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PREFACE 
 

 
The objectives of this dissertation are to review mixed-effects models in forestry 

literature, and to use these analysis tools for modeling shortleaf pine (Pinus echinata 

Mill.) growth variables. Data were available from over 200 permanent plots established 

in naturally-regenerated shortleaf pine stands of eastern Oklahoma and western Arkansas. 

It is evident from the review of literature that the mixed-effects models have been 

increasingly used in forestry since the 1990’s. However, these tools have never 

previously been used in shortleaf pine growth and yield modeling. 

 

This dissertation project was successful in expanding two of the major 

components of growth and yield modeling for shortleaf pine. The distance-independent 

individual-tree model for annual basal area growth model of Lynch et al. (1999) was 

improved to incorporate random-effects for plots in a potential-modifier framework with 

stand level and tree level explanatory variables. Furthermore, the individual-tree model 

for total height of Lynch et al. (1999) was also expanded to have plot-specific random 

parameters for the relationship between total height and diameter at breast height in 

which dominant height is also a predictor. The fitted mixed-effects models for annual 

basal area growth and total height were found to fit the data, and to predict the responses 

better than the previous models reported by Lynch et al. (1999). Possible correlated 

and/or heterogeneous within-plot errors were also investigated. It was found that within-
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plot errors did not appear to be significantly correlated in the presence of plot random-

effects; however, there was some evidence of heterogeneous errors. These model 

estimates can be utilized in the Shortleaf Pine Stand Simulator developed at Oklahoma 

State University after fitting other components such as mortality functions in mixed 

modeling framework. Due to voluminous data, complexity of the models attempted and 

some degree of correlations among model parameters, computing limitations were 

experienced at times, resulting in model convergence issues.
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CHAPTER I 

 

INTRODUCTION 

 

 

Forests have been managed since time immemorial for direct benefit of human 

kind, although some forests are kept untouched for several indirect (or even unknown) 

reasons. Forest management involves one or more than one objective such as timber 

production, biodiversity and water supply. With increasing understanding of basic 

sciences and increasing demand for resources, forest management is becoming more and 

more important (Davis et al. 2001). Progressive forest management requires a good 

understanding of how individual trees and stands grow over time under different 

environmental conditions. Therefore, forest growth and yield modeling is an integral part 

of forest management, at least in developed countries. 

Shortleaf pine (Pinus echinata Mill.) is second to loblolly pine (Pinus taeda L.) in 

terms of volume of the southern pines in the United States. It has the widest range of any 

southern yellow pine in the US. It grows in 22 states over more than 440,000 square 

miles (1,139,600 km²), ranging from southeastern New York to eastern Texas. Despite its 

importance, there has been relatively little research and management effort compared to 

other southern pines (Willet 1986). The overall distribution of shortleaf pine in the US is 

presented in Figure 1.1. 
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Figure 1.1. General distribution of shortleaf pine in the US 

(Source: Western North Carolina Nature Center, 

http://wildwnc.org/trees/Pinus_echinata.html March 30, 2006) 

 

Shortleaf pine is adapted to a range of geography, soils, topography and habitats; 

however, individual trees grow best on deep well-drained soils of the Upper Coastal 

Plain, and the most prominent shortleaf communities are found in the Ouachita Highlands 

(Guldin 1986). Natural stands of shortleaf pine occur from almost sea level to 3,300 feet 

(1,006 m). Favorable average temperature for growth ranges from 480 to 700F, with 

minimums of -220F and maximums of 1020F. A rainfall range of 40 to 55 inches per year 

is common in areas where shortleaf stands occur naturally (Williston and Balmer 1980). 

It is believed that the Ouachita Mountains of Arkansas and Oklahoma originally 

contained the largest shortleaf pine forest in the world. According to an estimate, 

shortleaf and shortleaf-hardwood stands must have covered approximately 5,000 square 
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miles, which is approximately 50% of the Ouachita Mountains, until the middle of the 

twentieth century (Smith 1986). Shortleaf pine is common on non-industrial private 

ownerships in Oklahoma and Arkansas, but is important in industrial ownerships also. It 

is native to 20 counties of Oklahoma. Shortleaf pine is also the state tree of Arkansas 

(ODAFS 2000). 

It is a common observation that loblolly pine is preferred over shortleaf pine for 

commercial reasons due to higher growth rates at younger ages. However, shortleaf pine 

continues to be an important pine species in the south, especially in naturally regenerated 

forests (McWilliams et al. 1986). 

 

Forest Growth and Yield Modeling 

 

Forest resource management goals can be achieved only after proper assessment 

of available resources. Forest resource assessment is becoming increasingly quantitative, 

and more reliable estimate of resources scattered in a wider area can be made. The 

estimation procedure can be improved both in the field during data collection and in the 

office during data management and analysis. This can be achieved by following rigorous 

scientific techniques and methods. 

For resource assessment, standard methods in existence can be followed, although 

it is a subject of continuous research. With the advent of technologies in other areas (e.g. 

computing) research methods in forestry are also changing over time. Researchers are 

using techniques like remote sensing and geographic information systems for forest 

resource assessments at a larger scale. 
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We can recognize the following two extremes in forest growth modeling in terms of 

the scale of unit of sampling and observation. 

1. Models based on individual plant level information for biological processes that 

attempt to generalize to growth models that could be used for economically 

important practical applications. These are generally called physiological process 

models. 

2. Models based on large scale geographic information systems such as models 

utilizing satellite imagery data that attempt to estimate or predict stand or forest 

level information that could be used for practical applications. A complete issue 

(number 3) of Volume 49 of Forest Science (2003) has been devoted to research 

publication for this aspect, although a wide array of literature are available from 

elsewhere. 

 

Forest growth models in general have often been regression-type statistical models 

utilizing site index, tree and stand measurements. These traditionally popular growth 

models often ignore environmental variables such as climatic factors. Such typical forest 

growth models can possibly be considered to fall somewhere in between the two 

extremes mentioned above. Forest growth data are typically longitudinal in nature 

resulting from repeated measurements in permanent plots or approximately longitudinal 

in nature resulting from cross-sectional data from tree measurements in stands of 

different ages.  

Traditional forest growth and yield models have been used to predict the present as 

well as future states of forest conditions. It has been common to use data from temporary 
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plots, however permanent plot studies are becoming more popular. Modeling techniques 

are also being refined to make use of new developments in the areas of statistics and 

computing. 

Forest growth and yield models can be developed either for natural stands or for 

plantations. The models for natural stands could be either for even-aged or uneven-aged 

stands. Similarly, the models for plantations could be either for thinned or unthinned 

stands (Clutter et al. 1983). According to Davis et al. (2001), forest growth and yield 

models can be classified as follows. 

(1) Whole stand models: (a) density-free, and (b) variable-density 

(2) Diameter class models 

(3) Individual tree models: (a) distance-dependent, and (b) distance-independent 

These models are reviewed, and a short description is presented in Chapter II (Review 

of Literature). This dissertation presents the work of analysis of shortleaf pine growth 

measurements data from eastern Oklahoma and western Arkansas. There have been 

considerable growth studies in the past on shortleaf pine including Murphy (1982, 1986), 

Lynch et al. (1991, 1999), Murphy et al. (1992), and Lynch and Murphy (1995). 

Moreover, this project attempts to make an improvement over the previous work and to 

revise the parameter estimates, especially on the work reported by Lynch et al. (1999). 

Previous growth model parameters for shortleaf pine have generally been fitted using 

ordinary least squares methods. Shortleaf pine individual-tree models fitted by ordinary 

least squares have not accounted for plot-level grouping of individual observations. 

Mixed-effects models can use random plot effects to account for grouping in this data 

structure. Thus, it is expected that better parameter estimates can be obtained using more 
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advanced statistical tools of mixed modeling. Furthermore, this work incorporates a third 

measurement of permanent plots that was not used by Lynch et al. (1999). It is expected 

that the resulting estimates could be used for better prediction of the shortleaf pine 

growth for Oklahoma and Arkansas areas.  

 

Objectives 

 

This dissertation concerns development of individual-tree mixed-effects models for 

even-aged shortleaf pine. It improves on what has been done in the past on shortleaf pine 

growth and yield modeling. Specifically, the following are the objectives of this project: 

(1) Review the past work in shortleaf pine growth and yield modeling, and mixed-

effects modeling work in forestry in general 

(2) Improve on past work of individual-tree growth model for even-aged shortleaf 

pine by developing a nonlinear mixed-effects growth model with plot-level 

random-effects that takes into account possible spatially correlated and 

heterogeneous errors using a sample (calibration) of complete data set, and with 

minimal explanatory variables that are easy to measure in the field 

(3) Make further assessments of the model and verification using an independently 

selected (validation) data set 

(4) Carry out model checking and diagnostics, and arrive with final estimates from 

the complete data set 

(5) Write and present the work with recommendations in a format that is common for 

the scientific audience in the field of forestry 
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CHAPTER II 

 

REVIEW OF LITERATURE 

 

Background 

 

The general objective of this chapter is to review aspects of forest growth and yield 

modeling relevant to development of shortleaf pine growth models. Moreover, specific 

objectives are to review shortleaf pine modeling in general, and mixed-effects modeling 

in forestry. The following areas will be reviewed, but emphasis will remain in application 

of mixed models in forestry. 

• Forest growth and yield models in general 

• Shortleaf pine growth and yield modeling 

• Mixed-effects models in general 

• Application of mixed-effects models in forestry 

 

Growth Data 

In the terminology of Moser and Hall (1969), forestry data can be classified as: 

(1) real growth series, (2) abstract growth series, and (3) approximated real growth series. 

When a complete chronological data series from establishment (e.g. planting) to harvest 

for a tree or stand is available, then it is called a “real growth series.” On the other hand, 
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when data are available from different temporary plots representing different age groups 

and sites, then the data are called an “abstract growth series.” Ideally, one would prefer 

data from real growth series, but due to time and expense factors, real growth series data 

are not common. On the other hand, abstract growth series data may not be of high 

quality. Therefore, it is common to have an “approximated real growth series.” An 

approximated real growth series is in between real and abstract growth series in which 

remeasurements are utilized from several age groups and sites. In this method, data are 

collected from a wide range (in terms of age and site) of permanent plots, but a particular 

plot would not have data from a complete life history of trees. Data for this study are of 

approximated real growth series nature, which will be discussed in Chapter III. Repeated 

measurements from permanent plots have different sources of variation. The error 

component in a linear model from such measurements can be regarded to consist of plot, 

time, and residual random variations (Gregoire 1987).  

 

Modeling Biological Growth 

A model is a description of a system. A system can be defined as any collection of 

interrelated objects or units in which observations are made. Therefore, a description is a 

signal that can be interpreted by humans. That is, a system is anything humans wish to 

understand and models are one tool that facilitates the understanding (Haefner 1996). 

Mathematical models not only should fit the real-life data well, but also should provide 

some practically useful interpretation. Irrespective of the nature of the model, whether 

empirical or theoretical, the modeler should be careful in selecting explanatory variables 

to provide realistic and robust predictions (Vanclay 1994). Typically, nonlinear 
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regression models of biological growth should have parameters that can be interpreted in 

terms of biological significance. In growth modeling, one would be mostly interested at 

the rates of growth over time, and at the time point when growth is stopped. It is also 

important to be able to understand the process under which different factors (genetic and 

environmental) influence the growth rate. This information might help in practice to 

manipulate the growth artificially to some extent by altering the growth rate. 

As biological growth is achieved due to cell division, it is in theory considered an 

exponential process (Zeide 1989), which is constrained by several factors. Biological 

systems inherently have two common components of gain and loss in metabolism 

commonly called anabolism and catabolism. Such processes have been considered in 

modeling biological systems, such as early work by Von Bertalanffy (Pienaar and 

Turnbull 1973). According to Pienaar and Turnbull (1973), an allometric model can be 

presented as: 

 

 acQP =                                                                                                                  (1) 

where 

 P = one dimension of an organism, e.g. length of the femur 

 Q = another dimension of the same organism, e.g. width of the skull 

 a  = allometric constant, which characterizes the particular kind of organism and 

 environment 

 c = parameter depending on initial conditions 
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This model assumes that the specific growth rate of P is constant proportional to 

the specific growth rate of Q, i.e. 

 

 ⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

Qdt
dQa

Pdt
dP                                                                                                        (2) 

 

Von Bertalanffy’s model can be written as (Pienaar and Turnbull 1973): 

 

YY
dt
dY γα −= 3/2                                                                                                   (3) 

where 

 Y = size of the organism or population 

 t = time 

 α, γ = constants (α>0, γ>0), and 2/3 is the allometric constant. 

 

The Chapman-Richards function is a flexible model which conceptualizes the 

growth rate of an organism or a population as a resultant of an anabolic growth rate, 

which is a positive term, and a catabolic growth rate, which is a negative term (Clutter et 

al. 1983). This function introduces additional parameter in Bertalanffy’s function 

replacing the 2/3 allometric constant. A standard Chapman-Richards function is written 

as: 

 

 YY
dt
dY γα β −=                                                                                                      (4) 
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where 

 Y = size of the organism or population 

 t = time 

 α, β, γ = constants (α>0, 0<β<1, γ>0) 

 

This model attempts to explain how an organism or population grows over time in 

presence of environmental stress or pressure that tends to reduce growth. 

The Chapman-Richards function is popular in forest growth and yield modeling, 

which is empirical in nature. The model is derived as a generalization of the Bertalanffy’s 

growth model (Pienaar and Turnbull 1973, Yang et al. 1978). According to Yang et al. 

(1978), Weibull function can be modified to model different biological growth processes 

due to flexible nature of the function. Zeide (1989) described growth equations as a 

combination of power and exponential functions by taking diameter growth as an 

example. He compared (tested) five different forms of diameter growth models 

(Chapman-Richards, Gompertz, Logistic, Power decline and Weibull) in integral form, 

and found that power decline model, which he derived, performed better in predicting 

growth for various species and site qualities. He presented an elementary power function 

called power decline 1 as: 

 

 bat
Ydt
dY −=                                                                                                              (5) 

 

where 

 Y = a measure of plant size 
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 t = plant age 

 a, b = constants (a, b > 0) 

 

The parameters a and b are interpreted as the initial relative growth rate and the rate of 

aging, respectively. 

Many biological systems are modeled using standard regression-type techniques 

as described in Draper and Smith (1998), and Neter et al. (1996). Nonlinear regression 

techniques are more popular than standard linear regression to model real-life biological 

data (Bates and Watts 1988, Ratkowsky 1983). Interpretability, parsimony and validity 

beyond the observed range of the data are the main reasons why nonlinear models are 

often more appropriate than linear models for biological data (Pinheiro and Bates 2000).  

Haefner (1996) is an example of how complex biological systems can be modeled 

through computer simulation, instead of using empirical methods. Simulation is a popular 

method in systems modeling. However, many forest growth and yield modeling exercises 

are not systems modeling, so statistical models supported by measurements are still 

popular methods. However, process modeling is also gaining popularity in forestry 

(Baldwin et al. 2001, Johnsen et al. 2001), especially in organizations where strong multi-

disciplinary teams of forest biometricians, computer scientists and physiologists exist. 

There has been considerable work in forest growth and yield modeling including 

southern pines, but there is much less work in shortleaf pine growth studies despite its 

relative importance. Murphy (1986) is a good source on shortleaf pine growth studies 

prior to 1986. Later work will be described in the following sections. 
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Types of Forest Growth Models 

 

Density-Free Stand-Level Models 

These models are based on full stocking assumptions. Full stocking, often called 

“normal”, is the density thought to maximize standing tree volume. However, the concept 

of normal density is subjective, and it is rarely observed in practice. “Normal” yield 

tables are developed from temporary plot measurements. For example as cited by Rose 

(1998), Sylvester (1938) developed yield tables based on data from 240 plots of loblolly 

pine in Louisiana and Arkansas, and compared the results with the yield tables of 

Miscellaneous Publication 50 (USDA Forest Service 1929). It was concluded that the 

yield tables of Miscellaneous Publication 50 were not very correct. But the conclusions 

drew comments from others such as F.X. Schumacher (1939), again as cited by Rose 

(1998) that the normality concept was subjective, which led to the discrepancy. The yield 

tables developed from average density instead of maximum density are called empirical 

yield tables. Another example of density-free yield table is the work of Schumacher and 

Coile (1960), which is quoted by Lynch et al. (1999) for shortleaf pine. Schumacher and 

Coile (1960) developed “normal” yield tables based on data from 74 temporary plots in 

the Piedmont region of North Carolina. 

 

Variable-Density Stand-Level Models 

In this category of growth and yield models, stand density is used as an explicit 

explanatory variable. These are considered an improvement over density-free models, as 

growth and yield information can be obtained at varying levels of stand density. 
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According to Clutter et al. (1983), Schumacher (1939) developed the following variable-

density model: 

 

 )()()ln( 32
1

10 sDgSfAV ββββ +++= −                                                             (6) 

where 

 V = per unit area volume/yield, 

 A = stand age, 

 f(S) = function of site index, 

 g(Ds) = function of stand density, and 

 β0, β1, β2, β3 are model parameters 

 

This framework can be used to fit a stand-level variable-density model. Clutter 

(1963) developed a compatible growth and yield model for loblolly pine. Compatible 

growth and yield models are developed with mathematical properties that permit yield 

models to be derived by integration of growth models (Davis et al. 2001). Murphy and 

Beltz (1981) developed the first variable-density models for natural even-aged shortleaf 

pine. They used permanent plot measurements from Arkansas, Louisiana, Oklahoma and 

Texas. Murphy (1982) used the same set of data and basal area equation to predict 

sawtimber volume. 

Lynch et al. (1991) developed variable-density stand volume equations for natural 

even-aged shortleaf pine of eastern Oklahoma and western Arkansas. They used the 

Schumacher-type yield model with data from 191 permanent plots. The plots were 

established by the USDA Forest Service and Oklahoma State University in the period 



 15

between 1985 and 1987. The models are available for estimating merchantable cubic-

foot, sawtimber cubic-foot, and boardfoot volumes per acre for natural even-aged 

shortleaf pine. The volume equations have the following general form: 

 

 21
0

βββ HBV =                                                                                                        (7) 

where 

 V = volume per unit area, 

 B = basal area per unit area, 

 H = average total height of dominant and codominant trees, and 

 β0, β1, β2 are model parameters 

 

This equation predicts current volume. Future volume can be predicted by first 

estimating the future basal area and total height, and then by using the projected basal 

area and total height in the volume equation. The volume growth prediction is obtained 

by using the basal area growth projection equation along with the stand volume equation. 

The future basal area growth per unit area can be projected as a function of stand density 

and age (Lynch et al. 1991). 

The following shortleaf pine site index relationship for Ouachita Mountains has 

been developed by Graney and Burkhart (1973): 

 

 [ ] ( )[ ] 4)(exp1 3210
aASIaaSIaaH ×+−−+=                                                         (8) 
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where 

 H = average total height (ft) of dominant and codominant trees, 

 SI = site index (ft at base age 50 years), 

 A = stand age (years), and 

 a0, a1, a2, a3, a4 are model parameters 

 

Since the parameters in this equation are intrinsically nonlinear, they must be 

fitted by nonlinear regression methods. A numerical method as explained in Gerald and 

Wheatley (1994) must be used to find a solution for site index (SI). Similarly, some other 

site index (height prediction) equations have been suggested for southern pines, including 

shortleaf, by Farrar (1973). Alternative methods of site index estimation for shortleaf as 

well as other southern pines are mentioned in Miscellaneous Publication 50 (USDA 

Forest Service 1929), as cited by Lynch et al. (1999). 

Zeide (2002) also developed techniques for growth modeling for even-aged stands 

in which stand density (number of trees per unit area and their average diameter) is 

explicitly included in the model. The modeling framework combines two sets of 

processes; one that models the growth of trees and the other that makes adjustments to 

the growth process as a result of competition among trees. Stand density is an important 

variable that is part of tree dynamics in a stand, which can be used to manage the stands 

with a specific objective. 
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Diameter Class Models 

Diameter class models provide growth and yield information by specified 

diameter classes, so these are more detailed than whole-stand models. Stand volume can 

be computed by summing the volumes over diameter classes. Diameter class models 

often use a probability density function to allocate individual trees to diameter classes. 

The Weibull distribution is the probability distribution most widely used to model 

diameter distributions, because it is a flexible distribution that can accommodate a range 

of shapes and scales of distribution. Bailey and Dell (1973) first used the Weibull 

distribution to model tree diameter distribution. They found it to be very useful in 

modeling diameter distribution, although other distributions such as beta and exponential 

functions have also been used. The Weibull probability density can be presented as: 
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          = 0, otherwise 

 

where 

 X = random variable such as diameter at breast height 

 a, b, and c are parameters of the distribution 

 

Parameter a is called the location parameter, which is non-negative (a ≥ 0) for diameter 

distribution, although it can take any real value theoretically. Parameters b and c are 

respectively called scale and shape parameters, and must always be positive (b, c > 0). 
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The Weibull is a very flexible probability distribution. Certain other distributions 

can be represented as special cases of the Weibull. For example, if a=0 and c=1, it is 

actually an exponential distribution. These results are found in standard statistical 

references such as Mood et al. (1974) and Wackerly et al. (2002). Use of the Weibull 

distribution in forestry has been well documented by Clutter et al. (1983) and Bailey and 

Dell (1973). To use the Weibull distribution for diameter class modeling, the model 

parameters need to be estimated, which is typically achieved by using maximum-

likelihood method. Then the number of trees in a stand can be multiplied by appropriate 

diameter class probability to assign number of trees in diameter classes accordingly. 

Smalley and Bailey (1974) used the Weibull distribution to develop a diameter class 

model for shortleaf pine plantations. They used tree measurements from 104 shortleaf 

pine plantation plots in Tennessee, Alabama and Georgia. 

 

Individual-Tree Models 

Models which use individual trees as the basic unit to predict stand growth and 

yield are called individual-tree models. Such models can be either distance-independent 

or distance-dependent, depending on whether or not the spatial arrangement of individual 

trees is taken into account. Distance-independent models predict tree growth either 

individually or by size classes. Growth prediction is made as a function of present size 

and stand-level variables such as stand age, site index, and stand basal area (Avery and 

Burkhart 2002). 

Individual tree data are aggregated after the model grows each tree under 

individual-tree model, whereas the stand level model aggregates individual tree data into 
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stand variables before applying the growth model (Davis et al. 2001). So growth rate 

estimates are on an individual tree basis and stand level basis, respectively. That is, no 

individual tree growth estimate can be made from a stand level model, whereas stand 

level growth can be estimated from an individual-tree level model. Therefore, diameter 

class and stand level information can be derived from individual-tree models. 

 

Distance-Dependent Individual-Tree Model 

This model takes the spatial relationship between trees into account using a 

coordinate system. Initial stand conditions are either user-specified or computer-

generated, and the growth of each tree is simulated as a function of its attributes, the site 

quality, and a measure of competition from neighbors as per the assigned tree locations 

(coordinate system). Yield is estimated by summing the individual-tree values (either 

from tree volume or a taper equation), and by adjusting for some expansion factors 

(Avery and Burkhart 2002). This modeling approach requires extensive computer 

programming. 

PTAEDA2 is an example of distance-dependent individual-tree model developed 

for loblolly pine. This simulation system has two main sub-systems: (1) one dealing with 

the generation of an initial pre-competitive stand, and (2) another with the growth and 

dynamics of that stand. Various management scenarios for competition, fertilization and 

thinning options have been incorporated in the system (Burkhart et al. 1987, Avery and 

Burkhart 2002). Different diameter growth and height growth models were evaluated by 

Martin and Ek (1984) for red pine plantations. They observed some benefit of 

incorporating a competition index in the model for diameter growth model, but not in 
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height growth model. Similarly, Tome and Burkhart (1989) compared different measures 

of competition for Eucalyptus plantations under a spacing study in Portugal. 

Spurr (1962) developed a method of quantifying competition as point density by 

using a sampling angle gauge (prism). Another measure of point density as the potentially 

available area was developed by Brown (1965), as cited by Rose (1998). Crown 

competition factor (CCF) as defined by Krajicek et al. (1961) is a popular competition 

index (Avery and Burkhart 2002). Bullock and Burkhart (2005) evaluated spatial 

dependence in juvenile loblolly pine plantations using a simultaneous autoregressive 

model, and they found a significant dependence among neighboring stems. 

Distance-dependent models are based on the concept of spatial variation. The 

literature of spatial statistics is huge (e.g. Cressie 1993, Ripley 1981, Webster and Oliver 

1990). Spatial statistical methods are popular in geography, geology and ecology, but 

have started to be used in other fields. Units that are physically close tend to be similar, 

and correlation between the units decreases as the distance between the units increases. 

However, the plants or animals too close together might also compete for resources. For 

example, Mead (1967) has developed a mathematical model for estimating inter-plant 

competition. This kind of inter-plant competition might lead more dissimilar plants that 

are physically close. Therefore, the utilization of concept of spatial variability or 

competition measures depends on purpose and the scale of consideration. 

In summary, distance-dependent models are more expensive and computationally 

intensive than distance-independent models. Distance-independent models are popular 

among forest professionals (Tome and Burkhart 1989, Davis et al. 2001). 
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Distance-Independent Individual-Tree Model 

Distance-independent models do not require data on spatial location for each tree. 

That is, they ignore actual spatial distribution of trees to estimate individual tree growth, 

and assume that the trees are uniformly distributed over space. Typically, a distance-

independent model consists of the following components (Avery and Burkhart 2002): 

(1) a model for tree diameter (or basal area) growth 

(2) a model for tree height growth (or height-diameter relationship to predict height as 

diameter is easily measured) 

(3) a tree mortality estimate 

 

Combining the three model components into a simulation system would provide 

different output scenarios with different input or management variables such as 

thinning/density regimes and site quality. These outputs might be useful to a forest 

manager in decision making. 

Distance-independent models have comparatively less data demand than distance-

dependent models. In distance-independent modeling, measures of competition often 

relate individual tree size to average tree size or to the size distribution. Two most 

commonly used competition measures are: (1) ratio of the quadratic mean diameter to 

diameter of an individual tree at breast height, and (2) cumulative basal area of trees 

larger than the subject tree. Basal area growth is a common response variable modeled in 

practice, because it is less sensitive to competition indices than diameter growth (Bella 

1971). West (1980) compared different models using both basal area growth and 

diameter growth as response variables, and found that basal area growth was more 
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strongly related with explanatory variables than diameter growth. Depending on the type 

of model, different stand level as well as individual-tree level variables can be used as 

explanatory variables. For example, Lynch et al. (1999) used two stand level variables 

(stand age and stand basal area), and two tree level variables (ratio of quadratic mean 

diameter to DBH of individual tree and tree basal area) to model annual basal area 

growth of natural even-aged shortleaf pine in Oklahoma and Arkansas. 

Distance-independent models can be either (1) composite models of tree growth 

as a function of tree measurements, site properties and stand characteristics or (2) 

potential-modifier growth functions. The potential-modifier function models tree growth 

as a theoretically possible maximum growth, which is expressed as a function of tree 

characteristics. The potential is then adjusted for the modifier, which is expressed as a 

function of a stand and tree characteristics including competition (Rose 1998). The Forest 

Vegetation Simulator (FVS), previously called PROGNOSIS, is a simulation framework 

for composite distance-independent modeling (Davis et al. 2001, see also 

www.fs.fed.us/fmsc/fvs). The composite growth model is appropriate when it is difficult 

to obtain dominant-age and site relationships for mixed-species stands. In such cases, a 

potential-modifier growth function is difficult to apply (Wykoff 1990). FVS can be used 

to simulate growth for either basal area or diameter from such models, and modeling 

could be either composite or potential-modifier type in nature. 

The following composite model was fitted by Wykoff (1990) to inventory and 

regeneration study data sets for 11 conifer species in the northern Rocky Mountains. 
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where 

 ln(dds) = natural logarithm of 10-year periodic change in squared diameter 

 (inches) 

 dbh = tree diameter outside bark at breast height (in.) 

 BL = total basal area in trees with larger dbh than the subject tree (ft2/ac) 

 CR = ratio of live crown length to total tree height 

 CCF = crown competition factor 

 SL = average slope percent for the stand 

 ASP = average aspect for the stand (radians) 

 EL = average elevation for the stand (100 ft) 

 bi = estimated regression coefficients; b0 dependent on habitat type and location, 

 b2 dependent on location, and b12 dependent on habitat type 

 

This model incorporated the site characteristics (EL, SL and ASP for each 

combination of habitat and forest type), competition indices (CR, CCF and BL) and tree 

diameter. The model is specific to a habitat and forest type (location) as quantified by a 

separate intercept for each combination of habitat and forest type. The model was also 

validated using data based on permanent-plot measurements. 

On the other hand, a potential-modifier function is suitable when we can easily 

obtain dominant-age and site relationships, for example even-aged stand of a single 

species, in which site-index is often used. This is one of the reasons why even-aged 

natural shortleaf pine has previously been modeled based on this approach. There are two 

components in this framework, a potential and a modifier. The potential quantifies the 
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theoretical maximum growth (diameter or basal area) of a tree which is grown without 

any competition for resources, e.g. an open-grown tree. The modifier component makes 

adjustment to the potential in light of the competition factors that exist in the field, e.g. 

competition for light based on crown size, spacing etc. Since a potential-modifier model 

has two components, parameter estimation can be achieved in one of the two ways: (1) fit 

potential function and then estimate modifier by fixing the potential to a constant, or (2) 

fit both potential and modifier functions simultaneously. The second approach may be a 

better one as its estimation procedure considers both the functions together, which is what 

happens in tree growth. Tree growth is dynamic interplay between a potential to grow 

and slowing down of the growth due to environmental restrictions. 

Shifley and Brand (1984) provide a good example of how a potential function can 

be constrained to follow a biological principle. They used a modified Chapman-Richards 

function (Pienaar and Turnbull 1973) to restrict the tree growth to a biologically possible 

total size. 

When a standard Chapman-Richards equation is set to zero, and solved for 

organism/tree size (to find the maximum as the Chapman-Richards equation is the first 

derivative of size with respect to time), the resulting tree size would be a maximum 

biologically potential size (Shifley and Brand 1984). 
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Any measure of tree size, such as basal area, could be used. The derivative form 

of Chapman-Richards function presents the variable in growth form, so if tree size is 

represented by basal area, then the response variable would be basal area growth. 

The modified Chapman-Richards model obtained by Shifley and Brand (1984) 

was of the following form: 

 

 )1(/ ββ αα −−= AYY
dt
dY                                                                                        (12) 

 

One needs to insert an appropriate value for A (e.g. maximum possible tree basal 

area) to revise the estimates of α and β. According to Shifley and Brand (1984), such a 

value for A can be obtained from the National Register of Big Trees (American Forestry 

Association 1982 as cited by Rose 1998). 

Murphy and Shelton (1996) also used a Chapman-Richards function for potential 

of the form 

 

 Potential = [ ])exp(1 21 tBββ −                                                                               (13) 

where 

 Bt = average tree basal area during the growth period 

 βi = parameters, i = 1,2 

 

They experienced a severe convergence problem with the nonlinear least-squares 

estimation. Some other examples of potential functions are found in Amateis et al. (1989) 

and Smith et al. (1992). Amateis et al. (1989) proposed the idea of estimating potential 
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growth from open grown trees without any competition effects. This idea motivated 

Smith et al. (1992) to estimate maximum potential growth for shortleaf, longleaf and 

loblolly pines. 

A modifier function takes the growing conditions into account to adjust the 

potential to estimate net growth. Several examples of modifier functions are available in 

forestry literature. One that is most relevant to shortleaf pine growth modeling is that of 

Hitch (1994). He considered two modifier functions: (1) A variant of Shifley’s (1987) 

functions for TWIGS and STEMS for the Central States, and (2) A modified logistic 

function developed by Murphy and Shelton (1996). The logistic function is a useful 

modifier, since it is restricted between 0 and 1, and can include several independent 

variables. The logistic modifier has a form: 

 

 Modifier = 
)exp(1

1

5413 qs DBB βββ +++
                                                          (14) 

where 

 B1 = basal area in trees larger than or equal to the diameter of the subject tree 

 Bs = stand basal area 

 Dq = quadratic mean diameter 

 βi = parameters, i = 3,4,5 

 

One advantage of the logistic modifier function is that we can add more 

explanatory variables to improve the fit index of a model, but still it is within the range of 

0 and 1. So a complete growth model would take the form 
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Predicted growth = Potential growth × Modifier 

 

That is, the Murphy and Shelton (1996) model would be: 
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The model terms are defined as before. They used this equation to fit an 

individual-tree basal area growth model for loblolly pine  

A distance-independent individual-tree model for shortleaf pine for the Ouachita 

Mountains was first developed by Hitch (1994) using the potential-modifier function 

approach. He used a data set for natural even-aged shortleaf pine in Oklahoma and 

Arkansas from a cooperative study between OSU Department of Forestry and USDA 

Forest Service.  

Bitoki et al. (1997) used data from a study for uneven-aged continuous forest 

inventory (CFI) plots for shortleaf pine from the same Oklahoma and Arkansas region to 

develop a basal area growth model. They also used a potential-modifier function 

approach. They first estimated the potential growth separately by excluding a parameter 

from Hitch’s (1994) equation. Then the parameters in the modifier function were 

estimated by keeping the potential constant, so all parameters were not estimated 

simultaneously. A simultaneous estimation technique for estimating the parameters in a 

potential-modifier form has been used by Murphy and Shelton (1996) for loblolly pine. 

Hasenauer et al. (1998) used simultaneous regression methods to analyze 

individual tree data for Norway spruce from Australia. They found strong cross-equation 
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correlations, and the simultaneous estimation method was more efficient than separate 

estimation by ordinary least squares. Similar estimation method in a nonlinear system 

was examined for white spruce data by Huang and Titus (1999). An example of 

simultaneous estimation for height-diameter model fitting is Omule and MacDonald 

(1991). Rose (1998), and Rose and Lynch (2001) used a seemingly unrelated regression 

technique to fit a basal area growth model for shortleaf pine as the technique would help 

model correlated errors. Lynch and Murphy (1995) also used seemingly unrelated 

regression to fit a height-diameter model for natural even-aged shortleaf pine. 

Lynch and Murphy (1995) used the following general framework for modeling 

height growth in natural, even-aged shortleaf pine stands: 

 

 ( )β,,,,ˆ,ˆ
iii LDiDii DSDHAfh =                                                                             (16) 

where 

 iĥ  = predicted individual tree height at time i 

 iA = stand age at time i 

 
iDĤ = predicted average height of dominants and codominants at time i (could be 

 obtained from site index curves in even-aged stands) 

 iD = individual tree dbh at time i 

 
iLD = dbh distribution location identifier at time i such as maximum dbh or 

 quadratic mean dbh 

 
iDS = an expression of stand density at time i 

 β  = vector of parameters 
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Lynch and Murphy (1995) also provide a comprehensive review of models 

relating tree height to DBH and age (or time). The Hitch’s (1994) model was later 

slightly modified by Lynch et al. (1999) by including additional data available from later 

plot measurements. They developed a complete growth and yield prediction system 

including models for basal area growth, height-diameter relationship, crown 

characteristics and mortality functions. The estimates are now being used in the shortleaf 

pine stand simulator, SLPSS (Huebschmann et al. 1998). 

  

They fitted the following model: 
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where 

 Gi = annual basal area growth (ft2) of tree i 

 Bi = basal area (ft2) of tree i 

 A = stand age (years) 

 Ri = ratio of quadratic mean stand diameter to the dbh of tree i 

 Bs = stand basal area (ft2/ac) 

 BM = 7.068384 ft2 (the maximum expected basal area for a shortleaf pine in 

 managed stands) 

 b1, b2, ….., b7 = parameters 

 iε = random error 
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Lynch et al. (1999) used the following nonlinear model for individual tree height 

given by Lynch and Murphy (1995): 

 

( ) ( ) iiDi DHH εββ ββ +−−=− − 31
20 exp5.4)5.4(                                                 (18) 

where 

 iH = total height (ft) of tree i 

 iD = dbh (in) of tree i 

 DH  = dominant height as per Graney and Burkhart (1973) 

 0β , 1β , 2β , 3β = model parameters 

 iε = random error 

 

Beaumont et al. (1999) evaluated the generalized method of moments for 

modeling dominant height through site index in black spruce. They found that the new 

method of simultaneous estimation to be better than traditional two-equation approach. In 

the traditional method, site index is first estimated as the average height of dominant trees 

at base age, and then dominant height is predicted as a function of age and site index as 

done by Graney and Burkhart (1973). 

 

Uneven-Aged Stand Modeling 

Several basic ideas of even-aged stand modeling are relevant to uneven-aged 

stand modeling also. Furthermore, this dissertation deals with data from even-aged 

shortleaf stands only. Therefore, only a brief review indicating the differences is 

presented. 
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The most important difference in uneven-aged stands modeling is that the concept 

of site index and stand age cannot be easily used since there are different age-classes in 

these stands. And at least in principle, modeling techniques for uneven-aged stands can 

also be applied to even-aged stands (Avery and Burkhart 2002). Key ideas on uneven-

aged stands modeling are presented in a classic work by Moser and Hall (1969), and 

Moser (1972). They developed a modeling framework in which yield is expressed as a 

differential function of elapsed time from a given initial condition. A Markov Chain 

approach for predicting diameter distributions in uneven-aged stands is provided by 

Bruner and Moser (1973). In such a framework, future diameter distributions, number of 

surviving trees, number of dead trees, and number of harvested trees are predicted using 

inventory data under a Markov process, which is a stochastic process for modeling an 

uncertain event. Lynch and Moser (1986) developed a technique of predicting stand 

tables for two species groups based on a differential equations approach. 

A matrix model approach to modeling uneven-aged forest management has been 

reported by Buongiorno and Michie (1980). In this approach, a matrix model of forest 

growth similar to the Markov model of Brunner and Moser (1973) is combined with 

linear programming techniques to answer some economic questions. Following the idea 

of Buongiorno and Michie (1980), Schulte and Buongiorno (2004) developed a growth 

and yield model for naturally-regenerated shortleaf pine forests including hardwoods 

from southern US. Their work was based on repeated measurements on forestry 

inventory and analysis plots. 

According to Smith (1986), industrial forestry organizations and USDA Forest 

Service began a basic shift from uneven- to even-aged stands in about 1970. Many 
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commercial activities involve even-aged stand management, but some argue against the 

ideas of even-aged management because of ecological and environmental reasons. 

Murphy and Farrar (1988) developed a stand-level growth and yield model for uneven-

aged loblolly-shortleaf pine using inventory data. Guldin and Baker (1988) carried out 

yield comparisons for both even-aged and uneven-aged loblolly-shortleaf pine stands. 

They found that total merchantable cubic-foot yields were highest for conventionally 

managed even-aged plantations. Atta-Boateng and Moser (2000) developed a compatible 

growth and yield modeling system for managed mixed forests of the tropical rain forest 

region. An individual-tree growth and yield model for uneven-aged shortleaf pine stands 

was developed by Huebschmann et al. (2000). 

 

Forest Growth and Yield Simulation Systems 

 

Different models/systems have been reported in the literature for simulating forest 

growth and yield. The USDA Forest Service has developed a comprehensive system of 

vegetation simulation called Forest Vegetation Simulator (FVS). The FVS system 

simulates vegetation change based on forest inventory data or stand examination data 

about the forest, stand, and trees (USDA 2002). A brief summary of some simulation 

systems is presented in Table 2.1. 
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Table 2.1. Some selected individual tree growth and yield simulation models/systems 

available for the United States (Adapted from Davis et al. 2001) 

Simulation System Description 
 
The Forest Vegetation 
Simulator (FVS) 
 
 
 
 
 
PTAEDA2 
 
 
 
 
ORGANON 
 
 
 
CRYPTOS, CACTOS 
 
 
 
 
 
SLPSS 
 
 
 
 
 
 
 

 
Previously called PROGNOSIS, developed by USDA Forest 
Service for nationally supported framework for forest growth 
and yield modeling, more than 20 variants nationwide, many 
models, developed by universities and research institutions, 
such as TWIGS, STEMS, or GENGEM are now part of FVS  
(www.fs.fed.us/fmsc/fvs) 
 
Distance-dependent system capable of modeling the growth of 
loblolly pine plantations, has also been linked with 
MAESTRO, a process model, developed and supported by 
Virginia Tech 
 
Developed for western Oregon conifer and hardwood types, 
developed through a public and industry cooperative and is 
supported by Oregon State University 
 
CRYPTOS developed for the California coastal redwood and 
fir forests, and CACTOS covers the California mixed conifer 
forests, both developed through a public and industry 
cooperative and are supported by University of California-
Berkeley 
 
Shortleaf Pine Stand Simulator, which simulates the growth of 
natural shortleaf pine stands in western Arkansas and eastern 
Oklahoma, developed from a cooperative study by Oklahoma 
State University (OSU), the US Forest Service Southern 
Station, and the Ouachita and Ozark National Forests, 
supported by the Department of Forestry at OSU. 

 

 

The following sections present a review of mixed modeling techniques that form the 

foundation of this dissertation work. 
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Mixed Models 

 

Fixed vs. Random-Effects 

When we are interested only in the levels or classes observed in the study sample, 

then the estimates are fixed-effects.  On the other hand, if the classes or levels observed 

are a sample from a population, and we are not primarily interested in the particular 

levels observed, then this prompts the random-effects approach. In this approach, we are 

interested in the variability pattern in the population itself from which the sample was 

observed (Snedecor and Cochran 1980, Laird and Ware 1982). For example, when a 

forest growth model is developed from a fixed-effects approach for the stands observed 

only, then the model is fixed-effects model, and the results are applicable only to the 

stands observed in the sample. If the forest growth model needs to be generalized to a 

forest from which a sample of stands was observed, plot random-effects should be 

considered. Basically, we are not interested in the particular stands. Therefore, a growth 

model in which stands/plots have random-effects would be desirable. However, many 

traditional/regular forest growth models have been based on a fixed-effects approach. 

Observations classified/grouped/clustered by a certain categorical variable are 

often analyzed by using analysis of variance (ANOVA) and analysis of covariance 

(ANCOVA) techniques. However, these techniques are relevant only when the number of 

categories is relatively small, and we are interested in comparisons of the observed 

categories only. This represents a case of fixed-effects. In many cases, we are interested 

in considering the categories as a representative random sample from a population. A 

fixed-effects analysis would not be appropriate in such cases, instead a random-effects 



 35

approach should be used that estimates the variance components for different levels of a 

population (Longford 1993). In random coefficient models, the coefficients for each class 

(intercept and slope for each combination of different levels) quantify deviation from a 

defined population regression model (Tao 2002). 

A mixed model is an extension of a random-coefficient regression model in which 

fixed-effect parameters are also included. In other words, when a model has both fixed 

and random-effects, then the model is called a mixed model. A mixed model typically has 

more than one error level, so such a model is also called a multi-level model. If 

classification factors form a hierarchy (nested structure), then the model is also called a 

hierarchical model. 

Gumpertz and Pantula (1989) provide a simple way of making inference based on 

mean of the individual coefficients in random coefficient regression models. They 

interestingly contrast the longitudinal data in biological science studies with those of 

economic studies data. Their appreciation of agricultural and biomedical studies with a 

small number of repeated measures on large number of experimental units/subjects is 

important in the context of our project. This is different in nature compared to economic 

and meteorological data in which there are often multiple measurements/observations for 

a long period of time (time series) on relatively small number of subjects. The 

mathematical details for mixed-modeling will be addressed in Chapter IV. 

 

Longitudinal Data/Repeated Measures 

Data resulting from repeated observations/measurements on the same unit/subject 

over time are often called longitudinal data. Such data are common in practice, especially 
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in medicine, biology and economics (Diggle et al. 1994, Gregoire et al. 1995, Davis 

2002). Mixed models are an increasingly popular method for analysis of longitudinal data 

because of their flexibility in handling different data structures (irregularity and 

unbalancedness) and in satisfying model assumptions. There are other alternative analysis 

approaches such as a multivariate ANOVA (MANOVA), which are not as flexible and 

powerful as the mixed modeling approach. MANOVA can not handle irregular and 

unbalanced data properly, and unbalanced data are very common in practice. Another 

alternative is to follow a split-plot in time approach (Kuehl 2000). The split-plot approach 

to repeated measures analysis would assume that observations/treatments within a unit 

are randomized. That is, different observations over time within the same subject/unit 

would be assumed random, which is not a very realistic assumption (Diggle et al. 1994). 

Instead, we would prefer to model within-unit correlation (serial correlation in repeated 

measurements, and spatial correlation among trees within a plot). Therefore a model that 

recognizes a proper covariance structure for errors would be a better approach to analyze 

such data (Gregoire et al. 1995). 

Laird and Ware (1982) and Ware (1985) developed a random-effects model 

approach for analyzing longitudinal data that would model serial correlation on the same 

subject. A two-level model was developed in which grouping of observations would be 

made by subjects. Such models could be fitted using either maximum likelihood or 

residual maximum likelihood (empirical Bayes) methods. Linear mixed-effects models 

for longitudinal data are described by Chi and Reinsel (1989), and Verbeke and 

Molenberghs (2000). They assessed maximum likelihood and restricted maximum 

likelihood methods of estimation. They also used a first-order autoregressive model to 
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account for within-individual errors resulting from longitudinal measurements on the 

same individuals. 

Crowder and Hand (1990) is a standard reference for repeated measures analysis, 

including responses of categorical nature. They deal with standard split-plot analysis, 

MANOVA and ante-dependence analysis to account for consecutive measurements on 

the same unit. Diggle et al. (1994) described principles and methods for analysis of 

longitudinal data. They dealt with both quantitative as well as qualitative data types, and 

provided a significant amount of information on random-effects models. Major 

theoretical and computational contributions to the nonlinear mixed-modeling approach 

were made by Vonesh and Carter (1992), and Davidian and Giltinan (1995). Similarly, 

researchers such as Lindstrom and Bates (1990), and Pinheiro and Bates (2000) 

developed algorithms and software that allowed practical usage of the models. Reiczigel 

(1999) reviewed methods for analyzing repeated measurements from designed 

experiments in which the main objective is to compare treatments as precisely as 

possible. VanLeeuwen et al. (1996) presented a mixed model that incorporated random 

trends through time, and also allowed correlations among observations at the same time. 

Pinheiro and Bates (2000) developed the nlme library in S-Plus that has made a 

substantial impact, especially on use of nonlinear mixed models in practice. They 

followed the approach of Laird and Ware (1982) to develop these computational tools. 

SAS PROC NLMIXED has been considered limited for nonlinear mixed modeling (Tao 

2002, Littell et al. 1996), although a random-effect with limited options for covariance 

structure can be used. Littell (2002) compared analysis of variance (ANOVA) versus 

residual maximum likelihood (REML)/generalized least squares (GLS) methods for 
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analyzing unbalanced mixed model data, and found that ANOVA was popular method 

prior to the early 1990s because of its simplicity and lack of easily available computing 

tools for likelihood based methods. However, more powerful likelihood based methods 

such as REML and GLS have started gaining popularity due to the increasing availability 

of software since the early 1990s. Davidian and Giltinan (2003) provide an overview of 

nonlinear models for repeated measurements data.  

 

Correlated and/or Heterogeneous Errors 

Correlation among successive observations over time on the same unit is 

discussed in a framework of time series analysis by Diggle (1990). Similarly, spatial 

correlation among observations is dealt with by Cressie (1993), Ripley (1981), and 

Webster and Oliver (1990). However, these references do not work in the context of 

mixed modeling. Both inter- and intra-individual variations in nonlinear mixed modeling 

for repeatedly measured observations are discussed and reviewed by Davidian and 

Giltinan (1995, 2003). 

Wolfinger (1996) reviewed and evaluated different covariance structures for 

modeling heterogeneity in repeated measures data. The variance-covariance structures 

included heterogeneous versions of the compound symmetry and first-order 

autoregressive structures, the Huynh-Feldt structure, the independent-increments 

structure, correlated random coefficients models, the first-order antedependence model, 

and a simplified factor-analytic construction. Use of an appropriate variance-covariance 

structure would avoid data transformation allowing parameter interpretability and more 

accurate inference. Lin et al. (1997) discuss linear mixed models with heterogeneous 
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within-cluster variances. Methods are shown to predict cluster-specific random effects 

variances.  

 

Application of Mixed Models in Forestry 

 

Ferguson and Leech (1978) and West et al. (1984) were among the earlier 

workers to recognize the problem of temporal correlation in forestry data due to multiple 

measurements from individual sampling units. They mentioned the difficulty in 

regression analysis with regular assumptions for such data, and have discussed and 

recommended alternative approaches for data analysis. They discussed the availability of 

statistical theory to solve these problems. However, these discussions were mostly from a 

designed experiments perspective, so their direct application was not appropriate to many 

forest growth modeling datasets. Ferguson and Leech (1978) developed two-stage yield 

models. In the first stage, they used ordinary least squares, whereas a generalized least 

squares method was used in the second stage to improve the estimation since the errors in 

the second stage violated the assumptions of ordinary least squares. West et al. (1984) 

also found a two-stage regression model to be the most suitable method to analyze 

repeated measurements data common in forestry problems. They demonstrated the 

problem with a study on Eucalyptus in which plot was considered a sampling unit. In this 

study, a sample of trees was selected from each plot, and measurements such as diameter 

at breast height were taken. 

  With motivation from the work of Ferguson and Leech (1978), Gregoire (1987) 

evaluated four different covariance structures for basal area yield models. He compared 
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the following covariance structures: (a) uncorrelated and homoscedastic plot and time 

effects; (b) autoregressive time effects; (c) uncorrelated and heteroscedastic plot effects 

and autoregressive time effects; and (d) correlated and heteroscedastic plot effects and 

autoregressive time effects. It was found that method of ordinary least squares was nearly 

always best; so further work was recommended. 

A random stand and tree parameters approach was used to model height in slash 

pine (Pinus eilliottii Engelm.) by Lappi and Bailey (1988). This was presented as a good 

alternative to the conventional site index approach to height prediction. They fitted the 

following model: 

 

 hki(t) = μ(t) + bk(t) + eki(t)                                                                                    (19) 

where 

  hki(t) = dominant height for tree i in stand k at age t 

 μ(t) = population mean height at age t over all stands 

 bk(t) = random stand effect at age t 

 eki(t) = random tree effect and is uncorrelated with bk(t) 

 

They used the well known Richards’ (1959) equation to model the mean height, 

and then estimated the parameters of the covariance structure using observed residuals as 

if they were the true residuals. 

Gregoire et al. (1995) is an excellent reference on mixed modeling issues in 

forestry. They deal mostly with linear mixed models, but discuss the issues of importance 

of nonlinear mixed models in forestry research. They have fitted stand-level mixed-
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effects models with two data sets consisting of eastern white pine and Douglas-fir with a 

mixed model approach having plot random-effects. Due to the availability of repeated 

measurements, random-effects for stands were fitted even though the response was a 

stand level variable. Errors that are temporally and/or spatially correlated have also been 

modeled. This project will follow basic ideas from this publication. Lack of easily 

available and user-friendly software was mentioned by Gregoire et al. (1995) to be an 

important reason that there was still not much application of nonlinear mixed-effects 

models in forestry. 

Gregoire and Schabenberger (1996a) used a nonlinear mixed-effects approach for 

modeling individual-tree cumulative bole volume of sweetgum from east Texas. They 

later modeled cumulative bole volume by taking spatial correlation between sections of a 

bole into account (Gregoire and Schabenberger 1996b). The objective was to express 

cumulative bole volume as a smooth curve while allowing for fluctuations within and 

among trees as much as possible, yet allowing the curve’s applicability to all trees of the 

species with similar morphological characteristics. They used a nonlinear mixed-effects 

model by comparing restricted maximum likelihood (REML) and generalized estimating 

equations (GEE), and found that GEE to be simpler (computationally less intensive) than 

REML. REML is a normal-distribution based estimation method, whereas GEE is a semi-

parametric approach for multiple measurements per subject (repeated measurements). 

They used SAS PROC IML and MACRO for the modeling work. 

Candy (1997) estimated parameters in a sigmoidal forest yield model using 

composite link functions with random plot effects in a generalized linear mixed-effects 
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model framework. A generalized linear mixed-effects model can be considered as a 

special case of nonlinear mixed-effects models (Tao 2002). 

Lappi (1997) analyzed two jack pine data sets, one from plantations and the other 

from naturally regenerated stands. Both the data sets were longitudinal in nature, and they 

were analyzed using the same model structure. The height/diameter curve parameters 

were partitioned into an age-dependent trend (population mean), a random stand effect, 

and a random time effect. A good practical use of such a model would be calibration with 

which the random stand and time effects could be predicted given some additional 

measurements without needing to make detailed observations as would normally be done 

for new stands. Tasissa and Burkhart (1998) used stem analysis data from permanent 

plots for loblolly pine to evaluate thinning effects on form exponent, a measure of stem 

form. They modeled form exponent in response to thinning and by accounting for 

correlation among within-tree observations with the first-order autoregressive method. 

Apiolaza et al. (2000) used variance components estimation to analyze genetic data for 

Pinus radiata from a progeny test.   

Fang and Bailey (2001) modeled dominant height growth of slash pine from a 

study with several silvicultural treatments installed in Georgia and north Florida. They 

reparameterized the three-parameter Richards model to predict dominant height growth in 

presence of silvicultural treatments, such as chopping, fertilization and burning, using a 

nonlinear mixed-effects model approach. The study design was a split-plot, with soil type 

as main-plot factor and silvicultural treatments as subplot factor. They claim that this 

would be a better approach to predict dominant height growth rather than using the site 

index approach. Fang et al. (2001) used a simultaneous equation system to develop stand-



 43

level mixed models for growth and yield of slash pine with two components: basal area 

model and total volume model. 

Another important example of mixed modeling in forestry is Hall and Bailey 

(2001). They modeled forest growth variables using multi-level nonlinear mixed models 

with data from a loblolly pine spacing study in Georgia. They used a linearization 

approach of estimating equation rather than maximum likelihood or restricted maximum 

likelihood method. They included random-effects for both plots and trees. They found 

that the multi-level nonlinear mixed model approach provided several advantages over 

traditional forest growth modeling methods. 

Guilley et al. (2004) modeled averaged ring density with individual tree random 

effects for sessile oak in France. It was concluded that there was no evident effect on 

wood density due to changing environment and forest management type when ring width 

and cambial age were constant. Garber and Maguire (2003), and Leites and Robinson 

(2004) have applied the mixed modeling method to develop taper equations. A nonlinear 

mixed model with autoregressive error structures was used to model stem taper of 

ponderosa pine (Pinus ponderosa Dougl. ex Laws.), lodgepole pine (Pinus contorta 

Dougl. ex Loud.), and grand fir (Abies grandis Dougl. ex D. Don) by Garber and Maguire 

(2003). Leites and Robinson (2004) improved the Max and Burkhart’s (1976) taper 

equation with crown dimensions and individual tree random-effects for loblolly pine. 

Mehtätalo (2004) used a mixed model with height and diameter data of 

longitudinal nature for Norway spruce (Picea abies (L.) Karst.). The Korf growth curve 

was used as a basic growth function for the relationship. The model could be calibrated 

for a new stand with substantially less observations than one would require for fitting a 
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completely new model. It was concluded that the growth pattern of a stand was 

dependent on mean tree size in the stand but not on stand age. This may or may not be 

true in other species. 

Zhang and Borders (2004) used a mixed-model to estimate tree component 

biomass for managed loblolly pines with an allometric approach. They found that the 

percent of stem biomass increased with age while the opposite was the case for foliage 

and branches. It was also found that cultural treatments affected the proportional 

allocation among various tree compartments. Calama and Montero (2004) used a mixed 

model approach to model individual-tree height-diameter relationship for stone pine 

(Pinus pinea L.) in Spain. 

Lynch et al. (2005) used a random-parameter (mixed model) approach to analyze 

height-DBH data for cherrybark oak (Quercus pagoda Raf.) from east Texas. They fitted 

a similar model as reported by Lappi (1991). That is, natural logarithm of difference 

between total height and breast height was modeled. They fitted a linear model with 

random-effects for stands, which could be used for calibration with minimum 

observations from a new stand. The fitted model is as follows: 

 

 kikikkkiki eDDbhH ++++=− −− 9.0
10

9.0
10)ln( ααββ                                             (20) 

where 

 kiH = total height of tree i in stand k 

 bh = breast height 

 kiD = dbh of tree i in stand k 

 0β , 1β = fixed effect parameters 
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 k0α , k1α  = random effect parameters with 0 mean for stand k 

 kie = random residual error for tree i in stand k 

 

They also present an example of how this model could be calibrated for new 

stands. Uzoh and Oliver (2006) used a composite approach (as described by Wykoff 

1990) for height increment modeling for managed even-aged stands of ponderosa pine 

(Pinus ponderosa Dougl.). They used permanent-plot measurements from the western 

US. Random effects for locations, plots and trees were used in the model, and an 

autoregressive covariance structure was used to model the repeated measurements. They 

used a linear form of mixed model after transforming the periodic annual height 

increment to a logarithmic scale. They selected the following model: 

 

E[ln(PAIH)] = b0 + b1 ln(DBH) + b2(DBH)2 + b3SIM + b4SL[cos(ASP)] + 

b5ELEVA+ b6SDI + b7BAL + )()(
ˆ

jlikljl eeh ++                                                     (21) 

where 

 E[ln(PAIH)] = expectation of the natural logarithm of 5-year periodic annual 

 height increment (m) 

 DBH = initial diameter at breast height (cm) 

 SIM = Meyer’s site index (m) 

 SL = average slope for the stand (%) 

 ASP = average aspect for the stand (radians) 

 ELEVA = elevation for the stand (m) 

 SDI = stand density index (trees/ha) 
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 BAL = basal area in larger trees (m2/ha) divided by dbh of subject tree 

 lĥ  = fixed-effect of the lth location 

 )(lje = random error for plot j within location l (assumed to have mean 0 and 

 variance 2
lσ ) 

 )( jlike  = random error for measurement k on tree i within plot j and location l 

 (assumed to have mean 0 and variance 2σ ) 

 bi = parameter estimates 

 

They found that the height increment model displayed a unimodal and positively 

skewed shape for tree growth process, which was as per expectation. Site index (SIM) 

was found to have more effect on height growth than other variables. 

Vázquez and Pereira (2005) used a linear mixed model to explain variation in 

cork weight of cork oak (Quercus suber L.) from Portugal. They decomposed the random 

effects in regional, plot and tree-level that would allow better estimates for fixed effects. 

Budhathoki et al. (2005) also used a linear mixed model approach for preliminary 

analysis of basal area growth of shortleaf pine using a portion of data reported by Lynch 

et al. (1999). The natural logarithm of annual basal area growth was modeled with a 

dataset consisting of plot measurements at three points in time. In the analysis, they used 

a compound symmetry covariance structure and plot random-effects. Their fixed-effects 

parameter estimates were similar in magnitude to those reported by Lynch et al. (1999), 

but the standard errors were reduced as a result of using mixed model. 

The linear mixed model approach discussed above for Lynch et al. (2005), Uzoh 

and Oliver (2005), Budhathoki et al. (2005), and others was partly for computational 
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convenience that would be available in SAS PROC MIXED, although the inherent nature 

of such responses would be nonlinear. With the increasing access to user-friendly 

software such as S-Plus nlme library (Pinheiro and Bates 2000), nonlinear mixed-

modeling is gaining popularity. Hall and Bailey (2001) and Fang and Bailey (2001) as 

indicated above also used nonlinear mixed modeling. 

A nonlinear mixed-effects model was developed for height growth for Eucalyptus 

plantations in Brazil by Calegario et al. (2005). They used the nlme library available in S-

Plus to model the dominant height. They modeled the dominant height as a logistic 

function of age and with plot random-effects. The fitted logistic function was: 
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where 

 HDij = dominant height (m) for ith plot on time j 

 aij = age (years) for ith plot on time j 

 εij = random error; εij ~ N (0, σ2) 
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 bi ~ N (0, ψ) 
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They used repeated measurements from 115 permanent plots measured three to 10 

times between 1992 and 2001. The three parameter logistic function along with plot 

random-effect was found to fit the data well. 

A multilevel nonlinear mixed-effects model was fitted for modeling stand volume 

growth on loblolly pine, and for modeling four silvicultural treatments by Zhao et al. 

(2005). They found that vegetation control and fertilization resulted in the largest volume 

growth. The nonlinear mixed model approach was reported to be useful to handle the 

unbalanced and incomplete repeated measurements. A similar methodology was used by 

Jordan et al. (2005) to analyze earlywood and latewood microfibril angle data on loblolly 

pine. Rose et al. (2006) used a multilevel approach to estimate individual tree survival on 

loblolly pine using complementary log-log link function. They estimated random-effects 

at both plot and tree level, and compared effects of four cultural treatments on tree 

survival. 

Overall, if we fit a model for each plot separately, it would often result in over-

parameterization, whereas ignoring the grouping by plot we would lose much of the 

variability. A mixed model provides a balance between these two extremes (Pinheiro and 

Bates 2000, Calegario et al. 2005). This review shows that mixed models have been 

increasingly used in forest growth and yield modeling. However, no peer-reviewed 

published work on shortleaf pine growth modeling applying mixed models has yet been 

done. This provides an opportunity to apply this new technique in shortleaf pine, and to 

determine whether there is an advantage over the modeling techniques that are currently 

in use. 

 



 49

Estimation/Computational Methods 

 

Corbeil and Searle (1976) describe the foundation of estimation with restricted or 

residual maximum likelihood (REML) procedure for mixed modeling. They also 

developed an algorithm to implement a mixed model. Although mixed modeling 

literature in statistics existed earlier than Corbeil and Searle (1976) (for example they cite 

Hartley and Rao (1967)), application in forestry appears to have begun only in late 

1980’s and early 1990’s. 

Generalized estimating equations (GEE) were used by Gregoire and 

Schabenberger (1996b), and Hall and Bailey (2001). In S-Plus nlme library, the default 

estimation method for nonlinear mixed-effects modeling is maximum likelihood (ML), 

whereas the default method for linear mixed-effects modeling is REML. The library 

enables to fit mixed models with correlated and/or heterogeneous errors (Pinheiro and 

Bates 2000). 
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CHAPTER III 

 

DATA AND DATA MANAGEMENT 

 

This chapter describes the data used for this dissertation. The details on plot 

establishment, sampling, tree measurements, data management and summary statistics for 

important variables are presented. 

 

Study Area and Establishment of Plots 

 

The Department of Forestry at Oklahoma State University cooperated with the 

USDA Forest Service Southern Research Station, and the Ouachita and Ozark National 

Forests to establish the study plots for shortleaf pine. The objective was to study growth 

and yield of shortleaf pine in even-aged natural stands. The study was called Study 48. 

The plots were established from fall 1985 to fall 1987 in eastern Oklahoma and western 

Arkansas. The study area is presented in Figure 3.1. 

To quantify the species distribution within a stand in terms of proportionate 

coverage of shortleaf pine and other species, basal area was assessed using a 10-factor 

prism. Only five shortleaf trees that were classified either dominant or codominant as per 

the definition of Avery and Burkhart (2002) were selected for height and age 
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determination. This information was used to adopt the design criteria of age-density-site 

index combinations as given in Table 3.1 for selecting plots (Lynch et al. 1999).  

 

 

Figure 3.1. Shortleaf pine growth study locations in eastern Oklahoma and western 

Arkansas (Lynch et al. 1991) 

 

The original plots were established based on the design criteria, and the following 

stand properties (Rose 1998): 

(1) naturally regenerated stand with at least 70% shortleaf pine basal area with trees 

having DBH 0.6 inches and larger, 
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(2) stand with dominant and codominant trees having maximum age range of 10 

years or less, 

(3) stand having site index variation of less than 10 feet, 

(4) even-aged stand with no clumping and no more than two age classes per plot, and 

(5) reasonably free from insect, disease or fire damage and no harvesting in the last 

five years. 

 

Table 3.1. Study design for naturally regenerated even-aged shortleaf plots installed 

from 1985 to 1987 with thinning and herbicide treatment in eastern 

Oklahoma and western Arkansas (Lynch et al. 1999) 

Variable Class range Class midpoint 
Basal area (ft2/ac) 16-45 

46-75 
76-105 
106-135 

30 
60 
90 
120 

Site index (ft at base age 50) <56 
56-65 
66-75 
>75 

50 
60 
70 
80 

Stand age (yr) <31 
31-50 
51-70 
71-90 

20 
40 
60 
80 

 

Circular fixed-area plots of size 0.2 acres (52.7-foot radius) were established. The 

plots were surrounded by a 33-foot isolation boundary, which was painted white. A 

buffer boundary of 33-foot was marked that surrounded each contiguous group of plots. 

The buffer boundary was painted blue. The study plots were selected using aerial 

photographs. A typical net plot with two 5-milacre sub-plots is given in Figure 3.2. The 

5-milacre sub-plots were used for understory measurements. Plot centers were posted 
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with an 18-inch orange plastic surveyor’s stake or steel reinforcing rod. Each plot number 

was permanently marked on the center stake. During establishment, each plot was 

thinned to a predetermined basal area as per the study design. Hardwood control was 

achieved by using a chemical herbicide. The buffer boundary also received the same 

treatments for thinning and hardwood control as the study plot. A total of 192 plots were 

planned with three plots in each combination of design variables (basal area, site index 

and age), but only 191 were established. Of the established plots, eight were either 

damaged due to windstorms or not thinned as per the design, so only 183 plots and 7740 

trees were available for analysis for the first growth period from Study 48 (Lynch et al. 

1999). 

 

 

 

 

Figure 3.2. A representation of 0.2 acres measurement plot with two 5-milacre plots  

  (USDA Forest Service 1995) 
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Study 58 was established in 1963–1964 by Frank Freese to study thinning effects 

in naturally occurring shortleaf pine stands. Study 58 was modified in 1988 to conform to 

the same design criteria used for Study 48 (Lynch et al. 1999). Additional plots from 

Study 58 were also available for this dissertation. Only the relevant data for the two 

growth periods from 1985 to 1996 have been used, although more data exist prior to 1985 

for Study 58. Although Freese’s study was established with 35 plots, only 25 plots 

remained after 1987. Study 58 has only 664 trees available for analysis. Therefore, 

measurements for 208 plots and 8404 trees from the two studies through three time points 

are available for the purpose of this dissertation. 

 

Measurements/Observations 

 

Initial tree measurements were taken at the time of plot establishment. The 

azimuth and distance from plot center were recorded for each tree in a plot. Each tree was 

also labeled with a tree number and diameter measurement mark. Measurements of 

diameter at breast height and assignment of tree crown class were made on each tree. 

Tree diameter was measured at breast height (4.5 feet) to nearest 0.1-inch for each tree in 

the plot. Tree status and crown characteristics were also measured on all the trees. Crown 

class was recorded as (1) Dominant, (2) Codominant, (3) Intermediate, or (4) Suppressed 

following the definitions of Avery and Burkhart (2002). Trees with crowns extending 

above the general level of the crowns and being in a position to receive full light from 

above and partially from sides were classified as dominants. The trees classified as 

codominants were at the general crown level, which were in a position to receive full 
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light from above but little from the sides. Trees that were shorter than dominants and 

codominants receiving little direct light from above and none from the sides were 

classified as intermediates. Trees classified as suppressed were completely below the 

general level of the crown receiving no direct light. Total tree height, crown height and 

crown length were recorded to nearest foot for representative dominant and codominant 

trees. Ring count data of the representative dominant and codominant trees was recorded 

to determine tree age. The ring count data were collected by means of increment cores 

taken at 4.0 feet height on the uphill side of the tree for the sample trees. Five years were 

added to annual ring count to determine the total age in years. 

At least four trees were measured for total height and crown height from plots 

having the biggest trees, whereas a maximum of 39 height measurement trees were 

selected from plots having the smallest trees. 

 

Repeated Measurements 

 

Second measurements (first remeasurements) were made between fall 1990 and 

fall 1992. Third measurements (second remeasurements) were taken between fall 1995 

and fall 1997. Remeasurements were made at an interval of either four or five years. For 

remeasurements, the plots were located with the help of aerial photos, which indicated 

the location of the plots. If the plot center stake was missing during remeasurements, it 

was located by taping from previously known tree numbers. If a tree number was not 

found during remeasurement, it was located with the help of azimuth and distance records 

of previous measurements. If previously recorded diameter appeared to be incorrect, it 
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was checked with the help of increment core taken just below breast height. For 

remeasurement, only new height-sample trees were used for increment cores since ring 

count data for previous height-sample trees were already available, although not all 

height-sample trees were bored for the ring count. 

A significant change was made in status codes for third measurements. The details on 

field instructions including the changes can be found in the following field guides. 

(1) Field Instructions FS-SO-4106-48 Growth and Yield of Thinned Natural Shortleaf 

Stands in the Ozark and Ouachita National Forests (August 1991) for first and 

second measurements 

(2) Field Instructions Shortleaf Growth and Yield Study FS-SO-4106-48 (July 1995) 

for third measurement 

 

Each tree was assigned a two-digit status code for third measurement. However, the 

status code for the first two measurements was only a single digit. Status codes for Study 

58 were slightly different. The details of status codes for both the studies are provided in 

Appendix I. 

No damage code was recorded for first measurement in Study 48, because all healthy 

and sound trees were selected. On the other hand, damage code was available from all the 

three measurements for Study 58, because it was a thinning study previously established 

in 1963–64. A slightly different status code, i.e. double-digit code was used for Study 58 

(Appendix I) 
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Data Management 

 

This section presents the issues relating to quality check, corrections and 

intermediate calculations carried out for preliminary analysis as well as for preparing data 

for more formal analysis. 

There were some plots with the same identification number across studies 48 and 

58, e.g. plots 9 and 10; so the duplicate plot numbers were resolved by adding 48000 and 

58000 respectively to make the plot identification unique so that random plot-effects 

could be estimated properly. 

The records with DBH growth over the period outside the range of 0 and 2 inches 

were listed. Similarly the trees with total height growth outside the range of 0 and 9 feet 

were also listed. Original plot sheets for such cases were thoroughly checked. Necessary 

corrections and adjustments were made where appropriate. Data entry errors were 

corrected accordingly, e.g. wrongly entered status codes, DBH values etc. Moreover, the 

cases in which DBH data were correctly entered in computer from plot sheets, but growth 

values appearing unusually large were compared to the expected maximum growth of an 

open grown tree (Smith et al. 1992). Almost all of such cases were found reasonable 

based on the analysis. Thus, such cases were left unaltered as there was no basis to make 

adjustments otherwise. 

Missing and suspicious values for variables such as DBH, height and status code 

were checked in plot sheets, and corresponding corrections were made as appropriate. 

Diameter at breast height was estimated for those trees which were in the plot but were 

missed for measurements. The estimate was used to calculate stand basal area only, but 
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such a record would not be included in modeling. Interpolation was used if middle DBH 

value was missing. Similarly, constant rate of growth was assumed for two periods when 

either first or third DBH was missing unless the third missing observation was due to 

mortality. In general, it was likely that first missing measurement could be due to the 

field worker missing the tree, but the third missing measurement could be due to either 

mortality or observation error by the recorders. For example, the values of DBH for a tree 

in Study 58 for different years are as follows: 

 

Year     1987     1992    1997 

DBH (in) 12.4 (D1) 13.0 (D2)   ? (D3) 

 

When the tree was alive in 1997, then the DBH was estimated by assuming the 

same growth rate during the two periods. That is: 

Estimate of D3 = D2 + growth rate x D2 

where growth rate (for period 1) = ⎟⎟⎠

⎞
⎜⎜⎝

⎛ −

1

12

D
DD  

So, estimate of D3 = 13.0 + ⎟
⎠
⎞⎜

⎝
⎛ −

4.12
4.120.13 x 13.0 

                              = 13.63 (which rounds to 13.6 with 0.1 inch rounding)  

 

Site index was calculated based on all three measurements using the method of 

Graney and Burkhart (1973). Since their site index equation could not be solved 

analytically, a numerical procedure called the secant method as described in Gerald and 

Wheatley (1994) was used. Trees with possible height measurement errors were not 
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included in site index calculation. The ratio of quadratic mean diameter to individual tree 

DBH was calculated. Stand level variables such as basal area per acre and stand age were 

computed from individual tree measurements. Stand basal area was calculated by 

summing the individual tree basal areas in the plot, and by adjusting to a per acre value. 

Stand age was assumed to be the average age of the representative dominant and 

codominant trees in the plot. 

Study 48 data for the first two measurements (first period) were available as a 

SAS ver. 7 data file from the work of Lynch et al. (1999), which was converted to a SAS 

ver. 9 data file. Moreover, if DBH correction from increment core data during the third 

measurement was available, the master file was updated by running the programs again. 

A separate Excel file for the third measurement for Study 48 was available, and it was 

thoroughly checked for such errors as discussed before. Since the file was only for the 

third measurement, records for dead trees were not entered in the Excel file. But it was 

necessary to keep track of what happened to a specific tree in previous measurements. So, 

an appropriate death code, including appropriate code to distinguish if a tree was a height 

sample tree or not, was entered for such records. This would allow the users to keep track 

of individual trees during the fourth measurement. For Study 48, growth calculations for 

the first period were performed by Hitch (1994) and Lynch et al. (1999). These same 

computations were done for the second period. The previous SAS programs were revised 

for the second period, and new programs were also written to handle the added 

complexity due to additional growth period. For example, site index calculation is now 

based on all three measurements. Growth calculations were also completed for both the 
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periods for Study 58. Thus, a master file was created with both the studies and two 

growth periods. 

Conversion of azimuth and distance data to Cartesian coordinate system was achieved 

in three steps: 

(1) Transformation (translation) of azimuth angle by subtracting 900 from azimuth in 

quadrants II, III and IV, but adding 2700 to azimuth in quadrant I. The resulting 

angle is similar to that used for polar coordinates but measured in a clockwise 

direction 

(2) Subtracting the value of step (1) above from 3600 to obtain the correct angle for 

the polar coordinates system 

(3) Calculation of Cartesian (x-y) coordinates from polar coordinates by using the 

following formulas: 

x-coordinate = r cosine(θ) (r= distance, θ=angle for polar coordinate) 

y-coordinate = r sine(θ). 

 

This was modified to our situation to calculate in SAS using appropriate variable 

names. SAS uses radian measure but azimuth was in degrees. The Cartesian coordinates 

will be used for analysis of possible spatial dependence of trees within a plot. 

Plot establishment, measurements and the type of data used in growth and yield 

modeling from the first two measurements are given in Hitch (1994), Lynch et al. (1999) 

and Rose (1998). Data from fourth measurements made between fall 2000 and fall 2001 

will not be utilized in this project because of significant ice-storm damage. 
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The data for this project is “approximated real growth series” type in the terminology 

of Moser and Hall (1969). The results from analysis of these data should apply to 

naturally-regenerated shortleaf pine stands of eastern Oklahoma and western Arkansas. 

The summary statistics of stand or plot variables as well as tree variables are presented in 

Tables 3.2 and 3.3.  

 

Table 3.2. Summary statistics for 208 plots (Studies 48 and 58 combined) for   

  plot/stand level variables 

Variable Mean Standard 
Deviation 

Minimum Maximum

Basal area (ft2/ac) 
  First measurement 
       Mid (first) 
  Second measurement 
       Mid (second) 
  Third measurement 

 
92.9 
102.6 
112.3 
121.3 
130.7 

 
29.1 
30.2 
32.2 
34.1 
36.8 

 
27.3 
22.5 
14.9 
16.1 
17.3 

 
129.0 
142.5 
156.5 
178.4 
200.4 

Stand age (yr) 
  First measurement 
  Second measurement 
  Third measurement 

 
41.8 
46.5 
51.6 

 
19.7 
19.7 
19.7 

 
18.0 
23.0 
28.0 

 
93.0 
98.0 
103.0 

Site index (ft at age 50 yr) 57.4 9.5 39.9 87.4 
Quadratic mean diameter, QMD (in) 8.3 3.5 3.3 19.9 
Dominant height (ft) 54 19 27 106 

 

Overall, a negative tree growth value is not impossible in calculations due to 

measurement/observation error or, more importantly, due to loss of some bark thickness, 

especially with old trees. Therefore, analyses including negative growth as well as setting 

negative growth to zero will be discussed. 
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Table 3.3. Summary statistics for 208 plots (Studies 48 and 58 combined) for   

  individual tree variables 

Variable Mean Standard 
Deviation 

Minimum Maximum 

Diameter at breast height (in) 
  First measurement 
  Second measurement 
  Third measurement 

 
7.4 
8.2 
9.1 

 
3.9 
3.9 
4.0 

 
1.1 
1.2 
1.5 

 
24.4 
25.4 
26.6 

Tree basal area (ft2) 
  First measurement 
  Second measurement 
  Third measurement 

 
0.3825 
0.4469 
0.5397 

 
0.3835 
0.4128 
0.4526 

 
0.0066 
0.0079 
0.0123 

 
3.2472 
3.5188 
3.8591 

Annual average basal area 
growth (ft2/tree) 
   Overall 
   First period 
   Second period 

 
 

0.01378 
0.01303 
0.01459 

 
 

0.01127 
0.01044 
0.01205 

 
 

-0.01669 
-0.01669 
-0.01396 

 
 

0.09964 
0.07176 
0.09965 

Ratio of QMD to DBH (R) 1.1397 0.4423 0.3559 7.3621 
Total height (ft) 
  First measurement 
  Second measurement 
  Third measurement 

 
57 
61 
65 

 
22 
21 
20 

 
10 
10 
13 

 
112 
113 
119 

 

 

Figures 3.3 and 3.4 provide some idea about how DBH distribution changed 

slightly over the periods. The mid value of DBH for two measurements was computed for 

use as an independent variable in modeling tree basal area growth. 
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Figure 3.3. Histogram of mid-DBH for the first growth period 
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Figure 3.4. Histogram of mid-DBH for the second growth period 



 64

CHAPTER IV 

 

METHODS FOR DATA ANALYSIS AND MODELING 

 

This chapter presents some background on statistical methods used in data 

analysis, and their application to the shortleaf pine growth study data set. Basic statistics 

(summary statistics and graphical techniques) were used for exploratory analysis. Two 

major tree attributes were considered for modeling: average annual basal area growth, 

and total height. For both of these attributes, models were first fitted with a calibration 

data set, and validation was carried out with a different data set, although the validation 

data set in this study would not be completely independent of the calibration data set. 

Ideally, a model would have good properties both statistically and biologically. 

On statistical grounds, some models might fit the data well, but they might not 

necessarily have good biological properties. For example, a high degree polynomial 

model may fit sample data very well, but such a model often does not have much 

biological significance. Thus an empirical modeling approach can be useful, but 

interpreting individual coefficients in the resulting model may be difficult. However, 

overall data fit and good predictability of response for a given value of explanatory 

variable(s) are important, and an empirical model may be able to provide these 

characteristics. 
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Since biological growth is considered intrinsically nonlinear (Zeide 1993), a 

nonlinear statistical model is naturally a good choice for forest modelers. Thus, attempts 

were made to fit different nonlinear models for shortleaf pine growth data. This approach 

is consistent with typical forest growth and yield modeling practices (e.g. Wykoff 1990, 

Vanclay 1994). A variety of nonlinear regression models for shortleaf pine growth 

variables have been reported by Murphy (1982, 1986), Lynch et al. (1991, 1999), Murphy 

et al. (1992), and Lynch and Murphy (1995). None of the shortleaf pine growth 

researchers took the random plot-effects and possible dependence of within-plot errors 

into account. These factors could influence the resulting parameter estimates and their 

precision, although tools of mixed modeling that could handle such an analysis had 

already appeared in forestry literature since late 1980’s (see Review of Literature). 

Therefore, this project carried out analyses that would make improvements on the two 

major components of shortleaf pine growth models developed by Lynch et al. (1999): 

basal area growth and total height models. Random-effects for plots (or stands assuming 

a plot typically represents a stand) were incorporated in a modeling framework to obtain 

better parameter estimates. Possible correlated and heterogeneous within-plot errors were 

also evaluated. Furthermore, this modeling exercise utilized additional data resulting 

from the third measurement on these permanently established plots.  

 

Mixed-Effects Models 

 

As briefly discussed in Chapter II, when all the levels of a factor are present in the 

data for analysis, then the factor has a fixed-effect. That is, the whole population of the 
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factor levels is represented. The analyst is basically interested in comparing the effects of 

the factors on the response variable for those levels included in the study only. A model 

containing only fixed effects is called a fixed-effects model. On the other hand, a factor 

may have a large number of levels in some cases, and the direct testing or representation 

of all the levels are not often economical, practical, or necessary. So only a random 

sample of the factor levels is tested or studied. Thus inference from such a study can be 

applied to the population of levels from which the sample was drawn. Such effects are 

called random-effects. For example, use of random plot effects in a model would allow 

valid generalization of the results to a population of plots from which the study plots 

were sampled. A model in which all the effects are random is called a random-effects 

model. Variances associated with random-effects are known as variance components 

(Graybill 1976, Snedecor and Cochran 1980). Data analysts are interested in the variance 

components rather than in the individual random coefficients themselves. 

Models in which some effects are fixed and the others are random are called 

mixed models. Each random-effect is associated with a particular fixed-effect, but all the 

fixed-effects in the model may or may not have associated random-effects. In the mixed-

effects approach also, the objectives of fixed effects testing are as in the fixed-effects 

modeling. On the other hand, one would test if the variance components associated with 

the random effects equal zero rather than testing or interpreting the individual random 

coefficients themselves, although best linear unbiased predictors (BLUP) of the random-

effects are also estimated or in the commonly used terminology, predicted. In fact, 

random-effects help in accounting for sources of variation, which enables accurate 

estimation and testing of fixed-effects (Tao 2002). Mixed-models are also defined to be 
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models with errors at more than one level. So these models are also called multi-level 

models or hierarchical models. In mixed models, effects can be either nested or crossed. 

Depending on how a response is modeled as a function of explanatory variables, typically 

mixed-effects models are classified as: 

(a) Linear mixed models 

(b) Nonlinear mixed models 

 

Linear Mixed Model 

A basic linear mixed-effects model, as described by authors such as Laird and 

Ware (1982), Gregoire et al. (1995), and Pinheiro and Bates (2000) is given below. In 

matrix notation the model can be written as: 

 

yi = Xi β + Zibi + εi, i=1,2, ……M, i.e. M = number of groups                           (24) 

where, 

yi is the ni-dimensional response vector for the ith group (the number of 

observations could be different in different groups) 

β is the p-dimensional parameter vector for fixed-effects 

bi is the q-dimensional group specific vector of parameters for random-effects 

(scalar if only one random effect) 

Xi is the ni × p design matrix for fixed-effects variables 

Zi is the ni × q design matrix for random-effect variables (random-effect of ith 

group) that are often chosen as a subset of fixed-effects variables 

εi is the ni-dimensional within-group (or group-specific) error vector 
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It is assumed that bi ~ N(0, Ψ ), and εi ~ N(0, σ2I), where Ψ  is a variance-

covariance matrix for random effects and I is an identity matrix with random within-

group error variance σ2. Moreover, it is also assumed that cov(bi, εi) = 0, i.e. random-

effects and within-group errors are assumed to be independent for different groups, and to 

be independent of each other in the same group. The columns of Zi are often a subset of 

the columns of Xi. 

 

Nonlinear Mixed Model 

A basic nonlinear mixed-effects model can be written as follows (Pinheiro and 

Bates 2000). 

 

 ( )ijijij fy νφ ,= + ijε , i =1,…,M, j =1,…,ni,                                                         (25) 

where 

 M = the number of groups (e.g. number of plots if data are grouped by plots) 

 ni = the number of observations on the ith group (e.g. number of trees in a plot at 

 one time point) 

  f = a general, real-valued, differentiable function, which is nonlinear in at least 

 one component of the group-specific parameter vector 

 ijφ = a group-specific parameter vector 

 ijν = a covariate vector 

 ijε = a normally distributed within-group error term independent of ib (random 

 effects), i.e. ijε  ~ N(0, σ2) 
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Moreover, ijφ  is modeled as 

 

 iijijij bBA += βφ  

where 

 ( )Ψ,0~ Nbi  

 β  = p-dimensional vector of fixed-effects parameters 

ib = q-dimensional vector of random-effects parameters associated with the ith 

group, and bi ~ N(0, Ψ ). Note thatΨ is a scalar, if there is only one random-effect. 

 ijA = design matrix for fixed-effects parameters 

 ijB = design matrix for random-effects parameters 

 

 It is assumed that random-effects and within-group errors are independent. All of 

the above for the nonlinear mixed model can be summarized in matrix-notation as: 

 ( ) iiiii fy ενφ += , , i =1,…,M                                                                          (26) 

where iφ is modeled as iiii bBA += βφ , and 

 iy = 
⎥
⎥
⎥

⎦
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For this work, only nonlinear mixed-effects models are used, and are therefore the 

focus of all discussions. 
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Extended Mixed Models 

The mixed models considered in this section have two aspects, viz. extension to 

more than one level of random-effects, and incorporation of correlated and/or 

heterogeneous errors. 

The basic models can be extended to more than one level. A typical two-level 

nonlinear mixed model can be written as given below. 

 ( ) ijkijkijkijk fy ενφ += , , i =1,…,M, j =1,…,Mi, k =1, …,nij                                (27) 

where 

 ijijkijkiijkijk bBbBA ++= ,βφ  

 ib ~ ( )10 ψ,N , ijb ~ ( )20 ψ,N  

 

Mixed models with any level of random-effects can be further extended to 

incorporate correlated and/or heterogeneous errors, although the complexity increases 

quickly since a regular mixed-effects model in itself is computationally very intensive. It 

is not always necessary to assume that the errors are normally and independently 

distributed. Thus in the single-level models above, we can assume that εi ~ N(0, σ2Λi), 

where Λi are positive-definite matrices. The within-group errors are again assumed to be 

independent for different groups indexed by i, and independent of random effects ib . The 

structure of Λi can accommodate correlated and/or heterogeneous within-group error 

structures. That is, the variance-covariance structure of the within-group errors can be 

partitioned into two components: a correlation structure and a variance structure. The 

error distribution would extend to εik ~ N(0, σ2Λik) for two-level model (Pinheiro and 
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Bates 2000). Details on correlated and/or heterogeneous errors are presented in a separate 

section called Error Modeling. 

 

Estimation and Computing 

 

Two major parameter estimation methods are maximum likelihood (ML) and 

restricted/residual maximum likelihood (REML). The theory of estimation for these 

methods can be found in Pinheiro and Bates (2000). 

The basic mixed-effects models described above can be fit by popular software 

packages such as SAS and S-Plus. A linear mixed model or a linearized form of nonlinear 

model can be fit using either SAS PROC MIXED or S-Plus lme command. A nonlinear 

mixed model can be fit by PROC NLMIXED or S-Plus nlme command. Both lme and 

nlme commands in S-Plus and PROC MIXED have options for both ML and REML 

methods, whereas PROC NLMIXED has only ML option available since the REML 

method for nonlinear mixed model is a very complicated estimation procedure. 

Therefore, S-Plus nlme and PROC NLMIXED have ML as default estimation method, 

whereas S-Plus lme and PROC MIXED have REML method as default method (Pinheiro 

and Bates 2000, Tao 2002). 

The extended linear mixed models can be fit by both PROC MIXED and S-Plus 

lme. However S-Plus nlme could accommodate more complicated error structures for 

correlated and heterogeneous errors, but PROC NLMIXED can fit only the basic 

nonlinear mixed-effects model assuming independently and normally distributed errors. 

S-Plus gls and gnls commands can be used to fit equivalent basic as well as extended 
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linear and nonlinear models without random-effects using generalized least-squares 

methods. Overall, S-Plus has more facilities for handling the extended models, especially 

for nonlinear mixed models (Pinheiro and Bates 2000, Tao 2002). 

Since intrinsically nonlinear mixed models are considered in this dissertation, 

typical syntax and command structure for S-Plus and SAS procedures are given below. 

 

S-Plus nlme Syntax (Pinheiro and Bates 2000, Venables and Ripley 2002): 

nlme(model, data, fixed, random, groups, start, method) 

where model is a two sided nonlinear formula separating response on the left and 

an expression involving parameters and explanatory variables on the right; data specifies 

the name of data file; fixed and random specify fixed and random components of the 

model; the groups option declares the grouping structure of the data if the data file is not 

already grouped; the start option is used to provide starting values for the estimates 

unless a self-starting function is used; and method can be used to choose between ML 

and REML methods for parameter estimation. The output from this command can be 

stored in an appropriate file that could be specified as: outfile<-nlme(.), where 

outfile is a name given to an output file. 

If correlated and heterogeneous errors were to be modeled, then the syntax would 

expand to: 

nlme(model, data, fixed, random, groups, start, method, 

correlation, weights) 

where correlation specifies correlation structure (temporal, spatial or both); and 

weights allows specification of a variance function that accounts for variance 

heterogeneity in within-group errors. S-Plus gnls command can be used to fit a similar 
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nonlinear model without random-effects, but with or without correlated and/or 

heterogeneous errors (Pinehiro and Bates 2000). 

 

SAS proc nlmixed Syntax (Tao 2002): 

proc nlmixed options (e.g. data file); 

     parms parameters and starting values; 

     model dependent variable ~ distribution; 

     random random-effects ~ distribution subject=variable; 

     estimate ‘label’ expression; 

     predict expression; 

     program statements (if any); 

     title ''; (global option) 

run; 

 

where parms is used to specify parameters in the model and their starting values; 

model specifies the distribution of the response variable given explanatory variables; the 

random statement declares what random-effects are included with a specific distribution, 

and it also specifies the level of random-effects with subject option; estimate allows 

computation of estimates of the parameters if needed; predict can be used to calculate 

fitted or predicted values from the model for an expression of all observations. 
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Model Comparison Criteria 

 

The following statistics have been reported to be useful measures to evaluate 

goodness-of-fit of different mixed models (Gregoire et al. 1995, Pinheiro and Bates 2000, 

Tao 2002). 

1. Akaike Information Criterion (AIC) 

 AIC = -2 (Log-likelihood) + 2 (No. of parameters)                                            (28) 

AIC is similar to the Cp-statistic and adjusted R2 in ordinary regression modeling 

in the sense that AIC takes the number of parameters into account (Gregoire et al. 1995, 

Draper and Smith 1998). 

2. Bayesian Information Criterion (BIC) 

 BIC = -2 (Log-likelihood) + (No. of parameters) × log(N)                                (29) 

 where N = total number of observations used to fit the model 

BIC is also called Schwarz’s Bayesian Criterion (SBC). 

 

The S-Plus nlme library treats variance components as parameters for computing 

AIC and BIC. However, residual degrees of freedom are calculated by considering group-

specific random coefficients as parameters (Pinheiro and Bates 2000). Models with 

smaller values for these criteria than other competing models are considered better in 

fitting the data. One could also use -2(residual log-likelihood) to compare the models, 

and again a model with smaller value for this criterion is better than other models with 

higher values for the same. However, one can always make this statistic smaller by 

adding extra parameters to the model similar to increasing ordinary R2 in regular 
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regression models. Equivalently, a likelihood ratio test (LRT) can also be used to 

compare two nested mixed models. The LRT is based on Chi-squared distribution under 

the null hypothesis. Nested models are such that the parameters in one model are a subset 

(special case) of parameters in the other model. Thus either AIC or BIC, or both of them, 

can be used (Pinheiro and Bates 2000, Tao 2002), but AIC appears to be the most 

commonly used criterion. 

Error Modeling 

One can extend the basic linear and nonlinear mixed-effects models by 

accounting for the dependence and heterogeneity of within-group errors, which are likely 

to be observed in practice. 

 

Correlated Errors 

Basically, there are two types of correlation for within-group errors. 

1. Spatial correlation: Trees could be correlated due to their spatial distribution 

within a plot. 

2. Temporal correlation: Repeated measurements on the same tree over different 

time points might be correlated. 

For the purpose of basal area growth analysis, three repeated measurements are 

reduced to only two growth values. Since the growth is calculated as a first difference in 

the terminology of time series (Diggle 1990, Chatfield 1989), part of the temporal 

correlation is already taken into account, although some temporal correlation may still 

exist. With only two time (period) points, there will not be enough data for temporal 
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modeling. However, we would be able to make evaluation of spatial correlation between 

trees as coordinates for each tree are available. 

 

Spatial Correlation Structure for Within-Group Errors 

It is logical to explore whether the tree measurements within a plot are correlated 

since the trees are physically (spatially) together as per the concept of spatial variation 

(Cressie 1993, Ripley 1981, Webster and Oliver 1990). Thus isotropic spatial correlation 

could be estimated in which correlations depend only on distance, i.e. distance between 

trees. Spatial correlation is often studied with the help of semi-variogram. The semi-

variogram is a standard measure of spatial variability, which is a function of the distance 

between observations (Cressie 1993). Before defining semi-variogram, one needs to 

specify or select a distance measure such as Euclidean and Manhattan. Denote the 

observation taken at position x = ( )T
rxx ,....,1 by xε , so the Euclidean distance would 

be calculated as d( xε , yε ) = ( )∑
=

−
r

i
ii yx

1

2 . With an appropriate distance measure, the 

semi-variogram can be defined as (Pinheiro and Bates 2000): 

 γ[d( xε , yε )] = )var(
2
1

yx εε −                                                                               (30) 
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Alternatively, it can be written in ordinary notation as (Webster and Oliver 1990, 

Tao 2002): 

 ( )∑ −= 2

2
1)( ji yy
m

hγ                                                                                       (31) 

where m is the number of pairs of observations with distance h between observations 

(y’s). Three terms are important in a semi-variogram. 

1. Nugget: It is the intercept, often denoted by 2
1σ . This is a variance component to 

account for abrupt changes over a relatively small distance. The nugget effect can 

only vary between 0 and 1. 

2. Sill: It is defined as the value of the semi-variogram at the plateau reached for 

larger h. The corresponding variance component notation is 2
1

2 σσ + . 

3. Range: Range is defined as the value of h at which the semi-variogram reaches 

the sill. This corresponds to the parameter ρ  in the correlation function. The range 

only takes positive values. 

According to Pinheiro and Bates (2000), semi-variograms increase monotonically 

with distance, and their values range from 0 to 1. This corresponds to non-negative 

correlation functions that decrease monotonically with distance. That is: 

 ),(1),( ρργ shs −=                                                                                              (32) 

where ),( ργ s  is semi-variogram function with distance s and correlation coefficient ρ 

           ),( ρsh is correlation function with the same parameters 
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The following isotropic (invariant with respect to direction) variogram models for 

spatial correlation structures can be used from S-Plus nlme library (Pinheiro and Bates 

2000). 

1. Linear: )()/1(1),( ρρργ <−−= sIss                                                                (33) 

where I(s < ρ) is a binary variable: 1 when s < ρ, 0 otherwise 

2. Exponential: )/exp(1),( ρργ ss −−=                                                                 (34) 

3. Gaussian: [ ]2)/(exp1),( ρργ ss −−=                                                                 (35) 

The functions in S-Plus nlme library that can be used for modeling spatially 

correlated errors are: corLin (linear), corExp (exponential), and corGaus (Gaussian), 

among others. These options were used for data analysis since Cartesian coordinates for 

each tree were available.  

 

Heterogeneous Errors 

It is also likely that the within-group errors have heterogeneous variances, which 

could be taken into account by expressing variance as a function of covariates. A 

framework for variance function is summarized by Pinheiro and Bates (2000) following 

the work of Davidian and Giltinan (1995) as: 

 var(εij|bi) = σ2g2(μij, υij, δ), i = 1,…,M, and j = 1,…,ni                                        (36) 
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where 

 μij = E(yij| bi) 

 υij = vector of covariates for variance 

 δ = vector of variance parameters, and 

 g(.) is the variance function assumed continuous in δ.  

The following variance functions among others in S-Plus nlme library can be used 

for modeling heterogeneous errors. 

 varFixed: fixed variance, variance function with no parameters and a single 

 variance covariate – within-group variance is known up to a proportionality 

 constant 

 varPower: power of covariate, can model the cases with increasing or decreasing 

 variance with the absolute value of the variance covariate 

 varExp: exponential function of the covariate variable 

Due to flexibility, the varPower is a common variance function for modeling 

monotonic heterogeneity. In this type, error variance is modeled as var(εij) = σ2|υij|2δ with 

one covariate, where variance function is g(vij,δ)= |υij|δ (Pinheiro and Bates 2000). A 

covariate can be chosen from a list of explanatory variables in the model that appears to 

explain the variance heterogeneity better than others. Tree basal area was selected for this 

project as a covariate in variance function for the reasons to be explained in Chapter V. 



 80

Model Checking 

 

Although models are selected based on criteria such as AIC, the selected models 

are further evaluated based on analysis of residuals. The plots of residuals against 

predicted values, and also against individual explanatory variables could reveal any poor 

fit of the data to the model or presence of outliers, if any. However possible outliers were 

identified at data management stage also. 

 

 

An Approach to Mixed Model Development 

 

Typically, a mixed modeling exercise is started with individual regression for 

each group, e.g. for each plot. If the parameter estimates appear to be different for 

different groups (plots), then it is considered that mixed modeling could help in which the 

regression parameters would be random (random effects). The parameter estimates from 

such a model are often called shrinkage estimates. On the other extreme, one could fit an 

overall model by ignoring groups. In fact, mixed model would provide a compromise 

(shrinkage) between these two extremes. This model fitting strategy has been called an 

“inside-out” approach by Pinheiro and Bates (2000). However, we could not fit 

individual regression for each plot with our data, because some of the explanatory 

variables in the model of Lynch et al. (1999) are plot-level variables such as stand age 

and dominant height. Thus mixed models were fitted directly without taking an inside-out 

approach. 



 81

The models reported in Lynch et al. (1999) were taken as a starting point for 

developing nonlinear mixed-effects models for average annual basal area growth and 

total height for this project. The following approach was taken to select a model. 

(a)  Split the whole data set into calibration set and validation set. The calibration set and 

validation set have two-thirds and one-third of the total number of study plots, 

respectively. The plots were randomly assigned to one of the datasets, but the plots were 

properly distributed over the design criteria. 

(b)  Start with the calibration data set. 

• Estimate the parameters for Lynch et al. (1999) models again with additional data, 

which would possibly provide starting values for further model fitting work. 

Equivalently, the estimates in Lynch et al. (1999) itself could be another set of 

starting values. 

• Fit nonlinear mixed-effects model by adding random-effects for plots under the 

assumption of independently and normally distributed errors. Start with one 

random coefficient. 

• Try to add more random effect coefficients, and drop some coefficients if needed 

following similar strategy as in stepwise regression as described in Draper and 

Smith (1998). 

• Attempt to fit two-level models also. 

• Impose some structure to within-group errors first starting with spatial correlation, 

and then with heterogeneous errors. Depending on their significance, one could 

probably incorporate both correlated and heterogeneous errors. 
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• Compare competing models with criteria like AIC, and possibly use a likelihood 

ratio test to compare two nested models. 

(c)  Perform residuals analysis for the fitted models using validation data set, and see if 

the fitted models appear adequate. 

(d)  Obtain final estimates with the combined data set. 

(e)  If the results show poor model fit, then further analysis might be necessary such as 

checking data distribution over calibration set and validation set, although a random 

sampling of plots based on design criteria was performed. 

(f)  Perform model checking for the final candidate models by means of error analysis 

such as plots of residuals vs. predicted values or residuals vs. explanatory variables. If 

there appear to be any outliers, we would be able to check the raw data by identifying the 

observation, although substantial data quality check was performed at data management 

stage. 

 

Exploratory Data Analysis 

 

Descriptive statistics and graphical techniques were used to develop preliminary 

ideas about the data. Summary statistics for different variables separately for calibration 

and validation data set would help provide insights on the data. 
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Fitting the Growth Models 

 

Two major components of shortleaf pine growth and yield models were fitted, viz. 

annual basal area growth model and DBH-total height relationship model. 

Both the models were fitted first with a calibration data set and then validated 

with a different data set. The results of this analysis are presented in Chapter V (Results). 

Based on the results from these two data sets, overall estimation was carried out with the 

complete dataset. The results from the combined data set are presented and discussed in 

Chapter VI (Discussion and Conclusions). 

 

Basal Area Growth Model 

The basal area growth model developed by Lynch et al. (1999) was called BAG 

Model I, which was modified to accommodate plot-specific random coefficients. This 

was called BAG Model II. Moreover, errors can be modeled to account for possible 

correlation within a plot, and also to account for likely heterogeneity in errors. The 

following model for shortleaf pine basal area growth with plot random effects for some 

regression coefficients would be desirable for the reasons described before. A nonlinear 

mixed model for annual basal area growth in which random-effect (b7) for only one 

associated fixed-effect (β7) can be written in regular notation as: 

 

( )
( ) ij

ijiijisi

ijij
ij BbRAB

BBB
y ε

βββββ
ββ ββ

+
++++++

−
=

−

)(exp1
/

776543

1
11

22

                          (37) 

where 

 yij = annual basal area growth (ft2/year) of tree j in plot i 
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 Bij = basal area (ft2) of tree j in plot i 

 Ai = stand age for plot i 

 Rij = ratio of quadratic mean stand diameter to the DBH of tree j in plot i 

 Bsi = stand basal area (ft2/ac) for plot i 

 B = 7.068384 ft2 (the maximum expected basal area for a shortleaf pine in 

 managed stands) 

 71 ,....., ββ = fixed-effects parameters 

 b7i = random parameter specific to ith plot associated with mid-tree basal area 

 fixed-effect coefficient 7β  that appears in the modifier (denominator) 

 ijε = within-plot error (i.e. residual for tree j in plot i) 

 

It is assumed that b7i ~ N(0, 2
bσ ), ijε ~ N(0, σ2), and cov(b7i, ijε ) = 0. It is clear 

from above that there are as many random-effect parameters as the number of plots along 

with fixed-effect parameters in the model. So the parameter estimation is a very 

computationally demanding exercise. The expected value for B (7.068384 ft2) was taken 

as reported by Hitch (1994), which was derived by assuming maximum DBH of 36 

inches. 

A more complicated model given below, which was called BAG Model III, was 

also fitted. 
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                          (38) 
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where b1i is random parameter specific to ith plot associated with mid-tree basal area 

fixed-effect coefficient 1β  that appears twice in the potential (numerator), and other 

parameters are described before. Alternatively in matrix notation, ib = ⎥
⎦

⎤
⎢
⎣

⎡

i

i

b
b

7

1 , E( ib ) = 0, 

and var( ib )=ψ = ⎥
⎦

⎤
⎢
⎣

⎡
)var(),cov(

),cov()var(

771

711

iii

iii

bbb
bbb

. 

 

It would be logical to try to fit another random-effect associated with fixed-effect 

for R (ratio of quadratic mean diameter to DBH), but it may be difficult to estimate these 

coefficients due to a possible convergence problem since R and tree basal area are 

correlated variables. This is because tree basal area is directly calculated using DBH, and 

DBH is the denominator in R. This model was called BAG Model IV. 
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where b6i is random parameter specific to ith plot associated with R fixed-effect 

coefficient 6β  that appears in the modifier, and other parameters are as described before. 

In matrix notation, the random parameters and their variance components can be written 

as follows. 

 

 ib =
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The variance-covariance matrix for random-effects can be specified to have a 

particular pattern such as identity, diagonal or compound symmetry with S-Plus pdMat 

classes. This model would have random parameters three times the number of plots. 

The dataset also contains some negative values for individual tree basal area 

growth, which are not expected in terms of actual biological growth. However, such 

values are possible in practical data analysis because of slight error in repeated 

measurements or loss of some bark thickness over the years. So the modeling exercise 

considered both the scenarios: with negative values for growth; and negative values set to 

zero. 

 

Total Height Model 

A total height prediction model of Lynch et al. (1999) was called Height Model I, 

and it was modified to include random-effects for plots, which is given below. This new 

model was called Height Model II. 

 

 ( ) ( ) ijijiDij DbHH
i

εββ ββ ++−−=− − 31 )(exp5.4)5.4( 220                                  (40) 

where 

 ijH = total height (ft) of tree j in plot i 

 ijD = DBH (in) of tree j in plot i 

 iDH  = dominant height for plot i as per Graney and Burkhart (1973)  

 0β , 1β , 2β , 3β = fixed-effects parameters 

 b2i = random parameter, associated with 2β  (DBH), specific to ith plot 
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 ijε = within-plot error (residual for tree j in plot i) 

 

It is again assumed that b2i ~ N(0, 2
bσ ), ijε ~ N(0, σ2), and cov(b2i, ijε ) = 0. We 

would be mostly interested in an estimate of var(b2i), i.e. 2ˆ bσ , a variance component 

describing the spread of the random coefficients, rather than in the individual coefficients 

themselves. This model also makes it possible to use calibration techniques to estimate 

random parameter b2 using measurements from a particular forest of interest. Although 

total height can be modeled as an explicit function of tree age (Curtis 1967, Lappi and 

Bailey 1988, Meng et al. 1997), it can also be modeled using dominant height and DBH 

as predictors where dominant height is a function of tree age and site index (Lynch and 

Murphy 1995, Lynch et al. 1999). Since the dominant height is a plot level variable, plot 

random effects was fitted only for fixed effect coefficient associated with DBH, a tree 

level variable. Although we now have three repeated measurements for dominant height, 

the dominant height calculation is based on site index value averaging over all the 

measurements into account. Thus a random-effect associated with fixed coefficient for 

dominant height was not included in the model. 

 

Fitting the Extended Models 

 

The basic basal area growth model was also extended to model possible spatially 

correlated and heterogeneous errors. The extended models were fitted using appropriate 

correlation and variance functions in S-Plus. Their significance was judged based on the 

model evaluation criteria as described before. 
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The dataset could be grouped in two different ways: by plots only; and by plots 

within periods for basal area growth data. Modeling spatial correlation structure would 

require grouping by both periods and plots (two-level model) for the reasons to be 

described in the final paragraph of this section. For plot random-effects we needed to 

group by plots only, but if two-level random effects, i.e. periods and plots within periods, 

were desired then we needed to group by periods, and plots within periods. That is, this 

grouping structure would provide random coefficients for plots separately within each 

period, which might or might not have practical significance. For example, the two-level 

form for BAG Model II can be written as: 
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where k =1,2; and the variables and parameters are just extended with another index k for 

period. This model will be called BAG Model V. These models were fitted with and 

without correlated and heterogeneous errors. 

The dataset structure for total height modeling is slightly different from basal area 

growth modeling. That is, data were indexed by time points for total height dataset 

instead of growth period since total height itself was an analysis variable unlike basal 

area growth. The two-level form for height model can be written as: 

 

 ( ) ( ) ijkijkikDijk DbHH
ki

εββ ββ ++−−=− − 31 )(exp5.4)5.4( 220                            (42) 
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where k = 1,2,3; and the variables and parameters are just extended with another index k 

for time points. This model was called Height Model III. 

The spatial correlation functions would work only in two-level model when data 

are grouped by both plots and periods together, i.e. by plots within periods for basal area 

growth. This is because the coordinates for each tree are the same in both the periods or 

in all three time points; and tree-to-tree distance computation would result in zero 

distance for the same tree, if grouped by plots only. However, variance functions could 

be used in either single or two-level model. All the fitted models for annual basal area 

growth are summarized in Table 4.1. 

 

Table 4.1 List of fitted basal area growth models 
 
S. No. Model Description 
            Fitted basic BAG model and models with plot random-effects 
  1. 
  2. 
  3. 
  4. 

BAG Model I 
BAG Model II 
BAG Model III 
BAG Model IV 

Annual basal area growth model of Lynch et al. (1999) 
BAG Model I + Plot random-effect for b7 
BAG Model II + Plot random-effect for b1 also 
BAG Model III + Plot random-effect for b6 also 

            Fitted extended BAG models with period and plot random-effects 
  5. 
  6. 

BAG Model V 
BAG Model VI 

BAG Model II + Period and plot random-effects for b7 
Dropping stand age (β5) from BAG Model V  

            Fitted extended BAG models accounting for variance heterogeneity in errors 
  7. 
  8. 
  9. 
10. 

BAG Model VII 
BAG Model VIII 
BAG Model IX 
BAG Model X 

BAG Model II + Power variance function 
BAG Model III + Power variance function 
BAG Model IV + Power variance function 
BAG Model VI + Power variance function 

            Fitted extended BAG models with period and plot random-effects accounting for 
            spatial correlation for within-plot errors 
11. 
12. 
13. 

BAG Model XI 
BAG Model XII 
BAG Model XIII 

BAG Model VI + Linear correlation function 
BAG Model VI + Exponential correlation function 
BAG Model VI + Gaussian correlation function 

            Fitted extended BAG models with period and plot random-effects accounting for 
            heterogeneous and spatially correlated errors 
14. 
15. 
16. 

BAG Model XIV 
BAG Model XV 
BAG Model XVI 

BAG Model XI + Power variance function 
BAG Model XII + Power variance function 
BAG Model XIII + Power variance function 
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Calibration and Validation 

 

The term calibration has a slightly different meaning in forest biometrics literature 

compared to statistical literature. In statistics, calibration is generally considered an 

inverse prediction, i.e. prediction of a value of explanatory covariate given a value of 

response variable (e.g. Neter et al. 1996), whereas in forestry literature calibration means 

parameter estimation using a dataset that would be validated using another, preferably 

independent, data set before getting final estimates from the overall combined data set 

(e.g. Wykoff 1990). The results from calibration and validation data sets will be 

presented in Chapter V (Results); and those from combined data set are discussed in 

Chapter VI (Discussion and Conclusions). 

The complete data set was split into two subsets: a calibration set with two-thirds, 

and a validation set with one-third of the total number of plots. The selection procedure 

used a random selection of plots, but balance was maintained with respect to the design 

criteria, viz. site index, stand density and stand age. 

The number of trees per plot ranged from 4 (plots 48153, 48227 and 48261) to 

491 (plot 48120) in calibration data set, and from 4 (plots 48130 and 48258) to 218 (plot 

48106) in the validation data set. The summary statistics of data used in fitting the models 

are presented in Tables 4.2 to 4.5. 

 

Summary Statistics for Calibration Data Set 

The summary statistics for plot level variables and individual tree variables for the 

calibration data set are presented in Tables 4.2 and 4.3, respectively. 
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Table 4.2. Summary statistics of plot level variables for calibration data set with 139   

  plots 

 Variable Mean Standard 
Deviation 

Minimum Maximum

Basal area (ft2/ac) 
  First measurement 
       Mid (first) 
  Second measurement 
       Mid (second) 
  Third measurement 

 
94.1 
103.4 
112.6 
121.6 
130.9 

 
29.9 
31.0 
32.9 
34.9 
37.7 

 
27.3 
22.5 
14.9 
16.1 
17.3 

 
129.0 
142.5 
156.5 
178.4 
200.4 

Stand age (yr) 
  First measurement 
  Second measurement 
  Third measurement 

 
42.1 
46.9 
51.9 

 
19.7 
19.7 
19.8 

 
18.0 
23.0 
28.0 

 
93.0 
98.0 
103.0 

Site index (ft at age 50 yr) 57.2 9.9 41.0 87.4 
Quadratic mean diameter (in) 8.4 3.6 3.3 19.5 
Dominant height (ft) 54 19 27 106 

 

Table 4.3. Summary statistics of tree level variables for calibration data set with 139   

  plots  

Variable Mean Standard 
Deviation 

Minimum Maximum 

Diameter at breast height (in) 
  First measurement 
  Second measurement 
  Third measurement 

 
7.5 
8.2 
9.2 

 
4.0 
4.0 
4.0 

 
1.1 
1.2 
1.5 

 
24.4 
25.4 
26.6 

Tree basal area (ft2) 
  First measurement 
  Second measurement 
  Third measurement 

 
0.3904 
0.4554 
0.5520 

 
0.3929 
0.4217 
0.4615 

 
0.0066 
0.0079 
0.0123 

 
3.2472 
3.5188 
3.8591 

Annual average basal area 
growth (ft2/tree) 
  Overall 
  First period 
  Second period 

 
 

0.01376 
0.01288 
0.01470 

 
 

0.01120 
0.01040 
0.01192 

 
 

-0.01669 
-0.01669 
-0.01396 

 
 

0.08918 
0.07176 
0.08918 

Ratio of QMD to DBH 1.1446 0.4549 0.4384 7.3621 
Total height (ft) 
  First measurement 
  Second measurement 
  Third measurement 

 
58 
62 
66 

 
22 
21 
20 

 
11 
10 
13 

 
109 
113 
119 
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Summary Statistics for Validation Data Set 

Similarly, the summary statistics for plot level variables and individual tree variables for 

the validation data set are presented in Tables 4.4 and 4.5, respectively. 

Table 4.4. Summary statistics of plot level variables for validation data set with 69  

  plots 

Variable Mean Standard 
Deviation 

Minimum Maximum 

Basal area (ft2/ac) 
  First measurement 
       Mid (first) 
  Second measurement 
       Mid (second) 
  Third measurement 

 
90.5 
101.1 
111.6 
120.8 
130.2 

 
27.5 
28.5 
30.9 
32.6 
35.0 

 
28.1 
29.2 
28.1 
29.7 
27.9 

 
128.3 
133.1 
147.2 
161.5 
177.4 

Stand age (yr) 
  First measurement 
  Second measurement 
  Third measurement 

 
41.1 
45.9 
51.0 

 
19.7 
19.7 
19.6 

 
19.0 
24.0 
29.0 

 
89.0 
93.0 
98.0 

Site index (ft at age 50 yr) 57.8 8.8 39.9 83.8 
Quadratic mean diameter (in) 8.3 3.4 3.7 19.9 
Dominant height (ft) 53 18 29 105 
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Table 4.5. Summary statistics of tree level variables for validation data set with 69  

  plots 

Variable Mean Standard 
Deviation 

Minimum Maximum 

Diameter at breast height (in) 
  First measurement 
  Second measurement 
  Third measurement 

 
7.3 
8.0 
8.9 

 
3.8 
3.8 
3.9 

 
1.1 
1.5 
1.9 

 
22.8 
23.5 
25.2 

Tree basal area (ft2) 
  First measurement 
  Second measurement 
  Third measurement 

 
0.3673 
0.4308 
0.5164 

 
0.3644 
0.3947 
0.4345 

 
0.0066 
0.0123 
0.0197 

 
2.8352 
3.0121 
3.4636 

Annual average basal area 
growth (ft2/tree) 
  Overall 
  First period 
  Second period 

 
 

0.01382 
0.01330 
0.01437 

 
 

0.01141 
0.01050 
0.01228 

 
 

-0.00641 
-0.00362 
-0.00641 

 
 

0.09965 
0.06920 
0.09965 

Ratio of QMD to DBH 1.1301 0.4169 0.3559 4.3910 
Total height (ft) 
  First measurement 
  Second measurement 
  Third measurement 

 
56 
60 
64 

 
22 
21 
20 

 
10 
14 
16 

 
112 
112 
109 
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CHAPTER V 

 

RESULTS 

 

This chapter presents results obtained from the calibration data set and model 

diagnostics using a validation data set. The modeling results for annual basal area growth 

are followed by those from modeling total height and DBH relationships. Overall results 

and related discussions based on the complete data set for both the basal area growth 

model and total height model are presented in Chapter VI. 

 

Basal Area Growth Model 

 

Calibration Results 

The parameter estimates for BAG Model I using the calibration data set are 

presented in Table 5.1. These estimates from three measurements are similar to those 

obtained by Lynch et al. (1999) based on the first two measurements, although the current 

result is based only on calibration data set. 
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Table 5.1. Parameter estimates and other associated statistics for BAG Model I for 

calibration dataset (total degrees of freedom (df) = 10268, residual 

standard deviation (SD) = 0.006839469, residual df = 10261) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.111161
0.566732

-1.958148
0.010741
0.022658
0.930197

-0.884331

0.0066690
0.0234667
0.1808504
0.0004282
0.0011546
0.0521353
0.0509437

16.67 
24.12 

-10.83 
25.09 
19.62 
17.84 

-17.36 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

 

BAG Model I for annual basal area growth was fitted using S-Plus gnls 

command, which would provide statistics such as AIC that could be used for making 

comparisons with the mixed models. The nlme command uses either ML or REML 

method, whereas gnls uses generalized least-squares. However, there is no direct way of 

comparing two models with and without random effects using S-Plus. Therefore, an 

approximate assessment of significance of plot random effects was carried out by 

comparing BAG Models I and II. The statistics required for such comparison are 

presented in Table 5.2. An example output for a basic S-Plus nlme function is presented 

in Appendix II. 
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Table 5.2. Summary statistics for fitted basal area growth models from calibration 

dataset 

BAG Model AIC BIC Log-likelihood Residual df Residual SD 
I -73231.70 -73173.81 36623.85 10261 0.00683947
II -75919.55 -75854.41 37968.77 10124 0.00583212
VI -76521.73 -76456.60 38269.87 9986 0.00554681
VII -80884.29 -80811.92 40452.14 10124 0.00910395
VIII -81431.71 -81344.87 40727.86 10124 0.00889254

X -81219.71 -81147.34 40619.85 9986 0.00865303
XI -76504.36 -76432.00 38262.18 9983 0.00554476
XII -76504.38 -76432.01 38262.19 9983 0.00554474
XIII -76504.41 -76432.05 38262.21 9983 0.00554475
XIV -81202.18 -81122.58 40612.09 9983 0.00864828
XV -81201.96 -81122.36 40611.98 9983 0.00864813
XVI -81201.99 -81122.39 40611.99 9983 0.00864816

 

 

BAG Model II is better than BAG Model I due to substantial reduction in AIC, 

BIC and residual SD, although degrees of freedom equal to the number of plots are 

sacrificed for this estimation. This shows that estimation of random-effects for plots 

improves the fit of a growth model. The summary statistics for BAG Model II are 

presented in Table 5.3. These estimates are comparable to those for BAG Model I. 

Further exploration of random-effects was carried out. Several other mixed models for 

basal area growth as described in Chapter IV were also fitted, and these results are also 

summarized in Table 5.2. 
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Table 5.3. Parameter estimates and other associated statistics for BAG Model II for 

calibration dataset (number of plots = 139, residual df = 10124, and total 

observations = 10269) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.127698
0.577809

-1.296957
0.008657
0.009476
1.180113

-0.653616

0.0094784
0.0406986
0.1775033
0.0004271
0.0014489
0.0764147
0.0908105

13.47 
14.20 
-7.31 
20.27 
6.54 

15.44 
-7.20 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

 

Variance component estimate for: 

b7 ( 2
7bσ̂ ) = (0.6641947)2 = 0.4411546 

Residual ( 2
eσ̂ ) = (0.00583212)2 = 0.000034014 

 

A 95% confidence interval for true variance component standard deviation (SD) 

for b7 random-effect is [0.5633475, 0.783095], which indicates variance component SD 

to be significantly different from zero. No convergence for parameter estimates was 

achieved for BAG Models III and IV. This might be because R and DBH are highly 

correlated, and separate fixed effects for these variables are already in the models. 

Separate random-effects for plots for these, when both b7 and b6 are in a single model, 

could not be estimated. Moreover, b1 and b7 random-effects are associated with the same 

variable, tree basal area. 
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Extended Models with Period and Plot Random-Effects 

There was again a convergence problem for BAG Model V when grouping was 

done by both growth period and plots with an attempt to estimate the random-effect for 

b7. As the model complexity increased considerably, stand age and stand basal area, both 

plot-level variables, could not be retained in a single model. Therefore, stand age was 

dropped from the model, which was called BAG Model VI. Although not containing 

stand age, this model appears to have better fit statistics than BAG Model II due to 

period-specific and plot-specific random coefficients for b7. That is, this model would 

estimate random-effects for plots separately for each growth period. Since one is not 

basically interested in the value of period-specific coefficient, this model may or may not 

be interesting for practical applications. The parameter estimates and other statistics for 

BAG Model VI are presented in Table 5.4. 

 

Table 5.4. Fixed-effect parameter estimates and related statistics for BAG Model VI 

for calibration dataset (number of growth period =2, plots within period = 

278, residual df = 9986, and total observations = 10269) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β6 
β7 

0.166694
0.429624

-1.191876
0.011323
1.690621

-0.051761

0.0151721
0.0246202
0.1613941
0.0003818
0.0587827
0.1330071

10.99 
17.45 
-7.38 
29.66 
28.76 
-0.39 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

0.6972
 

Variance components for:  

b7 for period ( 2
7

ˆTbσ ) = (0.1640622)2 = 0.0269164 

b7 for plots within period ( 2
)( 7

ˆ bpTσ ) = (0.54797)2 = 0.30027112 
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Residual ( 2
eσ̂ ) = (0.005546808)2 = 0.00003076708 

 

A 95% confidence interval for the variance component SD of plots within period 

for b7 is [0.491575, 0.6108348]. Similarly, a 95% confidence interval for the variance 

component SD of growth period for b7 is [0.06121673, 0.4396902]. Both the interval 

estimations show that the variance components for b7 random-effect are significantly 

different from zero. Therefore, the fixed-effect coefficient β7 is retained in the model, 

although it is not significant (P = 0.6972), because random-effect without an associated 

fixed-effect is not normally estimated. 

 

Extended Models with Power Variance Function 

A scatter plot of residuals vs. tree basal area is presented in Figure 5.1 for BAG 

Model II. The figure shows that there is some evidence of error variance heterogeneity, 

i.e. residual variance appears to increase with tree basal area. Therefore, a power variance 

function (Pinheiro and Bates 2000 p 210) was included in BAG Models VII, VIII, IX and 

X to see whether such a variance modeling exercise would improve the model fit. 
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Figure 5.1. Plot of residuals vs. tree basal area for BAG Model II 

 

The statistics in Table 5.2 show that inclusion of variance function as a power of 

tree basal area substantially improves the fit (BAG Model VII) compared to BAG Model 

II in which a constant variance for errors is assumed. It is also evident that random-

effects for both b1 and b7 can be estimated when a power variance function is included 

(BAG Model VIII). These random-effects could not be estimated together with a constant 

variance assumption in BAG Model III. However, there was no convergence for BAG 

Model IX, which shows that b6 random-effect cannot be estimated once there is random-

effect for either b1, b7 or both, even with variance modeling. As discussed earlier, R and 

tree basal area are functionally related, since both of these variables are calculated using 

DBH. The parameter estimates for BAG Model VII are presented in Table 5.5. 
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Table 5.5. Parameter estimates and other associated statistics for BAG Model VII for 

calibration dataset (number of plots = 139, residual df = 10124, and total 

observations = 10269) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.076648
0.535239

-2.789757
0.017108
0.001977
1.696839

-1.100494

0.0039253
0.0273428
0.1637983
0.0005430
0.0015009
0.0710717
0.1738845

19.53 
19.58 

-17.03 
31.51 
1.32 

23.88 
-6.33 

<0.0001
<0.0001
<0.0001
<0.0001

0.1878
<0.0001
<0.0001

 

Variance component estimate for: 

b7 ( 2
7bσ̂ ) = (1.546647)2 = 2.392117 

Residual ( 2
eσ̂ ) = (0.00910395)2 = 0.000082882 

Power estimate ( δ̂ ) = 0.5676372 

 

A 95% confidence interval for b7 variance component for plot random-effect is 

[1.318518, 1.814246]. Similarly, a 95% confidence interval for power coefficient is 

[0.5524855, 0.5827889]. Table 5.5 shows that fixed-effect of stand age (β5) is non-

significant (P = 0.1878) for which there is no associated random-effect. It appears that 

stand age could be dropped from this model in presence of variance function. However 

further evaluation was carried out. Random-effects for b1 were also included in BAG 

Model VIII, and the results are presented in Table 5.6. 
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Table 5.6. Parameter estimates and other associated statistics for BAG Model VIII 

for calibration dataset (number of plots = 139, residual df = 10124, and 

total observations = 10269) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.054198
0.444292

-2.287280
0.015521
0.010391
1.449964

-3.604463

0.0032559
0.0429761
0.1987150
0.0007423
0.0023658
0.0738843
0.3090490

16.65 
10.34 

-11.51 
20.91 
4.39 

19.62 
-11.66 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

 

Variance component estimate for: 

b1 ( 2
1

ˆbσ ) = (0.024518736)2 = 0.000601168 

b7 ( 2
7bσ̂ ) = (2.966580699)2 = 8.800601 

Residual ( 2
eσ̂ ) = (0.008892544)2 = 0.000079077 

Estimated correlation between b1 and b7 ( 71,ˆ bbρ ) = 0.576 

Power estimate ( δ̂ ) = 0.5818104 

 

The estimates indicate that variance component for b7 random-effect is much 

larger than that for b1. It is evident from Table 5.6 that stand age fixed-effect is now 

significant (P <0.0001). BAG Model VIII shows that random-effects for both b1 and b7 

can be estimated once power variance function is modeled. BAG Models VII and VIII 

have the same number of residual degrees of freedom. This might be because S-Plus 

nlme library would operate on the number of variables to calculate degrees of freedom, 

and both b1 and b7 random-effects are associated with a single variable: tree basal area. 
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However, it is not completely clear from the text of Pinheiro and Bates (2000).  Table 5.7 

shows 95% confidence interval estimates for some of the parameters of BAG Model VIII. 

 

Table 5.7. 95% confidence intervals for the parameters in BAG Model VIII  

Parameter Lower estimate Upper estimate 
Variance component for b1 random-effect 
Variance component for b7 random-effect 
Power coefficient 
Correlation coefficient (b1,b7) 

0.01966971 
2.53054857 
0.566585 
0.4301 

0.03056315 
3.47774437 
0.5970357 

0.6932 
 

Like BAG Model IV, BAG Model IX also suffered from convergence problems. 

In fact, tree basal area and R are highly correlated, and random-effects for b7 (with or 

without b1) for tree basal area and for b6 for R could not be estimated in a single model. 

BAG Model X was developed by including a power variance function in a basic model 

with random-effects for period and plot. The summary statistics of parameter estimation 

and testing are presented in Table 5.8. 

 

Table 5.8. Parameter estimates and other associated statistics for BAG Model X for 

calibration dataset (number of periods = 2, plots within period = 278, 

residual df = 9986, and total observations = 10269) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β6 
β7 

0.093661
0.550648

-3.601262
0.018748
2.197537
0.021967

0.0047786
0.0249314
0.1563829
0.0005195
0.0663635
0.2178313

19.60 
22.09 

-23.03 
36.09 
33.11 
0.10 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

0.9197
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Variance component estimate for: 

b7 for period ( 2
7

ˆTbσ ) = (0.2613539)2 = 0.068305861 

b7 for plots within period ( 2
)( 7

ˆ bpTσ ) = (1.046919)2 = 1.096039393 

Residual ( 2
eσ̂ ) = (0.008653032)2 = 0.000074875 

Power parameter estimate ( δ̂ ) = 0.5526116 

 

Table 5.8 shows that fixed-effect for β7 (the coefficient associated with tree basal 

in the modifier) is not significant (P = 0.9197) once the data are grouped by period and 

plots with a power variance function. The variance components could not be tested due 

non-positive definite approximate variance-covariance matrix. 

 

Extended Models with Spatial Correlation Function for Within-Plot Errors 

When data are grouped by period and plot, each tree can be properly located by its 

coordinates. Therefore, a spatial correlation function accounting for tree-to-tree distance 

within a plot was estimated. It was expected that such a function would account for 

spatial dependence between trees within a plot. Linear, exponential and Gaussian 

correlation functions were estimated for BAG Model VI, which were called BAG Models 

XI, XII and XIII, respectively. It is clear from Table 5.2 that these three models are not 

much different from each other, or from BAG Model VI. This indicates that the spatial 

correlation functions would not add much once plot and period specific random 

coefficients are included. Moreover, the spatial correlation functions available in S-Plus 

estimate only average functions over all the groups (combination of periods and plots). 

Since the plots are quite variable in terms of design criteria, this averaging did not 
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provide much benefit, because most of the variability was accounted for by plot random-

effects. This is a very reasonable result for even-aged plots, although plot-specific spatial 

correlation estimation could have possibly provided more explanation. However, this 

could not be done with the available S-Plus functions. 

 

Extended Models with Variance and Spatial Correlation Functions 

Table 5.2 also shows that BAG Models XIV, XV and XVI are very similar to 

each other. Also, they are not much different from BAG Model X. This clearly shows 

that there is no benefit of inclusion of average spatial correlation function in such models 

even in presence of variance function. On the other hand, there is evidence of benefit 

when a variance function is included in a basal area growth model. Therefore, the spatial 

correlation issue will not be considered for validation. 

The calibration results show that there are some good candidate models for further 

evaluation. In particular, BAG Models II, VI, VII, VIII and X are interesting models for 

validation with a different dataset. 

 

Validation Results 

This section presents results based on residual analysis of candidate basal area 

growth models using a validation dataset. Some of the models that were fitted with 

calibration dataset could not be fitted with the validation dataset due to convergence 

problems. Summary statistics for basal area growth models that could be fitted using the 

validation dataset are presented in Table 5.9. 
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Table 5.9. Summary statistics for candidate basal area growth models using 

validation dataset 

BAG Model AIC BIC Log-likelihood Residual df Residual SD 
II -40671.98 -40612.63 20344.99 5325 0.00543559
VI -40767.17 -40707.83 20392.59 5257 0.00527382
VII -43364.47 -43298.53 21692.23 5325 0.00888164
X -43331.97 -43266.03 21675.98 5257 0.00865876

 

Parameters could not be estimated for BAG Model VIII with a validation data set. 

Only random-effect for b7 could be estimated, and b1 and b7 random-effects could not be 

estimated together even after dropping stand age from the model. In fact, these 

coefficients are based on the same variable tree basal area, although one appears in the 

potential and the other in the modifier part of the model. Only the four promising models 

shown in Table 5.9 will be validated with data from about one-third of total number of 

plots, i.e. 69 plots and 5400 records over two growth periods. The residuals for the 

candidate models are analyzed by means of plots against fitted values, independent 

variables, or by design criteria. 

 

Residuals vs. Predicted Values 

The plots of standardized residuals vs. predicted basal area growth values are 

presented in Figures 5.2 to 5.5. 
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Figure 5.2. Plot of standardized residuals vs. fitted values for BAG Model II 
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Figure 5.3. Plot of standardized residuals vs. fitted values for BAG Model VI 
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Figure 5.4. Plot of standardized residuals vs. fitted values for BAG Model VII 
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Figure 5.5. Plot of standardized residuals vs. fitted values for BAG Model X 

 

The residual plots show no clear patterns, however Figures 5.2 and 5.3 suggest 

some increasing residual variation with fitted values. Using a power function for variance 

modeling has helped in improving the fit as shown by Figures 5.4 and 5.5. 
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Residuals vs. Tree Basal Area 

Standardized residuals were plotted against tree basal area, and they are presented 

in Figures 5.6 to 5.9. 
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Figure 5.6. Plot of standardized residuals vs. tree basal area for BAG Model II 
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Figure 5.7. Plot of standardized residuals vs. tree basal area for BAG Model VI 
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Figure 5.8. Plot of standardized residuals vs. tree basal area for BAG Model VII 

 

-10

-8

-6

-4

-2

0

2

4

6

8

10

Tree Basal  Area (sq f t )

0 1 2 3 4

 

Figure 5.9. Plot of standardized residuals vs. tree basal area for BAG Model X 
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Based on the residual plots above, it appears that there is no clear evidence of 

variance heterogeneity. Also, residuals do not show any clear pattern with tree basal area, 

which indicates that the assumption of independent errors may be justified. 

 

Residuals by Design Criteria 

Standardized residuals for the fitted models are displayed using boxplots by 

design criteria. The boxplots of standardized residuals by stand age class are presented in 

Figures 5.10 to 5.13. 
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Figure 5.10. Boxplots of standardized residuals by age class for BAG Model II 
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Figure 5.11. Boxplots of standardized residuals by age class for BAG Model VI 
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Figure 5.12. Boxplots of standardized residuals by age class for BAG Model VII 
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Figure 5.13. Boxplots of standardized residuals by age class for BAG Model X 

 

The 40-year stand age class has shown more variability than other age classes for 

the first two models, while age classes 20 and 40 have similarity in residual variation 

when a variance function is included. The BAG Models II and VII appear to slightly 

over-predict at higher stand ages, particularly at 60 and 80 years. 

The boxplots of standardized residuals by site index class (ft at base age 50 years) 

are presented in Figures 5.14 to 5.17. 
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Figure 5.14. Boxplots of standardized residuals by site index class for BAG Model II 
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Figure 5.15. Boxplots of standardized residuals by site index class for BAG Model VI 
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Figure 5.16. Boxplots of standardized residuals by site index class for BAG Model VII 
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Figure 5.17. Boxplots of standardized residuals by site index class for BAG Model X 

 

Residual variation appears similar over all site index classes for the first two 

models, whereas site index classes <56 and 70 appear to have higher residual variation 

than site index classes 60 and >75. All the models appear to make reasonable predictions 

over all site index classes.  

The boxplots of standardized residuals by basal area class are presented in Figures 

5.18 to 5.21. 
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Figure 5.18. Boxplots of standardized residuals by basal area class for BAG Model II 
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Figure 5.19. Boxplots of standardized residuals by basal area class for BAG Model VI 
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Figure 5.20. Boxplots of standardized residuals by basal area class for BAG Model VII 
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Figure 5.21. Boxplots of standardized residuals by basal area class for BAG Model X 

 

Residual variation appears to decrease with stand basal area classes in basal area 

growth models II and VI in which no variance function was included. On the other hand, 

variability appears similar over all basal area classes for basal area growth models VII 

and X, although basal area class 60 appears to have more variability than other classes in 
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all the models. These plots show that inclusion of variance function has helped to 

stabilize the error variance. Overall, all the models appear to make good predictions over 

all basal area classes analyzed. 

 

In summary of validation results, all the four basal area growth models are 

comparable to each other despite some differences resulting from variance modeling. 

Therefore, all the models were refitted using the complete data set. The results from this 

modeling exercise, and discussion of merits and demerits of these models based on the 

additional evidence are presented in Chapter VI. 
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Total Height Model 

 

Calibration Results 

The total height models were fitted using SAS PROC NLMIXED, although 

limited options were available in the procedure. The S-Plus nlme command failed to 

converge even after numerous attempts with different starting values and options for 

iterations and tolerance. This must be because of a difference in algorithms of PROC 

NLMIXED and S-Plus nlme. However, a basic nonlinear mixed-model for the total 

height with the assumption of independent and normal errors could be fitted for both 

calibration and validation data sets using PROC NLMIXED. This section presents results 

for the calibration data set. 

The estimates from PROC NLIN for Height Model I with all three measurements 

are presented in Table 5.10, which could be compared with the estimates obtained in 

mixed models, although directly comparable fit statistics will not be available. 

 

Table 5.10. Summary of results for Height Model I without random-effects for plots 

for calibration dataset (total observations=5968, residual df=5964, residual 

variance=22.8269) 

Parameter Estimate Standard error t-value P-value 
β0 
β1 
β2 
β3 

3.8028
0.7950

-2.9393
-1.0834

0.1719
0.0055
0.1055
0.0319

22.12
144.55
-27.86
-33.96

<0.0001
<0.0001
<0.0001
<0.0001

 

The parameter estimates and tests from PROC NLMIXED for Height Model II 

are presented in Table 5.11. 



 120

Table 5.11. Summary of results for Height Model II with random-effects for plots for 

calibration dataset (total observations = 5968, group df = 138)  

Parameter Estimate Standard error t-value P-value 
β0 
β1 
β2 
β3 

2
bσ  
2
eσ  

2.2560
0.8456

-5.7145
-1.4278
1.5208

16.2675

0.1028
0.0097
0.4200
0.0463
0.4071
0.3020

21.95
87.24

-13.60
-30.86

3.74
53.86

<0.0001
<0.0001
<0.0001
<0.0001

0.0003
<0.0001

 

Table 5.11 shows that all the parameters of Height Model II are significant. This 

model also has random coefficient for total height and DBH relationship, for which the 

variance component is significant (P = 0.0003). The estimates are similar for both the 

models with slight differences in the magnitude of the coefficients (Tables 5.10 and 

5.11), although PROC NLIN and NLMIXED fit statistics are not directly comparable. 

Height Model III could not be fitted since PROC NLMIXED could not fit a two-level 

model. 

 

Validation Results 

The residual plots for validation data sets are presented in Figures 5.22 to 5.24. 

The plots show that there is random scatter of residuals in all the plots, and there is no 

clear pattern of residuals. Therefore, there is no clear evidence of violation of 

assumptions of normal and independent errors. 
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Figure 5.22. Plot of standardized residuals vs. predicted values for total height model 
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Figure 5.23. Plot of standardized residuals vs. diameter at breast height for total height 

model 
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Figure 5.24. Plot of standardized residuals vs. dominant height for total height model 

 

Boxplots of standardized residuals by design criteria are presented in Figures 5.25 to 

5.27. 
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Figure 5.25 Boxplots of standardized residuals for Height Model II by age classes 
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Figure 5.25 shows that there is some evidence that residuals increase with stand 

age, however more than 75% of the standardized residuals are within ±1 SD. It is as 

expected that old trees or large trees would have more variability than young trees in 

terms of height variation. 
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Figure 5.26 Boxplots of standardized residuals for Height Model II by site index 

classes 

 

Figure 5.26 suggests that error variance is more or less constant over site index 

classes. 
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Figure 5.27. Boxplots of standardized residuals for Height Model II by stand basal area 

classes 

 

Similar to Figure 5.25, Figure 5.27 also indicates that large basal area classes have 

more variability than small basal area classes. 

 

Overall, it was found that random-plot effect could be incorporated in total height 

model of Lynch et al. (1999). The residual plots with predicted values and independent 

variables indicate no problem with assumptions of independent and normal errors. 

However, residuals appear to increase slightly with age, site index and basal area classes, 

as expected. The random-effect model was refitted with the complete data set, and the 

results and discussion are presented in Chapter VI. 
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CHAPTER VI 

 

DISCUSSION AND CONCLUSIONS 

 

This chapter presents the summary of results from fitting model parameters using 

the complete data set. These results are discussed for drawing conclusions, also 

considering the calibration results and model validation as presented in Chapter V. 

 

Basal Area Growth Model 

 

The four most promising models for basal area growth along with BAG Model I were 

refitted with the complete data from all the 208 plots. The summary statistics for the 

fitted models are presented in Table 6.1.  

 

Table 6.1. Summary statistics for fitted basal area growth models using complete 

dataset (total observations = 15,669, and number of plots = 208) 

BAG Model AIC BIC Log-likelihood Residual df Residual SD 
I -112108.5 -112047.2 56062.25 15661 0.006760735
II -116554.6 -116485.6 58286.29 15455 0.005702120
VI -117290.9 -117221.9 58654.44 15248 0.005454462
VII -124169.2 -124092.6 62094.62 15455 0.009030833
X -124508.5 -124431.9 62264.25 15248 0.008648375
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Since there was no contribution of spatial correlation function as shown by fitted 

models for calibration data set, the models with spatial correlation function only and the 

models with both spatial correlation and variance functions were not considered for 

complete data set. 

Parameter estimates and other related statistics for BAG Model I are presented in 

Table 6.2. 

 

Table 6.2. Parameter estimates and other associated statistics for BAG Model I for 

complete dataset (number of plots = 208, total observations = 15,669, and 

residual df = 15,661) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.157678
0.648118

-1.583036
0.009764
0.022652
0.800802

-0.730702

0.0103335
0.0187773
0.1542148
0.0003173
0.0008645
0.0391721
0.0343997

 15.26 
 34.52 
-10.27 
 30.77 
 26.20 
 20.44 
-21.24 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

 

Similarly, parameter estimates and other statistics for BAG Model II are presented 

in Table 6.3. 
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Table 6.3. Parameter estimates and associated statistics for BAG Model II for 

complete dataset (number of plots = 208, total observations = 15,669, and 

residual df = 15,455) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.134241
0.600847

-1.393511
0.008939
0.011221
1.162256

-0.683569

0.0072800
0.0309380
0.1330752
0.0003403
0.0011279
0.0588411
0.0707261

 18.44 
 19.42 
-10.47 
 26.26 
   9.95 
 19.75 
-9.66 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

 

Variance components for: 

b7 ( 2
7bσ̂ ) = (0.6882522)2 = 0.47369109 

Residual ( 2
eσ̂ ) = (0.00570212)2 = 0.0000325142 

 

A 95% confidence interval for b7 variance component SD is [0.6057073, 

0.7820461], which shows that the component is significantly different from zero. The 

fixed-effect parameter estimates are slightly changed compared to those of Lynch et al. 

(1999) in terms of the magnitude; but signs of the coefficients remain unchanged. 

Although mixed modeling is a powerful tool (Gregoire et al. 1995), the standard errors 

have remained similar between BAG Models I and II. BAG Model II is better than BAG 

Model I due to much smaller AIC and BIC values in BAG Model II. Furthermore, BAG 

Model II has larger log-likelihood and smaller residual SD than BAG Model I. These 

statistics clearly show that addition of plot random-effects improves the model fit. 
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Extended Model with Period and Plot Random-Effects 

The estimates for parameters and variance components for BAG Model VI are 

given below (Table 6.4). 

 

Table 6.4. Parameter estimates and other associated statistics for BAG Model VI for 

complete dataset (number of periods=2, plots within period = 416, residual 

df = 15248, and total observations = 15,669) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β6 
β7 

0.157922
0.408310

-1.192032
0.011538
1.684489

-0.138805

0.0075157
0.0185716
0.1059112
0.0003001
0.0444872
0.1231828

21.01 
21.99 

-11.26 
38.44 
37.86 
-1.13 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

0.2598
 

Variance component estimates for: 

b7 for period ( 2
7

ˆTbσ ) = (0.1583321)2 = 0.025069053 

b7 for plots within period ( 2
)( 7

ˆ bpTσ ) = (0.5755995)2 = 0.331314784 

Residual ( 2
eσ̂ ) = (0.005454462)2 = 0.0000297512 

 

All the fixed-effects coefficients are significantly different from zero except β7 

(Table 6.4). A 95% confidence interval for b7 random-effect SD for period is 

[0.05241957, 0.4782387], and that for plots within period is [0.5304568, 0.6245839]. 

Since the variance components for b7 are statistically significant, its non-significant 

fixed-effect would still be included in the model since a random-effect without its 
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associated fixed-effect is not typically estimated (Pinheiro and Bates 2000 p 355). 

Moreover, this model does not have stand age as an independent variable. 

 

Extended Model Accounting for Variance Heterogeneity 

BAG Model VII includes a variance function as power of tree basal area to 

improve upon BAG Model II. Parameter estimates and test statistics for BAG Model VII 

are presented in Table 6.5.  

 

Table 6.5. Parameter estimates and other associated statistics for BAG Model VII for 

complete dataset (number of plots = 208, total observations = 15,669, and 

residual df = 15,455) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β5 
β6 
β7 

0.092850
0.595209

-2.886070
0.016052
0.006191
1.684587

-0.873136

0.0045174
0.0227244
0.1285173
0.0004206
0.0011752
0.0531012
0.1239771

 20.55 
 26.19 
-22.46 
 38.16 
   5.27 
 31.72 
-7.04 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

 

Variance components for: 

b7 ( 2
7bσ̂ ) = (1.348321)2 = 1.8179695 

Residual ( 2
eσ̂ ) = (0.009030833)2 = 0.0000815559 

Power estimate ( δ̂ ) = 0.5727463 

 

A 95% confidence interval for b7 variance component SD is [1.178826, 

1.542188], which shows that the component is significantly different from zero. 
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Extended Model with Random-Effects for Growth Period and Plots Accounting for 

Variance Heterogeneity 

 

BAG Model X shows improvement over BAG Model VI because of the addition 

of a power variance function. Parameter estimates and significance testing information 

are presented in Table 6.6. 

 

Table 6.6. Parameter estimates and other associated statistics for BAG Model X for 

complete dataset (number of plots = 208, total observations = 15,669, and 

residual df = 15,248) 

Parameter Estimate Standard error t-value P-value 
β1 
β2 
β3 
β4 
β6 
β7 

0.097151
0.521164

-3.226228
0.017791
2.096922

-0.036040

0.0037167
0.0195808
0.1132377
0.0003867
0.0477478
0.1949761

 26.14 
 26.62 
-28.49 
 46.01 

   43.92 
   -0.18 

<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

0.8534
 

Variance components for: 

b7 for period ( 2
7

ˆTbσ ) = (0.2469393)2 = 0.060979017 

b7 for plots within period ( 2
)( 7

ˆ bpTσ ) = (0.9969519)2 = 0.99391309 

Residual ( 2
eσ̂ ) = (0.008648375)2 = 0.0000747944 

Power estimate ( δ̂ ) = 0.5598145 

 

The criteria such as AIC and BIC in Table 6.1 indicate that BAG Model X is 

better than BAG Model VI resulting from addition of variance function to account for 
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possible heterogeneous errors. All the coefficients are significantly different from zero 

except β7 (Table 6.6). This model could not have stand age as an independent variable in 

presence of stand basal area. 

 

Residual Analysis for Basal Area Growth Models 

Standardized residuals from the fitted models are plotted against the predicted 

values, and plots are presented in Figures 6.1 to 6.4. 
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Figure 6.1. Standardized residuals vs. fitted values for BAG Model II (complete 

dataset) 
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Figure 6.2. Standardized residuals vs. fitted values for BAG Model VI (complete 

dataset) 

 

Although it is not very evident, Figures 6.1 and 6.2 indicate that residual 

variability has increased slightly with predicted values. Once power variance function is 

included in these two models, the residuals show more random scatter than before, as 

shown by Figures 6.3 and 6.4. Therefore, the variance modeling was found useful. 
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Figure 6.3. Standardized residuals vs. fitted values for BAG Model VII (complete  

  dataset) 
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Figure 6.4. Standardized residuals vs. fitted values for BAG Model X (complete 

dataset) 

 

Another common interest among model users is to see how error variance is 

distributed over diameter classes. Thus distribution of residuals over 2-inch diameter 

classes was derived for all the four candidate models. The variability is represented by 

boxplots, which are presented in Figures 6.5 to 6.8. 
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Figure 6.5. Boxplots of standardized residuals for BAG Model II (complete dataset) 
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Figure 6.6. Boxplots of standardized residuals for BAG Model VI (complete dataset) 

 

Figure 6.5 shows that variance is increasing with diameter size class, which is as 

expected because large trees would have more variability than small trees. On the other 

hand, Figure 6.6 indicates increasing error variance up to 16-in class, then it appears to 

decrease or to remain constant. However, the variance heterogeneity was not found so 

serious when the residuals were plotted against predicted values, in which prediction is 

contributed by other independent variables as well, not only tree basal area, which is in 

fact calculated from DBH. On the other hand, Figures 6.7 and 6.8 show that inclusion of 

variance somewhat reverses the scenario. The boxplots show that all the fitted basal area 

growth models appear to make slight under-prediction above 20-inch diameter classes. 



 135

2 4 6 8 10 12 14 16 18 20 22

-10

-8

-6

-4

-2

0

2

4

6

8

10

S
t
a
n
d
a
r
d
i
z
e
d
 
R
e
s
i
d
u
a
l
s

DBH Cl ass ( i n)  

Figure 6.7. Boxplots of standardized residuals for BAG Model VII (complete dataset) 
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Figure 6.8. Boxplots of standardized residuals for BAG Model X (complete dataset) 
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Total Height Model 

 

The results obtained by fitting Height Models I and II to the complete data set are 

presented in this section. Parameter estimates for Height Model I are grown in Table 6.7.  

 

Table 6.7. Parameter estimates from SAS PROC NLIN for complete dataset (total 

observations = 8964, and residual variance = 21.5688) 

Parameter Estimate Standard error t-value P-value 
β0 
β1 
β2 
β3 

3.9170
0.7926

-2.7474
-1.0354

0.1445
0.00436
0.0742
0.0251

27.11
181.79
-37.03
-41.25

<0.0001 
<0.0001 
<0.0001 
<0.0001 

 

Summary statistics for Height Model II from SAS PROC NLMIXED are as: 

AIC = 51117, BIC = 51143, and -2×Log-likelihood = 51,105 

 

Similarly, parameter estimates and testing information from the same model are 

presented in Table 6.8. 

 

Table 6.8. Parameter estimates from PROC NLMIXED for complete dataset (total 

observations = 8964, and number of groups = 208) 

Parameter Estimate Standard error t-value P-value 
β0 
β1 
β2 
β3 

2
bσ  
2
eσ  

2.2289
0.8487

-5.4830
-1.4098
1.3630

15.5597

0.08303
0.007932

0.3237
0.03729
0.3004
0.2358

26.84
106.99
-16.94
-37.81

4.54
65.98

<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
<0.0001 
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All the model coefficients are significantly different from zero for both the 

models (Tables 6.7 and 6.8). However, Height Model II also includes variance 

component for plot random-effect associated with variable DBH, i.e. parameter β2, and 

this variance component is also significant (P<0.0001). These estimates are similar to 

those of the model reported by Lynch et al. (1999) with two measurements, or to those of 

Height Model I with three measurements. However, magnitude of the estimates is slightly 

changed. These two models are not directly comparable in terms of fit statistics, because 

one is a nonlinear mixed model and the other is regular nonlinear regression model. 

However, these two models can be compared in terms of error variance, and residual 

variance is decreased in Height Model II due to estimation of plot random-effects. 

Therefore, the total height model with plot random-effects is a better model that could be 

used to predict the height growth in shortleaf pine natural stands. 

 

Residual Analysis for Height Model II 

The standardized residuals from the total height model with plot random-effects 

were plotted against the predicted values (Figure 6.9), and also against DBH (Figure 

6.10).  
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Figure 6.9. Plot of standardized residuals vs. predicted values for total height model 

from complete dataset 
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Figure 6.10. Plot of standardized residuals vs. DBH for total height model from 

complete dataset 

 

These two plots do not reveal any systematic patterns, which indicate that the 

model fits the dataset well. Height Model II appears to make very good predictions over 

the range of design variables with a minimum bias, although there appears to be slight 

over-prediction for small trees. As we considered only one mixed-effects model for total 
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height, it is clearly a better alternative to the model reported in Lynch et al. (1999). This 

model is similar in idea to those reported by Lappi (1991), and Lappi and Bailey (1988). 

The random plot parameters in the total height model would facilitate the prediction of 

total height in other plots, which are part of the same population. Such models can also be 

used to estimate random-effects for new stands with minimal measurements. For 

example, Lynch et al. (2005) used a random-parameter model and calibration for 

cherrybark oak data from Texas. Similarly, Mehtätalo (2004) used a mixed model with 

height and diameter data for Norway spruce, and used calibration techniques for a new 

stand. 

 

Discussion 

 

No shortleaf pine growth models involving random-effects for plots have been 

published for the Oklahoma and Arkansas region. There has been relatively little work in 

mixed modeling for other tree species in the region. Thus, comparison of present findings 

to other work is difficult, but it is evident that the models with plot random-effects are 

clearly superior to those fitted with ordinary least squares methods due to their statistical 

properties such as smaller residuals and standard errors. These mixed-models are also 

more attractive for the reasons of interpretation and applicability of the results. BAG 

Model I ignores grouping of trees by plots, and the mixed models account for the real 

data structure. In terms of presentation of results, estimates for fixed-effect parameters 

and variance components are given for reasonably good models for discussion. However, 

the main objective of the fitted models is prediction of the response variables rather than 
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interpretation of individual fixed-effect coefficients. An attempt to interpret individual 

coefficients would be an unreasonable exercise in such an empirical modeling, although 

some other nonlinear models could provide options of interpreting parameters that are 

biologically meaningful. For random-effects, inference on variance components is of 

interest rather than interpretation of group-specific individual coefficients. 

As in validation results, all four basal area growth models were found to make 

reasonable predictions over the range of design criteria. However, BAG Models II and 

VII appear to slightly over-predict at higher stand ages. Overall, residual variance 

increased with tree size classes, which could be corrected with variance modeling. Thus, 

either BAG Model II or VII would be a good selection. Despite improved statistical 

properties, BAG Models VI and X are not practically very appealing because they do not 

have stand age in the model, and also they have period-specific coefficients. The 

following likelihood ratio test shows that BAG Model VII is significantly better than 

BAG Model II. 

 

> anova(fm1.abagComp.nlme,fmVar1.abagComp.nlme) 

                      Model df       AIC       BIC   logLik  

   fm1.abagComp.nlme     1  9 -116554.6 -116485.6 58286.29 

fmVar1.abagComp.nlme     2 10 -124169.2 -124092.6 62094.62 

 

                       Test L.Ratio p-value  

   fm1.abagComp.nlme                        

fmVar1.abagComp.nlme 1 vs 2 7616.65  <.0001 

 

where fm1.abagComp.nlme and fmVar1.abagComp.nlme are output files from complete 

data set for BAG Models II and VII, respectively. Similarly the height model with plot 



 141

random-effects, i.e. Height Model II, is better than Height Model I based on statistical 

criteria such as reduced residual variance, although no direct comparison could be made 

since one is a mixed model and the other is not. They often have different fit statistics, 

making comparison difficult. Mixed models take the grouped data structure into account, 

e.g. data grouped by plots, which are preferred over the models that ignore grouping 

structure. 

 Convergence problems in model parameter estimation were experienced at times 

due to voluminous data, complexity of the fitted models and correlations among model 

parameters. Correlation among parameters is well recognized for the Chapman-Richards 

function, as reported by Murphy and Shelton (1996) for loblolly pine. 

The two components of growth models considered in this dissertation are only a 

part of a complex growth and yield modeling system in which mortality and crown 

characteristics, and possibly some aspects of environmental variables, would also be 

taken into account. For example, a form of crown ratio model used by Dyer and Burkhart 

(1987) has also been used for shortleaf pine modeling (Lynch et al. 1999). However, 

basal area growth and height-DBH relationship models are two very important 

components in the growth and yield modeling system. Since these two attributes are 

modeled with the powerful tool of mixed modeling for the first time in shortleaf pine, this 

work should make a valuable contribution to the shortleaf pine growth and yield 

modeling effort for the Oklahoma and Arkansas region. 

Since this dissertation involves only two aspects of shortleaf pine growth 

modeling, a number of other things should be considered to develop an extensive 

shortleaf growth modeling framework. Input variables in the simulator should be 
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carefully chosen, and output should be interpreted accordingly. Growth models are just a 

tool that aids in forest management decisions. There are several other factors that forest 

managers take into account for better decision making. The factors could be some or 

several of the biological, economic, ecological and social issues. Avery and Burkhart 

(2002), Adlard (1995) and several others caution on the proper use of forest growth 

models. 

As indicated before in Chapter IV, modeling was also carried out by setting 

negative growth values to zero for basal area growth modeling. There were only about 

1.3% negative values in the complete dataset. These negative values could have resulted 

from genuine measurements or some measurement errors. The analysis showed that there 

was not much difference in results when negative values were set to zero. However, the 

model fit was improved slightly as indicated by the fit criteria. Therefore, all the results 

and discussion in this dissertation are based on analysis of the dataset including negative 

growth values. There has been some work in correcting the measurement error, such as 

by Canavan and Hann (2004) in which they propose a two-stage method for measurement 

error characterization. This study did not consider the measurement error 

characterization; however, errors were modeled to consider for spatial correlation and 

heterogeneity. 

Underutilization of such a powerful tool as mixed-effects modeling has been 

apparent in forestry (Gregoire et al. 1995). However, the availability of computing 

facilities such as nlme library in S-Plus has facilitated increasing use of such methods. 

This view is supported by the fact that articles with application of mixed-modeling 
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approach have increasingly appeared in professional journals such as Forest Science, 

Canadian Journal of Forest Research, and Forest Ecology and Management. 

This study utilized data from permanently established growth research plots; 

however, forest inventory data have also been used for growth and yield modeling such 

as Lessard et al. (2001). Due to the sparse plots and mixed species, models from 

inventory data are sometimes considered inferior to the models from specifically 

designed studies like this shortleaf pine growth study. This study used a population of 

trees within a plot, not a sample of independent individual trees. 

It is common to use calibration and validation techniques in forest growth and 

yield modeling (Wykoff 1990). Similar procedures were used for this dissertation also. 

But instead of using parameter estimates from calibration set and making predictions for 

the validation dataset, the promising models were again refitted using validation set. The 

residuals from validation set were then analyzed. This approach was reasonable because 

use of plot-specific random-effect coefficients from calibration set would not be 

appropriate for prediction using validation dataset. 

There is also an opinion that validation may not be needed once models are 

developed from complete dataset (Kozak and Kozak 2003). They argue that the cross-

validation does not necessarily add extra information when fit and lack of fit criteria are 

properly used from the complete dataset. 

Moreover, this study used the averaging method to calculate annual basal area 

growth assuming linear growth for the period of either four or five years. Some 

researchers such as Cao et al. (2002) have suggested an alternative interpolation method 

to calculate annual growth. 
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One important reason why spatial correlation within plot does not appear 

important is that a correlation coefficient is estimated as an average over all the plots 

within S-Plus software instead of getting a separate correlation coefficient for each plot. 

Even if a separate correlation coefficient could be computed for each plot, it would be 

more or less equivalent to plot random-effect for the variables. 

This study is still limited in terms of the number of repeated measurements. 

However, data gathering from the plots over the years will continue. Due to limited 

observations over time (repeated measurements), temporal correlations among 

measurements could not be addressed through modeling of within-subject covariance 

matrix over time. However, part of temporal correlation was taken into account by taking 

difference between observations for two time points, at least for basal area growth 

modeling. 

The idea of mixed modeling can be utilized for other components of shortleaf 

growth models such as crown models and mortality models. When all the components 

can capture the random nature of plot-specific parameters, the whole growth and yield 

modeling system should be more efficient than the existing system of Lynch et al. (1999). 

With the availability of additional data, the mixed models could include temporal 

correlations also. Temporal correlation modeling could be captured using the idea of 

longitudinal data analysis (Fitzmaurice et al. 2004). Although we are not interested in the 

tree-level random-effect, the idea of subject-specific random-effect modeling might be 

useful. Spatial correlation for within-plot error could possibly be expanded to capture 

plot-specific correlation patterns, although this would be largely captured by plot 

random-effects (Gregoire et al. 1995).  
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Conclusions 

 

Since the models of Lynch et al. (1999) are intrinsically nonlinear and good 

computing tools for such models are already available, nonlinear mixed-models were 

fitted. BAG Model VII is a good model that could be used to predict annual basal area 

growth for shortleaf pine natural stands in Oklahoma and Arkansas. The residual-plots 

indicated that the model makes reliable predictions for the basal area growth. Although 

BAG Models VI and X appear to be statistically sound, their practical application is 

doubtful due to two main reasons: forest managers will not be as interested in a period-

specific coefficient, and these models do not have stand age as an explicit independent 

variable, which is a practically useful variable used in forest growth analysis. BAG 

Model VII might be a very good model since variance modeling improved the model fit 

in addition to estimation of plot random-effects. Therefore, BAG Model VII can be 

selected for annual basal area growth prediction in shortleaf pine natural stands for the 

Oklahoma and Arkansas region. 

Height Model II is an attractive alternative to the model reported in Lynch et al. 

(1999) due to estimation of random-effects for plots. This approach would allow 

generalization of the results over the region from which the data were collected. Also, 

this model could be used to estimate a random coefficient of a new sample stand or plot 

with limited measurements as done by Lynch et al. (2005) for cherrybark oak. 

The results from this modeling exercise for basal area growth and total height can 

be used in the Shortleaf Pine Stand Simulator. A complete forest growth and yield 

modeling system would also include mortality functions and models to account for crown 
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attributes, in addition to basal area growth and total height growth models. The remaining 

components of the growth models can also be fitted under the framework of mixed 

modeling. It is expected that the mixed-modeling framework would provide more precise 

estimates for use by the simulator. 
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APPENDIX I: Details of Status and Damage Codes 

 

Status code for first two measurements (some of them are not appropriate for first 

measurement) 

 

0 – a live, and height-sample tree 

1 – a live, and non-height-sample tree 

2 – a tree that has died since the last inventory 

3 – a tree missed at the last inventory and not selected for height sample 

4 – a tree missed at the last inventory and selected for height sample 

5 – not suitable for growth calculations 

 

Status code for the third measurements 

First digit (note there is no 2) 

0 – tree alive at both last and present inventory 

1 – tree alive at last inventory but is now dead 

3 – live tree and marked for thinning 

4 – live tree not suitable for growth calculations 

5 – live tree not suitable for growth calculations and marked for thinning 

6 – maverick tree (problem to be described) 

7 – maverick tree marked for thinning 
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Second digit 

0 – height-sample tree 

1 – non-height-sample tree  

 

Tree damage, if any was recorded using a four-digit system. 

 

First digit (location of damage, defect or injury on the tree) 

0 – no damage or no information 

1 – tip or leader 

2 – foliage 

3 – branches 

4 – crown, overall damage to all crown portions of the tree (including foliage, 

branches, tip or leader, and crown pole) 

5 – crown bole 

6 – main bole (below crown) 

7 – base 

8 – roots 

9 – whole tree 

 

Second digit (severity of damage) 

0 – none or unspecified 

1 – minor 

2 – moderate 
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3 – severe 

4 – lethal 

 

Third digit (nature of damage or defect) 

0 – none or unspecified 

1 – lean 

2 – broken or dead 

3 – crook 

4 – sweep 

5 – loss/skinned 

6 – forked 

7 – canker 

8 – rot 

9 – unhealthy appearance, malformed 

 

Fourth digit (Cause of damage or defect) 

0 – none or unspecified 

1 – logging, felling or other 

2 – logging, skidding 

3 – insects 

4 – weather, other 

5 – lightning 

6 – animals 
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7 – competition 

8 – disease 

9 – fire 

 

A slightly different status code, i.e. double digit, was used for Study 58 Freese’s study. 

 

00 – live, height measurement 

01 – live, no height measurement 

10 – dead (live at last measurement), height measurement 

11 – dead (live at last measurement), no height measurement 

20 – live, marked for thinning, height measurement, second measurement 

21 – live, marked for thinning, no height measurement, second measurement 

30 – live, marked for thinning, height measurement, third measurement 

31 – live, marked for thinning, no height measurement, third measurement 
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APPENDIX II: Example S-Plus nlme Output for a Model Using Calibration Data Set 

 

Basic S-Plus nlme Command 

 

> fm.abag.nlme<-nlme(ABAG.PT~(b1*BA.MID^(b2)-(b1*BA.MID/(7.068384)^(1-

b2)))/(1+exp(b3+b4*BA.ACRMD+b5*PLOTAG.M+b6*R+b7*BA.MID)),data=ANALYSIS, 

fixed=(b1+b2+b3+b4+b5+b6+b7~1), random=(b7~1|PLOTNEW), 

start=c(b1=0.1,b2=0.5,b3=-3,b4=0.01,b5=0.05,b6=1.5,b7=-

1.5),na.action=na.exclude) 

 

Basic S-Plus nlme Output 

 

> summary(fm.abag.nlme) 

Nonlinear mixed-effects model fit by maximum likelihood 

  Model: ABAG.PT ~ (b1 * BA.MID^(b2) - ((b1 * BA.MID)/(7.068384 

)^(  1 - b2)))/(1 + exp(b3 + b4 * BA.ACRMD + b5 * PLOTAG.M + 

  b6 * R + b7 * BA.MID))  

 Data: ANALYSIS  

        AIC       BIC   logLik  

  -75919.55 -75854.41 37968.77 

Random effects: 

 Formula: b7 ~ 1 | PLOTNEW 

               b7   Residual  

StdDev: 0.6641947 0.00583212 
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Fixed effects: list(( , b1 + b2 + b3 + b4 + b5 + b6 + b7 ~ 1 )  

       Value Std.Error    DF   t-value p-value  

b1  0.127698 0.0094784 10124  13.47257  <.0001 

b2  0.577809 0.0406986 10124  14.19726  <.0001 

b3 -1.296957 0.1775033 10124  -7.30666  <.0001 

b4  0.008657 0.0004271 10124  20.27069  <.0001 

b5  0.009476 0.0014489 10124   6.54037  <.0001 

b6  1.180113 0.0764147 10124  15.44353  <.0001 

b7 -0.653616 0.0908105 10124  -7.19758  <.0001 

 

Standardized Within-Group Residuals: 

       Min       Q1         Med        Q3      Max  

 -8.072766 -0.53156 -0.07765724 0.4768549 7.727945 

 

Number of Observations: 10269 

Number of Groups: 139
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