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CHAPTER I 
 
 

INTRODUCTION 

 

 

Moderate regular aerobic exercise is routinely recommended to promote good health and well-

being.  However, negative health impacts may be experienced when individuals exercise in 

locations with high ambient air pollution.  Few studies have examined the association of ambient 

air pollution with athletic performance, and fewer have examined the relationship of pollution and 

fitness among school-aged children.  Potential health impacts to children are of special concern, 

due to certain characteristics which may make children more susceptible to the effects of 

pollutants, such as criteria air pollutants. 

 

Criteria air pollutants consist of the six most common ambient air pollutants in the United States: 

ozone (O3), carbon monoxide (CO), nitrogen dioxide (NOx), sulfur dioxide (SO2), lead (Pb), and 

particulate matter (PM10 and PM2.5).  These air pollutants contribute significantly to the overall 

levels of ambient air pollution, especially in heavily populated areas, and have been associated 

with a wide range of adverse health outcomes, including asthma, cardiovascular disease, central 

nervous system disorders, birth defects, miscarriage, and premature death (USEPA, 2008).  For 

each of the six criteria air pollutants, the United States Environmental Protection Agency (EPA) 

has established national air quality standards that define allowable concentrations in ambient air.  

The establishment of such standards means that monitoring systems are in place to assess 

concentrations of these substances in the air.  As such, California maintains an extensive air 

pollution monitoring network and has made the majority of its data publicly accessible.   Many 

areas within the state of California struggle with complying with these air monitoring standards.  
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During 2006 and 2007, numerous California counties were classified as non-attainment areas for 

carbon monoxide, ozone, and particulate matter (PM10 and PM2.5).  According to a report by the 

American Lung Association (ALA, 2009), several cities in California, including Los Angeles, 

Bakersfield and Visalla-Porterville, remain some of the most polluted in the U.S., with air quality 

that is likely damaging the health of millions of people.    

 

Yet, the question remains as to whether the concentrations of criteria air pollutants in ambient air 

can be directly linked to levels of physical fitness in children.  In addition to maintaining an 

extensive air monitoring network, the state of California has established mandatory statewide 

physical fitness testing.  Each spring, this testing is administered to all students in fifth, seventh, 

and ninth grades.  A total of six fitness areas are assessed: 1) aerobic capacity, 2) abdominal 

strength and endurance, 3) upper body strength and endurance, 4) body composition, 5) trunk 

extensor strength, and 6) flexibility.  Results from the testing are submitted to the California 

Department of Education (CDE), which maintains a publicly accessible database of aggregate 

test results on its Web site.  This database provides a means for assessing overall fitness of 

these students at a school, school district, or county level.   

 

This study focuses on data from aerobic capacity and body composition testing during 2006 and 

2007 and aims to assess the relationship between physical fitness rates in California schools and 

those criteria pollutants that were identified as being in non-attainment during this time period.     

 

1.1  Research Questions 

 

The primary research question driving this study is: 

 

Are measures of Aerobic Capacity and Body Compositi on in school aged children, as 

evaluated by the California Physical Fitness Testin g Program, associated with ambient 

levels of criteria air pollutants? 
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In addressing this research question, the following specific aims were developed: 

 

Specific Aim 1:   To examine the association between attainment status for CO, O3, PM10, and 

PM2.5 and measures of aerobic capacity and body composition in children. 

 

Hypothesis 1:  Schools located in counties that are in non-attainment for CO, O3, PM10, or 

PM2.5 will have lower overall passing rates for aerobic capacity testing. 

 

Hypothesis 2:  Schools located in counties that are in non-attainment for CO, O3, PM10, or 

PM2.5 will have lower overall passing rates for body composition testing. 

 

Specific Aim 2:   To examine the association between various demographic factors and 

measures of aerobic capacity and body composition. 

 

Hypothesis 3:  Overall passing rates of aerobic capacity or body composition testing will differ 

by demographic variables (grade, gender, ethnicity, SES) 

 

Specific Aim 3:  To examine the association between attainment status for CO, O3, PM10, and 

PM2.5 and aerobic capacity or body composition in children after adjusting for demographic 

factors that influence these endpoints. 

 

Hypothesis 4:  Schools located in counties that are in non-attainment for CO, O3, PM10, or 

PM2.5 will have lower overall passing rates for aerobic capacity testing after adjusting for 

key demographic variables. 
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Hypothesis 5:  Schools located in counties that are in non-attainment for CO, O3, PM10, or 

PM2.5 will have lower overall passing rates for body composition testing after adjusting for 

key demographic variables. 

 

Specific Aim 4:   For those criteria pollutants for which an association with aerobic capacity exists 

after adjustment for demographic factors, determine if there is a dose-response type relationship 

within counties with non-attainment status. 

 

Hypothesis 6:  As the number of air quality exceedances or average concentration for a given 

pollutant increases, the overall passing rate of schools for aerobic capacity testing will 

decrease. 

 

 

1.2  Significance of the Study 

 

A further understanding of the relationship between levels of criteria air pollutants and the 

physical fitness of children has significant implications.  Reports indicate that overall student 

health is on the decline and that childhood obesity is currently one of the most significant public 

health concerns in the United States (Ogden et al., 2006).  To date, there is no clear consensus 

regarding the effects of ambient air pollution on athletic performance and physical fitness.  

However, criteria air pollutants have been associated with health effects (e.g., asthma, respiratory 

impairment) that would certainly be expected to result in reduced athletic performance.  

 

Decreases in athletic performance and increased body fat levels in children could be predictive of 

the potential for adult illnesses, such as cardiovascular disease (CVD), morbidity and mortality 

from Type II diabetes, and other chronic ailments (Eisenmann et al., 2005; Ortega et al., 2005; 

Velasquex-Mieyer et al., 2005).  
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1.3  Definition of Terms 

 

For the purpose of this study, key terms are defined as: 

 

Physical Fitness Testing (PFT): A criterion based assessment of measures of physical fitness. 

  

Aerobic Capacity:  This term, also referred to as VO2max, reflects the maximum rate that oxygen 

can be taken up and utilized by the body during exercise (Welk and Meredith, 2008). 

 

Body Composition:  This term refers to the overall percentage of fat measured as a parameter in 

the physical fitness testing program (Welk and Meredith, 2008). 

 

Criteria Air Pollutants:  Criteria air pollutants consist of the six most common air pollutants in the 

United States: ozone (O3), carbon monoxide (CO), nitrogen dioxide (NOx), sulfur dioxide (SO2), 

lead (Pb), and particulate matter (PM10 and PM2.5) 

 

Health Fitness Zone (HFZ):  A score in the HFZ represents a “passing” score for the fitness 

measure being evaluated.  The criteria for the HFZ have been based on levels of fitness that can 

be reasonably attained by most children who participate regularly in various types of physical 

activity (Welk and Meredith, 2008).   

 

Attainment Area:  An area is designated as an attainment area if it meets the National Ambient 

Air Quality Standards for a given criteria pollutant. 

 

Nonattainment Area:  An area is designated as a non-attainment area if it fails to meet the 

National Ambient Air Quality Standards for a given criteria pollutant. 
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1.4  Assumptions 

 

Several assumptions are important to this study, as follows: 

 

� It is assumed that the children attending a specific school reside within the county where 

the school is located. 

� It is assumed that ambient air data within the county are representative of exposure at 

schools located within that county. 

 

1.5  Strengths 

 

� There is a large study population available, as testing is mandatory for California public 

schools.  

� There is an extensive air monitoring network in California. 

� This study will consider potential confounders such as socio-economic status. 

� This study focuses on examining effects of ambient air pollution on a susceptible sub-

population. 

� This study will consider the effects of age, gender and ethnicity. 

 

1.6  Limitations 

 

� The study is based on summary statistics of physical fitness testing.  Data are 

aggregated at the grade level within a school and not at the individual child level. 

� The study is not designed to determine causality.  Significant findings cannot be assumed 

to be causal without further experimental study. 

� It is possible that children may be misclassified as to exposure.  

� There is no ability to control for several factors that may influence physical fitness, 

including nutritional status, genetic factors, and exposure to second-hand smoke. 
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� There is no way to control for exposures to additional environmental pollutant source 

contributions. 

 

 

1.7  Report Organization 

 

Chapter I – The first chapter provides an overview of the research questions and summarizes the 

significance of this study as well as the strengths and limitations of the research. 

 

Chapter II – The second chapter provides an overview of relevant literature on criteria air 

pollutants and their effects on physical fitness. 

  

Chapter III – The third chapter presents the methodology and design utilized to conduct this 

study.  This section includes a summary of data collection procedures and the statistical methods 

used to analyze the data. 

 

Chapter IV – The fourth chapter consists of results of statistical analyses to answer the research 

questions. Instrument reliability will be addressed and descriptive statistics will be presented. The 

final section of the chapter is structured to answer the research questions. 

 

Chapter V – The final chapter provides preliminary conclusions and a summary of the study.  

Contributions to the field and implications for theory and practice as well as future 

recommendations will be addressed. 

 

Chapter VI – This section is the bibliography for the dissertation.  
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CHAPTER II 
 
 

REVIEW OF LITERATURE 

 

 

2.1  Ambient Air Pollution in the United States 

 

Overview 

The U.S. Environmental Protection Agency (EPA) defines an air pollutant as “any substance in 

the air that can cause harm to humans or the environment” (USEPA, 2009a).  Pollutants may be 

in the form of solid particles, liquid droplets or gases, and may be derived from both natural and 

anthropogenic (man-made) sources.  Release of pollutants into ambient (outdoor) air can result in 

concentrations that may be harmful to human health and the environment.  

 

The Clean Air Act of 1970 (Pub L No. 91–604) required the EPA to establish National Ambient Air 

Quality Standards (NAAQS).  These enforceable standards (Table 2.1) were set for a group of 

substances known as ‘criteria air pollutants’ because they are common, widespread, and known 

to be harmful to public health and the environment.  Criteria air pollutants consist of the six most 

common ambient air pollutants in the United States: ozone (O3), carbon monoxide (CO), nitrogen 

dioxide (NOx), sulfur dioxide (SO2), lead (Pb), and particulate matter (PM10 and PM2.5).  Section 

109 of the Clean Air Act requires that these standards be reviewed on a five year basis and 

developed to protect the health of even the most “sensitive” members of a population, such as 

asthmatics, children, and the elderly (USEPA, 2006).  
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Individual air pollutant concentrations within areas of the United States (e.g., cities, counties, 

states) must not exceed the concentrations established as NAAQS.  If the levels of these 

pollutants are higher than their corresponding NAAQS, then the area in which the level is too high 

is called a nonattainment area, and additional control measures are often necessary. 

 

 
 
 

Table 2.1 – National Ambient Air Quality Standards 
 

 Primary Standards  (USEPA, 2009a) 

Pollutant  Level  Averaging Time  
Ozone 0.075 ppm a 8-hour 

0.08 ppm b 8-hour 

0.12 ppm 1-hour 
Carbon Monoxide 9 ppm (10 mg/m3) 8-hour 

35 ppm (40 mg/m3) 1-hour 
Nitrogen Dioxide 0.053 ppm (100 µg/m3) Annual (Arithmetic Mean) 

Sulfur Dioxide 0.03 ppm Annual (Arithmetic Mean) 
0.14 ppm 24-hour 

Lead 0.15 µg/m3  Rolling 3-Month Average 

1.5 µg/m3 Quarterly Average 

Particulate Matter 
(PM10) 

150 µg/m3 24-hour  

Particulate Matter 
(PM2.5) 

15.0 µg/m3 Annual (Arithmetic Mean) 
35 µg/m3 24-hour  

a 2008 ozone standard 
b 1997 ozone standard 

 
 
 

Forty years have passed since the enactment of the 1970 Clean Air Act (Pub L No. 91–604), yet 

concerns over air quality are still prevalent in the United States.  Despite the continuous 

improvement in overall air quality, as of 2007, 158.5 million people lived in counties that 

exceeded one or more of the national ambient air quality standards for the six criteria air 

pollutants (USEPA, 2008). 
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Sources and General Health Effects 

Exposure to criteria air pollutants has been associated with significant effects on human health.  

Reported short-term effects of exposure to air pollutants include shortness of breath, nausea, 

headaches, and dizziness.  Long-term effects include outcomes such as asthma, chronic 

bronchitis, kidney failure, central nervous system disorders, birth defects, miscarriage, and cancer 

(Brook et al., 2004; Florida-James et al., 2004; Simkhovich et al., 2008; Follinsbee, 1993; Carlisle 

and Sharp, 2001).  Health effects from exposure to criteria air pollutants are dependent on the 

specific pollutant, its concentration, length of exposure, other concurrent exposures, and 

individual susceptibility (Kampa and Castanas, 2008). 

 

A brief overview describing the sources and health effects associated with each of the individual 

criteria air pollutants is provided below.  A more detailed review that focuses on criteria air 

pollutants and their impacts on physical fitness is provided in Section 2.6. 

 

Ozone (O3)  

Ozone (O3) is described as a highly reactive, colorless-to-bluish gas that has a 

characteristic odor associated with electrical discharges (Brook et al., 2004).  Low level 

exposures to ozone are ubiquitous.  Ground level ozone is one of the primary 

components of photochemical smog, and is a secondary pollutant formed by a chemical 

reaction between volatile organic compounds (VOCs) and oxides of nitrogen (NOxs) in 

the presence of sunlight (Schoenherr, 1992).  As such, the formation of ozone tends to 

be highest on warm, sunny days.   

 

Symptoms associated with elevated exposures to ozone include respiratory irritation, 

coughing, wheezing, shortness of breath, constriction of the chest, nausea and 

headaches (Carlisle and Sharp, 2001).  Due to its oxidizing properties, inhalation 

exposure to ozone causes an intense irritation or burning in the delicate tissues that line 

of the airways of the lung.  Reduced lung function can occur, even when the exposure is 
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to low concentrations.  Ozone causes aggravation of respiratory and cardiovascular 

disease and it has been reported that exacerbations of asthma are correlated with ozone 

levels. Ozone also suppresses the immune defenses of the lungs, making individuals 

more susceptible to respiratory infections (USEPA, 2008).  Animal studies have shown 

that long-term exposure to high levels of ozone can result in permanent structural 

changes of the lungs.   

 

Carbon monoxide (CO)  

Carbon Monoxide (CO) is an odorless, colorless gas that is generated during the 

combustion of carbon containing fuels (Brook et al., 2004).  Motor vehicles are the most 

common source of ambient CO emissions; however, emissions may also occur from 

sources such as wild fires and volcanic eruptions. CO is widely recognized as a poison, 

with hundreds of people dying from either accidental or intentional exposure each year 

(Brook et al., 2004). 

 

The toxicity of CO is attributable to its strong affinity for hemoglobin, the oxygen 

transporting component of red blood cells.  CO binds to hemoglobin with an affinity that is 

250 times higher than the binding of oxygen with hemoglobin (Brook et al., 2004).  This 

CO/hemoglobin binding complex is referred to as carboxyhemoglobin.  Formation of 

carboxyhemoglobin reduces the amount of hemoglobin available to carry oxygen and 

also impairs the release of oxygen at the tissue level (Brook et al., 2004). 

 

Nitrogen dioxide (NOx)  

Like carbon monoxide, nitrogen oxides are produced during the combustion of fossil 

fuels.  This group, collectively referred to as “NOx”, includes nitric oxide (NO), nitrogen 

dioxide (NO2), nitrogen trioxide (NO3), nitrogen tetroxide (N2O4), and dinitrogen pentoxide 

(N2O3) (Brook et al., 2004).   
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NO2 is a regulated air pollutant that reacts with water vapor to form fine acidic droplets 

and also reacts with volatile organic compounds to generate ground level ozone (Brook 

et al., 2004; USEPA, 2008).   Inhalation of NOx may lead to aggravation of respiratory 

disease and an increased susceptibility to respiratory infections (USEPA, 2008; 

Follinsbee, 1993).   

 

Sulfur dioxide (SO2)  

Sulfur dioxide (SO2) is a highly irritating, colorless gas that is recognized for its pungent 

odor and taste (Brook et al., 2004).  Ambient SO2 levels are primarily derived by human 

activities, such as the combustion of sulfur-containing fuels in power plants (Brook et al., 

2004). SO2 forms sulfurous acid when it comes into contact with water and has a strong 

irritant effect on the eyes, mucous membranes, and skin surfaces. 

 

Lead (Pb) 

Sources of lead in ambient air include smelters and other metal industries, waste 

incinerators, combustion of leaded gasoline in piston engine aircraft, and battery 

manufacturing (USEPA, 2008).   

 

Children are much more susceptible to lead toxicity due to their stage of cell 

development, making their nervous system more vulnerable to inhibition and damage 

(Patrick, 2006).  Children who are exposed to relatively low levels of lead can experience 

delays in physical and mental development, as well as deficits in attention span, hearing 

and learning abilities (Patrick, 2006).   

 

Particulate Matter (PM10 and PM2.5) 

Particulate matter (PM) is a complex mixture of suspended particles, varying in both size 

and chemical composition (Brook et al., 2004).   Particulates can be emitted or formed 

from many sources including chemical reactions (e.g., NOx, SO2), fuel combustion, 
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industrial processes, agriculture, and unpaved roads (USEPA, 2008).  Generally, these 

particles consist of inorganic materials, elemental components, biological components, 

and adsorbed volatile and semi-volatile organic compounds (Simkhovich et al., 2008).  

Particle sizes, or aerodynamic diameters, of respirable particles range from 2.5-10 um 

(PM10) for coarse particles, <2.5 um (PM2.5) for fine particles, and <0.1 um for ultrafine 

particles (UFPs) (Simkhovich et al., 2008).  These sizes correspond to their ability to 

penetrate into the respiratory tract.  PM10 particles are largely deposited in the 

tracheobronchial tree, whereas PM2.5 particles can reach the small airways and alveoli 

within the lungs (Brook et al., 2004).   Ultrafine particles have high rates of deposition into 

the alveoli, but are unique in that they may be able pass directly into the circulatory 

system, similar to gases (Brook et al., 2004). 

 

Inhalation of particulate matter can result in the aggravation of respiratory and 

cardiovascular disease.  Particulate matter has also been associated with reduced lung 

function, increased respiratory symptoms, and premature death (USEPA, 2008). 

 

As seen, each of the criteria air pollutants has been linked to adverse health effects.  

Complicating the issue, however, is the fact that these chemicals are rarely observed in isolation 

under real-world conditions.  In other words, the ambient environment is comprised of a mixture 

of multiple gaseous and particulate pollutants.  The ratio of these mixtures is variable, both 

spatially and temporally.  According to Follinsbee (1993), these mixtures of pollutants tend to 

produce health effects that are additive in nature.  Individuals living in more heavily populated 

areas are exposed to these pollutants to a greater extent, due to increased industrialization as 

well as transportation and energy demands (Kampa and Castanas, 2008). 

 

Air Quality Index 

In 1999, the USEPA developed a method to combine concentrations for five of the criteria air 

pollutants (O3, PM, CO, SO2, NO2) into one measure of overall ambient air quality (AirNow, 
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2010).  This resulting value is called the Air Quality Index, or AQI.  Air measurements are 

converted into a separate AQI value for each pollutant using standard formulas developed by 

EPA, with the highest of these AQI values being reported as the AQI value for that day.   

 

Values for the AQI run from 0 to 500, with higher values representing higher levels of air pollution 

and therefore higher levels of health concern.   The AQI scale has been divided into six 

categories (AirNow, 2010), each representing a different level of health concern, as follows: 

 

1) AQI:  0 – 50.  Good.   Air quality is considered satisfactory, and air pollution poses 

little or no risk.  

2) AQI: 51 – 100. Moderate.   Although air quality is acceptable, some unusually 

sensitive individuals may have moderate health concerns.   

3) AQI:  101 – 150.  Unhealthy for Sensitive Groups.   At this level, the general public 

is not likely to be affected.  However, individuals with lung disease, older adults and 

children are at greater risk from exposure to ozone, and individuals with heart and 

lung disease, older adults and children are at greater risk from airborne particulate 

matter. 

4) AQI:  151 – 200.  Unhealthy.   At this level, all individuals may begin to experience 

adverse health effects.  Individuals within sensitive subpopulations may experience 

more serious effects. 

5) AQI:  201 – 300.  Very Unhealthy.   An AQI within these values would trigger a health 

alert that everyone may experience more serious health effects. 

6) AQI:  >300.  Hazardous.   These values would trigger emergency conditions health 

warnings.  The entire population is more likely to be affected. 

 

According to the USEPA (AirNow, 2010), an AQI value of 100 generally corresponds to the 

concentration of the national air quality standard for a pollutant that the USEPA has set to protect 

public health.  AQI values less than 100 are typically considered to be satisfactory. As AQI values 
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exceed 100, air quality is first considered to be unhealthy for certain sensitive groups of people, 

then for everyone as AQI values increase.  

 

 

2.2  Ambient Air Pollution in California 

 

When one is asked to consider ambient air quality in California, one of the first images that comes 

to mind is the heavy smog associated with the metropolitan area of Los Angeles.  This 

photochemical smog largely consists of a complex mixture of nitrogen oxides and hydrocarbons 

that react in the presence of sunlight to form ozone (Schoenherr, 1992).  Ground level ozone and 

particulate matter emissions have been particularly problematic for California because of the 

unique characteristics of the state that make it prone to air pollution, including its dense 

population centers, sunny climate, and topography which can result in the formation of inversion 

layers. 

 

Air pollution poses a serious health threat in California.  According to a report released in 2009 by 

the American Lung Association (ALA, 2009), several cities in California, including Los Angeles, 

Bakersfield and Visalla-Porterville, remain some of the most polluted in the U.S., with air quality 

that is likely damaging the health of millions of people.   The state of California reports that over 

90 percent of Californians breathe unhealthy levels of one or more air pollutants during some part 

of the year (State of California, 2009).  It has also been reported that “exposure to particulate 

matter and ozone results in an estimated 8800 premature deaths and 210,000 cases of asthma 

and other lower respiratory symptoms annually in California” (State of California, 2009). 

 

During the years 2006 and 2007, several California counties were designated as non-attainment 

for carbon monoxide, 8-hour ozone, PM10 and PM2.5 (USEPA, 2009b).  No counties were in non-

attainment for lead, nitrogen dioxide or sulfur dioxide. 
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In response to the high levels of pollution, the state of California has set many of its own air 

standards for the criteria air pollutants.  These are summarized in the following table. 

 

 

 
Table 2.2 – California Ambient Air Quality Standard s  

 
 Standards  

Pollutant  Level  Averaging Time  
Ozone 0.07 ppm  8-hour 

0.09 ppm 1-hour 
Carbon Monoxide 9 ppm  8-hour 

20 ppm  1-hour 
Nitrogen Dioxide 0.030 ppm  Annual (Arithmetic Mean) 

0.18 ppm 1-hour 

Sulfur Dioxide 0.25 ppm 24-hour 
0.04 ppm 1-hour 

Lead 1.5 µg/m3  30-Day Average 

Particulate Matter 
(PM10) 

20.0 µg/m3 Annual (Arithmetic Mean) 
50 µg/m3 24-hour  

Particulate Matter 
(PM2.5) 

12.0 µg/m3 Annual (Arithmetic Mean) 
No value 24-hour  

Source:  (California Air Resources Board, 2008) 
 
 

The California Air Resources Board (ARB) has established the size of the designated areas for 

criteria air pollutants within the state of California (California Air Resources Board, 2009).  These 

areas vary depending on the pollutant, the location of contributing emission sources, the 

meteorology, and the topographic features as follows.  

• Air Basin : is the area designated for ozone, nitrogen dioxide, and particulate matter. 

• County : is the area designated for carbon monoxide, sulfur dioxide, and lead. 

The state of California has a total of 58 counties and 15 air basins.  The five most populated air 

basins are; South Coast, San Francisco Bay Area, San Joaquin Valley, San Diego, and 

Sacramento Valley (California Air Resources Board, 2009). 
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Many areas in California have continued to struggle with attainment of air quality standards.  The 

EPA Greenbook (USEPA, 2009b) summarizes the attainment status of California counties from 

1992 through 2008.  In 2006, four California counties (Los Angeles, Orange, Riverside, and San 

Bernadino) were designated as non-attainment areas for Carbon Monoxide.  No counties were 

designated as non-attainment in the year 2007.  In 2006 and 2007, 35 of 58 California counties 

were designated as non-attainment areas for the 8-hour Ozone Standard.   Fifteen counties were 

designated as being in non-attainment for PM10 during 2006 and 2007, and thirteen counties were 

designated as non-attainment areas for PM2.5 during this same timeframe. 

 

 

2.3  Susceptibility of Children to Air Pollutants 

 

Potential health impacts to children are of special concern, due to certain physiologic and 

behavioral characteristics that may make children more susceptible to the effects of pollutants, 

such as criteria air pollutants. 

 

Physiologic 

There are several physiologic differences that contribute to this increased susceptibility.  First, the 

respiratory and neurologic systems of children are not fully developed, causing them to be more 

vulnerable to adverse health effects (Branis et al., 2008; Kim et al., 2004).  Air pollutants have the 

potential to disrupt the signaling pathways that promote maturation of the lungs (Salvi, 2007).  At 

birth, only 24 million alveoli are present in the lungs.  This number increases to 267 million at 4 

years of age, and reaches 600 million by adulthood (Trasande and Thurston, 2004 as cited in 

Salvi, 2007).  Impairment of lung growth during childhood can increase the risk for chronic 

respiratory disease during adulthood (Gilliland et al., 1999).   

 

Likewise, the immune systems of children are immature, providing them with less natural 

defenses against particulate and gaseous pollutants, and making them more susceptible to 
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respiratory infections (Salvi, 2007).  A greater risk of lower-than-normal lung function later in life is 

a concern for children who experience frequent respiratory infections (ALA, 2000). 

 

Children have a higher breathing rate than adults relative to their body weight and lung surface 

area (ALA, 2000; Salvi, 2007). This physiological difference results in a greater dose of pollution 

being delivered to the lungs of a child under similar exposure conditions. For example, when 

adjusted for body weight, the total air volume passing through the lungs of a resting infant is two 

times higher than that of a resting adult (Salvi, 2007).  This can have significant implications on 

the development of adverse outcomes as the majority of biological damage attributable to air 

pollution is associated with the total dose of pollutant inhaled in relation to the body weight and 

surface area of the target organ.  Physiologically, children have narrower airways than adults 

(Salvi, 2007).  Consequently, irritation or inflammation caused by air pollution that would generate 

only a slight response in adults can result in potentially significant obstructions in the airways of 

children (ALA, 2000).   

 

Behavioral 

Children are outdoors a great deal more than adults, especially in the summertime and late 

afternoons when ozone levels are the highest (Salvi, 2007).  Some of this outdoor time is spent 

engaged in active play, which increases breathing rates and overall exposure to ambient air 

pollutants (Kim et al., 2004).  A California study reported that children were found to spend three 

times as much time engaged in sports and vigorous activities as were adults (ALA, 2000).  This 

increased activity results in children subsequently breathing in larger air volumes (Branis et al., 

2008).  The heavier breathing rates that accompany exercise result in more pollution being 

delivered into the deeper portions of the lungs.   It has been reported that there is a five-fold 

increase in the deposition of particles into the lungs during exercise as compared to rest (Salvi, 

2007).  This increased rate of deposition is explained by not only the increased breathing rate 

associated with exercise, but also how the breathing occurs.  When breathing rates become 

heavier, children, like adults, use both their noses and mouths to breathe, rather than just their 
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noses. When the mouth is used during the breathing, the filtering effects of the nose are lost, 

therefore allowing more air pollution to reach the lungs. (ALA, 2000) 

 

Compared with adults, children are less likely to report exposure-related symptoms (Gilliland et 

al., 1999; Reigart et al., 1993).  This indicates that they may not perceive significant drops in lung 

function well or may not experience the same amount of coughing, wheezing or shortness of 

breath (e.g., associated with ozone exposure) as is seen in adults.  This could result in children 

not self-limiting their activities and thereby having greater exposures to air pollution. 

 

 

2.4  Physical Fitness in the United States 

    

Overview 

Public interest in children’s health and fitness skyrocketed during the 1950’s when it was reported 

that American children were less fit than European children (Pivarnik and Pfeiffer, 2002).   This 

finding ultimately led President Eisenhower, in 1956, to establish the President’s Council on 

Youth Fitness with the focus of promoting active lifestyles (Wargo, 2007).   Under President 

Kennedy the subject of physical fitness remained in the spotlight, and this agency was renamed 

the President’s Council on Physical Fitness and Sports (Pivarnik and Pfeiffer, 2002).   

 

Early fitness testing focused on evaluations of general motor performance skills such as muscular 

strength, speed and power (Pivarnik and Pfeiffer, 2002).  As this field has progressed, the focus 

has shifted away from the traditional motor skills evaluation to a more health-related assessment.  

Today’s fitness tests often include measures of aerobic fitness and obesity.  Additionally, many of 

the current tests are criterion referenced, so that individual results can be evaluated in terms of 

overall health, rather than simply compared to the test population as a whole (Pivarnik and 

Pfeiffer, 2002). 
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Trends in Physical Fitness 

Despite the focus on physical fitness in youth, trends in this area are disturbing.  The Centers for 

Disease Control and Prevention have reported that the majority of children in the United States 

do not get sufficient physical activity, with one-third of all children being considered inactive (The 

California Endowment, 2005).  Excess weight in children has been referred to as the “fastest 

growing, most threatening disease in America” (CMA Foundation, 2008) and continues to be a 

leading public health concern.  The Centers for Disease Control and Prevention (CDC) report that 

the percentage of overweight children aged 6-11 years has almost doubled since the early 

1980's, whereas the percentage of overweight adolescents has nearly tripled.  Ogden et al. 

(2006) report that in 2003-2004, a total of 17.1% of children and adolescents in the United States 

were determined to be overweight. 

 

According to The California Endowment (2005), one in three children (~33%) in California is 

considered overweight, and four out of every ten children are estimated to be unfit.  In certain 

California school districts, half of the children have been determined to be overweight (The 

California Endowment, 2005).  This overweight and inactive status is likely to follow these 

children into adulthood. 

 

It has been reported that California is experiencing the fastest increase in adult obesity in the 

nation (CMA Foundation, 2008).  The price tag associated with obesity comes in at a direct and 

indirect cost of $100 billion per year nationally. In California alone, this figure is $28.5 billion (CMA 

Foundation, 2008).  The early establishment of positive exercise habits in childhood can carry into 

adulthood helping to reduce cardiovascular disease, morbidity and mortality from Type II 

diabetes, and other chronic ailments (Eisenmann et al., 2005; Ortega et al., 2005; Velasquex-

Mieyer et al., 2005).  
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Factors That may Influence Physical Fitness in Children 

There are numerous factors that can potentially influence measures of physical fitness in children.   

These factors include diet, socio-economic status (SES), ethnicity, gender, body weight, parents’ 

education level, maturation, chronological age, genetic factors, handicaps/physical limitations, 

and ambient air pollution.  

 

Ogden et al. (2006), in a summary of the prevalence of overweight and obesity in the United 

States from 1999 to 2004, show an increase in the risk of overweight as ages increase in 

children.  After adjusting for age, the authors found that significant differences between 

racial/ethnic groups persisted. The prevalence of overweight status in Mexican-American male 

children was significantly higher than that in non-Hispanic White male children.  In addition, 

Ogden et al. (2006) found that Mexican-American and Black (non-Hispanic) female children were 

significantly more likely to be overweight than White (non-Hispanic) female children.  McMurray et 

al. (2000) reported that ethnicity and SES may be important influences on body weight status.   In 

addition to noting that female adolescents with low SES were more likely to be overweight, they 

noted that being White and having a high SES reduced the overall risk of being overweight.  

Powell et al. (2009) found a significant increase in the body mass index of Black and Hispanic 

students from Georgia as compared to Whites. 

 

In a study evaluating the physical fitness of children in Los Angeles, Lee et al. (2006) found a 

significantly higher prevalence of overweight among boys than girls.  In addition, they found that 

the prevalence of overweight was inversely related to grade level and socio-economic status.   

Powell et al. (2009) found that male students in Georgia had significantly higher percentages of 

students below the healthy fitness level for body mass index than females. 

 

In a review of the current fitness literature, Park and Kim (2008) found evidence of associations 

between physical activity and age, gender, parental education level, SES, and several other test 

variables.  Several studies cited in this report found inverse associations between age and 
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physical activity, thus implying that performance on physical fitness testing may also vary by age.  

Males were reported as being more physically active than females.  High parental education 

levels and high socio-economic levels were found to have positive associations with physical 

activity levels in adolescents.  Drewnowksi et al. (2008) report that poverty was significantly 

associated with overweight status in children residing in California Assembly districts.   

Children of the same age can vary in their level of physical maturity or motor development.  

Physical maturity level may be an important variable in physical fitness performance.  Boys who 

lack physical maturity may appear weaker than their more physically mature counterparts, 

whereas girls who have increased physical maturity may also have higher levels of stored body 

fat.  Children with advanced physical maturity may have distinct advantages when strength and 

power are being evaluated.  Alternately, children with physical handicaps or other limitations may 

perform more poorly on standard fitness testing. 

 

Body composition itself can play a role in physical fitness performance.  Norman et al. (2005) 

investigated the influence of excess body fat on exercise fitness and performance in children.  

The authors found that overall cardiorespiratory fitness was similar; however, functional 

impairment was associated with increased energy demands attributable to the excess body 

weight.  Drinkard et al. (2001) found walk/run distances in obese study participants to be 

substantially less than for non-obese individuals.  Thus, obesity may influence the performance 

on aerobic fitness testing. 

 

Genetic factors may also play a role in physical fitness.  A study by Maes et al. (1997) reports that 

an estimated 50-90% of the variance in body mass index may be attributable to genetic factors.  

In addition, genetic factors/heredity can lead to various physical maturation and body type 

outcomes. 
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Tsimeas et al. (2005) investigated the effect of fatness in rural or urban settings on physical 

fitness in children.  They concluded that place of residence had no clear impact on overall 

physical fitness. 

 

Air pollution, the key focus of this study, has also been linked to adverse health effects that may 

have an impact on overall physical fitness in children.  Further discussion of these health effects 

associated with ambient criteria air pollutants are provided in Section 2.6.   

 

 

2.5  Physical Fitness Testing (PFT) in California 

 

Overview of PFT 

The California statewide physical fitness testing program was first authorized in 1976.  The 

program was reestablished in 1995 under the California Assessment of Academic Achievement 

Act.  This act (Assembly Bill [AB] 265) added Education Code Section 60800, which mandates 

the schools to administer the physical fitness testing.  In February 1996, the State Board of 

Education designated FITNESSGRAM®, a test developed by the Cooper Institute, as the 

required test for administration. 

  

Each spring, all school districts within California are required to administer this state-designated 

Physical Fitness Test (PFT) to all students in fifth, seventh and ninth grades.  This assessment 

occurs each calendar year during a window of time spanning from February 1 through May 31.  

Six different fitness areas are assessed within this program.  These are described in further detail 

below.  The fitness standards established within FITNESSGRAM are based on a criterion-

referenced, health-related approach.  Results from the testing are submitted to the California 

Department of Education (CDE), which provides aggregate results to the school districts and 

maintains a publicly accessible database of test results on its Web site.   
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Testing Criteria 

The FITNESSGRAM® test utilized for the California Physical Fitness Testing program is 

composed of the following six fitness areas:   

1) Aerobic Capacity 

2) Body Composition 

3) Abdominal Strength and Endurance 

4) Trunk Extensor Strength 

5) Upper Body Strength and Endurance 

6) Flexibility 

Most of these have multiple tests by which fitness may be measured.  These tests and their 

associated performance criteria are summarized in Table 3 and discussed in further detail below. 

 
Figure 2.1 – California Measures of Physical Fitnes s  

  
 

Aerobic Capacity:  Aerobic capacity (VO2max) describes the maximum rate at which oxygen can 

be taken up and utilized by the body during exercise. There are numerous terms that have been 

used to describe this particular aspect of physical fitness, including: cardiovascular fitness, 

Source: (California Dept. of Education, 2010) 
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aerobic fitness, aerobic work capacity, cardiorespiratory fitness, cardiorespiratory endurance, and 

physical working capacity (Meredith, 2008). Although these terms have slight differences in 

definition, they are generally considered to be synonymous with aerobic capacity.    

 

There are three field tests specified by the FITNESSGRAM testing program to assess aerobic 

capacity: the PACER (Progressive Aerobic Cardiovascular Endurance Run), the one-mile run, 

and a walk test (for adolescents 13 years of age or older) (Welk and Meredith, 2008). The first 

two tests estimate aerobic capacity based on running performance and participant characteristics 

such as age, gender, body weight and the ratio of weight to height, whereas the third test 

estimates aerobic capacity from heart rate response to a one-mile walk and selected subject 

characteristics (Welk and Meredith, 2008).  Although the PACER test is the recommended test to 

assess aerobic capacity, the California Department of Education does not have a position as to 

which specific testing protocol should be utilized.  More details on these testing protocols can be 

obtained in Meredith (2008) and Welk and Meredith (2008). 

 

Body Composition:  Body Composition, as evaluated in the FITNESSGRAM testing protocol, is a 

measure of the percentage of body fat.  Two evaluative methods, skinfolds and body mass index, 

have been identified.  Skinfold measurements are the preferred field method for evaluating this 

parameter.  The measurement of skinfolds from both the triceps and calf can be effectively used 

to estimate the percentage of body fat in children of all ages (Welk and Meredith, 2008).  

Skinfolds are a highly reliable field method for estimating body fatness with reported standard 

errors of 3 to 4 % body fat (Welk and Meredith, 2008).  The second method, called body mass 

index or BMI, evaluates body fattness based on height and weight measurements.  However, the 

prediction error associated with BMI is greater (5.6%) than that for skinfolds (Welk and Meredith, 

2008).  Therefore, this approach is not considered as effective in identifying children who are only 

moderately overfat (Welk and Meredith, 2008). 
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The criteria for body composition were derived using nationally representative data from the early 

NHANES surveys stratified by age and gender.  Based on this data, the FITNESSGRAM Health 

Fitness Zone standards for body composition are 25% fat for boys and 32% fat for girls (Meredith, 

2008) 

 

Muscular Strength, Endurance and Flexibility:  Muscular strength, endurance and flexibility are 

considered to be important aspects of health-related fitness.  Musculoskeletal fitness has been 

shown to have a positive relationship with various health status indicators, including risk factors, 

disease development and all-cause mortality in adults (Meredith, 2008).  According to Meredith 

(2008), the musculoskeletal system is dependent on three elements in order to be viewed as a 

balanced, health-functioning system:  1) muscles should be able to exert force or torque 

(strength), 2) the muscular system should resist fatigue (endurance), and 3) muscles should 

move freely through a full range of motion (flexibility).  There are four categories of muscular 

strength, endurance and flexibility testing used by FITNESSGRAM.   These are: Abdominal 

Strength and Endurance, Trunk Extensor Strength, Upper Body Strength and Endurance, and 

Flexibility. Although these tests measure important aspects of fitness, no specific measurement 

criterion has been identified.   Further details of each test are provided below.   

 

Abdominal Strength and Endurance:  FITNESSGRAM recommends a cadence-based 

curl-up test for the evaluation of abdominal strength and endurance (Welk and Meredith, 

2008).  The use of a 3-second pace helps to avoid early fatigue, standardizes the 

movement from person to person, and facilitates judging as to whether a full proper 

repetition has been completed (Welk and Meredith, 2008).  

 

Trunk Extensor Strength and Flexibility:  FITNESSGRAM utilizes a trunk lift as a measure 

of both lumbar flexibility and trunk extensor strength (Welk and Meredith, 2008).  

Insufficient trunk extension strength/endurance is predictive of both first time and 

recurrent low back pain (Welk and Meredith, 2008). 
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Upper Body Strength and Endurance:  FITNESSGRAM recommends use of the 90o 

push-up at a cadence of one per every three seconds, in order to measure upper arm 

and shoulder girdle strength as well as muscular endurance. The modified pull-up and 

flexed arm hang are optional items (Welk and Meredith, 2008).   

 

Flexibility:  FITNESSGRAM recommends the Back-Saver Sit and Reach Test for 

assessing lower body flexibility.  The shoulder stretch has been added as an alternative 

evaluation method (Welk and Meredith, 2008).   

 

 

2.6  Criteria Air Pollutants and Relationship with Measures of Physical Fitness 

 

There is no question that criteria air pollutants are associated with adverse impacts on respiratory 

health.  This finding has been documented in hundreds, if not thousands, of scientific papers and 

summaries of these papers are not presented within this report.  This report focuses on those 

studies that are associated with more specific measures of physical fitness or those that are 

specific to children’s health. 

 

Few studies have examined the association of ambient air pollution with athletic performance, 

and fewer have examined the relationship of pollution and fitness among school-aged children.  

To elucidate the potential relationship between air pollution and adverse health outcomes, two 

sources of information are often utilized: 1) laboratory animal studies, and 2) human epidemiology 

investigations.   

 

Laboratory Animal Studies 

Measures of fitness are more often studied in human populations than in animals; therefore, the 

associated body of literature is relatively small.  No animal studies were found linking 

cardiovascular fitness (aerobic capacity), muscular strength or flexibility to criteria air pollutants. 
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Recently, a possible link has been made between ambient air pollution and diet-induced obesity 

in mice.  Sun et al. (2009) reported that exposure to air pollution, over a period of 24 weeks, 

exaggerates insulin resistance and fat inflammation.  Male C57BL/6 mice were fed a diet high in 

fat over a 10-week period to induce obesity and then subsequently exposed to either filtered air or 

air with particulate matter (PM2.5) for six hours a day, five days a week, over a 24-week period. 

The air pollution level inside the chamber containing particulate matter was comparable to levels 

a commuter may be exposed to in urban including many metropolitan areas in the United States.  

Researchers monitored measures of obesity, fat content, vascular responses and diabetic state.  

Increases in visceral and mesenteric adipose mass were observed in mice exposed to air 

containing PM2.5.  The tests showed that in combination with a poor diet, air pollution caused 

increased body fat and interfered with insulin processing. 

 

Human Studies 

There are numerous human studies that have evaluated associations between criteria air 

pollutants and measures of physical fitness.  This section summarizes some of the key studies for 

both children and adults. 

 

Children 

In 1967, Wayne et al. (cited in Folinsbee, 1992) reported an inverse relationship between the 

seasonal improvement in the race times of high school cross-county runners and ambient ozone 

concentrations. 

 

Gauderman et al. (2004) conducted a prospective study in which the lung function of 1,759 

children (~10 years old) from 12 communities in southern California was evaluated over an 8-year 

period.   Linear regression was used to evaluate the relationship between air pollutants (ozone, 

acid vapor, nitrogen dioxide and particulate matter) and growth in FEV1 (forced expiratory volume 

in one second).  The researchers found that deficits in FEV1 were associated with exposure to 
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nitrogen dioxide and PM2.5.   The authors concluded that these results indicate that current levels 

of air pollution have chronic, adverse effects on lung development in children (Gauderman et al, 

2004). 

 

Calderón-Garcidueñas et al. (2006) evaluated the respiratory health of children from Tlaxcala 

versus children from the more heavily polluted region of southwest Mexico City.  According to the 

authors, children from southwest Mexico City are chronically exposed to both ozone and PM2.5 

concentrations exceeding levels established as U.S. National Ambient Air Quality Standards.  

Chest radiographs for 19 children from Tlaxcala and 230 children from southwest Mexico City 

were analyzed, with hyperinflation and interstitial markings found to be significantly more common 

in children from Mexico City (p<0.0002 and 0.00006 respectively). 

 

Chen et al. (1999) evaluated the short-term effect of ambient air pollution on the pulmonary 

function of schoolchildren. A total of 941 primary school students from three communities in 

Taiwan (Sanchun, Taihsi, and Linyuan) were selected for evaluation. Hourly ambient 

concentrations of sulfur dioxide, carbon monoxide, ozone, PM10, and nitrogen dioxide were 

obtained via the Taiwan air quality monitoring network. The authors used multivariate linear 

regression to evaluate pulmonary function effects (measured via spirometry) of each pollutant in 

addition to determinants of indoor air pollution and meteorological conditions. Study findings 

included a significantly negative association of peak ozone concentration on the day before 

spirometry testing with individual forced vital capacity and forced expiratory volume in 1 sec.   

 

Jedrychowski et al. (1999) investigated the effect of low concentrations of ambient air pollution on 

lung function growth in preadolescent children. The study was conducted in 1,001 preadolescent 

children from two areas of Krakow, Poland, that differed in concentrations of ambient air 

pollutants.  The authors found that lung growth in these children was affected even at a relatively 

low air pollution level.   For boys and girls living in the more polluted area of the city, the adjusted 

mean lung function growth rate over the 2-year follow-up period was significantly lower. 
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Rodriguez et al. (2007) evaluated the relationship between concentrations of air pollutants and 

respiratory symptoms in young Australian children.  A total of 263 children, age 5 and under, were 

recruited and followed over a period of 5 years.  These children were selected for their higher 

familial risk of developing asthma or atopy (allergic hypersensitivity).  Respiratory symptoms were 

recorded during the course of the study by each child’s parents.  Meteorological data and 

pollutant concentrations were collected from network monitoring sites.  Logistic regression 

models were utilized to assess relationships between individual air pollutants and respiratory 

symptoms.  The authors observed significant associations between ozone (1 hour and 8 hour) 

concentrations and raised body temperature; Carbon monoxide (8 hour) and wheeze/rattle and 

runny/blocked nose;  Nitrogen dioxide (24 hour) and cough; and PM2.5 and cough.  The air 

pollutant concentrations were below national standards throughout the course of the study. 

 

Frye et al. (2003) evaluated the effects of improved air quality on lung function in East German 

school children.  Consecutive cross-sectional surveys of children aged 11-14 from three 

communities were conducted in 1992–1993, 1995–1996, and 1998–1999. Lung function tests 

were evaluated for a total of 2,493 children. Annual mean concentrations of total suspended 

particulates (TSP) between 1991 and 1998 decreased from 79 to 25 µg/m3, and concentrations of 

sulfur dioxide decreased from 113 to 6 µg/m3. The authors found that the mean forced vital 

capacity (FVC) and forced expiratory volume in 1 sec (FEV1) of the children was increased from 

1992–1993 to 1998–1999.  For a 50 µg/m3 decrease in TSP, the adjusted percent change of the 

geometric mean of FVC was 4.7% (p = 0.043).  This percent change was 4.9% for a decrement 

of 100 µg/m3 SO2 (p = 0.029). FEV1 appeared to improve with decreasing air pollutions, but the 

effects were smaller and not statistically significant.    

 

Lippmann (1989) conducted a series of field studies that evaluated populations of children at 

summer camp, who were exposed to ozone at concentrations below the then National Ambient 

Air Quality standard of 120 ppb for a 1-hour averaging time.  These children were exposed for 
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extended durations to outdoor air while engaged in supervised camp activities.  Significant 

decrements in function were observed as measured by forced expiratory volume in 1-second 

(FEV1), forced vital capacity (FVC), peak expiratory flow rate (PEFR), and forced expiratory flow 

between 75 and 25% of vital capacity (FEF25-75).  Lipmann (1989) also summarizes findings from 

a study of 91 children in 1984, which found significant ozone associated decrements in lung 

function for environmental exposures truncated above both 80 and 60 ppb. 

 

Kinney et al. (1996) reanalyzed data from 6 summer camp studies in order to assess the effects 

of ambient ozone on lung function in children.  All six studies found an inverse relationship 

between ozone and forced expiratory volume, with FEV1 decreasing as ozone concentrations 

increased.  This relationship was significant in five of the six studies.   The combined data set 

yielded a significant (p<0.0001) reduction in FEV1 of -0.50 ml per each one ppb increase in 1-

hour O3 concentration. 

 

Lin et al. (2008) reported a positive dose-response relationship between chronic exposure to 

ambient concentrations of ozone and asthma hospital admissions in children.  Stronger 

associations were observed in younger children, lower SES status, and New York City residents. 

 

Hong et al. (2007) found that exposures to metals in particulate pollutants as well as PM2.5 were 

associated with decreased peak expiratory flow rates (PEFR) in schoolchildren.  Forty-three 

Korean children in 3rd through 6th grade were evaluated during 2004.  Using a 1-day lag model, 

significant decreases in PEFR were observed after adjusting for age, sex, height, weight, asthma 

history, passive smoking exposure, meteorologic variables, and day of the week following 

exposure to PM2.5.  The mean decrease was estimated at -0.54L/min per 1 ug/m3 PM2.5. 

 

Adults 

Galizia and Kinney (1999) evaluated the respiratory health of 520 Yale college students, aged 17-

21, in regards to their long-term ozone exposure histories.  A high ozone exposure category was 
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assigned to 65 of the participants based on their history of residing for a minimum of four years in 

a United States county with a 10-year average summer-season daily 1-hour maximum 

concentration of ozone > 80 ppb.   After controlling for confounding variables (race, gender, body 

size, SES, and indoor environmental factors), the high exposure group was observed to have 

significantly diminished lung function (FEV1 and FEF25-75) and elevated chronic respiratory 

symptoms. 

 

A study of lung function in young males after inhalation of ultrafine and fine particulate matter 

during exercise was conducted by Rundell et al. (2008).  Twelve physically fit, non-asthmatic, 

nonsmoking males (average age = 20.5), performed two random-order exercise activities while 

breathing either low ambient PM1 or high ambient PM1.  Exercise trials required running for 30 

minutes at 85-90% of maximal heart rate.  The authors determined that the men experienced 

post-exercise changes in lung function that were significantly related to the PM1 concentration.  

Although no clinically significant decreases in lung function were noted, for every increase of 

20,000 particles per cubic centimeter, statistically significant decreases of 11.1 ml in FEV1 and 52 

ml in FEF25-75 were observed after 30 minutes of exercise.   

 

Girardot et al. (2006) investigated the pulmonary health effects of ozone and PM2.5 on 

recreational visitors to the Great Smoky Mountains National Park.  The authors conducted an 

observational study of adult (18-82 years of age) day hikers of the Charlies Bunion trail during fall 

2002 and summer 2003. Pre- and post-hike pulmonary function tests (spirometry) were 

administered to volunteer hikers.  Ambient ozone, PM2.5, temperature, and relative humidity levels 

were continuously monitored at the trailhead.   No significant change in forced vital capacity 

(FVC), forced expiratory volume in 1 sec (FEV1), FVC/FEV1, peak expiratory flow, and mean flow 

rate between 25 and 75% of the FVC was found when these data were regressed each 

separately against pollutant (ozone or PM2.5) concentration and adjusted for various factors. 

Measured ozone and PM2.5 concentrations were below the federal standards.  
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Kippelen et al. (2005) followed healthy endurance athletes in the Mediterranean region to 

determine if any functional airway changes occurred during the course of the sports season.  

Respiratory function, before and after exercise, and ventilatory response to exercise were 

analyzed in 13 athletes three times during the year.   The authors noted that during the 

competitive period, a slight but non-clinically significant decrease was found in forced vital 

capacity (23.5%, p = 0.0001) was found.  There was no concomitant reduction in expiratory flow 

rates. Overall, this study does not provide significant evidence of lung function impairment in 

healthy Mediterranean athletes following one year of endurance training. 

 

Foxcroft and Adams (1986) exposed eight exercising male study participants to 1-hour 

concentrations of 0.35 ppm ozone on 4 consecutive days.  Each subject was evaluated for 

VO2max, performance time, pulmonary function, and subjective symptom responses.  Although 

reported symptoms had decreased by the fourth day of exposure, pulmonary function impairment 

persisted with a significant decrease over that observed from exposure to filtered air. 

 

Adir et al. (1999) investigated the effects of exposure to low levels of carbon monoxide on 

exercise performance in young healthy men.  In this two stage study, fifteen, non-smoking, 

healthy men were exposed to either room air, or a mixture of CO and room air on a randomized 

basis.  One month later, each subject was assigned to the alternate exposure group.  Therefore, 

subjects served as their own controls.  The CO exposure was designed to produce a venous 

blood carboxyhemoglobin (COHb) concentration of 4-6%, thought to be representative of levels 

observed in individuals living in industrial and inner city areas.  Immediately following exposure, 

subjects performed an exercise treadmill test at maximal capacity until exhaustion was reached.  

In 13 of the 15 subjects exposed to CO and room air, their effort was maintained for a shorter 

duration than after exposure to room air alone.  In addition, all subjects demonstrated a lower 

degree of overall maximal effort, as measured by metabolic equivalent units, after carbon 

monoxide exposure.   
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Marr and Ely (2009) investigated the effect of air pollution on marathon running performances.  

The investigators evaluated marathon race results, weather data, and concentrations of criteria 

air pollutants for seven marathons over the course of 8 to 28 years.  The top three male and 

female finishing times for each marathon and year were compared to the corresponding 

environmental information.  The air pollutants concentrations over the study timeframe ranged 

from 0-5.9 ppm for carbon monoxide, 0-0.7 ppm for ozone, 4.5-41 ug/m3 for PM10, and 2.8-42 

ug/m3 for PM2.5.   Although it was determined that the concentrations of air pollutants present 

during each marathon were typically below relevant health based standard, PM10 was found to be 

significantly correlated with the performance of female marathon runners.  Marr and Ely (2009) 

found that for each 10 ug/m3 increase in PM10, there was an associated decrease in finishing time 

of 1.4%. 

 

Rundell (2004) investigated the effects on pulmonary function in 14 female ice hockey players 

exposed to ultrafine and fine particulate matter (PM1) released from fossil fueled ice resurfacing 

machines.   Controls consisted of nine female Nordic skiers.  Athletes were followed over a period 

of four years and evaluations of lung function, asthma symptoms and PM1 exposure were made.   

Particle counts from the fossil fueled equipment were 13-fold higher than that observed from the 

electric-powered equipment.   No significant changes in lung function were observed for controls, 

whereas the female hockey players demonstrated decrements in lung function.   Although the 

study population was small, the authors suggest that daily exposure to high PM1 may result in a 

decay of airway function with rates of decline exceeding those documented for asthmatics. 

 

2.7  Chapter Summary 

 

This chapter provided a review of the available literature on criteria air pollutants and their 

association with measures of physical fitness in children.  Air pollution is of special concern in 

California as areas within the state continue to struggle with attainment of air quality standards.  

The health effects associated with criteria air pollutants are varied.  However, many of these 
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effects impact respiratory health and one recent study has reported an association between air 

pollution and body fat in mice.  As shown in this chapter, children are a susceptible sub-

population to the adverse health effects of air pollution.  The public availability of results from 

mandatory physical fitness testing programs for school children in California offers the ability to 

combine datasets on air pollutants with those containing physical fitness testing results to 

determine if a relationship exists. 
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CHAPTER III 
 
 

METHODOLOGY 

 

 

The purpose of this study is to determine if a relationship exists between ambient air pollutants 

and physical fitness in children.  Data from physical fitness testing will be evaluated to determine 

whether areas with higher pollutant concentrations have decreased physical performance when 

compared to areas with lower pollutant concentrations. 

 

To help address this research question, the relationship between standardized measures for 

fitness and concentrations of criteria air pollutants will be evaluated, adjusting for those 

demographic variables that may influence overall physical fitness.   This study aims to determine 

the relationship between physical fitness during 2006 and 2007, as measured by the mandatory 

California Physical Fitness Testing Program in fifth-, seventh-, and ninth-grade public school 

children, and those criteria air pollutants that were in non-attainment in California during this 

timeframe. 

 

3.1  Measures 

 

Physical Fitness.  Physical fitness will be measured using results from the California state 

Physical Fitness Testing program, known as FITNESSGRAM®.  FITNESSGRAM® is a criterion-

referenced test that evaluates school children based on six measures of physical fitness.  The 

state of California requires mandatory annual testing of all public school students in the fifth-, 

seventh-, and ninth-grades.    
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Results from the Physical Fitness Testing program within the state of California are currently 

available for a nine year span ranging from 1999 to 2008.  These data are publicly available from 

the California Department of Education (2009a) Web site.  For each fitness parameters assessed, 

the percentage of children in each grade that are determined to be in the “Health Fitness Zone” 

(acceptable), or “Not in Health Fitness Zone” (unacceptable) are provided.  These data are 

accessible at multiple levels, including by school, district and county.   

 

For this analysis, a Fitness Achievement variable was constructed as the percentage of students 

within each school, separated by grade, that are determined to pass a specific criteria measure 

(Health Fitness Zone).  Based on the literature review, the two fitness endpoints that were 

evaluated in this study are aerobic capacity (AerCap) and body composition (BodFat). These 

variables were used in the statistical models as continuous dependent variables.  

 

Data were restricted to the years 2006 and 2007, as the data collection mechanisms were similar 

across both of these years.  The use of two years of data, rather than one, allowed for evaluation 

of more grade/school combinations and, therefore, the development of a more robust dataset.  

Additionally, this two year window avoided the problem of “double-counting” the same participants 

in the analysis, as would occur if a time period greater than two years was utilized.  For example, 

children in a 5th grade class during 2006, would be reassessed as the 7th grade class in 2008. 

 

Because the California Department of Education does not report aggregate fitness results when a 

class size is equal to or less than 10 students, the data were restricted to those grades with 10 or 

more students at each school. 

 

Research files were downloaded and organized using Microsoft Access prior to upload of specific 

datasets into the statistical software.   
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Sociodemographic Measures. Aggregate data on gender (male/female) and ethnicity for the study 

groups were available from the California Department of Education (CDE, 2009a) along with 

results from the physical fitness testing.   For one variable, the number of males in each 

grade/school combination was converted to the total percentage of males for a grade/school.  In a 

second, a dataset was developed that split the fitness performance results into a dichotomous 

split of male and female records.  This latter variable was used for grouped statistical analyses 

(e.g., t-test, ANOVA), whereas the variable consisting of the percentage of males per school was 

used for regression analyses.   

 

Reported ethnicities consisted of African American, American Indian/Alaskan Native, 

Filipino/Filipino American, Hispanic/Latino, White, Asian, and Pacific Islanders.  In addition to the 

separate ethnicity records, a variable was created to reflect the total percentage of minorities 

(percent non-White) for each grade/school combination. 

 

Numeric values for the grade being evaluated (5, 7 or 9) were used as surrogates for the age of 

the children in tests to determine if fitness varied by age.  These data were obtained from the 

California Department of Education along with the results of the physical fitness testing. 

 

Data from a separate database within the California Department of Education (CDE, 2009c) on 

the percent of free or reduced price meals (FRPMs) within a school were used as a surrogate for 

socio-economic status (SES).  These data were available at the individual school level and were 

matched back to the data set containing physical fitness data for each school.  In addition to 

having a measure reflecting the percent SES at a school, these SES data were also categorized 

into quartiles for grouped data analyses.  Quartile 1 represented 0-25% of the children receiving 

free or reduced price meals (FRPMs), Quartile 2 was for >25-50% of the children within a school 

receiving FRPMs, Quartile 3 was for >50-75% of the children within a school receiving FRPMs, 

and Quartile 4 was used when >75-100% of the children with a school were reported to receive 

FRPMs. 
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Body Fat was also included as an independent variable when evaluating Aerobic Capacity as a 

dependent variable using multiple regression analysis.  This variable was obtained as part of the 

fitness testing results available from the California Department of Education (2009a) Web site.  

The variable reflects the percentage of students in a grade/school combination that had passing 

(healthy) body fat scores. 

 

Air Pollution. California has an extensive air quality monitoring program that includes analysis and 

reporting of concentrations of the criteria air pollutants.  Data on the criteria air pollutants in 

California were obtained from multiple sources.   

 

Attainment Status:  The attainment status of each California county during the years 2006 

and 2007 was obtained from the USEPA Greenbook (USEPA, 2009b).  The Greenbook 

reports those counties identified as being in non-attainment for a given criteria air 

pollutant.  All unlisted counties were assumed to be in attainment.  It was determined that 

various California counties were in non-attainment for carbon monoxide, 8-hour ozone, 

PM10 and PM2.5 during 2006 and 2007.  A summary of attainment status by county is 

provided in Appendix B. 

 

Air Quality Index:  The USEPA AirData Web site (USEPA, 2009c) was used to obtain 

data on the Air Quality Index (AQI) for each California county.    A unique variable was 

created by summing the number of days that the AQI exceed a value of 100.  Only 

counties with 365 days of AQI values in a given year were utilized for this variable.  

These data were obtained for 2005 and 2006, the years preceding the fitness testing 

evaluated in this report. 

  

Air Quality Exceedances:  There were two variables created for this measure.  One 

represented the number of days that the average concentration of 8-hour Ozone within a 
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county exceeded the NAAQS (0.075 ppm) over the course of a year.   The data 

comprising this variable were obtained from the Web site for the California Environmental 

Health Investigations Branch (2010).   For PM10, the California Environmental Health 

Investigations Branch (2010) provides the percentage of days that daily PM10 average 

concentrations were over the California Standard of 50 ug/m3.  For consistency, this 

percentage was converted to the number of days that the standard was exceeded by 

multiplying the fractional percentage of days per year by a value of 365. 

 

Person Days:  Data on person-days were obtained from the California Environmental 

Health Investigations Branch (2010).  Person-days are equivalent to the number of days 

the pollutant exceeds a health standard times the number of persons living in an exposed 

region.  Person-days offer a representation of the overall population burden of air 

pollution exposure.   

 

Annual Average Concentration:  Annual average concentrations of 8-hour Ozone (ppm) 

and PM10 (ug/m3) were obtained for each county from the air quality Web site for the 

California Environmental Health Investigations Branch (2010). 

 

 

3.2  Data Analysis 

 

The association of criteria air pollutants with measures of aerobic capacity and body composition 

was evaluated using the statistical software package SPSS 16.0.  As discussed above, various 

publicly accessible databases were accessed and queried for relevant variables.  Once extracted, 

these data were placed into a Microsoft Access database and merged together by either school 

or county so that statistical analyses could be performed.   
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Prior to testing the hypotheses outlined in this prospectus, appropriate data screening steps were 

conducted and summarized, and descriptive statistics were analyzed on each variable. 

 

To assess the association between the fitness status and criteria air pollution, several research 

questions were identified (Section 1.2).  To address these questions, a variety of statistical 

methods were employed.  T-tests were used when two means were compared and ANOVA’s 

were used when more than two means were compared.  A series of t-tests were conducted to 

determine if physical fitness differs between attainment and non-attainment areas.  Both t-tests 

and one-way ANOVA were used to identify explanatory variables.  Multivariate regression models 

were constructed to evaluate the strength of the association between fitness achievement and 

attainment status after controlling for demographic variables such as gender, SES, grade, and 

ethnicity.  For those pollutants that were found to be significant after controlling for demographic 

variables, additional multivariate regression analyses were performed to determine if a dose-

response type relationship exists. 

 

 

3.2.1  Variables 

 

Dependent Variables:   

The dependent variables for this research are the measures of fitness achievement.  The 

literature review supports that criteria air pollutants may be projected to have impacts on two of 

the six fitness measures evaluated within the state of California:  Aerobic Capacity and Body 

Composition.  No evidence was found to link exposure to criteria air pollutants with the remaining 

four measures of fitness:  Abdominal Strength and Endurance, Trunk Extensor Strength, Upper 

Body Strength and Endurance and Flexibility.  Therefore, as shown in Table 3.1, this analysis will 

focus only on Aerobic Capacity and Body Composition.     
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Table 3.1 Dependent Variables 

Variable  Description  Variable 
Type 

Allowable Values  

AerCap 
Reflects the percentage of 

children that met the criteria for 
acceptable aerobic capacity 

 
Ratio 

Values should range 
between 0 and 

100% 

BodFat 

Reflects the percentage of 
children that had body fat 

measurements at an 
appropriate level 

 
Ratio 

Values should range 
between 0 and 

100% 

 

 

Independent Variables: 

 

Three categories of independent variables were identified for this analysis: 1) Attainment Status 

variables, 2) Demographic variables, and 3) Other Environmental variables.  These are discussed 

in further detail below.  

 

Attainment Status: 

The following variables (Table 3.2) were developed for each county within California.  Counties 

were coded as to whether or not they were in attainment with a given NAAQS for either carbon 

monoxide, 8-hour Ozone, PM10 or PM2.5.   

 
Table 3.2 Independent Variables for Attainment Stat us 

Variable  Description  Variable Type  Allowable Values  

COATT Carbon monoxide 
attainment status 

Ordinal 0 = Attainment 
1 = NonAttainment 

O3ATT 
8-hour Ozone 

attainment status 
Ordinal 

0 = Attainment 
1 = NonAttainment 

PM10ATT 
PM10 Attainment 

status 
Ordinal 

0 = Attainment 
1 = NonAttainment 

PM2.5ATT 
PM2.5 Attainment 

Status 
Ordinal 

0 = Attainment 
1 = NonAttainment 

 

These data were then linked to each school based on the county the school was located in for 

further analysis. 
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Demographic Variables: 

Demographic variables (Table 3.3) are those “non-pollution” based variables that were 

anticipated to impact measures of physical fitness.  These variables were available on a school-

specific basis and were linked to the physical fitness data via the California school code.  Data on 

Grade, Gender, and Ethnicity were on a class and school specific basis, whereas data on SES 

was available at the school level and was assumed to pertain to all classes within that school.  

 

 
Table 3.3  Demographic Variables 

Variable  Descript ion   Variable Type  Allowable Values  

Grade 

Grade of students 
being evaluated 

(used as a 
surrogate for age) 

 
Ordinal 

5 = 5th grade 
7 = 7th grade 
9 = 9th grade 

Gender 
Gender of students 

being evaluated Ordinal 
2 = Female 

3 = Male 

PctMale 
Percentage of male 

students by 
grade/school 

Ratio 
Values should range 
between 0 and 100% 

BodFat 

Reflects the 
percentage of 

children that had 
body fat 

measurements at 
an appropriate level 

 
Ratio 

Values should range 
between 0 and 100% 

Ethnicity 
Ethnicity of 

students being 
evaluated 

Ordinal 

Values range from 5-
23 and represent the 

ethnicities specified by 
CDE (2009a) 

PctMinority 
Percentage of 

minority students 
by grade/school 

Ratio 
Values should range 
between 0 and 100% 

SESQuartile 

A categorized 
measure of 

students in a 
school receiving 
free or reduced 

price meals 

Ordinal 

1 – 1st Quartile 
2 – 2nd Quartile 
3 – 3rd Quartile 
4 – 4th Quartile 

PctSES 

The percentage of 
students in a 

school receiving 
free or reduced 

price meals 

 
Ratio 

Values should range 
between 0 and 100% 
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Other Environmental Variables: 

The following variables (Table 3.4) represent those variables used to assess Specific Aim #4.  

These variables include the number of days a criteria air pollutant exceeded its corresponding 

standard during the year preceding the fitness testing, the number of person days in the year 

preceding fitness testing, and the annual average concentrations in the year preceding testing.  In 

addition, a variable for Air Quality Index (AQI) was created based on days that the AQI exceeded 

a value of 100 in the year preceding fitness testing.   

 

Table 3.4  Other Environmental Variables 

Variable  Description  Variable 
Type 

Allowable Values  

PreAQI 

The number of days that the Air 
Quality Index in a county exceeded a 

value of 100 during the year 
preceding fitness testing 

Ratio 
Values should 

range between 0 
and 365 days 

PreO3Exceed 

The number of days that the 
concentration of 8-hour Ozone in a 

county exceeded the NAAQS of 
0.075ppm during the year preceding 

fitness testing 

Ratio 
Values should 

range between 0 
and 365 days 

PreO3PersonDays 

The number of persons living in an 
exposed region times the number of 
days that 8-hour Ozone exceeded 
the National health standard in the 

year preceding fitness testing. 

Ratio 
Values should 

range between 0 
and no upper limit 

PreO3AnnAvg 
The annual average concentration of 
8-hour Ozone (in ppm) for May-Oct 
in the year preceding fitness testing 

Ratio 
Values should be 

0 or higher 

PrePM10Exceed 

The number of days that the 
concentration of PM10 in a county 
exceeded the State standard of 50 
ug/m3  during the year preceding 

fitness testing 

Ratio 
Values should 

range between 0 
and 365 days 

PrePM10PersonDays 

The number of persons living in an 
exposed region times the number of 
days that PM10 exceeded the State 

health standard in the year 
preceding fitness testing. 

Ratio 
Values should 

range between 0 
and no upper limit 

PrePM10AnnAvg 
The annual average concentration of 
PM10 in ug/m3 in the year preceding 

fitness testing 
Ratio 

Values should be 
0 or higher 
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3.2.2  Specific Aim 1 

 

The first set of hypotheses states that schools located in counties that are in non-attainment for 

CO, O3, PM10, or PM2.5 will have lower overall passing rates for both aerobic capacity and body 

composition testing.  In order to assess this hypothesis, a series of eight t-tests will be performed 

as shown in Table 3.5.  Alpha will be set at 0.05. 

 

Table 3.5  Statistical Tests to Evaluate Specific A im 1 

Test #  Dependent 
Variable (DV) 

Independent 
Variable (IV) 

Purpose  

1 
Aerobic Capacity 

(AerCap) 

COATT 

To determine if 
the DV differs by 
attainment status 

of the IV 

2 O3ATT 
3 PM10ATT 
4 PM2.5ATT 
5 

Body 
Composition 

(BodFat) 

COATT 
6 O3ATT 
7 PM10ATT 
8 PM2.5ATT 

 
 
 
3.2.3  Specific Aim 2 

 

The second set of hypotheses states that overall passing rates of aerobic capacity or body 

composition testing will differ by demographic variables (grade, gender, ethnicity, SES).  This will 

be assessed through a combination of t-tests and one-way ANOVA analyses as shown in Table 

3.6.  Alpha will be set at 0.05. 

 

Table 3.6  Statistical Tests to Evaluate Specific A im 2 

Test #  Test Type  Dependent 
Variable (DV) 

Independent 
Variable (IV) 

Purpose  

1 T-test 
Aerobic Capacity 

(AerCap) 

Gender 

To determine if 
the DV differs by 

demographic 
variable  

2 1-way ANOVA Grade 
3 1-way ANOVA SESQuartile 
4 1-way ANOVA Ethnicity 
5 T-test 

Body 
Composition 

(BodFat) 

COATT 
6 1-way ANOVA O3ATT 
7 1-way ANOVA PM10ATT 
8 1-way ANOVA PM2.5ATT 
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3.2.4  Specific Aim 3 

 

The association of fitness achievement with criteria air pollutants requires more than just 

observing corresponding fluctuations between the two variables; it requires consideration and 

control of related factors.  As such, the third set of hypotheses states that schools located in 

counties that are in non-attainment for CO, O3, PM10, or PM2.5 will have lower overall passing 

rates for aerobic capacity testing after adjusting for key demographic variables.   Related factors 

that were controlled for in this analysis include measures of Gender, Ethnicity, Socio-economic 

Status, and Age.  The relationship between the dependent variable and the independent 

variables will be assessed using multiple regression, as shown in Table 3.7.  Each regression 

model was controlled for a series of control variables which may influence the fitness outcome.   

 

The purpose of these analyses is to describe the extent, direction and strength of the relationship 

between the air pollutant and the fitness measure being evaluated after controlling for 

demographic variables.  Therefore, for each combination of the dependent variables (AerCap and 

BodFat) and criteria air pollutant (CO, O3, PM10, and PM2.5), three different regression models 

were developed.  The first model looked at the association between the dependent variable and a 

particular criteria air pollutant.  The second model looked at the association between the 

dependent variable and the various demographic variables.  The third model assessed the 

association between the dependent variable and a specific criteria air pollutant after adjusting for 

the demographic variables. 

 

A correlation matrix was generated to examine the relationship between the independent and 

dependent variables and between the control variables.  The Pearson Correlation value was 

examined to assess possible multicollinearity between the independent variables.  The 

assumption for regression was no multicollinearity, which occurs when the independent variables 

are too highly correlated.  In addition, tests for Tolerance and Variance Inflation Factor as 
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measures of multicollinearity were conducted to ensure appropriate selection of the additional 

factors. 

 

Table 3.7  Statistical Tests to Evaluate Specific A im 3 

Fitness 
Endpoint Pollutant Test 

# 
Dependent 

Variable (DV) 
Independent 
Variable (IV) Purpose 

Aerobic 
Capacity 

 

Carbon 
Monoxide 

 

1 AerCap COATT To describe 
the extent, 

direction and 
strength of the 

relationship 
between 
aerobic 

capacity and 
the air 

pollutant being 
evaluated 

after 
controlling for 
demographic 

variables 
 

2 AerCap Demographic* 

3 AerCap Demographic + 
COATT 

8-hour Ozone 
 

4 AerCap O3ATT 
5 AerCap Demographic 

6 AerCap 
Demographic + 

O3ATT 

PM10 

7 AerCap PM10ATT 
8 AerCap Demographic 

9 AerCap 
Demographic + 

PM10ATT 

PM2.5 

10 AerCap PM2.5ATT 
11 AerCap Demographic 

12 AerCap 
Demographic + 

PM2.5ATT 
      

Body 
Composition 

 

Carbon 
Monoxide 

 

13 BodFat COATT 
To describe 
the extent, 

direction and 
strength of the 

relationship 
between body 
composition 
and the air 

pollutant being 
evaluated 

after 
controlling for 
demographic 

variables 
 

14 BodFat Demographic** 

15 BodFat 
Demographic + 

COATT 

8-hour Ozone 
 

16 BodFat O3ATT 
17 BodFat Demographic 

18 BodFat Demographic + 
O3ATT 

PM10 

19 BodFat PM10ATT 
20 BodFat Demographic 

21 BodFat 
Demographic + 

PM10ATT 

PM2.5 

22 BodFat PM2.5ATT 
23 BodFat Demographic 

24 BodFat 
Demographic + 

PM2.5ATT 
 
*  Demographic Variables for Aerobic Capacity = Grade, BodFat, PctMale, PctSES,  and 

PctMinority 
* * Demographic Variables for Body Fat = Grade, PctMale, PctSES, and PctMinority 

 
 

The F-test was utilized to determine if at least one of the regression coefficients is significant 

(p<0.05).  A t-test is conducted for each regression coefficient to determine if it is significant.  The 
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regression coefficients were determined and the correlation coefficient and amount of variance 

explained by the model were calculated. 

 

3.2.5  Specific Aim 4 

 

The fourth set of hypotheses relates to those criteria pollutants for which an association with 

aerobic capacity exists after adjustment for demographic factors.  The goal is to determine if there 

is a dose response type relationship within those counties designated as non-attainment for a 

given pollutant.  These variables were developed, because a county with a limited number of 

exceedances above its relevant standard leading to nonattainment status may have different 

health impacts than a county that has multiple exceedances of the air standard.   In addition, 

counties with lower numbers of person days, or lower annual average concentrations may also 

have differing health impacts. 

 

This Specific Aim was evaluated using multiple regression techniques similar to those for Specific 

Aim 3; however, the environmental variables were modified from attainment status to a measure 

of how many days per year within non-attainment areas the pollutant exceeds an allowable level.  

In addition, the annual mean concentration of the pollutant within the non-attainment counties 

was evaluated.  The hypothesis states that as the number of air quality exceedances or average 

concentration for a given pollutant increases, the overall passing rate of schools for aerobic 

capacity testing will decrease. 

 

The specific tests run for this analysis were dependent on the findings in the previous analysis, as 

only those criteria pollutants that were significant after adjusting for demographic factors were 

assessed.  The focus was limited to aerobic capacity because the dependent variables were 

focused on the year preceding fitness testing, and body composition would not be expected to 

respond in as acute a timeframe as aerobic capacity.  As seen in Section 4, only carbon 

monoxide, 8-hour ozone, and PM10 were significant after adjusting for demographic factors.   
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However, carbon monoxide had insufficient data available for further testing.  Only four counties 

in California were designated as non-attainment status in 2006.  No counties were classified as 

non-attainment in 2006.  According to the California Air Resources Board (2009), the Salton Air 

Basin only had one day exceeding the national standard for carbon monoxide during 2006.  Thus, 

data were not sufficient to develop variables and perform further regression analyses.  Therefore, 

the following multiple regression analyses were conducted for 8-hour ozone and PM10, in order to 

determine if there was a dose-response type response for these pollutants when looking at only 

those counties designated as non-attainment. 

 

Table 3.8  Statistical Tests to Evaluate Specific A im 4 

Environmental 
Endpoint Pollutant Test # Dependent 

Variable (DV)  
Independent 
Variable (IV) 

# of 
Exceedances 

8-hour 
Ozone 

 

1 AerCap PreO3Exceed 
2 AerCap Demographic* 

3 AerCap 
Demographic + 
PreO3Exceed 

PM10 

4 AerCap PrePM10Exceed 
5 AerCap Demographic 

6 AerCap 
Demographic + 

PrePM10Exceed 

# of Person 
Days 

8-hour 
Ozone 

 

7 AerCap PreO3PersDays 
8 AerCap Demographic 

9 AerCap 
Demographic + 
PreO3PersDays 

PM10 
10 AerCap PrePM10PersDays 
11 AerCap Demographic 

12 AerCap 
Demographic + 

PrePM10PersDays 

Annual 
Average 

Concentration 

8-hour 
Ozone 

 

13 AerCap PreO3AnnAvg 
14 AerCap Demographic 

15 AerCap 
Demographic + 
PreO3AnnAvg 

PM10 

16 AerCap PrePM10AnnAvg 
17 AerCap Demographic 

18 AerCap 
Demographic + 

PrePM10AnnAvg 

Air Quality 
Index AQI 

19 AerCap PreAQI 
20 AerCap Demographic 

21 AerCap 
Demographic + 

PreAQI 
*  Demographic Variables = Grade, BodFat, PctMale, and PctSES 
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3.3  Chapter Summary 

 

This chapter provided a detailed description of the methodology to be used in evaluating whether 

or not a relationship exists between ambient air pollutants, specifically carbon monoxide, 8-hour 

ozone, PM10 and PM2.5, and aerobic capacity passing rates and body composition passing rates 

for children tested under the California physical fitness testing program.  This chapter provided 

detailed descriptions of the independent and dependent variables to be used in the analyses.  A 

tiered approach was proposed to assess the association of the four criteria air pollutants with the 

physical fitness outcomes.  The study was divided into four different specific aims for which 

statistical methods were identified.   
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CHAPTER IV 
 
 

FINDINGS 

 

 

The purpose of this study was to determine if a relationship exists between ambient air pollutants, 

specifically carbon monoxide, 8-hour ozone, PM10 and PM2.5, and aerobic capacity and body 

composition passing rates in children tested under the California physical fitness testing program 

during 2006 and 2007.  Therefore a series of statistical analyses were identified and performed.  

Under Specific Aim 1, a series of t-tests were conducted to determine if physical fitness differs 

between attainment and non-attainment areas.  For Specific Aim 2, both t-tests and one-way 

ANOVA’s were used to identify explanatory variables.  Multivariate regression models were 

constructed to evaluate the strength of the association between fitness achievement and 

attainment status (Specific Aim 3) or quantitative environmental metrics (Specific Aim 4) after 

controlling for demographic variables such as gender, SES, grade, and ethnicity. 

 

This study was conducted using California physical fitness testing data from 2006 and 2007 for 

5th, 7th, and 9th graders and resulted in an overall dataset consisting of fitness testing for over 

2.7 million children aggregated into 17,293 grade/school combinations.  This study focused on 

carbon monoxide, 8-hour ozone, PM10 and PM2.5, as these were non-attainment pollutants in 

various California counties during the study timeframe.  A summary of attainment status by 

criteria air pollutant for each county is provided in Appendix B of this report.  In 2006, four 

California counties were designated as non-attainment for carbon monoxide.  By 2007, no 

counties remained designated with this status.  Despite the relatively small number of counties 

designated as non-attainment for carbon monoxide during the study timeframe, these counties 

contained a large number of public schools.  A total of 3,301 (19%) grade/school records were   
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located in non-attainment areas for this study, versus 13,992 (81%) grade/school records in areas 

classified as attainment.  For 8-hour ozone, thirty-five of the 58 California counties were 

designated as non-attainment areas during 2006 and 2007.  Although only 60.3% of the 58 

counties in California were designated as non-attainment areas, due to the distribution of schools 

within the non-attainment areas, this resulted in 90.8% (n=15,704) of the data records being 

classified in this study as non-attainment and 9.2% (n=1,589) being classified as attainment.  

Because this exceeded an acceptable 90/10 split, the data were split into attainment areas 

(n=1,589) versus severe non-attainment areas (n=2,904) as designated in the USEPA 

Greenbook (USEPA, 2009b).  This reduced data set was utilized for the grouped statistical 

analyses (i.e., t-test), and the full data set was utilized for the ungrouped analyses (i.e., multiple 

regression).  During both 2006 and 2007, fifteen of the 58 counties and twelve of the 58 counties 

in California were designated as non-attainment areas for PM10 and PM2.5, respectively.  These 

non-attainment areas represented 57.4% of the physical fitness records for PM10 and 53.2% of 

the records for PM2.5 in this study. 

 

Of the 17,293 data records used for the analysis, 10,527 (60.9%) of the records contained 

aggregate fitness testing results for 5th graders at an individual school, 4,037 (23.3%) were for 7th 

graders, and 2,729 (15.8%) were for 9th graders.  This observed decrease in the number of 

records as grade levels increase is expected, as communities tend to have more elementary 

schools (5th grade) than middle schools (7th grade) or high schools (9th grade). 

 

For the evaluation of aerobic capacity and body composition passing rates by gender, a new 

dataset was created that contained separate fitness results for males and females.  This in 

essence doubled the base dataset for this analysis, resulting in a total of 32,455 records, of which 

49.6% were physical fitness testing results for females within a grade at a school, and 50.4% 

were results for males within a grade at a school.  This dataset was used solely for the purposes 

of assessing if gender was associated with physical fitness outcomes via t-tests under Specific 

Aim 2.  For multiple regression analyses, this gender specific dataset was used to create a 
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variable on the percentage of males in each grade at an individual school.  This new variable 

(PctMale) was then cross linked to the original dataset of 17,293 records for use in multiple 

regression analyses. 

 

As for gender, the evaluation of aerobic capacity and body composition passing rates by ethnicity 

required the development of a separate dataset containing fitness results by ethnicity.  This 

dataset consisted of a total of 37,370 records containing physical fitness testing results for 

various ethnicities within a grade at a school.  The total count of records by ethnicity is provided in 

Table 4.16.  This dataset was used solely for the purposes of assessing if ethnicity was 

associated with physical fitness outcomes via ANOVA under Specific Aim 2.  For multiple 

regression analyses, this ethnicity specific dataset was used to create a variable on the 

percentage of minorities (non-White) in each grade at an individual school.  This new variable 

(PctMinority) was then cross linked to the original dataset of 17,293 records for use in multiple 

regression analyses. 

 

The analyses in this report focused on four criteria air pollutants, carbon monoxide, 8-hour ozone, 

PM10 and PM2.5, because areas of California were determined to be in non-attainment for these 

four pollutants during the 2006 and 2007 study timeframe.  In addition, the study focused on only 

two of the six measures of physical fitness assessed in the California physical fitness testing 

program.  These fitness endpoints were aerobic capacity and body composition passing rates, 

and were identified based on a review of the scientific literature in Chapter 2 of this report that 

suggested a possible association between exposure to criteria air pollutants and decrements in 

these fitness endpoints. 

 

The following sections summarize the results of the statistical analyses that were performed in 

accord with the methodology specified in Chapter 3 of this document. 
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4.1  Specific Aim 1   

 

To examine the association between attainment status for CO, O3, PM10, and PM2.5 and 

measures of aerobic capacity or body composition in children. 

 

4.1.1 Aerobic Capacity 

4.1.1.1  Carbon Monoxide 

Prior to the analysis, the independent variable Carbon Monoxide Attainment Status (COATT) and 

the dependent variable Aerobic Capacity (AerCap) were screened for accuracy and the 

assumptions of a t-test.  First, the data were screened for missing values.  Both Carbon Monoxide 

Attainment Status and Aerobic Capacity were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Carbon Monoxide Attainment Status were within range, so no 

data were out of range.  Carbon Monoxide Attainment Status was within the requirements of the 

below than 90%/10% split.  Therefore, it did not have univariate outliers.  Because the analysis 

involved grouped data, Aerobic Capacity was split by attainment status so that each group could 

be assessed.  Values for each group were within range and the means and standard deviations 

appeared plausible.  Stem and leaf plots and boxplots for both the Attainment and Non-

Attainment subgroups indicated no outliers. No outlier treatment was necessary.   

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for both attainment and non-attainment groups, but distributions were unimodal.   

The Q-Q plots each showed little skew for attainment and non-attainment.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.522 for Attainment 

areas and -0.425 for Non-Attainment areas were both within the benchmark levels of +1.0.  The 



 55

kurtosis of -0.324 for Attainment areas and -0.365 for Non-Attainment areas were within the 

kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was satisfied and no 

further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The non-attainment box portion of the plot was 

slightly taller than the attainment box, indicating more variation.  The more precise Levene’s Test 

resulted in a p-value of 0.449, indicating the variances were equal.  Thus, all assumptions of a t-

test have been satisfied. 

 

The hypothesis predicted that Aerobic Capacity would be higher in Carbon Monoxide Attainment 

areas than in Carbon Monoxide Non-Attainment areas.  Descriptive statistics were generated.  

The mean Aerobic Capacity for Carbon Monoxide Attainment areas was 59.57 and was 

absolutely larger than the mean value for Non-Attainment Areas of 56.76. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 
 
 

Table 4.1 
T-test Comparing Aerobic Capacity by Carbon Monoxid e Attainment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  13992 59.57 22.60 6.436** 0.049 0.002 
Non-Attainment  3301 56.76 22.44    
       
*p <0.05 ** p<0.01       
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As Table 4.1 shows (t(d.f. = 17291)=6.436, p <0.001), schools located within attainment areas 

(M=59.57) were statistically more likely to have a higher percentage of students passing Aerobic 

Capacity fitness testing than were schools in Non-Attainment areas (M=56.76).  Thus, this 

hypothesis was supported.  An analysis of association using eta (η=0.049) indicated a very weak 

positive relationship between Carbon Monoxide attainment status and Aerobic Capacity, 

according to Frankfort-Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-

Guerrero, 2002).  Eta squared was used to determine the effect size (η2 = 0.002).  Carbon 

Monoxide attainment status explained 0.2% of the variation in Aerobic Capacity. 

 

 

4.1.1.2  8-hour Ozone 

Prior to the analysis, the independent variable Ozone Attainment Status (O3ATT) and the 

dependent variable Aerobic Capacity (AerCap) were screened for accuracy and the assumptions 

of a t-test.  First, the data were screened for missing values.  Both Ozone Attainment Status and 

Aerobic Capacity were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Ozone Attainment Status were within range, so no data were 

out of range.  Ozone Attainment Status was slightly outside of the requirements of the below than 

90%/10% split.  Therefore, the data were split to focus on the difference between ozone 

attainment areas and areas that were classified by the USEPA as severe, whole county ozone 

non-attainment areas (USEPA, 2009b).  The resulting data split was 35.4% attainment and 64.6% 

severe non-attainment.  This is within the desired range of below 90/10.  Because the analysis 

involved grouped data, Aerobic Capacity was split by attainment status so that each group could 

be assessed.  Values for each group were within range and the means and standard deviations 

appeared plausible.  Stem and leaf plots and boxplots indicated the presence of several possible 

outliers for Ozone Attainment within Aerobic Capacity.  Despite this fact, the z-scores for Ozone 

Attainment were found to be within the allowable standard of +3.0.  Therefore, the datapoints in 
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question were retained in the dataset with no treatment required.  Stem and leaf plots and 

boxplots for the Severe Non-Attainment subgroup indicated no outliers. No outlier treatment was 

necessary. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for both attainment and severe non-attainment groups, but distributions were 

unimodal.   The Q-Q plots each showed little skew for attainment and non-attainment.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.558 for Attainment 

areas and -0.380 for Severe Non-Attainment areas were both within the benchmark levels of 

+1.0.  The kurtosis of -0.093 for Attainment areas and -0.437 for Severe Non-Attainment areas 

were within the kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was 

satisfied and no further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The severe non-attainment box portion appeared 

similar to the attainment box, indicating equal variation.  The more precise Levene’s Test resulted 

in a p-value of 0.027, indicating the variances were not equal.  Thus, the assumption of 

homogeneity of variance was not satisfied and the alternate t-test for equal variances not 

assumed was utilized. 

 

The hypothesis predicted that Aerobic Capacity would be higher in Ozone Attainment areas than 

in Ozone Severe Non-Attainment areas.  Descriptive statistics were generated.  The mean 

Aerobic Capacity for Ozone Attainment areas was 60.85 and was absolutely larger than the mean 

value for Severe Non-Attainment Areas of 55.92. 
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A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

Table 4.2 
T-test Comparing Aerobic Capacity by 8-Hour Ozone A ttainment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  1589 60.85 21.49 7.259** 0.107 0.011 
Severe Non -
Attainment 2904 55.92 22.23    

       
*p <0.05 ** p<0.01       
       

 
 

As Table 4.2 shows (t(d.f. = 3361)=7.259, p <0.001), schools located within attainment areas 

(M=60.85) were statistically more likely to have a higher percentage of students passing Aerobic 

Capacity fitness testing than were schools in Severe Non-Attainment areas (M=55.92).  Thus, this 

hypothesis was supported.  An analysis of association using eta (η=0.107) indicated a very weak 

positive relationship between Ozone attainment status and Aerobic Capacity, according to 

Frankfort-Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 

2002).  Eta squared was used to determine the effect size (η2 = 0.011).  Ozone attainment status 

explained 1.1% of the variation in Aerobic Capacity. 

 

4.1.1.3  PM10 

Prior to the analysis, the independent variable PM10 Attainment Status (PM10ATT) and the 

dependent variable Aerobic Capacity (AerCap) were screened for accuracy and the assumptions 

of a t-test.  First, the data were screened for missing values.  Both PM10 Attainment Status and 

Aerobic Capacity were determined to have no missing data. 
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Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of PM10 Attainment Status were within range, so no data were out 

of range.  PM10 Attainment Status was within the requirements of the below than 90%/10% split.  

Therefore, it did not have univariate outliers.  Because the analysis involved grouped data, 

Aerobic Capacity was split by attainment status so that each group could be assessed.  Values 

for each group were within range and the means and standard deviations appeared plausible.  

Stem and leaf plots and boxplots for both the Attainment and Non-Attainment subgroups 

indicated no outliers. No outlier treatment was necessary. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for both attainment and non-attainment groups, but distributions were unimodal.   

The Q-Q plots each showed little skew for attainment and non-attainment.   

Descriptive statistics were generated next for each group.  The skewness of -0.635 for Attainment 

areas and -0.416 for Non-Attainment areas were both within the benchmark levels of +1.0.  The 

kurtosis of -0.185 for Attainment areas and -0.390 for Non-Attainment areas were within the 

kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was satisfied and no 

further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The non-attainment box portion of the plot was 

slightly taller than the attainment box, indicating more variation.  The more precise Levene’s Test 

resulted in a p-value of 0.849, indicating the variances were equal.  Thus, all assumptions of a t-

test have been satisfied. 

 

The hypothesis predicted that Aerobic Capacity would be higher in PM10 Attainment areas than in 

PM10 Non-Attainment areas.  Descriptive statistics were generated.  The mean Aerobic Capacity 
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for PM10 Attainment areas was 61.55 and was absolutely larger than the mean value for Non-

Attainment Areas of 57.16. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

Table 4.3 
T-test Comparing Aerobic Capacity by PM 10 Attainment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  7373 61.55 22.61 12.685** 0.096 0.009 
Non-Attainment  9920 57.16 22.40    
       
*p <0.05 ** p<0.01       
       

 

As Table 4.3 shows (t(d.f. = 17285)=12.646, p <0.001), schools located within attainment areas 

(M=61.55) were statistically more likely to have a higher percentage of students passing Aerobic 

Capacity fitness testing than were schools in Non-Attainment areas (M=57.16).  Thus, this 

hypothesis was supported.  An analysis of association using eta (η=0.096) indicated a very weak 

positive relationship between PM10 attainment status and Aerobic Capacity, according to 

Frankfort-Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 

2002).  Eta squared was used to determine the effect size (η2 = 0.009).  PM10 attainment status 

explained 0.9% of the variation in Aerobic Capacity. 

 

 

4.1.1.4  PM2.5 

Prior to the analysis, the independent variable PM2.5 Attainment Status (PM2.5ATT) and the 

dependent variable Aerobic Capacity (AerCap) were screened for accuracy and the assumptions 
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of a t-test.  First, the data were screened for missing values.  Both PM2.5 Attainment Status and 

Aerobic Capacity were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of PM2.5 Attainment Status were within range, so no data were out 

of range.  PM2.5 Attainment Status was within the requirements of the below than 90%/10% split.  

Therefore, it did not have univariate outliers.  Because the analysis involved grouped data, 

Aerobic Capacity was split by attainment status so that each group could be assessed.  Values 

for each group were within range and the means and standard deviations appeared plausible.  

Stem and leaf plots and boxplots for both the Attainment and Non-Attainment subgroups 

indicated no outliers. No outlier treatment was necessary. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for both attainment and non-attainment groups, but distributions were unimodal.   

The Q-Q plots each showed little skew for attainment and non-attainment.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.614 for Attainment 

areas and -0.414 for Non-Attainment areas were both within the benchmark levels of +1.0.  The 

kurtosis of -0.226 for Attainment areas and -0.381 for Non-Attainment areas were within the 

kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was satisfied and no 

further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The non-attainment box portion of the plot was 

slightly taller than the attainment box, indicating more variation.  The more precise Levene’s Test 

resulted in a p-value of 0.805, indicating the variances were equal.  Thus, all assumptions of a t-

test have been satisfied. 
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The hypothesis predicted that Aerobic Capacity would be higher in PM2.5 Attainment areas than in 

PM2.5 Non-Attainment areas.  Descriptive statistics were generated.  The mean Aerobic Capacity 

for PM2.5 Attainment areas was 61.09 and was absolutely larger than the mean value for Non-

Attainment Areas of 57.22. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

As Table 4.4 shows (t(d.f. = 17291)=11.29, p <0.001), schools located within attainment areas 

(M=61.09) were statistically more likely to have a higher percentage of students passing Aerobic 

Capacity fitness testing than were schools in Non-Attainment areas (M=57.22).  Thus, this 

hypothesis was supported.  An analysis of association using eta (η=0.086) indicated a very weak 

positive relationship between PM2.5 attainment status and Aerobic Capacity, according to 

Frankfort-Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 

2002).  Eta squared was used to determine the effect size (η2 = 0.007).  PM2.5 attainment status 

explained 0.7% of the variation in Aerobic Capacity. 

 

 

Table 4.4 
T-test Comparing Aerobic Capacity by PM 2.5 Attainment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  8095 61.09 22.60 11.29** 0.086 0.007 
Non-Attainment  9198 57.22 22.44    
       
*p <0.05 ** p<0.01       
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4.1.2 Body Composition 

 

4.1.2.1  Carbon Monoxide 

Prior to the analysis, the independent variable Carbon Monoxide Attainment Status (COATT) and 

the dependent variable Body Fat (BodFat) were screened for accuracy and the assumptions of a 

t-test.  First, the data were screened for missing values.  Both Carbon Monoxide Attainment 

Status and Body Fat were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Carbon Monoxide Attainment Status were within range, so no 

data were out of range.  Carbon Monoxide Attainment Status was within the requirements of the 

below than 90%/10% split.  Therefore, it did not have univariate outliers.  Because the analysis 

involved grouped data, Body Fat was split by attainment status so that each group could be 

assessed.  Values for each group were within range and the means and standard deviations 

appeared plausible.  The stem and leaf plots and the boxplots for both Attainment and 

NonAttainment within Body Fat indicated multiple outliers at the lower end of the distribution.   In 

addition, several outliers were indicated on the upper end of the distribution for NonAttainment.  

The z-scores for the Attainment and NonAttainment subgroups supported the finding of potential 

outliers within the dataset as several z-scores were outside the allowable +3.0.  The datasets 

were treated by performing two repetitions of Windsorization which resulted in values for Body 

Fat in the Attainment data set which were less than 30.4% being replaced with values of 31.4%.  

Values for Body Fat in the NonAttainment data set which were less than 32.6% were replaced 

with values of 33.6%.   

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distributions for both attainment and non-attainment groups.   The Q-Q plots 

each showed little skew for attainment and non-attainment.   
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Descriptive statistics were generated next for each group.  The skewness of -0.324 for Attainment 

areas and -0.105 for Non-Attainment areas were both within the benchmark levels of +1.0.  The 

kurtosis of 0.378 for Attainment areas and 0.145 for Non-Attainment areas were within the 

kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was satisfied and no 

further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The non-attainment and attainment boxes on the 

plot appeared similar, indicating equal variation.  The more precise Levene’s Test resulted in a p-

value of 0.001, indicating the variances were not equal.  Thus, the assumption of homogeneity of 

variance was not satisfied and the alternate t-test for equal variances not assumed was utilized. 

 

The hypothesis predicted that Body Fat would be higher in Carbon Monoxide Attainment areas 

than in Carbon Monoxide Non-Attainment areas.  Descriptive statistics were generated.  The 

mean Body Fat for Carbon Monoxide Attainment areas was 68.04 and was absolutely larger than 

the mean value for Non-Attainment Areas of 66.40. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

Table 4.5 
T-test Comparing Body Fat by Carbon Monoxide Attain ment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  13992 68.04 12.43 7.154** 0.052 0.003 
Non-Attainment  3301 66.40 11.74    
       
*p <0.05 ** p<0.01       
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As Table 4.5 shows (t(d.f. = 5193)=7.154, p <0.001), schools located within attainment areas 

(M=68.04) were statistically more likely to have a higher percentage of students passing Body Fat 

fitness testing than were schools in Non-Attainment areas (M=66.40).  Thus, this hypothesis was 

supported.  An analysis of association using eta (η=0.052) indicated a very weak positive 

relationship between Carbon Monoxide attainment status and Body Fat, according to Frankfort-

Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta 

squared was used to determine the effect size (η2 = 0.003).  Carbon Monoxide attainment status 

explained 0.3% of the variation in Body Fat. 

 

4.1.2.2  8-hour Ozone 

Prior to the analysis, the independent variable Ozone Attainment Status (O3ATT) and the 

dependent variable Body Fat (BodFat) were screened for accuracy and the assumptions of a t-

test.  First, the data were screened for missing values.  Both Ozone Attainment Status and Body 

Fat were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Ozone Attainment Status were within range, so no data were 

out of range.  Ozone Attainment Status was slightly outside of the requirements of the below than 

90%/10% split.  Therefore, the data were split to focus on the difference between ozone 

attainment areas and areas that were classified by the USEPA as severe, whole county ozone 

non-attainment areas (USEPA, 2009b).  The resulting data split was 35.4% attainment and 64.6% 

severe non-attainment.  This is within the desired range of below 90/10.  Because the analysis 

involved grouped data, Body Fat was split by attainment status so that each group could be 

assessed.  Values for each group were within range and the means and standard deviations 

appeared plausible.   

 

Stem and leaf plots and boxplots indicated the presence of several possible outliers for Ozone 

Attainment within Body Fat.  The z-scores for the Attainment subgroup supported the finding of 
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outliers within the dataset as the z-score is outside the allowable +3.0.  The dataset was 

Winsorized twice to reduce the influence of the outliers by replacing all Body Fat passing rate 

values of less than 30.8% with a value of 31.8%.  The stem and leaf plot and the boxplot 

indicated multiple outliers at the lower and upper ends of the distribution.   The z-scores for 

several points within the Severe NonAttainment subgroup were outside the allowable +3.0.  The 

dataset was Winsorized twice to reduce the influence of the outliers by replacing all Body Fat 

passing rate values of less than 32% with a value of 33% and replacing all values higher than 

99% with a value of 98%. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated 

unimodal, normal distributions for both attainment and severe non-attainment groups.   The Q-Q 

plots each showed little skew for attainment and non-attainment.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.360 for Attainment 

areas and -0.312 for Severe Non-Attainment areas were both within the benchmark levels of 

+1.0.  The kurtosis of 0.368 for Attainment areas and 0.693 for Severe Non-Attainment areas 

were within the kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was 

satisfied and no further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The severe non-attainment box portion appeared 

similar to the attainment box, indicating equal variation.  The more precise Levene’s Test resulted 

in a p-value of <0.001, indicating the variances were not equal.  Thus, the assumption of 

homogeneity of variance was not satisfied and the alternate t-test for equal variances not 

assumed was utilized. 
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The hypothesis predicted that Body Fat would be higher in Ozone Attainment areas than in 

Ozone Severe Non-Attainment areas.  Descriptive statistics were generated.  The mean Body Fat 

for Ozone Attainment areas was 68.40 and was absolutely larger than the mean value for Severe 

Non-Attainment Areas of 65.63. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

As Table 4.6 shows (t(d.f. = 2927)=7.346, p <0.001), schools located within attainment areas 

(M=68.40) were statistically more likely to have a higher percentage of students passing Body Fat 

fitness testing than were schools in Severe Non-Attainment areas (M=65.63).  Thus, this 

hypothesis was supported.  An analysis of association using eta (η=0.113) indicated a very weak 

positive relationship between Ozone attainment status and Body Fat, according to Frankfort-

Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta 

squared was used to determine the effect size (η2 = 0.013).  Ozone attainment status explained 

1.3% of the variation in Body Fat. 

 

 

Table 4.6 
T-test Comparing Body Fat by 8-hour Ozone Attainmen t Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  1589 68.40 12.62 7.346** 0.113 0.013 
Severe Non -
Attainment 2904 65.63 11.09    

       
*p <0.05 ** p<0.01       
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4.1.2.3  PM10 

Prior to the analysis, the independent variable PM10 Attainment Status (PM10ATT) and the 

dependent variable Body Fat (BodFat) were screened for accuracy and the assumptions of a t-

test.  First, the data were screened for missing values.  Both PM10 Attainment Status and Body 

Fat were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of PM10 Attainment Status were within range, so no data were out 

of range.  PM10 Attainment Status was within the requirements of the below than 90%/10% split.  

Therefore, it did not have univariate outliers.  Because the analysis involved grouped data, Body 

Fat was split by attainment status so that each group could be assessed.  Values for each group 

were within range and the means and standard deviations appeared plausible.  The stem and leaf 

plots and the boxplots for both Attainment and NonAttainment within Body Fat indicated multiple 

outliers at the lower end of the distribution.   In addition, several outliers were indicated on the 

upper end of the distribution for NonAttainment.  The z-scores for the Attainment and 

NonAttainment subgroups supported the finding of potential outliers within the dataset as several 

z-scores were outside the allowable +3.0.  The datasets were treated by performing two 

repetitions of Windsorization which resulted in values for Body Fat in the Attainment data set 

which were less than 30.4% being replaced with values of 31.4%.  Values for Body Fat in the 

NonAttainment data set which were less than 31% were replaced with values of 32%.   

  

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distributions for both attainment and non-attainment groups.   The Q-Q plots 

each showed little skew for attainment and non-attainment.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.496 for Attainment 

areas and -0.177 for Non-Attainment areas were both within the benchmark levels of +1.0.  The 
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kurtosis of 0.456 for Attainment areas and 0.382 for Non-Attainment areas were within the 

kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was satisfied and no 

further transformations were required. 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The Attainment box portion of the plot was slightly 

taller than the attainment box, indicating more variation.  The more precise Levene’s Test 

resulted in a p-value of <0.001, indicating the variances were not equal.  Thus, the assumption of 

homogeneity of variance was not satisfied and the alternate t-test for equal variances not 

assumed was utilized. 

 

The hypothesis predicted that Body Fat would be higher in PM10 Attainment areas than in PM10 

Non-Attainment areas.  Descriptive statistics were generated.  The mean Body Fat for PM10 

Attainment areas was 69.79 and was absolutely larger than the mean value for Non-Attainment 

Areas of 66.20. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

 

Table 4.7 
T-test Comparing Body Fat by PM 10 Attainment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  7373 69.79 12.98 18.834** 0.144 0.021 
Non-Attainment  9920 66.20 11.57    
       
*p <0.05 ** p<0.01       
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As Table 4.7 shows (t(d.f. = 14812)=18.834, p <0.001), schools located within attainment areas 

(M=69.79) were statistically more likely to have a higher percentage of students passing Body Fat 

fitness testing than were schools in Non-Attainment areas (M=66.20).  Thus, this hypothesis was 

supported.  An analysis of association using eta (η=0.144) indicated a very weak positive 

relationship between PM10 attainment status and Body Fat, according to Frankfort-Nachmias and 

Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was 

used to determine the effect size (η2 = 0.021).  PM10 attainment status explained 2.1% of the 

variation in Body Fat. 

 

 

4.1.2.4  PM2.5 

Prior to the analysis, the independent variable PM2.5 Attainment Status (PM2.5ATT) and the 

dependent variable Body Fat (BodFat) were screened for accuracy and the assumptions of a t-

test.  First, the data were screened for missing values.  Both PM2.5 Attainment Status and Body 

Fat were determined to have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of PM2.5 Attainment Status were within range, so no data were out 

of range.  PM2.5 Attainment Status was within the requirements of the below than 90%/10% split.  

Therefore, it did not have univariate outliers.  Because the analysis involved grouped data, Body 

Fat was split by attainment status so that each group could be assessed.  Values for each group 

were within range and the means and standard deviations appeared plausible.  The stem and leaf 

plots and the boxplots for both Attainment and NonAttainment within Body Fat indicated multiple 

outliers at the lower end of the distribution.   In addition, several outliers were indicated on the 

upper end of the distribution for NonAttainment.  The z-scores for the Attainment and 

NonAttainment subgroups supported the finding of potential outliers within the dataset as several 

z-scores were outside the allowable +3.0.  The datasets were treated by performing two 

repetitions of Windsorization which resulted in values for Body Fat in the Attainment data set that 
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were less than 30.4% being replaced with values of 31.4%.  Values for Body Fat in the 

NonAttainment data set which were less than 31.7% were replaced with values of 32.7%.   

  

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms for both PM2.5 

Attainment and NonAttainment indicated unimodal datasets with a normal distribution for 

Attainment and a slight skew for NonAttainment.   Additionally, the Q-Q Probability Plots for both 

PM2.5 subsets indicated little skew. 

 

Descriptive statistics were generated next for each group.  The skewness of -0.516 for Attainment 

areas and -0.102 for Non-Attainment areas were both within the benchmark levels of +1.0.  The 

kurtosis of 0.500 for Attainment areas and 0.308 for Non-Attainment areas were within the 

kurtosis benchmark of +2.0.  Thus, the assumption of a normal distribution was satisfied and no 

further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The Attainment box portion of the plot was slightly 

taller than the attainment box, indicating more variation.  The more precise Levene’s Test 

resulted in a p-value of <0.001, indicating the variances were not equal.  Thus, the assumption of 

homogeneity of variance was not satisfied and the alternate t-test for equal variances not 

assumed was utilized.  This test compensates for the violation of the assumption. 

 

The hypothesis predicted that Body Fat would be higher in PM2.5 Attainment areas than in PM2.5 

Non-Attainment areas.  Descriptive statistics were generated.  The mean Body Fat for PM2.5 

Attainment areas was 69.62 and was absolutely larger than the mean value for Non-Attainment 

Areas of 66.07. 
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A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis predicted that schools in attainment areas would have higher overall passing rates, a 

one-tailed test was used.  Alpha was set at 0.05, but it is assessed as 0.10 in SPSS because it 

only reports the values of two-tailed tests. 

 

 

 

Table 4.8 
T-test Comparing Body Fat by PM 2.5 Attainment Status 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Attainment  8095 69.62 12.93 18.934** 0.144 0.021 
Non-Attainment  9198 66.07 11.48    
       
*p <0.05 ** p<0.01       
       

 
 

 

 

As Table 4.8 shows (t(d.f. = 16311)=18.934, p <0.001), schools located within attainment areas 

(M=69.62) were statistically more likely to have a higher percentage of students passing Body Fat 

fitness testing than were schools in Non-Attainment areas (M=66.07).  Thus, this hypothesis was 

supported.  An analysis of association using eta (η=0.144) indicated a very weak positive 

relationship between PM2.5 attainment status and Body Fat, according to Frankfort-Nachmias and 

Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was 

used to determine the effect size (η2 = 0.021).  PM2.5 attainment status explained 2.1% of the 

variation in Body Fat. 
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4.2  Specific Aim 2   

 

To examine the association between various demographic factors and measures of 

aerobic capacity and body composition. 

 

4.2.1  Aerobic Capacity 

4.2.1.1  Gender 

Prior to the analysis, the independent variable Gender and the dependent variable Aerobic 

Capacity (AerCap) were screened for accuracy and the assumptions of a t-test.  First, the data 

were screened for missing values.  Both Gender and Aerobic Capacity were determined to have 

no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Gender were within range, so no data were out of range.  

Gender was within the requirements of the below than 90%/10% split.  Therefore, it did not have 

univariate outliers.  Because the analysis involved grouped data, Aerobic Capacity was split by 

Gender so that each group could be assessed.  Values for each group were within range and the 

means and standard deviations appeared plausible.  Stem and leaf plots and boxplots for both 

the Female and Male subgroups indicated no outliers. No outlier treatment was necessary. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for both Female and Male groups, but distributions were unimodal.   The Q-Q plots 

each showed little skew for Female and Male.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.474 for Females 

and -0.465 for Males were both within the benchmark levels of +1.0.  The kurtosis of -0.585 for 
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Females and -0.161 for Males were within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The Male box portion of the plot was slightly smaller 

than the Female box, indicating less variation.  The more precise Levene’s Test resulted in a p-

value of <0.001, indicating the variances were not equal.  Thus, the assumption of homogeneity 

of variance was not satisfied. 

 

The hypothesis predicted that Aerobic Capacity would differ by Gender.  Descriptive statistics 

were generated (Table 4.9).  The mean Aerobic Capacity for Females was 61.93 and was 

absolutely larger than the mean value for Males of 58.10. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis was non-directional, a two-tailed test was used.  Alpha was set at 0.05. 

 

Table 4.9 
T-test Comparing Aerobic Capacity by Gender 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Female  16083 61.93 24.48 15.032** 0.083 0.007 
Male 16372 58.10 21.22    
       
*p <0.05 ** p<0.01       
       

 
 

As Table 4.9 shows (t(d.f. = 31644)=15.032, p  <0.001), Females (M=61.93) were statistically 

more likely to have a higher percentage of pass rates in Aerobic Capacity fitness testing than 

were Males (M=58.10).  Thus, this hypothesis was supported.  An analysis of association using 

eta (η=0.083) indicated a very weak positive relationship between Gender and Aerobic Capacity, 

according to Frankfort-Nachmias and Leon-Guerrero’s guidelines (Frankfort-Nachmias and Leon-
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Guerrero, 2002).  Eta squared was used to determine the effect size (η2 = 0.007).  Gender 

explained 0.7% of the variation in Aerobic Capacity. 

 

4.2.1.2  Grade 

Prior to the analysis, the independent variable Grade and the dependent variable Aerobic 

Capacity (AerCap) were screened for accuracy and the assumptions of an ANOVA test.  First, the 

data were screened for missing values.  Both Grade and Aerobic Capacity were determined to 

have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Grade were within range, so no data were out of range.  Grade 

was within the requirements of the below than 90%/10% split.  Therefore, it did not have 

univariate outliers.  Because the analysis involved grouped data, Aerobic Capacity was split by 

Grade (5th, 7th and 9th) so that each group could be assessed.  Values for each group were within 

range and the means and standard deviations appeared plausible.  Stem and leaf plots and 

boxplots for the three grade levels indicated no outliers. No outlier treatment was necessary. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for the various grades, but distributions were unimodal.   The Q-Q plots each 

showed little skew for the grades.   

 

Descriptive statistics were assessed next (Table 4.10).  Aerobic Capacity for 5th Grade has a 

skewness of -0.491, which is within the standard of +1.0.  Its kurtosis was -0.355, which is within 

the standard of +2.0.  Aerobic Capacity for 7th Grade has a skewness of -0.579, which is within 

the standard of +1.0.  Its kurtosis was -0.191, which is within the standard of +2.0.  Aerobic 

Capacity for 9th Grade has a skewness of -0.313, which is within the standard of +1.0.  Its kurtosis 

was -0.708, which is within the standard of +2.0.  Consequently, the assumption of univariate 
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normality has been satisfied for fifth, seventh and ninth grade within Aerobic Capacity and no 

further transformations were necessary. 

 
Table 4.10 

Descriptive Statistics of Aerobic Capacity by Grade  
 

Level  N Mean S.D. 
5th Grade 10527 61.70 21.70 
7th Grade 4037 59.77 21.84 
9th Grade 2729 47.67 23.57 
Total  17,293 59.03 22.59 
    
   
    

 
 

The final assumption for a one-way ANOVA is homogeneity of variance, which was assessed 

with boxplots and Levene’s Test for Equality of Variances.  The heights of the boxplots indicated 

some difference in variance.  The more precise Levene’s Test resulted in a p-value of <0.001, 

confirming that the variances were not equal.  Thus, the assumption of homogeneity of variance 

was not satisfied.  Violation of homogeneity of variance was dealt with by using an alpha of 0.01 

rather than 0.05 in subsequent ANOVA testing according to Tabachnick and Fidell (1996). 

 

The hypothesis predicted that Aerobic Capacity would vary by Grade.  A One-Way Analysis of 

Variance was conducted because more than two means were compared.  As Table 4.11 

indicates, at least one of the means was significantly different (F(d.f. 2, 17290)=442.17, p<0.001).  

Thus the hypothesis was supported. 

 

Table 4.11 
One-way ANOVA for Aerobic Capacity by Grade 

 
Source  SS DF MS F Eta Eta-

Squared 
Between  429,521 2 214,761 442.17** 0.221 0.049 
Within  8,397,716 17290 486    
Total  8,827,238 17292     
       
*p <0.05 ** p<0.01      
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As Table 4.12 shows, a post-hoc test using the Tukey-Kramer Method (p<0.001) indicated that 

each Grade was significantly different from one another, with 5th grade having a higher overall 

mean, followed by 7th grade and then 9th grade.   

 

 
Table 4.12 

Tukey-Kramer Multiple Comparison Test for Aerobic C apacity by Grade 
 

Mean Aerobic 
Capacity 

   

  5th  7th  9th  
61.43 5th   ** ** 
59.32 7th    ** 
46.93 9th     
     
*p <0.05 ** p<0.01     
     

 
 

Finally, an analysis of association was conducted to determine the strength of association and the 

effect size.  As Table 4.11 shows, eta (η = 0.221) indicated a weak positive relationship between 

Grade and Aerobic Capacity, according to Frankfort-Nachmias and Leon-Guerrero’s guidelines 

(Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to determine the effect 

size (η2 = 0.049).  Thus, Grade explained 4.9% of the variation in Aerobic Capacity. 

 

4.2.1.3  Socioeconomic Status 

Prior to the analysis, the independent variable SES Quartile (SESQuartile) and the dependent 

variable Aerobic Capacity (AerCap) were screened for accuracy and the assumptions of an 

ANOVA test.  First, the data were screened for missing values.  Aerobic Capacity had no missing 

data, and SES Quartile had 418 missing data points representing 2.4% of the data set.  Because 

the amount of missing data was less than 5%, Listwise deletion was used. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of SES Quartile were within range, so no data were out of range.  

SES Quartile was within the requirements of the below than 90%/10% split.  Therefore, it did not 
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have univariate outliers.  Because the analysis involved grouped data, Aerobic Capacity was split 

by SES Quartile (1st, 2nd, 3rd, and 4th) so that each group could be assessed.  Values for each 

group were within range and the means and standard deviations appeared plausible.  Stem and 

leaf plots and boxplots for the SES Quartiles determined the presence of several outliers in the 

first SES Quartile.  These were confirmed by z-scores outside the allowable + 3.0 for cases with 

Aerobic Capacity values of less than 13.5%.  Therefore, these cases were Winsorized and 

replaced by a value of 14.5%.  No outlier treatment was necessary for the remaining Quartiles. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a slight 

negative skew for the various quartiles, but distributions were unimodal.   The Q-Q plots each 

showed little skew for each quartile.   

 

Descriptive statistics were assessed next (Table 4.13).  For the 1st Quartile SES within Aerobic 

Capacity, the skewness of -1.048 is above the standard of + 1.0, and the kurtosis is an 

acceptable 0.841.  Because our standard for skewness is conservative and the central theorem 

applies based on the size of the dataset, the data were not further transformed. 

 

Table 4.13 
Descriptive Statistics of Aerobic Capacity by SES Q uartile 

 
Level  N Mean S.D. 
1st Quartile  4104 71.42 18.78 
2nd Quartile  3680 60.62 20.51 
3rd Quartile  4274 54.03 21.29 
4th Quartile  4817 53.46 22.51 
Total  16,875 59.53 22.13 
    
   
    

 

Aerobic Capacity for the 2nd Quartile SES has a skewness of -0.591, which is within the standard 

of +1.0.  Its kurtosis was 0.049, which is within the standard of +2.0.  Aerobic Capacity for the 3rd 

Quartile SES has a skewness of -0.344, which is within the standard of +1.0.  Its kurtosis was -
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0.317, which is within the standard of +2.0.  Aerobic Capacity for the 4th Quartile SES has a 

skewness of -0.224, which is within the standard of +1.0.  Its kurtosis was -0.549, which is within 

the standard of +2.0.  Consequently, the assumption of univariate normality has been satisfied for 

all SES Quartiles within Aerobic Capacity and no further transformations are necessary. 

 

 
The final assumption for a one-way ANOVA is homogeneity of variance, which was assessed 

with boxplots and Levene’s Test for Equality of Variances.  The heights of the boxplots indicated 

some difference in variance.  The more precise Levene’s Test resulted in a p-value of <0.001, 

confirming that the variances were not equal.  Thus, the assumption of homogeneity of variance 

was not satisfied.  Violation of homogeneity of variance was dealt with by using an alpha of 0.01 

rather than 0.05 in subsequent ANOVA testing according to Tabachnick and Fidell (1996). 

 

The hypothesis predicted that Aerobic Capacity would vary by SES Quartile.  A One-Way 

Analysis of Variance was conducted because more than two means were compared.  As Table 

4.14 indicates, at least one of the means was significantly different (F(d.f. 3, 16871)=679.98, 

p<0.001).  Thus the hypothesis was supported. 

 

Table 4.14 
One-way ANOVA for Aerobic Capacity by SES Quartile 

 
Source  SS DF MS F Eta Eta-

Squared 
Between  891,188 3 297063 679.98** 0.328 0.108 
Within  7,370,460 16871 437    
Total  8, 261,648 16874     
       
*p <0.05 ** p<0.01       
       
 

As Table 4.15 shows, a post-hoc test using the Tukey-Kramer Method (p<0.001) indicated that 

each SES Quartile was significantly different from one another, with the exception of the 3rd and 

4th Quartile.  The 1st Quartile had a higher overall mean, followed by the 2nd, 3rd, and 4th Quartiles, 

respectively.   
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Table 4.15 
Tukey-Kramer Multiple Comparison Test for Aerobic C apacity by SES Quartile 

 
Mean Aerobic 

Capacity 
    

  1st  2nd  3rd  4th 
71.42 1st Quartile   ** ** ** 
60.62 2nd Quartile    ** ** 
54.03 3rd Quartile      
53.46 4th Quartile      

      
*p <0.05 ** p<0.01      
      

 

 

Finally, an analysis of association was conducted to determine the strength of association and the 

effect size.  As Table 2 shows, eta (η = 0.328) indicated a weak positive relationship between 

Grade and Aerobic Capacity, according to Frankfort-Nachmias and Leon-Guerrero’s guidelines 

(Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to determine the effect 

size (η2 = 0.108).  Thus, Grade explained 10.8% of the variation in Aerobic Capacity. 

 

4.2.1.4  Ethnicity 

Prior to the analysis, the independent variable Ethnicity and the dependent variable Aerobic 

Capacity (AerCap) were screened for accuracy and the assumptions of an ANOVA test.  First, the 

data were screened for missing values.  Both Ethnicity and Aerobic Capacity were determined to 

have no missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Ethnicity were within range, so no data were out of range.  The 

splits range from 0.1% of the dataset (Samoan) to 36.6% of the dataset (Hispanic or Latino).  This 

is outside the desired range of below 90/10 in many cases, so the data were consolidated to 

improve these ratios.  Chinese, Japanese, Korean, Vietnamese, Asian Indian, Laotian, 

Cambodian and Other Asian records were consolidated into an ethnicity category titled Asian.  

Samoan and Other Pacific Islander records were consolidated into a category entitled Pacific 

Islander.  All other categories were unchanged.  Although the percentage of cases in several of 
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the groups (e.g., American Indian and Pacific Islander) are still quite low, overall the ethnicity 

categories are more robust for statistical testing. 

 

Because the analysis involved grouped data, Aerobic Capacity was split by Ethnicity (Asian, 

Hispanic, Black, White (not of Hispanic Origin), Pacific Islander, Filipino and American Indian) so 

that each group could be assessed.  Values for each group were within range and the means and 

standard deviations appeared plausible.  Stem and leaf plots and boxplots indicated several 

extreme outliers for Asian and Filipino ethnicities within the Aerobic Capacity dataset.  They were 

determined to be accurate values that were part of the desired population samples.  

Consequently, their influence was reduced by replacing them with the highest value that was not 

an outlier plus one within each data set, a process called windsorizing. For Asians, those records 

with an Aerobic Capacity of < 5.6% were replaced with a value of 6.6%.  For Filipinos, those 

records with an Aerobic Capacity of < 3.7% were replaced with a value of 4.7%. No univariate 

outliers were identified for the other ethnicities that were evaluated; therefore no actions were 

necessary for these subsets. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms for all ethnicities 

indicated unimodal, normal distributions.  The Q-Q Probability Plot for each ethnicity indicated 

little skew. 

 

Descriptive statistics were assessed next (Table 4.16).  Aerobic Capacity for the Asian subgroup 

has a skewness of -0.752, which is within the standard of +1.0.  Its kurtosis was -0.065, which is 

within the standard of +2.0.  Aerobic Capacity for the Hispanic or Latino subgroup has a 

skewness of -0.382, which is within the standard of +1.0.  Its kurtosis was -0.338, which is within 

the standard of +2.0.  Aerobic Capacity for the African American or Black subgroup has a 

skewness of -0.176, which is within the standard of +1.0.  Its kurtosis was -0.547, which is within 

the standard of +2.0.  Aerobic Capacity for the White (not of Hispanic Origin) subgroup has a 
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skewness of -0.584, which is within the standard of +1.0.  Its kurtosis was -0.229, which is within 

the standard of +2.0.  Aerobic Capacity for the Pacific Islander subgroup has a skewness of -

0.216, which is within the standard of +1.0.  Its kurtosis was -0.386, which is within the standard 

of +2.0.  Aerobic Capacity for the Filipino subgroup has a skewness of -0.516, which is within the 

standard of +1.0.  Its kurtosis was -0.255, which is within the standard of +2.0.  Aerobic Capacity 

for the American Indian subgroup has a skewness of -0.025, which is within the standard of +1.0.  

Its kurtosis was -0.617, which is within the standard of +2.0.  Consequently, the assumption of 

univariate normality has been satisfied for all Ethnicities within Aerobic Capacity and no further 

transformations are necessary. 

 

Table 4.16 
Descriptive Statistics of Aerobic Capacity by Ethni city 

 
Level  N Mean S.D. 
Asian  4697 70.14 21.50 
Hispanic  13683 57.48 21.87 
Black  4858 53.09 22.15 
White  11323 62.78 21.92 
Pacific 
Islander 

97 44.67 19.72 

Filipino  1778 63.58 20.56 
American 
Indian 

220 51.23 21.11 

Not Identified  714 61.68 23.85 
Total  37370 60.41 22.42 
    
   
    

 
 

The final assumption for a one-way ANOVA is homogeneity of variance, which was assessed 

with boxplots and Levene’s Test for Equality of Variances.  The heights of the boxplots indicated 

some difference in variance.  The more precise Levene’s Test resulted in a p-value of <0.001, 

confirming that the variances were not equal.  Thus, the assumption of homogeneity of variance 

was not satisfied.  Violation of homogeneity of variance was dealt with by using an alpha of 0.01 

rather than 0.05 in subsequent ANOVA testing according to Tabachnick and Fidell (1996). 
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The hypothesis predicted that Aerobic Capacity would vary by Ethnicity.  A One-Way Analysis of 

Variance was conducted because more than two means were compared.  As Table 4.17 

indicates, at least one of the means was significantly different (F(d.f. 7, 37362)=283.67, p<0.001).  

Thus the hypothesis was supported. 

 

Table 4.17 
One-way ANOVA for Aerobic Capacity by Ethnicity 

 
Source  SS DF MS F Eta Eta-

Squared 
Between  947509 7 135358 283.67** 0.225 0.050 
Within  1.783E7 37362 477    
Total  1.878E7 37369     
       
*p <0.05 ** p<0.01       
       
 
As Table 4.18 shows, a post-hoc test using the Tukey-Kramer Method (p<0.001) indicated that 

the means of the Ethnicities were largely found to be significantly different, with the exception of 

the comparison between African Americans and American Indians, Whites and Filipinos, and 

Pacific Islanders and American Indians.   

 

Table 4.18 
Tukey-Kramer Multiple Comparison Test for Aerobic C apacity by Ethnicity 

 
Mean Aerobic 

Capacity 
       

  Asian  Hispanic  African 
American  

White  Pacific  
Islander  

Filipino  Amer. 
Indian 

70.14 Asian  ** ** ** ** ** ** 

57.48 Hispanic   ** ** ** ** ** 

53.09 African 
American    ** ** **  

62.78 White     **  ** 

44.67 Pacific 
Islander      **  

63.58 Filipino       ** 

51.23 American 
Indian        

         
*p <0.05 ** p<0.01         
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Finally, an analysis of association was conducted to determine the strength of association and the 

effect size.  As Table 4.17 shows, eta (η = 0.225) indicated a weak positive relationship between 

Ethnicity and Aerobic Capacity, according to Frankfort-Nachmias and Leon-Guerrero’s guidelines 

(Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to determine the effect 

size (η2 = 0.050).  Thus, Ethnicity explained 5.0% of the variation in Aerobic Capacity. 

 
 

4.2.2  Body Fat 

4.2.2.1  Gender 

Prior to the analysis, the independent variable Gender and the dependent variable Body Fat 

(BodFat) were screened for accuracy and the assumptions of a t-test.  First, the data were 

screened for missing values.  Both Gender and Body Fat were determined to have no missing 

data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Gender were within range, so no data were out of range.  

Gender was within the requirements of the below than 90%/10% split.  Therefore, it did not have 

univariate outliers.  Because the analysis involved grouped data, Body Fat was split by Female 

status so that each group could be assessed.  Values for each group were within range and the 

means and standard deviations appeared plausible.   

 

The stem and leaf plots and the boxplots for both Female and Male genders within Body Fat 

indicated multiple outliers at the lower end of the distribution.   In addition, several outliers were 

indicated on the upper end of the distribution for Males.  The z-scores for the Attainment and 

NonAttainment subgroups supported the finding of potential outliers within the lower portions of 

the dataset as several z-scores were outside the allowable +3.0.  The datasets were treated by 

performing two repetitions of Windsorization which resulted in values for Body Fat in the Female 
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data set which were less than 37% being replaced with values of 38%.  Values for Body Fat in the 

Male data set which were less than 19.2% were replaced with values of 20.2%.   

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated 

unimodal, normal distributions for both Female and Male groups.   The Q-Q plots each showed 

little skew for Female and Male.   

 

Descriptive statistics were generated next for each group.  The skewness of -0.437 for Females 

and -0.202 for Males were both within the benchmark levels of +1.0.  The kurtosis of 0.215 for 

Females and 0.174 for Males were within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

The final assumption for a t-test is homogeneity of variance, which was assessed with boxplots 

and Levene’s Test for Equality of Variances.  The Male box portion of the plot was slightly smaller 

than the Female box, indicating less variation.  The more precise Levene’s Test resulted in a p-

value of <0.001, indicating the variances were not equal.  Thus, the assumption of homogeneity 

of variance was not satisfied.  The violation was dealt with by using the alternative test that 

compensates for the violation. 

 

The hypothesis predicted that Body Fat would differ by Gender.  Descriptive statistics were 

generated.  The mean Body Fat for Females was 75.19 and was absolutely larger than the mean 

value for Males of 60.97. 

 

A t-test was used to determine whether the two means were statistically different.  Because the 

hypothesis was non-directional, a two-tailed test was used.  Alpha was set at 0.05. 
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Table 4.19 
T-test Comparing Body Fat by Gender 

 
Level  N Mean S.D. T Eta Eta-

Squared 
Female  16083 75.19 12.54 96.843** 0.473 0.224 
Male 16372 60.97 13.89    
       
*p <0.05 ** p<0.01      
       

 
 
 

A t-test was conducted because two means were compared.  As Table 4.19 shows (t(d.f. = 

32227)=96.843, p  <0.001), Females (M=75.19) were statistically more likely to have a higher 

percentage of pass rates in Body Fat fitness testing than were Males (M=60.97).  Thus, this 

hypothesis was supported.  An analysis of association using eta (η=0.473) indicated a moderate 

positive relationship between Gender and Body Fat, according to Frankfort-Nachmias and Leon-

Guerrero’s guidelines (Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to 

determine the effect size (η2 = 0.224).  Gender explained 22.4% of the variation in Body Fat. 

 

 

4.2.2.2  Grade 

Prior to the analysis, the independent variable Grade and the dependent variable Body Fat 

(BodFat) were screened for accuracy and the assumptions of an ANOVA test.  First, the data 

were screened for missing values.  Both Grade and Body Fat were determined to have no 

missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Grade were within range, so no data were out of range.  Grade 

was within the requirements of the below than 90%/10% split.  Therefore, it did not have 

univariate outliers.  Because the analysis involved grouped data, Body Fat was split by Grade 

(5th, 7th and 9th) so that each group could be assessed.  Values for each group were within range 

and the means and standard deviations appeared plausible.  The z-scores for the 5th Grade 
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subgroup support the finding of potential outliers within the dataset as the z-score is outside the 

allowable +3.0.  The dataset was Winsorized twice to reduce the influence of the outliers by 

replacing all Body Fat passing rate values of less than 31.8% with a value of 32.8%.  The stem 

and leaf plot and the boxplot indicated multiple outliers at the lower and upper end of the 

distribution.   The z-scores for the 7th Grade subgroup support the finding of potential outliers 

within the dataset on the lower end as the z-score is outside the allowable +3.0.  The dataset was 

Winsorized twice to reduce the influence of the outliers by replacing all Body Fat passing rate 

values of less than 30% with a value of 31%. The stem and leaf plot and the boxplot indicated 

multiple outliers at the lower and upper end of the distribution.   The z-scores for the 9th Grade 

subgroup support the finding of potential outliers within the dataset on the lower end as the z-

score is outside the allowable +3.0.  The dataset was Winsorized twice to reduce the influence of 

the outliers by replacing all Body Fat passing rate values of less than 25% with a value of 26%. 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histogram for 5th Grade 

indicated a unimodal, normal distribution.  The histogram for 7th Grade indicated a slightly skewed 

distribution, but it was unimodal.  The histogram for 9th Grade indicated a slightly skewed 

distribution, but it was unimodal.   The Q-Q Probability Plots for each of the Grades indicated little 

skew. 

 

Descriptive statistics (Table 4.20) were assessed next.  Body Fat for 5th Grade has a skewness of 

-0.132, which is within the standard of +1.0.  Its kurtosis was 0.097, which is within the standard 

of +2.0.  Body Fat for 7th Grade has a skewness of -0.360, which is within the standard of +1.0.  

Its kurtosis was 0.446, which is within the standard of +2.0.  Body Fat for 9th Grade has a 

skewness of -0.748, which is within the standard of +1.0.  Its kurtosis was 1.033, which is within 

the standard of +2.0.  Consequently, the assumption of univariate normality has been satisfied for 

fifth, seventh and ninth grade within Body Fat and no further transformations are necessary. 
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Table 4.20 
Descriptive Statistics of Body Fat by Grade 

 
Level  N Mean S.D. 
5th Grade 10527 68.23 12.07 
7th Grade 4037 67.12 12.31 
9th Grade 2729 66.55 13.57 
Total  17,293 67.71 12.39 
    
   
    

 
 
 
The final assumption for a one-way ANOVA is homogeneity of variance, which was assessed 

with boxplots and Levene’s Test for Equality of Variances.  The heights of the boxplots indicated 

some difference in variance.  The more precise Levene’s Test resulted in a p-value of <0.001, 

confirming that the variances were not equal.  Thus, the assumption of homogeneity of variance 

was not satisfied.  Violation of homogeneity of variance was dealt with by using an alpha of 0.01 

rather than 0.05 in subsequent ANOVA testing according to Tabachnick and Fidell (1996). 

 

The hypothesis predicted that Body Fat would vary by Grade.  A One-Way Analysis of Variance 

was conducted because more than two means were compared.  As Table 4.21 indicates, at least 

one of the means was significantly different (F(d.f. 2, 7874)=25.715, p<0.001).  Thus the 

hypothesis was supported. 

 
 
 
 

Table 4.21 
One-way ANOVA for Body Fat 

 
Source  SS DF MS F Eta Eta-

Squared 
Between  7873.7 2 3937 25.715** 0.054 0.003 
Within  2,647,040 17290 153    
Total  2,654,913 17292     
       
*p <0.05 ** p<0.01       
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As Table 4.22 shows, a post-hoc test using the Tukey-Kramer Method indicated that the mean of 

5th Grade was significantly different (p<0.001) than 7th and 9th Grades.  The mean for 5th Grade 

was 1.11 higher than the mean for 7th Grade and 1.67 higher than the mean for 9th Grade.  The 

mean for 7th Grade and 9th Grade was not significantly different (p=0.155) with an overall 

difference of 0.57, with 7th grade being higher.   

 

Table 4.22 
Tukey-Kramer Multiple Comparison Test for Body Fat by Grade 

 
Mean Body Fat    
  5th  7th  9th  
68.23 5th   ** ** 
67.12 7th     
66.55 9th     
     
*p <0.05 ** p<0.01     
     

 

 

Finally, an analysis of association was conducted to determine the strength of association and the 

effect size.  As Table 4.21 shows, eta (η = 0.054) indicated a weak positive relationship between 

Grade and Body Fat, according to Frankfort-Nachmias and Leon-Guerrero’s guidelines 

(Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to determine the effect 

size (η2 = 0.003).  Thus, Grade explained 0.3% of the variation in Body Fat. 

 
 

4.2.2.3  SES Quartile 

 
Prior to the analysis, the independent variable SES Quartile (SESQuartile) and the dependent 

variable Body Fat (BodFat) were screened for accuracy and the assumptions of an ANOVA test.  

First, the data were screened for missing values.  Body Fat had no missing data, and SES 

Quartile had 418 missing data points representing 2.4% of the data set.  Because the amount of 

missing data was less than 5%, Listwise deletion was used. 
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Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of SES Quartile were within range, so no data were out of range.  

SES Quartile was within the requirements of the below than 90%/10% split.  Therefore, it did not 

have univariate outliers.  Because the analysis involved grouped data, Body Fat was split by SES 

Quartile (1st, 2nd, 3rd, and 4th) so that each group could be assessed.  Values for each group were 

within range and the means and standard deviations appeared plausible.  For the 1st SES 

Quartile, the stem and leaf plot and the boxplot indicated multiple outliers at the lower end of the 

distribution.   The z-scores for the 1st Quartile subgroup support the finding of potential outliers 

within the dataset as the z-score is outside the allowable +3.0.  The dataset was Winsorized three 

times to reduce the influence of the outliers by replacing all Body Fat passing rate values of less 

than 48.5% with a value of 49.5%.  For the 2nd SES Quartile, the stem and leaf plot and the 

boxplot indicated multiple outliers at the lower end of the distribution.   The z-scores for the 2nd 

Quartile subgroup support the finding of potential outliers within the dataset as the z-score is 

outside the allowable +3.0.  The dataset was Winsorized three times to reduce the influence of 

the outliers by replacing all Body Fat passing rate values of less than 40.9% with a value of 

41.9% and replacing all Body Fat passing rate values of greater than 98.8% with a value of 

97.8%.   For the 3rd SES Quartile, the stem and leaf plot and the boxplot indicated multiple 

outliers at the lower end of the distribution.   The z-scores for the 3rd Quartile subgroup support 

the finding of potential outliers within the dataset as the z-score is outside the allowable +3.0.  

The dataset was Winsorized three times to reduce the influence of the outliers by replacing all 

Body Fat passing rate values of less than 34.1% with a value of 35.1% and replacing all Body Fat 

passing rate values of greater than 94.6% with a value of 93.6%.  For the 4th SES Quartile, the 

stem and leaf plot and the boxplot indicated multiple outliers at the lower end of the distribution.   

The z-scores for the 4th Quartile subgroup support the finding of potential outliers within the 

dataset as the z-score is outside the allowable +3.0.  The dataset was Winsorized three times to 

reduce the influence of the outliers by replacing all Body Fat passing rate values of less than 

30.8% with a value of 31.8% and replacing all Body Fat passing rate values of greater than 

91.10% with a value of 90.10%. 
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Univariate normality was assessed for Body Fat in the SES Quartile Groups.  The assumption 

was first visually assessed using graphs.  The histograms for each Quartile indicated unimodal, 

normal distributions.  The Q-Q Probability Plot for each quartile indicated little skew. 

 

Descriptive statistics (Table 4.23) were assessed next.  Body Fat for the 1st Quartile SES has a 

skewness of -0.760, which is within the standard of +1.0.  Its kurtosis was 0.879, which is within 

the standard of +2.0.  Body Fat for the 2nd Quartile SES has a skewness of -0.437, which is within 

the standard of +1.0.  Its kurtosis was 0.956, which is within the standard of +2.0.  Body Fat for 

the 3rd Quartile SES has a skewness of -0.314, which is within the standard of +1.0.  Its kurtosis 

was 1.030, which is within the standard of +2.0.  Body Fat for the 4th Quartile SES has a 

skewness of 0.048, which is within the standard of +1.0.  Its kurtosis was 1.037, which is within 

the standard of +2.0.  Consequently, the assumption of univariate normality has been satisfied for 

all SES Quartiles within Body Fat and no further transformations are necessary. 

 
 

Table 4.23 
Descriptive Statistics of Body Fat by SES Quartile 

 
Level  N Mean S.D. 
1st Quartile  4104 77.85 9.61 
2nd Quartile  3680 69.95 9.59 
3rd Quartile  4274 64.36 10.12 
4th Quartile  4817 60.79 10.10 
Total  16,875 67.84 11.84 
    
   
    

 
The final assumption for a one-way ANOVA is homogeneity of variance, which was assessed 

with boxplots and Levene’s Test for Equality of Variances.  The heights of the boxplots indicated 

some difference in variance.  The more precise Levene’s Test resulted in a p-value of 0.058, 

confirming that the variances were equal.  Thus, the assumption of homogeneity of variance was 

satisfied.   
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The hypothesis predicted that Body Fat would vary by SES Quartile.  A One-Way Analysis of 

Variance was conducted because more than two means were compared.  As Table 4.24 

indicates, at least one of the means was significantly different (F(d.f. 3, 16871)=2457, p<0.001).  

Thus, the hypothesis was supported. 

 

Table 4.24 
One-way ANOVA for Body Fat by SES Quartile 

 
Source  SS DF MS F Eta Eta-Squared  
Between  719,053 3 239,684 2457** 0.551 0.304 
Within  1,645,994 16871 98    
Total  2,365,947 16874     
       
*p <0.05 ** p<0.01       
       

 
 

As Table 4.25 shows, a post-hoc test using the Tukey-Kramer Method (p<0.001) indicated that 

each SES Quartile was significantly different from one another.  The 1st Quartile had a higher 

overall mean, followed by the 2nd, 3rd, and 4th Quartiles, respectively.   

 

Table 4.25 
Tukey-Kramer Multiple Comparison Test for Body Fat by SES Quartile 

 
Mean Body Fat      
  1st  2nd  3rd  4th 
77.85 1st Quartile   ** ** ** 
69.95 2nd Quartile    ** ** 
64.36 3rd Quartile     ** 
60.79 4th Quartile      
      
*p <0.05 ** p<0.01      
      

 

 

Finally, an analysis of association was conducted to determine the strength of association and the 

effect size.  As Table 4.24 shows, eta (η = 0.551) indicated a weak positive relationship between 

Grade and Body Fat, according to Frankfort-Nachmias and Leon-Guerrero’s guidelines 

(Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to determine the effect 

size (η2 = 0.304).  Thus, Grade explained 30.4% of the variation in Body Fat. 
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4.2.2.4  Ethnicity 

 

Prior to the analysis, the independent variable Ethnicity and the dependent variable Body Fat 

(BodFat) were screened for accuracy and the assumptions of an ANOVA test.  First, the data 

were screened for missing values.  Both Ethnicity and Body Fat were determined to have no 

missing data. 

 

Next, the data were screened for univariate outliers using descriptive statistics, stem and leaf 

plots, and boxplots.  All values of Ethnicity were within range, so no data were out of range. The 

splits range from 0.1% of the dataset (Samoan) to 36.6% of the dataset (Hispanic or Latino).  This 

is outside the desired range of below 90/10 in many cases, so the data were consolidated to 

improve these ratios.  Chinese, Japanese, Korean, Vietnamese, Asian Indian, Laotian, 

Cambodian and Other Asian records were consolidated into an ethnicity category titled Asian.  

Samoan and Other Pacific Islander records were consolidated into a category entitled Pacific 

Islander.  All other categories were unchanged.  Although the percentage of cases in several of 

the groups (e.g., American Indian and Pacific Islander) are still quite low, overall the ethnicity 

categories are more robust for statistical testing. 

 

Because the analysis involved grouped data, Aerobic Capacity was split by Ethnicity (Asian, 

Hispanic, Black, White (not of Hispanic Origin), Pacific Islander, Filipino and American Indian) so 

that each group could be assessed.  Values for each group were within range and the means and 

standard deviations appeared plausible.  Stem and leaf plots and boxplots indicated several 

extreme outliers for Asian, Hispanic, African American or Black, White (not of Hispanic Origin) 

and Filipino ethnicities within the Body Fat dataset.  They were determined to be accurate values 

that were part of the desired population samples.  Consequently, their influence was reduced by 

replacing them with the highest value that was not an outlier plus one within each data set, a 

process called windsorizing. The z-scores for the Asian subgroup support the finding of potential 

outliers within the dataset as the z-score is outside the allowable +3.0, for cases with Body Fat 
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values of less than 45.5%.  Therefore, these cases were Winsorized and replaced by a value of 

46.5%.  The z-scores for the Hispanic subgroup support the finding of potential outliers within the 

dataset as the z-score is outside the allowable +3.0, for cases with Body Fat values of less than 

26.8% or higher than 97.2%.  Therefore, these cases were Winsorized and replaced by values of 

27.8% and 96.2%, respectively.  The z-scores for the African American subgroup support the 

finding of potential outliers within the dataset as the z-score is outside the allowable +3.0, for 

cases with Body Fat values of less than 28.6%.  Therefore, these cases were Winsorized and 

replaced by a value of 29.6%.   The z-scores for the White subgroup support the finding of 

potential outliers within the dataset as the z-score is outside the allowable +3.0, for cases with 

Body Fat values of less than 37.5%.  Therefore, these cases were Winsorized and replaced by a 

value of 38.5%.   The z-scores for the Filipino subgroup support the finding of potential outliers 

within the dataset as the z-score is outside the allowable +3.0, for cases with Body Fat values of 

less than 37.4%.  Therefore, these cases were Winsorized and replaced by a value of 38.4%.  No 

univariate outliers were identified for Pacific Islanders or American Indians; therefore no actions 

were necessary for these subsets. 

 

Then, data were screened for univariate normality using visual and statistical methods.  First 

histograms and Q-Q Normal Probability Plots were examined.  The histograms for all ethnicities 

indicated unimodal, normal distributions.  The Q-Q Probability Plot for each ethnicity indicated 

little skew. 

 

Descriptive statistics (Table 4.26) were assessed next.  Body Fat for the Asian subgroup has a 

skewness of -0.648, which is within the standard of +1.0.  Its kurtosis was 0.227, which is within 

the standard of +2.0.  Body Fat for the Hispanic or Latino subgroup has a skewness of 0.007, 

which is within the standard of +1.0.  Its kurtosis was 0.716, which is within the standard of +2.0.  

Body Fat for the African American or Black subgroup has a skewness of -0.268, which is within 

the standard of +1.0.  Its kurtosis was 0.335, which is within the standard of +2.0.  Body Fat for 

the White (not of Hispanic Origin) subgroup has a skewness of -0.680, which is within the 
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standard of +1.0.  Its kurtosis was 0.484, which is within the standard of +2.0.  Body Fat for the 

Pacific Islander subgroup has a skewness of -0.123, which is within the standard of +1.0.  Its 

kurtosis was -0.742, which is within the standard of +2.0.  Body Fat for the Filipino subgroup has 

a skewness of -0.368, which is within the standard of +1.0.  Its kurtosis was 0.169, which is within 

the standard of +2.0.  Body Fat for the American Indian subgroup has a skewness of -0.048, 

which is within the standard of +1.0.  Its kurtosis was -0.375, which is within the standard of +2.0.  

Consequently, the assumption of univariate normality has been satisfied for all Ethnicities within 

Body Fat and no further transformations are necessary. 

 

Table 4.26 
Descriptive Statistics of Body Fat by Ethnicity 

 
Level  N Mean S.D. 
Asian  4697 80.22 11.65 
Hispanic  13683 62.03 11.69 
Black  4858 66.63 12.75 
White  11323 74.33 12.13 
Pacific 
Islander 97 54.56 19.36 

Filipino  1778 72.84 11.88 
American 
Indian 220 60.84 15.57 

Total  37370 69.28 13.84 
    
   
    

 
The final assumption for a one-way ANOVA is homogeneity of variance, which was assessed 

with boxplots and Levene’s Test for Equality of Variances.  The heights of the boxplots indicated 

some difference in variance.  The more precise Levene’s Test resulted in a p-value of <0.001, 

confirming that the variances were not equal.  Thus, the assumption of homogeneity of variance 

was not satisfied.  Violation of homogeneity of variance was dealt with by using an alpha of 0.01 

rather than 0.05 in subsequent ANOVA testing according to Tabachnick and Fidell (1996). 

 

The hypothesis predicted that Body Fat would vary by Ethnicity.  A One-Way Analysis of Variance 

was conducted because more than two means were compared.  As Table 4.27 indicates, at least 
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one of the means was significantly different (F(d.f. 7, 37362)=1606, p<0.001).  Thus the 

hypothesis was supported. 

 

Table 4.27 
One-way ANOVA for Body Fat by Ethnicity 

 
Source  SS DF MS F Eta Eta-

Squared 
Between  1,655,984 7 236,569 1606** 0.481 0.231 
Within  5,503,472 37362 147    
Total  7,159,456 37369     
       
*p <0.05 ** p<0.01       
       

 
 

As Table 4.28 shows, a post-hoc test using the Tukey-Kramer Method demonstrated that the 

means of all of the Ethnicities were found to be significantly different (p<0.01), with the exception 

of the comparison between Hispanics and American Indians (p=0.841). 

 

Table 4.28 
Tukey-Kramer Multiple Comparison Test for Body Fat by Ethnicity 

 
Mean Body Fat         
  Asian  Hispanic  Black  White  Pac Isl  Filipino  Am Ind  
80.22 Asian   ** ** ** ** ** ** 
62.03 Hispanic    ** ** ** **  
66.63 Black     ** ** ** ** 
74.33 White      ** ** ** 
54.56 Pacific 

Islander      ** ** 

72.84 Filipino        ** 
60.84 American 

Indian        

         
         
*p <0.05 ** p<0.01          
         

 

Finally, an analysis of association was conducted to determine the strength of association and the 

effect size.  As Table 4.27 shows, eta (η = 0.481) indicated a weak positive relationship between 

Ethnicity and Body Fat, according to Frankfort-Nachmias and Leon-Guerrero’s guidelines 
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(Frankfort-Nachmias and Leon-Guerrero, 2002).  Eta squared was used to determine the effect 

size (η2 = 0.231).  Thus, Ethnicity explained 23.1% of the variation in Body Fat. 

 

 

4.3  Specific Aim 3   

 

To examine the association between attainment status for CO, O3, PM10, and PM2.5 and 

aerobic capacity or body composition in children after adjusting for demographic factors 

that influence these endpoints. 

 

Demographic factors that influenced both aerobic capacity and body fat fitness endpoints were 

assessed in Specific Aim 2 (Section 4.2).   Aerobic Capacity and Body Fat passing rates were 

found to differ significantly by Gender, Grade, SES, and Ethnicity.  Therefore, measures of these 

variables were incorporated into the regression analyses summarized in this section. 

 

4.3.1  Aerobic Capacity 

 
4.3.1.1  Carbon Monoxide  

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, PctMinority 

and COATT) and the dependent variable Aerobic Capacity (AerCap) were screened for accuracy.  

First, the data were screened for missing values.  PctSES was determined to be missing 2.4% of 

its data, since the percent of free/reduced price meals was unavailable for all schools.  Because 

the percentage of missing data was less than 5%, Listwise deletion was used.  No other variables 

were found to have missing data.  All variables were determined to have values within their 

allowable ranges. 

 

The data were next screened for influential outliers in solution.  The maximum for Cook’s distance 

was 0.004, well below the standard of 1.0 for problems.  The minimum and maximum Studentized 

Deleted Residuals were -3.893 and 3.570, indicating that some values are outside the standard of 
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+3.3.  There are 16 values below -3.3 and 3 values greater than 3.3.  Therefore, a scatterplot was 

generated to examine the outliers.   The cases were examined to determine why they were 

outliers in solution.  No pattern was detected with the outliers, so they were deleted from further 

analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.386 for within the benchmark levels 

of +1.0.  The kurtosis of -0.069 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

 

A correlation matrix (Table 4.29) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   All of the correlations between 

IV’s are less than 0.70, indicating no multicollinearity.   To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.455 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 2.197, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and Carbon Monoxide Attainment status to determine if there was a significant 

relationship between these two variables.  Because Aerobic Capacity may be influenced by 

several variables, a second model was run to evaluate the relationship between Aerobic Capacity 

and the independent variables Grade, BodFat, PctMale, PctSES, and PctMinority.  The third 
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model investigated whether a relationship between Aerobic Capacity and Carbon Monoxide 

Attainment Status existed after controlling for the variables in the second model. 

 

 

Table 4.29 
Correlations and Descriptive Statistics 

 
Variables  Aerobic 

Capacity 
(DV) 

Grade Bod Fat  PctMale  PctSES Pct  
Minority 

COATT 

AerCap (DV)   -0.186** 0.391** -0.112** -0.319** -0.265** -0.051** 
Grade   -0.046** 0.074** -0.122** -0.047** -0.031** 
BodFat     -0.100** -0.491** -0.428** -0.050** 
PctMale      0.020** -0.002 -0.006 
PctSES      0.698** 0.079** 
PctMinority        0.168** 
COATT        
        
Mean 59.55 6.07 67.45 51.44 52.45 67.70 0.19 
S.D. 22.14 1.49 13.23 7.54 29.70 27.70 0.394 
        

*p <0.05 ** p<0.01        
        

 
 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.589 for the 

single independent variable model, and 1.77 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and Carbon Monoxide Attainment Status.  Alpha was set at 0.05. The results 

indicate (F(1, 16854) = 44.1, p<0.001) that Carbon Monoxide Attainment status is significantly 

related to Aerobic Capacity. 
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Table 4.30 

Model 1:  Standard Regression of COATT for Aerobic Capacity 
 

Variables  b β sr2 
(unique) 

R 
(model) 

R2 
(model) 

Adjusted R 2 
(model) 

       
COATT -2.869** -0.051 0.003 0.051 0.003 0.003 
 Intercept = 60.1      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.30 indicate, Carbon Monoxide Attainment status 

contributed significantly to Aerobic Capacity.   The multiple correlation (R=0.051) indicated a very 

weak positive relationship between Carbon Monoxide Attainment Status and Aerobic Capacity.   

Overall, the model (R2=0.003) explained 0.3% of the variation in Aerobic Capacity.  

 

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES, PctMinority) that may influence this endpoint.  Alpha was set at 0.05. The results 

indicate (F(5, 16850) = 932, p<0.001) that at least one of the variables is significantly related to 

Aerobic Capacity. 

 
As the regression coefficients in Table 4.31 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.271) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.189), PctMale (β=-0.067) and PctMinority 

(β=-0.026).  When only the unique variance explained by each variable is examined, Body Fat 

(sr2=0.053) also accounts for the most variance in Aerobic Capacity, 5.3%, followed by Grade 

(sr2=0.036) with 3.6%, PctSES (sr2=0.016) with 1.6%, PctMale (sr2=0.005) with 0.5%, and 

PctMinority (sr2=0.0003) with 0.03%.   Total unique variance was 11%.  The zero-order 

correlations for BodFat, PctMale, PctSES, and PctMinority were higher than their semipartial 
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correlations, indicating shared variance between the variables.  However, for Grade the zero-

order correlation was slightly lower than the corresponding semipartial correlation, indicating the 

possible presence of a suppressor variable.  The semipartial correlation for PctMinority 

approaches zero, indicating the possible presence of a spurious or intervening relationship. 

 

 
Table 4.31 

Model 2:  Standard Regression of Variables for Aero bic Capacity 
 

Variables  b β sr 2 
(unique)  

R 
(model) 

R2 
(model) 

Adjusted 
R2 (model) 

       
Grade -2.865** -0.193 0.0357 0.465 0.217 0.216 
Body Fat  0.454** 0.271 0.0534    
Pct Male  -0.197** -0.067 0.0045    
Pct SES -0.141** -0.189 0.0164    
Pct Minority  -0.021** -0.026 0.0003    
 Intercept = 65.24      
       
*p <0.05 ** p<0.01       
       

 
 
 

The multiple correlation (R=0.465) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.217) 

explained 21.7% of the variation in Aerobic Capacity.  

 

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and Carbon Monoxide Attainment Status after controlling for the independent 

variables in Model 2 (Grade, BodFat, PctMale, PctSES, PctMinority).  Alpha was set at 0.05. The 

results indicate (F(6, 16849) = 780, p<0.001) that at least one of the variables is significantly 

related to Aerobic Capacity. 
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Table 4.32 
Model 3:  Standard Regression of Variables (incl. C OATT) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.876** -0.193 0.0361 0.466 0.217 0.217 
Body Fat  0.455** 0.272 0.0538    
Pct Male  -0.197** -0.067 0.0045    
Pct SES -0.143** -0.191 0.0166    
Pct Minority  -0.016* -0.020 0.0002    
COATT -1.427** -0.025 0.0006    
 Intercept = 65.34      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.32 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.272) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.191), PctMale (β=-0.067), Carbon 

Monoxide Attainment Status (β=-0.025), and PctMinority (β=-0.020).  When only the unique 

variance explained by each variable is examined, Body Fat (sr2=0.054) also accounts for the 

most variance in Aerobic Capacity, 5.4%, followed by Grade (sr2=0.036) with 3.6%, PctSES 

(sr2=0.017) with 1.7%, PctMale (sr2=0.005) with 0.5%, Carbon Monoxide Attainment Status 

(sr2=0.0006) with 0.06%, and PctMinority (sr2=0.0002) with 0.02%.   Total unique variance was 

11.2%.  The zero-order correlations for BodFat, PctMale, PctSES. PctMinority, and Carbon 

Monoxide Attainment status were higher than their semipartial correlations, indicating shared 

variance between the variables.  However, for Grade the zero-order correlation was slightly lower 

than the corresponding semipartial correlation, indicating the possible presence of a suppressor 

variable.  The semipartial correlation for PctMinority approaches zero, indicating the possible 

presence of a spurious or intervening relationship. 

 

The multiple correlation (R=0.466) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.217) 

explained 21.7% of the variation in Aerobic Capacity.  
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The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of Carbon 

Monoxide Attainment status in the model added 0.1% to the explanation of the variance in the 

model.   

 
 

4.3.1.2  8-hour Ozone 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, PctMinority 

and O3ATT) and the dependent variable Aerobic Capacity (AerCap) were screened for accuracy.  

First, the data were screened for missing values.  PctSES was determined to be missing 2.4% of 

its data, since the percent of free/reduced price meals was unavailable for all schools.  Because 

the percentage of missing data was less than 5%, Listwise deletion was used.  No other variables 

were found to have missing data.  All variables were determined to have values within their 

allowable ranges. 

 

The maximum for Cook’s distance is 0.004, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -3.868 and 3.598.   This indicates 

that some values are outside the standard of +3.3.  There are 14 values below -3.3 and 3 values 

greater than 3.3.  Therefore, we generate a scatterplot to examine the outliers using the values 

for Studentized Deleted Residuals and Standardized Values.  The cases were examined to 

determine why they were outliers in solution.  No pattern was detected with the outliers, so they 

were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.388 for within the benchmark levels 

of +1.0.  The kurtosis of -0.065 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 
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A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

Table 4.33 
Correlations and Descriptive Statistics 

 
Variables  Aerobic 

Capacity 
(DV) 

Grade BodFat  PctMale  PctSES O3ATT 

AerCap (DV)   -0.186** 0.391** -0.112** -0.318** -0.026** 
Grade   -0.046** 0.074** -0.122** -0.053** 
BodFat     -0.100** -0.491** -0.012 
PctMale      0.020** -0.009 
PctSES      0.007 
O3ATT       
       
Mean 59.54 6.07 67.45 51.44 52.45 0.91 
S.D. 22.15 1.49 13.23 7.54 29.70 0.288 
       

*p <0.05 ** p<0.01       
       

 
 

 

A correlation matrix (Table 4.33) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   All of the correlations between 

IV’s are less than 0.70, indicating no multicollinearity.   To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.437 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 2.286, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and Ozone Attainment status to determine if there was a significant relationship 

between these two variables.  Because Aerobic Capacity may be influenced by several variables, 

a second model was run to evaluate the relationship between Aerobic Capacity and the 

independent variables Grade, BodFat, PctMale, and PctSES.  The third model investigated 

whether a relationship between Aerobic Capacity and Ozone Attainment Status existed after 
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controlling for the variables in the second model.  An evaluation of the significance of the t value 

found that PctMinority was not significant (p=0.182) when added to the third model.  Therefore, it 

was dropped from analysis in both models. 

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.590 for the 

single independent variable model, and 1.775 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and Ozone Attainment Status.  Alpha was set at 0.05. The results indicate (F(1, 

16856) = 11.3, p=0.001) that Ozone Attainment status is significantly related to Aerobic Capacity. 

 

Table 4.34 
Model 1:  Standard Regression of Ozone Attainment f or Aerobic Capacity 

 
Variables  b β sr 2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted 

R2 (model) 
       
O3ATT -1.996** -0.026 0.001 0.026 0.001 0.001 
 Intercept = 61.35      
       
*p <0.05 ** p<0.01       
       

 

 

As the regression coefficients in Table 4.34 indicate, Ozone Attainment status contributed 

significantly to Aerobic Capacity.   The multiple correlation (R=0.026) indicated a very weak 

positive relationship between Ozone Attainment Status and Aerobic Capacity.   Overall, the 

model (R2=0.001) explained 0.1% of the variation in Aerobic Capacity.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 
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PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(4, 

16870) = 1129, p<0.001) that at least one of the variables is significantly related to Aerobic 

Capacity. 

 

Table 4.35 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.874** -0.193 0.0357 0.459 0.211 0.211 
Body Fat  0.446** 0.267 0.0529    
Pct Male  -0.198** -0.067 0.0045    
Pct SES -0.155** -0.208 0.0320    
 Intercept = 65.16      
       
*p <0.05 ** p<0.01      
       

 

 

As the regression coefficients in Table 4.35 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.267) was the strongest unique 

predictor, followed by PctSES (β=-0.208), Grade (β=-0.193), and PctMale (β=-0.067).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.053) also accounts 

for the most variance in Aerobic Capacity, 5.3%, followed by Grade (sr2=0.036) with 3.6%, 

PctSES (sr2=0.032) with 3.2%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

12.5%.  The zero-order correlations for BodFat, PctMale and PctSES were higher than their 

semipartial correlations, indicating shared variation with the other variables in the model.  

However, for Grade, the zero-order correlation was slightly lower than the corresponding 

semipartial correlation, indicating the possible presence of a suppressor variable. 

 

The multiple correlation (R=0.459) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.211) 

explained 21.1% of the variation in Aerobic Capacity.  
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Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and Ozone Attainment Status after controlling for the independent variables in 

Model 2 (Grade, BodFat, PctMale, PctSES).  Alpha was set at 0.05. The results indicate (F(5, 

16869) = 908, p<0.001) that at least one of the variables is significantly related to Aerobic 

Capacity. 

 

Table 4.36 
Model 3:  Standard Regression of Variables (incl. O 3ATT) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.899** -0.194 0.0365 0.460 0.212 0.212 
Body Fat  0.445** 0.266 0.0524    
Pct Male  -0.198** -0.067 0.0044    
Pct SES -0.156** -0.208 0.0320    
O3ATT -2.380** -0.031 0.0012    
 Intercept = 67.59      
       
*p <0.05 ** p<0.01      
       

 

As the regression coefficients in Table 4.36 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.266) was the strongest unique 

predictor, followed by PctSES (β=-0.208), Grade (β=-0.194), PctMale (β=-0.067), and Ozone 

Attainment Status (β=-0.031).  When only the unique variance explained by each variable is 

examined, Body Fat (sr2=0.052) also accounts for the most variance in Aerobic Capacity, 5.2%, 

followed by Grade (sr2=0.037) with 3.7%, PctSES (sr2=0.032) with 3.2%, PctMale (sr2=0.004) with 

0.4%, and Ozone Attainment Status (sr2=0.001) with 0.1%.   Total unique variance was 12.6%.  

The zero-order correlations for BodFat, PctMale and PctSES were higher than their semipartial 

correlations, indicating shared variation with the other variables in the model.  However, for Grade 

and Ozone Attainment Status, the zero-order correlations were slightly lower than the 

corresponding semipartial correlation, indicating the possible presence of a suppressor variable. 
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The multiple correlation (R=0.460) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.212) 

explained 21.2% of the variation in Aerobic Capacity.  

 

The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of Ozone 

Attainment status in the model added 0.1% to the explanation of the variance in the model.   

 
 

4.3.1.3  PM10 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, PctMinority 

and PM10 Attainment Status) and the dependent variable Aerobic Capacity (AerCap) were 

screened for accuracy.  First, the data were screened for missing values.  PctSES was 

determined to be missing 2.4% of its data, since the percent of free/reduced price meals was 

unavailable for all schools.  Because the percentage of missing data was less than 5%, Listwise 

deletion was used.  No other variables were found to have missing data.  All variables were 

determined to have values within their allowable ranges. 

 

The data were next screened for influential outliers in solution.  The maximum for Cook’s distance 

was 0.004, well below the standard of 1.0 for problems.  The minimum and maximum Studentized 

Deleted Residuals were -3.901 and 3.551, indicating that some values are outside the standard of 

+3.3.  There are 15 values below -3.3 and 3 values greater than 3.3.  Therefore, a scatterplot was 

generated to examine the outliers.   The cases were examined to determine why they were 

outliers in solution.  No pattern was detected with the outliers, so they were deleted from further 

analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.387 for within the benchmark levels 
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of +1.0.  The kurtosis of -0.066 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.37) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   All of the correlations between 

IV’s are less than 0.70, indicating no multicollinearity.   To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.455 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 2.197, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Table 4.37 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PctMinority  PM10ATT 

AerCap (DV)   -0.186** 0.391** -0.112** -0.319** -0.265** -0.098** 
Grade   -0.046** 0.074** -0.122** -0.048** -0.029** 
BodFat     -0.100** -0.491** -0.428** -0.127** 
PctMale      0.020** -0.002 -0.014* 
PctSES      0.698** 0.231** 
PctMinority        0.277** 
PM10ATT         
        
Mean 59.54 6.07 67.45 51.44 52.45 67.70 0.58 
S.D. 22.15 1.49 13.23 7.54 29.70 27.70 0.494 
        

*p <0.05 ** p<0.01        
        

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PM10 Attainment status to determine if there was a significant relationship between 

these two variables.  Because Aerobic Capacity may be influenced by several variables, a 

second model was run to evaluate the relationship between Aerobic Capacity and the 
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independent variables Grade, BodFat, PctMale, PctSES and PctMinority.  The third model 

investigated whether a relationship between Aerobic Capacity and PM10 Attainment Status 

existed after controlling for the variables in the second model. 

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.541 for the 

single independent variable model, and 1.716 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PM10 Attainment Status.  Alpha was set at 0.05. The results indicate (F(1, 

16855) = 165, p<0.001) that PM10 Attainment status is significantly related to Aerobic Capacity. 

 

Table 4.38 
Model 1:  Standard Regression of PM10ATT for Aerobi c Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
PM10ATT -4.416** -0.098 0.010 0.098 0.010 0.010 
 Intercept = 62.09      
       
*p <0.05 ** p<0.01      
       

 
 

As the regression coefficients in Table 4.38 indicate, PM10 Attainment status contributed 

significantly to Aerobic Capacity.   The multiple correlation (R=0.098) indicated a very weak 

positive relationship between PM10 Attainment Status and Aerobic Capacity.   Overall, the model 

(R2=0.010) explained 1% of the variation in Aerobic Capacity.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 
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PctSES, PctMinority) that may influence this endpoint.  Alpha was set at 0.05. The results 

indicate (F(5, 16851) = 931, p<0.001) that at least one of the variables is significantly related to 

Aerobic Capacity. 

 

 

Table 4.39 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -2.863** -0.193 0.0357 0.465 0.217 0.216 
Body Fat  0.454** 0.271 0.0534    
Pct Male  -0.196** -0.067 0.0044    
Pct SES -0.141** -0.189 0.0164    
Pct Minority  -0.021** -0.026 0.0003    
 Intercept  = 65.19     
       
*p <0.05 ** p<0.01      
       

 

 

As the regression coefficients in Table 4.39 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.271) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.189), PctMale (β=-0.067) and PctMinority 

(β=-0.026).  When only the unique variance explained by each variable is examined, Body Fat 

(sr2=0.053) also accounts for the most variance in Aerobic Capacity, 5.3%, followed by Grade 

(sr2=0.036) with 3.6%, PctSES (sr2=0.016) with 1.6%, PctMale (sr2=0.004) with 0.4%, and 

PctMinority (sr2=0.0003) with 0.03%.   Total unique variance was 11%.  The zero-order 

correlations for BodFat, PctMale, PctSES and PctMinority were higher than their semipartial 

correlations, indicating shared variation with the other variables in the model.  However, for 

Grade, the zero-order correlation was slightly lower than the corresponding semipartial 

correlation, indicating the possible presence of a suppressor variable. The semipartial correlation 

for PctMinority approaches zero, indicating the possible presence of a spurious or intervening 

relationship.    
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The multiple correlation (R=0.465) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.217) 

explained 21.7% of the variation in Aerobic Capacity.  

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PM10 Attainment Status after controlling for the independent variables in 

Model 2 (Grade, BodFat, PctMale, PctSES, PctMinority).  Alpha was set at 0.05. The results 

indicate (F(6, 16850) = 778, p<0.001) that at least one of the variables is significantly related to 

Aerobic Capacity. 

 

Table 4.40 
Model 3:  Standard Regression of Variables (incl. P M10ATT) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.866** -0.193 0.0357 0.466 0.217 0.217 
Body Fat  0.455** 0.271 0.0534    
Pct Male  -0.197** -0.067 0.0045    
Pct SES -0.140** -0.188 0.0161    
Pct Minority  -0.017* -0.021 0.0002    
PM10ATT -0.961** -0.021 0.0004    
 Intercept = 65.47      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.40 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.271) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.188), PctMale (β=-0.067), PM10 

Attainment Status (β=-0.021), and PctMinority (β=-0.021).  When only the unique variance 

explained by each variable is examined, Body Fat (sr2=0.053) also accounts for the most 

variance in Aerobic Capacity, 5.3%, followed by Grade (sr2=0.036) with 3.6%, PctSES (sr2=0.016) 

with 1.6%, PctMale (sr2=0.005) with 0.5%, PM10 Attainment Status (sr2=0.0004) with 0.04%, and 

PctMinority (sr2=0.0002) with 0.02%.   The zero-order correlations for BodFat, PctMale, PctSES, 
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PctMinority and PM10 Attainment were higher than their semipartial correlations, indicating shared 

variation with the other variables in the model.  However, for Grade, the zero-order correlation 

was slightly lower than the corresponding semipartial correlation, indicating the possible presence 

of a suppressor variable. The semipartial correlation for PctMinority approaches zero, indicating 

the possible presence of a spurious or intervening relationship.   

 

The multiple correlation (R=0.466) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.217) 

explained 21.7% of the variation in Aerobic Capacity.  

 

The R2 change between model 2 and model 3 was < 0.0005, indicating that the inclusion of PM10 

Attainment status in the model added < 0.05% to the explanation of the variance in the model.   

 

4.3.1.3  PM2.5 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, PctMinority 

and PM2.5ATT) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 

missing 2.4% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  Because the percentage of missing data was less than 5%, Listwise deletion was used.  

No other variables were found to have missing data.  All variables were determined to have 

values within their allowable ranges. 

 

The data were next screened for influential outliers in solution.  The maximum for Cook’s distance 

was 0.004, well below the standard of 1.0 for problems.  The minimum and maximum Studentized 

Deleted Residuals were -3.891 and 3.570, indicating that some values are outside the standard of 

+3.3.  There are 16 values below -3.3 and 3 values greater than 3.3.  Therefore, a scatterplot was 

generated to examine the outliers.   The cases were examined to determine why they were 
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outliers in solution.  No pattern was detected with the outliers, so they were deleted from further 

analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.385 for within the benchmark levels 

of +1.0.  The kurtosis of -0.071 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.41) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   All of the correlations between 

IV’s are less than 0.70, indicating no multicollinearity.   To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.456 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 2.194, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PM2.5 Attainment status to determine if there was a significant relationship between 

these two variables.  Because Aerobic Capacity may be influenced by several variables, a 

second model was run to evaluate the relationship between Aerobic Capacity and the 

independent variables Grade, BodFat, PctMale, PctSES and PctMinority.  The third model 

investigated whether a relationship between Aerobic Capacity and PM2.5 Attainment Status 

existed after controlling for the variables in the second model. 
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Table 4.41 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES Pct  

Minority 
PM2.5 
ATT 

AerCap (DV)   -0.186** 0.391** -0.112** -0.319** -0.265** -0.090** 
Grade   -0.046** 0.074** -0.122** -0.047** -0.026** 
BodFat     -0.100** -0.491** -0.428** -0.126** 
PctMale      0.020** -0.002 -0.013 
PctSES      0.698** 0.236** 
PctMinority        0.300** 
PM2.5ATT         
        
Mean 59.55 6.07 67.45 51.44 52.45 67.70 0.54 
S.D. 22.14 1.49 13.23 7.54 29.70 27.70 0.499 
        

*p <0.05 ** p<0.01       
        
 

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.538 for the 

single independent variable model, and 1.715 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PM2.5 Attainment Status.  Alpha was set at 0.05. The results indicate (F(1, 

16854) = 136, p<0.001) that PM2.5 Attainment status is significantly related to Aerobic Capacity. 

 

As the regression coefficients in Table 4.42 indicate, PM2.5 Attainment status contributed 

significantly to Aerobic Capacity.   The multiple correlation (R=0.090) indicated a very weak 

positive relationship between PM2.5 Attainment Status and Aerobic Capacity.   Overall, the model 

(R2=0.008) explained 0.8% of the variation in Aerobic Capacity.  
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Table 4.42 
Model 1:  Standard Regression of PM2.5ATT for Aerob ic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
PM2.5ATT -3.975** -0.090 0.008 0.090 0.008 0.008 
 Intercept = 61.68      
       
*p <0.05 ** p<0.01      
       

 
 

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES, PctMinority) that may influence this endpoint.  Alpha was set at 0.05. The results 

indicate (F(5, 16850) = 932, p<0.001) that at least one of the variables is significantly related to 

Aerobic Capacity. 

 

 

Table 4.43 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.865** -0.193 0.0357 0.465 0.217 0.216 
Body Fat  0.454** 0.271 0.0534    
Pct Male  -0.197** -0.067 0.0045    
Pct SES -0.141** -0.189 0.0164    
Pct Minority  -0.021** -0.026 0.0003    
 Intercept = 65.24      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.43 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.271) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.189), PctMale (β=-0.067) and PctMinority 
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(β=-0.026).  When only the unique variance explained by each variable is examined, Body Fat 

(sr2=0.053) also accounts for the most variance in Aerobic Capacity, 5.3%, followed by Grade 

(sr2=0.036) with 3.6%, PctSES (sr2=0.016) with 1.6%, PctMale (sr2=0.005) with 0.5%, and 

PctMinority (sr2=0.0003) with 0.03%.   Total unique variance was 11%. The zero-order 

correlations for BodFat, PctMale, PctSES and PctMinority were higher than their semipartial 

correlations, indicating shared variation with the other variables in the model.  However, for 

Grade, the zero-order correlation was slightly lower than the corresponding semipartial 

correlation, indicating the possible presence of a suppressor variable. The semipartial correlation 

for PctMinority approaches zero, indicating the possible presence of a spurious or intervening 

relationship.    

 

The multiple correlation (R=0.465) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.217) 

explained 21.7% of the variation in Aerobic Capacity.  

 

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PM2.5 Attainment Status after controlling for the independent variables in 

Model 2 (Grade, BodFat, PctMale, PctSES, PctMinority).  Alpha was set at 0.05. Based on 

evaluation of the regression coefficients in this model (Table 4.44), the addition of PM2.5 

Attainment status was found to be non-significant (p=0.182), indicating that this variable did not 

contribute any additional explanation of the variance of Aerobic Capacity. 
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Table 4.44 
Model 3:  Standard Regression of Variables (incl. P M2.5ATT) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.866** -0.193 0.0357 0.466 0.217 0.216 
Body Fat  0.455** 0.272 0.0538    
Pct Male  -0.197** -0.067 0.0045    
Pct SES -0.141** -0.189 0.0161    
Pct Minority  -0.019* -0.023 0.0003    
PM2.5ATT -0.424 -0.010 0.0001    
 Intercept = 65.32      
       
*p <0.05 ** p<0.01      
       

 

 

4.3.2  Body Fat 

4.3.2.1  Carbon Monoxide 

Prior to the analysis, the independent variables (Grade, PctMale, PctSES, PctMinority and 

COATT) and the dependent variable Body Fat (BodFat) were screened for accuracy.  First, the 

data were screened for missing values.  PctSES was determined to be missing 2.4% of its data, 

since the percent of free/reduced price meals was unavailable for all schools.  Because the 

percentage of missing data was less than 5%, Listwise deletion was used.  No other variables 

were found to have missing data.  All variables were determined to have values within their 

allowable ranges. 

 

The maximum for Cook’s distance is 0.013, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -7.369 and 4.258.   This indicates 

that some values are outside the standard of +3.3.  There are 204 values below -3.3 and 17 

values greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the 

values for Studentized Deleted Residuals and Standardized Values.  The cases were examined 

to determine why they were outliers in solution.  No consistent pattern was detected with the 

outliers, so they were deleted from further analyses.   
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The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.239 for within the benchmark levels 

of +1.0.  The kurtosis of 1.566 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.45) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlation between PctSES 

and PctMinority was 0.700, which was equal to the standard of 0.7 for multicollinearity.  Upon 

review, the variable PctMinority was removed from the model.  PctSES had a higher correlation 

with Body Fat and was therefore retained for further analysis.  To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.978 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 1.022, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Table 4.45 
Correlations and Descriptive Statistics 

 
Variables  BodFat  

(DV) 
Grade PctMale  PctSES COATT 

BodFat  (DV)  -0..34** -0.110** -0.581** -0.059** 
Grade   0.072** -0.123** -0.032* 
PctMale     0.018* -0.005 
PctSES     0.081** 
COATT      
      
Mean 68.13 6.07 51.41 52.48 0.19 
S.D. 11.58 1.49 7.42 29.69 0.394 
      

*p <0.05 ** p<0.01     
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Three regression models were evaluated in this analysis.  The first model was between Body Fat 

and COATT to determine if there was a significant relationship between these two variables.  

Because Body Fat may be influenced by several variables, a second model was run to evaluate 

the relationship between Body Fat and the independent variables Grade, PctMale, and PctSES.  

The third model investigated whether a relationship between Body Fat and COATT existed after 

controlling for the variables in the second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.395 for the 

single independent variable model, and 1.718 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Body Fat and COATT.  Alpha was set at 0.05. The results indicate (F(1, 16652) = 59, p=<0.001) 

that COATT is significantly related to Body Fat. 

 

 

Table 4.46 
Model 1:  Standard Regression of COATT for Body Fat  

 
Variables  b β sr 2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
COATT -1.744** -0.59 0.004 0.059 0.004 0.003 
 Intercept = 68.47      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.46 indicate, COATT contributed significantly to Body Fat.   

The multiple correlation (R=0.059) indicated a very weak positive relationship between COATT 

and Body Fat.   Overall, the model (R2=0.004) explained 0.4% of the variation in Body Fat.  
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Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Body Fat and several non-environmental variables (Grade, PctMale, PctSES) that may 

influence this endpoint.  Alpha was set at 0.05. The results indicate (F(3, 16650) = 3078, 

p<0.001) that at least one of the variables is significantly related to Body Fat. 

 

Table 4.47 
Model 2:  Standard Regression of Variables for Body  Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -0.779** -0.100 0.0098 0.597 0.357 0.357 
Pct Male -0.144** -0.092 0.0085    
Pct SES -0.231** -0.591 0.3446    
 Intercept = 92.36      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.47 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate PctSES (β=-0.591) was the strongest unique predictor followed by 

Grade (β=-0.100), and PctMale (β=-0.092).  When only the unique variance explained by each 

variable is examined, PctSES (sr2=0.345) also accounts for the most variance in Body Fat, 

34.5%, followed by Grade (sr2=0.01) with 1%, and PctMale (sr2=0.009) with 0.9%.   Total unique 

variance was 36.3%. The semipartial correlation for PctMale in the second model is less than its 

zero-order correlation, indicating shared variance between the variables.  The semipartial 

correlations for PctSES and Grade are slightly larger than their zero-order correlations, indicating 

the presence of a suppressor variable. 

 

The multiple correlation (R=0.597) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.357) explained 

35.7% of the variation in Body Fat.  
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Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Body Fat and COATT after controlling for the independent variables in Model 2 (Grade, PctMale, 

PctSES).  Alpha was set at 0.05. The results indicate (F(4, 16649) = 2310, p<0.001) that at least 

one of the variables is significantly related to Body Fat. 

 

Table 4.48 
Model 3:  Standard Regression of Variables (includi ng COATT) for Body Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -0.782** -0.100 0.0098 0.597 0.357 0.357 
Pct Male  -0.144** -0.092 0.0085    
Pct SES -0.230** -0.590 0.3411    
COATT -0.457* -0.016 0.0003    
 Intercept = 92.44      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.48 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate that PctSES (β= -0.590) was the strongest unique predictor, followed 

by Grade (β=-0.100), PctMale (β=-0.092), and COATT (β=-0.016).  When only the unique 

variance explained by each variable is examined, PctSES (sr2=0.341) also accounts for the most 

variance in Body Fat, 34.1%, followed by Grade (sr2=0.01) with 1%, PctMale (sr2=0.009) with 

0.9%, and COATT (sr2=0.0003) with 0.03%.   Total unique variance was 36%.  The semipartial 

correlations for PctMale and COATT in the third model are less than their zero-order correlations, 

indicating shared variance between the variables.  The semipartial correlations for Grade and 

PctSES are slightly larger than their zero-order correlations, indicating the presence of a 

suppressor variable.   

 

The multiple correlation (R=0.597) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.357) explained 

35.7% of the variation in Body Fat.  
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The R2 change between model 2 and model 3 was <0.0005, indicating that the inclusion of 

COATT in the model added <0.05% to the explanation of the variance in the model.   

 

 

4.3.2.2  8-hour Ozone 

Prior to the analysis, the independent variables (Grade, PctMale, PctSES, PctMinority and 

O3ATT) and the dependent variable Body Fat (BodFat) were screened for accuracy.  First, the 

data were screened for missing values.  PctSES was determined to be missing 2.4% of its data, 

since the percent of free/reduced price meals was unavailable for all schools.  Because the 

percentage of missing data was less than 5%, Listwise deletion was used.  No other variables 

were found to have missing data.  All variables were determined to have values within their 

allowable ranges. 

 

The maximum for Cook’s distance is 0.012, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -7.388 and 4.248.   This indicates 

that some values are outside the standard of +3.3.  There are 205 values below -3.3 and 17 

values greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the 

values for Studentized Deleted Residuals and Standardized Values.  The cases were examined 

to determine why they were outliers in solution.  No consistent pattern was detected with the 

outliers, so they were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.230 for within the benchmark levels 

of +1.0.  The kurtosis of 1.558 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 



 124 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

Table 4.49 
Correlations and Descriptive Statistics 

 
Variables  BodFat  

(DV) 
Grade PctMale  PctSES O3ATT 

BodFat  (DV)  -0..34** -0.109** -0.581** -0.016* 
Grade   0.072** -0.123** -0.052* 
PctMale     0.018* -0.008 
PctSES     0.007 
O3ATT      
      
Mean 68.13 6.07 51.41 52.49 0.91 
S.D. 11.58 1.49 7.43 29.69 0.287 
      

*p <0.05 ** p<0.01      
      

 

A correlation matrix (Table 4.49) was generated and all of the independent variables were 

significantly correlated (p<0.05) with the dependent variable.   The correlation between PctSES 

and PctMinority was 0.700, which was equal to the standard of 0.7 for multicollinearity.  Upon 

review, the variable PctMinority was removed from the model.  PctSES had a higher correlation 

with Body Fat and was therefore retained for further analysis.  To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.977 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 1.024, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Three regression models were evaluated in this analysis.  The first model was between Body Fat 

and O3ATT to determine if there was a significant relationship between these two variables.  

Because Body Fat may be influenced by several variables, a second model was run to evaluate 

the relationship between Body Fat and the independent variables Grade, PctMale, and PctSES.  

The third model investigated whether a relationship between Body Fat and O3ATT existed after 

controlling for the variables in the second model.   
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Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.390 for the 

single independent variable model, and 1.719 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Body Fat and O3ATT.  Alpha was set at 0.05. The results indicate (F(1, 16651) = 4.06, p=0.044) 

that O3ATT is significantly related to Body Fat. 

 

Table 4.50 
Model 1:  Standard Regression of O3ATT for Body Fat  

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
O3ATT -0.630* -0.016 0.0003 0.016 0.000 0.000 
 Intercept = 68.70      
       
*p <0.05 ** p<0.01       
       

 

 

As the regression coefficients in Table 4.50 indicate, O3ATT contributed significantly to Body Fat.   

The multiple correlation (R=0.016) indicated a very weak positive relationship between O3ATT 

and Body Fat.   Overall, the model (R2=<0.0005) explained <0.05% of the variation in Body Fat.  

 

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Body Fat and several non-environmental variables (Grade, PctMale, PctSES) that may 

influence this endpoint.  Alpha was set at 0.05. The results indicate (F(3, 16649) = 3080, 

p<0.001) that at least one of the variables is significantly related to Body Fat. 
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Table 4.51 
Model 2:  Standard Regression of Variables for Body  Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -0.781** -0.100 0.0098 0.597 0.357 0.357 
Pct Male  -0.142** -0.091 0.0083    
Pct SES -0.231** -0.591 0.3446    
 Intercept = 92.29      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.51 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate PctSES (β=-0.591) was the strongest unique predictor followed by 

Grade (β=-0.100), and PctMale (β=-0.091).  When only the unique variance explained by each 

variable is examined, PctSES (sr2=0.345) also accounts for the most variance in Body Fat, 

34.5%, followed by Grade (sr2=0.01) with 1%, and PctMale (sr2=0.008) with 0.8%.   Total unique 

variance was 36.3%. The semipartial correlation for PctMale in the second model is less than its 

zero-order correlation, indicating shared variance between the variables.  The semipartial 

correlations for PctSES and Grade are slightly larger than their zero-order correlations, indicating 

the presence of a suppressor variable.   

 

The multiple correlation (R=0.597) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.357) explained 

35.7% of the variation in Body Fat.  

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Body Fat and O3ATT after controlling for the independent variables in Model 2 (Grade, PctMale, 

PctSES).  Alpha was set at 0.05. The results indicate (F(4, 16648) = 2313, p<0.001) that at least 

one of the variables is significantly related to Body Fat. 
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Table 4.52 
Model 3:  Standard Regression of Variables (includi ng O3ATT) for Body Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -0.788** -0.101 0.0100 0.598 0.357 0.357 
Pct Male  -0.142** -0.091 0.0083    
Pct SES -0.231** -0.591 0.3446    
O3ATT -0.714** -0.018 0.0003    
 Intercept = 92.99      
       
*p <0.05 ** p<0.01      
       

 

 

As the regression coefficients in Table 4.52 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate that PctSES (β= -0.591) was the strongest unique predictor, followed 

by Grade (β=-0.101), PctMale (β=-0.091), and O3ATT (β=-0.018).  When only the unique 

variance explained by each variable is examined, PctSES (sr2=0.345) also accounts for the most 

variance in Body Fat, 34.5%, followed by Grade (sr2=0.01) with 1%, PctMale (sr2=0.008) with 

0.8%, and O3ATT (sr2=0.0003) with 0.03%.   Total unique variance was 36.3%.  The semipartial 

correlation for PctMale in the third model is less than its zero-order correlation, indicating shared 

variance between the variables.  The semipartial correlations for Grade, PctSES, and O3ATT are 

slightly larger than their zero-order correlations, indicating the presence of a suppressor variable.   

The multiple correlation (R=0.597) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.357) explained 

35.7% of the variation in Body Fat.  

 

The R2 change between model 2 and model 3 was <0.0005, indicating that the inclusion of 

O3ATT in the model added <0.05% to the explanation of the variance in the model.   

 

4.3.2.3  PM10 

Prior to the analysis, the independent variables (Grade, PctMale, PctSES, PctMinority and 

PM10ATT) and the dependent variable Body Fat (BodFat) were screened for accuracy.  First, the 
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data were screened for missing values.  PctSES was determined to be missing 2.4% of its data, 

since the percent of free/reduced price meals was unavailable for all schools.  Because the 

percentage of missing data was less than 5%, Listwise deletion was used.  No other variables 

were found to have missing data.  All variables were determined to have values within their 

allowable ranges. 

 

The maximum for Cook’s distance is 0.011, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -7.367 and 4.252.   This indicates 

that some values are outside the standard of +3.3.  There are 204 values below -3.3 and 17 

values greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the 

values for Studentized Deleted Residuals and Standardized Values.  The cases were examined 

to determine why they were outliers in solution.  No consistent pattern was detected with the 

outliers, so they were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.243 for within the benchmark levels 

of +1.0.  The kurtosis of 1.567 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.53) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlation between PctSES 

and PctMinority was 0.700, which was equal to the standard of 0.7 for multicollinearity.  Upon 
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review, the variable PctMinority was removed from the model.  PctSES had a higher correlation 

with Body Fat and was therefore retained for further analysis.  To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.932 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 1.072, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Table 4.53 
Correlations and Descriptive Statistics 

 
Variables  BodFat  

(DV) 
Grade PctMale  PctSES PM10ATT 

BodFat  (DV)  -0.034** -0.110** -0.581** -0.162** 
Grade   0.072** -0.123** -0.029** 
PctMale     0.018* -0.014* 
PctSES     0.231** 
PM10ATT      
      
Mean 68.13 6.07 51.41 52.48 0.58 
S.D. 11.58 1.49 7.42 29.69 0.494 
      

*p <0.05 ** p<0.01     
      

 
 

Three regression models were evaluated in this analysis.  The first model was between Body Fat 

and PM10ATT to determine if there was a significant relationship between these two variables.  

Because Body Fat may be influenced by several variables, a second model was run to evaluate 

the relationship between Body Fat and the independent variables Grade, PctMale, and PctSES.  

The third model investigated whether a relationship between Body Fat and PM10ATT existed 

after controlling for the variables in the second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.427 for the 

single independent variable model, and 1.718 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 
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Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Body Fat and PM10ATT.  Alpha was set at 0.05. The results indicate (F(1, 16652) = 447, 

p=<0.001) that PM10ATT is significantly related to Body Fat. 

 

 

Table 4.54 
Model 1:  Standard Regression of PM10ATT for Body F at 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
PM10ATT -3.792** -0.162 0.026 0.162 0.026 0.026 
 Intercept = 70.33      
       
*p <0.05 ** p<0.01      
       

 

 

As the regression coefficients in Table 4.54 indicate, PM10ATT contributed significantly to Body 

Fat.   The multiple correlation (R=0.162) indicated a very weak positive relationship between 

PM10ATT and Body Fat.   Overall, the model (R2=0.026) explained 2.6% of the variation in Body 

Fat.  

 

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Body Fat and several non-environmental variables (Grade, PctMale, PctSES) that may 

influence this endpoint.  Alpha was set at 0.05. The results indicate (F(3, 16650) = 3078, 

p<0.001) that at least one of the variables is significantly related to Body Fat. 

 

As the regression coefficients in Table 4.55 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate PctSES (β=-0.591) was the strongest unique predictor followed by 

Grade (β=-0.100), and PctMale (β=-0.092).  When only the unique variance explained by each 
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variable is examined, PctSES (sr2=0.345) also accounts for the most variance in Body Fat, 

34.5%, followed by Grade (sr2=0.01) with 1%, and PctMale (sr2=0.009) with 0.9%.   Total unique 

variance was 36.3%.  The semipartial correlation for PctMale in the second model is less than its 

zero-order correlation, indicating shared variance between the variables.  The semipartial 

correlations for PctSES and Grade are slightly larger than their zero-order correlations, indicating 

the presence of a suppressor variable. 

 

Table 4.55 
Model 2:  Standard Regression of Variables for Body  Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -0.779** -0.100 0.0098 0.597 0.357 0.357 
Pct Male  -0.144** -0.092 0.0085    
Pct SES -0.231** -0.591 0.3446    
 Intercept = 92.36      
       
*p <0.05 ** p<0.01       
       

 

The multiple correlation (R=0.597) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.357) explained 

35.7% of the variation in Body Fat.  

 

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Body Fat and PM10ATT after controlling for the independent variables in Model 2 (Grade, 

PctMale, PctSES).  Alpha was set at 0.05. The results indicate (F(4, 16649) = 2317, p<0.001) that 

at least one of the variables is significantly related to Body Fat. 

 

As the regression coefficients in Table 4.56 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate that PctSES (β= -0.584) was the strongest unique predictor, followed 

by Grade (β=-0.100), PctMale (β=-0.093), and PM10ATT (β=-0.031).  When only the unique 
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variance explained by each variable is examined, PctSES (sr2=0.318) also accounts for the most 

variance in Body Fat, 31.8%, followed by Grade (sr2=0.01) with 1%, PctMale (sr2=0.009) with 

0.9%, and PM10ATT (sr2=0.00093) with 0.09%.   Total unique variance was 33.7%.  The 

semipartial correlations for PctMale, PctSES, and PM10ATT in the third model are less than their 

zero-order correlations, indicating shared variance between the variables.  The semipartial 

correlation for Grade is slightly larger than its zero-order correlation, indicating the presence of a 

suppressor variable.   

 

Table 4.56 
Model 3:  Standard Regression of Variables (includi ng PM10ATT) for Body Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -0.779** -0.100 0.0098 0.598 0.358 0.357 
Pct Male  -0.145** -0.092 0.0085    
Pct SES -0.228** -0.590 0.3181    
PM10ATT -0.731* -0.016 0.0009    
 Intercept = 92.68      
       
*p <0.05 ** p<0.01      
       

 

 

The multiple correlation (R=0.598) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.358) explained 

35.8% of the variation in Body Fat.  

 

The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of 

PM10ATT in the model added 0.1% to the explanation of the variance in the model.   

 

 

4.3.2.3  PM2.5 

Prior to the analysis, the independent variables (Grade, PctMale, PctSES, PctMinority and 

PM2.5ATT) and the dependent variable Body Fat (BodFat) were screened for accuracy.  First, 
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the data were screened for missing values.  PctSES was determined to be missing 2.4% of its 

data, since the percent of free/reduced price meals was unavailable for all schools.  Because the 

percentage of missing data was less than 5%, Listwise deletion was used.  No other variables 

were found to have missing data.  All variables were determined to have values within their 

allowable ranges. 

 

The maximum for Cook’s distance is 0.012, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -7.364 and 4.246.   This indicates 

that some values are outside the standard of +3.3.  There are 203 values below -3.3 and 18 

values greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the 

values for Studentized Deleted Residuals and Standardized Values.  The cases were examined 

to determine why they were outliers in solution.  No consistent pattern was detected with the 

outliers, so they were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.248 for within the benchmark levels 

of +1.0.  The kurtosis of 1.568 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.57 was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlation between PctSES 

and PctMinority was 0.700, which was equal to the standard of 0.7 for multicollinearity.  Upon 
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review, the variable PctMinority was removed from the model.  PctSES had a higher correlation 

with Body Fat and was therefore retained for further analysis.  To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.930 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 1.075, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity. 

 

Table 4.57 
Correlations and Descriptive Statistics 

 
Variables  BodFat  

(DV) 
Grade PctMale  PctSES PM2.5ATT 

BodFat (DV)  -0.034** -0.110** -0.581** -0.165** 
Grade   0.072** -0.123** -0.026** 
PctMale     0.018* -0.011 
PctSES     0.236** 
PM2.5ATT      
      
Mean 68.13 6.07 51.41 52.48 0.54 
S.D. 11.58 1.49 7.42 29.69 0.499 
      

*p <0.05 ** p<0.01     
      

 

 

Three regression models were evaluated in this analysis.  The first model was between Body Fat 

and PM2.5ATT to determine if there was a significant relationship between these two variables.  

Because Body Fat may be influenced by several variables, a second model was run to evaluate 

the relationship between Body Fat and the independent variables Grade, PctMale, and PctSES.  

The third model investigated whether a relationship between Body Fat and PM2.5ATT existed 

after controlling for the variables in the second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.428 for the 

single independent variable model, and 1.719 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 
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Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Body Fat and PM2.5ATT.  Alpha was set at 0.05. The results indicate (F(1, 16652) = 463, 

p=<0.001) that PM2.5ATT is significantly related to Body Fat. 

 

Table 4.58 
Model 1:  Standard Regression of PM2.5ATT for Body Fat 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
PM2.5ATT -3.822** -0.165 0.027 0.165 0.027 0.027 
 Intercept = 70.19      
       
*p <0.05 ** p<0.01      
       

 

 

As the regression coefficients in Table 4.58 indicate, PM2.5ATT contributed significantly to Body 

Fat.   The multiple correlation (R=0.165) indicated a very weak positive relationship between 

PM2.5ATT and Body Fat.   Overall, the model (R2=0.027) explained 2.7% of the variation in Body 

Fat.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Body Fat and several non-environmental variables (Grade, PctMale, PctSES) that may 

influence this endpoint.  Alpha was set at 0.05. The results indicate (F(3, 16650) = 3077, 

p<0.001) that at least one of the variables is significantly related to Body Fat. 

 

As the regression coefficients in Table 4.59 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate PctSES (β=-0.591) was the strongest unique predictor followed by 

Grade (β=-0.100), and PctMale (β=-0.092).  When only the unique variance explained by each 

variable is examined, PctSES (sr2=0.343) also accounts for the most variance in Body Fat, 

34.3%, followed by Grade (sr2=0.01) with 1%, and PctMale (sr2=0.009) with 0.9%.   Total unique 
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variance was 36.2%. The semipartial correlation for PctMale in the second model is less than its 

zero-order correlation, indicating shared variance between the variables.  The semipartial 

correlations for PctSES and Grade are slightly larger than their zero-order correlations, indicating 

the presence of a suppressor variable. 

 

Table 4.59 
Model 2:  Standard Regression of Variables for Body  Fat 

 
Variable s b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -0.777** -0.100 0.0098 0.597 0.357 0.357 
Pct Male  -0.144** -0.092 0.0085    
Pct SES -0.231** -0.591 0.3434    
 Intercept = 92.34      
       
*p <0.05 ** p<0.01       
       

 

 

The multiple correlation (R=0.597) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.357) explained 

35.7% of the variation in Body Fat.  

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Body Fat and PM2.5ATT after controlling for the independent variables in Model 2 (Grade, 

PctMale, PctSES).  Alpha was set at 0.05. The results indicate (F(4, 16649) = 2316, p<0.001) that 

at least one of the variables is significantly related to Body Fat. 

 

As the regression coefficients in Table 4.60 indicate, all variables contributed significantly to Body 

Fat.  Beta weights indicate that PctSES (β= -0.584) was the strongest unique predictor, followed 

by Grade (β=-0.100), PctMale (β=-0.093), and PM2.5ATT (β=-0.030).  When only the unique 

variance explained by each variable is examined, PctSES (sr2=0.317) also accounts for the most 

variance in Body Fat, 31.71%, followed by Grade (sr2=0.01) with 1%, PctMale (sr2=0.009) with 
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0.9%, and PM2.5ATT (sr2=0.0008) with 0.08%.   Total unique variance was 33.6%.  The 

semipartial correlations for PctMale, PctSES, and PM2.5ATT in the third model are less than their 

zero-order correlations, indicating shared variance between the variables.  The semipartial 

correlation for Grade is slightly larger than its zero-order correlation, indicating the presence of a 

suppressor variable.   

 

 
Table 4.60 

Model 3:  Standard Regression of Variables (includi ng PM2.5ATT) for Body Fat 
 

Variables  b β sr2 
(unique) 

R 
(model) 

R2 
(model) 

Adjusted R 2  
(model) 

       
Grade -0.776** -0.100 0.0098 0.598 0.358 0.357 
Pct Male  -0.145** -0.093 0.0085    
Pct SES -0.228** -0.584 0.3170    
PM2.5ATT -0.704** -0.030 0.0008    
 Intercept =  92.6     
       
*p <0.05 ** p<0.01      
       

 
 

The multiple correlation (R=0.598) indicated a moderate positive relationship between the 

combination of independent variables and Body Fat.   Overall, the model (R2=0.358) explained 

35.8% of the variation in Body Fat.  

 

The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of 

PM2.5ATT in the model added 0.1% to the explanation of the variance in the model.   

 

4.4  Specific Aim 4   

 

For those criteria pollutants for which an association with aerobic capacity exists after 

adjustment for demographic factors, determine if there is a dose-response type 

relationship within counties with non-attainment status. 
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As shown in Section 4.3.1.3, after adjustment for demographic factors the addition of PM2.5 

Attainment status did not offer any additional explanatory power to the regression model.  

Therefore, PM2.5 was not carried through to Specific Aim 4.  Attainment status for Carbon 

Monoxide, 8-hour Ozone, and PM10 were all significant after controlling for demographic factors.  

Because, Carbon Monoxide had insufficient data for further evaluation (see Section 3.2.5), only 8-

hour Ozone and PM10 were evaluated further.  Because we know that Aerobic Capacity pass 

rates at a school are lower in the non-attainment area, the focus was to further investigate the 

data within the non-attainment areas to determine if a dose-response type relationship existed.   

This was done through a series of multiple regression analyses as summarized below. 

 

An additional assessment (Section 4.4.4) was performed to see if Aerobic Capacity passing rates 

were associated with a variable known as the Air Quality Index (AQI) that reflects the overall air 

quality within a county.  For this assessment, the number of times the Air Quality Index exceeded 

a value of 100 for all counties within California during the year preceding fitness testing was 

associated with Aerobic Capacity passing rates. 

 

 

4.4.1  Exceedances of Air Quality Standards 

 

4.4.1.1  8-Hour Ozone 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and 

PreO3Exceed) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 

missing 2.3% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  Because the percentage of missing data was less than 5%, Listwise deletion was used.  

No other variables were found to have missing data.  All variables were determined to have 

values within their allowable ranges. 
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The maximum for Cook’s distance is 0.006, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -3.856 and 3.563.   This indicates 

that some values are outside the standard of +3.3.  There are 16 values below -3.3 and 3 values 

greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the values 

for Studentized Deleted Residuals and Standardized Values.  The cases were examined to 

determine why they were outliers in solution.  No pattern was detected with the outliers, so they 

were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.381 for within the benchmark levels 

of +1.0.  The kurtosis of -0.069 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.61) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlations between the 

independent variables were all less than the standard of 0.7, indicating no problems with 

multicollinearity.  To further explore multicollinearity, measures of tolerance and VIF were 

evaluated. Tolerance is 0.684 or higher for all variables, so it is well above the 0.20 standard for 

problems.  The highest VIF is 1.462, well below the 4.0 or above standard for problems.  Both of 

the values indicate no multicollinearity 
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Table 4.61 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PreO3Exceed  

AerCap (DV)   -0.194** 0.399** -0.116** -0.327** -0.118** 
Grade   -0.056** 0.073** -0.116** -0.003 
BodFat     -0.098** -0.502** -0.125** 
PctMale      0.014* -0.013* 
PctSES      0.269** 
PreO3Exceed        
       
Mean 59.38 6.05 67.40 51.42 52.53 51.26 
S.D. 22.23 1.48 13.20 7.34 30.09 39.46 
       

*p <0.05 ** p<0.01       
       

 
 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PreO3Exceed to determine if there was a significant relationship between these two 

variables.  Because Aerobic Capacity may be influenced by several variables, a second model 

was run to evaluate the relationship between Aerobic Capacity and the independent variables 

Grade, BodFat, PctMale, and PctSES.  The third model investigated whether a relationship 

between Aerobic Capacity and PreO3Exceed existed after controlling for the variables in the 

second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.521 for the 

single independent variable model, and 1.701 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreO3Exceed.  Alpha was set at 0.05. The results indicate (F(1, 15316) = 

218, p=0.001) that PreO3Exceed is significantly related to Aerobic Capacity. 
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Table 4.62 
Model 1:  Standard Regression of PreO3Exceed for Ae robic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
PreO3Exceed  -0.067** -0.118 0.014 0.118 0.014 0.014 
 Intercept = 62.80      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.62 indicate, PreO3Exceed contributed significantly to 

Aerobic Capacity.   The multiple correlation (R=0.118) indicated a very weak positive relationship 

between PreO3Exceed and Aerobic Capacity.   Overall, the model (R2=0.014) explained 1.4% of 

the variation in Aerobic Capacity.  

 

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(4, 

15313) = 1112, p<0.001) that at least one of the variables is significantly related to Aerobic 

Capacity. 

 

Table 4.63 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.968** -0.198 0.0376 0.474 0.225 0.225 
Bod Fat 0.462** 0.274 0.0548    
Pct Male  -0.217** -0.072 0.0050    
Pct SES -0.156** -0.211 0.0324    
 Intercept = 65.53      
       
*p <0.05 ** p<0.01      
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As the regression coefficients in Table 4.63 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.234) was the strongest unique 

predictor, followed by Grade (β=-0.194), PctSES (β=-0.18), and PctMale (β=-0.071).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.055) also accounts 

for the most variance in Aerobic Capacity, 5.5%, followed by Grade (sr2=0.038) with 3.8%, 

PctSES (sr2=0.032) with 3.2%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

13%.  The semipartial correlations for BodyFat, PctMale and Pct SES in the second model are 

less than their zero-order correlations, indicating shared variance between the variables.  The 

semipartial correlation for Grade is the same as its zero-order correlation. 

 

The multiple correlation (R=0.474) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.225) 

explained 22.5% of the variation in Aerobic Capacity.  

 

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreO3Exceed after controlling for the independent variables in Model 2 

(Grade, BodFat, PctMale, PctSES).  Alpha was set at 0.05. The results indicate (F(5, 15312) = 

894, p<0.001) that at least one of the variables is significantly related to Aerobic Capacity. 

 

Table 4.64 
Model 3:  Standard Regression of Variables (includi ng PreO3Exceed) for Aerobic Capacity 
 

Variables  b β sr2 
(unique) 

R 
(model) 

R2 
(model) 

Adjusted R 2 
(model) 

       
Grade -2.953** -0.197 0.0372 0.475 0.226 0.226 
Bod Fat 0.463** 0.275 0.0548    
Pct Male  -0.218** -0.072 0.0052    
Pct SES -0.149** -0.202 0.0279    
PreO3Exceed  -0.018** -0.031 0.0009    
 Intercept = 66.04      
       
*p <0.05 ** p<0.01       
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As the regression coefficients in Table 4.64 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.234) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.167), PctMale (β=-0.072), and 

PreO3Exceed (β=-0.03).  When only the unique variance explained by each variable is examined, 

Body Fat (sr2=0.055) also accounts for the most variance in Aerobic Capacity, 5.5%, followed by 

Grade (sr2=0.037) with 3.7%, PctSES (sr2=0.028) with 2.8%, PctMale (sr2=0.005) with 0.5%, and 

PreO3Exceed (sr2=0.001) with 0.1%.   Total unique variance was 12.6%.  The semipartial 

correlations for Grade, BodFat, PctMale, Pct SES, and PreO3Exceed in the third model are less 

than their zero-order correlations, indicating shared variance between the variables.   

 

The multiple correlation (R=0.475) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.226) 

explained 22.6% of the variation in Aerobic Capacity.  

 

The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of 

PreO3Exceed in the model added 0.1% to the explanation of the variance in the model.   

 

4.4.1.2  PM10 

 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and 

PrePM10Exceed) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 

missing 1.8% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  PrePM10Exceed was missing a total of 1.1% of its data due to lack of measurements.  

Because the percentage of missing data was less than 5%, Listwise deletion was used.  No other 

variables were found to have missing data.  All variables were determined to have values within 

their allowable ranges. 
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The maximum for Cook’s distance is 0.007, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -3.794 and 3.010.   This indicates 

that some values are outside the standard of +3.3.  There are 14 values below -3.3 and 0 values 

greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the values 

for Studentized Deleted Residuals and Standardized Values.  The cases were examined to 

determine why they were outliers in solution.  No pattern was detected with the outliers, so they 

were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.330 for within the benchmark levels 

of +1.0.  The kurtosis of -0.189 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

Table 4.65 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PrePM10 

Exceed 
AerCap (DV)   -0.194** 0.364** -0.111** -0.287** -0.036** 
Grade   -0.049** 0.058** -0.122** 0.024** 
BodFat     -0.100** -0.504** -0.041** 
PctMale      0.006 -0.003 
PctSES      0.061** 
PrePM10Exceed        
       
Mean 57.67 6.03 66.04 51.33 58.33 69.15 
S.D. 21.97 1.47 12.41 7.20 29.42 68.69 
       

*p <0.05 ** p<0.01       
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A correlation matrix (Table 4.65) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlations between the 

independent variables were all less than the standard of 0.7, indicating no problems with 

multicollinearity.  To further explore multicollinearity, measures of tolerance and VIF were 

evaluated. Tolerance is 0.721 or higher for all variables, so it is well above the 0.20 standard for 

problems.  The highest VIF is 1.387, well below the 4.0 or above standard for problems.  Both of 

the values indicate no multicollinearity 

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PrePM10Exceed to determine if there was a significant relationship between these 

two variables.  Because Aerobic Capacity may be influenced by several variables, a second 

model was run to evaluate the relationship between Aerobic Capacity and the independent 

variables Grade, BodFat, PctMale, and PctSES.  The third model investigated whether a 

relationship between Aerobic Capacity and PrePM10Exceed existed after controlling for the 

variables in the second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.523 for the 

single independent variable model, and 1.697 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PrePM10Exceed.  Alpha was set at 0.05. The results indicate (F(1, 9618) = 

12.1, p=0.001) that PrePM10Exceed is significantly related to Aerobic Capacity. 
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Table 4.66 
Model 1:  Standard Regression of PrePM10Exceed for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
PrePM10Exceed  -0.011** -0.036 0.001 0.036 0.001 0.001 
 Intercept = 58.46      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.66 indicate, PrePM10Exceed contributed significantly to 

Aerobic Capacity.   The multiple correlation (R=0.036) indicated a very weak positive relationship 

between PrePM10Exceed and Aerobic Capacity.   Overall, the model (R2=0.001) explained 0.1% 

of the variation in Aerobic Capacity.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(4, 9615) 

= 572, p<0.001) that at least one of the variables is significantly related to Aerobic Capacity. 

 

Table 4.67 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.983** -0.200 0.0388 0.438 0.192 0.192 
Bod Fat 0.450** 0.254 0.0471    
Pct Male  -0.223** -0.073 0.0052    
Pct SES -0.137** -0.183 0.0243    
 Intercept = 65.33      
       
*p <0.05 ** p<0.01      
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As the regression coefficients in Table 4.67 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.254) was the strongest unique 

predictor, followed by Grade (β=-0.200), PctSES (β=-0.183), and PctMale (β=-0.073).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.047) also accounts 

for the most variance in Aerobic Capacity, 4.7%, followed by Grade (sr2=0.039) with 3.9%, 

PctSES (sr2=0.0242) with 2.4%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

11.58%.  The zero-order correlations for BodFat, PctMale and PctSES were higher than their 

semipartial correlations, indicating shared variation with the other variables in the model.  

However, for Grade, the zero-order correlation was slightly lower than the corresponding 

semipartial correlation, indicating the possible presence of a suppressor variable. 

 

The multiple correlation (R=0.438) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.19.2) 

explained 19.2% of the variation in Aerobic Capacity.  

 

 

Model 3 

 
For the third model (Table 4.68), a standard regression was conducted to determine the 

relationship between Aerobic Capacity and PM10Exceed after controlling for the independent 

variables in Model 2 (Grade, BodFat, PctMale, PctSES).  Alpha was set at 0.05. Based on 

evaluation of the regression coefficients in this model, the addition of PM10Exceed was found to 

be non-significant (p=0.308), indicating that this variable did not contribute any additional 

explanation of the variance of Aerobic Capacity. 
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Table 4.68 
Model 3:  Standard Regression of Variables (incl. P rePM10Exceed) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.978** -0.200 0.0384 0.439 0192 0.192 
Bod Fat 0.450** 0.254 0.0471    
Pct Male  -0.223** -0.073 0.0052    
Pct SES -0.136** -0.183 0.0240    
PrePM10Exceed  -0.003 -0.009 0.0001    
 Intercept = 65.50      
       
*p <0.05 ** p<0.01       
       

 
 
 
 

4.4.2  Number of Person Days Exceeding Air Quality Standards 

 

4.4.2.1  8-Hour Ozone 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and 

PreO3PersDays) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 

missing 2.3% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  Because the percentage of missing data was less than 5%, Listwise deletion was used.  

No other variables were found to have missing data.  All variables were determined to have 

values within their allowable ranges. 

 

The data were next screened for influential outliers in solution.  The maximum for Cook’s distance 

was 0.006, well below the standard of 1.0 for problems.  The minimum and maximum Studentized 

Deleted Residuals were -3.860 and 3.624, indicating that some values are outside the standard of 

+3.3.  There are 12 values below -3.3 and 3 values greater than +3.3.  Therefore, a scatterplot 

was generated to examine the outliers.   The cases were examined to determine why they were 

outliers in solution.  No pattern was detected with the outliers, so they were deleted from further 

analyses.   
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The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.384 for within the benchmark levels 

of +1.0.  The kurtosis of -0.061 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.69) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   All of the correlations between 

IV’s are less than 0.70, indicating no multicollinearity.   To further explore multicollinearity, 

measures of tolerance and VIF were evaluated. Tolerance is 0.698 or higher for all variables, so it 

is well above the 0.20 standard for problems.  The highest VIF is 1.433, well below the 4.0 or 

above standard for problems.  Both of the values indicate no multicollinearity 

 

Table 4.69 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PreO3 

PersDays 
AerCap (DV)   -0.193** 0.398** -0.116** -0.326** -0.067** 
Grade   -0.056** 0.073** -0.116** -0.016* 
BodFat     -0.098** -0.502** -0.116** 
PctMale      0.014* -0.015* 
PctSES      0.230** 
PreO3PersDays        
       
Mean 59.36 6.05 67.40 51.42 52.52 245.15 
S.D. 22.24 1.48 13.20 7.34 30.09 334.88 
       

*p <0.05 ** p<0.01      
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Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PreO3PersDays to determine if there was a significant relationship between these 

two variables.  Because Aerobic Capacity may be influenced by several variables, a second 

model was run to evaluate the relationship between Aerobic Capacity and the independent 

variables Grade, BodFat, PctMale, and PctSES.  The third model investigated whether a 

relationship between Aerobic Capacity and PreO3PersDays existed after controlling for the 

variables in the second model. 

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.509 for the 

single independent variable model, and 1.702 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreO3PersDays.  Alpha was set at 0.05. The results indicate (F(1, 15320) 

= 68.33, p<0.001) that PreO3PersDays is significantly related to Aerobic Capacity. 

 

Table 4.70 
Model 1:  Standard Regression of PreO3PersDays for Aerobic Capacity 

 
Variables  b β sr 2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
PreO3PersDays  -0.004** -0.067 0.004 0.067 0.004 0.004 
 Intercept = 60.45      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.70 indicate, PreO3PersDays contributed significantly to 

Aerobic Capacity.   The multiple correlation (R=0.067) indicated a very weak positive relationship 
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between PreO3PersDays and Aerobic Capacity.   Overall, the model (R2=0.004) explained 0.4% 

of the variation in Aerobic Capacity.  

 

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(5, 

15317) = 1106, p<0.001) that at least one of the variables is significantly related to Aerobic 

Capacity. 

 

Table 4.71 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.959** -0.197 0.0376 0.473 0.224 0.224 
Bod Fat 0.462** 0.274 0.0548    
Pct Male  -0.217** -0.072 0.0050    
Pct SES -0.156** -0.210 0.0320    
 Intercept = 65.46      
       
*p <0.05 ** p<0.01      
       

 

 

As the regression coefficients in Table 4.71 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.274) was the strongest unique 

predictor, followed by PctSES (β=-0.210), Grade (β=-0.197), and PctMale (β=-0.072).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.055) also accounts 

for the most variance in Aerobic Capacity, 5.5%, followed by Grade (sr2=0.038) with 3.8%, 

PctSES (sr2=0.032) with 3.2%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

13%.  The zero-order correlations for BodFat, PctMale, and PctSES were higher than their 

semipartial correlations, indicating shared variation with the other variables in the model.  
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However, for Grade, the zero-order correlation was slightly lower than the corresponding 

semipartial correlation, indicating the possible presence of a suppressor variable.  

 

The multiple correlation (R=0.473) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.224) 

explained 22.4% of the variation in Aerobic Capacity.  

 

Model 3 

For the third model (Table 4.72), a standard regression was conducted to determine the 

relationship between Aerobic Capacity and PreO3PersDays after controlling for the independent 

variables in Model 2 (Grade, BodFat, PctMale, PctSES).  Alpha was set at 0.05.  

 

Table 4.72 
Model 3:  Standard Regression of Variables (incl. P reO3PersDays) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted  R2 

(model) 
       
Grade -2.961** -0.197 0.0376 0.473 0.224 0.224 
Bod Fat 0.462** 0.274 0.0548    
Pct Male  -0.216** -0.071 0.0050    
Pct SES -0.157** -0.213 0.0317    
PreO3PersDays  -0.001 -0.010 0.0001    
 Intercept = 65.37      
       
*p <0.05 ** p<0.01      
       

 
Based on evaluation of the regression coefficients in this model, the addition of PreO3PersDays 

was found to be non-significant (p=0.174), indicating that this variable did not contribute any 

additional explanation of the variance of Aerobic Capacity. 

 

4.4.2.2  PM10 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and 

PrePM10PersDays) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 
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missing 1.8% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  PrePM10PersDays was missing a total of 1.1% of its data due to lack of measurements.  

Because the percentage of missing data was less than 5%, Listwise deletion was used.  No other 

variables were found to have missing data.  All variables were determined to have values within 

their allowable ranges. 

 

The maximum for Cook’s distance is 0.007, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -3.808 and 3.027.   This indicates 

that some values are outside the standard of +3.3.  There are 6 values below -3.3 and 0 values 

greater than +3.3.  Therefore, we generated a scatterplot to examine the outliers using the values 

for Studentized Deleted Residuals and Standardized Values.  The cases were examined to 

determine why they were outliers in solution.  No pattern was detected with the outliers, so they 

were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.331 for within the benchmark levels 

of +1.0.  The kurtosis of -0.185 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

 

 

 



 154 

Table 4.73 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PrePM10 

PersDays 
AerCap (DV)   -0.194** 0.364** -0.111** -0.287** -0.004 
Grade   -0.049** 0.058** -0.122** -0.016 
BodFat     -0.100** -0.504** -0.038** 
PctMale      0.007 -0.013 
PctSES      0.109** 
PrePM10PersDays        
       
Mean 57.66 6.03 66.04 51.33 58.32 205.56 
S.D. 21.97 1.47 12.41 7.20 29.42 152.84 
       

*p <0.05 ** p<0.01      
       

 

A correlation matrix (Table 4.73) was generated and all of the independent variables, with the 

exception of PrePM10PersDays were significantly correlated (p<0.001) with the dependent 

variable.   Because PrePM10PersDays was not significantly correlated (p=0.364) with Aerobic 

Capacity, no further analyses were performed.   

 

 
 

4.4.3  Annual Average Concentrations 

 

4.4.3.1  8-Hour Ozone 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and 

PreO3AnnAvg) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 

missing 2.3% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  Because the percentage of missing data was less than 5%, Listwise deletion was used.  

No other variables were found to have missing data.  All variables were determined to have 

values within their allowable ranges. 
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The maximum for Cook’s distance is 0.006, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -3.856 and 3.525.   This indicates 

that some values are outside the standard of +3.3.  There are 14 values below -3.3 and 3 values 

greater than 3.3.  Therefore, we generated a scatterplot to examine the outliers using the values 

for Studentized Deleted Residuals and Standardized Values.  The cases were examined to 

determine why they were outliers in solution.  No pattern was detected with the outliers, so they 

were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.385 for within the benchmark levels 

of +1.0.  The kurtosis of -0.061 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

 

 A correlation matrix (Table 4.74) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlations between the 

independent variables were all less than the standard of 0.7, indicating no problems with 

multicollinearity.  To further explore multicollinearity, measures of tolerance and VIF were 

evaluated. Tolerance is 0.688 or higher for all variables, so it is well above the 0.20 standard for 

problems.  The highest VIF is 1.452, well below the 4.0 or above standard for problems.  Both of 

the values indicate no multicollinearity 
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Table 4.74 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PreO3 

AnnAvg 
AerCap (DV)   -0.194** 0.398** -0.116** -0.326** -0.113** 
Grade   -0.056** 0.073** -0.116** -0.003 
BodFat     -0.098** -0.502** -0.117** 
PctMale      0.014* -0.012 
PctSES      0.254** 
PreO3AnnAvg        
       
Mean 59.37 6.05 67.40 51.42 52.52 0.063 
S.D. 22.24 1.48 13.20 7.34 30.09 0.014 
       

*p <0.05 ** p<0.01       
       

 
 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PreO3AnnAvg to determine if there was a significant relationship between these 

two variables.  Because Aerobic Capacity may be influenced by several variables, a second 

model was run to evaluate the relationship between Aerobic Capacity and the independent 

variables Grade, BodFat, PctMale, and PctSES.  The third model investigated whether a 

relationship between Aerobic Capacity and PreO3AnnAvg existed after controlling for the 

variables in the second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.520 for the 

single independent variable model, and 1.700 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreO3AnnAvg.  Alpha was set at 0.05. The results indicate (F(1, 15318) = 

199, p=0.001) that PreO3AnnAvg is significantly related to Aerobic Capacity. 
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Table 4.75 
Model 1:  Standard Regression of PreO3AnnAvg for Ae robic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
PreO3AnnAvg  -183.38** -0.113 0.013 0.113 0.013 0.013 
 Intercept =70.85      
       
*p <0.05 ** p<0.01       
       

 
 

As the regression coefficients in Table 4.75 indicate, PreO3AnnAvg contributed significantly to 

Aerobic Capacity.   The multiple correlation (R=0.113) indicated a very weak positive relationship 

between PreO3AnnAvg and Aerobic Capacity.   Overall, the model (R2=0.013) explained 1.3% of 

the variation in Aerobic Capacity.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(4, 

15315) = 1108, p<0.001) that at least one of the variables is significantly related to Aerobic 

Capacity. 

 

As the regression coefficients in Table 4.76 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.234) was the strongest unique 

predictor, followed by Grade (β=-0.194), PctSES (β=-0.179), and PctMale (β=-0.071).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.055) also accounts 

for the most variance in Aerobic Capacity, 5.3%, followed by Grade (sr2=0.038) with 3.8%, 

PctSES (sr2=0.032) with 3.2%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

13%.  The zero-order correlations for Grade, BodFat, PctMale and PctSES were higher than their 

semipartial correlations, indicating shared variation with the other variables in the model.   
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Table 4.76 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -2.963** -0.197 0.0376 0.474 0.224 0.224 
Bod Fat 0.462** 0.274 0.0548    
Pct Male  -0.216** -0.071 0.0050    
Pct SES -0.156** -0.210 0.0320    
 Intercept = 65.41      
       
*p <0.05 ** p<0.01      
       

 

 

The multiple correlation (R=0.474) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.224) 

explained 22.4% of the variation in Aerobic Capacity.  

 

Model 3 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreO3AnnAvg after controlling for the independent variables in Model 2 

(Grade, BodFat, PctMale, PctSES).  Alpha was set at 0.05. The results indicate (F(5, 15314) = 

891, p<0.001) that at least one of the variables is significantly related to Aerobic Capacity. 

 

As the regression coefficients in Table 4.77 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.234) was the strongest unique 

predictor, followed by Grade (β=-0.193), PctSES (β=-0.168), PctMale (β=-0.071), and 

PreO3AnnAvg (β=-0.03).  When only the unique variance explained by each variable is 

examined, Body Fat (sr2=0.055) also accounts for the most variance in Aerobic Capacity, 5.5%, 

followed by Grade (sr2=0.037) with 3.7%, PctSES (sr2=0.028) with 2.8%, PctMale (sr2=0.005) with 

0.5%, and PreO3AnnAvg (sr2=0.001) with 0.1%.   Total unique variance was 12.6%.  The zero-

order correlations for Grade, BodFat, PctMale, PctSES, and PrePreO3AnnAvg were higher than 

their semipartial correlations, indicating shared variation with the other variables in the model.   
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Table 4.77 
Model 3:  Standard Regression of Variables (incl. P reO3AnnAvg) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -2.949** -0.197 0.0372 0.475 0.225 0.225 
Bod Fat 0.463** 0.275 0.0548    
Pct Male  -0.217** -0.072 0.0050    
Pct SES -0.149** -0.202 0.0282    
PreO3AnnAvg  -50.38** -0.031 0.0009    
 Intercept = 68.18      
       
*p <0.05 ** p<0.01      
       

 
 

The multiple correlation (R=0.475) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.225) 

explained 22.5% of the variation in Aerobic Capacity.  

 

The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of 

PreO3AnnAvg in the model added 0.1% to the explanation of the variance in the model.   

 

 

4.4.3.2  PM10 

 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and 

PrePM10AnnAvg) and the dependent variable Aerobic Capacity (AerCap) were screened for 

accuracy.  First, the data were screened for missing values.  PctSES was determined to be 

missing 1.8% of its data, since the percent of free/reduced price meals was unavailable for all 

schools.  PrePM10AnnAvg was missing a total of 1.1% of its data due to lack of measurements.  

Because the percentage of missing data was less than 5%, Listwise deletion was used.  No other 

variables were found to have missing data.  All variables were determined to have values within 

their allowable ranges. 
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The maximum for Cook’s distance is 0.007, well below the standard of 1.0 for problems.  The 

minimum and maximum Studentized Deleted Residuals are -3.789 and 3.014.   This indicates 

that some values are outside the standard of +3.3.  There are 7 values below -3.3 and 0 values 

greater than +3.3.  Therefore, we generated a scatterplot to examine the outliers using the values 

for Studentized Deleted Residuals and Standardized Values.  The cases were examined to 

determine why they were outliers in solution.  No pattern was detected with the outliers, so they 

were deleted from further analyses.   

 

The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.329 for within the benchmark levels 

of +1.0.  The kurtosis of -0.190 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

A correlation matrix (Table 4.78) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlations between the 

independent variables were all less than the standard of 0.7, indicating no problems with 

multicollinearity.  To further explore multicollinearity, measures of tolerance and VIF were 

evaluated. Tolerance is 0.709 or higher for all variables, so it is well above the 0.20 standard for 

problems.  The highest VIF is 1.411, well below the 4.0 or above standard for problems.  Both of 

the values indicate no multicollinearity 
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Table 4.78 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PrePM10 

AnnAvg 
AerCap (DV)   -0.194** 0.364** -0.111** -0.287** -0.067** 
Grade   -0.049** 0.058** -0.122** -0.036** 
BodFat     -0.100** -0.504** -0.099** 
PctMale      0.006 -0.008 
PctSES      0.164** 
PrePM10AnnAvg        
       
Mean 57.67 6.03 66.04 51.32 58.33 32.06 
S.D. 21.97 1.47 12.41 7.20 29.41 5.82 
       

*p <0.05 ** p<0.01       
       

 

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PrePM10AnnAvg to determine if there was a significant relationship between these 

two variables.  Because Aerobic Capacity may be influenced by several variables, a second 

model was run to evaluate the relationship between Aerobic Capacity and the independent 

variables Grade, BodFat, PctMale, and PctSES.  The third model investigated whether a 

relationship between Aerobic Capacity and PrePM10AnnAvg existed after controlling for the 

variables in the second model.   

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.527 for the 

single independent variable model, and 1.697 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PrePM10AnnAvg.  Alpha was set at 0.05. The results indicate (F(1, 9618) = 

42.7, p=0.001) that PrePM10AnnAvg is significantly related to Aerobic Capacity. 
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Table 4.79 
Model 1:  Standard Regression of PrePM10AnnAvg for Aerobic Capacity 

 
Variables  b β sr 2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
PrePM10AnnAvg  -0.251** -0.067 0.004 0.067 0.004 0.004 
 Intercept = 65.33      
       
*p <0.05 ** p<0.01      
       

 
 

As the regression coefficients in Table 4.79 indicate, PrePM10AnnAvg contributed significantly to 

Aerobic Capacity.   The multiple correlation (R=0.067) indicated a very weak positive relationship 

between PrePM10AnnAvg and Aerobic Capacity.   Overall, the model (R2=0.004) explained 0.4% 

of the variation in Aerobic Capacity.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(4, 9615) 

= 572, p<0.001) that at least one of the variables is significantly related to Aerobic Capacity. 

 

Table 4.80 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Ad justed R 2 

(model) 
       
Grade -2.983** -0.200 0.0388 0.438 0.192 0.192 
Bod Fat 0.450** 0.254 0.0471    
Pct Male  -0.223** -0.073 0.0052    
Pct SES -0.137** -0.183 0.0243    
 Intercept = 65.33      
       
*p <0.05 ** p<0.01       
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As the regression coefficients in Table 4.80 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.254) was the strongest unique 

predictor, followed by Grade (β=-0.200), PctSES (β=-0.183), and PctMale (β=-0.073).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.047) also accounts 

for the most variance in Aerobic Capacity, 4.7%, followed by Grade (sr2=0.038) with 3.8%, 

PctSES (sr2=0.024) with 2.4%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

11.5%.  The zero-order correlations for BodFat, PctMale and PctSES were higher than their 

semipartial correlations, indicating shared variation with the other variables in the model.  

However, for Grade, the zero-order correlation was slightly lower than the corresponding 

semipartial correlation, indicating the possible presence of a suppressor variable. 

 

The multiple correlation (R=0.438) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.192) 

explained 19.2% of the variation in Aerobic Capacity.  

 

 

Model 3 

For the third model (Table 4.81), a standard regression was conducted to determine the 

relationship between Aerobic Capacity and PM10AnnAvg after controlling for the independent 

variables in Model 2 (Grade, BodFat, PctMale, PctSES).  Alpha was set at 0.05. Based on 

evaluation of the regression coefficients in this model, the addition of PM10AnnAvg was found to 

be non-significant (p=0.597), indicating that this variable did not contribute any additional 

explanation of the variance of Aerobic Capacity. 
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Table 4.81 
Model 3:  Standard Regression of Variables (incl. P rePM10AnnAvg) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2  

(model) 
       
Grade -2.979** -0.200 0.0384 0.438 0.192 0.192 
Bod Fat 0.450** 0.254 0.0471    
Pct Male  -0.223** -0.073 0.0052    
Pct SES -0.136** -0.182 0.0234    
PrePM10AnnAvg  -0.019 -0.005 0.0000    
 Intercept = 65.88      
       
*p <0.05 ** p<0.01       
       

 
 

 

4.4.4  Air Quality Index 

 

Prior to the analysis, the independent variables (Grade, BodFat, PctMale, PctSES, and PreAQI) 

and the dependent variable Aerobic Capacity (AerCap) were screened for accuracy.  First, the 

data were screened for missing values.  PctSES was determined to be missing 2.4% of its data, 

since the percent of free/reduced price meals was unavailable for all schools.  PreAQI was 

missing a total of 3.5% of its data because only those counties with 365 days of data were used 

in this analysis.  Because the percentage of missing data was less than 5%, Listwise deletion was 

used.  No other variables were found to have missing data.  All variables were determined to 

have values within their allowable ranges. 

 

The data were next screened for influential outliers in solution.  The maximum for Cook’s distance 

was 0.004, well below the standard of 1.0 for problems.  The minimum and maximum Studentized 

Deleted Residuals were -3.878 and 3.528, indicating that some values are outside the standard of 

+3.3.  There are 15 values below -3.3 and 3 values greater than 3.3.  Therefore, a scatterplot was 

generated to examine the outliers.   The cases were examined to determine why they were 

outliers in solution.  No pattern was detected with the outliers, so they were deleted from further 

analyses.   
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The Unstandardized residuals were screened for normality using visual and statistical methods.  

First histograms and Q-Q Normal Probability Plots were examined.  The histograms indicated a 

unimodal, normal distribution with minimal skew.   The Q-Q plot also showed little skew.  

Descriptive statistics were generated with the skewness of -0.391 for within the benchmark levels 

of +1.0.  The kurtosis of -0.059 was within the kurtosis benchmark of +2.0.  Thus, the assumption 

of a normal distribution was satisfied and no further transformations were required. 

 

A scatterplot of standardized residuals against standardized predicted values was used to 

evaluate both linearity and homoscedasticity.  Overall, the data were linear and evenly 

distributed, satisfying the assumptions of both linearity and homoscedasticity. 

  

Table 4.82 
Correlations and Descriptive Statistics 

 
Variables  AerCap  

(DV) 
Grade BodFat  PctMale  PctSES PreAQI  

AerCap (DV)   -0.187** 0.394** -0.114** -0.322** -0.121** 
Grade   -0.049** 0.077** -0.121** -0.014* 
BodFat     -0.101** -0.498** -0.126** 
PctMale      0.019** -0.020** 
PctSES      0.269** 
PreAQI        
       
Mean 59.62 6.06 67.46 51.45 52.26 58.48 
S.D. 22.21 1.49 13.23 7.46 29.95 46.14 
       

*p <0.05 ** p<0.01      
       

 
 

A correlation matrix (Table 4.82) was generated and all of the independent variables were 

significantly correlated (p<0.001) with the dependent variable.   The correlation between the 

independent variables were all less than the standard of 0.7, indicating no problems with 

multicollinearity.  To further explore multicollinearity, measures of tolerance and VIF were 

evaluated. Tolerance is 0.689 or higher for all variables, so it is well above the 0.20 standard for 
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problems.  The highest VIF is 1.452, well below the 4.0 or above standard for problems.  Both of 

the values indicate no multicollinearity 

 

Three regression models were evaluated in this analysis.  The first model was between Aerobic 

Capacity and PreAQI to determine if there was a significant relationship between these two 

variables.  Because Aerobic Capacity may be influenced by several variables, a second model 

was run to evaluate the relationship between Aerobic Capacity and the independent variables 

Grade, BodFat, PctMale, and PctSES.  The third model investigated whether a relationship 

between Aerobic Capacity and PreAQI existed after controlling for the variables in the second 

model. 

 

Durbin-Watson was used to test for intercorrelation in the models.  This value is 1.537 for the 

single independent variable model, and 1.707 for the multivariable models.  These values are 

within the range of 1.0 to 3.0 so no intercorrelation exists. 

 

 

Model 1 

For the first model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreAQI.  Alpha was set at 0.05. The results indicate (F(1, 16252) = 241, 

p<0.001) that PreAQI is significantly related to Aerobic Capacity. 

 

Table 4.83 
Model 1:  Standard Regression of PreAQI for Aerobic  Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 (model)  

       
PreAQI  -0.058** -0.121 0.015 0.121 0.015 0.015 
 Intercept = 63.02      
       
*p <0.05 ** p<0.01      
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As the regression coefficients in Table 4.83 indicate, PreAQI contributed significantly to Aerobic 

Capacity.   The multiple correlation (R=0.121) indicated a very weak positive relationship between 

PreAQI and Aerobic Capacity.   Overall, the model (R2=0.015) explained 1.5% of the variation in 

Aerobic Capacity.  

 

Model 2 

For the second model, a standard regression was conducted to determine the relationship 

between Aerobic Capacity and several non-environmental variables (Grade, BodFat, PctMale, 

PctSES) that may influence this endpoint.  Alpha was set at 0.05. The results indicate (F(4, 

16249) = 1138, p<0.001) that at least one of the variables is significantly related to Aerobic 

Capacity. 

 

Table 4.84 
Model 2:  Standard Regression of Variables for Aero bic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.891** -0.193 0.0361 0.468 0.219 0.219 
Bod Fat 0.462** 0.275 0.0552    
Pct Male  -0.200** -0.067 0.0045    
Pct SES -0.154** -0.207 0.0313    
 Intercept = 64.32      
       
*p <0.05 ** p<0.01      
       

 
 

As the regression coefficients in Table 4.84 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.275) was the strongest unique 

predictor, followed by PctSES (β=-0.207), Grade (β=-0.193), and PctMale (β=-0.067).  When only 

the unique variance explained by each variable is examined, Body Fat (sr2=0.055) also accounts 

for the most variance in Aerobic Capacity, 5.5%, followed by Grade (sr2=0.036) with 3.6%, 

PctSES (sr2=0.031) with 3.1%, and PctMale (sr2=0.005) with 0.5%.   Total unique variance was 

12.7%.  The semipartial correlations for BodFat, PctMale and Pct SES in the second model are 

less than their zero-order correlations, indicating shared variance between the variables.  The 



 168 

semipartial correlation for Grade is slightly larger than its zero-order correlation, indicating the 

presence of a suppressor variable. 

 

The multiple correlation (R=0.468) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.219) 

explained 21.9% of the variation in Aerobic Capacity.  

 

Model 3 

 

For the third model, a standard regression was conducted to determine the relationship between 

Aerobic Capacity and PreAQI after controlling for the independent variables in Model 2 (Grade, 

BodFat, PctMale, PctSES).  Alpha was set at 0.05. The results indicate (F(5, 16248) = 917, 

p<0.001) that at least one of the variables is significantly related to Aerobic Capacity. 

 

Table 4.85 
Model 3:  Standard Regression of Variables (includi ng PreAQI) for Aerobic Capacity 

 
Variables  b β sr2 

(unique) 
R 

(model) 
R2 

(model) 
Adjusted R 2 

(model) 
       
Grade -2.879** -0.193 0.0357 0.469 0.220 0.220 
Bod Fat 0.462** 0.275 0.0557    
Pct Male  -0.203** -0.068 0.0046    
Pct SES -0.146** -0.197 0.0266    
PreAQI  -0.018** -0.037 0.0013    
 Inter cept = 64.99      
       
*p <0.05 ** p<0.01      
       

 
 

As the regression coefficients in Table 4.85 indicate, all variables contributed significantly to 

Aerobic Capacity.  Beta weights indicate that Body Fat (β=0.275) was the strongest unique 

predictor, followed by PctSES (β=-0.197), Grade (β=-0.193), PctMale (β=-0.068) and PreAQI (β=-

0.037).  When only the unique variance explained by each variable is examined, Body Fat 

(sr2=0.056) also accounts for the most variance in Aerobic Capacity, 5.6%, followed by Grade 
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(sr2=0.036) with 3.6%, PctSES (sr2=0.027) with 2.7%, PctMale (sr2=0.005) with 0.5% and PreAQI 

(sr2=0.001) with 0.1%.   Total unique variance was 12.4%.  The semipartial correlations for 

BodFat, PctMale and Pct SES in the second model are less than their zero-order correlations, 

indicating shared variance between the variables.  The semipartial correlation for Grade is slightly 

larger than its zero-order correlation, indicating the presence of a suppressor variable. The 

semipartial correlation for PreAQI approaches zero, indicating the possible presence of a 

spurious or intervening relationship.   

 

The multiple correlation (R=0.469) indicated a moderate positive relationship between the 

combination of independent variables and Aerobic Capacity.   Overall, the model (R2=0.220) 

explained 22.0% of the variation in Aerobic Capacity.  

 

The R2 change between model 2 and model 3 was 0.001, indicating that the inclusion of PreAQI 

to the model added 0.1% to the explanation of the variance in the model.   

 

4.5  Chapter Summary   

 

This chapter presented the findings from the statistical analyses performed to evaluate the 

relationship between criteria air pollutants and measures of physical fitness in California school 

children.  The study focused on four criteria air pollutants, carbon monoxide, 8-hour ozone, PM10 

and PM2.5, as these are the pollutants that various California counties were in non-attainment for 

during the study timeframe of 2006 and 2007.   Based on the literature review in Chapter 2, the 

statistical analyses focused on the relationship of these four pollutants with two fitness endpoints 

aerobic capacity and body composition passing rates.  The statistical analyses were performed in 

accord with the four specific aims identified in Chapter 1 and the methodology specified in 

Chapter 3 of this report.  A further discussion of the findings is available in Chapter 5. 
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CHAPTER V 
 
 

DISCUSSION 

 

The present study examined the association between chronic exposure to four criteria air 

pollutants, CO, O3, PM10 and PM2.5, and two measures of physical fitness, aerobic capacity and 

body composition, in California schoolchildren.  To date, little research has been conducted on 

the effects of ambient air pollutants on the physical fitness of children.  In addition, prior studies 

have largely focused on clinical effects following acute exposures to ambient air pollutants.  This 

study is unique in that it assessed a functional rather than clinical measure of respiratory health 

following chronic exposure to criteria air pollution.  By evaluating aerobic capacity, the current 

study assessed the association of ambient air pollution with physical performance.  In addition, 

the current study is the first known study to evaluate the association between criteria pollutants 

and measures of body fat in children.   

 

A tiered approach was used to assess the association of the four criteria air pollutants with the 

physical fitness outcomes.  The study was divided into four different specific aims that were 

assessed via the statistical methods described in Section 3 of this report.   The following sections 

summarize and discuss the implications of findings from these analyses.   

 

 

5.1  Aerobic Capacity  

 

Aerobic capacity is also referred to as VO2max.  This measure reflects the maximum rate at 

which oxygen can be taken up by the body and used during exercise, and is dependent on the 

oxygen-exchange capacity of the lungs, the oxygen-transport capacity of the cardiovascular



 171 

system, and the oxygen-utilization capacity of the muscles (Welk and Meredith, 2008).  For the 

FITNESSGRAM® physical fitness testing program, aerobic capacity is assessed using either the 

Progressive Aerobic Cardiovascular Endurance Run (PACER) test or a timed mile run/walk 

(California Department of Education, 2009a).  Individual student results are compared to criterion 

referenced standards that represent a healthy fitness zone (HFZ) for aerobic capacity. The 

aggregate results (total percentage of children in the HFZ) for each grade that was assessed at a 

school are tracked on the California Department of Education’s public Web site (California 

Department of Educations, 2009a).  These aggregate data were the basis for the current study. 

 

It is well established that criteria air pollutants are associated with adverse respiratory effects.  To 

date, the majority of human studies have focused on clinical and symptomatic measures of 

respiratory health, such as forced vital capacity (FVC), forced expiratory volume (FEV), asthma, 

wheezing, and reports of shallow breathing.  For the most part, these studies have focused on the 

appearance of these clinical effects following acute exposures to ambient air pollutants without 

regard to the impact of these adverse effects on fitness performance.  Although clinical outcomes 

may be impaired by criteria air pollutants, it is not known whether these clinical effects translate to 

functional effects, or whether these effects persist under conditions of chronic exposure.  This 

study was unique in that it assessed the association of chronic exposure to criteria air pollutants 

with a functional, rather than clinical, measure of respiratory health.   Aerobic capacity in this 

study is a measure of the performance ability of a child under standardized physical fitness 

testing conditions.   It stands to reason that if acute and chronic exposure to criteria air pollutants 

can result in adverse respiratory effects and symptoms, it may be hypothesized that these same 

criteria air pollutants may also be associated with decrements in aerobic capacity. 

 

A four-tiered approach was used to assess the association between aerobic capacity and the four 

criteria air pollutants.  The first step evaluated whether aerobic capacity passing rates differed by 

attainment status.  Step 2 assessed various demographic variables to determine their association 

with aerobic capacity.  The third step evaluated whether an association between aerobic capacity 
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passing rate and the air pollutant attainment status remained after adjusting for significant 

demographic variables.  For those criteria pollutants that were found to have a significant 

association in Step 3, a fourth step was performed using various environmental metrics to assess 

if a dose-response type assessment existed within the non-attainment areas.  The following 

sections summarize and discuss the implications of findings from these analyses. 

 

 

5.1.1  Specific Aim 1 - Aerobic Capacity by Attainment Status 

The hypothesis for this specific aim stated that aerobic capacity passing rates would be higher at 

schools located in attainment areas and would be lower at schools in non-attainment areas, 

based on the assumption that these criteria air pollutants would adversely affect respiratory 

health leading to decreased performance in aerobic capacity testing.  Assignment of a school to 

an attainment or non-attainment area was dependent on the county in which the school was 

located.  For all four criteria air pollutants, a significant difference (p<0.05) was found in aerobic 

capacity passing rates, with schools located in attainment areas having a higher average passing 

rate than schools located in non-attainment counties.    In terms of explanatory power for the t-

test, 8-hour ozone had the most explanation of variance in aerobic capacity passing rate at 1.1%, 

followed by PM10 at 0.9%, PM2.5 at 0.7%, and carbon monoxide at 0.2%.   

 

Despite the finding of a significant difference in aerobic capacity passing rates at schools located 

in attainment areas versus non-attainment areas for all four criteria air pollutants, it is important to 

note that this finding may be confounded by other demographic factors.  For example, if aerobic 

capacity is influenced by a variable (e.g., socioeconomic status) that is more common to a non-

attainment area, the significant association seen in the t-test may in fact be due to confounding 

variables rather than attainment status.  Specific Aim 2 was developed to identify those factors 

that may influence the aerobic capacity passing rates, and allow for further statistical analyses 

controlling for these factors as necessary. 
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5.1.2  Specific Aim 2 – Demographic Variables 

The association between four demographic factors (gender, grade, socioeconomic status, and 

ethnicity) and aerobic capacity passing rates were statistically evaluated to determine which 

factors were significantly associated with the percentage of students passing the aerobic capacity 

testing at a school.   The aerobic capacity endpoint was found to differ significantly (p<0.01) by all 

four demographic variables.  Therefore, all were retained in the subsequent regression models.  

In addition, a fifth demographic variable, the percentage of students passing body composition 

testing at a school, was included as a demographic variable for regression modeling.  Like 

aerobic capacity, body composition is an endpoint of interest in the current study.  However, 

because it has been reported that excess body fat levels can adversely impact results of aerobic 

capacity testing (Welk and Meredith, 2008), this variable was included in the subsequent multiple 

regression modeling. 

 

5.1.3  Specific Aim 3 – Multiple Regression Modeling 

Although many factors could affect aerobic capacity in this study, the five demographic factors 

that were controlled in the multiple regression modeling were 1) percent of students passing body 

composition testing, 2) percentage of males at a school (gender), 3) grade, 4) percentage of 

students receiving free or reduced price meals at a school (socioeconomic status), and 5) percent 

of minorities (non-White) in the grade being evaluated at a school (ethnicity).  A separate model 

was run for each of the four criteria air pollutants. 

 

Carbon Monoxide 

A statistically significant relationship between carbon monoxide attainment status and 

school aerobic capacity passing rates was found after adjusting for the effects of body 

composition, gender, grade, socioeconomic status, and ethnicity.  According to the 

results shown in Table 4.32, we can predict that if a school is located in a non-attainment 

area for carbon monoxide, the overall percentage of students in a healthy fitness zone for 

aerobic capacity would decrease by 1.43%.    
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8-hour Ozone 

A statistically significant relationship between 8-hour ozone attainment status and school 

aerobic capacity passing rates was found after adjusting for the effects of body 

composition, gender, grade, and socioeconomic status.  In the model, ethnicity was not 

found to be a significant variable and was removed prior to the regression.  According to 

the results shown in Table 4.36, we can predict that if a school is located in a non-

attainment area for 8-hour ozone, the overall percentage of students in an HFZ for 

aerobic capacity would decrease by 2.38%.   

 

PM10 

A statistically significant relationship between PM10 attainment status and school aerobic 

capacity passing rates was found after adjusting for the effects of body composition, 

gender, grade, socioeconomic status, and ethnicity.  According to the results shown in 

Table 4.40, we can predict that if a school is located in a non-attainment area for PM10, 

the overall percentage of students in an HFZ for aerobic capacity would decrease by 

0.96%.    

 

PM2.5 

After adjusting for the effects of body composition, gender, grade, socioeconomic status, 

and ethnicity, no significant association was found between PM2.5 attainment status and 

aerobic capacity passing rates in California schools.    

 

 

For all of the models, the percentage of students passing body fat testing was the strongest 

unique predictor of aerobic capacity passing rates. This was followed by grade and the 

percentage of students receiving free or reduced price meals.  The next variable in terms of 

predictive power was the percentage of male students in the grade being evaluated, followed by 

the attainment status of the pollutant being assessed in the model.  The percentage of minority 
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students (non-White) at a school was the variable with the least predictive ability in all models, 

and was found to be non-significant for the 8-hour ozone model. 

 

 

5.1.4  Specific Aim 4 – Dose-Response Evaluation 

It is important to note that the significant association between carbon monoxide, 8-hour ozone, 

and PM10 attainment status and the percentages of students passing aerobic capacity fitness 

testing does not equal causality.  In other words, we can not say that any of these pollutants 

caused the decreased overall aerobic capacity observed in school children, only that they are 

associated with this endpoint.  However, we have determined that there is a significant difference 

in aerobic capacity passing rates between attainment and non-attainment areas for these three 

criteria pollutants.  Therefore, it is beneficial to focus on whether a dose-response type 

relationship is present in the non-attainment areas.  In other words, as exposure to the pollutant 

increases within these non-attainment areas, is there an analogous increase in the adverse 

effect?  If the effect does not worsen as the dose or exposure increases, it is less likely that the 

decrease in aerobic capacity is caused by the pollutant. 

 

In terms of chronic exposures to ambient air pollutants, it is not clear as to which metric may best 

predict adverse health outcomes.  Therefore, several metrics were evaluated to assess whether a 

dose-response type relationship was present in counties that were in non-attainment for the 

pollutant of concern.  The metrics that were selected reflect exposure in the year preceding 

fitness testing to determine if an association exists with aerobic capacity.  Carbon monoxide could 

not be evaluated due to lack of data, and PM2.5 was not significant after controlling for 

confounding variables in Specific Aim 3, therefore these two pollutants were not evaluated 

further. 

 

The metrics that were selected for further evaluation included the number of days that a county 

exceeded the NAAQS standard for 8-hour ozone or the California state standard for PM10, the 
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person-days of these exceedances, and the annual average concentration for these pollutants 

within the county.  Person-days are equivalent to the number of days the pollutant exceeds a 

health standard times the number of persons living in an exposed region and offer a 

representation of the overall population burden of air pollution exposure (California Environmental 

Health Investigations Branch, 2010).   

 

A discussion of the key findings for both 8-hour ozone and PM10 is provided below.  The aerobic 

capacity passing rate was controlled for key confounding demographic variables (body fat, 

gender, grade and socioeconomic status).  Percent ethnicity was not included as a variable, as it 

was determined to be highly correlated (>0.7) with the metric for socioeconomic status.   

 

In addition to examining a dose-response type relationship within these non-attainment areas, an 

assessment of school passing rates within all California counties was performed by evaluating the 

number of days that the Air Quality Index (AQI) within the county exceeded a value of 100. 

 

Ozone 

Number of days NAAQS Exceeded:  The environmental metric for this assessment was 

the number of days that the 8-hour concentration of ozone in a non-attainment county 

exceeded the NAAQS standard of 0.075 ppm in the year preceding fitness testing.  

Inclusion of this metric to the multiple regression model added an additional 0.1% of 

explanation in aerobic capacity passing rates after adjusting for confounding 

demographic variables.  Based on a significant association in the model, for each 

additional day that the NAAQS was exceeded in the year preceding fitness testing the 

average percentage of students passing aerobic capacity fitness testing at a school was 

decreased by 0.018%. 
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Person Days:  When the number of days that the NAAQS was exceeded was multiplied 

by the population in the county to obtain a person-days metric for 8-hour ozone, there 

was no significant relationship observed with aerobic capacity passing rates. 

 

Annual Average Concentration:   For non-attainment counties, a significant relationship 

was observed between the annual average concentration of 8-hour ozone in the May to 

October timeframe preceding fitness testing and the aerobic capacity passing rates of 

schools.  Inclusion of this metric added an additional 0.1% to the explanation of the 

variance in the model.  For each 10 ppb increase in 8-hour ozone concentration, aerobic 

capacity pass rate were predicted to decrease by 0.5%. 

 

 

PM10 

None of the environmental metrics that were assessed for PM10 under this specific aim 

were found to be statistically significant when included in the regression models, 

indicating that a dose-response type relationship for these metrics was not present. 

 

AQI 

The Air Quality Index (AQI) for all California counties was used to assess aerobic 

capacity passing rates.  This was performed by evaluating the number of days that the 

AQI within each county exceeded a value of 100 in the year preceding fitness testing.  

Inclusion of this metric in the regression model added 0.1% to the explanation of the 

variance in the model after adjusting for confounding demographic variables.  For each 

additional day that the AQI exceeded a value of 100, the percentage of students in the 

Health Fitness Zone for aerobic capacity decreased by 0.018%.   
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5.1.5  Discussion 

After adjustment for body fat, age, gender, ethnicity, and socioeconomic status, the attainment 

status for three of the four criteria air pollutants (CO, 8-hour O3, PM10) remained significantly 

associated with the total percentage of students at a school with aerobic capacity levels in a 

healthy fitness zone.  Schools located in non-attainment areas for these three pollutants had 

lower overall passing rates than schools in attainment areas.  Further review indicated that a 

significant dose-response type relationship was evident between aerobic capacity passing rates 

and measures of 8-hour ozone.  No such relationship was observed for PM10, and this 

assessment was not possible for carbon monoxide due to lack of an adequate data set for 

evaluation.  A significant dose-response type relationship was also observed with aerobic 

capacity passing rates observed to decrease as the number of days exceeding an AQI of 100 

increases. 

 

Carbon monoxide   

The toxicity of CO is attributable to its strong affinity for hemoglobin, the oxygen 

transporting component of red blood cells.  CO binds to hemoglobin with an affinity that is 

250 times higher than the binding of oxygen with hemoglobin (Brook et al., 2004).  This 

CO-hemoglobin binding complex is referred to as carboxyhemoglobin.  Formation of 

carboxyhemoglobin reduces the amount of hemoglobin available to carry oxygen, and 

also impairs the release of oxygen at the tissue level (Brook et al., 2004).  Studies (Adir 

et al, 1999) have shown that after acute exposures to carbon monoxide, exercise 

performances are impaired.   In the current study, schools located in areas that were in 

non-attainment for carbon monoxide were found to have significantly lower percentages 

of students passing aerobic capacity testing than schools located in attainment areas 

after adjustment for confounding demographic variables.  During 2006, only four counties 

in California were designated as non-attainment for carbon monoxide.  These were the 

large counties of Los Angeles, Orange, Riverside, and San Bernadino.  Since 2007, all 

counties in California have been in attainment with the NAAQS for carbon monoxide.  
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This study was unable to assess whether a dose-response type relationship was present 

in the carbon monoxide non-attainment areas.  Therefore, it is important to further assess 

this finding of an association between aerobic capacity passing rates and carbon 

monoxide attainment status in order to place the results into an appropriate context.    

 

 

8-hour ozone   

Ozone has been associated with a wide variety of respiratory effects.  Symptoms 

associated with elevated exposures to ozone include respiratory irritation, coughing, 

wheezing, shortness of breath, constriction of the chest, nausea, and headaches (Carlisle 

and Sharp, 2001).  Exposure to low concentrations of ozone can result in reduced lung 

function.  Ozone causes aggravation of respiratory and cardiovascular disease and 

suppresses the immune defenses of the lungs, making individuals more susceptible to 

respiratory infections (USEPA, 2008).  Animal studies have shown that long-term 

exposure to high levels of ozone can result in permanent structural changes of the lungs.   

 

In the current study, schools located in areas that were in non-attainment for 8-hour 

ozone were found to have significantly lower percentages of students passing aerobic 

capacity testing than schools located in attainment areas.  In addition, within the non-

attainment areas a dose-response type relationship was found with aerobic capacity for 

two of the chronic environmental metrics that were assessed.  For each additional day 

that the 8-hour ozone NAAQS was exceeded in the year preceding fitness testing, the 

average percentage of students passing aerobic capacity fitness testing at a school was 

decreased by 0.018%.  Likewise, for each 10 ppb increase in 8-hour ozone concentration 

in the May-October timeframe preceding fitness testing, aerobic capacity pass rate were 

predicted to decrease by 0.5%.  These findings indicate that chronic exposure to 8-hour 

ozone is associated with decrements in aerobic capacity.  The availability of studies on 

long-term effects of ambient ozone exposure on exercise performance is limited, thereby 
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influencing our ability to fully compare the findings of this study with others.  Our results 

are consistent with several other studies which investigated the chronic effects of ozone 

exposure.  Künzli et al. (1997) evaluated the relationship between lifetime cumulative 

exposure to ambient ozone and pulmonary function parameters.  They found that for 17-

21 year old, never-smoking California students, each 10 ppb increase in lifetime ozone 

exposure was associated with a corresponding decrease of 167 ml/sec in FEF75.  The 

corresponding effect on FEF25-75 was a decrease of 210 ml/sec.  No association was 

found with FVC or FEV1.   Galizia and Kinney (1999) evaluated the respiratory health of 

520 Yale College students, aged 17-21, in regards to their chronic ozone exposure 

histories.  After controlling for confounding variables (race, gender, body size, SES, and 

indoor environmental factors), the high exposure group was observed to have 

significantly diminished lung function (FEV1 and FEF25-75) and elevated chronic 

respiratory symptoms.  FEF25-75 and FEF75 are measures of small airway flow that are 

considered to be early indicators for precursors to chronic-obstructive lung disease 

(Künzli et al., 1997).  Changes in airway flow could result in decreased physical 

performance, although it is unclear what level of airflow impairment is required before 

causing functional impacts in performance.   However, low level exposures to ozone may 

have long-term effects on lung development in children thereby affecting performance.   

The findings of this study highlight the need for additional research to assess the role of 

ozone exposure in this regard. 

 

The current study found similar relationships with aerobic capacity passing rate between 

both ozone and AQI, with each additional day that either the NAAQS for ozone is 

exceeded or the AQI exceeds a value of 100 resulting in a predicted decrease of 0.018% 

in this endpoint.  AQI values exceeding 100 represent days where the air pollution levels 

for any one of the six criteria air pollutants exceeds its corresponding NAAQS.  Ozone is 

the contaminant responsible for the majority of non-attainment classifications in 

California, so it is not surprising that the results for the AQI metric track those of ozone. 
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The USEPA (2010) has recently proposed tighter standards for ground-level ozone.  The 

agency has proposed to lower the 8-hour ozone standard from 0.075 ppm to a value in 

the range of 0.060 to 0.070 ppm.  This significant difference between aerobic capacity 

passing rates at schools located in attainment areas versus those in non-attainment area 

for 8-hour ozone for the current study used the NAAQS standard of 0.075 ppm.   It is not 

known if a significant difference would remain if the study data were re-stratified 

according to a different ozone standard. 

 

Particulate matter  

Inhalation of particulate matter can result in the aggravation of respiratory and 

cardiovascular disease.  Particulate matter has also been associated with reduced lung 

function, increased respiratory symptoms, and premature death (USEPA, 2008).  The 

current study focused on two measures of particulate matter, PM10 and PM2.5.  Schools 

located in non-attainment areas for PM10 were found to have significantly lower 

percentages of students in a health fitness zone for aerobic capacity than schools located 

in attainment areas.  However, this finding did not have a dose-response type 

relationship when evaluated via chronic measures of exposure from the year preceding 

the fitness testing.  For PM2.5, there was no significant difference between schools in 

attainment and non-attainment areas for this pollutant.  

 

Our findings showed an association between aerobic capacity passing rates by 

attainment status for PM10, a coarser particle, but not with PM2.5, a finer particle.  In 

contrast to the findings of the current study, research has indicated that fine particles are 

more closely associated with acute respiratory health effects in children than coarse 

particles (Florida-James et al., 2004; Rundell et al., 2008).   Our finding for PM10 did not 

exhibit a dose-response type relationship within the non-attainment areas, indicating that 

PM10 may not be responsible for the finding of decreased aerobic capacity passing rates.  
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Numerous studies have been performed on the effects of particulate matter on 

respiratory health.  However, few of these studies have focused on the impact of 

particulate matter on exercise performance.  Those studies that have focused on 

performance have based their finding on short-term, rather than chronic exposures to 

these pollutants.  Acute exposure to PM10 was found to be significantly correlated with 

the performance of female marathon runners.  Marr and Ely (2009) found that for each 10 

ug/m3 increase in PM10, there was an associated decrease in finishing time of 1.4%.   

The lack of an association between chronic measures of particulate matter exposure and 

aerobic capacity passing rates denotes the possibility that acute exposures to particulate 

matter are more relevant to respiratory effects and athletic performance than are chronic 

exposures.  This could be further assessed by repeating this study using individual 

student results, rather than aggregated data, and adjusting for acute exposures to 

particulate matter on the days of or immediately preceding fitness testing. 

 

 

5.2  Body Composition 

 

The term body composition refers to the components that make up body weight, these being 

muscle, bone, fat, organs, skin, and nerve tissue (Welk and Meredith, 2008).  In the 

FITNESSGRAM® testing program used by the State of California, body composition is a 

measure of body fatness and is estimated by either measuring skinfold thicknesses at selected 

sites on the body or calculating a Body Mass Index (BMI) (Welk and Meredith, 2008).  The 

association of ambient air pollutants with this measure of body fat in California schoolchildren was 

evaluated in response to a recent study by Sun et al. (2009) that demonstrated increased body 

fat in mice exposed to air pollution in conjunction with a poor diet. 
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Although there may be some students who are not in a healthy fitness zone due to an extremely 

low percentage of body fat, a lower percentage of students passing the body composition testing 

is analogous to more students with excess levels of body fat at a given school. 

 

A three-tiered approach was used to assess the association between body composition and the 

four criteria air pollutants.  The first step evaluated whether body composition passing rates 

differed by attainment status.  Step 2 assessed various demographic variables to determine their 

association with body composition.  The third step evaluated whether an association between 

body composition passing rate and the air pollutant attainment status remained after adjusting for 

significant demographic variables.  A fourth step was not included in this assessment, because 

although respiratory function may be impacted by a preceding year’s pollutant concentration, it is 

not expected that body fat percentages would respond as rapidly to this exposure.  Therefore, 

body composition was not assessed in the same dose-response manner as was aerobic capacity. 

 

5.2.1  Specific Aim 1 – Body Composition by Attainment Status 

For all four criteria air pollutants, a significant (p<0.05) difference was found in body composition 

passing rates at schools located in attainment versus non-attainment counties.  The hypotheses 

for this specific aim stated that body composition passing rates would be higher at school located 

in attainment areas and would be lower at schools in non-attainment areas.  These hypotheses 

were supported for all four criteria air pollutants tested.  In terms of explanatory power for the t-

test, PM10 and PM2.5 tied for the most explanation at 2.1%, followed by 8-hour Ozone at 1.3%, 

and Carbon Monoxide at 0.3%. 

 

Despite the finding of a significant difference in body composition passing rates at schools 

located in attainment areas versus non-attainment areas, it is important to note that this finding 

may be confounded by other demographic factors.  For example, if body fat concentrations are 

influenced by a variable (e.g., socioeconomic status) that is more common to a non-attainment 

area, the significant association seen in the t-test may in fact be due to confounding variables.  
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Therefore, Specific Aim 2 was developed to identify those factors that may influence the body 

composition passing rates. 

 

5.2.2  Specific Aim 2 – Demographic Variables 

The association between four demographic factors (gender, grade, socioeconomic status, and 

ethnicity) and body composition passing rates were statistically evaluated to determine which 

factors were significantly associated with the percentage of students passing the body fat testing 

at a school.  Gender, grade, socioeconomic status and ethnicity were all found to be significantly 

associated with body composition.  Therefore, each of these factors was included in the multiple 

regression analyses conducted for Specific Aim 3.   

 

5.2.3  Specific Aim 3 – Multiple Regression Modeling 

Although many factors could affect body composition in this study, the four demographic factors 

that were controlled in the multiple regression modeling were 1) percentage of males at a school 

(gender), 2) grade, 3) percentage of students receiving free or reduced price meals at a school 

(socioeconomic status), and 4) percent of minorities (non-White) in the grade being evaluated at 

a school (ethnicity).  A separate model was run for each of the four criteria air pollutants.  

Ethnicity was removed from each of the models based on its strong correlation (>0.7) with 

socioeconomic status. 

 

Carbon Monoxide 

A statistically significant relationship (P<0.05) between carbon monoxide attainment 

status and the percentage of students with body composition in the HFZ was found after 

adjusting for the effects of gender, grade, and socioeconomic status.  According to the 

results shown in Table 4.48, we can predict that if a school is located in a non-attainment 

area for carbon monoxide, the overall percentage of students in an HFZ for body 

composition would decrease by 0.46%.  
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8-hour Ozone 

A statistically significant relationship (p<0.01) between 8-hour ozone attainment status 

and the percentage of students with body composition in the HFZ was found after 

adjusting for the effects of gender, grade, and socioeconomic status.  In the model, 

ethnicity was not found to be a significant variable and was removed prior to the 

regression.  According to the results shown in Table 4.52, we can predict that if a school 

is located in a non-attainment area for 8-hour ozone, the overall percentage of students 

in an HFZ for body composition would decrease by 0.71%.  

 

PM10 

A statistically significant relationship (p<0.05) between PM10 attainment status and the 

percentage of students with body composition in the HFZ was found after adjusting for 

the effects of gender, grade, and socioeconomic status.  According to the results shown 

in Table 4.56, we can predict that if a school is located in a non-attainment area for PM10, 

the overall percentage of students in an HFZ for body composition would decrease by 

0.73%.  

 

PM2.5 

A statistically significant relationship (p<0.01) between PM2.5 attainment status and the 

percentage of students with body composition in the HFZ was found after adjusting for 

the effects of gender, grade, and socioeconomic status.  According to the results shown 

in Table 4.60, we can predict that if a school is located in a non-attainment area for PM2.5, 

the overall percentage of students in an HFZ for body composition would decrease by 

0.70%.  

 

For all of the models, the percentage of students receiving free or reduced price meals was the 

strongest unique predictor of body composition passing rates.  This variable routinely explained 

more than 30% of the variation in body composition passing rates.  This was followed by grade 
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and the percentage of male students. The attainment status of the pollutant being assessed was 

the variable with the least predictive ability in all models. 

 

5.2.4  Discussion 

After adjustment for age, gender, and socioeconomic status, the attainment status for all four 

criteria air pollutants remained significantly associated with the total percentage of students at a 

school with body fat levels in a healthy fitness zone.  Schools located in non-attainment areas for 

each of these pollutants had lower overall passing rates than schools in attainment areas, 

indicating that areas with higher levels of air pollution had a higher percentage of overweight 

children.  For all four pollutants, the overall predicted difference in body composition passing 

rates was less than 1% between schools in attainment versus non-attainment areas. 

 

No studies were located that have previously investigated the relationship between body fat and 

carbon monoxide, 8-hour ozone, or PM10.  Therefore the implications of these findings for these 

three pollutants in the current study are unclear.   

 

Only one study was identified that investigated body fat in relation to PM2.5 exposure.  In a recent 

report, Sun et al. (2009) studied the interactions between exposure to PM2.5 and metabolic 

determinants of obesity and insulin resistance in mice.  The authors found that when mice were 

fed a high-fat diet over a 10-week period to induce obesity and then subsequently exposed to 

either filtered air or air with particulate matter (PM2.5) for six hours a day, five days a week, over a 

24-week period, the mice exposed to PM2.5 had significant increases in visceral and mesenteric 

adipose mass.  In other words, these mice had higher levels of body fat than mice exposed to 

filtered air.  The air pollution level inside the chamber containing particulate matter was 

comparable to levels a commuter may be exposed to in many metropolitan areas in the United 

States, and when adjusted for the duration of daily exposure, resulted in concentrations that were 

below the current NAAQS recommendation of 15 ug/m3.   
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Body fat is tied to many factors, including gender, physical activity, nutrition (caloric intake), and 

socioeconomic status.  Although adjustments were made for certain demographic variables, it is 

possible that some other confounding variable that was not accounted for may be accountable for 

the finding.  It is important to note that the current study utilized aggregate data at the school level 

and is not directly applicable to results in individual children.  It is necessary to recreate these 

findings at the individual level prior to making conclusions about the relationship between these 

ambient air pollutants and body fat. 

 

Although the full association of air pollution with measures of body fat is not known, excess body 

fat has been associated with increased risk factors for cardiovascular disease and increased risk 

of Type 2 diabetes in children and adolescents (Welk and Meredith, 2008).  Additionally, a 

relationship between childhood obesity and subsequent obesity in adulthood has been 

established.  Excess body fat and obesity in childhood increases the likelihood of obesity-related 

adult diseases including coronary heart disease, hypertension, and type II diabetes (Welk and 

Meredith, 2008). 

 

 

5.3  Strengths and Limitations 

 

This section describes the major strengths and limitations of the current study.  Both must be 

carefully considered when interpreting and applying the study results. 

 

Strengths 

There are considerable strengths associated with this study. This study focused on the 

association of criteria air pollutants with physical fitness in children.  As discussed in Section 2, 

children have both physiological and behavioral characteristics that make them uniquely 

susceptible to the effects of air pollution.  Due to this susceptibility, children are an ideal study 

population in which to evaluate potential health effects associated with exposure to ambient air 
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pollutants.   It is anticipated that any effects from exposure to ambient air pollutants would be 

more likely to be present in a sensitive population than a less sensitive population. 

  

This study utilized publicly available datasets to identify variables of importance as well as their 

relationships with measures of physical fitness in children.  As such, data were able to be 

gathered in a non-intrusive manner, although the study lacked the ability to manipulate or control 

exposure variables.  This study design allowed for a more comprehensive understanding of this 

issue on which to base future experimental studies.  A large study population was utilized, 

consisting of more than 2.7 million California schoolchildren who were tested for physical fitness 

during 2006 and 2007.  Each of the 17,293 records in the final dataset represented the fitness 

testing results for a grade within a corresponding school. 

 

This study allowed for adjustment of potential confounding factors, such as gender, age, ethnicity 

and socioeconomic status.  Each of these factors was determined to have a significant 

association with both aerobic capacity and body composition passing rates. 

 

Air pollution has been a long-standing concern in California.  During 2006 and 2007, numerous 

California counties were classified as non-attainment areas for carbon monoxide, ozone, and 

particulate matter.   The lack of attainment in certain counties provided the comparison groups for 

fitness testing results by attainment status.  In addition, the extensive air monitoring network in 

California led to the availability of a robust dataset for annual average concentrations and the 

frequency of days exceeding air quality standards in the majority of California counties. 

 

 

Limitations 

Despite the considerable strengths of the current study, there are also several key limitations that 

must be considered.  First and foremost is the fact that the study was based on summary 

statistics of results from physical fitness testing.  Data were not available at the individual child 
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level and were instead available at an aggregate level for each evaluated grade within a school.   

Prior to basing conclusions on the findings in this study, these results should be replicated at the 

individual student level. 

 

The current study was an ecologic epidemiologic study.  Ecologic tests are not designed for 

developing an effects threshold.  These studies are useful in establishing an association, but do 

not have causal interpretation, nor do they establish a threshold.  Ecologic studies are designed 

to correlate aggregate exposure data with aggregate health data for each unit of observation 

(e.g., counties) (Mather et al., 2004).  Therefore, although it is possible to determine whether the 

changes in exposure to criteria air pollutants are correlated with physical fitness achievement, it is 

not possible to assess the concentration at which physical fitness measures are adversely 

impacted.  Significant findings cannot be assumed to be causal without further experimental 

study. 

 

It is possible that children within the study, as well as the schools themselves, were subject to 

exposure misclassification.  The use of aggregate fitness testing data for each school was based 

on the assumption that the children attending the school resided in the county in which the school 

was located.  In addition, concentration of air contaminants is not homogeneous and will be 

expected to vary throughout a county depending on factors such as emissions sources, weather, 

and topography.  Use of one value to represent the county will result in some schools being 

overestimated as to their exposure and others being underestimated as to true exposure levels. 

  

Although the study controlled for several demographic variables known to be associated with 

aerobic capacity and body composition, there was no ability to control for several additional 

factors that be associated with these endpoints, including nutritional status, genetic factors, and 

exposure to second-hand smoke.  In addition, there was no way to control for exposures to 

additional source contributions of the criteria air pollutants that were not accounted for in the 

environmental metrics in this study. 
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This study focused on the association of single pollutants with aerobic capacity and body 

composition passing rates.  It did not evaluate the effects of exposures to mixtures of pollutants.  

Because humans are simultaneously exposed to a complex mixture of air pollutants, many of 

which may have impacts on respiratory health, there may be a combined effect which is not 

accounted for in the current study. 

 

Despite these limitations, the current study offers a further insight into the association between 

criteria air pollutants and physical fitness in children.  

 

 

5.4  Recommendations 

 

The following recommendations are based upon the results of this research and are intended to 

guide the application and communication of these findings, as well as promote further research 

on this important issue. 

 

5.4.1  Application of Current Findings 

This study utilized publicly available datasets to identify variables of importance as well as their 

relationships with aggregate measures of physical fitness.  Variables that were assessed in this 

study included gender, age, ethnicity, socioeconomic status, and various environmental metrics 

for carbon monoxide, ozone, and particulate matter.  Although findings from this study can not be 

applied directly at the individual student level, they can be used to drive future research on the 

effects of criteria air pollutants in children.   

 

 

In addition, findings from this study can be used to drive future programs to improve physical 

fitness in children by focusing on those factors that have the most influence on this endpoint.  
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According to the research findings supplied in Chapter IV of this report, percent body fat, age, 

and socioeconomic status were the strongest unique predictors of aerobic capacity passing rates 

at a school.  Although the associations between aerobic capacity passing rates and attainment 

status for carbon monoxide, 8-hour ozone, and PM10 attainment status were significant, these 

associations were small in comparison to the contribution to the models from body fat and 

socioeconomic status.  This indicates that more emphasis should be placed on determining how 

to overcome the negative consequences of increased body fat and lower socioeconomic status 

on aerobic capacity.   

 

For the portion of this study that focused on body composition passing rates, it was determined 

that the measure of socioeconomic status was the largest contributing factor to the multiple 

regression model, with approximately 30-35% of the unique variation in body composition 

explained by this factor.  In comparison, the attainment status for carbon monoxide, 8-hour 

ozone, PM10 and PM2.5 explained the least unique variation in each model explaining 0.03%, 

0.03%, 0.09%, and 0.08%, respectively. 

 

In discussion the implications of findings of this research, this report does not include policy 

recommendations for criteria air pollutants.  Kheifets et al. (2001) offer a detailed discussion on 

the merits of including policy statements in the epidemiological research of electric and magnetic 

fields (EMF).  In their discussion, Kheifets et al. (2001) state that “The types of policy statements 

made in the discussion sections of research papers are usually too general to be of much 

practical utility, since not all of the options and facts required to determine the implications of the 

research for policy alternatives are available.”  For the current study, it is agreed that the analysis 

of such questions as whether air quality standards are sufficient to protect health or whether 

criteria air pollutants cause decrements in physical fitness of California school children exceed 

the limits of these research findings. 
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5.4.2  Communication of Findings 

In order to be valuable, research findings have to be communicated.  According to the Social 

Issues Research Centre (SIRC, 2001), research findings should be communicated accurately and 

in a manner that minimizes any potential for distorted or unwarranted interpretations.  SIRC 

(2001) indicates that this responsibility is particularly important for research in the fields of 

medical and biological sciences, as members of the public may view the findings as having direct 

relevance to their own circumstances, activities or way of life.  According to Kheifets et al. (2001), 

“the degree to which the public is concerned about an epidemiologic issue depends upon its 

perception of the associated risks.”  One could also argue that the degree of concern is not only 

dependent upon the perception of risk, but is also linked to the perceived “worth” of the individual 

impacted by the risk.  The current study focused on health outcomes in children.  Children are 

highly valued in modern society, with policies and procedures often developed to afford protection 

to this group of individuals.  It is therefore particularly important that any research findings that 

implicate hazards to this population be communicated clearly and accurately.  The following 

provides a discussion on how the findings of the research can be appropriately communicated. 

 

It is important to recognize that this study was based on aggregate fitness data at the school, 

rather than the individual, level.  Therefore, the findings of this research are not directly applicable 

to individual children.  They apply only to the schools that were evaluated.  In addition, this study 

was not an experimental design.  Therefore, although the findings demonstrate an association 

between certain criteria air pollutants and measures of physical fitness, this association can not 

be interpreted as the pollutants having caused the decrease in the percentage of students in a 

healthy fitness zone for aerobic capacity or body composition.   

 

As Section 5.3 indicates, there were substantial limitations associated with this study.  Although 

the study provides a useful insight into the association between criteria air pollutants and 

measures of physical fitness, communication of the results must be accompanied by a 

transparent disclosure of these study limitations.  
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In communicating these results, it is appropriate to state that, in this study, carbon monoxide 

attainment status was significantly associated with aerobic capacity passing rates in California 

schools, and that schools located in non-attainment areas had overall lower percentages of 

students in a health fitness zone for this endpoint than schools located in attainment areas.  It is 

not appropriate to state that exposure to carbon monoxide caused these decreases in the 

percentage of students in health fitness zones for aerobic capacity.  It is also inappropriate to 

surmise that an individual student will experience decreased aerobic capacity resulting from 

exposure to carbon monoxide.  Similarly worded statements can be utilized for the other criteria 

pollutants and endpoints evaluated in this study. 

 

As discussed previously, this study was unique in that it assessed a functional rather than clinical 

measure of respiratory health following chronic exposure to criteria air pollution.  In addition, the 

current study is the first known study to evaluate the association between criteria pollutants and 

measures of body fat in children.  Because the study is unique in many ways, it is important for 

these findings to be replicated in future studies. 

 

Recommendations developed by Kheifets et al. (2001) for effective communication of scientific 

findings include: 1) determining the target audience(s); 2) developing the appropriate perspective 

for the research findings; 3) setting the study in its clinical context; and 4) using simple, rather 

than complex, language to convey the message.   

 

 

5.4.3  Recommendations for Further Study 

This study suggests that chronic exposures to certain criteria air pollutants may be a factor in 

decrements in childhood physical fitness.  The majority of recommendations for further study 

focus on replicating the current findings as well as overcoming identified study limitations.   
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o The findings of the current study are limited to demonstrating an association and not 

causality between exposure to criteria air pollutants and decreased fitness levels.  

Additional evidence and the use of an experimental study design is needed to 

demonstrate whether the criteria air pollutants that were found to be significantly 

associated with measures of physical fitness have a cause and effect relationship. 

 

o It is recommended that further evaluations be performed in this study population.  

However, rather than using aggregate school-level data, the focus should be on 

individual student responses.  This will allow for more accurate adjustment of 

confounding variables, such as age, gender, socioeconomic status, and ethnicity on 

an individual rather than aggregate basis, and allow for the development of more 

precise models to predict health outcome. 

 

o This study was controlled for factors of gender, grade, ethnicity and socioeconomic 

status.  Future studies could incorporate those additional variables that could not be 

accounted for in this study, but that have been reported to be associated with 

physical fitness outcomes. 

 

o The effects of multiple pollutants on measures of aerobic capacity and body 

composition should be assessed.  This study focused on single pollutant exposures 

and did not assess effects associated with multiple pollutant exposures.   

 

o Potential exposure misclassification deficits should be minimized by obtaining or 

conducting more localized exposure monitoring. 
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5.5  Conclusions 

 

A further understanding of the relationship between levels of criteria air pollutants and the 

physical fitness of children has significant implications.  Reports indicate that overall student 

health is on the decline and that childhood obesity is currently one of the most significant public 

health concerns in the United States (Ogden et al., 2006).  To date, there is no clear consensus 

regarding the effects of ambient air pollution on athletic performance and physical fitness.  

However, criteria air pollutants have been associated with health effects (e.g., asthma, respiratory 

impairment) that would certainly be expected to result in reduced athletic performance.  

 

The results of this study suggest that certain criteria air pollutants may adversely influence the 

physical fitness of children.  When properly adjusted for a number of associated confounders, the 

results of this study support the hypothesis that increases in ambient air pollutant concentrations 

are associated with decreased aerobic capacity and increased body fat in California 

schoolchildren.  Schools located in non-attainment counties for carbon monoxide, 8-hour ozone, 

and PM10 had lower percentages of children passing aerobic capacity fitness testing than did 

schools located in attainment counties.  PM2.5 attainment status was not significantly associated 

with aerobic capacity passing rates.  Passing rates for body composition testing were lower in 

schools located in non-attainment zones for all criteria air pollutants (CO, 8-hour O3, PM10, PM2.5) 

evaluated in this study.  Although the study design does not allow for causal determination of this 

relationship, further evaluation showed that a significant dose-response type relationship with 

aerobic capacity passing rates was present for 8-hour ozone.  This association was found for 

both the number of days that 8-hour ozone concentrations exceeded the NAAQS in the year 

preceding fitness testing and the annual average concentration of ozone in the year preceding 

fitness testing.  No dose-response type relationship was observed for aerobic capacity passing 

rates with varying levels of PM10. 
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This study found that gender, grade, socioeconomic status, and ethnicity were significantly 

associated with both aerobic capacity and body composition passing rates.  Body fat was also a 

significant factor for aerobic capacity passing rates. These variables, with the exception of 

ethnicity, each contributed more to the explanation of variance in the multiple regression models 

than did the attainment status of the criteria air pollutants that were evaluated.  

 

Decreases in athletic performance and increased body fat levels in children could be predictive of 

the potential for adult illnesses, such as cardiovascular disease (CVD), morbidity and mortality 

from Type II diabetes, and other chronic ailments (Eisenmann et al., 2005; Ortega et al., 2005; 

Velasquez-Mieyer et al., 2005).  In summary, this study provided an opportunity to further 

understand the association between childhood physical fitness and four criteria air pollutants, 

carbon monoxide, 8-hour ozone, PM10 and PM2.5 in California.  The findings from this study can 

serve as a basis to develop and implement further research in this field. 
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ALA American Lung Association 
AQI Air Quality Index 
ARB California Air Resources Board 
ATT attainment 
CDC Centers for Disease Control and Prevention 
CDE California Department of Education 
CO carbon monoxide 
COHb carboxyhemoglobin 
CVD cardiovascular disease 
FEF25 forced expiratory flow between 25 and 75% of vital capacity 
FEF25-75 forced expiratory flow at 25% of vital capacity 
FEV1 forced expiratory volume in one second 
FRPM free or reduced price meal 
FVC forced vital capacity 
HFZ health fitness zone 
mg/m3 milligrams per cubic meter 
NAAQS National Ambient Air Quality Standard 
NHANES National Health and Nutrition Examination Survey 
NO2 nitrogen dioxide 
O3 ozone 
PACER Progressive Aerobic Cardiovascular Endurance Run 
Pb lead 
PEFR peak expiratory flow rate 
PFT physical fitness testing 
PM1 particulate matter with average size of 1 microns or less 
PM10 particulate matter with average size of 10 microns or less 
PM2.5 particulate matter with average size of 2.5 microns or less 
ppb parts per billion 
ppm parts per million 
SES socioeconomic status 
SO2 sulfur dioxide 
TSP total suspended particulates 
ug/m3 micrograms per cubic meter 
USEPA United States Environmental Protection Agency 
VO2max aerobic capacity 
VOC volatile organic compound 
 
Note:  Study variables and their corresponding abbreviations are defined in Chapter 3 
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California Counties by Attainment Status (2006-2007 ) 

 
 
 

County Name ccode 8hrO3ATT COATT PM10ATT PM25ATT 
Alameda 1 2006,2007       
Alpine 2         
Amador 3 2006,2007       
Butte 4 2006,2007       
Calaveras 5 2006,2007       
Colusa 6         
Contra Costa 7 2006,2007       
Del Norte 8         
El Dorado 9 2006,2007       
Fresno 10 2006,2007   2006,2007 2006,2007 
Glenn 11         
Humboldt 12         
Imperial 13 2006,2007   2006,2007   
Inyo 14     2006,2007   
Kern 15 2006,2007   2006,2007 2006,2007 
Kings 16 2006,2007   2006,2007 2006,2007 
Lake 17         
Lassen 18         
Los Angeles 19 2006,2007 2006 2006,2007 2006,2007 
Madera 20 2006,2007   2006,2007 2006,2007 
Marin 21 2006,2007       
Mariposa 22 2006,2007       
Mendocino 23         
Merced 24 2006,2007     2006,2007 
Modoc 25         
Mono 26     2006,2007   
Monterey 27         
Napa 28 2006,2007       
Nevada 29 2006,2007       

 
Data obtained from the EPA Greenbook (USEPA, 2009b) 
 
Blanks cells indicate that county was in attainment for the criteria pollutant during the study 
timeframe.  Otherwise, the year of non-attainment for the study timeframe is provided. 
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California Counties by Attainment Status (2006-2007 ) cont. 
 
 
 
 

County Name ccode 8hrO3ATT COATT PM10ATT PM25ATT 
Orange 30 2006,2007 2006 2006,2007 2006,2007 
Placer 31 2006,2007       
Plumas 32         
Riverside 33 2006,2007 2006 2006,2007 2006,2007 
Sacramento 34 2006,2007   2006,2007   
San Benito 35         
San 
Bernardino 36 2006,2007 2006 2006,2007 2006,2007 
San Diego 37 2006,2007       
San Francisco 38 2006,2007       
San Joaquin 39 2006,2007   2006,2007 2006,2007 
San Luis 
Obispo 40         
San Mateo 41 2006,2007       
Santa Barbara 42         
Santa Clara 43 2006,2007       
Santa Cruz 44         
Shasta 45         
Sierra 46         
Siskiyou 47         
Solano 48 2006,2007       
Sonoma 49 2006,2007       
Stanislaus 50 2006,2007   2006,2007 2006,2007 
Sutter 51 2006,2007       
Tehama 52         
Trinity 53         
Tulare 54 2006,2007   2006,2007 2006,2007 
Tuolumne 55 2006,2007       
Ventura 56 2006,2007       
Yolo 57 2006,2007       
Yuba 58         

 
Data obtained from the EPA Greenbook (USEPA, 2009b) 
 
Blanks cells indicate that county was in attainment for the criteria pollutant during the study 
timeframe.  Otherwise, the year of non-attainment for the study timeframe is provided. 
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physical fitness differs between attainment and non-attainment areas.  Both t-tests and one-way 
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Findings and Conclusions:   
 
Decreases in athletic performance and increased body fat levels in children could be predictive of 
the potential for adult illnesses.  The results of this study suggest that certain criteria air pollutants 
may adversely influence the physical fitness of children.  When properly adjusted for a number of 
associated confounders, the results of this study support the hypothesis that increases in ambient 
air pollutant concentrations are associated with decreased aerobic capacity and increased body 
fat in California schoolchildren.  Schools located in non-attainment counties for carbon monoxide, 
8-hour ozone, and PM10 had lower percentages of children passing aerobic capacity fitness 
testing than did schools located in attainment counties.  PM2.5 attainment status was not 
significantly associated with aerobic capacity passing rates.  Passing rates for body composition 
testing were lower in schools located in non-attainment zones for all criteria air pollutants (CO, 8-
hour O3, PM10, PM2.5) evaluated in this study.  Although the study design does not allow for 
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This study found that gender, grade, socioeconomic status, and ethnicity were significantly 
associated with both aerobic capacity and body composition passing rates.  Body fat was also a 
significant factor for aerobic capacity passing rates. These variables, with the exception of 
ethnicity, each contributed more to the explanation of variance in the multiple regression models 
than did the attainment status of the criteria air pollutants that were evaluated.  
 


