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I.  Social behavior of two species of chameleons in 

Madagascar: insights into sexual selection 

 

Abstract 

 

Signalling plays a critical role in social behaviour, particularly in polygynous systems 

where males compete with rival males and use signals to attract mates. We quantified 

visual signals and social behaviour in two previously unstudied species of chameleons in 

Madagascar, Furcifer labordi and F. verrucosus. Females of both species displayed 

distinct colour patterns which signalled sexual receptivity. Non-receptive females 

rejected all male courtship. Potentially receptive F. verrucosus females mainly allowed 

males to attempt copulation whereas potentially receptive F. labordi females were 

selective. We found that the fleshy, paddle-like rostral appendage in F. labordi was used 

only during courtship, whereas other studies showed that hard, keratinized ones were 

used for male combat. During male-male contests, F. labordi had much more physically 

intense encounters, possibly to more accurately assess opponent quality since adult male 

F. labordi were significantly and naturally more size-matched than adult male F. 

verrucosus. Our study elucidated the role of social signals in these species, illustrated the 

atypical social behaviour of chameleons compared to other lizards, and provided testable 

hypotheses to further delineate sexual selection in this understudied group. Sexual 

selection, especially intersexual selection, appears more likely in F. labordi. 
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Introduction 

 

An important aspect of social behaviour is its potential influence on mating 

success and fitness, especially in the context of intra- and intersexual selection. For many 

vertebrates, signals used during social behaviour are often those associated with sexually 

selected traits in polygynous mating systems: colourful displays, potential indicators of 

fighting ability, or acoustic signals (Andersson 1994; Berglund et al. 1996; Welch et al. 

1998; Jenssen et al. 2000; Andersson et al. 2002; Endler et al. 2005; Vanhooydonck et al. 

2005; Lappin et al. 2006; Meyers et al. 2006; Whiting et al. 2006). In these systems, rival 

males often employ signals to communicate aspects of fighting ability, but they can also 

direct these signals toward females during courtship (Berglund et al. 1996; McGlothlin et 

al. 2005). Thus, social behaviour—and its effects on sexual selection—plays an important 

role in the evolution of many animal social systems (Andersson 1994). 

Many lizard species use physical displays, often coupled with colour as a visual 

signal, in male-male contests or to court females (Jenssen et al. 2000; Ord and Martins 

2006). Presumably, many of these displays signal some aspect of male ‘quality’ (Brandt 

2003; Lailvaux and Irschick 2006; Lappin et al. 2006). Although lizards use many forms 

of displays for social behavior, their roles can be complex (Baird et al. 2007; Sullivan and 

Kwiatkowski 2007; Fitze et al. 2008). For example, displays typically used for male 

combat have the potential to serve also as courtship displays, but not always. Lizard 

social signals are diverse, ranging from throat or ‘dewlap’ extensions with or without 

head bobs (Jenssen et al. 2000), potentially coupled with pushup displays (Meyers et al. 

2006; Baird et al. 2007), to reflecting conspicuous colours or ultraviolet wavelengths 
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(Whiting et al. 2006). Despite the bias on male social signals in polygynous systems, 

female visual signals (e.g., signalling reproductive status) may also play an important role 

in social communication (Baird 2004). 

During their typical diurnal activities, chameleons are cryptic. However, during 

bouts of intra- or intersexual communication, they can rapidly exhibit conspicuous visual 

displays (Ferguson et al. 2004; Stuart-Fox et al. 2006; Stuart-Fox and Moussalli 2008). 

Unlike most other lizards, chameleons are not known to use stereotyped pushup displays; 

however, chameleons do employ the use of extended lateral displays. Chameleons are 

also morphologically diverse, and males often possess exaggerated secondary sexual 

characters (Parcher 1974; Bickel and Losos 2002), which may potentially be correlated 

with some aspect of quality or performance, and in turn be subject to inter- or intrasexual 

selection, or both.  

Establishing a composite understanding of complex social behaviour can be 

difficult in understudied groups without establishing a baseline framework. Therefore, an 

ethogram becomes an important tool in understanding behaviour and social 

communication in these understudied taxa (Martin et al. 2005; Norris and Hosie 2005; 

Kunz et al. 2006), such as is the case with most species of chameleons (for exceptions see 

Parcher 1974; Cuadrado 2001; Kelso and Verrell 2002; Stuart-Fox and Whiting 2005; 

Stuart-Fox et al. 2006). Lack of studies in this taxon is mostly due to an inability to 

conduct field observations due to the very cryptic nature of chameleons during periods of 

non-communication. Despite these studies on chameleon behaviour, we know virtually 

nothing about species in Madagascar, and no detailed behavioural studies have been 

published to date in scientific publications on our two focal species. Using the 
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chameleons, F. labordi and F. verrucosus, the purposes of this paper are to 1) quantify 

and develop an ethogram of generalized courtship behaviour and intraspecific male-male 

agonism for each species, 2) determine if males of each species differently court females 

who signal reproductive status with condition-specific coloration, 3) determine if there 

are species-specific differences in female response to courting males depending upon 

female reproductive status, 4) compare the species with respect to agonistic behaviour of 

victorious and losing males in intraspecific male-male encounters, 5) develop a 

composite understanding of the social behaviour of these species, and 6) provide testable 

hypotheses to further elucidate the role of sexual selection in chameleons. 

 

Materials and methods 

 

Study site and species 

 

Furcifer labordi is a medium-sized, sexually dimorphic, diurnal chameleon 

inhabiting the western and south-western regions of Madagascar. Males reach an average 

adult snout-to-vent length (SVL) of 87.25 mm (n = 99) and females 71.02 mm (n = 55) in 

our study populations. Males also possess large cranial casques and rostral appendages. 

Furcifer verrucosus is also a sexually dimorphic species, with males having an average 

SVL of 148.59 mm (n = 51) and females 113.28 mm (n = 30) in our study population. 

This species also possesses a cranial casque, but lacks a rostral appendage. Like most 

other species of lizards in Madagascar, both species are seasonally active and reproduce 

during the wet season, approximately from November to April, depending on region. 
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The study site was located approximately 30 km north of the provincial capital of 

Toliara (Tuléar), near the village of Ranobe (23°01’30” S, 43°36’36” E). This region is 

spiny forest with a sand substrate, and vegetation that usually does not exceed 3 m in 

height except for occasional trees that may reach to 10 m height. During the wet season, 

this region has a mean monthly precipitation of 89.9 mm (Vose et al. 1992).  

We collected all data from 20 December 2003 – 06 February 2004, capturing 

most specimens at night when they were easiest to find. Upon capture, we marked 

locations and transported lizards to a field camp, where we held them overnight in plastic 

containers covered with plastic mesh. The following morning we measured body size 

(SVL), total length (TL), mass, and secondary sexual characters: rostral length, height, 

and width (in F. labordi only); casque depth, height, and width; jaw length; number of 

dorsal cones and height of tallest dorsal cone. All chameleons received a temporary 

identification mark consisting of three, small, painted, colour-coded dots on the hindlimb. 

We also gave all individuals a permanent identification by toe-clipping the most distal 

phalanx in a three-toe combination, with only one toe clipped per foot. We observed no 

adverse side-effects of this marking procedure on the behaviour and survival of 

individuals, nor did we observe any partial or full phalanx regrowth to confuse individual 

markings. We returned all lizards to their point of capture within 24 hours. 

 

Arena trials 

 

The day after capture, we conducted all trials in an outdoor, neutral arena (none of 

the lizards were caught in the vicinity of the arena). The arena was approximately 1x1 m 
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square and 2 m in height. We built the rectangular frame from small, cut saplings and 

covered it with 1.25-cm square plastic mesh. Inside the arena was natural vegetation, 

which we trimmed back from the mesh. Two observers carefully recorded all behavioural 

data from behind a blind. Preliminary studies revealed that the presence of observers 

concealed by a blind did not affect the behaviour of either male or female chameleons 

alone or during social interactions (Karsten, unpublished data), and behaviour during 

arena trials was similar to that of free-ranging, radio-tagged individuals (Karsten and 

Andriamandimbiarisoa, personal observation). 

We conducted 108 behavioural trials, each 30 minutes, resulting in 54 hours of 

observation. We recorded the frequencies of observed categories of social behaviour 

(Table 1) for 47 male-female trials with F. labordi, 28 male-female trials with F. 

verrucosus, 26 male-male trials with F. labordi, and 7 male-male trials with F. 

verrucosus. Additionally, we calculated a graded agonism score for each individual by 

ranking each class of behaviour in an individual’s repertoire according to its intuitive 

‘cost.’ Hyper-aggressive behaviour that carried substantial risk for physical injury 

received the highest values, whereas behaviour that minimized cost of injury was given 

negative values (Table 2, see also Baird et al. 1997). During male-male encounters, 

submissive colour carried the most negative value since it signalled absolute submission, 

effectively ending further social interaction. The losers of the interaction were those that 

fled the encounter, typically toward the ground, or became dislodged during a fight. This 

protocol yielded a clear winner and loser for all trials. 

If copulation occurred during intersexual trials, we recorded male preparation 

time, duration of copulation, female-desired duration of copulation, and male ability to 



7 

retain copulation after perceived female unwillingness. Once females exhibited a 

willingness to copulate (i.e., they did not show any aggressive displays, agonism, or 

physical confrontations), males began a rather predictable sequence of events. Once 

females raised their tails and presented the cloaca, the male superimposed the female, 

established a grasp, then prepared the hemipenes for intromission. Male F. labordi then 

continually grasped, released, and regrasped the female, which we defined as male 

preparation time. Once copulation began, both lizards remained relatively motionless. 

After a period of time, it was usually the female who began movement, attempting to end 

copulation. We recorded this time between the beginning of copulation and the beginning 

of female movement as the female’s desired duration of copulation. After this, the male 

retained his grasp for as long as he was physically able, which we describe as male ability 

to retain copulation. Total duration of copulation was from the beginning of intromission 

until the end of the male’s ability to retain copulation.  

 

Results 

 

Casque sexual dimorphism 

 

Both species were sexually dimorphic in casque height, measured from the top of 

the casque to the angle of the jaw. Male F. labordi casques grew at significantly faster 

rates than did females (ANCOVA test of difference of slopes, F = 128.21, df = 1,150, p < 

0.001; Figure 1). In F. verrucosus, the rates at which the casques grew were different, but 

not significantly so (ANCOVA test for slopes, F = 3.36, df = 1,77, p = 0.07, ns). Casque 
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height (corrected for SVL) was sexually dimorphic, with males having significantly 

larger casques than females (ANCOVA test for difference of intercepts, F = 55.49, df = 

1,78, p < 0.001). Using the slopes obtained from casque size regressed against SVL, we 

calculated a ratio of male to female casque growth dimorphism for each species. The 

degree of sexual dimorphism in casque height growth was greater in F. labordi 

(male:female = 1.81) than in F. verrucosus (male:female = 1.45). The rate of growth in 

casque height relative to body size was significantly greater in F. labordi males compared 

to F. verrucosus males (ANCOVA test for difference of slopes, F = 6.41, df = 1,146, p = 

0.01).  

 

Female colour patterns 

 

Females of each species displayed two distinct colour patterns. In F. labordi early 

in the reproductive season, females exhibited a conspicuous yellow spot on the anterior 

flank (near the pectoral girdle) against emerald green background coloration with smaller 

faint yellow spots on the lateral sides of the body. When approached by a courting male, 

the faint yellow spots became conspicuously contrasted against a dark green to black 

background. This colour pattern was consistent among females who were sexually non-

receptive (NR), rejecting all male courtship (100%, n = 26). The other colour morph 

exhibited by females, occurring only in the latter portion of the season, consisted of pastel 

violet spots on a light green background when passive, and the anterior flank spot was 

bright red. These females exhibited characteristics consistent with sexual receptivity and 

we hereafter refer to them as potentially receptive (PR). When approached by courting 
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males, PR females either remained in this passive, receptive coloration or turned to a 

background colour of black with heavily contrasting purple spots, red flank spot, and 

orange spots along the dorsal crest, which signalled behavioural non-receptivity.  

Furcifer verrucosus females also had two distinct colour patterns, but they were 

not tied to the phenology of the breeding season. Females that were almost a solid brick-

red with a faint, broad, dull grey lateral band were sexually non-receptive (NR), and they 

universally rejected male courtship (100%, n = 21) whereas the other colour pattern was 

predominately a subtle grey with light green-yellow along the majority of the neck and 

flank. These females allowed nearly all courting males to attempt copulation; it signalled 

potential receptivity (PR). 

 

Male colour patterns 

 

Male F. labordi had a thin, white, lateral line and were mostly emerald green, 

with slightly darker green vertical banding along the flank. When aggressive, these males 

changed colour very little, but increased contrast between the two shades of green (with 

the bands becoming darker). We sometimes also observed this pattern when they courted 

females, but not always. When submissive, males reduced contrast and hue to appear 

almost a solid, pale green.  

 Male F. verrucosus also had a white lateral line, above which they were a mottled 

grey or brown with darker brown/black bands. Below the white lateral line, they were of 

similar mottled colour, but with flecks of green and/or blue intermixed among the 

grey/brown. When aggressive or in the presence of females, males increased the contrast 



10 

of the banding above the lateral line, and developed bright green and blue below the 

lateral line, over the entire tail, and on the lower jaw. Submissive males reduced contrast 

and became a generally pale, drab grey/brown colour. 

 

Intersexual encounters 

 

Furcifer labordi 

During trials with NR females (n = 26), males often used (i.e., used in highest 

percent of trials) head bob, approach, and retreat (Table 3). Non-receptive females 

typically responded to unwanted males with gular display, colour change to dark 

rejection colour, lateral display, and mouth gape (Table 4). In trials with PR females (n = 

21), males often used approach, head bob, superimposition, mouth gape, and attack 

(Table 3), while females most frequently used lunge, mouth gape, gular display, bite-

release, lateral display, attack, and bite-clamp (Table 4). 

During the breeding season, the two distinct colour patterns of females (NR or 

PR, described above) appeared sequentially, with NR occurring first. Social behaviour 

and outcomes of intersexual interactions were dichotomous and predictable based on 

female colour signals (Figure 2). Non-receptive females displayed aggressive rejection 

behaviour (agonistic displays and dark coloration) toward males 100% of the time (n = 

26) and male mating success was 0%. However, with PR females (n = 21), male mating 

success depended upon the female response. When females remained in passive 

coloration, male mating success was 100%. Conversely, when females changed from 

passive to rejection colour, males continued to court in all instances, but subsequent to 
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persistent courtship, females either remained in rejection coloration or changed back to 

passive coloration and allowed males to copulate. In the 11 trials where females initially 

displayed rejection coloration, males responded with rostral nudges in 54.5% of them, 

which consisted of approaching the female (from any direction) and subsequently 

manoeuvring to a position slightly behind her despite her aggressive behaviour toward 

the male. From here, the male then applied lateral pressure against the female’s flank at 

mid-body. In one instance, the female reverted back to receptive colouration, remained 

behaviourally passive, and the male copulated with her.  

Males significantly altered their behaviour, depending upon female colour 

signalling (PR or NR) (χ
 2

 = 262.0, df = 15, p < 0.001). Although the mean number of 

male head bobs remained relatively similar toward the two female colour patterns, 

aggressive courtship behaviour like colour change, mouth gape, gular display, lateral 

display, approach, attack, fight, lunge, bite-release, bite-clamp, superimposition, and 

chase all were higher toward PR than to NR females (Table 3). Since males successful in 

copulation with PR females may behave with differing levels of aggressive courtship 

(graded agonism scores) than males who were unsuccessful with PR females, we 

separated these categories for analysis. Behaviour of males presented to NR females, of 

successful males presented to PR females, and of unsuccessful males presented to PR 

females, was significantly different in the level of agonism (ANOVA, F = 3.97, df = 2,43, 

p = 0.03). Pairwise comparisons revealed that males who were successful in copulation 

with PR females had significantly higher graded agonism than both males presented to 

NR females and unsuccessful males presented to PR females (Holm-Sidak t = 2.65 and 

2.23, p = 0.01 and 0.03, respectively; Figure 3). However, there was no significant 
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difference in graded agonism between males presented to NR females and unsuccessful 

males presented to PR females (Holm-Sidak t = 0.14, p = 0.89, ns). Thus, aggressive 

behaviour was highest in those males that were successful in copulation with PR females. 

Potentially receptive females behaved significantly different toward males than 

did NR females (χ
2
 = 647.4, df = 14, p < 0.001). The mean number of mouth gape, 

approach, attack, fight, lunge, bite-release, bite-clamp, chase, retreat, and flee increased, 

indicating heightened agonism in PR compared to NR females. Other behaviour that 

indicated willingness to mate was higher in PR compared to NR females (e.g., tail raise 

and cloacal presentation). Because of the greater variance in agonism of PR females 

compared to NR females, we analyzed female graded agonism using Kruskal-Wallis 

ANOVA. Female graded agonism scores were significantly different among NR females, 

PR females who allowed copulation, and PR females who did not allow copulation (H = 

15.99, df = 2, p < 0.001; Figure 3). Post-hoc pairwise comparisons showed that PR 

females who did not allow copulation were significantly more agonistic than both NR 

females and PR females who allowed copulation (Dunn’s Q = 3.40 and 3.86, p < 0.05). 

Agonism in NR females and PR females who allowed copulation were not significantly 

different (Dunn’s Q = 1.07, p > 0.05, ns).  

 

Furcifer verrucosus  

Similar to F. labordi, female F. verrucosus displayed two distinct colour patterns 

during the breeding season. Unlike F. labordi, their colour patterns did not occur 

sequentially and were intermixed throughout the breeding season, although NR tended to 

be more common at the end of the breeding season. Males readily courted females of 
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both colour patterns, but the intersexual sequence of behavioural responses to each colour 

differed in comparison to F. labordi (Figure 4). Non-receptive females were usually 

successful in rejected mating attempts (n = 10), and in only one instance was a male able 

to physically overpower a female and attain forced copulation. Potentially receptive 

females always remained in grey/green, passive coloration (n = 18). Despite the lack of 

colour change, some PR females responded with agonistic rejection behaviour (displays 

and physical confrontation), and male mating success was reduced to 0% in this scenario. 

The two males who were behaviourally rejected by receptively coloured females were 

significantly smaller than males who were not (t = 2.63, df = 16, p = 0.02).  

In the presence of NR females, males most frequently used head bob, approach, 

retreat, and superimposition (Table 3). Non-receptive females most frequently used overt, 

aggressive acts such as mouth gape, gular display, lateral display, attack, lunge, bite-

clamp, and changed to a darker, aggressive colour (Table 4). Male behaviour toward PR 

females was similar to that directed toward NR females, with head bob, approach, and 

superimposition most often used (n = 18; Table 3). Potentially receptive females clearly 

used behaviour indicative of willingness to mate, such as tail raise, cloacal presentation, 

and colour change to an exaggerated green colour, not rejection (Table 4). Another 

frequently observed behaviour of PR females was retreat, but this was used exclusively 

after copulation had already occurred.  

Males were less agonistic toward PR females and exhibited significantly different 

behaviour toward PR than toward NR females (χ
 2

 = 40.7, df = 13, p < 0.001; Table 3). 

Males who courted PR females used less attack, fight, bite-release, and bite-clamp 

compared to when they courted NR females. Low sample size and sufficient variation in 
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male behaviour led to no significant differences in agonism among males who courted 

NR females, who were successful with PR females, and who were unsuccessful with PR 

females (ANOVA, F = 1.15, df = 2,25, p = 0.33, ns). However, there is a clear trend in 

which males who courted NR females tended to show more agonism (mean ± 1 SEM; 

107.6 ± 33.4) than did males who were successful with PR females (68.2 ± 19.5) and 

males who were unsuccessful (57.0 ± 16.7).  

Females altered behaviour toward males depending on reproductive status (χ
2
 = 

237.3, df = 14, p < 0.001; Table 4); PR females used less mouth gape, approach, attack, 

fight, lunge, bite-release, bite-clamp, and chase, which indicated lower agonism and 

lower female resistance. Similarly, females had a strikingly different graded agonism 

behaviour depending on whether they were NR, PR with males who achieved copulation, 

and PR with males who were unable to achieve copulation (Kruskal-Wallis ANOVA, H = 

15.91, df = 2, p < 0.001). Post-hoc pairwise comparisons showed that agonism was 

significantly greater in NR females compared to PR females who did and did not mate 

(Dunn’s Q = 3.87 and 2.63, p < 0.05, respectively). There were no significant differences 

between PR females who mated and those that were willing but did not mate (Dunn’s Q 

= 1.20, p > 0.05, ns). Thus, PR females showed similar aggression toward both successful 

and unsuccessful males. Potentially-receptive females were less agonistic than NR 

females, but strong female choice is unlikely in this species. 

 

Interspecies comparisons 

When courting NR females, F. labordi and F. verrucosus males significantly 

differed in their behaviour (χ
 2

 = 40.7, df = 14, p < 0.001; Table 3) and graded agonism 
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(Mann-Whitney U = 237.0, p = 0.04). Despite overt female rejection, F. verrucosus 

males were more persistent and aggressive in their courtship, using more head bob, 

approach, attack, fight, lunge, bite-release, bite-clamp, and superimposition than F. 

labordi (Table 3). However, F. verrucosus males also retreated and fled more in response 

to the female’s rejection. Male F. labordi frequently used lateral displays when courting 

NR females, whereas that behaviour was lacking in F. verrucosus (Table 3).  

Males also showed significant differences between species for behaviour patterns 

(χ
 2

 = 325.3, df = 15, p < 0.001) when courting PR females (Table 3). However, males 

who were successful may have exhibited different levels of agonism toward females than 

males who were not. When we compared male agonism toward PR females (with species 

and mating success as factors), there were no significant differences between species (2-

way ANOVA, F = 1.02, df = 1,35, p = 0.32, ns). Thus, although the types of behaviour 

males of each species used were different, the level of overall graded agonism was not. 

Furcifer verrucosus males were persistently as aggressive in courtship toward PR 

females as they were with NR females (Table 3). Furcifer labordi males, who were 

generally non-aggressive with NR females, exhibited greater agonism toward PR females 

and used more mouth gape, gular and lateral display, attack, fight, lunge, bite-release, 

bite-clamp, and chase behaviour than F. verrucosus (Table 3)—a stark contrast to their 

courtship of NR females. The only occurrence of rostral nudging was in F. labordi during 

courtship of PR females. Similar to trials with NR females, male F. labordi frequently 

used lateral displays when courting PR females, whereas that behaviour was lacking in F. 

verrucosus.  
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Non-receptive female F. labordi utilized a different suite of behaviour than NR F. 

verrucosus (χ
 2

 = 203.6, df = 12, p < 0.001) and had significantly lower graded agonism 

(Mann-Whitney U = 259.5, p = 0.01). Non-receptive F. verrucosus females were more 

overt in their rejection behaviour and showed much more mouth gape, attack, fight, 

lunge, bite-clamp, and chase than NR F. labordi females (Table 4). 

On the other hand, PR F. labordi females used much more aggressive behaviour 

than the passive, PR F. verrucosus (χ
 2

 = 218.9, df = 14, p < 0.001), as evident by more 

aggressive colour change, mouth gape, gular display, lateral display, approach, attack, 

fight, lunge, bite-clamp, and chase behaviour (Table 4). Because of potential differences 

among females paired with males that achieved copulation and males that did not, we 

analyzed female graded agonism using a 2-way ANOVA with species as one factor, and 

male mating success as the other. There were significant differences between PR females 

of each species (2-way ANOVA, F = 32.42, df = 1,35, p < 0.001), female agonism as a 

function of male mating success (2-way ANOVA, F = 15.37, df = 1,35, p < 0.001), and 

their interaction (2-way ANOVA, F = 14.30, df = 1,35, p < 0.001). Post-hoc analyses 

revealed that F. labordi females who mated with males had significantly lower agonism 

than F. labordi females who did not allow copulation (Holm-Sidak t = 5.58, p < 0.001), 

but there were no significant differences among PR F. verrucosus females who did and 

did not copulate (Holm-Sidak t = 0.10, p = 0.92, ns). There was no significant difference 

between species among females that copulated (Holm-Sidak t = 1.44, p = 0.16, ns). 

However, there was a significant difference between species among females that did not 

copulate (Holm-Sidak t = 6.35, p < 0.001), with F. labordi exhibiting much greater 
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agonism toward males despite their potential receptivity. These data strongly suggest that 

F. labordi females have much stronger female choice than do F. verrucosus.  

In F. labordi, males were able to achieve copulation 61.9% of the time when 

courting PR females (n = 21). Despite the apparent passivity of PR F. verrucosus females 

toward courting males, male mating success varied, with only 50% of trials ending with 

male success (n = 18; Figure 4). In the remaining trials where males were unsuccessful, 

this was due to the inability of the males to achieve a proper copulatory grasp. After 

several attempts to copulate with behaviourally receptive females (i.e., females who 

remained motionless and exhibited cloacal presentation), males turned aggressive toward 

the females (attacking, lunging, and biting), which resulted in female flight and no further 

behavioural interactions. 

Copulation was significantly longer in F. verrucosus (389.9 ± 42.9 seconds) than 

F. labordi (211.7 ± 12.6 seconds; Mann-Whitney U = 158.0, p < 0.001). Male 

preparation time was absent in F. verrucosus except for one individual, who prepared for 

5 seconds, while male F. labordi spent significantly longer in preparation (137.9 seconds 

± 46.1; Mann-Whitney U = 135.0, p < 0.001; Table 5). Desired copulation duration of 

females was significantly greater in F. verrucosus (357.6 seconds ± 47.5) compared to F. 

labordi (168.5 seconds ± 10.2; Mann-Whitney U = 169.0, p = 0.003; Table 5), although 

the duration of male ability to retain copulation was similar between the two species (F. 

labordi: 43.2 seconds ± 11.4; F. verrucosus: 41.6 seconds ± 13.2; Mann-Whitney U = 

96.0, p = 0.59, ns; Table 5).  
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Intrasexual encounters 

 

Within species comparisons 

During agonistic intrasexual encounters, winning F. labordi males showed 

significantly different behaviour (χ
 2

 = 156.8, df = 14, p < 0.001; Table 6) and greater 

graded agonism (t = 4.09, df = 50, p < 0.001) than their losing, conspecific counterparts. 

As expected, winning males used more frequent aggressive tactics while the subordinate 

males used less and resorted more frequently to fleeing and retreating (Table 6).  

Winning and losing F. verrucosus males also showed significantly different 

behaviour (χ
2
 = 26.7, df = 12, p = 0.01) and winning males had significantly greater 

agonism than did losing males (Mann-Whitney U = 68.5, p = 0.04). Winning males had 

higher frequencies of more aggressive behaviour, whereas losing males, as expected, 

showed lower proportions of aggressive behaviour and higher proportions of submissive 

behaviour (Table 6).  

  

Interspecies comparisons 

In general, F. labordi males tended to be much more aggressive and had higher 

graded agonism scores per trial during male-male encounters than did F. verrucosus. This 

pattern is true for interspecies comparisons for both winners and losers. Winners of each 

species used statistically similar behaviour patterns (χ
 2

 = 17.6, df = 11, p = 0.09, ns); 

however, F. labordi winners had significantly greater levels of mean graded agonism (t = 

2.73, df = 31, p = 0.01) compared to winners of F. verrucosus. The losers of each species 

differed in their behavioural frequencies (χ
 2

 = 24.5, df = 12, p = 0.02) and were nearly 
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significantly different in graded agonism (t = 2.03, df = 31, p = 0.051, ns), with F. 

labordi losers using more aggressive types of behaviour than losing F. verrucosus (Table 

6) and having higher average mean graded agonism scores. Furcifer labordi males 

escalated into longer and fiercer combat encounters, whereas F. verrucosus interactions 

were usually very brief and less confrontational.  

 

Discussion 

 

  Visual signalling is often used in both an intra- and intersexual context in many 

vertebrate mating systems. The chameleons in this study utilized behavioural signalling in 

both contexts and exhibited markedly different social behaviour between species (Table 

7). The theory of intersexual selection predicts that females may choose males, either 

directly or indirectly, based on qualities that presumably benefit the female. Mate choice 

in lizards has largely been considered uncommon (Olsson and Madsen 1995); however, 

some studies have recently demonstrated that it may play a more important role than once 

thought in lizards (Baird et al. 1997; Lopez et al. 2002; Hamilton and Sullivan 2005; 

Lopez et al. 2006; Martín and López 2006; Sullivan and Kwiatkowski 2007; Fitze et al. 

2008). In F. verrucosus, it appears that mate choice plays little role: PR females mainly 

allowed males to attempt copulation by remaining motionless and presenting their 

cloacae. Despite this, male mating success was variable, indicating a potential for an 

indirect mode of intersexual selection (i.e., not female choice). By contrast, potentially 

receptive F. labordi females were selective. With respect to intrasexual selection, game 

theory predicts that more size-matched opponents should escalate into more intense 
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physical encounters (Earley et al. 2002). Indeed, during male-male contests, the more 

naturally size-matched F. labordi had much more physically intense encounters than F. 

verrucosus. 

  In both species we studied, female colour pattern distinctly characterized sexual 

receptivity, a phenomenon present in other lizard taxa (Cooper and Greenberg 1992; 

Baird 2004) and other chameleon species (Cuadrado 1998; Kelso and Verrell 2002). 

Males have the potential to accurately assess probable female response from the onset. To 

reinforce this signal, females of both species increase aggressive displays toward courting 

males while adorned with NR coloration (Table 4). Despite strong sexual size 

dimorphism, females are quite adept at successfully defending themselves from unwanted 

males, which were much larger than females. Out of 57 trials in which females 

behaviourally rejected males (both species combined), only one time was a male 

successful at forced copulation (1.8% of trials).  

Non-receptive female behaviour of both species was very predictable, but the 

behavioural repertoires of PR females were strikingly different between species. 

Potentially receptive Furcifer verrucosus females showed very little mate choice, and in 

most cases, they allowed any male to approach and attempt copulation. Very rarely did 

PR F. verrucosus females behaviourally reject males, and they did so without changing 

their colour signal. Rejected males were significantly smaller than those who were 

accepted. It appears there is a size threshold against which PR F. verrucosus females 

assess courting males: individuals greater than this threshold are allowed to attempt 

copulation without behavioural rejection and males below are not, nor are they large 

enough to forcibly coerce copulation. The F. verrucosus males allowed to approach and 
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attempt copulation had varying reproductive success; male mating success mostly 

depended on the male’s ability to gain a superior copulatory grasp, not female choice. 

Furcifer verrucosus females became aggressive only when a male attempted copulation, 

did not achieve intromission, and then reattempted intromission. Males also became 

aggressive after a failed intromission attempt and attacked females until they retreated. 

Why these males exhibited such a peculiar, and apparently counter-productive fitness 

tactic is unknown.  

While female F. verrucosus showed little mate choice, potentially receptive F. 

labordi females were discriminating. During courtship, F. labordi females either engaged 

in aggressive displays, behaviour, and colour change, or they became passive, allowing 

male copulation. Both scenarios were frequent. The proportion of PR female F. labordi 

that exhibited any type of rejection behaviour was greater than in F. verrucosus, which 

supports a stronger level of mate choice for this species. Thus, it seems that intersexual 

selection may potentially act upon male traits such as size and secondary sexual 

characters. 

Since colour pattern is correlated with female sexual receptivity and females can 

successfully thwart male courtship advances, males should be able to clearly assess 

immediately whether females are likely to exhibit strong rejection behaviour. Males 

should adjust their courtship behaviour accordingly unless there is a fitness advantage in 

continuing this energetically costly behaviour. Despite this logical prediction, male F. 

verrucosus courted vigorously regardless of female receptivity colour, indicating there is 

a potential fitness advantage for doing so. On the other hand, male F. labordi expended 

very little energy courting NR females. Why one species adheres to these communicatory 
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rules while the other does not is not clear; however, it may depend upon the species-

specific mating system. For example, males that defend a territory with multiple females 

in it might continue courtship in hopes of retaining females in his territory. Radio-tagged 

F. verrucosus males do utilize relatively small spatial areas compared to radio-tagged F. 

labordi, which sometimes wander vast relative distances up to 50 m in a day (Karsten, 

unpublished data). Since male F. labordi wander over indefensible home ranges, 

encounter fewer potential mates, and expend more energy in locomotion, it may be too 

costly to court NR females when the probability of success is probably close to zero.  

Kelso and Verrell (2002) suggest that there is a potential benefit for male 

chameleons to court NR females if females store sperm. Because F. labordi is annual and 

has a reproductive period less than 60 days (Karsten, unpublished data), females do not 

live to reproduce in more than one year and they are unlikely to produce multiple 

clutches per year. Thus, sperm storage is not likely in this species, either within the same 

season or from one year to the next. However, other Furcifer chameleons that have 

multiple clutches per season can lay a second clutch within ca. 45-60 days (Ferguson et 

al. 2004, and references therein). Because gravid F. verrucosus females were found as 

early as mid-December (Karsten, unpublished data), and the end of the active season is 

not until March, this species has the potential to produce multiple clutches per season and 

sperm storage would be adaptive. They are also perennial, introducing the possibility of 

sperm storage from one year to the next. This hypothesis to explain attempted copulation 

with NR females in F. verrucosus and not F. labordi is plausible, but sperm storage in 

either of these species is unknown. Further studies are required to address the ultimate 
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underpinnings of why males of some chameleon species continue to court NR females 

while others do not. 

The specific role of rostral appendages has been enigmatic in chameleons. Parcher 

(1974) demonstrated that some species use their rostral appendages during male-male 

combat, but never during courtship. While his data show this for three species he studied, 

there has been an underlying assumption that perhaps this is the case for all species with 

rostral appendages. We clearly show that F. labordi, a species with a distinct rostral 

appendage, did not use them during male-male combat. Instead, males used rostral 

appendages only during courtship encounters in which they attempted to persuade 

resistant females to allow copulation. Although this finding appears contrary to Parcher 

(1974), it may not be when one considers that there are two types of rostral appendages: 

those that are keratinized and pointed and others that are fleshy, flat, and paddle-like. The 

three species that Parcher found to use rostral appendages for male-male combat all had 

keratinized rostral appendages. Furcifer labordi, on the other hand, has flat, fleshy 

appendages. Coincidentally, the only species Parcher studied that did not use its rostral 

appendage for male-male combat (Calumma nasuta; formerly Chamaeleo nasutus) also 

has a flat, fleshy appendage similar to that of F. labordi. However, he never observed this 

species using its rostral appendage for female courtship, either. Instead, Parcher 

suggested that the rostral appendage serves as a species indicator. Based on our data and 

his, we present a new hypothesis to explain the evolution of chameleon rostral 

appendages: species with harder, keratinized appendages have evolved them for male-

male combat via intrasexual selection, whereas flat, fleshy rostra are used in courtship 

behaviour and may be subject to intersexual selection.  
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In many lizard species, particularly territorial ones, head bobs are an integral part 

of male-male displays and agonism. Citing Jenssen et al. (2000), Lailvaux and Irschick 

(2006: p. 265) go so far as to state that head bobbing or pushup displays are considered 

“critical for male-male lizard contests.” This assertion has merit since many lizard taxa 

do utilize head bobbing and/or pushup displays in species in which males aggressively 

interact with one another. However, in the two species of chameleons in the present 

study, there was no use of head bobs in male-male communication. Instead, these male 

chameleons used head bobs only during courtship and neither species used pushups in 

any context. Head bobs may actually be widespread in the courtship behaviour of some 

genera of chameleons as Parcher (1974) found results similar to ours in all six species he 

studied (genera Furcifer and Calumma; formerly Chamaeleo). Interestingly though, with 

chameleons of the genus Brookesia, a stem lineage of chameleons (Raxworthy et al. 

2002; Townsend and Larson 2002), Parcher found no evidence of head bobs being used 

in either intra- or intersexual contexts.  

We never observed male or PR female F. verrucosus using lateral displays during 

courtship. However, during male-male interactions, males used this behaviour frequently 

as also did females when behaviourally signalling their non-receptivity. Thus, in F. 

verrucosus, lateral displays are a signal employed only during times when the intention is 

to display the physical ability to combat another individual. Furcifer labordi, a species 

characterized by physical combat in all possible social interactions, frequently used 

lateral displays. It is plausible that chameleons use lateral displays as a generalized signal 

of physical ability in multiple social contexts. Indeed, this is the case in other lizards, as 

extended lateral displays significantly correlate with, and are honest signals of, male 
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performance (Brandt 2003). Husak et al. (2006) clearly showed that male lizards with 

superior performance were more dominant than males with lesser performance. 

Accordingly, we hypothesize that chameleons utilize lateral displays as an honest signal 

of fighting ability and our data lend support, as both species use numerous lateral 

displays during periods of potential physical agonism.  

Unlike the numerous empirical examples of a positive correlation between male 

performance and male fighting ability, there is little evidence of a link between female 

choice and male functional performance (Lailvaux and Irschick 2006; Husak and Fox 

2008). If male chameleons use lateral displays as a signal of fighting ability, males could 

conceivably use these same traits to signal quality to females (Berglund et al. 1996). In 

many taxa, there is evidence that females can prefer superior males with ‘good genes’, 

and these offspring have better physiological performance and survival (Petrie 1994; 

Welch et al. 1998; Møller and Alatalo 1999; Drickamer et al. 2000; Bluhm and Gowaty 

2004; Evans et al. 2004; Byers and Waits 2006). In the chameleon most likely to exhibit 

intersexual selection (F. labordi), males used lateral displays in both male-male and 

male-female social contexts. Contrary to previously proposed hypotheses, lateral displays 

in F. labordi may provide evidence of a link between female choice and male functional 

performance, whereas it is unlikely to have evolved as an honest dual-context signal in F. 

verrucosus since males do not utilize lateral displays in courtship.  

It is clear that during male-male encounters, F. labordi escalated into more 

aggressive physical bouts than did F. verrucosus. Most encounters by the latter entail a 

brief display of visual signals from a distance followed shortly by colour change to signal 

dominant or subordinate status. The former, on the other hand, nearly always engaged in 
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strong physical activity during male-male encounters. Do these data imply that F. 

verrucosus males are not physically aggressive toward each other? This is not likely since 

wild male F. verrucosus do engage in very fierce fights among rival males, resulting in 

deep, semi-permanent bite marks along appendages (Karsten and Andriamandimbiarisoa, 

personal observation) We have also found males with large portions of skin missing from 

around the jaw, exposing the underlying muscles and bone and accompanied by teeth 

imprints on the adjacent skin. We found one individual with a missing tail and traces of 

chameleon bite marks, a strong indication of extreme male combat considering these 

lizards do not exhibit tail autotomy. Thus, it is very clear that both species engage in 

fierce combat when necessary; however it is rarer in F. verrucosus.  

Lailvaux & Irschick (2006) suggest that increased energetically costly behaviour 

provides male lizards increasingly accurate assessments of an opponent’s performance. 

Often in lizards, fights between size-matched opponents do escalate to greater levels of 

agonism and aggression than do fights between more disparate body sizes (Jenssen et al. 

2005). Because F. labordi is an annual species (Karsten, unpublished data), all adult 

males are of the same age-cohort and showed significantly less variation in SVL than did 

adult male F. verrucosus (F-test, F = 4.089, df = 98,50, p < 0.0001). Thus, it appears, as 

Lailvaux & Irschick (2006) suggest, that interactions between relatively closer size-

matched F. labordi adult males require more accurate assessment of an opponent’s 

physiological performance (i.e., greater escalation of energetically costly behaviour). In 

F. verrucosus, a species with more variation in adult male body sizes, many encounters 

can be resolved using less energetically costly behaviour, as predicted by game theory 

(Earley et al. 2002). We can therefore explain the injuries we observed in some F. 
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verrucosus males if these males encountered rivals of similar body size and then 

escalated their agonism to attain more accurate information of their rival’s physiological 

performance.  

In chameleons, there is a positive correlation between residual casque height and 

bite force (A. Herrel, unpublished data). Thus, casque height may signal male fighting 

ability to other males, but that does not prohibit its possible dual use as a signal of male 

quality to females (Berglund et al. 1996). Male F. labordi had casques that grew 

significantly larger relative to their body size, and exhibited a greater degree of sexual 

dimorphism in casque growth, than did the closely related F. verrucosus. Furcifer labordi 

not only engaged in intense male-male fights more frequently than F. verrucosus, but F. 

labordi females exhibited stronger female choice as well. An alternative—and very 

different—hypothesis to explain stronger dimorphism in casque height in F. labordi is 

that males and females might eat different prey that requires different bite forces. 

However, there are no observed qualitative or quantitative sexual differences in prey 

selection for radio-tracked individuals of either species (Karsten, personal observation).  

The results of this study underscore the important role of social behaviour in 

vertebrate mating systems. Despite their close phylogenetic affinities, these species are 

markedly different in both courtship behaviour and male fighting tactics. Female 

receptivity, as indicated by coloration, influences male courtship behaviour in F. labordi, 

but not F. verrucosus. Furcifer labordi is a much more aggressive species in both male-

female and male-male contexts and is more likely to exhibit intersexual selection. With 

such strikingly diverse and overt social behaviour, these species suggest that a broad 
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comparative study within the Furcifer chameleons will provide exciting potential for 

exploring the evolutionary plasticity of social behaviour.  
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Table 1: Definitions for social behaviour used during male-male and male-female 

interactions.  

Behaviour Description
Intersexual colour change Change of colour pattern during courtship

Head bob Undulation of head in up and down motion

Mouth gape Exposes teeth and colour contrast of the interior lining of the mouth

Gular display Dorsoventral flattened extension of skin below the jaw

Lateral display
Perpendicular exposure of a laterally flattened body; tail curled; 

expansion of lungs to as large a size as possible

Approach
Motion toward another individual at higher rates than normal 

locomotion

Attack Initiation of a physical confrontation

Fight
Both individuals participate in the encounter aggressively; involving 

pushing and biting

Lunge Quick movement specifically directed toward another individual

Bite-release Biting, followed by a quick release (within about 1 second)

Bite-clamp Biting, followed by prolonged closure of the jaw

Superimposition An individual contacts and gains a superior position on another

Chase Continued pursuit of an individual

Retreat
Motion away from another individual who is either displaying or 

attempting physical contact; pace is similar to normal locomotion

Flee
Rapid attempt to separate from an individual; pace is much faster 

than normal locomotion; usually involves falling to ground

Tail raise Female elevates tail from normal, resting position

Cloacal presentation Passive female upwardly tilts pelvis, exposing cloaca

Rostral nudge
Placing the rostrum next to the flank of another individual with 

application of force in a lateral direction

Threat display
Expansion of lungs and curling the tail, but without using 

perpendicular lateral displays

Aggressive colour change Change to bright colour display during a male-male encounter

Submissive colour 

change

Change of colour display during a male-male encounter; dull and 

drab colouration compared to typical cryptic colouration
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Table 2: Weights to compute graded agonism during male-male and male-female social 

interactions. Behaviour that carries a higher cost of physical injury is weighted greater, 

whereas behaviour that minimizes the probability of physical injury is weighted negative. 

Dashes indicate that the specific behaviour pattern was not used in that particular social 

context.  

Behaviour Male-female Male-male

Fight +4 +4

Attack +3 +3

Bite-release +3 +3

Bite-clamp +3 +3

Superimposition +3 --

Approach +2 +2

Lunge +2 +2

Chase +2 +2

Mouth gape +1 +1

Gular display +1 +1

Lateral display +1 +1

Colour change +1 --

Head bob +1 --

Threat display -- +1

Aggressive colour -- +1

Retreat -1 -1

Flee -1 -1

Tail raise -1 --

Cloacal presentation -2 --

Submissive colour -- -2

Social Interaction
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Table 3: Behavioural frequencies for males of both species presented to both non-

receptive and potentially receptive females. Data are mean values per 30-minute 

interaction. The percentage of total trials in which we observed each behaviour pattern is 

in parentheses. Dashes indicate the behaviour pattern was absent. 

Colour change 0.08 (8%) 0.10 (10%) 0.29 (29%) 0.33 (33%)

Head bob 29.84 (88%) 92.60 (80%) 27.10 (67%) 53.39 (89%)

Mouth gape 0.20 (19%) 0.20 (20%) 1.91 (52%) 0.17 (11%)

Gular display 0.20 (15%) 0.10 (10%) 0.95 (48%) 0.33 (17%)

Lateral display 0.27 (19%) 0.95 (48%)

Approach 0.64 (50%) 1.40 (80%) 2.10 (91%) 1.83 (89%)

Attack 0.08 (8%) 0.70 (30%) 1.71 (52%) 0.17 (11%)

Fight 0.90 (30%) 0.25 (10%)

Lunge 0.12 (12%) 1.10 (30%) 2.52 (48%) 0.17 (11%)

Bite-release 0.04 (4%) 0.20 (20%) 0.67 (33%)

Bite-clamp 0.04 (4%) 0.30 (20%) 0.48 (24%) 0.06 (6%)

Superimposition 1.20 (60%) 0.71 (62%) 1.22 (72%)

Chase 0.08 (8%) 0.10 (10%) 0.57 (33%) 0.28 (11%)

Retreat 0.72 (46%) 1.20 (70%) 0.62 (43%) 0.50 (22%)

Flee 0.08 (8%) 0.20 (10%) 0.14 (14%)

Rostral nudge 3.05 (29%)

Furcifer verrucosus

--

--

---- --

Furcifer labordi Furcifer verrucosus

With potentially receptive females

--

With non-receptive females

--

--

--

--

Furcifer labordi
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Table 4: Behavioural frequencies for non-receptive and potentially receptive females of 

both species. Data are mean values per 30-minute interaction. The percentage of total 

trials in which we observed each behaviour pattern is in parentheses. Dashes indicate the 

behaviour pattern was absent. 

Furcifer labordi

Colour change 0.96 (96%) 0.70 (70%) 0.57 (52%) 0.50 (50%)

Mouth gape 2.65 (73%) 6.60 (80%) 5.33 (81%) 0.61 (22%)

Tail raise 0.10 (10%) 0.10 (10%) 0.78 (72%)

Cloacal presentation 0.52 (52%) 0.61 (56%)

Gular display 7.85 (96%) 7.10 (80%) 1.29 (76%) 0.39 (22%)

Lateral display 6.58 (92%) 6.50 (80%) 1.00 (67%)

Approach 0.12 (12%) 0.30 (10%) 0.24 (14%)

Attack 0.54 (35%) 4.10 (80%) 6.43 (57%) 0.61 (22%)

Fight 0.90 (30%) 0.24 (10%)

Lunge 0.92 (50%) 10.40 (80%) 9.62 (91%) 0.72 (22%)

Bite-release 0.27 (15%) 0.20 (20%) 4.57 (71%) 0.17 (11%)

Bite-clamp 0.12 (8%) 1.70 (80%) 2.67 (57%) 0.06 (6%)

Chase 0.30 (10%) 0.05 (5%)

Retreat 0.69 (46%) 0.30 (20%) 1.33 (52%) 1.50 (67%)

Flee 0.15 (12%) 0.10 (10%) 0.86 (52%) 0.33 (11%)

Non-receptive females Potentially receptive females

Furcifer labordi

--

--

--

--

Furcifer verrucosus Furcifer verrucosus

--

--

--

--

--
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Table 5: Mean duration ± 1 SEM and percentage of total copulation time for various 

temporal segments for both focal species. 

Time (seconds)

Duration of copulation 211.7 ± 12.6 389.9 ±

Desired female duration 168.5 ± 10.2 357.6 ±

Male ability to retain copulation 43.2 ± 11.4 41.6 ±

Male preparation time 137.9 ± 46.1 0.6 ±

Percentage of copulation time

Desired female duration

Male ability to retain copulation

Male preparation time

42.9

47.5

13.2

0.6

0.2%48.0%

F. verrucosus (n = 9)F. labordi (n = 13)

81.1%

19.0%

91.2%

11.0%
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Table 6: Behavioural frequencies for winning and losing males of both species during 

male-male social interactions. Data are mean values per 30-minute interaction. The 

percentage of total trials in which we observed each behaviour pattern is in parentheses. 

Dashes indicate the behaviour pattern was absent. 

Mouth gape 3.04 (92%) 1.38 (85%) 0.86 (71%) 0.43 (29%)

Gular display 5.54 (100%) 4.08 (96%) 3.14 (86%) 1.57 (43%)

Threat display 5.27 (92%) 4.04 (96%) 2.57 (71%) 1.57 (43%)

Lateral display 4.81 (92%) 3.81 (92%) 2.00 (71%) 1.43 (43%)

Approach 1.23 (62%) 0.27 (23%) 0.29 (29%) 0.29 (29%)

Attack 0.96 (69%) 0.46 (46%) 0.43 (43%) 0.14 (14%)

Fight 0.42 (38%) 0.42 (38%)

Lunge 1.50 (81%) 0.62 (38%) 0.57 (43%) 0.29 (29%)

Bite-release 0.19 (19%) 0.14 (14%)

Bite-clamp 0.27 (27%) 0.23 (23%)

Chase 0.15 (15%) 0.14 (14%)

Retreat 0.12 (12%) 1.77 (92%) 1.14 (71%)

Flee 1.12 (65%) 0.57 (43%)

Aggressive colour 0.69 (65%) 0.04 (4%) 0.86 (86%) 0.43 (43%)

Submissive colour 0.85 (81%) 0.86 (86%)

Furcifer labordi Furcifer verrucosus

Winners Losers Winners Losers

--

--

--

--

--

--

--

----

--

--

--

--
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Table 7: Comparative social behaviour of Furcifer labordi and F. verrucosus. 

Social component Furcifer labordi Furcifer verrucosus

Males

Fight escalation Frequently Rarely

Head bobs used for male-male signals Never Never

Head bobs used for courtship Always Always

Adjust courtship based on female colour Yes No

Male mating success when attempting 

copulation with behaviourally receptive females
High Variable

Females

Resistant females may shift to behavioural 

receptivity subsequent to persistent courtship
Often Never

Colour signalling of reproductive status Yes Yes

Potential for direct mate choice by females Strong Weak
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FIGURE LEGENDS 

 

Figure 1: Casque height regressed on SVL for each species and sex. Circles indicate F. 

labordi, triangles F. verrucosus. Males are solid symbols and females are open. Both 

species are sexually dimorphic in casque characteristics, and F. labordi has a greater 

degree of sexual dimorphism in casque growth than does F. verrucosus. 

 

Figure 2: Dichotomous courtship ethogram for male and female Furcifer labordi. Arrows 

direct toward an outcome. Percentages indicate the proportion of trials resulting in the 

following outcome. Number of trials in which the outcome occurred are in parentheses. 

 

Figure 3: Mean graded agonism for F. labordi males (black bars) and females (white 

bars) during interactions between males and NR females, males and PR females who 

allowed copulation, and males and PR females who rejected male courtship. Error bars 

are +1 SEM. Males who were successful in achieving copulation had significantly higher 

graded scores than did males presented to NR females and males who were unsuccessful 

with PR females. Females who were PR but did not allow male copulation had 

significantly higher graded agonism than PR receptive females who did allow copulation 

and NR females. 

 

Figure 4: Dichotomous courtship ethogram for male and female Furcifer verrucosus 

chameleons. Arrows direct toward an outcome. Percentages indicate the proportion of 
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trials resulting in the following outcome. Number of trials in which the outcome occurred 

are in parentheses.
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II. Sexual selection on body size and secondary sexual 

characters in two closely related, sympatric chameleon 

species in Madagascar 

 

Abstract 

 

In polygynous mating systems, sexual selection can drive the evolution of male 

characters beneficial to winning fights (intrasexual selection), for improving their mating 

success through mate choice (intersexual selection), or both. However, it may be difficult 

to disentangle the relative contributions of intra- and intersexual selection on multiple 

traits that may be of dual utility. We used field arena trials to determine which 

morphological traits best explained male fighting ability and male mating success in two 

species of chameleons in Madagascar, Furcifer labordi and F. verrucosus. In F. labordi, 

male fighting success was best predicted by body size and cranial casque height and male 

mating success was best predicted by body size and width of the rostral appendage. In F. 

verrucosus, we found strong intrasexual selection for increased male body size and fewer 

dorsal cones, a trait that may correspond to age and experience. Although there is no 

mate choice in this species, male mating success with receptive females is highly 

variable. Fewer dorsal cones and larger size-corrected casque height best explained male 

mating success; traits that may again indicate age or experience. Although difficult to 

determine the relative contributions of intra- and intersexual selection on traits with dual 
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benefits (both fighting and mate choice), we documented both types of selection on body 

size and secondary sexual characters in these two chameleon species. 

 

Introduction 

  

Sexual selection affects traits that enhance fitness by way of increased mating 

success (Endler 1983; Andersson 1994; Wikelski and Trillmich 1997; Weatherhead and 

Dufour 2005; Husak and Fox 2008). In polygynous mating systems, sexual selection may 

favour traits that are beneficial to males for fighting (intrasexual selection), for improving 

mating success through mate choice (intersexual selection), or both. Traits under 

intrasexual selection often are potential indicators of fighting ability (Berglund et al. 

1996; Jenssen et al. 2000; Pratt et al. 2003; Emlen et al. 2005; Vanhooydonck et al. 

2005b; Lappin et al. 2006; Meyers et al. 2006), but these may also serve a dual purpose 

of improving mating success during courtship, and be under concomitant intersexual 

selection (Berglund et al. 1996; McGlothlin et al. 2005). Conversely, traits that first 

evolved through intersexual selection may later evolve as adaptive during male-male 

contests (Benson and Basolo 2006; Morris et al. 2007). Thus, it may be difficult to 

disentangle the relative contributions of intra- and intersexual selection (Fitze et al. 

2008), particularly in mating systems in which multiple traits may improve both fighting 

and mate choice. This can be especially difficult to determine in natural populations when 

it is not possible to isolate each type of selection. 

Lizards have often provided model systems to elucidate the role of sexual 

selection (LeBas 2001; Vanhooydonck et al. 2005b; Husak et al. 2006a; Meyers et al. 
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2006; Whiting et al. 2006; Baird et al. 2007; Irschick et al. 2007a; Husak and Fox 2008). 

Despite the richness of sexual selection studies in lizards, only recently have studies 

demonstrated that it may play a more important role than once thought in lizards (Baird et 

al. 1997; Lopez et al. 2002; Hamilton and Sullivan 2005; Lopez et al. 2006; Martín and 

López 2006b, a; Sullivan and Kwiatkowski 2007; Fitze et al. 2008); intersexual selection 

in polygynous lizards has generally been considered rare (Olsson and Madsen 1995; 

Tokarz 1995). Consequently, most studies have almost exclusively focused on intrasexual 

selection. Although the many studies that have found no evidence of mate choice in 

lizards have greatly improved our understanding of sexual selection, a focus on only 

single traits (cf. multiple signals) may obscure the ability to detect intersexual selection 

(Hamilton and Sullivan 2005). A more narrowly-focused scope of intersexual selection 

studies—and the potential interpretation that it does not exist—has important 

evolutionary implications: the combined effects of intra- and intersexual selection on 

male traits together can be stronger than either is alone (Fitze et al. 2008). 

Sexual selection on males can result in the evolution of exaggerated secondary 

sexual characters, which may be indicative of selection on the underlying mechanism: 

whole-animal performance (Lailvaux and Irschick 2006; Irschick et al. 2007a; Irschick et 

al. 2007b). For example, there is a positive correlation between male secondary sexual 

characters and bite force in some lizards (Vanhooydonck et al. 2005a; Vanhooydonck et 

al. 2005b; Irschick et al. 2006; Meyers et al. 2006). In chameleons, casque size may be 

such an indicator of bite force since individuals with larger casques should presumably 

have more jaw musculature, and in some chameleon species, casque height is correlated 

with male fighting success (Stuart-Fox et al. 2006). In the two species of chameleons we 
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studied, Furcifer labordi and F. verrucosus, one of the most conspicuous secondary 

sexual characters is the large, cranial casques of males. Despite being well-suited for 

studies of sexual selection, the effects of sexual selection on the evolution of body size 

and secondary sexual characters in chameleons is largely unstudied (but see Parcher 

1974; Stuart-Fox et al. 2006). The paucity of behavioural studies in this group is mostly a 

result of the difficulty associated with field research due to poor visibility in forest 

canopies, which is then compounded by the secretive and cryptic behaviour of 

chameleons (Raxworthy 1988). 

The purpose of or study was to quantify and delineate the relative effects of both 

intra- and intersexual selection in two closely related, sympatric species of chameleons 

that exhibit a strong potential for sexual selection on male secondary sexual characters 

and body size (Karsten et al. in review-b). To elucidate the role of intra- and intersexual 

selection, we used a multi-model information-theoretic approach (Burnham and 

Anderson 2002) to evaluate several candidate models (hypotheses) that explained 

patterns in male mating success (intersexual selection) and male fighting ability 

(intrasexual selection). In addition, we specifically tested the hypothesis that male casque 

size significantly differed between males that won fights and males that lost. We 

predicted that males that won dyadic encounters should have larger casques than losers. 

 

Methods 

 

Study site and species 
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Furcifer labordi is a medium-sized, sexually dimorphic, diurnal chameleon 

inhabiting the western and south-western regions of Madagascar. In our study population, 

adult males had a mean snout-to-vent length (SVL) of 87.3 mm, whereas mean female 

SVL was 71.0 mm (Karsten et al. in review-b). Males also possess large cranial casques, 

have numerous (but generally small) cones along the dorsal crest, and also have notable 

rostral appendages. Furcifer verrucosus is also a sexually dimorphic species, and in our 

study population, adult males had a mean SVL of 148.6 mm and adult females 113.3 mm 

(Karsten et al. in review-b). This species also possesses a cranial casque, but has fewer 

(but generally large) dorsal cones and lacks a rostral appendage. Like most other species 

of lizards in Madagascar, both species are seasonally active and reproduce during the wet 

season. 

The study site, Ranobe forest (23°01’30” S, 43°36’36” E), was located in south-

western Madagascar, approximately 30 km north of Toliara. The forest of this region is 

spiny forest and vegetation is typically xerophyllous thickets that include the family 

Didiereaceae and the genus Euphorbia (Koechlin 1972). Vegetation usually does not 

exceed 3 m in height, but occasionally can be up to 10 m in larger tree species. The forest 

floor is sand. Toliara mean annual rainfall is 420 mm with the wet season typically from 

December to February (Jury 2003): mean monthly precipitation for these months is 89.9 

mm (Vose et al. 1992). Mean annual temperature is 24.2 °C. Like most arid 

environments, daily (day vs. night) and seasonal (wet vs. dry) temperature differences are 

high. Daytime temperatures range from approximately 32 °C to 40 °C during the 

breeding season (K. B. Karsten, unpublished data).  
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All data were collected 20 December 2003–06 February 2004. We collected 

specimens at night when they were easiest to capture (Raxworthy 1988). Upon capture, 

we marked locations and transported lizards to a base camp. The following morning, we 

measured body size (SVL) and total length (TL) to the nearest 0.1 mm using calipers, and 

measured mass using spring balances to the nearest 0.1 g (≤ 10 g) or 1 g (> 10 g). In 

addition, we measured secondary sexual characters to the nearest 0.1 mm using calipers: 

rostral length, height, and width; cone height; jaw length; and casque height, depth, and 

width (Table 1). Rostral measurements were applicable only to F. labordi. Rostral length 

was the distance from the maxilla to the apex of the appendage, rostral height was the 

distance from top to bottom at the approximate midway point of the appendage, and 

rostral width was also taken at the approximate midway point. We measured cone height 

of the larger of the fourth or fifth cone along the dorsal crest, which was representative of 

the height of cones posterior to this. We measured jaw length from the angle of the jaw to 

the apex of the dentary bone. Casque height was the distance from the top of the cranium 

to the apex of the casque, casque width was width at the base of the casque, and casque 

depth was the distance from the anterior ridge of the casque to the posterior ridge, also 

measured at the base of the casque. We also counted cones in the dorsal crest of each 

species (Table 1). However, in F. verrucosus, smaller cones are often in between larger 

cones. To be included in our count, the cone had to be the same approximate height as the 

larger cones (i.e., we did not include these smaller cones). Thus, any increase in the 

heterogeneity of cone height as an organism grows would results in a reduced cone count.  

The cones of both species continue along the tail, becoming progressively smaller the 

more posterior they occur. Because these small, hard-to-distinguish cones were strikingly 
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different than the majority of the dorsal crest, we chose our cutoff point to be the 

transition from the typical ‘larger’ cones and the ‘smaller’ cones that continued along the 

tail. The same two researchers (KBK and LNA) made all measurements and conferred for 

each count. To ensure consistency, they compared counts of random individuals and also 

compared multiple counts of a set of same individuals. Dorsal cone counts were 

consistent between the two persons and among repeated counts. 

We gave all individuals a permanent identification by toe-clipping the most distal 

phalanx in a three-toe combination, with only one toe clipped per foot. We observed no 

adverse side-effects of this marking procedure on the behaviour and survivability of 

individuals, nor did we observe any partial or full phalanx regrowth to confuse individual 

markings. After arena trials (see below), we returned all lizards to their point of capture 

within 24 hours.  

 

Arena trials 

 

The day after capture, we conducted all trials in an outdoor, neutral arena (none of 

the lizards were caught in the vicinity of the arena). The arena was approximately 1x1 m 

square and 2 m in height. We built the rectangular frame from small, cut saplings and 

covered it with 1.25-cm square plastic mesh. Inside the arena was natural vegetation, 

which we trimmed back from the mesh. Two observers (KBK and LNA) carefully 

recorded all behavioural data from behind a blind. Preliminary studies revealed that the 

presence of observers concealed by a blind did not affect the behaviour of either male or 

female chameleons alone or during social interactions (K. B. Karsten, unpublished data). 
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We conducted 108 behavioural trials, each 30 minutes, resulting in 54 hours of 

observation. We recorded the social behaviour of each individual (described in detail in 

Karsten et al. in review-b) for 47 male-female trials and 26 male-male trials with F. 

labordi, and 28 male-female trials and 7 male-male trials with F. verrucosus. In some of 

the male-female trials in both species, females displayed sexually unreceptive coloration 

and rejected males in 100% of the 36 trials (Karsten et al. in review-b). For the present 

analyses, we excluded these trials, leaving 21 male-female trials with receptively 

coloured F. labordi and 18 with receptively coloured F. verrucosus. During these trials, 

the male was classified as either ‘successful’ if copulation occurred, or ‘unsuccessful’ if 

no copulation occurred. The losers of the male-male interactions were those that fled the 

encounter, typically toward the ground, or became dislodged during a fight and did not 

return to interact. This protocol yielded a clear winner and loser for all trials.  

After the arena trials, radio transmitters weighing less than 10% of the animal’s 

body mass were affixed to the dorsal ridge of 11 lizards using liquid adhesive (7 F. 

labordi and 4 F. verrucosus). We located each lizard daily and made brief focal 

observations (< 30 minutes), 3-4 times per day. Although these data were not sufficient to 

test hypotheses of sexual selection, they did allow us to qualitatively compare social 

interactions among free-ranging individuals to those that took place in the arena. The 

social interactions of free-ranging, radio-tagged individuals were similar to those of arena 

interactions. 

 

Statistical analyses 
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 In chameleons, casque size is hypothesized to be correlated with bite force 

(Karsten et al. in review-b, A. Herrel unpublished data), which is important in 

determining winners of fights in other lizards (Huyghe et al. 2005; Lappin and Husak 

2005; Husak et al. 2006b; Lailvaux and Irschick 2007). Therefore, we made an a priori 

decision to test for significant differences in casque height between winning and losing 

males of both species using paired t-tests. Additionally, we always included this variable 

in the paired logistic regression models (see below) applied to male-male trials of both 

species.  

We measured or counted 11 morphological variables for F. labordi and 8 for F. 

verrucosus (the same 11 for F. labordi minus the 3 rostral variables). We first used 

Principal Components Analysis (PCA) to reduce the number of variables for both intra- 

and intersexual selection trials. For each of the first few PCA axes, we determined which 

of our measured variables loaded the highest with the synthetic PCA variable, and 

retained it as a candidate variable. If two variables loaded highly with a PCA axis, but in 

opposite directions, we retained both as candidate variables. We determined how many 

axes to use from the PCA by assessing when only minimal explanatory power was gained 

by adding another axis. Although our choice of how many PCA axes to include was 

arbitrary, its purpose was as a data reduction technique, and even the inclusion of up to 4 

axes reduced the number of candidate variables substantially. Although PCA chooses 

axes orthogonal to each other, we recognized there may be some correlation between the 

remaining candidate variables. We determined if any candidate variables were correlated, 

and if so, we regressed each one against the variable chosen from PC1 (in all cases, SVL) 

to calculate residuals. We then used these residuals for subsequent model testing. 
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From the a priori data reduction using PCA, we built models (a set of alternative 

hypotheses) using combinations of the remaining variables. Each model was then 

subsequently tested using logistic regression, where the dependent variable was binary: 

either ‘winner’ or ‘loser’ for male-male trials, or ‘successful’ or ‘unsuccessful’ at 

copulation in male-female trials. To determine which model(s) best explained the binary 

outcome, we used an information-theoretic approach that focuses on the strength of 

evidence provided by a set of a priori alternative hypotheses rather than a statistical test 

of null hypotheses (Anderson et al. 2000; Burnham and Anderson 2002). The Akaike 

Information Criterion (AIC), based on Kullback-Leibler information (Kullback and 

Leibler 1951; Anderson et al. 2000; Anderson and Burnham 2002; Burnham and 

Anderson 2002), is an information-theoretic derivative of the log-likelihood function that 

provides the best measure of model fit in the case of observational data (Burnham and 

Anderson 2002): the model with the lowest AIC is the most informative hypothesis. Due 

to a lower than preferred ratio of sample size (n) to model parameters (K), we used the 

second-order criterion (AICc), which uses a bias-corrected term for smaller sample sizes 

(Burnham and Anderson 2002). Like the AIC, the lowest AICc reflects the best-fitting 

model, and all supported hypotheses were considered within 2 units of the smallest AICc 

(Weller and Zabel 2001; Burnham and Anderson 2002; Compton et al. 2002). For each 

model, we also defined the number of estimable parameters (K), the difference in AICc 

between the model of interest and the AICc of the best model (∆AICc), and the model’s 

Akaike weight (ω). The ∆AICc allows for direct comparison of models relative to the 

best-fitting, and the Akaike weight gives the relative weight each hypothesis carries in the 

overall explanation of the dependent variable. 
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For male-male trials, it would be inappropriate to use standard logistic regression 

since contest outcome is determined from trait values relative to the opponent, and not 

absolute trait values. For example, if body size is important, then large males may be 

classified as losers simply because they were paired with an even larger male, not 

because their overall body size is ‘small’ compared to the rest of the sample population. 

Because the binary dependent variable (winner vs. loser) was paired, we used a paired (or 

matched-case or conditional) logistic regression (no intercept model) instead of standard 

logistic regression for these data (Hosmer and Lemeshow 2000; Keating and Cherry 

2004). To perform paired logistic regression, we calculated the differences for each 

variable by subtracting the loser’s value from the winner’s, then performed a standard 

logistic regression on the differences with the constant term excluded (Rocke and Samuel 

1999; Hosmer and Lemeshow 2000; Compton et al. 2002; Row and Blouin-Demers 

2006). Rather than evaluating the absolute measure of the traits, the results are interpreted 

as relative differences in morphology (Hosmer and Lemeshow 2000). We used the same 

information-theoretic approach as we did for the male-female trials, employing AICc for 

smaller sample sizes. 

Odds ratios provide an additional interpretation of logistic regression models 

(Keating and Cherry 2004), and we made use of them. In logistic regression, the odds of 

an event happening (the positive binary outcome in this example) increase by e
β
 for every 

one unit change in x (Agresti 2002; Compton et al. 2002); where β is the estimated 

coefficient and, in our data, x is the value state of the morphological variable included in 

the model. An odds ratio greater than one increases the odds of the event and an odds 

ratio less than one decreases the odds. For example, if the odds ratio for a given 
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morphological variable is 1.50 for event A, then an increase of one unit along the axis of 

the morphological variable increases the odds of event A happening by 50%. An odds 

ratio of 0.75 indicates that an advance of one unit along the morphological axis decreases 

the odds of event A by 25%. 

Although an information-theoretic approach is powerful in explaining model fit, it 

makes no distinction of model ‘quality’ (Anderson and Burnham 2002; Burnham and 

Anderson 2002). In some instances, possible candidate models may produce biologically 

unrealistic estimates (Compton et al. 2002) and therefore not achieve the goal of being a 

useful predictor of reliable parameter estimates. Worse yet, unstable parameter estimates 

indicate that the maximum of the log-likelihood is not found and the resultant 

information criteria (models) will be incorrect (Anderson and Burnham 2002). 

Accordingly, we assessed the results of each model analysis and selected only the most 

robust (i.e., stable) models for interpretation. We assessed model stability three ways. 

First, the statistical software explicitly identifies unstable parameters. Second, the 95% 

confidence interval of the odds ratios should not include 1.0 (Compton et al. 2002). 

Third, we determined if the predictions of the odds ratios produced realistic magnitudes 

(i.e., not zero or infinity). Unstable models violated all of these criteria and were not 

included in the final interpretation of results.  

Although multiple models with multiple variables may be the best-fitting 

explanations as a whole, it is also possible to determine the relative influence that each 

individual variable has in explaining the dependent variable. To determine which 

variables were under the strongest intra- and intersexual selection pressures, we 

calculated the relative importance weight for each, ω+(i) (Burnham and Anderson 2002). 
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These weights were calculated by summing the Akaike weights, ω, of each model in 

which the variable occurs, thus allowing direct comparison of relative influence.  

We performed all statistical analyses using the software, JMP, version 7.0.1 (SAS 

Institute, Inc., Cary, North Carolina, USA). 

 

Results 

 

Furcifer labordi 

  The PCA for the male-male data set (n = 52) revealed 3 PC axes that accounted 

for 91.8% of the variation in male morphology (Table 2). The variables most associated 

with PC1 were indicative of body size and traits highly correlated with body size 

(eigenvectors in parentheses, here and throughout): the highest 3 eigenvectors were SVL 

(0.35), casque depth (0.35), and mass (0.34). Most variables (8 of the 11) were highly 

associated with PC1 (eigenvectors > 0.30); however, we chose only one variable that was 

indicative of body size, SVL. Rostral width (0.83) contributed the most to PC2. The 

number of dorsal cones counted (0.82) explained the most variation in PC3. We then used 

SVL, rostral width, and number of cones counted, in addition to our planned inclusion of 

casque height, to build models analyzed by paired logistic regression. Number of cones 

counted and casque height were significantly correlated with SVL. Therefore, we used 

residuals of these two variables (from regressions of each vs. SVL) for logistic regression 

analyses.  

  Using pre-selected variables, we tested 15 models using paired logistic regression, 

all of which were stable and considered in the final interpretation of results. Body size 
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(SVL) and the combination of SVL and residual casque height were the best supported 

hypotheses in explaining male fighting success (AICc = 55.84 and 56.82, ω = 0.35 and 

0.21, respectively; Table 3). Four variables were represented among 15 models: 

differences in SVL, residual casque height, rostral width, and residual number of dorsal 

cones counted. The difference in SVL had the largest ω+(i) and was the variable likely to 

be under the strongest intrasexual selection (ω+(i) = 1.00; Table 4). Although body size 

(and likely all traits correlated with it) was the most important variable in determining the 

winner of male-male agonistic encounters, differences in size-corrected casque height 

also contributed to male fighting success (Figure 1A). Snout-vent length was greater in 

winning males (mean ± 1 SEM; 82.0 ± 2.6 mm; n = 26) than losing males (77.3 ± 2.7 

mm; n = 26) and casque height was also greater in winning males (10.1 ± 0.5 mm; 

residual mean = 0.05 ± 0.15; n = 26) than losing males (9.2 ± 0.5 mm; residual mean = -

0.05 ± 0.15; n = 26). However, the planned comparison for differences in residual casque 

height between winners and losers failed to find significant difference (t = -0.48, df = 25, 

p = 0.64; ns). The best-fitting model of SVL alone resulted in an odds ratio of 1.27 (95% 

CI = 1.11-1.53). Thus, for every 1 mm increase in SVL relative to an opponent, the odds 

of winning the fight increased 27%.  

  The PCA for the male-female data set (n = 21) revealed 4 PC axes that accounted 

for 93.5% of the variation in male morphology (Table 2). The variables most associated 

with PC1 were indicative of body size and all traits highly correlated with it: the highest 3 

eigenvectors were SVL (0.34), mass (0.34), and jaw length (0.34). Similar to the male-

male data set, most variables (8 of the 11) were highly associated with body size 

(eigenvectors > 0.30). We again chose only SVL to represent the body size axis. Number 
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of dorsal cones counted (0.84) was most associated with PC2 and rostral width (0.61) 

explained the most variation in PC3. The remaining variable added, from PC4, was 

rostral height (-0.85). We used these four variables to construct all possible models for 

logistic regression analysis. In this data set, rostral height and rostral width were 

significantly correlated with SVL, but number of cones was not. We used residuals of 

rostral width and height (from regressions of each vs. SVL) for logistic regression. 

  Using the a priori variables for male-female trials, we developed 15 models for 

standard logistic regression, 2 of which were unstable. Of the remaining 13, the best 

supported hypothesis that explained male mating success was that which included SVL 

and size-corrected rostral width (AICc = 17.9, ω = 0.50; Table 5). However, a second 

hypothesis that included SVL, size-corrected rostral width, and size-corrected rostral 

height was also supported (AICc = 18.3, ω = 0.41). Among the 13 models, 4 variables 

were considered (Table 4): SVL, residual rostral width, residual rostral height, and 

number of cones counted. Residual rostral width and SVL were most influential in 

determining whether or not males achieved copulation (ω+(i) = 0.99 and 0.92, 

respectively; Figure 1B). Successful males had wider rostral appendages (1.06 ± 0.03 

mm; residual mean = 0.05 ± 0.03; n = 13) than unsuccessful males (0.87 ± 0.02 mm; 

residual mean = -0.08 ± 0.02; n = 8). Successful males had larger measured rostral 

heights, but smaller residuals (5.3 ± 0.2 mm; residual mean = -0.02 ± 0.13; n = 13) than 

unsuccessful males (4.8 ± 0.3 mm; residual mean = 0.03 ± 0.19; n = 8). Successful males 

had larger SVL (100.2 ± 2.9 mm, n = 13) than unsuccessful males (89.9 ± 4.4 mm, n = 8). 

For the best-fitting model of SVL and residual rostral width, the odds ratio for SVL was 

1.22 (1.04-1.68), meaning that an increase of 1 mm in SVL increased the odds of 
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copulation by 22%. The odds ratio for residual rostral width becomes difficult to interpret 

biologically since it is based on size-corrected data and not actual widths and the fact that 

mean widths were less than 1 measurable unit (1 mm). The odds ratio for residual rostral 

width was an astonishing 1.66x10
15

 (9.66x10
4
-4.29x10

38
). Although it is not likely 

possible to increase the residual rostral width by a full millimetre, this odds ratio clearly 

indicates that any increase in rostral width relative to body size dramatically improves the 

odds of mating success. 

 

Furcifer verrucosus 

  We analyzed the male-male data set in F. verrucosus (n = 14) and found 3 PC 

axes that accounted for 88.9% of the variation in male morphology (Table 2). The 

variable most positively associated with PC1 (greatest eigenvector) was casque width 

(0.44), but PC1 was also strongly negatively associated with SVL (-0.41). Because these 

variables were opposing, we included both for future analyses. Variables most associated 

with PC2 were dorsal cone height (0.68) and number of dorsal cones (0.67). Because 

these may play different roles in social signalling, we included both for the paired logistic 

regression. For PC3, casque height was positively associated (0.54) and number of cones 

counted (-0.60) negatively associated. We used differences in SVL, casque width, number 

of cones counted, cone height, and casque height to build models analyzed by logistic 

regression. Casque height and casque width were the only variables significantly 

correlated with SVL, so we used residuals of these two variables (from regressions of 

each vs. SVL) for logistic analyses.  
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  We constructed and tested 30 models based on our a priori variables; however, 14 

of the models failed our criteria for suitability (see methods). Three hypotheses were 

considered supported in the final analysis: SVL alone, SVL and number of cones counted, 

and SVL and size-corrected casque width (AICc = 13.4, 14.0, and 15.3, ω = 0.33, 0.25, 

and 0.13, respectively; Table 6). The odds ratio for the only variable included in the best-

fitting model, SVL, was 1.18 (1.03-1.57). Thus, an increase in SVL by 1 mm greater than 

an opponent increased the odds of winning the fight by 18%. In the 16 models used for 

interpretation, 5 variables were represented: SVL, number of cones counted, residual 

casque height, residual casque width, and cone height. The number of dorsal cones 

counted was fewer in successful males (21.1 ± 1.0; n = 7) than unsuccessful males (22.7 ± 

1.2; n = 7), but body size (SVL) was the most important variable in determining the 

winner of male-male agonistic encounters (ω+(i) = 0.85; Table 4; Figure 2A): winning 

males had larger SVL (154.7 ± 2.6 mm; n = 7) than losing males (142.6 ± 4.6 mm; n = 7). 

Winning males had narrower casque widths, but larger residuals (15.9 ± 0.8 mm; residual 

mean = 0.48 ± 0.57; n = 7) than losing males (17.3 ± 1.1 mm; residual mean = -0.48 ± 

0.48; n = 7). The reversed pattern in the mean residual width may be due to one winning 

male that had a much larger residual casque width than all the others. Casque height was 

greater in successful males (16.6 ± 0.9 mm; residual mean = 0.83 ± 0.66; n = 7) than 

unsuccessful males (16.3 ± 0.8 mm; residual mean = -0.83 ± 0.54; n = 7), but residuals 

were not significantly different between winners and losers (t = -1.66, df = 6, p = 0.15; 

ns). However, small sample size precludes a strong elimination of this hypothesis. Nine 

of the 14 models not included in the final interpretation contained the variable for residual 
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casque height, indicating it may have had some influence that we were not able to detect 

with our sample size.  

  The PCA for the male-female data set (n = 18) revealed 4 PC axes that accounted 

for 97.0% of the variation in male morphology (Table 2). The variables most associated 

with PC1 were indicative of body size and all traits highly correlated with it: the 4 highest 

eigenvectors were mass (0.41), jaw length (0.40), casque width (0.39), and SVL (0.38). In 

total, 7 of 8 variables were highly associated with PC1 (eigenvectors > 0.30). Because 

SVL is a standard measure of body size in lizards, and all other variables were indicative 

of body size, we designated SVL as our indicator variable even though mass had a larger 

eigenvector. The number of dorsal cones counted (0.97), the only variable not 

significantly correlated with SVL, was most associated with PC2 and dorsal cone height 

(0.84) explained the most variation in PC3. The remaining variable added, from PC4, was 

casque height (0.87). We used these four variables to construct the models for logistic 

regression analysis. In this data set, cone height and casque height were significantly 

correlated with SVL, but number of cones counted was not. We used residuals of cone 

height and casque height (from regressions of each vs. SVL) for logistic regression 

analyses. 

  We developed 15 models for standard logistic regression using the a priori 

variables for male-female trials but discarded 1 due to its instability. Three hypotheses 

were supported as the ones that explained male mating success the best: number of cones 

counted, size-corrected cone height, size-corrected casque height; number of cones 

counted alone; and number of cones counted and residual casque height (AICc = 18.1, 

19.3, and 19.8, ω = 0.38, 0.21, and 0.16, respectively; Table 7). Analysis of the 14 stable 
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models yielded 4 variables: SVL, number of cones counted, residual cone height, and 

residual casque height. Successful males tended to have greater casque heights (16.5 ± 

0.9 mm; residual mean = 0.49 ± 0.62; n = 9) than losing males (15.0 ± 0.6 mm; residual 

mean = -0.49 ± 0.33; n = 9), but the number of dorsal cones we counted had the greatest 

weight (ω+(i) = 0.99; Table 4; Figure 2B). Successful males tended to have similar-sized 

dorsal cones, but smaller residuals (3.2 ± 0.2 mm; residual mean = -0.09 ± 0.17; n = 9), 

than losing males (3.3 ± 0.3 mm; residual mean = 0.09 ± 0.23; n = 9). We calculated odds 

ratios for each variable from the best-fitting model (cones, residual cone height, and 

residual casque height). The odds ratio for number of cones counted was 0.27 (0.02-0.66); 

an increase of 1 cone counted decreased the odds of successful copulation by 73%. The 

odds ratios for residual cone height and residual casque height are difficult to interpret for 

the same reasons provided previously (see intersexual selection results for F. labordi), but 

they were 1.67x10
-4

 (3.33x10
-16

-0.52) for residual cone height and 20.92 (1.57-1.01x10
5
) 

for residual casque height. 

 

Discussion 

 

 In vertebrate mating systems, sexual selection can strongly influence the 

evolution of morphological traits, producing substantial differences between the sexes in 

body size (Schütz and Taborsky 2005; Raihani et al. 2006) and/or exaggerated secondary 

sexual characters (Berglund et al. 1996; Benson and Basolo 2006; Møller et al. 2006). 

However, it has been unclear what role sexual selection plays in the evolution of sexual 

dimorphism in chameleons. Previously, we found that the social system of F. labordi 
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exhibited a strong potential for both intra- and intersexual selection: fights between males 

escalated to fierce, long physical combat and females were highly selective (Karsten et al. 

in review-b). In the present study, we found that in F. labordi there was intrasexual 

selection for body size and size-corrected casque height (Table 3; Figure 1A) and 

intersexual selection for body size and size-corrected rostral width (Table 5; Figure 1B). 

We also previously described the social system of F. verrucosus and found that it was 

likely to have intrasexual selection (Karsten et al. in review-b). If present, intersexual 

selection appeared to either be very subtle, or at least not in the form of overt behavioural 

mate choice: sexually receptive females allowed nearly all males to attempt copulation, 

although male mating success with these passive females was highly variable (Karsten et 

al. in review-b). In the present study, we found intrasexual selection for body size in F. 

verrucosus (Table 6; Figure 2A) and intersexual selection for males that had both fewer 

counted dorsal cones and increased size-corrected casque height (Table 7; Figure 2B). 

 Because F. verrucosus does not exhibit strong mate choice, and cones do not 

appear to possess any functional advantage to achieving copulation, it is unclear why this 

trait varies with reproductive success in males attempting copulation with behaviourally 

receptive females. One hypothesis may be that the fewer dorsal cones that we counted 

may correlate with age or experience. In juvenile males, all dorsal cones are the same 

relative height, and by our counting criterion (see methods), juveniles would have higher 

dorsal cone counts. However, in adult males, only some of the cones grow to be tall (and 

were counted), while shorter, underdeveloped (uncounted) cones are inter-dispersed. 

Thus, even though the actual number of cones an individual possesses does not change 

throughout its life span, our method of counting dorsal cones in F. verrucosus may result 
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in a ‘decrease’ of counted cones with age, even among adults (e.g., first year adult males 

compared to second year adults). An alternative hypothesis to explain the advantage of 

having fewer dorsal cones counted is that increased heterogeneity of dorsal cone height 

(i.e., fewer cones counted by our criterion) may be correlated with some other 

advantageous trait not readily apparent, such as immune status for example. Females may 

therefore be using dorsal cone heterogeneity as an alternative visual cue if they are 

exhibiting a subtle form of mate choice. While the role of dorsal cones may have multiple 

explanations, it clearly is an important trait corresponding to both male fighting and 

mating success in F. verrucosus (Tables 4, 6, & 7; Figure 2). 

We found that in F. labordi, both intra- and intersexual selection were strong, 

particularly for body size, which was expected since this species’ social system exhibited 

strong potential for both (Karsten et al. in review-b). Sexual size dimorphism in this 

species is considerable. We also found evidence of sexual selection on the rostral 

appendage in males (Table 4; Figure 1B). In most animals, rostral appendages are 

typically viewed as weapons for male combat likely to be under intrasexual selection 

(Andersson 1994; Emlen et al. 2005), and in chameleons, the rostral appendages found in 

some species are used exclusively for male combat (Parcher 1974). What was surprising 

in our results was that we found strong intersexual selection for the rostral appendage, 

especially its width. When males encounter a receptively coloured female who is 

behaviourally resistant, males will often manoeuvre adjacent to the female and apply 

lateral pressure with the rostral appendage, which in some instances results in the female 

switching from behavioural rejection to behavioural receptivity (Karsten et al. in review-

b). Wider rostral appendages may be advantageous if females use the amount of pressure 
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applied by the male as a possible cue for male physical performance, condition, or 

‘quality’ in their assessment of suitable mates. 

An optimal male fitness strategy should be to invest his limited energetic 

resources most heavily in the traits that maximize fitness, even at the expense of other 

traits (Maklakov et al. 2006; Simmons and Emlen 2006). For example, in a mating 

system with predominately intrasexual selection, males should invest most heavily in the 

traits that favour fighting ability, whereas in a system with strong female choice, they 

should invest most in the traits preferred by females. Indeed, F. verrucosus has a mating 

system with predominately intrasexual selection and males do exhibit striking growth 

rates (K. B. Karsten, unpublished data). Large body size is extremely important for 

winning fights with other males (Table 4). However, in a mating system subject to both 

types of sexual selection, one could envision a competing trade-off between resources 

allocated toward either intra- or intersexually selected traits. An apparent resolution to 

this trade-off would be if a trait served the dual purpose of increased fighting ability and 

mating success. In F. labordi, a species with strong intra- and intersexual selection, we 

found that body size was important in both contexts (Table 4). Therefore, F. labordi 

males should invest heavily in growth. Growth rates in F. labordi are extreme: males can 

potentially increase body size from hatchling to adult by 300-400% in under two months 

(Karsten et al. in review-a). The trade-off for F. labordi then becomes how to allocate 

resources for body size compared to the rostral appendage. Examining patterns of 

allometric growth in body size and secondary sexual characters may reveal patterns of 

how males manage this trade-off of resources. 
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In other polygynous lizards, head size positively correlates with bite force in 

males (Herrel et al. 1999; Herrel et al. 2001) and bite force can predict social dominance 

(Lailvaux et al. 2004; Huyghe et al. 2005; Husak et al. 2006b). Therefore, stronger bite 

force may aid males in potentially acquiring better, high-quality territories than those 

males with weaker bite forces (Lappin and Husak 2005). Contrary to our predictions, we 

found no evidence that winning males had larger size-corrected casques than losers in F. 

verrucosus. However, that does not preclude its importance in determining the outcome 

of male-male trials. Of the 14 models of male fighting success that were unstable (and 

removed from consideration) in F. verrucosus, 9 of them included residual casque height. 

Although unstable models do not provide reliable estimates of parameters, their direction 

is probably still important (Compton et al. 2002). This suggests that casque height may be 

a biologically important variable in F. verrucosus, but that our models were unable to 

make biologically realistic predictions with it, possibly as a result of the small sample 

size associated with our male-male trials in this species. In contrast to F. verrucosus, we 

did find that residual casque height played an important role in male fighting success in 

F. labordi (Tables 3 & 4), although not as important as SVL (Figure 1A). However, for 

both species, it is also possible that casque size is not the best indicator of male fighting 

ability, but instead it is the performance associated with it (bite force) that may be the 

underlying target of sexual selection (Lailvaux and Irschick 2006; Irschick et al. 2007a; 

Irschick et al. 2007b). Future studies that measure bite force may better elucidate the role 

of the casque in chameleon social systems. 

As others have demonstrated, mate choice in lizards may play a more important 

role than once thought (Baird et al. 1997; Lopez et al. 2002; Hamilton and Sullivan 2005; 
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Lopez et al. 2006; Martín and López 2006b, a; Sullivan and Kwiatkowski 2007; Fitze et 

al. 2008). Our present study confirms the presence of strong female choice in F. labordi, 

which contributes to the growing body of literature that mate choice in lizards may not be 

as uncommon as once thought. Additionally, we showed that direct female choice in F. 

labordi and male mating success in F. verrucosus was not predicted the best by a single 

individual trait, but rather there was selection for multiple male traits. Intersexual 

selection for multiple traits together may be of greater relative importance than for 

individual traits alone (Marchetti 1998; Calkins and Burley 2003; Hamilton and Sullivan 

2005; McGlothlin et al. 2005; Taylor et al. 2007). Intuitively, multiple traits provide 

multiple forms of information to females regarding male quality or the most suitable 

mates (Candolin 2003). In these chameleons, both intra- and intersexual selection are 

likely to be acting upon suites of morphological variables since we found that nearly all 

the best supported hypotheses were multivariate, even when accounting for the 

correlation of these variables with body size. 

Chameleons are morphologically diverse, highly visual with elaborate and 

conspicuous displays, and males often possess exaggerated secondary sexual characters 

(Parcher 1974; Bickel and Losos 2002; Stuart-Fox et al. 2006; Karsten et al. in review-b). 

Our results explain how these traits may have evolved in these two sexually dimorphic 

species adorned with secondary sexual characters. In F. labordi, large body size was 

important for both mating and fighting success in males, and to a lesser extent, so was 

size-corrected casque height. We also found strong support for the evolution of their 

rostral appendage, which was of slightly greater relative importance in explaining male 

mating success than SVL, even when corrected for body size. Body size was also 
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important for male fighting success in F. verrucosus, and although females of this species 

exhibit little mate choice, there may be a cryptic mode of intersexual selection for 

increased age/experience (fewer dorsal cones counted). Our results may shed light on the 

evolution of sexually selected traits in other chameleons with similar morphological 

combinations. Although generally difficult to disentangle the relative contributions of 

intra- and intersexual selection on multiple traits, we determined the influence of both 

forms of sexual selection on body size and secondary sexual characters in these two 

chameleon species. 
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Table 1: Phenotypic traits used to explain winners of male-male contests and successful 

males (those who copulated) in male-female interactions. Because F. verrucosus lacks a 

rostral appendage, RSTLEN, RSTHT, and RSTWID were used only for F. labordi 

analyses. 

Variable Description

SVL Body size, measured as snout-vent length in mm

MASS Mass, measured in g

RSTLEN Length of the rostral appendage from base to tip in mm

RSTHT Height of the rostral appendage in mm

RSTWID Width of the rostral appendage in mm

CONES Number of cones we counted (see methods) in the dorsal crest

CONEHT Height of the largest of the 4th or 5th dorsal cone, in mm

JAW Length from the angle of jaw to apex of dentary bone, in mm

CSQHT Height of the cranial casque from base of skull to its apex, in mm

CSQWID Width of the cranial casque at the base of the skull, in mm

CSQDEP Depth of the cranial casque from anterior to posterior at base of 

skull, in mm
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Table 2: Percent of variance in male morphology explained by Principal Components 

(PC) axes for both intra- and intersexual selection datasets in each species. Dashes 

indicate the axis was not included in analysis. 

PC1 PC2 PC3 PC4

Cumulative 

variance 

explained

F. labordi

Male-male 73.3 10.9   7.6 -- 91.8

Male-female 75.1   9.4   5.4 3.6 93.5

F. verrucosus

Male-male 59.9 17.9 11.1 -- 88.9

Male-female 74.0 13.0   5.8 4.2 97.0
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Table 3: Model selection results for paired logistic regression models used to determine 

which variables best explain whether a male wins a male-male encounter in F. labordi (n 

= 26). Results show the Log-Likelihood function (Log L), number of estimated 

parameters (K), the selection criterion (AICc), simple differences (∆AICc), and Akaike 

weights (ω). We found that body size alone (SVL) and body size accompanied with size-

corrected casque height (SVL + CSQHT) best explained male fighting success. See Table 

2 for descriptions of variables used to build the models. Supported hypotheses are in 

bold. 

 

Model Log L K AICc ∆AICc ω

SVL -26.88 1 55.84 0.00 0.347

SVL + CSQHT -26.29 2 56.82 0.98 0.213

SVL + RSTWID -26.87 2 57.98 2.14 0.119

SVL + CONES -26.87 2 57.99 2.14 0.119

SVL + CONES + CSQHT -26.26 3 59.03 3.18 0.071

SVL + RSTWID + CSQHT -26.29 3 59.07 3.23 0.069

SVL + RSTWID + CONES -26.84 3 60.18 4.34 0.040

SVL + RSTWID + CONES + CSQHT -26.25 4 61.35 5.51 0.022

RSTWID -35.18 1 72.44 16.59 0.000

CSQHT -35.81 1 73.69 17.85 0.000

CONES -36.02 1 74.11 18.27 0.000

RSTWID + CSQHT -35.06 2 74.36 18.52 0.000

RSTWID + CONES -35.17 2 74.59 18.74 0.000

CONES + CSQHT -35.72 2 75.69 19.85 0.000

RSTWID + CONES + CSQHT -35.06 3 76.62 20.78 0.000
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Table 4: Relative importance weights, ω+(i), for each variable in both male-female and 

male-male contests for each species. Dashes indicate the variable was not included in any 

of the respective models. Variables with higher ω+(i) are considered to be under stronger 

sexual selection relative to the other variables. 

Variable F. labordi F. verrucosus F. labordi F. verrucosus

SVL 1.00 0.85 0.92 0.17

RSTWID 0.25 -- 0.99 --

CONES 0.25 0.27 0.02 0.99

CSQHT 0.37 0.10 -- 0.60

CONEHT -- 0.17 -- 0.49

RSTHT -- -- 0.43 --

CSQWID -- 0.27 -- --

Intrasexual selection Intersexual selection
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Table 5: Model selection results for logistic regression models used to determine which 

variables best explain male mating success in F. labordi (n = 21). Results show the Log-

Likelihood function (Log L), number of estimated parameters (K), the selection criterion 

(AICc), simple differences (∆AICc), and Akaike weights (ω). We found that body size, 

size-corrected rostral width, and size-corrected rostral height best explained male mating 

success. See Table 2 for descriptions of variables used to build the models. Supported 

hypotheses are in bold. 

Model Log L K AICc ∆AICc ω

SVL + RSTWID -5.25 3 17.91 0.00 0.502

SVL + RSTHT + RSTWID -3.91 4 18.33 0.42 0.407

RSTWID -8.88 2 22.43 4.52 0.052

RSTHT + RSTWID -8.87 3 25.15 7.25 0.013

RSTWID + CONES -8.88 3 25.16 7.26 0.013

SVL + CONES -10.22 3 27.85 9.94 0.003

RSTHT + RSTWID + CONES -8.87 4 28.24 10.33 0.003

SVL -11.95 2 28.57 10.67 0.002

SVL + RSTHT + CONES -10.15 4 30.80 12.90 0.001

SVL + RSTHT -11.93 3 31.28 13.37 0.001

CONES -13.72 2 32.10 14.19 0.000

RSTHT -13.93 2 32.53 14.62 0.000

RSTHT + CONES -13.69 3 34.80 16.89 0.000
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Table 6: Model selection results for paired logistic regression models used to determine 

which variables best explain whether a male wins a male-male encounter in F. verrucosus 

(n = 7). Results show the Log-Likelihood function (Log L), number of estimated 

parameters (K), the selection criterion (AICc), simple differences (∆AICc), and Akaike 

weights (ω). We found that body size, body size and number of dorsal cones counted, and 

body size and size-corrected casque width best explained male fighting success. See 

Table 2 for descriptions of variables used to build the models. Supported hypotheses are 

in bold. 

Model Log L K AICc ∆AICc ω

SVL -5.55 1 13.43 0.00 0.334

SVL + CONES -4.47 2 14.04 0.61 0.246

SVL + CSQWID -5.08 2 15.25 1.82 0.134

SVL + CONEHT -5.29 2 15.68 2.25 0.109

CSQHT + CSQWID -5.63 2 16.35 2.92 0.078

SVL + CONEHT + CSQWID -5.06 3 18.51 5.08 0.026

CONEHT + CSQHT + CSQWID -5.60 3 19.59 6.16 0.015

CONES -8.72 1 19.76 6.33 0.014

CSQWID -8.78 1 19.88 6.45 0.013

CONEHT + CSQWID -8.17 2 21.44 8.01 0.006

CONES + CONEHT -8.20 2 21.49 8.06 0.006

CONEHT -9.65 1 21.64 8.21 0.006

CSQHT -9.66 1 21.65 8.21 0.005

CONES + CSQHT -8.66 2 22.41 8.98 0.004

CONEHT + CSQHT -9.64 2 24.37 10.94 0.001

CONES + CONEHT + CSQHT -8.13 3 24.66 11.23 0.001
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Table 7: Model selection results for logistic regression models used to determine which 

variables best explain male mating success in F. verrucosus (n = 18). Results show the 

Log-Likelihood function (Log L), number of estimated parameters (K), the selection 

criterion (AICc), simple differences (∆AICc), and Akaike weights (ω). We found that 

body size, number of dorsal cones counted, size-corrected cone height, and size-corrected 

casque height best explained male mating success. See Table 2 for descriptions of 

variables used to build the models. Supported hypotheses are in bold. 

Model Log L K AICc ∆AICc ω

CONES + CONEHT + CSQHT -3.51 4 18.10 0.00 0.383

CONES -7.27 2 19.34 1.24 0.206

CONES + CSQHT -6.06 3 19.84 1.74 0.160

SVL + CONES -6.71 3 21.13 3.03 0.084

CONES + CONEHT -6.78 3 21.28 3.17 0.078

SVL + CONES + CSQHT -5.50 4 22.08 3.98 0.052

SVL + CONES + CONEHT -6.19 4 23.45 5.35 0.026

CSQHT -11.45 2 27.70 9.60 0.003

CONEHT + CSQHT -10.32 3 28.35 10.25 0.002

CONEHT -12.24 2 29.28 11.18 0.001

SVL -12.27 2 29.33 11.23 0.001

SVL + CSQHT -11.23 3 30.18 12.08 0.001

SVL + CONEHT + CSQHT -10.12 4 31.32 13.22 0.001

SVL + CONEHT -12.03 3 31.77 13.67 0.000
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FIGURE LEGENDS 

 

Figure 1: Models that show the probability of either fighting (A) or mating (B) success 

in F. labordi. A. Although an increase in difference between residual casque height 

slightly improves the probability of winning the fight, there is a strong increase in success 

probability for even slight differences in SVL. B. Male mating success depends strongly 

on residual rostral width: although body size is an important predictor of mating success, 

smaller males have higher probability of copulation if they have larger residual rostral 

widths whereas the larger males have a lower probability of success if they possess 

smaller residual rostral widths. 

 

Figure 2: Models that show the probability of either fighting (A) or mating (B) success 

in F. verrucosus. A. The probability of winning a fight improves slightly for males with 

fewer cones, but there is a strong increase in fighting success for even slight differences 

in SVL. B. Male mating success depends strongly on the number of dorsal cones we 

counted (left side of axis is fewer); males in which fewer cones were counted have 

greater probability of mating success. An increase in residual casque height slightly 

increases the probability of mating success. 
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III. Discovery of a novel tetrapod life history: an annual 

chameleon living mostly as an egg 

 

Abstract  

 

The approximately 28,300 species of tetrapods (four-limbed vertebrates) almost 

exclusively have perennial life spans. Here, we report the discovery of a remarkable 

annual tetrapod from the arid southwest of Madagascar: the chameleon Furcifer labordi, 

with a post-hatching life span of just 4-5 months. At the start of the active season 

(November), an age cohort of hatchlings emerges; larger juveniles or adults are not 

present. These hatchlings grow rapidly, reach sexual maturity in less than two months, 

and reproduce in January-February. After reproduction, senescence appears and the 

active season concludes with population-wide adult death. Consequently, during the dry 

season, the entire population is represented by developing eggs that incubate for 8-9 

months before synchronously hatching at the onset of the following rainy season. 

Remarkably, this chameleon spends more of its short annual life cycle inside the egg than 

outside of it. Our review of tetrapod longevity (>1,700 species) finds no others with such 

a short life span. These findings suggest that the notorious rapid death of chameleons in 

captivity may, for some species, actually represent the natural adult life span. 

Consequently, a new appraisal may be warranted concerning the viability of chameleon 

breeding programs, which could have special significance for species of conservation 
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concern. Additionally, because F. labordi is closely-related to other perennial species, 

this chameleon group may prove also to be especially well-suited for comparative studies 

that focus on life history evolution and the ecological, genetic, and/or hormonal 

determinants of aging, longevity, and senescence. 

 

Introduction 

 

Although there are almost limitless theoretical combinations of life history traits, 

they are remarkably constrained to a continuum of high reproductive rates, rapid growth, 

and short life spans on one end and the opposite set of traits on the other (Ricklefs and 

Wikelski 2002). Because of this, life history theory makes predictions of how traits 

should evolve for a given set of parameters. For example, organisms experiencing 

increased adult mortality rates should evolve shorter life spans and those experiencing 

increased juvenile mortality rates should evolve longer life spans (Austad and Fischer 

1991; Stearns 1992; Holmes and Austad 1994; Ricklefs 1998; Roff 2002; Hughes and 

Reynolds 2005; Ricklefs 2006). Any change in fecundity, age at maturity, or age-specific 

mortality that reduces the value of adults and increases the value of juveniles will cause 

an evolutionary shift from the end of the continuum with slower growth, iteroparity, and 

longer life span toward the other end with faster growth, semelparity, and shorter life 

span (Young 1990; Stearns 1992). 

Almost all the nearly 30,000 species of tetrapods (four-limbed vertebrates) have 

perennial life spans. Within tetrapods, some species with slow growth and delayed 

maturity exhibit exceptionally long life spans of up to 100+ years (Kirkwood 1985). At 
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the other extreme, rapid sexual maturity and annual life spans are surprisingly rare. 

Among endotherms (mammals and birds), near-annual longevity is known only in 9 

species of marsupials in the families Didelphidae and Dasyuridae, where it is restricted to 

males, and may also be facultative (Bradley et al. 1980; Cockburn et al. 1985; Karr et al. 

1990; Dickman and Braithwaite 1992; Cockburn 1997; de Magalhaes and Toussaint 

2002; Kraaijeveld et al. 2003). There are no examples of annual amphibians (Blanco and 

Sherman 2005). Among reptiles, lizards exhibit the shortest life spans (Shine and 

Charnov 1992), although the shortest-lived are capable of longevity > 1 year with 

multiple clutches per lifetime (Tinkle 1969; Tinkle et al. 1970). However, we know very 

little about taxa such as chameleons, which have proved difficult to study in the field due 

to poor visibility in forest canopies, compounded by their secretive and cryptic behavior 

(Raxworthy 1988).  

Here, based on five seasons of field data, we report the surprising discovery of an 

annual tetrapod from the arid southwest of Madagascar: the chameleon Furcifer labordi, 

which has a post-hatching life span of just 4-5 months that concludes with synchronous 

adult population-wide death (Fig. 1). Consequently, F. labordi spends the majority of its 

lifetime as a developing embryo, and, except for the brief period when adults and their 

recently laid eggs are both present, the entire population is a single age cohort. This life 

history is more reminiscent of ephemeral insects than that of a typical tetrapod. We also 

compare this life history to a sympatric but perennial chameleon, F. verrucosus.  
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Materials and methods 

 

The study site, Ranobe forest (23°01’30” S, 43°36’36” E), was located in 

southwestern Madagascar, approximately 30 km north of Toliara. The forests of the 

southwest are spiny forest and vegetation was typically xerophyllous thickets that 

included the family Didiereaceae and the genus Euphorbia (Koechlin 1972). The region 

is classified as a ‘desert and xeric shrubland’ ecoregion (Olson et al. 2001) and is the 

driest region in Madagascar, including during the wet, active season. Most rainfall is 

attributed to the brief and sporadic passage of tropical storms over the Indian Ocean (Jury 

2003). The mean annual rainfall of Toliara is 420 mm, with the wet season typically from 

December to February (Jury 2003): mean monthly precipitation for these months is 89.9 

mm (Vose et al. 1992). Mean annual temperature is 24.2 °C. Like most arid 

environments, daily (day vs. night) and seasonal (wet vs. dry) temperature differences are 

high. Data were collected over four field seasons: 22 February–5 March 2003, 20 

December 2003–30 January 2004, 5 December–16 December 2005, and 4 November–12 

December 2006. We reviewed historical precipitation data for Toliara (1951-2005) and 

found that the available data from the same periods as our study were within expected 

rainfall amounts in this dry region (i.e., the years we collected life history data were not 

characteristic of excessive drought compared to normal). 

Furcifer labordi and F. verrucosus are sexually dimorphic chameleons, inhabit 

arid regions of Madagascar (Brygoo 1971), and are seasonally active only during the wet 

season. Both species have secondary sexual characters, but they are more exaggerated in 

F. labordi. Furcifer verrucosus males possess large cranial casques, whereas females do 
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not. Male F. labordi have proportionately larger cranial casques than that of F. 

verrucosus (Karsten et al. In preparation-b) and also large rostral appendages; these 

typically ‘male’ traits are also present in females, but to a lesser degree.  

All specimens were collected by hand at night; they often sleep within 2 m of the 

ground. Upon capture, we marked locations, placed lizards individually in cloth, mesh 

bags, and transported them to a base camp where they experienced the same 

environmental conditions as they would in the forest. We suspended the mesh bags from 

narrow cord to prevent predation from arboreal, nocturnal snakes. The following 

morning, we measured body size (SVL) and total length (TL) by holding each chameleon 

so that maximal extension was apparent (i.e., no observable curvature to the body or tail). 

These measurements were made to the nearest 0.1 mm using calipers. We measured mass 

using spring scales to the nearest 0.1 g (≤ 10 g) or 1 g (> 10 g). We returned all lizards to 

their point of capture within 24 hours and observed no adverse signs of social or handling 

stress in any individuals. Because of the brief period in which we possessed these 

individuals and because these chameleons do not ‘drink’ except during sporadic periods 

of rain, we did not provide any supplemental food or water.  

We gave all individuals a permanent identification by toe-clipping the most distal 

phalanx in a three-toe combination, with only one toe clipped per foot. We observed no 

adverse side-effects of this marking procedure on the behavior and survivability of 

individuals, nor did we observe any partial or full phalanx regrowth to confuse individual 

markings. Radio transmitters weighing less than 10% of the animal’s body mass were 

affixed to the dorsal ridge of 7 F. labordi using liquid adhesive. We located each lizard 

daily and made brief (< 30 minutes) focal observations, 3-4 times per day.  
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For both species, we classified each individual as hatchling, juvenile, or adult. 

However, because F. labordi is unique in being comprised of a single cohort that 

transitions from juveniles to adults that are not sexually active initially, we also classified 

adults in this species as either pre-reproductive or sexually reproductive. Pre-reproductive 

adults were those exhibiting fully developed secondary sexual characters and noticeably 

larger body size relative to the rest of the population, but were present before courtship 

started in the population (10 January). After 10 January, adult females exhibited sexually 

receptive coloration and were sexually reproductive. All adult males exhibited hemipenal 

bulges. Hatchlings lacked secondary sexual characters (casque and dorsal crest, plus 

rostral appendage in F. labordi), and juveniles represented all other individuals.  

We queried additional museum collections for localities and collecting dates of F. 

labordi. Our search yielded 8 specimens at the University of Michigan Museum of 

Zoology (UMMZ) collected by CJR 18-28 March 1995 at Ranobe, and 34 others at 

UMMZ collected from throughout the species’ range. No other specimens with usable 

locality and/or collection date data were found in other collections. 

 

Results 

 

Following the cool, dry, inactive season, we observed no F. labordi until the first 

emergence of hatchlings on 11 November, with the onset of the wet season. Over the 

following 38 days, all F. labordi were a single age cohort of hatchlings and hatchlings-

turned-juveniles, with no adults present until 20 December (Table 1). An annual species 

with synchronous hatching of a single cohort should show a strong, positive correlation 
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between size and date during the growth phase for the entire population; and we found 

this pattern for F. labordi. Between 11 November and 3 January, SVL (snout-vent length) 

was positively correlated with date in both males (n = 163, r = 0.745, P < 0.001) and 

females (n = 112, r = 0.759, P < 0.001; Fig. 2A). Furcifer verrucosus differed from F. 

labordi in that SVL was not significantly correlated with date for either males or females 

(n = 119, r = -0.024, P = 0.793; n = 96, r = 0.170, P = 0.097, respectively; Fig. 2B). 

Juvenile F. labordi growth was exceptionally high: marked-recaptured males increased 

mean body mass by 4.1% daily (n = 24, mean ± 1 SE = 0.32 ± 0.07 g/day) and mean SVL 

by 1.86% daily (n = 24, 1.36 ± 0.11 mm/day). Female F. labordi also exhibited 

impressive growth rates during the same portion of the active season: marked-recaptured 

females increased mean body mass by 2.0% daily (n = 3, 0.09 ± 0.10 g/day) and mean 

SVL by 1.86% daily (n = 3, 1.26 ± 0.65 mm/day). The maximum growth rate observed in 

this species was as high as 2.6 mm/day. All post-hatching growth was restricted to a 

period of less than 60 days.  

We first observed reproductive behavior on 10 January, and after this date all 

individuals exhibited adult morphology (Table 1), growth ceased (Fig. 2A), and was even 

negative within individuals. Although growth is largely considered irreversible in 

vertebrates, negative reptile growth has been previously reported for marine iguanas 

during periods of poor food availability and stress (Wikelski and Thom 2000). When 

reproduction in F. labordi began, we observed negative growth in a small set of marked-

recaptured males (n = 6, -0.26 ± 0.30 mm/day). Within the population, growth ceased for 

both adult males (n = 61, r = -0.085, P = 0.517) and females (n = 55, r = -0.654, P < 

0.001; Fig. 2A).  
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We observed no aestivation behavior by adults of F. labordi: none emerging at 

the beginning of the active season and none entering aestivation at the end of the active 

season. In contrast, we have observed both emerging and aestivation behavior multiple 

times in F. verrucosus and other arid-adapted chameleons. Additional museum specimens 

with known collecting dates and field records (see methods) support these conclusions. 

Adult F. labordi have never been found in the field between May and November, 

whereas F. verrucosus have been collected in all months except July and August. In the 

perennial F. verrucosus, we observed adults, juveniles, and hatchlings frequently 

throughout the beginning of the active season (Fig. 2B, Table 1). Based on size classes, 

F. verrucosus is comprised of at least three age cohorts once hatchlings emerge: 1) 

hatchlings, 2) sub-adults and adults from the previous year’s hatch, and 3) older adults 

(Fig. 2B). 

The frequency of gravid F. labordi females peaked from late January to late 

February. We observed a radio-tracked female excavating a nest and depositing a clutch 

of 11 eggs on 3 February: mean egg length was 11.7 mm (15.2% of her SVL) and total 

clutch mass was 4.4 g (36.7% of her pre-oviposition mass) (Karsten and 

Andriamandimbiarisoa 2008). We did not observe any gravid females after 2 March. We 

estimate that egg laying in F. labordi occurs mostly in February and incubation spans 8-9 

months with hatching in November, similar to the 10-month incubation period observed 

in captivity (Nečas 1999; Kohler 2005). No species in the genus Furcifer are known to 

have incubation periods less than 8 months. These long incubation periods that are 

common among chameleons are the result of embryos being in diapause at the time of 

oviposition. Diapause terminates after several months but development remains arrested 
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by cold torpor until nest temperature increases as the wet season approaches (Blanc 1974; 

Díaz-Paniagua et al. 2002; Díaz-Paniagua and Cuadrado 2003; Andrews and Donoghue 

2004; Ferguson et al. 2004). Consequently, the eggs resume development and hatchlings 

synchronously emerge at the onset of the wet season in November (Fig. 1). Some other 

reptile species may hatch before emergence and overwinter inside the nest as hatchlings 

(Ultsch 2006). However, in chameleons, this scenario appears unlikely since the group is 

mostly characterized by long incubation periods; delayed nest emergence, after hatching, 

has never been observed for any captive chameleon (Blanc 1974; Nečas 1999). 

In 2004, the last active adults (both species) were found on 11 February, but in 

1995 active adults were collected as late as 28 March (see methods). Thus, the 

termination of the active season likely varies among years, falling approximately between 

February-April. After egg laying, the active season for F. labordi concludes with 

senescence and population-wide adult death. Developing eggs (incubating for 8-9 

months) represent the entire population during the prolonged dry season, which is 

considerably longer than the post-hatching life span of 4-5 months (Fig. 1). On the other 

hand, adult and sub-adult F. verrucosus aestivate over the dry season. 

 

Discussion 

 

No other tetrapod species, including short-lived marsupials (Bradley et al. 1980; 

Bradley 1997; Cockburn 1997; Kraaijeveld et al. 2003) and lizards, are known to have a 

similar life-history as F. labordi. Previous reviews of other lizards (Tinkle 1969; Tinkle 

et al. 1970; Clobert et al. 1998) report 11 species as putatively annual. However, in all 
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species in which survivorship was quantified by the original authors (cf. extrapolated 

from anecdotal literature), maximal post-embryonic longevity was actually greater than 

one year, and none exhibited obligate annual population turnover. Our review of 

longevity in tetrapods, which included > 1,700 species and 194 publications (available on 

request from the corresponding author), did not find obligate annual population turnover 

for any other tetrapod species, nor did we find any other tetrapod with a post-embryonic 

life span of only 4-5 months. Furcifer labordi is also unique among tetrapods in that it 

spends the majority of its life cycle inside the egg; a life history more reminiscent of 

ephemeral insects or aquatic vertebrates than that of other terrestrial tetrapods. 

At the end of the active season, radio-tracked and marked-recaptured F. labordi 

exhibited worsening body condition, including physical characteristics typical of 

senescence such as reduced mass, slower locomotion, and reduced strength when 

gripping branches. For example, males lost an average of 0.30 ± 0.16 g/day at the end of 

the breeding season (n = 6) and we also observed multiple instances of radio-tracked 

chameleons falling from trees, for unknown reasons, during normal locomotor activity. 

Additionally, from 20 January-10 February, 2 of 7 radio-tracked individuals were found 

dead of unknown causes, but with no signs of mutilation. We also found several non-

radio-tracked and unmarked dead F. labordi in a similar unmutilated condition toward 

the end of the active season. Conversely, for F. verrucosus, individuals continued to 

appear robust and healthy at the end of the breeding season, and none were found dead 

unmutilated.  

Presently, it is unclear why F. labordi exhibits such a bizarre—and extreme—life 

history compared to other tetrapods. One hypothesis is that the harsh environment with 
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extreme seasonality contributes to life history extremes. For example, short-lived, annual 

killifish deposit eggs in the mud that survive the harsh, dry season by entering a diapause; 

an adaptation to the highly fluctuating environment. Annualism is likely the ancestral 

character state; however, it has been evolutionarily lost by lineages found in more stable 

environments (Murphy and Collier 1997). Madagascar’s climate is highly variable 

(Dewar and Richard 2007): environmental unpredictability is much greater than other 

tropical areas, especially in the southwest which exhibits unusually high interannual 

variability in rainfall. In response to stochastic climate fluctuations, many mammals of 

Madagascar differ from closely-related relatives in more stable environments in that the 

Malagasy species exhibit more extreme versions of either ‘short-lived’ or ‘long-lived’ life 

histories (Dewar and Richard 2007). Dewar and Richard (Dewar and Richard 2007) 

suggested both responses are possible ‘solutions’ to the same evolutionary ‘problem.’ 

Concordant with life history theory, the ‘best solution’ depends upon how environmental 

instability affects age-specific mortality (Stearns 1992; Roff 2002). Among several 

Malagasy mammals (carnivores, primates, tenrecs, and rodents), reduced juvenile 

survivorship due to environmental variability resulted in the evolution of longer life spans 

(Richard et al. 2002), whereas stochastic climatic variables that reduced adult 

survivorship resulted in the evolution of shorter life spans (Gould et al. 2003; Dewar and 

Richard 2007). If environmental unpredictability differentially affected age-specific 

survivorship in chameleons, this may help explain why F. labordi is annual while other 

sympatric chameleons are perennial. 

An alternative, and not mutually exclusive, explanation may emerge at the 

interface between life history theory and hormone-behavior relationships. High adult 
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mortality rates can drive the evolution of rapid growth and earlier age of reproduction 

(Austad and Fischer 1991; Stearns 1992; Holmes and Austad 1994; Ricklefs 1998; 

Hughes and Reynolds 2005; Ricklefs 2006), with the cost being decreased longevity, 

often as a result of a trade-off between resources allocated to somatic cell maintenance 

compared to reproduction (Kirkwood 1985; Stearns 1992; Sgro and Partridge 1999; 

Kirkwood 2002; Ricklefs 2006; Parsons 2007). Hormones can control these trade-offs 

(Zera and Harshman 2001). For example, increased androgens in both natural populations 

and by experimental manipulation can be correlated with mating success (Borgia and 

Wingfield 1991; Denardo and Sinervo 1994), but are also known to contribute to traits 

typically associated with increased adult mortality rates (e.g., reduced survival, increased 

parasite loads, increased energetic expenditure) (Marler and Moore 1988; Marler et al. 

1995; Wikelski et al. 1999; Klukowski and Nelson 2001; Wingfield et al. 2001; Wikelski 

et al. 2005). It seems possible that a change in the social structure in ancestral F. 

labordi—to a social system characterized by increased androgen levels or sensitivity—

could contribute to increased intrinsic and/or extrinsic adult mortality. Indeed, F. labordi 

is characterized by physically intense combat and agonistic courtship (Karsten et al. In 

preparation-a, b). A similar mode of evolutionary selection appears to have played a role 

in the evolution of semelparity in at least one other tetrapod, the marsupial Phascogale 

calura (Bradley 1997). Accounting for hormonal regulation of physiology and behavior 

is critical to a comprehensive understanding of life history evolution (Zera and Harshman 

2001; Ricklefs and Wikelski 2002). Although our hypothesis is plausible, the role of 

hormones, and even behavior to a lesser extent (but see ref. Karsten et al. In preparation-

b), is unexplored in chameleons. Our hypothesis can be tested by quantifying seasonal 
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hormone profiles, social systems, and sexual selection within a phylogenetic comparative 

framework. 

Mortality is high during the brief mating phase of the active season: 4 of 7 radio-

tracked individuals died from predation or unknown causes from 20 January-10 February. 

The physically-intense social system of this species, the harsh and unpredictable 

environment it inhabits, with a brief active season and where adult mortality is already 

high, may exacerbate the compression of life into such a brief period. In accordance with 

life history theory, the result would be evolutionary selection for reduced life span, 

smaller body size, and earlier age of reproduction (Austad and Fischer 1991; Stearns 

1992; Holmes and Austad 1994; Ricklefs 1998; Roff 2002; Hughes and Reynolds 2005; 

Ricklefs 2006). This may be advantageous for two reasons. First, since F. labordi is 

sympatric with other larger, but closely-related (Raxworthy et al. 2002; Townsend and 

Larson 2002), perennial chameleons, a shift in body size and age of reproduction may 

alleviate some dimensions of niche overlap. Second, the metabolic theory of ecology 

states that smaller organisms have more resources to allocate to reproduction than their 

larger-bodied counterparts, relative to body mass, producing new individuals and genes at 

faster rates (Brown and Sibly 2006).  

Furcifer labordi has a life history like no other tetrapod, but yet it still conforms 

to predictions of life history theory: it experiences high adult mortality, is the smallest 

chameleon within a closely-related group, exhibits rapid growth, and has an early age of 

reproduction. What makes this species unique among tetrapods is how extreme it has 

compressed its suite of life history traits into a single, brief season and that it spends the 

majority of its life cycle in a more benign and predictable environment: the egg. In fact, 
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its entire life span is shorter than the age of sexual maturity in many other chameleons 

(Nečas 1999). Our findings suggest that the notorious rapid death of chameleons in 

captivity may, for some species, actually represent the natural adult life span. 

Consequently, a new appraisal may be warranted concerning the viability of chameleon 

breeding programs, which could have special significance for species of conservation 

concern. Additionally, if chameleons become a better studied group, it will also be 

possible to construct life history tables to empirically test the evolution of semelparity in 

some species and why iteroparity is present in others. Because F. labordi is closely-

related to other perennial species, this chameleon group may prove also to be especially 

well-suited for comparative studies that focus on life history evolution and the ecological, 

genetic, and/or hormonal determinants of aging, longevity, and senescence. 
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Table 1. Population demography of two chameleon species at Ranobe, Madagascar. 

Composite dates for data collected 2003-2006 for the annual species Furcifer labordi and 

the perennial species F. verrucosus. We were unable to use data for F. verrucosus from 

17 December – 12 February due to non-random sampling of adults only; however, 

juveniles were present throughout the population for the entire active season. Furcifer 

labordi adults were either pre-reproductive (before 10 January) or sexually reproductive 

(after 10 January; see methods). 

Period of active season

Furcifer labordi

11 Nov - 29 Nov 23 100 0 0

30 Nov - 06 Dec 28 32 68 0

07 Dec - 16 Dec 146 1 99 0

17 Dec - 29 Dec 83 0 24 76

29 Dec - 05 Mar 138 0 0 100

Furcifer verrucosus

05 Nov - 30 Nov 48 2 79 19

01 Dec - 16 Dec 174 29 42 29

13 Feb - 05 Mar 104 0 88 13

Percentage of population

Hatchlingn Juvenile Adult
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FIGURE LEGENDS 

 

Figure 1. The life histories of annual and perennial chameleon species. Study region 

climate and life history of two chameleons: the annual Furcifer labordi (lower bar) and a 

hatchling cohort of the perennial F. verrucosus (upper bar) over 15 months in southwest 

Madagascar. Toliara rainfall (blue line) and temperature (red line) (Vose et al. 1992). Life 

history phases: incubating eggs (open); juvenile growth (red); courtship (yellow); period 

of courtship and egg laying overlap (green); egg-laying and senescence (blue); juvenile 

aestivation (grey). The life span of F. labordi is a single year, with most of this time spent 

as a developing egg. 

 

Figure 2. Cohorts of annual and perennial chameleon species. A. Composite data 

(1995, 2003-2006) for snout-vent length (SVL) and date in the annual Furcifer labordi 

cohort: unsexed hatchlings < 26 mm SVL (plusses); males (closed symbols); females 

(open symbols); sexed hatchlings, juveniles, and pre-reproductive adults (circles) and 

sexually reproductive adults (triangles). B. Composite data (2005-2006) for SVL and date 

for multiple cohorts of the perennial F. verrucosus: hatchlings < 30 mm SVL (plusses); 

pre-reproductive (circles) and sexually reproductive (triangles) individuals; males (closed 

symbols); females (open symbols). Data beyond 21 December are truncated to exclude 

biased sampling efforts. However, juveniles were present throughout the entire active 

season (see Table 1). 
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IV. Population densities and conservation priorities for 

chameleons of the spiny forests in the Toliara region of 

southwestern Madagascar 

 

Abstract  

 

Madagascar is a high conservation priority. Rainforests receive most of the focus, but the 

dry deciduous and spiny forests of south-western Madagascar house many endemics, are 

under high deforestation pressure, and remain largely unprotected. Charismatic 

vertebrates, like chameleons, face a secondary threat: harvesting for the commercial pet 

trade. Six chameleons inhabit the arid southwest near Toliara: Furcifer antimena, F. 

belalandaensis, F. labordi, F. lateralis, F. oustaleti, and F. verrucosus. We measured 

population densities of three of those species. Furcifer verrucosus has a large 

distribution, was dense (97.7 ha
-1

; 95% CI = 60.2-158.6), and inhabited forests and 

anthropogenic habitats. Furcifer labordi was moderately dense (30.8 ha
-1

; 13.4-70.9), but 

has a restricted range and a unique life history that makes it susceptible to perturbations 

from deforestation or illegal harvesting. Furcifer antimena was the least dense (17.0 ha
-1

; 

9.3-30.9) and has an even smaller distribution range. We lack density data for F. 

lateralis, but this species was abundant in anthropogenic habitats. In contrast, despite 

intensive sampling within its distribution, we found almost no F. belalandaensis. Within 

their respective ranges, there are no protected areas for F. antimena and F. 
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belalandaensis, and only one for F. labordi (but for northern populations). We 

recommend that high conservation priority be focused on F. antimena, F. belalandaensis, 

these southern populations of F. labordi, and their respective habitats. We suggest the 

establishment of a new protected area of ca. 50,000 ha that not only benefits these 

chameleons, but also the other rare endemic plants and animals of the southwest.  

 

Introduction  

 

Madagascar is widely recognized as a biodiversity ‘hotspot’ with high 

conservation priority and is well known for its highly endemic fauna (Myers et al. 2000; 

Ganzhorn et al. 2001; Lamoreux et al. 2006). Islands high in endemic species are 

particularly vulnerable to extinctions and are of high priority for preservation of species 

richness and phylogenetic diversity (Pimm et al. 1995; Lamoreux et al. 2006; Forest et al. 

2007). It is estimated that Madagascar has more genetic diversity per unit area than 

anywhere else, and therefore, forest loss in Madagascar may have a greater impact on 

global biodiversity loss than other hotspots (Hannah et al. 1998).  

There are several key areas of high endemism in Madagascar, and within the 

existing system of protected areas on the island, many of these centres for endemism are 

underrepresented (Wilmé et al. 2006). One such area identified by Wilmé et al. was the 

southwest, where our study took place. This region has the highest level of plant 

endemism in Madagascar (Rabesandratana 1984) and is listed as one of the 200 most 

important ecological regions in the world (Elmqvist et al. 2007). These forests have also 

been included in a list of at least 16 sites of “imminent extinction” (Ricketts et al. 2005). 
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Virtually all of the remaining primary and secondary forests in the southwest lack formal 

protection (Seddon et al. 2000; Du Puy and Moat 2003). The leading culprits of 

deforestation in the region are cattle grazing, harvesting of wood, and charcoal 

production (Fenn 2003, personal observation). These forests should be vital areas to focus 

conservation efforts to minimize the loss of endemic biodiversity, especially since spiny 

forests exhibit high endemism for plants, birds, mammals, and reptiles (Scott et al. 2006) 

with many species vulnerable or threatened (Seddon et al. 2000). There is an urgent need 

for more research focus in the southwest (Hannah et al. 1998), including research on 

chameleons (Brady and Griffiths 1999). Targeting chameleons for conservation may also 

indirectly benefit other endemic, threatened plants and animals. 

There are 346 species of reptiles in Madagascar, with greater than 90% of those 

being endemic (Raxworthy 2003). Only two other biodiversity hotspots in the world rank 

higher in reptile endemism (Myers et al. 2000). The primary culprits for the rapid loss of 

endemic herpetofauna are habitat degradation and harvesting for the commercial pet trade 

(Raxworthy 1988; Brady and Griffiths 1999; Glaw and Vences 2003; Raselimanana and 

Rakotomalala 2003; Carpenter and Robson 2005). Deforestation rates, driven by high 

poverty rates and population growth (Goodman and Patterson 1997), are high (Consiglio 

et al. 2006; Banks et al. 2007): an estimated 110,000 ha per year between 1950 and 1985 

with little sign of slowing down (Green and Sussman 1990). During the 1980s, 400,000 

ha of seasonal forest (e.g., dry deciduous and spiny forests) were lost due to habitat 

degradation; a greater proportion of forest loss than in either tropical or montane regions 

(Whitmore 2000).  
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Historically, Madagascar was one of the most vigorous exporters of chameleons: 

nearly 200,000 between 1977 and 2001 (Carpenter et al. 2004). These numbers are 

probably gross underestimates of the true number since many likely went unreported or 

unrecorded. Little is known about the impacts of such removal on wild populations, even 

for the most commonly exported species. The purpose of this study was to determine 

population densities of three chameleon species inhabiting the lowland spiny forests of 

south-western Madagascar so as to identify conservation priorities for this 

underrepresented region of high plant and animal endemism. Six chameleon species 

inhabit these unprotected forests: Furcifer antimena, F. belalandaensis, F. labordi, F. 

lateralis, F. oustaleti, and F. verrucosus. All these species are broadly sympatric in a 

small region of the southwest, north of Toliara, making this group particularly amenable 

to applied conservation strategies. All chameleons in Madagascar are endemic (except for 

species introduced to Kenya, and probably Mauritius and Réunion) and highly 

threatened: all are listed in CITES Appendix I or II and F. labordi has been placed on the 

IUCN Redlist as a species of special concern (Carpenter et al. 2004). Despite being 

highly diverse, highly endemic, and highly threatened, there is little known about the 

present population status of many of Madagascar’s chameleons, making responsible 

conservation decisions difficult, if not impossible. To effectively implement conservation 

priorities, areas of specific interest must be specified and reduced to a scale that is 

manageable by local authorities (Harris et al. 2005). 
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Methods 

 

We collected population density data for three species (F. antimena, F. labordi, 

and F. verrucosus; Figure 1) which are all sexually dimorphic, medium to large-sized, 

diurnal chameleons with males being larger than females (Brygoo 1971; Karsten et al. in 

review-a, b). Furcifer labordi inhabits the western and south-western regions of 

Madagascar, whereas F. verrucosus has a larger distribution, occurring throughout most 

of the west, southwest, and south. Furcifer antimena has a much more restricted range, 

confined almost exclusively to the arid spiny forests near the provincial capital of Toliara 

(Brygoo 1971; Glaw and Vences 1994). All three species, like most other lizards in 

Madagascar, are seasonally active and reproduce during the wet season, which spans 

approximately November to as late as April, depending on region (Karsten et al. in 

review-a). 

The climate of Madagascar varies such that the more northerly latitudes are 

tropical and sub-tropical with relatively stable conditions throughout the year. More 

southerly latitudes, where our study took place, are typically considered harsher 

environments with more pronounced differentiation between wet and dry season and 

greater variation in year-round climate (Vose et al. 1992; Jury 2003). Our northernmost 

study site was located ca. 30 km north of Toliara, near the village of Ranobe (23°02’20” 

S, 43°36’37” E; Figure 2). Ranobe is toward the extreme southern boundary of the 

distribution for F. labordi (Glaw and Vences 1994). The other site was approximately 10 

km north of Toliara near the village of Belalanda (23°15’26” S, 43°38’05” E). The 

forests of the southwest were spiny forest and vegetation was typically xerophyllous 
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thickets that included the family Didiereaceae and the genus Euphorbia (Koechlin 1972). 

Vegetation usually did not exceed 3 m in height except for occasional emergent trees that 

reached up to 10 m. The low forest canopy facilitated the detection of chameleons 

perched high; poor detection of chameleons in high forest canopies has hampered similar 

surveys in rainforests (Jenkins et al. 1999; Jenkins et al. 2003).  

We estimated population density by recording chameleon encounter rates along a 

transect. Each 150-m transect consisted of 3 parallel lines spaced 20 m apart, with each 

line 50 m in length. We determined transect locations randomly along an east-west axis 

(footpath) within a known distribution range and forest type of each species, and 

randomly assigned the transect to be either north or south of the east-west axis. The 

compass direction of the 3 parallel lines of each transect was randomly determined. We 

established all transects at least 24 h prior to data collection and placed them at least 5 m 

away from the nearest footpath since habitat may vary between forest interior and edge, 

thereby influencing density estimates (Jenkins et al. 1999).  

An increasingly popular method of estimating population densities of animals, 

including chameleons, is distance sampling (Buckland et al. 1993; Buckland et al. 2001). 

Distance sampling uses a probability detection curve determined by a set of perpendicular 

distances of each individual from a transect line. The program applies a series of 

functions to the data and selects the best-fitting model using the Akaike Information 

Criterion (AIC), which provides the best measure of model fit for observational data 

(Burnham and Anderson 2002). There are four underlying assumptions of the distance 

sampling model (Buckland et al. 1993; Buckland et al. 2001): 1) survey transects are 

placed randomly with respect to a species’ distribution (i.e., they do not favour 
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convenient patches of forests, such as footpaths), 2) the detection rate for organisms that 

are zero distance from the transect line is 100%, 3) organisms are detected prior to any 

movement or disturbance caused by the observer, 4) perpendicular distances to the 

transect can be measured accurately. Our methods met these assumptions. First, we 

randomly determined transect locations as described above (assumption 1). Second, 

chameleons are pale and highly reflective, making them easily identifiable, and we are 

confident that we detected all chameleons right on the transect (assumption 2). Third, 

because all sampling was conducted at night, all individual locations were recorded 

without any fleeing or movement (assumption 3), allowing for precise, accurate, 

perpendicular measurements from the transect line (assumption 4).  

During data collection at Ranobe, we observed a distinct reduction in chameleon 

abundance at the end of the wet season. We have also observed this phenomenon in other 

years at Ranobe. The onset of the dry season varies from year to year due to stochastic 

climatic variables, but it generally occurs in February or March. We provide density 

estimates for the ‘late active season’ and the ‘early dry season.’ We have included F. 

antimena density estimates as ‘early dry season’ simply due to chronological conformity 

with the Ranobe data. However, it is possible that F. antimena may not show the same 

clear seasonal shift in abundance as the species at Ranobe since they are two separate, 

albeit similar, regions of spiny forest.  

We collected all data from 16 February–18 March 2003. We surveyed the late 

active season transects at Ranobe between 16 February–26 February, and the early dry 

season transects between 4 March–8 March. We surveyed the Belalanda transects (F. 

antimena only) from 11 March–18 March. Upon encountering a chameleon, we identified 
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the species, sex, and age (adult, juvenile, or hatchling). Adult females exhibited sexually 

receptive coloration, adult males exhibited hemipenal bulges, hatchlings lacked 

secondary sexual characters (casque and dorsal crest, and rostral appendage in F. 

antimena and F. labordi), and juveniles represented all other individuals. We measured 

the perpendicular distance of each chameleon to the transect line to centimetre accuracy 

using a 50-m tape measure and estimated population density using DISTANCE software 

(Thomas et al. 2004). The same two researchers performed all data collection. 

 

Results  

 

We found 149 chameleons along 22 transects (sites pooled). Only two species 

were present in Ranobe: F. labordi and F. verrucosus. Only one species was present at 

the Belalanda study site: F. antimena. However, another species occurs south of 

Belalanda village, but north of Toliara, in anthropogenic habitats: the widespread 

chameleon F. lateralis (personal observations). Furcifer belalandaensis is known from 

only a few individuals collected near the Fiherenana River and we found none in any of 

our transects. We also intensively searched (2003-2006) localities of museum-collected 

specimens along the Fiherenana River during 2003-2006, but found none. However, we 

have relocated a population of F. belalandaensis during a recent visit in 2008. 

 

Late active season density estimates 

Of the two sympatric species at Ranobe, F. verrucosus had the greatest density of 

97.7 ha
-1

 (95% CI = 60.2-158.6, n = 67, transects = 6). The majority of individuals we 
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surveyed were juveniles. Juvenile density was 80.2 ha
-1

 (42.8-150.1, n = 57, transects = 

6). We were unable to select a robust model to estimate adult F. verrucosus densities due 

to low sample size. However, we developed a biologically relevant estimate of ca. 17.5 

ha
-1

 for adults by subtracting the model for juvenile densities from the overall population 

density model. Clearly, adults were a much smaller component of the overall population 

at this period of the active season. Furcifer labordi is an annual species (Karsten et al. in 

review-a) and thus all F. labordi we encountered were adults during this time of the 

active season. The population density estimates during the late breeding season for this 

species was 30.8 ha
-1

 (13.4-70.9, n = 20, transects = 6). 

 

Early dry season density estimates 

During the early dry season, densities of both species were lower, but F. 

verrucosus was still far more abundant than F. labordi. Furcifer verrucosus decreased to 

an estimated 36.7 ha
-1

 (25.4-50.3, n = 37, transects = 6) and F. labordi to 4.0 ha
-1

 (0.5-

33.4, n = 3, transects = 6). Due to low sample size, one should exercise caution when 

interpreting this density estimate for F. labordi. Regardless, it is clear that F. labordi 

abundance dramatically decreased. The 6 dry season transects yielded only 3 individuals 

compared to 20 found during the late active season, despite the same unit effort for each 

period (Table 1). The F. verrucosus population again was mostly juveniles, whose 

density we estimated as 29.2 ha
-1

 (18.3-46.4, n = 30, transects = 6). The only adult F. 

verrucosus found during this portion of the dry season were yearlings that had just 

reached adult size; no second year adults were present this late in the season. 
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We were unable to compare estimates of late active season and early dry season 

for F. antimena. Since we conducted the surveys at Belalanda after those at Ranobe, we 

have included them as early dry season estimates; however, it is unclear whether species 

at Belalanda enter aestivation as early as species at Ranobe. Furcifer antimena had an 

estimated density of 17.0 ha
-1

 (9.3-30.9, n = 22, transects = 11). 

 

Discussion  

 

Of the four legally exported species of chameleons in Madagascar (F. lateralis, F. 

oustaleti, F. pardalis, and F. verrucosus), population density estimates are known for 

only the latter two (Andreone et al. 2005, this study). Although there are no density data 

for F. lateralis, we found them to be abundant in anthropogenic habitat near the city of 

Toliara (and in other regions of Madagascar). We also found F. verrucosus in 

anthropogenic habitats. Carpenter et al. (2005) suggested that most F. verrucosus 

collected for the pet trade are from the Toliara region, indicating that populations in this 

region may be susceptible to overexploitation. Despite this, we found that the population 

at Ranobe was denser than that of F. pardalis at Nosy Be (Table 2), which Andreone et 

al. (2005) concluded were not under immediate threat from over-collection. Our results 

suggest that when limited to the current harvesting quota, F. verrucosus is not currently 

under immediate threat in this region.  

Knowledge of population density may facilitate identification of high priority 

species and habitats (Jenkins et al. 1999; Brady and Griffiths 2003; Jenkins et al. 2003; 

Andreone et al. 2005, Table 2). Species of relatively low density may warrant the highest 
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conservation priority: C. brevicornis, C. glawi, C. globifer, C. nasuta, C. oshaughnessyi, 

and F. antimena. Population data also help identify the most appropriate areas to target 

conservation efforts for chameleons. For example, the preservation and management of 

B. thieli and C. nasuta would be far more effective at Andranomay instead of 

Vatoharanana, where they are scarce (Table 2). The area of greatest priority in south-

western Madagascar is the spiny forest north of the Fiherenana River where F. antimena 

and F. belalandaensis occur. Furcifer antimena had low density, and F. belalandaensis 

was absent in this area during surveys from 2003-2006. We found F. belalandaensis in 

2008, although its present population density is unknown. Our recent sampling, along 

with museum collection localities, indicate it is sympatric with F. antimena, albeit from a 

much smaller distribution (Brygoo 1971).  It is estimated that only 44% of suitable 

deciduous dry southern forest and scrubland habitat and only 0.2% of deciduous 

seasonally dry western forest remains in the distribution of F. antimena (Brady and 

Griffiths 1999). With a restricted distribution void of any formal protection, low 

population density, paucity of remaining suitable habitat, and forest disturbance in the 

region (Figure 3), F. antimena and F. belalandaensis should be of high conservation 

priority in future protected area plans. Our results add to this growing database and 

represent the first data set for nonrainforest chameleon species.  

Life history traits also should be taken into account when making conservation 

decisions (e.g., Andreone et al. 2005). Although F. labordi is moderately dense compared 

to other chameleons (Table 2), it may be especially susceptible to disturbance and illegal 

over-collection due to its unique, annual life history (Karsten et al. in review-a). After 

hatching, the entire population is nonreproductive individuals in November and 
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December. Sexual maturity is reached in January, and egg-laying begins in February. The 

end of the active season signals population-wide death for the adult cohort. The entire 

population is represented during the dry season by a single egg-only cohort. Substantial 

population reduction—especially before reproduction—could lead to catastrophic 

population crashes in a single generation. This species’ habitat is largely unprotected and 

under high deforestation pressure (Figure 4), and because of its life history, F. labordi 

appears especially vulnerable to any degree of perturbation. 

Recent modelling techniques provide useful insight in determining potential 

distributions of species (Raxworthy et al. 2003), including species with restricted samples 

and location data (Pearson et al. 2007). Although our data provide a baseline from which 

to begin determination of potential protected areas, these methods may improve the 

ability to target specific conservation priorities for species with restricted distributions 

such as F. antimena, F. belalandaensis, and F. labordi. Applied conservation strategies 

for these three species will likely also benefit other endemic plants and animals of the 

southwest. Currently, there are no protected areas within the range of F. antimena or F. 

belalandaensis and only one protected area for northern populations of F. labordi 

(Raselimanana and Rakotomalala 2003), which underscores the need to establish 

conservation priorities in the southwest.  

Based on the composite data, the current legislation for collection and trade of 

chameleons, and the present allocation of protected areas within their ranges (or lack 

thereof), we offer the following recommendations. It appears that current disturbance and 

collection rates do not adversely affect F. verrucosus. Furcifer labordi is not presently 

available for legal exportation; therefore, deforestation is the main threat if illegal 
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collection is minimized. With a potentially delicate life history strategy, being a species 

of special concern, and lacking any formal protection for southern populations, high 

conservation priority should be placed on these populations in the southwest. Furcifer 

antimena appears to be very susceptible to extirpation from disturbance. The distribution 

of this species is small and restricted. Additionally, the rare F. belalandaensis was 

sympatric with F. antimena near the Fiherenana River in 1995 and 2008 (CJR, 

unpublished data); conservation of F. antimena north of the Fiherenana River would also 

benefit this even rarer species. Thus, F. antimena should also be of high priority when 

making conservation decisions about this region.  

 

Conclusions 

 

Madagascar seeks to expand its protected forests from 1.7 million to 6 million ha 

(Norris 2006) with all protected areas belonging to a single national system (Système 

d’Aires Protégées de Madagascar, or SAPM) collectively managed by the government, 

funding agencies, non-governmental organizations, and the private sector. Much of the 

southwest has been identified as being in need of formal protection. However, current 

objectives place emphasis on spiny forests south of Toliara where protected areas are 

already established; the forests north of the Fiherenana River are distinct from these 

already protected forests (Seddon et al. 2000). Thus, a void of protection exists for the 

unique forests north of Toliara that are “severely degraded and as such deserves close 

monitoring” (Seddon et al. 2000, pg. 294); these forests house more species of 
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conservation concern than any of the 5 protected areas south of Toliara (Seddon et al. 

2000).  

We suggest the addition of at least one new protected area in the southwest of ca. 

50,000 ha that encompasses the distributions of F. antimena, F. belalandaensis, and 

southern populations of F. labordi. We recommend it extend from the Fiherenana River 

northward to the Manombo River (ca. 40 km) and extend at least 10-15 km inland to 

incorporate coastal and inland geography and the wetlands of Lac Andranobe and Lac 

Ranobe. As per the International Union for Conservation of Nature (IUCN) protected 

area categories, we recommend these forests be classified as a Category 4 protected area 

(managed areas that maintain species and habitats). Harvesting for the pet trade continues 

near Belalanda (personal observation) and needs better regulation. The low population 

densities and lack of protected areas warrant that CITES quotas remain unchanged, and 

collection and exportation of F. antimena, F. belalandaensis, and F. labordi remain 

illegal. We recommend that chameleon densities within the proposed preserve be 

monitored annually to assess the impacts of deforestation, which may be used as an 

indirect assessment for other endemic flora and fauna. To effectively and successfully 

implement protection of this new protected area, it is imperative that local economics be 

considered by SAPM (Tucker 2007).  
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Table 1: Population density estimates for three species of chameleons in the Toliara region, south-western Madagascar, at the 

end of the active season and beginning of the dry season. Timing of the surveys had substantial impact on population densities 

of Furcifer labordi and F. verrucosus. Dashes indicate no available data. 

Species D (ha
-1

) n 95% CI

No. of 

transects

Total 

transect 

length (m) 95% CI

F. antimena -- -- -- -- -- 17.0 22 9.3-30.9 11 1650

F. labordi 30.8 20 13.4-70.9 6 900 4.0 3 0.5-33.4 6 900

F. verrucosus 97.7 67 60.2-158.6 6 900 36.7 37 25.4-50.3 6 900

Total 

transect 

length (m)

Early dry seasonLate active season

D (ha
-1

) n

No. of 

transects
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Table 2: Comparative frequency and population density estimates for Brookesia, Calumma, and Furcifer chameleons in 

Madagascar. Dashes indicate no data available from that study.  

Species D (ha
-1

) n Location Reference

B. nasus 26.8 63 3920 Vatoharanana; forest Jenkins et al. 1999

B. nasus 37.8 109 6575 Vatoharanana; footpath Jenkins et al. 1999

B. minima 20.7   -- 1500 Andranomay; riparian Jenkins et al. 2003

B. minima 4.9   -- 4500 Andranomay; low-disturbance Jenkins et al. 2003

B. thieli 88.5   -- 1500 Andranomay; riparian Jenkins et al. 2003

B. thieli 51.7   -- 4500 Andranomay; low-disturbance Jenkins et al. 2003

B. thieli       -- 1 3920 Vatoharanana; forest Jenkins et al. 1999

B. thieli       -- 0 6575 Vatoharanana; footpath Jenkins et al. 1999

C. brevicornis 4.9   -- 1500 Andranomay; riparian Jenkins et al. 2003

C. brevicornis 12.9   -- 4500 Andranomay; low-disturbance Jenkins et al. 2003

C. brevicornis       -- 1 3920 Vatoharanana; forest Jenkins et al. 1999

C. brevicornis 6.7 23 6575 Vatoharanana; footpath Jenkins et al. 1999

C. gastrotaenia 89.7   -- 1500 Andranomay; riparian Jenkins et al. 2003

C. gastrotaenia 33.1   -- 4500 Andranomay; low-disturbance Jenkins et al. 2003

C. glawi 12.7 40 3920 Vatoharanana; forest Jenkins et al. 1999

C. glawi 15.2 72 6575 Vatoharanana; footpath Jenkins et al. 1999

Transect 

length (m)
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Table 2: Continued. 

Species D (ha
-1

) n Location Reference

C. globifer 10.1   -- 1500 Andranomay; riparian Jenkins et al. 2003

C. globifer 3.9   -- 4500 Andranomay; low-disturbance Jenkins et al. 2003

C. nasuta 7.6 1500 Andranomay; riparian Jenkins et al. 2003

C. nasuta 5.4   -- 4500 Andranomay; low-disturbance Jenkins et al. 2003

C. nasuta       -- 1 3920 Vatoharanana; forest Jenkins et al. 1999

C. nasuta       -- 6 6575 Vatoharanana; footpath Jenkins et al. 1999

C. oshaughnessyi 8.3 26 3920 Vatoharanana; forest Jenkins et al. 1999

C. oshaughnessyi 10.8 52 6575 Vatoharanana; footpath Jenkins et al. 1999

F. antimena 17.0 22 1650 Belalanda This study

F. labordi 30.8 20 900 Ranobe; wet season This study

F. labordi 4.0 3 900 Ranobe; dry season This study

F. pardalis 42.2 193 4400 Nosy Be; roadside Andreone et al. 2005

F. pardalis 17.4 69 4850 Nosy Be; agriculture/secondary Andreone et al. 2005

F. verrucosus 97.7 67 900 Ranobe; wet season This study

F. verrucosus 36.7 37 900 Ranobe; dry season This study

Transect 

length (m)
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FIGURE LEGENDS 

 

Figure 1: The three species of this study for which we calculated population density 

estimates: Furcifer antimena (top), F. labordi (middle), and F. verrucosus (bottom). 

Males on the left, females on the right.  

 

Figure 2: Deciduous dry and spiny forests of south-western Madagascar. Density 

estimates for Furcifer labordi and F. verrucosus from near the village of Ranobe, ca. 35 

km north of the provincial capital of Toliara. Density estimates for F. antimena from 

north of the village of Belalanda, ca. 10 km north of Toliara. 

 

Figure 3: Intact spiny forest north of the village of Belalanda (upper); habitat of the 

restricted species F. antimena and F. belalandaensis. Highly disturbed forest (lower), 

mostly from harvesting of vegetation for charcoal.  

 

Figure 4: Deciduous dry forest at Ranobe in 1995 (upper; CJR), inhabited by two locally 

abundant chameleon species: Furcifer labordi and F. verrucosus. The same study site in 

2004 (lower; KBK), virtually void of vegetation and chameleons. 
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