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PRELUDE 
 
 

Chapter I of this dissertation evaluates the use of dual-energy x-ray 

absorptiometry (DXA) technology in predicting body composition of turtles. The ability 

to measure bone density in turtles could be useful for a variety of nutritional, 

physiological, and developmental research applications. Of particular interest to me was 

the evaluation of seasonal change in bone density. Until relatively recently, the 

quantification of bone density was challenging, costly, or was limited to destructive 

studies. Many studies, including longitudinal studies, do not lend themselves too well to 

destructive techniques, primarily because they require the use of large sample sizes. In 

my belief, turtle populations could not sustain the harvest required for such studies. 

Destructive studies also are not feasible for research involving repeated measures of 

individuals. Therefore, I elected to incorporate the validation of DXA as a means of 

predicting bone density into my dissertation because of its potential importance to turtle 

research and longitudinal studies of bone. 

 Chapters II and III evaluate the temporal, species-specific, and sex-related effects 

on bone density and plasma biochemistry in turtles. The impetus for these projects was 

based on the findings of Richard Kazmaier and colleagues (Hellgren et al. 2000). In their 

study of Texas tortoise (Gopherus berlandieri) demography, they found that females had 

a higher incidence of perforations in the carapace and they suggested that the presence of 

such perforations might be a result of a calcium deficiency imposed by the combined 
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effects of a diet high in oxalates, loss associated with the production of eggs, and the 

naturally thin bones of this species. Therefore, production of offspring might impose 

physiological demands on the mother, whereby the “decision” to produce (or not) 

offspring might have implications for her survival and ability to invest in future offspring. 

Understanding the potential tradeoffs associated with reproduction and bone density in G. 

berlandieri and other species of turtles might provide useful insight into understanding 

the role that calcium plays in parental investment. More specifically, the relative 

investment of calcium to yolk and eggshell, both of which can be utilized by the 

developing embryo, may also influence bone reserves because of the rate of calcium 

needed for these two investments (Simkiss, 1967). 

 In chapters II and III, I partially address the possible tradeoffs between bone 

density and maternal calcium investment by documenting seasonal changes in calcium 

physiology in two species of turtles, G. berlandieri and the red-eared slider, Trachemys 

scripta. Gopherus berlandieri was selected for inclusion in this study because of the 

findings discussed above. The findings from our study (chapter II) suggest significant 

changes in calcium physiology that are associated with reproduction in female tortoises. 

These physiological changes might have important implications for the maintenance of 

maternal bone density in G. berlandieri. Unfortunately, due to the listing of G. 

berlandieri as a state-threatened reptile in Texas, I considered it an undesirable candidate 

for the bone-density portions of this study, because mortality was required for prior 

validation (chapter I). Trachemys scripta was selected to fill this role because it is an 

excellent model species of turtle biology due to its abundance, wide distribution, and 

well-studied life-history (e.g. Gibbons, 1990). These findings (chapter III) suggest a 
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different pattern. In the case of T. scripta, I did not document the reproductive influences 

on calcium physiology associated solely with the production of the egg. I suggest that this 

disparity is in part due to differing maternal investment of calcium between G. 

berlandieri and T. scripta; however, much research is still needed before we can fully 

support such observations. 

 

Literature Cited 

 

Hellgren, E.C., R.T. Kazmaier, D.C. Ruthven, and D.R. Synatzske. 2000. Variation in 

tortoise life history: demography of Gopherus berlandieri. Ecology 81:1297-

1310. 

 

Gibbons, J.W. 1990. Life History and Ecology of the Slider Turtle. Smithsonian 

Institution Press, Washington D.C. 369 pp. 
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CHAPTER I 
 
 

DUAL-ENERGY X-RAY ABSORPTIOMETRY (DXA) AS A NON-INVASIVE TOOL 
FOR THE PREDICTION OF BONE DENSITY AND BODY COMPOSITION OF 

TURTLES 
 

Abstract 

 

 Dual-energy x-ray absorptiometry (DXA) is a frequently used non-invasive 

method for the determination of bone density and body composition. Although the 

applicability for use in mammalian studies is well established, its use in other taxonomic 

groups has received little attention. We evaluated the accuracy of DXA in determining 

bone density and body composition in turtles. Although DXA estimates of body 

composition were different from those obtained through chemical analysis, we developed 

predictive equations that can compensate for differences in estimates. Our data indicate 

that DXA precisely estimates bone mineral content, soft tissue mass, and body mass. 

However, due to current limitations in DXA technology, it does not effectively 

distinguish fat from lean tissue mass in chelonians. DXA’s poor ability to estimate 

lean/fat mass is likely due to the relatively broad distribution of bone in the body of 

turtles and could prevent its application to other organisms with similar body plans (e.g., 

armadillos [Dasypus spp.]). Despite this limitation, DXA can effectively estimate bone 

mass and might be useful for studies of bone dynamics or in identifying metabolic bone 

disorders in turtles.
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Introduction 

 

Knowledge of animal body composition is important to studies of energetics, 

reproduction, and life history (Congdon et al. 1982; Secor and Nagy 2003) because it 

allows researchers to estimate body condition, parental energy investment, and 

productivity throughout an individual’s life. Additionally, quantifying body composition 

is important for clinical studies of nutrition and metabolic disorders (Elowsson et al. 

1998). The use of non-destructive techniques to determine body composition is essential 

for many studies, including those involving mark-recapture and endangered species 

(Secor and Nagy 2003). With growing concern for the status of many free-ranging 

species and the increased availability of technology for non-invasive procedures, 

destructive techniques will become increasingly unpopular. 

A need for non-destructive techniques in chelonian research is becoming more 

apparent. Currently 80 chelonian species are listed as extinct, extinct in the wild, 

endangered, or critically endangered (IUCN 2007). As long-lived vertebrates with 

delayed sexual maturity, some turtle populations may be especially prone to the negative 

effects of anthropogenic harvest (e.g., collection for food, pet trade, research) especially 

when adult survivorship is reduced (Congdon et al. 1993; Heppell et al. 1995). Therefore, 

the development of techniques that could reduce the permanent harvest of adult turtles for 

scientific purposes could help to reduce impacts on turtle populations. Potentially, dual-

energy x-ray absorptiometry (DXA) could provide this service. 

DXA was originally developed as a non-invasive tool that predicts bone density 

and risk of osteoporosis in humans. The physical principles of DXA technology have 
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allowed expansion of its uses to the quantification of body composition in humans and 

other mammals. Recent applications to snakes and lizards have shown promise for the 

use of this technique in reptiles (Secor and Nagy 2003; Zotti et al. 2004). However, the 

morphology of some taxa, in particular chelonians, may preclude effective determination 

of body composition with DXA without prior validation. Prediction of body composition 

analysis, particularly lean tissue and fat mass, may be complicated in chelonians by the 

bony encasement of internal organs. The estimation of lean tissue and fat mass is 

complicated when a large proportion of the scanning area contains bone (Jebb 1997). 

Moreover, turtles have a higher proportion of bone relative to body mass than most other 

animal species (Iverson 1984), which, along with their unique morphology, makes them 

of great interest for bone density research. The development of techniques to assess bone 

density in turtles is not only relevant to taxon-specific research, but could have broader 

basic applications in nutrition, ecology, and physiology, as well as practical applications 

in veterinary research and practice. 

We examined the precision and accuracy of DXA in predicting bone density and 

body composition of turtles. Our aim was to develop predictive models that can be used 

to assess body composition from DXA measurements. These models would be available 

for researchers to monitor body composition of turtles in settings where destructive 

techniques are not feasible (e.g., clinical practice, mark-recapture studies). We collected 

DXA estimates of body composition on 25 male red-eared sliders (Trachemys scripta) 

and then compared these values to estimates determined later by chemical analysis of 

dried carcasses. Secondarily, this study compared the effects of three different techniques 

of immobilization – anesthesia, cooling, and euthanasia – on DXA body-composition 
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estimates because the accuracy of DXA results is known to be influenced by the 

movement of test subjects during scanning (Engelke et al. 1995). 

 

Materials and Methods 

 

Animal Housing and Use 

 

We obtained an in-house transfer of 25 male T. scripta from a previous study conducted 

at Oklahoma State University (Ligon, Gregory, Kazmaier, and Lovern, unpublished 

data). Subjects were originally wild-caught from two populations in eastern Oklahoma 

and southern Texas. Trachemys scripta was chosen for this study because of its 

accessibility, wide distribution, abundance, and well-studied life-history (e.g., Gibbons, 

1990). Subjects ranged in straight carapace length (SCL) from 123.9 to 222.8 mm (mean 

± 1 SD = 159.3 ± 25.7 mm), in greatest width from 102.9 to 168.0 mm (127.4 ± 16.0 

mm), and in mass from 260 to 1525 g (610 ± 281 g). Turtles were housed individually in 

plastic storage containers partially filled with water and were fasted for one week prior to 

DXA scanning to ensure evacuation of gut contents. This research was approved by OSU 

IACUC (permit AS0413). 

 

DXA Estimation of Body Composition 

 

To determine the effects of anesthesia, euthanasia, and cooling on DXA estimates, each 

individual was scanned using all three immobilization techniques. Scanning was 
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performed on a Hologic® QDR-4500A fan-beam scanner equipped with a small-animal 

software program. Prior to scanning, the densitometer was quality-checked daily using 

Hologic® calibration models (anthropomorphic spine phantom and small-step phantom). 

Calibration procedures followed those provided by the manufacturer. Body mass was 

determined for all individuals prior to scanning. Each individual was scanned 4 times per 

day for 3 consecutive days. During scanning, individuals were positioned with the 

plastron inferior and the cranial end facing the laser-alignment crosshair. The anterior end 

was placed 1 cm behind the crosshair, with the individual’s midline directly in the middle 

of the scanning area. Each day, turtles were scanned twice, repositioned, and then 

scanned twice more. During the first two days of scanning, individuals were randomly 

placed in either the “anesthetized” or “cooled” condition. Anesthetized individuals 

received a 0.1 mg/kg medetomidine-5.0 mg/kg ketamine combination (administered IM) 

for immobilization during scanning followed by 0.5 mg/kg atipamezole (IM) for recovery 

(Greer et al. 2001). Cooled individuals were placed in a 4˚C incubator for a minimum of 

5 hours prior to scanning and transported on ice. Individuals that were anesthetized on the 

first day were cooled on the second day and vice versa. On the third day of scanning, all 

turtles were euthanized with an overdose of sodium pentobarbital (60-100 mg/kg IP) and 

scanning was repeated as above. Following the three scanning days, individuals were 

frozen for subsequent chemical analysis of body composition. 
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Non-DXA Estimation of Body Composition 

 

We estimated the following indices of body composition for each turtle: bone mineral 

content (BMC), fat mass (FM), bone-free lean tissue mass (LTM), fat-free tissue mass 

(FFM = LTM + BMC or BM - FM), total body water mass (WM), and body mass (BM). 

Individuals were thawed, dissected to remove fat bodies for easier analysis, and then 

dried to constant mass at 60˚C. Body mass was measured after drying (BMdry) to a 

constant mass and then used to estimate water mass by subtracting it from wet body mass 

(BMwet) determined prior to scanning. Carcasses (fat bodies excluded) were then ground 

and homogenized in a Wiley mill for determination of fat, lean tissue, and bone content. 

Fat mass was estimated by adding the dried mass of fat-bodies to total body lipid mass. 

Total body lipid mass was estimated by determining the average percent lipid content of 

two 2-g subsamples of the ground carcass, and then multiplying by dried body mass. The 

lipid content of carcass subsamples was determined by the Folch method (Folch et al. 

1957). To estimate bone mass, four 1-g subsamples of the ground carcass were ashed in a 

muffle furnace at 600˚C for a minimum of 8 hours. The mean percent mineral content of 

the 4 samples was used to estimate total body bone mass by multiplying by dried body 

mass. Lean tissue mass was determined by subtraction. 

 

Statistics 

 

We related body mass and straight carapace length to each body composition parameter 

(determined chemically) using simple least-squares regression to develop models that 



 10

could be used to predict body composition from standard morphometrics. Regression was 

performed on log10-transformed data, but is presented in original scale by back-

transforming regression coefficients. To examine the precision of DXA, intraindividual 

coefficients of variation (CV) were calculated from two scans where the subject was not 

repositioned, from two scans before and after the subject was repositioned, and also from 

all four scans for each type of body composition. To examine the effects of 

immobilization technique on DXA output parameters, we performed repeated-measures 

ANOVA for each DXA parameter. Subject was analyzed as a blocking variable. When 

significant differences among treatment levels were detected, Tukey multiple-

comparisons were used to examine where differences existed. Prior to analysis, all 

variables were tested and deemed significantly non-normal (Anderson-Darling Test 

P<0.001). Therefore, we log10-transformed all masses prior to analysis to satisfy this 

assumption. All results involving transformed data are presented in the untransformed 

scale using back-transformed means and asymmetric 95% confidence limits. 

We selected anesthesia as the preferred method of immobilization and all further 

validation analyses were performed using DXA data of anesthetized turtles. Anesthesia 

was selected as the most desirable method of immobilization because it reduced 

differences between DXA and chemical estimates of body composition. Mean ± 1SD 

differences between DXA and chemical estimates for combined fat mass, lean tissue 

mass, and bone mineral content were 160.0 ± 94.3, 168.8 ± 101.6, and 185.4 ± 139.8 g 

for anesthesia, cooling, and euthanasia, respectively. Additionally, anesthesia generally 

resulted in more precise measurements compared to cooling (see results).  
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We performed simple and multiple least-squares regression analysis to develop 

models predicting chemical body composition (dependent variable) from DXA estimates 

(independent variable) on anesthetized turtles. We employed a best subsets regression 

procedure to select the variable(s) most useful in creating the predictive models. After 

generating predictive models, we employed a jackknife cross-validation procedure 

described by Secor and Nagy (2003). All values are given as mean ± 1SD. The level of 

statistical significance was set at P<0.05. Statistical analyses were performed using 

Minitab version 13.1. 

 

Results 

 

Based on non-DXA estimates, water composed 69.46 ± 3.25% of total body mass. 

Body composition of wet body mass was composed of 84.82 ± 1.85% lean tissue, 13.83 ± 

1.58% ash, and 1.35 ± 1.06% fat mass. Lean tissue mass, ash mass, and fat mass 

composed 50.29 ± 2.95, 45.48 ± 4.78, and 4.23 ± 2.84%, respectively, of dried body 

mass. All least-squares regressions between morphometrics and body composition 

estimates (determined chemically) resulted in non-zero slopes (P ≤ 0.002; Table 1). All 

models had strong relationships between morphometric and body composition variables 

(r2 ≥ 0.966), with the exception of models predicting fat mass, which showed a poor 

relationship between variables (r2 ≤ 0.361; Table 1). 
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Precision of DXA 

 

Mean intraindividual CV was calculated for 4 DXA parameters using all three 

immobilization techniques (Table 2). Mean intraindividual CV for 4 combined scans was 

greater than 53.7% for fat mass, but less than 2.0 and 6.6% for bone mineral content and 

lean tissue mass, respectively. CV tended to be highest for cooled individuals and lowest 

for euthanized individuals when examining bone mineral content, bone mineral density, 

and fat mass; however, for lean tissue mass there was less precision for euthanized than 

anesthetized or cooled individuals (Table 2). 

 

Effects of Immobilization Technique 

 

Immobilization technique significantly influenced the use of DXA to determine bone 

mineral content (repeated-measures ANOVA; F2,48 = 12.07; P < 0.001), bone mineral 

density (F2,48 = 25.51; P < 0.001), fat mass (F2,48 = 16.26; P < 0.001), lean tissue mass 

(F2,48 = 15.44; P < 0.001), and body mass (F2,48 = 4.99; P = 0.011). The effect of 

immobilization method was not consistent among the DXA parameters analyzed (Fig. 1). 

 

Evaluation of DXA Accuracy 

 

DXA estimates of body composition explained a large proportion of the variation in 

chemical estimates for bone mass (r2 > 0.986) and lean tissue mass (r2 > 0.964) 

regardless of the method used to immobilize individuals during DXA scanning (Fig. 2A 
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& C; Table 3); however DXA estimates were poorly related to chemical estimates for fat 

mass (r2 < 0.261; Fig. 2B). DXA estimates were significantly different than chemical 

estimates for ash mass (paired t-test; t24 = 112.95; P < 0.001), lean tissue mass (t24 = 7.71; 

P < 0.001), body mass (t24 = 4.42; P < 0.001), and fat mass (t24 = 4.46; P < 0.001). DXA 

underestimated bone mineral content, but overestimated fat mass, lean tissue mass, and 

body mass regardless of the immobilization method used (Fig. 3). 

 

Discussion 

 

 The goal of developing new techniques to quantify observations is to provide 

users with advantages not afforded by previous methodologies. The application of non-

destructive techniques, although non-invasive and therefore desirable, often sacrifices 

accuracy and precision. The utility of any technique is dependent on its ability to produce 

accurate and, more importantly, precise measurements. Accuracy is less important 

because predictive regression equations can be developed to correct for any biases 

inherent to the technique. 

We assessed the precision and accuracy of DXA in predicting bone density and 

body composition of turtles using our subset of “still” measurements for anesthetized 

subjects. Overall, the precision that we documented for measuring tissue components was 

relatively high and similar to that found in other studies of non-human vertebrates (Table 

4). The most notable exception is fat mass, where our study had the highest reported 

intraindividual variability of the studies examined. Additionally, fat mass was the least 

precisely estimated component of body composition for all of the studies examined. 



 14

Although the precision of DXA fat mass estimates are discouraging, the similar degree of 

precision in estimating other indices of body composition in turtles is promising. The 

similarity of precision compared to that of other species, in particular humans and 

rodents, for which the software was originally designed, is promising for the continued 

application of DXA in research involving chelonians. 

 

Influence of Immobilization 

 

Use of DXA requires that subjects remain motionless during the entire scanning process. 

Subject movement during scanning significantly and unpredictably influences the 

accuracy and precision of body composition estimates (Koo et al. 1995; Cawkwell 1998). 

A goal of this study was to determine which of the immobilization techniques resulted in 

the most precise and accurate measurements while at the same time reducing negative 

consequences associated with immobilization. Negative consequences associated with 

immobilization include cost, ease of use, recovery rate, and potential for harm of test 

subject. Ignoring precision and accuracy, cooling is the most desirable method of 

immobilization because it eliminates the cost of narcotics associated with 

anesthesia/euthanasia, is easy to perform, results in virtually no mortality if cooling is 

monitored, and has quick recovery rates. Unfortunately, cooling was not as an effective 

method. We found that cooled individuals were more likely to move during scanning 

(personal observation) and could account for the lower precision of body composition 

estimates. Anesthesia effectively produces immobilization if a sufficient dose is given for 

induction; however, anesthesia can be less predictable in reptiles, producing occasional 
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long recovery periods, variable induction dosages, and increased mortality compared to 

mammalian species (Bennett 1998; Read 2004). Despite these limitations, anesthesia 

produced more precise and accurate estimates of body composition than cooling. 

Euthanasia, although required in this study for comparisons, is the least desirable method 

of immobilization for DXA because it necessarily defeats the purpose of using non-

destructive techniques. Although the influence of immobilization technique produced 

significant differences in estimates and noticeable variation in precision, each technique 

regressed well with chemical estimates and therefore each is generally acceptable if 

predictive equations are produced. 

 

Limitations of DXA in the Prediction of Fat and Lean Soft Tissue Mass 

 

The results of this study suggest that accurate prediction of fat mass and, to a lesser 

degree lean tissue mass, using DXA is questionable in chelonians. The morphology of 

chelonians precludes the ability to effectively determine fat mass due to the method that 

DXA utilizes to estimate fat mass. Fat and bone-free lean tissue mass can be 

distinguished and are calculated from the ratio of attenuation from the low and high-

energy beams when calculations are performed on non-bone areas; however, when 

calculations are performed where lean tissue, fat, and bone overlap, the calculations of fat 

and lean tissue are indirect, leading to less reliable estimates (Jebb 1997). Fat and lean 

tissue mass estimates are less accurate when a large portion of the pixel area contains 

bone, such as in the thoracic region and brain in humans (Jebb 1997). The scanning of 

chelonians results in nearly 100% of the scanning pixels containing bone, depending on 
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whether the appendages are extended beyond the margins of the carapace. Therefore, 

DXA cannot use non-bone-containing neighbor pixels to calculate the proportion of fat to 

be used for the majority of pixels that contain bone. Thus the unique morphology of 

turtles most likely prevents the use of current DXA technology to accurately estimate fat 

mass. Our data corroborate this view, particularly when compared to a non-chelonian 

reptile: Secor and Nagy (2003) found a relatively low CV when using DXA to measure 

FM in snakes (9.2% versus 28.5-97.0% in this study). Because current DXA technology 

precludes the use of this tool for the prediction of fat mass in turtles, chelonian research 

with primary interests in obtaining fat estimates will have to use other methods. Although 

its effectiveness is debated, the establishment of triple or multiple-energy x-ray 

absorptiometry may solve this issue in turtles by using a three-compartment system rather 

than the two-compartment approach of DXA (Swanpalmer et al. 1998). Another potential 

approach that may help overcome this deficiency could be to position the individuals 

such that the x-ray beams will pass craniocaudal. This approach would reduce the total 

scanning area that contains bone and therefore might allow for a more accurate estimate 

of fat and lean tissue components. 

 

Future Research 

 

Future studies should examine the variation among scanners. We developed models 

linking body composition and DXA estimates; however, the utility of these models for 

users of other DXA brand scanners is unknown. Significant effects of DXA 

manufacturers, hardware, and software have been documented (Tothill et al. 1994a; 
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Tothill et al. 1994b; Jebb 1997; Tothill and Hannan 2000). Validation of our predictive 

models on other brands of DXA scanners is needed before they can be applied to research 

using other brands. We also suspect that there might be interspecies variation and 

therefore that the use of these predictive equations, developed for T. scripta, with species 

differing drastically from the general turtle morphology (e.g., soft-shelled turtles) would 

be problematic. 

 In conclusion, DXA could potentially be used for a variety of evolutionary, 

ecological, nutritional, physiological, and diagnostic applications in animals. However, a 

poor ability to predict fat mass in turtles severely limits some of its application to 

energetic and nutrition studies until advances in technology overcome the difficulties of 

distinguishing soft tissues in species containing a high proportion of bone. Although the 

use of DXA in turtles is limited by soft tissue, DXA is still effective at measuring bone 

content and density, and therefore would prove useful for studies of bone dynamics in 

turtles. The technique could be used in the identification of metabolic bone disease in a 

clinical setting. The ability to monitor an individual’s bone density over a lifetime could 

provide a wealth of information on the long-term dietary impacts on bone density. The 

potential applications of DXA in scientific research are many; however, continued 

validation is required before DXA can be put into practical use for chelonian research. 
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Table 1: Results of least-squares regressions of water mass (WM), fat-free tissue mass 

(FFM), lean tissue mass (LTM), fat mass (FM), and ash mass (AM), determined 

chemically, against body mass (BM) and straight carapace length (SCL) in male 

Trachemys scripta (N = 25).  

Regression  Coefficients F P Value r2 

WM = 0.863(BM)0.965 2730.7 < 0.001 0.992 

FFM = 0.993(BM)0.999 50475.2 <0.001 1.000 

LTM = 0.982(BM)0.977 16040.4 <0.001 0.999 

FM = 0.005(BM)1.125 13.0 0.001 0.361 

AM = 0.063(BM)1.125 1038.1 <0.001 0.978 

WM = 2.662*10-4(SCL)2.799 652.89 <0.001 0.966 

FFM = 2.193*10-4(SCL)2.907 1168.33 <0.001 0.981 

LTM = 2.686*10-4(SCL)2.837 935.18 <0.001 0.976 

FM = 3.404*10-7(SCL)3.284 12.73 0.002 0.356 

AM = 4.155*10-6(SCL)3.302 943.00 <0.001 0.976 

Note. All mass units are in grams and length in millimeters. Regressions were conducted 

on transformed data and equations were back-transformed.
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Table 2. Mean intraindividual coefficients of variation (%) of DXA scans for the three methods of immobilization and four tissue components in male Trachemys 

scripta (N = 25).  

Body 

Composition 

Type 

Anesthesia  Cooling  Euthanasia 

Movement Still Combined  Movement Still Combined  Movement Still Combined 

BMC 1.71±1.36 

(0.27-6.13) 

1.00±0.82 

(0.78-3.17) 

1.63±0.89 

(0.71-4.65) 
 

2.05±1.65 

(0.05-6.15) 

1.96±1.67 

(0.00-7.41) 

2.00±1.18 

(0.43-5.09) 
 

1.49±1.05 

(0.16-4.43) 

0.74±0.57 

(0.00-2.12) 

1.36±0.75 

(0.19-3.06) 

BMD 1.81±1.49 

(0.25-6.94) 

0.97±0.73 

(0.06-3.27) 

1.59±1.24 

(0.39-5.58) 
 

1.54±1.52 

(0.00-5.00) 

1.53±1.40 

(0.15-6.08) 

1.63±1.04 

(0.29-4.09) 
 

1.34±1.47 

(0.10-5.56) 

0.70±0.49 

(0.00-1.78) 

1.23±1.02 

(0.35-4.20) 

FM 52.11±42.48 

(2.40-141.42) 

28.54±24.16 

(0.29-69.74) 

78.89±63.85 

(17.70-200.00) 
 

65.7±58.65 

(8.61-141.40) 

77.38±62.39 

(0.24-141.42) 

97.03±60.75 

(10.03-200.00) 
 

51.58±45.64 

(0.95-141.42) 

46.0±51.51 

(0.14-141.42) 

53.72±41.93 

(9.39-200.00) 

LTM 2.01±3.00 

(0.00-13.24) 

1.05±1.45 

(0.01-4.41) 

3.40±6.03 

(0.02-28.4) 
 

2.39±5.43 

(0.00-25.12) 

1.57±3.36 

(0.02-14.93) 

2.49±3.65 

(0.03-15.65) 
 

7.31±13.33 

(0.00-54.58) 

4.28±4.80 

(0.07-21.30) 

6.59±8.01 

(0.14-35.38) 

Note. Values for movement represent the coefficient of variation (CV) of two repeated measurements where the individual was moved between scans (scans 1 & 

3).  Still represents the CV of two repeated measurements where the subject was not moved between scans (scans 1 & 2).  The combined data represents the CV 

of all four scans combined. Values are mean ± SD with ranges in parentheses. Abbreviations: BMC = bone mineral content, BMD = bone mineral density, FM = 

fat mass, LTM = lean tissue mass. 
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Table 3. Predictive models for chemically determined body composition variables in 

male Trachemys scripta (N = 25) determined by the regression of chemical estimates of 

body composition against DXA estimates for anesthetized individuals. Values for 

difference represent the average difference between actual tissue mass determined 

chemically and predicted tissue mass determined from the regression or cross-validation 

model. Values for percent difference represent the absolute difference represented as a 

percentage of total mass for the tissue component in question.  

  Regression Model  Cross-validation 

Model r2 difference 

(g) 

difference (%)  difference 

(g) 

difference (%) 

AM = 4.81*BMCDXA-8.75 0.994 3.24±3.07 4.03±3.08  3.69±3.75 4.41±3.34 

LTM = 0.98*LTMDXA-39.66 0.979 31.62±24.17 6.44±3.99  34.14±25.41 6.89±4.14 

LTM = 

0.89*LTMDXA+0.70FMDXA-15.76 

0.992 16.84±18.26 3.30±2.69  20.11±22.70 3.76±3.08 

FM = FMDXA+8.14 0.00 5.46±3.56 152.23±175.50  5.86±3.77 162.22±184.00 

FM = 0.04*LTMDXA-

0.03*FMDXA-0.62*BMCDXA-1.51 

0.528 3.60±2.68 85.40±87.70  4.43±3.11 100.81±94.98 

FFM = 1.13*FFMDXA-60.20 0.978 39.96±28.10 6.81±3.58  43.86±30.97 7.34±3.71 

WM = 0.79*LTMDXA-30.07 0.969 31.80±23.22 8.13±5.23  34.31±24.40 8.70±5.43 

WM = 

0.68*FMDXA+0.71*LTMDXA-7.11 

0.987 19.34±16.85 4.86±3.7  22.72±20.87 5.48±4.06 

Note. Predictor variables were selected using best-subsets regression. The simplest model 

was included and multivariate models were added if they had more explanatory power. 

Abbreviations: AM = ash mass, BMC = bone mineral content, LTM  = lean tissue mass, 

FM = fat mass, FFM = fat-free tissue mass, WM = water mass.
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Table 4. Literature review of the precision of DXA estimates of lean tissue mass, fat 

mass, and bone mineral content in several different animals. 

Study Animal 

CV (%) 

Lean Tissue 

Mass 
Fat Mass 

Bone Mineral 

Content 

This study Turtle 1.05 28.54 1.00 

Nagy and Clair 2000 Mouse 0.86 2.20 1.60 

Rose et al. 1998 Rat 2.88 12.16 6.34 

Kastl et al. 2002 Rat humeri - - 0.90 

Korine et al. 2004 Bird 1.28 4.92 - 

Secor and Nagy 2003 Snake 0.6 - 1.0 

Elowsson et al. 1998 Pig 0.94 13.51 1.91 

Note. Intraindividual CV reported here for this study were based on anesthetized 

individuals where the subjected was not moved between two successive scans. 
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Figure Legends 

 

Figure 1. The effects of immobilization method on DXA estimate of (A) bone mineral 

content, (B) bone mineral density, (C) fat mass, (D) lean tissue mass, and (E) body mass 

in male T. scripta (N=25). Significant differences (α < 0.05) among treatment levels are 

indicated by different letters. Presented means indicate inverse log10-transformed data. 

Error bars represent 95% confidence intervals. 

 

Figure 2. Regression of chemical estimates against DXA estimates of (A) lean tissue 

mass, (B) fat mass, and (C) bone mass for all three methods of immobilization in male T. 

scripta (N=25). The solid line represents a slope of 1. 

 

Figure 3. Mean difference between DXA and chemical estimates of bone mineral content 

(BMC), fat mass (FM), lean tissue mass (LTM), and body mass (BM) for the three 

methods of immobilization in male T. scripta (N=25). Error bars represent 95% 

confidence intervals. 
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CHAPTER II 
 
 

SEASONAL CHANGES IN CALCIUM PHYSIOLOGY OF THE TEXAS TORTOISE, 
GOPHERUS BERLANDIERI: INFLUENCE OF SEX, AGE, AND REPRODUCTIVE 

STATUS 
 

Abstract 

 

 We measured the seasonal, sex, and age effects on plasma chemicals that are 

associated with calcium physiology in the Texas tortoise (Gopherus berlandieri). Female 

tortoises had higher concentrations of plasma calcium, phosphorus, magnesium, total 

protein, and alkaline phosphatase than did male tortoises. There were monthly changes in 

plasma calcium and phosphorus for female tortoises; plasma concentrations of these 

biochemicals were elevated post-oviposition, suggesting that females undergo 

vitellogenesis-induced hypercalcemia after eggs have been laid in mid-summer. No such 

seasonal change was observed for male tortoises. Although we did not specifically 

measure changes in bone structure, the investment of calcium into eggshell and yolk 

components may have important effects on bone density of female tortoises. In addition 

to measuring seasonal changes in blood biochemicals, we developed a hemogram of 

normal values for plasma calcium, phosphorus, magnesium, total protein, and alkaline 

phosphatase.
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Introduction 

 

Bone plays a number of important structural and physiological roles in 

vertebrates, including serving as a reservoir for, and maintaining homeostasis of, calcium. 

Calcium is well recognized for its importance in a variety of physiological processes, 

including muscle contraction, nerve transmission, and hemostasis. Calcium is also 

important during reproduction of egg-laying vertebrates by serving a structural role in the 

eggshell and providing a source of nutrients for the developing embryo. The influence of 

reproduction on maternal bone density has been heavily investigated in mammals and 

birds and to a lesser extent in reptiles (de Buffrenil and Francillon-Vieillot 2001). In 

some reptiles, egg production is related to a seasonal reduction of bone density in 

females, suggesting possible mobilization of calcium from bone to provide an adequate 

supply for vitellogenesis, the formation of the eggshell, or both (Edgren 1960; Suzuki 

1963; Clark 1965; Wink et al. 1987; de Buffrenil and Francillon-Vieillot 2001).  

Although the above studies document structural changes in bone associated with 

egg production, other studies have documented reproductive effects on plasma calcium 

without any changes in bone density. The administration of estrogen to male box turtles 

and female alligators induced rises in plasma calcium, but structural changes in bone 

density were not observed (Magliola 1984; Elsey and Wink 1986). These results suggest 

that estrogen produced during vitellogenesis facilitates calcium availability for egg 

production in reptiles. It is not certain whether this rise is supported by bone resorption, 

increased renal conservation, increased intestinal uptake, or any combination of these, but 

study results suggest bone resorption might not be necessary for vitellogenesis. Apparent 
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conflict between studies that suggest structural changes in bone density during egg 

production and those that do not might be explained by relative investment of calcium 

into the eggshell and yolk components of the egg. The rate of calcium transfer from 

mother to offspring is likely to differ between yolk and eggshell components due to the 

rate of formation of these components. Vitellogenesis is typically a long process, whereas 

eggshell formation is typically shorter in duration (Simkiss 1967). 

The Texas tortoise, Gopherus berlandieri, is a threatened species in the state of 

Texas that might have particularly high calcium demands. Hellgren et al. (2000) 

documented a higher incidence of perforations through the costal bones of the posterior 

carapace in female G. berlandieri, and these authors suggested the perforations could be 

due to high demands for calcium during egg production coupled with diets poor in 

available calcium. Additionally, females exhibited higher mortality rates than female 

congeners leading to male-biased sex ratios in the older age classes. These observations 

may be due in part to increased disease susceptibility of females as a result of these 

carapacial perforations (Hellgren et al. 2000). The presence of carapacial perforations is 

not restricted to G. berlandieri.  Occasionally, Terrapene carolina triunguis has 

perforations in the same region as G. berlandieri (personal observation). Perforations 

could be due to physical wearing of the superior end of the ilium against the most 

posterior costal bones of the carapace. Some emydid turtles with hinged shells have an 

ilial recess that accommodates the ilium when the posterior plastron is expanded away 

from the carapace (Bramble 1974). Thinning of this region to accommodate the pelvis 

might predispose species who possess carapacial kinesis to higher rates of carapacial 

perforations. 
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Gopherus berlandieri is a species that possesses a fair degree of carapacial kinesis 

thought to accommodate the oviposition of large eggs relative to body size (Ewert 1979; 

Rose and Judd 1991). Carapacial kinesis is the flexibility of bony portions of the carapace 

and plastron that is attained through thin bones and loose articulations (Rose and Judd 

1991). However, there may be tradeoffs between the costs and benefits of thin bones. 

One cost can be reduced female survivorship when pelvic wearing breaks through the 

carapace, potentially rendering the tortoise vulnerable to disease, and one benefit can be 

increased shell kinesis allowing the laying of large eggs. Other suggested benefits include 

increased respiratory capacity and the ability to prevent extraction from the occasional 

burrow (Rose and Judd 1991). 

We suggest that endogenous contributions of calcium to egg production by female 

G. berlandieri likely result in long-term reduction of bone mineral density and ultimately 

cause carapacial breakage due, in part, to pelvic wearing at the ilial recess. Resorption of 

bone as a calcium source may be an adaptive strategy to facilitate production of large 

eggs as proposed by Rose and Judd (1991) and Hellgren et al. (2000). Henen (2002) 

suggested that female desert tortoises might reduce reproductive output when food 

resources are scarce; similarly, one might expect that G. berlandieri would reduce egg 

production if calcium needs were not met. However, the investment of calcium in eggs at 

the expense of female bone density might be sustainable short-term. Although sustained 

calcium deficits could affect long-term survival, attempting reproduction when energy 

reserves are low would likely have immediate consequences on female survival. 

Dietary deficiencies—potentially exacerbated by anthropogenic influences—also 

might contribute to thin bones in G. berlandieri. Anthropogenic disturbances generally 
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exhibit negative pressures on turtle populations and have resulted in population declines 

of many species; however, land management regimes in the range of Gopherus 

berlandieri have been suggested to have a positive or neutral effect on tortoises 

(Auffenberg and Weaver 1969; Ernst et al. 1994; Kazmaier et al. 2001).  Prickly pear 

cactus (Opuntia engelmannii), a predominant dietary component of G. berlandieri, is 

positively affected by overgrazing and brush encroachment associated with management 

(Archer et al. 1988; Ernst et al. 1994; Kazmaier 2000). Although increasing cactus 

abundance would have positive effects on tortoise water regulation (Kazmaier 2000), 

high levels of oxalic acids in cacti (Ben Salem et al. 2002) may compromise the calcium 

status of G. berlandieri (Hellgren et al. 2000).  Oxalates are known  to form insoluble 

salts with calcium (James 1978; Ben Salem et al. 2002), therefore inhibiting the 

absorption of calcium (Weaver et al. 1987). Management regimes, such as root plowing, 

that cause increased cactus density may potentially shift tortoise food availability. 

Increased reliance on cactus as a food source might hamper the ability of G. berlandieri 

to obtain sufficient dietary calcium. Therefore, management regimes that cause increased 

reliance on cactus might affect survival and reproductive success of females and 

ultimately might have long-term implications for G. berlandieri populations. 

 Fully understanding the interaction between dietary intake of calcium and the 

potential tradeoffs between egg production, bone density, and carapacial kinesis were 

beyond the scope of this study. Instead, this study took the first step in understanding the 

effects of egg production on maternal calcium physiology. We report seasonal cycles in 

circulating metabolites involved in calcium metabolism. Specifically, we report the 

effects of season and age on male and female plasma calcium, magnesium, phosphorus, 
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total protein, and alkaline phosphatase. We predicted that plasma concentrations of 

calcium, magnesium, phosphorus, and total protein would increase in female tortoises 

during egg production to provide these nutrients to the offspring. Additionally, because 

alkaline phosphatase is an indicator of bone formation, we predicted that plasma alkaline 

phosphatase should decline during egg production because bone growth should decline to 

provide the calcium for investment in the eggshell and yolk components of the egg. 

Alkaline phosphatase should decline with age, because we expect growth rates to decline 

in older individuals. These biochemicals should not change in male tortoises if the 

seasonal changes in females are due to egg production.  

 

Methods 

 

Study Site and Field Methods—Texas tortoises were studied at the Chaparral 

Wildlife Management Area (CWMA) in Dimmit and LaSalle counties, Texas. For a 

detailed description of the study site, see Hellgren et al. (2000). Tortoise collection 

occurred during May–August 2004 and May–September 2005, and occurred during the 

majority of the peak activity period (Kazmaier 2000). All tortoises upon capture were 

brought to a nearby field laboratory and marked with a unique series of scute notches. 

Individuals were sought and primarily captured as they crossed roads, but were 

occasionally encountered when researchers were walking in the field. Age was 

determined for individuals based upon scute annuli. Although this technique can be 

problematic (Wilson et al. 2003), it has been validated in our population of Texas 

tortoises (Hellgren et al. 2000). All age estimation in this study was performed by either 
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RK or MS. Because of potential researcher bias in the estimation of age, RK and MS 

independently estimated the age of 29 tortoises. Age estimates did not vary between 

researchers (Paired t-test; t=1.09, P= 0.29).  The mean difference between age estimates 

was 0.47 years for turtles that ranged in age from 2 to 17 years.  

Morphometrics, including straight-line carapace length (SCL), greatest width 

(GW), and body mass (BM) were measured on all individuals, whereas the measurement 

of the carapacial plastron aperture (CPA) was only collected during 2005 captures (Table 

1). The CPA is the straight-line distance between the plastron and carapace measured 

along the individual’s midline at the caudal end and may give some measure of the 

maximum egg width capable of being oviposited. Length measurements were made to the 

nearest 0.1 mm using a vernier caliper and mass measurements were made to the nearest 

10 g using a Pesola spring scale.  In adult tortoises, sex was determined by the 

presence/absence of male secondary sexual characteristics (concave plastron, enlarged 

chin glands, and thickened anal scutes; Rose and Judd, 1982). Juvenile tortoises were 

distinguished from adults by body size as described by Hellgren et al. (2000). In all 

analyses involving gender we use the term “sex” loosely to describe gender differences in 

adult tortoises as well as juveniles from adult tortoises. The presence of eggs in females 

was determined with a 500V portable ultrasound scanner (Aloka Inc., Tokyo, Japan). The 

use of ultrasound to estimate the presence of eggs and clutch size was validated with the 

use of x-rays. Although the use of ultrasound tended to underestimate clutch size by an 

average of 1 egg, the use of ultrasound to detect presence/absence of eggs was precise. 

Blood Collection, Handling and Analysis—Blood was collected from individuals 

via the subcarapacial vein with a 1-cc syringe. Although the time elapsed between 



 

 38 
 
 

capture and phlebotomy was variable among individuals, blood was collected within 6 

hours of initial capture for the majority of blood samples. All phlebotomy was performed 

by the same researcher (MS). After collection, blood samples were injected into vials 

containing lithium heparin and centrifuged for 4 minutes. A subsample of blood was 

collected in a hematocrit tube for the determination of packed cell volume. Hematocrit 

analyses were conducted on 2005 samples only. Upon centrifugation, plasma was 

separated from the cell fraction and then frozen at -20˚C.  All samples were brought to 

the Oklahoma State University campus on dry ice to prevent thawing. An approximately 

50-µL aliquot of plasma was used to determine concentration of calcium, inorganic 

phosphorus, magnesium, alkaline phosphatase, and total protein using an ACE® 

automated chemistry analyzer (Alfa Wassermann Inc., West Caldwell, New Jersey).  

Statistical Analyses—We performed a multivariate cluster analysis of variables to 

have a better understanding of the “closeness” of variables and to inform subsequent 

analyses. Cluster analysis was performed using the “clusters of variables” procedure 

described by Minitab® statistical software (Minitab Inc., State College, PA). Variables 

loaded were age of subject, hematocrit, total protein, alkaline phosphatase, calcium, 

magnesium, phosphorus, time collected, month collected, julian date collected, blood 

osmolality, and date sample analyzed. Results of the multivariate analysis showed 

clustering of hematocrit with total protein and alkaline phosphatase. Additionally, 

calcium was linked with phosphorus and magnesium, but more closely with phosphorus 

(Figure 1). Due to this clustering, we performed a least-squares regression to test for 

effects of hematocrit on plasma biochemicals. This analysis allowed us to determine if 

plasma dilution might be a problematic issue in the accurate determination of blood 
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chemistry. Effects of hematocrit were significant for total protein and alkaline 

phosphatase (see Results); therefore, we used ANCOVA with hematocrit as a covariate to 

analyze effects of sex and month on these variables. Because hematocrit data were 

collected only during the 2005 field season, we could not test for the effect of year in 

these analyses. Moreover, we had insufficient sample sizes of juveniles and their removal 

from hematocrit analysis was required. We tested the assumption of homogeneity of 

regression coefficients and determined there was no difference among slopes for total 

protein (F1,68=0.03, P=0.85) and alkaline phosphatase (F1,63=0.02, P=0.89), so a linear-

slopes model was appropriate for these analyses. One assumption of ANCOVA is that the 

covariate is independent of the treatment. In this case, we cannot be certain that this 

assumption was not violated. Therefore we analyzed both of these variables with and 

without hematocrit included as a covariate and we present the results of both of these 

analyses. 

We analyzed dependent variables (calcium, magnesium, and phosphorus) with 3-

way ANOVA to examine for sex and temporal effects. Categorical variables sex, month, 

and year were analyzed as independent variables. Analysis of effects on hematocrit was 

similar, but did not include year as an independent variable because these data were 

collected only during the 2005 field season. Individuals of unknown sex were excluded 

from analyses involving sex effects. Additionally, we removed samples collected during 

September from analysis because of insufficient sample sizes needed to run higher-order 

interactions. All variables were assessed for violation of test assumptions before analysis. 

Normality and homogeneity of variance assumptions were assessed using the Anderson-

Darling and Levene’s Test, respectively. All blood variables satisfied the test statistic 
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assumptions of normality (Anderson-Darling Test; P>0.051) and homogeneity of 

variance (Levene’s Test; P>0.106). Due to unequal sample sizes and insufficient subjects 

for some treatments, tests for higher-order interactions could not be performed. Instead, 

we elected to combine years for post hoc comparison because year effects were not 

detected (year, F1,172=1.59, P=0.209; year-sex interaction, F2,172 =1.04, P=0.357) and were 

of less interest. Our focus was on sex and seasonal variation in concentrations of plasma 

calcium, magnesium, and phosphorus levels. 

We assessed the effects of age on circulating levels of plasma biochemicals using 

least-squares regression. Dependent variables calcium, magnesium, phosphorus, total 

protein, alkaline phosphatase, and hematocrit were regressed against age. We assessed 

the influence of egg production on all plasma biochemicals with one-way ANOVA using  

number of eggs produced (0-4) by females as treatment levels. 

Statistical analyses were performed using Minitab version 13.20 (Minitab Inc., 

State College, Pennsylvania). Post-hoc comparisons among treatment levels, when 

applicable, were compared using Tukey tests. Statistical analyses were considered 

significant if P<0.05 and marginally significant if P<0.10. Mean values are given ± 1SD 

unless stated otherwise. 

 

Results 

 

 A total of 263 individual tortoises (137 female, 60 male, 59 juvenile, and 7 

unknown) were captured over the two-year period resulting in a total of 286 blood 

samples collected. Some tortoises were collected and sampled multiple times throughout 
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the field season. In such instances, only the first blood sample was included in analyses. 

Of the females examined for the presence of eggs, 34 females were observed gravid (11 

in 2004 and 23 in 2005). Gravid females had on average 2.0±0.9 (range: 1-4) eggs 

present. 

Hematocrit—Result of least-squares regression suggest that hematocrit had a 

significant effect on total protein (Figure 2D; n=94, F=48.46, P<0.001) and alkaline 

phosphatase (Figure 2E; n=94, F=8.93, P=0.004), a marginal effect on calcium (Figure 

2A; n=94, F=3.56, P=0.062) and phosphorus (Figure 2C; n=94, F=3.62, P=0.06), and no 

effect on magnesium (Figure 2B; n=94, F=0.00, P=0.974). Hematocrit did not vary by a 

month-sex interaction (two-way ANOVA; F3,65=1.67, P=0.18), nor did hematocrit vary 

across months (Figure 3F; F3,65=0.99, P=0.40). Hematocrit varied between sexes 

(F1,65=6.84, P=0.011), with mean hematocrit being higher in male tortoises (24.3±7.1%) 

than in females (20.3±5.0%).  

Calcium—Plasma calcium varied by a sex-month interaction (3-way ANOVA; 

F6,172=3.39, P=0.003). For male tortoises, plasma calcium did not vary across months 

(Figure 3A; P=1.000). However, female plasma calcium rose from its lowest 

concentration in May to June (t=3.51, P=0.028) and also from June until July (t=4.15, 

P=0.003), where it began to level off until reaching its apex in August (Figure 3A). 

Overall, plasma calcium varied among sexes (F2,172=8.28, P<0.001), with females having 

higher plasma calcium than males (Table 2; t=3.2, P=0.004) and juveniles (t=3.0, 

P=0.009). Plasma calcium in males did not differ from juveniles (t=0.9, P=0.613). No 

significant main effect of month (F3,172=1.59, P=0.194) or year (F1,172=1.59, P=0.209) 

was detected. 
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Phosphorus—Plasma phosphorus followed similar trends to that of calcium, with 

a marginally significant interaction between sex and month (F2,172=2.10, P=0.056). 

Phosphorus tended to vary more across months in females than in males, which remained 

relatively stable (Figure 3C). We found no interaction between sex and year (F2,172=1.62, 

P=0.2). Overall, we found a significant effect of sex (F2,172=10.36, P<0.001), where 

females had higher plasma phosphorus than males (t=3.9, P<0.001) and juveniles (t=3.0, 

P=0.008), but juveniles were not different from males (t=0.6, P=0.8). We found no main 

effect of month (F3,172=0.45, P=0.72) or year (F1,172=0.60, P=0.43). 

Magnesium—Plasma magnesium varied by a marginal sex-year interaction 

(Figure 3B; F2,172=2.86, P=0.06) but not a sex-month interaction (F6,172=0.61, P=0.72). 

Comparisons between years within sexes indicated that mean plasma magnesium was 

higher in 2005 than 2004 for females (t=3.03, P=0.03). No differences between years 

were observed for males (t=0.73, P=0.97) and juveniles (t=1.20, P=0.83). Plasma 

magnesium varied among the sexes (F2,172=9.43, P<0.001), with females having higher 

magnesium than males (t=4.20, P<0.001). Magnesium concentrations did not differ 

between females and juveniles (t=1.86, P=0.15) or between males and juveniles (t=0.62, 

P=0.81). There were no significant differences among months (F3,172=0.06, P=0.98) or 

between years (F1,172=0.21, P=0.65). 

Total Protein—Total protein did not vary by a month-sex interaction (ANCOVA; 

F4,69=1.75, P=0.15). Total protein was different between male and female tortoises 

(F1,69=5.66, P=0.02), with females (least squares mean±SE; 3.39±0.10) having higher 

total protein than males (2.97±0.14). There was no significant effect of month (Figure 

3D; F4,69=0.86, P=0.49). The effect of hematocrit was significant, suggesting the 
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importance of including hematocrit as a covariate (F1,69=49.77, P<0.001). The removal of 

hematocrit from analysis altered the results of the study. A sex-month interaction was 

detected (F6,172=2.66, P=0.017); however, simple effects among levels within sex and 

within month were not different (P>0.15).Year effects were significant (F1,172=8.40, 

P=0.004), with tortoises captured in 2004 (3.49±0.88 g/dL) having higher total protein 

than those captured in 2005 (3.17±0.85 g/dL). Total protein did not vary between sexes 

(F2,172=1.97, P=0.14). 

Alkaline Phosphatase—Analysis of alkaline phosphatase activity showed no sex-

month interaction (ANOVA; F6,172=0.84, P=0.543; Figure 3E) or sex-year interaction 

(F2,172=0.70, P=0.499). Additionally, there was no main effect of sex (ANOVA; 

F2,172=0.90, P=0.408) or month (F3,172=0.49, P=0.69). There was an effect of year 

(F1,172=7.18, P=0.008), with tortoises collected in 2004 (38.8±15.6 U/L) having higher 

levels of alkaline phosphatase than 2005 (33.5±13.3 U/L). Using ANCOVA to control for 

variation in hematocrit, we found no significant sex-month interaction (F3,64=0.92, 

P=0.44). There was a marginal main effect of sex (F1,64=3.53, P=0.065), with levels of 

circulating alkaline phosphatase marginally higher in female tortoises (least squares 

mean±SE; 35.01±1.84 U/L) than in males (28.56±2.82 U/L). There was no main effect of 

month on alkaline phosphatase (F3,64=1.85, P=0.15). 

Age—Age had no significant influence on calcium (least-squares regression, 

n=236, F=0.36, P=0.55), phosphorus (n=236, F=0.00, P=0.963), total protein (n=236, 

F=0.49, P=0.483), and hematocrit (n=120, F=0.92, P=0.34). Age had a weak positive 

(slope = 0.11±0.03 SE) influence on magnesium (n=236, F=17.31, P<0.001, r2=0.064) 
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and negative (slope = -0.72±0.23 SE) influence on alkaline phosphatase (n=236, F=9.33, 

P=0.002, r2=0.035). 

Egg Production—The influence of egg production on plasma biochemicals was 

varied. Magnesium was marginally influenced by the number of eggs that females had 

present in the oviduct (one-way ANOVA, F4,30=2.30, P=0.082, Figure 4). Plasma 

magnesium was higher in females with 4 eggs present (7.0±3.1 mEq/L) than in females 

who did not have eggs present (3.8±1.6; t=2.92, P=0.048). The number of eggs produced 

had no influence on calcium (F4,30=0.09, P=0.99), phosphorus (F4,30=0.99, P=0.43), total 

protein (F4,30=0.82, P=0.52), or alkaline phosphatase (F4,30=2.02, P=0.117). 

 

Discussion 

 

 We predicted that plasma calcium, magnesium, phosphorus, and total protein 

would rise and that alkaline phosphatase would decline during egg production in female 

tortoises. We also predicted that no such changes should be evident in males if such 

changes in females were a result of egg production. The findings of this study support our 

predictions for calcium and phosphorus, where we observed seasonal increases of these 

nutrients in females but not in males. We suggest these elevated concentrations are a 

result of vitellogenesis. We did not detect any seasonal changes in total protein and 

alkaline phosphatase for either sex, which is contrary to our initial predictions. This 

discrepancy might be explained by the possible dilution of samples with lymph. 

Blood Chemistry Comparisons with Other Turtle Species—To our knowledge, 

ours is the first study to measure blood chemistry of the Texas tortoise. The values we 
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obtained in this study are comparable to, and fall within, the range of values determined 

for other species of turtles (Table 2). Many of our values were on the lower end of the 

range in turtles; however, several studies reported values equal to or lower than ours. In 

our literature search, the range of hematocrit, calcium, magnesium, phosphorus, total 

protein, and alkaline phosphatase were 16-37%, 3.5-18.3 mg/dL, 1.1-4.9 mg/dL, 1.6-13.8 

mg/dL, 2.0-6.1 g/dL, and 13-465 U/L, respectively (Table 2). Our averages were well 

within these ranges and therefore we feel our values aid in the establishment of a normal 

hemogram for this species. We recommend caution, however, with the interpretation of 

absolute values for total protein and alkaline phosphatase as these values can be 

influenced by lymphatic dilution (see discussion below). 

Validity of Normal Values—An important consideration for the accuracy of our 

blood plasma variables is the potential for lymphatic dilution. Collection of blood 

samples in tortoises is challenging at best.  A variety of collection sites exist, each with 

certain drawbacks. Major drawbacks are the general difficulty of easily obtaining a blood 

sample without the use of repeated attempts on individuals, or the challenge of obtaining 

whole blood without contamination of lymph. Generally, sites that are easily accessed are 

those with a higher probability of lymphatic dilution, whereas sites that have a lower 

probability of dilution are generally more challenging to venipuncture. We elected to 

draw blood from the subcarapacial vein.  Although there is risk of lymphatic dilution 

from this site, it is easily accessed compared to other sites where a struggling tortoise can 

make venipuncture challenging or impossible (e.g., the jugular vein). The possibility of 

not being able to collect whole blood is a serious issue. Diluted samples might lead to 

erroneous estimates of certain blood parameters, especially those that are protein based 
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and would not likely enter lymphatic circulation (Crawshaw and Holz 1996). Our data 

suggest that lymphatic dilution might have occurred because we found relationships 

between hematocrit and plasma protein and hematocrit and alkaline phosphatase, as well 

as the presence of some samples with unusually low hematocrit. The results of cluster 

analysis corroborate this view, with hematocrit clustering more with total protein and 

alkaline phosphatase (similarity level = 76.06) than other plasma variables. Despite the 

probability of lymphatic dilution in some samples, we believe that comparisons among 

treatments are valid.  

We can postulate how the probability of collecting lymph-diluted samples could 

change among years or month. For example, if we were refining our skills in phlebotomy 

as time progresses (i.e., getting better at obtaining whole blood), then a month effect 

should be evident with hematocrit, as well as total protein and alkaline phosphatase, 

increasing across months. Our data suggest that this is not occurring as hematocrit does 

not vary across months. We suggest that the probability of lymphatic dilution is random, 

and is mainly responsible for increasing error variance rather than between treatments. 

Moreover, hematocrit determined in this study was within normal ranges of other turtles 

(Peterson 2002). 

Sex, Season, and Year Effects on Plasma Chemistry—Hematocrit or packed cell 

volume is known to be variable among turtle species and populations, and seasonally 

varies within individuals. We observed effects of sex on hematocrit but did not observe 

any temporal effects. A significant sex effect on hematocrit is corroborated by previous 

studies.  Male desert tortoises (Gopherus agassizii) had equal or higher packed cell 

volume than females and such dimorphism is suggested to be a result of complex 
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interactive influences including hormone and nutritional influences (Peterson 2002). 

Although multiple influences may dictate variance in hematocrit, hydration status is 

likely an important factor (Peterson 2002). In the present study population, male tortoises 

had higher plasma osmolarity than female tortoises (Stone unpublished data). 

Dehydration of male tortoises could be accounting for elevated plasma osmolarity and 

hematocrit. We did not detect seasonal variation in hematocrit as has been documented in 

some other species (Peterson 2002); however, our sampling was restricted to months of 

high turtle activity. 

 The results from the analysis of circulating alkaline phosphatase did not 

correspond with our initial predictions. We hypothesized that female tortoises would have  

reduced levels of alkaline phosphatase when compared to male tortoises because bone 

growth would be reduced during the egg-laying season as a result of calcium investment 

into egg production rather than in somatic growth. Depending on the analysis, we found 

either no effect of sex or higher alkaline phosphatase values in female tortoises. Total 

alkaline phosphatase is an indicator of bone formation; however, assays of the bone 

isoform are a more reliable indicator because liver, intestine, spleen, and kidney all 

contribute to circulating levels of total alkaline phosphatase (Khosla and Kleerekoper 

2003). Despite this potential caveat, liver and bone isoforms are the primary contributors 

to elevated levels of total alkaline phosphatase (Khosla and Kleerekoper 2003). 

We suggest that our observation of higher 2004 concentrations of alkaline 

phosphatase were a result of higher bone growth during the 2004 field season compared 

to 2005. Rainfall events were more frequent and tortoise activity was higher during the 

2004 field season as indicated by higher catch rates. Differences in catch rates between 
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2004 (152 captures) and 2005 (111 captures) are not a result of trapping effort because 

the 2005 season was sampled earlier and later in the year and more intensively than the 

2004 season. We suggest that increased available forage and less extreme environmental 

conditions led to increased growth of tortoises of both sexes and were detectable by 

elevated concentrations of alkaline phosphatase. Age effects on alkaline phosphatase 

followed our expectations. Younger individuals tended to have higher levels of alkaline 

phosphatase; a result that is likely due to higher growth rates in juvenile tortoises. 

 Correspondence Between Plasma Chemistry and Reproductive Cycle—Little is 

known about the reproductive cycle of the Texas tortoise (Rose and Judd 1982). The 

most comprehensive studies of reproduction are limited to data on nesting chronology 

and clutch sizes. These studies suggest that female tortoises are gravid from April until 

July, laying up to 2 clutches per season of 1 to 5 eggs per clutch (Judd and Rose 1989; 

Hellgren et al. 2000). Although some data suggested tortoises might remain gravid until 

November (Auffenberg and Weaver 1969), these observations are from southern Texas 

coastal populations and there are no data on the frequency of this occurrence. 

Furthermore, a study on G. berlandieri in nearby locations suggested that nesting ceases 

after July, and investigators found no gravid females in the months of Aug-Oct (Judd and 

Rose 1989). Data for northern inland populations corroborate this and suggest the 

majority of females are no longer gravid by late July-early August (Hellgren et al. 2000). 

In our study, the latest we observed a gravid female was 8 August. In light of this, our 

data suggest that elevated levels of calcium and phosphorus are likely associated with 

vitellogenesis rather than eggshell production because we observed our lowest values of 

measured calcium during the period (May) where the majority of females contained 
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shelled or shelling eggs within the oviduct and our highest levels occurred when females 

were no longer gravid.  

Little is known about the endocrinology and timing of gonad cycles for the Texas 

tortoise, but much can be assumed from what is known about the timing of their egg 

production as well as reproductive cycles of other Gopherus. In the desert tortoise, 

vitellogenesis occurs in the fall prior to hibernation (Rostal et al. 1994). We assume a 

similar pattern is occurring with G. berlandieri and that the increase in calcium and 

phosphorus we observed is associated with follicular development. It is well known that 

during vitellogenesis total calcium and phosphorus levels are elevated because of 

increases in the amount of plasma proteins, primarily vitellogenin, that bind these ions 

(Alcobendas et al. 1992; Rostal et al. 1994; Rostal et al. 1998; Wysolmerski 2002; Lv et 

al. 2006). Interestingly, we did not observe significant increases in total protein or 

magnesium concurrent with elevated calcium and phosphorus as would be expected to 

occur during vitellogenesis. Estrogenic induction of vitellogenesis has been implicated to 

increases in total protein and magnesium in addition to that of calcium (Lv et al. 2006). 

However, females had greater concentrations of total protein and magnesium levels than 

males; vitellogenesis might account for this difference. Additionally, it is possible that 

such seasonal effects are present but the dilution of samples with lymph might have 

resulted in increased error variance, making treatment effects undetectable. 

 Long-term Effects of Reproduction on Maternal Bone Density—The long-term 

effects of reproduction on maternal bone density is variable among and within species. In 

crocodilians, it appears that female bone density is affected by egg production, 

specifically eggshell formation (Wink et al. 1987). Similar trends were also observed in 
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lizards (de Buffrenil and Francillon-Vieillot 2001) and turtles (Edgren 1960). It appears 

that the deposition of an eggshell composed primarily of calcium carbonate imposes 

calcium demands on some reptiles, such that increased intestinal absorption and kidney 

conservation is insufficient to meet daily demands, thus necessitating bone resorption. 

Whether reptiles are able to recover to prereproductive levels is not so clear. In the Nile 

monitor (Varanus niloticus), it appears that reproductive demand reduces bone 

compactness in females as they grow larger (age); males, on the other hand, have 

increased bone compactness with age (de Buffrenil and Francillon-Vieillot 2001). Those 

findings were complicated by the fact that the effect of sex was population-dependent. 

Populations in Nigeria and Chad showed sex differences in the rate that bone 

compactness changed with age; however, in Mali populations, the rate at which bone 

compactness changed with age was similar between sexes. Thus, even within a species, 

the effect of long-term egg production in females is not constant. Age likely interacts 

with environmental conditions and evolved reproductive strategies of the organism. 

There is also evidence for an inability of females to compensate for the calcium demands 

of reproduction in the American alligator (Wink et al. 1987). The evidence in alligators is 

not as strong as in monitors, but juvenile alligators have more robust bones than 

reproductively quiescent adult females, suggesting females that previously laid eggs 

might not be able to return to levels previously held as juveniles (Wink et al. 1987). 

Unfortunately, no control study examined bone porosity in adult males to rule out a 

similar trend in adult males. Although we did not investigate bone density changes in G. 

berlandieri, this species may have a reduced calcium reservoir compared to other turtles 

due to their thin carapacial bones and therefore might be more prone to a bone deficiency 
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if there are any perturbations to calcium availability either through food availability or 

physiological constraints (i.e., high dietary oxalate intake restricting intestinal absorption 

rates of calcium) as per Hellgren et al. (2000). 

 Summary and Future Research on Gopherus berlandieri—We have documented 

seasonal changes in calcium physiology in G. berlandieri that are likely a result of egg 

production. These physiological changes might have important implications for the 

maintenance of maternal bone density. However, to fully address calcium physiology in 

this species and the larger question of tradeoffs between reproduction and survival in 

female tortoises tied to egg production, the documentation of a calcium budget will be 

necessary. Specifically, we need to know the total amount of calcium allocated each year 

for the production of eggs, and the proportional allocation to eggshell and yolk 

components. These data would be a logical first step to help estimate total calcium 

requirements of females. 

No studies exist that estimate calcium in any portion of the egg of the Texas 

tortoise, so we calculated estimates using data derived from other closely related species. 

Eggshell ash mass expressed as a percent of total egg dry mass is 18.98% for Gopherus 

polyphemus (Lamb and Congdon 1985). We assume that the entire inorganic content of 

eggshell is composed of calcium because the inorganic portion of turtle eggshells is 

composed primarily of calcium carbonate (Congdon and Gibbons 1990). Wet-to-dry 

mass ratios of the eggs of G. berlandieri are not known; therefore, we assumed that eggs 

were composed of 68.8% water, the average for several species of turtles (Congdon and 

Gibbons 1990). Mean wet mass of G. berlandieri eggs is 26.9±1.06 g (range 18.7-30.37; 

Judd and Rose 1989). Based on these values, we estimate that eggshell calcium of G. 
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berlandieri averages 1.593 g/egg. Using a mean clutch size of 2.07 eggs and an annual 

clutch rate of 1.34 (Hellgren et al. 2000), we estimate a total annual calcium demand of 

4.419 g/year for the production of eggshell components. We recognize this as a rough 

estimate, but it is currently our best one based upon the available data, and is only the 

first step in understanding calcium needs of G. berlandieri. In order to better understand 

these needs, much research is needed on the dynamics of intestinal assimilation and renal 

excretion of calcium for this species. 

Additionally, we need more evidence that bone resorption is occurring during egg 

production (either during egg-laying or vitellogenesis) to provide the embryo with 

calcium. Although the documentation of reduced bone density during eggshelling would 

provide some evidence, other techniques could provide better evidence that this is 

occurring. Currently, a number of biochemical markers are available for mammalian 

research that can quantify bone turnover. The most reliable markers of bone resorption 

are the metabolic products of collagen degradation, which can be assayed from both 

blood and urine depending on the indicator of interest (Khosla and Kleerekoper 2003).  

Finally, identification of the potential long-term effects of egg production in G. 

berlandieri needs to be addressed. A variety of tools exist that allow for the 

quantification of bone density. Determining seasonal and age effects on bone density of 

this species would offer insight to whether annual production of eggs results in a balance 

between bone resorption and formation or whether females exhibit a lifetime deficit in 

bone density as a result of egg production. Compared to other species of turtles, the 

relatively thin nature of G. berlandieri bones might offer little long-term buffer to 

negative calcium balance if reproductive demands for calcium are higher than can be 
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obtained from dietary sources. For example, evidence indicates that for some squamates, 

embryos might rely more heavily on yolk calcium than that derived from the eggshell 

(Packard et al. 1984); however, in many species of turtles, reliance is greater on eggshell 

calcium (Simkiss 1962; Packard and Packard 1991). 
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Table 1. Descriptive statistics of tortoise morphometrics from G. berlandieri captured at 
the Chaparral Wildlife Management Area during the 2004 and 2005 active season. 
 

Metric Sex N Mean SD Range 

Mass (g) Juvenile 58 274 116 28.5-470 

Male 59 824 206 400-1320 

Female 135 677 174 340-1180 
Combined 257 616 260 28.5-1320 

SCL (mm) Juvenile 57 102.0 17.2 47.8-122.3 
Male 58 154.9 13.6 122.0-178.6 

Female 133 142.1 12.0 115.0-174.6 
Combined 253 135.7 23.4 47.8-178.6 

GW (mm) Juvenile 57 88.5 13.6 46.7-107.4 
Male 57 130.2 11.9 104.3-155.2 

Female 133 123.6 11.1 96.3-149.0 
Combined 252 116.9 19.7 46.7-155.2 

CPA (mm) Juvenile 19 14.1 3.1 9.9-21.7 

Male 23 22.2 2.7 17.6-28.4 

Female 47 19.6 3.2 13.6-25.9 
Combined 92 19.0 4.2 9.9-28.4 

Age (years) Juvenile 58 3.6 0.9 1-5 

Male 56 9.7 3.8 4-20 

Female 122 7.8 3.3 4-18 

Combined 241 7.2 3.7 1-20 

Combined data include individuals whose sex is unknown, thus these values are not the 
sum of juvenile, male, and female data. Abbreviations: SCL=straight carapace length, 
GW=greatest width, CPA=carapace plastron aperture
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Table 2. Literature review of normal plasma chemistry concentrations for hematocrit (Ht), calcium (Ca), magnesium (Mg), inorganic 
phosphorus (Phos), alkaline phosphatase (ALP), and total protein (TP) in turtles. Values are stated as mean±SD unless otherwise 
noted. DCV=dorsal coccygeal vein, JV=jugular vein, POVP=post occipital venous plexus, DCS=dorsal cervical sinus, OP=occipital 
plexus, CP=cardiac puncture, SCA=severed carotid artery, NC=nail clip, AA=axilary area, CA=caudal artery, SCS=subcarapacial 
sinus. 
 

Study Species Sample 
Site 

Season Sex Ht (%) Ca 
(mg/dL) 

Mg 
(mg/dL) 

Phos 
(mg/dL) 

TP (g/dL) ALP (U/L) 

This study Gopherus berlandieri SCS SU F 20.1 10.2±5.0 4.1±1.6 3.2±1.7 3.4±0.9 37.6±15.0 

M 23.6 7.8±2.6 3.1±1.2 2.0±0.8 3.3±0.9 33.1±14.2 

Juv 21.3 7.3±2.7 3.1±1.0 2.0±0.7 3.0±0.6 37.5±16.0 

(Pages et al. 1992) Mauremys caspica CP SU M 16 3.5±0.3 1.1±0.5 13.8±3.5 3.29±1.27 NP 

FA Both 24 7.9±0.4 3.0±0.2 7.0±1.2 4.15±0.41 NP 

(Christopher et al. 1999)1 Gopherus agassizii JV SP M 27 11.1 4.9* 2.8 3.4 39* 

F 22.5 17.5 4.6 3.8 

SU M 27 10.5 4.2* 2.1 3.3 50* 

F 25 18.3 3.1 4.0 

(Taylor, Jr. and Jacobson 
1982)2 

Gopherus polyphemus CP FA,SP Both 22.7 11.8±0.6 4.1±0.2 2.1±0.2 3.11±0.23 276±28** 

(Gottdenker and Jacobson 
1995)2 

Gopherus agassizii POVP ? ? 17.8 8.7±0.4 NP 1.6±0.3 1.96±0.24 18.2±2.5 

JV ? ? 26.6 10.0±0.4 NP 2.1±0.3 3.61±0.21 31.7±3.0 

(Aguirre et al. 1995) Chelonia mydas DPOS FA Juv. NP 8.42±1.0 NP 7.9±0.9 4.32±0.6 42.4±10.7 

(Bolten and Bjorndal 1992) Chelonia mydas DCS SP Both 35.2 9.1±2.1 NP 6.7±1.2 5.1±0.8 43±16 

(Bolten et al. 1992) Caretta caretta DCS ? Juv, 
Both 

NP 6.8±1.2 NP 8.0±2.0 4.1±1.3 13±3 

(Raphael et al. 1994) Malacochersus tornieri OP Feb Juv 34 12.7±2.2 NP 3.1±0.6 3.1±0.5 NP 

(Ghebremeskel et al. 1991) Geochelone gigantea DCV ? ? NP 9.3±2.5 NP 2.2±0.7 2.1±1.1 26.3±17.0** 
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(Knotkova et al. 2002) Agrionemys horsfieldi DCV ? Both NP 10.0±3.6 NP 4.3±1.2 4.5±0.7 264.7±117.6 

(Oyewale et al. 1998)2 Kinixys erosa SCA ? M 34 8.4±0.0 NP 4.6±0.1 6.1±0.1 152.2±3.3 

F 26 8.4±0.1 NP 4.5±0.1 6.1±0.1 162.0±2.6 

Gopherus agassizii M 28 8.4±0.1 NP 4.6±0.1 6.1±0.1 159.0±8.3 

F 30 8.4±0.1 NP 4.6±0.0 6.1±0.0 163.7±5.4 

(Rosskopf 1982) Gopherus agassizii NC, AA ? Both*** 23-37 9.0-17.0 NP NP 2.2-5.0 NP 

(Aguirre and Balazs 2000) Chelonia mydas DPOS FA Juv NP 9.1±1.7 NP 8.2±1.3 4.2±0.6 33.5±12.2 

11.2±2.2 5.0±1.3 5.0±0.7 18.2±8.5 

(Marks and Citino 1990) Testudo radiata JV,AA SU Both 31 12.2±0.9 NP 3.2±0.5 4.0±0.5 92.7±14.4 

(Mundim et al. 1999) Podocnemis expansa CA ? Both NP 9.3±1.4 NP 2.8±0.5 3.2±0.5 107.0±45.7 

(Samour et al. 1986) Geochelone sp. DCV Captive ? ? 11.6±4.0 NP 4.3±3.1 4.1±1.8 111±46 

(Whitaker and Krum 1999) Lepidochelys kempii ? Captive ? ? 6.3±1.3 NP 8.7±1.7 3.2±0.7 465±306 

Caretta caretta ? Captive ? ? 7.2±0.8 NP 5.1±3.3 2.0±0.8 74±37 

(Raiti and Haramati 1997) Geochelone pardalis ? Captive M NP 10.0±0.5 NP 2.8±0.4 4.5±0.6 94.3±21.8 

F NP 11.3±1.5 NP 2.8±0.7 3.4±0.2 78.0±25.6 

NP: Not performed. 
1Results from this study are given as median values.  
2Results from this study are mean ± SE 
*These values are derived from both sexes. 
**Values converted from King-Armstrong units 
***Not implicitly stated in study but assumed 
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Figure Legends 

Figure 1. Results of the cluster analysis of variables for G. berlandieri collected in 

southern Texas during 2004 and 2005 activity seasons. Dendrogram represents similarity 

of blood and collection variables as a result of the cluster analysis. Abbreviations: 

HT=hematocrit, TP=total protein, ALP=alkaline phosphatase, Ca=calcium, 

Phos=phosphorus, Mg=magnesium, Time Col=time of tortoise collection, Month=month 

of collection, Date Col=date of collection, Osm=blood osmolarity, Date Run=date the 

sample was analyzed. 

 

Figure 2.  Results of the regression of plasma A) calcium, B) magnesium, C) inorganic 

phosphorus, D) total protein, and E) alkaline phosphatase against hematocrit for G. 

berlandieri collected in southern Texas 2004-2005. Note: data in all graphs contain 

replicates of individuals and could violate the assumption of independence of errors. 

 

Figure 3. Monthly changes in tortoise plasma A) calcium, B) magnesium, C) inorganic 

phosphorus, D) total protein, E) alkaline phosphatase, and F) hematocrit for male 

(circular symbols), female (triangular symbols), and juvenile (square symbols) G. 

berlandieri collected at the Chaparral Wildlife Management Area 2004-2005. Symbols 

represent mean ± 95% confidence intervals. 

 

Figure 4. Effects of egg production on plasma A) calcium, B) magnesium, C) inorganic 

phosphorus, D) total protein, and E) alkaline phosphatase in female G. berlandieri 

collected in southern Texas during 2004 and 2005 active seasons.
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CHAPTER III 
 
 

DO SEX, AGE, OR REPRODUCTIVE STATUS INFLUENCE CALCIUM 
PHYSIOLOGY AND BONE DENSITY IN RED-EARED SLIDERS (TRACHEMYS 

SCRIPTA)? 
 
 

Abstract 

 Calcium is an important nutrient for a variety of physiological processes and plays 

an important structural role in bone. During reproduction, calcium is transferred from 

mother to eggs and offspring, and this process might influence maternal bone reserves. 

We measured changes in bone density and plasma calcium, phosphorus, magnesium, total 

protein, and alkaline phosphatase in a population of red-eared sliders (Trachemys scripta) 

to determine how reproductive investment of calcium into offspring influenced maternal 

calcium physiology. We observed a seasonal rise in plasma calcium, phosphorus, and 

alkaline phosphatase during the active season, but this pattern was present for both male 

and female turtles, suggesting a pattern driven by diet rather than egg production. We 

noted that gravid females had higher plasma calcium and phosphorus than non-gravid 

females. Mass-specific bone mass followed a sigmoidal growth pattern with straight 

carapace length. We found that this growth rate declined in both sexes at the approximate 

size at which females obtain sexual maturity, a finding contrary to previous studies of 

other species. We also did not detect any effect of season on bone density for either sex, 

suggesting that egg production in females does not adversely influence bone density in 

this population. This finding is also contrary to some previous studies of this and other 
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species. This finding might be a result of the production of an eggshell containing 

relatively less calcium than some other species of turtles that have been previously 

studied. 

 

Introduction 

 Parental investment is the provisioning of resources to offspring that increases  

offspring survival and reproductive success at the expense of parental ability to invest in 

other offspring (Trivers 1972). Maternal investment is often expressed in terms of energy 

allocation to offspring; however, investment of other nutritional components such as 

calcium also might be important in determining a mother’s ability to invest in future 

offspring. Calcium plays a variety of important roles in the body, including serving as a 

structural component of bone and an important cellular signal in muscle and nervous 

function. The importance of parental investment of calcium has been recognized and well 

studied in mammals (Garel 1987). Birds have received considerable attention in part due 

to the unique constraint that flight has imposed in restricting the production of a large 

calcium reserve in bone to minimize mass. The energetic cost of flight has limited the 

degree of bone mineralization in birds, yet they still continually invest large quantities of 

calcium into offspring (Simkiss 1967). Non-avian reptiles have received relatively less 

attention. In this group, research on the effects of egg production on maternal bone 

reserves has been investigated in turtles (Edgren 1960; Magliola 1984), alligators (Elsey 

and Wink 1985; Wink and Elsey 1986; Wink et al. 1987; Schweitzer et al. 2007), and 

lizards (Allen et al. 1993). 
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 Maternal investment can be separated into preovulatory and postovulatory 

categories (Fischer et al. 1991). In the case of calcium investment in egg-laying species, 

these categories represent the investment of calcium into the yolk and eggshell, 

respectively. Understanding the relative investment into these two components is 

important. We know that growing embryos utilize calcium from both yolk and eggshell 

components; the relative contribution of eggshell and yolk calcium to the developing 

embryo is variable among species and among groups at higher taxonomic levels (Packard 

et al. 1977; Packard et al. 1984a; Packard et al. 1984b; Packard et al. 1985; Packard and 

Packard 1991a; Packard and Packard 1991b). The rate of calcium transfer from mother to 

offspring is likely to differ between yolk and eggshell components due to the rate of 

formation of these components. Vitellogenesis is typically a long process, while eggshell 

formation is typically shorter in duration (Simkiss 1967). Vitellogenesis generally occurs 

over a span of several months, while eggshell formation is completed over several days to 

weeks. The ability of females to derive sufficient calcium solely from dietary sources 

rather than relying on bone reserves is also likely to differ between these two phases of 

maternal-offspring transfer. This difference is best evidenced in the extreme case of birds 

where a specialized form of bone, medullary bone, increases during vitellogenesis, but is 

resorbed during eggshell formation (Dacke et al. 1993). 

 Investigation of maternal-offspring transfer of calcium in turtles is important 

because this taxonomic group owes much of its success to the presence of a protective 

carapace. Turtles are a morphologically unique taxonomic group characterized, in most 

species, by the presence of a robust carapace and plastron formed by the fusion of dermal 

and endochondral bone that encases the internal organs and both limb girdles. Because of 
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the protective nature of the turtle shell, understanding how investment of calcium in 

offspring affects maternal bone density could have important implications to survival in 

turtles. Available evidence suggests that non-avian vertebrates, including turtles, do not 

have the ability to produce medullary bone (Edgren 1960; Simkiss 1961b; Suzuki 1963; 

Magliola 1984; Elsey and Wink 1986) and are reliant on dietary sources and normal 

skeletal reserves to supply calcium for reproduction. For turtles, the carapace might 

provide a considerable reservoir of calcium and may buffer against excessive loss due to 

reproduction. The proportion of bone relative to body mass is higher in turtles than most 

other vertebrates (Iverson 1984). Evidence suggests that a seasonal decline in bone 

density of female turtles is associated with a rising need for calcium during egg 

production, specifically eggshell formation (Edgren 1960). Despite that study and many 

others that have investigated plasma calcium dynamics, few have shown direct evidence 

linking the dynamics of bone density to reproduction in turtles (e.g., Edgren 1960; Suzuki 

1963). 

 The goal of the present study was to examine the link between bone density, the 

nutrients involved in bone metabolism, and the reproductive cycle of turtles. 

Additionally, we investigated the relationship between bone density and age in turtles to 

determine if continuous reproductive investment of calcium into offspring has long-term 

consequences for bone density. To achieve this, we monitored an Oklahoma population 

of red-eared sliders, Trachemys scripta, over four years. We measured morphometrics to 

determine age and growth of individuals. We also measured bone density, egg 

production, and plasma concentrations of calcium, magnesium, phosphorus, total protein, 

and alkaline phosphatase. We monitored seasonal changes in these variables in both 
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sexes. We predicted that plasma concentrations of calcium, magnesium, phosphorus, and 

total protein would increase in female turtles during egg production to provide these 

nutrients to the offspring. Additionally, because alkaline phosphatase is an enzyme 

associated with osteoblast activity and an indicator of bone formation, we predicted that 

plasma alkaline phosphatase would decline during egg production because bone 

resorption should increase to supply the calcium for investment in the egg. If our 

prediction of increased bone resorption is correct, bone density should decline with 

alkaline phosphates in female tortoises. We predicted that all of these patterns would be 

absent in male turtles. 

 

Methods 

To determine the relative importance of season, age, and sex influences on bone 

density and plasma metabolites, we studied a population of T. scripta between April 2004 

and October 2007. Turtles (N=147) were collected from a pond (36°07’51.52”N, 

97°05’56.91”W) located near the Oklahoma State University campus in Payne County. 

Subjects were also captured through fortuitous encounters as turtles crossed roads within 

Payne County. All turtles were marked with a unique series of scute notches. Upon 

capture, turtles were brought to a field laboratory where we collected morphometric data 

and blood. We measured straight carapace length (SCL), straight plastron length (SPL), 

greatest width (GW), length of left middle claw (LMC), plastron to cloaca length (PTC), 

plastron to tail tip length (PTT), the midline distance between the carapace and plastron 

at the caudal end of the turtle (CPA) using a vernier caliper; all measurements were 

recorded to the nearest 0.1 mm. Body mass was measured to the nearest 10 g with a 
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Pesola spring scale. We used body size (SCL) as an estimate of age of individuals. The 

number of shelled eggs present in female oviducts was assessed with a 500V portable 

ultrasound scanner (Aloka Inc., Tokyo, Japan) and by dual-energy X-ray absorptiometry 

(DXA). Additionally, large (>1.5 cm in diameter) and small (<1.5 cm) ovarian follicles 

were counted when possible. 

Blood Collection and Analyses--Up to 1 mL of blood was collected from each 

individual from the subcarapacial sinus. Blood was placed in lithium heparin vials and 

centrifuged for 5 minutes. Prior to centrifuging the sample, a subsample of blood was 

transferred to a microhematocrit tube and separately centrifuged for determination of 

hematocrit. For the primary sample, plasma was separated from cellular components and 

then frozen and stored at -20°C prior to chemical analysis. Plasma was analyzed for 

calcium (Ca), magnesium (Mg), inorganic phosphorus (Phos), total protein (TP), and 

alkaline phosphatase (ALP) with an Alfa Wasserman ACE® clinical chemistry analyzer. 

Samples were analyzed using standard procedures provided by the manufacturer. 

Bone Analyses –We measured bone density of each turtle 4-14 days after its 

capture using dual-energy x-ray absorptiometry (DXA) to monitor changes in bone mass 

and density throughout the activity season. The use of DXA to measure bone mass has 

been validated in turtles (Stone unpublished data). After capture, turtles were individually 

housed in 19-L plastic buckets containing approximately 5 cm of water. Turtles were 

fasted for at least 4 days prior to determination of body composition because food 

contents in the intestine can influence DXA estimates. Bone mineral content (BMC; g) 

and bone mineral density (BMD; g/cm2) were measured with a Hologic® QDR 4500A 

fan-beam scanner equipped with a small-animal software program. Prior to scanning, the 
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densitometer was quality-checked each day using Hologic® calibration models 

(anthropomorphic-spine phantom and small-step phantom). Calibration procedures 

followed those provided by the manufacturer. Subjects were immobilized on the scanning 

bed by cooling them at 4°C for at least 8 hours prior to scanning. Cooling was used as the 

preferred method of immobilization because of its ease of use and cost effectiveness 

(Stone unpublished data). Individuals were scanned a minimum of 2 times without 

repositioning, and the average of each scan was used for analysis. The scanning area for 

small-animal software was limited to a maximum width of 183 mm. Only two captured 

females exceeded this size limit and could not be included in bone analysis; therefore, 

this method will exclude the largest individuals, but this bias is small. After DXA 

analysis, turtles were released at their site of capture.  

Statistical Analyses— We regressed all plasma biochemistry variables against 

hematocrit using least-squares regression to determine if plasma samples were potentially 

diluted with lymph and to determine if there were any effects on plasma biochemicals.  

Plasma biochemicals were also compared among months (April-Oct) and between sexes 

with two-way ANOVA. Total protein was analyzed with ANCOVA with hematocrit as 

the covariate to control for possible dilution of samples with lymph. Prior to analysis, 

calcium, phosphorus, and alkaline phosphatase data were log-transformed to satisfy 

assumptions of normality and homogeneity of variance. 

Statistical analyses of bone data were performed on corrected bone mineral 

content and bone mineral density. Corrected bone data were used because DXA estimates 

of bone mineral density and bone mineral content, although precise, are inaccurate (Stone 

unpublished data). The following relationship was used to correct for the inaccuracy of 
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bone mineral content: BMC = 4.8103(BMCDXA)-8.7535. Bone mineral density was 

corrected by dividing corrected bone mineral content by the 2-D surface area of the 

subject determined by DXA. To examine the relationship between body size and bone 

mass and to examine the potential differences between the sexes for this relationship, we 

plotted corrected bone mineral content, hereafter referred to simply as bone mineral 

content, against straight carapace length. The data were fitted to the power function: 

y=axb. I also plotted the relationship between relative bone mass, defined as the ratio of 

bone mineral content to body mass (Iverson 1982), and straight carapace length. These 

data were fitted to the sigmoid function: 
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This analysis was performed twice for each sex, both with and without the inclusion of 

juvenile turtle data. These non-linear regressions were performed on Sigma Plot version 

8.0 (Systat Software Inc., San Jose, CA). We used two-way ANCOVA to examine the 

effects of month (April-October) and sex (male or female) on bone mineral content, bone 

mineral density, and relative bone mass. Straight carapace length was used as the 

covariate for analysis of bone mineral density and relative bone mass, but for the analysis 

of bone mineral content, straight carapace length was cubed to linearize the relationship 

between covariate and dependent variable. Relative bone mass was log-transformed prior 

to analysis to linearize the relationship between covariate and dependent variable. 

 We assessed each female as “yes” or “no” for 3 possible conditions (shelled eggs, 

large ovarian follicles, and small ovarian follicles) to examine the effects of reproduction 

on blood biochemistry and bone. For each condition, calcium, magnesium, phosphorus, 
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total protein, alkaline phosphatase, relative bone mass, bone mineral content, and bone 

mineral density were compared between “yes” and “no” groups with two-sample t-tests. 

Normality was assessed with a normality probability plot and homogeneity of variance 

was assessed with Levene’s tests. For all tests of egg presence, homogeneity of variance 

was satisfied (P>0.208) except for phosphorus data (P=0.015), which were log-

transformed prior to analysis. For analysis of large-follicle presence, all tests satisfied 

these assumptions (P>0.062), except for alkaline phosphatase data (P=0.007), which were 

log-transformed prior to analysis. For all tests of small-follicle presence, test assumptions 

were satisfied (P>0.110) except for phosphorus (P=0.057) and alkaline phosphatase data 

(P=0.028), which were log-transformed prior to analysis. Log-transformations were 

successful in satisfying test assumptions in all cases. 

Statistical analyses were performed using Minitab version 13.20 (Minitab Inc., 

State College, PA). Post-hoc comparisons among treatment levels, when applicable, were 

performed using Tukey tests. Means are presented ± 1SD, unless stated otherwise. All 

analyses were considered significant if P<0.05 and marginally significant if P<0.10. 

 

Results 

 We captured 147 (3 juvenile, 54 female, 90 male) individual turtles 285 times 

between 5 April 2004 and 30 Oct 2007 (Table 1). Captures were male-biased, with males 

and females accounting for 67% and 33% of total captures, respectively. Juveniles were 

captured only 4 times and were excluded from most analyses. A total of 268 blood 

samples was collected and analyzed for blood chemistry. Of the 285 turtle captures, 182 

were scanned for body composition using DXA (Table 2). 
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 Blood Analyses—Results of least-squares regressions suggest that hematocrit had 

an effect on total protein (Figure 1D; n=135, R2=0.39, F=83.92, P<0.001), weak effects 

on calcium (Figure 1A; n=135, R2=0.06, F=9.47, P=0.003) and phosphorus (Figure 1C; 

n=135, R2=0.04, F=5.42, P=0.021), and no effect on alkaline phosphatase (Figure 1E; 

R2=0.01, n=135, F=1.79, P=0.183) and magnesium (Figure 1B; R2=0.01, n=135, F=0.72, 

P=0.397). Hematocrit did not vary by sex (two-way ANOVA, F1,119=0.15, P=0.695) or by 

month (Figure 2F, F6,119=1.06, P=0.393). There was no interactive effect of month and 

sex on hematocrit (F6,119=0.57, P=0.754). 

 Plasma calcium did not vary significantly by a sex-month interaction (two-way 

ANOVA; F6,93=1.30, P=0.265). Plasma calcium did not vary between male and female 

turtles (F1,125=2.20, P=0.141), but did vary by month (Figure 2A; F6,93=4.74, P<0.001). 

Similarly, plasma magnesium did not vary by an interaction between month and sex 

(two-way ANOVA; F6,125=0.52, P=0.794), nor did magnesium vary between sexes 

(F1,125=0.44, P=0.506). Month influenced plasma magnesium (F6,125=2.17, P=0.050). 

Plasma magnesium tended to decline from April to August, where it reached its lowest 

point, after which magnesium began to rise to its apex in October (Figure 2C). However, 

main-effect contrasts among months were not significant at α=0.05 perhaps due to the 

conservative nature of Tukey’s test. Plasma magnesium was marginally different between 

October and August (t=2.779, P=0.088). Plasma inorganic phosphorus did not vary by a 

sex-month interaction (two-way ANOVA; F6,125=0.29, P=0.941). Plasma phosphorus was 

different between the sexes, with female turtles having on average 1.16 mg/dL more than 

males (F1,125=4.87, P=0.029). Phosphorus varied among months (F6,125=4.57, P<0.001). 
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Phosphorus was lowest in April and rose significantly in May (t=3.004, P=0.049), where 

it remained relatively stable for the following months (Figure 2B).  

The effect of hematocrit on plasma protein was significant, indicating it was an 

appropriate covariate (F1,111=83.06, P<0.001). Additionally, non-significant covariate-sex 

(F1,111=0.07, P=0.798) and covariate-month (F6,111=1.09, P=0.371) interactions indicate 

the parallel-slopes model was appropriate. Total protein varied by a month-sex 

interaction (Figure 2D; F6,111=2.22, P=0.046); however, post-hoc analysis suggests all 

simple-effect contrasts were not significantly different. Plasma protein did not differ 

between sexes (F1,111=0.22, P=0.644) or among months (F6,111=0.81, P=0.566). Alkaline 

phosphatase did not vary by a month-sex interaction (two-way ANOVA; F6,124=1.67, 

P=0.134) or between the sexes (F1,124=0.90, P=0.345). Alkaline phosphatase was 

significantly different across months (Figure 2E; F6,124=8.98, P<0.001). For both sexes, 

alkaline phosphatase tended to gradually rise from its lowest point in April, and reached 

its apex in September, and then declined in October and November (Figure 2E). 

 Body Composition—Bone mineral content was positively related to straight 

carapace length for male (Figure 3A; BMC=4.423*10-5(SCL)2.878; R2=0.92, P<0.001) and 

female turtles (BMC=1.571*10-6(SCL)3.504; R2=0.88, P<0.001). Relative bone mass was 

also positively related to straight carapace length (Table 3). Inclusion of juveniles in the 

analysis strengthened this relationship (Table 3). The relationship between relative bone 

mass and straight carapace length followed a sigmoidal pattern. At approximately 150-

mm straight carapace length, the increase in relative bone mass began to decline in rate 

for both of the sexes (Figure 3C). For the analysis of relative bone mass with ANCOVA, 

we found no significant sex-month interaction (F6,88=1.31, P=0.261) or main effect of 
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month (F6,88=1.22, P=0.306). Relative bone mass varied between the sexes (F1,88=7.85, 

P=0.006) with males (0.1627±0.0234 g) having higher relative bone mass  than females 

(0.1622±0.0193g). The effect of the covariate was significant (F1,88=80.46, P<0.001). A 

non-significant interactive effect between covariate and independent variables month 

(F6,81=0.59, P=0.738) and sex (F1,81=1.14, P=0.288) suggest a parallel-slopes model was 

appropriate. 

Bone mineral content was affected by an interaction between sex and month 

(F6,88=2.64, P=0.021), although there was no main effect of sex (F1,88=0.05, P=0.822) or 

month (F6,88=1.49, P=1.91). Bone mineral content tended to remain relatively constant 

across months for males, whereas it varied more among females (Figure 4A); however, 

all simple-effect contrasts among levels within sex or within month were not significantly 

different (P>0.279). The effect of the covariate was significant (F1,88=844.55, P<0.001). 

Non-significant covariate- month (F6,81=0.14, P=0.991) and covariate-sex (F1,81=0.04, 

P=0.841)  interactions suggest a parallel-slopes model was appropriate. 

Bone mineral density followed a pattern similar to that of bone mineral content 

(Figure 4B), although without an interactive effect of sex and month (F6,88=1.68, 

P=0.135). There was no significant main effect of sex (F1,88=0.07, P=0.791) or month 

(F6,88=0.96, P=0.456). The effect of the covariate was significant (F1,88=415.97, P<0.001). 

Non-significant covariate-month (F6,81=0.14, P=0.991) and covariate-sex (F1,81=0.04, 

P=0.841) interactions suggest a parallel-slopes model was appropriate. 

Influence of Reproduction—Hematocrit did not differ between gravid and non-

gravid females (two-sample t-test; t67=-1.17, P=0.124). Plasma calcium was higher 

(t67=2.19, P=0.032) in gravid females (7.53±4.67 mg/dL, n=19) than females lacking 



 

 82 
 
 

eggs (5.25±3.52 mg/dL, n=50). Phosphorus was also higher (t68=-3.40, P=0.001) for 

gravid females (3.29±1.49 mg/dL, n=20) than for non-gravid females (2.19±0.97 mg/dL, 

n=50). Gravid females were marginally higher in plasma protein than non-gravid females 

(t68=-1.79, P=0.078), but were not significantly different than non-gravid females for 

plasma magnesium (t68=-0.65, P=0.519), plasma alkaline phosphatase (t68=0.84, 

P=0.405), relative bone mass (t41=0.13, P=0.901), bone mineral content (t42=-1.07, 

P=0.291), and bone mineral density (t42=-1.32, P=0.193). 

For comparison between females with and without large follicles, we found no 

significant difference among females for hematocrit (two-sample t-test; t57=1.40, 

P=0.917), calcium (t56=0.88, P=0.809), phosphorus (t57=0.52, P=0.698), total protein 

(t57=0.09, P=0.538), alkaline phosphatase (t38=2.89, P=0.997), and relative bone mass 

(t34=0.21, P=0.584). Plasma magnesium was marginally different between females (t57=-

1.57, P=0.061), with females possessing large follicles having marginally higher 

magnesium concentrations (1.55±1.11 mEq/L) than those without (1.06±1.30 mEq/L). 

Bone mineral density was also marginally different between females (t35=-1.55, 

P=0.065), with females possessing large follicles (0.3215±0.031 g/cm2) having 

marginally higher bone mineral density than those without (0.2998±0.054 g/cm2). Bone 

mineral content varied between female groups (t35=-1.88, P=0.034), with females 

possessing large follicles (44.8±10.6 g) having higher bone mineral content than those 

without (36.9±14.6 g). 

 For comparison between females with and without small follicles, we found no 

significant difference among females for hematocrit (2-sample t-test; t47=-0.02, P=0.492), 

calcium (t47=2.09, P=0.979), phosphorus (t48=2.58, P=0.994), total protein (t48=-0.16, 
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P=0.438), alkaline phosphatase (t47=1.76, P=0.957), relative bone mass (t30=1.50, 

P=0.928), bone mineral content (t31=-0.88, P=0.192), and bone mineral density (t31=-

0.81, P=0.211). Plasma magnesium was marginally different between females (t48=-1.39, 

P=0.086), with females possessing small follicles (n=20, 1.61±1.16 mEq/L) having 

marginally higher magnesium than females without (n=30, 1.16±1.11 mEq/L). 

 

Discussion 

We predicted that plasma calcium, magnesium, phosphorus, and total protein 

would rise and that alkaline phosphatase would decline during egg production in female 

tortoises. We also predicted that no such changes should be evident in males if such 

changes were a result of egg production. The findings of this study do not support our 

predictions. Although we observed seasonal increases in calcium and phosphorus, these 

seasonal changes cannot be explained solely by egg production because such changes 

were found in both sexes. We suggest the temporal changes in these nutrients are likely 

related to increased activity levels, including dietary intake, during warmer months. Also 

contrary to our predictions, egg production did not appear to adversely influence maternal 

bone density in this population. We did not observe any significant changes in bone 

density during egg production, perhaps due to a reduced demand for calcium by 

producing eggs containing relatively less calcium than some other species of turtle. 

Blood Biochemistry—Blood biochemicals were generally either within normal 

ranges or tended to be slightly low compared to other studies of turtles (for review, see 

Chapter 2, Table 2). Hematocrit tended to be lower that that of other studies, potentially 

indicating lymphatic dilution of blood sample; however, the majority of these studies 
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were examining turtles in the families Cheloniidae and Testudinidae. A study of the 

emydid turtle Pseudemys rubriventris (Innis et al. 2007) measured hematocrit values that 

were similar to our study (19% vs. 16% in our study). Plasma calcium was generally 

lower than of most other turtles studied. We believe this is due, in part, to the 

contamination of blood with lymph, because we found that hematocrit significantly 

influenced plasma calcium. Because only a portion of circulating calcium is protein-

bound, this influence is reduced relative to other parameters such as total protein, which 

is largely restricted from entering tissue fluid through capillary membranes. A previous 

hematological study of red-eared sliders examined the effects of lymph dilution on blood 

biochemistry. They found no significant difference between whole blood and blood 

mixed with lymph for concentrations of calcium, phosphorus, and alkaline phosphatase; 

however, total protein was significantly lower in blood-lymph mixtures (Crawshaw and 

Holz 1996). Although we believe that hemodilution might result in underestimates of 

some blood parameters, we believe this effect to be small, with the exception of total 

protein, and do not believe this to influence treatment effects (see discussion in Chapter 

2). The availability of magnesium data for turtles is relatively limited; however, our 

values were on the lower end of the published range. Inorganic phosphorus values that 

we obtained in this study were within ranges obtained in previous studies. Blood values 

for alkaline phosphatase were well within normal ranges for other species of turtles. Total 

protein, despite the possibility of being influenced by hemodilution, was within normal 

ranges. 

The seasonal patterns of blood biochemicals exhibited by T. scripta differed from 

that of other turtles. For plasma calcium and phosphorus, we observed a seasonal rise that 
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is loosely associated with the reproductive period. Female T. scripta lay eggs primarily 

from mid-April to mid-July, with a peak in late May to early June (Gibbons and Greene 

1990). Our study observed similar trends in reproductive timing, as we captured gravid 

females between 9 April and 13 July. The peak number of gravid females occurred 

during June. Although the rise in calcium and phosphorus during egg production itself is 

similar to previous studies of other turtles, the fact that we found this pattern in both 

sexes is not. Female Gopherus berlandieri exhibited a seasonal rise in plasma calcium 

and phosphorus that is likely associated with vitellogenesis, but no seasonal rise was 

observed in male tortoises (Stone unpublished data). Hypercalcemia during reproduction 

in females is a common phenomenon and has been documented in birds (Riddle and 

Reinhart 1926), fish (Hess et al. 1928), amphibians (Zwarenstein and Shapiro 1933), and 

non-avian reptiles (Dessauer and Fox 1959; Clark 1967). This seasonal hypercalcemia 

has been attributed to an estrogen-dependent rise in plasma proteins, primarily 

vitellogenins, and subsequently an increase in total calcium due to increases in protein-

bound fraction (Schjeide 1985). Ionized calcium concentrations typically remain stable; 

changes associated with reproduction have not been documented nor has estrogen 

manipulation influenced ionized calcium levels (Simkiss 1961a; Feinblatt 1982; Schjeide 

1985; Wysolmerski 2002). The rise in total calcium as a result of increased vitellogenins 

is a process that allows calcium to be transferred to and stored in the yolk for use by the 

developing embryo (Wysolmerski 2002).  

The monthly changes that we observed for most blood chemicals followed a 

similar pattern for both sexes, and suggest a pattern driven by non-reproductive 

processes. We suggest that increased dietary intake of nutrients during the active season 
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is responsible for elevated levels of calcium and phosphorus in T. scripta. A seasonal rise 

in plasma phosphorus has been documented during the activity season for both sexes of 

Vipera aspis (Alcobendas et al. 1992) and suggests a pattern driven, at least partially, by 

processes other than bone resorption for egg production. Increased calcium might be a 

function of seasonally elevated vitamin D3 production. Cutaneous vitamin D3 production 

has both seasonal and daily cycles and is influenced by photoperiod (Holick 2003). 

Conversely, Gopherus berlandieri exhibited the predicted and the typical sexually 

dimorphic pattern of significant monthly changes in calcium and phosphorus (Stone 

unpublished data). Despite that we detected a similar seasonal pattern in blood 

biochemistry for both male and female turtles, higher concentrations of calcium, 

phosphorus, and total protein in gravid females than nongravid females suggests an 

influence of egg production on plasma chemistry for T. scripta. 

Circulating levels of alkaline phosphatase suggested a pattern that differs from 

our original prediction of a seasonal decline in bone formation during eggshell 

deposition. Alkaline phosphatase increased during the reproductive season where calcium 

demands of reproduction are most likely to be highest. A possible interpretation of these 

results is that the demands of calcium required for egg production did not require 

resorption of bone, and calcium availability from dietary sources was sufficient to allow 

for increased bone growth in summer months. Growth in body size of both male and 

female T. scripta occurs throughout the activity season (Stone unpublished data). Thus 

normal body growth likely accounts for increased levels of alkaline phosphatase activity 

during our collection period. Interestingly, although not statistically different, male 
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alkaline phosphatase activity increased at a greater rate during the summer months while 

females increased less so. 

 Bone Density—Our data suggest that for this population of T. scripta there is no 

seasonal effect of bone density in either sex. This finding is contrary to that seen in 

Sternotherus odoratus, where female bone density was reduced in correspondence with 

the approximate timing of eggshell production (Edgren 1960). The reason for this 

disparity is unknown, but could be accounted for by a variety of factors. We measured 

bone content and density with a non-destructive technique. Although DXA is generally 

considered a relatively precise estimator of bone mineral content, it is possible that intra-

individual variation is too high to detect small changes in bone density. We cannot rule 

out that our observed lack of statistical significance is a result of low statistical power as 

opposed to no effect being present. However, T. scripta is among the number of species 

that produce a flexible-shelled egg, whereas S. odoratus produces eggs that possess rigid 

eggshells (Congdon and Gibbons 1990). The calcium content of rigid-shelled eggs might 

impose considerably higher calcium demands than that of flexible-shelled eggs. The 

inorganic content of the eggshell, expressed as a proportion of total dried egg mass, is 

greater in turtles producing rigid eggshells compared to those producing flexible 

eggshells (Lamb and Congdon 1985). Thus, the discrepancies between T. scripta and S. 

odoratus, for the seasonal pattern of bone density, might be a result of differing calcium 

demands and the manifestation of those demands on maternal bone density, rather than a 

lack of statistical power or instrumental precision in this study. It has been determined 

previously that the degree of eggshell calcification can influence maternal ionized 
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calcium concentration of birds, lending further support for this interpretation (Ozpinar 

1997). 

Other studies have contradicted our findings. Suzuki (1963) reported thinner 

cortical bone and increased porosity of cancellous bone of femurs from female T. scripta 

with oviducal eggs compared to immature females and males. That study suggested a 

possible effect of eggshell formation on bone mineral content; however, those findings 

were primarily qualitative. A previous study of Chrysemys picta lends some support to 

our observations. Clark (1965) found no significant differences in the calcium content of 

fibulas from females containing well-developed follicles (late vitellogenesis during May) 

and females just after the breeding season (July). These results suggest that eggshell 

formation alone had either no effect on skeletal calcium of the fibula, or that by the point 

of the completion of the egg-laying cycle bone reserves have returned to those prior to 

eggshell production. We suggest the former interpretation is the most plausible 

explanation. We postulate this because, like T. scripta, C. picta lays flexible-shelled eggs.  

Another potential interpretation of why we were not able to detect changes in 

bone density is methodological. The DXA method we used to calculate bone density 

determines average concentration of bone mineral across all bone. Therefore, we might 

not be able to detect subtle bone contributions if such contributions are not distributed 

evenly among all bones of the body. We know that change in bone density varies among 

bones within individuals (de Buffrenil and Francillon-Vieillot 2001). Although DXA 

possesses the capability to measure regional bone density (i.e., specific bones), the use of 

this tool is challenged by the unique morphology of turtles. The use of regional analysis 

was not possible in our study because individuals almost always had their limbs retracted 
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within the shell and therefore, bone mineral content of the appendages could not be 

separated from that of the carapace and plastron. 

 Influence of Age on Bone Density— Age is positively related to straight carapace 

length and straight plastron length in turtles (Gibbons et al. 1981), although we were 

unable to make more direct estimates of age through the counting of annuli. We detected 

a sigmoidal pattern between relative bone mass and straight carapace length, which is 

similar to the pattern detected in the painted turtle, Chrysemys picta (Iverson 1982). This 

pattern indicates that the rate of bone production, although slow in early development, 

begins to increase in rate at an approximate straight carapace length of 50-80 mm. At 

about 150-180 mm straight carapace length, the rate of relative bone mass growth has 

declined. This decrease in bone production, which is observed in male and female turtles, 

corresponds with the size at which females attain sexual maturity. Male T. scripta mature 

at a straight plastron length of 90-100 mm (≈99-110 mm SCL), whereas females mature 

at 150-195 mm (≈164-213 mm SCL; Cagle 1944). This pattern is contrary to findings of 

Iverson (1982), where relative bone mass in C. picta leveled off at the size where males 

attained sexual maturity. Additionally, he found that male C. picta exhibited less 

variation in relative bone mass than females, and suggested this might be a function of 

the physiological demands of calcium for egg production. We found that males and 

females had similar variation in relative bone mass (Levene’s Test P=0.176), bone 

mineral content (P=0.302), and bone mineral density (P=0.617). Therefore, it is likely 

that the calcium requirement for reproduction does not result in increased bone density 

variation in this population of T. scripta.  
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Overall, the findings of our study suggest that bone density and calcium reserves 

of female T. scripta are not adversely affected by egg production on both short-term 

(seasonal) or long-term scales (lifetime). We suggest that the production of a pliable 

eggshell could account for our results, which contrast with findings from studies of other 

species of turtles that suggested significant loss of bone as a result of egg production. 

Although we documented seasonal rises in plasma calcium, phosphorus, and alkaline 

phosphatase, these changes are unlikely related to egg production because such 

observations were observed in both sexes. We suggest this rise in plasma biochemicals is 

a result of increased activity, primarily increased dietary intake, during warmer months. 
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Table 1. Descriptive statistics of T. scripta morphometrics from Payne Co., OK. These 

values include repeated measures of individuals over a 3.5 year period (April 2004-

October 2007). 

Metric Sex N Mean SD Range 

Mass (g) Female  89 1175.4 418.8 286-2400 

Male 167 873.8 330.2 240-1620 
Combined 256 978.7 390.1  

SCL (mm) Female  85 199.1 28.5 124.9-249.7 
Male 158 186.8 27.0 119.3-252.5 
Combined 243 191.1 28.1  

SPL (mm) Female  85 185.1 25.9 116.9-231.0 
Male 159 170.3 24.2 94.5-206.4 
Combined 244 175.5 25.8  

GW (mm) Female  85 156.0 19.1 102.7-190.0 

Male 157 145.6 18.4 94.8-175.6 
Combined 242 149.3 19.3  

CPA (mm) Female  85 23.2 4.0 13.7-31.0 
Male 157 23.0 3.0 13.0-29.9 
Combined 241 23.1 3.4  

PTT (mm) Female  85 45.4 7.0 23.4-59.2 
Male 156 61.0 8.7 22.5-81.4 
Combined 241 55.5 11.0  

PTC (mm) Female  85 14.1 4.2 4.6-21.9 
Male 156 29.2 5.2 15.6-45.0 
Combined 241 23.8 8.7  

LMC (mm) Female  84 10.6 1.9 6.7-18.9 

Male 157 15.5 2.3 9.1-22.3 

Combined 241 13.8 3.2  

Abbreviations: SCL=straight carapace length, SPL=straight plastron length, GW=greatest 
width, CPA=carapace plastron aperture, PTT=plastron to tail tip, PTC=plastron to cloaca, 
LMC=left middle claw 
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Table 2. Descriptive statistics of T. scripta blood chemistry and DXA analysis from 

turtles collected in Payne County, OK. These values include repeated measures of 

individuals over a 3.5 year period (April 2004-October 2007). 

Metric Sex N Mean SD Range 

Ht Female  85 15.3 7.8 1-34 

Male 167 16.6 8.0 0-34 

Combined 255 16.2 7.9  

Ca (mg/dL) Female  86 5.9 3.9 0.8-14.9 

Male 177 5.2 3.1 0.2-11.4 

Combined 266 5.5 3.4  

Mg (mEq/L) Female  87 1.6 1.2 0.0-4.7 

Male 177 1.7 1.1 0.0-4.6 

Combined 267 1.7 1.1  

Phos (mg/dL) Female  87 2.1 1.2 0.8-6.5 

Male 177 2.3 0.7 0.3-3.9 

Combined 267 2.3 0.9  

TP (g/dL) Female  87 2.8 1.1 0.3-5.6 

Male 177 3.1 1.1 0.6-6.8 

Combined 267 3.0 1.1  

ALP (U/L) Female  87 55.84 47.71 8.71-307.09 

Male 177 60.54 40.50 0.00-238.96 

Combined 267 59.79 44.30  

Area (cm2) Female  61 125.79 32.07 50.06-191.79 

Male 121 107.33 31.0 41.11-165.48 

Combined 182 113.52 32.54  

Corrected BMC (g) Female  61 184.41 71.73 35.25-358.80 

Male 121 142.77 66.10 19.18-309.04 

Combined 182 156.73 70.64  

Corrected BMD 
(g/cm2) 

Female  61 1.400 0.276 0.698-1.871 

Male 121 1.255 0.283 0.464-1.890 

Combined 182 1.303 0.288  

FM (g) Female  22 92.6 215.2 0.0-1007.2 

Male 30 52.2 72.0 0.0-329.9 

Combined 52 69.3 149.8  

MassDXA (g) Female  22 958 478 290-1764 

Male 30 777 313 236-1523 

Combined 52 854 398  

Abbreviations: Ht = hematocrit, Ca=calcium, Mg=magnesium, Phos=phosphorus, 
TP=total protein, ALP=alkaline phosphatase, BMC=bone mineral content, BMD=bone 
mineral density, FM=fat mass.
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Table 3. Results of curvilinear regression analysis of relative bone mass against straight 

carapace length in male and female T. scripta collected in Payne County, OK. Results are 

presented both with and without the inclusion of juveniles. 

Sex n Coefficient Estimate SE t P R2 

Male 68 a 0.2313 0.0801 2.89 0.005 0.48 

  b 76.6086 58.5033 1.31 0.195  

  xo 112.4345 43.3265 2.60 0.012  

Male w/ Juvenile 70 a 0.1811 0.0068 26.81 <0.001 0.64 

  b 27.7475 6.3245 4.39 <0.001  

  xo 111.5277 4.6637 23.91 <0.001  

Female 35 a 0.1800 0.0180 9.99 <0.001 0.42 

  b 48.2568 31.0731 1.55 0.130  

  xo 89.8920 21.1311 4.25 <0.001  

Female w/ Juvenile 37 a 0.1690 0.0045 37.18 <0.001 0.76 

  b 23.7486 5.6345 4.21 <0.001  

  xo 112.9443 5.0321 22.44 <0.001  
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Figure Legends 

 

Figure 1. Plasma biochemicals calcium (A), magnesium (B), phosphorus (C), total 

protein (D), and alkaline phosphorus (E) regressed on hematocrit for T. scripta collected 

in Payne County, OK (n=135). 

 

Figure 2. Monthly changes in plasma calcium (A), phosphorus (B), magnesium (C), total 

protein (D), alkaline phosphatase (E), and hematocrit (F) for male (closed triangles) and 

female (open circles) T. scripta collected in Payne County, OK. Values are given as mean 

±1SD. Different letters indicate significant differences among months (sex data pooled). 

 

Figure 3. Relationships between bone mineral content and SCL (A), and between relative 

bone mass and SCL (B), for male (open circles) and female (closed circles) Trachemys 

scripta collected in Payne County, OK. Lines shown for male (dashed) and female (solid) 

turtles are fitted to a power and sigmoidal function for the BMC to SCL and the relative 

bone mass to SCL relationships, respectively. Plot C represents inclusion of juvenile 

turtles in the relationship between relative bone mass and SCL for both sexes. 

 

Figure 4. Monthly changes in corrected bone mineral content (A) and corrected bone 

mineral density (B) for male (open circles) and female (closed circles) T. scripta. Values 

are given as least square means ± 1SE. 
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