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CHAPTER 1

INTRODUCTION

Petroleum refineries are complex, large-scale manufacturing processes. The value of crude

oil processed by a 200, 000 barrel per day facility exceeds ten million dollars a day, or four

billion dollars a year. However, petroleum refining is a mature industry employing mature

technology. Consequently, profit margins are low and economic optimization is essential

to stay in business.

Linear Programs or LPs are key elements in the optimum planning and operations of

a petroleum refinery. Refinery planners utilize custom LP software (e.g. AspenTech’s

PIMS program) to select among the many types of crude oil available for purchase. LPs

are also used by the planners to identify optimum operating conditions for various refinery

units. Examples include distillation cut points in the front-end atmospheric unit, reaction

temperature in the Fluid Catalytic Cracking (FCC) unit and reformer (RF) feed rate to the

alkylation unit, etc.

LPs are linear mathematical models of processes that are inherently non-linear. LP

modelers are charged with creating and maintaining linear models that approximate refin-

ery operation over the expected range of operation. The inputs to a refinery LP include

crude oil availabilities and prices, product demand and prices, manufacturing cost informa-

tion and constraints imposed by equipment, markets, regulations, and utilities. The output

of a refinery LP includes the optimum daily profit, along with the associated refinery op-

erating conditions and flow rates (activities in LP terms). The refinery manager uses this

information to run the refinery on a day-to-day basis.

The LP also generates additional useful information in terms of incremental or marginal
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values of feeds, products, and the many intermediate streams produced in the refinery. This

information provides insight regarding the economic impact of producing or consuming

additional barrels relative to base operating plan defined by LP activities. In addition to

predicting the marginal value (shadow price) of a feed, product or stream, the LP also

provides incremental effect coefficients that predict the physical impact (changes in flow

rates, temperatures, product properties, etc.) throughout the refinery if a decision is made to

deviate slightly from the optimum conditions (activities)associated with the base operating

plan.

Accurate interpretation of LP results is essential to perform optimization in a petroleum

refinery. Misinterpretation of LP results can have significant impact on decision making

and can lead to unexpected financial consequences.

A typical refinery LP model used for optimization has approximately 300-500 equa-

tions and 800-1,500 variables to optimize (Parkash, 2003).Interpretation of solutions for

a refinery LP has to be made with prudence, because almost all practical size LP problems

could be degenerate (Koltai and Terlaky, 2000; Kruse, 1993;Zornig, 1993).

The term degeneracy is frequently used to denote primal degenerate problems in the

literature. In addition to primal degeneracy, an LP could also be dual degenerate (alternative

optima). In order to be precise, the terms “primal degeneracy” and “dual degeneracy” will

be used to represent different conditions of degeneracy. The state of primal degeneracy in

LP often produces multiple optimal dual values with unique primal values (activity values)

and unique objective function value. On the other hand, the state of dual degeneracy in

LP produces multiple optimal primal values (activity values) with unique dual values and

unique objective function value. Due to this phenomenon, the condition of degeneracy

creates complications in choosing a specific solution for implementation.

The consequences of primal degeneracy are extensively discussed in the technical lit-

erature (Strum, 1969; Eilon and Flavell, 1974; Aucamp and Steinberg, 1982; Akgul, 1984;

Knolmayer, 1984; Gal, 1993; Jansen et al., 1997; Koltai and Terlaky, 2000). However,
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many practitioners in the field of petroleum refinery optimization are not fully aware of the

consequences of primal degeneracy.

Unlike primal degeneracy, the concept of dual degeneracy israrely addressed in the

literature. The main reason for this neglect is due to the fact that any set of multiple activity

values obtained from alternate optimal solutions can be physically implemented to achieve

the same objective function value. This flexibility of choosing a desired solution among

multiple solutions is viewed favorably by several users (Paris, 1991).

Although implementing any of the multiple activities obtained for a dual degenerate LP

produces optimal profit in the base case, optimal profit may not be sustained even for an

infinitesimal change in the selling price or buying price of activities. Market price fluctu-

ation is a common phenomenon in petroleum refinery operations. Therefore, a definitive

approach must be developed to identify activity values thatleads to optimal profit, despite

market price fluctuations. The existence and impact of dual degeneracy are poorly under-

stood by most refining planners.

The work reported in this document has two broad goals. The first is to provide a com-

prehensive methodology that allows a refinery planner to detect both types of degeneracy

and correctly interpret the results from a single LP run. Most refinery planners are engi-

neers with limited or no formal education in the field of LP theory or operations research.

LP training is provided in-house by company experts or LP software training seminars.

The methodology developed in this research is designed for users with this more practical

rather than theoretical background. The second goal is to provide a more comprehensive

treatment of dual degeneracy with an emphasis on interpretation in a petroleum refining

context.

Degeneracy fundamentally implies the existence of multiple solutions in one fashion

or another to the refinery LP problem. In contrast with the lack of a single, unique-in-all-

respects solution, most planner decisions or recommendations are based on the output from

a single solution.
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Both of the goals described previously were motivated in partby this use of one-of-

many-possible solutions. Successful application of the material presented in this document

provides the basis to make better-informed business decisions while continuing to use LPs

for petroleum refinery optimization.

1.1 Goal and Objectives

The goal of this research is to develop an approach to gauge the robustness of implementing

a single LP optimal solution under conditions of dual degeneracy. The specific objectives

of this research are to:

• Clarify and document the correct methods to detect degeneracy in a refinery LP.

• Provide techniques to distinguish between the unique and non-unique elements of a

refinery LP.

• Provide an understanding of physically unrealizable results and provide the means to

detect them.

• Explicitly identify the limitations associated with the output from a single LP run.

• Develop an approach to determine activity values for a dual degenerate LP that sus-

tains optimality criteria, based on speculated market price fluctuations.

• Explain the economic implications of dual feasibility conditions for an LP solution

in the context of petroleum refinery optimization.

• Develop an algorithm to determine alternate optimal solutions for a dual degenerate

LP.

• Extend the primal incremental analysis approach developedby Aucamp and Stein-

berg (1982) to determine true incremental effect coefficients, in addition to determin-

ing true shadow prices.
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In this research an innovative approach is developed to characterize LP solutions when

the problem is dual degenerate. The categorization approach enables the user to implement

specific solutions that maintain optimality criteria, under conditions of anticipated market

price uncertainties. The relation between dual feasibility conditions and optimality of LP

solutions is used to develop this approach. Furthermore, a novel perturbation technique

implementing parametric programming is developed to determine alternate optimal solu-

tions under conditions of dual degeneracy. The procedure and results will be illustrated for

a simplified refinery LP model with 33 decision variables and 37 constraints.

1.2 Organization of Dissertation

Including the introduction chapter, this dissertation hassix chapters. A chapter by chapter

description of the dissertation follows.

Chapter 2 First, the basic notations and definitions involved in a LP problem are provided.

After that, a simplified refinery LP is presented to explain indetail how a refinery LP

is solved and its solutions are interpreted.

Chapter 3 Presents the geometric and algebraic solution of three different 2-D LPs: 1)

non-degenerate, 2) primal degenerate, and 3) dual degenerate LP problem. This

chapter discusses the consequences of degeneracy and provides strategies to identify

different conditions of degeneracy from an optimal solution.

Chapter 4 Deals with the interpretation of LP results, when the LP is primal degenerate.

The results and procedures are presented for a refinery LP.

Chapter 5 Provides a brief overview on the previous work related to dual degeneracy,

and presents the novel approach and algorithm developed to treat dual degenerate

problems. The results and procedures are illustrated for a refinery LP.

Chapter 6 Summarizes the contributions and future directions of thisresearch.
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CHAPTER 2

REFINERY LP FORMULATION AND SOLUTION

In this chapter, the basic definitions involved in describing an LP problem and its solu-

tion are provided. Then a simplified refinery LP obtained fromliterature (Pike, 1986) is

presented to explain how a refinery LP is solved and its solutions are interpreted.

2.1 Notations and Definitions of the LP Problem

The information given in Gal (1986) is used as a guideline forwriting this section. A

petroleum refinery LP problem is presented in the form given by Equation (2.1)

Maximizez = cT x (2.1)

x ∈ X

with X = {x ∈ ℜn|Ax ≤ b, x ≥ 0} wherec = (c1, · · · , cj, · · · , cn)T ∈ ℜn, b =

(b1, · · · , bj, · · · , bm)T ∈ ℜm, x = (x1, · · · , xj, · · · , xn)T ∈ ℜn, A an (m × n), matrix,

A = (a1, · · · , aj, · · · , an), aj = (a1j, · · · , aij, · · · , amj)
T , j = 1, · · · , n. The LP in gen-

eral form given in Equation (2.1) is converted to standard form by introducing slacks and

surplusxn+i, i = 1, · · · ,m. The definition of variablesx = (x1, · · · , xj, · · · , xn)T and

xn+i, i = 1, · · · ,m are given as follows:

Decision variables The set{x1 · · ·xn} are called the decision variables. These variables

represent barrels of crude, barrels of naphtha, barrels of gasoline, etc., in a refinery

LP. Decision variables are not only limited to feed and production rates but also

include physical properties (e.g. Reid vapor pressure) and operating conditions (e.g.

reactor temperatures). The decision variables are adjustable “knobs” of the refining
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business. The refinery manager wants to know the best choice of values for these

“knobs” or decision variables.

Slacks and Surplus The set{xn+1 · · ·xn+m} includes the slack and surplus variables.

These variables are used to convert the LP problem to standard form. Slack vari-

ables are added to the less than or equal to (LE) constraints,and surplus variables are

added to greater than or equal to (GE) constraints.

Now the problem is solved by computing an optimal basis with the characteristic basis-

indexρ = j1, · · · , jm such thatxj1, · · · , xjm are basic variables and after some rearrange-

ment j1 = 1, · · · , jm = m, the optimal solution for the LP in an expanded tableau or

simplex tableau is given by Table 2.1 (Gal, 1986). The description of each entry in the

tableau follows:

Table 2.1: Optimal Simplex Tableau (Gal, 1986)

Z 0 · · · 0 cm+1 · · · cn y1 · · · ym zmax

1 1 · · · 0 a1,m+1 · · · a1,n a1,n+1 · · · a1,n+m b1

...
...

...
...

...
...

...
...

m 0 · · · 1 am,m+1 · · · am,n am,n+1 · · · am,n+m bm

x1 · · · xm xm+1 · · · xn xn+1 · · · xn+m xB

Activity values Activity values are the values of decision variables, slackand surplus, in

the optimal solution. The vector of activity valuesxB =
[

b1 · · · bm

]T
are called the

primal solution or primal values. In Table 2.1, the column vector
[

b1 · · · bm

]T
in the

far-right column represents the activity values.

Dual Solution The set of values in the top row, labeled byZ in Table 2.1, represent the

dual solution. Individual entries in the set are called dualvalues. This row is also

referred to as theZ-row. All of the entries in the dual solution represent reduced

costs or shadow prices.
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Reduced costThe entries in the top row (Z-row) labeled bycj for j = 1, · · ·n, are called

opportunity costs, reduced costs or D-J or Delta-J value in PIMS (Process Industry

Modeling System) convention (Parkash, 2003) . Reduced costcj is defined as the

amount by whichcj must increase in order to enterxj into the basis. In other words,

in order to make the production or consumption of a resourcexj profitable, its cost

coefficientcj must be adjusted by an amount equal tocj.

Shadow price The entries in theZ−row labeledyi for j = n + 1, · · · , n + m are called

shadow prices, marginal values orpi values in PIMS convention (Parkash, 2003), and

are defined as the price for selling or buying one additional unit of thei-th resource.

(i.e,yi is the amount by whichzmax changes on changingbi by one unit.)

In addition to the above information, the incremental effect coefficients,aij, available

in the optimal simplex tableau are of considerable interestto practitioners in the field of

petroleum refinery optimization. The following subsectionexplains the interpretation of

incremental effect coefficients.

2.1.1 Incremental Effect Coefficients

Incremental effect coefficients are of two types: primal incremental effect coefficients and

dual incremental effect coefficients. The column vector[ai,n+1 · · · am,n+1]
T belowyi (also

defined for reduced cost, not just shadow prices) in Table 2.1is called the primal incremen-

tal effect coefficients, and the row vector[ai,m+1 · · · ai,n ai,n+1 · · · ai,n+m] left to bi ignoring

the identity structure in Table 2.1, is called the dual incremental effect coefficients.

Primal incremental effect coefficients direct the incremental change in activities when

an active constraint is positively or negatively perturbedwithin a limited (sensitivity) range.

For example, if the right hand side (R.H.S) of an activeith constraint is perturbed asbi + δ,

whereδ stands for small changes within a sensitivity range, the newactivity values will

change by an amount advocated by the primal incremental effect coefficients given by

Equation (2.2).
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WherexB,new is the new set of activity values obtained after the positiveperturbationbi+δ,

a similar analysis is also valid for a negative perturbationbi − δ. The above analysis will

be referred to as theprimal incremental effect analysisin this work.

The dual incremental effect coefficients direct the incremental change in dual values

when the cost coefficient of a decision variable in the optimal basis is positively or nega-

tively perturbed within a sensitivity range. For example, if the cost coefficient of thejth

decision variable in the optimal basis is perturbed ascj +δ, the new dual values will change

by an amount advocated by the dual incremental effect coefficients given by Equation (2.3).
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(2.3)

Where (cnew ynew) are the new dual values obtained after the positive perturbationcj + δ, a

similar analysis is also valid for a negative perturbationcj − δ. The above analysis will be

referred to as thedual incremental effect analysisin this work.

2.2 Solving and Interpreting Refinery LP Solutions

A petroleum refinery LP model adopted from Pike (1986) is usedfor case studies in this

research. The flow sheet of the refinery LP model is shown in Figure 2.1. The expanded

names for the process streams involved in the flow sheet are provided in Table 2.2.
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DF
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26 CCFODF
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AD

AD – Atmospheric distillation unit 
RF  – Reformer
CC – Catalytic Cracker

Unit Legend Product Legend

PG – Premium gasoline 
RG – Regular gasoline
DF – Diesel fuel
FO – Fuel oil

Figure 2.1: Process Flow Diagram for Pike’s Refinery (Pike, 1986)
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Table 2.2: Process Stream Description for Pike’s Refinery LP Decision Variables (Pike,

1986)

NO. Name Definition (flow rates are in barrels per day)

1 CRUDE Crude oil flow rate to the atmospheric crude distillation column (AD)

2 FGAD Fuel gas flow rate from AD

3 SRG Straight-run gasoline flow rate from AD

4 SRN Straight-run naphtha flow rate from AD

5 SRDS Straight-run distillate flow rate from AD

6 SRFO Straight-run fuel oil flow rate from AD

7 SRNRF Straight-run naphtha feed rate to the reformer (RF)

8 FGRF Fuel gas flow rate from RF

9 RFG Reformer gasoline flow rate

10 SRDSCC Straight-run distillate flow rate to the catalytic cracking unit (CCU)

11 SRFOCC Straight-run fuel oil flow rate to the CCU

12 FGCC Fuel gas oil flow rate from the CCU

13 CCG Gasoline flow rate from CCU

14 CCFO Fuel oil flow rate from CCU

15 SRGPG Straight-run gasoline flow rate for premium gasoline (PG) blending

16 RFGPG Reformer gasoline flow rate for PG blending

17 SRNPG Straight-run naphtha flow rate for PG blending

18 CCGPG Catalytic cracking unit gasoline flow rate for PG blending

19 PG Premium gasoline flow rate

20 SRGRG Straight-run gasoline flow rate for regular gasoline (RG) blending

21 RFGRG Reformer gasoline flow rate for RG blending

22 SRNRG Straight-run naphtha flow rate for RG blending

23 CCGRG Catalytic cracking unit gasoline flow rate for RG blending

24 RG Regular gasoline flow rate

25 SRNDF Straight-run naphtha flow rate for diesel fuel (DF) blending

26 CCFODF Catalytic cracking unit fuel oil flow rate for diesel fuel (DF)blending

27 SRDSDF Straight-run distillate flow rate for DF blending

28 SRFODF Straight-run fuel oil flow rate for DF blending

29 DF No. 2 diesel fuel flow rate

30 CCFOFO Catalytic cracking unit flow rate for fuel oil(FO) blending

31 SRDSFO Straight-run distillate flow rate for FO blending

32 SRFOFO Straight-run fuel oil flow rate for FO blending

33 FO No. 6 fuel oil flow rate
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2.2.1 Refinery LP Formulation

Pike’s refinery LP has 21 equality constraints, 16 inequality constraints and 33 decision

variables. The 33 decision variables, along with their descriptions are provided in Table 2.2.

The cost of inputs (crude oil), operating cost incurred in the units and the sales price of

products produced in the refinery are listed in Table 2.3

Table 2.3: Crude Oil Cost, Product Sales Prices, and OperatingCosts for the Petroleum

Refinery Pike (1986)

S.I. No. Variable Cost Coefficient

1 CRUDE Buying price of 33$/bb1

2 FGAD Selling price of 0.01965 $/ft3

3 SRNRF Reformer operating cost of 2.5$/bbl

4 FGRF Selling price of 0.01965 $/ft3

5 SRDSCC FCC operating cost of 2.2$/bbl

6 SRFOCC FCC operating cost of 2.2$/bbl

7 FGCC Selling price of 0.01965 $/ft3

8 PG Selling price of 44.0813$/bbl

9 RG Selling price of 43.68$/bbl

10 DF Selling price of 40.32$/bbl

11 FO Selling price of 13.14$/bbl

The LP for the Pike’s problem is formulated as a maximizationproblem. The objective

function is given as follows. The sales prices are shown as positive, and the cost are shown

as negative in the objective function.

Maximizez =

-33CRUDE + 0.01965FGAD - 2.5SRNRF + 0.01965FGRF - 2.2SRDSCC - 2.2SRFOCC

+ 0.01965FGCC + 45.36PG + 43.68RG + 40.32DF + 13.14FO

12



The constraints for the Pike’s refinery LP are listed below.

Subject to

1) CRUDE≤ 110,000 → Crude oil availability

Premium Gasoline (PG) blending

2) PG≥ 10,000 → Minimum production requirement

3) SRGPG + RFGPG + SRNPG + CCGPG - PG= 0 → PG Blending material balance

4) 78.5SRGPG + 104RFGPG + 65SRNPG + 93.7CCGPG - 93PG≥ 0 → PG Octane

rating (physical property specification)

5) 18.4SRGPG + 2.57RFGPG + 6.54SRNPG + 6.9CCGPG - 12.7PG≤ 0 → PG Vapor

pressure (physical property specification)

Regular Gasoline (PG) blending

6) RG≥ 10,000 → Minimum production requirement

7) SRGRG + RFGRG + SRNRG + CCGRG - RG= 0 → RG Blending material balance

8) 78.5SRGRG + 104RFGRG + 65SRNRG + 93.7CCGRG - 87RG≥ 0 → RG Octane

rating (physical property specification)

9) 18.4SRGRG + 2.57RFGRG + 6.54SRNRG + 6.9CCGRG - 12.7RG≤ 0 → RG Vapor

pressure (physical property specification)

Diesel Fuel (DF) blending

10) DF≥ 10,000 → Minimum production requirement

11) SRNDF + CCFODF + SRDSDF + SRFODF - DF= 0 → DF Blending material

balance

12) 272SRNDF + 294.4CCFODF + 292SRDSDF + 295SRFODF - 306DF≤ 0 → DF

Density specification (physical property specification)

13) 0.283SRNDF + 0.353CCFODF + 0.526SRDSDF + 0.980SRFODF - 0.5DF≤ 0 →

DF Sulfur specification (physical property specification)
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Fuel Oil (FO) blending

14) FO≥ 10,000 → Minimum production requirement

15) CCFOFO + SRDSFO + SRFOFO - FO= 0 → FO Blending material balance

16) 294.4CCFOFO + 292SRDSFO + 295SRFOFO - 352FO≤ 0 → FO Density

specification (physical property specification)

17) 0.353CCFOFO + 0.526SRDSFO + 0.980SRFOFO - 3FO≤ 0 → FO Sulfur

specification (physical property specification)

Atmospheric Distillation (AD) unit

18) CRUDE≤ 100,000 → AD Equipment processing capacity

AD Unit Material Balance Constraints

19) 35.42CRUDE - FGAD= 0 → FGAD Yield

20) 0.27CRUDE - SRG= 0 → SRG Yield

21) 0.237CRUDE - SRN= 0 → SRN Yield

22) 0.087CRUDE - SRDS= 0 → SRDS Yield

23) 0.372CRUDE - SRFO= 0 → SRFO Yield

Catalytic Reformer (RF)

24) SRNRF≤ 25,000 → RF Equipment processing capacity

RF Unit Material Balance Constraints

25) 158.7SRNRF - FGRF= 0 → FGRF Yield

26) 0.928SRNRF - RFG= 0 → RFG Yield

Catalytic cracking (FCC unit)

27) SRDSCC + SRFOCC≤ 30,000 → FCC Equipment processing capacity

FCC Unit Material Balance Constraints

28) 336.9SRDSCC + 386.4SRFOCC - FGCC= 0 → FGCC Yield

29) 0.619SRDSCC + 0.688SRFOCC - CCG= 0 → CCG Yield

30) 0.189SRDSCC + 0.2197SRFOCC - CCFO= 0 → CCFO Yield

Stream splits (material balance constraints)
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31) SRG - SRGPG - SRGRG= 0 → SRG Split

32) SRN - SRNRF - SRNPG - SRNRG - SRNDF= 0 → SRN Split

33) SRDS - SRDSCC - SRDSDF - SRDSFO= 0 → SRDS Split

34) SRFO - SRFOCC - SRFODF - SRFOFO= 0 → SRFO Split

35) RFG - RFGPG - RFGRG= 0 → RFG Split

36) CCG - CCGRG - CCGPG= 0 → CCG Split

37) CCFO - CCFODF - CCFOFO= 0 → CCG Split

Before attempting to solve Pike’s refinery LP using the primaland dual simplex method,

all the greater than or equal to (GE) constraints and equality constraints are algebraically

manipulated to less than or equal to (LE) constraints. The GEconstraint of the form given

in Equation (2.4)

Ax ≥ b (2.4)

is multiplied by -1 and converted to LE form as given in Equation (2.5).

−Ax ≤ −b (2.5)

The equality constraints of the form given in Equation (2.6)

Ax = b (2.6)

are initially converted to companion form given in Equation(2.7) by splitting into two

inequalities.

Ax ≤ b (LE form) (2.7)

Ax ≥ b (GE form)

Then, the GE form in the above companion representation is converted to LE by multiply-

ing it by -1 and given by Equation (2.8).

Ax ≤ b (LE form) (2.8)

−Ax ≤ −b (Modified GE)
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After applying the above transformation to the refinery LP, the constraints are presented as

follows:

1) CRUDE≤ 110,000 → Crude oil availability

PG blending

2) - PG≤ - 10,000 → Minimum production requirement

3) - PG + SRGPG + RFGPG + SRNPG + CCGPG≤ 0 → PG Blending material balance

4) PG - SRGPG - RFGPG - SRNPG - CCGPG≤ 0

5) 93PG - 78.5SRGPG - 104RFGPG - 65SRNPG - 93.7CCGPG≤ 0 →PG Octane rating

(physical property specification)

6) - 12.7PG + 18.4SRGPG + 2.57RFGPG + 6.54SRNPG + 6.9CCGPG≤ 0 → PG Vapor

pressure (physical property specification)

RG blending

7) - RG≤ - 10,000 → Minimum production requirement

8) - RG + SRGRG + RFGRG + SRNRG + CCGRG≤ 0 →RG Blending

9) RG - SRGRG - RFGRG - SRNRG - CCGRG≤ 0

10) 87 RG - 78.5SRGRG - 104RFGRG - 65SRNRG - 93.7CCGRG≤ 0 →RG Octane

rating (physical property specification)

11) - 12.7RG + 18.4SRGRG + 2.57RFGRG + 6.54SRNRG + 6.9CCGRG≤ 0 →RG

Vapor pressure (physical property specification)

DF blending

12) - DF≤ - 10,000 → Minimum production requirement

13) - DF + SRNDF + CCFODF + SRDSDF + SRFODF≤ 0 →DF Blending material

balance

14) DF - SRNDF - CCFODF - SRDSDF - SRFODF≤ 0
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15) - 306DF + 272SRNDF + 294.4CCFODF + 292SRDSDF + 295SRFODF≤ 0 → DF

Density specification (physical property specification)

16) - 0.5DF + 0.283SRNDF + 0.353CCFODF + 0.526SRDSDF + 0.98SRFODF≤ 0 →

DF Sulfur specification (physical property specification)

FO blending

17) - FO≤ - 10,000 →Minimum production requirement

18) - FO + CCFOFO + SRDSFO + SRFOFO≤ 0 →FO Blending material balance

19) FO - CCFOFO - SRDSFO - SRFOFO≤ 0

20) - 352FO + 294.4CCFOFO + 292SRDSFO + 295 SRFOFO≤ 0 →FO Density

specification (physical property specification)

21) - 3FO + 0.353CCFOFO + 0.526SRDSFO + 0.98SRFOFO≤ 0 →FO Sulfur

specification (physical property specification)

Crude Oil Atmospheric Distillation Column

22) CRUDE≤ 100,000 → AD Equipment processing capacity

AD Unit Material Balance Constraints

23) 35.42CRUDE - FGAD≤ 0 → FGAD Yield

24) - 35.42CRUDE + FGAD≤ 0

25) 0.27CRUDE - SRG≤ 0 →SRG Yield

26) - 0.27CRUDE + SRG≤ 0

27) 0.237CRUDE - SRN≤ 0 →SRN Yield

28) - 0.237CRUDE + SRN≤ 0

29) 0.08699999CRUDE - SRDS≤ 0 →SRDS Yield

30) - 0.08699999CRUDE + SRDS≤ 0

31) 0.372CRUDE - SRFO≤ 0 →SRFO Yield

32) - 0.372CRUDE + SRFO≤ 0
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Catalytic Reformer

33) SRNRF≤ 25,000 → RF Equipment processing capacity

RF Unit Material Balance Constraints

34) 158.7SRNRF - FGRF≤ 0 →FGRF Yield

35) - 158.7SRNRF + FGRF≤ 0 36) 0.928SRNRF - RFG≤ 0 →RFG Yield

37)- 0.928SRNRF + RFG≤ 0

FCC Unit

38) SRDSCC + SRFOCC≤ 30,000 → FCC Equipment processing capacity

FCC Unit Material Balance Constraints

39) 336.9SRDSCC + 386.4SRFOCC - FGCC≤ 0 →FGCC Yield

40) - 336.9SRDSCC - 386.4SRFOCC + FGCC≤ 0

41) 0.619SRDSCC + 0.688SRFOCC - CCG≤ 0 →CCG Yield

42) - 0.619SRDSCC - 0.688SRFOCC + CCG≤ 0

43) 0.189SRDSCC + 0.2197SRFOCC - CCFO≤ 0 →CCFO Yield

44) - 0.189SRDSCC - 0.2197SRFOCC + CCFO≤ 0

Stream Splits (material balance constraints)

45) - SRGPG - SRGRG + SRG≤ 0 →SRG Split

46) SRGPG + SRGRG - SRG≤ 0

47) - SRNRF - SRNPG - SRNRG - SRNDF + SRN≤ 0 →SRN Split

48) SRNRF + SRNPG + SRNRG + SRNDF - SRN≤ 0

49) - SRDSCC - SRDSDF - SRDSFO + SRDS≤ 0 →SRDS Split

50) SRDSCC + SRDSDF + SRDSFO - SRDS≤ 0

51) - SRFOCC - SRFODF - SRFOFO + SRFO≤ 0 →SRFO Split

52) SRFOCC + SRFODF + SRFOFO - SRFO≤ 0

53) - RFGPG - RFGRG + RFG≤ 0 →RFG Split

54) RFGPG + RFGRG - RFG≤ 0

55) - CCGPG - CCGRG + CCG≤ 0 →CCG Split
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56) CCGPG + CCGRG - CCG≤ 0

57) - CCFODF - CCFOFO + CCFO≤ 0 →CCFO Split

58) CCFODF + CCFOFO - CCFO≤ 0

After adding slacks to the above formulation the standard form representation is given

as

1) CRUDE + SLK1= 110,000 →Crude oil availability

PG blending

2) - PG + SLK2= - 10000 → Minimum production requirement

3) - PG + SRGPG + RFGPG + SRNPG + CCGPG + SLK3= 0 →PG Blending material

balance

4) PG - SRGPG - RFGPG - SRNPG - CCGPG + SLK4= 0

5) 93PG - 78.5SRGPG - 104RFGPG - 65SRNPG - 93.7CCGPG + SLK5= 0 →PG

Octane rating (physical property specification)

6) - 12.7PG + 18.4SRGPG + 2.57RFGPG + 6.54SRNPG + 6.9CCGPG + SLK6= 0→PG

Vapor pressure (physical property specification)

RG blending

7) - RG + SLK7= - 10,000 →Minimum production requirement

8) - RG + SRGRG + RFGRG + SRNRG + CCGRG + SLK8= 0 →RG Blending material

balance

9) RG - SRGRG - RFGRG - SRNRG - CCGRG + SLK9= 0

10) 87RG - 78.5SRGRG - 104RFGRG - 65SRNRG - 93.7CCGRG + SLK10= 0 →RG

Octane rating (physical property specification)

19



11) - 12.70RG + 18.40SRGRG + 2.570RFGRG + 6.540SRNRG + 6.90CCGRG + SLK11

=0→RG Vapor pressure (physical property specification)

DF blending

12) - DF + SLK12= - 10000 →Minimum production rate

13) - DF + SRNDF + CCFODF + SRDSDF + SRFODF + SLK13= 0 →DF Blending

material balance

14) DF - SRNDF - CCFODF - SRDSDF - SRFODF + SLK14= 0

15) - 306DF + 272SRNDF + 294.4 CCFODF + 292SRDSDF + 295SRFODF + SLK15=

0→DF Density specification (physical property specification)

16) - 0.5DF+ 0.283SRNDF+ 0.353CCFODF+ 0.526SRDSDF+ 0.98SRFODF +SLK16=

0→DF Sulfur specification (physical property specification)

FO blending

17) - FO + SLK17= - 10000 →Minimum production rate

18) - FO + CCFOFO + SRDSFO + SRFOFO + SLK18= 0 →FO Blending material

balance

19) FO - CCFOFO - SRDSFO - SRFOFO + SLK19= 0

20) - 352FO + 294.4CCFOFO + 292SRDSFO + 295SRFOFO + SLK20= 0 →FO

Density specification (physical property specification)

21) - 3FO + 0.353CCFOFO + 0.526SRDSFO + 0.98SRFOFO + SLK21= 0 →FO Sulfur

specification (physical property specification)

Atmospheric Distillation Column

22) CRUDE + SLK22= 100,000 →AD equipment processing capacity

AD Unit Material Balance Constraints

23) 35.42CRUDE - FGAD + SLK23= 0 →FGAD Yield
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24) - 35.42CRUDE + FGAD + SLK24= 0

25) 0.27CRUDE - SRG + SLK25= 0 →SRG Yield

26) - 0.27CRUDE + SRG + SLK26= 0

27) 0.237CRUDE - SRN + SLK27= 0 →SRN Yield

28) - 0.237CRUDE + SRN + SLK28= 0

29) 0.08699999CRUDE - SRDS + SLK29= 0 →SRDS Yield

30) - 0.08699999CRUDE + SRDS + SLK30=0

31) 0.372CRUDE - SRFO + SLK31= 0 →SRFO Yield

32) - 0.372CRUDE + SRFO + SLK32= 0

Catalytic Reformer

33) SRNRF + SLK33= 25,000 →RF equipment processing capacity

RF Unit Material Balance Constraints

34) 158.7SRNRF - FGRF + SLK34= 0 →FGRF Yield

35) - 158.7SRNRF + FGRF + SLK35= 0

36) 0.928SRNRF - RFG + SLK36= 0 →RFG Yield

37) - 0.928SRNRF + RFG + SLK37= 0

FCC Unit

FCC Unit Material Balance Constraints

38) SRDSCC + SRFOCC + SLK38= 30,000 →FCC Capacity

39) 336.9SRDSCC + 386.4SRFOCC - FGCC + SLK39= 0 →FGCC Yield

40) - 336.9SRDSCC - 386.4SRFOCC + FGCC + SLK40= 0

41) 0.619SRDSCC + 0.688SRFOCC - CCG + SLK41= 0 →CCG Yield

42) - 0.619SRDSCC - 0.688SRFOCC + CCG + SLK42= 0

43) 0.189SRDSCC + 0.2197SRFOCC - CCFO + SLK43= 0 →CCFO Yield

44) - 0.189SRDSCC - 0.2197SRFOCC + CCFO + SLK44= 0

Stream Splits (material balance constraints)

45) - SRGPG - SRGRG + SRG + SLK45= 0 →SRG Split
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46) SRGPG + SRGRG - SRG + SLK46= 0

47) - SRNRF - SRNPG - SRNRG - SRNDF + SRN + SLK47= 0 →SRN Split

48) SRNRF + SRNPG + SRNRG + SRNDF - SRN + SLK48= 0

49) - SRDSCC - SRDSDF - SRDSFO + SRDS + SLK49= 0 →SRDS Split

50) SRDSCC + SRDSDF + SRDSFO - SRDS + SLK50= 0

51) - SRFOCC - SRFODF - SRFOFO + SRFO + SLK51= 0 →SRFO Split

52) SRFOCC + SRFODF + SRFOFO - SRFO + SLK52= 0

53) - RFGPG - RFGRG + RFG + SLK53= 0 →RFG Split

54) RFGPG + RFGRG - RFG + SLK54= 0

55) - CCGPG - CCGRG + CCG + SLK55= 0 →CCG Split

56) CCGPG + CCGRG - CCG + SLK56= 0

57) - CCFODF - CCFOFO + CCFO + SLK57= 0 →CCFO Split

58) CCFODF + CCFOFO - CCFO + SLK58= 0

The original problem contains 33 decision variables (n), 21 material balance constraints

(equality constraints), and 16 inequality constraints including capacity, sales, purchase or

physical property constraints. The LP in the standard form has 58 constraints (m = 21×

2 + 16) and 91 variables (m + n). All the variables are indexed in numerical order. The

variables and their corresponding index are given in Table 2.4.
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Table 2.4: Variable Index for the Refinery LP

Index Variable Index Variable Index Variable Index Variable Index Variable

1 CRUDE 20 SRNDF 39 SLK6 58 SLK25 77 SLK44

2 FGAD 21 CCFODF 40 SLK7 59 SLK26 78 SLK45

3 SRNRF 22 SRDSDF 41 SLK8 60 SLK27 79 SLK46

4 FGRF 23 SRFODF 42 SLK9 61 SLK28 80 SLK47

5 SRDSCC 24 CCFOFO 43 SLK10 62 SLK29 81 SLK48

6 SRFOCC 25 SRDSFO 44 SLK11 63 SLK30 82 SLK49

7 FGCC 26 SRFOFO 45 SLK12 64 SLK31 83 SLK50

8 PG 27 SRG 46 SLK13 65 SLK32 84 SLK51

9 RG 28 SRN 47 SLK14 66 SLK33 85 SLK52

10 DF 29 SRDS 48 SLK15 67 SLK34 86 SLK53

11 FO 30 SRFO 49 SLK16 68 SLK35 87 SLK54

12 SRGPG 31 RFG 50 SLK17 69 SLK36 88 SLK55

13 RFGPG 32 CCG 51 SLK18 70 SLK37 89 SLK56

14 SRNPG 33 CCFO 52 SLK19 71 SLK38 90 SLK57

15 CCGPG 34 SLK1 53 SLK20 72 SLK39 91 SLK58

16 SRGRG 35 SLK2 54 SLK21 73 SLK40

17 RFGRG 36 SLK3 55 SLK22 74 SLK41

18 SRNRG 37 SLK4 56 SLK23 75 SLK42

19 CCGRG 38 SLK5 57 SLK24 76 SLK43
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2.2.2 Refinery LP Solution

The given LP was solved using LINDO and the optimal solution determined. The LP

optimal solution is usually represented in a tableau form called the optimal simplex tableau.

The optimal simplex tableau is a 58×91 matrix. The entire optimal simplex tableau will

not be presented due to its size. However, essential components of the solution matrix will

be presented for interpretation.

Objective value The objective value or the optimal profit for this refinery wasfound to

bezmax = $701,823.43, which implies that for the given problem withthe specified

constraints the maximum profit that could be made is $701,823.43.

Activity Values The optimal basis is given in Table 2.5. Since the problem hasm = 58

equations there will be 58 variables in the optimal basis called the basic variables.

The numerical value associated with a basic variable is interpreted as the activity

values. For example, the activity of the Premium Gasoline (PG) decision variable

is 47113.20 bbl/day in Table 2.5. This represents the amountof PG that has to be

manufactured to attain the optimal profit of $701,823.43.

Dual Values The dual values corresponding to the optimal basis are presented in Table 2.6.

Since the problem hasn + m = 91 variables andm = 58 equations, there will be

n + m − m = 33 dual variables. The dual variables corresponding to theoriginal

decision variables in theZ−row of optimal simplex tableau are referred to as reduced

cost. For example, the reduced cost of Straight Run Naphtha for Regular Gasoline

blending (SRNRG) in Table 2.6 is given as 8.05$/bbl, implying that SRNRG stream

is not manufactured in the process. In order to manufacture SRNRG in the process

the selling price of SRNG has to be increased at least by $8.05.
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Table 2.5: Optimal Basis for the Refinery LP†

Index Variable Activity Index Variable Activity Index Variable Activity

(bbl/day) (bbl/day) (bbl/day)

1 CRUDE 100, 000.00 26 SRFOFO 5, 403.80 54 SLK21 22, 286.68

2 FGAD∗ 3, 542, 000.00 27 SRG 27, 000.00 56 SLK23 0.00

3 SRNRF 23, 700.00 28 SRN 23, 700.00 58 SLK25 0.00

4 FGRF∗ 3, 761, 190.00 29 SRDS 8, 700.00 60 SLK27 0.00

6 SRFOCC 30, 000.00 30 SRFO 37, 200.00 62 SLK29 0.00

7 FGCC∗ 11, 592, 000.00 31 RFG 21, 993.60 64 SLK31 0.00

8 PG 47, 113.20 32 CCG 20, 640.00 66 SLK33 1, 300.00

9 RG 22, 520.40 33 CCFO 6, 591.00 67 SLK34 0.00

10 DF 12, 491.00 34 SLK1 10, 000.00 69 SLK36 0.00

11 FO 10, 000.00 35 SLK2 37, 113.20 72 SLK39 0.00

12 SRGPG 13, 852.05 36 SLK3 0.00 74 SLK41 0.00

13 RFGPG 17, 239.99 39 SLK6 188, 607.17 76 SLK43 0.00

15 CCGPG 16, 021.17 40 SLK7 12, 520.40 78 SLK45 0.00

16 SRGRG 13, 147.95 41 SLK8 0.00 80 SLK47 0.00

17 RFGRG 4, 753.61 45 SLK12 2, 491.00 82 SLK49 0.00

19 CCGRG 4, 618.83 46 SLK13 0.00 84 SLK51 0.00

21 CCFODF 6, 591.00 48 SLK15 153, 666.99 86 SLK53 0.00

22 SRDSDF 4, 103.80 51 SLK18 0.00 88 SLK55 0.00

23 SRFODF 1, 796.20 53 SLK20 583, 788.61 90 SLK57 0.00

25 SRDSFO 4, 596.20

†There are a total ofm = 58 decision and slack variables in the basis for the solution. The

remaining 33 variables are in the set of non-basis variables.
∗ft3/day .
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The dual variables corresponding to slack and surplus in theZ − row of the optimal

simplex tableau are referred to as shadow prices. For example, the shadow price of

Fuel Oil (FO) production constraint in Table 2.6 is given as -27.18 $/bbl. This implies

manufacturing an additional barrel of FO in the process willreduce the objective

function value by $27.18 .

Note that here the dual value of all GE constraints are multiplied by -1 because before

solving the problem, all the GE constraints were converted to LE form.
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Table 2.6: Optimal Dual Values for the Refinery LP†

Z Dual Value $/bbl Active at

SLK4 Premium gasoline blending −19.32 LL (Equality)

SLK5 Premium gasoline octane rating −0.28 LL

SLK9 Regular gasoline blending −19.32 LL (Equality)

SLK10 Regular gasoline octane rating −0.28 LL

SLK11 Regular gasoline vapor 0.00 LL

SLK14 Diesel fuel blending −40.32 LL (Equality)

SLK16 Diesel fuel sulfur specification 0.00 LL

SLK17 Fuel oil production −27.18 LL (Equality)

SLK19 Fuel oil blending −40.32 LL (Equality)

SLK22 Atmospheric distillation unit capacity 8.15 UL

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 LL (Equality)

SLK26 Straight run gasoline yield from atmospheric distillation unit−41.30 LL (Equality)

SLK28 Straight run naphtha yield from atmospheric distillation unit−45.57 LL (Equality)

SLK30 Straight run distillate yield from atmospheric distillation unit−40.32 LL (Equality)

SLK32 Straight run fuel oil yield from atmospheric distillation unit−40.32 LL (Equality)

SLK35 Fuel gas yield from reformer unit −0.02 LL (Equality)

SLK37 Reformed gasoline yield −48.44 LL (Equality)

SLK38 Catalytic cracking (FCC) unit capacity 5.27 UL

SLK40 Fuel gas yield from catalytic cracking unit −0.02 LL (Equality)

SLK42 Catalytic cracked gasoline yield −45.56 LL (Equality)

SLK44 Catalytic cracked fuel oil yield −40.32 LL (Equality)

SLK46 Straight run gasoline split −41.30 LL (Equality)

SLK48 Straight run naphtha split −45.57 LL (Equality)

SLK50 Straight run distillate split −40.32 LL (Equality)

SLK52 Straight run fuel oil split −40.32 LL (Equality)

SLK54 Reformed gasoline split −48.44 LL (Equality)

SLK56 Catalytic cracked gasoline split −45.56 LL (Equality)

SLK58 Catalytic cracked fuel oil split −40.32 LL (Equality)

SLK5 Straight run distillate for catalytic cracking 5.35 Reduced cost

SLK14 Straight run naphtha for premium gasoline blending 8.05 Reduced cost

SLK18 Straight run naphtha for regular gasoline blending 8.05 Reduced cost

SLK 20 Straight run naphtha for diesel fuel blending 5.25 Reduced cost

SLK24 Catalytic cracked fuel oil for fuel oil blending 0.00 Reduced cost
†There are 33 variables in the set of non-basic variables. Depending onthe type: decision variable,

slack or surplus variable, the dual values represents either reduced cost or shadow prices. Negative

dual values correspond to surplus variables (GE constraints).
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Primal Incremental Effects The column vector below each of the shadow prices in the

optimal simplex tableau contain the primal incremental effect coefficients. The shadow

price of FO along with the corresponding primal incrementaleffect coefficients are

listed in Table 2.7. The associated base objective functionvalue and the activity val-

ues are also listed. The FO production constraint is a GE constraint and written in

LE form before solving the problem. Therefore, the primal incremental coefficients

are multiplied by -1 and presented in Table 2.7.

Table 2.7: Primal Incremental Effect Coefficients Associated with Fuel Oil Production

Constraint†

FO Original +1 FO Production -1 FO Production

Production solution increase decrease

Z −27.18 $
bbl

701, 823.43 701, 796.25 701, 850.61

Solution Incremental Activity Activity Activity

Index basis effect (aij) bbl/day bbl/day bbl/day

10 DF −1.00 12, 491.00 12, 490.00 12, 492.00

11 FO 1.00 10, 000.00 10, 001.00 9, 999.00

22 SRDSDF −1.06 4, 103.80 4, 102.74 4, 104.85

23 SRFODF 0.06 1, 796.20 1, 796.26 1, 796.15

25 SRDSFO 1.06 4, 596.20 4, 597.26 4, 595.15

26 SRFOFO −0.06 5, 403.80 5, 403.74 5, 403.85

45 SLK12 −1.00 2, 491.00 2, 490.00 2, 492.00

48 SLK15 −14.17 153, 666.99 153, 652.81 153, 681.16

53 SLK20 60.17 583, 788.61 583, 848.79 583, 728.44

54 SLK21 2.50 22, 286.68 22, 289.18 22, 284.18

†Basic variables with zero primal incremental effect coefficients are omitted

As demonstrated in Table 2.7, when the FO production (constrained at the minimum

in the optimal solution) is increased by one unit, the objective function value is re-

duced by the shadow price of FO constraint, and the change in activity values are

determined by the primal incremental effect coefficients. Similar analysis is also
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valid for reducing the FO production by one unit. This analysis is referred to as

primal incremental effect analysis.

Dual Incremental Effects The row vector corresponding to an activity value (ignoringthe

identity structure of the matrix) represents the dual incremental effect coefficients.

The PG activity along with the dual incremental effects coefficients in the transpose

form (column format) are given in Table 2.8. The associated dual values and the

objective function value in the base case are also provided.

As evident from Table 2.8, when the selling price of PG is increased by one unit, the

activity value governs the change in objective function value and the dual incremental

effect coefficient values dictate the change in dual values.Similar analysis is valid

for decrease in the PG price by one unit. This analysis is alsoreferred to as dual

incremental effect analysis.
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Table 2.8: Dual Incremental Effect Coefficients Associated with Premium Gasoline Activ-

ity Value†

Base case cj + 1 cj − 1

PG Objective Objective Objective

activity (bbl) value ($) value ($) value ($)

47, 113.20 701, 823.43 748, 936.63 654, 710.23

Incremental Dual Dual Dual

Z Dual variable∗ effect (aij) value ($/bbl) value ($/bbl) value ($/bbl)

SLK4 PGblend(2) 14.50 −19.32 −4.82 −33.82

SLK5 PGoctane −0.17 −0.28 −0.45 −0.11

SLK9 RGblend(2) 14.50 −19.32 −4.82 −33.82

SLK10 RGoctane −0.17 −0.28 −0.45 −0.11

SLK22 ADcapacity 0.24 8.15 8.39 7.91

SLK26 SRGyield(2) 1.42 −41.30 −39.88 −42.72

SLK28 SRNyield(2) −2.63 −45.57 −48.20 −42.94

SLK37 RFGyield(2) −2.83 −48.44 −51.27 −45.61

SLK38 CCcapacity 0.77 5.27 6.04 4.51

SLK42 CCGyield(2) −1.12 −45.56 −46.67 −44.44

SLK46 SRGsplit(2) 1.42 −41.30 −39.88 −42.72

SLK48 SRNsplit(2) −2.63 −45.57 −48.20 −42.94

SLK54 RFGsplit(2) −2.83 −48.44 −51.27 −45.61

SLK56 CCGsplit(2) −1.12 −45.56 −46.67 −44.44

SRDSCC Reduced cost 0.08 5.35 5.43 5.28

SRNPG Reduced cost 6.30 8.05 14.35 1.75

SRNRG Reduced cost 6.30 8.05 14.35 1.75

SRNDF Reduced cost 2.63 5.25 7.88 2.62

†Dual variables with zero dual incremental effect coefficients are omitted
∗Description of dual variables are given in Table B.1 of Appendix B

30



2.3 Summary

This chapter explained the basic notations and definitions for an LP problem. Further-

more, these definitions and notations are illustrated for the simplified refinery LP model.

This model will be used throughout the remainder of the document to illustrate the differ-

ent concepts that are developed. The next chapter of this dissertation will introduce the

different conditions of degeneracy in LP problems.
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CHAPTER 3

DEGENERACY IN LP

An LP problem could be non-degenerate, primal degenerate, or dual degenerate. These

three different conditions of LP problems are explained geometrically and algebraically in

this section. Moreover, some of the background informationrelated to degeneracy is also

provided.

3.1 Non-Degenerate LP Problem

Definition: An LP problem is considered to be non-degenerate if the optimal solution is

uniquely determined by a single corner point with exactly n constraints passing through it.

A 2-D LP obtained from Taha (2006), represented by Equation (3.1), is used to demon-

strate this phenomenon.

Maximizez = 5x1 + 4x2 (3.1)

Subject to

6x1 + 4x2 ≤ 24 Constraint#1

x1 + 2x2 ≤ 6 Constraint#2

−x1 + x2 ≤ 1 Constraint#3

x2 ≤ 2 Constraint#4

x1, x2 ≥ 0 Non-negativity

The above problem in the general form hasn = 2 variables andm = 4 equations. The

geometric solution of the 2-D LP is illustrated in Figure 3.1. As shown in Figure 3.1, the

optimal vertexC for this 2-D LP is determined by a unique basis, because no more than
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Figure 3.1: Graphical Solution for the 2-D Non-Degenerate LP

(n) two constraints, constraint #1 and constraint #2, pass through the optimum. When the

optimum is represented by a single pointC, the dimension of the “optimal face” is zero.

These are the essential geometric characteristics of a non-degenerate LP problem.

Now the LP problem is solved algebraically using the simplexmethod. The resulting

optimal simplex tableau is shown in Table 3.1. According to Table 3.1 none of the basic

Table 3.1: Optimal Tableau for a 2-D Non-Degenerate LP

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 3/4 1/2 0 0 21

x1 1 0 1/4 -1/2 0 0 3

x2 0 1 -1/8 3/4 0 0 3/2

s3 0 0 3/8 -5/4 1 0 5/2

s4 0 0 1/8 -3/4 0 1 1/2
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(x1, x2, s3, s4) and non-basic variables (s1, s2) have zero primal or dual values, respectively,

in the optimal solution. This is an indication that the LP is non-degenerate. In this case, the

solution is unique, implying that there is a unique value forevery activity, dual value and

incremental effect coefficient.

3.2 Primal Degeneracy

Definition: A basic solutionx ∈ ℜn is said to be primal degenerate if more thann of the

constraints are active atx (Bertsimas and Tsitsiklis, 1997, p.58).

In this section, the concept of primal degeneracy will be explained geometrically and

algebraically using a modified version of a 2-D LP problem obtained from Taha (2006).

The 2-D primal degenerate LP in general form is given in Equation (3.2).

Maximizez = 5x1 + 4x2 (3.2)

Subject to

6x1 + 4x2 ≤ 20 Constraint#1

x1 + 2x2 ≤ 6 Constraint#2

−x1 + x2 ≤ 1 Constraint#3

x2 ≤ 2 Constraint#4

x1, x2 ≥ 0 Non-negativity

The geometric solution of the above 2-D LP is given in Figure 3.2. The shaded region,

ABCDE, is the feasible space and the optimum is given by the vertex, pointC. The given

LP is primal degenerate, because for this 2-D LP problem, only two constraints are required

to define the optimum. However, the optimum vertex, pointC, is over-determined with

three constraints: constraint #1, constraint #2, and constraint #4. Therefore, at this optimum

vertex pointC, three solutions can be generated with two constraints active at a time based

on the combination formula given by Equation (3.3).
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where,N is the number of constraints passing through the optimal point andn is the di-

mension of the problem (number of original decision variables).
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Figure 3.2: Graphical Solution for the 2-D Primal Degenerate LP

The multiple bases associated with the optimal vertex pointC are generated alge-

braically using the simplex method with two constraints active at a time. The three bases

are given by Table 3.2, Table 3.3, and Table 3.4. It is well known that, not all bases as-

sociated with a primal degenerate optimal vertex are dual feasible (optimal). The simplex

tableau given by Table 3.4, generated with constraint #2 andconstraint #4 active, is dual

infeasible and non-optimal because of the “-6” dual value for constraint #4. However, it can

be pivoted further to get the simplex tableau given by Table 3.2. Therefore, the two optimal

bases possible for this primal degenerate vertexC are given by Table 3.2 and Table 3.3.
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Table 3.2: Primal Degenerate Solution for the 2-D LP with Constraints #1 and #2 Active

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 3/4 1/2 0 0 18

x1 1 0 1/4 -1/2 0 0 2

x2 0 1 -1/8 3/4 0 0 2

s3 0 0 3/8 -5/4 1 0 1

s4 0 0 1/8 -3/4 0 1 0

Table 3.3: Primal Degenerate Solution for the 2-D LP with Constraints #1and #4 Active

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 5/6 0 0 2/3 18

x1 1 0 1/6 0 0 -2/3 2

x2 0 1 0 0 0 1 2

s2 0 0 -1/6 1 0 -4/3 0

s3 0 0 1/6 0 1 -5/3 1

Table 3.4: Primal Degenerate Solution for the 2-D LP with Constraints #2 and #4 Active

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 0 5 0 -6 18

x1 1 0 0 1 0 -2 2

x2 0 1 0 0 0 1 2

s1 0 0 1 -6 0 8 0

s3 0 0 0 1 1 -3 1
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Notice that both the optimal simplex tableaux (Table 3.2 andTable 3.3) have a unique

objective function value and primal solution (activities), but different dual solutions (re-

duced cost and shadow prices). In both cases, at least one of the basic variables has a zero

activity value. In the solution presented in Table 3.2, the basic variables4 has an activity

of zero. In Table 3.3, basic variables1 has an activity value of zero. These observations

are an indication of primal degeneracy and are one of the distinguishing characteristics of a

primal degenerate LP. As discussed later in Chapter 4, an activity of zero does not indicate

primal degeneracy under certain conditions.

3.2.1 Consequence of Primal Degeneracy

Interpretation of LP optimal solutions under primal degeneracy becomes difficult, because

primal degeneracy results in multiple dual solutions and unique primal solutions. The

optimal dual value of an LP problem is interpreted either as reduced cost of a decision

variable or as the shadow price of a constraint and has significant managerial interest. Many

authors define shadow price based on managerial requirement. The most widely accepted

definition of shadow price is given as follows: shadow price,pi, of the ith resource,bi,

is the achievable rate of increase in the objective functionper unit increase in resource

(Aucamp and Steinberg, 1982). Mathematically, the definition of shadow price is given by

Equation (3.4), when the partial derivative exists.

pi =
∂zmax

∂bi

, 1 ≤ i ≤ m (3.4)

wherezmax is the optimal objective function value as a function of R.H.Sof the constraint

bi, andpi is the shadow price ifith constraint. Here ‘p’ stands for price. Different versions

of the definitions of shadow price associated with differentmanagerial interpretations can

be found in Goyal and Soni (1984), Goh (1996), and Ronen (1982).
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Since primal degeneracy produces multiple optimal dual solutions, the “true” shadow

price values among the multiple optimal dual solutions mustbe identified to make correct

business decisions. The most cited reference for the identification of true shadow price is

Aucamp and Steinberg (1982). They make the case that all the optimal dual variablesy∗
i

do not necessarily correspond to shadow price. From a petroleum refining standpoint, this

implies that not all dual values are physically realizable.The process of characterizing and

interpreting dual values from a refinery LP that is primal degenerate is discussed in detail

in the next chapter.

3.3 Dual Degeneracy

An LP is said to be dual degenerate or have alternative optimaif every basic optimal so-

lution to the dual is degenerate. This study chooses to use the term “dual degeneracy” to

refer to LP that has alternative optima. The present study defines dual degeneracy in LP as

follows:

Definition: An LP problem is said to be dual degenerate or have multiple optima if the

dimension of the optimal face is larger than zero.

The phenomenon of dual degeneracy is explained geometrically and algebraically using

a 2-D LP problem obtained from Taha (2006). The 2-D dual degenerate LP in general form

is given in Equation (3.5).

Maximizez = 2x1 + 4x2 (3.5)

Subject to

x1 + 2x2 ≤ 5 Constraint#1

x1 + x2 ≤ 4 Constraint#2

x1, x2 ≥ 0 Non-negativity
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The geometric solution of the above 2-D LP is given in Figure 3.3. The feasible space

for this problem is denoted by the shaded region ABCD. By inspection of Figure 3.3, one of

the active constraints (constraint #1) is parallel to the objective function line. Therefore, the

entire line segment DC in Figure 3.3 is considered to be optimum. A line has a dimension

of one in hyperspace. Since the dimension of the optimal faceis larger than zero; the

problem is dual degenerate and does not have a unique solution. All of the solutions have

the same objective function value, but the activities defined by the coordinate values of

every solution point are different.
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Figure 3.3: Graphical Solution for the 2-D Dual Degenerate LP

There are two distinct solutions at corner points D (x1 = 0, x2 = 5/2) and C (x1 =

3, x2 = 1). Apart from these two corner point solutions, from the linesegment DC, an in-

finite number of optimal solutions with the same objective function value can be generated

using the convex combination formula given by Equation (3.6).

x1 = α × (0) + (1 − α) × (3)

x2 = α × (5/2) + (1 − α) × (1) (3.6)

where0 ≤ α ≤ 1.
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3.3.1 Consequences of Dual Degeneracy

The 2-D LP problem given in the above section is solved by the simplex method. This

method is capable of determining solutions only at the two corner points C and D. The two

optimal simplex tableaux corresponding to the corner points C and D are given in Table 3.5

and Table 3.6.

Table 3.5: Optimal Solution #1 for the 2-D Dual Degenerate LP

Basis x1 x2 s1 s2 RHS

z 0 0 2 0 10

x2 1/2 1 1/2 0 5/2

s2 1/2 0 -1/2 1 3/2

Table 3.6: Optimal Solution #2 for the 2-D Dual Degenerate LP

Basis x1 x2 s1 s2 RHS

z 0 0 2 0 10

x2 0 1 1 -1 1

x1 1 0 -1 2 3

Mathematically, a dual degenerate LP is identified by the presence of dual variables

having zero values in the optimum. In this case, the presenceof a zero reduced cost forx1

in Table 3.5 and a zero shadow price fors2 in Table 3.6 are indications that the problem is

dual degenerate.

Also, as evident from both the optimal tableaux in Table 3.5 and Table 3.6, the problem

has an unique objective function value and unique dual solution, but multiple (non-unique)

primal solutions (activity values) and multiple (non-unique) incremental effect coefficients.

This is a defining characteristic of an LP problem when it is dual degenerate.
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The existence of multiple activity values and multiple incremental effect coefficients

creates confusion in choosing a specific solution for implementation in the actual process.

This effect subsequently causes complications in decisionmaking. A methodology to elim-

inate ambiguity and mistakes when interpreting a dual degenerate LP is presented in Chap-

ter 5.
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CHAPTER 4

CHARACTERIZATION OF LP RESULTS UNDER CONDITIONS OF PRIMAL

DEGENERACY

Primal degenerate LP often produces multiple optimal dual values and incremental effect

coefficients with unique objective function value and unique activity values. Determination

of true shadow price values among multiple dual values underconditions of primal degen-

eracy is well established in literature. However, practitioners in the field of petroleum

refinery optimization are not fully aware of the consequences of primal degeneracy. This

chapter illustrates the results and procedures for a primaldegenerate refinery LP. The Re-

finery LP presented in Section 2.2 is selected for case study.The original LP problem is

not primal degenerate. Therefore, the LP is converted to a primal degenerate problem by

changing the Fluid Catalytic Cracking (FCC) unit capacity from 30,000 to 21,055 bbl/day.

4.1 Check for Primal Degeneracy

The modified LP is solved using LINDO, and an optimal solutionis found. The optimal

basis, the corresponding basis index, and activity values are given in Table 4.1. Inspection

of Table 4.1 reveals that 22 of the 58 basic variables have zero values. Among the 22

variables, 21 are the slacks associated with material balance equality constraints. If only

these 21 variables have zero values, primal degeneracy is caused only by a specific repre-

sentation of the problem (Bertsimas and Tsitsiklis, 1997). Because, as demonstrated from

Section 2.2.1, before solving the refinery LP, the material balance equality constraints of the

form given in Equation (4.1) are converted to the companion form given in Equation (4.2).
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Table 4.1: Optimal Basis #1 for the Primal Degenerate Refinery LP

Index Variable Activity Index Variable Activity Index Variable Activity

(bbl/day) (bbl/day) (bbl/day)

1 CRUDE 100, 000.00 27 SRG 27, 000.00 54 SLK21 20, 200.00

2 FGAD∗ 3, 542, 000.00 28 SRN 23, 700.00 56 SLK23 0.00

3 SRNRF 12, 198.57 29 SRDS 8, 700.00 58 SLK25 0.00

4 FGRF∗ 1, 935, 913.41 30 SRFO 37, 200.00 60 SLK27 0.00

6 SRFOCC 21, 055.00 31 RFG 11, 320.28 62 SLK29 0.00

7 FGCC∗ 8, 135, 652.00 32 CCG 14, 485.84 64 SLK31 0.00

8 PG 9, 999.97 33 CCFO 4, 625.78 66 SLK33 12, 801.43

9 RG 42, 806.15 34 SLK1 10, 000.00 67 SLK34 0.00

10 DF 30, 972.21 35 SLK2 0.00 69 SLK36 0.00

11 FO 10, 000.00 36 SLK3 0.00 72 SLK39 0.00

12 SRGPG 4, 313.71 39 SLK6 33, 013.62 74 SLK41 0.00

13 RFGPG 5, 686.26 40 SLK7 32, 806.15 76 SLK43 0.00

16 SRGRG 22, 686.29 41 SLK8 0.00 78 SLK45 0.00

17 RFGRG 5, 634.02 44 SLK11 11, 778.64 80 SLK47 0.00

19 CCGRG 14, 485.84 45 SLK12 20, 972.21 82 SLK49 0.00

20 SRNDF 11, 501.43 46 SLK13 0.00 84 SLK51 0.00

21 CCFODF 4, 625.78 48 SLK15 634, 102.63 86 SLK53 0.00

22 SRDSDF 8, 700.00 51 SLK18 0.00 88 SLK55 0.00

23 SRFODF 6, 145.00 53 SLK20 570, 000.00 90 SLK57 0.00

26 SRFOFO 10, 000.00

∗ft3/day.
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Ax = b (4.1)

Ax ≤ b (4.2)

−Ax ≤ −b

Therefore, for each of the equality constraints, one of the two inequalities will be in the

solution basis and the other will be non-basic. Consequently, every optimal solution will

always contain at least 21 variables with primal values (activities) of zero. In order for the

LP to be truly primal degenerate, one or more basic variablesnot associated with an equality

constraint must have a primal value of zero. In this case the basic variable SLK4, which is

the slack variable associated with PG production constraint, has zero value. Therefore, the

LP is primal degenerate.

4.2 Analyzing Single Optimal Solution

In current petroleum refinery optimization practice, only asingle optimal solution is gen-

erated. This section provides a systematic approach to categorize dual values and primal

incremental effect coefficient of a single optimal solution. The task involved in the cate-

gorization strategy is two-fold: one is to characterize dual values as unique or non-unique,

and the other is to categorize dual values asp+ shadow price,p− shadow price, orpinvalid

shadow price. The corresponding primal incremental effectcoefficients will be categorized

asa+
ij, a−

ij, andainvalid
ij .

The primal incremental analysis described in Section 2.1.1will be applied for this clas-

sification strategy.

The dual valueyi of an active constraint
∑n

j=1
aijxj ≤ bi is called thep+ shadow

price if on positively perturbing the R.H.Sbi of this active constraint by a small amount,

δ yields a primal feasible solution. Alternatively, the change in activity values for smaller

perturbationδ given by Equation (4.3) yields a primal feasible solution, implying that all
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the entries inxB,new are positive. The primal incremental effect coefficients corresponding

to this shadow price are referred to as:a+
ij.

xB,new =













b1

...

bm













+ δ













ai,n+1

...

am,n+1
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b1,new

...

bm,new













(4.3)

The dual valueyi of an active constraint
∑n

j=1
aijxj ≤ bi is called thep− shadow

price if on negatively perturbing the R.H.Sbi of this active constraint by a small amount,

δ yields a primal feasible solution. Alternatively, the change in activity values for smaller

perturbationδ given by Equation (4.4) yields a primal feasible solution, implying that all

the entries inxB,new are positive. The primal incremental effect coefficients corresponding

to this shadow price are referred to as:a−
ij.

xB,new =













b1
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bm













− δ













ai,n+1

...

am,n+1













=













b1,new

...

bm,new













(4.4)

The dual valueyi of an active constraint
∑n

j=1
aijxj ≤ bi is called thepinvalid shadow

price if both the operations in Equation (4.3) and Equation (4.4) yield primal infeasible

solutions, implying that at least one entry inxB,new is negative. The primal incremental

effect coefficients corresponding to this shadow price are referred to as:ainvalid
ij .

Also from the above primal incremental effect analysis results, the dual valueyi is

called unique ifp+ = p−; otherwise, it is considered to be non-unique. For each of the

non-unique dual valuesyi, the unavailablep+ or p− can only be determined by generating

alternate optimal solutions.

Now the above approach will be implemented for the single optimal solution deter-

mined in Table 4.1. A value ofδ = 1 will be used in Equation (4.3) and Equation (4.4)

for the purpose of demonstration. The dual values corresponding to this single optimal

solution are given in Table 4.2.
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Table 4.2: Optimal Dual Values #1 for the Primal Degenerate Refinery LP

Z Constraint $/bbl Active at

SLK2 Premium gasoline production −1.94 LL

SLK3 Premium gasoline blending −8.77 LL (Equality)

SLK5 Premium gasoline octane rating −0.60 LL

SLK8 Regular gasoline blend −8.77 LL (Equality)

SLK10 Regular gasoline octane rating −0.60 LL

SLK14 Diesel fuel blending −64.16 LL (Equality)

SLK16 Diesel fuel sulfur specification 47.67 UL

SLK17 Fuel oil production −4.30 LL (Equality)

SLK19 Fuel oil blending −17.44 LL (Equality)

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 LL (Equality)

SLK26 Straight run gasoline yield from atmospheric distillation unit−38.56 LL (Equality)

SLK28 Straight run naphtha yield from atmospheric distillation unit−50.67 LL (Equality)

SLK30 Straight run distillate yield from atmospheric distillation unit−39.08 LL (Equality)

SLK32 Straight run fuel oil yield from atmospheric distillation unit−17.44 LL (Equality)

SLK35 Fuel gas yield from reformer unit −0.02 LL (Equality)

SLK37 Reformed gasoline yield −53.93 LL (Equality)

SLK38 Catalytic cracking (FCC) unit capacity 31.19 UL

SLK40 Fuel gas yield from catalytic cracking unit −0.02 LL (Equality)

SLK42 Catalytic cracked gasoline yield −47.72 LL (Equality)

SLK44 Catalytic cracked fuel oil yield −47.33 LL (Equality)

SLK46 Straight run gasoline split −38.56 LL (Equality)

SLK48 Straight run naphtha split −50.67 LL (Equality)

SLK50 Straight run distillate split −39.08 LL (Equality)

SLK52 Straight run fuel oil split −17.44 LL (Equality)

SLK54 Reformed gasoline split −53.93 LL (Equality)

SLK56 Catalytic cracked gasoline split −47.72 LL (Equality)

SLK58 Catalytic cracked fuel oil split −47.33 LL (Equality)

LL → Lower Limit: implying the GE constraint is active.

UL → Upper Limit: implying the LE constraint is active.
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To categorize dual values, primal incremental analysis is performed for one of the dual

values listed in Table 4.2. The dual value for the Fluid Catalytic Cracking (FCC) capac-

ity constraint is selected for analysis. The FCC capacity is aless than or equal to (LE)

constraint with a dual value of 31.19 $/bbl.

In this case, for the refinery LP, there are 58 activities in the optimal basis, which is

obvious in Table 4.1. Equivalently, there will be 58 elements in the column vector of

primal incremental effect coefficients under the FCC capacity dual value of 31.19 $/bbl

in the optimal simplex tableau. The dual value along with theprimal incremental effect

coefficient data are listed in Table 4.3. Only the primal incremental effect coefficients

having non-zero value in the optimal basis are included in Table 4.3.

The dual value of 31.19 $/bbl is first checked to determine if it is ap+ shadow price.

Therefore, the R.H.S of the FCC capacity constraint is positively incremented by +1 bbl

from 20,155 to 20,156 bbl/day. Based on primal incremental effect analysis, the effect of

this variation on the activity values are determined by adding the set of original activity

values (primal values) with the incremental effect coefficient values. The results are listed

under +1 FCC capacity increase in Table 4.3. For the positive FCC capacity increment,

all the activities in Table 4.3 except the slack associated with the atmospheric distillation

capacity remained positive. As seen in Table 4.3, the distillation slack activity (SLK22)

changed from 0 bbl/day to -3.58 bbl/day. This indicates thatthe new solution is primal

infeasible as negative flow rates are physically unachievable. Consequently, the dual value

31.19$/bbl for the FCC capacity constraint is not ap+ shadow price.
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Table 4.3: Primal Incremental Effect Analysis for the LE constraint†

FCC Original +1 FCC capacity -1 FCC capacity

capacity solution increase decrease

Z 31.19 $
bbl

$594, 259.67 $594, 290.86 $594, 228.49

Solution Incremental Activity Activity Activity

Index basis effect (aij) bbl/day bbl/day bbl/day

1 CRUDE 3.58 100, 000.00 100, 003.58∗ 99996.42

2 FGAD1 126.69 354, 1999.41 354, 2126.09 354, 1872.72

3 SRNRF 0.23 12, 198.58 12, 198.81 12, 198.35

4 FGRF1 36.20 1, 935, 915.00 1, 935, 951.20 1, 935, 878.80

6 SRFOCC 1.00 21, 055.00 21, 056.00 21, 054.00

7 FGCC1 386.40 8, 135, 652.00 8, 136, 038.40 8, 135, 265.60

9 RG 1.87 42, 806.12 42, 807.99 42, 804.25

10 DF 1.48 30, 972.19 30, 973.67 30, 970.71

16 SRGRG 0.97 22, 686.27 22, 687.24 22, 685.30

17 RFGRG 0.21 5, 634.01 5, 634.22 5, 633.80

19 CCGRG 0.69 14, 485.84 14, 486.53 14, 485.15

20 SRNDF 0.62 11, 501.41 11, 502.03 11, 500.79

21 CCFODF 0.22 4, 625.78 4, 626.00 4, 625.56

22 SRDSDF 0.31 8, 700.00 8, 700.31 8, 699.69

23 SRFODF 0.33 6, 144.99 6, 145.32 6, 144.66

27 SRG 0.97 27, 000.00 27, 000.96 26, 999.03

28 SRN 0.85 23, 700.00 23, 700.84 23, 699.15

29 SRDS 0.31 8, 700.00 8, 700.31 8, 699.69

30 SRFO 1.33 37, 199.99 37, 201.32 37, 198.66

31 RFG 0.21 11, 320.28 11, 320.50 11, 320.07

32 CCG 0.69 14, 485.84 14, 486.53 14, 485.15

33 CCFO 0.22 4, 625.78 4, 626.00 4, 625.56

34 SLK1 −3.58 10, 000.00 9, 996.42 10, 003.58

40 SLK7 1.87 32, 806.12 32, 807.99 32, 804.25

44 SLK11 0.63 11, 778.65 11, 779.28 11, 778.02

45 SLK12 1.48 20, 972.19 20, 973.67 20, 970.71

48 SLK15 31.61 634, 102.07 634, 133.67 634, 070.46

55 SLK22 −3.58 0.00 −3.58∗ 3.58

66 SLK33 −0.23 12, 801.42 12, 801.19 12, 801.65

∗Not physically realizable.
†Basic variables with primal incremental effect coefficients of zero valueshave been omitted.
1ft3/day.
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In a petroleum refinery LP, most of the activities will be in terms of flow rate (bbl/day)

and therefore the activities should always be a positive quantity for it to be physically real-

izable or to be physically implementable in the process. Therefore, the -3.58 bbl/day distil-

lation slack activity will not be physically realized or cannot be physically implemented in

the actual process. Furthermore, this negative slack -3.58bbl/day demands a crude distilla-

tion capacity of 100,003.58 bbl/day, which is 3.38 bbl/day more than the 100,000 bbl/day

of crude distillation capacity physically available in theprocess. Consequently, the dual

value 31.19$/bbl is not physically realizable for a positive increase in FCC capacity.

Based on the above argument, in this research the term “true shadow price” will be

replaced with “physically realizable shadow price” and theterm “primal feasibility” will

be replaced with “physically realizable activities”. These are more explicit and improve

comprehension by engineers who use LP results but are not familiar with mathematical LP

nomenclature.

Now, the FCC dual value of 31.19$/bbl is evaluated to determine whether it is ap−

shadow price. The FCC capacity constraint is negatively decremented from 20,155 to

20,154 bbl/day and the primal incremental effect analysis is repeated by subtracting the

incremental effect coefficient from the original activity (primal value). Results are shown

in the last column of Table 4.3. All activities remained positive, which implies the resultant

activities are primal feasible. Thus, the dual value 31.19$/bbl is physically realizable for

a negative perturbation of the FCC constraint and referred toasp− shadow price. Since

the dual value 31.19$/bbl for the FCC constraint is ap− and notp+, this impliesp+ 6= p−.

Consequently, the dual value of FCC constraint is not unique.

Similar primal incremental effect analysis is performed for all the dual values listed in

Table 4.2 and the resultant categorization is presented in Table 4.4.

In order to determine the missingp+ or p− shadow price of constraints in Table 4.4,

alternate optimal solutions have to be generated.
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Table 4.4: Classification of Dual Values for the Primal Degenerate Refinery LP Obtained

from the Single Optimal Solution

Constraint Dual Value Category Category

$/bbl I II

Premium gasoline production −1.94 p− Non-unique

Premium gasoline blending −8.77 p− Non-unique

Premium gasoline octane rating −0.60 p− Non-unique

Regular gasoline blend −8.77 p− Non-unique

Regular gasoline octane rating −0.60 p− Non-unique

Diesel fuel blending −64.16 p+ Non-unique

Diesel fuel sulfur specification 47.67 p− Non-unique

Fuel oil production −4.30 p+ Non-unique

Fuel oil blending −17.44 p− Non-unique

Fuel gas yield from atmospheric distillation unit −0.02 p+ = p− Unique

Straight run gasoline yield from atmospheric distillation unit−38.56 p− Non-unique

Straight run naphtha yield from atmospheric distillation unit−50.67 p+ Non-unique

Straight run distillate yield from atmospheric distillation unit−39.08 p− Non-unique

Straight run fuel oil yield from atmospheric distillation unit −17.44 p− Non-unique

Fuel gas yield from reformer unit −0.02 p+ = p− Unique

Reformed gasoline yield −53.93 p+ Non-unique

Catalytic cracking unit capacity 31.19 p+ Non-unique

Fuel gas yield from catalytic cracking unit −0.02 p+ = p− Unique

Catalytic cracked gasoline yield −47.72 p+ Non-unique

Catalytic cracked fuel oil yield −47.33 p+ Non-unique

Straight run gasoline split −38.56 p− Non-unique

Straight run naphtha split −50.67 p+ Non-unique

Straight run distillate split −39.08 p− Non-unique

Straight run fuel oil split −17.44 p− Non-unique

Reformed gasoline split −53.93 p+ Non-unique

Catalytic cracked gasoline split −47.72 p+ Non-unique

Catalytic cracked fuel oil split −47.33 p+ Non-unique
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4.3 Determining Alternate Optimal Solutions

A new perturbation technique implementing parametric programming is developed at Ok-

lahoma State University (OSU) to determine alternate optimal solutions. Initially, the step-

by-step procedure of this algorithm will be explained. Thenthis algorithm will be imple-

mented to the primal degenerate refinery LP to generate alternate optimal solutions.

4.3.1 New Perturbation Technique Implementing ParametricProgramming

This algorithm is developed based on the suggestions given by Akgul (1984). When the LP

is primal degenerate, the optimal basis is geometrically characterized by a unique vertex.

However, more thann constraints pass through the optimum, wheren is the dimension of

the problem. From this geometric visualization (Figure 3.2), it is apparent that the problem

will have a unique primal solution; conversely, it has alternate dual solutions. The rationale

for using the parametric programming approach for determining alternate optimal basis

corresponding to a primal degenerate vertex is described inSection A.1 of Appendix A

The algorithm exploits the fact that if all constraints passing through the optimum are

parametrically varied one by one, all alternate bases corresponding to the primal degenerate

vertex can be generated with unique primal solutions and alternate dual solutions. This

algorithm can be applied for any single arbitrary optimal solution obtained from an LP

solver.

The steps in the algorithm follow:

Step 1 The set of all active constraints in an optimal solution are determined. Active con-

straints are those constraint whose slack or surplus is maintained at zero value in the

optimal solution. The definition of an active constraint in mathematical notation is

given as follows:

A constraint in an LP problem in general form is written as given in Equation (4.5).

51



n
∑

j=1

aijxj ≤ bi (4.5)

After adding a slacksi, the above constraint can be written in the standard form as

given in Equation (4.6).

n
∑

j=1

aijxj + si = bi (4.6)

The constraint,
∑n

j=1
aijxj ≤ b, is active ifsi = 0 in the optimal solution.

Step 2 All the active constraints are parametrically perturbed one at a time using paramet-

ric programming. This perturbation technique is explainedas follows: if bi corre-

sponds to an active constraint, the R.H.S is parametrically varied asbi + λd using

parametric programming, whereλ is the parameter andd is the directional vector.

The parametric variation will generate alternate optimal basis corresponding to the

primal degenerate optimal vertex. The alternate optimal basis obtained by paramet-

rically varying this constraint is listed as{B1,1 · · ·B1,q}, where the index1, q is the

number of alternate basis obtained varying constraint number one.

Step 3 Similar perturbation using parametric programming is performed for all other ac-

tive constraints. After doing this, the possible alternatebasis obtained by this process

is listed as:{B1,1 · · ·B1,q, B2,1 · · ·B2,q, · · · , · · ·BN,1 · · ·BN,q}, whereN is the num-

ber of active constraints.

Step 4 The different set of basis obtained in step 3 is compared to each other and the

unique basis among them are determined and listed as:{B1 · · ·Br}, wherer is the

number of distinct basis.

Step 5 The unique set of alternate basis obtained in step 4 is used tocreate the set of

multiple optimal simplex tableaux corresponding to the primal degenerate vertex as

given in Table 4.5
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Table 4.5: Optimal Tableau, Inverse Matrix Format

cT − cBB−1A −cBB−1 cBB−1b

B−1A B−1 B−1b

wherec is the cost coefficient of decision variables,cB is the cost coefficient of basic

variables,B is the optimal basis matrix, andA is them × n matrix.

Step 6 Using the alternate dual solutions obtained in step 5, thep+ shadow price of a

constraint is determined as given in Equation (4.7)

p+ = min {y1 · · · ym} (4.7)

and thep− shadow price of a constraint is determined as given in Equation (4.8).

p− = max {y1 · · · ym} (4.8)

The proof for the above development is given in Aucamp (1984)and the above claim

is valid only if alternate optimal solutions includingp+ andp− are produced. The

most reliable method to verify whether a dual value is ap+ or p− is by primal in-

cremental analysis approach discussed in Section 4.2. Furthermore the primal incre-

mental effect coefficients associated withp+ andp− are identified as:a+
ij anda−

ij.

Demonstration of this algorithm for a 2-D primal degenerateLP is given in Appendix A.

4.3.2 Implementation

Parametric perturbation technique is applied to the primaldegenerate refinery LP. Results

showed that in addition to the optimal bases given in Table 4.1, three other optimal bases

are attainable. The multiple optimal bases are given in Table 4.6, Table 4.8, and Table 4.10.

Their corresponding dual values are listed in Table 4.7, Table 4.9, and Table 4.11.
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Table 4.6: Optimal Basis #2 for the Primal Degenerate Refinery LP

Index Variable Activity Index Variable Activity Index Variable Activity

(bbl/day) (bbl/day) (bbl/day)

1 CRUDE 100, 000.00 27 SRG 27, 000.00 54 SLK21 20, 200.00

2 FGAD∗ 3, 542, 000.00 28 SRN 23, 700.00 56 SLK23 0.00

3 SRNRF 12, 198.57 29 SRDS 8, 700.00 58 SLK25 0.00

4 FGRF∗ 1, 935, 913.41 30 SRFO 37, 200.00 60 SLK27 0.00

6 SRFOCC 21055.00 31 RFG 11, 320.28 62 SLK29 0.00

7 FGCC∗ 8, 135, 652.00 32 CCG 14, 485.84 64 SLK31 0.00

8 PG 9, 999.97 33 CCFO 4, 625.78 66 SLK33 12, 801.43

9 RG 42, 806.15 34 SLK1 10, 000.00 67 SLK34 0.00

10 DF 30, 972.21 35 SLK2 0.00 69 SLK36 0.00

11 FO 10, 000.00 36 SLK3 0.00 72 SLK39 0.00

12 SRGPG 4, 313.71 39 SLK6 33, 013.62 74 SLK41 0.00

13 RFGPG 5, 686.26 40 SLK7 32, 806.15 76 SLK43 0.00

16 SRGRG 22, 686.29 41 SLK8 0.00 78 SLK45 0.00

17 RFGRG 5, 634.02 44 SLK11 11, 778.64 80 SLK47 0.00

19 CCGRG 14, 485.84 45 SLK12 20, 972.21 82 SLK49 0.00

20 SRNDF 11, 501.43 46 SLK13 0.00 84 SLK51 0.00

21 CCFODF 4, 625.78 48 SLK15 634, 102.63 86 SLK53 0.00

22 SRDSDF 8, 700.00 51 SLK18 0.00 88 SLK55 0.00

23 SRFODF 6, 145.00 53 SLK20 570, 000.00 90 SLK57 0.00

26 SRFOFO 10, 000.00

∗ft3/day.
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Table 4.7: Optimal Dual Values #2 for the Primal Degenerate Refinery LP

Z Constraint $/bbl Active at

SLK4 Premium gasoline blending −19.32 LL (Equality)

SLK5 Premium gasoline octane rating −0.28 LL

SLK9 Regular gasoline blending −19.32 LL (Equality)

SLK10 Regular gasoline octane rating −0.28 LL

SLK14 Diesel fuel blending −52.42 LL (Equality)

SLK16 Diesel fuel sulfur specification 24.20 UL

SLK17 Fuel oil production −15.57 LL (Equality)

SLK19 Fuel oil blending −28.71 LL (Equality)

SLK22 Atmospheric distillation unit capacity 3.78 UL

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 LL (Equality)

SLK26 Straight run gasoline yield from atmospheric distillation unit−41.30 LL (Equality)

SLK28 Straight run naphtha yield from atmospheric distillation unit−45.57 LL (Equality)

SLK30 Straight run distillate yield from atmospheric distillation unit−39.69 LL (Equality)

SLK32 Straight run fuel oil yield from atmospheric distillation unit−28.71 LL (Equality)

SLK35 Fuel gas yield from reformer unit −0.02 LL (Equality)

SLK37 Reformed gasoline yield −48.44 LL (Equality)

SLK38 Catalytic cracking unit capacity 17.67 UL

SLK40 Fuel gas yield from catalytic cracking unit −0.02 LL (Equality)

SLK42 Catalytic cracked gasoline yield −45.56 LL (Equality)

SLK44 Catalytic cracked fuel oil yield −43.88 LL (Equality)

SLK46 Straight run gasoline split −41.30 LL (Equality)

SLK48 Straight run naphtha split −45.57 LL (Equality)

SLK50 Straight run distillate split −39.69 LL (Equality)

SLK52 Straight run fuel oil split −28.71 LL (Equality)

SLK54 Reformed gasoline split −48.44 LL (Equality)

SLK56 Catalytic cracked gasoline split −45.56 LL (Equality)

SLK58 Catalytic cracked fuel oil split −43.88 LL (Equality)

LL → Lower Limit: implying the GE constraint is active.

UL → Upper Limit: implying the LE constraint is active.
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Table 4.8: Optimal Basis #3 for the Primal Degenerate Refinery LP

Index Variable Activity Index Variable Activity Index Variable Activity

(bbl/day) (bbl/day) (bbl/day)

1 CRUDE 100, 000.00 27 SRG 27, 000.00 54 SLK21 20, 200.00

2 FGAD∗ 3, 542, 000.00 28 SRN 23, 700.00 56 SLK23 0.00

3 SRNRF 12, 198.57 29 SRDS 8, 700.00 58 SLK25 0.00

4 FGRF∗ 1, 935, 913.41 30 SRFO 37, 200.00 60 SLK27 0.00

6 SRFOCC 21, 055.00 31 RFG 11, 320.28 62 SLK29 0.00

7 FGCC∗ 8, 135, 652.00 32 CCG 14, 485.84 64 SLK31 0.00

8 PG 10, 000.00 33 CCFO 4, 625.78 66 SLK33 12, 801.43

9 RG 42, 806.11 34 SLK1 10, 000.00 67 SLK34 0.00

10 DF 30, 972.21 36 SLK3 0.00 69 SLK36 0.00

11 FO 10, 000.00 37 SLK4 0.00 72 SLK39 0.00

12 SRGPG 4, 313.73 39 SLK6 33, 013.57 74 SLK41 0.00

13 RFGPG 5, 686.27 40 SLK7 32, 806.11 76 SLK43 0.00

16 SRGRG 22, 686.27 41 SLK8 0.00 78 SLK45 0.00

17 RFGRG 5, 634.01 44 SLK11 11, 778.66 80 SLK47 0.00

19 CCGRG 14, 485.84 45 SLK12 20, 972.21 82 SLK49 0.00

20 SRNDF 11, 501.43 46 SLK13 0.00 84 SLK51 0.00

21 CCFODF 4, 625.78 48 SLK15 634, 102.63 86 SLK53 0.00

22 SRDSDF 8, 700.00 51 SLK18 0.00 88 SLK55 0.00

23 SRFODF 6, 145.00 53 SLK20 570, 000.00 90 SLK57 0.00

26 SRFOFO 10, 000.00

∗ft3/day.
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Table 4.9: Optimal Dual Values #3 for the Primal Degenerate Refinery LP

Z Constraint $/bbl Active at

SLK2 Premium gasoline production −1.33 LL

SLK5 Premium gasoline octane rating −0.50 LL

SLK9 Regular gasoline blending 0.00 LL (Equality)

SLK10 Regular gasoline octane rating −0.50 LL

SLK14 Diesel fuel blending −60.49 LL (Equality)

SLK16 Diesel fuel sulfur specification 40.34 UL

SLK17 Fuel oil production −7.82 LL

SLK19 Fuel oil blending −20.96 LL (Equality)

SLK22 Atmospheric distillation unit capacity 1.18 UL

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 LL (Equality)

SLK26 Straight run gasoline yield from atmospheric distillation unit−39.41 LL (Equality)

SLK28 Straight run naphtha yield from atmospheric distillation unit−49.07 LL (Equality)

SLK30 Straight run distillate yield from atmospheric distillation unit−39.27 LL (Equality)

SLK32 Straight run fuel oil yield from atmospheric distillation unit−20.96 LL (Equality)

SLK35 Fuel gas yield from reformer unit −0.02 LL (Equality)

SLK37 Reformed gasoline yield −52.22 LL (Equality)

SLK38 Catalytic cracking unit capacity 26.96 UL

SLK40 Fuel gas yield from catalytic cracking unit −0.02 LL (Equality)

SLK42 Catalytic cracked gasoline yield −47.04 LL (Equality)

SLK44 Catalytic cracked fuel oil yield −46.25 LL (Equality)

SLK46 Straight run gasoline split −39.41 LL (Equality)

SLK48 Straight run naphtha split −49.07 LL (Equality)

SLK50 Straight run distillate split −39.27 LL (Equality)

SLK52 Straight run fuel oil split −20.96 LL (Equality)

SLK54 Reformed gasoline split −52.22 LL (Equality)

SLK56 Catalytic cracked gasoline split −47.04 LL (Equality)

SLK58 Catalytic cracked fuel oil split −46.25 LL (Equality)

LL → Lower Limit: implying the GE constraint is active.

UL → Upper Limit: implying the LE constraint is active.
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Table 4.10: Optimal Basis #4 for the Primal Degenerate RefineryLP

Index Variable Activity Index Variable Activity Index Variable Activity

(bbl/day) (bbl/day) (bbl/day)

1 CRUDE 100, 000.00 27 SRG 27, 000.00 54 SLK21 20, 200.00

2 FGAD∗ 3, 542, 000.00 28 SRN 23, 700.00 56 SLK23 0.00

3 SRNRF 12, 198.57 29 SRDS 8, 700.00 58 SLK25 0.00

4 FGRF∗ 1, 935, 913.41 30 SRFO 37, 200.00 60 SLK27 0.00

6 SRFOCC 21, 055.00 31 RFG 11, 320.28 62 SLK29 0.00

7 FGCC∗ 8, 135, 652.00 32 CCG 14, 485.84 64 SLK31 0.00

8 PG 10, 000.00 33 CCFO 4, 625.78 66 SLK33 12, 801.43

9 RG 42, 806.11 34 SLK1 10, 000.00 67 SLK34 0.00

10 DF 30, 972.21 37 SLK4 0.00 69 SLK36 0.00

11 FO 10, 000.00 39 SLK6 33, 013.73 72 SLK39 0.00

12 SRGPG 4, 313.73 40 SLK7 32, 806.11 74 SLK41 0.00

13 RFGPG 5, 686.27 41 SLK8 0.00 76 SLK43 0.00

16 SRGRG 22, 686.27 42 SLK9 0.00 78 SLK45 0.00

17 RFGRG 5, 634.00 44 SLK11 11, 778.50 80 SLK47 0.00

19 CCGRG 14, 485.84 45 SLK12 20, 972.21 82 SLK49 0.00

20 SRNDF 11, 501.43 46 SLK13 0.00 84 SLK51 0.00

21 CCFODF 4, 625.78 48 SLK15 634, 102.63 86 SLK53 0.00

22 SRDSDF 8, 700.00 51 SLK18 0.00 88 SLK55 0.00

23 SRFODF 6, 145.00 53 SLK20 570, 000.00 90 SLK57 0.00

26 SRFOFO 10, 000.00

∗ft3/day.

58



Table 4.11: Optimal Dual Values #4 for the Primal DegenerateRefinery LP

Z Constraint $/bbl Active at

SLK2 Premium gasoline production −1.33 LL

SLK3 Premium gasoline blending 0.00 LL (Equality)

SLK5 Premium gasoline octane rating −0.50 LL

SLK10 Regular gasoline octane rating −0.50 LL

SLK14 Diesel fuel blending −60.49 LL (Equality)

SLK16 Diesel fuel sulfur specification 40.34 UL

SLK17 Fuel oil production −7.82 LL

SLK19 Fuel oil blending −20.96 LL (Equality)

SLK22 Atmospheric distillation unit capacity 1.18 UL

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 LL (Equality)

SLK26 Straight run gasoline yield from atmospheric distillation unit−39.41 LL (Equality)

SLK28 Straight run naphtha yield from atmospheric distillation unit−49.07 LL (Equality)

SLK30 Straight run distillate yield from atmospheric distillation unit−39.27 LL (Equality)

SLK32 Straight run fuel oil yield from atmospheric distillation unit−20.96 LL (Equality)

SLK35 Fuel gas yield from reformer unit −0.02 LL (Equality)

SLK37 Reformed gasoline yield −52.22 LL (Equality)

SLK38 Catalytic cracking unit capacity 26.96 UL

SLK40 Fuel gas yield from catalytic cracking unit −0.02 LL (Equality)

SLK42 Catalytic cracked gasoline yield −47.04 LL (Equality)

SLK44 Catalytic cracked fuel oil yield −46.25 LL (Equality)

SLK46 Straight run gasoline split −39.41 LL (Equality)

SLK48 Straight run naphtha split −49.07 LL (Equality)

SLK50 Straight run distillate split −39.27 LL (Equality)

SLK52 Straight run fuel oil split −20.96 LL (Equality)

SLK54 Reformed gasoline split −52.22 LL (Equality)

SLK56 Catalytic cracked gasoline split −47.04 LL (Equality)

SLK58 Catalytic cracked fuel oil split −46.25 LL (Equality)

LL → Lower Limit: implying the GE constraint is active.

UL → Upper Limit: implying the LE constraint is active.
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Once all the optimal bases are found, thep+ shadow price of a constraint is determined

as given in Equation (4.7) and thep− shadow price of a constraint is determined as given

in Equation (4.8). The dual values obtained for the Premium Gasoline (PG) production

constraint is considered to demonstrate this procedure.

The dual value of PG production constraint corresponding tooptimal basis #1 is given

in Table 4.2 as: -1.94$/bbl. In case of optimal basis #2 (Table 4.6), the slack variable SLK2

associated with the PG constraint is in the basis and maintained at zero value. Therefore,

the dual value is 0$/bbl. The dual value corresponding to both optimal basis #3 and optimal

basis #4 is -1.33$/bbl (Table 4.9 and Table 4.11). From these dual values, thep+ shadow

price of PG constraint is determined as given in Equation (4.9).

p+ = min {−1.94, 0,−1.33,−1.33} = −1.94 (4.9)

and thep− shadow price of PG constraint is determined as given in Equation (4.10).

p− = max {−1.94, 0,−1.33,−1.33} = 0 (4.10)

Thep+ andp− shadow price for all other constraints are determined for the refinery LP by

completing a similar analysis, the results are tabulated inTable 4.12, and the corresponding

primal incremental effect coefficients are determined asa+
ij anda−

ij, respectively.

The reporting guidelines given by Ho (2000) are followed to generate Table 4.12. The

p+ andp− shadow price is given in terms of rate of change of objective function when

the right hand side (R.H.S) of the constraint is perturbed. For example, as evident from

Table 4.12, thep+ shadow price of PG production constraint is -1.94$/bbl, meaning that the

objective function will decrease by $1.94 when the R.H.S of the PG production constraint

is increased by 1. Similarly, thep− shadow price of PG production constraints is given

as 0$/bbl, implying that the objective function will not change when the R.H.S of this

constraint is decreased by 1.
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Table 4.12: Physically Realizable Shadow Prices for the Primal Degenerate LP

Z Constraints p+ p−

($/bbl) $/bbl)

SLK2 Premium gasoline production −1.94 0.00

SLK3 Premium gasoline blend −19.32 0.00

SLK5 Premium gasoline octane rating −0.60 0.28

SLK8 Regular gasoline blend −19.32 0.00

SLK10 Regular gasoline octane rating −0.60 0.28

SLK14 Diesel fuel blend −64.16 52.42

SLK16 Diesel fuel sulfur 24.20 −47.67

SLK17 Fuel oil production −15.57 4.30

SLK19 Fuel oil blend −28.71 17.44

SLK22 Distillation capacity 0.00 −3.78

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 0.02

SLK26 Straight run gasoline yield from atmospheric distillation unit−41.30 38.56

SLK28 Straight run naphtha yield from atmospheric distillation unit−50.67 45.57

SLK30 Straight run distillate yield from atmospheric distillation unit−39.69 39.08

SLK32 Straight run fuel oil yield from atmospheric distillation unit−28.71 17.44

SLK35 Fuel gas yield from reformer unit −0.02 0.02

SLK37 Reformed gasoline yield −53.93 48.44

SLK38 Catalytic cracking unit capacity 17.67 −31.19

SLK40 Fuel gas yield from catalytic cracking unit −0.02 0.02

SLK42 Catalytic cracked gasoline yield −47.72 45.56

SLK44 Catalytic cracked fuel oil yield −47.33 43.88

SLK46 Straight run gasoline split −41.30 38.56

SLK48 Straight run naphtha split −50.67 45.57

SLK50 Straight run distillate split −39.69 39.08

SLK52 Straight run fuel oil split −28.71 17.44

SLK54 Reformed gasoline split −53.93 48.44

SLK56 Catalytic cracked gasoline split −47.72 45.56

SLK58 Catalytic cracked fuel oil split −47.33 43.88
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4.4 Summary

This chapter examined the condition of primal degeneracy for a refinery LP and imple-

mented the primal incremental analysis approach developedby Aucamp and Steinberg

(1982) to determine true shadow prices. In addition to determining true shadow prices,

this study has extended the primal incremental effect analysis method to determine true

incremental effect coefficients.

In current refinery practice only a single optima solution isproduced. The user may not

be aware that the LP is primal degenerate with multiple dual values. This study has utilized

the primal incremental analysis approach to characterize dual values obtained from a single

optimal solution as unique or non-unique dual value andp+, p− or pinvalid shadow prices.
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CHAPTER 5

CHARACTERIZATION OF LP RESULTS UNDER CONDITIONS OF DUAL

DEGENERACY

The state of dual degeneracy in LP produces alternate optimal solutions with multiple ac-

tivity values, unique dual values and unique objective function value. Unlike primal de-

generacy, it appears that a definitive approach for choosinga specific solution among the

multiple solutions is not developed so far. This work has developed a truly unique ap-

proach to distinguish the significance of implementing one solution to the other based on a

business logic.

In this chapter some of the previous work related to dual degeneracy is introduced.

Then, the novel methodologies developed in this work are presented along with the results

obtained for the simplified refinery LP model.

5.1 Background

In this section, first, an overview of previous work related to dual degeneracy is discussed

in detail. Finally, motivation for this research is stated based on the gaps found in literature.

5.1.1 Dual Degeneracy and Interpretation of LP Solution

Initial studies on this topic were done in the field of farm planning. According to Powell

(1969) “linear programming is an advisory aid and may be usedto generate some of the

sub-optimal and alternate optimal solutions based on the significant preference expressed

by the farmers. From the set of solutions, the farmer can select a farm plan which most

satisfactorily corresponds to his real planning objectives”. Therefore, based on the opinion
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given by Powell (1969), when alternate optima exist, any solution that meets the needs of

the farmer can be implemented. Furthermore, Powell (1969) recommends to use even a

suboptimal solution if that is the preference of the farmer.

The topic of alternative optima has gained prominence and has led to interesting debates

since the publications of Paris (Paris, 1981, 1983, 1985). “For many years, LP users have

regarded multiple solutions either as an exceptional eventor as a nuisance to be avoided.

Indeed, in many circles, multiple optimal solutions are a source of embarrassment and often

the main goal of researchers is to define sufficient conditions for unique solutions” (Paris,

1985).

In a discussion provided by Paris (1991)[p.227], alternative optima is viewed favor-

ably because the existence of multiple optimal solutions makes the final selection strategy

a real problem of choice to be determined with criteria otherthan mathematical program-

ming. Paris (1991) expressed that when an LP problem exhibits multiple optimal solutions,

it means that the problem at hand provides potentially more flexible implementation options

than a similar problem that exhibits unique optimal solutions.

An algorithmic approach on choosing among multiple optimalsolutions is also given

by Paris (1991)[p.229-223]. The procedure suggests solving the overall optimization prob-

lem in two stages. First, the optimal linear programming solution maximizing the primary

objective should be sought. Second, if there are multiple solutions, then the extreme points

of the solution space should be determined, and quadratic programming should be used

to search for a unique linear combination of these extreme points that minimizes the sum

of squares of deviations of optimal activity from the real world activity levels. This al-

gorithm, proposed to determine a unique solution among multiple optimal solutions, is

slightly modified by McCarl and Nelson (1983). The modified algorithm does not require

the determination of all the extreme points corresponding to alternate optima.

Miller (1985) was not convinced by the methodologies developed by Paris (1991)[p.229-

223] and McCarl and Nelson (1983). Because, when one moves awayfrom basic optimal
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solutions, a number of the usual primal-dual properties aredisturbed. This fact must be

taken into account, when the optimal solution to the dual problem is also important to the

analyst. Furthermore, in addition to the above methods, Drynan (1986) proposed that it

may be best to solve an initial LP and if there are multiple optima, select the best in the

second stage. Alternatively, it may be best to subjectivelyevaluate many near-optimal and

optimal solutions. Finally, it may be best to solve a comprehensive LP, in which case the

tradeoffs between goals need to be represented by a set of prespecified weights.

In summary, based on the above discussion, choosing among multiple optimal solutions

is based on the planner’s preference, which is purely based on experience and should be

based on a specific logic.

5.1.2 Theoretical Studies on Dual Degeneracy

Apart from developing algorithms on interpreting multipleoptimal solutions, several stud-

ies have been done to give more theoretical insight to the concept of dual degeneracy.

Pioneering research in this field began by studying the uniqueness of solutions in linear

programming problems (Mangasarian, 1979). A normal form ofan optimal solution of an

LP problem is defined and an algorithm is proposed to reduce the optimal solution to its

normal form. This algorithm enables one to describe the optimal solution set dimension

(Kantor, 1993).

In a significant development, Sierksma and Tijssen (2003) developed a relatively simple

procedure to determine the dimension of the optimal solution set and degeneracy degree to

add more insight into understanding dual degeneracy. The theorem developed to determine

the dimension of the optimal solution set is given as follows: In a primal-dual pair of

general LP-models with finite solution, the degeneracy degree of the primal (dual) optimal

face is equal to the dimension of the dual (primal) optimal face.

In the study, given in Appa (2002), dual degeneracy does not always contribute to mul-

tiple solutions. This claim is also substantiated by providing a simple 2-D LP example.
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The coefficients of objective function selected for this example 2-D LP have zero values.

Therefore, this problem cannot be ideally considered as an optimization problem.

Based on the above survey, most of the studies provided methodologies to determine

the dimension of the optimal face when the problem is dual degenerate.

5.1.3 Analysis of Needs and Gaps

In literature, the occurrence of multiple optimal solutions for an LP is viewed favorably,

because this gives flexibility for the user to choose the desired solution. This phenomenon

might be favorable for performing optimization for the basecase where even smaller changes

in market prices are not present. Petroleum refinery optimization is characterized by market

price changes for feed stocks and finished products like gasoline, diesel and kerosene. In

such cases, the existence of multiple solutions adds more confusion and choosing a specific

optimal solution for implementation from the multiple solutions should remain optimal for

smaller changes in market price. The wide array of literature discussing alternate optimal

solutions for an LP under dual degeneracy did not derive enough emphasis on choosing

specific solutions that maintain optimality for smaller changes in market price.

Algorithms to determine a single desired solution from the set of multiple solutions are

given in McCarl and Nelson (1983) and Paris (1991). Concerns have been raised about

these methodologies by Miller (1985), because the solutionproduced using this approach

will not have the shadow price and incremental effect coefficient information. Concerns

raised by Miller (1985) are also a concern for this research because this study is not only

interested on the set of activities and objective function values, but also on incremental

effect coefficients and shadow prices as well.

Market price fluctuation is a common phenomenon in petroleumrefinery operations.

Therefore, implementing a specific solution among alternate optimal solution should sus-

tain optimal profit despite market price fluctuations. Soundeconomic justifications have

to be established on choosing a specific basic solution when alternate optima are present
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to resolve this issue. Moreover, when a specific solution is selected for implementation,

other information such as shadow price and incremental effect coefficient must be readily

available for managerial interpretations.

5.2 Methodology

The state of dual degeneracy in LP produces alternate optimal solutions. A truly innovative

approach is developed in this research to choose among multiple optimal solutions for

implementation in actual petroleum refining processes. Theprincipal logic underlying this

novel approach begs the questions: what solution among the multiple solutions has to be

implemented if the price of a commodity is going to increase in the market? or, what

solution among the multiple optimal solutions has to be implemented if the price of a

commodity is going to decrease? This novel solution approach can be used to analyze the

multiple optimal solutions of a refinery LP.

The solution approach is based on a systematic classification process in which the activ-

ity values are classified into three classes. With referenceto optimal simplex tableau given

in Table 2.1, the activity value of ajth decision variable in the optimal basis is categorized

asc+
optimal, c−optimal, or csuboptimal.

The dual incremental analysis given in Section 2.1.1 of Chapter 2 will be applied for

this classification strategy.

The activity valuebi for thejth decision variable in the optimal basis is calledc+
optimal,

if the operation in Equation (5.1) yields a dual feasible solution, implying that all the entries

in (cnew ynew) are dual feasible.c+
optimal activity value leads to optimal objective function

value when the price of this activity increases within a sensitivity range.
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The activity valuebi for thejth decision variable in the optimal basis is called thec−optimal, if

the operation in Equation (5.2) yields a dual feasible solution, implying that all the entries

in (cnew ynew) are dual feasible.c−optimal activity value leads to optimal objective function

value when the price of this activity decreases within a sensitivity range.
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The activity valuebi for thejth decision variable in the optimal basis is calledcsuboptimal,

if both the operation in Equation (5.1) and Equation (5.2) yields dual infeasible solution,

implying that at least one entry in(cnew ynew) is dual infeasible.csuboptimal activity leads

to non-optimal objective function value when the price of this activity either increases or

decreases.

As an additional finding from the above dual incremental effect analysis, an activity

value bi for the jth decision variable in the optimal basis is considered to beunique if

c+
optimal = c−optimal. Otherwise it is considered to be non-unique. For each of thenon-unique

activity values, the unavailablec+
optimal or c−optimal can be determined by generating alter-

nate optimal solutions. Before introducing the algorithms to determine alternate optimal
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solutions, the dual feasibility condition of an LP problem will be discussed.

The foundation of the above dual incremental effect analysis methodology is based on

the dual feasibility conditions of LP solution. The dual feasibility conditions has to be

clearly understood in relation to petroleum refinery operations to appreciate the validity of

this approach. The following section explains the dual feasibility conditions of LP solution

in the context of petroleum refining process applications.

5.3 Dual Feasibility Condition

Refinery LP is a maximization LP. Therefore, this section deals only with the feasibility

conditions of a maximization LP. Most of the LP texts presentthe dual feasibility conditions

of a maximization LP as given in Table 5.1. As inferred from Table 5.1, for a maximization

LP to be dual feasible, the shadow price of a less than or equalto (LE) constraint must be

positive, the shadow price of a greater than or equal to (GE) constraint must be negative,

shadow price of an equality constraint must be free, and the reduced cost (dual surplus)

must be positive. This condition is universally accepted and is one of the requirements for

the LP solution to be optimal.

Table 5.1: Dual Feasibility Conditions for a Maximization LP

Dual value Sign of dual value

Shadow price of a LE constraint Positive

Shadow price of a GE constraint Negative

Shadow price of a equality constraint Free

Reduced cost (Dual surplus) Positive

Shadow price has units of ($/bbl). This prompts questions such as: Why do the shadow

price of LE constraints have to be positive? Why do the the shadow price of GE constraints

have to be negative? Why do the the reduced costs have to be positive in the optimal solu-
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tion? These questions are answered geometrically by Rardin (1997) and Winston (1991).

According to them for a maximization LP, increasing the R.H.Sof an active LE constraint

is considered as relaxing the constraint, and this adds points to the feasible space or the

size of the feasible region increases. Consequently, the objective function value increases.

Thus, the shadow price associated with the LE constraint in amaximization LP is positive.

Conversely, for a maximization LP, increasing the R.H.S of an active GE is considered as

tightening the constraint and this removes points from the feasible space, or the size of

the feasible region reduces. Consequently, the objective function value reduces. Thus, the

shadow price associated with the GE constraint in a maximization LP is negative.

The above explanation is purely intuitive or geometric, andthe understanding on dual

feasibility in conjunction with petroleum refinery application is required. Although sev-

eral books (Paris, 1991; Dorfman et al., 1958; Wagner, 1975;Geary and McCarthy, 1964)

are completely devoted to the economic interpretation of LPsolution, it seems that a com-

prehensive explanation of dual feasibility criteria in relation to the manufacturing industry

is absent. This section extends the explanation provided byRardin (1997) and Winston

(1991) to understand the feasibility criteria of dual values applied to petroleum refining

process.

5.3.1 Dual Feasibility of an LE Constraint

The atmospheric distillation capacity constraint of the refinery LP is selected to provide a

process explanation for the sign convention associated with the dual value of an LE con-

straint. The distillation capacity constraint is given by Equation (5.3).

CRUDE≤ 100, 000 (5.3)

This capacity constraint stipulates that not more than 100,000 bbl of distillation capac-

ity is available in the petroleum refinery. The optimizer makes use of this capacity only if it

is able to produce valuable products that could contribute to the profitability of a petroleum
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refinery. Otherwise, this resource will not be used in the process and it is left as a slack.

When this constraint becomes binding (constrained) in the process, the optimizer has

exhausted the use of this valuable resource, contributing to the increase in the objective

function value. As a result, increasing the R.H.S of this constrained LE constraint provides

more of this valuable resource, and thus, increases the objective value. Therefore, for a

maximization LP, the shadow price associated with an LE constraint is always positive.

Negative shadow price for an LE constraints implies that theobjective function of a

maximization problem can be decreased by increasing the R.H.S of an active LE constraint.

This result is not economically viable and therefore dual infeasible.

5.3.2 Dual Feasibility of a GE constraint

The Premium Gasoline (PG) production constraint of the refinery LP is selected for demon-

stration. The PG production constraint is given in Equation(5.4).

PG≥ 10, 000 (5.4)

This constraint demands the optimizer to produce at least 10,000 bbl of premium gaso-

line in the refining process. The same constraint can also be viewed from a different per-

spective, if the PG production is profitable or contributes to the increase in the profit margin

of the refinery. Based on the stipulation of the constraint in Equation (5.4) the optimizer

has the liberty to produce more than 10,000 bbl of PG. Anothercrucial question is: What

implication would it make when this PG production constraint (or this GE) becomes con-

strained?

When this constraint becomes constrained in the maximization LP, the optimizer de-

termined that producing more than 10,000 bbl of PG was not profitable and is going to

reduce the profit function (objective value). Consequently,the optimizer limits the produc-

tion of PG to 10,000 bbl. Therefore, when the R.H.S of this active production constraint is

increased, the objective value is definitely going to decrease.

71



Positive shadow price for a GE constraint implies that the objective function of a max-

imization problem can be increased by increasing the R.H.S ofan active GE constraint.

This result is not economically meaningful and is thereforedual infeasible.

5.3.3 Dual Feasibility of an Equality Constraint

The sign of shadow price of an equality constraint can be either positive or negative. An

equality constraint of the formAx = b can be written in the companion form as:Ax ≤ b

andAx ≥ b. In the optimal solution one of these constraints will be active based on the

LP model. If theAx ≤ b constraint is active then the shadow price will be positive.On the

other hand, if theAx ≥ b is active, then shadow price will be negative.

5.3.4 Dual Feasibility of Reduced Cost

Reduced cost is also referred to as dual surplus. A dual constraint is written in the form

given in Equation (5.5).

Imputed price≥ Market price (5.5)

The above constraint implies that if the manager decides to sell the resource available

instead of manufacturing a certain product, the available resource has to be sold at a price

at least equal to the market price of the product for the business to be profitable.

The constraint given in Equation (5.5) can be converted to anequality by adding a

surplus. The modified version is given in Equation (5.6).

Imputed price− surplus= Market price (5.6)

The constraint given in Equation (5.6) being inactive implies that the surplus will be

non-zero and the product will have a reduced cost. This implies that this specific product

will not be manufactured in the process because the optimizer determined that manufactur-
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ing this product will incur a loss. To profitably manufacturethis product, the market price

has to be increased by at least an amount equal to the surplus value.

Negative surplus implies that reducing the market price by the amount of the surplus

will actually make the production of the specific product profitable. This result is not

economically meaningful and is therefore dual infeasible.

In summary, this section provided a comprehensive description on interpreting the dual

feasibility condition with respect to petroleum refinery process application. The next sec-

tion will provide the algorithm to determine alternate optimal solutions when the LP is dual

degenerate.

5.4 Algorithm

When an LP is dual degenerate, infinite number of activity values lead to the same ob-

jective function value. In this research, only the extreme point solutions will be analyzed

for implementation. A perturbation technique implementing parametric programming is

developed to determine alternate optimal solutions.

The perturbation technique developed in this section is similar to the algorithm devel-

oped in Section 4.3 of Chapter 4 to determine alternate optimal basis when the LP is primal

degenerate.

A primal degenerate LP has a unique optimal vertex, this property enables utilization of

the perturbation technique to generate multiple optimal bases for a primal degenerate LP.

In case of dual degenerate LP, the dimension of the optimal face is larger than zero and will

have multiple optimal vertices. This property makes it complicated to use the perturbation

technique for the dual degenerate LP. However, a new strategy is developed in this research

to deal with this complication.

When an LP has alternative optimal solutions or is dual degenerate, it will be primal

degenerate in the dual space. This property of the dual degenerate LP problem is exploited

in this research to implement the perturbation technique for generating multiple optimal
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solutions. This property is also illustrated graphically to gain more understanding. A 2-D

dual degenerate LP given in Equation (5.7) is selected for this illustration.

Maximizez = 2x1 + 4x2 (5.7)

Subject to

x1 + 2x2 ≤ 5 Constraint#1

x1 + x2 ≤ 4 Constraint#2

x1, x2 ≥ 0 Non-negativity

The graphical solution of the 2-D LP is given in Figure 5.1(a). As noticed in Fig-

ure 5.1(a), the optimal face has two vertices, D and C. This one-dimensional optimal face

can be converted to a single vertex by transforming this primal problem to a dual prob-

lem (Dantzig and Thapa, 2003). The dual form of the 2-D LP is given in Equation (5.8),

Minimize z = 5y1 + 4y2 (5.8)

Subject to

y1 + y2 ≥ 2 Constraint#1

2y1 + y2 ≥ 4 Constraint#2

y1, y2 ≥ 0 Non-negativity

and the graphical solution of this dual LP is given in Figure 5.1(b). Visual observation

indicated that the one-dimensional optimal face is converted to a unique vertex. This unique

vertex gives the advantage of implementing the perturbation technique. The procedure

followed in this algorithm is given as follows:

Step 1 The given primal LP is converted to a dual LP. This dual is solved to generate a

single optimal solution. The dual of the refinery LP is given in Appendix B.

Step 2 The set of all active constraints in the optimal solution of the dual space are deter-

74



0

1

2

3

4

5

0 2 4 6 8

x2

x1

Constraint #2

A B

C

D

Constraint #1

Objective 

function

Optimal

vertex #1
Optimal

vertex #2

Optimal face 

(Dimension = 1)

(a) Primal Space

Constraint#1

C

0

1

2

3

4

5

0 1 2 3

Constraint #2

A B

Objective 

function

C

Constraint #1

Optimal vertex 

(Dimension = 0)

(b) Dual Space

Figure 5.1: Geometry of Dual Degenerate LP in Primal and DualSpace

75



mined. Active constraints are those constraints whose slack or surplus are maintained

at zero value in the optimal solution.

Step 3 All the active constraints in the dual space are parametrically perturbed one at a

time using parametric programming. This perturbation technique is explained as

follows: if
∑m

i=1
yT

i aij ≤ cj is one of the active constraints, the R.H.S,cj of this

active constraint is parametrically varied ascj + λd using parametric programming,

whereλ is the parameter andd is the directional vector. The parametric variation

will generate alternate optimal basis corresponding to theprimal degenerate optimal

vertex in the dual space. From the alternate optimal basis obtained in the dual space

the corresponding basic variable in the primal basis can be easily determined, because

the basic variables in the dual space will be non-basic variables in the primal space.

The basic variables obtained by this procedure are listed as{B1,1 · · ·B1,q}, where

the index1, q represents the number of alternate basis obtained by varying constraint

number one.

Step 4 Similar perturbation using parametric programming for allother active constraints

is performed. Subsequently, primal basic variables are determined using the dual

basic variable information available. After doing this, the possible alternate basis ob-

tained by this process is listed as{B1,1 · · ·B1,q, B2,1 · · ·B2,q, · · · , · · ·BN,1 · · ·BN,q},

whereN is the number of active constraints.

Step 5 The set of different basis obtained in step 3 are compared to each other and the

unique basis among them are determined and listed as:{B1 · · ·Br}, wherer is the

number of distinct basis.

Step 6 The unique set of alternate basis obtained in step 5 is used tocreate the set of

optimal simplex tableaux corresponding to the primal degenerate vertex by applying

the formulas given in Table 5.2.
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Table 5.2: Optimal Tableau with Formula

cT − cBB−1A −cBB−1 cBB−1b

B−1A B−1 B−1b

5.5 Results and Discussion

This section illustrates the results and procedures for a dual degenerate LP. The refinery

LP presented in Section 2.2.1 of Chapter 2 is selected for casestudy. The refinery LP

is inherently dual degenerate and has multiple activity values for decision variables that

have zero cost coefficients. In order to have multiple activity values for decision variables

that also have non-zero cost coefficients, the LP problem is modified such that the cost

coefficient of Premium Gasoline (PG) $45.36 in the original LP is changed to $44.0813.

5.5.1 Check for Dual Degeneracy

The LP problem is solved using LINDO and an optimal solution is found. The optimal ba-

sis, the corresponding basis index and activity values at optimum are given in Table 5.3. The

associated dual values in the optimum are given in Table 5.4.Observation from Table 5.4

indicated that some of the dual values (non-basic variables) have zero values. This condi-

tion confirms that the LP is dual degenerate. The dual values that are maintained at zero are

the shadow price of Regular Gasoline (RG) vapor pressure constraint, the shadow price of

Diesel Fuel (DF) sulfur specification constraint, the reduced cost of Straight Run Naphtha

for Premium Gasoline blending (SRNPG), the reduced cost of Straight Run Naphtha for

Regular Gasoline blending (SRNRG), and the reduced cost of Catalytic Cracked Fuel Oil

for Diesel Fuel blending (CCFODF).

Geometrically, when the LP is dual degenerate, the dimension of the primal optimal

face will be larger than zero. For the refinery LP considered for this study, the dimension

of the primal optimal face was found to be five, because there are five dual variables (non-
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basic) that have zero value in the optimal solution. This procedure for determining the

dimension of the optimal face is given in Tijssen and Sierksma (1998) and Gonzaga (2007).

5.5.2 Analyzing Single Optimal Solution

In current petroleum refinery optimization practice, only asingle optimal solution is gener-

ated. This section provides a systematic approach to categorize activity values for a single

optimal solution. The dual incremental analysis discussedin Section 5.2 is implemented.

The purpose of the categorization strategy is two-fold: oneis to characterize activity values

as unique or non-unique, and the other is to categorize activity values asc+
optimal, or c−optimal,

or csuboptimal.

The dual incremental analysis is succinctly represented byEquation (5.1) and Equa-

tion (5.2) in Section 5.2. A value ofδ = 1 will be used in Equation (5.1) and Equation (5.2)

for demonstration purpose. Initially, the Regular Gasoline(RG) production activity value

of 22,520 bbl/day in Table 5.3 is selected for classification.

The row of dual incremental effect coefficients corresponding to the RG activity value

22,520 bbl/day, excluding the identity structure of the optimal tableau, is presented in a

transpose form (column format) in Table 5.5.

In the classification process, the cost coefficient $43.68 for the RG decision variable is

perturbed from $43.68 to $42.68. As observed in Table 5.5, all the dual values remained

feasible. Therefore, this RG activity value is considered asc−optimal. On the other hand,

when the cost coefficient is changed from $43.68 to $44.68, the resultant solution has some

infeasible dual values. In this case the shadow price 0.10 $/bb1 for RG octane and 0.10

$/bbl for PG octane constraints are infeasible. Besides, thereduced costs -6.37 $/bbl for

Straight Run Naphtha for PG Blending (SRNPG) and -6.37 $/bbl forStraight Run Naphtha

for RG blending (SRNRG) are dual infeasible. Therefore this activity value is notc+
optimal.

This inference also impliesc+
optimal 6= c−optimal. Consequently, the activity value 22,520

bbl/day for RG production is non-unique.
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Table 5.3: Optimal Basis #1 for the Dual Degenerate Refinery LP

Index Variable Activity Index Variable Activity Index Variable Activity

(bbl/day) (bbl/day) (bbl/day)

1 CRUDE 100, 000.00 26 SRFOFO 5, 403.80 54 SLK21 22, 286.68

2 FGAD∗ 3, 542, 000.00 27 SRG 27, 000.00 56 SLK23 0.00

3 SRNRF 23, 700.00 28 SRN 23, 700.00 58 SLK25 0.00

4 FGRF∗ 3, 761, 190.00 29 SRDS 8, 700.00 60 SLK27 0.00

6 SRFOCC 30, 000.00 30 SRFO 37, 200.00 62 SLK29 0.00

7 FGCC∗ 11, 592, 000.00 31 RFG 21, 993.60 64 SLK31 0.00

8 PG 47, 113.20 32 CCG 20, 640.00 66 SLK33 1, 300.00

9 RG 22, 520.40 33 CCFO 6, 591.00 67 SLK34 0.00

10 DF 12, 491.00 34 SLK1 10, 000.00 69 SLK36 0.00

11 FO 10, 000.00 35 SLK2 37, 113.20 72 SLK39 0.00

12 SRGPG 13, 852.05 36 SLK3 0.00 74 SLK41 0.00

13 RFGPG 17, 239.99 39 SLK6 188, 607.17 76 SLK43 0.00

15 CCGPG 16, 021.17 40 SLK7 12, 520.40 78 SLK45 0.00

16 SRGRG 13, 147.95 41 SLK8 0.00 80 SLK47 0.00

17 RFGRG 4, 753.61 45 SLK12 2, 491.00 82 SLK49 0.00

19 CCGRG 4, 618.83 46 SLK13 0.00 84 SLK51 0.00

21 CCFODF 6, 591.00 48 SLK15 153, 666.99 86 SLK53 0.00

22 SRDSDF 4, 103.80 51 SLK18 0.00 88 SLK55 0.00

23 SRFODF 1, 796.20 53 SLK20 583, 788.61 90 SLK57 0.00

25 SRDSFO 4, 596.20

∗ft3/day.
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Table 5.4: Optimal Dual Values #1 for the Dual Degenerate Refinery LP

Z Dual Value $/bbl Active at

SLK4 Premium Gasoline production −37.86 LL

SLK5 Premium Gasoline octane rating −0.07 LL

SLK9 Regular Gasoline blending −37.86 LL (Equality)

SLK10 Regular Gasoline octane rating −0.07 LL

SLK11 Regular Gasoline vapor 0.00 UL

SLK14 Diesel fuel blending −40.32 LL (Equality)

SLK16 Diesel fuel sulfur specification 0.00 UL

SLK17 Fuel oil production −27.18 LL

SLK19 Fuel oil blending −40.32 LL (Equality)

SLK22 Atmospheric distillation unit capacity 7.85 UL

SLK24 Fuel gas yield from atmospheric distillation unit −0.02 LL (Equality)

SLK26 Straight run gasoline yield from atmospheric distillation unit−43.11 LL (Equality)

SLK28 Straight run naphtha yield from atmospheric distillation unit−42.21 LL (Equality)

SLK30 Straight run distillate yield from atmospheric distillation unit−40.32 LL (Equality)

SLK32 Straight run fuel oil yield from atmospheric distillation unit−40.32 LL (Equality)

SLK35 Fuel gas yield from reformer unit −0.02 LL (Equality)

SLK37 Reformed gasoline yield −44.82 LL (Equality)

SLK38 Catalytic cracking unit capacity 4.29 UL

SLK40 Fuel gas yield from catalytic cracking unit −0.02 LL (Equality)

SLK42 Catalytic cracked gasoline yield −44.13 LL (Equality)

SLK44 Catalytic cracked fuel oil yield −40.32 LL (Equality)

SLK46 Straight run gasoline split −43.11 LL (Equality)

SLK48 Straight run naphtha split −42.21 LL (Equality)

SLK50 Straight run distillate split −40.32 LL (Equality)

SLK52 Straight run fuel oil split −40.32 LL (Equality)

SLK54 Reformed gasoline split −44.82 LL (Equality)

SLK56 Catalytic cracked gasoline split −44.13 LL (Equality)

SLK58 Catalytic cracked fuel oil split −40.32 LL (Equality)

SRDSCC Straight run distillate for catalytic cracking 5.26 Reduced cost

SRNPG Straight run naphtha for premium gasoline blending 0.00 Reduced cost

SRNRG Straight run naphtha for regular gasoline blending 0.00 Reduced cost

SRNDF Straight run naphtha for diesel fuel blending 1.89 Reduced cost

CCFOFO Catalytic cracked fuel oil for fuel oil blending 0.00 Reduced cost

LL → Lower Limit: implying the GE constraint is active.

UL → Upper Limit: implying the LE constraint is active.
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Table 5.5: Dual Incremental Effect Analysis for the RG Activity

Base case cj + 1 cj − 1

RG Objective Objective Objective
activity (bbl) value ($) value ($) value ($)

22, 520.40 641, 579.78 664, 100.18 619, 059.38

Incremental Dual Dual Dual
Z Dual variable∗ effect (aij) value ($/bbl) value ($/bbl) value ($/bbl)

SLK5 PGoctane 0.17 −0.07 0.10† −0.23

SLK9 RGblend(2) −15.50 −37.86 −53.36 −22.36

SLK10 RGoctane 0.17 −0.07 0.10† −0.23

SLK11 RGvapor 0.00 0.00 0.00 0.00

SLK14 DFblend(2) 0.00 −40.32 −40.32 −40.32

SLK16 DFsulfur 0.00 0.00 0.00 0.00

SLK17 FOproduction 0.00 −27.18 −27.18 −27.18

SLK19 FOblend(2) 0.00 −40.32 −40.32 −40.32

SLK22 ADcapacity 0.25 7.85 8.10 7.60

SLK24 FGADyield(2) 0.00 −0.02 −0.02 −0.02

SLK26 SRGyield(2) −2.42 −43.11 −45.53 −40.69

SLK28 SRNyield(2) 1.70 −42.21 −40.51 −43.91

SLK30 SRDSyield(2) 0.00 −40.32 −40.32 −40.32

SLK32 SRFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK35 FGRFyield(2) 0.00 −0.02 −0.02 −0.02

SLK37 RFGyield(2) 1.83 −44.82 −42.98 −46.65

SLK38 CCcapacity 0.08 4.29 4.37 4.21

SLK40 FGCCyield(2) 0.00 −0.02 −0.02 −0.02

SLK42 CCGyield(2) 0.12 −44.13 −44.01 −44.24

SLK44 CCFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK46 SRGsplit(2) −2.42 −43.11 −45.53 −40.69

SLK48 SRNsplit(2) 1.70 −42.21 −40.51 −43.91

SLK50 SRDSsplit(2) 0.00 −40.32 −40.32 −40.32

SLK52 SRFOsplit(2) 0.00 −40.32 −40.32 −40.32

SLK54 RFGsplit(2) 1.83 −44.82 −42.98 −46.65

SLK56 CCGsplit(2) 0.12 −44.13 −44.01 −44.24

SLK58 CCFOsplit(2) 0.00 −40.32 −40.32 −40.32

SRDSCC Reduced cost −0.01 5.26 5.25 5.26

SRNPG Reduced cost −6.37 0.00 −6.37† 6.37

SRNRG Reduced cost −6.37 0.00 −6.37† 6.37

SRNDF Reduced cost −1.70 1.89 0.19 3.59

CCFOFO Reduced cost 0.00 0.00 0.00 0.00

†Dual infeasible.
∗Description of dual variables are given in Table B.1 of Appendix B.
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Similar analysis is performed for the activity values of alldecision variables of the

single optimal solution listed in Table 5.3 and the classification is summarized in Table 5.6.

Table 5.6: Classification of Activity Values for the Dual Degenerate Refinery LP Obtained

from the Single Optimal Solution

Decision Activity Category Category

variable value (bbl/day) I II

CRUDE 100, 000.00 c+
optimal = c−optimal Unique

FGAD (ft3) 3, 542, 000.00 c+
optimal = c−optimal Unique

SRNRF 23, 700.00 c+
optimal Non-unique

FGRF (ft3) 3, 761, 190.00 c+
optimal Non-unique

SRFOCC 30, 000.00 c+
optimal = c−optimal Unique

FGCC (ft3) 11, 592, 000.00 c+
optimal = c−optimal Unique

PG 47, 113.20 c+
optimal Non-unique

RG 22, 520.40 c−optimal Non-unique

DF 12, 491.00 c+
optimal = c−optimal Unique

FO 10, 000.00 c+
optimal = c−optimal Unique

SRGPG 13, 852.05 csuboptimal Non-unique

RFGPG 17, 239.99 csuboptimal Non-unique

CCGPG 16, 021.17 csuboptimal Non-unique

SRGRG 13, 147.95 csuboptimal Non-unique

RFGRG 4, 753.61 csuboptimal Non-unique

CCGRG 4, 618.83 csuboptimal Non-unique

CCFODF 6, 591.00 c+
optimal Non-unique

SRDSDF 4, 103.80 csuboptimal Non-unique

SRFODF 1, 796.20 c+
optimal Non-unique

SRDSFO 4, 596.20 c+
optimal Non-unique

SRFOFO 5, 403.80 c−optimal Non-unique

SRG 27, 000.00 c+
optimal = c−optimal Unique

SRN 23, 700.00 c+
optimal = c−optimal Unique

SRDS 8, 700.00 c+
optimal = c−optimal Unique

SRFO 37, 200.00 c+
optimal = c−optimal Unique

RFG 21, 993.60 c+
optimal Non-unique
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5.5.3 Variables of Interest to the User

The dual incremental analysis applied to the dual degenerate refinery LP suggested that the

development of this method is based on market price uncertainty. However, not all activi-

ties involved in the refinery have a market price associated with them. The activities in the

optimal solution of a refinery LP typically involve decisionvariables, slack variables, and

surplus variables. By default, slack and surplus have zero cost coefficients. The decision

variables are of three types: raw materials, finished product and intermediate products. Al-

most all of the intermediate products produced in the refinery do not have cost coefficients

because they are not exposed to the market. In some instances, the intermediate products do

have cost coefficients associated with them in the form of operating cost. In all instances,

the raw materials have a buying price and the finished products have a selling price.

Under conditions of dual degeneracy, this research will focus only on analyzing activi-

ties that have a cost coefficient associated with them. For the refinery LP considered in this

study, only 11 of the 33 decision variables have cost coefficients. The 11 variables along

with their cost coefficients are given in Table 5.7.

The next section will generate alternate optimal solutionsfor the dual degenerate LP

considered in this case study. Multiple activity values will be classified based on the busi-

ness significance associated with them.
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Table 5.7: Refinery LP Decision Variables Containing Cost Coefficients

S.I. No. Variable Cost Coefficient

1 CRUDE Buying price of 33$/bb1

2 FGAD Selling price of 0.01965 $/ft3

3 SRNRF Operating cost of 2.5$/bbl

4 FGRF Selling price of 0.01965 $/ft3

5 SRDSCC Operating cost of 2.2$/bbl

6 SRFOCC Operating cost of 2.2$/bbl

7 FGCC Selling price of 0.01965 $/ft3

8 PG Selling price of 44.0813$/bbl

9 RG Selling price of 43.68$/bbl

10 DF Selling price of 40.32$/bbl

11 FO Selling price of 13.14$/bbl
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5.5.4 Determining Alternate Optimal Solutions

For the LP considered in this study, results obtained in Section 5.5.2 confirmed that 19

decision variables have multiple activity values. Explanations provided in Section 5.5.3

demonstrated that it is adequate to analyze multiple activities that have cost coefficients

associated with them.

In this section, the parametric perturbation technique developed in Section 5.4 is used

to generate multiple optimal solutions for the dual degenerate LP. In addition to the single

optimal solution obtained in Section 5.5.1, 12 more alternate optimal solutions are pro-

duced and listed in Table 5.8. For completeness, the multiple activity values obtained in

each of the optimal basis for the entire 19 decision variables are presented in Table 5.8.

As evident from Table 5.8, of the 13 alternate optimal basic solutions produced, the

Premium Gasoline (PG) activity has 10 distinct values. Initially, these values will be ana-

lyzed and categorized asc+
optimal, c−optimal, andcsuboptimal. In this section, three PG activity

values: 47,113 bbl/day, 43,692 bbl/day and 10,000 bbl/day in Table 5.8 are selected for

analysis.

The PG activity value 47,113 bbl/day along with the associated row of dual incremen-

tal effect coefficients excluding the identity structure ofthe optimal tableau is presented

in a transpose form (column format) in Table 5.9. In the classification process, the cost

coefficient 44.0813$/bbl for the PG decision variable is perturbed from 44.0813$/bbl to

45.0813$/bbl. In doing so, as observed from Table 5.9, all the dual values remained feasi-

ble. Since this positive perturbation of PG cost coefficientproduced dual feasible solution,

the PG activity value 47,113.20 bbl/day is determined asc+
optimal implying, the user must

implement this activity value in the actual process in orderto attain optimal profit if the

market price of PG is speculated to increase.
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Table 5.8: Alternate Optimal Solutions Obtained for the Dual Degenerate Refinery LP

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 Solution 7
Activity Activity Activity Activity Activity Activity Activity

(bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day)

SRNRF 23, 700 23, 157 20, 556 19, 974 18, 913 17, 805 17, 805

FGRF3, 761, 190 3, 674, 954 3, 262, 242 3, 169, 893 3, 001, 458 2, 825, 697 2, 825, 697

PG 47, 113 43, 692 27, 319 23, 655 16, 973 10, 000 10, 000

RG 22, 520 25, 981 42, 541 46, 247 53, 005 60, 058 60, 058

SRGPG 13, 852 10, 511 0 0 0 0 4, 314

RFGPG 17, 240 12, 541 4, 425 8, 774 12, 186 7, 179 5, 686

SRNPG 0 0 2, 254 3, 726 4, 787 2, 821 0

CCGPG 16, 021 20, 640 20, 640 11, 155 0 0 0

SRGRG 13, 148 16, 489 27, 000 27, 000 27, 000 27, 000 22, 686

RFGRG 4, 754 8, 948 14, 651 9, 762 5, 365 9, 344 10, 837

SRNRG 0 543 890 0 0 3, 074 5, 895

CCGRG 4, 619 0 0 9, 485 20, 640 20, 640 20, 640

CCFODF 6, 591 6, 591 6, 591 6, 591 6, 591 6, 591 3, 791

SRDSDF 4, 104 4, 104 4, 104 4, 104 4, 104 4, 104 8, 700

SRFODF 1, 796 1, 796 1, 796 1, 796 1, 796 1, 796 0

CCFOFO 0 0 0 0 0 0 2, 800

SRDSFO 4, 596 4, 596 4, 596 4, 596 4, 596 4, 596 0

SRFOFO 5, 404 5, 404 5, 404 5, 404 5, 404 5, 404 7, 200

RFG 21, 994 21, 489 19, 076 18, 536 17, 551 16, 523 16, 523

Solution 8 Solution 9 Solution 10 Solution 11 Solution 12 Solution 13 Number of
Activity Activity Activity Activity Activity Activity distinct

(bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) solutions

SRNRF 23, 700 19, 577 21, 892 19, 654 21, 440 23, 700 10

FGRF3, 761, 190 3, 106, 900 3, 474, 183 3, 119, 010 3, 402, 600 3, 761, 190 10

PG 47, 113 21, 156 35, 727 21, 636 32, 887 47, 113 10

RG 22, 520 48, 774 34, 037 48, 289 36, 909 22, 520 10

SRGPG 17, 073 0 15, 412 996 10, 731 13, 852 8

RFGPG 21, 994 0 20, 315 0 19, 897 17, 240 11

SRNPG 0 516 0 0 2, 260 0 7

CCGPG 8, 046 20, 640 0 20, 640 0 16, 021 5

SRGRG 9, 927 27, 000 11, 588 26, 004 16, 269 13, 148 8

RFGRG 0 18, 168 0 18, 238 0 4, 754 10

SRNRG 0 3, 607 1, 808 4, 047 0 0 8

CCGRG 12, 594 0 20, 640 0 20, 640 4, 619 5

CCFODF 6, 591 6, 591 6, 591 6, 591 3, 791 3, 263 3

SRDSDF 5, 900 4, 104 4, 104 4, 104 8, 700 8, 700 3

SRFODF 0 1, 796 1, 796 1, 796 0 528 3

CCFOFO 0 0 0 0 2, 800 3, 328 3

SRDSFO 2, 800 4, 596 4, 596 4, 596 0 0 3

SRFOFO 7, 200 5, 404 5, 404 5, 404 7, 200 6, 672 3

RFG 21, 994 18, 168 20, 315 18, 238 19, 897 21, 994 10
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Analogously, when the cost coefficient of PG is changed from 44.0813$/bbl to 43.0813-

$/bbl, the resultant solution has some infeasible dual values. In this case, the shadow price

0.10$/bb1 for the PG octane and 0.10$/bbl for the Regular Gasoline (RG) constraints are

infeasible. Besides, the reduced costs -6.30$/bbl, -6.30$/bbl, and -0.74$/bbl for Straight

Run Naphtha for Premium Gasoline Blending (SRNPG), Straight RunNaphtha for Regular

Gasoline blending (SRNRG), and Straight Run Naphtha for DieselFuel blending (SRNDF)

are dual infeasible. Since this negative perturbation of PGcost coefficient produced dual

infeasible solution, the PG activity value 47,113.20 bbl/day is notc−optimal, implying that

the user must not use this activity value to attain optimal profit if the market price of PG is

expected to decrease. Also, here the user has the flexibilityto use solution #1, solution #8,

or solution #13 in Table 5.8 for implementation because these solution sets have the PG

activity as 47,113.20 bbl/day.

Secondly, the PG activity value 43,692 bbl/day is analyzed.Required data is given in

Table 5.10. As observed from Table 5.10, dual incremental effect analysis showed that both

positive and negative perturbation of PG cost coefficient yielded dual infeasible solutions.

Therefore, this activity value for PG is categorized ascsuboptimal. Thus, the user cannot

achieve optimal objective function value by implementing this solution for an increase or

decrease in the market price of PG.

Finally, the PG activity value 10,000 bbl/day is analyzed. Required data is given in

Table 5.11. As observed in Table 5.11 dual incremental effect analysis resulted in dual

feasible solutions for a negative perturbation of the cost coefficient and dual infeasible

solution for a positive perturbation. Consequently, the PG activity value 10,000 bbl/day

is categorized asc−optimal. This PG activity value 10,000 bbl/day must be implemented to

attain optimal profit if the market price of PG is expected to decrease. Moreover, here

the user has the flexibility to use solution #6, solution #7, or solution #13 in Table 5.8 for

implementation because these solution sets have the PG activity as 10,000 bbl/day.
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Table 5.9: Dual Incremental Effect Analysis for the PG Activity 47,113.20 bbl/day

Base case cj + 1 cj − 1

PG Objective Objective Objective
activity (bbl) value ($) value ($) value ($)

47113.20 641579.78 688692.98 594466.58

Incremental Dual Dual Dual
Z Dual variable∗ effect (aij) value ($/bbl) value ($/bbl) value ($/bbl)

SLK4 PGblend(2) 14.50 −37.86 −23.36 −52.36

SLK5 PGoctane −0.17 −0.07 −0.23 0.10†

SLK9 RGblend(2) 14.50 −37.86 −23.36 −52.36

SLK10 RGoctane −0.17 −0.07 −0.23 0.10†

SLK11 RGvapor 0.00 0.00 0.00 0.00

SLK14 DFblend(2) 0.00 −40.32 −40.32 −40.32

SLK16 DFsulfur 0.00 0.00 0.00 0.00

SLK17 FOproduction 0.00 −27.18 −27.18 −27.18

SLK19 FOblend(2) 0.00 −40.32 −40.32 −40.32

SLK22 ADcapacity 0.24 7.85 8.09 7.61

SLK24 FGADyield(2) 0.00 −0.02 −0.02 −0.02

SLK26 SRGyield(2) 1.42 −43.11 −41.69 −44.53

SLK28 SRNyield(2) −2.63 −42.21 −44.84 −39.58

SLK30 SRDSyield(2) 0.00 −40.32 −40.32 −40.32

SLK32 SRFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK35 FGRFyield(2) 0.00 −0.02 −0.02 −0.02

SLK37 RFGyield(2) −2.83 −44.82 −47.65 −41.98

SLK38 CCcapacity 0.77 4.29 5.06 3.52

SLK40 FGCCyield(2) 0.00 −0.02 −0.02 −0.02

SLK42 CCGyield(2) −1.12 −44.13 −45.24 −43.01

SLK44 CCFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK46 SRGsplit(2) 1.42 −43.11 −41.69 −44.53

SLK48 SRNsplit(2) −2.63 −42.21 −44.84 −39.58

SLK50 SRDSsplit(2) 0.00 −40.32 −40.32 −40.32

SLK52 SRFOsplit(2) 0.00 −40.32 −40.32 −40.32

SLK54 RFGsplit(2) −2.83 −44.82 −47.65 −41.98

SLK56 CCGsplit(2) −1.12 −44.13 −45.24 −43.01

SLK58 CCFOsplit(2) 0.00 −40.32 −40.32 −40.32

SRDSCC Reduced cost 0.08 5.26 5.33 5.18

SRNPG Reduced cost 6.30 0.00 6.30 −6.30†

SRNRG Reduced cost 6.30 0.00 6.30 −6.30†

SRNDF Reduced cost 2.63 1.89 4.52 −0.74†

CCFOFO Reduced cost 0.00 0.00 0.00 0.00

†Dual infeasible
∗Description of dual variables are given in Table B.1 of Appendix B
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Table 5.10: Dual Incremental Effect Analysis for the PG Activity 43,692 bbl/day

Base case cj + 1 cj − 1

PG Objective Objective Objective
activity (bbl) value ($) value ($) value ($)

43, 692.03 641, 579.74 685, 271.76 597, 887.71

Incremental Dual Dual Dual
Z Dual variable∗ effect (aij) value ($/bbl) value ($/bbl) value ($/bbl)

SLK4 PGblend(2) 16.85 −37.86 −21.01 −54.72

SLK5 PGoctane −0.19 −0.07 −0.26 0.13†

SLK9 RGblend(2) −7.24 −37.86 −45.10 −30.63

SLK10 RGoctane 0.03 −0.07 −0.04 −0.10

SLK11 RGvapor 0.36 0.00 0.36 −0.36†

SLK14 DFblend(2) 0.00 −40.32 −40.32 −40.32

SLK16 DFsulfur 0.00 0.00 0.00 0.00

SLK17 FOproduction 0.00 −27.18 −27.18 −27.18

SLK19 FOblend(2) 0.00 −40.32 −40.32 −40.32

SLK22 ADcapacity 0.20 7.85 8.05 7.64

SLK24 FGADyield(2) 0.00 −0.02 −0.02 −0.02

SLK26 SRGyield(2) 1.78 −43.11 −41.33 −44.90

SLK28 SRNyield(2) −2.89 −42.21 −45.10 −39.32

SLK30 SRDSyield(2) 0.00 −40.32 −40.32 −40.32

SLK32 SRFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK35 FGRFyield(2) 0.00 −0.02 −0.02 −0.02

SLK37 RFGyield(2) −3.11 −44.82 −47.93 −41.71

SLK38 CCcapacity −0.78 −4.29 −5.07 −3.51

SLK40 FGCCyield(2) 0.00 −0.02 −0.02 −0.02

SLK42 CCGyield(2) −1.13 −44.13 −45.26 −42.99

SLK44 CCFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK46 SRGsplit(2) 1.78 −43.11 −41.33 −44.90

SLK48 SRNsplit(2) −2.89 −42.21 −45.10 −39.32

SLK50 SRDSsplit(2) 0.00 −40.32 −40.32 −40.32

SLK52 SRFOsplit(2) 0.00 −40.32 −40.32 −40.32

SLK54 RFGsplit(2) −3.11 −44.82 −47.93 −41.71

SLK56 CCGsplit(2) −1.13 −44.13 −45.26 −42.99

SLK58 CCFOsplit(2) 0.00 −40.32 −40.32 −40.32

SRDSCC Reduced cost 0.08 5.26 5.33 5.18

SRNPG Reduced cost 7.26 0.00 7.26 −7.26†

CCGRG Reduced cost −0.74 0.00 −0.74 0.74

SRNDF Reduced cost 2.89 1.89 4.78 −1.00†

CCFOFO Reduced cost 0.00 0.00 0.00 0.00

†Dual infeasible
∗Description of dual variables are given in Table B.1 of Appendix B
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Table 5.11: Dual Incremental Effect Analysis for the PG Activity 10,000 bbl/day

Base case cj + 1 cj − 1

PG Objective Objective Objective
activity (bbl) value ($) value ($) value ($)

10, 000.00 641, 579.31 651, 579.31 631, 579.31

Incremental Dual Dual Dual
Z Dual variable∗ effect (aij) value ($/bbl) value ($/bbl) value ($/bbl)

SLK2 PGproduction 1.00 0.00 1.00† −1.00

SLK4 PGblend(2) 0.00 −37.86 −37.86 −37.86

SLK5 PGoctane 0.00 −0.07 −0.07 −0.07

SLK9 RGblend(2) 0.00 −37.86 −37.86 −37.86

SLK10 RGoctane 0.00 −0.07 −0.07 −0.07

SLK14 DFblend(2) 0.00 −40.32 −40.32 −40.32

SLK17 FOproduction 0.00 −27.18 −27.18 −27.18

SLK19 FOblend(2) 0.00 −40.32 −40.32 −40.32

SLK22 ADcapacity 0.00 7.85 7.85 7.85

SLK24 FGADyield(2) 0.00 −0.02 −0.02 −0.02

SLK26 SRGyield(2) 0.00 −43.11 −43.11 −43.11

SLK28 SRNyield(2) 0.00 −42.21 −42.21 −42.21

SLK30 SRDSyield(2) 0.00 −40.32 −40.32 −40.32

SLK32 SRFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK35 FGRFyield(2) 0.00 −0.02 −0.02 −0.02

SLK37 RFGyield(2) 0.00 −44.82 −44.82 −44.82

SLK38 CCcapacity 0.00 −4.29 −4.29 −4.29

SLK40 FGCCyield(2) 0.00 −0.02 −0.02 −0.02

SLK42 CCGyield(2) 0.00 −44.13 −44.13 −44.13

SLK44 CCFOyield(2) 0.00 −40.32 −40.32 −40.32

SLK46 SRGsplit(2) 0.00 −43.11 −43.11 −43.11

SLK48 SRNsplit(2) 0.00 −42.21 −42.21 −42.21

SLK50 SRDSsplit(2) 0.00 −40.32 −40.32 −40.32

SLK52 SRFOsplit(2) 0.00 −40.32 −40.32 −40.32

SLK54 RFGsplit(2) 0.00 −44.82 −44.82 −44.82

SLK56 CCGsplit(2) 0.00 −44.13 −44.13 −44.13

SLK58 CCFOsplit(2) 0.00 −40.32 −40.32 −40.32

SRDSCC Reduced cost 0.00 5.26 5.26 5.26

SRNPG Reduced cost 0.00 0.00 0.00 0.00

CCGPG Reduced cost 0.00 0.00 0.00 0.00

SRNDF Reduced cost 0.00 1.89 1.89 1.89

SRFODF Reduced cost 0.00 0.00 0.00 0.00

SRDSFO Reduced cost 0.00 0.00 0.00 0.00

†Dual infeasible
∗Description of dual variables are given in Table B.1 of Appendix B
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Among the 10 distinct PG activity values obtained in Table 5.8, three were analyzed.

Based on analysis, 47,113.20 bbl/day was determined asc+
optimal, 10,000 bbl/day was de-

termined asc−optimal, and 43,692 bbl/day was determined ascsuboptimal. Without further

detailed analysis, the rest of the seven activity values listed in Table 5.8 can be determined

ascsuboptimal, because oncec+
optimal andc−optimal for an activity value is determined, other

activity values will be suboptimal. The proof for this claimis obvious from the explanation

given in Aucamp (1984). Furthermore, this immediate conclusion can be verified based

on a simple calculation of determining the change in objective function value with respect

to these activity values when the cost coefficient of PG is perturbed both positively and

negatively.

The simple calculation is demonstrated in Table 5.12. As viewed from Table 5.12, all

the activity values contributed the same objective function value $641,580 in the base case.

However, when the cost coefficient of PG is changed from 44.0813$/bbl to 45.0813$/bbl,

the activity value 47,113.20 bbl/day yielded the maximum profit $688,693. Therefore, this

value is calledc+
optimal. On the other hand, for a negative perturbation 44.0813$/bbl to

43.0813$/bbl, the activity value 10,000 bbl/day produced the maximum objective function

value $631,580. Therefore, this activity value is called the c−optimal. Table 5.12 demon-

strates that all other activities resulted in a suboptimal objective function value for both

positive and negative perturbation. Succinctly, thec+
optimal value of an activity can be de-

termined using Equation (5.9) andc−optimal value of an activity can be determined using

Equation (5.10). The proof for these equations can be derived based on the proof given

in Aucamp (1984).

c+
optimal = max

{

b1, · · · , bk

}

(5.9)

c−optimal = min
{

b1, · · · , bk

}

(5.10)

where
{

b1, · · · , bk

}

are all possible distinct activity values.

The above claim by Equation (5.9) and Equation (5.10) will bevalid only if alternate
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optimal activity values includingc+
optimal andc−optimal are generated. The dual incremental

effect analysis approach is the most reliable method to conclude whether an activity value

is c+
optimal, c−optimal, or csuboptimal.

Table 5.12: Multiple Activity Analysis for PG

Base case cj + 1 cj − 1

S.I. No. PG Objective Objective Objective

activity (bbl/day) value ($) value ($) value ($)

1 47, 113 641, 580 688, 693 594, 467

2 43, 692 641, 580 685, 272 597, 888

3 35, 727 641, 580 677, 307 605, 853

4 32, 887 641, 580 674, 467 608, 693

5 27, 319 641, 580 668, 899 614, 261

6 23, 655 641, 580 665, 235 617, 925

7 21, 636 641, 580 663, 216 619, 943

8 21, 156 641, 580 662, 736 620, 424

9 16, 973 641, 580 658, 553 624, 607

10 10, 000 641, 580 651, 580 631, 580

Thec+
optimal andc−optimal for all other activities that have cost coefficients are determined

for the refinery LP by completing a similar analysis and are tabulated in Table 5.13.

Table 5.13:c+
optimal andc−optimal Activity Values for the Dual Degenerate Refinery LP

c+
optimal c−optimal

bbl/day bbl/day

SRNRF 23, 700 17, 805

FGRF 3, 761, 190 2, 825, 697

PG 47, 113 10, 000

RG 60, 058 22, 520
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5.6 Caveats

In this chapter, a well defined approach to choose a unique solution among multiple so-

lutions for a dual degenerate problem was discussed. The methodology considered only

corner point solutions for analysis. In some instances these corner points in the dual degen-

erate optimal face could be primal degenerate as well. In such instances, after choosing the

desired corner point solution corresponding to ac+
optimal or c−optimal activity value, the true

shadow price and true incremental effect coefficients corresponding to this corner point

have to be determined based on the procedures described in Chapter 4. This assures accu-

rate interpretation of LP results for optimization.

5.7 Summary

This chapter investigated the condition of dual degeneracyfor a refinery LP and imple-

mented a truly innovative approach called dual incrementaleffect analysis to determine

activity values that assure optimal profit, despite market price fluctuations.

In current refinery practice only a single optima solution isproduced. The user may

not be aware that the LP is dual degenerate with multiple dualvalues. This study has uti-

lized the dual incremental analysis approach to characterize activity values obtained from

a single optimal solution as: unique or non-unique andc+
optimal, c−optimal or csuboptimal. Fur-

thermore, a perturbation technique implementing parametric programming was developed

to generate alternate optimal solutions.
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CHAPTER 6

CONCLUSIONS

The summary of the findings of this research, contributions made and the future direction

of this research applied to primal degeneracy and dual degeneracy are discussed under two

sections.

6.1 Primal Degeneracy

6.1.1 Summary

This study investigated the phenomenon of primal degeneracy in refinery LP. The findings

of this research suggested that interpreting only the single optimal solution produced for

a primal degenerate LP will lead to fallible business decisions with negative economic

impacts. For example, for the primal degenerate refinery LP considered in this research,

the FCC constraint has three dual values: 17.67 $/bbl, 26.96 $/bbl and 31.19 $/bbl. The

FCC unit is an economic driver in the refinery and processes thousands of barrels of crude

every day. From the different solutions obtained in each of the different optimal bases,

it is clear that using erroneous shadow price information for this constraint will lead to

significant economic losses.

6.1.2 Contributions

Often, an LP optimal solution is considered to be primal degenerate when some of the

basic variables have a zero value. This is not a sufficient condition to conclude that the LP

is actually primal degenerate. Sometimes primal degeneracy is created due to a particular
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representation of the LP model. The methodology to verify whether the LP optimal solution

is actually primal degenerate or is primal degenerate just due to a specific representation of

the LP model has been clearly explained in this research.

In this research, the concept of true shadow price is absolutely correlated with process

implications in refinery operations. The term true shadow price is explained clearly in the

context of petroleum refinery optimization, for ease of comprehension and implementation

in the actual refinery operation. Furthermore, the term trueshadow price is replaced with

physically realizable shadow price to receive attention from refinery optimization practi-

tioners. For industrial practitioners whose capability islimited to producing a single opti-

mal solution, an approach to categorize optimal dual valuesasp+ shadow price,p− shadow

price, orpinvalid shadow price was also developed. A perturbation technique incorporating

parametric programming is developed to determine alternate optimal dual solutions when

the LP is primal degenerate.

6.1.3 Recommendations and Future Work

When an LP problem is primal degenerate, three phenomena are observed: some of the

constraints havep+ shadow price equal top− shadow price, some of the constraints have

p+ shadow price not equal top− shadow price, and some other constraints havep+ shadow

price equal to zero value andp− shadow price equal to a non-zero value. Understanding

the cause of this phenomena will provide more flexibility in developing the LP model.

This task could be accomplished by classifying the constraints in the given primal LP

based on its properties as strongly binding, weakly binding, and implicit equalities. The

definitions for this classification of constraints are givenin Karwan. et al. (1983). Al-

gorithms to determine properties of constraints are given in Gal (1992), Telgen (1983),

Thompson et al. (1966), Dula (1994), and Goberna et al. (2006). In the task, these algo-

rithms could be implemented to determine properties of constraints involved in a refinery

LP model. Once the constraint properties are identified, they can be correlated with their
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respectivep+ andp− shadow price found in the optimal solution. This approach can assist

in determining the cause for the constraints having different kinds of shadow price values.

6.2 Dual Degeneracy

6.2.1 Summary

This study examined the condition of dual degeneracy in LP. Findings of this study indi-

cated that the magnitude of difference among activity values obtained for alternate optimal

solutions is significant. In this study for the dual degenerate LP considered, the activity

value for Premium Gasoline (PG) production varied between 47,113 bbl/day and 10,000

bbl/day. Although implementing any activity value obtained within this range produced

the same objective function value in the base case, not all solutions produced the optimal

profit when the market price of PG either decreases or increases.

For example, consider a situation in which the user is not aware that the LP is dual de-

generate and has only a single optimal solution that suggests manufacturing 10,000 bbl/day

of PG. If the user implemented this plan, and the market priceof PG increased by a dol-

lar, the resultant profit would be $37,113 less compared to implementing the activity value

of 47,113 bbl/day. The above example illustrated the business impact of implementing

one solution over the other. Therefore, when the LP is dual degenerate, alternate optimal

solutions have to be analyzed appropriately to achieve optimal profit.

6.2.2 Contributions

Under conditions of dual degeneracy, a truly novel approachcalled the dual incremental

effect analysis method has been developed to categorize multiple activities so that the user

can implement specific activity values that sustain optimalprofit despite market price fluc-

tuations. Furthermore, from a single optimal solution, thedual incremental effect analysis

approach was also used to determine activities that can havemultiple values.
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The dual feasibility condition of LP was presented in the context of petroleum refinery

operation, for determining whether the new solution obtained after a change in the market

price of an activity is optimal or not. Also, a novel perturbation technique for implementing

parametric programming was developed to generate alternate optimal solutions when the

LP is dual degenerate.

6.2.3 Recommendations and Future Work

In this study, a single variable sensitivity analysis approach was used to analyze multiple

optimal solutions under conditions of degeneracy. In actual refinery operations market

price of two or more commodities may vary simultaneously. Therefore, this study could be

extended to provide the largest sensitivity region of any single or simultaneous change of

cost coefficients of decision variables in the objective function. The methodology provided

in Arsham (2007) provided some leads for this type of analysis.

When the problem is dual degenerate and produces multiple optimal solutions, not all

the variables produce multiple activity values; some variables have unique activity values.

Understanding the cause for this behavior will provide moreflexibility in developing the LP

model (Cheng, 1985). This task could be accomplished by classifying the variable in the

given primal LP model based on its properties as strongly extraneous, weakly extraneous,

free, essential, or inessential. The definitions for this classification of variables are given

in Karwan. et al. (1983). Algorithms to determine properties of constraints are given in

Gal (1992), Gal (1975), Telgen (1983), Thompson et al. (1966), Dula (1994), Caron et al.

(1989) and Goberna et al. (2006). These algorithms can be applied to classify variables by

transforming the given primal problem to a dual problem.

Although the parametric perturbation technique developedin this research is capable

of determining all the possible alternate optimal solutions, it is computationally laborious

and does not include a stopping criteria to guarantee that all possible alternate optimal

solutions are generated. A pivoting type algorithm with less computational effort with
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efficient stopping criteria can be developed to resolve thisissue. Currently literatures are

available to determine the dimension of the optimal face of adual degenerate LP (Gal,

1985; Kantor, 1993; Kruse, 1993; Zornig and Gal, 1996; Zornig, 1993; Zornig and Gal,

1996; Gonzaga, 2007). However, these studies have not quantified the number of extreme

points possible for this multi-dimensional optimal face. If the possible number of extreme

points was determined this would serve as a useful stopping criteria.
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APPENDIX A

PARAMETRIC PERTURBATION TECHNIQUE

Conventionally parametric programming is used for sensitivity analysis. However, in this

research parametric programming is used to determine alternate optimal solution when the

LP is degenerate. In this appendix, initially the reason forusing parametric programming

to determine alternate optimal solution is presented. Thenthe algorithm described in Sec-

tion 4.3 is demonstrated for a 2-D LP.

A.1 Rationale for Using Parametric Programming

A 2-D primal degenerate LP in general form is given in Equation (A.1)

Maximizez = 5x1 + 4x2 (A.1)

Subject to

6x1 + 4x2 ≤ 20 Constraint#1

x1 + 2x2 ≤ 6 Constraint#2

−x1 + x2 ≤ 1 Constraint#3

x2 ≤ 2 Constraint#4

x1, x2 ≥ 0 Non-negativity

The geometric solution is illustrated in Figure A.1. As evident from Figure A.1 the LP

is primal degenerate because three constraints pass through the optimum vertexC for this

2-D problem. Therefore, based on the combination formula given by Equation (3.3) three

solutions are possible at the vertexC. One approach to generate all the three solutions is
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Figure A.1: Graphical Solution for the 2-D Non-Degenerate LP

to solve three different non-degenerate LPs with two constraints active at a time. Based on

this idea the geometric and the algebraic solution for the three non-degenerate problems

are given as follows:

A.1.1 Solution #1

Initially one of the solutions possible at the vertexC in Figure A.1 is generated with con-

straints #1 and #2 active. The geometric solution is given inFigure A.2 and the algebraic

solution is given in Table A.1

A.1.2 Solution #2

Now one other solution possible at vertexC in Figure A.1 is generated with constraints #1

and #4 active. The geometric solution is given in Figure A.3 and the algebraic solution is

given in Table A.2
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Figure A.2: Graphical Solution with Constraints #1 and #2 Active

Table A.1: Solution with Constraints #1 and #2 Active

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 3/4 1/2 0 0 18

x1 1 0 1/4 -1/2 0 0 2

x2 0 1 -1/8 3/4 0 0 2

s3 0 0 3/8 -5/4 1 0 1

s4 0 0 1/8 -3/4 0 1 0
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Figure A.3: Graphical Solution with Constraints #1and #4 Active

Table A.2: Solution with Constraints #1and #4 Active

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 5/6 0 0 2/3 18

x1 1 0 1/6 0 0 -2/3 2

x2 0 1 0 0 0 1 2

s2 0 0 -1/6 1 0 -4/3 0

s3 0 0 1/6 0 1 -5/3 1

A.1.3 Solution #3

Finally, the other solution possible at vertexC in Figure A.1 is generated with constraints

#2 and #4 active. The geometric solution is given in Figure A.4 and the algebraic solution

is given in Table A.3
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Figure A.4: Graphical Solution with Constraints #2 and #4 Active

Table A.3: Solution with Constraints #2 and #4 Active

Basis x1 x2 s1 s2 s3 s4 RHS

z 0 0 0 5 0 -6 18

x1 1 0 0 1 0 -2 2

x2 0 1 0 0 0 1 2

s1 0 0 1 -6 0 8 0

s3 0 0 0 1 1 -3 1
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The solution obtained in this case (solution #3) is non-optimal because of the negative

dual value“-6” for constraint #4 in Table A.3. Furthermore,as observed from Figure A.4

the optimum is shifted from vertexC to B because vertexC is no longer optimal with only

constraints #2 and #4 active.

From the above analysis it is obvious that all the three possible solutions generated by

the combination formula approach are not optimal and only two are optimal in this case.

Therefore, the combination formula approach may require computing solutions that are

non-optimal; consequently this approach could be computationally intense. To reduce the

computational effort, an approach that determines only theoptimal solutions at a degen-

erate vertex have to be developed. Parametric programming which is traditionally used

to perform sensitivity analysis can be used to generate the entire possible optimal basis at

a primal degenerate point by parametrically varying each ofthe active constraints. As a

result, in this research, parametric programming is used toreduce the computation effort

while generating alternate optimal basis corresponding toa primal degenerate vertex.

A.2 Demonstration of Algorithm

Parametric perturbation technique to determine alternateoptimal basis corresponding to a

primal degenerate vertex is demonstrated in this section. The 2-D primal degenerate LP

given by Equation (A.1) in Section A.1 is selected as an example. The variables in the 2-D

LP problem and their corresponding index is given in Table A.4

The single optimal solution obtained initially by solving the 2-D primal degenerate LP

using LINDO is presented in Table A.1. The step by step procedure to determine alternate

optimal basis for this 2-D primal degenerate LP follows:

Step1 Inspection of single optimal solution given by Table A.4 showed that constraint #1,

constraint #2 and constraint #4 are active.

Step2 Initially the R.H.S of constraint #1 is parametrically varied using the software pack-
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Table A.4: Variable Index for the 2-D LP

Index Variable

x1 1

x2 2

s1 3

s2 4

s3 5

s4 6

age LINDO and the alternate optimal basis corresponding to the original R.H.S value

20 are determined asB1,1 = {1, 2, 5, 6} andB1,2 = {1, 2, 4, 5}.

Step3 Similarly, the R.H.S of other active constraints #2 and #4 areparametrically varied.

The alternate optimal basis obtained by varying constraint#2 is determined asB2,1 =

{1, 2, 5, 6} andB2,2 = {1, 2, 4, 5}. The alternate optimal basis obtained by varying

constraint #4 is determined asB4,1 = {1, 2, 5, 6} andB4,2 = {1, 2, 4, 5}. As a result,

including the basis obtained in this step and step 2, there are a total of of six optimal

basis:{B1,1, B1,2, B2,1, B2,2, B4,1, B4,2}.

Step4 The set of bases obtained in step 3 is compared to each other and the unique basis

among them is determined as:B1 = {1, 2, 5, 6} andB2 = {1, 2, 4, 5}.

Step5 The optimal simplex tableaux corresponding to the unique basis obtained in step 4

is generated using the formula given in Table 4.5 and presented in Table A.1 and

Table A.2.

Step6 Thep+ andp− shadow price of constraint #1 is determined asp+ = min{3/4, 5/6} =

3/4 andp− = max{3/4, 5/6} = 5/6. Based on a similar evaluation thep+ andp−

of constraint #2 is determined as0 and1/2. Thep+ andp− of constraint #4 is deter-

mined as0 and2/3.
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APPENDIX B

DUAL FORMULATION OF THE REFINERY LP

The transformed LP with all constraints in the less than or equal to (LE) form in Section 2.2

of Chapter 2 has 33 variables and 58 constraints. This problemis converted to a dual

problem based on the procedure given in Dantzig and Thapa (2003).

The dual formulation will have 58 variables for each of the primal constraints and 33

constraints for each of the primal variables. The dual variables for the 58 constraints are

defined asY1 · · ·Y58. The dual formulation is given as follows:

Minimize z = 110,000Y1 - 10,000Y2 - 10,000Y7 - 10,000Y12 - 10,000Y17 + 10,0000Y22 +

25,000Y33 - 30,000Y38

Subject to

1) -Y1 - Y22 - 35.42Y23 + 35.42Y24 - 0.27Y25 + 0.27Y26 - 0.237Y27 + 0.237Y28 - 0.087Y29 +

0.087Y30 - 0.372Y31+0.372Y32 ≤ 33→ CRUDE

2) Y23 - Y24 ≤ -0.01965 → FGAD

3) -Y33 - 158.7Y34 + 158.7Y35 - 0.928Y36 + 0.928Y37 + Y47 - Y48 ≤ 2.5 → SRNRF

4) Y34 - Y35 ≤ -0.01965 → FGRF

5) Y38 - 336.90Y39 + 336.90Y40 - 0.619Y41 + 0.619Y42 - 0.189Y43 + 0.189Y44 + Y49 - Y50 ≤

2.2→ SRDSCC

6) -Y38 - 386.40Y39 + 386.4Y40 - 0.688Y41 + 0.688Y42 - 0.2197Y43 + 0.2197Y44 + Y51 - Y52

≤ 2.2→ SRFOCC
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7) Y39 - Y40 ≤ -0.01965 → FGCC

8) Y2 + Y3 - Y4 - 93Y5 + 12.7Y6 ≤ -45.36 → PG

9) Y7 + Y8 - Y9 - 87Y10 + 12.7Y11 ≤ -43.68 → RG

10)Y12 + Y13 - Y14 + 306Y15 + 0.5Y16 ≤ -40.32 → DF

11)Y17 + Y18 - Y19 + 352Y20 + 3Y21 ≤ -13.14 → FO

12) -Y3 + Y4 + 78.5Y5 - 18.4Y6 + 1Y45 - Y46 ≤ 0 → SRGPG

13) -Y3 + Y4 + 104Y5 - 2.57Y6 + 1Y53 - Y54 ≤ 0 → RFGPG

14) -Y3 + Y4 + 65Y5 - 6.54Y6 + Y47 - Y48 ≤ 0 → SRNPG

15) -Y3 + Y4 + 93.7Y5 - 6.9Y6 + Y55 - Y56 ≤ 0 → CCGPG

16) -Y8 + Y9 + 78.5Y10 - 18.4Y11 + Y45 - Y46 ≤ 0 → SRGRG

17) -Y8 + Y9 + 104Y10 - 2.57Y11 + Y53 - Y54 ≤ 0 → RFGRG

18) -Y8 + Y9 + 65Y10 - 6.54Y11 + Y47 - Y48 ≤ 0 → SRNRG

19) -Y8 + Y9 + 93.7Y10 - 6.9Y11 + Y55 - Y56 ≤ 0 → CCGRG

20) -Y13 + Y14 - 272Y15 - 0.283Y16 + Y47 - Y48 ≤ 0 → SRNDF

21) -Y13+Y14-294.4Y15-0.353Y16+Y57-Y58 ≤ 0 → CCFODF

22) -Y13+Y14-292Y15-0.526Y16+Y49-Y50 ≤ 0 → SRDSDF

23) -Y13+Y14-295Y15-0.98Y16+Y51-Y52 ≤ 0 → SRFODF

24) -Y18+Y19-294.4Y20-0.353Y21+Y57-Y58 ≤ 0 → CCFOFO

25) -Y18+Y19-292Y20-0.526Y21+Y49-Y50 ≤ 0 → SRDSFO

26) -Y18+Y19-295Y20-0.98Y21+Y51-Y52 ≤ 0 → SRFOFO

27)Y25-Y26-Y45+Y46 ≤ 0 → SRG

28)Y27-Y28-Y47+Y48 ≤ 0 → SRN

29)Y29-Y30-Y49+Y50 ≤ 0 → SRDS

30)Y31-Y32-Y51+Y52 ≤ 0 → SRFO

31)Y36-Y37-Y53+Y54 ≤ 0 → RFG

32)Y41-Y42-Y55+Y56 ≤ 0 → CCG

33)Y43-Y44-Y57+Y58≤ 0 → CCFO
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Each of the dual variables in the above formulation is represented in an abbreviated

form for better comprehension. The abbreviated version andthe detailed description of

each of the dual variables is given in Table B.1.

Table B.1: Description of Dual Variables for the Refinery LP

Dual Abbreviated Constraint Dual Abbreviated Constraint

variable form description variable form description

Y1 CRUDEavail Crude availability Y30 SRDSyield(2) SRDS Yield , GE

Y2 PGproduction PG Production Y31 SRFOyield(1) SRFO Yield , LE

Y3 PGblend(1) PG Blending, LE Y32 SRFOyield(2) SRFO Yield , GE

Y4 PGblend(2) PG Blending, GE Y33 RFcapacity RF Capacity

Y5 PGoctane PG Octane rating Y34 FGRFyield(1) FGRF Yield , LE

Y6 PGvapor PG Vapor pressure Y35 FGRFyield(2) FGRF Yield , GE

Y7 RGproduction RG Production Y36 RFGyield(1) RFG Yield , LE

Y8 RGblend(1) RG Blending, LE Y37 RFGyield(2) RFG Yield , GE

Y9 RGblend(2) RG Blending, GE Y38 CCcapacity FCC Capacity

Y10 RGoctane RG Octane rating Y39 FGCCyield(1) FGCC Yield , LE

Y11 RGvapor RG vapor pressure Y40 FGCCyield(2) FGCC Yield , GE

Y12 DFproduction DF production Y41 CCGyield(1) CCG Yield , LE

Y13 DFblend(1) DF blending, LE Y42 CCGyield(2) CCG Yield , GE

Y14 DFblend(2) DF blending, GE Y43 CCFOyield(1) CCFO Yield , LE

Y15 DFdensity DF density specificationY44 CCFOyield(2) CCFO Yield , GE

Y16 DFsulfur DF Sulfur specification Y45 SRGsplit(1) SRG Split , LE

Y17 FOproduction FO production Y46 SRGsplit(2) SRG Split , GE

Y18 FOblend(1) FO blending, LE Y47 SRNsplit(1) SRN Split , LE

Y19 FOblend(2) FO blending, GE Y48 SRNsplit(2) SRN Split , GE

Y20 FOdensity FO density specificationY49 SRDSsplit(1) SRDS Split , LE

Y21 FOsulfur FO Sulfur specificationY50 SRDSsplit(2) SRDS Split , GE

Y22 ADcapacity AD Capacity Y51 SRFOsplit(1) SRFO Split , LE

Y23 FGADyield(1) FGAD Yield , LE Y52 SRFOsplit(2) SRFO Split , GE

Y24 FGADyield(2) FGAD Yield , GE Y53 RFGsplit(1) RFG Split , LE

Y25 SRGyield(1) SRG Yield , LE Y54 RFGsplit(2) RFG Split , GE

Y26 SRGyield(2) SRG Yield , GE Y55 CCGsplit(1) CCG Split , LE

Y27 SRNyield(1) SRN Yield , LE Y56 CCGsplit(2) CCG Split , GE

Y28 SRNyield(2) SRN Yield , GE Y57 CCFOsplit(1) CCFO Split , LE

Y29 SRDSyield(1) SRDS Yield , LE Y58 CCFOsplit(2) CCFO Split , GE
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