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CHAPTER 1

INTRODUCTION

Petroleum refineries are complex, large-scale manufactypriocesses. The value of crude
oil processed by a 200, 000 barrel per day facility exceauaii#fion dollars a day, or four
billion dollars a year. However, petroleum refining is a matumdustry employing mature
technology. Consequently, profit margins are low and ecooapiimization is essential
to stay in business.

Linear Programs or LPs are key elements in the optimum phgnand operations of
a petroleum refinery. Refinery planners utilize custom LPve# (e.g. AspenTech’s
PIMS program) to select among the many types of crude oilaai for purchase. LPs
are also used by the planners to identify optimum operatimglitions for various refinery
units. Examples include distillation cut points in the fr@md atmospheric unit, reaction
temperature in the Fluid Catalytic Cracking (FCC) unit and mefer (RF) feed rate to the
alkylation unit, etc.

LPs are linear mathematical models of processes that aezenttly non-linear. LP
modelers are charged with creating and maintaining linezdets that approximate refin-
ery operation over the expected range of operation. Thetsmoua refinery LP include
crude oil availabilities and prices, product demand andgs;i manufacturing cost informa-
tion and constraints imposed by equipment, markets, regof and utilities. The output
of a refinery LP includes the optimum daily profit, along witte tassociated refinery op-
erating conditions and flow rates (activities in LP termsheTefinery manager uses this
information to run the refinery on a day-to-day basis.

The LP also generates additional useful information in seomncremental or marginal



values of feeds, products, and the many intermediate strpamduced in the refinery. This
information provides insight regarding the economic intpafcproducing or consuming
additional barrels relative to base operating plan definetd® activities. In addition to
predicting the marginal value (shadow price) of a feed, pobar stream, the LP also
provides incremental effect coefficients that predict thgsical impact (changes in flow
rates, temperatures, product properties, etc.) throudheuefinery if a decision is made to
deviate slightly from the optimum conditions (activiti@gsociated with the base operating
plan.

Accurate interpretation of LP results is essential to penfoptimization in a petroleum
refinery. Misinterpretation of LP results can have significanpact on decision making
and can lead to unexpected financial consequences.

A typical refinery LP model used for optimization has appnoxiely 300-500 equa-
tions and 800-1,500 variables to optimize (Parkash, 200®¢rpretation of solutions for
a refinery LP has to be made with prudence, because almosaatiqal size LP problems
could be degenerate (Koltai and Terlaky, 2000; Kruse, 1988&ig, 1993).

The term degeneracy is frequently used to denote primalreggte problems in the
literature. In addition to primal degeneracy, an LP coutbdle dual degenerate (alternative
optima). In order to be precise, the terms “primal degengrad “dual degeneracy” will
be used to represent different conditions of degeneraay.stdte of primal degeneracy in
LP often produces multiple optimal dual values with uniquenal values (activity values)
and unique objective function value. On the other hand, thee ©f dual degeneracy in
LP produces multiple optimal primal values (activity vadygvith unique dual values and
unique objective function value. Due to this phenomenoa, dbndition of degeneracy
creates complications in choosing a specific solution fgl@mentation.

The consequences of primal degeneracy are extensivelysdisd in the technical lit-
erature (Strum, 1969; Eilon and Flavell, 1974; Aucamp amih®erg, 1982; Akgul, 1984;
Knolmayer, 1984; Gal, 1993; Jansen et al., 1997; Koltai aedaKy, 2000). However,



many practitioners in the field of petroleum refinery optiatian are not fully aware of the
consequences of primal degeneracy.

Unlike primal degeneracy, the concept of dual degeneracgredy addressed in the
literature. The main reason for this neglect is due to thetfet any set of multiple activity
values obtained from alternate optimal solutions can beighily implemented to achieve
the same objective function value. This flexibility of cho@sa desired solution among
multiple solutions is viewed favorably by several usergi@d991).

Although implementing any of the multiple activities olrtad for a dual degenerate LP
produces optimal profit in the base case, optimal profit maybecsustained even for an
infinitesimal change in the selling price or buying price ofidties. Market price fluctu-
ation is a common phenomenon in petroleum refinery opematidherefore, a definitive
approach must be developed to identify activity values léneads to optimal profit, despite
market price fluctuations. The existence and impact of degéderacy are poorly under-
stood by most refining planners.

The work reported in this document has two broad goals. Theifito provide a com-
prehensive methodology that allows a refinery planner teadtoth types of degeneracy
and correctly interpret the results from a single LP run. tMefinery planners are engi-
neers with limited or no formal education in the field of LPdhgor operations research.
LP training is provided in-house by company experts or LRv&fe training seminars.
The methodology developed in this research is designedstnsuwwith this more practical
rather than theoretical background. The second goal isdwige a more comprehensive
treatment of dual degeneracy with an emphasis on intetpretan a petroleum refining
context.

Degeneracy fundamentally implies the existence of mdtgwlutions in one fashion
or another to the refinery LP problem. In contrast with thé laca single, unique-in-all-
respects solution, most planner decisions or recommerdadire based on the output from

a single solution.



Both of the goals described previously were motivated in pgrthis use of one-of-
many-possible solutions. Successful application of theera presented in this document
provides the basis to make better-informed business desisvhile continuing to use LPs

for petroleum refinery optimization.

1.1 Goal and Obijectives

The goal of this research is to develop an approach to gaegellistness of implementing
a single LP optimal solution under conditions of dual degaog The specific objectives

of this research are to:
¢ Clarify and document the correct methods to detect degeperacrefinery LP.

e Provide techniques to distinguish between the unique anelnaue elements of a

refinery LP.

¢ Provide an understanding of physically unrealizable tesrd provide the means to

detect them.
o Explicitly identify the limitations associated with thetput from a single LP run.

e Develop an approach to determine activity values for a degederate LP that sus-

tains optimality criteria, based on speculated markeegdticctuations.

e Explain the economic implications of dual feasibility camehs for an LP solution

in the context of petroleum refinery optimization.

e Develop an algorithm to determine alternate optimal sohgifor a dual degenerate

LP.

e Extend the primal incremental analysis approach develtyyeflucamp and Stein-
berg (1982) to determine true incremental effect coeffisian addition to determin-

ing true shadow prices.



In this research an innovative approach is developed tacterize LP solutions when
the problem is dual degenerate. The categorization appeaables the user to implement
specific solutions that maintain optimality criteria, undenditions of anticipated market
price uncertainties. The relation between dual feasybddnditions and optimality of LP
solutions is used to develop this approach. Furthermorevalmperturbation technique
implementing parametric programming is developed to dater alternate optimal solu-
tions under conditions of dual degeneracy. The proceduteesults will be illustrated for

a simplified refinery LP model with 33 decision variables aidd8nstraints.

1.2 Organization of Dissertation

Including the introduction chapter, this dissertation siaschapters. A chapter by chapter

description of the dissertation follows.

Chapter 2 First, the basic notations and definitions involved in a Lélpem are provided.
After that, a simplified refinery LP is presented to explaid@tail how a refinery LP

is solved and its solutions are interpreted.

Chapter 3 Presents the geometric and algebraic solution of threerdift 2-D LPs: 1)
non-degenerate, 2) primal degenerate, and 3) dual degerigPaproblem. This
chapter discusses the consequences of degeneracy andlegrstrategies to identify

different conditions of degeneracy from an optimal solutio

Chapter 4 Deals with the interpretation of LP results, when the LP ispf degenerate.

The results and procedures are presented for a refinery LP.

Chapter 5 Provides a brief overview on the previous work related tol diggeneracy,
and presents the novel approach and algorithm developeddbdual degenerate

problems. The results and procedures are illustrated fefirzery LP.

Chapter 6 Summarizes the contributions and future directions ofréégarch.



CHAPTER 2

REFINERY LP FORMULATION AND SOLUTION

In this chapter, the basic definitions involved in descigban LP problem and its solu-
tion are provided. Then a simplified refinery LP obtained friderature (Pike, 1986) is

presented to explain how a refinery LP is solved and its swistare interpreted.

2.1 Notations and Definitions of the LP Problem

The information given in Gal (1986) is used as a guidelineviaiting this section. A

petroleum refinery LP problem is presented in the form giveEguation (2.1)

Maximizez = ¢’z (2.1)

reX
with X = {z € R"|Az < b,z > 0} wherec = (c1, -+, ¢, ,c,)T € R, b =
(bry==+ s bjy oo b))t € R™ 2 = (21, 24, ,2,)T € R", A an(m x n), matrix,
A= (a',-- - ,a"), dd = (ayj, a4, ,am;)*, j =1,--- ,n. The LP in gen-

eral form given in Equation (2.1) is converted to standarchfby introducing slacks and
surplusz,;;,i = 1,--- ,m. The definition of variables = (zq,--- ,z;,---,2,)" and

Tnyiyt = 1,--+  m are given as follows:

Decision variables The set{z; - - - x,,} are called the decision variables. These variables
represent barrels of crude, barrels of naphtha, barrelagdlome, etc., in a refinery
LP. Decision variables are not only limited to feed and puataun rates but also
include physical properties (e.g. Reid vapor pressure) aedabing conditions (e.g.

reactor temperatures). The decision variables are atijestanobs” of the refining



business. The refinery manager wants to know the best chowxawes for these

“knobs” or decision variables.

Slacks and Surplus The set{z, .1z, } includes the slack and surplus variables.
These variables are used to convert the LP problem to staridan. Slack vari-
ables are added to the less than or equal to (LE) constraimdssurplus variables are

added to greater than or equal to (GE) constraints.

Now the problem is solved by computing an optimal basis withaharacteristic basis-
indexp = ji,- -, Jm SUCh thatz;y, - - -, x;,,, are basic variables and after some rearrange-
mentj; = 1,--- .4, = m, the optimal solution for the LP in an expanded tableau or
simplex tableau is given by Table 2.1 (Gal, 1986). The dpson of each entry in the

tableau follows:

Table 2.1: Optimal Simplex Tableau (Gal, 1986)

Z O .o 0 Em+1 e En yl e ym Zmax

111 -+ 0 GQime1 0 @Gn Gipgr1 0 Qintm by

m|O e 1 am,erl e am,n am,nJrl T am,n+m bm
T1 e Tm  Tm41 e Tn Tn+1 e Tn+m B

Activity values Activity values are the values of decision variables, slactl surplus, in
the optimal solution. The vector of activity valueg = [ b; - - -l_)m]T are called the
primal solution or primal values. In Table 2.1, the columutee | b, - - -Em]T in the

far-right column represents the activity values.

Dual Solution The set of values in the top row, labeled Byin Table 2.1, represent the
dual solution. Individual entries in the set are called dwlies. This row is also
referred to as th&’-row. All of the entries in the dual solution represent restiic

costs or shadow prices.



Reduced costThe entries in the top ron4-row) labeled by, for j = 1,---n, are called
opportunity costs, reduced costs or D-J or Delta-J valudMiS(Process Industry
Modeling System) convention (Parkash, 2003) . Reducedaastdefined as the
amount by whiche; must increase in order to entey into the basis. In other words,
in order to make the production or consumption of a resoufqgerofitable, its cost

coefficientc; must be adjusted by an amount equatto

Shadow price The entries in th&Z—row labeledy; for j = n+1,--- ,n + m are called
shadow prices, marginal valuesygivalues in PIMS convention (Parkash, 2003), and
are defined as the price for selling or buying one additionélaf thei-th resource.

(i.e,7y, is the amount by which,,,.., changes on changirig by one unit.)

In addition to the above information, the incremental dffemefficientsa;;, available
in the optimal simplex tableau are of considerable intet@giractitioners in the field of
petroleum refinery optimization. The following subsectexplains the interpretation of

incremental effect coefficients.

2.1.1 Incremental Effect Coefficients

Incremental effect coefficients are of two types: primatémental effect coefficients and
dual incremental effect coefficients. The column vedoy,; - - -am,nH]T belowy; (also
defined for reduced cost, not just shadow prices) in Tablesz:4lled the primal incremen-
tal effect coefficients, and the row vectar ,,,+1 - - - @i, Gint1 - - - Gintm) lEF 1O D; IgNOring
the identity structure in Table 2.1, is called the dual inceatal effect coefficients.

Primal incremental effect coefficients direct the incretabohange in activities when
an active constraint is positively or negatively perturbathin a limited (sensitivity) range.
For example, if the right hand side (R.H.S) of an aciiveconstraint is perturbed as+ 6,
whered stands for small changes within a sensitivity range, the aetivity values will
change by an amount advocated by the primal incrementadtefteefficients given by

Equation (2.2).



bl a'L',n+1 bl,new

TBnew = +0 = (22)

b Qmn+1 b new
Wherez g ..., IS the new set of activity values obtained after the posjtegurbatiorb; + 9,
a similar analysis is also valid for a negative perturbatior 6. The above analysis will
be referred to as therimal incremental effect analysisin this work.

The dual incremental effect coefficients direct the incretalechange in dual values
when the cost coefficient of a decision variable in the optipasis is positively or nega-
tively perturbed within a sensitivity range. For exampfahe cost coefficient of thegth
decision variable in the optimal basis is perturbed;asj, the new dual values will change

by an amount advocated by the dual incremental effect caaitegiven by Equation (2.3).

T T T
Em—l—l ai,m—l—l Em—l—l,new
En az’,n En,new
(Cnew Ynew) = +9 = (2.3)
Y; Qjn+1 yi,new
Ym Qi n+m ym,new

Where €,cw U,e00) are the new dual values obtained after the positive peatiaoc; + 6, a
similar analysis is also valid for a negative perturbatipa- 6. The above analysis will be

referred to as thdual incremental effect analysisn this work.

2.2 Solving and Interpreting Refinery LP Solutions

A petroleum refinery LP model adopted from Pike (1986) is usedase studies in this
research. The flow sheet of the refinery LP model is shown inrEig.1. The expanded

names for the process streams involved in the flow sheet avéded in Table 2.2.
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Figure 2.1: Process Flow Diagram for Pike’s Refinery (Pik&6)9
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Table 2.2: Process Stream Description for Pike’s Refinery leleigdon Variables (Pike,
1986)

NO. Name Definition (flow rates are in barrels per day)

1 CRUDE Crude oil flow rate to the atmospheric crude distillation column (AD)
2 FGAD  Fuel gas flow rate from AD

3 SRG Straight-run gasoline flow rate from AD

4 SRN Straight-run naphtha flow rate from AD

5 SRDS Straight-run distillate flow rate from AD

6 SRFO Straight-run fuel oil flow rate from AD

7 SRNRF Straight-run naphtha feed rate to the reformer (RF)

8 FGRF Fuel gas flow rate from RF

9 RFG Reformer gasoline flow rate

10 SRDSCC Straight-run distillate flow rate to the catalytic cracking unit (CCU)
11 SRFOCC Straight-run fuel oil flow rate to the CCU

12 FGCC Fuel gas oil flow rate from the CCU

13 CCG Gasoline flow rate from CCU

14 CCFO Fuel oil flow rate from CCU

15 SRGPG Straight-run gasoline flow rate for premium gasoline (PG) bigndin
16 RFGPG Reformer gasoline flow rate for PG blending

17 SRNPG Straight-run naphtha flow rate for PG blending

18 CCGPG Catalytic cracking unit gasoline flow rate for PG blending

19 PG Premium gasoline flow rate

20 SRGRG Straight-run gasoline flow rate for regular gasoline (RG) lsignd
21 RFGRG Reformer gasoline flow rate for RG blending

22 SRNRG Straight-run naphtha flow rate for RG blending

23 CCGRG Catalytic cracking unit gasoline flow rate for RG blending

24 RG Regular gasoline flow rate

25 SRNDF Straight-run naphtha flow rate for diesel fuel (DF) blending

26 CCFODF Catalytic cracking unit fuel oil flow rate for diesel fuel (Fgnding
27 SRDSDF Straight-run distillate flow rate for DF blending

28 SRFODF Straight-run fuel oil flow rate for DF blending

29 DF No. 2 diesel fuel flow rate

30 CCFOFO Catalytic cracking unit flow rate for fuel oil(FO) blending

31 SRDSFO Straight-run distillate flow rate for FO blending

32 SRFOFO Straight-run fuel oil flow rate for FO blending

33 FO No. 6 fuel oil flow rate
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2.2.1 Refinery LP Formulation

Pike’s refinery LP has 21 equality constraints, 16 inequaldnstraints and 33 decision
variables. The 33 decision variables, along with their dpgons are provided in Table 2.2.
The cost of inputs (crude oil), operating cost incurred ia timits and the sales price of

products produced in the refinery are listed in Table 2.3

Table 2.3: Crude Oil Cost, Product Sales Prices, and Oper@isgs for the Petroleum
Refinery Pike (1986)

S.l. No. Variable Cost Coefficient

1 CRUDE Buying price of 33%$/bb1

2 FGAD  Selling price of 0.01965 $/ft3

3 SRNRF Reformer operating cost of 2.5%/bbl
4 FGRF Selling price of 0.01965 $/ft3

5 SRDSCC FCC operating cost of 2.2%/bbl
6 SRFOCC FCC operating cost of 2.2%/bbl
7 FGCC Selling price of 0.01965 $/ft3

8 PG Selling price of 44.0813%/bbl

9 RG Selling price of 43.68%/bbl

10 DF Selling price of 40.32%/bbl

11 FO Selling price of 13.14%$/bbl

The LP for the Pike’s problem is formulated as a maximizapiooblem. The objective
function is given as follows. The sales prices are shown agip®, and the cost are shown
as negative in the objective function.

Maximizez =

-33CRUDE + 0.01965FGAD - 2.5SRNRF + 0.01965FGRF - 2.2SRDSCC - 2.08RF
+ 0.01965FGCC + 45.36PG + 43.68RG + 40.32DF + 13.14FO
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The constraints for the Pike’s refinery LP are listed below.
Subject to
1) CRUDE< 110,000 — Crude oil availability
Premium Gasoline (PG) blending
2) PG> 10,000 — Minimum production requirement

3) SRGPG + RFGPG + SRNPG + CCGPG -P®  — PG Blending material balance

4) 78.5SRGPG + 104RFGPG + 65SRNPG + 93.7CCGPG -93PG  — PG Octane
rating (physical property specification)
5) 18.4SRGPG + 2.57TRFGPG + 6.54SRNPG + 6.9CCGPG - 12dBG — PG Vapor

pressure (physical property specification)

Regular Gasoline (PG) blending
6) RG> 10,000 — Minimum production requirement

7) SRGRG + RFGRG + SRNRG + CCGRG - R&0 — RG Blending material balance

8) 78.5SRGRG + 104RFGRG + 65SRNRG + 93.7CCGRG - 8ZRGG — RG Octane
rating (physical property specification)
9) 18.4SRGRG + 2.57RFGRG + 6.54SRNRG + 6.9CCGRG - 12.¥RIG — RG Vapor

pressure (physical property specification)

Diesel Fuel (DF) blending

10) DF> 10,000 — Minimum production requirement
11) SRNDF + CCFODF + SRDSDF + SRFODF - BFO — DF Blending material
balance

12) 272SRNDF + 294.4CCFODF + 292SRDSDF + 295SRFODF - 306[@F — DF
Density specification (physical property specification)
13) 0.283SRNDF + 0.353CCFODF + 0.526SRDSDF + 0.980SRFODF - 0s6DF —

DF Sulfur specification (physical property specification)
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Fuel Oil (FO) blending

14) FO> 10,000 — Minimum production requirement
15) CCFOFO + SRDSFO + SRFOFO - F&0 — FO Blending material balance
16) 294.4CCFOFO + 292SRDSFO + 295SRFOFO - 352F0 — FO Density

specification (physical property specification)
17) 0.353CCFOFO + 0.526SRDSFO + 0.980SRFOFO - 3FHD — FO Sulfur

specification (physical property specification)

Atmospheric Distillation (AD) unit
18) CRUDE< 100,000 — AD Equipment processing capacity

AD Unit Material Balance Constraints

19) 35.42CRUDE - FGAD=0 — FGAD Yield
20) 0.27CRUDE - SRG=0 — SRG Yield
21) 0.237CRUDE - SRN-= 0 — SRN Yield
22) 0.087CRUDE - SRDS 0 — SRDS Yield
23) 0.372CRUDE - SRFG- 0 — SRFO Yield

Catalytic Reformer (RF)

24) SRNRF 25,000 — RF Equipment processing capacity
RF Unit Material Balance Constraints

25) 158.7SRNRF - FGRE 0 — FGRF Yield
26) 0.928SRNRF - RFG 0 — RFG Yield
Catalytic cracking (FCC unit)

27) SRDSCC + SRFOCE 30,000 — FCC Equipment processing capacity

FCC Unit Material Balance Constraints

28) 336.9SRDSCC + 386.4SRFOCC - FGE® — FGCC Yield
29) 0.619SRDSCC + 0.688SRFOCC - CE® — CCG Yield
30) 0.189SRDSCC + 0.2197SRFOCC - CCE® — CCFO Yield

Stream splits (material balance constraints)
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31) SRG - SRGPG - SRGR& 0 — SRG Split

32) SRN - SRNRF - SRNPG - SRNRG - SRNBFO — SRN Split
33) SRDS - SRDSCC - SRDSDF - SRDSEQ — SRDS Split
34) SRFO - SRFOCC - SRFODF - SRFOEQ — SRFO Split
35) RFG - RFGPG - RFGRG 0 — RFG Split
36) CCG - CCGRG - CCGPG 0 — CCG Split
37) CCFO - CCFODF - CCFOF@ 0 — CCG Split

Before attempting to solve Pike’s refinery LP using the priaral dual simplex method,
all the greater than or equal to (GE) constraints and equatihstraints are algebraically
manipulated to less than or equal to (LE) constraints. The@tstraint of the form given
in Equation (2.4)

Az >b (2.4)

is multiplied by -1 and converted to LE form as given in Eqoat{2.5).

—Azx < b (2.5)

The equality constraints of the form given in Equation (2.6)

Az =b (2.6)

are initially converted to companion form given in Equati@?) by splitting into two
inequalities.
Ax < b (LE form) (2.7)

Ax > b (GE form)

Then, the GE form in the above companion representationigerted to LE by multiply-
ing it by -1 and given by Equation (2.8).
Az < b (LE form) (2.8)

— Az < —b (Modified GE)
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After applying the above transformation to the refinery @ tonstraints are presented as

follows:

1) CRUDE< 110,000 — Crude oil availability
PG blending

2)-PG<-10,000 — Minimum production requirement

3) - PG + SRGPG + RFGPG + SRNPG + CCGR® — PG Blending material balance
4) PG - SRGPG - RFGPG - SRNPG - CCGR®

5) 93PG - 78.5SRGPG - 104RFGPG - 65SRNPG - 93.7CC&HRG —PG Octane rating
(physical property specification)
6) - 12.7PG + 18.4SRGPG + 2.57TRFGPG + 6.54SRNPG + 6.9CCGBG— PG Vapor

pressure (physical property specification)

RG blending
7) - RG<-10,000 — Minimum production requirement
8) - RG + SRGRG + RFGRG + SRNRG + CCGRG0 —RG Blending

9) RG - SRGRG - RFGRG - SRNRG - CCGRGO

10) 87 RG - 78.5SRGRG - 104RFGRG - 65SRNRG - 93.7CCGRG —RG Octane
rating (physical property specification)
11) - 12.7RG + 18.4SRGRG + 2.57RFGRG + 6.54SRNRG + 6.9CCGRIG —RG

Vapor pressure (physical property specification)

DF blending

12) - DF< - 10,000 — Minimum production requirement

13) - DF + SRNDF + CCFODF + SRDSDF + SRFOBFO —DF Blending material

balance

14) DF - SRNDF - CCFODF - SRDSDF - SRFOBFO0
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15) - 306DF + 272SRNDF + 294.4CCFODF + 292SRDSDF + 295SRFQDF — DF
Density specification (physical property specification)
16) - 0.5DF + 0.283SRNDF + 0.353CCFODF + 0.526SRDSDF + 0.98SRFODF —

DF Sulfur specification (physical property specification)

FO blending
17) - FO<-10,000 —Minimum production requirement
18) - FO + CCFOFO + SRDSFO + SRFOFO0 —FO Blending material balance

19) FO - CCFOFO - SRDSFO - SRFOFO0

20) - 352FO0 + 294.4CCFOFO + 292SRDSFO + 295 SRFGFD —FO Density
specification (physical property specification)
21) - 3FO + 0.353CCFOFO + 0.526SRDSFO + 0.98SRFGHD —FO Sulfur

specification (physical property specification)

Crude Oil Atmospheric Distillation Column

22) CRUDE< 100,000 — AD Equipment processing capacity
AD Unit Material Balance Constraints

23) 35.42CRUDE - FGADX 0 — FGAD Yield
24) - 35.42CRUDE + FGADX 0

25) 0.27CRUDE - SR& 0 —SRG Yield
26) - 0.27CRUDE + SR& 0

27) 0.237CRUDE - SRNXC O —SRN Yield
28) - 0.237CRUDE + SRNX< O

29) 0.08699999CRUDE - SRDS 0 —SRDS Yield
30) - 0.08699999CRUDE + SRDS 0

31) 0.372CRUDE - SRF& 0 —SRFO Yield
32) - 0.372CRUDE + SRF& 0
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Catalytic Reformer

33) SRNRF 25,000 — RF Equipment processing capacity
RF Unit Material Balance Constraints

34) 158.7SRNRF - FGRE 0 —FGREF Yield
35) - 158.7SRNRF + FGRE 0 36) 0.928SRNRF - RF& 0 —RFG Yield
37)- 0.928SRNRF + RF& 0

FCC Unit

38) SRDSCC + SRFOCE& 30,000 — FCC Equipment processing capacity
FCC Unit Material Balance Constraints

39) 336.9SRDSCC + 386.4SRFOCC - FGE® —FGCC Yield
40) - 336.9SRDSCC - 386.4SRFOCC + FGE®

41) 0.619SRDSCC + 0.688SRFOCC - CE® —CCG Yield
42) - 0.619SRDSCC - 0.688SRFOCC + CCQ®

43) 0.189SRDSCC + 0.2197SRFOCC - CCE® —CCFO Yield
44) - 0.189SRDSCC - 0.2197SRFOCC + CCE®@

Stream Splits (material balance constraints)

45) - SRGPG - SRGRG + SR& 0 —SRG Split
46) SRGPG + SRGRG - SR& 0

47) - SRNRF - SRNPG - SRNRG - SRNDF + SRNO —SRN Split
48) SRNRF + SRNPG + SRNRG + SRNDF - SRND

49) - SRDSCC - SRDSDF - SRDSFO + SRBS) —SRDS Split
50) SRDSCC + SRDSDF + SRDSFO - SRBES

51) - SRFOCC - SRFODF - SRFOFO + SRR —SRFO Split
52) SRFOCC + SRFODF + SRFOFO - SREQD

53) - RFGPG - RFGRG + RF& 0 —RFG Split
54) RFGPG + RFGRG - RF& 0

55) - CCGPG - CCGRG + CC& 0 —CCG Split
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56) CCGPG + CCGRG - CC& 0
57) - CCFODF - CCFOFO + CCF@ 0 —.CCFO Split
58) CCFODF + CCFOFO - CCF@ 0

After adding slacks to the above formulation the standamohfiepresentation is given

as

1) CRUDE + SLK1= 110,000 —Crude oil availability
PG blending

2) - PG + SLK2= - 10000 — Minimum production requirement

3) - PG + SRGPG + RFGPG + SRNPG + CCGPG + SI:KB —PG Blending material

balance
4) PG - SRGPG - RFGPG - SRNPG - CCGPG + SLK4O

5) 93PG - 78.5SRGPG - 104RFGPG - 65SRNPG - 93.7CCGPG + SLB5 —PG
Octane rating (physical property specification)
6) - 12.7PG + 18.4SRGPG + 2.57RFGPG + 6.54SRNPG + 6.9CCGPG + SLK6:PG

Vapor pressure (physical property specification)

RG blending
7) - RG + SLK7= - 10,000 —Minimum production requirement

8) - RG + SRGRG + RFGRG + SRNRG + CCGRG + SLK& —RG Blending material

balance
9) RG - SRGRG - RFGRG - SRNRG - CCGRG + SLK20

10) 87RG - 78.5SRGRG - 104RFGRG - 65SRNRG - 93.7CCGRG + SIK00 —RG

Octane rating (physical property specification)

19



11) - 12.70RG + 18.40SRGRG + 2.570RFGRG + 6.540SRNRG + 6.90CCGRG + SLK11

=0—RG Vapor pressure (physical property specification)

DF blending
12) - DF + SLK12= - 10000 —Minimum production rate

13) - DF + SRNDF + CCFODF + SRDSDF + SRFODF + SLK%3® —DF Blending

material balance
14) DF - SRNDF - CCFODF - SRDSDF - SRFODF + SLK240

15) - 306DF + 272SRNDF + 294.4 CCFODF + 292SRDSDF + 295SRFODF + SEK15
0 —DF Density specification (physical property specification)
16) - 0.5DF+ 0.283SRNDF+ 0.353CCFODF+ 0.526SRDSDF+ 0.98SRFOBIEKAL6 =

0 —DF Sulfur specification (physical property specification)

FO blending
17) - FO + SLK17= - 10000 —Minimum production rate

18) - FO + CCFOFO + SRDSFO + SRFOFO + SLKZ8) —FO Blending material

balance
19) FO - CCFOFO - SRDSFO - SRFOFO + SLKZD

20) - 352F0 + 294.4CCFOFO + 292SRDSFO + 295SRFOFO + SLKPO —FO
Density specification (physical property specification)
21) - 3FO + 0.353CCFOFO + 0.526SRDSFO + 0.98SRFOFO + SI:KP1—FO Sulfur

specification (physical property specification)

Atmospheric Distillation Column
22) CRUDE + SLK22= 100,000 —AD equipment processing capacity
AD Unit Material Balance Constraints

23) 35.42CRUDE - FGAD + SLK23- 0 —FGAD Yield
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24) - 35.42CRUDE + FGAD + SLK24 0
25) 0.27CRUDE - SRG + SLK25- 0

26) - 0.27CRUDE + SRG + SLK2& 0

27) 0.237CRUDE - SRN + SLK2# 0

28) - 0.237CRUDE + SRN + SLK28& 0

29) 0.08699999CRUDE - SRDS + SLK290
30) - 0.08699999CRUDE + SRDS + SLK3D
31) 0.372CRUDE - SRFO + SLK3% 0

32) - 0.372CRUDE + SRFO + SLK32 0
Catalytic Reformer

33) SRNRF + SLK33= 25,000

RF Unit Material Balance Constraints

—SRG Yield

—SRN Yield

—SRDS Yield

—SRFO Yield

—RF equipment processing capacity

34) 158.7SRNRF - FGRF + SLK34 0 —FGRF Yield

35) - 158.7SRNRF + FGRF + SLK35 0

36) 0.928SRNRF - RFG + SLK36 0 —RFG Yield

37) - 0.928SRNRF + RFG + SLK3% 0

FCC Unit

FCC Unit Material Balance Constraints

38) SRDSCC + SRFOCC + SLK38 30,000 —FCC Capacity
39) 336.9SRDSCC + 386.4SRFOCC - FGCC + SLK39 —FGCC Yield

40) - 336.9SRDSCC - 386.4SRFOCC + FGCC + SLK40

41) 0.619SRDSCC + 0.688SRFOCC - CCG + SLKA4D —CCG Yield

42) - 0.619SRDSCC - 0.688SRFOCC + CCG + SLK4D

43) 0.189SRDSCC + 0.2197SRFOCC - CCFO + SLK408 —CCFO Yield

44) - 0.189SRDSCC - 0.2197SRFOCC + CCFO + SLk4a

Stream Splits (material balance constraints)

45) - SRGPG - SRGRG + SRG + SLK450 —SRG Split
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46) SRGPG + SRGRG - SRG + SLK460

47) - SRNRF - SRNPG - SRNRG - SRNDF + SRN + SLK40 —SRN Split
48) SRNRF + SRNPG + SRNRG + SRNDF - SRN + SLK4®

49) - SRDSCC - SRDSDF - SRDSFO + SRDS + SLK49 —SRDS Split
50) SRDSCC + SRDSDF + SRDSFO - SRDS + SLK50

51) - SRFOCC - SRFODF - SRFOFO + SRFO + SLK5D —SRFO Split
52) SRFOCC + SRFODF + SRFOFO - SRFO + SLK5D

53) - RFGPG - RFGRG + RFG + SLK530 —RFG Split
54) RFGPG + RFGRG - RFG + SLK54 0

55) - CCGPG - CCGRG + CCG + SLK550 —CCG Split
56) CCGPG + CCGRG - CCG + SLK56 0

57) - CCFODF - CCFOFO + CCFO + SLK5¥0 —CCFO Split
58) CCFODF + CCFOFO - CCFO + SLK580

The original problem contains 33 decision variables 21 material balance constraints
(equality constraints), and 16 inequality constraintduding capacity, sales, purchase or
physical property constraints. The LP in the standard foas $8 constraints = 21 x
2 + 16) and 91 variablesi{ + n). All the variables are indexed in numerical order. The

variables and their corresponding index are given in Talsle 2
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Table 2.4: Variable Index for the Refinery LP

Index Variable |Index Variable |Index Variabldlndex Variablélndex Variable

1 CRUDE |20 SRNDF |39 SLK6 |58 SLK25 |77 SLK44
2 FGAD |21 CCFODR 40 SLK7 |59 SLK26 |78 SLK45
3 SRNRF |22 SRDSDH 41 SLK8 |60 SLK27 |79 SLK46
4 FGRF |23 SRFODH 42 SLK9 |61 SLK28 |80 SLK47
5 SRDSCG24 CCFOFQ43 SLK10 |62 SLK29 |81 SLK48
6 SRFOCQ25 SRDSFQ 44 SLK11 |63 SLK30 |82 SLK49
7 FGCC |26 SRFOFQ 45 SLK12 |64  SLK31 |83 SLKS50
8 PG 27 SRG 46 SLK13 |65 SLK32 |84 SLK51
9 RG 28 SRN a7 SLK14 |66 SLK33 |85 SLK52
10 DF 29 SRDS |48 SLK15 |67 SLK34 |86 SLKS53
11 FO 30 SRFO |49 SLK16 |68 SLK35 |87 SLK54
12 SRGPG |31 RFG 50 SLK17 |69 SLK36 |88 SLK55
13 RFGPG |32 CCG 51 SLK18 |70 SLK37 |89 SLK56
14 SRNPG |33 CCFO |52 SLK19 |71 SLK38 |90 SLK57
15 CCGPG |34 SLK1 53 SLK20 |72 SLK39 |91 SLKS58
16 SRGRG |35 SLK2 54 SLK21 |73 SLK40

17 RFGRG |36 SLK3 55 SLK22 |74  SLK41

18 SRNRG |37 SLK4 56 SLK23 |75 SLK42

19 CCGRG |38 SLK5 57 SLK24 |76 SLK43
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2.2.2 Refinery LP Solution

The given LP was solved using LINDO and the optimal soluti@tedmined. The LP
optimal solution is usually represented in a tableau fortkeddhe optimal simplex tableau.
The optimal simplex tableau is a 581 matrix. The entire optimal simplex tableau will
not be presented due to its size. However, essential comfgatthe solution matrix will

be presented for interpretation.

Objective value The objective value or the optimal profit for this refinery waand to
be z,... = $701,823.43, which implies that for the given problem wifte specified

constraints the maximum profit that could be made is $7014&23

Activity Values The optimal basis is given in Table 2.5. Since the problemrhas 58
equations there will be 58 variables in the optimal basitedahe basic variables.
The numerical value associated with a basic variable ispntééed as the activity
values. For example, the activity of the Premium Gasolin@)(Becision variable
is 47113.20 bbl/day in Table 2.5. This represents the amoURG that has to be

manufactured to attain the optimal profit of $701,823.43.

Dual Values The dual values corresponding to the optimal basis are pieden Table 2.6.
Since the problem has + m = 91 variables andn = 58 equations, there will be
n + m — m = 33 dual variables. The dual variables corresponding tootignal
decision variables in the —row of optimal simplex tableau are referred to as reduced
cost. For example, the reduced cost of Straight Run NaphthBdgular Gasoline
blending (SRNRG) in Table 2.6 is given as 8.05%/bbl, implyingttSRNRG stream
is not manufactured in the process. In order to manufact®M®RS5 in the process

the selling price of SRNG has to be increased at least by $8.05.
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Table 2.5: Optimal Basis for the Refinery LP

Index Variable Activity Index Variable Activity  Index Variable Activity

(bbl /day) (bbl /day) (bbl /day)
1 CRUDE 100,000.00 |26 SRFOFO 5,403.80 |54 SLK21 22,286.68
2 FGAD*  3,542,000.00 |27 SRG 27,000.00 {56  SLK23 0.00
3 SRNRF 23,700.00 |28 SRN 23,700.00 |58  SLK25 0.00
4 FGRF  3,761,190.00 |29 SRDS 8,700.00 |60  SLK27 0.00
6 SRFOCC 30,000.00 |30 SRFO 37,200.00 |62 SLK29 0.00
7 FGCC  11,592,000.00 |31 RFG 21,993.60 |64 SLK31 0.00
8 PG 47,113.20 |32 CCG 20,640.00 |66  SLK33 1,300.00
9 RG 22,520.40 |33 CCFO 6,591.00 |67 SLK34 0.00
10 DF 12,491.00 |34  SLK1 10,000.00 |69  SLK36 0.00
11 FO 10,000.00 |35 SLK2 37,113.20 |72 SLK39 0.00
12 SRGPG 13,852.05 |36 SLK3 0.00 |74 SLK41 0.00
13  RFGPG 17,239.99 |39  SLK6  188,607.17 |76  SLK43 0.00
15 CCGPG 16,021.17 |40 SLK7 12,520.40 |78 SLK45 0.00
16 SRGRG 13,147.95 |41  SLKS8 0.00 {80  SLK47 0.00
17 RFGRG 4,753.61 |45  SLK12 2,491.00 |82  SLK49 0.00
19 CCGRG 4,618.83 |46  SLK13 0.00 {84  SLK51 0.00
21  CCFODF 6,591.00 |48  SLK15 153,666.99 |86  SLK53 0.00
22  SRDSDF 4,103.80 |51  SLK18 0.00 {88  SLK55 0.00
23  SRFODF 1,796.20 |53  SLK20 583,788.61 |90  SLK57 0.00
25 SRDSFO 4,596.20

tThere are a total afh = 58 decision and slack variables in the basis for the solution. The
remaining 33 variables are in the set of non-basis variables.

*ft3/day
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The dual variables corresponding to slack and surplus iZtherow of the optimal

simplex tableau are referred to as shadow prices. For exaitina shadow price of
Fuel Oil (FO) production constraint in Table 2.6 is given2i8.18 $/bbl. This implies
manufacturing an additional barrel of FO in the process witluce the objective

function value by $27.18 .

Note that here the dual value of all GE constraints are nmligdtpy -1 because before

solving the problem, all the GE constraints were converdds form.
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Table 2.6: Optimal Dual Values for the RefineryfLP

z Dual Value $/bbl  Active at
SLK4  Premium gasoline blending —19.32 LL (Equality)
SLK5  Premium gasoline octane rating —0.28 LL

SLK9 Regular gasoline blending —19.32 LL (Equality)
SLK10 Regular gasoline octane rating —0.28 LL

SLK11 Regular gasoline vapor 0.00 LL

SLK14 Diesel fuel blending —40.32 LL (Equality)
SLK16 Diesel fuel sulfur specification 0.00 LL

SLK17 Fuel oil production —27.18 LL (Equality)
SLK19 Fuel oil blending —40.32 LL (Equality)
SLK22 Atmospheric distillation unit capacity 8.15 UL

SLK24 Fuel gas yield from atmospheric distillation unit —0.02 LL (Equality)
SLK26 Straight run gasoline yield from atmospheric distillation uritt1.30 LL (Equality)
SLK28 Straight run naphtha yield from atmospheric distillation uritt5.57 LL (Equality)
SLK30 Straight run distillate yield from atmospheric distillation uritt0.32 LL (Equality)
SLK32 Straight run fuel oil yield from atmospheric distillation unit-40.32 LL (Equality)
SLK35 Fuel gas yield from reformer unit —0.02 LL (Equality)
SLK37 Reformed gasoline yield —48.44 LL (Equality)
SLK38 Catalytic cracking (FCC) unit capacity 5.27 UL

SLK40 Fuel gas yield from catalytic cracking unit —0.02 LL (Equality)
SLK42 Catalytic cracked gasoline yield —45.56 LL (Equality)
SLK44 Catalytic cracked fuel oil yield —40.32 LL (Equality)
SLK46 Straight run gasoline split —41.30 LL (Equality)
SLK48 Straight run naphtha split —45.57 LL (Equality)
SLK50 Straight run distillate split —40.32 LL (Equality)
SLK52 Straight run fuel oil split —40.32 LL (Equality)
SLK54 Reformed gasoline split —48.44 LL (Equality)
SLK56 Catalytic cracked gasoline split —45.56 LL (Equality)
SLK58 Catalytic cracked fuel oil split —40.32 LL (Equality)
SLK5  Straight run distillate for catalytic cracking 5.35 Reduced cost
SLK14 Straight run naphtha for premium gasoline blending 8.05 Reduced cost
SLK18 Straight run naphtha for regular gasoline blending 8.05 Reduced cost
SLK 20 Straight run naphtha for diesel fuel blending 5.25 Reduced cost
SLK24 Catalytic cracked fuel oil for fuel oil blending 0.00 Reduced cost

TThere are 33 variables in the set of non-basic variables. Dependithg dype:
slack or surplus variable, the dual values represents either redoseorshadow prices. Negative

dual values correspond to surplus variables (GE constraints).
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Primal Incremental Effects The column vector below each of the shadow prices in the
optimal simplex tableau contain the primal incrementaeftoefficients. The shadow
price of FO along with the corresponding primal incremepfédct coefficients are
listed in Table 2.7. The associated base objective funetdune and the activity val-
ues are also listed. The FO production constraint is a GEt@nsand written in
LE form before solving the problem. Therefore, the prima@r@mental coefficients

are multiplied by -1 and presented in Table 2.7.

Table 2.7: Primal Incremental Effect Coefficients Assodateth Fuel Oil Production

Constraint
FO Original  +1 FO Production -1 FO Production
Production  solution increase decrease

Z —27.18 % 701, 823.43 701,796.25 701, 850.61

Solution Incremental  Activity Activity Activity
Index basis effectd;) bbl/day bbl /day bbl /day
10 DF —1.00 12,491.00 12,490.00 12,492.00
11 FO 1.00  10,000.00 10,001.00 9,999.00
22 SRDSDF —1.06 4,103.80 4,102.74 4,104.85
23 SRFODF 0.06 1,796.20 1,796.26 1,796.15
25 SRDSFO 1.06 4,596.20 4,597.26 4,595.15
26 SRFOFO —0.06 5,403.80 5,403.74 5,403.85
45 SLK12 —1.00 2,491.00 2,490.00 2,492.00
48 SLK15 —14.17 153,666.99 153,652.81 153,681.16
53 SLK20 60.17 583,788.61 583, 848.79 583, 728.44
54 SLK21 2.50  22,286.68 22,289.18 22,284.18

TBasic variables with zero primal incremental effect coefficients are omitted

As demonstrated in Table 2.7, when the FO production (caim&td at the minimum
in the optimal solution) is increased by one unit, the oldyectunction value is re-
duced by the shadow price of FO constraint, and the changetiwita values are

determined by the primal incremental effect coefficientsmilar analysis is also
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valid for reducing the FO production by one unit. This analys referred to as

primal incremental effect analysis.

Dual Incremental Effects The row vector corresponding to an activity value (ignottimg
identity structure of the matrix) represents the dual ineatal effect coefficients.
The PG activity along with the dual incremental effects tiorints in the transpose
form (column format) are given in Table 2.8. The associateal ¢alues and the

objective function value in the base case are also provided.

As evident from Table 2.8, when the selling price of PG iséased by one unit, the
activity value governs the change in objective functiorueand the dual incremental
effect coefficient values dictate the change in dual val@&milar analysis is valid
for decrease in the PG price by one unit. This analysis is r@fred to as dual

incremental effect analysis.
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Table 2.8: Dual Incremental Effect Coefficients Associatét Wremium Gasoline Activ-

ity Value
Basecase ¢j+1 c;j—1
PG Objective  Objective  Objective

activity (bbl)  value ($) value ($) value ($)

47,113.20 701,823.43 748,936.63 654,710.23

Incremental Dual Dual Dual
z Dual variablé effect @;;) value ($/bbl) value ($/bbl) value ($/bbl)
SLK4 PGblend(2) 14.50 —19.32 —4.82 —33.82
SLK5 PGoctane -0.17 —0.28 —0.45 —0.11
SLK9 RGblend(2) 14.50 —19.32 —4.82 —33.82
SLK10 RGoctane -0.17 —0.28 —0.45 —0.11
SLK22  ADcapacity 0.24 8.15 8.39 7.91
SLK26 SRGyield(2) 1.42 —41.30 —39.88 —42.72
SLK28 SRNyield(2) —2.63 —45.57 —48.20 —42.94
SLK37 RFGyield(2) —2.83 —48.44 —51.27 —45.61
SLK38 CCcapacity 0.77 5.27 6.04 4.51
SLK42 CCGyield(2) —1.12 —45.56 —46.67 —44.44
SLK46 SRGsplit(2) 1.42 —41.30 —39.88 —42.72
SLK48 SRNsplit(2) —2.63 —45.57 —48.20 —42.94
SLK54  RFGsplit(2) —2.83 —48.44 —51.27 —45.61
SLK56 CCGsplit(2) —1.12 —45.56 —46.67 —44.44
SRDSCC Reduced cost 0.08 5.35 5.43 5.28
SRNPG Reduced cost 6.30 8.05 14.35 1.75
SRNRG Reduced cost 6.30 8.05 14.35 1.75
SRNDF Reduced cost 2.63 5.25 7.88 2.62

fDual variables with zero dual incremental effect coefficients are omitted
*Description of dual variables are given in Table B.1 of Appendix B
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2.3 Summary

This chapter explained the basic notations and definitionsah LP problem. Further-
more, these definitions and notations are illustrated fersimplified refinery LP model.
This model will be used throughout the remainder of the dasninto illustrate the differ-
ent concepts that are developed. The next chapter of théertigion will introduce the

different conditions of degeneracy in LP problems.
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CHAPTER 3

DEGENERACY IN LP

An LP problem could be non-degenerate, primal degeneratdua degenerate. These
three different conditions of LP problems are explainedngetnically and algebraically in
this section. Moreover, some of the background informatedated to degeneracy is also

provided.

3.1 Non-Degenerate LP Problem

Definition: An LP problem is considered to be non-degenerate if thenggtsolution is
uniquely determined by a single corner point with exactly mst@ints passing through it.
A 2-D LP obtained from Taha (2006), represented by EquaBal)(is used to demon-

strate this phenomenon.

Maximize z = 5z + 4x2 (3.1
Subject to
611 + 4dxy < 24 Constraint#1
r1+ 229 <6 Constraint#2
—x1+x2 <1 Constraint#3
To < 2 Constraint#4
T1,T9 >0 Non-negativity

The above problem in the general form has 2 variables andn = 4 equations. The
geometric solution of the 2-D LP is illustrated in Figure .3As shown in Figure 3.1, the

optimal vertexC' for this 2-D LP is determined by a unique basis, because ne tiamn
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Objective function
Constraint #1 Constraint #3

(Active) / (Inactive)

Constraint #4
(Inactive)

Constraint #2
(Active)

C <—Optimal

Figure 3.1: Graphical Solution for the 2-D Non-Degenerd®e L

(n) two constraints, constraint #1 and constraint #2, pasaitiir the optimum. When the
optimum is represented by a single point the dimension of the “optimal face” is zero.
These are the essential geometric characteristics of @leganerate LP problem.

Now the LP problem is solved algebraically using the simptesthod. The resulting

optimal simplex tableau is shown in Table 3.1. According &bl€& 3.1 none of the basic

Table 3.1: Optimal Tableau for a 2-D Non-Degenerate LP

Basis z; 9 S1 sy s3 s;4 RHS

z 0 O 34 12 0 O 21
xzw 1 0 1/4 -1/2 0 O 3
x 0 1 -1/8 3/4 0 0 32
s3 0 O 38 -54 1 0 5/2
s4 0 O 18 -34 0 1 1/2
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(=1, z9, 83, 84) @and non-basic variables,( s;) have zero primal or dual values, respectively,
in the optimal solution. This is an indication that the LP @srdegenerate. In this case, the
solution is unique, implying that there is a unique valuedeery activity, dual value and

incremental effect coefficient.

3.2 Primal Degeneracy

Definition: A basic solutionr € R" is said to be primal degenerate if more tharof the
constraints are active at (Bertsimas and Tsitsiklis, 1997, p.58).

In this section, the concept of primal degeneracy will bel&xed geometrically and
algebraically using a modified version of a 2-D LP problemaai®d from Taha (2006).
The 2-D primal degenerate LP in general form is given in Egua{3.2).

Maximize z = 5z + 4x, (3.2)
Subject to
61 + 4zo < 20 Constraint#1
T1+ 229 <6 Constraint4#2
-1+ a9 <1 Constraint#3
To < 2 Constraint#4
T1,T9 >0 Non-negativity

The geometric solution of the above 2-D LP is given in Figu Jhe shaded region,
ABCDE, is the feasible space and the optimum is given by thexepointC'. The given
LP is primal degenerate, because for this 2-D LP probleny,twvd constraints are required
to define the optimum. However, the optimum vertex, pd@intis over-determined with
three constraints: constraint #1, constraint #2, and cainstt4. Therefore, at this optimum
vertex pointC', three solutions can be generated with two constraintgeaatia time based

on the combination formula given by Equation (3.3).
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= () - 3

where, N is the number of constraints passing through the optimait@mdn is the di-

mension of the problem (number of original decision vaeapl

7
6 Objective function

Constraint #1 Constraint #3

K .
S (Active) (Inactive)
X 4 Optimal vertex
2 3 / Constraint #4
/ (Active)
C
2
E / Constraint #2
! (Active)
0A = 2
0 2 4 6 5
28|

Figure 3.2: Graphical Solution for the 2-D Primal Degenetz®

The multiple bases associated with the optimal vertex p6irdre generated alge-
braically using the simplex method with two constraintswecat a time. The three bases
are given by Table 3.2, Table 3.3, and Table 3.4. It is wellvkmdhat, not all bases as-
sociated with a primal degenerate optimal vertex are dwsdilide (optimal). The simplex
tableau given by Table 3.4, generated with constraint #2camdtraint #4 active, is dual
infeasible and non-optimal because of the “-6” dual valuetmstraint #4. However, it can
be pivoted further to get the simplex tableau given by Talf?e Bherefore, the two optimal

bases possible for this primal degenerate veftee given by Table 3.2 and Table 3.3.
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Table 3.2: Primal Degenerate Solution for the 2-D LP with G@asts #1 and #2 Active

Basis x; 9 $1 sy s3 s4 RHS

z 0 O 34 12 0 O 18
xzxz 1 0 14 -1/2 0 O 2
2 0 1 -1/8 3/4 0 O 2
s3 0 0 38 -54 1 O 1
s4 0 O 18 -34 0 1 0

Table 3.3: Primal Degenerate Solution for the 2-D LP with G@asts #1and #4 Active

Basis r1 T2 S1 SS9  S3 s4 RHS

z 0O O 56 0 0 23 18
xzxz 1 0 16 0 O -2/3 2
2 0 1 0 0 O 1 2
s, 0 O -1/6 1 0 -4/3 0
s3s 0 O 16 0 1 -5/3 1

Table 3.4: Primal Degenerate Solution for the 2-D LP with G@@asts #2 and #4 Active

Basis X1 T ST S22 S3 S84 RHS

5 -6 18

-2

T

S1

0 0

0 0 2
0O 0 0 1 2
1 0 0
0 1 1

o O +» O | o

0
1
ze O
0
0

53

36



Notice that both the optimal simplex tableaux (Table 3.2 &alle 3.3) have a unique
objective function value and primal solution (activitiebut different dual solutions (re-
duced cost and shadow prices). In both cases, at least ohe bésic variables has a zero
activity value. In the solution presented in Table 3.2, theib variables, has an activity
of zero. In Table 3.3, basic variablg has an activity value of zero. These observations
are an indication of primal degeneracy and are one of thandisshing characteristics of a
primal degenerate LP. As discussed later in Chapter 4, aritgaif zero does not indicate

primal degeneracy under certain conditions.

3.2.1 Consequence of Primal Degeneracy

Interpretation of LP optimal solutions under primal degewg becomes difficult, because
primal degeneracy results in multiple dual solutions angjum primal solutions. The

optimal dual value of an LP problem is interpreted eithereduced cost of a decision
variable or as the shadow price of a constraint and has signtfmanagerial interest. Many
authors define shadow price based on managerial requireffieatmost widely accepted
definition of shadow price is given as follows: shadow prigg,of theith resource);,

is the achievable rate of increase in the objective functienunit increase in resource
(Aucamp and Steinberg, 1982). Mathematically, the de@initf shadow price is given by

Equation (3.4), when the partial derivative exists.

1<i<m (3.4)

wherez,,.. is the optimal objective function value as a function of R.ldf$he constraint
b;, andp; is the shadow price ifth constraint. Herep’ stands for price. Different versions
of the definitions of shadow price associated with differ@aihagerial interpretations can

be found in Goyal and Soni (1984), Goh (1996), and Ronen (1982)

37



Since primal degeneracy produces multiple optimal dualtgwnis, the “true” shadow
price values among the multiple optimal dual solutions niestdentified to make correct
business decisions. The most cited reference for the feiion of true shadow price is
Aucamp and Steinberg (1982). They make the case that allpti@a dual variableg;
do not necessarily correspond to shadow price. From a petrotefining standpoint, this
implies that not all dual values are physically realizafilee process of characterizing and
interpreting dual values from a refinery LP that is primal elegrate is discussed in detalil

in the next chapter.

3.3 Dual Degeneracy

An LP is said to be dual degenerate or have alternative ogfieaery basic optimal so-
lution to the dual is degenerate. This study chooses to wstetim “dual degeneracy” to
refer to LP that has alternative optima. The present stuflyeledual degeneracy in LP as
follows:

Definition: An LP problem is said to be dual degenerate or have multipknaa if the
dimension of the optimal face is larger than zero

The phenomenon of dual degeneracy is explained geométracal algebraically using
a 2-D LP problem obtained from Taha (2006). The 2-D dual deg#e LP in general form

is given in Equation (3.5).

Maximize z = 2z, + 4x, (3.5)
Subject to
r1+ 29 <5 Constraint#1
T+ 29 < A4 Constraint4#2
1,29 >0 Non-negativity
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The geometric solution of the above 2-D LP is given in Figu® Jhe feasible space
for this problem is denoted by the shaded region ABCD. By inspecitf Figure 3.3, one of
the active constraints (constraint #1) is parallel to thedive function line. Therefore, the
entire line segment DC in Figure 3.3 is considered to be aptimA line has a dimension
of one in hyperspace. Since the dimension of the optimal fadarger than zero; the
problem is dual degenerate and does not have a unique solétilof the solutions have
the same objective function value, but the activities defibg the coordinate values of

every solution point are different.
5 Constraint #2

Optimal /

vertex #1 a (Dimension = 1) '
3D ' ' Optimal Objective
X2 @ vertex #2 function

2 - /
! Constraint #1
'C

Optimal face

Figure 3.3: Graphical Solution for the 2-D Dual Degenerdge L

There are two distinct solutions at corner pointsa® & 0,2, = 5/2) and C ¢; =
3,y = 1). Apart from these two corner point solutions, from the lgggment DC, an in-
finite number of optimal solutions with the same objectivediion value can be generated

using the convex combination formula given by Equation)(3.6

r1=ax(0)+ (1 —a)x(3)

rg=ax (5/2)+ (1 —a) x (1) (3.6)

where( < o < 1.
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3.3.1 Consequences of Dual Degeneracy

The 2-D LP problem given in the above section is solved by timplex method. This
method is capable of determining solutions only at the twaeopoints C and D. The two

optimal simplex tableaux corresponding to the corner gathéind D are given in Table 3.5

and Table 3.6.

Table 3.5: Optimal Solution #1 for the 2-D Dual Degenerate LP

Basis r1 X2 s1 S22 RHS

z 0O O 2 0 10

x, U2 1 12 O 5/2
se 12 0 -1/2 1 3/2

Table 3.6: Optimal Solution #2 for the 2-D Dual Degenerate LP

Basis r1 To S1 S2 RHS

z 0 0 2 O 10

T O 1 1 -1 1
1 1 0 -1 2 3

Mathematically, a dual degenerate LP is identified by thesgmee of dual variables
having zero values in the optimum. In this case, the presehaaero reduced cost far
in Table 3.5 and a zero shadow price fgrin Table 3.6 are indications that the problem is
dual degenerate.

Also, as evident from both the optimal tableaux in Table 3% &able 3.6, the problem
has an unigue objective function value and unique dualisolubut multiple (non-unique)
primal solutions (activity values) and multiple (non-umg) incremental effect coefficients.

This is a defining characteristic of an LP problem when it ialdlegenerate.
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The existence of multiple activity values and multiple ermental effect coefficients
creates confusion in choosing a specific solution for imgetation in the actual process.
This effect subsequently causes complications in decis@king. A methodology to elim-
inate ambiguity and mistakes when interpreting a dual dexgee LP is presented in Chap-

ter 5.

41



CHAPTER 4

CHARACTERIZATION OF LP RESULTS UNDER CONDITIONS OF PRIMAL
DEGENERACY

Primal degenerate LP often produces multiple optimal dahles and incremental effect
coefficients with unique objective function value and umi@ativity values. Determination
of true shadow price values among multiple dual values uocdeditions of primal degen-
eracy is well established in literature. However, praatiérs in the field of petroleum
refinery optimization are not fully aware of the consequermfeprimal degeneracy. This
chapter illustrates the results and procedures for a priegénerate refinery LP. The Re-
finery LP presented in Section 2.2 is selected for case sflidg.original LP problem is
not primal degenerate. Therefore, the LP is converted tonagbdegenerate problem by

changing the Fluid Catalytic Cracking (FCC) unit capacity frodp080 to 21,055 bbl/day.

4.1 Check for Primal Degeneracy

The modified LP is solved using LINDO, and an optimal soluti®fiound. The optimal
basis, the corresponding basis index, and activity valtegigen in Table 4.1. Inspection
of Table 4.1 reveals that 22 of the 58 basic variables have vaues. Among the 22
variables, 21 are the slacks associated with material balaguality constraints. If only
these 21 variables have zero values, primal degeneracysedanly by a specific repre-
sentation of the problem (Bertsimas and Tsitsiklis, 1997 caBee, as demonstrated from
Section 2.2.1, before solving the refinery LP, the matea#hce equality constraints of the

form given in Equation (4.1) are converted to the companawmfgiven in Equation (4.2).
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Table 4.1: Optimal Basis #1 for the Primal Degenerate Refinéry L

Index Variable Activity Index Variable  Activity Index Variable Activity
(bbl /day) (bbl /day) (bbl /day)
1 CRUDE  100,000.00 |27 SRG 27,000.00 |54  SLK21 20,200.00
2 FGAD*  3,542,000.00 |28 SRN 23,700.00 |56  SLK23 0.00
3 SRNRF 12,198.57 |29  SRDS 8,700.00 |58  SLK25 0.00
4 FGRF  1,935,913.41 |30 SRFO 37,200.00 |60  SLK27 0.00
6 SRFOCC  21,055.00 |31 RFG 11,320.28 |62  SLK29 0.00
7 FGCC  8,135,652.00 |32 CCG 14,485.84 |64  SLK31 0.00
8 PG 9,999.97 |33 CCFO 4,625.78 |66  SLK33 12,801.43
9 RG 42,806.15 |34  SLK1 10,000.00 |67  SLK34 0.00
10 DF 30,972.21 |35  SLK2 0.00 |69  SLK36 0.00
11  FO 10,000.00 |36  SLK3 0.00 {72  SLK39 0.00
12 SRGPG 4,313.71 |39  SLK6  33,013.62 |74  SLK41 0.00
13 RFGPG 5,686.26 |40  SLK7  32,806.15 |76  SLK43 0.00
16 SRGRG 22,686.29 |41  SLK8 0.00 |78  SLK45 0.00
17 RFGRG 5,634.02 |44  SLK11 11,778.64 |80  SLK47 0.00
19 CCGRG 14,485.84 |45  SLK12 20,972.21 |82  SLK49 0.00
20 SRNDF 11,501.43 |46  SLK13 0.00 {84  SLK51 0.00
21  CCFODF 4,625.78 |48  SLK15 634,102.63 |86  SLK53 0.00
22  SRDSDF 8,700.00 |51  SLK18 0.00 {88  SLK55 0.00
23  SRFODF 6,145.00 |53  SLK20 570,000.00 |90  SLK57 0.00
26 SRFOFO  10,000.00
*ft3 /day.
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Ax =b 4.1)

Az <b (4.2)

—Az < —=b

Therefore, for each of the equality constraints, one of #e inequalities will be in the
solution basis and the other will be non-basic. Consequesibry optimal solution will
always contain at least 21 variables with primal values\{diets) of zero. In order for the
LP to be truly primal degenerate, one or more basic variatmeassociated with an equality
constraint must have a primal value of zero. In this case diseclvariable SLK4, which is
the slack variable associated with PG production congtriaas zero value. Therefore, the

LP is primal degenerate.

4.2 Analyzing Single Optimal Solution

In current petroleum refinery optimization practice, onlgiagle optimal solution is gen-
erated. This section provides a systematic approach tgmate dual values and primal
incremental effect coefficient of a single optimal solutidrhe task involved in the cate-
gorization strategy is two-fold: one is to characterizeldadéues as unique or non-unique,
and the other is to categorize dual valuegpashadow pricep~ shadow price, opvatid
shadow price. The corresponding primal incremental etfeefficients will be categorized
asa;;, a;;, anda;’*",

The primal incremental analysis described in Section 2vlIbe applied for this clas-
sification strategy.

The dual valuey; of an active constrainE?:1 a;x; < b; is called thep™ shadow
price if on positively perturbing the R.H.5& of this active constraint by a small amount,

0 yields a primal feasible solution. Alternatively, the carin activity values for smaller

perturbationy given by Equation (4.3) yields a primal feasible solutianplying that all

44



the entries incs ..., are positive. The primal incremental effect coefficientsesponding

to this shadow price are referred to E;;:.

bl ai,n—H bl,new

TBnew = +90 = (43)

bm am,n—l—l bm,new

The dual valuey; of an active constrainE;‘:1 a;;x; < b; is called thep~ shadow
price if on negatively perturbing the R.HiSof this active constraint by a small amount,
0 yields a primal feasible solution. Alternatively, the clgarin activity values for smaller
perturbationy given by Equation (4.4) yields a primal feasible solutianplying that all
the entries incz ..., are positive. The primal incremental effect coefficientsesponding

to this shadow price are referred to as.

bl ai,nJrl bl,new

TBnew = -9 = (44)

bm, U+l b new

The dual valugy; of an active constraint_, a;;z; < b; is called thep™vd shadow
price if both the operations in Equation (4.3) and Equatibd)(yield primal infeasible
solutions, implying that at least one entryag ..., iS negative. The primal incremental
effect coefficients corresponding to this shadow price aferred to as&ﬁ;.“’““d.

Also from the above primal incremental effect analysis itssuhe dual valugy; is
called unique ifp* = p~; otherwise, it is considered to be non-unique. For eachf th
non-unique dual valueg, the unavailable™® or p~— can only be determined by generating
alternate optimal solutions.

Now the above approach will be implemented for the singlenmgdtsolution deter-
mined in Table 4.1. A value of = 1 will be used in Equation (4.3) and Equation (4.4)
for the purpose of demonstration. The dual values correfipgrio this single optimal

solution are given in Table 4.2.
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Table 4.2: Optimal Dual Values #1 for the Primal Degeneraténiry LP

z Constraint $/bbl  Active at
SLK2 Premium gasoline production —-1.94 LL

SLK3 Premium gasoline blending —8.77 LL (Equality)
SLK5 Premium gasoline octane rating —0.60 LL

SLK8 Regular gasoline blend —8.77 LL (Equality)
SLK10 Regular gasoline octane rating —0.60 LL

SLK14 Diesel fuel blending —64.16 LL (Equality)
SLK16 Diesel fuel sulfur specification 47.67 UL

SLK17 Fuel oil production —4.30 LL (Equality)
SLK19 Fuel oil blending —17.44 LL (Equality)
SLK24 Fuel gas yield from atmospheric distillation unit —0.02 LL (Equality)
SLK26 Straight run gasoline yield from atmospheric distillation uri88.56 LL (Equality)
SLK28 Straight run naphtha yield from atmospheric distillation urit0.67 LL (Equality)
SLK30 Straight run distillate yield from atmospheric distillation uri9.08 LL (Equality)
SLK32 Straight run fuel oil yield from atmospheric distillation unit-17.44 LL (Equality)
SLK35 Fuel gas yield from reformer unit —0.02 LL (Equality)
SLK37 Reformed gasoline yield —53.93 LL (Equality)
SLK38 Catalytic cracking (FCC) unit capacity 31.19 UL

SLK40 Fuel gas yield from catalytic cracking unit —0.02 LL (Equality)
SLK42 Catalytic cracked gasoline yield —47.72 LL (Equality)
SLK44 Catalytic cracked fuel oil yield —47.33 LL (Equality)
SLK46 Straight run gasoline split —38.56 LL (Equality)
SLK48 Straight run naphtha split —50.67 LL (Equality)
SLK50 Straight run distillate split —39.08 LL (Equality)
SLK52 Straight run fuel oil split —17.44 LL (Equality)
SLK54 Reformed gasoline split —53.93 LL (Equality)
SLK56 Catalytic cracked gasoline split —47.72 LL (Equality)
SLK58 Catalytic cracked fuel oil split —47.33 LL (Equality)

LL — Lower Limit: implying the GE constraint is active.
UL — Upper Limit: implying the LE constraint is active.
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To categorize dual values, primal incremental analysierfogpmed for one of the dual
values listed in Table 4.2. The dual value for the Fluid Cdialgracking (FCC) capac-
ity constraint is selected for analysis. The FCC capacity lssa than or equal to (LE)
constraint with a dual value of 31.19 $/bbl.

In this case, for the refinery LP, there are 58 activities m dptimal basis, which is
obvious in Table 4.1. Equivalently, there will be 58 elenseim the column vector of
primal incremental effect coefficients under the FCC capaital value of 31.19 $/bbl
in the optimal simplex tableau. The dual value along with phenal incremental effect
coefficient data are listed in Table 4.3. Only the primal @mental effect coefficients
having non-zero value in the optimal basis are included biel4.3.

The dual value of 31.19 $/bbl is first checked to determinéig ap* shadow price.
Therefore, the R.H.S of the FCC capacity constraint is padjtiincremented by +1 bbl
from 20,155 to 20,156 bbl/day. Based on primal incremenfakefinalysis, the effect of
this variation on the activity values are determined by agdhe set of original activity
values (primal values) with the incremental effect coediitivalues. The results are listed
under +1 FCC capacity increase in Table 4.3. For the positt¥€ Eapacity increment,
all the activities in Table 4.3 except the slack associated the atmospheric distillation
capacity remained positive. As seen in Table 4.3, the @igth slack activity (SLK22)
changed from O bbl/day to -3.58 bbl/day. This indicates thatnew solution is primal
infeasible as negative flow rates are physically unachieva&onsequently, the dual value

31.19%/bbl for the FCC capacity constraint is ngt'ashadow price.
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Table 4.3: Primal Incremental Effect Analysis for the LE strainf

FCC Original +1 FCC capacity -1 FCC capacity

capacity solution increase decrease
Z 31.19 % $594,259.67 $594,290.86 $594,228.49

Solution  Incremental Activity Activity Activity

Index basis effectd;) bbl /day bbl /day bbl /day
1 CRUDE 3.58 100, 000.00 100, 003.58* 99996.42
2 FGAD! 126.69 354,1999.41 354,2126.09 354,1872.72
3 SRNRF 0.23 12,198.58 12,198.81 12,198.35
4 FGRF 36.20  1,935,915.00 1,935,951.20 1,935, 878.80
6 SRFOCC 1.00 21,055.00 21,056.00 21,054.00
7 FGCC 386.40  8,135,652.00 8,136, 038.40 8,135, 265.60
9 RG 1.87 42,806.12 42,807.99 42,804.25
10 DF 1.48 30,972.19 30,973.67 30,970.71
16 SRGRG 0.97 22,686.27 22,687.24 22,685.30
17 RFGRG 0.21 5,634.01 5,634.22 95,633.80
19 CCGRG 0.69 14, 485.84 14, 486.53 14,485.15
20 SRNDF 0.62 11,501.41 11,502.03 11,500.79
21 CCFODF 0.22 4,625.78 4,626.00 4,625.56
22 SRDSDF 0.31 8,700.00 8,700.31 8,699.69
23 SRFODF 0.33 6,144.99 6,145.32 6,144.66
27 SRG 0.97 27,000.00 27,000.96 26,999.03
28 SRN 0.85 23,700.00 23,700.84 23,699.15
29 SRDS 0.31 8,700.00 8,700.31 8,699.69
30 SRFO 1.33 37,199.99 37,201.32 37,198.66
31 RFG 0.21 11,320.28 11,320.50 11, 320.07
32 CCG 0.69 14,485.84 14,486.53 14,485.15
33 CCFO 0.22 4,625.78 4,626.00 4,625.56
34 SLK1 —3.58 10,000.00 9,996.42 10,003.58
40 SLK7 1.87 32,806.12 32,807.99 32,804.25
44 SLK11 0.63 11,778.65 11,779.28 11,778.02
45 SLK12 1.48 20,972.19 20,973.67 20,970.71
48 SLK15 31.61 634,102.07 634,133.67 634, 070.46
55 SLK22 —3.58 0.00 —3.58* 3.58
66 SLK33 —0.23 12,801.42 12,801.19 12,801.65

*Not physically realizable.
TBasic variables with primal incremental effect coefficients of zero vatags been omitted.

L3 /day.
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In a petroleum refinery LP, most of the activities will be inntes of flow rate (bbl/day)
and therefore the activities should always be a positivetjydor it to be physically real-
izable or to be physically implementable in the processrédioee, the -3.58 bbl/day distil-
lation slack activity will not be physically realized or gaot be physically implemented in
the actual process. Furthermore, this negative slack #hB8ay demands a crude distilla-
tion capacity of 100,003.58 bbl/day, which is 3.38 bbl/dayrenthan the 100,000 bbl/day
of crude distillation capacity physically available in theocess. Consequently, the dual
value 31.19%/bbl is not physically realizable for a positincrease in FCC capacity.

Based on the above argument, in this research the term “traoshprice” will be
replaced with “physically realizable shadow price” and teen “primal feasibility” will
be replaced with “physically realizable activities”. Tlesre more explicit and improve
comprehension by engineers who use LP results but are notdiamth mathematical LP
nomenclature.

Now, the FCC dual value of 31.19%/bbl is evaluated to deteemihether it is g~
shadow price. The FCC capacity constraint is negativelyateented from 20,155 to
20,154 bbl/day and the primal incremental effect analysigepeated by subtracting the
incremental effect coefficient from the original activifyrimal value). Results are shown
in the last column of Table 4.3. All activities remained pivsi, which implies the resultant
activities are primal feasible. Thus, the dual value 31/4Bis physically realizable for
a negative perturbation of the FCC constraint and referrexsjo shadow price. Since
the dual value 31.19%/bbl for the FCC constraint js aand notp*, this impliesp™ # p~.
Consequently, the dual value of FCC constraint is not unique.

Similar primal incremental effect analysis is performeddf the dual values listed in
Table 4.2 and the resultant categorization is presentedbie®.4.

In order to determine the missing or p~ shadow price of constraints in Table 4.4,

alternate optimal solutions have to be generated.
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Table 4.4: Classification of Dual Values for the Primal DegateRefinery LP Obtained

from the Single Optimal Solution

Constraint Dual Value Category Category
$/bbl I Il

Premium gasoline production —1.94 p~  Non-unique
Premium gasoline blending —8.77 p~  Non-unique
Premium gasoline octane rating —0.60  p~ Non-unique
Regular gasoline blend —8.77  p~  Non-unique
Regular gasoline octane rating —0.60  p~  Non-unique
Diesel fuel blending —64.16 pt  Non-unique
Diesel fuel sulfur specification 47.67  p~  Non-unique
Fuel oil production —4.30 pT  Non-unigue
Fuel oil blending —17.44 p~  Non-unique
Fuel gas yield from atmospheric distillation unit —0.02 p™ = p~ Unique

Straight run gasoline yield from atmospheric distillation unit-38.56 p~  Non-unigue
Straight run naphtha yield from atmospheric distillation unit-50.67 pT  Non-unigue
Straight run distillate yield from atmospheric distillation unit-39.08 p~  Non-unigue
Straight run fuel oil yield from atmospheric distillation unit —17.44 p~  Non-unique
Fuel gas yield from reformer unit —0.02 p™ = p~ Unique

Reformed gasoline yield -53.93  p™  Non-unique
Catalytic cracking unit capacity 31.19 pT  Non-unigue
Fuel gas yield from catalytic cracking unit —0.02 p™ = p~ Unique

Catalytic cracked gasoline yield —47.72 pT  Non-unigue
Catalytic cracked fuel oil yield —47.33 pT  Non-unigue
Straight run gasoline split —38.56 p~  Non-unique
Straight run naphtha split —50.67 pT  Non-unigue
Straight run distillate split —39.08 p~  Non-unigue
Straight run fuel oil split —17.44 p~  Non-unique
Reformed gasoline split -53.93  p™  Non-unique
Catalytic cracked gasoline split —47.72 pT  Non-unigue
Catalytic cracked fuel oil split —47.33 pT  Non-unigue
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4.3 Determining Alternate Optimal Solutions

A new perturbation technique implementing parametric paogning is developed at Ok-
lahoma State University (OSU) to determine alternate ogitsolutions. Initially, the step-
by-step procedure of this algorithm will be explained. Thigs algorithm will be imple-

mented to the primal degenerate refinery LP to generatenateepptimal solutions.

4.3.1 New Perturbation Technique Implementing Parametrid®rogramming

This algorithm is developed based on the suggestions givéikgul (1984). When the LP
is primal degenerate, the optimal basis is geometricalgratterized by a unique vertex.
However, more than constraints pass through the optimum, wheiis the dimension of
the problem. From this geometric visualization (Figure) 3tds apparent that the problem
will have a unique primal solution; conversely, it has altge dual solutions. The rationale
for using the parametric programming approach for detangimalternate optimal basis
corresponding to a primal degenerate vertex is describ8edation A.1 of Appendix A

The algorithm exploits the fact that if all constraints pagghrough the optimum are
parametrically varied one by one, all alternate bases sporeding to the primal degenerate
vertex can be generated with unique primal solutions aretradte dual solutions. This
algorithm can be applied for any single arbitrary optimduson obtained from an LP
solver.

The steps in the algorithm follow:

Step 1 The set of all active constraints in an optimal solution a¥eedmined. Active con-
straints are those constraint whose slack or surplus isteiaéd at zero value in the
optimal solution. The definition of an active constraint iatirematical notation is

given as follows:

A constraint in an LP problem in general form is written asegivn Equation (4.5).
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n

a;ry < b (4.5)
7]

j=1
After adding a slack;, the above constraint can be written in the standard form as

given in Equation (4.6).

n

Zaijxj + S; = bz (46)

j=1

The constrainty J7_, a;;z; < b, is active ifs; = 0 in the optimal solution.

Step 2 All the active constraints are parametrically perturbed aha time using paramet-
ric programming. This perturbation technique is explaiasdollows: if b; corre-
sponds to an active constraint, the R.H.S is parametricalfiest ash; + \d using
parametric programming, whepeis the parameter and is the directional vector.
The parametric variation will generate alternate optinagib corresponding to the
primal degenerate optimal vertex. The alternate optimaisbabtained by paramet-
rically varying this constraint is listed g3 ; - - - B1,}, where the index, ¢ is the

number of alternate basis obtained varying constraint reurabe.

Step 3 Similar perturbation using parametric programming is @erfed for all other ac-
tive constraints. After doing this, the possible alterragsis obtained by this process
is listed as{ By, -+ B14,Ba1---Bayg,- ,---Bn1--- Bng}, WhereN is the num-

ber of active constraints.

Step 4 The different set of basis obtained in step 3 is compared ¢h ether and the
unique basis among them are determined and listed /s: - - B,.}, wherer is the

number of distinct basis.

Step 5 The unique set of alternate basis obtained in step 4 is usedcetie the set of
multiple optimal simplex tableaux corresponding to therali degenerate vertex as

given in Table 4.5
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Table 4.5: Optimal Tableau, Inverse Matrix Format

CBB_lb

' —cgB 1A | —cgB™!

B~

B7'A B!

wherec is the cost coefficient of decision variablesg,is the cost coefficient of basic

variables,B is the optimal basis matrix, andlis them x n matrix.

Step 6 Using the alternate dual solutions obtained in step 5,ptheshadow price of a

constraint is determined as given in Equation (4.7)

pT=min{yi- Ym} 4.7)

and thep~ shadow price of a constraint is determined as given in Eqnd#4.8).

p- =max{y;- - Yn} (4.8)

The proof for the above development is given in Aucamp (1284 the above claim
is valid only if alternate optimal solutions including andp~ are produced. The
most reliable method to verify whether a dual value igtaor p~ is by primal in-

cremental analysis approach discussed in Section 4.2hdfarbre the primal incre-

mental effect coefficients associated withandp~ are identified asajj anda;.

Demonstration of this algorithm for a 2-D primal degenetaRas given in Appendix A.

4.3.2 Implementation

Parametric perturbation technique is applied to the priseglenerate refinery LP. Results
showed that in addition to the optimal bases given in Talle three other optimal bases
are attainable. The multiple optimal bases are given ine€Tal8l, Table 4.8, and Table 4.10.

Their corresponding dual values are listed in Table 4.7|eTal®, and Table 4.11.
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Table 4.6: Optimal Basis #2 for the Primal Degenerate Refinéry L

Index Variable Activity Index Variable  Activity Index Variable Activity
(bbl /day) (bbl /day) (bbl /day)
1 CRUDE  100,000.00 |27 SRG 27,000.00 |54  SLK21 20,200.00
2 FGAD*  3,542,000.00 |28 SRN 23,700.00 |56  SLK23 0.00
3 SRNRF 12,198.57 |29  SRDS 8,700.00 |58  SLK25 0.00
4 FGRF  1,935,913.41 |30 SRFO 37,200.00 |60  SLK27 0.00
6 SRFOCC 21055.00 {31 RFG 11,320.28 |62  SLK29 0.00
7 FGCC  8,135,652.00 |32 CCG 14,485.84 |64  SLK31 0.00
8 PG 9,999.97 |33 CCFO 4,625.78 |66  SLK33 12,801.43
9 RG 42,806.15 |34  SLK1 10,000.00 |67  SLK34 0.00
10 DF 30,972.21 |35  SLK2 0.00 |69  SLK36 0.00
11  FO 10,000.00 |36  SLK3 0.00 {72  SLK39 0.00
12 SRGPG 4,313.71 |39  SLK6  33,013.62 |74  SLK41 0.00
13 RFGPG 5,686.26 |40  SLK7  32,806.15 |76  SLK43 0.00
16 SRGRG 22,686.29 |41  SLK8 0.00 |78  SLK45 0.00
17 RFGRG 5,634.02 |44  SLK11 11,778.64 |80  SLK47 0.00
19 CCGRG 14,485.84 |45  SLK12 20,972.21 |82  SLK49 0.00
20 SRNDF 11,501.43 |46  SLK13 0.00 {84  SLK51 0.00
21  CCFODF 4,625.78 |48  SLK15 634,102.63 |86  SLK53 0.00
22  SRDSDF 8,700.00 |51  SLK18 0.00 {88  SLK55 0.00
23  SRFODF 6,145.00 |53  SLK20 570,000.00 |90  SLK57 0.00
26 SRFOFO  10,000.00
*ft3 /day.
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Table 4.7: Optimal Dual Values #2 for the Primal Degeneraténry LP

z Constraint $/bbl  Active at
SLK4 Premium gasoline blending —19.32 LL (Equality)
SLK5 Premium gasoline octane rating —0.28 LL

SLK9 Regular gasoline blending —19.32 LL (Equality)
SLK10 Regular gasoline octane rating —0.28 LL

SLK14 Diesel fuel blending —52.42 LL (Equality)
SLK16 Diesel fuel sulfur specification 24.20 UL

SLK17 Fuel oil production —15.57 LL (Equality)
SLK19 Fuel oil blending —28.71 LL (Equality)
SLK22 Atmospheric distillation unit capacity 3.78 UL

SLK24 Fuel gas yield from atmospheric distillation unit —0.02 LL (Equality)
SLK26 Straight run gasoline yield from atmospheric distillation uritt1.30 LL (Equality)
SLK28 Straight run naphtha yield from atmospheric distillation uritt5.57 LL (Equality)
SLK30 Straight run distillate yield from atmospheric distillation uri89.69 LL (Equality)
SLK32 Straight run fuel oil yield from atmospheric distillation unit-28.71  LL (Equality)
SLK35 Fuel gas yield from reformer unit —0.02 LL (Equality)
SLK37 Reformed gasoline yield —48.44 LL (Equality)
SLK38 Catalytic cracking unit capacity 17.67 UL

SLK40 Fuel gas yield from catalytic cracking unit —0.02 LL (Equality)
SLK42 Catalytic cracked gasoline yield —45.56 LL (Equality)
SLK44 Catalytic cracked fuel oil yield —43.88 LL (Equality)
SLK46 Straight run gasoline split —41.30 LL (Equality)
SLK48 Straight run naphtha split —45.57 LL (Equality)
SLK50 Straight run distillate split —39.69 LL (Equality)
SLK52 Straight run fuel oil split —28.71 LL (Equality)
SLK54 Reformed gasoline split —48.44 LL (Equality)
SLK56 Catalytic cracked gasoline split —45.56 LL (Equality)
SLK58 Catalytic cracked fuel oil split —43.88 LL (Equality)

LL — Lower Limit: implying the GE constraint is active.
UL — Upper Limit: implying the LE constraint is active.
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Table 4.8: Optimal Basis #3 for the Primal Degenerate Refinéry L

Index Variable Activity Index Variable  Activity Index Variable Activity
(bbl /day) (bbl /day) (bbl /day)
1 CRUDE  100,000.00 |27 SRG 27,000.00 |54  SLK21 20,200.00
2 FGAD*  3,542,000.00 |28 SRN 23,700.00 |56  SLK23 0.00
3 SRNRF 12,198.57 |29  SRDS 8,700.00 |58  SLK25 0.00
4 FGRF  1,935,913.41 |30 SRFO 37,200.00 |60  SLK27 0.00
6 SRFOCC  21,055.00 |31 RFG 11,320.28 |62  SLK29 0.00
7 FGCC  8,135,652.00 |32 CCG 14,485.84 |64  SLK31 0.00
8 PG 10,000.00 |33  CCFO 4,625.78 |66  SLK33 12,801.43
9 RG 42,806.11 |34  SLK1 10,000.00 |67  SLK34 0.00
10 DF 30,972.21 |36  SLK3 0.00 |69  SLK36 0.00
11  FO 10,000.00 |37  SLK4 0.00 {72  SLK39 0.00
12 SRGPG 4,313.73 |39  SLK6  33,013.57 |74  SLK41 0.00
13 RFGPG 5,686.27 |40  SLK7  32,806.11 |76  SLK43 0.00
16 SRGRG 22,686.27 |41  SLK8 0.00 |78  SLK45 0.00
17 RFGRG 5,634.01 |44  SLK11 11,778.66 |80  SLK47 0.00
19 CCGRG 14,485.84 |45  SLK12 20,972.21 |82  SLK49 0.00
20 SRNDF 11,501.43 |46  SLK13 0.00 {84  SLK51 0.00
21  CCFODF 4,625.78 |48  SLK15 634,102.63 |86  SLK53 0.00
22  SRDSDF 8,700.00 |51  SLK18 0.00 {88  SLK55 0.00
23  SRFODF 6,145.00 |53  SLK20 570,000.00 |90  SLK57 0.00
26 SRFOFO  10,000.00
*ft3 /day.
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Table 4.9: Optimal Dual Values #3 for the Primal Degeneraténiry LP

z Constraint $/bbl  Active at
SLK2 Premium gasoline production —1.33 LL

SLK5 Premium gasoline octane rating —0.50 LL

SLK9 Regular gasoline blending 0.00 LL (Equality)
SLK10 Regular gasoline octane rating —0.50 LL

SLK14 Diesel fuel blending —60.49 LL (Equality)
SLK16 Diesel fuel sulfur specification 40.34 UL

SLK17 Fuel oil production —7.82 LL

SLK19 Fuel oil blending —20.96 LL (Equality)
SLK22 Atmospheric distillation unit capacity 1.18 UL

SLK24 Fuel gas yield from atmospheric distillation unit —0.02 LL (Equality)
SLK26 Straight run gasoline yield from atmospheric distillation urig9.41 LL (Equality)
SLK28 Straight run naphtha yield from atmospheric distillation uritt9.07 LL (Equality)
SLK30 Straight run distillate yield from atmospheric distillation uri89.27 LL (Equality)
SLK32 Straight run fuel oil yield from atmospheric distillation unit-20.96 LL (Equality)
SLK35 Fuel gas yield from reformer unit —0.02 LL (Equality)
SLK37 Reformed gasoline yield —52.22 LL (Equality)
SLK38 Catalytic cracking unit capacity 26.96 UL

SLK40 Fuel gas yield from catalytic cracking unit —0.02 LL (Equality)
SLK42 Catalytic cracked gasoline yield —47.04 LL (Equality)
SLK44 Catalytic cracked fuel oil yield —46.25 LL (Equality)
SLK46 Straight run gasoline split —39.41 LL (Equality)
SLK48 Straight run naphtha split —49.07 LL (Equality)
SLK50 Straight run distillate split —39.27 LL (Equality)
SLK52 Straight run fuel oil split —20.96 LL (Equality)
SLK54 Reformed gasoline split —52.22 LL (Equality)
SLK56 Catalytic cracked gasoline split —47.04 LL (Equality)
SLK58 Catalytic cracked fuel oil split —46.25 LL (Equality)

LL — Lower Limit: implying the GE constraint is active.
UL — Upper Limit: implying the LE constraint is active.
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Table 4.10: Optimal Basis #4 for the Primal Degenerate RefibBry

Index Variable Activity Index Variable  Activity Index Variable Activity
(bbl /day) (bbl /day) (bbl /day)
1 CRUDE  100,000.00 |27 SRG 27,000.00 |54  SLK21 20,200.00
2 FGAD*  3,542,000.00 |28 SRN 23,700.00 |56  SLK23 0.00
3 SRNRF 12,198.57 |29  SRDS 8,700.00 |58  SLK25 0.00
4 FGRF  1,935,913.41 |30 SRFO 37,200.00 |60  SLK27 0.00
6 SRFOCC  21,055.00 |31 RFG 11,320.28 |62  SLK29 0.00
7 FGCC  8,135,652.00 |32 CCG 14,485.84 |64  SLK31 0.00
8 PG 10,000.00 |33  CCFO 4,625.78 |66  SLK33 12,801.43
9 RG 42,806.11 |34  SLK1 10,000.00 |67  SLK34 0.00
10 DF 30,972.21 |37  SLK4 0.00 |69  SLK36 0.00
11 FO 10,000.00 |39 SLK6 33,013.73 |72 SLK39 0.00
12 SRGPG 4,313.73 |40  SLK7  32,806.11 |74  SLK41 0.00
13 RFGPG 5,686.27 |41  SLKS8 0.00 {76  SLK43 0.00
16 SRGRG 22,686.27 |42  SLK9 0.00 |78  SLK45 0.00
17 RFGRG 5,634.00 |44  SLK11 11,778.50 |80  SLK47 0.00
19 CCGRG 14,485.84 |45  SLK12 20,972.21 |82  SLK49 0.00
20 SRNDF 11,501.43 |46  SLK13 0.00 {84  SLK51 0.00
21  CCFODF 4,625.78 |48  SLK15 634,102.63 |86  SLK53 0.00
22  SRDSDF 8,700.00 |51  SLK18 0.00 {88  SLK55 0.00
23  SRFODF 6,145.00 |53  SLK20 570,000.00 |90  SLK57 0.00
26 SRFOFO  10,000.00
*ft3 /day.
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Table 4.11: Optimal Dual Values #4 for the Primal DegeneRsénery LP

z Constraint $/bbl  Active at
SLK2 Premium gasoline production —1.33 LL

SLK3 Premium gasoline blending 0.00 LL (Equality)
SLK5 Premium gasoline octane rating —0.50 LL

SLK10 Regular gasoline octane rating —0.50 LL

SLK14 Diesel fuel blending —60.49 LL (Equality)
SLK16 Diesel fuel sulfur specification 40.34 UL

SLK17 Fuel oil production —7.82 LL

SLK19 Fuel oil blending —20.96 LL (Equality)
SLK22 Atmospheric distillation unit capacity 1.18 UL

SLK24 Fuel gas yield from atmospheric distillation unit —0.02 LL (Equality)
SLK26 Straight run gasoline yield from atmospheric distillation urig9.41 LL (Equality)
SLK28 Straight run naphtha yield from atmospheric distillation uritt9.07 LL (Equality)
SLK30 Straight run distillate yield from atmospheric distillation uri89.27 LL (Equality)
SLK32 Straight run fuel oil yield from atmospheric distillation unit-20.96 LL (Equality)
SLK35 Fuel gas yield from reformer unit —0.02 LL (Equality)
SLK37 Reformed gasoline yield —52.22 LL (Equality)
SLK38 Catalytic cracking unit capacity 26.96 UL

SLK40 Fuel gas yield from catalytic cracking unit —0.02 LL (Equality)
SLK42 Catalytic cracked gasoline yield —47.04 LL (Equality)
SLK44 Catalytic cracked fuel oil yield —46.25 LL (Equality)
SLK46 Straight run gasoline split —39.41 LL (Equality)
SLK48 Straight run naphtha split —49.07 LL (Equality)
SLK50 Straight run distillate split —39.27 LL (Equality)
SLK52 Straight run fuel oil split —20.96 LL (Equality)
SLK54 Reformed gasoline split —52.22 LL (Equality)
SLK56 Catalytic cracked gasoline split —47.04 LL (Equality)
SLK58 Catalytic cracked fuel oil split —46.25 LL (Equality)

LL — Lower Limit: implying the GE constraint is active.
UL — Upper Limit: implying the LE constraint is active.
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Once all the optimal bases are found, tHeshadow price of a constraint is determined
as given in Equation (4.7) and tlpe shadow price of a constraint is determined as given
in Equation (4.8). The dual values obtained for the PremiumsdBne (PG) production
constraint is considered to demonstrate this procedure.

The dual value of PG production constraint correspondingptanal basis #1 is given
in Table 4.2 as: -1.94/bbl. In case of optimal basis #2 (Table 4.6), the slack variabk2S
associated with the PG constraint is in the basis and magdaat zero value. Therefore,
the dual value is @/bbl. The dual value corresponding to both optimal basis #3 atichap
basis #4 is -1.38/bbl (Table 4.9 and Table 4.11). From these dual valuespthghadow

price of PG constraint is determined as given in Equatio®)(4.

pt =min{-1.94,0,-1.33,-1.33} = —1.94 (4.9

and thep~ shadow price of PG constraint is determined as given in kgué.10).

p~ = maz{—1.94,0,-1.33,-1.33} = 0 (4.10)

Thept andp~ shadow price for all other constraints are determined ferdfinery LP by

completing a similar analysis, the results are tabulatd@bie 4.12, and the corresponding

primal incremental effect coefficients are determinedigsandaij, respectively.

The reporting guidelines given by Ho (2000) are followed ¢émerate Table 4.12. The
pT andp~ shadow price is given in terms of rate of change of objectivecfion when
the right hand side (R.H.S) of the constraint is perturbed: éxample, as evident from
Table 4.12, the™ shadow price of PG production constraint is -1394b/, meaning that the
objective function will decrease by $1.94 when the R.H.S efRi& production constraint
is increased by 1. Similarly, the= shadow price of PG production constraints is given
as 0$/bbl, implying that the objective function will not change whéretR.H.S of this

constraint is decreased by 1.
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Table 4.12: Physically Realizable Shadow Prices for the &ridegenerate LP

Z Constraints Pt P
(3/bbl)  $/bbl)
SLK2 Premium gasoline production —1.94 0.00
SLK3 Premium gasoline blend —19.32 0.00
SLK5 Premium gasoline octane rating —0.60 0.28
SLK8 Regular gasoline blend —19.32 0.00
SLK10 Regular gasoline octane rating —0.60 0.28
SLK14 Diesel fuel blend —64.16 52.42
SLK16 Diesel fuel sulfur 24.20 —47.67
SLK17 Fuel oil production —15.57 4.30
SLK19 Fuel oil blend —28.71 17.44
SLK22 Distillation capacity 0.00 —3.78
SLK24 Fuel gas yield from atmospheric distillation unit —0.02 0.02

SLK26 Straight run gasoline yield from atmospheric distillation urit1.30 38.56
SLK28 Straight run naphtha yield from atmospheric distillation urib0.67  45.57
SLK30 Straight run distillate yield from atmospheric distillation uri39.69 39.08
SLK32 Straight run fuel oil yield from atmospheric distillation unit-28.71 17.44

SLK35 Fuel gas yield from reformer unit —0.02 0.02
SLK37 Reformed gasoline yield —53.93 48.44
SLK38 Catalytic cracking unit capacity 17.67 —31.19
SLK40 Fuel gas yield from catalytic cracking unit —0.02 0.02
SLK42 Catalytic cracked gasoline yield —47.72 45.56
SLK44 Catalytic cracked fuel oil yield —47.33 43.88
SLK46 Straight run gasoline split —41.30 38.56
SLK48 Straight run naphtha split —50.67 45.57
SLK50 Straight run distillate split —39.69 39.08
SLK52 Straight run fuel oil split —28.71 17.44
SLK54 Reformed gasoline split —53.93 48.44
SLK56 Catalytic cracked gasoline split —47.72 45.56
SLK58 Catalytic cracked fuel oil split —47.33 43.88
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4.4 Summary

This chapter examined the condition of primal degeneracyafeefinery LP and imple-
mented the primal incremental analysis approach develbgeAucamp and Steinberg
(1982) to determine true shadow prices. In addition to det@ng true shadow prices,
this study has extended the primal incremental effect amaliypethod to determine true
incremental effect coefficients.

In current refinery practice only a single optima solutioprisduced. The user may not
be aware that the LP is primal degenerate with multiple dakies. This study has utilized
the primal incremental analysis approach to charactetiaéwdlues obtained from a single

optimal solution as unique or non-unique dual value ahdy~ or p™**i¢ shadow prices.
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CHAPTER 5

CHARACTERIZATION OF LP RESULTS UNDER CONDITIONS OF DUAL
DEGENERACY

The state of dual degeneracy in LP produces alternate divhgions with multiple ac-
tivity values, unique dual values and unique objective fiomcvalue. Unlike primal de-
generacy, it appears that a definitive approach for choasisecific solution among the
multiple solutions is not developed so far. This work haseflgved a truly unique ap-
proach to distinguish the significance of implementing arlatson to the other based on a
business logic.

In this chapter some of the previous work related to dual degey is introduced.
Then, the novel methodologies developed in this work arsegued along with the results

obtained for the simplified refinery LP model.

5.1 Background

In this section, first, an overview of previous work relateditial degeneracy is discussed

in detail. Finally, motivation for this research is statedéd on the gaps found in literature.

5.1.1 Dual Degeneracy and Interpretation of LP Solution

Initial studies on this topic were done in the field of farmrpiang. According to Powell
(1969) “linear programming is an advisory aid and may be usagenerate some of the
sub-optimal and alternate optimal solutions based on th@fsiant preference expressed
by the farmers. From the set of solutions, the farmer carcsaléarm plan which most

satisfactorily corresponds to his real planning objestiva@herefore, based on the opinion
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given by Powell (1969), when alternate optima exist, anytsmh that meets the needs of
the farmer can be implemented. Furthermore, Powell (196&mmends to use even a
suboptimal solution if that is the preference of the farmer.

The topic of alternative optima has gained prominence aaddugto interesting debates
since the publications of Paris (Paris, 1981, 1983, 1985)r fnany years, LP users have
regarded multiple solutions either as an exceptional eweas a nuisance to be avoided.
Indeed, in many circles, multiple optimal solutions are@arse of embarrassment and often
the main goal of researchers is to define sufficient condittonunique solutions” (Paris,
1985).

In a discussion provided by Paris (1991)[p.227], altesseatiptima is viewed favor-
ably because the existence of multiple optimal solutionkendhe final selection strategy
a real problem of choice to be determined with criteria othan mathematical program-
ming. Paris (1991) expressed that when an LP problem eghrhittiple optimal solutions,
it means that the problem at hand provides potentially merédle implementation options
than a similar problem that exhibits unique optimal solsio

An algorithmic approach on choosing among multiple optis@utions is also given
by Paris (1991)[p.229-223]. The procedure suggests spthia overall optimization prob-
lem in two stages. First, the optimal linear programmingisoh maximizing the primary
objective should be sought. Second, if there are multigigtiems, then the extreme points
of the solution space should be determined, and quadraigrgamming should be used
to search for a unique linear combination of these extrenr@pthat minimizes the sum
of squares of deviations of optimal activity from the realrldoactivity levels. This al-
gorithm, proposed to determine a unique solution amongiphellbptimal solutions, is
slightly modified by McCarl and Nelson (1983). The modifiedasithm does not require
the determination of all the extreme points correspondingternate optima.

Miller (1985) was not convinced by the methodologies depetbby Paris (1991)[p.229-

223] and McCarl and Nelson (1983). Because, when one movesfagvaybasic optimal
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solutions, a number of the usual primal-dual propertiesdess®irbed. This fact must be
taken into account, when the optimal solution to the duablenm is also important to the
analyst. Furthermore, in addition to the above methodsn@my(1986) proposed that it
may be best to solve an initial LP and if there are multiplaropt select the best in the
second stage. Alternatively, it may be best to subjectiegbluate many near-optimal and
optimal solutions. Finally, it may be best to solve a compredive LP, in which case the
tradeoffs between goals need to be represented by a setspigeiBed weights.
In summary, based on the above discussion, choosing amadtiglmaptimal solutions

is based on the planner’s preference, which is purely basegkperience and should be

based on a specific logic.

5.1.2 Theoretical Studies on Dual Degeneracy

Apart from developing algorithms on interpreting multipletimal solutions, several stud-
ies have been done to give more theoretical insight to theequnof dual degeneracy.
Pioneering research in this field began by studying the w@mgss of solutions in linear
programming problems (Mangasarian, 1979). A normal forrarobptimal solution of an
LP problem is defined and an algorithm is proposed to redue®piimal solution to its
normal form. This algorithm enables one to describe thenmgdtsolution set dimension
(Kantor, 1993).

In a significant development, Sierksma and Tijssen (2003)Idped a relatively simple
procedure to determine the dimension of the optimal saiuget and degeneracy degree to
add more insight into understanding dual degeneracy. Tdwé¢m developed to determine
the dimension of the optimal solution set is given as follows a primal-dual pair of
general LP-models with finite solution, the degeneracy elegf the primal (dual) optimal
face is equal to the dimension of the dual (primal) optimaéfa

In the study, given in Appa (2002), dual degeneracy doesInatya contribute to mul-

tiple solutions. This claim is also substantiated by prongda simple 2-D LP example.
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The coefficients of objective function selected for thisrapée 2-D LP have zero values.
Therefore, this problem cannot be ideally considered ap@imzation problem.
Based on the above survey, most of the studies provided mdtigpds to determine

the dimension of the optimal face when the problem is dua¢derate.

5.1.3 Analysis of Needs and Gaps

In literature, the occurrence of multiple optimal solusdior an LP is viewed favorably,
because this gives flexibility for the user to choose therddsolution. This phenomenon
might be favorable for performing optimization for the baase where even smaller changes
in market prices are not present. Petroleum refinery opéititiaa is characterized by market
price changes for feed stocks and finished products likeligasaliesel and kerosene. In
such cases, the existence of multiple solutions adds morfesion and choosing a specific
optimal solution for implementation from the multiple sttuns should remain optimal for
smaller changes in market price. The wide array of liteeatliscussing alternate optimal
solutions for an LP under dual degeneracy did not derive gin@mphasis on choosing
specific solutions that maintain optimality for smaller nfas in market price.

Algorithms to determine a single desired solution from tiiecs multiple solutions are
given in McCarl and Nelson (1983) and Paris (1991). Concerrme baen raised about
these methodologies by Miller (1985), because the solygfoduced using this approach
will not have the shadow price and incremental effect caefficinformation. Concerns
raised by Miller (1985) are also a concern for this researttabse this study is not only
interested on the set of activities and objective functialues, but also on incremental
effect coefficients and shadow prices as well.

Market price fluctuation is a common phenomenon in petrolegimery operations.
Therefore, implementing a specific solution among alteregtimal solution should sus-
tain optimal profit despite market price fluctuations. Soendnomic justifications have

to be established on choosing a specific basic solution whemate optima are present
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to resolve this issue. Moreover, when a specific solutioreiected for implementation,
other information such as shadow price and incrementatied@efficient must be readily

available for managerial interpretations.

5.2 Methodology

The state of dual degeneracy in LP produces alternate dohaions. A truly innovative
approach is developed in this research to choose amongpieuttptimal solutions for
implementation in actual petroleum refining processes.primeipal logic underlying this
novel approach begs the questions: what solution among tiigpta solutions has to be
implemented if the price of a commodity is going to increasehe market? or, what
solution among the multiple optimal solutions has to be enpnted if the price of a
commodity is going to decrease? This novel solution apprean be used to analyze the
multiple optimal solutions of a refinery LP.

The solution approach is based on a systematic classifigatoxress in which the activ-
ity values are classified into three classes. With referémogtimal simplex tableau given
in Table 2.1, the activity value of #h decision variable in the optimal basis is categorized
aSC;;m'mal’ Coptimal? OF Csuboptimal-

The dual incremental analysis given in Section 2.1.1 of Giraptwill be applied for
this classification strategy.

The activity valueb; for the jth decision variable in the optimal basis is caI@g

imal?

if the operation in Equation (5.1) yields a dual feasiblaeisoh, implying that all the entries

IN (Cpew Tne,) are dual feasiblec; .., activity value leads to optimal objective function

value when the price of this activity increases within a gesity range.
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The activity value; for the jth decision variable in the optimal basis is calleddfje, ;. if
the operation in Equation (5.2) yields a dual feasible smtytimplying that all the entries
iN (Crew Yer) are dual feasiblec, ;. ,, activity value leads to optimal objective function

value when the price of this activity decreases within aisgitg range.
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The activity valueb; for the jth decision variable in the optimal basis is caltethopiimals
if both the operation in Equation (5.1) and Equation (5.2lds dual infeasible solution,
implying that at least one entry i@,.c., 7,,.,,) IS dual infeasible.cqpoptima; activity leads
to non-optimal objective function value when the price o thctivity either increases or
decreases.

As an additional finding from the above dual incremental afnalysis, an activity

value b; for the jth decision variable in the optimal basis is considered tatigue if

+

coptimal =

c Otherwise it is considered to be non-unique. For each afidmeunique

optimal*®

activity values, the unavailablg . .., or c, ..., can be determined by generating alter-

nate optimal solutions. Before introducing the algorithmslétermine alternate optimal
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solutions, the dual feasibility condition of an LP problenti Wwe discussed.

The foundation of the above dual incremental effect anslysthodology is based on
the dual feasibility conditions of LP solution. The dual damlity conditions has to be
clearly understood in relation to petroleum refinery operet to appreciate the validity of
this approach. The following section explains the dualifelity conditions of LP solution

in the context of petroleum refining process applications.

5.3 Dual Feasibility Condition

Refinery LP is a maximization LP. Therefore, this section sleally with the feasibility

conditions of a maximization LP. Most of the LP texts presbhatdual feasibility conditions
of a maximization LP as given in Table 5.1. As inferred fronbl€b5.1, for a maximization

LP to be dual feasible, the shadow price of a less than or égBE) constraint must be
positive, the shadow price of a greater than or equal to (®B}traint must be negative,
shadow price of an equality constraint must be free, andetaaed cost (dual surplus)
must be positive. This condition is universally accepted iarone of the requirements for

the LP solution to be optimal.

Table 5.1: Dual Feasibility Conditions for a Maximization LP

Dual value Sign of dual value
Shadow price of a LE constraint Positive
Shadow price of a GE constraint Negative

Shadow price of a equality constraint Free

Reduced cost (Dual surplus) Positive

Shadow price has units df (bbl). This prompts questions such as: Why do the shadow
price of LE constraints have to be positive? Why do the the @hautice of GE constraints

have to be negative? Why do the the reduced costs have to li@asihe optimal solu-
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tion? These questions are answered geometrically by Rat@Bv] and Winston (1991).
According to them for a maximization LP, increasing the R.Bf &n active LE constraint
is considered as relaxing the constraint, and this addggtorthe feasible space or the
size of the feasible region increases. Consequently, thextlg function value increases.
Thus, the shadow price associated with the LE constraintia@mization LP is positive.
Conversely, for a maximization LP, increasing the R.H.S of etive GE is considered as
tightening the constraint and this removes points from #esible space, or the size of
the feasible region reduces. Consequently, the objectivtifun value reduces. Thus, the
shadow price associated with the GE constraint in a maxitiiz&P is negative.

The above explanation is purely intuitive or geometric, #r@lunderstanding on dual
feasibility in conjunction with petroleum refinery applica is required. Although sev-
eral books (Paris, 1991; Dorfman et al., 1958; Wagner, 1&&ary and McCarthy, 1964)
are completely devoted to the economic interpretation o$alation, it seems that a com-
prehensive explanation of dual feasibility criteria inatén to the manufacturing industry
is absent. This section extends the explanation provideRdrgin (1997) and Winston
(1991) to understand the feasibility criteria of dual valapplied to petroleum refining

process.

5.3.1 Dual Feasibility of an LE Constraint

The atmospheric distillation capacity constraint of thinery LP is selected to provide a
process explanation for the sign convention associated twé dual value of an LE con-

straint. The distillation capacity constraint is given byuation (5.3).

CRUDE < 100, 000 (5.3)

This capacity constraint stipulates that not more than @00,bbl of distillation capac-
ity is available in the petroleum refinery. The optimizer mgkise of this capacity only if it

is able to produce valuable products that could contributbe profitability of a petroleum

70



refinery. Otherwise, this resource will not be used in theess and it is left as a slack.
When this constraint becomes binding (constrained) in tbhegss, the optimizer has
exhausted the use of this valuable resource, contributirthe increase in the objective
function value. As a result, increasing the R.H.S of this t@msed LE constraint provides
more of this valuable resource, and thus, increases thetolgievalue. Therefore, for a
maximization LP, the shadow price associated with an LE ttaimd is always positive.
Negative shadow price for an LE constraints implies thatabgctive function of a
maximization problem can be decreased by increasing thesRotHan active LE constraint.

This result is not economically viable and therefore dutdasible.

5.3.2 Dual Feasibility of a GE constraint

The Premium Gasoline (PG) production constraint of the eefibP is selected for demon-

stration. The PG production constraint is given in Equafmd).

PG> 10,000 (5.4)

This constraint demands the optimizer to produce at leg800Mmbl of premium gaso-
line in the refining process. The same constraint can alsodveed from a different per-
spective, if the PG production is profitable or contributethe increase in the profit margin
of the refinery. Based on the stipulation of the constraintgudtion (5.4) the optimizer
has the liberty to produce more than 10,000 bbl of PG. Anathgrial question is: What
implication would it make when this PG production constrdor this GE) becomes con-
strained?

When this constraint becomes constrained in the maximizaife) the optimizer de-
termined that producing more than 10,000 bbl of PG was nditabbe and is going to
reduce the profit function (objective value). Consequettily,optimizer limits the produc-
tion of PG to 10,000 bbl. Therefore, when the R.H.S of thisvagbroduction constraint is

increased, the objective value is definitely going to desgea
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Positive shadow price for a GE constraint implies that thedailve function of a max-
imization problem can be increased by increasing the R.H.&ddctive GE constraint.

This result is not economically meaningful and is therefiwal infeasible.

5.3.3 Dual Feasibility of an Equality Constraint

The sign of shadow price of an equality constraint can beseplositive or negative. An
equality constraint of the forrdxz = b can be written in the companion form adx < b
and Az > b. In the optimal solution one of these constraints will bavecbased on the
LP model. If theAz < b constraint is active then the shadow price will be positWe.the

other hand, if thedx > b is active, then shadow price will be negative.
5.3.4 Dual Feasibility of Reduced Cost
Reduced cost is also referred to as dual surplus. A dual @nists written in the form

given in Equation (5.5).

Imputed price> Market price (5.5)

The above constraint implies that if the manager decidesltdhe resource available
instead of manufacturing a certain product, the availaddeurce has to be sold at a price
at least equal to the market price of the product for the lmssitio be profitable.

The constraint given in Equation (5.5) can be converted tequmlity by adding a

surplus. The modified version is given in Equation (5.6).

Imputed price— surplus= Market price (5.6)

The constraint given in Equation (5.6) being inactive iraplthat the surplus will be
non-zero and the product will have a reduced cost. This esphat this specific product

will not be manufactured in the process because the optirdetermined that manufactur-
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ing this product will incur a loss. To profitably manufactiings product, the market price
has to be increased by at least an amount equal to the sugilies v

Negative surplus implies that reducing the market pricelgyamount of the surplus
will actually make the production of the specific productfgable. This result is not
economically meaningful and is therefore dual infeasible.

In summary, this section provided a comprehensive deganiph interpreting the dual
feasibility condition with respect to petroleum refinerppess application. The next sec-
tion will provide the algorithm to determine alternate o solutions when the LP is dual

degenerate.

5.4 Algorithm

When an LP is dual degenerate, infinite number of activity esllead to the same ob-
jective function value. In this research, only the extrerampsolutions will be analyzed
for implementation. A perturbation technique implemegtparametric programming is
developed to determine alternate optimal solutions.

The perturbation technique developed in this section islairto the algorithm devel-
oped in Section 4.3 of Chapter 4 to determine alternate opbass when the LP is primal
degenerate.

A primal degenerate LP has a unique optimal vertex, thisgntggenables utilization of
the perturbation technique to generate multiple optimakebdor a primal degenerate LP.
In case of dual degenerate LP, the dimension of the optiroelifalarger than zero and will
have multiple optimal vertices. This property makes it cbogped to use the perturbation
technique for the dual degenerate LP. However, a new syraetpveloped in this research
to deal with this complication.

When an LP has alternative optimal solutions or is dual degéaeit will be primal
degenerate in the dual space. This property of the dual éegienLP problem is exploited

in this research to implement the perturbation techniquegémerating multiple optimal
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solutions. This property is also illustrated graphicatiygain more understanding. A 2-D

dual degenerate LP given in Equation (5.7) is selected fsiilthstration.

Maximizez = 2z, + 4x- (5.7
Subject to
r1+ 229 <5 Constraint#1
T+ 129 <4 Constraint#2
r1,2T9 >0 Non-negativity

The graphical solution of the 2-D LP is given in Figure 5.1(&)s noticed in Fig-
ure 5.1(a), the optimal face has two vertices, D and C. Thisdimensional optimal face
can be converted to a single vertex by transforming this g@lrjpnoblem to a dual prob-

lem (Dantzig and Thapa, 2003). The dual form of the 2-D LPvegiin Equation (5.8),

Minimize z = 5y; + 4ys (5.8)
Subject to
1+ y2 =2 Constraint#1
200ty > 4 Constraint#2
y1,y2 > 0 Non-negativity

and the graphical solution of this dual LP is given in Figurg(b). Visual observation
indicated that the one-dimensional optimal face is coeeetid a unique vertex. This unique
vertex gives the advantage of implementing the perturbagehnique. The procedure

followed in this algorithm is given as follows:

Step 1 The given primal LP is converted to a dual LP. This dual is edlto generate a

single optimal solution. The dual of the refinery LP is giverAppendix B.

Step 2 The set of all active constraints in the optimal solutionhe tual space are deter-
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mined. Active constraints are those constraints whosé slesurplus are maintained

at zero value in the optimal solution.

Step 3 All the active constraints in the dual space are paramdiriparturbed one at a
time using parametric programming. This perturbation mémle is explained as
follows: if Y7 y/a;; < ¢; is one of the active constraints, the R.Hc$ of this
active constraint is parametrically varieda@st \d using parametric programming,
where \ is the parameter and is the directional vector. The parametric variation
will generate alternate optimal basis corresponding tgtiraal degenerate optimal
vertex in the dual space. From the alternate optimal bas&rad in the dual space
the corresponding basic variable in the primal basis caabiyeletermined, because
the basic variables in the dual space will be non-basic bkasain the primal space.
The basic variables obtained by this procedure are listeBas - - - B1 ,}, where
the indexl, g represents the number of alternate basis obtained by gpcginstraint

number one.

Step 4 Similar perturbation using parametric programming foroéiler active constraints
is performed. Subsequently, primal basic variables areroied using the dual
basic variable information available. After doing this fpossible alternate basis ob-
tained by this processiis listed &8, 1 --- By 4, Bo1 -+ Bag, -+, - Bni-+- Bng}

whereN is the number of active constraints.

Step 5 The set of different basis obtained in step 3 are comparedd¢h ether and the
unique basis among them are determined and listed ds: - - B,.}, wherer is the

number of distinct basis.

Step 6 The unique set of alternate basis obtained in step 5 is usedetde the set of
optimal simplex tableaux corresponding to the primal degate vertex by applying

the formulas given in Table 5.2.
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Table 5.2: Optimal Tableau with Formula

CBB_lb

' —cgB 1A | —cgB™!

B~

B7'A B!

5.5 Results and Discussion

This section illustrates the results and procedures forad degenerate LP. The refinery
LP presented in Section 2.2.1 of Chapter 2 is selected for stasly. The refinery LP

is inherently dual degenerate and has multiple activityeslfor decision variables that
have zero cost coefficients. In order to have multiple agtvalues for decision variables
that also have non-zero cost coefficients, the LP problemadified such that the cost

coefficient of Premium Gasoline (PG) $45.36 in the originglis changed to $44.0813.

5.5.1 Check for Dual Degeneracy

The LP problem is solved using LINDO and an optimal solut®found. The optimal ba-
sis, the corresponding basis index and activity valuestahoipn are given in Table 5.3. The
associated dual values in the optimum are given in TableGb&ervation from Table 5.4
indicated that some of the dual values (non-basic variabl@ge zero values. This condi-
tion confirms that the LP is dual degenerate. The dual vahssare maintained at zero are
the shadow price of Regular Gasoline (RG) vapor pressurereimsthe shadow price of
Diesel Fuel (DF) sulfur specification constraint, the restlicost of Straight Run Naphtha
for Premium Gasoline blending (SRNPG), the reduced costraigstt Run Naphtha for
Regular Gasoline blending (SRNRG), and the reduced cost ofydfiat@racked Fuel Oil
for Diesel Fuel blending (CCFODF).

Geometrically, when the LP is dual degenerate, the dimansidhe primal optimal
face will be larger than zero. For the refinery LP considemgdHis study, the dimension

of the primal optimal face was found to be five, because theréwe dual variables (non-
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basic) that have zero value in the optimal solution. Thispdure for determining the

dimension of the optimal face is given in Tijssen and Siek$t®98) and Gonzaga (2007).

5.5.2 Analyzing Single Optimal Solution

In current petroleum refinery optimization practice, onbirggle optimal solution is gener-
ated. This section provides a systematic approach to aaegactivity values for a single
optimal solution. The dual incremental analysis discussesgkection 5.2 is implemented.
The purpose of the categorization strategy is two-fold: isite characterize activity values
as unique or non-unique, and the other is to categorizeiyotsues as:, ;,...;» O ¢, yimar-
Of Csyboptimal -

The dual incremental analysis is succinctly represente&dpyation (5.1) and Equa-
tion (5.2) in Section 5.2. A value af= 1 will be used in Equation (5.1) and Equation (5.2)
for demonstration purpose. Initially, the Regular Gaso(iR&) production activity value
of 22,520 bbl/day in Table 5.3 is selected for classification

The row of dual incremental effect coefficients correspogdo the RG activity value
22,520 bbl/day, excluding the identity structure of theimpl tableau, is presented in a
transpose form (column format) in Table 5.5.

In the classification process, the cost coefficient $43.881#® RG decision variable is
perturbed from $43.68 to $42.68. As observed in Table 513haldual values remained
feasible. Therefore, this RG activity value is considered gs . On the other hand,
when the cost coefficient is changed from $43.68 to $44.@8akultant solution has some
infeasible dual values. In this case the shadow price 0.461%for RG octane and 0.10
$/bbl for PG octane constraints are infeasible. Besidestettieced costs -6.37 $/bbl for
Straight Run Naphtha for PG Blending (SRNPG) and -6.37 $/bi&faaight Run Naphtha
for RG blending (SRNRG) are dual infeasible. Therefore thiwigvalue is notc, ;.-
This inference also implies) ;... # Couma- CONSequently, the activity value 22,520

bbl/day for RG production is non-unique.
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Table 5.3: Optimal Basis #1 for the Dual Degenerate Refinery LP

Index Variable Activity Index Variable Activity  Index Variable Activity
(bbl /day) (bbl /day) (bbl /day)
1 CRUDE 100,000.00 |26 SRFOFO 5,403.80 |54 SLK21 22,286.68
2 FGAD*  3,542,000.00 |27 SRG 27,000.00 {56  SLK23 0.00
3 SRNRF 23,700.00 |28 SRN 23,700.00 |58  SLK25 0.00
4 FGRF  3,761,190.00 |29 SRDS 8,700.00 |60  SLK27 0.00
6 SRFOCC 30,000.00 |30 SRFO 37,200.00 |62 SLK29 0.00
7 FGCC  11,592,000.00 |31 RFG 21,993.60 |64 SLK31 0.00
8 PG 47,113.20 |32 CCG 20,640.00 |66  SLK33 1,300.00
9 RG 22,520.40 |33 CCFO 6,591.00 |67 SLK34 0.00
10 DF 12,491.00 |34  SLK1 10,000.00 |69  SLK36 0.00
11 FO 10,000.00 |35 SLK2 37,113.20 |72 SLK39 0.00
12 SRGPG 13,852.05 |36 SLK3 0.00 |74 SLK41 0.00
13 RFGPG 17,239.99 |39  SLK6  188,607.17 |76  SLK43 0.00
15 CCGPG 16,021.17 |40 SLK7 12,520.40 |78 SLK45 0.00
16 SRGRG 13,147.95 |41  SLKS8 0.00 {80  SLK47 0.00
17 RFGRG 4,753.61 |45  SLK12 2,491.00 |82  SLK49 0.00
19 CCGRG 4,618.83 |46  SLK13 0.00 {84  SLK51 0.00
21  CCFODF 6,591.00 |48  SLK15 153,666.99 |86  SLK53 0.00
22  SRDSDF 4,103.80 |51  SLK18 0.00 {88  SLK55 0.00
23  SRFODF 1,796.20 |53  SLK20 583,788.61 |90  SLK57 0.00
25 SRDSFO 4,596.20
*ft3/day.

79



Table 5.4: Optimal Dual Values #1 for the Dual Degenerate RefibP

z Dual Value $/bbl  Active at
SLK4 Premium Gasoline production —37.86 LL

SLK5 Premium Gasoline octane rating —0.07 LL

SLK9 Regular Gasoline blending —37.86 LL (Equality)
SLK10 Regular Gasoline octane rating —0.07 LL

SLK11 Regular Gasoline vapor 0.00 UL

SLK14  Diesel fuel blending —40.32 LL (Equality)
SLK16 Diesel fuel sulfur specification 0.00 UL

SLK17  Fuel oil production —27.18 LL

SLK19  Fuel oil blending —40.32 LL (Equality)
SLK22  Atmospheric distillation unit capacity 7.85 UL

SLK24  Fuel gas yield from atmospheric distillation unit —0.02 LL (Equality)
SLK26  Straight run gasoline yield from atmospheric distillation uritt3.11 LL (Equality)
SLK28  Straight run naphtha yield from atmospheric distillation uritt2.21  LL (Equality)
SLK30  Straight run distillate yield from atmospheric distillation uritt0.32 LL (Equality)
SLK32  Straight run fuel oil yield from atmospheric distillation unit-40.32 LL (Equality)
SLK35 Fuel gas yield from reformer unit —0.02 LL (Equality)
SLK37 Reformed gasoline yield —44.82 LL (Equality)
SLK38  Catalytic cracking unit capacity 4.29 UL

SLK40 Fuel gas yield from catalytic cracking unit —0.02 LL (Equality)
SLK42  Catalytic cracked gasoline yield —44.13 LL (Equality)
SLK44  Catalytic cracked fuel oil yield —40.32 LL (Equality)
SLK46  Straight run gasoline split —43.11 LL (Equality)
SLK48  Straight run naphtha split —42.21 LL (Equality)
SLK50  Straight run distillate split —40.32 LL (Equality)
SLK52  Straight run fuel oil split —40.32 LL (Equality)
SLK54  Reformed gasoline split —44.82 LL (Equality)
SLK56  Catalytic cracked gasoline split —44.13 LL (Equality)
SLK58  Catalytic cracked fuel oil split —40.32 LL (Equality)
SRDSCC Straight run distillate for catalytic cracking 5.26 Reduced cost
SRNPG  Straight run naphtha for premium gasoline blending 0.00 Reduced cost
SRNRG Straight run naphtha for regular gasoline blending 0.00 Reduced cost
SRNDF  Straight run naphtha for diesel fuel blending 1.89 Reduced cost
CCFOFO Catalytic cracked fuel oil for fuel oil blending 0.00 Reduced cost

LL — Lower Limit: implying the GE constraint is active.
UL — Upper Limit: implying the LE constraint is active.
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Table 5.5: Dual Incremental Effect Analysis for the RG Advi

Basecase c¢j+1 cj—1

RG Objective  Objective  Objective
activity (bbl)  value ($) value ($) value ($)

22,520.40 641,579.78 664,100.18 619,059.38

Incremental Dual Dual Dual
Z Dual variablé effect @;;) value ($/bbl) value ($/bbl) value ($/bbl)
SLK5  PGoctane 0.17 —0.07 0.10f —0.23
SLK9 RGblend(2) —15.50 —37.86 —53.36 —22.36
SLK10 RGoctane 0.17 —0.07 0.10 —0.23
SLK11 RGvapor 0.00 0.00 0.00 0.00
SLK14 DFblend(2) 0.00 —40.32 —40.32 —40.32
SLK16 DFsulfur 0.00 0.00 0.00 0.00
SLK17 FOproduction 0.00 —27.18 —27.18 —27.18
SLK19 FOblend(2) 0.00 —40.32 —40.32 —40.32
SLK22  ADcapacity 0.25 7.85 8.10 7.60
SLK24 FGADyield(2) 0.00 —0.02 —0.02 —0.02
SLK26 SRGyield(2) —2.42 —43.11 —45.53 —40.69
SLK28  SRNyield(2) 1.70 —42.21 —40.51 —43.91
SLK30 SRDSyield(2) 0.00 —40.32 —40.32 —40.32
SLK32 SRFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK35 FGRFyield(2) 0.00 —0.02 —0.02 —0.02
SLK37 RFGyield(2) 1.83 —44.82 —42.98 —46.65
SLK38 CCcapacity 0.08 4.29 4.37 4.21
SLK40 FGCCyield(2) 0.00 —0.02 —0.02 —0.02
SLK42 CCGyield(2) 0.12 —44.13 —44.01 —44.24
SLK44  CCFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK46  SRGsplit(2) —2.42 —43.11 —45.53 —40.69
SLK48  SRNsplit(2) 1.70 —42.21 —40.51 —43.91
SLK50  SRDSsplit(2) 0.00 —40.32 —40.32 —40.32
SLK52 SRFOsplit(2) 0.00 —40.32 —40.32 —40.32
SLK54  RFGsplit(2) 1.83 —44.82 —42.98 —46.65
SLK56 CCGsplit(2) 0.12 —44.13 —44.01 —44.24
SLK58 CCFOsplit(2) 0.00 —40.32 —40.32 —40.32
SRDSCC Reduced cost —0.01 5.26 5.25 5.26
SRNPG Reduced cost —6.37 0.00 —6.371 6.37
SRNRG Reduced cost  —6.37 0.00 —6.377 6.37
SRNDF Reduced cost —1.70 1.89 0.19 3.59
CCFOFO Reduced cost 0.00 0.00 0.00 0.00

"Dual infeasible.
*Description of dual variables are given in Table B.1 of Appendix B.

81



Similar analysis is performed for the activity values of @dicision variables of the

single optimal solution listed in Table 5.3 and the clasatfan is summarized in Table 5.6.

Table 5.6: Classification of Activity Values for the Dual Degeate Refinery LP Obtained

from the Single Optimal Solution

Decision Activity Category Category
variable value (bbl/day) I Il
CRUDE 100,000.00 ¢, pimar = Coptimar  UNIAUE
FGAD (ft*)  3,542,000.00 ¢} ima = Coptimar UNIQUE
SRNRF 23,700.00 ¢ pimar Non-unique
FGRF (ft*)  3,761,190.00 ¢} ;na Non-unique
SRFOCC 30,000.00 ¢, pimar = Coptimar  UNIQUE
FGCC (f#°) 11,592,000.00 ¢} ia = Coptimar UNIQUE
PG 47,113.20 ¢} pima Non-unique
RG 22,520.40 ¢, ppimal Non-unique
DF 12,491.00 ¢} yimar = Coptima UNIQUE
FO 10,000.00 €3 imar = Coptimar UNiQUE
SRGPG 13,852.05  Csuboptimal Non-unique
RFGPG 17,239.99  csuboptimal Non-unique
CCGPG 16,021.17  Csuboptimal Non-unique
SRGRG 13,147.95  Csuboptimal Non-unique
RFGRG 4,753.61  Csuboptimal Non-unique
CCGRG 4,618.83  Csuboptimal Non-unique
CCFODF 6,591.00 5 imal Non-unique
SRDSDF 4,103.80  Csupoptimal Non-unique
SRFODF 1,796.20 ¢, imal Non-unique
SRDSFO 4,596.20 ¢} i Non-unique
SRFOFO 5,403.80 ¢, timal Non-unique
SRG 27,000.00 €3 imal = Coptimar UNIAUE
SRN 23,700.00 ¢ pimar = Coptimar  UNIQUE
SRDS 8,700.00 €5 timar = Coptimar UNIAUE
SRFO 37,200.00 €3 imal = Coptimar UNIAUE
RFG 21,993.60 ¢ pimal Non-unique
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5.5.3 Variables of Interest to the User

The dual incremental analysis applied to the dual degemeséibery LP suggested that the
development of this method is based on market price unogytaiowever, not all activi-
ties involved in the refinery have a market price associaidfdtivem. The activities in the
optimal solution of a refinery LP typically involve decisioariables, slack variables, and
surplus variables. By default, slack and surplus have zesbamefficients. The decision
variables are of three types: raw materials, finished proaud intermediate products. Al-
most all of the intermediate products produced in the refidernot have cost coefficients
because they are not exposed to the market. In some instame@germediate products do
have cost coefficients associated with them in the form ofatpey cost. In all instances,
the raw materials have a buying price and the finished precate a selling price.

Under conditions of dual degeneracy, this research willgoanly on analyzing activi-
ties that have a cost coefficient associated with them. Feoretinery LP considered in this
study, only 11 of the 33 decision variables have cost coeffisi The 11 variables along
with their cost coefficients are given in Table 5.7.

The next section will generate alternate optimal solutifmnghe dual degenerate LP
considered in this case study. Multiple activity valued W classified based on the busi-

ness significance associated with them.
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Table 5.7: Refinery LP Decision Variables Containing Cost Caeffis

S.I. No. Variable Cost Coefficient

© 0N Ol WN P

el
B o

CRUDE Buying price of 33%$/bb1
FGAD  Selling price of 0.01965 $/ft3
SRNRF  Operating cost of 2.5%/bbl
FGRF Selling price of 0.01965 $/ft3
SRDSCC Operating cost of 2.2$/bbl
SRFOCC Operating cost of 2.2%$/bbl
FGCC Selling price of 0.01965 $/ft3

PG Selling price of 44.0813%/bbl
RG Selling price of 43.68%/bbl
DF Selling price of 40.32%/bbl
FO Selling price of 13.14%/bbl
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5.5.4 Determining Alternate Optimal Solutions

For the LP considered in this study, results obtained ini&ed.5.2 confirmed that 19
decision variables have multiple activity values. Expteores provided in Section 5.5.3
demonstrated that it is adequate to analyze multiple déieivithat have cost coefficients
associated with them.

In this section, the parametric perturbation techniqueslibged in Section 5.4 is used
to generate multiple optimal solutions for the dual degateeLP. In addition to the single
optimal solution obtained in Section 5.5.1, 12 more alterraptimal solutions are pro-
duced and listed in Table 5.8. For completeness, the maléptivity values obtained in
each of the optimal basis for the entire 19 decision vargate presented in Table 5.8.

As evident from Table 5.8, of the 13 alternate optimal basiatons produced, the
Premium Gasoline (PG) activity has 10 distinct values.idhy, these values will be ana-

lyzed and categorized a$p andcgypoptimal- IN this section, three PG activity

timal® Coptimal
values: 47,113 bbl/day, 43,692 bbl/day and 10,000 bbl/dajable 5.8 are selected for
analysis.

The PG activity value 47,113 bbl/day along with the assediabw of dual incremen-
tal effect coefficients excluding the identity structuretioé optimal tableau is presented
in a transpose form (column format) in Table 5.9. In the dfesdion process, the cost
coefficient 44.0813%/bbl for the PG decision variable istymed from 44.0813%/bbl to
45.0813%/bbl. In doing so, as observed from Table 5.9, eldiiel values remained feasi-
ble. Since this positive perturbation of PG cost coefficmoduced dual feasible solution,
the PG activity value 47,113.20 bbl/day is determinedjgtg.mal implying, the user must

implement this activity value in the actual process in oreattain optimal profit if the

market price of PG is speculated to increase.
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Table 5.8: Alternate Optimal Solutions Obtained for the Ddegenerate Refinery LP

Solution 1 Solution 2 Solution 3 Solution 4 Solution 5 Solution 6 Solution 7
Activity  Activity  Activity  Activity  Activity  Activity  Activity
(bbl/day)  (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day)

SRNRF 23,700 23,157 20,556 19,974 18,913 17,805 17,805
FGRF3, 761,190 3,674,954 3,262,242 3,169,893 3,001,458 2,825,697 2,825,697

PG 47,113 43,692 27,319 23,655 16,973 10,000 10,000
RG 922,520 25,981 42,541 46,247 53,005 60,058 60,058
SRGPG 13,852 10,511 0 0 0 0 4,314
RFGPG 17,240 12,541 4,425 8,774 12,186 7,179 5,686
SRNPG 0 0 2,254 3,726 4,787 2,821 0
CCGPG 16,021 20,640 20,640 11,155 0 0 0

SRGRG 13,148 16,489 27,000 27,000 27,000 27,000 22,686
RFGRG 4,754 8,948 14,651 9,762 9,365 9,344 10,837

SRNRG 0 543 890 0 0 3,074 5,895
CCGRG 4,619 0 0 9,485 20,640 20,640 20,640
CCFODF 6,591 6,591 6,591 6,591 6,591 6,591 3,791
SRDSDF 4,104 4,104 4,104 4,104 4,104 4,104 8,700
SRFODF 1,796 1,796 1,796 1,796 1,796 1,796 0
CCFOFO 0 0 0 0 0 0 2,800
SRDSFO 4,596 4,596 4,596 4,596 4,596 4,596 0

SRFOFO 5,404 5,404 5,404 5,404 5,404 5,404 7,200
RFG 21,994 21,489 19,076 18,536 17,551 16,523 16,523

Solution 8 Solution 9 Solution 10 Solution 11 Solution 12 Solution 13 Number of
Activity  Activity  Activity  Activity  Activity  Activity distinct
(bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) (bbl/day) solutions

SRNRF 23,700 19,577 21,892 19,654 21,440 23,700 10
FGRF3, 761,190 3,106,900 3,474,183 3,119,010 3,402,600 3,761,190 10
PG 47,113 21,156 35,727 21,636 32,887 47,113 10
RG 922,520 48,774 34,037 48,289 36,909 22,520 10
SRGPG 17,073 0 15,412 996 10,731 13,852 8
RFGPG 21,994 0 20,315 0 19,897 17,240 11
SRNPG 0 516 0 0 2,260 0 7
CCGPG 8,046 20,640 0 20,640 0 16,021 5
SRGRG 9,927 27,000 11,588 26,004 16,269 13,148 8
RFGRG 0 18,168 0 18,238 0 4,754 10
SRNRG 0 3,607 1,808 4,047 0 0 8
CCGRG 12,594 0 20,640 0 20,640 4,619 5
CCFODF 6,591 6,591 6,591 6,591 3,791 3,263 3
SRDSDF 5,900 4,104 4,104 4,104 8,700 8,700 3
SRFODF 0 1,796 1,796 1,796 0 528 3
CCFOFO 0 0 0 0 2,800 3,328 3
SRDSFO 2,800 4,596 4,596 4,596 0 0 3
SRFOFO 7,200 5,404 5,404 5,404 7,200 6,672 3
RFG 21,994 18,168 20,315 18,238 19,897 21,994 10
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Analogously, when the cost coefficient of PG is changed frdrh&13%/bbl to 43.0813-
$/bbl, the resultant solution has some infeasible dualeglin this case, the shadow price
0.10%/bb1 for the PG octane and 0.10%$/bbl for the Regular l(Bas@rG) constraints are
infeasible. Besides, the reduced costs -6.30%$/bbl, -6bB0$And -0.74%/bbl for Straight
Run Naphtha for Premium Gasoline Blending (SRNPG), StraightNRaphtha for Regular
Gasoline blending (SRNRG), and Straight Run Naphtha for Diesell blending (SRNDF)
are dual infeasible. Since this negative perturbation ofcB& coefficient produced dual
infeasible solution, the PG activity value 47,113.20 bdy/ds notc,,;,..., implying that
the user must not use this activity value to attain optimafipif the market price of PG is
expected to decrease. Also, here the user has the flextiolige solution #1, solution #8,
or solution #13 in Table 5.8 for implementation becausedhtsesution sets have the PG
activity as 47,113.20 bbl/day.

Secondly, the PG activity value 43,692 bbl/day is analyZequired data is given in
Table 5.10. As observed from Table 5.10, dual incrementatefnalysis showed that both
positive and negative perturbation of PG cost coefficieaeldgd dual infeasible solutions.
Therefore, this activity value for PG is categorizedcag, iima- Thus, the user cannot
achieve optimal objective function value by implementihg tsolution for an increase or
decrease in the market price of PG.

Finally, the PG activity value 10,000 bbl/day is analyzed.qieed data is given in
Table 5.11. As observed in Table 5.11 dual incremental etiealysis resulted in dual
feasible solutions for a negative perturbation of the casffecient and dual infeasible
solution for a positive perturbation. Consequently, the @ity value 10,000 bbl/day

is categorized as, This PG activity value 10,000 bbl/day must be implemented t

timal*
attain optimal profit if the market price of PG is expected &xmase. Moreover, here
the user has the flexibility to use solution #6, solution #7saution #13 in Table 5.8 for

implementation because these solution sets have the R@yaat 10,000 bbl/day.
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Table 5.9: Dual Incremental Effect Analysis for the PG Aityivi7,113.20 bbl/day

Basecase «¢;+1 cj—1

PG Objective  Objective  Obijective
activity (bbl) value ($)  value ($)  value ($)

47113.20  641579.78 688692.98  594466.58

Incremental Dual Dual Dual
z Dual variablé effect @;;) value ($/bbl) value ($/bbl) value ($/bbl)
SLK4 PGblend(2) 14.50 —37.86 —23.36 —52.36
SLK5  PGoctane —0.17 —0.07 —0.23 0.10f
SLK9 RGblend(2) 14.50 —37.86 —23.36 —52.36
SLK10 RGoctane —0.17 —-0.07 —0.23 0.107
SLK11 RGvapor 0.00 0.00 0.00 0.00
SLK14 DFblend(2) 0.00 —40.32 —40.32 —40.32
SLK16 DFsulfur 0.00 0.00 0.00 0.00
SLK17 FOproduction 0.00 —27.18 —27.18 —27.18
SLK19 FOblend(2) 0.00 —40.32 —40.32 —40.32
SLK22  ADcapacity 0.24 7.85 8.09 7.61
SLK24 FGADyield(2) 0.00 —0.02 —0.02 —0.02
SLK26 SRGyield(2) 1.42 —43.11 —41.69 —44.53
SLK28  SRNyield(2) —2.63 —42.21 —44.84 —39.58
SLK30 SRDSyield(2) 0.00 —40.32 —40.32 —40.32
SLK32 SRFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK35 FGRFyield(2) 0.00 —0.02 —0.02 —0.02
SLK37 RFGyield(2) —2.83 —44.82 —47.65 —41.98
SLK38 CCcapacity 0.77 4.29 5.06 3.52
SLK40 FGCCyield(2) 0.00 —0.02 —0.02 —0.02
SLK42 CCGyield(2) —1.12 —44.13 —45.24 —43.01
SLK44 CCFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK46  SRGsplit(2) 1.42 —43.11 —41.69 —44.53
SLK48  SRNSsplit(2) —2.63 —42.21 —44.84 —39.58
SLK50 SRDSsplit(2) 0.00 —40.32 —40.32 —40.32
SLK52  SRFOsplit(2) 0.00 —40.32 —40.32 —40.32
SLK54 RFGsplit(2) —2.83 —44.82 —47.65 —41.98
SLK56 CCGsplit(2) —1.12 —44.13 —45.24 —43.01
SLK58 CCFOsplit(2) 0.00 —40.32 —40.32 —40.32
SRDSCC Reduced cost 0.08 5.26 5.33 5.18
SRNPG Reduced cost 6.30 0.00 6.30 —6.301
SRNRG Reduced cost 6.30 0.00 6.30 —6.301
SRNDF Reduced cost 2.63 1.89 4.52 —0.74f
CCFOFO Reduced cost 0.00 0.00 0.00 0.00

"Dual infeasible
*Description of dual variables are given in Table B.1 of Appendix B
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Table 5.10: Dual Incremental Effect Analysis for the PG ®ityi 43,692 bbl/day

Basecase ¢;+1 cj—1

PG Objective  Objective  Obijective
activity (bbl) value ($) value ($) value ($)

43,692.03 641,579.74 685,271.76 597,887.71

Incremental Dual Dual Dual
Z Dual variablé effect @@;;) value ($/bbl) value ($/bbl) value ($/bbl)
SLK4  PGblend(2) 16.85 —37.86 —21.01 —54.72
SLK5  PGoctane —0.19 —0.07 —0.26 0.13
SLK9 RGblend(2) —7.24 —37.86 —45.10 -30.63
SLK10 RGoctane 0.03 —0.07 —0.04 —0.10
SLK11 RGvapor 0.36 0.00 0.36 —0.367
SLK14 DFblend(2) 0.00 —40.32 —40.32 —40.32
SLK16 DFsulfur 0.00 0.00 0.00 0.00
SLK17 FOproduction 0.00 —27.18 —27.18 —27.18
SLK19 FOblend(2) 0.00 —40.32 —40.32 —40.32
SLK22  ADcapacity 0.20 7.85 8.05 7.64
SLK24 FGADyield(2) 0.00 —0.02 —0.02 —0.02
SLK26 SRGyield(2) 1.78 —43.11 —41.33 —44.90
SLK28 SRNyield(2) —2.89 —42.21 —45.10 —39.32
SLK30 SRDSyield(2) 0.00 —40.32 —40.32 —40.32
SLK32 SRFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK35 FGRFyield(2) 0.00 —0.02 —0.02 —0.02
SLK37 RFGyield(2) —3.11 —44.82 —47.93 —41.71
SLK38 CCcapacity —0.78 —4.29 —5.07 -3.51
SLK40 FGCCyield(2) 0.00 —0.02 —0.02 —0.02
SLK42  CCGyield(2) -1.13 —44.13 —45.26 —42.99
SLK44 CCFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK46  SRGsplit(2) 1.78 —43.11 —41.33 —44.90
SLK48 SRNsplit(2) —2.89 —42.21 —45.10 —39.32
SLK50 SRDSsplit(2) 0.00 —40.32 —40.32 —40.32
SLK52  SRFOsplit(2) 0.00 —40.32 —40.32 —40.32
SLK54 RFGsplit(2) —3.11 —44.82 —47.93 —41.71
SLK56  CCGsplit(2) —1.13 —44.13 —45.26 —42.99
SLK58 CCFOsplit(2) 0.00 —40.32 —40.32 —40.32
SRDSCC Reduced cost 0.08 5.26 5.33 5.18
SRNPG Reduced cost 7.26 0.00 7.26 —7.26t
CCGRG Reduced cost —0.74 0.00 —0.74 0.74
SRNDF Reduced cost 2.89 1.89 4.78 —1.00f
CCFOFO Reduced cost 0.00 0.00 0.00 0.00

"Dual infeasible
*Description of dual variables are given in Table B.1 of Appendix B
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Table 5.11: Dual Incremental Effect Analysis for the PG »®ityi 10,000 bbl/day

Basecase ¢;+1 cj—1

PG Objective  Objective  Obijective
activity (bbl)  value (%) value ($) value ($)

10,000.00 641,579.31 651,579.31 631,579.31

Incremental Dual Dual Dual
Z Dual variablé effect @@;;) value ($/bbl) value ($/bbl) value ($/bbl)
SLK2  PGproduction 1.00 0.00 1.007 —1.00
SLK4 PGblend(2) 0.00 —37.86 —37.86 —37.86
SLK5 PGoctane 0.00 —0.07 —0.07 —0.07
SLK9 RGblend(2) 0.00 —37.86 —37.86 —37.86
SLK10 RGoctane 0.00 —0.07 —0.07 —0.07
SLK14 DFblend(2) 0.00 —40.32 —40.32 —40.32
SLK17 FOproduction 0.00 —27.18 —27.18 —27.18
SLK19 FOblend(2) 0.00 —40.32 —40.32 —40.32
SLK22  ADcapacity 0.00 7.85 7.85 7.85
SLK24 FGADyield(2) 0.00 —0.02 —0.02 —0.02
SLK26 SRGyield(2) 0.00 —43.11 —43.11 —43.11
SLK28 SRNyield(2) 0.00 —42.21 —42.21 —42.21
SLK30 SRDSyield(2) 0.00 —40.32 —40.32 —40.32
SLK32 SRFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK35 FGRFyield(2) 0.00 —0.02 —0.02 —0.02
SLK37 RFGyield(2) 0.00 —44.82 —44.82 —44.82
SLK38 CCcapacity 0.00 —4.29 —4.29 —4.29
SLK40 FGCCyield(2) 0.00 —0.02 —0.02 —0.02
SLK42 CCGyield(2) 0.00 —44.13 —44.13 —44.13
SLK44 CCFOyield(2) 0.00 —40.32 —40.32 —40.32
SLK46 SRGsplit(2) 0.00 —43.11 —43.11 —43.11
SLK48  SRNsplit(2) 0.00 —42.21 —42.21 —42.21
SLK50 SRDSsplit(2) 0.00 —40.32 —40.32 —40.32
SLK52 SRFOsplit(2) 0.00 —40.32 —40.32 —40.32
SLK54  RFGsplit(2) 0.00 —44.82 —44.82 —44.82
SLK56 CCGsplit(2) 0.00 —44.13 —44.13 —44.13
SLK58 CCFOsplit(2) 0.00 —40.32 —40.32 —40.32
SRDSCC Reduced cost 0.00 5.26 5.26 5.26
SRNPG Reduced cost 0.00 0.00 0.00 0.00
CCGPG Reduced cost 0.00 0.00 0.00 0.00
SRNDF Reduced cost 0.00 1.89 1.89 1.89
SRFODF Reduced cost 0.00 0.00 0.00 0.00
SRDSFO Reduced cost 0.00 0.00 0.00 0.00

"Dual infeasible
*Description of dual variables are given in Table B.1 of Appendix B
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Among the 10 distinct PG activity values obtained in Tabl Shree were analyzed.
Based on analysis, 47,113.20 bbl/day was determined as,,, 10,000 bbl/day was de-

termined as:_

optimal?

and 43,692 bbl/day was determined@$,,ptima. Without further

detailed analysis, the rest of the seven activity valugésdigh Table 5.8 can be determined

optimal

as Csuboptimal, DECAUSE oncejptimal andc for an activity value is determined, other
activity values will be suboptimal. The proof for this claisobvious from the explanation
given in Aucamp (1984). Furthermore, this immediate cosicln can be verified based
on a simple calculation of determining the change in objedtinction value with respect
to these activity values when the cost coefficient of PG isupked both positively and

negatively.

The simple calculation is demonstrated in Table 5.12. Awedfrom Table 5.12, all
the activity values contributed the same objective fumctialue $641,580 in the base case.
However, when the cost coefficient of PG is changed from 488/bl to 45.0813%/bbl,
the activity value 47,113.20 bbl/day yielded the maximuwfip6688,693. Therefore, this
value is called:

optimal*

43.0813%/bbl, the activity value 10,000 bbl/day produderrmaximum objective function

On the other hand, for a negative perturbation 44.0813%tbb

value $631,580. Therefore, this activity value is called ¢f),;..,- Table 5.12 demon-
strates that all other activities resulted in a suboptimm|éctive function value for both
positive and negative perturbation. Succinctly, #)e; .., value of an activity can be de-
termined using Equation (5.9) ang,,,,.,, value of an activity can be determined using
Equation (5.10). The proof for these equations can be dkiased on the proof given
in Aucamp (1984).

C:ptimal = max {517 e >l_7k} (5.9)
C(:ptimal = min {Bla e 7Z_)k} (510)
where{by, - - - , b} are all possible distinct activity values.

The above claim by Equation (5.9) and Equation (5.10) wilvbkd only if alternate
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optimal activity values including, .. . andc

optima

optima

, are generated. The dual incremental

effect analysis approach is the most reliable method toladeovhether an activity value

Lo _ '
1S Coptimal' Coptimal’ Of Csuboptimal -

Table 5.12: Multiple Activity Analysis for PG

Basecase ¢;+1 cj—1

S.1. No. PG

Objective Objective Objective

activity (bbl/day) value

%) value ($) value ($)

47,113
43,692
35,727
32,887
27,319
23,655
21,636
21,156
16,973
10, 000

© 0 N o 0o A W DN P

[EEN
o

641, 530
641, 530
641, 530
641, 530
641, 530
641, 530
641, 530
641, 530
641, 530
641, 530

688,603 594,467
685,272 597,888
677,307 605,853
674,467 608,693
668,809 614,261
665,235 617,925
663,216 619,943
662,736 620,424
658,553 624,607
651,580 631,580

optimal

+
Thec,ima @nde

for all other activities that have cost coefficients are deteed

for the refinery LP by completing a similar analysis and abeikated in Table 5.13.

Table 5.13¢] ,;,., andc,

optimal

Activity Values for the Dual Degenerate Refinery LP

+

Coptimal Coptimal

bbl/day bbl/day
SRNRF 23,700 17,805
FGRF 3,761,190 2,825,697
PG 47,113 10,000
RG 60, 058 22,520
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5.6 Caveats

In this chapter, a well defined approach to choose a uniqugi@lamong multiple so-
lutions for a dual degenerate problem was discussed. Thieosh@bgy considered only
corner point solutions for analysis. In some instancestesner points in the dual degen-
erate optimal face could be primal degenerate as well. Ih Bistances, after choosing the
desired corner point solution corresponding tga, ., or ¢, ..., activity value, the true
shadow price and true incremental effect coefficients spwading to this corner point
have to be determined based on the procedures describedpteCha This assures accu-

rate interpretation of LP results for optimization.

5.7 Summary

This chapter investigated the condition of dual degenefacy refinery LP and imple-
mented a truly innovative approach called dual incremegifalct analysis to determine
activity values that assure optimal profit, despite markiegfluctuations.

In current refinery practice only a single optima solutiopisduced. The user may
not be aware that the LP is dual degenerate with multiple dalakes. This study has uti-
lized the dual incremental analysis approach to charaetexctivity values obtained from

a single optimal solution as: unique or non-unigue ajggmal, c ; OF Csuboptimal- FUI-

optima

thermore, a perturbation technique implementing paraoetogramming was developed

to generate alternate optimal solutions.
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CHAPTER 6

CONCLUSIONS

The summary of the findings of this research, contributioaslenand the future direction
of this research applied to primal degeneracy and dual @degey are discussed under two

sections.

6.1 Primal Degeneracy

6.1.1 Summary

This study investigated the phenomenon of primal degegenaefinery LP. The findings

of this research suggested that interpreting only the singtimal solution produced for
a primal degenerate LP will lead to fallible business decisiwith negative economic
impacts. For example, for the primal degenerate refinery drisidered in this research,
the FCC constraint has three dual values: 17.67 $/bbl, 26198 $nd 31.19 $/bbl. The
FCC unit is an economic driver in the refinery and processasstmals of barrels of crude
every day. From the different solutions obtained in eachhefdifferent optimal bases,
it is clear that using erroneous shadow price informatiantfiss constraint will lead to

significant economic losses.

6.1.2 Contributions

Often, an LP optimal solution is considered to be primal degate when some of the
basic variables have a zero value. This is not a sufficiendition to conclude that the LP

is actually primal degenerate. Sometimes primal degepesareated due to a particular
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representation of the LP model. The methodology to verifethbr the LP optimal solution
is actually primal degenerate or is primal degenerate justid a specific representation of
the LP model has been clearly explained in this research.

In this research, the concept of true shadow price is akedglaorrelated with process
implications in refinery operations. The term true shadowepis explained clearly in the
context of petroleum refinery optimization, for ease of coagnsion and implementation
in the actual refinery operation. Furthermore, the term shadow price is replaced with
physically realizable shadow price to receive attenti@mfirefinery optimization practi-
tioners. For industrial practitioners whose capabilityingted to producing a single opti-
mal solution, an approach to categorize optimal dual vadises shadow pricep— shadow
price, orp™v*d shadow price was also developed. A perturbation techniqg@porating
parametric programming is developed to determine alteroptimal dual solutions when

the LP is primal degenerate.

6.1.3 Recommendations and Future Work

When an LP problem is primal degenerate, three phenomenabaezved: some of the
constraints have™ shadow price equal to~ shadow price, some of the constraints have
p* shadow price not equal o shadow price, and some other constraints havehadow
price equal to zero value and shadow price equal to a non-zero value. Understanding
the cause of this phenomena will provide more flexibility @veloping the LP model.

This task could be accomplished by classifying the congsan the given primal LP
based on its properties as strongly binding, weakly bindargl implicit equalities. The
definitions for this classification of constraints are giverKarwan. et al. (1983). Al-
gorithms to determine properties of constraints are giveal (1992), Telgen (1983),
Thompson et al. (1966), Dula (1994), and Goberna et al. (ROD6the task, these algo-
rithms could be implemented to determine properties of ttaimds involved in a refinery

LP model. Once the constraint properties are identified; tdae be correlated with their
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respectivep™ andp~ shadow price found in the optimal solution. This approadghassist

in determining the cause for the constraints having diffekénds of shadow price values.

6.2 Dual Degeneracy

6.2.1 Summary

This study examined the condition of dual degeneracy in iilikgs of this study indi-
cated that the magnitude of difference among activity \v@hl#ained for alternate optimal
solutions is significant. In this study for the dual degeteet2P considered, the activity
value for Premium Gasoline (PG) production varied betwegd¥3 bbl/day and 10,000
bbl/day. Although implementing any activity value obtaineithin this range produced
the same objective function value in the base case, notlalicoes produced the optimal
profit when the market price of PG either decreases or ineseas

For example, consider a situation in which the user is notawsat the LP is dual de-
generate and has only a single optimal solution that suggestufacturing 10,000 bbl/day
of PG. If the user implemented this plan, and the market pyfdeG increased by a dol-
lar, the resultant profit would be $37,113 less compared pdeémenting the activity value
of 47,113 bbl/day. The above example illustrated the bgsinepact of implementing
one solution over the other. Therefore, when the LP is dugéderate, alternate optimal

solutions have to be analyzed appropriately to achievenabiprofit.

6.2.2 Contributions

Under conditions of dual degeneracy, a truly novel apprazadled the dual incremental
effect analysis method has been developed to categorizetadctivities so that the user
can implement specific activity values that sustain optipnafit despite market price fluc-
tuations. Furthermore, from a single optimal solution,dhal incremental effect analysis

approach was also used to determine activities that canrhaitgple values.
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The dual feasibility condition of LP was presented in theteghof petroleum refinery
operation, for determining whether the new solution oladiafter a change in the market
price of an activity is optimal or not. Also, a novel pertutiba technique for implementing
parametric programming was developed to generate aleeomimal solutions when the

LP is dual degenerate.

6.2.3 Recommendations and Future Work

In this study, a single variable sensitivity analysis apgtowas used to analyze multiple
optimal solutions under conditions of degeneracy. In datefinery operations market
price of two or more commaodities may vary simultaneouslyer&fiore, this study could be
extended to provide the largest sensitivity region of angle or simultaneous change of
cost coefficients of decision variables in the objectivection. The methodology provided
in Arsham (2007) provided some leads for this type of analysi

When the problem is dual degenerate and produces multipiealgolutions, not all
the variables produce multiple activity values; some \@deg have unique activity values.
Understanding the cause for this behavior will provide nil@ebility in developing the LP
model (Cheng, 1985). This task could be accomplished byitjagsthe variable in the
given primal LP model based on its properties as stronglsaaebus, weakly extraneous,
free, essential, or inessential. The definitions for thassification of variables are given
in Karwan. et al. (1983). Algorithms to determine propestid constraints are given in
Gal (1992), Gal (1975), Telgen (1983), Thompson et al. (}.9B6la (1994), Caron et al.
(1989) and Goberna et al. (2006). These algorithms can Hedpp classify variables by
transforming the given primal problem to a dual problem.

Although the parametric perturbation technique develdpeatlis research is capable
of determining all the possible alternate optimal soludiahis computationally laborious
and does not include a stopping criteria to guarantee thatoakible alternate optimal

solutions are generated. A pivoting type algorithm withsleesmputational effort with
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efficient stopping criteria can be developed to resolveigsge. Currently literatures are
available to determine the dimension of the optimal face diual degenerate LP (Gal,
1985; Kantor, 1993; Kruse, 1993; Zornig and Gal, 1996; ZprdaB93; Zornig and Gal,

1996; Gonzaga, 2007). However, these studies have notifigdnihe number of extreme
points possible for this multi-dimensional optimal fackthle possible number of extreme

points was determined this would serve as a useful stoppitegia.
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APPENDIX A

PARAMETRIC PERTURBATION TECHNIQUE

Conventionally parametric programming is used for sengjtanalysis. However, in this
research parametric programming is used to determinenateepptimal solution when the
LP is degenerate. In this appendix, initially the reasoruging parametric programming
to determine alternate optimal solution is presented. Theralgorithm described in Sec-

tion 4.3 is demonstrated for a 2-D LP.

A.1 Rationale for Using Parametric Programming

A 2-D primal degenerate LP in general form is given in Equafif.1)

Maximize z = 5z + 4x, (A.1)
Subject to
621 + 4ay < 20 Constraint#1
T1+ 229 <6 Constraint4#2
-2+ 1 <1 Constraint#3
To < 2 Constraint#4
T1,T9 >0 Non-negativity

The geometric solution is illustrated in Figure A.1. As eantlfrom Figure A.1 the LP
is primal degenerate because three constraints pass thtieei@ptimum vertex” for this
2-D problem. Therefore, based on the combination formwargby Equation (3.3) three

solutions are possible at the vert€x One approach to generate all the three solutions is
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Objective function

6 Constraint #1 Constraint #3
i Inactive
5 (Active) / ( )
4 Constraint #4
%2 (Inactive) .
3 Constraint #2
(Active)
2 =
/ C <—Optimal
1E
0 A 5
0 2 4 6 8
X

Figure A.1: Graphical Solution for the 2-D Non-Degenerale L

to solve three different non-degenerate LPs with two cairgs active at a time. Based on
this idea the geometric and the algebraic solution for theetmon-degenerate problems

are given as follows:

A.1.1 Solution #1

Initially one of the solutions possible at the vertéxn Figure A.1 is generated with con-
straints #1 and #2 active. The geometric solution is givelRigure A.2 and the algebraic

solution is given in Table A.1

A.1.2 Solution #2

Now one other solution possible at veri@xn Figure A.1 is generated with constraints #1
and #4 active. The geometric solution is given in Figure A8 the algebraic solution is

given in Table A.2
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6 Objective function
Constraint #1 Constraint #3
K .
5 (Active) (Inactive)
4 Optimal vertex
3
2
E Constraint #2
! (Active)
0 2 4 6
X

Figure A.2: Graphical Solution with Constraints #1 and #2ivect

Table A.1: Solution with Constraints #1 and #2 Active

Basis z; 9 S1 ss s3 s;4 RHS
z 0 O 34 12 0 O 18

xzw 1 0 14 -1/2 0 O 2
xw 0 1 -1/8 3/4 0 O 2
ss 0 O 38 -54 1 O 1

s, 0 0 18 -314 0 1 0
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Objective function

Constraint #1
(Active)

Constraint #3
< (Inactive)

Optimal vertex

2 3 Constraint #4
(Active)
2
E
1
0A B
0 2 4 6 8

Figure A.3: Graphical Solution with Constraints #1land #4ivect

Table A.2: Solution with Constraints #1and #4 Active

Basis z; s S Sg 83 s4s RHS

z 0 O 56 0 0 2/3 18
xz 1 0 16 0 0 -2/3 2
z2 0 1 0O 0 O 1 2
ss 0 O -1/6 1 0O -4/3 0
s3 0 O 16 0 1 -53 1

A.1.3 Solution #3

Finally, the other solution possible at verteéxin Figure A.1 is generated with constraints
#2 and #4 active. The geometric solution is given in Figuré @nd the algebraic solution

is given in Table A.3
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Objective

function

N

/

Constraint #3

(Inactive)

Constraint #4

N\ / (Act
N
N
N3
N

ive)

Optimal
vertex

Figure A.4: Graphical Solution with Constraints #2 and #4ivct

Table A.3: Solution with Constraints #2 and #4 Active

Basis 1 22 s s» s3 s4 RHS
z 0 O O 5 0 -6 18

xz 1 0 0 1 0 -2 2
xw 0 1 0 0 0 1 2

s;, 0 0 1 -6 0 8 0

ss 0 O O 1 1 -3 1
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The solution obtained in this case (solution #3) is nonroptibecause of the negative
dual value“-6” for constraint #4 in Table A.3. Furthermoas, observed from Figure A.4
the optimum is shifted from vertex to B because verte&' is no longer optimal with only
constraints #2 and #4 active.

From the above analysis it is obvious that all the three péssiolutions generated by
the combination formula approach are not optimal and only &ane optimal in this case.
Therefore, the combination formula approach may requirapeding solutions that are
non-optimal; consequently this approach could be comjmnalty intense. To reduce the
computational effort, an approach that determines onlyofitenal solutions at a degen-
erate vertex have to be developed. Parametric programmimghwis traditionally used
to perform sensitivity analysis can be used to generaterttieegossible optimal basis at
a primal degenerate point by parametrically varying eacthefactive constraints. As a
result, in this research, parametric programming is useeédace the computation effort

while generating alternate optimal basis correspondirggomal degenerate vertex.

A.2 Demonstration of Algorithm

Parametric perturbation technique to determine alterojtienal basis corresponding to a
primal degenerate vertex is demonstrated in this sectidre 2ZFD primal degenerate LP
given by Equation (A.1) in Section A.1 is selected as an exanifhe variables in the 2-D
LP problem and their corresponding index is given in Tabk A.

The single optimal solution obtained initially by solvirfiet2-D primal degenerate LP
using LINDO is presented in Table A.1. The step by step prometb determine alternate

optimal basis for this 2-D primal degenerate LP follows:

Stepl Inspection of single optimal solution given by Table A.4sfed that constraint #1,

constraint #2 and constraint #4 are active.

Step2 Initially the R.H.S of constraint #1 is parametrically vatiesing the software pack-
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Table A.4: Variable Index for the 2-D LP

Index Variable

x1 1
X2
sl
s2
s3
s4

o 0o~ WD

age LINDO and the alternate optimal basis correspondinggotiginal R.H.S value

20 are determined &3, ; = {1,2,5,6} andB; » = {1,2,4, 5}.

Step3 Similarly, the R.H.S of other active constraints #2 and #4parametrically varied.
The alternate optimal basis obtained by varying const#ins determined aB,; =
{1,2,5,6} and By = {1,2,4,5}. The alternate optimal basis obtained by varying
constraint #4 is determined &5 ; = {1,2,5,6} andB,» = {1,2,4,5}. As aresult,
including the basis obtained in this step and step 2, thera &vtal of of six optimal

baSi35{Bl,1, Bi2,Bs1,Baga, By, B4,2}-

Step4 The set of bases obtained in step 3 is compared to each otthéhemnique basis

among them is determined aB; = {1,2,5,6} andB, = {1, 2,4, 5}.

Step5 The optimal simplex tableaux corresponding to the unigusisbabtained in step 4

is generated using the formula given in Table 4.5 and predeint Table A.1 and

Table A.2.

Step6 Thep™ andp~ shadow price of constraint #1 is determinegas= min{3/4,5/6} =
3/4 andp~ = max{3/4,5/6} = 5/6. Based on a similar evaluation the andp~
of constraint #2 is determined @sand1/2. Thep™ andp~ of constraint #4 is deter-

mined ad) and2/3.
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APPENDIX B

DUAL FORMULATION OF THE REFINERY LP

The transformed LP with all constraints in the less than aiaétp (LE) form in Section 2.2
of Chapter 2 has 33 variables and 58 constraints. This proideronverted to a dual
problem based on the procedure given in Dantzig and Tha@8)20

The dual formulation will have 58 variables for each of thamal constraints and 33
constraints for each of the primal variables. The dual wéem for the 58 constraints are

defined ag - - - Yss. The dual formulation is given as follows:

Minimize z = 110,0004 - 10,000, - 10,0007 - 10,000}, - 10,000Y;7 + 10,0000%, +
25,0053 - 30,0055

Subject to

1) -Y; - Yoo - 35.42%53 + 35.425, - 0.27Y55 + 0.276 - 0.23757 + 0.23 %55 - 0.0875 +
0.087%7%, - 0.372%5,+0.3725, < 33— CRUDE

2) Yo3 - Yoy <-0.01965 — FGAD
3) -Y33 - 158. 73, + 158. 755 - 0.92855 + 0.928757 + Yy - YVis < 2.5 — SRNRF
4) Y3, - Y5 < -0.01965 — FGRF

5) Y3s - 336.9Q039 + 336.9Q - 0.61%; + 0.61% 5 - 0.18F 5 + 0.18%X 4 + Yy - Y50 <
2.2— SRDSCC

6) -Y3s - 386.40Q3 + 386.4 - 0.688,; + 0.68& 5 - 0.2197% 3 + 0.219% 4 + Y51 - Y50
<2.2— SRFOCC
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7) Yao - Yio < -0.01965

8) Yy + Yy - Y, - 93Y; + 12.7V, < -45.36

9 Y; +Ys-Y,y-87Y+12.7;; < -43.68

10) Yy + Yis - Yoy + 30635 + 0.5Y;4 < -40.32
11) Y7 + Yig - Yig + 3525 + 3Yy; <-13.14
12)-Y5+Y, + 78.5Y5 - 18.4Y5 + 1Y,5 - Y6 <O
13) Vs + Y + 104Y; - 2,57 + 1Yss - Yoy < O
14) Y3 + Y, + 65Y5 - 6.54Y5 + Vy7 - Yis <0
15) Y, + Y, + 93.7V; - 6.9V, + Vs - Yag < O
16) -Yg + Yy + 78.5Y1 - 18.4Y1; + V5 - Yy < O
17) -Yg + Yy + 104y - 2.571; + Va3 - Y54 <0
18) -Yz + Yy + 65Y7p - 6.54Y1; + Y7 - Yis <0
19) -Yg + Yy + 93.71) - 6.9Y1; + Y35 - Y56 <O

20) Y3 + Y1y - 27215 - 0.28%14 + Yir - Yig <0

21) -Y13+Y14-294.4/15-0.353 16 +Y57-Y5 < O
22) -Y13+Y14-292Y15-0.52616+Y9-Y50 < O
23) V5 +Y14-2955-0.9816+Vs1-Yas < O
24) -Y15+Y19-294.45)-0.353 5 +Y57-Y5 < 0
25) -Y18+Y19-292Y55-0.526Y51+Y9-Y50 < O
26) -Y13+Y19-295Y50-0.98Y5;+Y5,-Y5, <0
27) Yo5-Ya6-Y45+Yss < 0

28) Yor-Yos-Yyr+Yys <0

29) Yo9-Y30-Yi9+Y50 < 0

30) Y31-Y32-Y51+Y52 <0

31) Ya6-Yar-Ys3+Y54 <0

32) Yy1-Yio-Ys5+Y56 < 0

33) Yi3-Yiu-Y57+Y55< 0
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Each of the dual variables in the above formulation is regressd in an abbreviated
form for better comprehension. The abbreviated versionthadletailed description of

each of the dual variables is given in Table B.1.

Table B.1: Description of Dual Variables for the Refinery LP

Dual Abbreviated  Constraint Dual Abbreviated Constraint
variable form description variable form description

Y, CRUDEavail Crude availability Y30 SRDSyield(2) SRDS Yield , GE
Y5 PGproduction PG Production Y31 SRFOQyield(1) SRFO Yield, LE
Y3 PGblend(1) PG Blending, LE Y39 SRFOQyield(2) SRFO Yield, GE
Y, PGblend(2) PG Blending, GE Y33 RFcapacity RF Capacity

Y5 PGoctane PG Octane rating Y34 FGRFyield(1) FGRF Yield, LE
Ys PGvapor PG Vapor pressure | Y3s FGRFyield(2) FGRF Yield, GE
Y7 RGproduction RG Production Y36 RFGyield(1) RFGYield, LE
Ys RGblend(1) RG Blending, LE Y37 RFGyield(2) RFG Yield, GE
Yy RGblend(2) RG Blending, GE Y3s CCcapacity = FCC Capacity
Y10 RGoctane RG Octane rating Y39 FGCCyield(1) FGCC Yield, LE
Y11 RGvapor RG vapor pressure | Yy FGCCyield(2) FGCC Yield, GE
Y19 DFproduction DF production Y CCGyield(1) CCGYield, LE
Y13 DFblend(1) DF blending, LE Yio CCGyield(2) CCGYield, GE
Y14 DFblend(2) DF blending, GE Ya3 CCFOyield(1) CCFO Yield, LE
Yis DFdensity DF density specificatioiyy CCFOyield(2) CCFO Yield, GE
Y16 DFsulfur DF Sulfur specification Y5 SRGsplit(l) SRG Split, LE
Y17 FOproduction FO production Yi6 SRGsplit(2) SRG Split, GE
Yis FOblend(1) FO blending, LE Y7 SRNsplit(1) SRN Split, LE
Y19 FOblend(2) FO blending, GE Yis SRNsplit(2) SRN Split, GE
Yoq FOdensity FO density specificatioh,g SRDSsplit(1) SRDS Split, LE
Yo1 FOsulfur FO Sulfur specification Ysg SRDSsplit(2) SRDS Split, GE
Y59 ADcapacity  AD Capacity Y51 SRFOsplit(1) SRFO Split, LE
Ya3 FGADyield(1) FGAD Yield, LE Y50 SRFOsplit(2) SRFO Split, GE
You FGADyield(2) FGAD Yield, GE Y53 RFGsplit(1) RFG Split, LE
Ya5 SRGyield(1) SRG Yield, LE Y54 RFGsplit(2) RFG Split, GE
Yo SRGyield(2) SRG Yield, GE Ys5 CCGsplit(1) CCG Split, LE
Yo7 SRNyield(1) SRN Yield, LE Y56 CCGsplit(2) CCG Split, GE
Yog SRNyield(2) SRN Yield , GE Y57 CCFOsplit(1) CCFO Split, LE
Y29 SRDSyield(1) SRDS Yield, LE Yss CCFOsplit(2) CCFO Split, GE
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Scope and Method of Study

The phenomenon of degeneracy inevitably occurs in mose leBRymodels. An LP could
be primal degenerate, dual degenerate, or both primal aslddégenerate. Primal degen-
eracy of LP and its solution interpretation is well estdi#id in literature, but the notion of
dual degeneracy (alternative optima) has received lessteth. The condition of dual de-
generacy or alternative optima leads to multiple optimaHsawith multiple activity values
or multiple primal solutions. Current refinery optimizatipractitioners are not fully aware
of the consequences of degeneracy and business deciseomade using a single LP run.

The purpose of this study is to investigate the effects of dageneracy in the context of

petroleum refinery optimization and simultaneously to tigystrategies to select a specific
set of activity values for implementation based on busitags. When an LP has alternate
optimal solutions or is dual degenerate, it will be primajeleerate in the dual space. This
property of the dual degenerate problem is exploited in tbsearch to derive business
logic on the interpretation of LP solutions produced by al degenerate LP.

This study developed a novel dual incremental analysiscagbrto choose a desired set of
activity values based on small changes in the market prieetfities when the LP is dual
degenerate. Furthermore, a perturbation technique imgiéng parametric programming
is developed to generate multiple optimal bases when thesld@al degenerate. Results
are presented, along with a simplified refinery model coimgiB3 decision variables and
37 constraints.

Findings and Conclusion

Findings of this study indicated that for the dual degereratinery LP the magnitude of
the difference among activity values obtained for each efaliernate optimal solutions
is significant. Although the optimality criteria (primal édrdual feasible) for the LP is
satisfied for each of the alternate optimal solutions in theetcase, the optimality criteria
may not be satisfied even for an infinitesimal change in thketgarice of activities. The
dual incremental analysis approach and the underlyingnbasilogic developed in this
research serves two purposes for a dual degenerate LP:rActdréze each of the activity
values obtained for a single LP run, and 2) choose a desirtedf sctivity values for
implementation among multiple optimal solutions geneatate
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