples may be expected to leave the state of +1 and visit

the state of +2.
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Figure 4.35 Analysis of Reference Data for State Chosen at Random (Distribution
of Samples Leaving State and Entering the Next Absolute Higher State

Given the Reference Probability, o, B and A)

Furthermore, if probabilities differ to about 0.95076, then about 15% of the time
90 samples may be expected to leave that of +1 and visit the state of +2. In both case,
these number of visits are outside the control limits 33 on the lower side and 65 on the
upper side and so it will mean a violation of the control limits. Once all samples that
need to visit all the states during a period of good control are known, the monitor
estimates the window length necessary for performance monitoring. Once the window
length is estimated, a power curve for the entire test is plotted. This is shown in Figure

4.36.
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4.4.2 Performance Evaluation of Health Monitor on the IMC
Process

The performance of the health monitor is illustrated in Figure 4.37. At sampling
4000, 8000 and 12000, set point changes were made. However, the controller was able to
rapidly place the controlled variable at the new setpoint after each change and so no
control limits were violated during these periods

Between sampling 16,000 and sampling 22000 and in the region labeled “A” in
Figure 4.37, the filter time-constant was altered by a factor 0.2. This made the controller
aggressive resulting in degrading performance. Control limits were violated, and so the
monitor started the violation counter. After the grace period was exceeded and the
violations were still present in the loop, the monitor raised a flag retroactively for the

entire duration when the filter time-constant was altered. After the filter time-constant
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was restored to the original value, the controller was able to restore stability in the loop
and the violations were removed. Once the monitor detected a return to good control, it

stopped flagging and reset the violation counter to zero.

Sanpled
Actuating
Enmors

o

S5 soof i i S I
£ window Length = 395 samples / /_I_/
Confidence Level = 53 % f
1 T | I | | PR T A 1

] 0.5 1 15 2 25 El 35 s 45 ES
S

| Transition i
Probabilities

Tssiion Probah tes 372 S _imiks

Figure 4.37 Control Loop Performance Output (Sampling Interval = 0.25 Time
Units, Sampling Ratio = 1; Window length = 395 Samples, Startup Period
= 0 Samples, Grace Period 445 Samples, Violation Counter Trigger =
Length of Grace Period +1, Overall Level of Significance (ar) = 1%).
Performance Output (A = Filter Time Constant Decreased, B = Process
Gain Increased, C = Process Gain Decreased)
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Between sampling 26,000 and 34,000, labeled “B” in Figure 4.37, the process
gain Kp, was increased by a factor of 10 to see if the monitor would be able to detect any
changes in the performance of the controller, given a different process parameter than the
one used for tuning. Notice the change in performance during the period in the region
labeled “B”. Once control limits were continuously violated beyond the grace period, a
flag was raised to indicate the degrading controller performance. Notice that at some
instances, the monitor reset the violation counter to zero due perhaps to the fact that the
controller was attempting to restore good performance and the monitor detected that, but
once performance deteriorated again the counter was invoked to start counting and a flag
was raised once the grace period was exceeded. At sampling 34,000, the process gain
was reset to its original value. Flagging stopped after the monitor sampled about a
window length of data and detected return to good control.

Between sampling 40,000 and 46,000, labeled “C”, the process time constant was
decreased by a factor of 0.1. Again, notice the change in the controllers performance
during that period. Initially it appears that the controllers’ performance did not
deteriorate much as to violate control limits except for occasional inception of the
violation counter and resetting back to zero. However, between sampling 43500 and
about 44800, control limits were violated and so the monitor started counting and flagged
after the grace period was exceeded and the violations were still present in the loop.
After sampling 44800, the violation counter was reset to zero. It seems that controller
performance was viewed by the monitor to be acceptable around that period but shortly
after that, around sampling 45000 control limits were violated again. The monitor

detected the control limit violations, started counting and flagged retroactively again after
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the grace period was exceeded and the violations were still present in the loop. The
process gain was restored to normal mode at sampling 46,000. The monitor detected the
change in loop performance and stopped flagging. It must be mentioned that, it is
possible that instances when the violation counter was reset to zero when there were still

nuances in the loop could also be due to alarms being missed (Type-II errors).
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4.4.3 Simulation Using Model Predictive Control

This last simulation discussed in this work involves the application of the health
monitor on a process controlled using Model Predictive Control (MPC) technique.
Figure 4.38 is a schematic illustration of an MPC control loop. The dynamics of the

process is assumed to be inverse acting and second-order plus time delay. It is

(-As+1)e™
(tys+1)(t,s+1)

represented by G, = . A step response model used for determining the

dynamic matrix was obtained after introducing a step change in the controller output
signal and saving the process output over the entire prediction horizon. Details of the

process parameters and descriptions are provided in Appendix E.

: !

! MPC Controller M X
. (Optimization) > G,
A

Process Model Mismatch, Pmm

Figure 4.38 Schematic Diagram of a Process Controlled with MPC Technique (e =
Actuating Error = Process Model Mismatch (Residuals), X = Controlled
Variable, m = Manipulated Variable, ¢ = Step Response Model, G =

Process, x = Desired Trajectory (Setpoint), d = Disturbance)
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Data collected during a period of good control was analyzed and is shown in
Figure 4.39. The sampling time interval for the controller was 0.25 time unit. The closed
loop settling time (CLST) was estimated through step test to be about 30 samples. The
algorithm estimated that a sampling ratio of 1 (i.e. health monitor sampling time interval

= (.25 time unit) and a window length of 405 samples to be ideal for test analysis.
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Figure 4.39 Distribution of States and Transition Probabilities from Reference
Good Data (Window length = 405 Samples; Sampling Ratio = 1)

The monitor was initialized with 8 total states (+ 4 on each side), and the
algorithm determined that it was enough to meet the requirement of having no more than
10 % of the data in the extreme states.

Prior to estimating the window length, the

algorithm selects the state with least number of samples on each half of the Figure 4.39
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and determines the number of samples to place in those states in order to meet the
requirement on Type-I and Type-II error. For this example, it can be observed from
Figure 4.39 that the states that have the least number of samples are the +3 state on the
positive side and the —3 state on the negative side. Only one of the two states (in this
example +3 state) is chosen and revealed in Figure 4.40. The algorithm estimated the
number of samples that need to visit this state (+3 state) to be 26 given choices of o and 3
and the how far way from the reference transition probability that this 3 is desired. For
this state, number of samples denoting the lower control limit is X = 5 and the number

of samples denoting the upper control limit is Xy = 20. Thus, out of 26 samples
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Figure 4.40 Analysis of Reference Data for State with Least Number of Samples
(Distribution of Samples Leaving State and Entering the Next Absolute
Higher State Given the Reference Probability, o, f and A)
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that need to visit the state of +3 in a given window (to be determined), a violation will
occur if fewer than 5 samples leave the state and visit the next absolute higher state (i.e. -
4) or more than 20 samples leave the state and visit the next absolute higher state.

Furthermore, Figure 4.40 illustrates that if future transition probabilities are not
different from the reference value of 0.51067, then for example, 15% of the time, say,
about 13 samples will leave the state of +3 and visit the state of +4. Also, if future
transition probabilities were to change significantly to say 0.95107 then about 23% of the
time, 24 samples may be expected to leave the state of +3 and visit the state +4 and when
it happens, this will be outside the desired upper control limit of 20 samples and so a
violation will occur. Moreover, if future transition probabilities were to change
significantly to say 0.051067, then about 24% of the time only 2 samples may be
expected to leave the state of +3 and visit the state of +4 and since this is outside the
lower control limit of 5 samples, a violation will occur. Notice from Figure 4.40 that the
chance of missing a violation is negligibly small, as desired.

After the analysis on this state is complete and the number of samples in all the
other states are determined, the algorithm selects one state at random and determines the
statistical errors that are associated with it based on the choices made. For this example,
the algorithm selected the state of +1 and based on the reference transition probability,
determined that 99 samples need to visit the state of +1 as shown in Figure 4.41. Figure
4.41 reveals that if future transition probability where to differ from the reference value
to say 0.051331, then about 15% of the time say, about 6 samples may be expected to
leave the state of +1 and visit the state of +2. Furthermore, if transition probabilities

differ to about 0.95133, then about 10% of the time 92 samples may be expected to leave
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the state of +1 and visit the state of +2. In both cases, these numbers of visits are outside
the control limits 34 on the lower side and 66 on the upper side and so it will mean a
violation of the control limits. Once all samples that need to visit all the states during a
period of good control are known, the algorithm estimates the window length necessary
for performance monitoring. Once the window length is estimated, a power curve for the

entire test is plotted. This is shown in Figure 4.42.
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Figure 4.41 Analysis of Reference Data for State Chosen at Random (Distribution
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Given the Reference Probability, o, B and A)
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4.4.4 Performance Evaluation of Health Monitor on the MPC
Process

The performance of the health monitor is illustrated in Figure 4.43. At sampling
2000, 4000 and 8000, setpoint changes were made. The original Setpoint used during
reference data sampling was 50. At sampling 2000, it was reduced to 30 and then
doubled at sampling 4000 to 60 and then finally restored back to 50 at sampling 8000.
Notice that the setpoint changes at sampling 2000 and 4000 did result in control limit
violations and so the violation counter was not invoked but the setpoint change at sample
8000 destabilized the loop some how resulting in control limit violations, but this was no

significant problem for the MPC controller to overcome. The controller placed
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controlled variable at setpoint rapidly within the grace period and the violations went off,

and the counter was reset to zero
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Figure 4.43  Control Loop Performance Output for MPC (Sampling Interval = 0.25
Time unit, Sampling Ratio = 1; Window Length = 405 Samples, Startup
Period = 0 Samples, Grace Period 435 Samples, Violation Counter Trigger
= Length of Grace Period +1, Overall Level of Significance (o) = 1%).
Performance Output (A = Change in Process Delay, B = Change in
Process Delay and Process Zeros, C = Change in Process Delay and
Process Poles)
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Between sampling 12,000 and sampling 16,000 and in the region labeled “A” in
Figure 4.43, the delay associated with the process was changed from the original value of
2 to 15. Notice the resulting oscillations in the loop. This resulted in control limit
violations. The monitor started the violation counter and after the grace period was
exceeded, a flag was raised retroactively to indicate that the controller was having
difficulty stabilizing conditions in the loop. At sampling 16,000, the delay was restored
to the original value of 2. The violation counter was reset to zero and the flagging went
off.

Between sampling 24,000 and 32,000, in the region labeled “B” in Figure 4.43,
the process zero was changed from 1/3 to 1/12 and the delay again changed from 2 to 15.
Notice the ensuing oscillations in that region. The monitor detected this and initialized
the violation. After the grace period was exceeded and the violations were still present,
the monitor flagged retroactively to indicate the start of the problem. At sampling
32,000, the delay was restored to 2 and process zero reset to the original value of 1/3.
Again, the violation counter was reset to zero and the flagging went off.

Between sampling 40,000 and 48,000, labeled “C”, one of the process poles was
changed from the original value -1/2 to —1/30 and the delay changed to 15 again. This
again resulted in oscillations. The monitor detected the violations and after the nuances
had persisted in the loop beyond the grace period, a flag was raised. At sampling 48,000
when the process pole and delay were restored to their original values of —1/2 and 2,

notice that the violation counter was reset to zero and the flagging went off.
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Summary

A simple technique to detect and flag degrading control loop performance has
been developed. The technique uses normal plant operating data and a few user desired
parameters. These include, the desired Type-I and Type-II error rates and the how far
away from a reference transition probability that the Type-II error rate is desired. The
algorithm is automated, but it must be initialized with a sampling ratio (SR) and a certain
number of states (NS). The monitor requires data from a reference period when control
was judged to be good by operators or engineers.

In the selection of the reference data, it is necessary to ensure that it includes
incidents that are expected to be seen and not flagged as “bad” events.

The monitor uses this data to determine the transition probabilities and control
limits. Ideally, it will be desired that good control will be maintained throughout plant
operation. Nevertheless, process and plant conditions change and control is no longer
good as was desired. The monitor continually determines the transition probabilities of
this data at each sampling instant and if future probabilities differ significantly from that
determined during the reference period as to violate any control limit, then a violation
counter is initialized. If the violations persist beyond a grace period then a flag is raised
retroactively to indicate the start of the problem.

For this work, the overall Type-I error rate (o) used was 1%. The Type-II error
rate () was also set at 1%. The measure of how far way from the reference probability
(Pret), that the Type-II error rate (1) was desired, was set at 90%. The algorithm was

initialized with a sampling ratio of 1 and initial total number of states of 8.
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The monitor was evaluated on simulation data, unit operation laboratory ((UOL)
experimental data, and industrial data from one of the industrial sponsors for the project,
ExxonMobil.

The results show that the monitor is able to detect poor and degrading control
performance. For instance, it was able to detect instances of valve stiction, and
oscillations caused by external events, changing process conditions such as gain increases
or decreases, time delays and poles and zeros. Moreover, even in instances where
changes in process conditions resulting in degrading control performance are not visible
to the normal human perception, the monitor is able to detect when the distribution of
data being analyzed is significantly different from that analyzed during the reference
period and inform operators. The monitor flags continuously for as long as a problem
detected persists. It does not flag when process conditions are good.

In this work, the amplitude of a signal is ignored in characterizing the actuating
errors. The question has arisen as to whether this is a limitation or not. It must be stated
that if an incident changes the amplitude of a signal such that the Autoregressive Moving
Average (ARMA) description is not affected, then perhaps the monitor may be unable to
detect such changes. On the other hand, if an event such as the process gain, process
time-constant, controller gain and controller time-constant (See Appendix G), changes
the amplitude of a signal, it will affect the natural frequency of oscillation of the signal
and hence the natural period of oscillation. This will lead to differences in the period of
oscillation of the data sampled in the reference stage and the period of oscillation of the
data sampled during testing or performance monitoring. For such cases, the health

monitor will detect the changes and flag when it has to.
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CHAPTER S
5.0  Conclusion and Recommendations
A simple and practicable technique capable of flagging poor and degrading
control loop performance has been developed. The conclusions are summarized in

section 5.1 and a few recommendations for future work are presented in section 5.2.

51  Conclusions

A control loop monitoring software is hereby proposed. The proposed technique
is able to detect and flag poor and degrading control loop performance. The method uses
only routine plant operating data.

It does not require a-priori knowledge of the process (such as model or process
deadtimes and delays) nor the controller. It only requires the process setpoint and a
representative data of the controlled variable during a period of good control. For model-
based control such as model predictive control (MPC), it uses the residuals or process
model mismatch for analysis.

The method herein proposed provides a helpful autonomous tool for technicians
and engineers in monitoring control loop performance more efficiently. This will help
reduce or avoid erroneous human decision.

Simulations, unit operations, and industrial data testing, reveal that the health

monitor can automatically detect and flag common control loop problems such as
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oscillations, aggressive and sluggish control, and other constraints that degrade process
conditions.

The technique is simple and easy to implement. It only requires a few user
specified parameters. Once the required number of user-parameters is specified, the
monitor automatically determines all other parameters needed for performance
monitoring.

The monitor flags when during period of degrading or poor control. It does not
flag when control loop performance is good.

The technique has been developed to balance user desired Type-1 and Type-II
error rates in estimating the window length. As a result, when the violation counter is
initialized, it is a likely indication of degrading control loop performance and may require
operators to pay attention or investigate what the cause might be. Furthermore, when a
grace period is exceeded and a flag is raised, then it is more than likely that something
has gone wrong within the loop requiring instant operator attention or response.

Although, the technique has been developed using single input single output
(SISO) system, this does not in anyway impair its application or extension to multiple
input multiple output (MIMO) systems. It is easily extensible to all applications where a
target value can be compared to an output value.

The technique is easy to understand and implement. It is non-intrusive in that it
does temper with control loop activities. It only samples data from the controller.
Nevertheless, it is able to detect oscillations that are even not perceptible to the human
eye. It flags on when it is supposed to flag, and off when it is not supposed to. This

makes it sensitive and efficient.
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52  Recommendations

Although the method flags on poor or degrading control it does not indicate the
location of the problem that caused the nuance in the loop. The objective of this work did
not include identifying fault or problem location once the monitor detects a problem.
However, it will be ideal to extend the application of the monitor to enable it report to
operators the location of a problem once it detects bad or degrading control loop
performance. Such a utility will enhance process safety and reduce time spent by
operators in attempting to identify the source of a problem in a complex plant with
numerous interacting loops.

The technique has been tested extensively on unit operations and simulation data
and found to be internally consistent. Though the monitor was tested on one set of
industrial data, it will be nice to test it on more external data from industry in order to
claim external consistency as well.

This work utilized two arbitrary conditions:

1. Desiring that transition probabilities lie between 0.25 and 0.75 to
avoid getting controls limits that are zero, unity or very nearly so.

2. Desiring that at most 10% of the data lie in the extreme state
during analysis of the reference data.

While these conditions appeared to work fine for all the analysis explored in this
study, no fundamental proof has been established for their usage. It is recommended that
further work be carried out to investigate a fundamental basis for theses choices or

otherwise.
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The normal approximation to the binomial distribution is often used as a simple
and easy way for estimating distributions involving binomially distributed variables.
This work discovered differences in the use of the two distributions. For rigorous usage
and all applications involving this work, the binomial distribution is recommended.

It is recommended that further work be carried to investigate how amplitude
changes that do not affect the natural frequency oscillation of a signal will affect the
performance of the monitor.

An attempt was made to identify the effect of autocorrelation on sampling ratio in
this work. While it was noticed that autocorrelation does have an impact on the sampling
ratio, the results may not be adequately conclusive. It will be helpful to explore this
effect further to identify how strong effects of autocorrelation actually affect the

performance of the monitor.
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APPENDIX A

Controller Tuning for First-Order-Plus-Time Delay (FOPTD) Process

MV FOPTD Process cv

A

Figure Al  Schematic Diagram of a PID Control Loop for FOPTD Process

s

K e

Transfer function for processes = . _
Po(t,s+1)

Kp = Process Gian
t, = Process time constant
0 = Transport (Time) delay

The following process parameters are used:

K, =15
t,,=2min
6, =0.1min

Tuning is done using the ITAE PI controller tuning relations below for the controller gain

Kc, the Integral time constant t; respectively as:
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0859 t 0.977
Ke¢c = . _r
( Kp j (91
0.680
t = —tp 0_
' 0.674 )( t,

The controller output is given by

U -U,+ Kc[e(t)+ %J:e(t)dt]

Where Ug is the controller bias
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APPENDIX B

Controller Tuning for Second Order-Plus-Time Delay (SOPTD) Process

Xsp e MV SOPTD Process cVv

Figure Bl  Schematic Diagram of Control Loop for SOPTD Process

G,=G,6,," Combined transfer functions for processes 1 and 2

p

K ,.e =”* = Transfer function for processes 1

o= (tpls +1)

6 . Ks.e-"" =Transfer function for processes 2
" (t,,s+ 1)

Combining the two transfer functions gives:

G _ Klepze_([)l+(}z)s

. (tp15+1)(tp25+1)

Tuning is done using the Cohen-Coon PID controller tuning relations below for
the controller gain Kc, the integral time constant, t;, and the derivative time constant, tp,

respectively as:
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t

) 32 + 660 . :—40
K°:K:9(g_+49tp]’ t':"[ﬁ} - (11+27j
t t,

The controller output is given by

U=uU,+ Kc[e(t)+l— e(t)dt + t, d—e]
t, 3 dt
Where Ug is the controller bias

The following process parameters are used:

Kp1:0.5l t

pp = 1.5min 6, =0.5min
K,,=1.05 t,,=1.2min, 6, =0.3min
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APPENDIX C

Internal Model Control (IMC) Structure

Figure C1  Schematic Diagram of Control Loop with a Process Model (IMC)

L= Process

: = Internal Model Controller
, = Process Model = ¢ &

) = Non-invertable part of process model (Contains all time delays and
right-half
plane poles
¢ = Invertable part of process model
F = Filter = 1
(t,s+1)"
n = filter order
tw = filter time-constant

o O

o, O

€ = Mismatch between process and process model = X —y
d = Disturbance to the process

Xsp = External setpoint to the process

~
~

X" = Corrected setpoint to the process = X o €
sp

W = Filter output
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M = Controller Output

Figure C1 can be rearranged to get the equivalent structure in Figure C2 for the

entire structure in the area marked with the broken lines represents the IMC controller

shown in simplified form in Figure C3.

m

X

\ 4
@

o,

<

Figure C2

From Figure C2,

=

\ 4
@

Equivalent Structure of Figure C1

Figure C3
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Gé is chosen as the reciprocal of the invertable part of Gp (i.e. 1/ G_). Hence

. s « 1
given G | = (KPL), it implies that G, = G where G_ =( Ko ) and G, =e
t,s+1 _ ts+1
p p

Hence G; = (t";—+l)

p
Tunable parameters include: t,, K,t, and n.

Since G is typically improper, the filter order, n is chosen so that F*G_ is proper.

The following process parameters are chosen from lecture notes by Dr. R. R. Rhinehart.

t, =4.3min; K, =0.8%/psi;&=2.1min . Frothese, Rhinehart recommends t, of

3 min (i. e. (tw + 0)/2), and “n” is chosen to be 1.

08 . oo (434D, o L oo

(43s+1) " °° 0.8 !

A simple algorithm for the IMC loop therefore is:

e= X, - X
(AT Jug g+ _ _AT
ynew - ( 43j 08 |:m (t 21):|+ (1 4.3jyold

yold = ynew
Z=€+ VY

AT AT
Wiew = {sz + (1_ 3_jwold

m=1.25w+5.375| new ~ Woig.
AT

Output m
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APPENDIX D

AUTO-CORRELATION AND PARTIAL AUTO-CORRELATION ANALYSIS
Given a time series of data, it is often useful to investigate if there is a relationship
or correlation between the data points. Investigation of the correlation between different
values or signals within a data set is referred to as autocorrelation. In this excursion of
the work, it is desired to study how the presence of autocorrelation affects sampling ratio
and number of states used for performance monitoring. A study of autocorrelation often
involves plotting a correlogram (i.e. a set of graphs showing the correlations in the data
as a function of the lag). In this work, the intent here is to investigate if the noise (i.e.
actuating errors in this work) pattern:
1. Isjust random or not
2. Ifnot, is there a defined pattern or model that describes the errors
3. And, if there is a defined pattern present in the actuating errors,
a. How does the pattern affect the sampling ratio
b. Can the pattern be removed and
c. How does removing the pattern affect sampling ratio
In general, the extent to which two random variables vary together (co-vary) is
measured by their covariance. If the variation is about different values in the same data
set then it is referred to as autocovariance. It is established that the autocovariance

between two points does not depend on time itself but on the difference between 2 times.
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In signal processing and time series analysis this difference is generally referred
to as lag (Box et al., 1994; Shumway et al., 2000). The autocovariance enables a
calculation of the autocorrelation function, which enables one to determine if the noise
present in a data set is just random or if a pattern exists. A discussion of how to get the
correlogram is presented below

Given time series of data:

X, =0+GX,  + X, ,t X P, W, (D1)
Where o= u(1-¢,—4,— ¢, —..— 4,) (D2)
p is the sample mean and ¢, denotes the coefficient of x,; and w, is white Gaussian noise.

The covariance between samples or observations at time t and t + h is denoted by:

COV()CZ,XHh) = j/(t’t+h) = ]/(h) = E(xz _ft)('xﬁrh _)_CHh) (D3)

N
Where E (x) = iz x and X = p is the sample mean. Hence:

i=1
1 N
:NZ X, —)C t+h_)?z+h) (D4)
t=1

If the mean X, variance o,and model coefficients @, are approximately constant over

time, then the series is said to be stationary. Thus X, =X,

7(h)=E(x,—%)(x,,~X) (DS)
y(h)=E(x,x,, - %, -, +X") (D6)
7 () =E(x %)~ E(%x )= E (%, )+ £(F) (D7)
y(h)=E(x,x,,)=XE(x,) = XE (3., ) + E(¥°) (D8)
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In general, for a given data set, the sample variance is estimated as:

N

— X—X
TN 1,:1

2

\
M=

2

2

But lim

N—>o

=
=
=
(%J

M=

N
I
—_

~
Il

St )

t=1

t

=i ixz _5?
N\

Thus, Equation (D11) and (D16) are same. Hence }/(0) = Variance(x) = o,

=1

=1 and lim

N—o0

(

N N
x’ —2)?2xt +Z)?2

>

xf—2N)?2+N)?2]

1
N-1

—j = l , hence
N

Thus, in general the autocovariance is given by:
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It is essentially the correlation coefficient between a value x and a time shifted

version of itself. Let p denote the autocorrelation at lag 4. Then

p(h):M (D18)

= ! (D19)

Both the autocovariance and autocorrelation are even functions. That is:
y(h)=7(=h) and p(h)=p(-h)

It is known that the Autocorrelation function (ACF) of a time series provides a
significant amount of information about the order of the dependence when the process is

a moving average (MA) Shumway et al., (2000). The general MA process can be

represented as:
X, =HAQW, QW + QW 5+ + 0 W,_,
Where w, is independently and identically distributed with mean zero and variance o°,

(iew, ~ 11D(0,0?))

q
X =HA D QW (D20)

k=0

Xeph SHFTOW, 4y YOV TOW 3 T T QW

q
Xy =HA D O W, (D21)

J=0
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Where q is the maximum lag beyond which there is no significant correlation
between observations and h is any lag between zero and q inclusive. The covariance is

given by

y(h)=E(x,,, — 1) (x — 1) (D22)
y(h)=E [i(f),«wﬁh_jj(zq:%w,_kJ (D23)

7/(}1) = E(¢0Wt+h TOWpa T T Oy )((DOW, TOW et §”qu-4) (D24)

In general,
o i=j
E(w,w, )=3" D25
( v ) {0 i# ] (D25)
Hence from Equation (D24)

q—h

o’ 0. 0<h<

0 h>gq

Conventionally, ¢, is often assumed to be 1. Hence from Equation (D26),

o, (1+ 0 +9; +97..+ ] h=0
o (ot optep.te0,) =]
2 —_—
N A S o

o, (¢h T 0P T O PinF gpq—h(pq) h=q
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q-h
D 0P
= I<h<yg
PIN=1 113y (D28)
k=0
0 h>gq

Thus in general, if a series can be modeled as an MA process, then the ACF cuts off

( p(h) =0) after lag 4. Thus if the ACF plot in the correlogram cuts off after lag h,

the process can be represented by an MA model. However, if the series is
autoregressive (AR) where:

X, =p+GX, |+ X, +PX, s +..+@,x,_ +w,,oracombination of autoregressive

and moving average (i.e. ARMA), then the ACF reveals very little about the order of
dependence between the sample data points.

For instance, consider the series

X, =U+PX,_ +W, (D29)
X, = ,u+¢(¢xt72 +WH)+Wt

X, = U+@x,_, +Pw, +w,

X, = U+¢° (¢x,_3 +wt_2)+¢w,_1+w,

3 2
X, =p+@x s+ Pw, +Pw, +w,

k-1
X =H + ¢kxt—k + z¢jwt—j (D30)
=0
In the limit as k— o, and assuming|¢| <1, it implies

X, =p+) ¢, (D31)
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and
k=l

Xon = H + Z¢Alwt+h—j (D32’)
j=0

The Autocovariance is given by:

y(h)=E (%, —1)(x, ~ 1)
k-1 k=1
y(h)=E (ZWWHMJ(Z ¢’w,,j (D33)
j=0 i=0
Using the property from Equation D25 and simplifying gives

r(h)=c23 ¢'¢" (D34)
7 (h)=c¢'y ¢ (D36)

But Z(,/Szf forms a geometric series, the sum of which is given by
j=0

(-6")

s, = (1 2) Which in the limit as n— oo, simplifies to give s, =

. Equation

(1-¢7)

(D36) can thus be written as

p(h)=¢"  h=0 (D37)
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Furthermore,
,o(h—l):¢"’1 (D38)
Dividing Equation (D37) by Equation (D38), and simplifying, it can shown that

p(h) satisfies the recursive relations:

p(h)=¢p(h-1) h>1 (D39)
From Equation (D38) and (D39), it can be noticed that the ACF of an
autoregressive process does not cut off after lag h like an MA process. Thus, it is
worthwhile to pursue a function that will behave like the ACF (of an MA series) but will
represent an AR series. Such a function is referred to as partial autocorrelation function

(PACF) and i1s the correlation between time-indexed variables x, and x,,, with the effect

t+h

of x. x.,x.,.x x,.,  removed (Box et al., 1994; Shumway et al., 2000). Let X,

tE1, 72, M3, k4, M h-]

denote the best linear predictor of x, based on {xt_l, X _2sX_3sesX_yy | - That is:
X = Bx+ Box s+ Bix s+t B, (D40)

e e e —\2
Where the ’s are chosen to minimize the mean square error £ (xt - x) .

Also, letx, , denote the best linear predictor or regression of x, , based on the future

values of {x_,,X_,,X_s,....X_,,, | . Thatis:
X = BXir + BoXr + BiX s ot By (D41)

. e e e —\2
Where the B’s are again chosen to minimize the mean square error E(x,_, —X) . The

partial autocorrelation of x,, @,, is defined as the correlation between the x, and x, , with

the dependence chain between them removed and is denoted as:
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¢ =cor(x,—%,x_,—%_,) h>1 (D42)

And

@, = cor(xt,x,_l) =p(1) h=1 (D43)
While Equations (D42) and (D43) illustrate the general idea behind the PACF, the

determination of the function coefficients is often done by following the derivation of

autocovariance function, then the autocorrelation function from which the PACF values
¢,, are estimated. Precisely, the estimate ¢?h of the last coefficient of the ACF provides
the estimated PACF coefficient valueg,, . This is discussed below.
Consider the general stationary series,

X, =X +dx _,+Px, ,+..+ ¢pxt_p +w, (D44)

Where w; is independently identically distributed, IID (0, o%), the autocovariance is

expressed as:

y(h)=E(x-x.,) (D45)
7(/1) = E(((Iﬁle +OX T PX P X W, ) ‘X, ) (D46)
]/(h) - E(¢1x’—1 e ) +E(¢2xt—2 'xt+h) +"'+E(¢le—p .'xt+h)+E( Wi 'xz+h) (D47)

Since wy is IID
y(h)=dy(h=1)+dy(h-2)+..+ ¢,y (h-p) (D48)
Dividing through by y(0) gives

p(h)=¢p(h-1)+¢,p(h=2)+..+¢,p(h—p) (D49)

Equations (D48 and (D49) are the autocovariance and autocorrelation functions

written in difference equation forms. Let ¢, denote the ™ coefficient in an autoregressive
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representation of order h so that ¢,, is the last coefficient. Then according to Box et al.,
(1994) ¢,; satisfy the set of equations:

p(]) = ¢h,1p(j_1)+¢h,2p(j_2)+"'+¢h,h—1p(j_h+1)+¢h,hp(j_h) (DSO)

Equation (D50) can be arranged in a matrix form as:

1 D P
P 1 D2 P,
) P 1 D3 Ps
=|. (D51)
| Pt P2 Prs P A . . 1 _¢hh 1 1P|

The matrix can be represented as:

[®=R, from which ® =I''R - The values of p;* (the autocorrelation function

values) are all known and so the coefficient matrix @, can be solved to get the partial
autocorrelation function values. For a large matrix, the solution of Equation (D51)
may pose a computational burden. So the algorithm below due to Durbin-Levinson

(Box et al., 1994; Shumway et al., 2000) below is used to determine @4 Where for

index n> 1,
pln)= 36,1000 F)
P = =
1= 4, .p(k)
And for , - » (D52)
Pk = Pork = PunPruin vik=123.n-1

Specifically, the PACF are useful in identifying the order of an autogressive
model which essentially reveals the extent to which the data points are correlated with

each other and the how far back in the data the correlation exist. The PACF of an AR(P)
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series is zero at lags p+1 and greater. In this way, the PACF of an AR process resembles
the ACF of an MA process. In general, the PACF is often used in conjunction with the
ACEF in order to describe the data adequately. Table A.1 is a summary of the behavior of
ACF and PACF for a causal time series data (i.e. a series for which future data points
depend only on previous or past points).

Table D1 Behavior of the ACF and PACF for Causal an Invertible ARMA
Series (P is the lag for an AR process and q is the lag for an MA

Process)
Function AR(p) MA(q) ARMA(p, q)
Tails off
ACF (Decreases gradua]ly Cuts off after lag q Tails of
to zero, but may
oscillate)
PACF Cuts off after lag p Tails off Tails off

(Is Significantly zero)

(Shumway et al., 2000)

Often, if the sample ACF of a process indicates that an AR model may be
appropriate to describe the data, then the sample PACF plot is examined to help identify
the order. In using the plot, it is useful to always look for lags where the autocorrelations

essentially become significantly close to zero. In doing so, a confidence interval

equivalent to (i %/7) , where “z” is the ordinate of the standard normal distribution and
n

“n” is the sample size, is often placed on the chart and all correlations below this limit are
deemed to be not significant. In general, the most commonly used confidence limit is the
95 % level and it is also used in this work to determine a cut off for the ACF and PACF.

The 95 % confidence level has an approximate z-value band of £1.96. However, a value
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of * %/—is often used in most applications for the ACF and PACF. Figure D1 is a
n

correlogram showing the sample autocovariance function, the autocorrelation function
(ACF) and the partial autocorrelation function (PACF) plot using the actuating errors
from the primary control loop of the ExxonMobil cascade data.

Notice the cycling effect in the autocovariance and autocorrelation function plots
(the first two graphs respectively). The plot in Figure D1 can be interpreted using Table
D1, to mean that autocorrelation effect in the third plot significantly vanishes after lag 7.
As a result the data was differenced such that get a new error data where err(k) = e(k+7)-
e(k). Where “e” is the actuating error prior to differencing and “err” is the actuating error
after differencing. The new actuating error from the reference period was analyzed using
the health monitor. The results are shown in Figure D2. Notice that the sampling ratio

reduced from 34 in Figure 4.28 to 29 in Figure D2.

02

o T
: T
01

B e

A s i —
T T T AT e =

05

Partial AutoCorrelation function

os

VD: T”,H,_, ,,,,,,,, e e ===

Figure D1  AFC, PACF of the Primary Control Loop data from
ExxonMobil Data
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Transition Probabilities for The Historical Good Data
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Sampling Ratio = 29
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Transtion Probabilities
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0.2 Based on information gathered a Window Length of 510 samples will be used for Test Analysis

o1

o I I | | I
e g [ 1 2

State

%)
4
[

Distribution of States for Historical Good Data

Distribution of States
3
T
|

State

Figure D2  Distribution of States and Transition Probabilities from Reference
Good Data after Differencing the Data (Window Length =510
Samples; Sampling Ratio = 29; Difference = 7; ar = 1%, = 1%, A
=0.9)

Also the Window length decreased from 833 in Figure 4.28 to 510 in Figure D2.
Moreover the number of states required was determined to be 6 (£3 states), which was
less that required in Figure 4.28. Figure D3 shows the performance output. Notice how
the monitor flagged the period when the controller was known to be experiencing
difficulties. Comparing Figures D3 and 4.29, it is noticed that there was no flagging in
the case of Figure 4.29. It is likely that the strong correlation present in the original data
might have had an impact on the analysis resulting in a large sampling ratio and window

length which may in turn be responsible for the missed observations.
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The analysis was repeated for the secondary loop by plotting the correlogram and
studying the ACF and PACF shown in Figure D4. It was noticed that The PACF cut-off
after lag 12. Hence, the data was differenced by 12 samples apart and analysis of the
reference data is shown in Figure D5. The algorithm estimated a sampling ratio of 3 and
a window length of 457 samples in comparison with Figure 4.30 where the monitor
estimated, for the original data, a sampling ratio of 11 and a window length of 513
samples. The performance output for the secondary loop is shown in Figure D6. Notice
that in addition to flagging within the same region, which was flagged in Figure 4.31,
other areas were also flagged. It turns out that, there were control problems in these
regions as well that was probably not revealed in Figure 4.31 due perhaps, to the long
window length and large sampling ratio.

In summary, the presence of autocorrelation in a data can have a significant
impact on the sampling ratio and window length. If it is identified that a strong
autocorrelation exist in the data, it may be a good idea to study the correlogram and
perhaps reduce or remove the extent of the correlation before carrying out performance

analysis.
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Figure D3
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APPENDIX E

Model Predictive Control (MPC) Details

MPC Controller %
g (Optimization) G

=
>

Process Model Mismatch, Pmm

Figure E1 ~ Schematic Diagram of a Process Controlled with MPC Technique (e =
Actuating Error = Process Model Mismatch (Residuals), X = Controlled
Variable, m = Manipulated Variable, ¢ = Step Response Model, G, =

Process, x_ = Desired Trajectory (Setpoint), d = Disturbance)

_ -3s
Process Model: G, = (gsile)r(lS):H) (E1)

The parameters were used for the simulation:
Move suppression factor, f = 10
Prediction horizon “PH” = 40samples

Control horizon “CH” = ¥*PH
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Number of controlled variables =1
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Number of input variables = 1
Algorithm:

At the start of the algorithm, obtain a prediction horizon and control horizon.
Obtain the step response coefficients over the entire prediction horizon and determine the
dynamic matrix Apmc and the dynamic controller matrix Kpmc (discussed elsewhere;

Lee et. al, 1998; Brosilow et al, 2002; Ogunaike et al, 1994; Marlin 2002; Erickson et al,
1999), where

Kbowmc = (Transpose(Apmc)*Apmc + 42)*(Transpose(Apwmc))

Since the model does not account for disturbances and load changes. To ensure
better prediction, the prediction vector is corrected with the mismatch between the
process and the model (i.e. process model mismatch, (Pmm)). In this work, the process is
assumed to be represented by a simulator. The simulator is represented by the Equation
(E1), and the output from the simulator (Ysim), plus random noise is used to represent the
true process measurement (X). Also, obtain a vector of ones “Id” equal in length to the
prediction horizon to be used for scalar to vector transformations. Figure E2 is the step
response output due to a unit step change in the controller output signal from which the

response coefficients are obtained.

1. Obtain the current process measurement “X” and initialize the prediction
vector y® to that value.
2. Estimate the disturbance or process model mismatch (i.e. Pmm = X*Id - yP).

3. Correct the predicted vector y® with the Pmm (i.e. y* = y* + Pmm).
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4.

Determine the error (Err) between the corrected value of y” and the desired

trajectory “Xsp” (i.e. Err = Xgp*1d - y°).

Process Response

R SR E— AP SR S — SRS S S— AR S—

Time, samples

Figure E2  Step Response of Second-Order plus Time Delay (SOPTD)
Process with Inverse Response

Estimate the control action “AU” as Kpmc*Err and implement only the first
elementas U = U + AU(1,1)

Allow the process to run and obtain the process measurement “X” as

X = Ysim + noise. (Where ysin, is the simulator output which is shown below)
Update the prediction vector y® to compensate for the control move just
implemented (i.e. y* = y* + Apuc*AU)

The first element in y is not needed any more so shift all elements in y® up by
one and replace the last element with the penultimate element.

At the next sampling go to step 2
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Process Simulator

(As+1)e™”

is first transformed into a
(t,s+1)(t,,5+1)

The process, which is represented by G, =

differential equation and then solved using the fourth-order Runge-Kutta (RK4) method
after decoupling the second order differential equation (obtained by inverting the model
from the laplace domain to time domain), to two first-order differential equations that are
solved for the process output, given the input signal from the MPC controller, and after

applying the effect of the transport or time delay.

Cy(s) | (As+1)e™”
"UE) (s +1)(t,,s+1)

(E2)

Considering the part of Equation (E2) that does not include the delay and expanding

gives:
(t,s+1)(t,,5+1) y(s) =(As+1)U (s) (E3)
(tpltpzs2 +(tpl+tp2)s+1) y(s)=(As+1)U(s) (E4)

Inverting Equation (E4) results in the second order differential equation:

d’y() dy(t) du
tpltp2T+(tpl +tp2)T+ y(t):la-i'U(t) (E5)

p1tp2

Let R=t .t ., and B:(tpl+tp2)y y(O):O and d)(/j(to) -0

d’y(t) Bdy(t) 1 Adu 1
—y(t)="—+=u(t E6
dt? i Rdt +Ry() Rdt+Ru() (E6)

d’y(t)  Bdy(t) 1 Adu 1
S —Zyt)+=—=+=u(t E7
dt’ Rdt Ry()+Rdt+Ru() EN

Let z(t) :w , then dz(t) _ d°y(t) 2(0)=0

dt  dt?
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dz B

& 2202y

ﬂ(u(t)—u(t—l))+£
dt R

RAt R

u(t) (E8)

Applying the time delay component, 6 gives

z_B_ . 1 A(ut-0)-u@t-6-1) 1

T R z(t) - y(t)+ At = u(t—o) (E9)
dy

a e (E10)

Equations (E9) and (E10) are then solved using the Rk4 formulas for a second-order
differential equation decoupled into two first order differential equations below:

Let f (t,y, z):%, f,(t,y,z)=z, then

k, =f,(ty.2)

(E11)

ky, =f,(ty2)
K,, = fl(t+h/2,y+k1y/2,z+k12/2) (E12)
k2y = fz(t+h/2,y+k1y/2,z+klz/2)
ki, = fl(t+h/2,y+k2y/2,z+k22/2)
k3y =f, (t+h/2,y+k2y/2,z+k22/2) (E13)
k4Z = fl(t+hiy+k3y’Z+k3z)
k,, =f,(t+hy+k,, ,z+ks,) (E14)
z=z+h*k,, +2*k, +2*k, +k,)/6

( 1z 2z 3z 42) (E15)

y=y+h*(k, +2%k, +2%k, +k,)/6
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Where h = time step = sampling time interval,

t =time and

z = an intermediate variable

y = Solution to Equation (E7) (and ysim = Y)

The measured process output “X” in step 6 is sum of y plus random noise

(X =y + noise).

194



APPENDIX F

Comparison between Exact Binomial Analysis and the Normal Approximation to
the Binomial Distribution

This appendix is an attempt to clarify the reason why it is necessary to use the
exact binomial distribution and not the normal approximation to the binomial distribution
that was discussed in Chapter 3.

Using the normal approximation to the Binomial relationship discussed in Chapter
3, the data discussed in chapter 4, Section 4.2.1 was analyzed and the results are
discussed below. The output of the reference data analysis is shown in Figure F1. The
algorithm estimated a sampling ratio 1 and a window length of 380 samples. In
comparison when the exact binomial relation was used in Section 4.2.1 the sampling ratio
was 1, but the algorithm estimated a window length of 526 samples (i.e. 146 samples
more). This seemed unexpected at first site since a short window length that also reduces
the associated Type-I and Type-II errors is always desirable. However, when the test
data was analyzed as shown in Figure F2, it was observed that between sampling 40000
to 46000 when the controller was made sluggish, the monitor flagged on and off. This

could be the result of numerous Type-I11 errors being made due to a short window length.
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Transition Probakilities for The Historical Good Data
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Figure F1 Distribution of States and Transition Probabilities from Reference
Good Data Using Normal Approximation to the Binomial Distribution
Relation (Window length = 380 samples; Sampling Ratio = 1)
Again when the pressure drop data discussed in section 4.3.2 was analyzed using
the normal approximation to the binomial, the monitor estimated a sampling ratio of 2
(same as before in section 4.3.2), but a window length of 432 samples (368 samples less
than previous) as shown in Figure F3. When the test data was analyzed (Figure F4), the
monitor flagged throughout the entire during of the testing. However, it is known that
there were instances when control performance was good and that performance

degradation in the loop was gradual. The performance output in Figure F4 reveals the

possibility of excessive Type-I errors when the approximate methods is used.
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Performance Output
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Figure F2 Control Loop Performance Output (Sampling Period = 0.25s, Sampling
Ratio = 1; Window length = 380 Samples, Startup Period = 0 Samples,
Grace Period 430 Samples, Violation Counter Trigger = Length of Grace
Period +1, Overall Level of Significance (ar) = 1%)
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Transition Probabilities for The Historical Good Data
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Figure F3.  Distribution of States and Transition Probabilities from Reference
Good Data Using Normal Approximation to the Binomial Distribution
Relation (Window length = 432 Samples; Sampling Ratio = 1)

Performance Output
T T T T T T

ampling Ratio=2

Cv &SP
Ao W

Sampled
Actuating
Errors

=
= st E
=
0 L L 1 1 1 1 | L
[u} 05 1 15 2 248 3 35 4 45 5
x 10’
1000 —
5 i
= 1
2o H
S& 5004
7% Wigidow Length = 432 samples
3 Chnfidence Level=99 % . . . . . ) )
[u} 05 1 15 2 248 3 35 4 45 5
Time, Samplings % ,ma

Figure F4 Control Loop Performance Output (Sampling Period = 0.25s, Sampling
Ratio = 1; Window length = 432 Samples, Startup Period = 0 Samples,
Grace Period 482 Samples, Violation Counter Trigger = Length of Grace
Period +1, Overall Level of Significance (ar) = 1)
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APPENDIX G

Why Ignoring Amplitude Does not Limit the General Performance of the Health
Monitor

da(s)

ks 49 e [

Figure G1 ~ Schematic Diagram of First-Order Process with a Pl Controller

Consider the closed loop response of the simplified system above. Let

K
g,(8)= ® _and for a PI controller, g,(s) = K{1+ i) the closed loop response for

7,5+1 7,8

the system in Figure 1 above is given by

y() =ty Sa g (HD)
1+9.9, 1+9.9,
: 9.9,
Assuming servo control, y(s) =———y, (H2)
cIp

Substituting g, and gc,

2]
P oK1+
y(s) _ (rps+1) 7,S

Vo (8) 1, K K(1+'1j
(rps+1) 7,S

(H3)

198



K, K, [r,s+1j
y(s) _ (z,5+1)0 78
ysp(s) 1+ KoKe (7;s+1

(rps+1) 7,S

(H4)

Simplifying,

KK, (7,5+1)

y(s) _ trssijers (H8)

Y (8)  (z,5+1)(7,5)+ KK (7;5+1)

tess+ifes

y@s) K,K, (7,5+1)
Yo, (s) (7,5+1)(7,5)+ KK, (7,5 +1)

(H6)

y(s) _ KoK, (r,s +1) (H7)
Yo (8) (r,78° +75+ K Krs+K K, )

y(s)  c(rs+1)
Y, (s) (6182 + rbs+c) (H8)

Where

a=r,7,

b=7 (1+KK,)

c=K,K,

Then, y(s)(as® +bs+c)=c(z,s+1)y,, (H9)
Consider a case where there is no change in setpoint, thus

y(s)(as® +bs+c)=0, (H10)

Inverting this Equation gives
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2

d_3/+bﬂ
dt dt

+cy =0 (H11)
Let y=e™ be a characteristic equation,

Then, y'=1e™; y"=A%™ substituting in Equation H11above gives

al’e™ +ble” +ce” =0 (H12)
(a4® +bi+c)e” =0, but e* =0 therefore

(a4*+ba+c)=0 (H13)

The roots of Equation (H13) are given by

_—b+b®-4ac

2a

o (H14)

The system is oscillatory when the roots of this Equation are complex: i.e. 4ac > b?

2 —
Let = Y2 —42C (H15)
2a

Then, 4,, 4, :_?biia), Where i =+/-1

b . b .
/11:7—|a),/12 :7+|a)
y=e¥;  y,=e

y=kY, +k,Y,
y=e¥;  y,=e
Aot

y =ke" +k,e

y — kle(—.5b—ia))t + kze(—0.5b+ia))t

y = kl (e70.5bte—iwt ) + k2 (e70.5bte0.5iwt ) (H16)

199



y =e % (ke % + ke ) (H17)
Equation (H17) can be further simplified as

y =e 2% ((k, +k,)cosat+i(k —k,)sinat) (H18)
Where @ is the natural frequency of oscillation. From Equation (H15),

2
-4 . .
W= %, back substituting all the variables

. \/(r, (1+KpKe)) —47,7,K,K,

27,7,

(7, (1+KpKe))'  47,7,K K,
o= -
4r[2)2',2 4T§z'|2

2
K, K
o 1+KpKe | KK, (H19)
2t 7,7,

p

This analysis reveals that, the natural frequency of oscillation wis such that it

depends on the process parameters, i.e. o = f(KC,Kp,r,,rp). Moreover, the natural
period of oscillation T is related to the natural frequency as a)=277 , hence,

T="1 (KC, Ko7y ,rp). While the analysis in this example considered a PI controller and

a first-order process, other systems considered also show that the natural period of
oscillation is a function of process parameters such as the process gain, process time
constant and others.

Therefore, if an event such as the process gain, process time constant, controller
gain and controller time constant, changes the amplitude of a signal, it will affect the

natural frequency of oscillation of the signal and hence the natural period of oscillation.
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This will lead to differences in the period of oscillation of the data sampled in the
reference stage and the period of oscillation of the data sampled during testing or
performance monitoring and the health monitor will detect such changes. It must
however be stated that if an incident changes the amplitude of oscillation of a signal such
that the period of oscillation is not affected, then perhaps the monitor may be unable to

detect such changes.
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APPENDIX H

Distinguishing Between State Space Modeling in Time Series and State Modeling in
a Markov chain

% WY

1 1 1 1 1 =
a 20 40 B0 80 100 120
time, sec

12 T T T T T

1 1 1 1 1
a 20 40 &0 a0 100 120
time,sec.

Figure H1  Time Series of Controller Output Signal and Process response (y =
Process Response, %MV = Change in controller output signal (u))

Considering Figure H1, the process response values can be modeled using the

Autoregressive Moving Average (ARMA) representation in Equation (H1) as

Yi=ay, +ay, +bu by, + & (H1)

2" order AR 2" order MA Noise
Where a's and b's are coefficients and are determined by least square modeling.
Without excitation (i.e. a change in u), the values of b cannot be estimated. If noise

dominates process output y, and there is no real change in y, the values of a, cannot be
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determined either. If a process is oscillating naturally, then Equation H1 will be
expressed in values of a.

If all one knows is that a y value equals 1 say, then one cannot know whether it is
on the up path (and the next value is likely 2) or on the down path (and the next y value is
likely -1). However, if the history is known (i.e. the past y values), then one can
confidently use the model in Equation H1 to predict the next y (with uncertainty of noise).

By Contrast, using run length as a state value as shown Figure H2, a state of +1
historically moves to a state of +2 with a 100% probability, a state of +3 moves to +4

with 66.67% probability. A state of +6 persists in that state with 50% probability.

O+6
+5
+3 Q?
+ | © P 2
O +
+1 O +6 +1 O +2 *3 44
@) O @) +3 +1O 00O +5
o O - On
1 ’5 -1 4 40
2 @)
0090_4 0_90-3 -2
Figure H2  Modeling Run Length as States in a Markov chain
The state value +1, +2, ... , +6 contains the history. A token cannot get to a state

+6 without getting to state +1 then +2 ... then +5. Therefore, in Markov chain state
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modeling, the past value is inconsequential. Moreover, in this work, one is not looking

for a relationship between y and u, so no excitation is required.
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Data:

Actuating error:

Run length:

Zero Crossing:

Transition:

State:

APPENDIX |

Glossary of Some Terminologies Used in this Work

Actuating error or process-model mismatch.

The consecutive deviations of the desired variable from a target
value (e.g. Setpoint — Controlled Variable). The units depend on
the process and measurement.

The number of contiguous past data of like sign between
consecutive zero crossings. A run length is dimensionless.

An event characterizing the switching of sign of the actuating
errors from + to —, or — to +. In the special case where the error is
equal to zero, it does not signify a zero crossing and the same sign
as the prior state is maintained.

An event involving the change in state from k to j, say.

In addition to the definition of a state as given prior, a state is
identified by the characteristics of the sign of the data

(i.e. actuating error). A data characterized by a positive sign
denotes a positive state. While, one characterized by a negative
sign denotes a negative state. If the number of states were limited
to a maximum value of +3 or -3 for instance, then a run length of 5
negative actuating errors would be in state of —=3. A state has no

units.
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Transition Probability:

Count:

Window:

Sampling Ratio:

The probability of moving from state k to state j at the next
observation. The elements of the Transition probability

must always satisfy the condition that0 < B; <1. It has no

units.

The number of times a state has been occupied (cumulative
state value). It has units of number of samples.

Reference period of the past N samplings, which provide
data for statistical comparison at each sampling). It has
units of number of samples.

The ratio of the number of actuating error samples from the
controller to the number sampled by the health monitor

for analysis. The units are Number of Controller

Samples/Health Monitor Sample.
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