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CHAPTER 1 

 

 

INTRODUCTION 

 

1.1 Ethanol as a Renewable Resource 

Fast depleting fossil fuels, rapidly increasing air pollution and global warming 

have underscored the need for the development of renewable energy sources. Currently, 

more than 90% of the worldwide energy demand is met by non-renewable fuels like coal, 

oil and natural gas (Kosaric and Velikonja 1995). In the United States, the net oil imports 

currently exceed the domestic oil production and account for over 50% of the petroleum 

products supplied. Figure 1.1 shows the U.S oil production vs. imports. It has been 

projected that, assuming the demand for oil products continues to grow, the import share 

will reach almost 64% by the year 2020 (Geller 2001). Moreover, the global energy 

demand is projected to increase by 1.7% every year, reaching almost 15.3 billion tons of 

oil equivalent (btoe) by 2030 (Bilgen et al. 2004). At this rate, it may not be very long 

before the worldwide reserves of non-renewable energy are completely depleted. This has 

led to an increasing interest in alternative fuels such as ethanol. Ethanol is used as an 

additive to gasoline to enhance the fuel efficiency, as well as to reduce toxic emissions 

like CO, CO2, NOx and hydrocarbons (He et al. 2003; Hsieh et al. 2002; Yuksel and 

Yuksel 2004). The use of ethanol as a fuel additive can also help reduce the prices of 

gasoline by expanding gasoline supplies and reducing the need for importing oil. 



 2 

 

 

 

 

Figure 1.1 U.S Oil Production vs. Imports (U.S Energy Information Administration)      

(Renewable Fuels Association. 2005) 
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Ethanol is currently blended with gasoline at 10% and 85% by volume (E10 and 

E85 respectively), and can also be used as a complete replacement for gasoline (Lynd 

1996). Ethanol enables combustion engines to be run at a higher compression ratio, due 

to a higher octane rating than gasoline. This leads to a net performance gain of 

approximately 15% w/w, despite the fact that pure ethanol contains only about two-thirds 

of the calorific value of conventional gasoline (Wheals et al. 1999). Ethanol is also a 

promising alternative fuel due to its biodegradability and regenerative characteristics.   

 

1.2 The Need for Ethanol Production 

The oil embargoes of 1973 and 1979 provided the initial drive for fuel ethanol 

production, though the more recent impetus came from the Clean Air Act (CAA) 

Amendments of 1990. The CAA Amendments require gasoline to be oxygenated in order 

to reduce emissions of toxic gases like carbon monoxide and volatile organic compounds 

(VOCs) (Yacobucci 2000). This would have a two-fold effect as the oxygenation of 

gasoline also increases its octane number and hence the fuel efficiency. One of the major 

competitors of ethanol as an oxygenate has been Methyl Tertiary Butyl Ether (MTBE). 

MTBE is advantageous owing to its high octane number and low sulfur content. 

However, based on some laboratory studies, it has been found that MTBE is a potential 

carcinogen at high concentrations (Nadim et al. 2001). MTBE also contaminates 

groundwater due to its high water solubility and is much more resistant to 

biodegradability compared to the other components of gasoline (Nadim et al. 2001; 

Yacobucci 2000). Therefore, ethanol is being projected as a replacement for MTBE to 

avoid the adverse effects of MTBE on the environment and public health. Since oxygen 
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content by weight in an ethanol molecule is approximately twice that of MTBE, less 

ethanol is required to meet specified oxygen content in fuel (He et al. 2003).  

There has been a tremendous growth in the ethanol industry over the last few 

years. In the United States alone, 81 ethanol plants located in 20 states produced 3.41 

billion gallons in the year 2004. This amounts to a 21% increase from 2003 and a 109% 

increase from the year 2000 (Renewable Fuels Association. 2005). Figure 1.2 shows the 

historic fuel ethanol production in the United States over the last two decades. Ethanol is 

currently used as an additive to gasoline (E10, a 10% ethanol-90% gasoline blend) as 

well as an alternative fuel in the form of E85 (85% ethanol-15% gasoline). Small 

amounts of gasoline added to ethanol prevent corrosion of engine parts (Yacobucci 

2000). However, even with the increased use of ethanol fuel in the last few years, it still 

remains more expensive than gasoline and diesel. Therefore, it is necessary to develop 

commercially viable processes for producing fuel ethanol from inexpensive feedstock to 

make it more price-competitive with gasoline.  

 

1.3 Benefits of Fuel-Ethanol  

 Ethanol is a fully sustainable and renewable energy resource that has several 

advantages both as an additive and as an alternative fuel. Ethanol as a fuel has 

environmental, economic as well as social benefits as discussed in the following sections. 

 

1.3.1 Environmental Benefits 

 One of the major advantages of using fuel ethanol is improved air quality. With 
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Figure 1.2 Historic U.S Ethanol Production. Adapted from Ethanol Industry Outlook 

2005 (Renewable Fuels Association. 2005) 
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 the growing population, the problem of air pollution caused by vehicles is also steadily 

increasing. The use of ethanol reduces tailpipe emissions of carbon monoxide and 

unburned hydrocarbons that form ground level ozone (Wyman 1999). The addition of 

ethanol increases the octane number and hence the efficiency of the fuel, thus replacing 

previously used oxygenates like tetraethyl lead or MTBE which are toxic and even 

carcinogenic in high concentrations.  Ethanol is also biodegradable and water soluble, 

which gives ethanol an added advantage over MTBE which is not completely 

biodegradable and leads to groundwater contamination (Nadim et al. 2001).  

 Another important environmental benefit is that ethanol decreases global warming 

by reducing the greenhouse gas emissions. Greenhouse gases like carbon dioxide (CO2), 

methane (CH4) and nitrogen oxides (NOx) contribute to global warming (Lashof and 

Ahuja 1990). The U.S transportation sector accounts for one-third of the total end-use 

sector CO2 emissions currently, and is projected to rise to about 36% by 2020 (Greene 

2003). When ethanol derived from crops is used as a transportation fuel, it merely 

releases the CO2 that was fixed by the crops. This results in a carbon cycle, where the 

CO2 released from the ethanol fuel can then be fixed by the new batch of biomass (Figure 

1.3). That is, the CO2 generated due to the production and use of ethanol is recaptured to 

grow new biomass to replace that which was harvested for ethanol production (Wyman 

1999).   

  

1.3.2 Socio-Economic Benefits 

 The use of ethanol as a renewable fuel not only has environmental benefits but 

also positively impacts the economy of the country. Ethanol reduces the need for  
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Figure 1.3 Carbon dioxide recycle. Adapted from (Renewable Fuels Association. 2005) 
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 imported oil, thus decreasing the trade deficit of the country as well as creates new 

employment opportunities. In the year 2004, the ethanol industry reduced the U.S trade 

deficit by $5.1 billion by eliminating the need to import 143.3 million barrels of oil, 

supported the creation of 147,000 jobs in all sectors of the economy and added $1.3 

billion of tax revenue for the Federal government and $1.2 billion for the State and Local 

governments (Renewable Fuels Association. 2005).  

 

1.4 Drawbacks of Fuel Ethanol 

 Although ethanol has several advantages as a fuel, there have been a few 

arguments about the drawbacks of using fuel-ethanol. Some of the common 

disadvantages suggested in the literature are as follows (Rasskazchikova et al. 2004; 

Yacobucci 2000): 

• Ethanol is highly corrosive and can damage rubber and plastic components of the 

vehicle. 

• Fuel components containing ethanol have a tendency to separate in the presence 

of even small traces of water. 

• Ethanol-blended fuels tend to increase aldehyde emissions which contribute to 

acid rain. 

• The energy content of ethanol is lower than that of gasoline on a per gallon basis. 

Therefore, the vehicle would require more gallons of ethanol than gasoline to go 

the same distance.  

• The cost of ethanol is too high for it to be used as an additive or replacement for 

gasoline. Ethanol fuel currently receives tax subsidies without which it cannot 
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compete with gasoline unless cheaper methods of production are used.  However, 

this argument is not as strong with the current increase in gasoline prices.   

 

These drawbacks have been or can be overcome in several ways. Though alcohols are 

corrosive, anti-corrosion agents can be added to the fuel to prevent corrosion of engine 

parts. For the problem of separation in the presence of water, several stabilizing agents 

like amines, ethers, ketones, etc. can be added (Rasskazchikova et al. 2004). The higher 

latent heat and combustion efficiency of ethanol compared to gasoline compensates for 

the fact that ethanol has a lower energy content than gasoline. The high cost of ethanol is 

currently a drawback to its use as a fuel, but research across the world shows promise that 

there will soon be commercially viable processes which can bring down the price of 

ethanol to make it competitive with gasoline. 

 
 

1.5 Overview of Bio-ethanol Production 

 Fermentation of pre-treated biomass from sugar or starch based crops like corn is 

the current leading technology to produce ethanol in the U.S. However, use of food crops 

to produce ethanol has two limitations. First, the ethanol is produced at the cost of using 

these crops for food and second, food crops like corn can only be grown in selective 

regions. This has led to the geographic concentration of ethanol plants to only five states 

in the U.S. and subsequently higher costs related with transportation.   

It is not surprising that there has been a recent focus on research to use 

lignocellulosic raw materials for ethanol production. Lignocellulosic materials offer 

advantages of abundant availability and low cost. Several processes such as (a) acid 
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hydrolysis, (b) enzymatic hydrolysis, (c) simultaneous gasification-fermentation, and (d) 

biomass gasification fermentation can be used to convert these materials to ethanol-fuel. 

These processes are discussed in detail in chapter 2. In this dissertation, gasification-

fermentation of biomass has been studied. Biomass gasification-fermentation involves the 

partial oxidation of biomass to a gas mixture known as synthesis gas or syngas 

(containing CO, CO2, H2 and N2) followed by the fermentation of this gas to ethanol and 

other co-products using a microbial catalyst.  Anaerobic bacteria, such as Clostridium 

ljungdahlii and Clostridium autoethanogenum, have been shown to convert CO, CO2 and 

H2 to ethanol and acetic acid (Abrini et al. 1994; Vega et al. 1990). 

  

 

1.6 Problem Statement and Research Objectives 

The gasification-fermentation of biomass to ethanol is a relatively new technology 

and most of the research being conducted is still laboratory scale and makes use of 

synthetic syngas (mixed from commercial gases). However, biomass-generated syngas 

also contains other gases like methane, acetylene, ethylene, ethane and nitric oxide as 

well as gasification components like tars and ashes. Many of these “impurities” of syngas 

may have complex effects on the microbial catalyst being used. A thorough study of the 

effects of syngas constituents on the microorganism and its enzymes is required to (a) 

obtain a better understanding of the potential fermentation problems (b) develop gas 

clean-up methods and (c) improve the overall process and move it closer to 

commercialization.  

 The process being researched at Oklahoma State University is focused on the 

fermentation of biomass-syngas to ethanol, acetic acid and other valuable products. 
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Figure 1.4 shows a schematic of the overall process. Switchgrass, a warm-season 

perennial grass is used as the biomass and is gasified in a fluidized-bed gasifier to 

generate syngas. The microbial catalyst used in the fermentation is Clostridium 

carboxidivorans P7T, an anaerobic bacterium that can ferment syngas. A typical 

experiment consists of growing the bacteria on synthetic syngas whose composition is 

matched to that of biomass-generated syngas. Once a steady cell-concentration is 

obtained, a continuous liquid feed and product removal is initiated, thus switching from a 

batch reactor mode to chemostat mode. After the cells stabilize in this mode, the feed gas 

is switched from the synthetic syngas to biomass-generated syngas. It was observed in 

previous studies (Datar 2003; Datar et al. 2004) that exposing the microbial catalyst to 

biomass-generated syngas resulted in the following: 

1. After a delay of about 1.5 days, there was a cell-washout from the reactor in a 

chemostat mode. This implied that cells were switching over to a dormant mode 

with no growth, owing to one or more syngas impurities.  

2. There was an immediate cessation of hydrogen consumption by the microbial 

catalyst. C. carboxidivorans P7T is an acetogen which consumes CO, CO2 and H2 

for cell-growth and production of alcohols and acids. While carbon is obtained 

from CO and CO2, the electrons are obtained from H2. The enzyme ‘hydrogenase’ 

enables the bacterium to convert H2 to electrons (Krasna 1979). If hydrogenase is 

inhibited, the bacterium would be unable to convert hydrogen to electrons and 

would need to obtain electrons from CO. This would limit the availability of CO 

for products and in turn decrease the efficiency of the overall process.  
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Figure 1.4 Schematic of the biomass gasification-fermentation process at Oklahoma State 

University. 
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3. There was an increase in ethanol concentration and a decrease in acetic acid 

concentration compared to when the cells were grown on the synthetic syngas. 

 

These observations indicated gaps in our understanding of the effects of biomass-

generated syngas on the microbial catalyst. It was considered important to determine the 

cause of cell dormancy, cessation of hydrogen consumption and the change in product 

distribution in order to improve the fermentation. The above critical issues were 

addressed in this dissertation, as outlined below.  

 

Objective 1: Determine and eliminate the cause of cell-dormancy leading to cell- 

washout. The hypothesis was that one or more components of synthesis gas caused the 

cells to become dormant and inhibited growth, thereby leading to cell washout in a 

continuous reactor. The objective in this case was to identify and eliminate the 

component/s which were either gaseous impurities like ethylene, acetylene, ethane, 

methane etc. or solid materials from the gasifier like tars and ash (Baker 1987; Brown et 

al. 2000; Engelen et al. 2003; Zhang et al. 2004).  

 

Objective 2: Determine the cause of hydrogenase inhibition and shutdown of 

hydrogen consumption. The hypothesis was that nitric oxide (NO) (a minor constituent 

in the synthesis gas) inhibited the hydrogenase enzyme of C. carboxidivorans P7T
  that 

was responsible for hydrogen uptake (Hyman MR 1988; Hyman MR 1991; Krasna 1954; 
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Tibelius and Knowles 1984), and that the removal of NO could increase the hydrogen 

consumption, which would in turn increase ethanol production by the microbial catalyst.  

 

Objective 3: Increase ethanol production by C. carboxidivorans P7
T
. The hypothesis 

was that ethanol production could be increased by regulating the metabolic pathway of 

the microbial catalyst towards solventogenesis (production of alcohol). Certain artificial 

electron carriers like methyl viologen, benzyl viologen and neutral red are known to 

initiate solventogenesis, resulting in an increased ethanol production by the bacteria 

(Girbal et al. 1995b; Guedon et al. 1999). 

 

1.7 Dissertation Organization 

In Chapter 2 of this dissertation a survey of the literature is presented, which 

reviews the methods of ethanol production from lignocellulosic feedstocks. Chapter 2 

further describes the metabolic pathway of acetogens and some of the key enzymes 

involved. Chapter 3 addresses the effects of individual syngas impurities on cell-growth 

and product distribution of C. carboxidivorans P7T, thereby identifying the cause of cell-

dormancy in the presence of biomass-syngas. Chapter 4 describes the effect of cell-

recycle on the fermentation of syngas. Chapter 5 addresses the cause of hydrogenase 

inhibition and presents a kinetic analysis of the inhibition. In chapter 6, a method of 

regulating the metabolic pathway of C. carboxidivorans P7T is discussed, with emphasis 

on alcohol dehydrogenase which is an enzyme responsible for alcohol production. 

Chapter 7 presents conclusions to this work and discusses future recommendations. 
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CHAPTER 2 

 

 

A LITERATURE REVIEW OF BIO-ETHANOL PRODUCTION AND  

MICROBIAL CATALYSTS  

 

2.1 Methods of Bio-ethanol Production 

 

2.1.1 Ethanol from Sugar and Starch-based Crops 

 There has been extensive research on the various processes used for ethanol 

production from biomass. Currently almost all of the commercial ethanol production is 

from corn and other starch-based crops. Processes utilizing sugar and starch based crops 

typically involve the following steps: 

• Pre-treatment of the biomass by the dry milling (grinding) or wet milling 

(chemical treatment) process  

• Enzymatic treatment of the biomass to convert starch into fermentable sugars 

• Fermentations of biomass sugars into ethanol 

• Distillation of the fermentation broth to obtain purified ethanol 

 Almost 90% of the ethanol production from corn in the United States occurs in 

five states, namely, Illinois, Iowa, Nebraska, Minnesota and Indiana. Due to 

transportation costs of the feedstock, these five top corn-producing states are also the top
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five ethanol producers (Yacobucci 2000). The geographic concentration of ethanol plants 

has become disadvantageous to the use of ethanol in other regions as it increases the 

shipping costs of the fuel. Moreover, corn-ethanol competes with the use of corn as a 

food crop. Therefore, there has been a recent interest in finding alternative sources of 

biomass for ethanol production since biomass is abundant and generally inexpensive.  

 

2.1.2 Ethanol from Lignocellulosic Feedstocks 

 Lignocellulosic materials such as prairie grasses, wood chips, paper wastes etc. are 

considered a favorable alternative feedstock owing to their abundance and competitive 

prices. Another important benefit of using these materials is that it leads to the utilization 

of marginal lands to cultivate grasses. Moreover, lignocellulosic materials “do not 

interfere with food security” (Kim and Dale 2004).  

Lignocellulose is a mixture of 35-50% cellulose, 20-35% hemi-cellulose and 15-

25% lignin (Wyman 1994). Cellulose and hemi-cellulose are long chain polymers of five 

and six carbon sugars. Hemi-cellulose is mostly a xylose polymer while cellulose is 

mostly a polymer of glucose. Most of the processes utilizing lignocellulosics as raw 

material for ethanol production are based on the disruption of the bonds (hydrolysis) 

linking these monomers together (Kaylen 2000). The breakage causes the raw material to 

be broken down to a form easily fermentable by microorganisms. However, lignin, the 

third constituent of lignocellulosic materials, is a complex polymer that cannot be broken 

down by these methods and leads to an incomplete conversion of the raw material to 

ethanol. Some of the basic approaches currently used for industrial hydrolysis are dilute 

acid hydrolysis, concentrated acid hydrolysis and enzymatic hydrolysis.  
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The dilute acid hydrolysis consists of two stages- first, dilute acid and steam 

convert the cellulose and hemi-cellulose to sugars, and then second the sugars are 

neutralized and fermented to produce ethanol. This process has the advantage of not 

requiring acid recovery but suffers from relatively low conversion efficiencies (50-60%) 

(Clausen 1988). Another disadvantage of this process is the degradation of sugars to form 

furfural and hydroxymethyl furfural, which in turn degrade to form tars and other 

undesirable by-products (Wyman 1994). 

In the concentrated hydrolysis process, the feedstock is first dried, to avoid 

dilution of the acid due to the moisture content of the feedstock. Concentrated acids are 

then used to hydrolyze cellulose and hemi-cellulose at moderate temperatures. This 

prevents the degradation of sugars, resulting in higher yields. However, owing to the 

large quantities of acid required, and the high cost of acids, a substantial fraction of the 

acids must be recovered in order to make the process economically feasible. Therefore, 

the major challenge in this process is to achieve acid recovery at a cost which is 

significantly lower than the cost of the acid itself (Wyman 1994).  

In enzymatic hydrolysis, the feedstock is pretreated so that its structure breaks 

down and allows the enzymes to penetrate the material and convert the cellulose to sugars 

and other co-products. During the fermentation, these sugars are then converted to 

ethanol. As the action of enzymes is highly specific, this process avoids the formation of 

unwanted by-products. Moreover, enzymatic reactions take place at relatively mild 

conditions and can achieve high product yields. However, this process has two main 

drawbacks: the process is slow and the enzymes are very expensive (Kaylen 2000).  
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Gasification-Fermentation of Biomass: Other than the hydrolysis processes, 

lignocellulosics can also be converted to ethanol by the gasification-fermentation process. 

This process involves the partial oxidation of biomass to a gas mixture known as 

synthesis gas or syngas (containing CO, CO2, H2 and N2) followed by the fermentation of 

syngas to ethanol and other co-products.  Anaerobic bacteria, such as Clostridium 

ljungdahlii and Clostridium autoethanogenum, have been shown to convert CO, CO2 and 

H2 to ethanol and acetic acid (Abrini et al. 1994; Vega et al. 1990). Unlike the hydrolysis 

processes, this process circumvents the problem of unconverted lignin, as the gasification 

of biomass converts all of the carbon to syngas (Reed et al. 1980). There is also no 

problem of solids handing in this process. Moreover, the gasification-fermentation 

process can utilize a wide variety of raw material such as prairie grasses, switchgrass, 

wood chips, solid municipal wastes and paper wastes. However, this process is known to 

be associated with issues like low ethanol productivity and gas mass transfer limitations 

(Worden et al. 1997).This necessitates a good bioreactor design and high cell-densities of 

the microorganism to make the process economically feasible. 

Switchgrass (Panicum virgatum) is a sustainable herbaceous energy crop which 

can be used as biomass to produce synthesis gas. The Department of Energy chose 

Switchgrass as a model herbaceous crop species based on its high yields, high nutrient 

use efficiency, low water requirements and wide geographic distribution (McLaughlin 

and Walsh 1998). Switchgrass is a warm-season perennial grass which is found in most 

of the United States, and some parts of Canada and Central America. The use of 

perennial grasses for bio-ethanol production can have significant positive environmental 

effects compared to the use of row crops. Perennial grasses like Switchgrass can be 
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grown for several years without replanting, thus preventing soil erosion, reducing the use 

of pesticides and other agricultural chemicals and increase soil carbon, thus improving 

the soil texture (Sanderson et al. 1996b). The net energy gain of producing ethanol from 

Switchgrass has been estimated to be 334% as compared to the 21% gain in case of 

enzymatic hydrolysis of corn-grain to ethanol (McLaughlin and Walsh 1998).  

   

2.2 Microbial Catalysts  

 Several anaerobic bacteria have been isolated that have the ability to ferment 

synthesis gas to ethanol, acetate and other useful end products. Known as acetogens, 

these microbes have the ability to reduce CO2 to acetate in order to obtain energy and 

produce cell mass. Acetogenic bacteria are obligate anaerobes that utilize the acetyl-CoA 

pathway as their predominant mechanism for the reductive synthesis of acetyl-CoA from 

CO2 (Drake 1994a). They may be Gram positive or Gram negative, rod-shaped or 

coccoid, and motile or non-motile. Being a versatile group of microorganisms, they can 

use gases like CO2/H2 and CO as well as sugars and other substrates (Drake 1994b; 

Wood et al. 1986b; Wood et al. 1986c).  

Clostridium ljungdahlii, the first autotrophic microorganism known to ferment a 

mixture of CO, CO2 and H2 (synthesis gas) to ethanol was isolated in 1987, (Klasson et 

al. 1992). C. ljungdahlii is a gram-positive, rod-shaped anaerobe which is capable of 

fermenting sugars like xylose and fructose in addition to synthesis gas. Being an 

acetogen, this organism favors the production of acetate during its active growth phase 

while ethanol is produced primarily as a non-growth-related product (Klasson et al. 

1992). An effect of pH on growth and product formation was also observed in this 
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organism. It was observed that the production of acetate was favored at a higher pH (5-7) 

whereas the production of ethanol was favored at lower values of pH (4-4.5).  

 Eubacterium limosum is an acetogen which has been isolated from various 

habitats like the human intestine, rumen, sewage and soil. It has a high growth rate under 

high CO concentrations and can ferment synthesis gas to produce acetate, ethanol, 

butyrate and isobutyrate (Chang et al. 1999; Chang et al. 2001; Chang et al. 1998).   

 Peptostreptococcus productus is a mesophilic, gram-positive anaerobic coccus, 

found in the human bowel and is capable of metabolizing CO2/H2 or CO to produce 

acetate (Lorowitz and Bryant 1984). Studies have shown that although acetate is one of 

the primary end-products of its metabolism, P. productus can also form additional 

products  in response to CO2 limitation (Misoph and Drake 1996). 

 Clostridium autoethanogenum is a strictly anaerobic, gram-positive, spore-

forming, rod-like, motile bacterium which metabolizes CO to form ethanol, acetate and 

CO2 as end products. It is also capable of using CO2 and H2, pyruvate, xylose, arabinose, 

fructose, rhamnose and L-glutamate as substrates (Abrini et al. 1994).  

           Clostridium carboxidivorans P7T is a novel solvent-producing anaerobic microbial 

catalyst, which was isolated from the sediment of an agricultural settling lagoon. It is 

motile, gram-positive, spore-forming and primarily acetogenic, forming acetate, ethanol, 

butyrate, and butanol as end-products (Liou et al. 2005).The optimum pH range for this 

strain is 5.0-7.0 and the optimum temperature range is 37-40 ºC. An examination of the 

metabolic end-products showed that strain P7 T converted 600mmol CO into 264 mmol 

CO2 , 96 mmol ethanol, 12 mmol acetate and 24 mmol butanol (Liou et al. 2005).  
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2.3 Acetogens and the Acetyl-CoA Pathway 

 “Acetogens are obligately anaerobic bacteria that can use the acetyl-CoA pathway 

as their predominant (i) mechanism for the reductive synthesis of acetyl-CoA from CO2, 

(ii) terminal electron-accepting, energy-conserving process, and (iii) mechanism for the 

synthesis of cell carbon from CO2” (Drake 1994b). The acetyl-CoA pathway, also known 

as the Wood-Ljungdahl pathway in honor of its discoverers, Harland Wood and Lars 

Ljungdahl, is an autotrophic pathway of CO2 fixation as shown in Figure 2.1. Like all 

other anaerobes, acetogens require a terminal electron acceptor other than oxygen. In the 

acetyl-CoA pathway, CO2 serves as an electron acceptor and H2 serves as the electron 

donor. The synthesis of acetyl-CoA from CO2 and H2 requires an eight-electron reduction 

of CO2 and can be considered to consist of the following three steps (Wood et al. 1986a): 

 

1. Formation of the carbonyl precursor of acetyl-CoA by the enzyme Carbon 

monoxide dehydrogenase (CODH) 

2. Formation of the methyl precursor of acetyl-CoA  

3. Condensation of the above two precursors to form acetyl-CoA. An acetyl 

intermediate is formed on CODH and CoA is added to it. The final steps of 

acetyl-CoA synthesis are catalyzed by CODH wherein the acetyl and CoA groups 

are condensed. 

 

Unlike other autotrophic pathways like the Calvin cycle or the reverse citric acid 

cycle, the acetyl-CoA pathway is not a cycle, but a combination of two linear pathways – 

the formation of the two branches and the synthesis of acetyl-CoA (Madigan 2003). A 
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Figure 2.1. Simplified schematic of the acetyl-CoA or Wood-Ljungdahl pathway of 

acetogens. (THF-tetrahydrofolate, [Co] protein-corrinoid enzyme)(Drake 1994b) The 

methyl and carbonyl branches of the pathway are shown in the figure.  
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description of the pathway and the significance of some of the key enzymes involved are 

given in the following sections.   

 

2.3.1 The Methyl Branch and its Key Enzymes 

 The methyl branch of the acetyl-CoA pathway is shown on the left in Figure 2.1. 

This part of the pathway results in the formation of the methyl-corrinoid protein, which 

then combines with the product of the carbonyl branch, to form acetyl-CoA. In the first 

step of this branch, CO2 is reduced to formate (HCOO-) as shown in the following 

equation:  

 

 +−

+⇔+ HHCOO2[H]CO2                                                                   (2.1) 

 
Formate Dehydrogenase: The above reversible reaction is catalyzed by the 

enzyme formate dehydrogenase (FDH). This enzyme is difficult to isolate due to its high 

sensitivity to oxygen (Ljungdahl 1986). Though ferredoxin is the most commonly used 

electron acceptor, among acetogens, NADH often acts as the electron donor. For 

acetogens grown on CO, it has been suggested that CO must first be converted to CO2 by 

the enzyme carbon monoxide dehydrogenase (CODH) and then reduced to formate by 

FDH (Ljungdahl 1986).   

Tetrahydrofolate Enzymes: Formate is then activated with tetrahydrofolate (THF) 

to form 10-formyl-THF, as shown in the figure, by the enzyme formyl-THF synthetase. 

This is an ATP-dependent condensation. This bound formyl group is then reduced by a 

series of 3 enzymes to a bound methyl group (methyl-THF). In the final step of this 
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branch, the methyl group is transferred to a corrinoid containing protein, [Co]-E 

(Ragsdale 1991). 

 

2.3.2 The Carbonyl Branch and Carbon Monoxide Dehydrogenase 

 The carbonyl branch of the acetyl-CoA pathway is shown on the right in Figure 

2.1. This branch of the pathway results in the formation of a bound carbonyl group which 

is then merged with the bound methyl group formed in the methyl branch to form acetyl-

CoA.  Carbon monoxide dehydrogenase (CODH) plays a very important role in this 

branch of the pathway.  

Carbon monoxide Dehydrogenase: This is considered one of the most important 

enzymes of the acetyl-CoA pathway due to its bi-functionality. It catalyzes the very first 

oxidation of CO to CO2, the reduction of CO2 to bound carbonyl and dominates the 

carbonyl branch of the pathway, finally mediating the synthesis of acetyl-CoA from the 

methyl and carbonyl groups. Due to this, CODH is also known as acetyl-CoA synthase 

and the pathway is often referred to as the carbon monoxide dehydrogenase pathway 

(Diekert and Wohlfarth 1994). In the carbonyl branch, CO2 is first reduced to [CO] 

(indicating carbon monoxide in an enzyme bound form) as shown in equation 2.2 and 

then bound to CODH.  

 

OH[CO]2[H]CO 22 +→+                        (2.2) 
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This bound carbonyl group is then merged with the bound methyl group from the 

methyl branch to form a bound acetyl-CODH moiety. In the final step, CODH condenses 

the bound acetyl with the free coenzyme A to form acetyl-CoA, as shown in equation 2.3. 

 

CoAAcetyl[Co]ECoAHS[CO]CH[Co]E 3 −+−→−++−−                                (2.3) 

 

Hydrogenase: Hydrogenase enzymes are expressed in organisms where their 

function is either hydrogen evolution, to dispose of electrons accumulated during 

fermentation or hydrogen uptake, where the oxidation of hydrogen is coupled to the 

energy yielding process (Lemon and Peters 1999) or hydrogen consumption. Studies have 

shown that CODH acts in combination with hydrogenase to form the carbonyl precursor 

of acetyl-CoA (Ljungdahl 1986; Wood et al. 1986b). Equation 2.4 shows the reversible 

reaction catalyzed by hydrogenase.  

 
+−

+⇔ 2H2eH 2                                                                                                           (2.4) 

 
 Hydrogenases are classified based on their metal content; depending on whether 

they contain nickel, iron, selenium or none of these and also what combination of metals 

they contain. Usually, the Ni containing hydrogenases are associated with hydrogen 

uptake and those containing Fe are associated with hydrogen evolution (Hyman MR 

1991). Often microorganisms contain several different hydrogenases, and in many cases 

the functions of these enzymes are difficult to determine. The catalytic activity of 

hydrogenase can be determined by assaying the enzyme by a method which measures its 

interaction with hydrogen (Krasna 1979). One of the most popular assays is the reduction 

of an artificial electron acceptor by hydrogen. Dyes like methylene blue, methyl 
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viologen, benzyl viologen etc., or other compounds like nitrate, nitrite, cytochromes, 

ferredoxin, hydroxylamine, sulfate, sulfite and NAD are some of the commonly used 

electron acceptors (Krasna 1979).  

 Inhibition of hydrogenase has been of particular interest due to the fact that it 

results in a change in the metabolic pathway of the microorganism. Gases like O2  

(Seefeldt and Arp 1989), acetylene, CO, and nitric oxide (NO) are known inhibitors of 

hydrogenase (Acosta et al. 2003; Byung Hong Kim 1984; Krasna 1954; Tibelius and 

Knowles 1984). The inhibition of hydrogenase by NO will be further discussed in section 

2.5.1. 

 

2.4 Fate of Acetyl-CoA 

 Acetyl-CoA is a versatile intermediate in the metabolic pathway of acetogens as it 

is a precursor of lipids, amino acids, nucleotides and carbohydrates (Ljungdahl 1986). It 

is the source for cellular carbon as well as cellular energy. Cellular material is formed via 

the anabolic pathway, in which acetyl-CoA is reductively carboxylated into pyruvate by 

the enzyme pyruvate synthase (Diekert and Wohlfarth 1994; Schlegel and Bowien 1989). 

Pyruvate is then converted to phosophoenolpyruvate which is an intermediate in the 

conversion to cellular material. For the purpose of energy conservation, acetyl-CoA goes 

through the catabolic pathway in order to make ATP. This is the route by which acetyl-

CoA is converted to acetate. Equations 2.5 and 2.6 describe the two steps of the acetate 

branch of the pathway.  

          

ii PphosphateAcetylPCoAAcetyl +−→+−
                                                               (2.5)    
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ATPAcetateADPphosphateAcetyl +→+−                                                               (2.6) 

 
In the first reaction, the CoA unit is removed from the acetyl-CoA and a phosphate group 

is added, resulting in the formation of acetyl-phosphate. This reaction is catalyzed by the 

enzyme phosphotransacetylase. In the second reaction, shown by equation 2.6, the acetyl 

phosphate is converted to acetate while a molecule of adenosine diphosphate (ADP) is 

phosphorylated to form ATP. This branch of the pathway is usually favored by the 

bacterium over the alcohol forming branch (described below) during its exponential 

growth phase as it provides the cell with energy in the form of ATP. This is often known 

as the acidogenic phase of the metabolism, which also results in a decrease in pH of the 

medium due to acid production (Rao and Mutharasan 1989). The second phase of the 

fermentation is the solventogenic phase, in which ethanol is produced. This is 

characterized by slower growth, as there is no evolution of ATP in this case. Equations 

2.7 and 2.8 describe the solventogenic branch of this pathway in which ethanol is 

produced.  

 

SHCoANADdeacetaldehyHNADHCoAAcetyl −++→++−
++

                    (2.7) 

 

 
++

+→++ NADEthanolHNADHdeAcetaldehy                                                   (2.8) 

 In the solventogenic branch of the pathway, the organism utilizes the reducing 

potential available, in the form of NADH, to first form acetaldehyde by the enzyme 

acetaldehyde dehydrogenase, and then finally form ethanol by the enzyme alcohol 

dehydrogenase.  
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Many acetogens also produce four-carbon products like butanol and butyric acid 

by combining two molecules of acetyl-CoA to form acetoacetyl-CoA. This intermediate 

is then converted to butyryl-CoA which serves a purpose similar to acetyl-CoA. The 

reactions involved in the formation of butyric acid and butanol from butyryl-CoA are 

analogous to those seen above (2.9-2.12). The formation of butyric acid produces ATP 

while the formation of butanol results in the consumption of reducing equivalents. The 

corresponding equations are given below: 

     

ii PphosphateButyrylPCoAButyryl +−→+−
                                                           (2.9) 

 
ATPButyrateADPphosphateButyryl +→+−                                                          (2.10) 

 

SHCoANADydeButyraldehHNADHCoAButyryl −++→++−
++

           (2.11) 

 
++

+→++ NADButanolHNADHydeButyraldeh                                                    (2.12) 

 

Figure 2.2 shows the pathway of C. acetobutylicum which is a well-researched acetogen, 

and represents the metabolism of most acetogens using the acetyl-CoA pathway.  The 

enzymes responsible for the metabolism are shown. 
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Figure 2.2. Fate of acetyl-CoA in Clostridium acetobutylicum adapted from (Vasconcelos 

et al. 1994). 1-acetaldehyde dehydrogenase, 2-alcohol dehydrogenase, 3-

phosphotransacetylase, 4-acetate kinase, 5-butyraldedyde dehydrogenase, 6-butanol 

dehydrogenase, 7-phosphotransbutyrylase, 8-butyrate kinase 



 30 

  

2.5 Acetogenesis vs. Solventogenesis 

  The complex metabolism of acetogens like C. acetobutylicum has generated 

considerable interest among researchers, leading to several studies conducted to 

determine the factors involved in the transition between acetogenesis (or acidogenesis) 

and solventogenesis. Studies have shown that these bacteria usually show a “biphasic 

batch fermentation pattern” (Girbal et al. 1995b). They produce acids like acetate and 

butyrate during their exponential growth phase and then switch to alcohol production 

when the growth slows down before they enter the stationary phase. Several factors have 

been found to affect this switch from acidogenesis to solventogenesis, such as pH, ATP 

demand, availability of nutrients, availability of reducing equivalents, enzyme activities 

etc. In fermentations where many different products are possible, the amount of ATP 

produced per mole of substrate consumed depends on the product distribution (Meyer and 

Papoutsakis 1989). For instance, in the acetyl-CoA pathway, the production of acetic acid 

results in ATP formation. Therefore, if the ATP demand of the cell is high, the pathway 

would preferably go towards acid production. On the other hand, if there is an excess 

availability of energy within the cell, the pathway would tend towards alcohol production 

so that the excess energy may be consumed.  

Fermentation conditions and the state of the inoculum used have also been found 

to influence whether the microbial culture produces high levels of solvents. Grube et al. 

(2002) demonstrated that under strictly anaerobic conditions, using a spore inoculum led 

to almost three times the ethanol produced as compared to when a vegetative inoculum 

was used (Grube et al. 2002). It has also been seen that in some cases, an “acid crash” 
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occurs wherein high amounts of acid may be produced and the culture then loses the 

ability to switch to solventogenesis. Clostridial strains are known to “degenerate” if, at 

the end of the exponential phase, they do not switch to solventogenesis. Degeneration has 

typically been observed when the inoculum is repeatedly derived from cells in their 

exponential stage (Kashket and Zhi-Yi Cao 1995; Kutzenok and Aschner 1952).  

 Due to the uncertainty in the switch from acidogenesis to solventogenesis, several 

research teams have studied methods of inducing solventogenesis in acetogens. The 

addition of acetate and butyrate to batch cultures was found to shorten the acidogenic 

phase and induce solventogenesis (Gottschal and Morris 1981). It was proposed by 

Gottschal and Morris that this was due to the dissipation of the pH gradient (∆ pH) by 

acetate and butyrate as the intracellular pH could achieve the same low value as the 

culture medium. Klasson et al. (1992) showed that yeast extract, a component of the 

culture medium, also has an effect on the product ratio. They demonstrated that by 

decreasing the amount of yeast extract in the medium, a higher concentration of solvents 

can be achieved. Their studies also confirmed that solvent production was non-growth 

related, as the growth rate seemed to decrease with a decrease in yeast extract 

concentration. Klasson et al. also proposed that the addition of reducing agents can 

initiate solventogenesis, as the electrons can reduce NAD+ to NADH, which provides 

reducing potential to form acetaldehyde and then ethanol in the alcohol pathway.  

Meyer et al. demonstrated that reduced nitrogen-source availability in cultures of 

C. acetobutylicum induced solvent production. On the other hand, glucose-limited 

conditions caused high amounts of acids to be produced (Meyer et al. 1985). An excess 

availability of reducing equivalents has also been found to initiate solventogenesis 
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(Girbal et al. 1995b; Meyer et al. 1985). CO gassing and conditions of iron limitation are 

also known to increase alcohol production (Byung Hong Kim 1984). Artificial electron 

carriers like methyl viologen, benzyl viologen and neutral red are known to alter the 

electron flow by forming NADH, which in turn promotes alcohol production (Girbal et 

al. 1995a; Girbal et al. 1995b; Klasson et al. 1992). Girbal et al. (1995) demonstrated that 

adding 1mM neutral red to an acidogenic culture causes a deviation in the electron flow 

towards NADH production. This pool of NADH generated might be responsible for the 

change in the metabolism of the bacteria towards solventogenesis. Girbal et al. reported a 

3-fold increase in ethanol production on the addition of 1mM neutral red to C. 

acetobutylicum cultures (Girbal et al. 1995a; Girbal et al. 1995b).  

 
 

2.5.1 Hydrogenase Inhibition 

 In another study, Girbal et al. (Girbal et al. 1995a) reported that under 

solventogenic conditions, the in vitro hydrogenase activities of the culture were lower 

than those under acidogenic conditions. Studies have also shown that when batch 

fermenters of C. acetobutylicum, grown on a glucose medium were sparged with carbon 

monoxide, the hydrogenase enzyme was inhibited and the alcohol production was 

enhanced (Byung Hong Kim 1984; Meyer et al. 1985; Meyer et al. 1986).  

However, the inhibition of hydrogenase in autotrophic organisms results in the 

inability of the microorganism to consume hydrogen. This in turn leads to the utilization 

of carbon monoxide to form electrons, so that CO can only partially be utilized to make 

cell mass and products. Therefore, from the standpoint of a process to produce acids or 

alcohols, the inhibition of hydrogenase in autotrophic microorganisms is not very 
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efficient. This has led to an interest among researchers to identify and characterize the 

inhibitors of hydrogenase. Gases like O2  (Seefeldt and Arp 1989), acetylene, CO, nitrite 

and nitric oxide (NO) are known inhibitors of hydrogenase (Acosta et al. 2003; Byung 

Hong Kim 1984; Krasna 1954; Tibelius and Knowles 1984). Studies have also shown NO 

to inhibit hydrogenase activity in Azotobacter  vinelandii (Hyman MR 1991), Proteus  

vulgaris (Krasna 1954), Alcaligenes eutrophus (Hyman MR 1988) and Azospirillum 

brasilense (Tibelius and Knowles 1984).  

 

2.5.2 Alcohol Dehydrogenase - Function and Regulation 

 In the acetyl-CoA pathway, alcohol dehydrogenase (ADH) plays an important 

role in the formation of ethanol. It catalyzes the conversion of acetaldehyde to ethanol 

using NADH as a reducing equivalent. Assays to determine the activity of alcohol 

dehydrogenase can indicate whether the acetogen is in the solventogenic phase of ethanol 

production. ADH assays often use NADH as the reducing equivalent and acetaldehyde as 

the substrate. Studies have shown that the ADH activities of alcohologenic cultures are 

higher than those of acetogenic cultures. The addition of artificial electron carriers has 

been shown to increase ADH activity, which in turn results in an increase in alcohol 

production. Girbal et al. demonstrated that the addition of 1mM neutral red led to a 3-fold 

increase in ethanol production and a 6.6-fold increase in ADH activity of C. 

acetobutylicum cultures (Girbal et al. 1995b).  
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2.6 Discussion 

A review of the literature points to several key areas that need to be explored in 

the field of gasification-fermentation of biomass to ethanol. Using biological catalysts for 

the conversion of biomass to ethanol poses several challenges as certain constituents of 

the biomass or the synthesis gas can be extremely toxic to the microorganisms thus 

preventing a successful fermentation. As discussed in Chapter 1, biomass-generated 

synthesis gas has three distinct effects on the microbial catalyst. Exposure to this gas 

leads to cell dormancy, cessation of hydrogen utilization and a change in the product 

distribution. The work reported in this dissertation aims at getting a better understanding 

of these effects and how some of the current problems may be overcome to improve the 

fermentation process. Three main hypotheses were tested in this work:  

 

Hypothesis 1:  Cell-dormancy is caused by one or more impurities of biomass-syngas and 

can be eliminated by removing the impurity from the gas. Chapter 3 describes the effects 

of individual impurities of biomass-syngas on cell-growth and product distribution. 

Chapter 3 also identifies the cause of cell-dormancy and suggests one method to 

overcome it. Chapter 4 describes studies conducted to determine the effect of cell-recycle 

on syngas-fermentation, proposing another way to overcome cell-dormancy. 

 

Hypothesis 2: Hydrogenase inhibition is caused by nitric oxide in the biomass-syngas. In 

Chapter 5, studies conducted with nitric oxide are described and a kinetic analysis of the 

hydrogenase inhibition is presented.  
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Hypothesis 3: Addition of artificial electron carriers like neutral red can regulate the 

metabolic pathway of the organism towards ethanol production. Chapter 6 explores the 

effect of adding an artificial electron carrier on the product distribution during syngas 

fermentation. 
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CHAPTER 3 

EFFECTS OF BIOMASS-GENERATED SYNGAS CONSTITUENTS ON CELL-

GROWTH AND PRODUCT DISTRIBUTION 

 

3.1 Introduction 

 In previous studies, certain effects of syngas fermentation were observed (Datar et 

al. 2004).  The process involved growing cells in a batch system under continuous flow 

of synthetic syngas, following which the system was changed to a continuous liquid flow 

in which fresh media was added and products/cells were removed with no cell recycle.  

The term “synthetic syngas” refers to a mixture of purchased compressed gases with a 

similar CO, CO2, and H2 composition as the biomass-syngas.  After the cells reached a 

steady concentration, the synthetic syngas was replaced with the biomass syngas 

(generated from gasification of Switchgrass) that had been cleaned with two cyclone 

separators followed by two 10%-acetone scrubbers, all in series.  Following the biomass 

syngas introduction, the cells stopped consuming H2 almost immediately and the cells 

stopped growing after a delay of approximately 1.5 days. The cessation in cell growth led 

to cell washout from the reactor as a result of the continuous operation.  In addition, an 

increase in ethanol production and a decrease in acetic acid production were also 

observed.   
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 Syngas via gasification typically contains tars, ash, and certain gaseous 

components (Devi et al. 2003; Engelen et al. 2003; Zhang et al. 2004).  It was 

hypothesized that one or more of these potential “contaminants” induced cell dormancy, 

stopped H2 utilization, and affected product distribution. Cleaning of syngas using filters 

was assessed in chemostat experiments to determine if any of the conditions could be 

eliminated.  A detailed analysis for one chemostat experiment is described below in the 

results and discussion. Results of two other similar chemostat experiments are given in 

Appendix A. In addition, batch experiments were performed to assess whether gaseous 

impurities like ethane, ethylene and acetylene or particulate impurities like tars, and/or 

ash contributed to the cell-dormancy.  

 

3.2 Materials and Methods  

3.2.1 Biomass and Syngas 

  Biomass syngas was obtained by gasification of switchgrass.  Switchgrass is a 

sustainable perennial herbaceous crop (Sanderson et al. 1996a) which is advantageous 

owing to its high yields, low nutrient requirements, and geographically-wide distribution 

(McLaughlin and Walsh 1998).  The switchgrass was harvested, baled, chopped and then 

gasified in a fluidized-bed reactor (Datar et al. 2004).  The exiting gas was passed 

through two cyclone separators in series to remove particulates (such as ash) and then 

through two scrubbers in series.  Each 4-foot scrubber was packed with stainless steel 

pall rings containing a mixture of 90% water and 10% acetone at 20 ºC that was 

continuously circulated through the scrubbers.  The average residence time of the syngas 

in each scrubber was 4 minutes.  The syngas was then compressed and stored at 
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approximately 860 kPa in storage vessels.  The syngas analysis showed approximately 

16.5% CO, 15.5 % CO2, 5 % H2, and 56 % N2 along with 4.5% CH4, 0.1% C2H2, 0.35% 

C2H6, 1.4 % C2H4 and 150 ppm nitric oxide (compositions based on measured species).  

 

3.2.2 Microbial Catalyst and Culture Medium 

 Clostridium carboxidivorans P7T was provided by Dr. Ralph Tanner, University 

of Oklahoma.  This bacterium is capable of fermenting syngas, as well as sugars, to 

produce alcohols and acids.  The bacterium was grown under strictly anaerobic 

conditions in a medium containing (per liter) 30 ml mineral stock solution, 10 ml trace 

metal stock solution, 10 ml vitamin stock solution and 10 ml of 4% cysteine-sulfide 

solution. For the batch experiments, 1 g yeast extract and 10 g morpholinoethanesulfonic 

acid (MES) were added to the medium, while for the chemostat experiments, 0.5 g yeast 

extract and 5 g MES were added.  Resazurin solution (0.1%) was added as a redox 

indicator in all experiments. The mineral stock solution contained (per liter) 80 g sodium 

chloride, 100 g ammonium chloride, 10 g potassium chloride, 10 g potassium 

monophosphate, 20 g magnesium sulfate, and 4 g calcium chloride.  The vitamin stock 

solution contained (per liter) 0.01g pyridoxine, 0.005g thiamine, 0.005g riboflavin, 

0.005g calcium pantothenate, 0.005g thioctic acid, 0.005g amino benzoic acid, 0.005g 

nicotinic acid, 0.005g vitamin B12, 0.002g biotin, 0.002g folic acid, and 0.01g                

2-mercaptoethanesulfonic acid sodium salt (MESNA).  The stock solution of trace metals 

contained (per liter) 2g nitrilotriacetic acid, 1g manganese sulfate, 0.8g ferrous 

ammonium sulfate, 0.2g cobalt chloride, 0.2g zinc sulfate, 0.02g copper chloride, 
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0.02g nickel chloride, 0.02g sodium molybdate, 0.02g sodium selenate, and 0.02g sodium 

tungstate. 

 

3.2.3 Batch Studies – Effects of Gaseous Contaminants  

 Batch experiments were conducted in 250-ml serum bottles with 100 ml of liquid 

media to assess the effects of ethane, ethylene and acetylene on cell growth and pH. As 

there was no external pH control in the batch studies, a higher amount of MES buffer was 

used in batch than in chemostat studies.  The media was boiled and purged with nitrogen 

for five minutes to remove oxygen and then sterilized in an autoclave (Primus Sterilizer 

Co. Inc.) at 121°C for 20 minutes. The bottles were allowed to cool and the headspace 

was again purged with N2 for approximately one minute.  Cysteine sulfide (1 ml) was 

added to scavenge any remaining dissolved oxygen and the reactors were pressurized 

with a mixture of 80% CO and 20% CO2 at 10 psig.  The contaminant being tested was 

then added to the headspace of the reactors using a 1-ml gas-tight syringe (VICI Precision 

Sampling, Inc., Baton Rouge, Los Angeles). Approximately 1.4% ethane, 0.35 % 

ethylene and 0.1 % acetylene were assessed in each study. The reactors were then 

inoculated and placed at 37°C in a shaker (Innova 2100, New Brunswick Scientific).  All 

studies were performed in triplicate.  Cell concentration and pH were measured at regular 

time intervals for all the reactors.  
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3.2.4 Chemostat Studies 

 A BioFlo 110 Benchtop Fermentor (New Brunswick Scientific, Brunswick, NJ) with 

a 3-liter working volume was used for the fermentation studies involving continuous 

liquid feed and product removal (i.e. chemostat mode). The reactor consisted of an 

agitator, sparger, pH probe, dissolved oxygen probe, ports for liquid inlet and outlet, 

jacket for temperature control and pumps for feed, product removal and pH control.   The 

experimental setup is shown in Figure 3.1. Media was autoclaved in the bioreactor and 

then sparged with nitrogen to remove the dissolved oxygen. Once the dissolved oxygen 

probe indicated an anaerobic environment in the bioreactor, synthetic gas mixture was 

introduced in the gas feed-line. Cysteine-sulfide was then added to the media to remove 

any residual dissolved oxygen.  

   As shown, a 4-way valve was used to introduce gas feed by switching between 

syngas and synthetic syngas.  Gas was introduced through a sparger.  Two liquid feed 

tanks were used to introduce sterile media into the bioreactor during chemostat operation.   

Liquid feed tanks were continuously purged with nitrogen to maintain anoxic conditions. 

 Although the pH of the reactor was controlled using a pH controller, MES was 

added as a buffer to prevent excessive fluctuations in pH during the course of the 

experiment.  Prior to inoculation, the bioreactor was filled with three liters of liquid 

media (without the vitamins) at pH 5.85 and autoclaved at 121°C for 20 minutes.  After 

cooling, media was purged with nitrogen to provide an anaerobic environment and filter-

sterilized vitamin stock solution (10 ml per liter) was added to the media to avoid the 

inactivation of vitamins during steam sterilization.  Cysteine-sulfide (30 ml) was added to 

scavenge any remaining dissolved oxygen.   
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Figure 3.1. Schematic of 3-liter chemostat experiment.  A mass flow controller was used 

to mix the synthetic gases. A 4-way valve was used to switch the gas supply between 

synthetic gas mixture and syngas obtained from gasified switchgrass.  
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 Once the anaerobic environment was obtained, the gas feed was changed from N2 

to synthetic syngas (approximately 17% CO, 15% CO2, 5% H2, and balance N2) flowing 

at 160 cm3 min-1 at 25°C and 137 kPa.  A mass flow controller was used to mix bottled 

gases in the same composition as the CO, CO2, and H2 in the syngas to obtain the 

synthetic syngas. The impellor agitation was 400 rpm and the temperature was 37°C. 

The bioreactor operation was divided into four stages.  In all stages, the gas flow 

was continuous.  In the first stage, the liquid was maintained in batch mode and the 

synthetic syngas was fed to the bioreactor.  The bioreactor was inoculated and the cells 

were allowed to grow until the cell concentration started to level off.  The pH was 

allowed to drop from an initial value of 5.85 to the lower pH setpoint of 5.25 in 

increments of 0.2 during the first stage.  A deadband of 0.2 was used to avoid too much 

addition of acid or base by the pH controller.  During the second stage, continuous liquid 

feed and removal was initiated at 0.36 ml min-1.  This flow rate was based on the growth 

rate of the cells in the batch mode. Once the cell concentration stabilized with continuous 

liquid feed, the third stage was initiated by switching the gas feed from synthetic syngas 

to syngas. The syngas was additionally cleaned with a 0.025-µm filter (Millipore).  In the 

fourth stage, the gas filter was replaced by a 0.2-µm filter with the syngas continuing as 

the feed.  In all stages, the cell concentration, pH, product concentration, and inlet/outlet 

gas compositions were analyzed.  

 

3.2.5 Batch Studies – Effects of Tar 

 
   Batch studies were performed to assess the effects of tar on cell-growth and 

product distribution. The experimental method was similar to that described in Section 
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3.2.3, except that in these studies, the 10% acetone solution used to scrub the syngas was 

added to the reactors (1 ml).  Acetone was used for tar removal because tars dissolve in 

acetone. The first study contained two sets of reactors. One set was used as a control, 

containing the regular media described above. To the other set, the 10% acetone solution 

containing tars was added. A second study was performed similar to the first.  In this 

case, for controls, one study had no additional components added and one study involved 

the addition of a 10% acetone solution (1 ml) that had not been used for scrubbing 

syngas.  The cell concentration, pH, and product concentrations were measured at regular 

time intervals. 

 
 

3.2.6 Analytical Methods 

 The optical density (OD), which is proportional to the cell concentration (~ 0.43 g 

L-1 per OD unit (Datar 2003)), was determined using a UV-Vis spectrophotometer.  Cell 

samples were collected in 4-ml cuvettes from the bioreactor and the OD was measured at 

660 nm.  A standard calibration chart was used within a linear range of 0 to 0.4 OD units 

to estimate the cell concentration.  Samples with an OD greater than 0.4 units were 

diluted so that the OD was within the linear range of calibration.  Gas samples were taken 

from the outlet and inlet lines of the bioreactor in gas tight syringes.  Gas compositions 

for the chemostat were determined using a gas chromatograph (3800 series, Varian Co., 

CA) with a Hayesep-DB column (Hayes Separations Inc, Bandera, TX) connected to a 

thermal conductivity detector (TCD) with argon as the carrier gas.  The TCD was run at 

40 ºC for 6 minutes, after which the temperature was ramped up to 140 ºC at 100 ºC min-1 

for 20 minutes. 
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 The liquid samples were centrifuged at 1,300 x g for 30 minutes.  The cell-free 

supernatant was collected and then frozen at -18 ºC until further analysis.  The liquid 

products were analyzed for ethanol and acetic acid using a 6890 Gas Chromatograph 

(Agilent Technologies, Wilmington, DE), equipped with a flame ionization detector and 

an 8-ft Porapak QS 80/100 column (Alltech, Deerfield, IL).  

  

3.3 Results and Discussion 

3.3.1 Batch Studies – Effects of Gaseous Contaminants 

Figures 3.2, 3.3 and 3.4 show the cell concentration and pH profiles in the 

presence of 0.35% C2H6, 1.4 % C2H4 and 0.1% C2H2 respectively. The controls had no 

contaminant present in the headspace. As shown in Figure 3.2, the cell concentration of 

the controls as well as the reactors containing 0.35 % ethane in the headspace showed 

similar profiles. Cells began to grow in both cases within the first day, and cell 

concentration reached a maximum value of about 0.15 g/l after which it remained nearly 

constant. This showed that ethane did not cause any delay or inhibition in cell-growth. 

The similar pH profiles, represented on the right y-axis, further indicated that the addition 

of ethane did not have any effect on the fermentation. The pH at the beginning of the 

fermentation was about 6.0, and dropped to about 5.7 in both sets of reactors. Figures 3.3 

and 3.4 show the effects of 1.4 % ethylene and 0.1 % acetylene on the cell-growth and 

pH profile of the cells. Once again, the cell concentration and pH profiles followed very 

similar trends for the controls as well as the reactors containing ethylene and acetylene.  
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Figure 3.2 Effect of 0.35 % ethane on cell growth and pH profiles of C. carboxidivorans 

P7T. The error bars represent the standard error (n=3). The overlapping error bars 

indicated that ethane had no effect on cell-growth or pH. 



 46 

 

 

 

 

C
el

l 
co

n
ce

n
tr

at
io

n
 g

/l

0.00

0.04

0.08

0.12

0.16

0.20

0 1 2 3 4 5
Days

4.5

4.7

4.9

5.1

5.3

5.5

5.7

5.9

6.1

Cells-Control

Cells-Ethylene

pH-Control

pH-Ethylene

p
H

C
el

l 
co

n
ce

n
tr

at
io

n
 g

/l

0.00

0.04

0.08

0.12

0.16

0.20

0 1 2 3 4 5
Days

4.5

4.7

4.9

5.1

5.3

5.5

5.7

5.9

6.1

Cells-Control

Cells-Ethylene

pH-Control

pH-Ethylene

Cells-Control

Cells-Ethylene

pH-Control

pH-Ethylene

p
H

 

Figure 3.3 Effect of 1.4 % ethylene on cell-growth and pH profiles of C. carboxidivorans 

P7T. The error bars represent the standard error (n=3). The overlapping error bars 

indicated that ethane had no effect on cell-growth or pH. 
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Figure 3.4 Effect of 0.1 % acetylene on cell-growth and pH profiles of C. 

carboxidivorans P7T. The error bars represent the standard error (n=3). The overlapping 

error bars indicated that ethane had no effect on cell-growth or pH. 
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All reactors showed a final cell concentration very close to 0.15 g/l and a pH drop from 

about 6.0 to 5.7. It was previously seen that adding 4.5 % methane to a chemostat had no 

effect on cell-growth (Datar 2003). These results indicated that none of the gaseous 

syngas contaminants were the cause of cell-dormancy.   

 

3.3.2 Chemostat Studies- Cell Growth 

 Since it was concluded that gaseous contaminants like methane, ethane, ethylene 

and acetylene were not the cause of cell-dormancy, it was necessary to determine whether 

additional cleaning of the gas using a 0.025-µm filter could prevent cell dormancy in a 

chemostat mode. The cell concentration profile for one chemostat study is shown in 

Figure 3.5.  In the first stage, cells grew and cell concentration began leveling off on Day 

8.  Following the initiation of continuous liquid flow on Day 8 (stage 2), cell 

concentration remained essentially constant.  There was little change in the cell 

concentration during the third stage following the introduction of syngas.  The 0.025-µm 

filter negated the previously observed decline in cell concentration observed with syngas 

introduction using a 0.2-µm filter (Datar et al. 2004). However, upon switching to the 

0.2-µm filter (stage 4), the cell concentration declined after approximately 1.5 days. 
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Figure 3.5 Cell concentration profile in chemostat.  In stage 1, the liquid phase was batch 

and cells were grown on synthetic syngas.  In stage 2, the liquid phase was changed to 

continuous.  In stage 3, the gas supply was changed to filtered (0.025-µm) syngas.  In 

stage 4, the syngas was cleaned with a 0.2-µm filter.   The gas phase was continuous in 

all stages.    
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The chemostat material balance for cells, neglecting death, is represented by Equation 

3.1. 

 

DXµX
dt

dX
−=                                                                                      (3.1) 

 
where X is the cell concentration, D is the dilution rate defined as the ratio of the liquid 

feed rate (F) to the liquid volume (V), and µ is the cell growth rate.   The cell balance is 

important for understanding the experimental observations.  During batch growth (stage  

1), D=0 and integration of Equation 3.1 yields a slope of µ when ln(X/X0) is plotted 

versus time.  X0 is the initial cell concentration.  For this study, µ was 0.0074 hr-1 during 

stage 1.  For stage 2, when the cell concentration was nearly constant (dX/dt=0), µ = D.   

Thus, a liquid flow rate of F = 0.36 ml min-1 was chosen to maintain D just below 0.0074 

hr-1 (D = 0.0069 hr-1).   

 On Day 11, the gas was switched from the synthetic syngas to syngas that had 

passed through a 0.025-µm filter. The cell concentration remained independent of time, 

thus the cells were still growing in the presence of the 0.025-µm filtered syngas since 

µ=D.  This result was confirmed in two additional chemostat experiments, shown in 

Appendix A.  Upon replacing the 0.025-µm filter with a 0.2-µm filter, the cell 

concentration began declining after approximately 1.5 days.  Assuming µ=0 (i.e. no cell 

growth) in Equation 3.1, when the cell concentration begins to decline, integration yields 

Equation 3.2. 

 

tDXX *)/ln( 0 −=                                                                           (3.2) 
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In Equation 3.2, X0 represents the cell concentration just as the decline begins.  Using the 

cell concentration data in stage 4 (the declining portion), a plot of ln(X/X0) versus time 

with Equation 3.2 yielded D= 0.0068 hr-1, which is in agreement with the value of D used 

in the experiment.  This agreement demonstrated that cells were not dying, but rather 

were remaining in a non-growth state and were washing out of the reactor.  Figure 3.6 

shows the comparison between the data and the washout model starting from the time 

when the cell concentration began to decay. This was also observed in previous studies 

with the use of a 0.2 µm filter (Datar et al. 2004).  As noted below in the product 

formation section, acetic acid was still being produced in stage 4 providing evidence that 

the cells were not dead.   

 Regarding cell dormancy, studies with similar concentrations of ethylene, 

acetylene, or ethane added to batch cultures grown under “clean” CO/CO2 gases showed 

no difference in growth characteristics, as described in Section 3.3.1.  During the 

chemostat run, the filter inlet and outlet compositions of ethylene, acetylene and ethane in 

the syngas were measured and it was found that there was no detectable change in the 

compositions - again suggesting that these gases do not contribute to cell dormancy.    

 

3.3.3 Chemostat Studies- pH Changes 

 The pH profile is shown in Figure 3.7. The pH of the medium was initially 

adjusted to 5.85 before inoculation. Once the cells started growing, pH started to drop 

due to the production of acids. The pH was allowed to drop during stage 1, but the pH 

setpoint was adjusted from 5.85 to 5.25 over the first three days to minimize a rapid drop 

in pH.   Once the pH was 5.25, the setpoint was maintained at 5.25 during stage 2 with a  



 52 

 

 

 

0

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

Days

C
el

l 
co

n
ce

n
tr

at
io

n 
g
/l

Cell concentration g/l

Washout model

0

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

Days

C
el

l 
co

n
ce

n
tr

at
io

n 
g
/l

Cell concentration g/l

Washout model

 

Figure 3.6. Cell washout on exposure to biomass syngas using the 0.2-µm filter. Day 0 

represents the beginning of the cell washout. The solid line represents the cell-washout 

model as described by Equation 3.2.  

 

  



 53 

 

 

 

 

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

0 5 10 15 20 25

Days

p
H

1 2 3 4

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

0 5 10 15 20 25

Days

p
H

1 2 3 4

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

5.6

5.8

6.0

0 5 10 15 20 25

Days

p
H

1 2 3 4

 

Figure 3.7. pH profile in chemostat. The stages are as described in Figure 3.5. The 

horizontal dotted lines show the pH control set-point. 
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dead band of 0.2.  After the introduction of syngas (stage 3), pH began to rise (as 

previously observed) and was controlled at a value of 5.35. After about 4 days, pH was 

allowed to rise. The pH reached a value of 5.75 and then started to decrease as the cells 

washed out of the reactor in stage 4.  

 

3.3.4 Chemostat Studies - Substrate Utilization 

  In the presence of synthetic syngas, cells consumed CO and H2 and produced 

CO2.  The inlet gas contained 0.165 moles/min of CO and 0.15 moles/min of CO2, while 

the outlet gas contained 0.14 moles/min of CO and 0.16 moles/min of CO2.  An overall 

carbon balance showed that more than 97% of the utilized carbon was accounted for in 

the production of CO2, ethanol, acetic acid, and cell mass.   Upon switching from 

synthetic syngas to biomass-generated syngas, H2 consumption immediately ceased, 

irrespective of the filter size. 

 
 

3.3.5 Chemostat Studies- Product Formation 

  Figure 3.8 shows the change in the ratio of the product concentration (P) to the 

cell concentration (X) with time for both ethanol and acetic acid.   The transient mass 

balance for P (g L-1) in a well-mixed chemostat is: 

 

DPXq
dt

dP
P −=                                         (3.3) 
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Figure 3.8 Ethanol and acetic acid profile in chemostat.  The stages are the same as 

described in Figure 3.5.  The inset is from a previously published experiment (Datar et al. 

2004). Arrows indicate the beginning of cell washout in both experiments. 
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where qp is the product formation rate per cell mass [g (g cells)-1 time-1] and D is the 

dilution rate [time-1].  Since (P/X) is shown in Figure 3.8, time differentiation of (P/X) 

shows 

2

)/(

X

dt

dX
P

dt

dP
X

dt

XPd
−

=                                         (3.4) 

 
Substitution of Equation 3.3 into Equation 3.4, with some re-arrangement, gives Equation 

3.5 that is useful for understanding the results shown in Figure 3.8.  

 

 







++=

X

P
D

dt

dX

X

P

dt

XPd
qP 2

)/(
                                                                                 (3.5) 

 
During stage 2, both X (Figure 3.5) and (P/X) (Figure 3.8 for both ethanol and 

acetic acid) were relatively constant such that the derivatives in Equation 3.5 are small 

compared to the last term.  Thus, qp ≈ D(P/X) and qp for acetic acid is approximately six 

times that of ethanol during the fermentation of synthetic syngas.  It is noted that (P/X) 

for acetic acid may be slightly increasing during stage 2 such that qp would be slightly 

greater than D(P/X).  Nevertheless, qp for acetic acid is still much greater than for 

ethanol.  

 This observation that qp for acetic acid is much greater than for ethanol is contrary 

to what was previously observed (Rajagopalan et al. 2002) in which more ethanol was 

produced than acetic acid.  C. carboxidivorans is an acetogen that produces primarily 

acetic acid during the growth phase.  A switch to solventogenesis (ethanol production) 

occurs when the medium conditions are no longer favorable for growth.  In many cases, 

initiation of solventogenesis in clostridium bacteria is associated with the onset of 



 57 

sporulation (Grube et al. 2002; Kashket and Zhi-Yi Cao 1995; Long 1984).  It is feasible 

that the initial inoculum in the previous experiments contained a mix of cells that were 

both acid and ethanol producing. Therefore, this discrepancy in the product ratio may be 

explained by the fact that the inoculum used in both cases may have been in different 

states. 

 When syngas was introduced through a 0.025-µm filter in stage 3, (P/X) for 

ethanol nearly doubled and approached a steady value (where qp ≈ D(P/X)).  Thus, in 

comparison with stage 2, qp for ethanol approximately doubled.  On the other hand, (P/X) 

for acetic acid decreased from 11.3 to 5.1 grams per gram of cells over six days.  Initially, 

d(P/X)/dt ≈ -1 g g-1 day-1 but then began leveling off towards zero.  Since X remained 

essentially constant (i.e. dX/dt is small) and D(P/X) initially began at 1.85 but leveled off 

at 0.85 g g-1 day-1  (with D=0.007 h-1), Equation 3.5 shows that qp for acetic acid 

decreased compared to stage 2 but still remained positive.  Even if the net value of qp is 

positive, acetic acid could be both produced and then consumed to make ethanol.  

Additional experiments must be performed to determine if the increase in ethanol is due 

to the consumption of acetic acid rather than from direct conversion of CO to ethanol.  

However, this increase in ethanol production by the cells suggests that some constituent 

of the syngas could be making the cells more solventogenic as compared to the synthetic 

syngas.   

 In stage 4, the filter was changed to 0.2-µm and washout of the cells began after 

about 1.5 days.  The arrow in Figure 3.8 indicates the time at which washout of the cells 

began.  Prior to washout, qp ≈ D(P/X) as previously explained in stage 3.  However, at the 

onset of cell dormancy in which washout occurs, dX/dt ≈ -DX as described in the cell 
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growth section.  Thus, substitution into Equation 3.5 shows that qp ≈ d(P/X)/dt during cell 

dormancy.  Therefore, prior to washout, qp for ethanol and acetic acid were positive.  

Throughout cell dormancy, qp for ethanol was negligible since (P/X) remained essentially 

constant, although qp for acetic acid increased.   

 Due to some problems with the GC analysis, a product profile could not be 

obtained for the studies shown in Appendix A. However, similar results were observed in 

previous studies in which syngas was cleaned with a 0.2-µm filter (Datar et al. 2004). 

When syngas was introduced, an increase in the ethanol concentration was observed for 

about 1.5 days while the cell concentration remained relatively stable.  Thus, qp for 

ethanol increased.  After cell dormancy (washout) began, (P/X) for ethanol (plotted using 

the reported data of P and X and shown as the inset in Figure 3.8) was essentially 

constant.  Since qp ≈ d(P/X)/dt during washout, qp for ethanol was negligible.  

 

3.3.6 Filter Analysis 

  As it was conclusively shown that the filter size affected cell dormancy and qp for 

ethanol and acetic acid, an analysis of the filter was performed.   Particulates trapped by 

the filter could include ash and tar generated during the gasification process.  The 0.025-

µm filter was evaluated using a scanning electron microscope (JEOL JSM 6360).  Figure 

3.9 (A) shows the filter used to clean the syngas.  The particle shown was one of the 

larger agglomerates seen on the filter. There were also several smaller particles of similar 

appearance spread over the filter. The trapped particulates differ from ash shown in 

Figure 3.9 (B).  Thus, ash was not the culprit leading to cell dormancy, but tar 

particulates were the likely candidates. 
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Figure 3.9 Scanning electron microscope analysis of (A) 0.025-µm filter used in 

chemostat studies and (B) 0.025-µm filter exposed to ash from gasifier. 
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3.3.7 Batch studies – Effects of Tar 

To assess the effects of tars on cell growth and product distribution, batch 

experiments were performed.  Figures 3.10-3.12 show the cell growth, ethanol formation 

and acetic acid formation in the presence of media and media supplemented with the 10% 

acetone solution from the scrubbers.   The stored syngas was bubbled through a 10% 

acetone solution to identify potential tar species in the gas.   A GCMS analysis of the 

acetone solution identified benzene (327 µg/ml), toluene (117 µg/ml), ethylbenzene   

(131 µg/ml) and p-xylene (92 µg/ml), in addition to less abundant species like o-xylene 

and naphthalene.  A significant delay in cell growth was observed in the presence of tar 

in the reactors. Product redistribution, resulting in higher amounts of ethanol and lower 

amounts of acetic acid compared to the controls, was also observed. In order to ensure 

that these effects were due to tars and not acetone, another similar experiment was 

conducted in which a third set of reactors were tested, containing “clean” acetone in the 

media. Figures 3.13-3.15 show the cell growth, ethanol formation and acetic acid 

formation in the presence of media, media supplemented with “clean” 10% acetone, and 

media supplemented with the 10% acetone solution from the scrubbers.   The “clean” 

acetone studies showed no difference with the studies containing media alone.  However, 

the presence of tars in the scrubbed acetone solution once again showed a significant 

delay in cell growth.  The delay was much longer than the washout period shown in 

Figure 3.5.  For the studies with tars, the results are shown separately for two of the three 

studies since the onset of growth varied.  The third study is not shown since growth was 

not observed.  A likely scenario is that the tars initially inhibit growth (but do not cause 

death), which is consistent with the washout of cells in the chemostat.  After a long
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Figure 3.10 Cell concentration profile for batch study. C1, C2, C3 are the controls with 

regular media. T1, T2, T3 contained the acetone solution from the scrubbers with tar. 

There was a significant delay in cell-growth in the presence of tar.  
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Figure 3.11 Ethanol profile for batch study. C1, C2, C3 are the controls with regular 

media. T1, T2, T3 contained the acetone solution from the scrubbers with tar. The cells 

produced more ethanol in the presence of tar.  
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Figure 3.12 Acetic acid profile for batch study. C1, C2, C3 are the controls with regular 

media. T1, T2, T3 contained the acetone solution from the scrubbers with tar. In the 

presence of tar, the acetic acid produced by the cells was lower than that of the controls.  
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Figure 3.13 Cell concentrations in 100-ml batch studies.  The control study contained 

media.  The acetone study contained media supplemented with 1 ml of acetone.  The 

error bars represent the standard error (n=3).  The two tar studies contained media 

supplemented with 1 ml of acetone scrubbing solution used to clean the syngas.  As the 

onset of growth varied upon exposure to the acetone scrubbing solution (tar experiments), 

the results are shown separately.  

 



 65 

 

 

 

 

Controls

Acetone

Tar 1

Tar 2

0.000

0.050

0.100

0.150

0.200

0.250

0 2 4 6 8 10 12 14 16

Days

E
th

an
o

l 
(g

/l
)

Controls

Acetone

Tar 1

Tar 2

Controls

Acetone

Tar 1

Tar 2

0.000

0.050

0.100

0.150

0.200

0.250

0 2 4 6 8 10 12 14 16

Days

E
th

an
o

l 
(g

/l
)

 

Figure 3.14 Effect of tar on ethanol concentration. The studies are described in Figure 

3.13. The error bars represent the standard error (n=3).   
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Figure 3.15 Effect of tar on acetic acid concentration. The studies are described in Figure 

3.13. The error bars represent the standard error (n=3).   
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period of time, the cells could adapt to the tars and begin to grow (as observed in batch 

studies).  The adapted growth would not be observable in the chemostat since the 

washout of cells would occur before the cells had time to adapt.  

  The cells in the presence of tar produced much lower quantities of acetic acid and 

much higher amounts of ethanol than the controls once the cells starting growing 

following adaptation.  Thus, there was a change in the product distribution, although 

these results appear contrary to the results of Figure 3.8 in which the 0.2-µm filter 

resulted in a decrease in ethanol production and an increase in acetic acid production.  

However, the cells in the batch studies had a chance to adapt to the tars, unlike the cells 

in the chemostat studies in which the cells washed out before adaptation.  Therefore, the 

key point is that the tars appear to affect the cell dormancy and product distribution.   

 

3.4 Conclusions  

  From the batch and chemostat studies conducted, the following results were 

obtained, which provided insight into the effects of biomass syngas on cell-growth and 

product distribution of C. carboxidivorans P7T:  

• Gaseous impurities like ethane, ethylene and acetylene had no effect on cell-

growth. 

• Additional cleaning of syngas using a 0.025-µm filter prevented growth inhibition 

although the filter cleaning did not eliminate the hydrogenase inhibition. 

• Analysis of the 0.025-µm filter paper indicated that the contaminant causing cell-

dormancy was most likely particulate tar.  
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• Batch studies further confirmed that tars induced cell dormancy.  However, cells 

could adapt and grow in the presence of tars following prolonged exposure.   

• Once the cells adapted to and grew in the presence of tar, a redistribution of 

ethanol and acetic acid production occurred. Cells produced more ethanol and less 

acetic acid compared to controls.  

 
  The extent of gas cleanup is a critical issue when applied to syngas fermentation.  

Cells are sensitive to many chemical species and the potential for numerous species to be 

generated during biomass gasification is high.  These studies showed that cleaning the 

syngas with a series of cyclone separators, 10% acetone scrubbing bath, and a 0.025-µm 

filter enabled the cells to remain viable and produce ethanol and acetic acid. Gas clean-up 

issues will likely vary depending upon the biomass since some feedstocks contain 

species, such as sulfur compounds, that may affect cell function in fermentation.   

Nevertheless, this work identified some key gas clean-up issues (tar removal) for the 

fermentation of syngas to ethanol and acetic acid.  
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CHAPTER 4 

 

 

EFFECT OF CELL-RECYCLE ON SYNGAS FERMENTATION 

 

 

4.1 Introduction  

 Previous studies with C. carboxidivorans P7T showed that biomass-generated 

syngas led to cell washout from a chemostat reactor after a delay of about 1.5 days (Datar 

et al. 2004).  Chapter 3 described the effects of biomass syngas impurities on the 

microbial catalyst. It was observed that particulate impurities in the biomass syngas 

caused cell-dormancy, leading to cell-washout from the reactor. Results showed that 

using a 0.025-µm filter to clean the syngas could eliminate this problem of cell dormancy 

by removing the tar particles from the gas. Even though this result provided a clear 

understanding of the underlying cause of cell-dormancy, using a small filter may not be a 

very practical solution in larger reactor systems with high gas flow rates. Moreover, batch 

studies with tar showed that on prolonged exposure, cells could adapt and grow in the 

presence of tar. In a chemostat, cells could not grow on biomass-syngas as they washed 

out of the reactor before they had an opportunity to adapt. This led to the hypothesis that, 

if the cells were contained within a continuous system while being exposed to biomass-

syngas, they would be able to adapt and grow. This could be done using a cell-recycle 

system, where the cells would be recycled to the reactor during a continuous bioreactor 

run. A cell-recycle system would serve several 
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purposes including the elimination of the 0.025-µm filter. Cell-recycle has been 

commonly used to increase cell-mass and to enhance product yields (Amartey 1999; Bull 

and Young 1981; Chang et al. 1994; Parekh and Cheryan 1994). Klasson et al. (1993) 

reported that the use of cell-recycle during the fermentation of syngas by C. ljungdahlii 

resulted in cell-concentrations of about 4g/l and ethanol concentrations as high as 48 g/l. 

These values were approximately 2.5 times higher than those without cell-recycle.  

 Using membrane filters for cell-recycle also has the advantage of a cell-free 

harvest solution that does not require any additional clarification before the final 

separation (van Reis and Zydney 2001). The work reported in this chapter describes the 

effects of using cell-recycle during the fermentation of biomass-syngas by                      

C. carboxidivorans P7T. The objective of the study was to test the hypothesis that the 

cells could adapt to biomass-syngas in a chemostat and that the cell-density in the reactor 

could be increased using a cell-recycle system.  

 

4.2 Materials and Methods 

4.2.1 Biomass and Syngas 

 Syngas was obtained by gasification of switchgrass, as discussed in Section 3.2.1. 

The biomass syngas used in the first study was generated by air-gasification of 

switchgrass, and consisted of approximately 16.9 % CO, 15.8 % CO2, 5.1% H2, and 55.2 

% N2 along with 4.2% CH4, 0.16% C2H2, 0.46% C2H6, 1.9 % C2H4 and 140 ppm nitric 

oxide (compositions based on measured species). In the second study, the biomass syngas 

used in stage 3A was the same as that used in study 1. In stage 3B, a second batch of air-

gasified biomass syngas was used, which consisted of approximately 16.3 % CO, 15.2 % 
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CO2, 4.8 % H2, and 57.8 % N2 along with 3.7% CH4, 0.12% C2H2, 0.2% C2H6, 1.7 % 

C2H4 and 150 ppm NO. In stage 3C, steam-gasified biomass syngas was used, which 

consisted of approximately 31 % CO, 19.8 % CO2, 32.7 % H2, and 1.04 % N2 along with 

4.2% CH4, 0.15% C2H2, 0. 6% C2H6 and 3.5 % C2H4 and 140ppm NO 

 During the scrubbing of the second batch of air-gasified biomass syngas for tar 

removal, there was a mechanical failure in the scrubbing system causing the temperature 

in the scrubbers to increase, thereby preventing some of the lower boiling point 

compounds from condensing. At the end of the study, the gas was bubbled through 

acetone and the acetone was then tested on a Gas Chromatograph and Mass Spectrometer 

(GCMS) for tar. The concentration of tar in this batch of gas was approximately 0.33 

g/Nm3, while the tar in the third batch of biomass syngas (generated from steam 

gasification) was approximately 0.14 g/Nm3. The gas clean-up was comparable for the 

first and third batches of biomass syngas, as the scrubbing system worked satisfactorily. 

The second batch of syngas contained higher tar levels compared to the third. The tar 

could not be measured in the first batch of biomass syngas as the gas was completely 

utilized by the bioreactor during the study.  

 
 

4.2.2 Microbial Catalyst and Culture Medium 

 C. carboxidivorans P7T was used as the microbial catalyst for the fermentation of 

syngas. The bacterium was grown in a culture medium consisting of minerals, vitamins 

and trace metals, as described in Section 4.2.2.  
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4.2.3 Bioreactor and Cell-Recycle Set-up 

  A BioFlo 110 Benchtop Fermentor (New Brunswick Scientific, Brunswick, NJ) 

with a 3-l working volume was used for the fermentation studies involving continuous 

liquid feed and product removal (i.e. chemostat mode). The reactor and its components 

are described in Section 3.2.3.  The experimental setup is shown in Figure 4.1. The 

bioreactor was connected to two 0.2-µm hollow fiber membrane filters with a surface 

area of 1200 cm2 (CSP-2-E-5A, A/G Technology Corporation, 101 Hampton Ave, 

Needham MA) in parallel for cell-recycle.  However, only one filter was used at a time. 

The other filter was in reserve in case the filter in use became clogged.  The recycle 

filters consisted of a bundle of parallel polysulfone fibers within a plastic housing and 

operated in a cross-flow mode, which allowed for recirculation of the feed stream.  

  Before use, the recycle filters were soaked in 70% ethanol for 1 hour, rinsed with 

DI water and then 0.5N sodium hydroxide was circulated through them at 50 ºC for 1 

hour. Finally, the recycle filters were once again rinsed with DI water. The recycle filters 

and the bioreactor were connected, filled with media, and then autoclaved at 121°C for 20 

minutes. The reactor was then sparged with nitrogen to remove the dissolved oxygen, 

after which the gas feed was changed from N2 to synthetic syngas flowing at 160 cm3 

min-1, at 25°C and 137 kPa.  A mass flow controller was used to mix bottled gases in the 

same composition as the CO, CO2, and H2 in the biomass-syngas to obtain the synthetic 

syngas. The impellor agitation was set to 400 rpm and the temperature was maintained at 

37°C. Cysteine-sulfide was then added to the media to remove any residual dissolved 

oxygen. Once it was ensured that the media and bioreactor were anaerobic,  
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Figure 4.1 Schematic of the bioreactor set-up with cell-recycle. The gas and liquid feed 

sources are not shown in the figure, but were similar to those described in Chapter 3. 



 74 

30 ml inoculum of C. carboxidivorans P7T was added to the reactor under sterile 

conditions.  

The bioreactor was connected to two liquid feed tanks containing sterile media for 

chemostat operation.   The liquid feed tanks were continuously purged with nitrogen to 

maintain anoxic conditions. A 4-way valve was used to introduce gas feed by switching 

between biomass-syngas and synthetic syngas (not shown in the figure).  The gas was 

introduced through a sparger.   

An external pump was used to circulate the reactor broth through the recycle filter 

at about 60 ml/min. A 3-way valve connected the two filters in parallel to allow for 

switching between them in case of clogging.  This valve was also used as a sampling port 

to measure cell density when the recycle system was in operation. When the reactor broth 

was pumped through the filter, the retentate stream (containing cells) continued through 

the recirculation loop and returned to the reactor, while the permeate stream (without 

cells) was pumped at the same flow rate as the feed and collected in a reservoir. A 

pressure gauge at the inlet of the recycle filter and a vacuum gauge on the permeate line 

were used to monitor clogging. If the cells started to clog the recycle filter, it could either 

lead to a pressure build-up at the inlet (since a higher force would be required to pump 

the broth through) or a vacuum on the permeate line (to pull the permeate out of the 

recycle filter).  Thus, the two gauges were closely monitored to ensure there was no such 

clogging in the recycle filter.  
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4.2.4 Bioreactor Operation 

 Two studies were performed to assess the effect of cell-recycle on syngas 

fermentation. In both studies, the bioreactor operation was divided into three stages. In all 

stages, the gas flow was continuous.  In the first stage, the liquid was maintained in batch 

mode and the synthetic syngas was fed to the bioreactor (stage 1). As soon as cell-growth 

commenced, continuous feed and product removal with cell-recycle were initiated (stage 

2). Before connecting the bioreactor to the cell-recycle, the filter was purged with sterile, 

anaerobic media for a few minutes. Stage 3 was initiated when the cells reached the 

stationary growth phase, and the gas feed was switched from synthetic syngas to biomass 

syngas. 

 In the second study, the first two stages were similar to the first study. Stage 2 

was initiated on day 3.6. On day 9.5, air-gasified biomass syngas was introduced into the 

reactor (stage 3A). This gas was almost completely consumed in this stage and a fresh 

batch of air gasified biomass syngas was prepared and filled in the storage tanks. Stage 

3B was initiated on day 25, when this new batch of biomass syngas was introduced into 

the reactor. On day 37.5, the gas source was switched once again, and steam-gasified 

biomass syngas was introduced into the reactor. This final stage is called stage 3C in the 

results and discussion.     

 

4.2.5 Analytical Methods 

The optical density (OD), which is proportional to the cell concentration (~ 0.43 g 

L-1 per OD unit (Datar 2003)), was determined using a UV-Vis spectrophotometer.  Cell 

samples were collected in 4-ml cuvettes from the bioreactor and the OD was measured at 
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660 nm.  A standard calibration chart was used within a linear range of 0 to 0.4 OD units 

to estimate the cell concentration.  Samples with an OD greater than 0.4 units were 

diluted so that the OD was within the linear range of calibration.  Gas samples were taken 

from the outlet and inlet lines of the bioreactor in gas tight syringes.  Gas compositions 

for the chemostat were determined using a gas chromatograph (3800 series, Varian Co., 

CA) with a Hayesep-DB column (Hayes Separations Inc, Bandera, TX) connected to a 

thermal conductivity detector (TCD) with argon as the carrier gas.  The TCD was run at 

40 ºC for 6 minutes, after which the temperature was ramped up to 140 ºC at 100 ºC min-1 

for 20 minutes. 

 The liquid samples were centrifuged at 1,300 x g for 30 minutes.  The cell free 

supernatant was collected and then frozen at -18 ºC until further analysis.  The liquid 

products were analyzed for ethanol and acetic acid using a 6890 Gas Chromatograph 

(Agilent Technologies, Wilmington, DE), equipped with a flame ionization detector and 

an AT-treated steel 8-ft Porapak QS 80/100 column (Alltech, Deerfield, IL).  

 
 

4.3 Results and Discussion 

4.3.1 Chemostat Study 1 – Cell Growth 

 Figure 4.2 shows the cell concentration profile from the first study. In the first 

stage, when the reactor was operated in a batch mode with synthetic syngas, cells began 

to grow after a delay of about 2.5 days. As soon as cell growth commenced, stage 2 was 

initiated as described in Section 4.2.4. In this stage, fresh media was introduced at a flow 

rate of 0.6 ml/min (i.e., dilution rate, D=0.012 hr-1). The outlet 
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Figure 4.2 Cell-growth profile during syngas fermentation. Stage 1 represents batch 

liquid mode with synthetic syngas; stage 2 represents continuous liquid with recycle and 

synthetic syngas feed; stage 3 represents continuous liquid feed with recycle and 

biomass-syngas feed. 
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stream from the bioreactor was pumped through the filter such that the cells were 

recycled to the bioreactor. However, the filter had not been completely deoxygenated and 

this introduced oxygen into the reactor, which was indicated by the dissolved oxygen 

probe. At this point, in order to hasten the oxygen removal from the reactor, the liquid 

feed rate was increased to about 0.9 ml/min (D = 0.018 hr-1). The oxygen concentration in 

the reactor subsequently decreased to zero after approximately 0.5 day and the cells kept 

growing.  

During stage 2, the cell concentration increased from 0.03 g/l to about 0.19 g/l, 

after which biomass-syngas was introduced to the reactor.  At this point, the cell 

concentration remained steady at a value of approximately 0.22 g/l. Since this study 

involved cell-recycle, a steady cell-concentration indicated that there was no cell-growth 

or cell-death.  These results are similar to the previous studies (without a 0.025-µm filter) 

when biomass-syngas caused the cells to stop growing after about 1.5 days (see Chapter 

3, section 3.3.2).   

 

4.3.2 Chemostat Study 1 – pH Changes 

 Figure 4.3 shows the pH profile. The pH of the media at the beginning of the 

fermentation was 5.96. The pH controller was set at 5.6 with a deadband of 0.4 such that 

the pH would be controlled between 5.2 and 6.0. The pH dropped to about 5.9 in stage 1, 

and then to about 5.2 in stage 2. After switching to biomass-syngas, the pH increased (as 

seen in previous studies) and reached a value of about 5.7 at the end of the experiment. 

The rise in pH was seen previously in the presence of biomass-syngas.   
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Figure 4.3 pH profile during syngas fermentation with cell-recycle. Stages 1, 2 and 3 are 

described in Figure 4.2.  
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4.3.3 Chemostat Study 1 – Product Profile 

 The ethanol and acetic acid profiles are shown in Figure 4.4. The ethanol and 

acetic acid concentrations were at a minimum in stage 1 as cell-growth had not 

commenced. In stage 2, the ethanol concentration increased to about 0.1 g/l, while acetic 

acid increased to about 1.16 g/l. Once the biomass-syngas was introduced, the ethanol 

concentration dropped slightly and reached a steady concentration of 0.09 g/l, while the 

acetic acid increased to approximately 2.2 g/l. This result was contrary to the previous 

results observed with biomass-syngas. In previous studies, switching to biomass-syngas 

increased the ethanol concentration and decreased the acetic acid concentration. 

However, the previous studies were conducted without the use of a cell-recycle and at 

lower dilution rates (D=F/V). In this study, due to the initial problems with oxygen, the 

dilution rate was set at a high value of 0.018 hr-1 (the growth rate µ was 0.014 hr-1). Even 

though the dilution rate was higher than the maximum growth rate of cells, the cells 

remained within the reactor because of the cell-recycle. However, a high dilution rate 

implies a high media flow rate such that the cells were being supplied with fresh nutrients 

faster. This could have led to the increased acetic acid formation since these 

microorganisms are known to make acetic acid under favorable and ethanol under 

unfavorable conditions. Studies have shown that changes in the dilution rate can lead to a 

change in the product distribution (Amartey 1999; Qureshi et al. 2000). Qureshi et al. 

observed a similar effect of increased acid production at high dilution rates.  
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Figure 4.4 Product profile during syngas fermentation with cell-recycle. The stages 1, 2 

and 3 are described in Figure 4.2. 
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4.3.4 Chemostat Study 2 – Cell Growth 

 A second study was conducted with cell-recycle. The cell-growth profile of this 

study is shown in Figure 4.5. Quantity of cells (g) is plotted at each time point in this 

figure to give an accurate measure of cell-growth and account for volume loss due to 

sampling for an extended period of time.  In stage 1, the bioreactor was operated in batch 

liquid mode, with a continuous flow of synthetic syngas. The amount of cells in the 

reactor increased from 0.05 to 0.23 g in this stage. Once the cells started growing, stage 2 

was initiated, which involved continuous feed and product removal with cell-recycle. A 

flow rate of 0.6 ml/min was used in this study. Unlike the previous study, recycle filter 

was flushed with anaerobic media thoroughly, eliminating the possible oxygen 

contamination. The cell mass increased to 0.54 g in this stage. On day 9.5, biomass-

syngas was introduced into the reactor (stage 3A). As observed previously, the cells 

stopped growing at this point with cell concentration remaining steady. However, after 

about 7 days of this state of no-growth, the cells started to grow on biomass-syngas. This 

indicated that the cells had adapted to the gas since they were prevented from being 

washed out by the cell-recycle. On day 23.5, the cell mass in the reactor had reached 

approximately 0.8 g. At this point, the biomass-syngas was almost completely utilized 

and needed to be re-filled in the storage tanks. A new batch of biomass-syngas was then 

introduced into the reactor on day 25 (stage 3B). The cells continued to grow for another 

3 days, but then stopped growing once again, reaching a steady value of about 1 g. After 

another 4 days, the cell mass started decreasing in the reactor indicating some cell-death. 

This effect could be attributed to the fact that the second batch of biomass-syngas had 
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Figure 4.5 Cell-growth profile during syngas fermentation with cell-recycle. Cell mass 

(g) is shown in this figure. Stage 1 represents batch-liquid mode and synthetic syngas 

feed; stage 2 represents continuous liquid mode with cell-recycle and synthetic syngas 

feed; stage 3A represents continuous liquid mode with cell-recycle and biomass-syngas; 

stage 3B represents continuous liquid mode with cell-recycle and biomass-syngas (re-

filled); stage 3C represents continuous liquid mode with cell-recycle and steam-gasified 

biomass-syngas. 
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higher amounts of tar than the first. As mentioned in Section 4.2.1, the second batch of 

air-gasified biomass syngas contained higher tar levels due to a problem during gas 

cleaning. Thus, the cells could have adapted to a certain amount of tar in the syngas in 

stage 3A, but when they were exposed to higher amounts of tar, cell-dormancy was 

induced once again. On day 37.5, the gas feed was again switched to biomass-syngas 

generated from steam-gasification of switchgrass (as opposed to air-gasification used 

previously), indicated by stage 3C. On day 41.5, the cells started growing again as shown 

in the figure.  

These results indicated that cells could adapt and grow on biomass-syngas if 

exposed for an appropriate length of time. It is likely that if the syngas used in stage 3B 

had been similar to that used in stage 3A (in terms of tar concentrations), cell 

concentration could have increased significantly due to the use of cell-recycle. This was 

also indicated by the fact that cell-growth resumed in stage 3C when the gas source was 

changed to the steam-gasified biomass syngas with lower tar concentrations (less than 

half the tar concentrations of the syngas used in stage 3B, as reported in Section 4.2.1). 

 
 

4.3.5 Chemostat Study 2 – pH Profile 

 Figure 4.6 shows the pH profile of the cells. The pH at the beginning of the 

experiment was about 5.9. In the first stage, the pH controller was set at 5.6 with a  
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Figure 4.6 pH profile during syngas fermentation with cell-recycle. The stages are 

described in Figure 4.5. 
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deadband of 0.4 so that it would not increase above 6.0 or decrease below 5.2. The pH 

dropped to about 5.5 in the first stage and 5.22 in the second stage. After this stage, the 

pH was controlled at 5.2 (deadband of ±0.05) throughout the rest of the study.  

 

4.3.6 Chemostat Study 2 – Product Profile 

  Figure 4.7 presents the product profile of the cells during syngas fermentation. To 

provide a better understanding of the rates of production of ethanol and acetic acid during 

the various stages of fermentation, the following analysis was performed, similar to that 

in Chapter 3. Equation 4.1 represents the transient mass balance for a product P (g L-1) in 

a well-mixed chemostat: 

 

DPXq
dt

dP
P −=                                                                                                (4.1) 

 
where X is the cell concentration (g L-1), qp is the product formation rate per cell mass [g 

(g cells)-1 time-1] and D is the dilution rate [time-1].  Time differentiation of (P/X) shows 
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Figure 4.7 Product profile during syngas fermentation with cell-recycle. The stages are 

described in Figure 4.5. 
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Substitution of Equation 4.1 into Equation 4.2, with some re-arrangement, gives Equation 

4.3  









++=

X

P
D

dt

dX

X

P

dt

XPd
qP 2

)/(
                                                                           (4.3) 

 
In the first stage, the ethanol concentration increased to about 0.015 g/l while the acetic 

acid increased to 0.6 g/l. When the continuous liquid mode was initiated, ethanol 

concentration increased to approximately 0.066 g/l and remained almost steady until 

dropping slightly to about 0.05 g/l towards the end of stage 2. On the other hand, in stage 

2, the acetic acid increased further to 1 g/l, likely due to the fresh incoming media and 

product removal in this stage. In stage 2, qp for ethanol was calculated from Equation 4.3 

to be approximately 0.0015 g (g cells)-1 hr-1, while that for acetic acid was approximately 

0.015 g (g cells)-1 hr-1.  

On Day 9.5, biomass-syngas was introduced into the bioreactor. In this stage 

(3A), ethanol concentration increased significantly from 0.05 g/l to approximately 0.39 

g/l. The qp increased more than 10-fold to about 0.02 g (g cells)-1 hr-1 during the non-

growth phase. However, when the cells adapted to the biomass-syngas and resumed their 

growth, the rate of production of ethanol decreased to approximately 0.008 g (g cells)-1 

hr-1. This is due to the bi-phasic metabolism of acetogens described in Chapter 2. Since 

ethanol is a non-growth related product, much more ethanol is produced when there is 

little or no cell-growth and high amounts of acetic acid are produced during the active 

growth phase of these cells.  

The rate of acetic acid production increased from 0.015 g (g cells)-1 hr-1 to 

approximately 0.02 g (g cells)-1 hr-1 when the cells stopped growing in stage 3A, after 
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which it remained steady until cell-growth resumed. Acetic acid then increased further to 

about 0.035 g (g cells)-1 hr-1 and then stabilized at 0.03 g (g cells)-1 hr-1 at the end of this 

stage. 

 When the second batch of biomass-syngas was introduced on Day 25, the 

production rates of both ethanol and acetic acid dropped, along with the cessation of cell-

growth. Even though the ethanol concentration seemed to remain constant at about  

0.35 g/l, the rate of production, qp decreased to 0.003 g (g cells)-1 hr-1. In this stage, the 

acetic acid concentration decreased to 2.65 g/l and the rate of acid production decreased 

to 0.02 g (g cells)-1 hr-1. These effects on cell-growth and product rates indicated that the 

levels of tar in the biomass-syngas were probably a lot higher than the tolerable levels for 

the bacteria.  

 In stage 3C, syngas obtained from the steam gasification of biomass was 

introduced into the reactor. In this stage, the ethanol concentration increased from 0.35 

g/l to 0.46 g/l. The rate of production of ethanol increased slightly to about 0.005 g (g 

cells)-1 hr-1. The acetic acid concentration decreased further to about 2.2 g/l and the rate 

of acid production dropped to 0.015 g (g cells)-1 hr-1 in this stage. The biomass-syngas 

used in this stage contained higher amounts of carbon monoxide and hydrogen. This 

could account for the increase in ethanol concentration, along with the fact that the gas-

cleaning in this case was comparable to that of the gas used in stage 3A. However, the 

drop in the acetic acid concentration cannot be completely explained.  
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4.4 Conclusions 

 The studies described in this chapter showed that the fermentation of biomass-

syngas can be successfully carried out using a cell-recycle system. This method also 

eliminates the need for additional cleaning of biomass syngas (like the use of a 0.025-µm 

filter) and allows the cells to adapt to biomass-syngas. Study 2 was the first chemostat 

experiment wherein cell-growth was observed in the presence of biomass-syngas. To 

summarize, the following effects were observed during the fermentation of syngas using 

a cell-recycle system.  

• The cells could adapt and grow on biomass-syngas after prolonged exposure 

• The use of cell-recycle increased the cell concentration significantly and allowed 

for longer fermentation times 

• The rate of ethanol production was highest in the presence of biomass-syngas 

during the non-growth phase of the cells while the rate of acetic acid production 

was the highest during the active growth-phase of the cells.  

• Dilution rates during the fermentation had an effect on product distribution. In the 

presence of biomass-syngas, lower dilution rates caused higher amounts of 

ethanol production compared to higher dilution rates.
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CHAPTER 5 

 

EFFECTS OF NITRIC OXIDE AND CARBON MONOXIDE ON CELL-

GROWTH, HYDROGENASE ACTIVITY AND PRODUCT DISTRIBUTION 

 

5.1 Introduction 

 Unlike synthetic syngas, biomass syngas can also contain additional constituents 

including methane, some higher hydrocarbons, tars, ash, and char particles as a result of 

the gasification process (Bridgwater 1994).  An understanding of the potential 

contaminants on the fermentation process is essential for assessing the degree to which 

biomass-generated syngas must be cleaned.  Recent work showed that syngas had certain 

effects on the fermentation process, including cell-dormancy, shutdown of hydrogen 

consumption, and product redistribution between ethanol and acetic acid (Datar et al. 

2004).  The studies described in chapter 3 showed that cell dormancy can be overcome by 

cleaning the biomass gas with a 0.025-µm filter, but not the traditional sterilization filter 

size of 0.2-µm.  Filter analysis showed the capture of small particulates that appeared to 

be tars.  Further analysis demonstrated that tars indeed delayed cell growth.  However, 

use of the smaller filter did not prevent the shutdown of hydrogen consumption by the 

cells.  The hypothesis was that a gaseous species permeating through the filter was 

responsible for the shutdown of hydrogen consumption. C. carboxidivorans P7T uses the 

Acetyl-CoA pathway to convert CO, CO2 and H2 into biomass, ethanol, acetic acid and
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other products.  Figure 5.1 shows a brief diagram of the Acetyl-CoA pathway in which 

CO and CO2 are converted to acetyl-CoA (Ragsdale 1991). The electrons required for 

this conversion are obtained from H2, via the hydrogenase enzyme, or from CO, via the 

carbon monoxide dehydrogenase (CODH) enzyme.  If the hydrogenase enzyme is 

inhibited, cells cannot consume H2 which means the electrons must come from CO.  This 

scenario is inefficient for ethanol production since the CO is sacrificed for electrons 

rather than used for product formation.  Therefore, it is important that the cause of the 

shutdown of hydrogen consumption, via hydrogenase inhibition, is assessed so that the 

fermentation process can be designed to utilize hydrogen from biomass-generated syngas.    

Gases like O2, acetylene, CO, and nitric oxide (NO) are known inhibitors of 

hydrogenase (Acosta et al. 2003; Byung Hong Kim 1984; Krasna 1954; Seefeldt and Arp 

1989; Tibelius and Knowles 1984). Studies have shown NO to inhibit hydrogenase 

activity in Azotobacter  vinelandii(Hyman and Arp 1991), Proteus  vulgaris (Krasna 

1954), Alcaligenes eutrophus (Hyman MR 1988) and Azospirillum brasilense (Tibelius 

and Knowles 1984). Hyman and Arp (1991) performed a kinetic analysis of the 

interaction of NO with hydrogenase in A. eutrophus although the studies were performed 

with NO concentrations above 1 µM. Moreover, a complete kinetic analysis on the 

interaction of NO with clostridial hydrogenase has not been performed.  Approximately 

140-150 ppm of NO was detected in the biomass-generated syngas using a 

chemiluminescence analyzer. Though pure gasification processes theoretically contain 

ammonia (Devi et al. 2003) rather than NO, the presence of NO in the syngas could be 

due to some pockets of combustion within the gasifier.  
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Figure 5.1 Schematic of the Acetyl-CoA pathway showing the utilization of CO, CO2 and 

H2 to ethanol, acetic acid, and biomass.  The hydrogenase enzyme is utilized to produce 

electrons.  CODH: carbon monoxide dehydrogenase enzyme. Adapted from (Ragsdale 

1991). 
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Though CO is mainly used by microorganisms to produce cell mass and products, 

CO can also provide electrons during the metabolism of acetogens. Studies have shown 

that CO can also inhibit hydrogenase activity in cells, which means that the organism 

would need to obtain electrons from CO instead of H2 as described above. Therefore, 

even though high partial pressures of CO can result in a high cell mass, CO may 

potentially inhibit the hydrogenase activity of the cells. This makes it necessary to 

understand the effects of CO partial pressures on the hydrogenase activity of the 

microbial catalyst, in order to predict the ideal quantity of CO in the feed gas. The studies 

described in this chapter investigated the effects of CO partial pressure on the 

hydrogenase activity, as well as the effect of NO on cell-growth, product distribution and 

hydrogenase activity of C. carboxidivorans P7T
.  

 

5.2 Materials and Methods 

5.2.1 Microbial Catalyst and Culture Medium 

Clostridium carboxidivorans P7T, provided by Dr. Ralph Tanner, University of 

Oklahoma, was utilized for the fermentation.  The bacterium was grown under strictly 

anaerobic conditions in a medium containing (per liter) 30 ml mineral stock solution, 10 

ml trace metal stock solution, 10 ml vitamin stock solution, 0.5 g yeast extract, 5 g 

morpholinoethanesulfonic acid (MES), and 10 ml of 4% cysteine-sulfide solution.  

Resazurin solution (0.1%) was added as a redox indicator.  The composition of the 

mineral, vitamin and trace metal stock solutions was the same as that described in   

chapter 3.  
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5.2.2 Experimental Methods 

The experimental set-up used for CO partial pressure studies has been previously 

described in detail (Hurst 2005) and has been summarized in this section to provide an 

understanding of the experiments. The set-up consisted of three 120-ml bioreactors, each 

of which had one top port and two side ports. Disposable stir-bars in each reactor were 

used in conjunction with a Thermolyne Cellgro 45600 five-position stir plate (Cole 

Parmer, Vernon Hills, Illinois), to provide continuous stirring. Clean bottled gas mixtures 

of either 80% CO and 20% CO2 (Aeriform, Pasadena, Texas) or 25% CO, 15% CO2 and 

60% N2 were bubbled through the reactors via the side ports using 22-guage stainless 

steel needles (Hamilton Company, Reno, Nevada). The top ports of the bioreactors were 

used as gas outlets via 22-guage syringe needles. Needle valves (Swagelok, Solon, Ohio) 

were used to control the flow rate of the exiting gas. The flow rates were measured using 

65-mm flowmeters (Cole Parmer, Vernon Hills, Illinois). The entire assembly was placed 

in a 2.5-ft3 Isotemp 600 Series incubator (Fisher Scientific, Pittsburg, Pennsylvania) with 

digital temperature control to maintain the cultures at 37 ºC. The incubator itself was 

placed in a fume hood due to the nature of the experiment involving continuous flow of 

gases.  In order to maintain constant headspace pressure in the reactors, outlet needles 

were connected to a strain-gauge pressure system (constructed by Mike Veldman, 

Department of Biosystems and Agricultural Engineering, Oklahoma State University). 

This system contained pressure sensors (Omega Engineering, Inc., Stamford, 

Connecticut), which provided differential pressure measurements between 0 and 100 psig 

in reference to atmospheric pressure.  



 96 

The media was prepared as described in Section 5.2 and 120 ml was transferred 

into each reactor. The ports of the reactors were sealed and covered with aluminum foil 

and then autoclaved at 121°C for 20 minutes. Once cooled, the reactors were transferred 

into an anaerobic chamber, where 1.2 ml Cysteine-Sulfide was added through a 0.2-µm 

filter to each reactor. About 1 ml of inoculum was then added to each bioreactor. Within 

the incubator, the reactor outlets were completely closed initially, until all the reactors 

reached the desired pressure. The needle valves were then opened to allow the gas to 

leave the reactors at a low flow rate. CO partial pressures of 0.35, 0.50, 0.70, 1.05, 1.35, 

and 2.0 atmospheres were used in the experiments.  

For the experiments with NO, two 500-ml Cytostir® cell culture flasks 

(Kontes/Kimble Glass Inc., Vineland, NJ) were used.  Each sampling arm contained a 

rubber stopper for inoculation, sampling, and gas sparging.  One liter of media, excluding 

the cysteine-sulfide, was prepared and equally distributed into both reactors, which were 

then autoclaved at 121°C for 20 minutes.  After cooling, the media was continuously 

purged with N2 to provide an anaerobic environment.  The reactors were then placed in a 

water bath maintained at 37°C.  The water bath was a rectangular propylene tank fitted 

with a circulating thermostat unit (Model 1112, VWR International, West Chester, PA). 

The water bath was placed on magnetic stir plates to provide agitation.  The water-bath 

level was always maintained such that the liquid level in the reactors was always below 

that of the water bath. Cysteine-sulfide (5 ml) was added to each reactor to scavenge any 

remaining dissolved oxygen.   

Following the presence of an anaerobic environment, continuous gas sparging of 

the feed gases at 10 ml/min was initiated via the use of 18G luer needles for the inlet and 
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outlet. Reactor A (control) was initially sparged with a gas mixture containing 20% CO, 

15% CO2, 5% H2 and balance N2 (Air Liquide, Houston, TX).  Reactor B was initially 

sparged with 20% CO and 15% CO2, with the concentrations of NO and H2 ranging 

between 0-160 ppm and 2.5-15% respectively. Combinations of gas cylinders containing 

CO, CO2, H2, N2 and NO were mixed using mass flow controllers to obtain the 

appropriate concentrations.  With gas flow initiated, 5 ml of inoculum was added to each 

reactor.  

For all the experiments described above, samples (1.5 ml) were taken periodically 

from each reactor to measure the OD, pH, and product concentrations.   Samples for 

hydrogenase activity (0.4-0.6 ml) and gas compositions (20 µl) were also obtained. In 

experiments with more than 80 ppm of NO in the gas stream, it was seen that the cells 

could not grow in the presence of NO (Reactor B) at the beginning of the run.  In these 

experiments, the gas sources were switched once the cells in the Reactor A had reached a 

constant cell concentration.  The gases were switched to determine the effects of NO on 

active cells and also to determine whether the inhibition of growth by NO was reversible. 

In some experiments, the gases were switched back again to their original compositions 

to once again determine the reversibility of the effects of NO on growth and hydrogenase 

activity. 

 

5.2.3 Hydrogenase Assay 

For the hydrogenase assay, benzyl viologen was used as the electron acceptor and 

a nonionic detergent, triton X-100 was used to permeabilize the cell membranes. The 

assay buffer contained 0.4 ml 1M Tris-HCl, 0.2 ml 0.04 M benzyl viologen, 0.1 ml 5% 
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v/v triton X-100, 0.2 ml 0.04 M dithiothreitol and 3 ml degassed DI water (Shenkman 

2003). All the above reagents, except for dithiothreitol, were prepared and stored in an 

anaerobic glove box (Coy Laboratory Products Inc., Grass Lake, MI). Dithiothreitol was 

freshly prepared each day as it is unstable in water.  Within the anaerobic chamber, the 

reagents were added in the above quantities to a 4.5 ml optical glass cuvette (Starna Cells 

Inc., Atascadero, CA) fitted with 10 mm screw caps (SCHOTT Corp., Yonkers, NY) and 

13mm butyl rubber stoppers (Bellco Glass Inc., Vineland, NJ). The cuvette was then 

removed from the chamber and purged with 100% H2 for approximately one minute, 

using a 23 G long stainless steel needle as the inlet and a short 22 G needle as the outlet.   

The cuvette was placed in a 30°C receptacle of a spectrophotometer (Varian Inc., Palo 

Alto, CA).  A gas-tight syringe was used to transport approximately 0.5 ml of anoxic 

broth from the reactor to the cuvette, after which the cuvette was shaken vigorously, 

placed in the spectrophotometer, and the absorbance (Abs) recorded at 546 nm every 0.5 

seconds.  

The concentration (CBV) of reduced benzyl viologen (following the acceptance of 

electrons from H2 consumption) was obtained from CBV=Abs/(ε·b), where b is the cuvette 

path length (1cm) and є is the extinction coefficient for benzyl viologen (7.55 mM-1cm-1 

at 546 nm). The maximum volumetric rate of benzyl viologen reduction (RBV) was 

calculated from the linear slope of the initial portion of the curve following the short lag 

phase (RBV=∆CBV/∆t).  Since two moles of benzyl viologen are reduced per mole of H2 

consumed, the volumetric rate of H2 consumption (RH2) was calculated as ½ RBV.  RH2 

was finally divided by the measured cell density and converted into specific activity 

(U/mg) where U represents µmols of H2 consumed per minute.   
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For the cell density, samples were collected in 4-ml cuvettes and the OD was 

measured at 660 nm using a UV-Vis spectrophotometer. OD is proportional to the cell 

density (~ 0.43 g/L per OD unit) as obtained from a standard calibration chart showing a 

linear range of cell density between 0 to 0.4 OD units.  Samples with an OD greater than 

0.4 units were diluted so that the OD was within the linear range of calibration. 

 
 

5.2.4 Product and Gas Analysis 

Once the cell density and pH were measured, the samples from the reactors were 

centrifuged at 14000 rpm for 10 minutes.  The cell-free supernatant was then analyzed for 

ethanol and acetic acid using a 6890 Gas Chromatograph (Agilent Technologies, 

Wilmington, DE), with a flame ionization detector and an 8 ft Porapak QS 80/100 

column (Alltech, Deerfield, IL).  

Gas samples were taken periodically to measure the CO, CO2, H2 and NO 

concentrations in the inlet and outlet gas streams. Two 6890 Gas Chromatographs 

(Agilent Technologies, Wilmington, DE), each with a TCD, were used to measure CO, 

CO2 and H2. A Chemiluminescence analyzer (Sievers) was used to measure the NO 

concentration.  To convert NO and H2 to aqueous concentrations, aqueous solubilities of 

1.8 mM/atm for NO and 0.78 mM/atm for H2 were used. (Sander 1999). 
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5.3 Results and Discussion 

5.3.1 Effect of Carbon Monoxide on Hydrogenase Activity  

 Table 5.1 shows the average hydrogenase activity with time at each partial 

pressure of CO studied. As the cells in these studies were not exposed to hydrogen, their 

hydrogenase activities were lower than the activities they would have had in the presence 

of hydrogen.  It was observed that at partial pressures above 1 atm, the hydrogenase 

activity dropped as the experiment progressed, leveling off at a lower value. On the other 

hand, at partial pressures of 0.2 and 0.33 atm, the hydrogenase activity increased and then 

leveled off.  The values after the initial decrease or increase (italicized in Table 5.1) were 

averaged and the average was taken to be the specific activity at each value of partial 

pressure.  The drop in the activity could be a result of the inhibition due to the presence 

of high amounts of CO. The inoculum used in these studies was from a batch reactor 

containing very low partial pressures of CO. Therefore, the initial hydrogenase activity of 

the cells could have been higher than when they were exposed to high amounts of CO. At 

very low partial pressures, since there was little inhibition of hydrogenase, there was an 

increase in hydrogenase activity corresponding to cell-growth. In the study with 0.5 atm 

CO, the initial hydrogenase activity was not measured as the cells started growing faster 

than in the other studies. On day 0.7 when the first data point was collected, cell 

concentration was already very high and therefore the hydrogenase activity was 

approximately 1.5 U/mg.  

Figure 5.2 shows the specific activity of hydrogenase (U/mg) as a function of the 

CO partial pressure in the headspace. The figure shows the rapid decrease in the 

hydrogenase activity over a very narrow range of CO partial pressure values, after which 
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2.7 atm CO 1.88 atm CO 1.34 atm CO 1.05 atm CO  

Days 

 

U/mg Days 

 

U/mg Days 

 

U/mg Days 

 

U/mg 

1.6 0.105 0.8 0.402 1.6 0.130 1.0 0.263 

2.6 0.056 1.8 0.078 2.6 0.050 1.8 0.081 

3.6 0.054 2.8 0.075 3.6 0.045 2.8 0.079 

4.6 0.053 3.8 0.036 4.6 0.044 4.0 0.066 

Average 0.054 Average 0.063 Average 0.067 Average 0.075 

        

0.7 atm CO 0.5 atm CO 0.33 atm CO 0.2 atm CO  

Days 

 

U/mg Days 

 

U/mg Days 

 

U/mg Days  U/mg 

1.0 0.386 0.7 1.504 0.9 0.353 0.8 0.529 

1.8 0.244 1.0 1.677 1.6 2.551 1.2 1.233 

2.8 0.372 1.6 1.343 2.8 2.325 1.8 2.530 

3.8 0.523 2.0 1.263 3.6 2.372 2.2 2.560 

Average 0.381 Average 1.447 Average 2.416 Average 2.545 

 

Table 5.1 Hydrogenase specific activities with time at CO partial pressures ranging from 

0.2 atm to 2.7 atm. The average reported in each column is the average of the italicized 

values.  
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Figure 5.2 Effect of CO partial pressure on specific activity of hydrogenase. The average 

values shown in Table 5.1 are plotted versus the partial pressure of CO. The error bars 

represent the standard error (n=3).   
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it levels off at a value just above zero. The hydrogenase activity at a partial pressure of 

0.2 atm was about 2.55 U/mg, whereas; at partial pressures of 1 atm and higher, the  

activity decreased by about 97%. This data indicates that the hydrogenase activity of the 

cells is sacrificed at high partial pressures of CO. Therefore, it may be necessary to select  

an optimal partial pressure of CO in the reactor, which can result in high cell mass 

without compromising the ability of the cells to consume hydrogen.   

 

5.3.2 Effect of Nitric Oxide on Cell-Growth, Hydrogenase Activity and Product 

Distribution 

Studies were conducted at varying concentrations of NO ranging from 40-200 

ppm in the gas phase. Studies were also conducted at 2.5, 5, 10 and 15% H2 to determine 

the effect of the substrate (H2) on the enzyme activity. Figure 5.3 shows the effect of     

40 ppm (0.072 µM) NO on cell growth and hydrogenase activity of Clostridium 

carboxidivorans P7T. Reactor A was not exposed to any NO while Reactor B was 

exposed to 40 ppm NO on a continuous basis. At this level of NO concentration, there 

was no inhibition of cell growth or hydrogenase activity, as seen in Figure 5.3. On the 

other hand, the cells exposed to NO reached a higher concentration than the cells in 

Reactor A. Even though 40 ppm NO had no adverse effect on cell growth or hydrogenase 

activity, the presence of NO changed the product distribution of the cells, as shown in 

Figure 5.4. The cells in Reactor B which were exposed to NO produced much more 

ethanol compared to Reactor A. The ethanol concentration in Reactor B reached a value 

of about 0.23 g/l, while that in Reactor A was less than 0.05 g/l. The difference in the  
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Figure 5.3 Effect of 40 ppm NO on cell concentration and specific activity of 

hydrogenase (U/mg). The cell concentration is represented by solid data points on the left 

y-axis and the specific activity is represented by open data points on the right y-axis. 

Reactor A was a control, which was not exposed to any NO and Reactor B was exposed 

to 40 ppm NO.  
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Figure 5.4 Effect of 40 ppm NO on ethanol and acetic acid concentrations. Reactor A was 

a control, which was not exposed to any NO and Reactor B was exposed to 40 ppm NO.  
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acetic acid concentrations was not as drastic, though the cells exposed to NO produced 

about 1.5 times the acid produced by those in Reactor A.  

At concentrations above 40 ppm, NO had complex effects on the fermentation. In 

all the experiments above 40 ppm NO, an inhibition of initial cell-growth was observed 

in the presence of NO. During these experiments, the gas sources were switched at a later 

time such that NO was introduced to Reactor A (with no initial NO exposure) and 

removed from Reactor B (which was exposed to NO initially). The vertical line shown in 

each figure indicates the time when the gas sources were switched. 

Figures 5.5 and 5.6 show the effects of 80 ppm NO on cell-growth, hydrogenase 

activity and product distribution. As shown in Figure 5.5, Reactor A (with no initial NO 

exposure) had cell-growth within the first day. On Day 2.6, 80 ppm NO was introduced 

into the feed gas stream entering Reactor A, after which the cell concentration increased 

from 0.13 g/l to 0.19 g/l. This indicates that once cells are growing, NO does not inhibit 

cell growth.  In contrast, no cell growth was observed in Reactor B when the cells were 

initially exposed to a continuous stream of 80 ppm NO.  However, once the NO was 

removed on Day 2.6, the cells began to grow indicating that the inhibition of cell growth 

was reversible. Similarly, the specific activity, which is the enzyme activity divided by 

the cell mass increased in Reactor A to a steady value of about 1.84 U/mg, but when the 

cells were exposed to 80 ppm NO, the activity dropped to about 1.48 U/mg. In Reactor B, 

the specific activity was initially zero, but when the NO was removed from the gas feed, 

the activity increased to a value of about 1.6 U/mg. This result indicated that the 

inhibition of hydrogenase activity by NO was also reversible. Figure 5.6 shows the effect 

of NO on the ethanol and acetic acid production. As seen in the previous study, NO  
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Figure 5.5 Effect of 80 ppm NO on the specific activity of hydrogenase (U/mg) and cell 

concentration (g/l). The cell concentration is represented by solid data points on the left 

y-axis and the specific activity is represented by open data points on the right y-axis. 

Reactor A was not exposed to NO initially but was switched to a gas containing 80 ppm 

NO, as shown by the vertical line. Reactor B was initially exposed to 80 ppm NO but the 

NO was removed from the gas feed on day 2.6.  
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Figure 5.6 Effect of 80 ppm NO on the ethanol and acetic acid concentrations.  

The reactors were set-up as described in Figure 5.5 
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increased the ethanol production by the cells. In the presence of NO, the ethanol 

concentration increased from about 0.04 g/l to about 0.2 g/l in Reactor A. On the other  

hand, when NO was removed from Reactor B, the cells began to grow and produced 

approximately the same amount of ethanol that was observed in Reactor A in the absence 

of NO. On switching Reactor A to NO, an increase in acetic acid was also observed, 

which could be associated with the cell-growth in the presence of NO. 

In another study with 80 ppm NO, shown in Figures 5.7 and 5.8, similar effects 

were observed where there was an inhibition of initial cell-growth as well as hydrogenase 

activity presence of NO. The specific activity of hydrogenase decreased from about         

3 U/mg in the absence of NO to approximately 2 U/mg in the presence of 80 ppm NO. In 

Reactor A, the cell concentration increased from 0.13 g/l to 0.18 g/l, while in Reactor B it 

inhibited initial cell-growth but the cells started to grow once NO was removed. The 

effect of product redistribution was also similar to that observed in the previous 

experiments. NO increased the ethanol concentration from 0.1 g/l to about 0.75 g/l and 

the acetic acid concentration from 1.2 g/l to approximately 1.4 g/l.  

Figures 5.9 and 5.10 show the effect of 100 ppm NO on cell-growth, hydrogenase 

activity and product distribution. In this study, the acetic acid concentration decreased 

after the addition of NO to Reactor A. This result was not seen in any other study, as in 

other studies, NO led to an increase in acetic acid concentration. Figures 5.11 and 5.12 

show another study with a 100 ppm NO. Both these studies also showed results similar to 

80 ppm experiments.  

Figures 5.13 and 5.14 present the effect of 100 ppm NO and 2.5% H2 (instead of 

the 5% H2 used in previous experiments) on cell concentration, hydrogenase activity and  
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Figure 5.7 Study 2-effect of 80 ppm NO on the specific activity of hydrogenase (U/mg) 

and cell concentration (g/l). The cell concentration is represented by solid data points on 

the left y-axis and the specific activity is represented by open data points on the right y-

axis. Reactor A was not exposed to NO initially but was switched to a gas containing 80 

ppm NO, as shown by the vertical line. Reactor B was initially exposed to 80 ppm NO 

but the NO was removed from the gas feed on day 2.8. 
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Figure 5.8 Effect of 80 ppm NO on the ethanol and acetic acid concentrations.  

The reactors were set-up as described in Figure 5.7 

 



 112 

 

 

 

Cells-A

Cells B

U/mg-A

U/mg-B

S
p

ec
if

ic
 a

ct
iv

it
y
 U

/m
g

0 2 4 6 8

Days

0.00

0.50

1.00

1.50

2.00

2.50

C
el

l 
co

n
ce

n
tr

at
io

n
 g

/l

Switched gases

0.00

0.05

0.10

0.15

0.20

0.25

Cells-A

Cells B

U/mg-A

U/mg-B

S
p

ec
if

ic
 a

ct
iv

it
y
 U

/m
g

0 2 4 6 8

Days

0.00

0.50

1.00

1.50

2.00

2.50

C
el

l 
co

n
ce

n
tr

at
io

n
 g

/l

Switched gases

0.00

0.05

0.10

0.15

0.20

0.25

0.00

0.05

0.10

0.15

0.20

0.25

 

Figure 5.9 Effect of 100ppm NO on cell-concentration and specific hydrogenase activity. 

Gas sources were switched on Day 3.8.  
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Figure 5.10 Effect of 100 ppm NO on ethanol and acetic acid concentrations. Gas sources 

were switched on Day 3.8. 
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Figure 5.11 Study 2-effect of 100 ppm NO on cell concentration and specific 

hydrogenase activity. Gas sources were switched on Day 2.9.
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Figure 5.12 Study 2-effect of 100 ppm NO on ethanol and acetic acid concentrations. Gas 

sources were switched on Day 2.9. 
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Figure 5.13 Effect of 100 ppm NO and 2.5 % H2 on cell concentration and specific 

hydrogenase activity. Gas sources were switched on Day 1.8. 
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Figure 5.14 Effect of 100 ppm NO and 2.5 % H2 on ethanol and acetic acid 

concentrations. Gas sources were switched on Day 1.8.  
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ethanol and acetic acid concentrations. The results followed a similar trend to the 

previous experiments. Introducing NO into the gas feed of Reactor A increased the cell 

concentration from 0.16 g/l to 0.18 g/l and decreased the hydrogenase activity from about 

3.0 U/mg to 0.5 U/mg. As shown in Figure 5.14, the ethanol concentration increased 

from 0.02 g/l to about 0.08 g/l on switching to NO, while the acetic acid increased from  

0.8 g/l to about 1.3 g/l. The inhibition of initial cell-growth and hydrogenase activity 

observed in Reactor B were reversible in nature as seen in previous studies.   

Another study with 100 ppm NO and 7.5 % H2 is shown in Figures 5.15 and 5.16. 

Introducing NO to Reactor A on day 2.8 led to an increase in cell concentration from 0.11 

g/l to 0.15 g/l, a decrease in hydrogenase activity from 2.6 U/mg to 0.7 U/mg, and an 

increase in ethanol and acetic acid concentrations from 0.02 g/l to 0.1 g/l and 0.9 g/l to 

1.4 g/l, respectively.  

Figures 5.17 and 5.18 show the effect of 130 ppm NO at 5 % H2 concentration. 

On switching  gas sources as described above, the cell concentration in Reactor A 

increased from 0.09 g/l to 0.15 g/l and the hydrogenase activity decreased from 2.6 U/mg 

to about 0.1 U/mg. An increase in ethanol concentration from 0.08 g/l to 0.34 g/l and an 

increase in acid concentration from 0.96 g/l to 1.1 g/l were also observed.  

Figures 5.19 and 5.20 represent a study conducted at 130 ppm NO and 3.25 % H2. 

On introducing NO to Reactor A, the cell concentration increased from 0.13 g/l to      

0.19 g/l and the hydrogenase activity decreased from 2.78 U/mg to about 0.09 U/mg. As 

seen in previous studies, the ethanol concentration increased from 0.02 g/l to 0.09 g/l and 

the acid concentration increased from 1.2 g/l to 1.8 g/l.  
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Figure 5.15 Effect of 100 ppm NO and 7.5 % H2 on cell concentration and specific 

hydrogenase activity. Gas sources were switched on Day 2.8. 
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Figure 5.16 Effect of 100 ppm NO and 7.5 % H2 on ethanol and acetic acid 

concentrations. Gas sources were switched on Day 2.8. 
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Figure 5.17 Effect of 130 ppm NO on cell concentration and specific hydrogenase 

activity. Gas sources were switched on Day 4. 
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Figure 5.18 Effect of 130 ppm NO on ethanol and acetic acid concentrations. Gas sources 

were switched on Day 4. 



 123 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

Days

C
el

l 
co

n
ce

n
tr

at
io

n
 g

/l

0.00

0.50

1.00

1.50

2.00

2.50

3.00

S
p
ec

if
ic

 A
ct

iv
it

y 
U

/m
g

Cells-A

Cells-B

U/mg-A

U/mg-B

Switched gases

0.00

0.05

0.10

0.15

0.20

0.25

0 1 2 3 4 5

Days

C
el

l 
co

n
ce

n
tr

at
io

n
 g

/l

0.00

0.50

1.00

1.50

2.00

2.50

3.00

S
p
ec

if
ic

 A
ct

iv
it

y 
U

/m
g

Cells-A

Cells-B

U/mg-A

U/mg-B

Switched gases

 

Figure 5.19 Effect of 130 ppm NO and 3.25 % H2 on cell concentration and specific 

hydrogenase activity. Gas sources were switched on Day 2.6. 
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Figure 5.20 Effect of 130 ppm NO and 3.25 % H2 on ethanol and acetic acid 

concentrations. Gas sources were switched on Day 2.6.  
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Figure 5.21 Effect of 130 ppm NO and 6.75 % H2 on cell concentration and specific 

hydrogenase activity. Gas sources were switched on Day 3.6. 
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Figure 5.22 Effect of 130 ppm NO and 6.75 % H2 on ethanol and acetic acid 

concentrations. Gas sources were switched on Day 3.6. 
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 The effects of 130 ppm NO and 6.75% H2 are shown in Figures 5.21 and 5.22. The cell 

concentration in Reactor A increased from 0.11 g/l to 0.24 g/l on introducing NO in the 

feed gas. The hydrogenase activity of these cells decreased from 2.7 U/mg to              

0.18 U/mg due to inhibition by NO. The ethanol concentration increased from 0.02 g/l 

before the introduction of NO to about 0.34 g/l after almost 5 days of exposure to NO. 

The increase in ethanol concentration was higher than that observed in previous studies 

possibly due to the fact that this experiment was run longer. As the ethanol concentration 

in the previous studies had not stopped increasing, it is possible that the longer the cells 

are exposed to NO, the more ethanol they can produce. The increase in acetic acid in the 

presence of NO was from 0.8 g/l to about 1.5 g/l, which was also more than that observed 

in previous studies, perhaps due to the same reason.  

Figures 5.23 and 5.24 show the effects of 160 ppm NO at 5% H2 concentration. 

Gas sources were switched while the cells were still in the growth phase, compared to the 

other studies where the switch was made after the cells had reached a steady cell 

concentration.  Therefore, the specific hydrogenase activity of the cells in Reactor A had 

not yet reached its maximum value and was still at 0.8 U/mg when NO was introduced. 

Immediately after the introduction of NO, the specific activity decreased to zero 

indicating that the enzyme was completely inhibited at 160 ppm NO. The cell 

concentration continued to increase even after the introduction of NO and reached a value 

of about 0.11 g/l at the end of the experiment. The cells in Reactor B showed no growth 

after switching the gases, possibly due to the fact that the experiment was not continued 

long enough to observe cell-growth. From the product profile shown in Figure 5.24, it 

can be seen that the ethanol and acid concentrations continued to increase after the 
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Figure 5.23 Effect of 160 ppm NO on cell concentration and specific hydrogenase 

activity. Gas sources were switched on Day 1.8. 
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Figure 5.24 Effect of 160 ppm NO on ethanol and acetic acid concentrations. Gas sources 

were switched on Day 1.8. 
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Figure 5.25 Effect of 160 ppm NO on cell concentration and specific hydrogenase 

activity. Gas sources were switched on Day 4.5 and then switched back on Day 5.8, as 

indicated by the two vertical lines. 
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Figure 5.26 Effect of 160 ppm NO on ethanol and acetic acid concentrations. Gas sources 

were switched on Day 4.5 and then switched back on Day 5.8, as indicated by the two 

vertical lines.  
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addition of NO. Figures 5.25 and 5.26 show another study conducted at 160 ppm NO. In 

this study, gas sources were first switched on day 4.5. After this switch, the hydrogenase 

activity of the cells in Reactor A decreased to zero. The cell concentration did not 

increase significantly on exposure to NO in this case. However, the ethanol concentration 

increased from about 0.02 g/l to 0.16 g/l and acetic acid concentration increased from 

0.92 g/l to about 1.1 g/l. Although the previous experiments in which NO was initially 

exposed to the cells showed that the up-regulation of hydrogenase occurred after the NO 

was removed, the reversibility of activity loss needed to be assessed.  For this, the gases 

were switched back on Day 5.8 (indicated by the second vertical line), so that once again 

there was no NO being fed into Reactor A, while Reactor B was exposed to 160 ppm NO. 

After the second switch, the hydrogenase activity of the cells in Reactor A began to 

increase, indicating that the inhibition was reversible. On the other hand, ethanol 

concentration began to drop while the acid concentration continued to increase.  

Figures 5.27 and 5.28 show the effect of 200 ppm NO on cell-growth, hydrogenase 

activity and product concentrations. The gases were switched twice in this study, similar 

to the previous study with 160 ppm NO. There was a complete inhibition of hydrogenase 

activity due to NO, but when NO was removed, the activity started to increase indicating 

that the inhibition was reversible. In Reactor B, once the NO was removed, the cells 

began to grow, though they reached a lower final concentration compared to Reactor A. 

The hydrogenase activity in Reactor B increased slightly when NO was removed, but 

dropped to zero once the gases were switched back. In Reactor A, the ethanol 

concentration increased from 0.07 g/l to about 0.4 g/l when NO was introduced. 

However, when NO was removed, the ethanol stopped increasing and started to decrease  
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Figure 5.27 Effect of 200 ppm NO on cell concentration and specific hydrogenase 

activity. Gas sources were switched on Day 2.1 and then switched back on day 5.5. 
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Figure 5.28 Effect of 200 ppm NO on ethanol and acetic acid concentrations. Gas sources 

were switched on Day 2.1 and then switched back on day 5.5
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towards the end of the study. The acetic acid increased on exposure to NO from 1.4 g/l to 

1.7 g/l, but then dropped to about 1.2 g/l. This decrease in acid was not observed in 

previous experiments. The acid started to increase once again when the NO was removed 

from Reactor A. In Reactor B the cells began to grow after NO was removed, making 

about 0.1 g/l ethanol. However, once NO was introduced again into Reactor B, the 

ethanol concentration increased to about 0.75 g/l. This was accompanied by a drop in the 

acid concentration from 1.6 g/l to about 0.7 g/l in the last stage of the experiment.  This 

experiment demonstrated that up to a concentration of 200 ppm NO, the inhibition of 

initial cell-growth and hydrogenase activity are reversible. 

 

5.3.3 Effect of Hydrogen on Hydrogenase Activity 

 Apart from varying the hydrogen concentration in the presence of the inhibitor 

(NO), two other studies were conducted at 10 % and 15 % H2 in the absence of NO. 

These studies were carried out to assess the effect of the substrate on the enzyme and also 

to develop the kinetic model discussed in the next section. In these studies, Reactor A 

was used as a control and was sparged with the standard gas mixture containing 5% H2, 

20 % CO, 15 % CO2 and balance N2 as described in Section 2.2. Reactor B was sparged 

with the same composition of CO and CO2 but with 10% and 15 % H2 in each study. The 

results are shown in Table 5.2. It was observed that increasing the hydrogen 

concentration led to an increase in hydrogenase activity. Compared to the control        

(5% H2), cells exposed to 10 % H2 had 1.3 times the hydrogenase activity while cells 

exposed to 15 % H2 had about twice the hydrogenase activity. The product distribution  
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    10 % H2    

  Cells g/l U/mg Ethanol g/l Acetic acid g/l 

Days A B A B A B A B 

0.0 0.0052 0.0047 0.00 0.00 0.003 0.003 0.023 0.023 

1.8 0.0730 0.0658 0.77 0.56 0.014 0.015 0.288 0.272 

2.7 0.1068 0.0937 2.08 2.50 0.040 0.046 0.786 0.591 

3.0 0.1137 0.0961 2.04 2.63 0.040 0.058 0.887 0.712 

3.8 0.1401 0.1191 2.03 2.60 0.039 0.073 1.093 1.053 

    15 % H2    

  Cells g/l U/mg Ethanol g/l Acetic acid g/l 

Days A B A B A B A B 

0.0 0.0129 0.0129 0.00 0.00 0.002 0.002 0.023 0.020 

0.8 0.0117 0.0108 0.00 0.00 0.003 0.003 0.040 0.030 

1.8 0.0661 0.0095 0.00 0.00 0.004 0.002 0.194 0.034 

2.2 0.0920 0.0142 0.50 0.00 0.007 0.002 0.210 0.052 

2.8 0.0996 0.0843 0.92 1.34 0.009 0.013 0.629 0.381 

3.8 0.1185 0.0956 1.57 2.58 0.023 0.025 0.795 0.523 

4.8 0.1325 0.1006 1.30 2.53 0.031 0.067 1.146 0.853 

 

Table 5.2 Effect of hydrogen concentrations on hydrogenase activity (U/mg) and product 

concentrations.  
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also changed with hydrogen concentration. The cells exposed to 10 and 15 % H2 made 

more ethanol and less acetic acid than the cells exposed to 5 % H2.  This could be  

connected to the higher hydrogenase activities of the cells exposed to higher amounts of 

hydrogen.  

 

5.3.4 Hydrogenase Kinetic Model – Inhibition by Nitric Oxide  

To assess the hydrogenase kinetic model in the presence of NO, Figure 5.29 

shows the double reciprocal plot of 1/v vs. 1/[H2] where v is the hydrogenase activity 

(µmoles min-1 mg-1). To appropriately compare the hydrogenase activity between 

experiments, activities plotted in Figure 5.29 were obtained by dividing the activity by 

the maximum activity observed in Reactor A in the absence of NO (e.g. Figure 5.19, the 

maximum activity is shown at 2.6 days for Reactor A) and then multiplying by the 

average of the maximum activities observed in Reactor A for all experiments.  The plot is 

shown for NO concentrations of 0, 0.18 µM (100 ppm), and 0.234 µM (130 ppm) and 

aqueous H2 concentrations varying from 18-110 µM (2.5-15% in the gas phase). The 

three lines converged on the negative x-axis, indicating a non-competitive inhibition of 

the enzyme. 

Equation 5.1, which was derived by combining a typical model for allosteric 

enzymes (Shuler and Kargi 1992)  with the non-competitive enzyme inhibition model 

(Roberts 1977), characterizes the hydrogenase activity in the presence of inhibition by 

NO:   
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Figure 5.29 Double reciprocal plot of 1/v vs. 1/[H2] where v is the hydrogenase activity 

(µmoles min-1 mg-1). The studies conducted at 0, 100 ppm (0.18µM) and 130 ppm    

(0.234 µM) NO are shown here. The solid line represents the model discussed in 

equations 5.1 and 5.2.
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where Vm represents the maximum hydrogenase activity (under the experimental 

conditions of this study), Km is the Michaelis constant for H2, KNO is the inhibition 

constant for NO, and h is a constant for allosteric enzymes that generally refers to the  

number of interactive binding sites with the inhibitor.  Equation 5.1 is the model shown 

in Figure 5.29.   

 
The double-reciprocal plot for Equation 5.1 is:      
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Regression analysis of the data in Figure 5.29, as applied to Equation 5.2, resulted in Km 

= 37.4 ± 2.3 µM, Vm = 4.8 ± 2.0 U/mg, h = 6.1 ± 0.25 and KNO = 0.141 ± 0.001 µM (95% 

confidence intervals). Therefore, it appears that NO interacts with up to six sites on the 

enzyme if NO binds as a first-order reaction (Hyman MR 1988).  NO can also interact 

with many species as a second-order reaction (Davis 2001) and thus the interaction sites 

would be ½ of h or three sites.  The possibility of multiple sites of inhibitor-binding has 

been addressed by Hyman and Arp (Hyman MR 1991), who suggested that NO interacts 

with at least two distinct hydrogenase sites in A. vinelandii, possibly at the Fe-S centers. 

Other types of non-linear inhibition models include parabolic and hyperbolic inhibitions 

(Blanchard and Waldrop 1998; Roberts 1977).  Further, it has also been observed that 
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certain hydrogenases, like the Fe-only hydrogenase of Clostridium pasteurianum, have 

up to five distinct [Fe-S] clusters (Peters et al. 1998). Therefore, numerous binding sites 

for NO are feasible although the details of hydrogenase binding domains for Clostridium 

carboxidivorans P7T have not been assessed.  The Km value of 37.4 µM for H2 is similar 

to the literature value of 37 µM (Schneider K 1976) for a study conducted on the 

hydrogenase of A .eutrophus H16 in the absence of any inhibitor.  

Figure 5.30 presents the percent inhibition of the hydrogenase enzyme with 

varying concentrations of NO and hydrogen. The solid line represents the model fit to 

Equation 5.1 in which % inhibition is the activity (vNO) in the presence of NO divided by 

the specific activity in the absence of NO i.e., vNO/v. The plot indicates that NO is a 

potent inhibitor of hydrogenase activity and that almost the entire inhibition occurs in a 

very narrow range of NO concentrations. Below 40 ppm NO, there was no inhibition of 

the hydrogenase, and above 160 ppm NO, there was almost complete inhibition.  

 

5.4 Conclusions 

The studies conducted with varying concentrations of NO and with varying partial 

pressures of CO showed certain pronounced effects of both gases on the microbial 

catalyst and the fermentation. These effects can be summarized as follows: 

• Hydrogenase inhibition by CO: At partial pressures of more than 1 atm CO, the 

hydrogenase activity decreased by almost 97 % compared to that at lower partial  
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Figure 5.30 Percent inhibition of the hydrogenase enzyme with varying 

concentrations of NO and hydrogen. The solid line represents the model fit to 

Equation 5.1 in which % inhibition is the activity (vNO) in the presence of NO divided 

by the specific activity in the absence of NO (vNO/v). 
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pressures. This indicates the range of CO partial pressures that can be used without 

compromising the hydrogenase activity.  

• Hydrogenase inhibition by NO:  The presence of NO at concentrations above 40 

ppm led to a reversible inhibition of hydrogenase activity. The inhibition was 

non-competitive in nature, as discussed in Section 5.3.4. 

• Initial cell-growth inhibition by NO: At concentrations above 80 ppm, NO 

inhibited initial cell-growth, i.e., the cells could not start growing in the presence  

 of NO. However, when NO was introduced after the cells started growing, there 

was no inhibition.  

• Product redistribution by NO: At all concentrations tested, NO increased the 

ethanol concentration by approximately 5-7 times and the acetic acid 

concentration by 1.1-1.5 times. 

 

The rapid increase in the ethanol concentration following exposure to NO 

suggests that NO plays a role in the up-regulation of ethanol production.  Since the onset 

of solventogenesis is often associated with the onset of sporulation (Durre and 

Hollergschwandner 2004), it is feasible that NO promotes solventogenesis and 

sporulation may eventually occur.  Interestingly, the increase in ethanol concentration 

was a result also seen in previous studies with biomass-generated synthesis gas (Datar et 

al. 2004) indicating that NO may also be the cause of the product redistribution seen in 

the presence of synthesis gas.  Thus, it appears that NO affects both the hydrogenase 

enzyme and the product re-distribution.  Chapter 6 discusses the effects of NO on alcohol 

dehydrogenase, an enzyme utilized between acetyl CoA and ethanol (see Figure 5.1).    
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Though it is desirable for cells to produce high amounts of ethanol, the presence 

of NO in synthesis gas may not be entirely advantageous. As NO inhibits the 

hydrogenase activity, electrons for ethanol formation must come from CO rather than H2, 

thus reducing the available carbon for product formation. This would reduce the carbon 

conversion efficiency of the process. Another problem that arises in the presence of NO 

is the initial growth inhibition.  Removal of NO from the synthesis gas may therefore 

alleviate these problems and allow the H2 to supply the required electrons. The reduction 

in NO could be done either by increasing the efficiency of the gasification system to 

eliminate any combustion that may be occurring (NO is produced during combustion but 

not gasification) (West et al. 2005) or by scavenging NO using sodium hypochlorite, 

potassium permanganate, or sodium hydroxide (Brogren et al. 1997; Chu et al. 2001; 

Sada et al. 1978). Nevertheless, this study shows that NO concentrations below 40 ppm 

have no effect on hydrogenase activity of C.  carboxidivorans P7T.
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CHAPTER 6 

 

METABOLIC REGULATION OF C. CARBOXIDIVORANS P7
T
: EFFECTS ON 

ALCOHOL DEHYDROGENASE 

 

6.1 Introduction  

 Clostridium carboxidivorans P7T is a strictly anaerobic acetogen that uses the 

acetyl-CoA pathway for its metabolism. Chapter 2 outlines the acetyl-CoA pathway and 

describes the role of key enzymes. Acetogens typically display a “biphasic fermentation 

pattern” (Girbal et al. 1995b). During exponential growth, acetogens produce high 

amounts of acetate and butyrate (acetogenesis or acidogenesis); and when the growth 

slows down, they produce alcohols such as ethanol and butanol (solventogenesis). Acid 

production is favored during cell-growth as it leads to the generation of ATP, which 

provides cellular energy. When the organism has sufficient energy, the metabolism 

switches to solventogenesis. Several researchers have tried to predict and control the 

onset of solventogenesis. Factors like pH, ATP levels, acid concentration, sporulation, 

availability of reducing energy and iron-limitation among others have been found to 

influence alcohol production by clostridia (Adler and Crow 1987; Durre et al. 1995; 

Durre and Hollergschwandner 2004; Girbal et al. 1995a; Girbal et al. 1995b; Gottschal 

and Morris 1981; Guedon et al. 1999; Meyer and Papoutsakis 1989). These factors can be 
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used to regulate the metabolic pathway towards solventogenesis in order to increase 

ethanol yields during fermentation.  

In the solventogenic branch of the pathway, acetyl CoA is first converted to 

acetaldehyde by the action of aldehyde dehydrogenase and acetaldehyde is then 

converted to ethanol by the action of alcohol dehydrogenase (ADH) as shown by 

equations 6.1 and 6.2.  

 

SHCoANADdeAcetaldehyHNADHCoAAcetyl −++→++−
++

                   (6.1) 
 

 
++

+→++ NADEthanolHNADHdeAcetaldehy                                                 (6.2) 
 

Therefore, the ethanol-forming branch of the pathway requires reducing energy in the 

form of NADH. However, the NAD+ formed in the above reactions then needs to be 

regenerated to NADH for the reactions to proceed. This is typically carried out with the 

help of reduced Ferredoxin (FdH2) as shown in equation 6.3 (Rao and Mutharasan 1989).  

  

FdNADHFdHNAD 2 +⇔+
+

                                                                       (6.3) 
 

This reaction is reversible, and depending on the culture conditions, either FdH2 or 

NADH may form(Rao and Mutharasan 1987). Artificial electron carriers like neutral red 

(Girbal et al. 1995a; Girbal et al. 1995b), methyl viologen (Peguin 1994; Peguin and 

Soucaille 1995; Rao 1986), and benzyl viologen (Rao and Mutharasan 1987) can replace 

the natural electron carrier (Fd) and provide electrons to NAD+, thereby reducing NAD+ 

to NADH and regulating the pathway towards solventogenesis. Muthasaran et al. (1987) 

observed that the addition of a viologen dye to an acidogenic culture led to an immediate 

reduction of the dye, an increase in alcohol and decrease in acid production by a culture 
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of C. acetobutylicum (Rao and Mutharasan 1987). Girbal et al. (1995b) proposed that the 

increased alcohol production upon addition of neutral red was due to a simultaneous 

utilization of ferredoxin and the dye, which resulted in a pool of NADH. 

 Artificial electron carriers have only been studied in glucose-based media. The 

effects of adding electron carriers have not been assessed in the case of syngas 

fermentation. This chapter describes the effect of neutral red on product distribution and 

ADH activity in C. carboxidivorans P7T cultures grown on a CO/CO2 gas mixture and 

synthetic syngas. In chapter 5, the effect of nitric oxide on product distribution was 

discussed. It was seen that nitric oxide caused an increase in ethanol production during 

syngas fermentation. This chapter also describes studies conducted to further the 

understanding of this effect, by monitoring ADH activities in the presence of NO.  

 

6.2 Materials and Methods 

6.2.1 Microbial Catalyst and Culture Medium 

Clostridium carboxidivorans P7T was the microbial catalyst used for fermentation 

of syngas.  The bacterium was grown under strictly anaerobic conditions in a medium 

containing (per liter) 30 ml mineral stock solution, 10 ml trace metal stock solution, 10 

ml vitamin stock solution, 0.5 g yeast extract, 5 g morpholinoethanesulfonic acid (MES), 

and 10 ml of 4% cysteine-sulfide solution.  Resazurin solution (0.1%) was added as a 

redox indicator.  The composition of the mineral, vitamin and trace metal stock solutions 

was the same as that described in chapter 3.  
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6.2.2 Batch Studies 

Batch experiments were conducted in 250-ml serum bottles with 100 ml of liquid 

media to assess the effects of neutral red on cell growth, pH and product formation. As 

there was no external pH control in the batch studies, a higher amount of MES buffer was 

used in batch, than in chemostat studies.  The media was boiled and purged with nitrogen 

for 5 minutes to remove oxygen and then sterilized in an autoclave (Primus Sterilizer Co. 

Inc.) at 121°C for 20 minutes. The bottles were allowed to cool and the headspace was 

again purged with N2 for approximately 1 minute.  Cysteine sulfide (1 ml) was added to 

scavenge any remaining dissolved oxygen and the reactors were pressurized with a 

mixture of 80% CO and 20% CO2 at 10 psig.  Reactors were then inoculated with 1 ml 

inoculum and placed at 37°C in a shaker (Innova 2100, New Brunswick Scientific).  

After the cells started growing, neutral red (Sigma-Aldrich Inc., St. Louis, MO) was 

added to one set of reactors through a 0.2-µm sterile filter. Studies were carried out with 

0.1 mM, 0.2 mM, 0.4 mM and 1 mM neutral red. In one study, 0.1 mM NADH (Sigma-

Aldrich Inc., St. Louis, MO) was added to one set of reactors. This was done to determine 

whether the addition of NADH to the media would result in an increased ethanol 

production, as the cells require NADH in the solventogenic branch. All studies were 

performed in triplicate and had one set of controls with no neutral red or NADH.  Cell-

concentration, pH and products were measured at regular time intervals for all the 

reactors.  
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6.2.3 Semi-Batch Studies 

Experiments to monitor ADH activity in the presence of neutral red and nitric 

oxide were conducted in 500-mlCytostir® cell culture flasks (Kontes/Kimble Glass Inc., 

Vineland, NJ) with two sampling arms.  Each sampling arm contained a rubber stopper 

for inoculation, sampling, and gas sparging.  One liter of media, excluding the cysteine-

sulfide, was prepared and equally distributed into both reactors, following which the 

reactors were autoclaved at 121°C for 20 minutes.  After cooling, the media was 

continuously purged with N2 to provide an anaerobic environment.  The reactors were 

then placed in a water bath maintained at 37°C.  The water bath was a rectangular 

propylene tank fitted with a circulating thermostat unit (Model 1112, VWR International, 

West Chester, PA). The water bath was placed on magnetic stir plates to provide 

agitation.  The water-bath level was always maintained such that the liquid level in the 

reactors was always below that of the water bath. Following the presence of an anaerobic 

environment, continuous gas sparging of the feed gases at 10 ml/min was initiated via the 

use of 18G luer needles for the inlet and outlet.  

For the experiments with neutral red, Reactors A (control) and B were sparged 

with a gas mixture containing 20% CO, 15% CO2, 5% H2 and balance N2 (Air Liquide, 

Houston, TX). After the cells started growing, 0.1 mM and 0.2 mM filter-sterilized 

neutral red was added to Reactor B in each study.  

For the experiments with nitric oxide, Reactor A (control) was initially sparged 

with synthetic syngas containing 20% CO, 15% CO2, 5% H2 and balance N2 (Air 

Liquide, Houston, TX).  Reactor B was initially sparged with 20% CO, 15% CO2, and 

5% H2 with 100 ppm of NO and balance N2. Combinations of gas cylinders containing 
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CO, CO2, H2, N2 and NO were mixed using mass flow controllers to obtain the 

appropriate concentrations.  Cysteine-sulfide (5 ml) was then added to each reactor to 

scavenge any remaining dissolved oxygen.  Finally, 5 ml of inoculum was added to each 

reactor. Since the presence of 100 ppm NO inhibited initial cell-growth, the gas sources 

were switched once the cell-concentration reached a steady state in Reactor A. In one 

study, both reactors were started on the same gas mixture (without NO) and then         

100 ppm NO was added to Reactor B after the cell concentration stabilized.  

For all the experiments described above, samples (1.5 ml) were taken periodically 

from each reactor to measure the OD, pH, and product concentrations.   Samples for 

ADH activity (0.4-0.6 ml) were also obtained.  

 

6.2.4 Alcohol Dehydrogenase Assays 

 Equation 6.2 indicates the reaction carried out by alcohol dehydrogenase. ADH 

activities were measured in both forward and reverse directions.  Acetaldehyde was used 

as the substrate for the forward assay and ethanol was used for the reverse assay. In both 

cases, triton X-100 was used to permeabilize the cell membranes, as these assays were 

carried out with whole cell-broth. The forward assay buffer contained 0.4 ml 1M Tris-

HCl, 0.5 ml 0.08 M dithiothreitol, 0.1 ml 5% v/v triton X-100, 0.12 ml 0.01 M NADH, 

0.4 ml  0.1 M acetaldehyde and 1.5 ml degassed DI water (adapted from (Sridhar et al. 

2000)). All chemicals were purchased from Sigma-Aldrich Inc., St. Louis, MO. The 

reverse assay buffer contained 0.4 ml 1M Tris-HCl, 0.2 ml 0.04 M benzyl viologen, 

0.1ml 5% v/v triton X-100, 0.2 ml 0.04 M dithiothreitol, 0.2 ml of 0.04 mM ethanol and  

3 ml degassed DI water.  
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All the above reagents, except for dithiothreitol and NADH, were prepared and 

stored in an anaerobic glove box (Coy Laboratory Products Inc., Grass Lake, MI). 

Dithiothreitol and NADH were freshly prepared each day as they are both unstable in 

water.  Within the anaerobic chamber, the reagents were added in the above quantities to 

a 4.5-ml optical glass cuvette (Starna Cells Inc., Atascadero, CA) fitted with 10-mm 

screw caps (SCHOTT Corp., Yonkers, NY) and 13-mm butyl rubber stoppers (Bellco 

Glass Inc., Vineland, NJ). The cuvette was then removed from the chamber and purged 

with 100% N2 for approximately one minute, using a 23 G long stainless steel needle as 

the inlet and a short 22 G needle as the outlet.   The cuvette was placed in a 30°C 

receptacle of a spectrophotometer (Varian Inc., Palo Alto, CA).  A gas-tight syringe was 

used to transport approximately 0.5 ml of anoxic broth from the reactor to the cuvette, 

after which the cuvette was shaken vigorously, placed in the spectrophotometer, and the 

absorbance (Abs) recorded every 0.5 seconds. For the forward assay, the wavelength was 

set to 340 nm and for the reverse assay it was set to 546 nm.  

The concentration (C) of NAD+ or reduced benzyl viologen was obtained from 

Beer’s law: C=Abs/(ε·b), where b is the cuvette path length (1 cm) and є is the extinction 

coefficient for NADH (6.22 mM-1cm-1 at 340 nm) in the forward assay and for benzyl 

viologen (7.55 mM-1cm-1 at 546 nm) in the reverse assay. The maximum rate of reaction 

(R) was calculated from the linear slope of the initial portion of the curve following the 

short lag phase (R=∆C/∆t).  R was finally divided by the measured cell mass and 

converted into specific activity (U/mg) where U represents µmols of ethanol or 

acetaldehyde consumed per minute.   
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For the cell density, samples were collected in 4-ml cuvettes and the OD was 

measured at 660 nm using a UV-Vis spectrophotometer. The optical density (OD) is 

proportional to the cell density (~ 0.43 g/l per OD unit (Datar 2003)) as obtained from a 

standard calibration chart showing a linear range of cell density between 0 to 0.4 OD 

units.  Samples with an OD greater than 0.4 units were diluted so that the OD was within 

the linear range of calibration. The cell density was the multiplied by the volume of broth 

injected to obtain the cell mass. 

 
 

6.2.5 Product and Gas Analysis 

Once the cell density and pH were measured, the samples from the reactors were 

centrifuged at 14000 rpm for 10 minutes.  The cell-free supernatant was then analyzed for 

ethanol and acetic acid using a 6890 Gas Chromatograph (Agilent Technologies, 

Wilmington, DE), with a flame ionization detector and an 8-ft Porapak QS 80/100 

column (Alltech, Deerfield, IL).  

Gas samples were taken periodically to measure the CO, CO2, H2 and NO 

concentrations in the inlet and outlet gas streams. Two 6890 Gas Chromatographs 

(Agilent Technologies, Wilmington, DE), each with a TCD, were used to measure CO, 

CO2 and H2. A Chemiluminescence analyzer (Sievers) was used to measure the NO 

concentration.   
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6.3 Results and Discussion 

6.3.1 Batch Studies –Effect of Neutral Red 

 Batch studies were conducted with 0.1, 0.2, 0.4 and 1mM neutral red and with 

0.1mM NADH. All batch studies were in triplicate and are referred to as Set A (control), 

Set B (neutral red studies) and Set C (NADH studies), where each set consisted of three 

reactors. Figure 6.1 shows the cell concentration profile for the batch studies. The error 

bars shown in the figures indicate the standard error calculated from the standard 

deviation of the date from the three reactors in each set. Set A was a control, while       

0.1 mM neutral red was added to Set B and 0.1 mM NADH was added to Set C on      

Day 1.6. The figure indicates that neither of the compounds had any effect on cell growth 

or pH. The amount of ethanol produced per cell mass is shown in Figure 6.2. All the 

reactors showed similar amounts of ethanol until Day 1.6 when NADH and neutral red 

were added to the respective reactors. On adding neutral red, the average value of ethanol 

increased from 0.05 g/g cells to about 0.2 g/g cells in Set A. The addition of NADH had 

no effect on ethanol production as Set A and Set C remained at 0.05 g/g cells. Figure 6.3 

shows the acetic acid per cell mass. All sets of reactors had similar profiles, indicating 

that neutral red and NADH had no effect on acetic acid production by the cells.  

 Figures 6.4 and 6.5 show the cell concentration and product profiles in a batch 

study with 0.2 mM neutral red. The pH could not be recorded during this study due to a 

malfunction of the pH probe. Neutral red was added on Day 2.6. As shown in Figure 6.4, 

there was no effect of neutral red on cell-growth. The cell concentration reached an 

average steady concentration of 0.16 g/l in both sets of reactors. However, as shown in 

Figure 6.5, addition of neutral red caused the ethanol concentration to increase
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Figure 6.1 Cell concentration and pH profiles in the presence of 0.1mM neutral red (B) 

and 0.1mM NADH (C). Set A was the control with no neutral red or NADH. The error 

bars represent standard error (n=3). 



 154 

 

 

 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4

Days

E
th

an
o

l 
g
/ 

g
 c

el
ls

A

C

B

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 1 2 3 4

Days

E
th

an
o

l 
g
/ 

g
 c

el
ls

A

C

B

A

C

B

 

Figure 6.2 Ethanol per cell mass (g/g). Set A consisted of three control reactors.  The 

vertical line represents the time at which 0.1 mM neutral red was added to Set B and 0.1 

mM NADH was added to Set C. The error bars represents standard error (n=3). 
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Figure 6.3 Acetic acid per cell mass (g/g). Set A consisted of three control reactors.  The 

vertical line represents the time at which 0.1 mM neutral red was added to Set B and     

0.1 mM NADH was added to Set C. The error bars represents standard error (n=3). 
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Figure 6.4 Effect of 0.2 mM neutral red on cell-growth. The error bars represent the 

standard error (n=3) and the vertical line represents the time at which neutral red was 

added to the reactors in Set B. 
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Figure 6.5 Ethanol and acetic acid per cell mass (g/g). The error bars represent the 

standard error (n=3). The vertical line represents the time at which neutral red was added 

to Set B.  
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in Set B from 0.02 g/g cells to about 0.15 g/ g cells. The ethanol in Set A with no neutral 

red remained at 0.02 g/g cells. As seen previously, there was no significant difference in 

the acetic acid concentrations between Sets A and B. In both sets of reactors, the acetic 

acid increased from 1 g/g cells to about 6 g/g cells on an average.  

 Figure 6.6 presents the cell concentration profile in the presence of 0.1 mM (Set 

B), 0.4 mM (Set C) and 1 mM (Set D) neutral red. Set A represents the control reactors 

with no neutral red. Neutral red was added to the reactors on day 1.6, as indicated by the 

vertical line. The profile indicates that neutral red had no effect on the cell concentration. 

Figure 6.7 shows the effect of neutral red on pH. Set A and Set B showed similar pH 

profiles, starting at an initial pH of about 6.0 and reaching a final pH of approximately 

4.9 during the fermentation. However, in the presence of 0.4 mM and 1 mM neutral red, 

the final pH values were higher than the control at 5.1 and 5.3 respectively. Figures 6.8 

and 6.9 show the ethanol and acetic acid profiles in the presence of neutral red. As seen 

in previous studies, the addition of neutral red increased the ethanol production. 

However, this study clearly indicated that with increasing amounts of neutral red, the 

ethanol produced per cell mass also increased. The final ethanol concentrations per cell 

mass at 0, 0.1, 0.4 and 1 mM neutral red were 0.39 g/g cells, 0.67 g/g cells, 0.96 g/g cells 

and 1.92 g/g cells, respectively. On the other hand, the acetic acid concentrations 

decreased with increasing amounts of neutral red. The final acid concentrations per cell 

mass at 0, 0.1, 0.4 and 1 mM neutral red were 11.8 g/g cells, 10.4 g/g cells, 7.2 g/g cells 

and 4.9 g/g cells respectively. This indicated that neutral red altered the electron flow 

from acid production towards ethanol production by C. carboxidivorans P7T.  
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Figure 6.6 Effect of 0.1mM, 0.4mM and 1mM neutral red on cell concentration. The 

vertical line represents the time at which neutral red was added to Sets B, C and D. Set A 

was the control with no neutral red. The error bars represent the standard error (n=3).
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Figure 6.7 Effect of 0.1 mM (B), 0.4 mM(C) and 1 mM (D) neutral red on pH. Set A was 

a control with no neutral red. The vertical line represents the time at which neutral red 

was added. The error bars represent the standard error (n=3). 
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Figure 6.8 Effect of 0.1 mM (B), 0.4 mM(C) and 1 mM (D) neutral red on ethanol per 

cell mass (g/g). Set A was a control with no neutral red. The vertical line represents the 

time at which neutral red was added. The error bars represent the standard error (n=3). 
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Figure 6.9 Effect of 0.1 mM (B), 0.4 mM(C) and 1 mM (D) neutral red on acetic acid per 

cell mass (g/g). Set A was a control with no neutral red. The vertical line represents the 

time at which neutral red was added. The error bars represent the standard error (n=3). 
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6.3.2 Semi-Batch Studies – Effect of Neutral Red 

 Semi-batch studies (batch liquid and continuous gas) were conducted to determine 

the effect of neutral red on ADH activity. In these studies, neutral red was added to 

Reactor B after the cells started growing. Reactor A was a control with no neutral red. 

Figure 6.10 shows the cell-concentration and pH profiles in the presence of 0.1mM 

neutral red in a 500-ml reactor. As shown in the figure, the cells in Reactor A 

experienced earlier growth and a higher final concentration than those in Reactor B. This 

difference in growth may not have been due to neutral red since it was not observed in 

any of the other studies. Neutral red was added to Reactor B on day 5.6, after which, the 

cell concentration increased from 0.1 g/l to 0.12 g/l, though the cell-concentration was 

still lower than that of Reactor A (0.16 g/l). Even though this difference in cell-growth 

may seem like an effect of adding neutral red, this effect was not observed in any of the 

other experiments indicating that this may have been an anomaly. Moreover, from the 

growth curve, the difference in cell-concentration can be observed even before the 

addition of neutral red. The pH profile followed the cell-growth profile in each reactor. 

The pH in Reactor A started dropping earlier than that in Reactor B. Reactor A reached a 

final pH of 5.35 and Reactor B reached a final pH of about 5.4.  

Figure 6.11 shows the forward and reverse ADH activities during the 

fermentation. The forward activity is represented by ‘ADH f’ and the reverse activity is 

represented by ‘ADH r’ on the y-axes. The reverse ADH activity of Reactor A increased 

to a maximum of 1.88 U/mg on day 4.6 and then dropped to a final value of about       

1.46 U/mg subsequently. As the reverse ADH activity dropped, the forward ADH activity 

increased in Reactor A, reaching a final value of 0.08 U/mg on day 9.6. In Reactor B, the 



 164 

 

 

 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 2 4 6 8 10 12

Days

C
el

l 
co

n
ce

nt
ra

ti
o

n
 g

/l

4.50

4.70

4.90

5.10

5.30

5.50

5.70

5.90

6.10

6.30

p
H

Cells-A

Cells-B

pH-A

pH-B

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 2 4 6 8 10 12

Days

C
el

l 
co

n
ce

nt
ra

ti
o

n
 g

/l

4.50

4.70

4.90

5.10

5.30

5.50

5.70

5.90

6.10

6.30

p
H

Cells-A

Cells-B

pH-A

pH-B

Cells-A

Cells-B

pH-A

pH-B

 

Figure 6.10 Semi-batch study with 0.1 mM neutral red-effect on cell concentration and 

pH. Reactor A was a control and neutral red was added to Reactor B on Day 5.6, as 

indicated by the vertical line. 
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Figure 6.11 Effect of neutral red on ADH activities. The reactors are described in Figure 

6.10. The vertical line represents the time at which neutral red was added to Reactor B.  



 166 

reverse ADH activity increased to about 2 U/mg on day 5.6, at which point, neutral red 

was added to the reactor. The activity then dropped to about 0.46 U/mg in the next two 

days and remained at that level. On the other hand, the forward ADH activity started 

increasing a lot more than what was seen in Reactor A. The final activity in Reactor B 

reached approximately 0.48 U/mg. This indicated that neutral red caused the reverse 

ADH activity to decrease and forward ADH activity to increase. In both reactors, the 

forward ADH activity seemed to increase concurrently with the decrease in the reverse 

ADH activity. However, in the presence of neutral red, the change in the activities was 

more significant. This finding also agrees with the increase in ethanol concentration upon 

addition of neutral red as seen in Figure 6.12. The ethanol per cell mass in the presence of 

neutral red (Reactor B) increased to about 6.6 g/g cells, while that in Reactor A increased 

to about 3 g/g cells on day 9.6. The acetic acid concentrations increased to final values of 

about 7 and 6.7 g/g cells in reactors A and B, respectively. Figure 6.13 shows the cell-

concentration and pH profiles in the presence of 0.2 mM neutral red. Neutral red was 

added on day 2.8, and as the figure shows, there was no effect of neutral red on cell-

growth. The cell concentration in both reactors reached a maximum value of about      

0.16 g/l and the pH dropped from 6.05 to about 5.08 in Reactor A and 5.19 in Reactor B. 

The ADH activities are shown in Figure 6.14. In both reactors, the reverse ADH activities 

increased to approximately 0.58 U/mg on day 3.8, after which the activities decreased in 

both reactors. In Reactor A, the activity dropped to about 0.25 U/mg, while in Reactor B 

(with neutral red), it decreased completely to zero. The forward ADH activities increased 

with the decrease in reverse activities reaching final values of 0.1 U/mg and 0.5 U/mg in 

reactors A and B respectively. This result was similar to that of the previous study 
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Figure 6.12 Effect of neutral red on products. The reactors are described in Figure 6.10. 

The vertical line represents the time at which neutral red was added to Reactor B. 
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Figure 6.13 Semi-batch study with 0.2 mM neutral red-effect on cell concentration and 

pH. Reactor A was a control and neutral red was added to Reactor B on Day 2.8, as 

indicated by the vertical line. 



 169 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

Days

U
/m

g

ADH-f-A

ADH-f-B

ADH-r-A

ADH-r-B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 1 2 3 4 5 6 7 8 9

Days

U
/m

g

ADH-f-A

ADH-f-B

ADH-r-A

ADH-r-B

 

Figure 6.14 Effect of 0.2 mM neutral red on ADH activities. The reactors are described in 

Figure 6.13. The vertical line shows the time at which neutral red was added to Reactor 

B.  
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with 0.1 mM neutral red. As shown in Figure 6.15, on adding neutral red, the ethanol in 

Reactor B increased from 0.25 g/g cells to about 2.38 g/g cells while that in Reactor A 

reached a maximum of 0.94 g/g cells. The final acetic acid concentration in Reactor A 

was 19.4 g/g cells while in Reactor B, it was 18 g/g cells.  

 A similar study with 0.2 mM neutral red is shown in Figures 6.16, 6.17 and 6.18. 

The cell concentration and pH profiles are shown in Figure 6.16. The final cell-

concentrations on day 5 were 0.163 g/l and 0.155 g/l in reactors A and B, respectively 

while the pH values were 5.24 and 5.3 respectively. Figure 6.17 shows the ADH 

activities during the study. As seen before, the reverse ADH activity in Reactor B 

decreased rapidly towards zero after the addition of neutral red. The activity in Reactor A 

decreased from its maximum value of 1.46 U/mg to about 0.6 U/mg. The forward ADH 

activity of the cells in Reactor A increased to about 0.04 U/mg while that in Reactor B 

increased to about 0.13 U/mg after the addition of neutral red. The product profiles were 

also similar to the previous results observed, as shown in Figure 6.18. After adding 

neutral red, the ethanol increased from 0.5 to 4.9 g/g ethanol in Reactor B while the 

ethanol in Reactor A increased from 0.49 to 1.8 g/g cells. The final acetic acid 

concentrations were 14g/g cells and 9.8 g/g cells in reactors A and B, respectively.  

 The studies described above showed that neutral red increased the ethanol 

concentration and decreased the acetic acid concentration. The enzyme assays showed 

that the forward ADH activity increased on addition of neutral red, which agrees with the 

result of increased ethanol formation. 
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Figure 6.15 Effect of 0.2 mM neutral red on products. The reactors are described in 

Figure 6.13. The vertical line shows the time at which neutral red was added to Reactor 

B. 
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Figure 6.16 Semi-batch study with 0.2 mM neutral red-effect on cell concentration and 

pH. Reactor A was a control and neutral red was added to Reactor B on Day 1.8, as 

indicated by the vertical line. 



 173 

 

 

 

 

Days

A
D

H
 f

 U
/m

g

A
D

H
 r

 U
/m

g
 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 2 3 4 5 6
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60
ADH f-A

ADH f-B

ADH r-A

ADH r-B

Days

A
D

H
 f

 U
/m

g

A
D

H
 r

 U
/m

g
 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 1 2 3 4 5 6
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60
ADH f-A

ADH f-B

ADH r-A

ADH r-B

ADH f-A

ADH f-B

ADH r-A

ADH r-B

 

Figure 6.17 Effect of 0.2 mM neutral red on ADH activities. The reactors are described in 

Figure 6.16. The vertical line shows the time at which neutral red was added to Reactor 

B. 
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Figure 6.18 Effect of 0.2 mM neutral red on products. The reactors are described in 

Figure 6.16. The vertical line shows the time at which neutral red was added to Reactor 

B.  
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6.3.3 Semi-Batch Studies-Effect of Nitric Oxide 

 Chapter 5 describes the effects of NO on product distribution during syngas 

fermentation. It was observed that NO increased the ethanol production by the cells. 

Three studies were conducted to determine the effect of NO on ADH activities. NO at 

100 ppm was tested in all the studies. Figure 6.19 describes the effect of NO on cell-

growth and pH. Reactor A was initially exposed to synthetic syngas while Reactor B was 

exposed to synthetic syngas with 100 ppm NO. On day 4.8, the gases were switched such 

that Reactor A was now exposed to NO and Reactor B was not. As discussed in Chapter 

5, the cells in Reactor B did not grow in the presence of NO, therefore, the pH remained 

at the initial value of 6.0, dropping slightly to 5.9 on day 7.8 when cell-growth 

commenced after removal of NO. In Reactor A, the cells grew and reached a 

concentration of 0.15 g/l, and increased to 0.17 g/l after introducing NO. The pH in this 

reactor decreased from 6.0 to about 5.3. Figure 6.20 shows the effect of NO on ADH 

activities. Both the forward and reverse activities in Reactor B remained negligible as 

there was almost no cell-growth. In Reactor A, the reverse activity increased to about  

1.2 U/mg on Day 2.8 and then began to drop. However, instead of reaching a steady state 

as seen in the studies with neutral red, the activity continued to stop on switching to NO. 

On day 7.8, the reverse ADH activity was 0.3 U/mg. As the reverse activity began to drop 

after day 2.8, the forward activity increased to approximately 0.17 U/mg. On switching to 

NO, the activity started to increase again, reaching a value of 0.34 U/mg on Day 7.8. 

Figure 6.21 shows the product distribution. As seen in previous studies with NO, the 

ethanol per cell mass increased on switching to NO from 2 g/g cells to about 5 g/g cells.   
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Figure 6.19 Cell concentration and pH profiles in the presence of 100 ppm NO. Reactor 

A was initially exposed to synthetic syngas and Reactor B was exposed to synthetic 

syngas containing 100 ppm NO. The vertical line indicates the time when the gas sources 

were switched. 
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Figure 6.20 Effect of NO on ADH activities. The reactors are described in Figure 6.19. 

The vertical line indicates the switching of gases. 
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Figure 6.21 Effect of NO on product distribution. The reactors are described in Figure 

6.19. The vertical line represents the time at which the gases were switched.  
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In Reactor B, the ethanol remained at 0.01 g/g cells throughout the study. In Reactor A, 

the acetic acid per cell mass increased to about 13 g/g cells. The acid per cell mass 

increased from 3 g/g cells to about 6.5 g/g cells when the cells started growing after 

removal of NO.  

 Another study was conducted with 100 ppm NO. Figure 6.22 shows the cell-

concentration and pH profiles of the study. In Reactor A, the cell concentration increased 

to 0.10 g/l and on switching to NO on day 4.5, the concentration increased to about 0.12 

g/l. In Reactor B, there was no initial cell-growth in the presence of NO, but when NO 

was removed, the cells started growing, reaching a concentration of approximately 0.10 

g/l. The pH dropped from 6.0 to about 5.5 in both reactors during the course of the 

experiment. Figure 6.23 shows the effect of NO on ADH activities. The reverse activity 

in Reactor A increased to about 1.1 U/mg, but on switching to NO, the activity dropped 

to about 0.2 U/mg. In Reactor B, after NO was removed, the reverse activity increased to 

about 0.6 U/mg and then dropped slightly to 0.5 U/mg, and stayed nearly constant. The 

forward activity in Reactor A was very low at about 0.01 U/mg before the introduction of 

NO, but after the switch, the activity increased to about 0.07 U/mg. In Reactor B, after 

the NO was removed and the cells started growing, the forward activity increased to 

about 0.01 U/mg, similar to the activity in Reactor A in the absence of NO. The product 

profile is shown in Figure 6.24. As seen previously, introduction of NO increased the 

ethanol per cell mass in Reactor A. Ethanol increased from 0.2g/g cells to about 0.9 g/g 

cells and acetic acid increased from 4g/g cells to 6 g/g cells in Reactor A on introduction 

of NO. In Reactor B, after removal of NO, ethanol increased to about 0.25 g/g cells and 

acid increased to about 6.5 g/g cells. 
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Figure 6.22 Cell concentration and pH profiles in the presence of 100 ppm NO. Reactor 

A was initially exposed to synthetic syngas and Reactor B was exposed to synthetic 

syngas containing 100 ppm NO. The vertical line indicates the time when the gas sources 

were switched. 
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Figure 6.23 Effect of NO on ADH activities. The reactors are described in Figure 6.22. 

The vertical line indicates the switching of gases. 
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Figure 6.24 Effect of NO on ethanol and acetic acid produced per cell mass. The reactors 

are described in Figure 6.22. The vertical line indicates the switching of gases.  
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A third study was conducted with 100 ppm NO, but unlike the previous two studies, both 

reactors were started on synthetic syngas and NO was introduced to Reactor B on day 

3.8. Reactor A remained on synthetic syngas without NO throughout the study. In both 

reactors, the cells concentration increased to about 0.13 g/l, as shown in Figure 6.25. The 

pH in Reactor A dropped to about 5.5 while that in Reactor B dropped to 5.7 at the end of 

the study. The ADH activities are shown in Figure 6.26. In both reactors, the reverse 

activity increased to about 1.4 U/mg. In Reactor A, the activity then dropped to about      

1 U/mg. In Reactor B, on introducing NO, the activity decreased to nearly zero. Before 

the introduction of NO, the forward activities in both reactors increased to about 0.01 

U/mg. In Reactor A, the activity remained nearly constant, increasing slightly to 0.02 

U/mg on day 6. In Reactor B, after introducing NO, the forward activity increased 

significantly to about 0.18 U/mg. Figure 6.27 shows the product profiles. In Reactor A, 

the ethanol increased to about 2.3 g/g cells at the end of the study. In Reactor B, the 

ethanol increased to about 1.5 g/g cells and after introducing NO, it increased further to 

about 4.8 g/g cells. The acetic acid in Reactor A increased to approximately 14 g/g cells 

while in Reactor B, it only increased to 8 g/g cells.  

 The increase in ethanol due to NO was seen in previous studies. These studies 

showed that NO caused the forward activity of ADH to increase and the reverse activity 

to decrease. 

 

6.4 Conclusions 

 Studies were conducted to determine whether an artificial electron carrier like 

neutral red can be used in syngas fermentation to regulate the metabolic pathway of. 
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Figure 6.25 Cell concentration and pH profiles in the presence of 100 ppm NO. Both 

reactors were exposed to synthetic syngas initially. NO was introduced to Reactor B on 

Day 3.8 as indicated by the vertical line.  
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Figure 6.26 Effect of NO on ADH activities. The reactors are described in Figure 6.25. 

The vertical line represents the time of introduction of NO into Reactor B. 
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Figure 6.27 Effect of NO on ethanol and acetic acid produced per cell mass. The reactors 

are described in Figure 6.25. The vertical line represents the time of introduction of NO 

into Reactor B. 
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C. carboxidivorans P7T towards solventogenesis. Neutral red was found to have the 

following effects on the fermentation. 

• An increase in ethanol concentration was observed at all the concentrations of 

neutral red studied. The more neutral red in the media, the higher the amount of 

ethanol produced per cell mass during fermentation.  

• A decrease in acetic acid production was observed in the presence of neutral red. 

This effect was more pronounced at higher concentrations of neutral red (0.4 and 

1 mM) compared to the lower concentrations like 0.1 and 0.2 mM studied. 

• The addition of neutral red caused an increase in the forward ADH activity and a 

decrease in the reverse ADH activity during syngas fermentation. This could be a 

result of the regeneration of NADH, which regulates the electron and carbon flow 

towards ethanol production as described in the introduction to this chapter. This 

increased availability of NADH could increase the activity of the enzyme in the 

forward direction.  

 
The studies described in Chapter 5 showed that NO increased the ethanol 

production by the microbial catalyst. This chapter investigated the effects of NO on 

ADH, the enzyme responsible for ethanol production. Results showed that nitric oxide 

had effects similar to neutral red on ADH. NO increased the forward ADH activity and 

decreased the ADH activity of the cells. The increase in ADH activity is directly 

connected to the increase in ethanol production in the presence of NO. However, the 

mechanism of this effect due to NO is not yet understood.
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CHAPTER 7 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 The focus of this work was to investigate the effects of biomass-generated syngas 

on cell-growth, product distribution and enzyme activities of Clostridium 

carboxidivorans P7T. Key issues like cell-dormancy, hydrogen uptake shutdown and low 

ethanol yields during syngas fermentation were addressed. The work reported in this 

dissertation is based on three main hypotheses: (1) Cell-dormancy of C. carboxidivorans 

P7T in the presence of biomass-syngas was caused by a solid or gaseous impurity of 

biomass-syngas; (2) Nitric oxide present in biomass-syngas causes an inhibition of 

hydrogenase activity in C. carboxidivorans P7T, and (3) Artificial electron carriers can be 

used to regulate the metabolic pathway of C. carboxidivorans P7T towards alcohol 

production to increase ethanol yields. Each of these hypotheses were tested by various 

experiments that were described in this dissertation. A summary of the results obtained is 

presented below in three sections, corresponding to the hypothesis mentioned above.  
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1. Cell-dormancy  

• Batch studies with ethane, acetylene and ethylene showed that cell-dormancy was 

not caused by these gases. Additional cleaning of biomass-syngas using a 0.025-

µm filter prevented cell washout from the reactor indicating that a solid impurity 

was the cause of cell dormancy. Switching to the regular 0.2-µm filter once again 

led to cell washout, further confirming the effect of the 0.025-µm filter.  

• Analysis of the 0.025-µm filter showed trapped particulates that appeared to be 

tars. 

• Batch studies showed that tars caused cell-dormancy. The studies also showed 

that C. carboxidivorans P7T could adapt to the tars and start growing after an 

extended period of time.  

• A product re-distribution was observed in the presence of tars, which was similar 

to the effect of biomass-syngas. 

• Studies showed that cells can be prevented from washing out of the reactor in the 

presence of biomass-syngas using a cell-recycle system. An adaptation of cells 

was also observed such that the cells began to grown on biomass-syngas after 7-8 

days in a chemostat with cell-recycle.  

 

2. Hydrogenase inhibition  

• Biomass-syngas was found to contain about 140-150 ppm nitric oxide. NO was 

found to inhibit hydrogenase. 
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• A kinetic analysis showed that the inhibition was reversible and non-competitive. 

The kinetic model indicated that the inhibition was non-linear and NO could be 

binding to multiple sites on the hydrogenase enzyme. 

• Studies conducted at various concentrations of NO showed that below 40 ppm 

NO there was no inhibition and above 160 ppm, there was a complete inhibition 

of hydrogenase activity.  

• NO was also found to affect product distribution during biomass-syngas 

fermentation. An increase in ethanol concentration was observed in the presence 

of NO.  

 

3. Metabolic regulation of C. carboxidivorans P7T 

• Neutral red was found to have a positive effect on ethanol production by             

C. carboxidivorans P7T. Studies showed an increase in ethanol and decrease in 

acetic acid production in the presence of neutral red. 

• Externally added NADH had no effect on product distribution. 

• An increase in the forward activity and decrease in reverse activity of alcohol 

dehydrogenase were observed in the presence of neutral red. 

• Studies conducted with nitric oxide showed an increase in the forward activity 

and decrease in reverse activity of ADH.  

 

7.2 Recommendations for Future Studies 

 This work provided an understanding of the effects of biomass-syngas and its 

impurities on the fermentation process. The results obtained from these studies also 
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pointed to other important areas that need to be addressed in order to make this process 

viable. Recommendations for future studies that can be carried out in such areas are 

outlined as follows: 

• Further studies to determine the effect of dilution rates on product distribution 

may prove beneficial. As described in Chapter 4, and as shown in the literature 

(Qureshi et al. 2000),  a high dilution rate causes an increased acid production and 

lower dilution rates favor alcohol production. Therefore, it is important to 

determine the optimal dilution rate in a chemostat with cell-recycle in order to 

optimize both cell density as well as ethanol production.  

• Addition of neutral red increased the ethanol formation during syngas 

fermentation. Other electron carriers can be investigated to find a cost-effective 

means of regulating the metabolic pathway of the organism.  

• Studies have reported the effect of pH on ethanol production (Grupe and 

Gottschalk 1992). The pH optima for acetogens like C. carboxidivorans P7T are 

different for growth and ethanol production. Therefore, studies involving a dual 

reactor set-up, operating at different pH values can be used to optimize cell-

concentration in one and ethanol concentration in the other reactor.  

• Another important factor governing cell-growth and ethanol production is yeast 

extract. Yeast extract is added to the culture media as it supports cell-growth. 

Preliminary studies showed that it is difficult to grow cells in the absence of yeast 

extract as it contains several nutrients, essential for cell-growth. However, studies 

have shown that yeast extract promotes growth and acetate formation at the 

expense of alcohol production (Klasson et al. 1992). Moreover, yeast extract is 
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one of the most expensive components of the media. Therefore, chemostat studies 

should be performed where the cells are grown initially with yeast extract, but 

then the yeast extract is phased out of the media so that the cells can then switch 

to ethanol formation.  

• As nitric oxide above 40 ppm was found to inhibit hydrogenase and also increase 

ADH activity and ethanol production, it may be useful to conduct experiments in 

order to decrease the amount of nitric oxide in the syngas to below 40 ppm. This 

can be done using chemical scavengers or by improving the conditions in the 

gasifier.  
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APPENDIX A 

 

CHEMOSTAT EXPERIMENTS WITH BIOMASS-SYNGAS USING A 0.025-µm 

FILTER
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Figure A.1. Cell concentration and pH profile in a chemostat study. Stage 1 was a batch 

liquid mode with synthetic syngas. Stage 2 was a chemostat mode with synthetic syngas. 

In stage 3, biomass-syngas was introduced through a 0.025-µm filter in a chemostat 

mode. Cell washout occurred between day 13 and 14 due to high dilution rate        

(D=0.02 hr-1; growth rate, µ=0.005 hr-1), after which dilution rate was adjusted according 

to the growth rate (µ). 
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Figure A.2. Cell concentration and pH profile in a chemostat study. Stage 1 was a batch 

liquid mode with synthetic syngas. Stage 2 was a chemostat mode with synthetic syngas. 

In stage 3, biomass-syngas was introduced through a 0.025-µm filter in a chemostat 

mode. In this study, growth rate, µ=0.019 hr-1 and dilution rate, D was set to 0.018 hr-1.  
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EXPERIMENTAL RAW DATA TABLES AND ERROR ANALYSIS
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Days C-1 C-2 C-3 Average Error (2σ) 

0 0.0139 0.0115 0.0114 0.0123 0.0028 

1 0.0439 0.0413 0.0361 0.0404 0.0079 

2 0.0683 0.0449 0.0499 0.0544 0.0246 

3 0.1432 0.1203 0.1210 0.1282 0.0261 

4 0.1565 0.1578 0.1514 0.1552 0.0068 

5 0.1450 0.1481 0.1506 0.1479 0.0056 

6 0.1415 0.1361 0.1372 0.1382 0.0057 

      

Days E-1 E-2 E-3 Average Error (2σ) 

0 0.0110 0.0107 0.0112 0.0110 0.0005 

1 0.0400 0.0464 0.0396 0.0420 0.0077 

2 0.0646 0.0462 0.0501 0.0536 0.0194 

3 0.1277 0.1140 0.1204 0.1207 0.0138 

4 0.1501 0.1552 0.1647 0.1567 0.0148 

5 0.1359 0.1518 0.1479 0.1452 0.0166 

6 0.1290 0.1398 0.1441 0.1376 0.0155 

 
Table B.1. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with ethane. C-1, 2, 3 were controls and E-1, 2, 3 contained 0.35 % 

ethane. Results are discussed in Chapter 3, Section 3.3.1. 
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Days C-1 C-2 C-3 Average Error (2σ) 

0 6.03 6.04 6.04 6.04 0.0115 

1 6.00 5.97 5.96 5.98 0.0416 

2 5.96 5.98 5.98 5.97 0.0231 

3 5.82 5.89 5.85 5.85 0.0702 

4 5.76 5.73 5.73 5.74 0.0346 

5 5.72 5.70 5.71 5.71 0.0200 

6 5.68 5.61 5.68 5.66 0.0808 

      

Days C-1 C-2 C-3 Average Error (2σ) 

0 6.03 6.03 6.02 6.03 0.0115 

1 6.01 6.01 5.99 6.00 0.0231 

2 6.00 6.02 5.98 6.00 0.0400 

3 5.87 5.90 5.89 5.89 0.0306 

4 5.72 5.78 5.80 5.77 0.0833 

5 5.71 5.75 5.70 5.72 0.0529 

6 5.65 5.69 5.63 5.66 0.0611 

 

Table B.2. Raw data, average values and standard error values of pH for batch study with 

ethane. C-1, 2, 3 were controls and E-1, 2, 3 contained 0.35 % ethane. Results are 

discussed in Chapter 3, Section 3.3.1. 
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Days C-4 C-5 C-6 Average Error (2σ) 

0 0.0099 0.0103 0.0108 0.0103 0.0009 

1 0.0453 0.0384 0.0464 0.0433 0.0087 

2 0.0916 0.0873 0.0559 0.0783 0.0390 

3 0.1317 0.1273 0.0753 0.1114 0.0628 

4 0.1351 0.1290 0.1281 0.1307 0.0076 

      

Days E-4 E-5 E-6 Average Error (2σ) 

0 0.0103 0.0099 0.0095 0.0099 0.0009 

1 0.0442 0.0423 0.0412 0.0426 0.0031 

2 0.0788 0.1054 0.1045 0.0962 0.0302 

3 0.1389 0.1445 0.1466 0.1433 0.0080 

4 0.1387 0.1408 0.1462 0.1419 0.0078 

 

Table B.3. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with ethylene. C-1, 2, 3 were controls and E-1, 2, 3 contained 1.4 % 

ethylene. Results are discussed in Chapter 3, Section 3.3.1. 
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Days C-4 C-5 C-6 Average Error (2σ) 

0 6.01 6.01 6.02 6.01 0.0115 

1 5.98 5.97 5.97 5.97 0.0115 

2 5.91 5.91 5.91 5.91 0.0000 

3 5.88 5.87 5.89 5.88 0.0200 

4 5.78 5.83 5.91 5.84 0.1311 

      

Days C-4 C-5 C-6 Average Error (2σ) 

0 6.01 6.00 6.00 6.00 0.0115 

1 5.99 5.98 5.98 5.98 0.0115 

2 5.98 5.91 5.91 5.93 0.0808 

3 5.90 5.89 5.88 5.89 0.0200 

4 5.80 5.75 5.72 5.76 0.0808 

 

Table B.4. Raw data, average values and standard error values of pH for batch study with 

ethylene. C-1, 2, 3 were controls and E-1, 2, 3 contained 1.4 % ethylene. Results are 

discussed in Chapter 3, Section 3.3.1. 



 211 

 

Days C-7 C-8 C-9 Average Error (2σ) 

0 0.0107 0.0098 0.0100 0.0101 0.0009 

1 0.0429 0.0604 0.0540 0.0524 0.0178 

2 0.0774 0.0860 0.0800 0.0811 0.0088 

3 0.1806 0.1724 0.1790 0.1773 0.0087 

4 0.1862 0.2012 0.1750 0.1875 0.0263 

      

Days A-7 A-8 A-9 Average Error (2σ) 

0 0.0107 0.0099 0.0103 0.0103 0.0008 

1 0.0404 0.0353 0.0456 0.0404 0.0103 

2 0.1157 0.0861 0.0817 0.0945 0.0369 

3 0.1754 0.1550 0.1574 0.1626 0.0223 

4 0.1618 0.1668 0.1208 0.1498 0.0505 

 

Table B.5. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with acetylene. C-1, 2, 3 were controls and E-1, 2, 3 contained 0.1 % 

acetylene. Results are discussed in Chapter 3, Section 3.3.1. 
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Days C-7 C-8 C-9 Average Error (2σ) 

0 5.93 5.93 5.93 5.93 0.0000 

1 5.76 5.79 5.78 5.78 0.0306 

2 5.77 5.79 5.77 5.78 0.0231 

3 5.67 5.69 5.67 5.68 0.0231 

4 5.64 5.64 5.63 5.64 0.0115 

      

Days A-7 A-8 A-9 Average Error (2σ) 

0 5.92 5.93 5.93 5.93 0.0115 

1 5.82 5.84 5.82 5.83 0.0231 

2 5.82 5.84 5.84 5.83 0.0231 

3 5.59 5.65 5.66 5.63 0.0757 

4 5.60 5.65 5.65 5.63 0.0577 

 

Table B.5. Raw data, average values and standard error values of pH for batch study with 

acetylene. C-1, 2, 3 were controls and E-1, 2, 3 contained 0.1 % acetylene. Results are 

discussed in Chapter 3, Section 3.3.1. 
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Days C-10 C-11 C-12 Average Error (2σ) 

0.0 0.0153 0.0147 0.0181 0.0160 0.0036 

0.6 0.0224 0.0297 0.0346 0.0289 0.0122 

1.6 0.1582 0.1601 0.1667 0.1617 0.0089 

2.0 0.1579 0.1553 0.1781 0.1638 0.0250 

2.6 0.1462 0.1510 0.1477 0.1483 0.0049 

3.6 0.1419 0.1481 0.1497 0.1466 0.0082 

      

Days N-10 N-11 N-12 Average Error (2σ) 

0.0 0.0169 0.0172 0.0162 0.0167 0.0010 

0.6 0.0323 0.0286 0.0278 0.0296 0.0049 

1.6 0.1519 0.1406 0.1450 0.1458 0.0114 

2.0 0.1601 0.1430 0.1377 0.1469 0.0234 

2.6 0.1457 0.1425 0.1407 0.1430 0.0051 

3.6 0.1458 0.1422 0.1330 0.1403 0.0132 

      

Days NR-10 NR-11 NR-12 Average Error (2σ) 

0.0 0.0170 0.0189 0.0153 0.0171 0.0036 

0.6 0.0316 0.0306 0.0268 0.0297 0.0051 

1.6 0.1398 0.1630 0.1466 0.1498 0.0238 

2.0 0.1430 0.1570 0.1462 0.1488 0.0147 

2.6 0.1243 0.1388 0.1466 0.1366 0.0226 

3.6 0.1278 0.1403 0.1470 0.1383 0.0195 

 

Table B.6. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with 0.1 mM NADH (N-10, 11, 12) and 0.1 mM neutral red (NR-10, 11, 

12). The controls were C-10, 11, 12, with no NADH or neutral red. Results are discussed 

in Chapter 6, Section 6.3.1. 
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Days C-10 C-11 C-12 Average Error (2σ) 

0.0 6.04 6.04 6.04 6.04 0.0000 

0.6 5.88 5.80 5.81 5.83 0.0872 

1.6 5.46 5.36 5.40 5.41 0.1007 

2.0 5.35 5.23 5.28 5.29 0.1206 

2.6 5.31 5.23 5.21 5.25 0.1058 

3.6 5.28 5.23 5.24 5.25 0.0529 

      

Days N-10 N-11 N-12 Average Error (2σ) 

0.0 6.04 6.04 6.04 6.04 0.0000 

0.6 5.87 5.80 5.77 5.81 0.1026 

1.6 5.37 5.31 5.30 5.33 0.0757 

2.0 5.29 5.26 5.24 5.26 0.0503 

2.6 5.23 5.26 5.23 5.24 0.0346 

3.6 5.26 5.27 5.23 5.25 0.0416 

      

Days NR-10 NR-11 NR-12 Average Error (2σ) 

0.0 6.04 6.04 6.04 6.04 0.0000 

0.6 5.79 5.80 5.70 5.76 0.1102 

1.6 5.40 5.42 5.42 5.41 0.0231 

2.0 5.32 5.23 5.23 5.26 0.1039 

2.6 5.30 5.23 5.23 5.25 0.0808 

3.6 5.30 5.22 5.25 5.26 0.0808 

 

Table B.7. Raw data, average values and standard error values of pH for batch study with 

0.1 mM NADH (N-10, 11, 12) and 0.1 mM neutral red (NR-10, 11, 12). The controls 

were C-10, 11, 12, with no NADH or neutral red. Results are discussed in Chapter 6, 

Section 6.3.1. 
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Days C-10 C-11 C-12 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.6 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 0.0506 0.0624 0.0540 0.0557 0.0122 

2.0 0.0507 0.0579 0.0561 0.0549 0.0076 

2.6 0.0616 0.0728 0.0542 0.0629 0.0188 

3.6 0.0634 0.0743 0.0534 0.0637 0.0208 

      

Days N-10 N-11 N-12 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.6 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 0.0790 0.0569 0.0552 0.0637 0.0266 

2.0 0.0562 0.0560 0.0508 0.0543 0.0061 

2.6 0.0686 0.0491 0.0427 0.0535 0.0270 

3.6 0.0686 0.0281 0.0451 0.0473 0.0406 

      

Days NR-10 NR-11 NR-12 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.6 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 0.0358 0.0491 0.0819 0.0556 0.0474 

2.0 0.0839 0.1401 0.1162 0.1134 0.0564 

2.6 0.2252 0.2305 0.1705 0.2088 0.0664 

3.6 0.2035 0.2210 0.1632 0.1959 0.0592 

 

Table B.8. Raw data, average values and standard error values of ethanol per cell mass 

(g/g) for batch study with 0.1 mM NADH (N-10, 11, 12) and 0.1 mM neutral red (NR-10, 

11, 12). The controls were C-10, 11, 12, with no NADH or neutral red. Results are 

discussed in Chapter 6, Section 6.3.1. 
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Days C-10 C-11 C-12 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.6 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 7.4148 9.8918 7.6799 8.3289 2.7201 

2.0 8.8476 9.6255 9.0711 9.1814 0.8011 

2.6 10.5404 11.4822 11.2690 11.0972 0.9878 

3.6 10.6061 10.9391 10.0947 10.5466 0.8507 

      

Days N-10 N-11 N-12 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.6 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 8.5374 10.7564 10.3420 9.8786 2.3597 

2.0 8.7803 10.2465 11.1160 10.0476 2.3611 

2.6 10.5403 10.8247 10.9632 10.7760 0.4312 

3.6 9.6288 10.3125 11.4362 10.4591 1.8252 

      

Days NR-10 NR-11 NR-12 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

0.6 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 8.1191 9.1489 8.1044 8.4575 1.1977 

2.0 9.1737 8.6986 10.5031 9.4585 1.8706 

2.6 11.5113 10.9867 10.4716 10.9899 1.0397 

3.6 10.5986 11.1217 10.1961 10.6388 0.9282 

 

Table B.9. Raw data, average values and standard error values of acetic acid per cell mass 

(g/g) for batch study with 0.1mM NADH (N-10, 11, 12) and 0.1 mM neutral red (NR-10, 

11, 12). The controls were C-10, 11, 12, with no NADH or neutral red. Results are 

discussed in Chapter 6, Section 6.3.1. 
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Days C-13 C-14 C-15 Average Error (2σ) 

0.0 0.0156 0.0166 0.0167 0.0163 0.0012 

1.6 0.0534 0.0336 0.0625 0.0499 0.0296 

2.6 0.1753 0.1561 0.1695 0.1670 0.0197 

3.6 0.1628 0.1532 0.1583 0.1581 0.0096 

4.6 0.1717 0.1516 0.1544 0.1592 0.0218 

      

Days NR-13 NR-14 NR-15 Average Error (2σ) 

0.0 0.0151 0.0160 0.0173 0.0161 0.0022 

1.6 0.0519 0.0521 0.0537 0.0525 0.0020 

2.6 0.1614 0.1701 0.1634 0.1650 0.0090 

3.6 0.1450 0.1522 0.1485 0.1486 0.0071 

4.6 0.1425 0.1487 0.1530 0.1481 0.0105 

 

Table B.10. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with 0.2 mM neutral red (NR-13, 14, 15). The controls were C-13, 14, 15, 

with no neutral red. Results are discussed in Chapter 6, Section 6.3.1. 
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Days C-13 C-14 C-15 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 0.0187 0.0297 0.0160 0.0215 0.0146 

2.6 0.0228 0.0320 0.0177 0.0242 0.0145 

3.6 0.0307 0.0326 0.0316 0.0316 0.0019 

4.6 0.0291 0.0330 0.0324 0.0315 0.0042 

      

Days NR-13 NR-14 NR-15 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.6 0.0193 0.0192 0.0186 0.0190 0.0007 

2.6 0.0186 0.0176 0.0306 0.0223 0.0144 

3.6 0.1241 0.1117 0.1010 0.1123 0.0231 

4.6 0.1403 0.1546 0.1504 0.1484 0.0147 

 

Table B.11. Raw data, average values and standard error values of ethanol per cell mass 

(g/g) for batch study with 0.2 mM neutral red (NR-13, 14, 15). The controls were C-13, 

14, 15, with no neutral red. Results are discussed in Chapter 6, Section 6.3.1. 
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Days C-13 C-14 C-15 Average Error (2σ) 

0.0 1.0891 1.1658 1.1448 1.1332 0.0793 

1.6 2.7690 2.9739 2.4951 2.7460 0.4804 

2.6 4.5519 4.9395 3.8396 4.4437 1.1157 

3.6 4.6327 5.5104 5.5266 5.2232 1.0229 

4.6 5.4877 5.8057 6.0893 5.7942 0.6019 

      

Days NR-13 NR-14 NR-15 Average Error (2σ) 

0.0 1.1163 1.1158 0.9835 1.0718 0.1531 

1.6 2.2176 2.4389 2.3479 2.3348 0.2225 

2.6 4.1382 4.3454 4.5459 4.3432 0.4077 

3.6 5.5295 5.6907 5.8527 5.6910 0.3231 

4.6 5.7315 5.5400 5.5116 5.5944 0.2393 

 

Table B.12. Raw data, average values and standard error values of acetic acid per cell 

mass (g/g) for batch study with 0.2 mM neutral red (NR-13, 14, 15). The controls were 

C-13, 14, 15, with no neutral red.  Results are discussed in Chapter 6, Section 6.3.1. 
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Days C-16 C-17 C-18 Average Error (2σ) 

0.0 0.0129 0.0125 0.0142 0.0132 0.0018 

1.0 0.0894 0.0903 0.0594 0.0797 0.0352 

1.6 0.1828 0.1974 0.1582 0.1795 0.0395 

2.6 0.2288 0.2430 0.1948 0.2222 0.0495 

3.6 0.2249 0.2425 0.1969 0.2215 0.0460 

4.6 0.2236 0.2494 0.2064 0.2265 0.0433 

5.6 0.2193 0.2451 0.2107 0.2250 0.0358 

      

Days NR1-16 NR1-17 NR1-18 Average Error (2σ) 

0.0 0.0120 0.0133 0.0151 0.0135 0.0030 

1.0 0.0916 0.0963 0.1462 0.1114 0.0605 

1.6 0.1856 0.1924 0.2064 0.1948 0.0212 

2.6 0.2227 0.2150 0.2516 0.2298 0.0385 

3.6 0.2180 0.2146 0.2511 0.2279 0.0404 

4.6 0.2322 0.2193 0.2580 0.2365 0.0394 

5.6 0.2279 0.2236 0.2623 0.2379 0.0424 

 

Table B.13. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with 0.1 mM, 0.4 mM and 1 mM neutral red. The controls (C-16, 17, 18) 

and 0.1 mM neutral red studies (NR1-16, 17, 18) are shown in this table. Table B.14 

shows the rest of the data. Results are discussed in Chapter 6, Section 6.3.1. 
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Days NR2-16 NR2-17 NR2-18 Average Error (2σ) 

0.0 0.0133 0.0138 0.0138 0.0136 0.0005 

1.0 0.1011 0.0765 0.0998 0.0925 0.0276 

1.6 0.1764 0.1770 0.1901 0.1811 0.0155 

2.6 0.2335 0.2507 0.2279 0.2374 0.0238 

3.6 0.2537 0.2494 0.2451 0.2494 0.0086 

4.6 0.2554 0.2580 0.2623 0.2586 0.0070 

5.6 0.2623 0.2709 0.2623 0.2652 0.0099 

      

Days NR3-16 NR3-17 NR3-18 Average Error (2σ) 

0.0 0.0142 0.0133 0.0133 0.0136 0.0010 

1.0 0.0968 0.0800 0.1505 0.1091 0.0737 

1.6 0.1845 0.1716 0.2055 0.1872 0.0343 

2.6 0.2516 0.2408 0.2533 0.2485 0.0135 

3.6 0.2584 0.2632 0.2670 0.2629 0.0086 

4.6 0.2645 0.2666 0.2623 0.2645 0.0043 

5.6 0.2666 0.2709 0.2623 0.2666 0.0086 

 

Table B.14. Raw data, average values and standard error values of cell concentration (g/l) 

for batch study with 0.1 mM, 0.4 mM and 1 mM neutral red. Studies with 0.4 mM (NR2-

16, 17, 18) and 1 mM neutral red (NR3-16, 17, 18) are shown in this table. Table B. 13 

shows the rest of the data.  Results are discussed in Chapter 6, Section 6.3.1. 
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Days C-16 C-17 C-18 Average Error (2σ) 

0.0 6.00 6.00 6.00 6.00 0.0000 

1.0 5.91 5.91 5.93 5.92 0.0231 

1.6 5.32 5.32 5.32 5.32 0.0000 

2.6 5.01 5.00 5.08 5.03 0.0872 

3.6 4.89 4.90 4.89 4.89 0.0115 

4.6 4.94 4.95 4.94 4.94 0.0115 

5.6 4.91 4.92 4.92 4.92 0.0115 

      

Days NR1-16 NR1-17 NR1-18 Average Error (2σ) 

0.0 6.00 6.00 6.00 6.00 0.0000 

1.0 5.92 5.92 5.80 5.88 0.1386 

1.6 5.31 5.31 5.25 5.29 0.0693 

2.6 4.98 4.99 4.98 4.98 0.0115 

3.6 4.89 4.91 4.90 4.90 0.0200 

4.6 4.95 4.94 4.94 4.94 0.0115 

5.6 4.93 4.93 4.91 4.92 0.0231 

 

Table B.15. Raw data, average values and standard error values of pH for batch study 

with 0.1 mM, 0.4 mM and 1 mM neutral red. The controls (C-16, 17, 18) and 0.1 mM 

neutral red studies (NR1-16, 17, 18) are shown in this table. Table B.16 shows the rest of 

the data. Results are discussed in Chapter 6, Section 6.3.1. 
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Days NR2-16 NR2-17 NR2-18 Average Error (2σ) 

0.0 6.00 6.00 6.00 6.00 0.0000 

1.0 5.92 5.94 5.91 5.92 0.0306 

1.6 5.29 5.30 5.31 5.30 0.0200 

2.6 5.13 5.15 5.14 5.14 0.0200 

3.6 5.08 5.10 5.15 5.11 0.0721 

4.6 5.14 5.15 5.15 5.15 0.0115 

5.6 5.13 5.12 5.14 5.13 0.0200 

      

Days NR3-16 NR3-17 NR3-18 Average Error (2σ) 

0.0 6.00 6.00 6.00 6.00 0.0000 

1.0 5.91 5.89 5.76 5.85 0.1629 

1.6 5.31 5.32 5.28 5.30 0.0416 

2.6 5.33 5.32 5.34 5.33 0.0200 

3.6 5.29 5.35 5.35 5.33 0.0693 

4.6 5.34 5.34 5.35 5.34 0.0115 

5.6 5.32 5.33 5.32 5.32 0.0115 

 

Table B.16. Raw data, average values and standard error values of pH for batch study 

with 0.1 mM, 0.4 mM and 1 mM neutral red. Studies with 0.4 mM (NR2-16, 17, 18) and 

1 mM neutral red (NR3-16, 17, 18) are shown in this table. Table B. 15 shows the rest of 

the data. Results are discussed in Chapter 6, Section 6.3.1. 
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Days C-16 C-17 C-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.2237 0.0997 0.1684 0.1639 0.1243 

1.6 0.4378 0.4459 0.5688 0.4841 0.1468 

2.6 0.2011 0.2058 0.2567 0.2212 0.0617 

3.6 0.2935 0.2392 0.2844 0.2723 0.0582 

4.6 0.3936 0.3208 0.3634 0.3592 0.0731 

5.6 0.4104 0.3631 0.4034 0.3923 0.0510 

      

Days NR1-16 NR1-17 NR1-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.3275 0.1038 0.1368 0.1894 0.2416 

1.6 0.4526 0.5198 0.4797 0.4840 0.0676 

2.6 0.5073 0.4953 0.4373 0.4800 0.0749 

3.6 0.6422 0.6059 0.5575 0.6018 0.0850 

4.6 0.6891 0.6840 0.5969 0.6567 0.1036 

5.6 0.6582 0.7156 0.6481 0.6740 0.0728 

 

Table B.17. Raw data, average values and standard error values of ethanol per cell mass 

(g/g) for batch study with 0.1 mM, 0.4 mM and 1mM neutral red. The controls (C-16, 17, 

18) and 0.1 mM neutral red studies (NR1-16, 17, 18) are shown in this table. Table B.18 

shows the rest of the data. Results are discussed in Chapter 6, Section 6.3.1. 
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Days NR2-16 NR2-17 NR2-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.3958 0.3920 0.0902 0.2927 0.3507 

1.6 0.4989 0.4407 0.4209 0.4535 0.0811 

2.6 0.5867 0.6103 0.6143 0.6038 0.0298 

3.6 0.6937 0.7017 0.7344 0.7099 0.0431 

4.6 0.7517 0.7364 0.7701 0.7527 0.0337 

5.6 0.9531 0.8933 1.0294 0.9586 0.1364 

      

Days NR3-16 NR3-17 NR3-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.3101 0.5001 0.1993 0.3365 0.3043 

1.6 0.4879 0.5187 0.3795 0.4620 0.1463 

2.6 1.7531 1.8106 1.6978 1.7539 0.1128 

3.6 1.8535 1.6568 1.7227 1.7443 0.2003 

4.6 1.8340 1.8080 1.8490 1.8303 0.0416 

5.6 1.9580 1.8494 1.9520 1.9198 0.1221 

 

Table B.18. Raw data, average values and standard error values of ethanol per cell mass 

(g/g) for batch study with 0.1 mM, 0.4 mM and 1mM neutral red. Studies with 0.4 mM 

(NR2-16, 17, 18) and 1 mM neutral red (NR3-16, 17, 18) are shown in this table. Table 

B. 17 shows the rest of the data. Results are discussed in Chapter 6, Section 6.3.1. 
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Days C-16 C-17 C-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.1119 0.2215 0.1684 0.1672 0.1096 

1.6 1.7729 1.8240 4.1077 2.5682 2.6670 

2.6 3.9955 4.0584 4.8770 4.3103 0.9836 

3.6 7.1146 8.2467 10.5007 8.6207 3.4475 

4.6 10.4651 10.4250 12.1124 11.0008 1.9257 

5.6 11.8012 11.0159 12.7195 11.8455 1.7053 

      

Days NR1-16 NR1-17 NR1-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.4367 0.9344 0.3420 0.5710 0.6364 

1.6 1.5357 1.4606 1.4535 1.4833 0.0910 

2.6 4.7814 4.8047 4.0231 4.5364 0.8894 

3.6 9.7702 9.8942 8.0121 9.2255 2.1053 

4.6 9.1731 10.9439 8.2287 9.4486 2.7568 

5.6 10.8381 11.0912 9.1498 10.3597 2.1108 

 

Table B.19. Raw data, average values and standard error values of acetic acid per cell 

mass (g/g) for batch study with 0.1 mM, 0.4 mM and 1mM neutral red. The controls (C-

16, 17, 18) and 0.1 mM neutral red studies (NR1-16, 17, 18) are shown in this table. 

Table B.20 shows the rest of the data. Results are discussed in Chapter 6, Section 6.3.1. 
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Days NR2-16 NR2-17 NR2-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 0.8906 1.0452 1.0024 0.9794 0.1596 

1.6 2.7667 2.1527 1.9888 2.3027 0.8201 

2.6 6.1245 4.6033 4.9276 5.2185 1.6024 

3.6 6.5826 7.2173 6.4831 6.7610 0.7966 

4.6 7.0981 7.4922 6.7976 7.1293 0.6968 

5.6 6.9767 7.3090 7.4419 7.2425 0.4791 

      

Days NR3-16 NR3-17 NR3-18 Average Error (2σ) 

0.0 0.0000 0.0000 0.0000 0.0000 0.0000 

1.0 1.2610 0.7502 0.5316 0.8476 0.7487 

1.6 2.0600 2.3314 1.7320 2.0411 0.6003 

2.6 4.1662 4.1902 4.0234 4.1266 0.1804 

3.6 4.5699 4.6474 3.7936 4.3369 0.9443 

4.6 5.1087 5.0300 4.8913 5.0100 0.2201 

5.6 5.1388 4.9096 4.7045 4.9176 0.4345 

 

Table B.20. Raw data, average values and standard error values of acetic acid per cell 

mass (g/g) for batch study with 0.1 mM, 0.4 mM and 1mM neutral red. Studies with 0.4 

mM (NR2-16, 17, 18) and 1 mM neutral red (NR3-16, 17, 18) are shown in this table. 

Table B. 19 shows the rest of the data. Results are discussed in Chapter 6, Section 6.3.1.  
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