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CHAPTER 1 
Introduction 

 
        This chapter aims to give background information about greenbug (Schizaphis 

graminum (Rondani)) infestation and significance of this research. Research goal and 

objectives for this study are also defined. 

         

1.1 Greenbug infestation and its problems 
 
        The greenbug belongs to a group of insects known as aphids, which are small, soft-

bodied, sucking insects (Brooks, 1991). The greenbug is a green to yellow-green aphid 

with a dark green stripe down the middle of its back. It is a vector of barley yellow dwarf 

virus (University of California, 2002). Greenbugs are important pests of major crops, 

such as wheat, barley and sorghum. They usually feed in colonies on the undersides of 

leaves and suck sap and during feeding inject a toxic substance into the plant (Knutson 

and Ree, 1998). Infestation symptoms initially appear as groups of small, reddish, 

pinpoint spots on infested leaves. Later, as feeding continues, leaves turn yellow and 

begin to die (Brooks, 1991). Figure 1-1 shows the photos of greenbug infestation. Crop 

damage by greenbug infestation is related to the number of greenbugs and the length of 

time they persist on the plants.  It also depends on plant size, vigor and growth stage and 

moisture conditions. Plants infested by greenbugs also show some physiological and 

metabolic changes, such as decrease of water potential and chlorophyll, and lower rates 
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                     Fig 1-1. Photographs showing greenbug infestation on wheat leaves (a) at the beginning stage; (b) at the middle stage. 

(b) 
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of CO2 assimilation (Cabrera et al., 1995). If greenbug infestation could not be controlled 

in time, yield losses become inevitable. In addition, heavy feeding by greenbugs causes 

typical "greenbug spots" in a field (Elliot and Kieckhefer, 1987). The centers of the spot 

are made up of dead plants and skins of greenbugs, surrounded by living plants which are 

heavily infested and beginning to turn yellow. 

         In the Central Great Plains area, greenbug outbreak have caused significant 

economic loss to many farmers (Brooks, 1991). In 1976-77, a severe outbreak of 

greenbugs, combined loses of growers from reduced yields and insecticide applications 

exceeded $135 million in Oklahoma (Starks and Burton 1977). During 1992-93, an 

extremely low greenbug year, the pest caused $321,000 in losses in Oklahoma (Webster, 

1995). During a major outbreak of greenbugs on wheat and extreme drought in the spring 

of 1996 wheat growers in Oklahoma experienced the lowest per-acre yield since 1967 

(Peters et al., 1997). During the 1997-1998 growing season in Kansas and Oklahoma, 

yield losses due to greenbug infestation were 2.5% and 0.18 % respectively (Webster et 

al., 2000). The severe damage to wheat, sorghum, and barley caused by the greenbug 

makes it the key insect pest of these crops in much of Oklahoma, Texas, and Kansas.   

      Chemical insecticides are used almost exclusively for controlling the greenbug and 

losses are closely tied to insecticide costs for control (Patrick and Boring, 1990; Webster, 

1995).  The more commonly used insecticides for treating greenbug infestation 

(chlorpyrifos, dimethoate, disulfoton, ethyl parathion, and methyl parathion) are among 

the most toxic chemicals currently used for insect control.  During widespread severe 

greenbug outbreaks millions of acres are sprayed with these compounds in Oklahoma in 

an effort to save wheat crops (Browning et al., 1982).  This high insecticide use poses 
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problems to the environment, especially as it relates to conservation of migratory 

waterfowl on prairie potholes, playas, and other wetlands in the Great Plains that 

frequently become contaminated with insecticides in run-off from agricultural fields and 

from improper application (Flickinger et al., 1991; Grue et al., 1988; Klass, 1982). 

Currently, many fields are treated without sufficient knowledge of greenbug density or 

plant injury. Insecticides are often applied when greenbug populations are too low to 

cause sufficient yield loss, or they are treated so late in the growing season that most 

yield loss has already occurred (Wratten et al., 1995). Widespread greenbug outbreaks 

occur every 5-7 years and result in heavy insecticide use and greatly reduced yields. 

These losses present an impediment not only to the economic viability of wheat 

production, but also to environmental integrity and sustainability. Integrated pest 

management (IPM) has emerged as the dominant paradigm for managing pests and 

diseases in agriculture (Pedigo, 1995). The main goal of IPM goes beyond that of simply 

eradicating pests, but includes reducing pests to densities below which appreciable 

damage occurs, thereby maintaining environmental quality and increasing grower’s 

profits. IPM involves a holistic approach that integrates multiple tactics to manage pest 

populations. A critical component of IPM is monitoring fields to determine whether there 

is a pest problem. To minimize economic and environmental loss and conduct timely and 

effective control, early detection of greenbug infestation is desirable for farmers.  

 

1.2 Current research on detecting greenbug infestation 
 
        Although many research projects related to greenbug infestation are being 

conducted, few researchers focus on the detection of crop stress induced by greenbug 
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infestation. Currently, field scouting is a major method to identify if there is a need to 

apply greenbug control in a field.  The performance of field scouting mainly depends on 

correct identification of the pests. Crop pests can be identified through a combination of 

direct recognition, knowing where and when the insect is likely to be found, and 

recognizing injury symptoms on the plant. It is normal that greenbug scouting is time and 

labor consuming because it needs to provide enough information to make an 

economically sensible decision. 

        In the United States, there are many scouting and decision-making methods for 

greenbug IPM. In Oklahoma, there is a greenbug scouting and decision-making system 

called “The Cereal Aphid Pest Management Expert System”. It was developed through 

the cooperative efforts of the USDA Agricultural Research Service, Site Specific 

Technology Development Group of Stillwater (SST), and Oklahoma State University. 

This system consists of a set of computer programs designed to help the user manage 

cereal aphids in winter wheat. It can help farmers identify cereal aphids and determine 

the economic threshold for greenbugs in wheat using a new scouting technique called 

Glance ‘n Go, which was developed from data collected in over 120 wheat fields in 

Oklahoma over 3 years (Elliott et al., 2001). Glance ‘n Go does not need to count actual 

numbers of greenbugs but only keep track of the number of infested tillers. Thus, it saves 

time and money on scouting. With this system, a grower can quickly detect greenbug 

infestations and make control decisions based upon the value of the crop and the costs 

associated with production. This system is a big step forward for controlling greenbugs in 

winter wheat. 
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         Remote Sensing techniques began to show the potential to be used for detection of 

greenbug infestation. It was found that remote sensing can identify pest infestations in 

agricultural fields (Hatfield and Pinter, 1993). Such techniques rely on the indirect 

indication of the pest through visual manifestation of the plant injury because pest-

induced crop stress can be visualized using some wavelengths such as red ® and near 

infrared (NIR) bands (Riley, 1989). Deol et al. (1997) and Ma et al. (1998) demonstrated 

that damage caused by greenbug infestation could be detected by some techniques that 

can indirectly measure the content of chlorophyll of leaves infested by greenbugs. Riedell 

et al. (1999) reported that at leaf level, bands ranging 625-635 nm and 680-696 nm were 

most sensitive to greenbug infestation through a greenhouse study. Michels et al. (1999) 

found that it is possible to use IRT (Infrared thermometer) to detect greenbug infestation 

if it is sure that wheat plants are not under water stress. But none of the previous research 

results could be directly applied to detection of greenbug infestation. Because the 

detection of greenbug infestation requires knowledge on sensitive bands at canopy level. 

Also, it is difficult to know whether wheat plants are under water stress or not before 

conducting detection of greenbug infestation.  

 
 
1.3 Challenges for studies on detecting greenbug infestation 
 
       Greenbug outbreaks often appear at times when the wheat crop is under water stress 

(Michels and Undersander, 1986; Michels and Behle, 1998; Ortman and Painter, 1960). 

Michels and Undersander (1986) reported that the number and distribution of greenbugs 

on host plants were strongly affected by water stress. Thus plants under water stress are 

more sensitive to greenbug infestation and water stress affects the level of greenbug 
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infestation. In addition, the combination of water stress and greenbug stress did not cause 

more changes on host plants than water stress alone (Ryan et al., 1987). Cabrera et al. 

(1995) also reported that greenbug infestation of barley produced changes similar to those 

observed in plants subjected to water stress. So it is hard to separate and differentiate 

water stress and greenbug infestation, considering their coexistence under field 

conditions. Therefore, the key problem for detecting greenbug infestation is how to 

differentiate these two kinds of stresses under the field conditions. 

       It is well known that the greenbug (GB) is a major pest of wheat plants in Great 

Plains. However, Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), is also a 

serious threat to wheat production throughout the western United States west of the 100th 

meridian (Hein et al., 1990). The economic impact from this pest can be devastating and 

has been estimated at $893 million for 1987-1993 (Morrison and Peairs, 1998). Besides, 

two kinds of infestations may coexist in the same field. Therefore, how to differentiate 

wheat damage caused by these two kinds of aphids is also important and necessary.  

      Riddell and Blackmer (1999) identified wavelengths sensitive to greenbug infestation 

at leaf level but it is necessary and important to identify wavelengths that are most 

sensitive to greenbug infestation at canopy level. It is likely that different stresses such as 

water stress and greenbug infestation coexist under the field conditions. It will be useful 

to differentiate water stress and greenbug infestation. In addition, vegetation indices such 

as Normalized Difference Vegetation Index (NDVI) need to be examined for their 

potential to detect greenbug infestation.  

       Plant damage symptoms caused by greenbug infestation are closely related to the 

growth stage of host plants, the infestation levels, such as abundance level of greenbugs 
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and infestation length (Brooks, 1991). More research needs to be done to define the 

reflectance profile of plants under different growth stages and infestation levels.  

       Environmental conditions, such as air temperature, humidity and wind, are important 

factors that influence greenbug infestation (Brooks, 1991). It is necessary to study the 

relationship between canopy reflectance and greenbug infestation under different 

environmental conditions. In addition, the special spatial patterns of greenbug infestation, 

“greenbug spots”, might also be useful for detecting greenbug infestation. Field research 

needs to be done to examine differences of spatial patterns among different stresses. 

         Therefore, the purpose of this study is to identify bands and vegetation indices 

sensitive to greenbug infestation at canopy level by observing the change in spectral 

characteristics of greenbug-induced stress on wheat plants using hand-held radiometers 

under greenhouse conditions.  This will provide useful information for detecting wheat 

stress induced by greenbug infestation and lay the groundwork for field studies to 

develop airborne remote sensing methods for identifying fields threatened by Greenbug 

infestation, thereby obtaining both economic and environmental benefits. 

   

1.4 Significance of this research 
 
         Research findings from this study will help develop a directed scouting approach 

used for greenbug scouting and control in IPM. For traditional field scouting methods, it 

is difficult to cover the entire field area given economic and time constraints. It may not 

be possible to estimate the full extent of damage through visual methods of identification. 

Since there is a certain spatial pattern -greenbug spot in the infested field, if greenbug 

spots could be detected using sensitive band or vegetation indices determined in this 
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study by satellite images or aerial photos, it will be possible to identify these areas as 

targets for intensive sampling and initiate directed scouting. Targeted scouting of 

greenbug spots will help reduce the number of samples required and thus save time and 

labor for scouting. It also allows site-specific pesticide applications to targeted areas of 

greenbug outbreaks and protect non-infested and lightly infested crop before infestation 

spreads across the whole field or to adjacent fields. Thus it could reduce the amount of 

pesticide applied and decrease the damage to beneficial insects in order to obtain the goal 

of IPM. In this case, it is likely that natural enemies would suppress the greenbug 

populations in the rest of the untreated areas of the field. Adopting a directed scouting 

approach will lower costs to the farmer and benefit the environment. In this way, this 

study will help build a new approach to greenbug IPM. 

       Until now the spectral responses of wheat plants to greenbug infestation were poorly 

studied. This research will provide detailed and dynamic data on canopy reflectance of 

wheat under greenbug infestation. It intends to address both the onset of greenbug 

infestation and the spectral patterns associated with the greenbug infestation. This could 

benefit NASA and various private enterprises in their endeavors to deploy sensors with 

specific applications on future satellite payloads. 

Finally, this research study has the potential to initiate and integrate other studies 

involving detection of other crop stresses such as water, nutrient, and pathogen stress. In 

return, the detection of crop stress will be greatly improved and developed. 
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1.5 Research goal and objectives 
 
      The overall goal of this study is to characterize wheat stress caused by greenbug 

infestation using ground-based radiometry. Specific objectives include: 

1.5.1 Identifying wavelengths most sensitive to greenbug infestation 
 
        It is rare that there is only a single crop stress and different stresses may often 

coexist under field conditions. Riedell and Blackmer (1999) identified some wavelengths 

that were sensitive to greenbug infestation on wheat. However, the reflectance 

measurements of their study were at leaf level not canopy level. To conduct field 

detection of greenbug infestation, it is necessary to identify wavelengths that are most 

sensitive to greenbug infestation at canopy level.  

1.5.2 Identifying vegetation indices most sensitive to greenbug infestation 
 
        Currently, various vegetation indices, e.g. NDVI and NPCI (Normalized total 

Pigment to Chlorophyll Index), are being used for crop stress detection but no vegetation 

indices specially used for greenbug infestation at canopy level have been reported.  

Riedell and Blackmer (1999) found that NPCI was significantly correlated with total 

chlorophyll concentration in infested leaves. Adams et al. (1999) reported that the 

Yellowness Index (YI) was a good measure of leaf chlorosis, which is typical symptom 

of greenbug infestation, in stressed plants. But their study is only at the leaf level. Thus, it 

is important to examine sensitivities of various vegetation indices to greenbug infestation 

at canopy level. 
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1.5.3 Differentiating greenbug infestation from water stress  
 
      Due to co-existence of greenbug infestation and water stress on wheat, it is hard to 

separate and differentiate water stress and greenbug infestation. Thus, an important issue 

for detecting greenbug infestation on wheat is how to differentiate these two kinds of 

stresses. Therefore, it will be important to test if sensitive bands and vegetation indices 

can be used to differentiate greenbug infestation from water stress. 

1.5.4 Examming the impact of growth stage on the detection of greenbug infestation 
 
       Plant damage symptoms caused by greenbug infestation are closely related to the 

growth stage of host plants (Brooks, 1991). However, there is no study involving 

monitoring change of canopy reflectance of infested plants at different growth stages. 

Also, plant coverage on the soil varies at different stages. Plant cover differences due to 

growth stages may have impact on reflectance measurements. Thus, it is not clear that 

sensitive band/vegetation indices determined at one stage can be used for detection of 

infestation at another stage. Research needs to be done to define the reflectance profile of 

plants at different growth stages.  

1.5.5 Distinguishing greenbug infestation and infestation by Russian wheat aphid 
 
       As mentioned before, two kinds of infestations may coexist in the same field. Also, 

chlorosis and necrosis are typical symptoms for aphid infestation in small grains and 

there is a similarity of the spectral responses of plants between these two kinds of 

infestation (Riedell and Kieckhefer, 1995). Thus, how to differentiate wheat damage 

caused by these two kinds of aphids is also important and necessary. Therefore, it will be 

necessary to examine if sensitive band and vegetation indices could be used to distinguish 

greenbug infestation with the infestation induced by Russian wheat aphid.  

 11



 
 

 

CHAPTER 2 
Literature Review 

 
      The main purpose of this chapter is to review the application of ground-based 

radiometry on crop stress detection and examine some ways for detecting wheat stress 

induced by greenbugs.  

 
2.1 Introduction 

2.1.1 Leaf responses to plant stress 
                                 

Plant stress is considered to be a significant deviation from the conditions optimal for  

plant growth and thus could cause harmful effects when the limit of a plant’s ability to 

adjust is reached (Larcher, 1995).  Plant stress can affect almost every part of a plant 

although normally one or some parts of a plant are influenced at the beginning. Leaf 

responses to different stresses are very important when considering remote sensing 

techniques used to detect crop stress.  

      When water content of plant cells is lower than optimum and causes some degree of 

metabolic disturbance, a plant is said to be suffering water stress (Fitter and Hay, 1981). 

Leaf curling, wilt or drastic decreases of leaf area expansion are general symptoms of 

water stress (Alscher et al., 1990). The extent of stress impact on plant leaves depends on 

the occurrence of the water stress relative to the phenological stage of the plant and 

severity of the water deficit (Chaney, 2000).  
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       Nitrogen deficiency is the most common and widespread nutrient deficiency. When 

the required amount of nitrogen is not available, plants are said to be under nitrogen 

deficiency or nitrogen stress (Larcher, 1995). Plant leaves generally turn yellow (overall 

chlorosis) under N stress. In young plants the whole plant turns yellow while in older 

plants the deficiency is more pronounced in older leaves (Reid, 1999).  

       A plant disease is a continuous harmful process that is usually caused by a 

microorganism and is characterized by visible morphological changes (Nyvall, 1979). 

Many diseased plants show symptoms on leaves, such as leaf discoloration or yellowing 

in localized or distinct patterns caused by virus, and small rusty-red, brown or black spots 

and stripes caused by fungi (Mikkelson, 1999).  

       Pest infestation refers to the presence of unusually large numbers of pests on the 

surface of plants and the damage to plants caused by these insects (British Society for 

Plant Pathology, 1973). Change in leaf color is a common symptom of pest infestation, 

and some changes involve cellular and tissue deterioration leading to leaf aging and death 

(Fogal et al., 1997).   

       Ozone (O3) injury refers to injury or damage to plants due to high concentration of 

ozone in the atmosphere. The injury caused by ozone is characterized by the appearance 

of chlorotic to pale tan or whitish lesions on the affected leaf. Extent of damage is related 

to the degree of leaf maturation and older leaves are more easily damaged by ozone 

(Treshow and Anderson, 1989).  

        Heat and cold, depending on their intensity and duration, could impair the metabolic 

activity, growth and variability of plants and thus limits the distribution of a species. Thus 

there are threshold temperatures for most crops. When critical temperature threshold is 
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crossed, cell structures and cellular functions may be damaged (Larcher, 1995). Heat 

stress refers to harmful effects caused by high temperature. Plants under heat stress are 

darker when compared to non-stressed plants and damaged plants have dry or yellow-dry 

spots on the leaves (Staub, 1990). Chilling injury is the physical and/or physiological 

changes that are induced by exposure to very low temperatures (Saltveit and Morris, 

1990). During chilling, the loss of chlorophyll, apparent as leaf yellowing or purpling, 

may occur as a consequence of photo-oxidation. 

       When salt content in soil exceeds the capacity of plants to cope, plants are under 

salinity stress (Larcher, 1995).  Plants suffering from salinity stress show reduced leaf 

size, scorching of leaf tips or margins, and premature discoloration and abscission of the 

leaves. Salt stress may have been the first chemical stress factor encountered during the 

evolution of life on earth. 

2.1.2 Principles of crop stress detection  
 
       Remote sensing is “the science and art of obtaining information about objects 

through the analysis of data acquired by a device that is not in contact with the object” 

(Lillesand and Kiefer, 2000). Detection of crop stress by remote sensing is based on the 

assumption that stress factors that interfere with photosynthesis process or the physical 

structure of the plant affect the absorption of light energy and thus alter the reflectance 

spectrum, by reliably measuring the reflectance of spectrum the health state of a plant can 

be determined. Leaf reflectance is governed by leaf surface properties, internal structure, 

the concentration and distribution of biochemical components, such as chlorophyll and 

water content, and thus remote sensing analysis of reflectance has been used to assess 

both biomass and physiological status of a plant (Penuelas et al., 1997). Generally, leaf 
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chlorophyll content is the primary factor affecting leaf reflectance in the visible and near 

infrared wavelengths from roughly 500 to 900 nm and leaf water content is the primary 

factor from 1300 to 2500 nm (Carter, 1991). Many researchers (Carter, 1993; Malthus 

and Madeira, 1993; Shibayama et al., 1993) reported that plants under stress have a 

decrease in reflectance of the near infrared band (750-1300 nm), a reduced red absorption 

in the chlorophyll active band (680 nm), and a consequent shift of the red edge. 

Therefore, leaf reflectance can be used to derive indicators that are representative of crop 

conditions and to assess different stresses (Fernandez et al., 1994).  Furthermore, 

vegetation indices such as NDVI combining the R and NIR information are also useful 

for characterizing crop stress (Hatfield and Pinter, 1993). 

        Since a major role of transpiration is leaf cooling, canopy temperature and its 

reduction relative to ambient air temperature is an indication of how capable transpiration 

is in cooling the leaves under a demanding environmental load. It was reported that plants 

subjected to water stress have higher leaf temperature than normal plants and other types 

of crop stress related to water uptake by plant roots or translocation of water to the leaves 

for evaporation also have similar symptoms (Michels, et al., 1999; Moran et al., 1994; 

Pinter, 1979). The use of canopy temperatures to detect water-related stress in plants is 

based upon the assumption that, as water becomes limited, transpiration is reduced and 

plant temperature increases. The “Crop Water Stress Index” (CWSI) that was based on 

infra-red thermometry has often been used to quantify water-related crop stress. So crop 

stress can also be detected by using infrared thermometry.  It is clear that remote sensing 

techniques can detect crop stress due to such factors as insect infestation, disease, 

moisture deficiency, and lack of required nutrients. 
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2.1.3 Status of current research on crop stress detection by remote sensing 
 
      Image-based remote sensing, such as airborne systems and satellites, has been 

successfully used in detection of crop stresses, such as pest infestation and nitrogen stress 

(Bell, 1995, Hugh-Jones et al., 1992; Maas et al, 1999; Royle and Lathrop, 1994).  For 

example, Landsat satellite images were used to map the western tarnished plant bug 

(Lygus hesperus (Knight)) that is a key pest in many crops (including cotton, dry beans, 

seed alfalfa, and various fruits and vegetables) in the San Joaquin Valley (Goodell et al., 

2002). They also identified areas of senescing natural vegetation that were in close 

proximity to cultivated areas. GopalaPillai et al. (1998) used high-resolution color 

infrared (CIR) aerial images to detect in-field spatial patterns of nitrogen stress in a corn 

field and found that the canopy reflectance was well correlated to the applied nitrogen 

and the yield from 75 days after sowing. There are, however, still a lot of technical 

limitations that affect image-based application on crop stress detection. Currently, no 

satellite sensor that has both sufficient spectral resolution and spatial resolution for with-

in field analysis is available. Lower temporal resolution for satellites is also a big obstacle 

for satellite-based detection of crop stress. For aircraft-based sensors, calibration and 

geometric correction are often difficult for large area coverage (Moran et al., 1997).  

        On the contrary, by using ground-based radiometry techniques, such as hand-held 

radiometers, people can control monitoring conditions and measurements can be easily 

quantified and repeated under the same or similar conditions. It also allows more precise 

analysis and interpretation because the crop can be sampled directly to measure 

composition and other properties affecting leaf reflectance or temperature (Goetz and 
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Srivastava, 1985). These are very useful for site-specific crop stress detection. Therefore, 

ground-based radiometry has been widely used in crop stress detection (Hatfield, 1990).  

 

2.2 Crop stress detection using ground-based radiometry 

2.2.1 Ground-based radiometry 
 
          Ground-based radiometry is a quantitative measurement of radiance, irradiance, 
 
reflectance or transmission of objects by using hand-held spectroradiometers, radiometers 

or infrared thermometers (IRT) in a field and greenhouse, or a laboratory.  It measures 

both irradiance and radiance of an object and correlates them to the biological, chemical 

and physical attributes of the object. Ground-based sensors are often hand-held or 

mounted on a tripod, ladder, scaffolding, tall building, tower, etc. Compared to image-

based remote sensing, field spectra of target materials are collected to allow for more 

precise image analysis and interpretation (Goetz and Srivastava, 1985). Ground-based 

radiometry sensors can be used to record detailed information about the surface that is 

compared with information collected from aircraft or satellite sensors. They also can be 

used to better characterize the target that is being imaged by these sensors. 

2.2.2 Nitrogen deficiency 
  
        Although a chlorophyll meter is often used for assessing crop N status, there is a lot 

of research that involves the use of hand-held radiometers or spectcroradiometers to 

detect nitrogen deficiency. Vouillot et al. (1998) used a field radiometer to conduct field 

measurement of N deficiency of wheat and spectral bands: 500-590 nm (green), 610- 680 

nm (red), 790-890 nm (near infrared) were used. They found that ratio of near infrared to 

red was closely related to nitrogen concentration. Schepers et al. (1998) utilized Li-Cor 
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canopy sensors designed to measure reflectance of green and NIR portions of the spectra 

and a chlorophyll meter to monitor the N status of irrigated corn in the field. They found 

that green NDVI = (NIR-green)/ (NIR+green) was a good indicator of yield potential 

because it theoretically integrates crop N status (greenness) and biomass. 

       To increase spectral resolution, Blackmer et al. (1994) conducted reflectance 

measurements of corn leaves cut from corn planted in research plots by using a Hunter 

tristimulus colorimeter from 400-700 nm in 10 nm bandwidths in the lab and found that 

550 nm was the best wavelength to differentiate different N treatments. They concluded 

that the measurement of light reflectance near 550 nm was promising to detect N 

deficiencies in corn leaves. Sembiring et al. (1999) used a PSD 1000 Ocean Optics fiber 

optic spectrometer (345-145 nm) to detect winter wheat stress due to N and P deficiency 

at Tipton and Perkins, Oklahoma. It was found that NDVI and the ratio index = NIR/red 

were good indices to predict biomass, and N and P uptake.  

        Wavelengths that are most sensitive to nitrogen deficiency might be crop-type 

dependent because red band and near infrared band were used for winter wheat but the 

band centered at 550 nm or infrared portion were used for corn. These differences could 

be explained by many factors, including differences in water content, plant anatomy, and 

the concentration of cell constituents. NDVI and VI (Vegetation Index) are often used 

and green NDVI might be a good indicator of yield potential. Compared to other sensors, 

the Li-Cor sensor can detect cumulative effects of plant vigor and monitor immature 

leaves that might indicate current N status better than more mature leaves (Schepers et 

al., 1998). All above studies except the study of Blackmer et al. (1994) were conducted 
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under field conditions. Detection of N deficiency by ground-based radiometry holds 

increased potential in the near future. 

2.2.3 Water stress 
 
      Compared to other stresses, water stress has been most widely studied using ground-

based spectroscopy/radiometry, and hand-held multi-spectral radiometers were usually 

used. There are also numerous studies involving the use of hyperspectral spectroscopy by 

spectroradiometers to detect crop water stress. 

       Ripple (1986) measured reflectance of snapbean leaves collected from one 

greenhouse at three spectral regions: 630-690, 760-900, and 2080-2350 nm. The results 

showed that the red and middle infrared bands are sensitive to changes in both leaf cover 

and relative water content of leaves while the near infrared was sensitive to only changes 

in leaf cover. Mahey et al. (1991) monitored radiance of wheat canopies in the field at 

two bands: 625-689 nm and 760-897 nm and found that NDVI was a good indicator for 

water stress. Fernandez et al. (1994) studied radiometric characteristics (ranging from 

400 to 2200 nm) of wheat under water and nitrogen stress in the field. The results 

revealed that except for LAI (Leaf Area Index), relations between canopy reflectance and 

most physiological parameters were dependent on plant treatment, and NDVI was the 

most powerful index for water stress. 

        To get detailed information about spectral response of crop water stress, some 

researchers used field spectroradiometers to do numerous experiments. Shibayama et al. 

(1993) observed radiometric characteristics of rice canopy in the wavelength range 400-

1900 nm in the field. Based on analysis of spectral reflectances and calculation of NDVI, 

it was concluded that reflectance measurements and their first derivatives in near infrared 
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and mid-infrared ranges are better ways to detect water stress in rice canopies. Penuelas 

et al. (1993) conducted measurements of spectral reflectance and water status variables, 

such as RWC (Relative Water Content), on three experimental objects: irrigated gerbera 

in one greenhouse, pepper and bean in a chamber, detached bean leaves at bands from 

390 to 1100 nm. The results illustrated that reflectance in the 950-970 nm region is a 

good indicator of plant water status. Field radiometric measurements of two deep-rooted 

shrubs (Quercus coccifera and Arbutus unedo), two shallow-rooted shrubs (Cistus 

albidus and Cistus monspeliensis), and a grass (Brachypodium retusum) were made by 

Penuelas et al. (1997) and it was found that indices: WI (Water Index = R900 nm/R970 

nm) and NDVI were closely related to plant water concentration. Penuelas and Inoue 

(1999) conducted measurement of reflectance on detached leaves of two plants, peanut 

and wheat in the spectral range from 400 to 2500 nm and computed several indices: WI, 

NDVI, WI/NDVI, SIPI (Structural Independent Pigment Index = (R800-R445)/ (R800-

R680)). The results showed that the ratio of WI to NDVI was a best indicator of RWC.  

       Based on field radiometric/ polarimetric data of wheat canopies measured using one 

spectropolarimeter, Manjul (2000) described new spectral vegetation indices calculated 

from spectral reflectance and spectral degree of polarization. Spectral ranges from 650 to 

1000 nm and 650 to 800 nm were found very useful for crop water stress detection.  

        Based on the above-mentioned literature, spectral wavelengths that are most 

sensitive to water stress depend on species.  Because red and middle infrared bands were 

used for snapbean, red and near infrared bands were used for wheat, and near infrared 

(960 nm) band was used for rice. Carter (1991) reported that visible reflectance was most 

sensitive to water stress at 535-640 nm and 685-700 nm but Penuelas et al. (1993 and 
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1997) found that change in reflectance at 950-970 nm was more effective for detection of 

water stress at canopy levels. All the differences described above may be caused by 

differences in the anatomical structure and water content of leaves from different crop 

species.           

        Different indices were also used for detecting water stress. Among them, NDVI has 

been widely used (Fernandez et al., 1994; Mahey et al., 1991; Shibayama et al., 1993), 

although specific wavelengths used for calculation of NDVI differ among studies. New 

Spectral Vegetation Indices (SVI) may eliminate the effects of soil background (Manjul, 

2000).  In addition, WI (Water Index) is also helpful to characterize crop water stress 

(Penuelas et al., 1993, 1997; Penuelas and Inoue 1999; Riedell and Blackmer, 1999). 

       Foliage temperature can be incorporated into crop water stress indices that have been 

related to soil water availability and leaf water potential (Hatfield, 1990). Plant water 

stress in the energy balance method can be quantified by one of two methods: an 

empirical approach developed by Idso et al. (1981) and a theoretical approach by Jackson 

et al. (1983). Both methods are based on comparison between foliage and air temperature. 

Infrared thermometers (IRT) are often used to detect water stress. Stark and Wright 

(1985) conducted field studies to detect soil water deficits in potato. Concurrent 

measurements of foliage – air temperature differences, leaf water potential and vapor 

pressure deficit- were obtained from differentially irrigated potato during the growing 

season. The results showed that Plant Water Stress Index (PWSI) was linearly related to 

water potential caused by moderate to severe water deficits. Yazar et al. (1999) evaluated 

the Crop Water Stress Index (CWSI) for irrigated corn in the field and found that CWSI 

was a useful tool to measure water stress in corn. Carcova et al. (1998) conducted two 
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field measurements on maize. It was found that there was a good relationship between 

CWSI and available soil water. Based on field measurement of iceberg lettuce, Alves and 

Pereira (2000) provided a new approach for non-water-stressed baselines for irrigation 

scheduling using IRT. Compared to water stress detection by measuring leaf reflectance, 

IRT and CWSI seem more likely to be used in practice, considering degrees of maturity 

of techniques and cost. 

2.2.4 Plant diseases 
  
      There are a number of studies in which hand-held multispectral radiometers were 

used to detect plant diseases. Nutter (1989) reported that plant disease gradients in a 

peanut crop could be quantified by measuring percent leaflet defoliation with respect to 

distance from the sources of leaf spot and by measuring percent canopy reflectance at the 

800 nm wavelength in the field. It was also found that the relationship between leafspot 

defoliation, canopy reflectance and pod yield in field peanut (Nutter et al., 1990; Nutter 

and Littrell, 1996). Nilsson (1991) measured reflectance of cereal leaves, such as barley 

infected by net blotch, wheat infected by Glume blotch Septoria nodorum, in different 

seasons and varying weather conditions. They found that there were good correlations 

between spectral reflectance and disease incidence, plant height and weight.   

       Malthus and Madeira (1993) used a spectroradiometer to detect the fungus Bortrytis 

Fabae (chocolate spot) infection of beans in the field by scanning at 2 nm intervals over 

the 400-1100 nm range. The results showed that the most significant change of 

reflectance was a flattening of the response in the visible region and a decrease in the 

near infrared reflectance shoulder at 800 nm.   
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       It was found that band at 800 nm was often selected to detect plant stress due to 

diseases. Since canopy reflectance at 800 nm was closely related to plant disease 

gradients and plant biomass and in near infrared wavelengths, there was significant 

decline in reflectance at about 800 nm (Malthus et al., 1993; Nutter, 1989; Nutter et al., 

1990; Nutter and Littrell, 1996). However, no stress index was used in the above studies. 

       Since higher leaf temperature or change of foliage reflectance usually appears when 

plants are infested with disease, many researchers adopted IRT to detect plant disease 

(Mengistu et al., 1987). Pinter (1979) studied biological stresses in sugar beets infected 

with Pythium aphanidermatum (Pythium root rot) and cotton infected with 

Phymatotrichum (Cotton root rot) in the field. The results showed that green leaves of 

infected plants had midday radiant leaf temperatures 3-5o C warmer than adjacent plants 

with no sign of disease. Nilsson (1991) measured leaf temperature of different infected 

plants, such as barley infected by net blotch, wheat infected by Glume blotch, and roses 

infected by rust, under various weather conditions. It was found that leaf temperature of 

the infected host plants could increase by infectious disease, in some cases up to 100 C. 

These findings illustrate that plant diseases can be detected by using IRT. 

2.2.5 Ozone injury 
 
       With the increase in ozone pollution, a lot of research was done to measure crop 

damage caused by ozone injury. Most researchers used spectrophotometers, 

monochromators or spectroradiometer with hyper-spectral bands to detect leaf injury 

caused by ozone. Runeckles and Resh (1975) used a spectrophotometer at band 550-650 

nm to monitor damage caused by ozone on bean plants grown in pots in a greenhouse and 

found a significant increase of reflectance in bean leaves exposed to sub-acute levels of 
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ozone. Cure et al. (1998) conducted an open-top chamber study to measure ozone injury 

to soybean using a scanning monochromator (400-1100 nm). The results showed that O3 

treatments were closely related with changes in reflectance at visible wavelengths and at 

near infrared wavelengths up to 720 nm. Similar studies were conducted by Cure and 

Heagle (1985) using a spectroradiometer to measure the leaf response of soybean to 

ozone. It was found that wavelengths at 560 and 620 nm were promising to assess the 

response of soybean to ozone stress.  Penuelas et al. (1995) also used a spectroradiometer 

to measure ozone damage on white pine seedlings in the field and calculated spectral 

reflectance indices: NDVI = (R900-R680)/(R900+R680), SIPI (Structural Independent 

Pigment Index), and SIXI (Structural Independent Xanthopyll Index). They found that the 

biological parameters including chlorophyll concentration correlated well with spectral 

reflectance indices. There are greater chlorophyll degradation and lower photosynthetic 

and growth rates in the summer, compared to winter and spring.  

        To estimate ozone stress on wheat and corn, Rudorff et al. (1996) conducted an 

open-top chamber study using a radiometer with Landsat TM bands in the field under 

controlled atmospheric environments. It was found that the Normalized Difference (ND) 

index had lower values for plants grown under the high-O3 level and reduced ND values 

were related to the appearance of visual O3 damage symptoms on wheat leaves. 

       Wavelengths or spectra that are most sensitive to ozone stress might be also 

dependent on crop types. Because green and red bands were used for bean plants such as 

soybean and blue, red and near infrared bands are used for wheat and corn (Cure and 

Heagle, 1985; Heagle et al., 1998; Penuelas et al., 1995; Rudorff et al., 1996; Runeckles 

and Resh, 1975). However, visible bands are mostly selected. Few researchers used 
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vegetation indices to study ozone stress. NDVI or ND was often selected to measure 

ozone injury on plants (Penuelas et al., 1995; Rudorff et al., 1996). 

2.2.6 Heat stress 
 
        High temperature stress occurs in some countries such as India and has caused some 

wheat yield loss (Maheswari et al., 1999). Very few researchers, however, use field 

spectroscopy/ radiometry techniques to detect heat stress.  Blum et al. (1982) used an 

infrared thermometer to measure the wheat canopy under heat stress in the field. Within a 

given year and site, under conditions of water stress, the extreme difference among wheat 

selection in midday temperature reached 8o C, at a mean ambient temperature 26o C. 

2.2.7 Salinity stress 
  
       High levels of soil and water salinity can inhibit plant growth and reduce crop yield 

in agricultural food production. Wang et al. (2003) did a study that was designed to 

measure canopy spectral reflectance of soybean plants under salinity and irrigation 

treatments (drip, sprinkler, and furrow), and to relate the reflectance characteristics to 

salinity-induced alterations in leaf chlorophyll, specific leaf mass, and above-ground 

biomass. The reflectance measurement was made with a hand-held spectral radiometer, 

which establishes the signature plant responses to salinity. Results from this study 

indicate that background salinity stress can be delineated from reflectance and 

temperature measurements of soybean plants. Canopy reflectance in the NIR spectrum 

region (810 to 950 nm) was significantly lower for soybeans grown under salinity stress. 
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2.2.8 Pest infestation 
 
        Detection of pest infestation often involves the use of hand-held radiometers or 

thermometers. Nicolas et al. (1991) evaluated the potential of radiothermometry for the 

detection of infestations by the nematode Heterodera avenae Woll. in winter wheat 

(Triticum aestivum L.) and they found that cumulative canopy temperature difference was 

useful for detecting the presence of nematodes and thermal images allowed precise 

delimitation of  infested areas, and thus should be extensively applied to the detection of 

nematode attacks by remote sensing in large wheat fields. Yang and Cheng (2001) 

studied spectral characteristics of rice plants at various levels of infestation by the brown 

planthopper, Nilaparvata lugens (Homoptera: Delphacidae) using a spectroradiometer. It 

was found that there were significant differences in reflectance among infestations at 

wavelengths of 755 and 890 nm and the normalized difference vegetation index (NDVI) 

and cumulative reflectance were also useful to discriminate levels of infestation.  

       Although a lot of research is being done on greenbug infestation, few researchers 

focus on how to detect crop stress induced by greenbug infestation. Deol et al. (1997) 

developed a rapid and nondestructive technique to estimate the loss of chlorophyll in 

sorghum leaves caused by greenbug feeding. By measuring chlorophyll content of 

uninfested and infested leaf areas using a chlorophyll meter it was found that chlorophyll 

loss increased as the feeding duration of the greenbugs increased (Deol et al., 1997). 

Similarly, using a chlorophyll meter, Ma et al. (1998) observed chlorophyll loss in 

sorghum infested by greenbugs. These experiments demonstrated that damage caused by 

greenbug infestation could be detected directly or indirectly by techniques that measure 

the chlorophyll content of leaves infested by greenbugs. 
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      Riedell and Blackmer (1999) conducted a greenhouse study aiming to find 

wavelengths most sensitive to greenbug infestation measured using a portable ASD 

spectroradiometer. In this study reflectance of detached wheat leaves infested with 

greenbugs was measured across from 350-1075 nm at about 1.4 nm intervals. NPCI and 

Water Band Index (WBI) were calculated. Results showed that reflectance values at the 

625-635 nm and 680-696 nm range and NPCI were significantly correlated with total 

chlorophyll concentrations in infested leaves. However, results of this study might be 

different under field conditions, since this research was done only at leaf level and not 

canopy level. 

      Michels et al. (1999) used IRT to monitor the temperature difference of leaves of 

wheat under four regimes: normally-watered and not infested, normally-watered and 

infested, water-stressed but not infested, and infested and water-stressed in a greenhouse. 

The experiment illustrated that there was a significant and distinguishable temperature 

difference between non-infested and infested wheat and the differences increased with 

the abundance of greenbugs. However, it was hard to use IRT alone to differentiate water 

stress and greenbug infestation because it was found that there was no significant 

difference between normally-watered but infested plants and non-infested and water-

stressed plants (Michels et al., 1999).  

      Sensitive bands to various crop stresses are summarized in Table 2-1. It can be seen 

that different stresses on the same plants have been measured using different bands. For 

different crops under the same stress, sensitive bands are also different. This variance 

indicated that the most sensitive wavelengths used to detect crop stress might be crop-

dependent. 
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 Table 2-1 Sensitive bands to various stresses 
 

Stress type Sensitive band (nm) Crop References 
Nitrogen deficiency 550 wheat Blackmer et al.(1994) 
Water stress 950-970 gerbera, pepper, bean Penueles et al.(1993) 
 650-800, 1000  wheat Manjul (2000) 
 535-640  wheat Carter (1993) 
Plant disease 800 peanut Nutter et al.(1990) 
Ozone injury 560-620 soybean Cure and Heagle (1985) 
Heat stress Thermal band wheat Blum et al.(1992) 
Salinity stress 810-950 soybean Wang et al.(2003) 
Pest infestation 755-890 wheat Yang  and Cheng (2001) 

 625-635 wheat 
Riedell and 
Blackmer(1999) 

 680-696 wheat 
Riedell and 
Blackmer(1999) 

 
   

 
2.3 Vegetation indices 
  
       Numerous vegetation indices were involved in the study of crop stress detection.  A 

Vegetation Index (VI) is a quantitative characterization of remotely sensed temporal and 

spatial data. To enhance the plant stress signal, the measured spectral reflectance data 

from two or more spectral wavelengths are combined into vegetation indices based on 

different mathematical formulae. Spectral vegetation indices are mainly designed to 

improve vegetation sensitivity by reducing “noise” from soil and atmosphere and could 

be used as quantitative indicators of vegetation amount. They reduce the 

multidimensional spectral space of the vegetated scene to one dimension in order to sense 

variability in such properties as biomass, (LAI) Leaf Area Index, and fractional cover and 

types. During the past decades, most vegetation indices were derived using visible bands 

and near-infrared (NIR) spectral region. The main purpose using these vegetation indices 

is to capture i) the relatively high radiation absorption of red light by leaves due to the 

presence of chlorophyll and ii) the high reflectance of NIR light due to scattering in the 
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leaf internal structure (Curran, 1980). Jordan (1969) developed the first RVI (Ratio-

Based Index), which is the ratio of near infrared (NIR) and red bands. Later, the NDVI 

was widely used for crop stress detection because of its high correlation with vegetation 

parameters such as biomass and green leaf area (Curran, 1980). While NDVI seemed 

promising, soil background and BRDF (Bidirectional Reflectance Difference Factor) 

limited its application (Huete, 1988). To minimize the impact of soil background, Huete 

(1988) developed the soil-adjusted vegetation index (SAVI) and Qi et al. (1994) created 

the Modified Soil Adjusted Vegetation Index (MSAVI). The Atmospherically Resistant 

Vegetation Index (ARVI) of Kaufman and Tanre (1996) and the Global Environmental 

Monitoring Index (GEMI) of Pinty and Verstraete (1991) were reported to be less 

sensitive to the atmosphere. Penuelas et al. (1993 and 1997) developed the Water Band 

Index (WBI) to quantify water stress on crops. Adams et al. (1999) suggested the 

Yellowness Index (YI) as a good measure (at leaf level) for chlorosis in stressed plants. 

In addition, vegetation indices derived from the chlorophyll-centered bands, such as the 

NPCI = (R680-R430) / (R680+R430), are becoming valuable tools in the evaluation of 

plant status both in agricultural and natural plant communities (Penuelas et al., 1993).

      Comparisons of sensitivities and abilities for stress detection among various 

vegetation indices were conducted by several researchers. Jackson et al. (1983) did a 

study on discrimination of growth and water stress in wheat using various vegetation 

indices. It was found that sensitivity of the various indices to vegetation depended on 

plant growth stage and atmospheric path radiance. Wanjura and Hatfield (1987) reported 

that among three commonly used vegetation indices - RVI, NDVI and GVI (Greenness 

Vegetation Index) - RVI was more sensitive to high levels of biomass and LAI (Leaf 
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Area Index) but NDVI and GVI were best estimators of LAI and ground cover when 

crops were at early growth stage. Mickelson et al. (1998) studied the impact of variations 

in soil texture and moisture on the green vegetation index (GVI) and the NDVI for targets 

with specific vegetation cover amounts and varying soil backgrounds. They found that 

GVI values were much less influenced by soil background variation than NDVI. After 

examining the use of seven types of vegetation indices in field studies, Lawrence and 

Ripple (1998) found that among the ratio-based vegetation indices, the simple ratio (RVI) 

and NDVI are best indicators for vegetation cover under conditions of high substrate and 

vegetation heterogeneity. Thenkabail et al. (2000) examined three types of vegetation 

indices (NDVI, Optimum Multiple Narrow Band Reflectance (OMNBR), and soil-

adjusted vegetation indices such as SAVI. They found that OMNBR had the “over 

fitting” problem and twelve types of narrow band NDVI were better predicators for crop 

variables.  

         All studies above suggest that the performance of vegetation indices was highly 

associated with crop variables examined, the plant species, the atmospheric condition and 

optical properties of the soil background. Different vegetation indices should be chosen 

for specific studies on crop stress detection. However, it is not known whether any band 

or vegetation index could be used to detect greenbug-induced crop stress. Various 

vegetation indices from relevant literature were summarized in Table 2-2. 

 



 
 

Vegetation Index Formula 

1. Atmospheric Resistant Vegetation Index, ARVI (Kaufman and Tanre, 1996)  ARVI = (NIR – (2red – blue))/(NIR + (2red – blue)) 

2. Difference Vegetation Index, DVI (Tucker, 1979) DVI = NIR-Red 

3. Enhanced Vegetation Index, EVI (Verstraete and Pinty, 1996) EVI = (1+L) (NIR-red)/(NIR+C1*red -C2*blue+L) 
C1=6.0, C2=7.5, L=1.0 

4. Global Environmental Monitoring Index, GEMI (Pinty and Verstraete, 1991) GEMI = η(1-0.25η)-(red - 0.125)/(1-red) 

η = [2(NIR2-red2)+1.5NIR-0.5red] /(NIR+red+0.5) 
5. Leaf Moisture Index, LMI (Parkes, 1997) LMI = R1650/R830 

6. Modified Soil Adjusted Vegetation Index Two, MSAVI2 (Qi et al., 1994) MSAVI2 = 1/2 * [(2*(NIR+1)) - (((2*NIR)+1)2 – 8 
(NIR-red))1/2 ]  

7. Optimized Soil Adjusted Vegetation Index, OSAVI (Rondeaux et al., 1996) OSAVI = ((NIR-red)/(NIR+red+L))*(1+L); L = 0.16 

8. Normalized Difference Vegetation Index, NDVI (Rouse et al., 1973) NDVI = (band1-band2)/(band1+band2) 
9. Normalized total Pigment to Chlorophyll Index, NPCI  
(Riedell and Blackmer, 1999) NPCI = (R680-R430) / (R680+R430)) 

10. Ratio Vegetation Index, RVI (Jordan, 1969) RVI = band1/band2 

11. Soil-Adjusted Vegetation Index, SAVI (Huete, 1988) SAVI = (1+L)* (band1-band2) /(band1+band2+L); 
 L = 0.5 

12. Structural Independent Pigment Index, SIPI (Penuelas and Inoue, 1999) SIPI = (R800-R450)(R800-R680) 

13. Specific Leaf Area Vegetation Index, SLAVI (Lymburner et al., 2000) SLAVI = NIR/ (Red + MIR)  

14. Visible Atmospherically Resistant Index, VARI (Gitelson, 2002) VARI = (green-red)/(green+red-blue) 

15. Vegetation Index One, VI1 (Viña, 2002) VI1 = NIR/green -1 

16. Vegetation Index Two, VI2 (Viña, 2002) VI2 = R800/R694 -1 

17. Yellowness Index, YI (Adams et al., 1999) YI = (R580 – 2R630+R680)/ ∆2, ∆ = 50 nm 

18. Water Band Index, WBI (Riedell and Blackmer, 1999) WBI = R950/R900 

         Table 2-2. Various vegetation indices compiled from literature 
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2.4 Factors influencing reflectance measurements 

2.4.1 Viewing angle 
 
        It is well recognized that viewing angle affects on reflectance measurements.  

Shibayama and Wiegand (1985) studied view azimuth and zenith effects on wheat 

canopy reflectance. They found that the ratio of off-nadir to nadir radiance increases or 

decreases as view zenith angle increases depending on view azimuth angle. Ranson et al. 

(1985) stated that position of the sensor relative to the sun was an important factor for 

determining the angular reflectance characteristics of crop canopies. Pinter et al. (1987) 

reported that off-nadir viewing significantly influenced spectral band ratios. Thus, the 

nadir is a very popular viewing angle selected for reflectance measurements across 

relevant literatures. 

2.4.2 Solar angle  

        The effect of solar angle on reflectance measurements has been studied for many 

years. Shibayama and Wiegand (1985) observed that the rate of change in the radiance 

ratio increased with increasing solar zenith angle. Pinter et al. (1987) found that the 

NIR/red ratio of winter wheat was significantly influenced by changes in solar angles. 

They reported that the NIR/red ratio was highest in mid-morning and mid-afternoon, and 

lowest with the high solar position near midday. Lord (1988) studied the relationships 

between daily variations in sun angles and red and near infrared reflectance measured 

throughout a growing season over different types of crop canopies. It was found that for 

wheat canopies visible reflectance is roughly constant throughout the day and infrared 

reflectance increases when angle from solar azimuth increases. Therefore, reflectance 

measurements are often performed near the solar zenith (at noon) to decrease the effects 
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of solar angle on canopy reflectance (Asrar et al., 1985; Ranson et al., 1985; Serrano et 

al., 2000).  

2.4.3 Soil background  
 
        It is well known that soil background has big impact on the measurement of canopy 

reflectance. This is especially evident at early stages of growth because the soil 

constitutes a large portion of canopy reflectance. Thus, some vegetation indices such as 

NDVI are sensitive to soil background because ground cover affects red and NIR 

reflectance. Elvidge and Lyon (1985) found that the NIR and red based indices have 

pronounced soil background influences at low vegetation cover. Mickelson et al. (1998) 

reported that GVI (green vegetation index) values were much less influenced by soil 

background variation than NDVI. Huete et al. (1984 and 1985) found that spectral 

differences between soils may be closely associated with variations in surface moisture, 

particle size distribution, soil mineralogy, soil structure, and surface roughness. Different 

soils may have different impact on canopy reflectance. Dark, low-reflecting soils 

influence vegetation indices less than high reflecting, light-colored soils (Jackson et al., 

1983).  Jackson et al. (1983) observed that there were little changes in soil reflectance 

ratios as soil moisture changed because a change in soil reflectance due to water 

concentration is about the same in the visible and near-infrared (NIR) regions of the 

spectrum. This fact shows soil moisture might not have a big effect on some derived 

vegetation indices. 

2.4.4 Atmosphere 
 
        Atmosphere is also an important factor for reflectance measurements. Goetz (1992a) 

found that the incoming solar irradiance could be significantly changed by absorbing 
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molecules in the atmosphere. Among absorbing molecules, water vapor has the biggest 

impact on the incoming solar spectrum (Gao and Goetz, 1990). Its absorption could 

extend the solar reflected region of the spectrum and varies both spatially and temporally 

(Goetz, 1992b). During reflectance measurements, if a reference panel is used and 

atmospheric conditions are unstable, variability of atmospheric water vapor between the 

time when the reference panel and target measurements are made may induce significant 

errors in the resultant spectrum Thus, Gao and Goetz (1992) pointed that it is important to 

minimize the length of time between the measurement of the reference panel and the 

target in order to reduce the error due to water vapor variability. Lord et al. (1985a) 

studied the possibility of using reflectance data collected under both cloudy and sunny 

conditions. They found that the reflectance measured under cloudy conditions with 

relatively constant irradiance values was constant and approximately 10% larger than the 

ones measured at similar sun angles during sunny conditions. This result indicated that it 

would be better to take all reflectance measurements under the similar cloud conditions to 

minimize the impact of atmosphere. 

2.4.5 Wind 
 
         Wind can be a source of error if the material being measured moves during the time 

the reflectance is measured. Vegetation canopies are especially susceptible to wind 

induced errors, due to their large proportion of shadow (Analytical Spectral Devices, Inc., 

2004). Lord et al. (1985b) did a study was to quantify and minimize the variability from 

wind on spectral reflectance. They found that within the windy and calm periods, extreme 

values of spectral reflectance differed by 60% and 12%, respectively, in the red, and by 

40% and 8% in the far-red for the barley canopy. The plant canopy architecture, the wind 
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conditions, and the spectral regions all affected the magnitude of the influence of wind on 

crop canopy spectral reflectance.  

 
2.5 Conclusions 
  
       Crop stress, such as nitrogen deficiency, water stress, plant disease, and  

ozone injury, can be detected using ground-based radiometry techniques at specific 

wavelengths using vegetation indices such as NDVI. NDVI is the most widely used 

vegetation index and some new spectral vegetation indices, such as YI, seem more 

promising in the near future. Different stresses on the same plants have been measured 

using different wavelengths or spectra. The most sensitive wavelengths used to calculate 

vegetation indices are crop-dependent. For different crops under the same stress, different 

wavelengths might be chosen for calculating vegetation indices. Ground-based sensors, 

such as radiometers, spectroradiometers and IRT, have been widely used to detect crop 

stress, such as water stress and plant diseases. There are a large number of vegetation 

indices that were used in crop stress detection. More research needs to be done to test 

their application for detecting greenbug-induced wheat stress. 

       Some progress has been made on the detection of greenbug infestation on crops 

because the spectroradiometer or IRT can be used to detect greenbug infestation with 

some limitations (Riedell and Blackmer, 1999; Michels et al, 1999). None of these 

studies, however, can be directly applied to detect greenbug infestation in the field 

without further testing. Sensitive band and vegetation indices to greenbug infestation at 

canopy levels need to be identified. Also, those sensitive bands and vegetation indices 

must have the capabilities to differentiate greenbug infestation with water stress and 
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infestation by Russian wheat aphid. In addition, sensitivities of sensitive band and 

vegetation indices at different growth stages have to be examined. 

       It is noted that very few stress studies involved continuous monitoring of canopy 

reflectance of plants under different stresses. Thus, it is difficult to identify the onset time 

at which there is significant difference in band reflectance/vegetation indices between 

stressed and control plants. However, this onset time is very necessary and important to 

determine the time to initiate greenbug control measures such as the use of pesticides. 

Continuous monitoring of canopy reflectance of wheat under greenbug infestation might 

help to provide sufficient information for decision-making. 

        In addition, since many factors such as viewing angle, soil and cloud cover have 

impacts on reflectance measurements, these factors have to be taken into consideration 

when designing and conducting reflectance measurements. 
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CHAPTER 3 
Materials and Methods 

       
      The main purpose of this chapter is to introduce materials and methods of research 

and experiments used in this study. 

 
3.1 Experiment facilities and materials 

        
      The greenhouse experiments were conducted using USDA Agricultural Research 

Service facilities in Stillwater, Oklahoma (Longitude 97 o 5 ′, Latitude 36 o 8 ′).  The 

experiment facilities used for this study are shown in Fig 3-1. They include (a) The 

greenhouse; (b) Sensors of Cropscan radiometer (Cropscan Inc., Rochester, MN, USA); 

(c) Data logger of Cropscan radiometer; (d) Hand terminal of Cropscan radiometer; (e) 

HOBO temperature and humidity sensor (MicroDAQ.com, Ltd., Warner, NH, USA); (f) 

Watchdog soil moisture sensor (Spectrum Technologies, Inc, Plainfield, IL, USA); (g) 

CR-10 weather station (Campbell Scientific, Inc., Logan, UT, USA); and (h) Artificial 

Lamp. Cropscan MSR-16 multi-spectral radiometer system was used in this study. It 

consists of a radiometer, DLC or A/D converter, terminal, telescoping support pole, 

connecting cables and operating software. This radiometer uses silicon or germanium 

photodiodes as light transducers and filters of wavelengths from 450 up to 1720 nm are 

available (Cropscan Inc., 2004). The Cropscan radiometer used in this study has sixteen 

bands that include five bands simulating Landsat TM bands and eleven narrow bands 

Band distribution of a Cropscan radiometer is shown in Table 3-1. The field of view for  
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(a)
; (b). Sensor head; (c). Data Logger (DLC); 
nd humidity sensor; (f). Watchdog soil 
h). Artificial Lamp. 

(d) 

(f) 

(h) 



 
 

 this radiometer is 28 o and thus the diameter of the field of view is one half of the height 

eter above the canopy. 

 
Band name o 30 nm) 

of the radiom

  

          Table 3-1. Band distribution of a Cropscan radiometer 

Portion Narrow (±5 nm) Br ad (>±
Visible Blue 450 485 
 Green 580 560 
 Red 620 660 
  630  
  670  
  680  
    694   
NIR(Near Infrared)   800 830 
    900   
  950  
MIR(Middle Infrared)   1480 1650 

          

 

      It is assumed that the irradiance flux density incident on the top of the radiometer 

(upward facing side) is identical to  den n the

(Cropscan Inc., 2004). The advantage of using a Cropscan radiometer is that it allows for 

near simultaneous inputs of voltages representing incident as well as reflected irradiation. 

Thus, m ents of percent reflectance could be conducted during cloudy conditions 

(cirrus to light stratus) with inciden irradiance leve wn to approxima y 300 watts 

are meter.  

    For the Cropscan radiometer, a data acquisition device-DLC Model 2000 

s 

, the 

 the flux sity incident o  target surface 

easurem

t ls do t le

per squ

  

(CROPSCAN, Rochester, MN) equipped with sun angle cosine correction capacity wa

used to record reflectance data from the canopy at 16 pass bands. During operation

photodiodes output current and this electrical current was converted to a voltage and 

amplified by the circuitry in the radiometer (Cropscan Inc., 2004). The Data Logger 
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Controller measured and logged these sensor millivolt readings. Data of percent 

reflectance at each pass band were processed subsequently by a computer program using

the calibration and 

 

correction constants through a minicomputer connected to the sensor. 

sorb-N-Dry, 

th media. All flats were 

ndomly arranged in the greenhouse to minimize shading effects (see Fig 3-2). Fifteen 

gs in flats were applied to different treatments such as 

(biotype-E). Measurement of canopy reflectance started the day 

00 

 data 

 

The sensor head was mounted on an adjustable pole. At each sampling, three 

measurements were taken within each flat and averaged.  

 
 
3.2 Experiment methods 
 
3.2.1 General methods 

      Flat-grown wheat (variety-TAM 107) was used for all experiments. In each 

experiment, wheat seeds were planted (seed spacing 1in. x 3 in.) in plastic flats with 

dimension 24 in. x 16 in. x 8.75 in. containing Redi-earth® plug and seedling Mix (Scott-

Sierra Horticultural Products Co., Marysville, OH, USA) and fritted clay (Ab

Balcones Minerals Corp., Flatonia, TX, USA) as the grow

ra

days after sowing, wheat seedlin

infesting with greenbugs 

after infestation and lasted until most infested wheat plants were dead. Canopy 

reflectance was measured once per day from nadir angle (90o) between 13:00 and 14:

hours using a Cropscan radiometer with an up-looking and a down-looking sensor. The 

distance between sensors and canopy was set as 0.5 m to keep the sensed area fully 

within each flat. After measurements, all raw data were downloaded from Cropscan

logger and preprocessed using two Excel VB scripts (see Appendix A) to calculate 

vegetation indices. During the experiments, temperature and humidity in the greenhouse
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were monitored using a Campbell Scientific CR-10 weather station or HOBO sensors. 

All flats were watered 1-2 times per week and fertilized every two weeks using 

 

  
 

 

 
 
 
 

 

          
 

          

Peters  

 

 

 

 

          

 

 

rofessional All Purpose Plant Food (Spectrum Group, Division of United Industries 

orp., St. Louis, MO, USA). Every three days, ten plants in each flat in which plants 

ere infested were randomly selected and greenbugs per plant were counted and results 

ere averaged to get the greenbug density (greenbugs per plant) for each flat. 

Sensitivity experiments 

      Sensitivity experiments were used to examine which bands/vegetation indices are 

mo by greenbug infestation in order to identify 

nsitive bands and vegetation indices. The sensitivity experiments involved three 

treatments: (1) greenbug-infested without pesticide; (2) non-infested with pesticide; (3) 

control (non-infested without pesticide). The purpose of pesticide treatment was to 

examine if use of pesticide affects reflectance of wheat canopy. Since Greenbug 

 
 

            Fig 3-2. Experiment layout. 

 
P

C

w

w

3.2.2 
 
  

re sensitive to wheat damage caused 

se
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infestation in one field can quickly spread to neighboring fields (Brooks, 1991), to keep 

control plants (in this study) free of greenbug infestation, one effective method is to apply 

pesticides. Thus, pesticides (% granular Marathon) were applied to the soil in which 

ontrol plants were planted. There were three replications for each treatment. 

Experiments were repeated three times during three time periods: Jan 16–Mar 12, 2002 

(SEex1), Mar16–May 1, 2002 (SEex2) and Nov 11–Dec 24 (SEex3). Here SE stands for 

sensitivity.  

         In each experiment, fifteen days after sowing wheat seedlings in three flats were 

infested with greenbugs (biotype-E) at a density of one per plant. Soil in another three 

flats was treated with granular Marathon (1%) (Olympic Horticultural Products Co., 

Mainland, PA, USA) and the remaining three control flats were kept free of greenbugs 

and pesticide. During the experiments, temperature and humidity in the greenhouse were 

monitored using a Campbell Scientific CR-10 weather station. All flats were watered 2 

times per week and fertilized every two weeks. 

 
rpose of differentiating experiments was to examine if water stress and 

 

c

3.2.3 Differentiating experiments  

         The pu

greenbug infestation on wheat could be distinguished using reflectance of wheat canopy

at sensitive bands and sensitive vegetation indices. The experiments involved four 

treatments: (1) non-water-stressed but infested (NW+I); (2) water-stressed but non-

infested (W+NI); (3) control (non-infested and non-water-stressed) (NW+NI). (4) 

infested and water-stressed (W+I). There were three replications for each treatment. 

Experiments were repeated three times during three time periods: Nov 5–Dec 8, 2002 
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(DIex1), Mar17–Apr 13, 2003 (Diex2) and Nov11– Dec 24, 2003 (Diex3). Here DI 

flats, 

nts 

er 

ater 

in the greenhouse were monitored using a HOBO sensor. Soil 

ed 

3.2.4 Growth stage experiment  

           The purpose of growth stage experiment was to test the impact of plant growth 

stage on detection of greenbug infestation. The growth stage experiment involved four 

treatments: (1) greenbug-infested at two-leaf stage; (2) greenbug-infested at tillering 

stage; (3) control (non-infested) at two-leaf stage. (3) control (non-infested) at tillering 

stage. It means that infestation was applied to plants at two growth stages: two-leaf and 

tillering. There were three replications for each treatment.  This experiment was 

conducted during Jan 18 – Feb 26, 2003. This experiment was labeled as STex (ST stands 

tic 

 

stands for differentiating. 

         In each experiment, fifteen days after sowing, wheat seedlings in six flats were 

infested with greenbugs (biotype-E) at a density of one per plant.  Among these six 

plants in three flats were chosen for water stress treatment. To keep non-infested pla

getting infested by greenbugs, granular Marathon (1%) was applied to soil in all oth

flats. Water stress treatment was applied to plants in six flats as below: withholding w

until most plants show water stress symptoms such as leaf wilting, curling and rolling. 

Non-water stressed plants were watered once a week. During the experiments, 

temperature and humidity 

moisture was monitored using four Spectrum Watchdog sensors. All flats were fertiliz

every two or three weeks using Peters Professional All Purpose Plant Food.  

 

for stage). 

          On Dec 18, 2002, wheat seeds were planted (seed spacing 1in. x 3 in.) in six-plas

flats with dimension 24 in. x 16 in. x 8.75 in containing planting seedling mixture as the
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growth media. On Jan 2, 2002, wheat seeds were planted in other six flats in the same

way. All flats were randomly arranged in the greenhouse to minimize shading effects. In

this way, by the middle of January 2003 earlier-planted wheat plants reached tillering 

stage and late-planting wheat plants reached two-leaf state. On Jan 18, 2003 whea

in six flats (three from tillering groups and three from two-leaf group) were infested with 

greenbugs (

 

 

t plants 

biotype-E) at a density of one per plant. Soil in remaining six flats was treated 

3.2.5 Comparing experiment  

      Comparing experiment was used to compare greenbug infestation and infestation 

induced by Russian wheat aphid. This experiment involved three treatments: (1) 

greenbug-infested; (2) Russian wheat aphid -infested; (3) control (non-infested). There 

were three replications for each treatment.  This experiment was conducted during Oct 30 

– Nov 20, 2003. This experiment was labeled as GRex. Here GR stands for greenbug and 

Russian wheat aphid. 

      In this experiment, wheat seeds were planted (seed spacing 1in. x 3 in.) in nine-metal 

in. x 4.75 in containing Redi-earth® plug and seedling 

 were 

d 

ity in the greenhouse were monitored using a HOBO sensor. All 

with granular marathon (1%) to keep free of greenbugs. During the experiment, 

temperature and humidity in the greenhouse were monitored using a HOBO sensor.  

 

flats with dimension 24 in. x 16 

mix as the growth media. Nine flats were randomly arranged in the greenhouse to 

minimize shading effects. Fifteen days after sowing, wheat seedlings in three flats

infested with greenbugs (biotype-E) and wheat seedlings in other three flats were infeste

with Russian wheat aphids at a density of four aphids per plant. Soil in left three flats was 

treated with granular marathon (1%) to keep them free of aphids. During the experiment, 

temperature and humid
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flats were watered once a week and fertilized using Peters Professional All Purpose Plant 

Food every two weeks. Every three days, ten plants in each flat were randomly selected 

and aphids per plant were counted and results were averaged to get the aphid densi

(aphids per plant) for each flat.  All experiments used for this study were summarized in 

Table 3-2. 

 

Table 3-2. Experiments conducted in this study 

Experiment Name Denotation Purpose Time Periods 

ty 

 

Sensitivity experiment 1 SEex1 Test sensitivities of bands Jan16–Mar 12, 2002 
Sensitivity experiment 2 SEex2 and vegetation indices Mar16–May 1, 2002

Differentiating experiment 1 DIex1 Differentiate greenbug infestation Nov 5–Dec 8, 200

 
Sensitivity experiment 3 SEex3  Nov 11–Dec 24, 2003 

2  
Differentiating experiment 2 DIex2 and water stress Mar17–Apr 13, 20
Differentiating experiment 3 DIex3  Nov 11–Dec 24
Growth stage experiment STex Test impact of growth stage Jan 18–Feb 26,

03  
, 2003 

 2003 
Comparing experiment GRex Compare greenbug infestation and  Oct 30–Nov 20, 20
  infestation by Russian wheat aphid  

03 

 

 

3.3 Data processing and analysis 

3.3.1 Selection of SAS progr
 
 asureme  re e of daily

r  on th e s us, 

r  and ion indices were processed and ana

r tistical so  SA in

ariability. The SAS procedures PROC MIXED and PROC GLM (General Linear 

odel) (SAS Institute, 1990) are frequently used for repeated measures. “PROC GLM 

was designed to fit fixed effect models and later amended to fit some random effect 

models by including RANDOM statement with TEST option”. “The PROC MIXED was 

ams 

       All reflectance me nts are peated measures becaus -based 

eflectance measurements e sam ubject in each experiment. Th the data of 

eflectance measurements vegetat  lyzed using 

elevant models in sta ftware S in order to account for with -subject co-

v

M

 45



 
 

specifically designed to fit mixed effect models. It can model random and mixed effect 

a, data with heterogeneous variances and 

ws 

om 

 

-

 Appendix 

3.3.2 Threshold Day and Maximum Day 

       In the statistical analysis of this study, the selection of covariance structure for each 

band and vegetation index was based on the comparisons of absolute AIC (Akaike 

Information Criteria) values of several covariance structures, such as autoregressive, 

compound symmetry and toeplitz, from SAS outputs (See examples in Appendix C). The 

covariance structure with the least (absolute) AIC value was selected for further analysis. 

In SAS Program, the REPEATED statement was used to address the data dependency 

problem and to specify the covariance structure. The SLICE option was chosen to test the 

significance level of interaction between treatment and time. The analysis of this 

interaction allowed us to examine the treatment effect for each time and to observe how 

data, repeated measures, spacial dat

autocorrelated observations” (University of Kentucky, 2001). PROC MIXED allo

many covariance structures that are particularly useful in repeated measures and rand

effect models but in PROC GLM all computations are done under the assumption that

there is only one variance component in the model, the error term (University of 

Kentucky, 2001).  In addition, PROC GLM requires balance data (i.e. there are no 

missing data and all treatments have equal sample sizes) but PROC MIXED handles 

missing data and applies multiple comparison procedures to both between and within

subjects factors (Little, et al., 1996, William et al., 1997). Considering advantages of 

PROC MIXED and the possibility of experiment data possessing variety of variance 

components, PROC MIXED was used for statistical analysis in this study (see

B). 
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differences among different treatments develop with time. By checking the p values 

 – 

 

ve. A 

3.3.3 Correlation analysis 

     This step is the analysis of correlation between the greenbug density (until 

Maximum Day) and differences in reflectance or vegetation indices between infested 

plants and control plants. Correlation is a statistical technique which can show whether 

and how strongly pairs of variables are related (Watt, 1993). The purpose of the 

correlation analysis is to test if differences in reflectance or vegetation indices between 

infested plants and control plants were caused by greenbug infestation. Two main 

methods of calculating correlations are Spearman's Rank Correlation Coefficient and 

Pearson's Correlation Coefficient. The most commonly used measure for linear 

relationship between two variables is the Pearson correlation coefficient. The values of 

m -1 to +1. If there is no linear relationship between two 

variables, the value of the coefficient is 0. If there is a perfect positive relationship, the 

shown in outputs of SAS PROC MIXED, the Threshold Day (time) - the initial day 

subsequent to which there was always a significant difference among the treatments

was determined. 

  For convenience, the Maximum Day is defined as the day at which greenbug density 

on infested plants reaches maximum. They were determined from temporal data in 

greenbug density.  Based on comparisons between the Threshold Days determined from

SAS outputs (see examples in Appendix C) and the Maximum Day, all bands and 

vegetation indices were initially divided into two groups: sensitive and non-sensiti

band or vegetation index was considered sensitive if its Threshold Day was not larger 

than Maximum Day. 

 

the coefficient can range fro
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val arson 

 

tation. 

formula: t = 

ue is +1. If there is a perfect negative relationship, the value is -1. However, Pe

correlation is a measure of the strength of a relationship between two variables and any

relationship should be assessed for its significance as well as its strength. So the 

significance of correlation coefficients has to be tested before any further interpre

The simple method to test significance is to apply Student's t-test using the following 

21
2

r
Nr
−

−×

is the product moment correlation coefficient is zero and r is correlation coefficie

   In this study, Pearson’s correlation coefficients were calculated for the correlation 

analysis and their significances were tested based on N value (the number of pairs) an

significance level. Then absolute values of correlation coefficients for different 

bands/vegetation indices were compared to see which band/vegetation index is more 

sensitive to greenbug infestation.  

3.3.4 Relative Sensitivity analysis 
 

  After correlation analysis, the relative sensitivities of the bands and vegetation 

indices in the sensitive group were compared. Sensitivity analysis is used to measure the 

extent the wh  spectrally responds to greenbug infestation. Sensitivity indicates 

, where N is the number of samples, in which the null hypothesis 

nt. 

d 

eat canopy

the wavelengths or vegetation indices at which a linear response detector or sensor would 

most likely detect a response to plant stress (Cibula and Carter, 1992).  The purpose of 

sensitivity analysis is to identify which band or vegetation index could best capture 

spectral signature of greenbug-induced wheat stress. Relative Sensitivity at a given 

wavelength or band was computed using the following formula (Carter, 1993) 

                        Sensitivity band = (Ref inf – Ref ctrl)*100 / Ref ctrl , where 
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                     Sensitivity band – Sensitivity for a given band or wavelength; 

 values of 

differen ol 

plants. The higher the itivity of each band 

or vegetation index.  T solute difference 

bet

3.3.5 Testing impact of growth stages and differentiating various stresses 
 
        As mentioned before, it is necessary to examine the impact of plant growth stage on 

detection. This was done through two steps. First, for each stage, sensitive bands and 

vegetation indices were determined using the same procedures mentioned above. Next, 

their Threshold Days, correlation coefficients and relative sensitivities for two stages 

were compared to see if greenbug infestation at different growth stages could be detected 

using the same sensitive bands and vegetation indices.  

Ref inf  – Canopy reflectance of infested plants; 

Ref ctrl – Canopy reflectance of control plants. 

Similarly, sensitivity for a given vegetation index was calculated using the following 

formula: 

                         Sensitivity VI = (VI inf – VI ctrl) *100 / VI ctrl, where 

               Sensitivity VI – Sensitivity for each vegetation index; 

VI inf  – Vegetation index of infested plants; 

VI ctrl – Vegetation index of control plants. 

  The comparisons of relative sensitivities are based on the absolute

ces in reflectance or vegetation index between greenbug-infested and contr

 absolute value of difference, the higher the sens

he band or vegetation index that has highest ab

ween infested and control plants is defined as the most sensitive band or vegetation 

index. 
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 Since greenbug outbreaks often appear at times when the wheat crop is under water

stress, i

 

t is necessary to check if sensitive band and vegetation indices identified by 

above-mentioned procedures could be used to differentiate greenbug infestation with 

ater stress. Thus, the next step is to examine the sensitivities of bands and vegetation 

indices to differences between greenbug infestation and water stress. In this step, the 

Threshold Days for differences between plants under greenbug infestation and water 

stress were also compared to Maximum Day mentioned before. A band or vegetation 

index was considered sensitive to differences between greenbug infestation and water 

stress if its Threshold Day for differences between plants under greenbug infestation and 

water stress was not larger than Maximum Day.  The same procedures were used to 

compare infestation by Russian wheat aphid with greenbug infestation. 

   Finally, sensitive band and vegetation indices were determined by summarizing all 

results above. A band or vegetation index was determined as sensitive if it is not only 

sensitive to greenbug infestation at different stages but also could be used to differentiate 

greenbug infestation with water stress and to distinguish greenbug infestation and 

infestation caused by RWA. 

       

 

w
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CHAPTER 4 
Results and Discussions 

 
         The main purpose of this chapter is to introduce results obtained from experiments 

in this study and discussions on results. Band and vegetation indices that are more 

sensitive to greenbug infestation were identified and the impact of stage and other 

stresses such as water stress on their sensitivities were examined and tested.  

 
4.1 Bands and vegetation indices sensitive to greenbug infestation 

 4.1.1 Impact of pesticides on reflectance of wheat plants 
 
      To keep control plants (in this study) free of greenbug infestation, pesticides (% 

granular Marathon) were applied to the soil in which control plants were planted. 

Therefore, it is necessary to examine the effect of the pesticide (% granular Marathon) on 

reflectance of wheat plants a rther experiments and 

 

ce 

ifference between control and pesticide-treated plants in any of 16 bands of Cropscan 

 

s of Cropscan radiometer. 

t each band before proceeding to fu

analysis. Data from the first experiment SEex1 were analyzed using PROC MIXED to 

test reflectance difference at each band between control and pesticide-treated plants.

Results are listed in Table 4-1. 

         Results in Table 4-1 demonstrated that there was no significant reflectan

d

radiometer. Thus the use of 1 % granular Marathon on wheat plants does not cause

significant impact on reflectance of wheat plants in any band
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Therefore, pesticide-treated (by 1 % granular Marathon) wheat plants in this study can be 

treated as control plants in further experiments and analysis. 

 

                             Table 4-1. Threshold Days for differences between control  

 
                             and pesticide-treated plants  

 95% confidence 99% confidence 

BAND1480 no no 
BAND1650 no no 

BAND485 no no 

BAND580 no no 
BAND620 no no 
BAND630 no no 
BAND660 no no 

BAND450 no no 

BAND560 no no 

BAND670 no no 
BAND680 no no 
BAND694 no no 

no 
BAND900 no no 

AND950 

BAND800 no no 
BAND830 no 

B no no 
                                    n Threshold D  

   4.1.2 Temporal changes in greenbug density 
 
          Data for three  experiments: SEex1, SEex2, SEex3 were analyzed below. 

Figure 4-1 shows the photos of plants under three treatments in experiment SEex1. It can 

be seen that at the end of experiment SEex1, infested plants had severe damage but 

control plants and p aves of infested plants 

turned yellow and w eaves of control and pesticide- ted plants were still 

green and spread at  the experim t. In addition, n nificant difference has  

o: there is no ay. 

 sensitivity

esticide-treated plants looked healthy. All le

ilted but l trea

 the end of en o sig
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               a. Control                                                            b. Infested                                                              
              

      Fig 4-1.  Photographs showing different treatment effects at the end of sensitivity e n e  
 
 
 
 

 

 

c. Pesticide-treated 

 exp rime t (SE x1).
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been observed from photos. Figure 4-2 shows densities of greenbug over time during the 

three experiments. As shown in the figure, greenbug densities of 85, 251 and 297/per 

plant were observed at 33, 21 and 33 days respectively for each experiment.  

      Based on Figure 4-2, greenbug densities had similar developmental patterns in the 

greenbug infestation. When damage on infested

began to die, the greenbug population declin

 

three experiments. Greenbug population increased with time at the early stage of 

 plants became serious and these plants 

ed, mostly due to the shortage of food. 
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 Fig 4-2. Densities of greenbug over time for three sensitivity experim . 
 

However, the number of greenbugs increased and decreased more quickly in the 

SEex2 than in other experiments. This could most likely be due to   that the three 

experiments were conducted at different temperatures. The averag a emperatures 

over time during three experiments are shown in Figure 4-3. The average daily 

temperature over the experiment period was 12.9-21.6 oC for SEex1, 15.0-24.6 oC for the 

ents

fact

ily t

 the

e d
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SEex2 and 14.3-23.6 oC for SEex3. Mostly, the average daily temperatures were higher 

for SEex2 than other experiments. Previous studies have shown that the growth of 

greenbug populations is very sensitive to temperature (Kindler et al, 2001; Walgenbach et 

 

r 

 

sed 

ore quickly in SEex2 than in other experiments. 

  

al, 1988). Thus, higher temperatures in SEex2 increased the greenbug populations more

quickly, thereby causing more rapid damage to wheat plants in SEex2 than in othe

experiments. When the growth of infested plants was seriously limited, food availability

for greenbugs also decreased quickly. Consequently, the greenbug population decrea

m
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 Fig 4-3. Average daily temperatures (oC) over time for three sensitivity experiments. 

 

 

 to which 

4.1.3 Band sensitivity to greenbug infestation 
 
       Figure 4-4 shows the Threshold Days for 16 bands estimated from outputs of PROC

MIXED. As mentioned before, the Threshold Day is the starting day subsequent

there were always significant differences among treatments (at significance level=0.05). 
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For example, for band 450 nm, a Threshold Day of 39 (SEex1) means that the 39th day is

the initial day subsequent to which there was always a significant difference in 

reflectance among differently-treated plants. Based on section 4.1.1, there were no 

significant differences in reflectance between control and pesticide-treated plants at any 

band. Thus, the Threshold Day in Figure 4-4 was the Threshold Day subsequent to w

there were significant differences of reflectance between control and infested plants. The 

Threshold Day identifies the initiation of significant difference in reflectance between 

control and infested plants. From Figure 4-4, it can

 

hich 

 be seen that for all bands Threshold 

Days were smaller for the experiment SEex2 than the experiment SEex1 and SEex3. It 
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     Fig 4-4. Threshold Days of bands for three sensitivity experiments. 
 

means that infested plants and control plants showed statistically significant differences 

later for the experiment SEex1 and SEex3 than the experiment SEex2. This difference 

was likely to be caused by different environmental conditions such as different 
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temperatures.  As mentioned before, average daily temperatures were higher for SEex2 

than other experiments and it caused the greenbug populations to develop more 

for SEex2 than other experiments. Thus, the faster growth of the greenbug populatio

caused more serious damage to plants in SEex2 than in other experiments. This could 

possibly explain why differences in reflectance between infested plants and control plants 

could be detected earlier for SEex2 than SEex1 and SEex3. In addition, the differences 

among the three experiments might be caused by other factors such as different sun ligh

conditions in the three experiments because these three experiments were conducted in 

different seasons. It is evident that the day length is longer for SEex2 (April) than SEex1

quickly 

n 

t 

 

ebruary) and SEex3 (November). Macedo et al. (2003) studied the impact of light on 

feeding damage caused Russian wheat aphid, Diuraphis noxia (Mordvilko). It was found 

that the development of D. noxia feeding damage symptoms (i.e., leaf rolling and 

chlorotic streaks) on wheat seedlings is a light-activated process. There is no study 

involving the impact of light on greenbug feeding damage on wheat. But it is possible 

that light has similar impact on greenbug feeding damage because these two aphids (GB 

and RWA) belong to the same group of aphids (Brooks, 1991) and cause similar damage 

symptoms on crops: canopy chlorosis and necrosis. Thus, longer day length could 

contribute more to reproduction of greenbugs for SEex2 than SEex1 and SEex3. 

Therefore, more feeding damage occurred to SEex2 than SEex1 and SEex3. 

n Fig 4-4, 

 

0 

(F

There were some consistent results from the three experiments. Based o

most visible bands were more sensitive to greenbug infestation than the near infrared and

middle infrared bands because they have smaller Threshold Days. For example, band 58

nm were more sensitive to greenbug infestation than band 900 nm and 1480 nm in three 
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sensitivity experiments. This may be due to leaf chlorosis that is a typical damage caused

by greenbug feeding (Dorschner et al., 1987). Thus, changes in canopy reflectance of 

wheat plants were larger for visible bands than near infrared and middle infrared bands

 For effective detection of greenbug-induced stress on wheat plants, a sensitive ban

should not have its Threshold Day later than Maximum Day, the day at which greenbug 

population reaches maximum. According to Fig 4-2, Maximum Days for three sensitivit

experiments were 33, 21 and 33 days respectively for each experiment. Based on 

comparison between Threshold Days and correspondent Maximum Days, band 560, 580

620, 630, 660, 670, 680, 694, 800, 830 nm were initially identified as sensitive to 

greenbug infestation because their Threshold Days were earlier than that of the day 

greenbug densities peaked. The reflectance of these seven bands was subjected to 

sensitivity analysis and correlation analysis mentioned in the methods section. The

are shown in Table 4-2. 

 

 

 

.      

d 

y 

, 

 results 

       Table 4-2. Band sensitivities and correlation coefficients 

Band (nm) Correlation coefficient Difference ( %)#
 SEex1^ SEex2 SEex3 SEex1 SEex2 SEex3 Average 
BAND560 0.7924* 0.9647* 0.9211* 20.29 36.49 31.68 29.49 
BAND580 0.7104* 0.9632* 0.9310* 20.12 46.35 39.8 35.42 
BAND620 0.6785* 0.9122* 0.8800* 21.76 67.42 28.76 39.31 
BAND630 0.7318* 0.9459* 0.8877* 23.88 66.43 34.30 41.54 
BAND660 0.7701* 0.9039* 0.8741* 20.56 62.59 28.71 37.29 
BAND670 0.6924* 0.9592* 0.9066* 17.65 55.09 32.29 35.01 
BAND680 0.7804* 0.9480* 0.8373* 20.42 66.92 17.34 34.89 
BAND694 0.8288* 0.9093* 0.8992* 22.85 73.79 30.31 42.32 
BAND800 -0.7271* -0.9255* 0.1552 -6.32 -19.59 -12.47 -12.79 ∆

BAND830 -0.7099* -0.9313* 0.2272∆ -5.27 -17.07 -9.49 -10.61 
        ^ Average value for three replicates 

 Not significant 

 

        # Differences in reflectance between control and infested plants at Maximum Day  
             ∆

        * Significant at the 0.05 level (Critical value=0.602 when n=11; Critical value=0.754 when n=7). 
        SEex1: Feb 2002, SEex2: Apr 2002, SEex3: Nov 2003 
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Based on Table 4-2, except the band 800 and 830 nm, for all initially selected 

sensitive bands the reflectance differences between infested and control plants were 

significantly correlated with the greenbug density in the three experiments. Thus, the 

ban  

ts and 

se 

g infestation. Horler et al. (1983) also reported that plant stress 

hanged the absorption maximum of chlorophyll in the visible band and the near-infrared 

oulder of the red-edge. Additionally, the Landsat TM band - 560 nm (Green band) and 

660 n an nsit  gre n i

exper i h   fo ting bug ced on 

whea in a g

4.1.4 n  s  to ug tatio
 
        r er r an d to fy s e v on 

tal of 114 vegetation indices including NDVI, RVI, 

lculated using different band combinations.  

d 560, 580, 620, 630, 660, 670, 680 and 694 nm were identified as sensitive bands for

detecting greenbug infestation. It is noted that these bands are all visible bands, 

predominantly in the green and red portion. Carter (1993) found that there is an evident 

increase in visible reflectance as a response to stress among the various stress agen

species. Results from this study further validate Carter’s findings. Among these sensitive 

bands, the band 694 and 630 nm were more sensitive to greenbug infestation becau

there were larger differences (42.32% and  41.54% respectively)in reflectance between 

infested and control plants. Similar results were obtained by Riedell and Blackmer 

(1999), who found that reflectance at wavelengths ranging 625-635 and 680-696 nm were 

most sensitive to greenbu

c

sh

m (Red b d) also displayed higher se ivity to enbug infestatio n three 

iments. Th s result s ows high potential r detec  green -indu stress 

t plants us g Lands t TM ima es. 

 Vegetatio  indices ensitive  greenb  infes n 

  The spect al data collected w e furthe alyze  identi ensitiv egetati

indices using SAS. First of all, a to

SAVI and LMI (Leaf Moisture Index) were ca
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Ta ents 
 

SAVI  

ble 4-3. Threshold Days of NDVI, RVI, and SAVI for three sensitivity experim

Band Combination  NDVI   RVI   
  SEex1 SEex2 SEex3 SEex1 SEex2 SEex3 SEex1 SEex2 SEex3 
 1480 , 450 no 25 no no 30 no 38 25 35 
 1480 , 580 no 27 no no 30 no no 30 no 
 1480 , 620 no 29 36 no no no no 30 no 
Middle 1480 , 630 no 29 36 no no 36 no 30 no 
Infrared, 1480 , 670 no 29 36 no no no no 30 no 
Visible 1480 , 680 no 29 36 no no 36 no 30 no 
And  1480 , 694 no 30 35 no no 36 no 30 36 
Near 1650 , 485 36 no no 39 no no no 29 no 
Infrared 1650 , 560 27 no 30 28 no no no 29 no 
 1650 , 660 27 20 30 25 18 no 37 no no 
 1650 , 830^ 26 18 35 32 18 no 26 18 no 
Visible, 560 , 485 no 25 no 34 25 no 28 no 28 
Visible 660 , 485 34 17 30 34 17 31 27 17 32 
 660 , 560 38 20 34 38 20 34 no 21 34 
 800 , 450 32 14 34 26 14 34 25 14 no 
 800 , 580 26 14 28 31 no no 25 13 no 
 800 , 620 26 13 31 23 13 30 25 13 no 
 800 , 630 25 10 30 23 13 28 25 10 no 
 800 , 670 26 14 28 25 14 28 25 14 no 
 800 , 680 25 12 33 25 13 30 25 12 no 
 800 , 694 25 12 30 23 13 27 25 12 34 
 830 , 485 27 15 33 25 14 33 25 14 no 
 830 , 560 25 13 31 24 14 30 25 13 no 
Near 830 , 660 26 14 30 25 14 30 25 13 no 
Infrared, 900 , 450 33 14 36 26 14 34 26 15 no 
Visible 900 , 580 26 15 36 25 14 34 25 15 no 
 900 , 620 26 13 31 24 13 28 25 13 no 
 900 , 630 25 13 30 25 13 28 25 13 no 
 900 , 670 26 14 31 25 14 28 25 15 no 
 900 , 680 25 13 31 25 13 28 25 13 no 
 900 , 694 25 12 28 24 13 28 25 12 no 
 950 , 450 33 15 34 26 14 34 25 16 no 
 950 , 580 26 15 28 25 15 34 25 15 no 
 950 , 620 26 13 30 24 13 28 25 13 no 
 950 , 630 25 13 28 25 14 28 25 13 no 
 950 , 670 26 13 28 25 14 28 25 15 no 
 950 , 680 25 13 31 25 13 28 25 13 no 

950 , 694 25 13 28 23 13 28 25 13 no  
Maximum Day 33 21 33       
no: there is no Threshold Day for difference between control and infested plants 
Maximum Day: the day at which greenbug density reach maximum 

^: Here RVI=R1650/R830 is equal to LMI= R1650/R830 
 

SEex1: Feb 2002, SEex2: Apr 2002, SEex3: Nov 2003 
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These vegetation indices were subjected to PROC MIXED, and the results are tabulated 

in Table 4-3 for NDVI, RVI and SAVI. Co pared to the reflectance of a single band, 

ost vege es e smaller Threshold Da

ensitivitie ug estation. This is mainly because v tation ices r ce the

at illu ation ferences, cloud shadows, atmospheric attenuation) 

nt in and uete, ro his stu  furthe

d t nc  vege n ind . 

cord ble , alm all ve ation ces de ed fro e ban 480 

m and 165 ll e riments, and m  SAV  exper nt SEex3 were not 

ensitive to  in ation ause e r they did not have Thre ld Da r thei

hreshold D  la  than ximum Days and also close to the end of 

xperiments. Differences between NDVI and their corresponding RVI were sm

ecause the sub tial d rence  their Threshol ays fo ree se ivity 

ents

      Based mp on be en Th hold D s and Maxim  Day  each 

xperiment, sensitive ve ation ces in the sens ere in lly identified. 

hese sensi tati ndice ere th ivity and correlation 

nalysis bet enb densi nd dif nces egeta  indic etwee fested

lants and c nts ue to large ber of vegetation indices examined in this 

tep, Table isp s the lts fo getat indice hose d rence  

bug dens ty. As ca  

rse relationship between vegetation indices 

nd greenbug densities. Interestingly, most sensitive vegetation indices were simple ratio- 

m

m tation indic  hav ys and thus showed higher 

s s to greenb  inf ege  ind edu  

multiplic ive noise ( min  dif

prese multiple b s (H  1998). Results obtained f m t dy r 

validate he importa e of tatio ices

        Ac ing to Ta  4-3 ost get indi riv m th d 1

n 0 nm in a xpe ost I in ime

s  greenbug fest bec ithe sho ys o r 

T ays were rger  Ma

e all 

b re are no stan iffe s in d D r th nsit

experim .  

  on the co aris twe res ay the um s in

e get indi itive group w itia

T tive vege on i s w en subjected to the sensit

a ween gre ug ty a fere in v tion es b n in  

p ontrol pla . D the num

s 4-4 only d lay resu r ve ion s w iffe s in

control and infested plants showed significant correlation with green i n

be seen, the negative correlation indicates inve

a
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   Table 4-4. Sensitivities and correlation coefficients for NDVI, RVI and SAVI 

vegetation 
 

indices correlation coefficient∆,*  %difference#
 SEex1 SEex2 SEex3 SEex1 SEex2 SEex3 Average 
NDVI_830_560 -0.7208 -0.9471 -0.8929 -8.01 -24.41 -19.27 -17.23 
RVI_800_450     -0.8293 -0.9306 -0.794 -11.31 -40.2 -9.94 -20.48 
RVI_800_620     -0.7761 -0.96 -0.9511 -14.05 -51.8 -31.9 -32.58 
RVI_800_630     -0.8089 -0.977 -0.9421 -14.59 -51.58 -34.74 -33.64 
RVI_800_670     -0.7849 -0.9615 -0.9413 -13.3 -47.88 -33.61 -31.60 
RVI_800_680     -0.8371 -0.9652 -0.9176 -15.24 -51.49 -25.3 -30.68 
RVI_800_694     -0.8536 -0.9404 -0.9547 -17.76 -53.52 -32.74 -34.67 
RVI_830_485     -0.7524 -0.9698 -0.8961 -9.37 -41.35 -15.79 -22.17 
RVI_830_560     -0.8109 -0.9635 -0.9419 -13.64 -39.17 -31.32 -28.04 
RVI_830_660     -0.8492 -0.9326 -0.9458 -14.4 -48.76 -29.69 -30.95 
RVI_900_450     -0.8033 -0.9382 -0.7377 -9.11 -35.03 -12.6 -18.91 
RVI_900_580     -0.7937 -0.9524 -0.8129 -11.51 -40.18 -39.12 -30.27 
RVI_900_620     -0.7682 -0.9626 -0.8655 -11.93 -47.64 -33.82 -31.13 
RVI_900_630     -0.8092 -0.9808 -0.8496 -12.49 -47.4 -36.58 -32.16 
RVI_900_670     -0.7798 -0.9649 -0.8616 -11.16 -43.39 -35.53 -30.03 
RVI_900_680     -0.8421 -0.967 -0.8438 -13.13 -47.31 -27.45 -29.30 
RVI_900_694     -0.8626 -0.9417 -0.883 -15.72 -49.51 -34.71 -33.31 
RVI_950_450     -0.8123 -0.921 -0.8099 -8.85 -32.86 -9.59 -17.10 
RVI_950_580     -0.8029 -0.9393 -0.8136 -11.26 -38.18 -37.03 -28.82 
RVI_950_620     -0.7802 -0.9599 -0.915 -11.67 -45.9 -31.61 -29.73 
RVI_950_630     -0.8196 -0.9775 -0.892 -12.23 -45.64 -34.47 -30.78 
RVI_950_670     -0.7953 -0.9612 -0.885 -10.89 -41.51 -33.31 -28.57 
RVI_950_680     -0.8557 -0.9643 -0.8956 -12.88 -45.56 -24.99 -27.81 
RVI_950_694 -0.8715 -0.9345 -0.9287 -15.48 -47.83 -32.53 -31.95 

     Differences in reflectance between control and infested plants on the day when greenbug density      

    

 

t the 

#

   reached maximum. 
   ∆ Correlation between greenbug density and difference in reflectance between infested and control plants. 
  * Significant at 0.05 probability level. 
   SEex1: Feb 2002, SEex2: Apr 2002, SEex3: Nov 2003 

 

 -based indices, and most NDVI or SAVI did not show higher sensitivities. This is 

possibly because the ratio of red and NIR reflectance is theoretically a good discriminator

of vegetation (Jackson et al., 1983). Also most indices were derived from the bands a

red edge such as 680 and 694 nm. Among those sensitive vegetation indices, 

RVI_800_694 was the most sensitive vegetation index because it showed the largest 

difference (average difference between control and infested plants is 34.67%) when 
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greenbug density reached a maximum for all three experiments. These results further 

de  that greenbug infestation is closely related to chlorophyll loss in wheat 

plants because band d 6 all chl ll io , a

chlorophyll concentration is u n i r o sy  ca  and

gr

   sid I AVI and LMI, 14 rem  ve n in

(li 2) so d RO E y  EV

(E ti x) (A ric sta tation Index), SLAVI 

(S a tio ), Gl v nta tori x), 

M ed ju ge d ), I ( zed

Ad o , V is o al sta x), 

(D at x eg  In e) Ve n In

Two),YI (Yellowness Index), at d I NP rm  tota ent 

to Inde o ce ere  “ ve n in in 

. The statistical analysis results of special vegetation indices are 

    Based on Figure 4-5, YI, OSAVI, SIPI, SLAVI, VARI and WBI were not sensitive to 

urements, 

t at 

monstrate

 694 an 80 are active orophy absorpt n bands nd 

sually a ndicato f photo nthetic pacity  plant 

owth stage. 

  In addition, be es NDV , RVI, S aining getatio dices 

sted in Table 2-  were al  analyze  using P C MIX D. The include I 

nhanced Vegeta on Inde , ARVI tmosphe  Resi nt Vege

pecific Leaf Are  Vegeta n Index GEMI ( obal En ironme l Moni ng Inde

SAVI2 (Modifi  Soil Ad sted Ve tation In ex Two  OSAV Optimi  Soil 

justed Vegetati n Index) ARI (V ible Atm s cpheri ly Resi n et Ind  DVI 

ifference Veget ion Inde ), VI1 (V etation dex On , VI2 ( getatio dex 

WBI (W er Ban ndex), CI (No alized l Pigm

 Chlorophyll x). For c nvenien , they w  called special getatio dices” 

the further analysis

displayed in Fig 4-5.  

  

greenbug infestation. Because either there is no Threshold Days in one of three 

experiments or one of their Threshold Days was larger than correspondent Maximum 

Day. Adams et al. (1999) stated that the Yellowness Index (YI) was a good measure of 

leaf chlorosis in stressed plants. Since his study only involved leaf-level meas

the contradiction in our study suggests that YI may be sensitive at the leaf level but no

the canopy level.  
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          Fig 4-5. Threshold Days of special vegetation indices for three sensitivity   

 

     Table 4-5. Sensitivities of special vegetation indices for sensitivity experiments 

Vegetation 

 

 

 

 

          experiments. 

 

 

Indices Correlation coefficient Difference ( %) # 
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SEex1(Feb 2002) SEex2(Apr 2002) SEex3(Nov 2003)

 SEex1 SEex2 SEex3 SEex1 SEex2 SEex3 Average 
EVI -0.4520 -0.7591* -0.4075 -8.28 -34.15 -22.51 -21.65 
ARVI 0.1541 -0.7152* -0.8749* -9.09 -40.35 -27.87 -25.77 
MSAVI2 -0.7377* -0.9140* -0.6319* -5.50 -18.39 -9.09 -10.99 
GEMI -0.6088* -0.9042* -0.1881 -4.71 -18.42 -9.56 -10.90 
DVI -0.5799 -0.9140* -0.1757 -9.14 -33.14 -19.53 -20.61 
VI1_830_560 -0.8173* -0.9544* -0.9286* -25.02 -49.02 -39.86 -37.97 
VI2_800_694 -0.7424* -0.9215* -0.9465* -27.80 -66.15 -43.74 -45.90 
NPCI 0.4765 0.9647* 0.6572* 29.73 82.43 85.65 65.94 

       # Differences in vegetation indices between control and infested plants (3 replicates) at the day in  

 Not significant 

e EVI, ARVI, MSAVI2, GEMI, DVI, VI1, VI2, and NPCI. These 

sensitive vegetation indices were then subjected to the sensitivity and correlation analysis 

      which greenbug density reached maximum. 
          ∆

      * Significant at the 0.05 level (critical value= 0.602 when n=11; critical value=0.754 when n=7) 
      SEex1: Feb 2002, SEex2: Apr 2002, SEex3: Nov 2003 

 

      Based on the comparison between Threshold Days and the Maximum Days in each 

experiment, sensitive special vegetation indices in the sensitive group were initially 

identified. They ar
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between  infested plants 

trol plants. Table 4-5 displays their correlation coefficients and differences when 

lants reached Maximum Days.   

     Based on Table 4-5, again for most vegetation indices, there were negative 

lationships between the differences in vegetation indices (between infested and control 

lants) with greenbug densities.  MSAVI2, VI1_830_560 and VI2_800_694 were 

etermined as sensitive vegetation indices. Because in all experiments, the differences in 

egetation indices between infested and control plants were significantly correlated with 

reenbug densities. VI2_800_694 was the most sensitive vegetation index because it 

sho rence when greenbug density reached a maximum for all three 

xperiments. Again, this result demonstrates that greenbug infestation is closely related to 

hlorophyll loss in wheat plants because band 694 and 680 are all active chlorophyll 

absorp ds. Fur  indices derived from broad Landsat TM 

ban ch as VI1 6 im sit  as 0_  ad  

acco Tabl r it on betw ffer  in N nd 

gree x ts all experime is s PC  not 

be sensitive to greenbug infestation at lev del lac 199

 to Chlorophyll Index (NPCI) was significantly 

n our 

tudy suggests that NPCI may be sensitive at the leaf level but not at the canopy level. 

g 

 

greenbug density and differences in vegetation indices between

and con

p

  

re

p

d

v

g

wed the largest diffe

e

c

tion ban thermore, vegetation

ds, su _830_5 0, show s ilar sen ivities VI2_80 694. In dition,

rding to e 4-5, the e are pos i ive relat ships een di ences PCI a

nbug densities in two e perimen  but not nts. Th hows N I may

canopy el. Rie l and B kmer ( 9) 

concluded that Normalized total Pigment

correlated with total chlorophyll concentrations in infested leaves. The discrepancy i

s

       In general, after 28 days (SEex1), 15 days (SEex2) and 32 days ( SEex3) of greenbu

infestation, there were statistically significant differences (p<0.05) in sensitive band 

reflectance between infested plants and control plants. Also, after 25 days (SEex1), 13
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days (SEex2) and 28 days (SEex3) of infestation, there were marked differences in 

sensitive vegetation indices between infested plants and control plants. Furthermore, 

broad Landsat TM bands such as 560 nm (green portion in TM spectrum) and derived 

eat 

4.1.5 Temporal changes in sensitive bands and vegetation indices 

         Temporal changes in reflectance of sensitive bands and vegetation indices were 

displayed in Figure 4-6 to Figure 4-13. It can be seen in Figure 4-6 and Fig 4-7 that for all 

treatments reflectance increases at early stages and then decreases with time. At 

Threshold Day, reflectance at 630 and 694 nm on infested plants increases with time. Fig 

4-8 to Fig 4-13 show the temporal changes in some sensitive vegetation indices. It can be 

seen that in general vegetation indices increase with time. At time around Threshold Day, 

vegetation indices on infested plants decrease with the time. It is noted in all figures, that 

the difference between infested and control plants in SEex2 occurred earlier than in other 

experiments. Again, higher temperatures in SEex2 increased the greenbug populations 

more quickly, thereby causing more rapid damage to wheat plants in SEex2 than in other 

experiments. 

 

 of 

study do not seem to support this trend because vegetation indices derived from narrow 

vegetation indices also showed higher sensitivities to greenbug infestation on wh

plants. This suggests that satellite images such as Landsat data could be used to detect 

greenbug-induced wheat stress.  

 

4.1.6 Discussion and Conclusions 

      Hyper-spectral remote sensing has gone through rapid development over the past two 

decades and there is a trend toward the use of hyper spectral images in the application

remote sensing for precision farming (McNairn and Deguise, 2001). Findings from this 

 66



 
 

bands did not show substantially higher sensitivity to greenbug infestation than thos

broad Landsat TM bands as shown in Table 4-3. In theory, spectral resolution describ

the ability of a sensor to allow precise identification of a material, class, or feature 

(Natural Resource Canada, 2003). Thus, it was expected that vegetation indices deriv

from narrow bands would be more sensitive than vegetation indices derived from broad

bands. But there is a trade-off bet

e of 

es 

ed 

 

ween higher spectral resolution and reduced signal-to-

noise ratio (Price, 1994). It is possible that reduced signal-to-noise ratios lower the 

ensitivities of vegetation indices derived from narrow bands. This could be one reason 

that vegetation indices derived from narrow bands were not substantially more sensitive 

than those derived from broad bands. Elvide and Chen (1995) reported that the narrow-

band versions of vegetation indices had only slightly better accuracy than their  

broad-band counterparts in one field spectra study on rooted pinyon pine canopy with 

five different gravel backgrounds. Results from three sensitivity experiments in this study 

further supported the finding of Elvide and Chen (1995). Secondly, the lack of higher 

sensitivities by narrow bands may also be due to the difference between leaf reflectance 

and canopy reflectance. Most hyperspectral research has been done at a leaf level. 

Compared to leaf reflectance, canopy reflectance is a weighted composition of several 

elements such as soil, water and vegetation (Hatfield and Pinter, 1993). It does not only 

depend on external parameters such as illumination or viewing geometry but also on 

the spectral response of a canopy under stress is 

s

canopy architecture. It is likely that 

different from that of a leaf. Thus, one vegetation index that is sensitive at leaf level may 

not be sensitive at canopy level. Therefore, more canopy-level research is needed to  
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      Fig 4-6. Temporal changes in reflectance at 630 nm for three sensitivity 
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     Fig 4-7. Temporal changes in reflectance at 694 nm for three sensitivity 

experiments. 
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     Fig 4-8. Temporal changes in NDVI_830_560 for three sensitivity experiments. 
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    Fig 4-9. Temporal changes in RVI_800_694 for three sensitivity experiments. 

 

 71



 
 

SEex1(Feb 2002)- RVI_900_694

0.5

2.5

4.5

6.5

8.5

0 3 6 9 12 15 18 21 24 27 30 33 36 39

R
V

I_
90

0_
69

4

 

SEex2(Apr 2002)- RVI_900_694

0.5

2.5

4.5

6.5

8.5

0 3 6 9 12 15 18 21 24 27 30

R
V

I_
90

0_
69

4

 

SEex3(Nov 2003)- RVI_900_694

0.5

2.5

4.5

6.5

8.5

0 3 6 9 12 15 18 21 25 28 32 35

Days after infestation

R
V

I_
90

0_
69

4

control infested pesticide-treated
 

 
    Fig 4-10. Temporal changes in RVI_900_694 for three sensitivity experiments. 
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    Fig 4-11. Temporal changes in RVI_950_694 for three sensitivity experiments. 
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    Fig 4-12.Temporal changes in VI1_830_560 for three sensitivity experiments 
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   Fig 4-13. Temporal changes in VI2_800_694 for three sensitivity experiments. 
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successfully extend the spectral signature from the leaf level to the canopy level. This 

will be very helpful for detecting greenbug-induced wheat stress under field conditions.             

      According to Figure 4-2, Figure 4-4, Table 4-3 and Table 4-4, it is interesting to note 

that in all sensitivity experiments, when greenbug densities were close to maximum, there 

were significant differences in sensitive bands and vegetation indices between infested 

and control plants. This is because when greenbug densities approach maximum, the 

plant damage caused by greenbugs is evident to be detected. Although in this study the 

greenbug densities (26 per tiller) at Threshold Days for all three sensitivity experiments 

are much higher than typical economic threshold-12 greenbugs per tiller (Oklahoma State 

University, 2000), findings from this study still show great potential of using remote 

sensing in detecting greenbug infestation because certain spatial patterns are associated 

with greenbug infestation under field conditions (Elliott and Kieckhefer, 1987). The first 

sign of greenbug infestation is a circular, yellowish spot in the field and the center plants 

in these spots have higher infestations than surrounding plants and are the more severely 

damaged. If we could detect the greenbug spot at Threshold Day in one field using 

reflectance of sensitive bands or sensitive vegetation indices, we could initiate field 

sampling and take necessary control measures such as spraying pesticides to those plants 

in spots. This may protect non-infested and lightly infested crops before the infestation 

spreads across the whole field or to adjacent fields.     

      Based on the above-mentioned results and discussions, it can be concluded that it is 

possible to detect wheat stress caused by greenbug infestation using hand-held 

rad  

ere summarized and ranked in Table 4-6. As can been seen, bands including 560, 580, 

iometers, such as Cropscan radiometers. All sensitive bands and vegetation indices

w
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630, 660, 670, 680 and 694 nm were identified as sensitive bands for detecting greenbu

infestation. The band 694 and 630 nm were most sensitive among the 16 bands of the 

g 

                          sensitivity experiments 

Cropscan radiometer. Furthermore, among the 128 vegetation indices examined in this 

study, 27 vegetation indices including those listed in Table 4-3, MSAVI2, VI1_830_560  

 

                          Table 4-6 Sensitive band and vegetation indices determined from   

 
Band(nm) Ranking Vegetation indices Ranking 

694 1 VI2_ 800_694 1 

630 2 VI1_830_560 2 

660 4 RVI_800_630     4 
580 5 RVI_900_694     5 
670 6 RVI_800_620     6 
680 7 RVI_900_630     7 

  RVI_800_670     9 
  RVI_900_620     10 
  RVI_830_660     11 
  RVI_950_630     12 
  RVI_800_680     13 
  RVI_900_580     14 

  RVI_950_620     16 

  RVI_950_580     18 
  RVI_950_
  RVI_830_56

620 3 RVI_800_694     3 

560 8 RVI_950_694 8 

  RVI_900_670     15 

  RVI_900_680     17 

670     19 
0     20 

  RVI_830_485     22 

  RVI_900_450     24 

  RVI_950_680     21 

  RVI_800_450     23 

  NDVI_830_560 25 
  RVI_950_450     26 
  MSAVI2 27 
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and VI2_800_694 are sensitive vegetation indices. Among them, vegetation indices 

derived using the band 800 and 694 nm were more sensitive to greenbug infestation an

VI2_800_694 was the most sensitive vegetation index. Broad Landsat TM bands and 

their derived vegetation indices such as RVI_830_560 were also sensitive to greenbug 

d 

festation and show potential to be used for detection of greenbug infestation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

in
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4.2 Differentiating water stress and greenbug infestation on wheat 

4.2.1 Sensitive bands 

         Data from three differentiating experiments: DIex1, DIex2 and DIex3 were 

analyzed below. Figure 4-14 shows photos of plants under four treatments at the end of 

experiment. It can been seen that the order of damage degree is infested and wate

 

r stress 

+I), greenbug-infested without water stress (NW+I), non-infested with water stress 

W+NI), control (non-infested without water stress) (NW+NI).  For plants under 

festation and water stress, all leaves turned yellow and wilted. For plants under 

festation, most leaves turned yellow and wilted. For plants under water stress, many 

aves wilted but did not turned yellow. Control plants still look healthy at the end of the 

xperiments. 

        Figure 4-15 shows temporal densities of greenbugs on infested plants (no-water-

tressed but infested) during the three experiments. As shown in the figure 4-14, 

reenbug densities of 112, 222 and 297/per plant were observed at 18, 21 and 33 days 

espectively for each experiment. Again, it can be seen that greenbug densities had 

imilar patterns during the three experiments. Greenbug populations increased with the 

me at the early stage of infestation. When damage on infested plants became serious and 

ese plants began to die, the greenbug population declined, mostly due to the shortage of 

od availability. Also, the number of greenbugs increased and decreased more quickly in 

e DIex2 than in other experiments. This is also likely due to temperature and seasonal 

ifferences among these three sensitivity experiments.  
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                Fig 4-14. Photographs showing four effects lants at e f experiment x
                       (a: NW +I, c: W NI, d: W+I ) 

(c) 

((a) b)

(d)

treatment on p
+NI, b: NW +

 the nd o (DIe 1).  
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  Fig 4-15. Densities of greenbug over time for three differentiating experiments. 
 

                    Table 4-7. Threshold Days of sensitive bands to differentiate water stress        
                    and greenbug infestation 
 

Band  (nm) DIex1 (Nov 2002) DIex2 (Mar 2003) DIex3 (Nov 2003) 

560 no 27 28 
580 no 24 31 
620 34 27 32 
630 34 27 32 
660 32 27 34 
670 32 27 36 
680 34 27 35 
694 34 27 34 

Maximum Day 18 21 33 
                     No: there is no Threshold Day for the difference between water-stressed and          

                         infested plants 
                          Maximum Day: the day at which greenbug density reached maximum 
 
       

         Based on Table 4-7, there were some consistent results from the three experi

Visible bands (620, 630, 660, 670, 680 and 694 nm) could be used to differentia

greenbug infestation from water stress at later stages of experiments and near in

ments. 

d

te 

frare  



 
 

and middle infrared bands were not sensitive to differences in two stresses. Additionally, 

compared to narrow bands, the Landsat TM band-660 nm displayed similar capability to 

differentiate greenbug infestation and water stress in all experiments. These results 

demonstrate that there were significant reflectance differences at these bands between 

greenbug infestation and water stress at some time in these experiments. Carter (1991) 

reported that visible reflectance was most sensitive to water stress at 535-640 nm and 

685-700 nm.  Penuelas et al. (1993 and 1997) found that change in reflectance at 950-970 

nm was more effective for detecting water stress at the canopy level. Findings from our 

three Differentiating experiments seem to favor Carter’s conclusion but do not support 

er 

tress may be different from plant species such as bean used by Penuelas et al.  In 

hows that these bands have similar capabilities to differentiate greenbug infestation and 

water stress on wh lants. It see

694 nm could be used to differentiate greenbug infestation and water stress. However, 

based on Table 4-5, their Threshold Days are bigger than Maximum Day at which 

greenbug density reaches maximum. This means th n three exper nts after greenbug 

densities of infested plants reached maximum, band 620, 630, 660, 670, 680 and 694 nm 

co ws that 

seful to detect 

estation after Maximum Day. Therefore, it is difficult to use reflectance at 

sensitive bands to differentiate greenbug infestation from water stress. 

 

Penuelas’s findings. Discrepancies here show that wheat spectral responses to wat

s

addition, among these bands, there were no big differences in their thresholds.  This 

s

eat p ms that bands including 620, 630, 660, 670, 680 and 

at i ime

uld be used to differentiate greenbug infestation and water stress. This result sho

reflectance at these bands has low practical value because it is not very u

greenbug inf
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4.2.2 Sensitive vegetation indices  

         The sensitive vegetation indices identified in Table 4-6 were further analyzed to 

determine if they can be used to differentiate greenbug infestation and water stress o

wheat plants for three experiments. These vegetation indices were subjected to PROC 

MIXED, and the results are tabulated in Table 4-8. Compared to reflectance of the singl

band in Table 4-4, all vegetation indices showed smaller Threshold Days and thus 

showed higher sensitivities to difference between greenbug infestation and water stress. 

This further validated the importance of vegetation indices. 

         Penuelas et al. (1997) found that WBI (water band index = R900 nm/R970 nm) 

were closely related to plant water concentration, suggesting that WBI is a good 

vegetation index to differentiate greenbug infestation and water stress on wheat pla

However, in this study it was found that there was no Threshold Day for the differenc

this vegetation index between infested and water-stressed plants in all experiments. This 

suggests that WBI may be species-dependent because soybean was used in the study of 

Penuelas et al. Thus, it is necessary to develop a water stress index used for the particul

species of plant at the canopy level.   

        Based on Table 4-8, most vegetation indices sensitive to greenbug infestation could 

not be used to differentiate greenbug infestation and water stress because they did not 

have Threshold Days or their Threshold Days are larger than the Maximum Day at which 

greenbug density reached maximum. This is possibly because wheat plants under water 
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                Table 4-8. Threshold Days of sensitive vegetation indices for differentiating  
              greenbug infestation and water stress    

 
Vegetation indices DIex1(Nov 2002) DIex2 (Mar 2003) DIex3 (Nov 2003) 

NDVI_830_560 17 27 31 
RVI_800_450 no 25 31 
RVI_800_620 no 24 29 
RVI_800_630 no 22 29 

RVI_800_680 21 24 29 
RVI_800_694 18 22 28 
RVI_830_485 30 25 33 
RVI_830_560 17 24 

RVI_800_670 no 23 28 

31 
RVI_830_660 18 22 29 

RVI_900_580 no no 36 

RVI_900_694 18 21 28 

RVI_950_580 no no 36 

0 24 28 
21 28 

VI2_800_694 18 22 28 

RVI_900_450 no 27 36 

RVI_900_620 17 27 28 
RVI_900_630 18 27 28 
RVI_900_670 no 23 28 
RVI_900_680 17 24 28 

RVI_950_450 no 27 36 

RVI_950_620 20 27 28 
RVI_950_630 17 27 28 
RVI_950_670 21 27 28 
RVI_950_680 2
RVI_950_694 18 
VI1_830_560 17 26 31 

MSAVI2 21 28 no 

Maximum Day 18 21 33 
                 no: there is no Threshold Days  
                     Maximum Day: the day at which greenbug density reached maximum 
 

stress have similar spectral responses as those under greenbug infestation. Again, this 

sult shows that those vegetation indices have low practical value because it is not very 

seful to detect greenbug infestation after Maximum Day. However, five vegetation 

re

u
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indices: RVI_800_694, RVI_830_660, RVI_900_694, RVI_950_694 and VI2_800_694 

ave smaller or very close Threshold Days compared to Maximum Day. It means that 

difference in these vegetation indices between plants under greenbug infestation and 

water stress could be evident and detected earlier using these vegetation indices before 

Maximum Days. Thus, these vegetation indices could be used to differentiate greenbug 

infestation and water stress. The higher sensitivities of these vegetation indices show the 

role of the red edge. Broad chlorophyll absorption continues into the ared with the 

long-wavelength side of the chlorophyll absorption occurring after 700 nm. The change 

in absorption is usually large, ranging from a reflectance low of about 5% at 680 nm to a 

reflectance ma out 50% 30 nm (Curran et al., 1991).  This rapid change in 

reflectance, which is called the “red edge”, is often used to detect crop stress. Temporal 

changes in VI2_800_694 were displayed in Fig 4-16. It shows that in general, 

VI2_800_694  the time during all differ ating experim ts but at some 

time VI2_800_694 for both plants under water stress and greenbug infestation decrease. 

However, at s reshold D ) infestation sed greater d ase in 

VI2_800_694 than water stress and this is why VI2_800_694 can be used to differentiate 

greenbug infes ater stres

      In addition, one vegetation index derived from broad Landsat TM bands- 

60 r sensitiv s as those vegetation indices derived from narrow 

ld Days. It 

n 

h

infr

ximum of ab at 7

 increase with enti en

ome time (Th ays  cau ecre

tation and w s. 

RVI_830_6  shows simila itie

bands because there is no substantial difference between their Thresho

suggests that Landsat images could be potentially used to detect greenbug infestation o

wheat and distinguish greenbug infestation and water stress on wheat.  
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    Fig 4-16. Temporal changes in VI2_800_694 during differentiatin
 

g experiments. 
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4.3 Impact of plant growth stage on detection of greenbug infestation 

4.3.1 Temporal changes in densities of greenbugs 
 
        Data from the experiment STex, which was used to examine impact of plant stage 

on detection, are analyzed below.  

        Figure 4-16 shows densities of greenbug over time during this experiment. Again, it 

can be seen that greenbug densities had similar developmental patterns in both 

treatments. The greenbug population increased with time in the early stage of greenbug 

infestation. But when damages on infested plants became serious and those plants began 

to die, the greenbug population declined because of the shortage of food. 
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      Fig 4-17. Densities of greenbug over time in growth stage experiment. 
           

       However, the number of greenbugs increased and decreased more quickly on plants 

infe ted at the tillering stage than plants infested at the two-leaf stage. This could most 

likely be due to the fact that the infestation began at different stages. It is normal for 

  

s
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plants at the tillering stage to accumulate more biomass than at the two-leaf stage because 

eir growth time was longer. Higher 

nts infested at tillering stage than for plants infested at 

 for 

d 

 4.3.2 Sensitive bands 
 
         Figure 4-18 shows the Threshold Days for 8 sensitive bands estimated from outputs 

of PROC MIXED.  From Figure 4-18, it can be seen that for all sensitive bands, the 

“Threshold Day” were smaller for the plants infested at the two-leaf stage than for plants 

infested at the tillering stage. This means that infested plants and control plants showed 

statistically significant differences later for plants infested at the tillering stage than the 

plants infested at the two-leaf stage. This difference could be due to the difference in 

vegetative coverage on the soil.  Normally, plants infested at the tillering stage have 

larger canopy coverage on soil than plants infested at the two-leaf stage. Thus, the 

per  for plants 

 at the tillering stage than plants infested at the two-leaf stage. This could 

t 

plants at the tillering stage were planted earlier and th

food availability for plants infested at the tillering stage increased the greenbug 

population more quickly for the pla

two-leaf stage.  However, at the same time the faster growth of the greenbug population 

may cause more serious damages to the plants infested at the tillering stage than

plants infested at the two-leaf stage.  Thus, food availability for greenbugs also decrease

quickly. Consequently, the greenbug population decreased more quickly for the plants 

infested at the tillering stage than for plants infested at the two-leaf stage.  

centage of infested and damaged leaves in the whole canopy could be lower

infested

possibly explain why differences in reflectance between infested plants and control plants 

was detected earlier for the plants infested at the two-leaf stage than for plants infested a

the tillering stage. 
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      Fig 4-18. Threshold Days of sensitive bands in growth stage experiment. 
day subsequent to which there were significant differences (p<0.05). 
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         For bands including 560, 580, 620, 630, 660, 670, 680, and 694 nm, reflectance was 

subjected to the sensitivity analysis and correlation analysis mentioned in the method

section. The results are shown in Table 4-9.  In both experiments, bands including 620, 

630, 660, 680 and 694 nm were more sensitive to greenbug infestation because of larger 

differences in reflectance between infested and control plants. These differences were 

significantly correlated with the greenbug density. Also, reflectance at 694 nm and 63

nm showed larger differences and they were highly correlated with the greenbug den

Thus, among the 16 bands of the Cropscan radiometer, bands including 694 and 630

were still the most sensitive to greenbug infestation in both plant stages. After 26 days 

(for plants infested at two-leaf stage) and 30 days (for plants infested at tillering st

greenbug infestation, there were statistically significant differences (p<0.05) in 

reflectance at bands including 620, 630, 660,680 and 694 nm between infested plants and 
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control plants. This suggests that these bands could be used to detect greenbug-induced 

wheat stress at both the tillering stage and the two-leaf stage. 

 

               Table 4-9. Band sensitivities and correlation coefficients in growth stage 
               experiment 
 

Band (nm) Correlation coefficient ∆   % Difference #  
  Two-leaf Tillering Two-leaf Tillering Average 

BAND560 0.6656 0.5504 34.38 29.97 32.18 
BAND580 0.6183 0.5704 47.26 32.17 39.72 
BAND620 0.8214* 0.7716* 39.06 35.73 37.40 
BAND630 0.8092* 0.7711* 43.37 37.44 40.41 
BAND660 0.7639* 0.7171* 45.33 33.45 39.39 
BAND670 0.6797 0.616 52.51 29.2 40.86 
BAND680 0.8758* 0.7230* 33.3 34.39 33.85 
BAND694 0.8783* 0.7789* 42.89 41.43 42.16 

                   # Differences in reflectance between control and infested plants at Maximum Day 

                  * Significant at the 0.05 probability level. (n=8, 0.707) 

 

4.3.3 Sensitive vegetation indices 

       The Impact of plant stage on detection of greenbug infestation using sensitive 

vegetation indices identified in Section 4.1 was examined and results are displayed in 

Table 4-10 and Table 4-11. Based on Table 4-10, it also can be seen that for all 

vegetation indices “Threshold Days” were smaller for the plants infested at the two-leaf 

stage than for plants infested at the tillering stage. This means that infested plants and 

control plants showed statistically significant differences later for plants infested at the 

tillering stage than the plants infested at the two-leaf stage. Again, this difference could 

be caused by difference in plant coverage on the soil.   

                  ∆ Correlation between greenbug density and difference in reflectance between infested and     
                  control plants 
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         In addition, when compared to Maximum Days for two treatments in this 

experiment, most sensitive vegetation indices, except RVI_900_450 and RVI_950_450,   

ave smaller Threshold Days for infestation at the two-leaf stage; most sensitive  

able 4-10. Threshold Days for sensitive vegetation indices in   
                               growth stage experiment 

 

h

 
                                 T
  

Vegetation indices two-leaf tillering 

NDVI_830_560 24 27 
RVI_800

80
80
80
80
80

27 
RVI_900_450 34 33 
RVI_900_580 25 31 
RVI_900_620 23 28 

630 23 27 

RVI_950_450 36 33 

RVI_950_620 23 27 

VI1_830_560 24 28 

Maximum Day 27 30 

_450 25 27 
RVI_ 0_620 24 27 
RVI_ 0_630 23 27 
RVI_ 0_670 24 27 
RVI_ 0_680 25 25 
RVI_ 0_694 23 25 
RVI_830_485 24 27 
RVI_830_560 25 27 
RVI_830_660 24 

RVI_900_
RVI_900_670 25 32 
RVI_900_680 24 27 
RVI_900_694 23 28 

RVI_950_580 25 29 

RVI_950_630 23 27 
RVI_950_670 25 29 
RVI_950_680 23 27 
RVI_950_694 21 26 

VI2_800_694 23 26 

                      Maximum Day: the day at which greenbug density reached maximum 
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vegetation indices except RVI_900_450, RVI_900_580 and RVI_950_450  have

Threshold Days for infestation at  the tillering stage. 

 

 smaller 

                  
                 Table 4-11. Correlation coefficients for plants at the two-leaf and the tillering  

 correlation coefficient

  
                   stages 
 

∆ % difference#

Vegetation in tillering dices two-leaf tillering two-leaf 
NDVI_830_560  -0 0  -22.06  -0.8247* .655 -5.68
RVI_800_450    -0 7  -11.23    -0.5080 .404 -9.37
RVI_800_620   * -0 7* - 2 -43.09    -0.9548 .812 18.7
RVI_800_630   * -0 8* - 7 -44.50    -0.9456 .844 19.8
RVI_800_670   * -0 7* - 4 -47.72    -0.8441 .776 17.6
RVI_800_680   * -0 9* - 6 -40.81    -0.9644 .822 19.7
RVI_800_694   * -0 9* - 4 -44.38    -0.9702 .885 22.5
RVI_830_485   * -0 3 - 9 -29.45    -0.8504 .544 11.8
RVI_830_560   * -0 2 - 4 -36.15    -0.8473 .693 13.5
RVI_830_660   * -0 6* - 3 -40.89    -0.9342 .811 17.8
RVI_900_450    -0 9  -17.27    -0.0443 .377 -4.17
RVI_900_580    -0 8 - 7 -50.16    -0.6152 .609 11.6
RVI_900_620   * -0 0* - 0 -46.71    -0.8462 .797 14.1
RVI_900_630   * -0 5* - 1 -48.56    -0.8327 .796 15.3
RVI_900_670    -0 1 - 4 -51.99    -0.6852 .699 12.9
RVI_900_680   * -0 5* - 9 -44.49    -0.9154 .836 15.1
RVI_900_694   * -0 2* - 3 -48.48    -0.9135 .860 18.1
RVI_950_450    -0 4  -11.67    0.0935 .114 -4.12
RVI_950_580    -0 1 - 0 -46.76    -0.5950 .557 11.6
RVI_950_620   * -0 4* - 4 -43.44    -0.8464 .749 14.0
RVI_950_630   * -0 2* - 5 -45.16    -0.8320 .765 15.2
RVI_950_670    -0 9 - 8 -48.64    -0.6688 .663 12.8
RVI_950_680   * -0 0* - 3 -41.11    -0.9181 .785 15.1
RVI_950_694 * -0 5* - 8 -45.05 -0.9186 .837 18.0
VI1_830_560 * -0 9 - 7 -45.27 -0.8317 .677 16.4
VI2_800_694 * -0 6* - 6 -57.42 -0.9604 .881 27.0

                      #: Differences in en control and infested ts at Maximum Day. 
                   sted and   

                 
                    *: Significant at the 0.05 probability level. (n=8, 0.707) 

reflectance betwe plan
   ∆: Correlation between greenbug density and difference in reflectance between infe
   control plants   
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          According to Table 4-11, most sensitive vegetation indices were still sensitive to 

greenbug infestation but some vegetation indices are not sensitive to greenbug infestation 

r either stage. They are NDVI_830_560, RVI_800_450, RVI_900_450, RVI_900_580, 

egetation indices derived from the bands at the red edge, such as 680 and 694 nm, are 

more sensitiv se es, the most 

sensitive veg ecaus ed th t diff  wh nbug 

density reach en  resu her strate that 

greenbug inf ly re hlorophyll loss of wheat plants because band 

694 and 680 are all active chloro orpt , an oph centration is 

usually an in synt acity elop  stag

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

fo

RVI_900_670, RVI_950_450, RVI_950_580, RVI_950_670 and VI1830_560. 

V

e. Among those n getatsitive ve ion indic VI2_800_694 was 

etation index b e it show e larges erence en gree

ed a maximum for both treatm ts. These lts furt demon

estation is close lated to c

phyll abs ion bands d chlor yll con

dicator of photo hetic cap  and dev mental e. 
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4.4. Distinguishing greenbug infestation and infestation by RWA  

4.4.1 Sensitive bands 

        Data from the experiment GRex, which is used to compare two kinds of aphid 

infestations, were analyzed below. Fig 4-19 displays temporal changes in densiti

greenbugs and Russian wheat aphids. It can be seen that they have similar patterns and 

the same Maximum Day.  
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  Fig 4-19. Temporal changes in densities of GB and RWA in comparing experiment. 

        Table 4-12 shows the Threshold Days for sensitive bands (listed in Table 4-6) 

stimated from output of PROC MIXED. They are the time subsequent to which there 

ere significant differences in reflectance between two treatments, such as control and 

fested plants. From Table 4-12, it can be seen that for most bands, their Threshold Days 

ere smaller for the plants infested by Russian wheat aphid than for plants infested by 

reenbugs. This means that infested plants and control plants showed statistically 

gnificant differences later for plants infested by greenbugs than the plants infested by 

 

  

e

w

in

w

g

si

 94



 
 

Russian wheat aphids. This difference could be caused by differences in plant responses 

wo aphid species.   

 
 

to infestation by these t

 

                Table 4-12. Threshold Days of sensitive bands to compare aphid infestations

Band (nm) GB-Control RWA-Control GB-RWA 
560 14 13 no 
580 14 13 no 
620 15 13 no 
630 15 13 no 
660 17 9 no 
670 17 13 no 
680 17 13 no 
694 15 13 no 

                   GB-Control: comparison between plants infested by GB and control plants; 
                   RWA-Control: comparison between plants infested by RWA and control plants; 
                   GB-RWA: comparison between plants infested by GB and plants infested by RWA; 
                   Threshold Day: the day subsequent to which there were significant differences (p<0.05). 
                   no: there was no Threshold Day 
     

        Markedly different feeding damage symptoms are caused by the two aphid species. 

Greenbug infestation symptoms initially appear as groups of small, reddish, pinpoint 

spots on the upper side of infested leaves (Brooks, 1991). Greenbug feeding damage is 

characterized by chlorotic and necrotic lesions in and around feeding sites on older leaves 

(Bu

greenbugs. Therefore, spectral differences between infested plants and control plants may 

ted 

rton, 1986; Dorschner et al., 1987).  In contrast, Russian wheat aphids feed on 

younger leaves and infestation often causes corkscrew rolling and stunting of leaves 

(Burd et al., 1993; Webster et al., 1987). Rolled leaves provide smaller vegetative 

coverage on soil than spread leaves. Thus, the percentage of leaves in the whole canopy 

could be lower for plants infested by Russian wheat aphids than the plants infested by 

show earlier. This could possibly explain why differences in reflectance between infes
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plants and control plants could be detected earlier for the plants infested by Russian 

wheat aphid than for plants infested by greenbugs. 

       However, based on Table 4-12, none of the sensitive bands (listed in Table 4-6) 

is 

may be caus arity o al resp ts to t inds of 

infestation. GB and RWA belong to the same group of aphids (Brooks, 1991). Riedell 

and Kieckhefer (1995) reported that crop canopy chlorosis and necrosis are typical 

symptoms for aphid infestation in small grains. Findings from this study further 

demonstrate the results of Riedell and Kieckhefer (1995).  Thus, it is very difficult to use 

ussian 

similarity of spectral responses of plants to these 

two kinds of infestation.  

 

phid 

 

differences mentioned before. Riedell and Blackmer (1999) reported that at leaf level 

  

could differentiate infestation by greenbugs and infestation by Russian wheat aphid.  Th

ed by simil f the spectr onses of plan hese two k

reflectance at a single band to distinguish between infestation by greenbugs and R

wheat aphids. This may be caused by 

4.4.2 Sensitive vegetation indices 

      Table 4-13 shows Threshold Days for sensitive vegetation indices (listed in Table 4-

6) and three special vegetation indices: NPCI, WBI and YI. Again, compared to 

reflectance of single bands, most vegetation indices showed higher sensitivities to a

infestation. Results here further validated the effectiveness of vegetation indices. 

      From Table 4-13, it can be seen again that for most vegetation indices, their 

Threshold Days were smaller for the plants infested by Russian wheat aphid than for 

plants infested by greenbugs. This means that infested plants and control plants showed

statistically significant differences later for plants infested by greenbugs than for plants 

infested by Russian wheat aphids. This difference could be caused by infestation 
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NPCI was significantly correlated with total chlorophyll concentrations in both green

damaged and Russian wheat aphid–damaged plants

bug-

 and WBI was always higher than  

                        Table 4-13. Comparisons of Threshold Days of sensitive vegetation   

 

indices GB-Control RWA-Control GB-RWA 

                        

                        indices for different aphid infestations 

Vegetation 

NDVI_830_560 14 8 no 
RVI_800_450     18 9 9 

RVI_830_560     14 9 no 

RVI_900_450     18 9 no 

RVI_900_620     15 9 19 
30     15 9 19 

RVI_900_670     16 11 20 
RVI_900_680     16 9 20 

15 11 19 
18 9 9 

VI1 14 9 no 

MSAVI2 16 9 no 

WBI 18 no 19 

RVI_800_620     15 9 no 
RVI_800_630     15 9 20 
RVI_800_670     16 9 20 
RVI_800_680     16 9 no 
RVI_800_694     16 9 20 
RVI_830_485     15 9 no 

RVI_830_660     16 9 no 

RVI_900_580     14 9 19 

RVI_900_6

RVI_900_694     
RVI_950_450     
RVI_950_580     14 9 19 
RVI_950_620     14 9 20 
RVI_950_630     15 9 19 
RVI_950_670     16 9 20 
RVI_950_680     16 9 no 
RVI_950_694 15 9 19 

VI2 16 9 20 

NPCI 16 no 16 

YI 17 no 14 
Maximum Day 18     

                              GB-Control: comparison between plants infested by GB and control plants; 
                              RWA-Control: comparison between plants infested by RWA and control plants; 
                              GB-RWA: comparison between plants infested by GB and plants infested by RWA; 
                              Threshold Day: the day subsequent to which there were significant differences (p<0.05

 

control in Russian wheat aphid-damaged plants and lower than control in greenbug- 

). 
                              no: there was no Threshold Day 
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-damaged plants. Findings from this study partially contradicted to their results because 

results in Table 4-13 show that NPCI and WBI are not sensitive to Russian wheat aphid 

sidering the study of Riedell and Blackmer (1999) was at the leaf level, it 

d infestation at the leaf level may 

not be sensitive at the canopy level. 

       In addition, results in Table 4-13 show that it is also difficult to use most vegetation 

indices to disting of inf tion though infestation by Russian wheat aphid 

could be detected earlier than infestation by greenbugs. Some vegetation indices 

RVI_800_450, RVI_950_450, NPCI, and YI   could  used to dif ntiate the two kinds 

of infestation. RV  RVI 0_450 are  vegetation ices most sensitive 

to differences between two kinds of infestation. It is also possible to use NPCI and YI to 

distinguish the tw station ey have smaller Threshold Days. 

Riedell and Blac nd th hlorophyll b ratios for leaves severely 

damaged by greenbug feeding were significantly lower than those same leaves from the 

undamaged control plants. But Chlorophyll a/b ratio  leaves dam

wheat aphid did not differ significantly from the undamaged control plants.  This could 

possibly explain why RVI_800_450, RVI_950_450, d NPCI co be used to 

distinguish the two kinds of infestation. Chlorophyll, the major plant pigment in wheat 

leaves, absorbs e  at 440 to 480 n chlorophyll a) and 640 to 680 nm (chlorophyll 

 

. Thus, they are sensitive to the difference in 

chlorophyll a/b ratios. Adams et al. (1999) reported the Yellowness Index (YI) was a 

infestation. Con

was concluded that vegetation indices sensitive to aphi

uish two kinds esta

be fere

I_800_450 and _95 the  ind

o kinds of infe  because th

kmer (1999) fou at C  a/

s in aged by Russian 

an uld 

nergy m (

b) (Verbyla, 1995). Band 450 nm is close to 445 nm at which there is maximum 

absorption of chlorophyll (Penuelas and Inoue, 1999) and NPCI is used to characterize

the difference of band 680 and band 430 nm
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good measure for chlorosis of leaves in stressed plants. Results from comparing 

experiment GRex seem to support findings of Adams et al. (1999). Thus, NPCI is most 

sensitive to spectral difference between plants infested by two kinds of aphids and could 

be used to distinguish the two kinds of aphid infestations. Figures for temporal changes in

RVI_800_450, RVI_950_450, NPCI

 

 and YI were shown in Fig 4-20 - Fig 4-23.  

e to be 

 

        Based on Fig 4-20 and Fig 4-21, in general RVI_800_450 and RVI_950_450 

increase with the time but after 9 days of infestation by aphids, there were significant 

differences in RVI_800_450, RVI_950_450 between plants under infestation by 

greenbugs and Russian wheat aphid though both infestations induce a decrease in 

RVI_800_450 and RVI_950_450. According to Fig 4-23, NPCI generally decreases with 

time but infestation by greenbugs causes increase in NPCI after 16 days of infestation. In 

conclusion, RVI_800_450, RVI_950_450 and NPCI could be used to differentiate 

greenbug infestation from infestation by Russian wheat aphids. YI has limited valu

used for distinguishing the two kinds of infestation because there were larger variations 

in YI data (Fig 4-22). At the later stage of infestation, NPCI may be reliable for use in

differentiating two kinds of infestation because of stable trend. 
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    Fig 4-20. Temporal changes in RVI_800_450 for three treatments in comparing 

 
    experiment. 
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     Fig 4-21. Temporal changes in RVI_900_450 for three treatments in comparing      
     experiment. 
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     Fig 4-22. Temporal changes in YI for three treatments in comparing experiment. 
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     Fig 4-23. Temporal changes in NPCI for three treatments in comparing  
     experiment. 
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4.5 Limitations 
 
      There are some limitations associated with the findings of this greenhouse study. First 

of all, reflectance measurements could be influenced by the illumination of scattered light 

in the greenhouse. Artificial light, structures in the greenhouse, the person who is using 

the Cropscan radiometer and the Cropscan radiometer are important sources of scattering 

light. They affect the overall illumination of the target surface by obscuring a portion of 

the diffuse skylight from direct solar illumination. The magnitude of both the diffuse 

skylight and light scattered from surrounding illumination components is determined by 

the solid angle subtended by these sources when viewed from the reference frame of the 

targ

ffected. 

      Secondly, since reflectance measurements were conducted in the greenhouse, it is 

unavoidable that shading effects caused by greenhouse support structures such as beams 

create some unwanted shadows on the canopy and or the surface of the radiometer’s up- 

looking sensor. In some cases, there will be large differences between irradiance on the 

canopy surface and the surface of the radiometer’s up-looking sensor because of serious 

shadows and shadow variations. These phenomena violate the assumption of the 

Cropscan’s working principle. Thus, reflectance measurements will be greatly influenced.  

This could impact subsequent analysis.  

      Thirdly, this study is basically a greenhouse study and thus research findings obtained 

from  not be directly extended to field application. Under field conditions, 

canopy structures, leaf orientation and plant density may be different from those in the 

greenhouse and could be changed due to some factors such as wind. Sensitivities of some 

et surface (Curtiss and Ustin, 1988). Thus, data accuracy of reflectance may be 

a

 this study may
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sensitive bands and vegetation indices could change under field conditions and need to be 

 

 

ices (see Table 4-6); 

eat; 

 

tested in the field experiments. 

 

4.6 Conclusions 

       Based on the above results and discussions, it was concluded that 

(1) Among the 16 bands of the Cropscan radiometer, the bands including band 630 

nm and 694 nm were most sensitive to greenbug infestation (see Table 4-6); 

(2) Among the 128 vegetation indices examined in this study, the vegetation indices 

derived using the bands including 694 and 800 nm were most sensitive to 

greenbug infestation and the most effective indices are ratio-based vegetation

ind

(3) No single band could be used to differentiate greenbug infestation from water 

stress and infestation by Russian wheat aphids; 

(4) RVI_800_694, RVI_830_660, RVI_900_694, RVI_950_694 and VI2_800_694  

could be used to differentiate water stress from greenbug infestation and 

RVI_800_450, RVI_900_450 and NPCI could be used to distinguish greenbug 

infestation from infestation caused by Russian wheat aphids; 

(5) Broad Landsat TM bands and their derived vegetation indices could be used to 

detect greenbug infestation on wh

(6) Since this study was based on greenhouse experiments, sensitive band and 

vegetation indices determined in this study may not be directly extended to field 

detection of greenbug infestation. 
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CHAPTER 5 
Summary and Recommendations 

rom experiments 
 
 in 
 
 
5.1 Summary 
 
       Greenbug (Schizaphis graminum, Rondani) is an important pest of cereal crops. The 

Greenbug outbreak appears in the Great Plains almost every year and has caused 

significant economic impact on wheat and sorghum yield. Early detection of greenbug 

infestation becomes a critical part of integrated pest management (IPM) for wheat and 

sorghum production. Remote sensing techniques can identify pest infestations in 

agricultural fields, and ground-based radiometry can provide a vital tool to study such 

stress in crop plants. The purpose of this greenhouse study was to characterize stress in 

wheat caused by greenbug infestation and identify bands and vegetation indices that were 

sensitive to greenbug infestation. 

          Based on extensive literature review, crop stress due to adverse conditions, such as 

nutrient deficiency, pest infestation, diseases, and drought, can be detected using remote 

sensing techniques. It has been demonstrated that symptoms of crop stress can be 

visualized at wavelengths such as red and near infrared, and measured using vegetation 

indices such as NDVI. Ground-based radiometry is a basic way to test the feasibility of 

detecting greenbug-induced wheat stress by using images from satellites and aircraft. 

hus, a hand-held Cropscan radiometer with 16 bands (5 bands simulating Landsat bands 

 
      The main purpose of this chapter is to summarize results obtained f

this study and make recommendations.  

T
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and 11 narrow bands) was selected to conduct a greenhouse study to identify bands and 

vegetation indices that are sensitive to greenbug infestation. In this study, different 

experiments involving treatments such as in

flat-grown wheat pla uded three 

tation, one experiment to test impact of the 

rowth stage on the detection of greenbug infestation, and one experiment to compare 

enbugs and Russian wheat aphids.  

r  

ficance. 

 at 

lly 

m Day. 

nd 

d 

relation and sensitivity analysis, sensitive bands and 

 

 

w high 

 

d 

festation and water stress were conducted on 

nts. The experiments conducted in this study incl

experiments to test sensitivities of bands and vegetation indices, three experiments to 

differentiate water stress and greenbug infes

g

infestations by gre

         Reflectance data and derived vegetation indices from the 16 bands of the radiomete

for all experiments were analyzed using SAS PROC MIXED for statistical signi

Threshold Days for each band/vegetation index were determined by comparing p value

significance level = 0.05. Then sensitive bands/vegetation indices could be initia

identified based on comparison between their Threshold Days and Maximu

Correlation analyses were used to test the relationship between greenbug density a

differences in reflectance at each band and vegetation index between control and infeste

plants. Sensitivity analysis was used to compare relative sensitivities of different bands 

and vegetation indices. After cor

vegetation were determined. It was found that 630 and 694 nm were the most sensitive

bands to greenbug infestation. Interestingly, the most sensitive vegetation indices were

simple ratio-based indices (See Table 4-4), and most NDVI or SAVI did not sho

sensitivities. Particularly, the vegetation indices derived using band 800 nm and 694 nm

were identified as most sensitive to greenbug infestation. Broad Landsat TM bands an
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their derived vegetation indices also show potential for detecting wheat stress caused b

greenbug infestation. 

      Sensitive bands and vegetation indices were tested to see if they could be used to

differentiate greenbug infestation and water stress. Results showed that it is dif

differentiate greenbug infestation and water stress using reflectance at any single ba

However, five vegetation indices - RVI_800_694, RVI_830_660, RVI_900_69

RVI_950_694 and VI2_800

y 

 

ficult to 

nd. 

4, 

ug 

nutrient deficiency that result in leaf chlorosis, mottling, and necrosis, can also have 

_694 - show high potential to differentiate greenb

infestation from water stress. 

       The impact of plant growth stage on the detection of greenbug infestation was 

explored and it was found that Threshold Days for sensitive band and vegetation indices 

were smaller for plants infested at the two-leaf stage than for plants infested at the 

tillering stage.   

       Finally, the comparison between greenbug infestation and the infestation by Russian 

wheat aphid was also conducted. Results showed that the band 450 nm and the vegetation 

indices: NPCI, RVI_800_450, RVI_900_450 could be used to distinguish infestation 

caused by greenbugs from infestation caused by Russian wheat aphids.  

       In practice, crop growth is very dynamic and monitoring the condition of agricultural 

crops is a complex issue. This study is a step toward the goal of using remote sensing 

technology to analyze canopy reflectance of wheat to identify greenbug outbreaks. Under 

field conditions, wheat canopy complexity increases and the characteristics of the spectral 

response to greenbug infestation as outlined above may change under other 

environmental factors such as wind and temperature. Other crop stresses such as disease, 
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similar effects on crop canopy reflectance spectra (Malthus and Madeira, 1993). Thus, 

the spectral relationships identified in this study may not be unique to greenbug 

 

 the red edge portion (680-750 nm). It is possible that a hyper-spectral 

 define the most 

uld have 

e 

infestation under field conditions. This may complicate the use of remote sensing to 

detect greenbug infestation in a crop protection context. However, this study 

demonstrated the feasibility of using remote sensing to detect greenbug infestation at the 

canopy level. It is possible that results from this study can be extended to field detection 

of wheat stress caused by greenbug infestation. 

 

5.2 Recommendations 

        In the future, more canopy-level-studies are needed to identify sensitive bands and 

vegetation indices. The Cropscan radiometer used in this study only has 16 bands and one 

band (694 nm) in

sensor, such as ASD (Analytical Spectral Devices) field spectrometer, might provide 

better performance if used in this study because of more available bands, especially in the 

red edge portion. A typical ASD field spectrometer has a 0.35-2.5 µm spectral range and 

10 nm spectral resolution. Thus, a hyper-spectral study should be done to

sensitive bands and vegetation indices using an ASD field spectrometer or similar 

devices.  

        Secondly, experiments to distinguish greenbug-induced stress and other stresses 

such as nitrogen stress and plant disease on wheat are necessary. Nutrient deficiency 

could interact with greenbug infestation on plants, and plant diseases also co

confounding effects. In addition, infestation by other aphids such as bird oat cherry aphid 

(Rhopalosiphum padi) also needs to be studied. It is possible to further define sensitiv
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bands and vegetation indices and make them more effective in the detection of greenbug

infestation.  

      Thirdly, field studies are necessary to test sensitivities and reliabilities of sensitiv

bands and vegetation indices determined in this study.  Thus field studies on w

caused by greenbug infestation by aircraft and satellites should be conducted to make this

technique a cost-effective and practical method useful for farmers.  

      Fourthly, it would be very useful to investiga

 

e 

heat stress 

 

te the unique spatial patterns associated 

ith greenbug infestation in the field. Typical "greenbug spots" in a field are different 

such as water stress. The use of this fact for detecting 

 

 

w

from those of other stresses, 

greenbug infestation has not been tested. It is necessary to examine differences of spatial

patterns among different stresses. 

        In addition, how remote sensing results can be integrated within decision support 

systems such as Cereal Aphid Expert System (CAES) needs to be explored. In other 

words, the detection of greenbug infestation by remote sensing needs to developed into a 

decision tool with which farmers can decide (a treatment threshold) where and how much

pesticide should be applied or what IPM methods should be used.  
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Appendix 
 
 

A. Exc
(1) Formula.xls to calculate vegetation indices 

Pub
 
'Author: Mahesh Rao, modified by zhiming on July 03 for old dataset and Nov 13, 03 
for new dataset 
'Date: March 20, 2003 
' code calculates various vegetation indices from the CROPSCAN data, 
' indices are calculated for each sample m asurement (3 measurement for each flat), 
 ' and then averaged to give a mean NDVI for each flat. 
' the means are transferred to another sheet - alldays.xls 
' alldays.xls should be open 
 
wb = ActiveWorkbook.Name 
Nm = ActiveSheet.Name 
Flatmeans = InputBox("Enter Date of Sa pling", "Date", "mmddyy") 
 
formulabook = InputBox("Enter Excel file Name in which VI formulae exist", "File 
Name", "formula.xls") 
    Windows(formulabook).Activate 
    Range("W8:EV12").Select 
     
    Selection.Copy 
    Windows(wb).Activate 
    Sheets(Nm).Activate 
    Range("W8:W8").Select 
     
    Selection.PasteSpecial Paste:=xlFormu s, Operation:=xlNone, SkipBlanks:= _ 
        False, Transpose:=False 
With ActiveSheet 
    u = .UsedRange.Rows.Count 
    If .Cells(u, 1).Value = "END" Then 
    .Rows(u).Delete 
    End If 
End With 
Sheets.Add 

el VB scripts 

 
lic Sub calculate() 

e

m

la
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With ActiveSheet 
   ActiveSheet.Name = Flatmeans 
End With 
 
Sheets(Nm).Select 
     
ctr = 1 
With ActiveSheet 
        ' Copy formula accross the sheet 

:EV12").Select 

      Selection.Copy 
 & u - 1).Select 

        

pose:=False 

   
.Rows.Count 

 "" And j <> .UsedRange.Rows.Count Then 

          .Range("a" & j - 1 & ":" & "b" & j - 1).Copy Destination:=.Range("a" & j & 

Average(g" & j - 3 & ":" & "g" & j - 1 & ")" 
estination:=.Range("g" & j & ":" & "EV" & j) 

       
py 

elect 

al Paste:=xlValues, Operation:=xlNone, _ 
  SkipBlanks:=False, Transpose:=False 

dRange.Rows.Count Then ' last row 

 j - 1).Copy Destination:=.Range("a" & j & 

ange("e" & j - 1).Copy Destination:=.Range("e" & j) 
nge("g" & j).Formula = "=Average(g" & j - 3 & ":" & "g" & j - 1 & ")" 

e("g" & j).Copy Destination:=.Range("g" & j & ":" & "EV" & j) 

        .Range("W12
         
  
        .Range("W13:EV"
  
        Selection.PasteSpecial Paste:=xlFormulas, Operation:=xlNone, SkipBlanks:= _ 
        False, Trans
 k = 15 
    ' insert rows for averages 
    Do While .Cells(k, 1).Value <> 0 
        .Rows(k).Insert 
        k = k + 4 
    Loop 
  
        For j = 12 To .UsedRange
        If .Cells(j, 1).Value =
               
  
":" & "b" & j) 
            .Range("e" & j - 1).Copy Destination:=.Range("e" & j) 
            .Range("g" & j).Formula = "=
            .Range("g" & j).Copy D
      
            .Rows(j).Co
            Sheets(Flatmeans).S
            Rows(ctr).Select 
            Selection.PasteSpeci
      
            Sheets(Nm).Select 
            ctr = ctr + 1 
        ElseIf j = .Use
            j = j + 1 
            .Range("a" & j - 1 & ":" & "b" &
":" & "b" & j) 
            .R
            .Ra
            .Rang
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            .Rows(j).Copy 
            Sheets(Flatmeans).Select 
          Rows(ctr).Select 

steSpecial Paste:=xlValues, Operation:=xlNone, _ 
  SkipBlanks:=False, Transpose:=False 

Sheets(Nm).Select 
 

t j 

ts(Flatmeans).Select 

(1).Insert 

utCopyMode = False 
on.Copy 

heets(Flatmeans).Select 

heet.Paste 

(Flatmeans).Move Workbooks("alldays.xls").End 
ove before:=Workbooks("alldays.xls").Sheets("First") 

 

  
            Selection.Pa
      
            
            ctr = ctr + 1
                  
        End If 
    Nex
     
    'some formatting 
    Shee
    Rows(1).Insert 
    Rows(1).Insert 
    Rows
    Sheets(Nm).Select 
    Range("G8:EV10").Select 
       
    Application.C
    Selecti
    S
    Range("G1:EV3").Select 
     
    ActiveS
    Selection.Font.Bold = True 
  
    'move to a single file 
    Sheets(Flatmeans).Select 
    ' 
    'Sheets
    Sheets(Flatmeans).M
     
     
    'Sheets("Sheet1").Delete 
  
End With 
 
End Sub 
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(2) Alldays.xls to aggregate data for all days during each experiment 

 
ments along with the indices to a sheet 

ou have calculated the daily mean measurements (using the 
de) 
Alldays" worksheet does not exist in you alldays.xls workbook before 

is code. 
Sheets(1).Select 

ays" 
elete 

If i = 2 Then 

heet.UsedRange.Rows.Count 
t 

      Application.CutCopyMode = False 
y 

ct 
         Rows(ctr).Select 

     ctr = ActiveSheet.UsedRange.Rows.Count 

  Sheets(i).Select 
  nRows = ActiveSheet.UsedRange.Rows.Count 

elect 'Rows("4:25").Select 
     Selection.Copy 

("AllDays").Select 
      Rows(ctr).Select 

eSheet.Paste 
      ctr = ActiveSheet.UsedRange.Rows.Count 
      ctr = ctr + 1 
      End If 
  Next i 
  Range("A2").Select 
  ActiveCell.FormulaR1C1 = "Date" 

 
Sub Aggregate() 
' 
' Created 3/21/2003 by Mahesh Rao, modified by zhiming on May30,03
' code aggregates the daily average measure
named "Alldays" 
' run this code after y
Calculate co
' make sure "
running th
'    
    Sheets.Add 
    ActiveSheet.Name = "AllD
    Sheets("First").D
     
    ctr = 1 
    Sheets(2).Select 
    For i = 2 To Sheets.Count 
        
            Sheets(i).Select 
            r = ActiveS
            Rows("1:" & r).Selec
            
      
            Selection.Cop
            Sheets("AllDays").Sele
   
             
            ActiveSheet.Paste 
       
            ctr = ctr + 1 
        ElseIf i > 2 Then 
      
      
        Rows("4:" & nRows).S
   
        Sheets
  
        Activ
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    Range("B2").Select 
    ActiveCell.FormulaR1C1 = "Time" 

lect 
 ActiveCell.FormulaR1C1 = "Trt" 

    Range("e2").Se
   
    rws = ActiveSheet.UsedRange.Rows.Count 
    Range("G4:EU" & rws).Select 
   
Selection.NumberFormat = "0.0000" 
End Sub 
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B. S
 

AS programs 

(1)T
 

EMPLATE_RTF_ARIAL.SAS 

PROC TEMPLATE; 
 DEFINE STYLE RTFArial; 
 PARENT=Styles.RTF; 
   REPLACE fonts / 
      itleFont2' = ("Arial",10pt,Bold Italic) 'T
      itleFont' = ("Arial",10pt,Bold Italic) 'T
      trongFont' = ("Arial",10pt,Bold) 'S
      mphasisFont' = ("Arial",10pt,Italic) 'E
      ixedEmphasisFont' = ("Arial, Helvetica",9pt,Italic) 'F
      ixedStrongFont' = ("Arial, Helvetica",9pt,Bold) 'F
      ixedHeadingFont' = ("Arial, Helvetica",9pt,Bold) 'F
      atchFixedFont' = ("SAS Monospace, Courier",6.7pt) 'B
      ixedFont' = ("Arial, Helvetica",9pt) 'F
      eadingEmphasisFont' = ("Arial",10pt,Bold Italic) 'h
      eadingFont' = ("Arial",10pt) 'h
      ' = ("Arial",10pt); 'docFont
   END; 
 
RUN; 
 
(2) MIXED_CALL.SAS 
LIBNAME A 'H:\crop603'; 
OPTIONS PAGENO=1 NODATE; 
dat ; set A.MEASURE; a A.TRT
 FORMAT DATE MMDDYY10.; 
 
%MACRO MIXED02(VAR_FIT,COVAR) ; 
PROC MIXED DATA=A.TRT; 
 CLASS TREATMENT PLOT DATE; 
 MODEL &VAR_FIT = TREATMENT DATE TREATMENT*DATE / 
DDFM=KENWARDROGER; 
 REPEATED / TYPE=&COVAR SUBJECT=PLOT(TREATMENT); 
 LSMEANS TREATMENT DATE TREATMENT*DATE; 
 LSMEANS TREATMENT*DATE / SLICE=DATE; 
 
  TITLE "&VAR_FIT"; 
  RUN; 
%MEND; 
 
%LET FIT_VAR=BAND450;        %INCLUDE 'H:\sas04\MIXED_MACRO.SAS'; 
%LET FIT_VAR=BAND485;        %INCLUDE 'H:\sas04\MIXED_MACRO.SAS'; 
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DATA A; 
 SET BAND450 
     BAND485 
 ; 
 ABS_VALUE=ABS(VALUE); 
 AICC=ABS_VALUE; 
 
PROC SORT DATA=A; BY VAR_FIT; 
 
PROC MEANS DATA=A NOPRINT; BY VAR_FIT; VAR ABS_VALUE; OUTPUT 
OUT=MIN_FIT MIN=AICC; 
 
DATA MIN_FIT; SET MIN_FIT; MARK='*'; 
 
PROC SORT DATA=A; BY VAR_FIT AICC; 
PROC SORT DATA=MIN_FIT; BY VAR_FIT AICC; 
 
DATA A.MIN_FIT; MERGE MIN_FIT A; BY VAR_FIT AICC; IF MARK='*'; 
 DROP _TYPE_ _FREQ_ MARK AICC; 
 
ods rtf file='H:\sas04\slices.rtf' STYLE=RTFArial; 
ods NOPTITLE; 
ods select slices(persist); 
DATA _NULL_; SET A.MIN_FIT; 
 CALL EXECUTE ('%MIXED02('||VAR_FIT||','||COVAR||')') ; 
run; 
ods rtf close; 
 
RUN; QUIT; 
 

 
(3)MIXED_MACRO.SAS 
 
ODS LISTING CLOSE; 
ODS OUTPUT FITSTATISTICS=VC; 
 
PROC MIXED DATA=A.TRT; 
 *PROC MIXED DATA=A.MEASURE; 
 CLASS TREATMENT PLOT DATE; 
 *MODEL &FIT_VAR = TREATMENT DATE / E3; 
 *MODEL &FIT_VAR = TREATMENT DATE / DDFM=KENWARDROGER; 
 MODEL &FIT_VAR = TREATMENT DATE TREATMENT*DATE / 
DDFM=KENWARDROGER; 
 REPEATED / TYPE=VC SUBJECT=PLOT(TREATMENT) R RCORR; 
 
 RUN; 
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ODS OUTPUT CLOSE; 
 
DATA VC; SET VC; LENGTH COVAR $ 5; COVAR='VC'; IF DESCR='AICC 
(smaller is better)'; 
 
ODS OUTPUT FITSTATISTICS=AR; 
PROC MIXED DATA=A.TRT; 
 *PROC MIXED DATA=A.MEASURE; 
 CLASS TREATMENT PLOT DATE; 
 *MODEL &FIT_VAR = TREATMENT DATE / E3; 
 *MODEL &FIT_VAR = TREATMENT SDATE/ DDFM=KENWARDROGER; 
 MODEL &FIT_VAR = TREATMENT DATE TREATMENT*DATE / 
DDFM=KENWARDROGER; 
 REPEATED / TYPE=AR(1) SUBJECT=PLOT(TREATMENT) R RCORR; 
 RUN; 
 
ODS OUTPUT CLOSE; 
 
DATA AR; SET AR; LENGTH COVAR $ 5; COVAR='AR(1)'; IF DESCR='AICC 
(smaller is better)'; 
 
ODS OUTPUT FITSTATISTICS=CS; 
PROC MIXED DATA=A.TRT; 
 *PROC MIXED DATA=A.MEASURE; 
 CLASS TREATMENT PLOT DATE; 
 *MODEL &FIT_VAR = TREATMENT DATE / E3; 
 *MODEL &FIT_VAR = TREATMENT SDATE / DDFM=KENWARDROGER; 
 MODEL &FIT_VAR = TREATMENT DATE TREATMENT*DATE / 
DDFM=KENWARDROGER; 
 REPEATED / TYPE=CS SUBJECT=PLOT(TREATMENT) R RCORR; 
 RUN; 
 
ODS OUTPUT CLOSE; 
 
DATA CS; SET CS; LENGTH COVAR $ 5; COVAR='CS'; IF DESCR='AICC (smaller 
is better)'; 
 
DATA &FIT_VAR; SET VC AR CS; LENGTH VAR_FIT $ 14; 
VAR_FIT="&FIT_VAR"; DROP DESCR; 
 
ODS LISTING; 
 
RUN; QUIT; 
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C. SAS PROC MIXED outputs 

See following example pages 

ARVI 
 

of Effect Slices 
 

 DF  Den DF  F Value Pr > F 
 1 160 1.74 0.1887 

160 1.51 0.2215 

0003 
E 02/06/02 1 160 4.32 0.0392 

 
TREATMENT*DATE 02/08/02 1 160 2.93 0.0892 
TREATMENT*DATE 02/09/02 1 160 4.97 0.0273 

*DATE 02/10/02 1 160 6.01 0.0153 
02 1 160 4.09 0.0448 

ENT*DATE 02/14/02 1 160 9.14 0.0029 
02 1 160 4.56 0.0342 
02 1 160 6.86 0.0096 

02/17/02 1 160 6.43 0.0122 
 1 160 1.34 0.2485 

02 1 160 3.00 0.0852 
160 3.89 0.0502 

1891 
00 
83 
29 

TREATMENT*DATE 02/26/02 1 160 6.92 0.0093 
*DATE 02/27/02 1 160 13.76 0.0003 
*DATE 02/28/02 1 160 20.37 <.0001 

TREATMENT*DATE 03/03/02 1 160 20.88 <.0001 
TREATMENT*DATE 03/04/02 1 160 26.76 <.0001 

.63 <.0001 
1 160 31.69 <.0001 

TREATMENT*DATE 03/07/02 1 160 41.14 <.0001 
TMENT*DATE 03/08/02 1 160 49.81 <.0001 
TMENT*DATE 03/09/02 1 160 94.33 <.0001 

ATMENT*DATE 03/10/02 1 160 140.07 <.0001 
ATMENT*DATE 03/11/02 1 160 185.04 <.0001 

TREATMENT*DATE 03/12/02 1 160 231.89 <.0001 
 

 

 

Tests 

Effect                           DATE         Num
/02TREATMENT*DATE 02/01

TREATMENT*DATE 02/02/02 1 
TREATMENT*DATE 02/03/02 1 160 3.22 0.0744 
TREATMENT*DATE 02/04/02 1 160 6.12 0.0144 
TREATMENT*DATE 02/05/02 1 160 13.89 0.
TREATMENT*DAT
TREATMENT*DATE 02/07/02 1 160 5.77 0.0175

TREATMENT
TREATMENT*DATE 02/11/
TREATMENT*DATE 02/12/02 1 160 3.34 0.0694 
TREATMENT*DATE 02/13/02 1 160 4.11 0.0442 
TREATM
TREATMENT*DATE 02/15/
TREATMENT*DATE 02/16/
TREATMENT*DATE 
TREATMENT*DATE 02/18/02
TREATMENT*DATE 02/19/
TREATMENT*DATE 02/20/02 1 
TREATMENT*DATE 02/21/02 1 160 5.96 0.0157 
TREATMENT*DATE 02/22/02 1 160 1.74 0.
TREATMENT*DATE 02/23/02 1 160 2.20 0.14
TREATMENT*DATE 02/24/02 1 160 5.68 0.01
TREATMENT*DATE 02/25/02 1 160 6.32 0.01

TREATMENT
TREATMENT
TREATMENT*DATE 03/01/02 1 160 31.42 <.0001 
TREATMENT*DATE 03/02/02 1 160 30.46 <.0001 

TREATMENT*DATE 03/05/02 1 160 36
TREATMENT*DATE 03/06/02 

TREA
TREA
TRE
TRE
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BAND1480nm 

ct Slices 

Effect                           DATE  DF   Den DF   F Value Pr > F 
TREATMENT*DATE 0 113 12.19 0.0007 
TREATMENT*DATE 0 113 77.84 <.0001 

                           . 

  
Tests of Effe

 
     umN

2/01/02 1 
2/02/02 1 

TREATMENT*DATE 02/03/02 1 113 17.28 <.0001 
TREATMENT*DATE 02/05/02 1 113 0.65 0.4217 
TREATMENT*DATE 02/06/02 1 113 0.83 0.3631 
TREATMENT*DATE 02/07/02 1 113 22.89 <.0001 
TREATMENT*DATE 02/08/02 1 113 0.59 0.4440 
TREATMENT*DATE 02/09/02 1 113 19.21 <.0001 
TREATMENT*DATE 02/10/02 1 113 4.76 0.0312 
TREATMENT*DATE 02/11/02 1 113 2.96 0.0881 
TREATMENT*DATE 02/12/02 1 113 0.48 0.4918 
TREATMENT*DATE 02/13/02 1 113 11.35 0.0010 
TREATMENT*DATE 02/14/02 1 113 0.36 0.5497 
TREATMENT*DATE 02/15/02 1 113 6.53 0.0119 
TREATMENT*DATE 02/16/02 1 113 3.73 0.0561 
TREATMENT*DATE 02/17/02 1 113 0.64 0.4252 
 TREATMENT*DATE   02/18/02 0 . . 
TREATMENT*DATE 02/19/02 1 113 1.08 0.3005 
TREATMENT*DATE 02/20/02 1 113 1.72 0.1919 
TREATMENT*DATE 02/21/02 1 113 1.69 0.1956 
TREATMENT*DATE 02/22/02 1 113 0.91 0.3414 
TREATMENT*DATE 02/23/02 1 113 0.75 0.3884 
TREATMENT*DATE 02/24/02 1 113 0.23 0.6320 
TREATMENT*DATE 02/26/02 1 113 0.11 0.7464 
TREATMENT*DATE 02/27/02 1 113 16.34 <.0001 
TREATMENT*DATE 02/28/02 1 113 0.78 0.3797 
TREATMENT*DATE 03/01/02 1 144 0.40 0.5293 
TREATMENT*DATE 03/02/02 1 113 0.92 0.3404 
TREATMENT*DATE 03/03/02 1 113 19.00 <.0001 
TREATMENT*DATE 03/04/02 1 113 2.51 0.1161 
TREATMENT*DATE 03/05/02 1 113 1.85 0.1768 
TREATMENT*DATE 03/06/02 1 113 4.62 0.0338 
TREATMENT*DATE 03/07/02 1 113 2.79 0.0976 
TREATMENT*DATE 03/08/02 1 128 10.93 0.0012 
TREATMENT*DATE 03/09/02 1 113 15.85 0.0001 
TREATMENT*DATE 03/10/02 1 113 8.57 0.0041 
TREATMENT*DATE 03/11/02 1 113 32.20 <.0001 
TREATMENT*DATE 03/12/02 1 113 12.04 0.0007 
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