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CHAPTER I 
 

 

EFFECTS OF SEDIMENT REMOVAL ON VEGETATION COMMUNITIES IN 

RAINWATER BASIN PLAYA WETLANDS 

 

ABSTRACT 

Alterations of natural hydrologic regimes through sedimentation from cultivated 

agricultural land use have affected most depressional wetlands in the Great Plains.  These 

alterations can negatively affect native wetland plant communities.  Our objective was to 

test the efficient-community hypothesis which suggests that restored wetlands will 

develop plant communities similar to reference conditions following hydrologic 

restoration.  For this study, hydrology was restored via sediment removal.  Thirty-four 

playa wetlands in reference, restored, and agricultural condition within the Rainwater 

Basin Region of Nebraska were sampled in 2008 and 2009.  In 2008, reference and 

restored wetlands had higher species richness and more native, annual, and perennial 

species than agricultural wetlands.  Restored and reference wetlands had similar exotic 

species richness, however restored wetlands contained more than agricultural wetlands.  

In 2009, reference and restored wetlands had higher species richness, and more perennial, 

and native species than agricultural wetlands.  Restored wetlands contained a greater 

number and proportion of annuals than reference and agricultural wetlands.  Restored 
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wetlands proportion of exotics was 3.5 times less than agricultural wetlands.  Canonical 

Correspondence Analysis showed that reference, restored and agricultural wetlands are 

dominated by different plant species and guilds, and restored wetland plant communities 

do not appear to be acting as intermediates between reference and agricultural conditions 

or on a trajectory to reach reference condition.  This may be attributed to differing seed 

bank communities between reference and restored wetlands, dispersal limitations of 

perennial plant guilds associated with reference wetland conditions, and/or management 

activities at restored wetlands may be preventing restored wetlands from reaching 

reference status. 

 

INTRODUCTION 

In the U.S. Great Plains, agricultural practices have altered terrestrial and wetland 

habitats to make way for crop and livestock pastures (Samson and Knopf 1996).  This has 

ultimately led to changes in ecosystem services provided in these landscapes (Smith et al. 

2011a).  This is especially true in the Rainwater Basin (RWB) of Nebraska where up to 

90% of playa wetlands have been drained or modified for agricultural purposes (Stutheit 

et al. 2004).  A stopover site to over 12 million migrating waterfowl, geese, and 

shorebirds every year, this environmentally sensitive area has been deemed as one of nine 

areas in the contiguous United States with the  highest wetland loss (Tiner 1984) and 

contains one of the most threatened and least studied wetland complexes in North 

America (Smith 1998). 

Throughout the Great Plains, sedimentation from upland erosion from 

surrounding agricultural fields is the largest threat to the continued existence of properly 
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functioning depressional wetlands (Luo et al. 1997, 1999, Tsai et al. 2007).  Playa 

wetlands, the dominant hydrogeomorphic feature of the RWB, are the lowest point within 

a watershed and are thus highly susceptible to sedimentation (LaGrange 2005).  

Excessive sediment loads within wetlands can bury hydric soils, reduce wetland volume, 

increase surface area, and shorten hydroperiods (Luo et al. 1997, Tsai et al. 2007).  These 

changes can alter plant community structure through burial of seed banks (Jurik et al. 

1994, Gleason et al. 2003), allow non-native species to colonize and dominate an area 

(Smith and Haukos 2002), and select for monotypic stands of invasive native or exotic 

species (Galatowitsch et al. 1999). 

The efficient-community hypothesis states that wetland vegetation should 

reestablish naturally following wetland hydrologic restoration, and all plant species that 

can become established and survive under the environmental conditions found at the site 

will eventually be found growing there or occurring within the seed bank (Galatowitsch 

and van der Valk 1996).  The plant communities found at wetland sites with restored 

hydrology are determined by pre-sedimentation environmental conditions (Galatowitsch 

and van der Valk 1996) and the underlying seed bank. A successful hydrologic 

restoration by the removal of sediment should develop plant communities similar to 

historic conditions or be on a restoration trajectory to reach reference conditions.  

Removal of sediment from agriculturally impacted wetlands aids in restoring the 

natural hydrology of a wetland by removing non-hydric soils that may absorb water 

rather than ponding it.  Restoring hydrology is critical in establishing native wetland plant 

communities (Keddy 2000).  Sediment removal has also been shown to lower nutrient 

availability (Klimkowska et al. 2007), remove persistent pesticides (Kiehl and Wagner 
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2006), and remove persistent weedy and invasive species from the seed bank (Constance 

et al. 2007).  In addition, sediment removal also removes established vegetation (Kiehl et 

al. 2006) that prevents the seed bank from contributing to the development of standing 

vegetation and restores ecosystem function (Odum and Barrett 2005).  RWB wetland 

restoration typically involves removal of up to 30 cm of sediment, filling irrigation reuse 

pits, and the reestablishment of upland buffers to protect wetlands from future 

sedimentation.  These practices should allow establishment of pre-impact vegetation, 

however, only seeds persistent enough in the seed bank prior to impact will initially 

become established.  Other species found will arrive via dispersal. 

 Because most restored wetlands within the RWB are allowed to revegetate 

naturally following sediment removal and are assumed to resemble historic conditions or 

be on a trajectory to reach reference conditions, the objective of this study was to test this 

goal via the efficient-community hypothesis.  We predicted that restored RWB wetlands 

will develop plant community characteristics (species richness, number of annuals, 

perennials, native and invasive species as well as composition of each) similar to 

reference wetlands once sediment has been removed. 

 

METHODS 

Study Area 

The RWB Region encompasses 15,907 km2 and includes all or parts of 21 

counties on the Central Loess Plains of south-central Nebraska (LaGrange 2005).  The 

area was named for its abundant natural wetlands that formed where clay-bottom 

depressions catch and hold precipitation from rain and run-off (Stutheit et al. 2004).  
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Annual precipitation averages 460 mm in the western portion of the region and 710 mm 

in the east; evapotranspiration generally exceeds precipitation (Stutheit et al. 2004).  

Within this region, playa wetlands are the most notable hydrogeomorphic feature on the 

landscape.  Playas range from 0.1 ha to 1,000 ha in size and are defined by the presence 

of Massie, Scott and Fillmore soil series (Stutheit et al. 2004).  The area was originally 

mixed grass prairie in the western region and tall grass prairie in the eastern region (Kaul 

1975), but presently the region is intensively cultivated with corn and soybeans.  

Domestic livestock graze most uncultivated areas. 

Study Sites 

Thirty-four wetlands were sampled in 2008 and 2009 among three land use 

treatments: reference standard (from here forward known as reference), restored, and 

cropland (defined below).  In 2008, 12 reference, 11 restored, and 11 cropland wetlands 

were sampled and in 2009, 11 reference, 11 restored, and 12 cropland wetlands were 

sampled.  Most wetlands were sampled both years (one reference and one restored 

wetland was removed in 2009, one agricultural wetland was restored in late 2008, and 

two agricultural wetlands were added in 2009).  

Reference wetlands were selected using the hydrogeomorphic approach (Brinson 

1993) by the Nebraska Game and Parks Commission (NGPC) and represented the most 

highly functioning wetlands within the region (Stutheit 2004).  Reference wetlands have 

had no prior physical manipulation to the basin or water levels, vegetation with little to 

no invasive species problems, an unmanipulated watershed, and hydric soils present 

match wetland type (e.g., semi-permanent, seasonal, temporary).  The 12 best reference 

wetlands from the HGM study (Stutheit et al. 2004) were selected for this study.  In 2008, 
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6 of the sampled reference wetlands were seasonal and 6 were semi-permanent.  In 2009, 

5 were seasonal and 6 were semi-permanent. 

Restoration of wetlands impacted by sediment was performed by NGPC, U.S. 

Fish and Wildlife Service (USFWS), and Ducks Unlimited (DU).  Each of these sites was 

at one time impacted by cropping.  Restored wetlands had an average of 30.4 cm of 

sediment removed from the center and then were graded out to a depth of 10.6 - 15.2 cm 

around the perimeter.  Restored wetlands sampled in 2008 ranged in age from 2 to 11 

years since sediment removal and in 2009 from 1 to 12 years since sediment removal.  

Due to the limited number of wetlands with the entire basin restored via sediment 

removal, all wetlands with this restoration technique were used in this study.  In 2008, 1 

of the restored wetlands was temporary, 6 were seasonal, and 4 were semi-permanent.  In 

2009, 1 was temporary, 7 were seasonal, and 3 were semi-permanent.  Within the RWB, 

temporary and seasonal wetlands function similarly and are often grouped together as one 

class. 

Agricultural wetlands were surrounded by crop production on at least two sides of 

the wetland.  All sites had upland sediments covering hydric soils (Smith et al. 2011b) 

and were similar in size to reference wetlands (Appendix A).  In 2008, 2 of the cropland 

wetlands were temporary, 6 were seasonal, and 3 were semi-permanent.  In 2009, 3 were 

temporary, 5 were seasonal, and 4 were semi-permanent. 

Field Studies 

We surveyed the vegetation at each wetland once a month from June-August to 

account for cool- and warm-season species occurrence, high species turnover, and 

hydrologic variability (Smith and Haukos 2002).  Vegetation was sampled using step-
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point sampling (Bonham 1989) along two parallel transects to determine plant-species 

occurrence.  Transects ran the length of the longest basin axis, usually northwest to 

southeast, starting and ending at the basin edge and passing through the center of the 

wetland.  Smith and Huakos (2002) showed that species richness is not correlated with 

playa size.  However, to account for playa size, we generated species accumulation 

curves.  Species accumulation curves indicated that 400 steps were sufficient in 

encountering 90% of the species present at each wetland site.  All wetland sites contained 

a minimum of 400 steps.  Smith and Huakos (2002) showed that species richness is not 

correlated with playa size.  Water depth was measured at 10 random locations along each 

vegetation transect where water was encountered.  Water depth was measured to the 

nearest centimeter and averaged for each wetland.  In 2008, all sampled wetlands 

contained water during the growing season.  In 2009, 4 reference, 5 restored, and 1 

cropland wetland contained water during the growing season, the rest were dry.   

Nomenclature followed The Flora of Nebraska (Kaul et al. 2006) and plants were 

classified as perennial or annual and as exotic or native based on the Flora of the Great 

Plains (1991) and USDA PLANTS data base (USDA & NRCS 2010).  Species 

descriptions from the Flora of the Great Plains (1991) were used to place plants with 

biennial life history modes into either an annual or perennial category.  Each plant was 

assigned a region 5 (Central Plains) wetland indicator status according to the USDA 

PLANTS database (USDA 2010.)  We classified “species of management concern” as 

exotic species plus the native species, Phalaris arundinacea (reed canarygrass) and 

Scirpus fluviatilis (three-stem river bulrush).  Phalaris arundinacea and S. fluviatilis can 

form dense monotypic stands and are actively removed in the RWB through grazing and 
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disking.  “Species of management concern” was primarily composed of Phalaris 

arundinacea, Typha angustifolia, and Scirpus fluviatilis. 

Monthly precipitation records for the 2008 field season were recorded from 

September 1, 2007 – August 30, 2008 and from September 1, 2008 – August 30, 2008 for 

the 2009 field season from the Nebraska Rainfall Assessment and Information Network 

(NeRain 2010).   Precipitation totaled 103.17 cm in 2008 and 57.53 in 2009; the 20 year 

average for the area is 68.68 cm of precipitation per year. 

Statistical Analysis 

The 2008 and 2009 data were analyzed independently due to differences in 

precipitation.  Plant community proportions (annuals, perennials, natives, exotics, and 

species of management concern) was determined by dividing the number of steps 

encountered for a particular characteristic by the total number of steps encountered for 

each wetland.  For each plant species, the maximum frequency from the 3 sampling 

periods (June, July, August) within each year was retained for analysis (Hickman et al. 

2004). 

Kolmogorov-Smirnov tests were used to determine if species richness, number of 

annuals, perennials, natives, exotics, and the proportion of annuals, perennials, natives, 

exotics, and species of concern among wetland land use treatments were normally 

distributed.  If the data were normally distributed, analysis of variances (ANOVA) were 

used to compare factors (e.g., species richness) among wetland land use treatments 

(Smith and Haukos 2002).  If an ANOVA factor (e.g., species richness) was significant 

(P<0.05), a Scheffe test was performed to determine differences between groups.  If the 

data was not normally distributed, a Kruskal-Wallis one-way analysis of variance was 
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used to compare factors (i.e., proportion of annuals) among wetland land use treatments.  

If significant, a post-hoc test was used to determine differences between groups.  χ2s were 

performed to determine differences in wetland type (e.g., semi-permanent, seasonal, 

temporary) among land use treatments sampled in 2008 and 2009. 

Canonical Correspondence Analysis (CCA) (Palmer 1993) was used to examine 

relationships between plant species and wetland treatments.  Results of the CCA were 

plotted using biplot scaling, rare species were downweighted, and a Monte Carlo 

permutation, using 999 permutations, was used to identify axis with significant 

eigenvalues and species-environment correlations. 

A regression was performed on the 2008 and 2009 field season to determine if 

there was a relationship between age since restoration and species richness.  Restored 

sites were also categorized as newly restored (2-5 years in 2008 and 1-6 years in 2009) or 

old restored (6-11 years in 2008 and 7-12 years in 2009) and an ANOVA was performed 

to determine differences in species richness between restored age groups. 

 

RESULTS 

Plant Community and Composition Characteristics 

2008 

Species richness differed among land use treatments (F2,33 = 30.03, P < 0.001) 

(Table 1.1).  Species richness in reference and restored wetlands were similar, but species 

richness in both land use types was higher than in agricultural wetlands.  The number of 

annuals (F2,33 = 5.28, P = 0.01), perennials (F2,33 = 25.41, P < 0.001), and native (F2,33 = 

30.21, P < 0.001) species differed among land use treatments.  The numbers of annual, 
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perennial, and native species were similar in reference and restored wetlands, but the 

number of annual, perennial, and native species in both land use types was higher than in 

agricultural wetlands.  There was no difference in the number of invasive species among 

land use treatments (F2,33 – 4.68, P = 0.10).  There was no significant difference in the 

composition of annuals (K-W = 0.5953, P = 0.74), perennials (K-W = 2.79, P = .25), 

natives (F2,33 = 1.31, P = 0.28), and invasives (F2,33 = 4.681, P = 0.10) among land use 

treatments.  Species of management concern differed among land use treatments (K-W = 

12.52, P = (0.002).  Species of management concern in reference and restored wetlands 

were similar, but species of management concern in agricultural wetlands was over 2 

times higher than reference wetlands and 3 times higher than restored wetlands.  There 

were no differences in average water depth (F2,33 = 1.14, P = 0.333) and maximum water 

depth (F2,33 = 0.80, P = 0.458) among land use treatments (Table 1.2).  There was no 

difference in wetland type sampled among land use treatments (χ
2 = 2.97, df = 4, P = 

0.563). 

2009 

Species richness differed among land use treatments (F2,33 = 12.37, P < 0.001) 

(Table 1.3).  Species richness in reference and restored wetlands were similar, but species 

richness in both land use types was higher than in agricultural wetlands.  The number of 

annuals (F2,33 = 9.04, P < 0.001), perennials (F2,33 = 9.59, P < 0.001), and native (F2,33 = 

15.10, P < 0.001) species differed among land use treatments.  The numbers of annual, 

perennial, and native species were similar in reference and restored wetlands, but the 

number of annual, perennial, and native species in both land use types was higher than in 

agricultural wetlands.  There was no difference in the number of invasive species among 
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land use treatments (F2,33 = 2.58, P = 0.0922).  The composition of annuals (F2,33 = 9.84, 

P < 0.001) and perennials (F2,33 = 4.96, P = 0.01) differed among land use treatments.  

The composition of annuals and perennials in reference and agricultural wetlands were 

similar, however, restored wetlands has a greater composition of annuals and a decreased 

composition of perennials than reference and agricultural wetlands.  There was no 

difference in the composition of native (K-W = 6.19, P = 0.05) and invasive (K-W = 

5.99, P = 0.05) among land use treatments.  Species of management concern differed 

among land use treatments (F2,33 = 7.5, P = 0.002).  Species of management concern in 

reference and restored wetlands were similar, but species of management concern in 

agricultural wetlands was over 2.5 times higher than reference wetlands and 2 times 

higher than restored wetlands.  There were no differences in average water depth (F2,33 = 

01.06, P = 0.357) and maximum water depth (F2,33 = 1.78, P = 0.185) among land use 

treatments (Table 1.2).   There was no difference in wetland type sampled among land 

use treatments (χ2 = 4.95, df = 4, P = 0.292). 

Associated Communities: results from CCA 

2008 

Axis one, accounted for 7.5% of the variation between vegetation and land use 

treatments (F = 2.49 ; P = 0.002) (Fig. 1.1).  Axis two, accounted for 3.9% of the 

variation.  Land use treatments explained 35% of the variation in species composition.  

Assuming that restoration of wetlands progresses in a linear path, restored wetlands do 

not appear to be on a trajectory to reach reference wetland status/ condition.  Reference, 

restored, and agricultural land use wetlands are associated with differing plant species as 

well as differing plant guilds.  Reference wetlands are highly associated with wet prairie 



 

12 

 

perennials such as Leersia oryzoides (ricecut grass), Vernonia fasciculate (prairie 

ironeweed), Poa pratensis (Kentucky bluegrass) and deep emergent perennials such as 

Schoenoplectus acutus (hardstem bulrush) and Schoenoplectus heterochaetus (softstem 

bulrush).  Restored wetlands are associated with mudflat annuals such as Coreopsis 

tinctoria (golden tickseed), Ambrosia grayi (woollyleaf bur ragweed), Hordeum jubatum 

(foxtail barley), submergents such as Ceratophyllum demersum (coontail), Potamogeton 

nodosus (longleaf pondweed), and shallow emergent perennials Eleocharis palustris 

(common spikerush ), E. erythropoda (bald spikerush) and Bacopa Americana (disk 

waterhyssop).  Agricultural wetlands are associated with 3 species of management 

concern Typha angustifolia (narrowleaf cattail) a deep emergent perennial, and Scirpus 

fluviatilis (river bulrush), and P. arundinacea (reed canarygrass) shallow emergent 

perennials. 

2009 

Axis one, accounted for 6.8% of the variation between vegetation and land use (F 

= 2.26, P = 0.004) (Fig. 1.2).  Axis two, accounted for 2.6% of the variation.  Land use 

treatments explained 31.3% of the variation in species composition.  As with the 2008 

CCA, assuming that restoration of wetlands progresses in a linear path, restored wetlands 

do not appear to be on a trajectory to reach reference wetland status/ condition.  

Reference, restored, and agricultural land use wetlands are associated with differing plant 

species as well as differing plant guilds.  Reference wetlands are highly associated with 

wet prairie perennials such as Leersia oryzoides (ricecut grass), Vernonia fasciculate 

(prairie ironeweed), and deep emergent perennials such as Schoenoplectus acutus 

(hardstem bulrush) and Schoenoplectus heterochaetus (softstem bulrush).  Restored 
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wetlands are associated with mudflat annuals such as Echinochloa crus-galli (barnyard 

grass), Coreopsis tinctoria (golden tickseed), E. acicularis (needle spikerush), Hordeum 

jubatum (foxtail barley), Amaranthus rudis (redroot amaranthus) and a shallow emergent 

perennials E. compressa (common spikerush).  Agricultural wetlands are associated with 

3 species of management concern Typha angustifolia (narrowleaf cattail) a deep 

emergent perennial, and Scirpus fluviatilis (river bulrush), and P. arundinacea (reed 

canarygrass) shallow emergent perennials. 

Age since restoration 

 There was no association between restoration time and species richness for 2008 

(F = 0.18, P = 0.68) and 2009 (F = 1.43, P = 0.26).  In 2008, newly restored wetlands 

averaged 42 species and older restored wetlands averaged 45 (F = 0.43, P = 0.53).  In 

2009, newly restored wetlands averaged 43 species (reference for the same year averaged 

40 species) and older restored wetlands averaged 57 species.  There was no difference in 

species richness among newly restored and older restored wetlands (F = 2.56, P = 0.14).   

 

DISCUSSION 

 Sediment removal along with passive revegetation in the RWB does not support 

the efficient-community hypothesis that restored wetlands will resemble reference 

conditions following restoration.  Restored wetlands within the RWB had similar plant 

community characteristics (e.g., species richness) compared to reference wetlands (except 

for the number of annuals, and composition of annuals and perennials in 2009), however 

the plant guilds and species associated with restored wetlands differ from those found at 

reference wetlands.  These results indicate that examining restoration success based 

solely on plant community characteristics (e.g. species richness, proportion of natives) 
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may not be the best way to examine relative differences or similarities between restored 

and reference conditions because, restored wetlands seldom reach reference wetland 

status outside general plant community characteristics (Seabloom and van der Valk 2003; 

Gutrich et al. 2009). 

Within the Great Plains, annual precipitation is highly variable and has profound 

effects on wetland hydroperiod and therefore wetland plant communities (Smith and 

Haukos 2002).  However, in the RWB, regardless of differences in rainfall among years 

(2008 had nearly twice the precipitation compared to 2009), the plant guilds and species 

associated with each land use treatment did not vary.  Restored wetlands are highly 

associated with mudflat annuals and are missing wet prairie and deep emergent 

perennials that are associated with reference wetland conditions, similar to results found 

by Galatowitsch et al 2006 in prairie potholes.  This may suggest that precipitation has 

little association with the differing plant guilds and species found between reference and 

restored wetlands within the RWB (or water depth since there was no difference among 

land use treatments) and other factors such as perennial plant species dispersal limitations 

(O’Connell et al. 2011), limited seed bank availability following sediment removal (see 

chapter 2), age since restoration, and/or management activities may be driving the 

differences in plant guild and species difference between restored and reference wetlands. 

In many recently restored wetlands, species richness and diversity is often higher 

than in reference wetlands (Gutrich et al. 2009) consistent with our findings for the RWB 

in 2009.  This may be attributed to wetland habitats present.  A greater number of habitats 

present should correspond to an increase in species richness (MacArthur and Wilson 

1967; Rosenzweig 1995).  Up to five different plant zones can be found within playas of 
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the RWB (Gilbert 1989), however, playas in cropland typically had only one or two 

zones present (based species associated with RWB wetland habitats (Gilbert 1989)).  

Loss of plant zonation in wetlands situated within a cropland landscape can be attributed 

to wetland sedimentation (Gleason and Euliss 1998).  For example, increased sediment 

loads can decrease playa volume, spreading water over the landscape and decrease the 

hydroperiod (Luo et al. 1997).  This results in a loss of wetland zonation and a decrease 

in the number of possible wetland plant species present.  In addition, nutrients carried in 

by sedimentation can increase species such as P. arundinacea, that can exclude other 

species from becoming established.  

An area of concern regarding wetland restoration is that these sites may be more 

susceptible to reinvasion by exotic species.  Native plant diversity may have little 

influence on initial exotic species establishment in recently restored wetlands, because 

habitats most suitable for native species establishment may also provide conditions most 

suitable for invasion (Mathews et al. 2009b).  For example, the removal of sediment can 

create hydroperiods similar to reference wetlands, however the soil disturbance created 

through sediment removal causes a disturbance regime suitable for exotics.  In the RWB, 

restored wetlands contained the least coverage of exotic species as well as the greatest 

ratio of native to exotic species between the three land use treatments in 2008.  However, 

in 2009, restored wetlands contained more coverage of exotics than reference wetlands 

and 4 times the coverage of exotics from the previous year, but still contained the greatest 

native to exotic species ratio among all land use treatments.  Discrepancies between years 

for restored wetlands may partially be due to the amount of E. crus-galli.  There was an 

11% increase in the coverage of E. crus-galli from 2008 to 2009 in restored wetlands.  In 
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addition, E.crus-galli accounted for over 81% of exotic cover in restored wetlands in 

2009.  Echinochloa crus-galli is federally listed as an exotic species for this region 

(USDA 2010); however, wetland managers in many areas promote the growth of this 

species through moist soil management for waterfowl.  When we examined species of 

management concern, (exotic species coverage along with coverage of S. fluviatilis and 

P. arundinacea) there was no difference between reference and restored wetlands and 

agricultural wetlands contained 3 times the coverage in 2008 and 2 times the coverage in 

2009 compared to restored wetlands; agricultural wetlands contained 4 times the amount 

compared to restored wetlands, in 2009, if E. crus-galli is not considered exotic.  This 

may indicate that sediment removal is removing species of management concern 

(Constance et al. 2007), exotic species are not persisting in the seed bank (see chapter 2), 

or these species were not present in the seed bank prior to sedimentation (see chapter 2). 

Unlike plant community characteristics that can be highly variable between years, 

CCA results depict restored wetlands having plant guilds and species independent of 

reference and agricultural land use for both years.   Constrained ordination possibly 

provides a more consistent way in determining if restored wetlands resemble reference 

wetland conditions.  In addition, if we assume that restoration continues on a linear path 

towards reference condition, restored wetlands do not appear to be on a trajectory to 

reach reference wetland status.  The differing plant guilds and species among land use 

treatments may be attributed to several causes:   

Reference wetlands may not be indicative of historic conditions.  The Rainwater 

Basin is heavily cultivated (USDA 2002) and there likely have been anthropogenic 

impacts that have occurred in reference wetlands.  The HGM protocol used to select 
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reference wetlands takes into account the best functioning wetlands which removes the 

difficulty in defining wetlands that resemble presumed pre-settlement conditions (White 

and Walker 1997).   In this case, restored wetlands may be more representative of historic 

conditions rather than reference wetlands that were chosen based on functioning ability 

rather than solely on plant communities, but further investigation is needed.  However, 

with reference wetlands having an established perennial plant community and a low 

composition of exotics, reference wetlands not being indicative of historic norms is most 

likely not the case (see below). 

Restored wetlands have not had the time to develop perennial plant communities 

associated with reference conditions.   With wetland mitigation projects, 3 – 5 year 

monitoring periods are usually used to monitor vegetation success (Mitsch and Wilson 

1996, Breaux and Serefiddin 1999), especially in terms of species richness.  However, 

this time frame may not be adequate for restored wetlands to develop the perennial guilds 

and species associated with the reference conditions (Mitsch and Wilson 1996).  If we 

use Pianka (1970) loosely associated scheme that annuals are r-selected and perennials 

are k-selected, restored wetlands also contain a greater composition of r-selected species.  

r-selected species produce greater seed densities and have better dispersal mechanisms 

than most k-selected species and are thus more easily dispersed.  With a lack of k-

selected species associated with restored wetlands, this may indicated that restored 

wetlands have not had time to develop k-selected plant species that are associated with 

reference wetlands, k-selected species are not reaching restored wetlands, or that r-

selected species are preventing k-selected species from becoming established in numbers 

to reduce r-selected species (Pollock et al. 1998).  In addition, lack of anthropogenic 
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disturbance (Hobbs and Huenneke 1992) within reference wetlands may make 

establishment of exotic (r-selected) species difficult; since K-selected species are superior 

competitors in crowded niches making it difficult for exotics and r-selected species to 

become established. 

Species richness in restored sites has been shown to peak within the first few 

years after restoration (Campbell et al. 2002) and often exceeds reference wetlands 

(Mathews et al. 2009a).  However, our results indicate that restored wetlands are most 

similar to reference condition, in terms of species richness, within the first 6 years 

following restoration.  Older restorations (7-12 years in age) contained, on average, 16 

more species than reference wetlands.  These results indicate that short-term, rapid 

monitoring can provide results that are not indicative of the long term response of the 

wetland (Mitsch and Wilson 1996). 

Restored wetlands are not on a reference wetland trajectory.  Following sediment 

removal, the buried seed bank prior to impact can aid restoration (Weinstein et al 2001); 

however restored wetlands may be developing differing plant communities than those 

found at reference wetlands, similar to results found by Campbell et al. (2002).  CCA 

results depict that restored wetlands of the RWB are not acting as intermediates (if 

restoration follows a linear path) between reference and agricultural land use conditions, 

indicating that restored wetlands may never reach reference land use conditions in terms 

of plant species composition.  This may be the result of seed availability within the seed 

bank following restoration.  Within the RWB, very few plants (97 in 450, 7.62 cm 

diameter soil cores) germinated after a foot of sediment had been removed (see chapter 2) 

indicating that most plant arrive at restored wetlands via dispersal mechanism 
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(Galatowitsch and van der Valk 1996).  However, dispersal limited perennial plant 

species may not be reaching restored wetlands within the RWB (O’Connell et al. 2011).  

This is likely the result of restored wetlands being situated within a heavily cultivated 

matrix, playa wetlands being hydrologically isolated from other wetlands, and few 

reference (standard) wetlands remaining (O’Connell et al. 2011).  With all of these 

factors, obtaining species associated with reference conditions may prove difficult 

(Seabloom and van der Valk 2003) and reseeding may be needed to recover missing 

guilds. 

Management activities are preventing restored wetlands from reaching reference 

status. 

Many restored and reference wetlands of the RWB are often periodically managed 

through grazing (Davis and Bidwell 2008), artificial flooding, prescribed burning 

(Brennan et al. 2005), and/or disking (Davis and Bidwell 2008).  These management 

activities play a role in determining the plant communities present by eliminating non-fire 

tolerant vegetation, reducing species coverage of plants most palatable through grazing, 

providing niches where less competitive species can establish, and promoting increased 

species richness by eliminating monotypic stands of vegetation.  However, reference and 

restored wetlands may respond differently to these management activities.  For example, 

reference wetlands that have established perennial plant communities, many management 

activities help to reduce monotypic species cover.  In restored wetlands where perennial 

plant species (or guilds) may not have become established or are in the beginning stages 

of becoming established, management activities may prevent perennial plant species 

establishment by providing open niches for annual plant species.  In addition, activities 
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such as disking followed by flooding can eliminate the germinability of perennial plant 

seeds from the seed bank.  Conversely, management activities can also increase species 

richness and reduce exotic cover (Strykstra et al 1996) and long term restoration success 

likely depends on these management practices (Klimkowska et al. 2007). 

 

CONCLUSION 

 The efficient-community hypothesis is not supported in restored playas of the 

RWB.  Restored and reference wetlands within the RWB are associated with differing 

plant species and guilds.  Restored wetlands are dominated by mudflat annuals and are 

missing the wet prairie and deep emergent perennials that are associated with reference 

wetlands. However, restored wetlands may never establish the plant communities 

associated with reference wetland conditions due to a heavily fragmented landscape, 

hydrologic isolation, and poor dispersal ability of some perennial plant species.   

Reseeding may be needed to establish missing guilds in restored wetlands if  perennial 

seeds are not being dispersed from reference to restored wetlands or are not available 

within the seed bank following initial restoration.  In addition, when comparing wetland 

plant community characteristics (e.g., species richness), results can vary from year to year 

based on climatic conditions.  However, the plant species and guilds associated with 

wetland land use types remained constant between years.   
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Figure 1.1 Canonical Correspondence Analysis (CCA) biplot of 2008 plant species and 
wetland land use treatments for Rainwater Basin playas.  Inclusion of only species that 
occurred in at least three percent abundance are shown.  Abbreviations: REF, reference 
wetlands; RES, restored wetlands; AGR, wetlands situated in an agricultural landscape.  
Species were indicated by the first four letters of the genus and species names 
respectively.  Species symbols indicate guild classification.
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Figure 1.2 Canonical Correspondence Analysis (CCA) biplot of 2009 plant species and 
wetland land use treatments for Rainwater Basin playas.  Inclusion of only species that 
occurred in at least three percent abundance are shown.  Abbreviations: REF,  reference 
wetlands; RES, restored wetlands; AGR, wetlands situated in an agricultural landscape.  
Species were indicated by the first four letters of the genus and species names 
respectively.  Species symbols indicate guild classification. 
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Table 1.1: Plant community characteristics by land use treatments from wetlands sampled in the Rainwater Basin during the 
2008 field season. 
  Reference Restored Agriculture 

Mean SE Mean SE Mean SE 
F-

Value1 
K-S 

Value2 
P-

Value 

Species Richness 38.42A 1.53 42.82A 2.37 23.91B 1.64 30.03 <0.001 

Annuals Species 10.83A 0.9 11.36A 0.86 7.64B 0.96 5.28 0.011 

Perennial Species 27.58A 1.48 31.45A 1.72 16.09B 1.73 25.41 <0.001 

Native Species 31.08A 1.27 35.73A 2.24 18.82B 1.29 30.21 <0.001 

Exotic Species 7.33AB 0.61 7.09B 0.52 5.00A 0.8 4.22 0.02 
Proportion of Annuals 0.071 0.013 0.093 0.022 0.115 0.049 0.6 0.743 
Proportion of Perennials 0.776 0.044 0.689 0.045 0.699 0.069 2.79 0.248 
Proportion of Natives 0.772 0.042 0.742 0.055 0.669 0.049 1.31 0.283 
Proportion of Exotics 0.075 0.022 0.04 0.007 0.146 0.041 4.68 0.1 

Proportion of Sp. Mgmt Concern 0.227A 0.051 0.163A 0.028 0.481B 0.061 12.53 0.002 
1 If data was normally distributed, an ANOVA was used. 
2 If data was not normally distributed, a Kruskal-Wallis test was used. 
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Table 1.2: Average water depth and max water depth by land use treatments from wetlands sampled in the Rainwater Basin 
during the 2008 and 2009 field seasons 
  Reference Restored Agriculture 
2008 Sampling Season Mean SE Mean SE Mean SE F-value P-value 
Average water depth (cm) 15.39 3.41 23.78 4.3 2.68 5.39 1.14 0.3329 
Max water depth (cm) 24.85 5.17 35.57 6.05 7.21 6.79 0.8 0.458 

2009 Sampling Season 
Average water depth (cm) 4.73 2.57 5.72 2.55 1.53 1.59 1.06 0.3572 
Max water depth (cm) 7.4 4.33 12.13 5.31 1.95 2.03 1.78 0.1854 
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Table 1.3: Plant community characteristics by land use treatments from wetlands sampled in the Rainwater Basin during the 
2009 field season. 
  Reference Restored Agriculture 

Mean SE Mean SE Mean SE 
F-

Value1 
K-S 

Value2 P-Value 

Species Richness 40.09A 2.61 49.36A 4.91 25.50B 3.01 12.37 <0.001 

Annuals Species 15.64A 1.61 22.00B 2.34 11.92B 1.31 9.04 <0.001 

Perennial Species 24.45A 1.62 26.45A 3.36 13.58B 1.97 9.59 <0.001 

Native Species 30.91A 2.02 38.82A 3.81 18.25B 2.40 15.10 <0.001 
Exotic Species 9.18 1.14 10.55 1.24 7.25 0.89 2.58 0.092 

Proportion of Annuals 0.281A 0.050 0.498B 0.055 0.200A 0.049 9.84 <0.001 

Proportion of Perennials 0.675A 0.053 0.417B 0.072 0.695A 0.086 4.96 
Proportion of Natives 0.899 0.018 0.745 0.077 0.734 0.075 6.00 0.050 
Proportion of Exotics 0.057 0.013 0.170 0.048 0.161 0.038 6.00 0.045 

Proportion of Sp. Mgmt Concern 0.207A 0.046 0.244A 0.046 0.453B 0.059 7.500 
1 If data was normally distributed, an ANOVA was used. 
2 If data was not normally distributed, a Kruskal-Wallis test was used. 
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CHAPTER II 
 

 

SEED BANK REPONSES TO WETLAND RESTORATION: DO RESTORED 

WETLANDS RESEMBLE REFERENCE WETLAND CONDITIONS FOLLOWING 

SEDIMENT REMOVAL? 

 

ABSTRACT 
 
Sedimentation and alterations of natural hydroperiods from watershed cultivation have 

affected most depressional wetlands in the Great Plains.  This can result in altered plant 

community structure through changes in water availability and depth as well as burial of 

seed banks.  The vegetation and seed banks of 15 wetlands were sampled within the 

Rainwater Basin Region of Nebraska.  Our objectives were to:  (1) compare wetland seed 

bank communities among wetlands with different watershed land uses (reference, 

restored and impacted by watershed cultivation); (2) determine the available seed bank 

following sediment removal and establish if wetland zonation occurs in the deeper 

sediment layer of pre-scraped cropland wetlands; and (3) determine the similarity 

between extant vegetation and the seed banks for each wetland land use treatment.  There 

were no significant differences in seed bank species richness and the number and 

composition of annual, perennial, native, or exotic species among reference, restored, and 

cropland playas.  Restored wetlands had a greater number of upland species germinate 
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from the surface soil seed bank compared to reference and crop land use playas.  

Availability of seeds after 30 cm of soil was removed (to simulate available seed bank if 

the wetland was to be restored) in crop land use wetlands was low (2 - 52 seeds/ wetland) 

making determination of wetland zonation difficult.  Reference wetlands had the highest 

similarity between seed bank species and extant vegetation.  Sediment removal appears to 

be successful in removing weedy and exotic species from the seed bank; however, the 

seed bank is not the primary source for playa wetland revegetation.  Restored and 

reference wetlands have similar seed bank community characteristics (i.e., richness) 

however, each wetland land use treatment was associated with differing plant species and 

plant guilds. 

 

INTRODUCTION 

Sedimentation from conversion of native grassland watershed to cropland is the 

largest immediate threat to the continued existence of properly functioning depressional 

wetlands within the Great Plains (Luo et al. 1997, 1999, Gleason et al. 2003, Tsai et al. 

2007).  However, recently there has been increased effort to restore depressional wetlands 

that provide key ecosystem services such as nutrient retention, binding of pesticides, 

groundwater recharge, and sites of biodiversity provisioning (Smith et al. 2011a).  

Restoration of these wetlands often involves sediment removal to restore the wetland’s 

natural hydrology (LaGrange 2010).  However, the importance of existing seed banks in 

wetland revegetation after sediment removal has received little study. 

Seed banks provide information on past vegetation (Adams and Steigerwalt 

2008), distribution and relative abundance of species (Smith and Kadlec 1983, Haukos 
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and Smith 1993), and regeneration potential (Hopfensperger 2007).  The seed bank 

composition of wetlands, along with hydrologic conditions, natural disturbance, and 

management activities aid in determining the vegetation that develops each year.   

However, excessive sediment loads resulting from watershed cultivation can result in 

altered plant community structure through burial of seed banks (Jurik et al. 1994, Luo et 

al. 1997, Gleason et al. 2003) and changes in water availability and depth of flooding 

(Gleason and Euliss 1998). 

Playa wetlands are the lowest point within their individual watersheds and are 

therefore highly susceptible to sedimentation in cultivated landscapes (Luo et al. 1997).  

Increased sediment loads within these wetlands bury hydric soils, reduce volume 

(resulting in a loss of wetland zonation), and shorten hydroperiods (Tsai et al. 2007).   

The decreased ponding time can result in reductions of hydric vegetation germinating 

from the wetland seed bank (Battaglia and Collins 2006).  In addition, increased nutrients 

carried in with cropland sediment can promote invasive species (Zedler and Kercher 

2004), many which form dense monotypic stands (i.e., Phalaris arundinacea, Typha 

angustifolia) that can prevent the penetration and germination of seeds through dense 

litter layers (Vaccaro 2005).  This causes seed bank communities to differ greatly from 

the extant vegetation (During and Willems 1984). 

Removal of sediment from cropland wetlands can restore the natural hydrology 

(Verhagen et al. 2001), lower nutrient availability (Klimkowska et al. 2007), eliminate 

persistent pesticides (Kiehl and Wagner 2006), remove established weedy and invasive 

species from the seed bank (Zedler and Kercher 2004, Bakker et al. 2005, Constance et 

al. 2007), remove existing established vegetation that prevents the seed bank from 
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contributing to the development of standing vegetation (Bekker et al. 2000, Kiehl et al. 

2006), and restore ecosystem function (Odum and Barrett 2005).  Following sediment 

removal to restore wetland hydroperiod, wetlands are allowed to self-design.  Wetland 

self-design relies on recruitment from the seed bank and natural dispersal (following 

restoration of hydrology and geomorphology) as two mechanisms responsible for the 

passive reestablishment of depressional wetland vegetation (Galatowitsch and van der 

Valk 1996).  Self-design allows for plants to self-assemble based on the new hydrologic 

conditions; since hydrologic conditions primarily determine wetland plant species 

composition (Mitsch et al.1998, Weinstein et al. 2001).  Previous studies have examined 

seed availability following sediment removal, but no study has shown if zonation occurs 

within the deeper sediment layer of impacted wetlands prior to sediment removal and 

restoration of hydrology.  Depending on time since sediment accumulation, the persistent 

seed bank of impacted wetlands may exhibit remnants of vegetative zonation that has 

been removed due to sedimentation.  This may allow us to determine the wetland zones 

and vegetation communities that were present prior to impact from sedimentation. 

Therefore, our objectives were to: (1) compare wetland seed bank communities 

among land use treatments (reference, restored and impacted by cultivation) to determine 

if restored wetland seed banks resemble reference wetlands more than their previous 

cropland condition; (2) determine the available seed bank following sediment removal; 

and establish if wetland zonation occurs within the deeper sediment layer of post-

sediment removed cropland wetlands, and (3) determine the similarity between the seed 

bank community and extant vegetation. 
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METHODS 

Study Site 

The Rainwater Basin (RWB) encompasses 15,907 km2 and includes all or parts of 

21 counties in the Central Loess Plains of south-central Nebraska (LaGrange 2005).  The 

area is named for its abundant natural wetlands that formed where clay-bottom 

depressions catch and hold the only two inputs of water; precipitation and run-off 

(Stutheit et al. 2004).  Annual precipitation averages 460 mm in the western portion of 

the region and 710 mm in the eastern portion; evapotranspiration generally exceeds 

precipitation (Stutheit et al. 2004).  Within this region, playa wetlands are the most 

notable hydrogeomorphic feature on the landscape.  Playas range from 0.1 ha to 1,000 ha 

in size (Kuzila 1984) and are defined by the presence of Massie, Scott or Fillmore soil 

series (Stutheit et al. 2004).  The area was originally mixed-grass prairie in the western 

RWB and tallgrass prairie in the eastern region (Kaul 1975).  Presently the region is 

intensively cultivated with corn and soybeans as the dominant crops and domestic 

livestock graze most uncultivated areas. 

Fifteen wetlands were sampled among three wetland land use treatments: 

reference, cropland, and restored.  Reference wetlands were selected using the 

hydrogeomorphic approach (Brinson 1993) by the Nebraska Game and Parks 

Commission (NGPC) and represented the most highly functioning wetlands within the 

region (Stutheit 2004).  Reference wetlands have had no prior physical manipulation to 

the basin or water levels, vegetation with little to no invasive species problems, an 

unmanipulated watershed, and hydric soils present match wetland type (e.g., semi-
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permanent, seasonal, temporary).  The 5 best reference wetlands from the HGM study 

(Stutheit et al. 2004) were selected for this study. 

Cropland wetlands were surrounded by crop production on at least two sides of 

the wetland.  All sites had upland sediments covering hydric soils (Smith et al. 2011b). 

Restoration of cropland wetlands has been performed by numerous conservation 

partners.  Each of these restoration sites was at one time impacted by cropping.  Restored 

wetlands had an average of 30.4 cm of sediment removed from the center and then were 

graded out to an average depth of 10.6 - 15.2 cm around the perimeter.  Following 

sediment removal, wetlands are allowed to self-design.  Within the RWB, 13 wetlands 

have had sediment removal across the entire basin.  From these 13 wetlands, 5 were 

randomly chosen for the study. 

Soil Seed Bank Sampling 

Soil cores were taken from 5 wetlands of each land use treatment in March 2009.  

At each wetland, 10, 1m2 plots were randomly placed across the length of the wetland 

(basin edge to basin edge).  Within each 1m2 plot, 9, 7.62 cm diameter soil cores were 

taken to a depth of 5 cm for a total of 90 cores per wetland.   Soil cores from each plot 

were homogenized (ter Heerdt et al. 1996).  For cropland wetlands, an additional 10 

sample plots with 9 cores per plot were taken at each wetland after 30.4 cm of soil had 

been removed to simulate the seed bank that would be available post sediment removal.  

Samples were stored at 4oC prior to processing (Boedeltje et al. 2002). 

Concentrating Samples 

Each soil sample was handled according to the concentrated-emergence method 

(ter Heerdt et al. 1996).  Samples were washed with water first through a coarse sieve to 
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remove coarse debris (rhizomes, roots, and plant matter) and then through a fine 0.2 mm 

sieve to remove clay and silt. 

Germination Experiment 

Planting trays (21.6 x 30.4 cm) were filled with an equal mixture of sterilized 

sand and potting soil (3-4 cm deep).  The sand-soil mixture was covered with 1 cm of 

sterilized sand to prevent algal blooms (Boedeltje et al. 2002).  The concentrated seed 

samples from the fine sieve were divided in half and spread in a thin layer no more than 

5mm thick (ter Heerdt et al. 1996) on top of the 1 cm of sand in two different planting 

trays.  One planting tray was then placed in a submerged setting (4 cm of standing water) 

and the other in a moist soil setting and arranged randomly in the Oklahoma State 

University greenhouse to account for differing germination requirements of wetland 

species (Smith and Kadlec 1983).   

The germination experiment was conducted from 7 January to 7 May 2010 in a 

controlled greenhouse with temperatures ranging from 15oC to 25oC, consistent with the 

temperature averages for the growing season in RWB NE.  A 15:9 hr photoperiod was 

maintained throughout the germination period with 400 W sodium and metal halide 

overhead lights.  The moist soil treatment trays were watered daily and the submerged 

treatments were refilled as needed to account for evaporative water loss.  Seedlings were 

removed within one week of germination and identified.  All seedlings that could not be 

identified within the first week of germination were transferred to separate pots and were 

grown until identification was possible.   

Nomenclature follows Kaul et al. (2006) and plants were classified as perennial or 

annual and as exotic or native based on Flora of the Great Plains (1991) and USDA 
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PLANTS database (USDA & NRCS 2010).  Each plant was assigned a region 5 (Central 

Plains) wetland indicator status (e.g., obligate, facultative, upland) according to the 

USDA PLANTS database (USDA & NRCS 2010).  Plant species were placed into guilds 

with incorporated life history traits (annual or perennial) and water tolerance 

(Galatowitsch 2006; O’Connell et al. 2011) (Appendix B).  Perennial guilds in order of 

increasing water tolerance: wet prairie, sedge meadow, shallow emergent, deep emergent, 

and submerged.  Annual guilds in order of increasing water tolerance: mudflat annuals 

and shallow emergent annuals.  For species not listed in Galatowitsch (1996) or 

O’Connell et al. (2011) we categorized them using field observations, Flora of Nebraska 

(Kaul et al. 2006), and life history designation. 

Vegetation Sampling 

Wetlands were surveyed using step-point sampling (the nearest species to the end 

of each 1 m step recorded; Bonham 1989) along two parallel transects to determine plant-

species occurrence.  Transects ran the length of the longest basin axis, usually northwest 

to southeast, starting and ending at the basin edge and passing through the center of the 

wetland.  Basin edge was determined by examining changes in soil color (Luo et al. 

1997) and vegetation. We surveyed each wetland once a month from June-August to 

account for cool- and warm-season species occurrence, high species turnover, and 

hydrologic variability (Smith and Haukos 2002). 

Data Analysis 

Objective 1: To compare wetland seed bank communities among land use 

treatments, we grouped plant species into obligate (OBL) and facultative wetland 

(FACW) categories (67%-100% probability of occurring in a wetland) as “wetland” 
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species and facultative upland (FACU) and upland (UPL) categories (67%-100% not to 

occur in wetlands) as “upland” species (de Steven et al. 2006).  Facultative (FAC) species 

were categorized as species equally likely to occur in wetland or upland habitats and were 

not included in “wetland” or “upland” analyses.  Germinating seed density among 

treatments was expressed as the number of seeds per square meter in a layer of soil 5 cm 

thick.  Separate analyses of variances (ANOVAs) were used to compare seed bank 

species richness, number of annual, perennial, native, exotic, wetland, upland, and FAC 

species and the composition of each among wetland land uses.  The density of 

germinating seeds from each treatment (moist soil or submerged) among land use 

treatments were analyzed with separate ANOVAs.  The 7 species (Alisma triviale, 

Coreopsis tinctoria, Eleocharis palustris, Polygonum pensylvanicum, Sagittaria spp., 

Schoenoplectus tabernaemontani, and Typha angustifolia) with the greatest germinating 

seed densities among treatments (the species had to occur in at least one sample in each 

land use category) were analyzed with an ANOVA.   If an ANOVA factor (e.g., richness) 

was significant (P<0.05), a LS Means test was performed to determine significance 

among land uses.   

Canonical Correspondence Analysis (CCA) (Palmer 1993) was used to examine 

relationships among seed bank species and land use treatments.  Results of the CCA were 

plotted using biplot scaling, rare species were down weighted, and a Monte Carlo 

permutation, using 999 permutations, was used to identify axes with significant 

eigenvalues and species-environment correlations. 

Objective 2: To determine the available seed bank following sediment removal 

and establish if wetland zonation occurs within the deeper sediment layer of post-
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sediment removed cropland wetlands, a χ
2 was used to determine differences in 

frequency of wetland (OBL and FACW) and upland (FACU and UPL) germinating 

plants by wetland zone for the deeper sediment layer (30.2 cm) of agricultural wetlands.  

We divided the wetland into three zones: zone 1 corresponded with the transition and 

outer marsh zone, zone 2 with the persistent emergent zone, and zone 3 with the inner 

marsh zone (Gilbert 1989).   

Objective 3: Sorenson index was used to calculate the similarity between the seed 

bank community and extant vegetation among land use treatments and for similarity 

between agricultural land use pre- and post-agricultural sediment removal 

(Hopfensperger 2007).  An ANOVA was used to compare Sorenson index scores among 

land use treatments. 

 

RESULTS 

Germinating Plant Community Characteristics (Seed Bank) 

There were no differences in species richness, the number of annual, perennial, 

native, and exotic species among wetland treatments (Table 1).  There was no difference 

in the proportion of germinating annuals, perennials, native, and exotic plants among land 

use treatments.  Restored and reference wetlands had similar numbers of upland plant 

species germinate from the seed bank, however, restored wetland had significantly more 

germinating upland species than cropland wetlands (F2,14 = 4.19, P = 0.04).  Restored and 

reference wetlands had a similar proportion of facultative plants from the seed bank, 

however, restored wetland had significantly more facultative plants germinate from the 

seed bank than cropland wetlands (F2,14 = 4.19, P = 0.04) (Fig. 2.1).  There was no 
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difference in the number of wetland species and the proportion of germinating wetland or 

upland plants among land use treatments. 

There was no difference among wetland treatments in the density of seeds from 

the moist soil or the submerged treatments (Table 2.1).  Eleocharis palustris had the 

highest germinating seed densities among all three land use treatments (Table 2.2).  There 

was no difference in the density of A. triviale (F = 3.40, P = 0.07), C. tinctoria (F = 1.48, 

P = 0.27), E. palustris (F = 0.57, P = 0.58), P. pensylvanicum (F = 2.12, P = 0.16),  

Sagittaria spp (F = 0.94, P = 0.16), S. tabernaemontani (F = 0.67, P = 0.53) and T. 

angustifolia (F = 2.01, P = 0.18) among land use treatments.  Polygonum amphibium was 

a common species found in the vegetation of reference and restored wetlands but was not 

represented within their seed banks (Table 2.3).  Scirpus fluviatilis was not detected in the 

seed banks of any land use treatment and Phalaris arundinacea seed bank densities were 

low compared to the presence of P. arundinacea found in the standing vegetation of 

cropland wetlands. 

CCA Results 

 Axis one accounted for 17.6% of the variation between seed bank species and 

land use treatment (F = 2.558; P = 0.001) (Fig. 2.2).  Axis two accounted for 4.8% of the 

variation between seed bank species and land use treatment.  Land use treatments 

explained 60.9% of the variation in species composition.  Restored wetlands do not 

appear to be intermediates between reference and cropland wetlands as different plant 

species and guilds were associated with each land use treatment.  Restored wetlands were 

associated with mudflat annuals such as Ambrosia grayii, Chenopodium leptophyllum, 

Lepidium densiflorium, and Polygonium ramosissium; reference wetlands were 
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associated with shallow emergent perennials such as Sparganium eurycarpum and 

Eleocharis erythropoda, and wet prairie perennials such as Leersia oryzoides; cropland 

wetlands were associated with a deep emergent invasive perennial, Typha angustifolia, a 

mudflat annual, Erechtites hieraciifolia, and wet prairie perennials Polygonium 

amphibium and  Eleocharis compressa. 

Available Seed Bank and Wetland Zonation 

Only 97 plants comprising 14 species germinated from the deeper sediment layer 

of cropland wetlands, 47 times less (seed germinations) than the upper impacted layer.  

Of the 97 individuals, 40% were E. palustris and 20% were Schoenoplectus 

tabernaemontani (Table 2.2).  There was no difference in the frequency of germinating 

wetland plants or upland plants among the three wetland zones (transition/outer marsh 

zone, emergent zone, inner marsh zone) (χ
2 = 1.43, df = 2, P = 0.4869). 

Sorenson similarity index comparisons 

There was no difference in similarity between the seed bank and extant vegetation 

among the three land use treatments (F = 1.28, P = 0.3159) (Table 2.4).  All species 

found in the seed bank were observed in extant vegetation surveys. There was moderate 

similarity (48%) between the exposed and deeper (30 cm) sediment layer of agricultural 

wetland seed banks.   

 

DISCUSSION 

Previous studies have shown that 3-5 years post-restoration is not long enough to 

measure the restoration success of a wetland (Mitsch and Wilson 1996, Breaux and 

Serefiddin 1999, NRC 2001), however, out study indicates this may be attributed to the 
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wetland plants that are associated with reference wetlands are not found within the seed 

bank of restored wetlands.  Furthermore, basing restoration success solely on plant 

community characteristics (e.g., richness) may not be the best approach in evaluating 

restoration success since the plant communities associated with restored wetlands seldom 

resemble reference conditions (Seabloom and van der Valk 2003; Gutrich et al. 2009) 

without additional input such as reseeding.  Even though sediment removal along with 

passive revegetation in the RWB can establish plant and seed bank communities that 

have similar overall community metrics (e.g., richness) to reference conditions, the plant 

species and guilds associated with restored wetlands differ from the plant species and 

guilds associated with reference conditions (de Steven et al. 2006; O’Connell et al. 2011).  

Sediment removal of agriculturally impacted wetlands in the RWB appears to 

remove most seeds of strong competitors and/or invasive species from the seed bank.  

However, deeper soil layers often contain little viable seed for plant recolonization 

(Jensen 1998).  Therefore, like prairie pothole wetlands, playas may rely primarily on 

seed dispersal from local wetlands and transport by waterfowl and shorebirds to re-

establish plant populations (Galatowitsch and van der Valk 1996) if reseeding does not 

follow restoration.  However, seed dispersal of perennial plant species between reference 

and restored wetlands is likely limited with the RWB being a heavily fragmented 

landscape due to agriculture (Kocer 2004, Webb et al. 2010), playa wetlands being 

hydrologically isolated (Smith 2003), few intact reference wetlands remaining on the 

landscape, and limited seed dispersal ability of these plants (O’Connell et al. 2011).  With 

over 12 million migrating waterfowl, geese, and shorebirds using the RWB during spring 

migration (Bishop and Vrtiska 2008) avian dispersal may aid in dispersal of perennial 
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plant species associated with reference conditions.  However, the quantity of seeds 

dispersed to restored wetlands from reference wetlands via avian dispersal is likely 

limited especially when cropland playas are the dominant hydromorphic feature on the 

landscape and few true reference wetlands remain. 

 Within the RWB, most restored wetlands are periodically managed (e.g. mowing, 

grazing) to decrease the abundance of invasive species such as Typha and Phalaris 

arundinacea and during drier years, some cropland wetland basins are cultivated.  

Cultivation (Smith et al. 2002), mowing (Reine et al. 2004), and cattle grazing (Sternberg 

et al. 2003) can diminish soil seed banks.  Even though there was no difference in seed 

density among the three land use treatments in our study, cultivation and management 

practices can affect species richness and numbers of seeds within the seed bank (Cardina 

et al. 1991).  The one cropland wetland in our study that was cultivated through the basin 

had the lowest species richness of all wetlands in the study. The two restored wetlands 

that were grazed heavily by cattle the previous year averaged 3 less species and over 3 

times less germinating plants compared to the other three restored wetlands.  Intensive 

grazing regimes in these wetlands may have prevented many plants from reproducing by 

seed.  In contrast, seed density can be positively correlated with wetland management 

(Thompson 1978, Haukos and Smith 1993).  One reference wetland in our study is lightly 

grazed by horses annually.  This wetland contained the greatest density of seeds among 

all restored and reference wetlands and is considered the most highly functioning wetland 

within the RWB.  Even though management practices (such as cattle grazing) may lower 

seed production, management activities can increase standing species richness, reduce 

monotypic vegetation (Tesauro 2001, Kotowski and van Diggelen 2004), and accelerate 
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vegetative succession (Strykstra et al. 1996).  Thus, long term wetland restoration success 

likely depends on these management practices (Klimkowska et al. 2007).   

 The length and depth of inundation of wetlands determines the type of species that 

occur at a wetland (Keddy 2000).  Although rainfall is greater and evapotranspiration 

rates are lesser in RWB playa compared to Southern High Plains (SHP) playas, playas 

from both regions exhibit similar plant community characteristics.  Not unlike vegetation 

of reference playa wetlands of the SHP (Huakos and Smith 1993; O’Connell et al 2011b), 

RWB reference seed banks had a greater proportion of germinating perennials compared 

to annuals.  Also, RWB restored wetland seed banks appear to resemble extant vegetation 

characteristics that are similar to Conservation Reserve Program (CRP) enrolled wetlands 

in the SHP and Wetland Reserve Program (WRP) playa wetlands in the RWB.  Restored 

wetlands of the RWB, CRP playas of the SHP, and WRP playas in the RWB all had 

similar annual to perennial seedbank/extant plant proportions and more upland plants 

occurring within the wetlands compared to reference and cropland wetlands from their 

respected regions (O’Connell et al. 2001).  Rainwater Basin playa wetlands also have 

vegetation characteristics similar to prairie pothole wetlands with the high numbers of 

perennial species that germinated from the seed bank (especially from reference 

wetlands) (Galatowitsch and van der Valk 1996). 

Restored wetlands in our study had a similar proportion of germinating annuals 

and perennials from the seed bank, whereas reference wetlands had a 1:3 ratio of annuals 

to perennials and cropland wetlands had a 1:2 ratio germinate from the seed bank.  This 

may indicate restored wetlands have not had the time to fully recover the perennial 

species that reference wetlands may contain (Mitsch and Wilson 1996) or that 
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disturbance from restoration or management regimes (such as disking) are creating 

conditions more suitable for annual species.  For example, management activities (such 

as disking) followed by flooding can possibly eliminate any perennial species that may 

have arrived at the wetland via dispersal or were present in the seed bank and prevent the 

establishment of these species.  However, similar proportions of germinating annual and 

perennial plants along with their moderate similarity scores in restored wetlands may also 

be attributed to a more even mixture of transient (viability <1 year) and persistent 

(viability >1 year) seeds within the seed bank (Hopfensperger 2007).  Cropland wetlands 

should have had a greater proportion of annual seeds germinating from the seed bank if 

disturbance is a driver of species contributing transient seeds.  However, the presence of 

monotypic stands of perennial plants may have reduced the numbers of these seeds from 

entering the soil column (via thick litter layer) or that these monotypic species have 

persisted in the wetlands long enough for transient seeds to no longer be viable.   

Increased inundation leads to anoxic soil conditions selecting for wetland species, 

whereas decreased ponding can allow upland species to encroach the edges and spread 

inward during dry periods (Smith and Haukos 2002, de Steven et al. 2006).  Removing 30 

cm of sediment from cropland wetlands allows the wetland to pond water for a longer 

duration during the growing season.  However, removing sediment from the center of the 

wetland may cause the perimeter of the wetland to dry faster, earlier, or not to be 

inundated.  This may account for the increased number of upland species and 20% less 

proportion of germinating wetland plants compared to reference and cropland wetlands.  

In addition, restored wetlands also contained a greater proportion of plants with no 

affinity for wetland or upland habitats (FAC species) than reference and cropland 
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wetlands with 50% of these species occurring around the perimeter (transition and outer 

marsh zone) of the wetland.  This may be attributed to the closest seed source around 

restored wetlands being FAC (mud flat annuals) and not FACW or OBL (shallow 

emergent, sedge meadow perennial, and deep emergent perrenial) species or that these 

FACW and OBL plants of reference wetlands not having the dispersal mechanism to 

reach restored wetlands (O’Connell et al. 2011a).  Also, the edge of restored wetlands 

may be dry long enough each season to support FAC and UPL species and may not have 

the germination requirements that are needed for FACW species. 

Large influxes of nutrients from agricultural uplands help to promote 

establishment of native invasive and exotic wetland species such as T. latifolia, S. 

fluviatilus, and P. arundinacea.  Once established, these perennial species form thick 

stands that reduce sunlight penetration to the soil and reduce seedling germination 

(Vaccaro 2005).  This can result in a reduced seed bank contribution to the extant 

vegetation as well as reduced extant vegetation species richness (Bekker et al. 2000).   

This may account for cropland wetlands reduced similarity scored compared to reference 

and restored wetlands.  In addition, some cropland wetlands can be tilled through in drier 

years, further reducing similarity scores by reducing extant vegetation species richness 

through the application of herbicides and the addition of monotypic crops.  Though not 

statistically significant in our study, cropland seed banks contained 19 times the 

composition of germinating exotic species compared to reference wetlands and 4 times 

the germinating composition compared to restored wetlands.  In addition, Typha 

germinated 125 times and 36 times more in cropland wetlands than restored and 

reference wetlands (respectively).  This likely has a significant biological effect on the 
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ecosystem such as food resources for migrating waterfowl.  Within all land use 

treatments, the proportion of exotics that germinated from the seed bank was less than the 

coverage found in the extant vegetation possibly indicating the spread of these species via 

vegetative processes rather than seed production.  

Previous studies have shown that wetland species and dominant perennial grasses 

and sedges are absent from the seed bank following restoration (Galatowitsch and van der 

Valk 1996; de Steven et al. 2006).  However, in the RWB, only perennial grasses were 

absent from the deeper sediment layer; wetland species comprised 93% of the 

germinating species and 40% of germinating plants was the sedge E. palustris.  During a 

2009 survey of a recently restored wetland (less than 6 months after sediment removal) in 

the RWB, sedges and perennial grasses were absent, however, wetlands plants accounted 

for over 90% of the standing vegetation (Beas unpub).  Discrepancies between the 

presence of sedges found in the seed bank of the deeper sediment layer and the standing 

vegetation of a recently restored wetland may be attributed to the environmental 

conditions suitable for germination of these plant guilds not being met (Haukos and 

Smith 1993).  However, the perennial sedges (sedge meadow perennials/ shallow 

emergent perennials) that may be present in the deeper sediment are not establishing at 

the rate or quantity to associate RWB restored wetlands with these species and/or guilds. 

With only 97 individual seeds germinating from the deeper sediment layer (an 

average of 1 seed per every 5 cores), determining whether zonation was present was 

difficult.  The deeper sediment layer had 15 species germinate, similar to species richness 

of restored and reference land use treatments.  This may possibly indicate that prior to 

agricultural practices, these wetlands had similar diversity.  However, removing 30 cm of 
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sediment is often a conservative amount to remove in the RWB.  Written accounts from 

the 1930s indicate that more than 30 cm of sediment was observed piled next to fence 

posts (McMurtrey et al. 1972).  With playa wetlands being the lowest points within a 

closed watershed, they may have experienced sediment loads exceeding those 

documented along fence posts.  In addition, wetland zones present today at crop land 

wetlands most likely do not a line with their historic zones.  Within the RWB, 

agricultural wetlands are, on average, 26 times smaller than their hydric footprint (Smith 

et al. 2011b) leaving only the middle of the wetland remaining.  This may account for the 

reduction in facultative species and facultative upland species largely missing for the 

deeper sediment layer. 

Our study has shown that sediment removal within RWB was successful in 

removing exotic species (e.g., Typha angustifolia, Phalaris arundinacea, Scirpus 

fluviatilis) from the seed bank and having overall seed bank community characteristics 

(e.g., richness) that are similar to reference wetlands.  However, the seed bank species 

and plant guilds that are closely associated with restored wetlands vary from reference 

wetlands.  Restored wetlands ranging in age from 3-6 years post sediment removal may 

not have had enough time to develop the seed bank communities of reference condition, 

however they may never be on a trajectory to reach reference condition.  If this is the 

case, future restorations may need to be seeded to reestablish wet prairie and shallow 

emergent perennials that are missing from the seed bank of restored wetlands. 
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Figure 2.1 Mean wetland and upland plant characteristics among playa land use 
treatments in the Rainwater Basin Region of Nebraska.  Wetland and upland 
characteristics are based on the region 5 wetland indicator status as defined by the 
USDA plant data base. Figure A: number of wetland species (F2,14 = 1.12, P = 
0.3578); figure B: number of upland species (F2,14 =4.89, P = 0.0279); figure C: 
proportion of germinating wetland plants (F2,14 = 15.32, P = 0.0005); figure D: 
proportion of germinating upland plants (F2,14 = 4.89, P = 0.0280); figure E: 
proportion of germinating facultative plants (F2,14 =4.19, P = 0.0400. 
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Fig. 2.2 Canonical Correspondence Analysis (CCA) biplot of seed bank species and 
wetland land use treatments for the Rainwater Basin playas.  Abbreviations: REF, 
reference wetlands; RES, restored wetlands; AGR cropland wetlands.  Species names 
were the first four letter of the genus and species (see Appendix B).  Ambrgray, Chenlept, 
Lepidens, Polyramo, Hordjuba, Runcncu, Solarost, and Asteeric are directly behind RES 
land use; Leeroryz and Eleoeryt are directly behind REF land use; Polyamph, Rumealti, 
Erechier, and Eleocomp are directly behind  AGR. 
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Table 2.1. Plant community characteristics from the germinating seed banks of reference, restored, and agricultural land use wetlands 
in the Rainwater Basin region of Nebraska.  Seed density is expressed as the number of seeds per square meter.  Restored wetlands 
range in age from 3 to 8 years post sediment removal and agricultural land use wetlands were surrounded by crop on at least three 
sides. 
 

  Reference (n=5) Restored (n=5) Agriculture (n=5)     

Characteristics mean SE mean SE mean SE F value P value 

Species Richness 15.80 2.04 17.60 2.14 12.60 2.93 1.39 0.2869 

Number of Annual Species 5.40 0.84 9.00 1.54 6.60 1.89 1.89 0.1927 

Number of Perennial Species 10.40 1.52 8.60 1.25 6.00 1.22 3.40 0.0677 

Proportion of Germinating Annuals 0.27 0.13 0.52 0.10 0.36 0.18 1.00 0.3963 

Proportion of Germinating Perennials 0.73 0.13 0.48 0.10 0.64 0.18 1.00 0.3964 

Number of  Native Species 13.40 1.57 15.00 1.70 10.00 2.42 2.18 0.1554 

Number of  Invasive Species 2.40 0.84 2.60 0.67 2.60 0.76 0.03 0.9715 

Proportion of Germinating Natives 0.99 0.00 0.95 0.02 0.80 0.10 3.40 0.0678 

Proportion of Germinating Invasives 0.01 0.00 0.05 0.02 0.20 0.10 3.39 0.0679 

Density of Seeds from Moist-soil trt 501.10 277.07 560.46 213.08 1933.98 1538.53 0.99 0.4000 

Density of Seeds from Submerged trt 912.57 480.40 657.66 447.40 747.87 522.28 0.09 0.9100 
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Table 2.2. Species from seed bank samples from wetlands sampled from the Rainwater Basin region, NE.  Seed density was estimated 
from basins where each sample was detected. 

               Restored          Reference Cropland (surface) Cropland (30 cm removed) 

 

  
 

  
Mean seed 

density   
Mean seed 

density   Mean seed density 
Mean seed 

density 

Species 
# of 
basin (# seeds/m2) 

# of 
basin (# seeds/m2) 

# of 
basin (# seeds/m2) 

# 
basin (#seeds/m2) 

Abutilon theophrasti 1 2.9 1 2.9 2 14.6 0 0 

Agrostis hyemalis 3 29.2 2 61.2 0 0 0 0 

Alisma trivial 2 128.3 5 119.6 2 2.9 1 2.9 

Amaranthus retroflexus 4 56.9 3 36 4 128.3 3 3.9 

Ambrosia artemisifoliia 5 30.3 4 28.4 1 37.9 0 0 

Ambrosia grayi 1 5.8 0 0 0 0 0 0 

Ammania robusta 4 138.5 2 19 4 15.3 0 0 

Aster ericoides 1 2.9 0 0 0 0 0 0 

Aster lanceolatus 1 2.9 1 2.9 0 0 0 0 

Bacopa rotundifolia 2 11.7 1 14.6 3 16.5 0 0 

Boltonia asteroids 2 52.5 1 67.1 0 0 0 0 

Capsella bursa-pastoris 1 8.7 0 0 1 14.6 0 0 

Carex spp. 4 57.6 3 98.2 2 4.4 2 2.9 

Chenopodium album 3 7.8 1 2.9 2 46.7 2 2.9 

Chenopodium leptophyllum 1 5.8 0 0 0 0 0 0 

Conyza Canadensis 3 4.9 1 2.9 0 0 0 0 

Coreopsis tinctoria 4 498.7 3 362.6 2 4.4 0 0 

Echinochloa crus-galli 2 8.7 2 7.3 3 3.9 0 0 

Eleocharis acicularis 1 303.3 1 1131.5 0 0 0 0 

Eleocharis compressa 0 0 0 0 1 29.2 0 0 
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Table 2.2 (cont.) 
                       Restored          Reference Cropland (surface) Cropland (30 cm removed) 

 

  
 

  
Mean seed 

density   
Mean seed 

density   Mean seed density 
Mean seed 

density 

Species 
# of 
basin (# seeds/m2) 

# of 
basin (# seeds/m2) 

# of 
basin (# seeds/m2) 

# 
basin (#seeds/m2) 

Eleocharis erythropoda 0 0 1 2.9 0 0 1 2.9 

Eleocharis palustris 5 326 5 294 5 1077.8 3 37.9 

Erechtites hieraciifolia 0 0 0 0 1 2.9 0 0 

Hedeoma hispida 1 5.8 0 0 1 5.8 0 0 

Helianthus annuus 1 8.7 0 0 1 14.6 1 2.9 

Hordeum jubatum 1 2.9 0 0 0 0 0 0 

Leersia  oryzoides 0 0 4 24.8 0 0 0 0 

Lepidium densiflorum 1 2.9 0 0 0 0 0 0 

Mollugo verticillata 0 0 1 2.9 1 11.7 0 0 

Pascopyrum smithii 4 2.9 2 8.7 0 0 0 0 

Phalaris arundinacea 0 0 3 15.6 1 52.5 0 0 

Polygonum amphibium 0 0 0 0 1 40.8 0 0 

Polygonum bicorne 3 7.8 1 20.4 3 87.5 2 5.8 

Polygonum pensylvanicum 3 30.1 4 57.6 3 688.2 1 32.1 

Polygonum ramosissimum 3 2.9 0 0 0 0 0 0 

Potamogeton nodosus 0 0 2 7.3 1 5.8 0 0 

Potentilla norvegica 2 43.7 2 2.9 1 35 0 0 

Rorippa palustris 2 45.2 4 40.1 3 45.7 1 2.9 

Rumex altissimus 0 0 0 0 1 2.9 0 0 

Rumex crispsus 2 32.1 3 12.6 0 0 0 0 

Runuculus spp. 1 29.2 0 0 0 0 1 2.9 

Sagittaria spp. 5 28.6 5 80.5 5 252.6 3 4.9 
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Table 2.2 (cont.) 
                       Restored          Reference Cropland (surface) Cropland (30 cm removed) 

 

  
 

  
Mean seed 

density   
Mean seed 

density   Mean seed density 
Mean seed 

density 

Species 
# of 
basin (# seeds/m2) 

# of 
basin (# seeds/m2) 

# of 
basin (# seeds/m2) 

# 
basin (#seeds/m2) 

Teucrium canadense 1 5.8 1 72.9 0 0 0 0 

Trifolium repens 1 5.8 1 2.9 0 0 0 0 

Typha angustifolia 3 26.2 4 5.8 5 578 1 14.6 

Schoenoplectus tabernaemontani 3 112.8 4 196.1 2 196.9 2 29.2 

Solanum rostratum 1 2.9 0 0 0 0 0 0 

Solidago missouriensis 0 0 1 2.9 1 2.9 0 0 

Sparganium eurycarpum 1 2.9 1 40.8 0 0 0 0 
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Table 2.3.  Coverage (%) of most common plant species found in the extant vegetation of 
each land use treatment. 
  Reference Restored Agriculture 
Species mean SE mean SE mean SE 
Ambrosia artemisiifolia 3.50 1.08 5.94 2.99 0.55 0.55 
Echinochloa crus-galli 1.95 1.65 10.59 11.25 1.05 0.55 
Eleocharis compressa 0.16 0.001 7.47 6.87 0.23 0.25 
Eleocharis palustris 2.99 1.45 7.78 4.24 1.90 1.067 
Phalaris arundinacea 6.42 4.93 3.02 1.28 12.21 10.96 
Polygonum amphibium 25.88 4.95 11.38 5.93 22.78 13.60 
Polygonum bicorn 5.98 2.58 9.16 4.65 5.75 3.49 
Scirpus fluviatilis 5.82 3.52 3.24 2.00 17.58 15.80 
Sparganium eurycarpum 4.49 4.04 0.24 0.002 0.001 0.000 
Typha angustifolia 0.79 0.63 0.37 0.36 5.73 4.11 
Zea mays 0.00 0.00 0.00 0.00 9.08 9.91 
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Table 2.4. Average number of species found in the seed bank, aboveground plant 
community, and average Sorenson’s index for each land use condition.  Due to a limited 
amount of seed germinating from the 30 cm layer of cropland wetlands, similarity 
between the exposed sediment layer and 30 cm sediment layer of cropland wetlands was 
not included.  

Average ± SE 

Sorenson's 
Land use Seed bank Vegetation similarity index (%) 
Reference 15.8 ± 2.04 42.2 ± 4.3 40.9 
Restored 16.75 ± 2.55 48.0 ± 8.23 38.3 
Agriculture 12.6 ± 2.93 23.4 ± 4.14 32.7 
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CHAPTER III 
 

 

THE USE OF MODELS TO PREDICT VALUE OF RESTORING PLAYA WETLANDS ON 

WATERBIRD ABUNDANCE DURING SPRING MIGRATION 

 

ABSTRACT 

Spring migratory bird stopover sites are important links between wintering and 

breeding grounds and should provide birds the resources needed for continuing migration 

and reproduction.  Within the Central Flyway, the Rainwater Basin Region of Nebraska 

provides critical stopover habitat, but 90% of the wetlands have been destroyed for 

agricultural practices.  Of the remaining wetlands, most are situated within crop fields 

and have lost much of their function as migratory bird habitat.  Our objective was to use 

models developed by Webb et al. (2010) to determine if restored wetlands, via sediment 

removal, passive revegetation, and installation of an upland buffer, have the potential to 

improve migratory waterbird.  We compared comparing model predictions among 

reference, restored, and non-restored (cropland) wetlands.  Restored wetlands within the 

Rainwater Basin Region were twice the size of reference and cropland wetlands and area 

alone predicted greater abundances of dabbling ducks, diving ducks, and species richness 

relative to cropland and reference wetlands in years of increased precipitation.  However, 

when taking area into account by analyzing wetlands of similar size, there was no 
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significant difference in abundance of dabbling and diving ducks, shorebirds, geese, or 

species richness between reference, restored, and cropland wetlands.  However, restored 

wetlands were predicted to have nearly twice the abundance of dabbling and diving ducks 

as reference and cropland playas, twice as many geese, and contain 5 more 

species of waterbirds compared to reference wetlands.  In years of low precipitation, 

there were no statistical differences in abundance of dabbling ducks, diving ducks, 

shorebirds, geese, or species richness between the reference, restored, and cropland 

wetlands.  However, restored wetlands were predicted to have the greatest abundance of 

dabbling ducks, diving ducks, shorebirds, and geese among the three land use treatments.  

In years of low precipitation, reference and restored wetlands are the primary habitat 

available for waterbird use during migration because most cropland wetlands are dry.  

Models predict restored wetlands within the Rainwater Basin will provide improved 

habitat needed for migratory waterbirds during spring migrations and are most critical in 

drier years when upwards of 90% of cropland wetlands do not hold water. 

 

INTRODUCTION 

 Migratory stopover sites provide long-distant migrants a critical link between 

wintering and breeding grounds by providing vital habitat that is fundamental for 

continuation of migration and reproduction (Myers et al. 1987; LaGrange and Dinsmore 

1998; Farmer and Parent 1997; Davis and Smith 1998).  Within the U.S. Great Plains, 

agricultural practices have altered wetland habitats to permit crop production (Bolen et al. 

1989; Samson and Knopf 1996).   These practices have resulted in increased wetland 

sediment loads and pose as the largest immediate threat to the continued existence of 
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properly functioning depressional wetlands (Luo et al. 1997, 1999, Gleason et al. 2003, 

Tsai et al. 2007).  This is especially true in the Rainwater Basin Region (RWB) of 

Nebraska where nearly of 90% of the depressional wetlands have been lost to agricultural 

production (Raines et al. 1990; Stutheit et al. 2004).  The RWB of Nebraska is situated at 

the narrowest point along the Central Flyway and provides stopover habitat for over 10 

million migrating ducks, over 1 million geese, and 38 species of shorebirds every spring 

(Gersib et al. 1992; Jorgensen 2004).    

Although agricultural practices have resulted in the majority of wetland area lost 

within this region, recent efforts have been made to reduce additional wetland loss and 

restore depressional wetlands that provide key ecosystem services such as migratory bird 

habitat (Smith et al. 2011a).  Within the RWB, wetlands are primarily restored through 

removal of sediment from the wetland basin followed by the installation of a buffer 

around the perimeter of the wetland (LaGrange 2005).  Following restoration, wetlands 

are allowed to self-design through recruitment of vegetation from the seed bank and 

dispersal from wind and waterbirds (Galatowitsch and van der Valk 1996; O’Connell et 

al. 2011). 

Because the primary objective of wetland restoration within the RWB is to 

provide habitat for migrating waterbirds, we used models generated by Webb et al. 

(2010) to determine if restoration has the potential to improve migratory waterbird use by 

comparing model predictions for restored wetlands to reference and cropland wetlands.  

Wetland bird models that were tested included: geese, shorebirds, dabbling ducks, diving 

ducks, and species richness (Webb et al. 2010).   
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METHODS 

Study Area 

 The RWB encompasses 15,907 km2 and includes all or parts of 21 counties in the 

Central Loess Plains of south-central Nebraska (LaGrange 2005).  The area was named 

for its abundant natural playas that formed where clay-bottom depressions catch and hold 

water from precipitation and surface water run-off (Stutheit 2004).  Playas in this region 

range from 0.1 ha to 1,000 in size (Stutheit 2004).  Playa formation in this region is not 

entirely known, but likely involved water erosion followed by wind deflation (Kuzila 

1984, Smith 2003).  Playas are defined by the presences of Massie, Scott, and Fillmore 

hydric soil series (Stutheit 2004).  Annual precipitation averages 460 mm in the western 

region and 710 mm in the east; evapotranspiration generally exceeds precipitation 

(Stutheit 2004).  Historically, the RWB was mixed-grass prairie in western region and 

mixed- to tall grass prairie in the eastern region (Kaul 1975), but presently the region is 

dominated by corn and soybeans.  The RWB has been deemed one of the nine areas in 

the contiguous United States with the highest wetland loss (Tiner 1984) and contains one 

of the most threatened and least studied wetland complexes in North America (Smith 

1998). 

Study Sites 

 Thirty-four wetlands were sampled in 2008 and 2009 among three land use 

treatments: reference standard (from here forward known as reference), restored, and 

cropland (defined below).  In 2008, 12 reference, 11 restored, and 11 cropland wetlands 

were sampled and in 2009, 11 reference, 11 restored, and 12 cropland wetlands were 

sampled.  Most wetlands were sampled both years (one reference and one restored 
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wetland was removed in 2009, one agricultural wetland was restored in late 2008, and 

two agricultural wetlands were added in 2009).   

Reference wetlands were selected using the hydrogeomorphic approach (Brinson 

1993) by the Nebraska Game and Parks Commission (NGPC) and represented the most 

highly functioning wetlands within the region (Stutheit 2004).  Reference wetlands have 

had no prior physical manipulation to the basin or water levels, vegetation with little to 

no invasive species problems, an unmanipulated watershed, and hydric soils present 

match wetland type (e.g., semi-permanent, seasonal, temporary).  The 12 best available 

reference wetlands from the HGM study (Stutheit et al. 2004) were selected for this 

study.  One reference wetlands was removed in 2009 due to sampling logistics.  In 2008, 

6 of the sampled reference wetlands were seasonal and 6 were semi-permanent.  In 2009, 

5 were seasonal and 6 were semi-permanent. 

 Restoration of cropland wetlands was performed by NGPC, U.S. Fish and 

Wildlife Service (USFWS), and Ducks Unlimited (DU).  Each of these sites was at one 

time impacted by sedimentation from row crop run-off.  Each restored wetland had 20.3 - 

30.4 cm of sediment removed from the center of the basin and graded to a depth of 10.6 - 

15.2 cm around the perimeter.  Following sediment removal, each wetland was allowed 

to self-design and was surrounded by a native grassland buffer.  Many wetlands within in 

the RWB are restored, however, only 11 wetlands had the criteria of sediment removal 

across the entire basin followed by natural vegetation.  In 2008, 1 of the restored 

wetlands was temporary, 6 were seasonal, and 4 were semi-permanent.  In 2009, 1 was 

temporary, 7 were seasonal, and 3 were semi-permanent.  Within the RWB, temporary 

and seasonal wetlands function similarly and are often grouped together as one class. 
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 Cropland wetlands were privately owned wetlands that were surrounded by row 

crop production on at least two sides of the wetland.  In some cases crops were planted 

through the wetland basin.  Cropland wetlands had upland sediments covering hydric 

soils (D. Daniels unpublished data).  In 2008, 2 of the cropland wetlands were temporary, 

6 were seasonal, and 3 were semi-permanent.  In 2009, 3 were temporary, 5 were 

seasonal, and 4 were semi-permanent. 

Models 

 Local wetland and landscape-scale variables (see below) were input into models 

developed by Webb et al. (2010) to predict the abundance of geese, shorebirds, dabbling 

and diving ducks, and overall species richness for each individual wetland sampled 

among each land use treatment (Appendix C).  This allowed us to determine which land 

use treatment could potentially obtain the highest species richness as well as which land 

use treatment was most suited for each wetland bird group. 

Local wetland characteristics 

Vegetation was sampled using step-point sampling (Bonham 1989) along two 

parallel transects in June 2008 and 2009 to determine plant species occurrence.  Transects 

ran the length of the longest basin axis, usually northwest to southeast, starting and 

ending at the basin edge and passing through the center of the wetland (O’Connell et al. 

2011).  These data were used to calculate the percentage of emergent and inner marsh 

vegetation (defined below) for each wetland.  Percent emergent vegetation was calculated 

by dividing the total number of emergent plants (not including submergents or floating 

vegetation) by the total number of steps encountered for each wetland.  The composition 

of inner marsh was calculated by totaling the number of inner marsh plants encountered 
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(Alisma triviale, Bacopa rotundifolia, Ceratophyllum demersum, Heteranthera limosa, H. 

reniformis, Potamogeton nodosus, P. pectinatus, Sagittaria brevirostra, S. calysina, S. 

graminea, S. latifolia, and Sparganium eurycarpum (Gilbert 1989)) by the total number 

of steps encountered at each wetland. 

 Water depth was measured at 10 random locations along each vegetation transect 

where water was encountered.  Water depth was measured to the nearest centimeter and 

averaged for each wetland.  Hunting was characterized as open to hunting (designated as 

a 1 in the model) or closed to hunting (designated as a 0 in the model).  Closed to hunting 

would remove the impact of hunting variable from the model.  All private lands were 

considered open to hunting. 

Landscape-scale variables 

We analyzed 5 landscape variables for each wetland (Webb et al. 2010).  

Landscape GIS data were provided by the Rainwater Basin Joint Venture (RWBJV).  

These variables included: area (ha) of the sampled wetland, number of wetlands within 

10 km, area (ha) of semi-permanent wetlands within 10 km, area (ha) of riparian within 5 

km, and area (ha) of grassland within 5 km. 

 Analysis of wetland area and type (semi-permanent, temporary, seasonal) were 

determined using the 2008 USFWS National Wetland Inventory (NWI).  NWI wetland 

types were classified according to Cowardin et al (1979).  This classification scheme 

separated individual wetlands into different flooded zones that were identified by an 

alphabetic code.  Wetlands with deeper water levels, such as semi-permanent wetlands 

are composed of one (sometimes two) central wetland polygons with semi-concentric 

seasonal and temporary zones surrounding them.  To simplify classification, the RWBJV 
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dissolved the polygons corresponding to individual wetlands into a single outline 

(footprint) then designated wetlands accordingly (e.g. semi-permanent, seasonal, 

temporary) (R. Grosse, pers. comm.).  PatchAnalyst (ArcGIS 9.0; Environmental 

Systems Resource Institute, Redlands, CA) was used to calculate area (area of 

semipermanent wetlands within 10 km, area of riparian within 5 km, and area of 

grassland within 5 km) for each land use category and the number of wetlands within 10 

km from the sampled wetlands from the 2010 Rainwater Basin land cover dataset 

(Bishop et al. 2011). 

 Historic wetland hydric footprint data provided by the RWBJV was used to 

determine differences between current NWI wetland area and historic hydric footprint 

area.  The difference between hydric foot print area and NWI wetland area would give a 

relative measure of wetland area lost.  This analysis was done for all restored and 

cropland wetlands in the study to determine how much of the historic hydric footprint 

area has been lost to agricultural practices and how much of the footprint has been gained 

due to sediment removal. 

Statistical Analysis 

We used all models for each waterbird group and species richness that had AICC 

weights of 0.01 or greater to predict number of birds at each site (Tables 3.1-3.5).  We 

used multiple models within each group to account for the likelihood that models other 

than the model with the lowest AICc score had support from the data (Burnham and 

Anderson 2002).  For each model, we entered site-specific local wetland and landscape-

level variable data to predict bird abundance and multiplied calculated model outputs (for 

each individual wetland bird group) by the AICc weight of the given model.  All models 
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(for each individual wetland bird group) used were summed and then multiplied by the 

percentage (since the weights of all models sums to 1.0) of the weighted models used to 

obtain the final abundance for each given wetland. For example, the AICC weights of the 

top four models that best predict diving duck abundance sum to 0.99 (Table 3.2).  The 

output of model 1 was multiplied by 0.72, output of model 2 by 0.24, output of model 3 

by 0.02, and output of model 4 by 0.01.  The resulting outputs of each model were then 

summed and multiplied by 0.99 to obtain the best estimate of avian abundance for each 

wetland (citation).  If a wetland did not contain water within the basin, the wetland was 

assumed unsuitable and given a value for zero for all wetland bird models.  Due to 

differences in precipitation among years, we analyzed data separately each year. 

 Analyses of variance (ANOVAs) were used to compare the projected abundance 

of geese, shorebirds, dabbling and diving ducks, as well as species richness among 

wetland land use treatments.  If an ANOVA factor (e.g., shorebird abundance, species 

richness) was significant (P<0.05), a LS Means test was performed to determine 

differences between land use treatments.  ANOVAs were used to calculate mean water 

depth, max water depth, composition of emergent vegetation, and composition of inner 

marsh vegetation among land use treatments.  χ
2s were performed to determine 

differences in the number of wet and dry playas and to determine differences in wetland 

type (e.g., semi-permanent, seasonal, temporary) among land use treatments sampled in 

2008 and 2009. 

 A subset of the 34 wetlands was re-analyzed to take into account differences 

(though not statistically significant) in wetland area for 2008 and 2009 (Table 3.6).  

Reference and restored wetlands averaged half the size compared to restored wetlands.  
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To account for differences in area among the land use treatments, we eliminated the 2 

largest restored (1 semi-permanent, 1 seasonal), and the 3 smallest reference (3 seasonal), 

and 3 smallest cropland (3 temporary) wetlands in 2008.  For the 2009 data, we removed 

the 2 largest restored (2 semi-permanent), and the 2 smallest reference (2 seasonal), and 

the 3 smallest cropland (3 temporary) wetlands.  ANOVAs were used to compare 

differences in projected abundances of geese, shorebirds, dabbling ducks, diving ducks, 

and species richness. If an ANOVA factor (e.g., shorebird abundance, species richness) 

was significant (P<0.05), a LS Means test was performed to determine differences 

between land use treatments.  ANOVAs were used to calculate mean water depth, max 

water depth, composition of emergent vegetation, and composition of inner marsh 

vegetation of the subset of wetland among land use treatments to determine differences in 

these variables after accounting for differences in area.  χ
2s were performed to determine 

differences in the number of wet and dry playas and to determine differences in wetland 

type (e.g., semi-permanent, seasonal, temporary) among land use treatments sampled in 

2008 and 2009. 

 To eliminate an area effect on predicted species richness and dabbling duck, 

diving duck, shorebird, and geese abundance, we removed area from all of the models 

and re-ran each model.  In doing this, we looked at the variables other than area that 

affect predicted abundances and allowed us to relatively measure differences among the 

three land use treatments.  The outputs from these models, with area removed, will not 

give an accurate estimate of predicted abundances, rather a relative measure of the local 

and landscape level variables (without area) as they relate to abundances among land use 
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treatments.  All wetlands sampled wetlands in 2008 and 2009 were analyzed.  Wetlands 

that were dry were not given a value of zero in this analysis. 

 

RESULTS 

2008 All Sampled Wetlands 

Even though there were no statistical differences in area of the wetlands sampled 

in 2008, restored wetlands were nearly twice as large as reference and cropland wetlands 

(F = 2.39; P = 0.099) (Table 3.6).   There were no differences in average water depth (F = 

1.14, P = 0.333), max water depth (F = 0.80, P = 0.458), composition of emergent 

vegetation (F = 1.26, P = 0.297), and composition of inner marsh vegetation (F = 1.33, P 

= 0.279) among land use treatments.  All sampled wetlands in 2008 contained water.  

There was no difference in wetland type sampled among land use treatments (χ
2 = 2.97, 

df = 4, P = 0.563).  Models for restored wetlands were predicted to have greater numbers 

of dabbling ducks (F = 6.07; P = 0.006) and higher species richness (F = 5.22; P = 0.011) 

than reference and cropland wetlands (Table 3.7).  Restored wetlands were also predicted 

to contain more diving ducks than cropland wetlands (F = 3.66; P = 0.037).  There were 

no differences in the predicted number of shorebirds (F = 1.11; P = 0.343).  or geese (F = 

5.22; P=0.011) among land use treatments. 

2008 Subset of sampled wetlands 

After removing the 2 largest restored wetlands and the 3 smallest reference and 3 

smallest cropland wetlands, land use treatments were more similar in average area 

(F=0.13, P=0.877).  There were no differences in average water depth (F = 0.50, P = 

0.611), max water depth (F = 0.52, P = 0.601), composition of emergent vegetation (F = 
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1.48, P = 0.248), and composition of inner marsh vegetation (F = 0.53, P = 0.595) among 

land use treatments.  All sampled wetlands contained water.  There was no difference in 

wetland type sampled among land use treatments (χ
2 = 2.74, df = 4, P = 0.532).  There 

were no differences in the predicted number of diving ducks (F = 1.55; P = 0.233), 

dabbling ducks (F = 2.48; P = 0.106), shorebirds (F = 0.06; P = 0.942), geese (F = 0.85; P 

= 0.442), and species richness (F = 3.19; P = 0.060) among land use treatments (Table 

3.8).   

2009 All sampled wetlands 

 Even though there were no differences in area of the wetlands sampled in 2009, 

restored wetlands were nearly twice as large as reference and cropland wetlands (F = 

1.86; P = 0.173).  There were no differences in average water depth (F = 01.06, P = 

0.357), max water depth (F = 1.78, P = 0.185), composition of emergent vegetation (F = 

0.70, P = 0.503), and composition of inner marsh vegetation (F = 1.98, P = 0.155) among 

land use treatments.  There was no difference in the number of wet and dry playas among 

land use treatments (χ2 = 4.18, df = 2, P = 0.123) with 36% of reference wetlands, 45% of 

restored, and 8% of cropland wetlands containing water.  There was no difference in 

wetland type sampled among land use treatments (χ
2 = 4.95, df = 4, P = 0.292).  There 

was no difference in the predicted abundance of diving ducks (1.50; P = 0.238), dabbling 

ducks (F = 1.89; P = 0.168), shorebirds (F = 2.45; F = 0.103), geese (F = 1.84; P = 

0.176), and species richness (F = 2.29; P = 0.119) among land use treatments (Table 3.9).   

2009 Subset of sample wetlands 

 After removing the 2 largest restored wetlands and the 2 smallest reference and 3 

smallest cropland wetlands, land use treatments were more similar in average area (F = 
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0.04; P = 0.963).  There were no differences in average water depth (F = 0.65, P = 0.530), 

max water depth (F = 0.98, P = 0.391), composition of emergent vegetation (F = 2.37, P 

= 0.116), and composition of inner marsh vegetation (F = 1.17, P = 0.328) among land 

use treatments.  There was no statistical difference in the number of wet and dry playas 

among land use treatments (χ
2 = 3.00, df = 2, P = 0.223) with 44% of reference, 44% of 

restored, and 11% of cropland wetlands containing water.   There was no difference in 

wetland type sampled among land use treatments (χ
2 = 3.67, df = 4, P = 0.452).  There 

were no differences in the predicted abundance of diving ducks (F = 0.83; P = 0.449), 

dabbling ducks (F =1.37; P = 0.273), shorebirds (F = 1.85; P = 0.178), geese (F = 1.56; P 

= 0.230), and species richness (F = 1.52; P = 0.239) among land use treatments (Table 

3.10). 

Removal of area from the models 

 When removing area from the models, there was no significant difference in 

species richness and dabbling duck, diving duck, shorebird, and geese predicted relative 

abundance among land use treatments for 2008 or 2009 (Appendix D). 

Area lost 

 There was no difference in wetland area lost among restored and cropland 

wetlands when comparing the NWI data to the historic footprint data (F = 0.22, P = 

0.646).  NWI data indicated that restored wetlands were 9% smaller than their hydric 

footprint; cropland wetlands were 15% smaller than their hydric footprint.  However, 

removing the cropland outlier (NWI indicated that the wetland was 91% larger than its 

hydric footprint), cropland wetlands have lost 25% the area of their original hydric 

footprint. 
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DISCUSSION 

 Within the Great Plains, annual precipitation can be highly variable and has 

profound effects on playa hydroperiod (Smith and Haukos 2002) and thus on ecosystem 

services provided such as waterbird habitat at migratory stopover sites (Smith et al. 

2011).   In years of increased rainfall, migratory waterfowl, shorebirds, and geese have a 

wider availability of wetlands from which to choose than in drought years.  During the 

wet year (2008), restored wetlands were predicted to have a greater abundance of 

dabbling and diving ducks and provide habitat for an additional 8 species of waterbirds 

per wetland compared to cropland wetlands; however, this was predominately due to an 

area effect.  In the year of reduced rainfall (2009), RWB wetlands primarily available for 

stopover sites include reference and restored wetlands and few cropland wetlands.  

Although there were no statistical differences in projected waterbird abundance among 

the 3 land use treatments in 2009, restored and reference land use wetlands were 4 times 

more likely to contain water in drier years than cropland wetlands.  Restoring cropland 

wetlands provided additional habitat needed to support waterbird populations during 

migration (O’Neal et al. 2008), especially in years of reduced rainfall.  Within the RWB, 

most restored (100% of the sampled wetlands in 2008; 89% of the sampled wetlands in 

2009) and a some reference wetlands (36% sampled in 2008 and 2009) had water control 

structures such as pumps.  However, none of the wetlands sampled in our study had water 

pumped into them and therefore modeling results for individual wetlands were not 

influenced by this management activity. 
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 When we removed some wetlands to make area more similar among the three 

land use treatments, there were no statistical differences among bird metric during the 

year of increased or reduced precipitation.  However, in the year of increased 

precipitation, restored wetlands were projected to provide habitat for twice as many 

diving ducks and dabbling ducks and nearly three times the amount of habitat for geese 

than reference wetlands.  Restored wetlands were also projected to provide migratory 

habitat for 5 more species of waterbirds than reference wetlands and 11 more than 

cropland wetlands.  In years of reduced precipitation, restored wetlands were projected to 

provide nearly twice the number of diving ducks, 1.5 times the number of dabbling 

ducks, 25% more shorebirds, and over 10 times the number of geese than reference 

wetlands.  In addition, restored wetlands are projected to provide habitat for 4 more 

species of waterbirds than reference wetlands.  These results may indicate that restored 

wetlands have the ability to provide more suitable habitat variables for migrating 

waterfowl, shorebirds (in dry years), and geese than reference and cropland wetlands.  

Restored wetlands ability to achieve greater predicted abundances of waterfowl, 

shorebirds, and geese may be attributed to: 1) wetland area; 2) reduced vegetation cover; 

and 3) increased water depth/ ability to contain water in dry years. 

Wetland Area 

After taking area into account, restored wetlands in our study were still on 

average 5 ha larger than reference and cropland wetlands in 2008 and were 3 ha larger in 

2009.  Larger area is a positive predictor of increased abundance and species richness 

(MacArthur and Wilson 1967; Rosenzweig 1995) and had the biggest influence on bird 

metrics in Webb et al.’s (2010) models.  Thus restoring cropland wetlands with large 
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hydric footprints should be a primary objective of restoration if the goal is to provide 

increased migratory habitat.  Due to sedimentation and hydrology alteration (installation 

of pits) cropland wetlands in the RWB average 25% smaller than their hydric footprint 

and the cropland wetlands that have been lost or fossilized have been primarily seasonal 

and temporary wetlands (LaGrange 2005).  The majority of semi-permanent cropland 

wetlands that remain may function like semi-permanents in some respects (e.g., 

dominated by perennial plant communities), however they may have water holding 

capabilities more similar to seasonal and temporary wetlands.  Decreased precipitation 

further exasperates the problem of cropland wetland when they do not have the ability to 

pond water, thus concentrating waterfowl, shorebirds, and geese on reference and 

restored wetlands.  Greater densities of waterbirds on these wetlands can have negative 

consequences leading to increased avian cholera outbreaks (Smith and Higgins 1990) and 

shorter stopover times (Webb et al. 2010).  

Vegetation 

When analyzing vegetation (percent emergent), Webb et al.’s (2010) models puts 

the largest emphasis on the hemi-marsh condition.  Species richness and dabbling duck 

densities have been shown to be greatest in wetlands with intermediate vegetation cover 

and decrease with sparse or dense vegetative cover on breeding grounds, (Weller and 

Spatcher 1965; Weller and Fredrickson 1974; VanRees-Siewert and Dinsmore 1986), 

wintering grounds (Smith et al. 2004), and at migrating stopover sites (Webb et al. 2010).  

In both years, restored wetlands had a more equal amount of vegetation to water ratio 

compared to reference wetlands; however, hemi-marsh conditions were more pronounced 

in wet years for restored wetlands, containing a 3:2 ratio of emergent vegetation to water 
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compared to 3:1 for reference and 4:1 for cropland wetlands.  The hemi-marsh condition 

of restored wetlands may likely be associated with hydrologic restoration and 

management activities.  Most restored and reference wetlands in the RWB are 

periodically managed through grazing (Davis and Bidwell 2008), prescribed burning 

(Brennan et al. 2005), and disking (Davis and Bidwell 2008) to help reduce vegetative 

cover (especially of invasive species) and provide areas of open habitat.  These 

management activities along with deeper water levels (see below) created by hydrologic 

restoration at restored wetlands promoted submergents and larger amounts of open water 

areas for waterfowl, shorebirds, and geese. 

  Shorebird abundance at stopover sites is greatest in wetlands with sparse to 

intermediate vegetation cover (Davis and Smith 1998; Webb et al. 2010).  No wetlands 

within our study had sparse vegetative cover.  However, restored wetlands in our study 

had less cover than reference and cropland wetlands.  Intermediate vegetation cover of 

restored wetlands allows for increased foraging opportunities compared to densely 

vegetated reference and cropland wetlands and may also be correlated with greater 

invertebrate densities (Davis and Bidwell 2008).  In addition, shorebird abundance can be 

limited by dense stands of emergent vegetation due to limited predator detection, 

mobility, and feeding activity (Metcalfe 1984; De Leon and Smith 1999). 

The presence of inner marsh vegetation is a positive predictor of diving duck 

abundance.  Inner marsh vegetation comprises a majority of several diving duck species 

diets (Moore et al. 1998) and also usually includes areas of deeper open water more 

suitable for diving duck species.  Restored wetlands had similar amounts of inner marsh 

vegetation compared to reference wetlands in 2008; however, in 2009, reference wetlands 
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contained twice the amount compared to restored wetlands.  Even though the amount of 

inner marsh vegetation in reference wetlands was equal to or surpassed that of restored 

wetlands, restored wetlands ability to contain areas of deeper water (see below) was a 

more important predictor for diving duck species allowing restored wetlands to have a 

greater predicted abundance. 

Increased emergent vegetative cover is a negative indicator of geese abundance in 

the models (Webb et al. 2010).  Cropland wetlands were predicted to have the greatest 

abundance of geese (when area between land use groups is equivalent) in wet years; 

however, this is partially due to one cropland wetland predicted to have geese abundance 

in excess of 11,000 birds.  Removing this cropland wetland, restored wetlands were 

predicted to have the greatest abundance of geese during wet years and provide the most 

suitable habitat for geese in drier years. Row crop production surrounding cropland 

wetlands may provide better feeding habitat for geese than native grasslands of reference 

and restored wetlands, however, dense stands of Typha, Scirpus fluviatilis, and Phalaris 

arundinacea in cropland wetlands during wet years and lack of water in dry years (in 

addition to Typha ect.) most likely limits geese feeding within the wetland. 

Water Depth 

 For both years of the study, restored wetlands were deeper than reference and 

cropland wetlands.  This is the result of removing up to 30 cm of sediment from the 

center of the basin.  In doing so, restored wetlands are able to hold water for longer 

amount of time.  This is of particular importance in dry years when water sources for 

waterbirds may be scarce.   In addition, restored wetlands’ gradation from the center of 

the wetlands to the perimeter may allow for multiple feeding depths that can support a 
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greater abundance and diversity of dabbling ducks and shorebirds than reference and 

cropland wetlands, however further investigation is needed. 

Limitations of models and analyses 

The waterbird abundance and species richness models developed by Webb et al. 

(2010) were developed based on data collected during 3 years of below average 

precipitation.  In drought conditions birds have to choose what is available (any wetland 

with water will provide some habitat) which may negate the influence of other 

environmental variables associated with the wetland.  With fewer playas in which to 

chose, differences between reference, restored, and cropland wetlands may have been less 

discernable because cropland wetlands would have virtually be eliminated from the 

original models due to dry playas not being sampled in the study by Webb et al. (2010).   

Moreover, within wetland land use groups, wetlands were highly variable for all 

waterbird models.  This resulted in large standard errors for all waterbird models among 

each land use treatment and possible lack of significance.  Also, for all models, area was 

the largest predictor for waterbird abundance and restored wetlands tended to be the 

largest.  It was difficult to find wetlands of similar sizes within each category.  Many 

wetlands that tend to be hydrologically restored across the entire wetland basin are large 

cropland wetlands that landowners enroll into a conservation program.  Smaller cropland 

wetlands can be farmed in drier years or have been hydrologically altered to allow 

farming and are often not enrolled into conservation programs. 

 

CONCLUSIONS 
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Restored wetlands provide additional migratory habitat needed to support 

populations of migratory waterbirds during spring migration in a heavily fragmented 

ecosystem.  When comparing restored cropland wetlands to cropland wetlands, restored 

wetlands have the ability to support larger abundances of waterfowl, shorebirds, and 

geese.  Wetland restoration should focus on restoring cropland wetlands with the largest 

wetland footprint in order to provide habitat to support large migratory waterbird 

populations.  In years of low precipitation, cropland wetlands that hold water are limited 

on the landscape leaving only reference and restored wetlands as migratory stopover 

habitat. 
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Table 3.1: Number of parameters (K) and the weight of the models (AICc) hypothesized to predict dabbling duck abundance in 
Rainwater Basin wetlands during spring migration.  Models with larger AICc have more substantial support. 

Modela K 
AICC 

Weight 
5.138 + (SinEmerg*1.655) - (Asp10*0.0003) + (LnArea*1.001) - (Hunting*0.544) 5 0.48 
4.705 + (SinEmerg*1.646) - (Asp10*0.0004) + (LnArea*1.036) 4 0.23 
9.092 + (SinEmerg*1.565) - (Hunting*0.523) - (Asp10*0.0004) + (LnArea*0.991) - (LnAg10*0.370) 6 0.16 
-1.028 + (SinEmerg*1.546 ) - (ASP10*0.0004 ) + (LnArea*0.994 ) + (LnAg10*0.576 ) 5 0.08 
5.008 + (SinEmerg* 1.777) - (Hunting*0.616) + (LnArea*0.917) 4 0.03 
6.130 + (SinEmerg*1.698 ) - (Hunting*0.589) + (LnArea0.895) - (LnAg10*0.097) 5 0.01 
4.483 + (SinEmerg*1.783 ) + (LnArea*0.947) 3 0.01 

a Model parameters (n=5) include sin transformed percent emergent vegetation (SinEmerg), area of semipermanent wetlands 
within 10 km (Asp10), log transformed wetlands area (LnArea), open to hunting (Hunting), and log transformed area of cropland 
within 10 km (LnAg10). 
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Table 3.2: Number of parameters (K) and the weight of the models (AICc) hypothesized to predict diving duck abundance in 
Rainwater Basin wetlands during spring migration.  Models with larger AICc have more substantial support. 

Modela K AICC Weight 
1.609 - (0.910*LnArea) + (0.717*LnWaterD) + (0.544*LnIM) 4 0.72 
1.610 - (0.909*LnArea) + (0.711*LnWaterD) + (0.015*LnRiv5) + (0.546*LnIM) 5 0.24 
1.116 + (0.782*LnArea) + (0.621*LnIM) 3 0.02 
0.998 + (0.779*LnArea) + (0.082*LnRiv5) + (0.628*LnIM) 4 0.01 

a  Model parameters (n=4) include log transformed wetland area (LnArea), log transformed max water depth (LnWaterD), log 
transformed percent inner marsh vegetation (LnIM), and log transformed area of riverine habitat within 5 km (LnRiv5). 
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Table 3.3: Number of parameters (K) and the weight of the models (AICc) hypothesized to predict shorebird abundance in Rainwater 
Basin wetlands during spring migration.  Models with larger AICc have more substantial support. 

Modela K AICC Weight 
4.285 + (SinEmerg*1.001) + (Pwet10*0.001) + (Area*0.011) - (MDWater*0.019) 5 0.52 
4.792 + (SinEmerg*1.201) + (Area*0.0136) - (MDWater*0.019) 4 0.33 
4.587 + (Pwet10*0.001) + (Area*0.015) - (MDWater*0.019) 4 0.06 
4.325 + (SinEmerg*1.371) + (Pwet10*0.001) - (MDWater*0.019) 4 0.05 
5.257 + (Area*0.018) - (MDWater*0.020) 3 0.03 
5.002 + (SinEmerg*1.666) - (MDWater*0.020) 3 0.02 

a Model parameters (n=4) include sin transformed percent emergent vegetation (SinEmerg), number of wetlands within 10 km 
(Pwet10), area of wetland (Area), and mean water depth (MDWater). 
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Table 3.4: Number of parameters (K) and the weight of the models (AICc) hypothesized to predict geese abundance in Rainwater 
Basin wetlands during spring migration.  Models with larger AICc have more substantial support. 

Modela K AICC Weight 
6.741 + (Area*0.063) - (LinEmerg*0.029) - (MDWater*0.021) - (Hunting*1.281) 5 0.49 
5.797 + (Area+0.061) + (Aag5*0.0001) - (LinEmerg*0.028) - (MDWater*0.021) - (Hunting*1.181) 6 0.17 
7.569 + (Area*0.066) - (LinEmerg*0.023) - (MDWater*0.860) 4 0.13 
3.438 - (LinEmerg*0.026) + (Aag5*0.0002) + (Area*0.056) - (MDWater*0.022) 5 0.09 
6.016 - (LinEmerg*0.026) + (Area*0.066) - (Hunting*1.459) 4 0.05 
4.429 + (Aag5*0.0001) - (LinEmerg*0.025) + (Area*0.061) - (Hunting*1.283) 5 0.02 
5.752 - (MDWater*0.019) + (Area*0.059) - (Hunting*1.121) 4 0.01 
1.788 - (LinEmerg*0.023) + (Area*0.056) - (Aag5*0.0003) 4 0.01 
4.877 - (LinEmerg*0.024) + (Area*0.067) 3 0.01 
4.995 - (MDWater*0.021) + (Area*0.060) 3 0.01 

a  Model parameters (n=5) include wetland area (Area), percent emergent vegetation (LinEmerg), mean water depth (MDWater), 
open to hunting (Hunting), and area of cropland within 5 km (Aag5). 
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Table 3.5: Number of parameters (K) and the weight of the models (AICc) hypothesized to predict species richness of waterbirds in 
Rainwater Basin wetlands during spring migration.  Models with larger AICc have more substantial support. 

Modela K 
AICC 

Weight 
22.639 + (SinEmerg*4.030) - (LnAsp10*2.187) + (LnArea*4.354) + (LnWaterD*0.747) 5 0.55 
24.349 - (LnAsp10*2.384) + (LnArea*4.802) + (LnWaterD*0.827) 4 0.20 
21.617 - (LnAsp10*2.185) + (LnArea*4.347) + (LnWaterD*0.747) + (SinEmerg*4.021) + (LnGrass5*0.166) 6 0.18 
22.965 + (LnGrass5*0.225) - (LnAsp10*2.381) + (LnArea*4.792) + (LnWaterD*0.826) 5 0.07 

a Model parameters (n=5) include sin transformed percent emergent vegetation (SinEmerg), log transformed area of 
semipermanent wetlands within 10 km (LnAsp10), log transformed wetland area (LnArea), log transformed max water depth 
(LnWaterD), and log transformed area of grassland within 5 km (LnGrass5). 
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Table 3.6: Local and landscape level variables among wetland land use treatments in the Rainwater Basin.  The 2008 and 2009 all 
sampled wetlands were analyzed without taking into account differences in area between land use treatments.  In 2008, 12 reference, 
11 restored and 11 cropland wetlands were sampled.  In 2009, 11 reference, 11 restored, and 12 cropland wetlands were sampled.  The 
2008 and 2009 subset of sampled wetlands categories were calculated after area differences among land use treatments were taken in 
account by removing the 3 smallest reference and cropland wetlands and the 3 largest restored wetlands in 2008.  In 2009, the 2 
smallest reference, 3 smallest cropland, and two largest restored wetlands were removed. 
  Reference Restored Agriculture     

2008 All Sampled Wetlands Mean SE Mean SE Mean SE F-value P-value 
Area (ha) 21.33 4.57 43.22 10.44 20.57 9.75 2.49 0.0993 
Average water depth (cm) 15.39 3.41 23.78 4.3 2.68 5.39 1.14 0.3329 
Max water depth (cm) 24.85 5.17 35.57 6.05 7.21 6.79 0.8 0.458 
Composition of emergent vegetation 85.37 4.36 73.91 7.44 81.83 4.18 1.26 0.297 
Composition of inner marsh vegetation 8.94 3.27 10.45 3.97 3.83 1.52 1.33 0.2791 

2008 Subset of Sampled Wetlands 
        Area (ha) 26.69 4.84 31.56 7.96 25.93 13.3 0.13 0.8772 

Average water depth (cm) 18.3 3.99 25.31 4.64 21.16 7.41 0.5 0.6105 
Max water depth (cm) 29.1 6.04 38.6 6.53 35.72 9.4 0.52 0.6013 
Composition of emergent vegetation 77.69 6.12 63.9 9.31 80.27 6.71 1.48 0.2478 
Composition of inner marsh vegetation 8.81 3.4 11.1 5.9 4.51 2.82 0.53 0.5952 

2009 All Sampled Wetlands 
        Area (ha) 22.7 4.78 41.53 10.87 21.17 22.35 9.04 0.1732 

Average water depth (cm) 4.73 2.57 5.72 2.55 1.53 1.59 1.06 0.3572 
Max water depth (cm) 7.4 4.33 12.13 5.31 1.95 2.03 1.78 0.1854 
Composition of emergent vegetation 96.48 1.04 92 3.3 91.63 4.45 0.7 0.5026 
Composition of inner marsh vegetation 6.41 2.99 2.08 0.91 1.61 1.41 1.98 0.1546 
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Table 2.6 (cont.) 

  Reference Restored Agriculture     

 

Mean SE Mean SE Mean SE F-value P-value 
2009 Subset of Sampled Wetlands 

        Area (ha) 26.67 4.85 29.49 8.42 26.69 11.72 0.04 0.9626 
Average water depth (cm) 5.78 3.07 5.62 3 2.04 2.16 0.65 0.5296 
Max water depth (cm) 9.05 5.21 11.32 5.98 2.6 2.75 0.98 0.3907 
Composition of emergent vegetation 93.45 2.24 87.73 5.58 97.84 0.7 2.37 0.1155 
Composition of inner marsh vegetation 8.08 4.23 3.07 1.99 2.58 2.18 1.17 0.3279 
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Table 3.7: Predicted abundance of diving and dabbling ducks, shorebirds, geese, and species richness of waterbirds at reference, 
restored, and crop land use wetlands during spring migration in the Rainwater Basin in 2008.  Results are from all sampled wetlands 
regardless of size difference between land use treatments. 
  Reference Restored Agriculture     

Mean SE Mean SE Mean SE F-value P-value 

Diversa 82.06 23.71 235.62 82.19 71.01 23.27 3.66 0.0374 

Dabblersb 5109.44 1554.22 13672.20 3520.90 3601.57 1181.96 6.07 0.0060 
Shorebirds 180.84 25.02 240.63 43.05 186.52 28.43 1.11 0.3433 
Geese 101.74 41.49 1378.76 827.26 1066.33 1078.45 0.86 0.4320 

Species Richnessc 25.97 2.09 33.74 2.64 25.11 1.61 5.22 0.0111 
a Significant difference between restored and crop land use wetlands 
b Significant difference between restored and reference land use wetlands; significant difference between restored and reference 

land use wetlands 
c Significant difference between restored and reference land use wetlands; significant difference between restored and reference 

land use wetlands 
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Table 3.8: Predicted abundance of diving and dabbling ducks, shorebirds, geese, and species richness of waterbirds at reference, 
restored, and crop land use wetlands during spring migration in the Rainwater Basin in 2008.  Results are from wetlands sampled after 
taken into account difference in area. 
  Reference Restored Agriculture     

Mean SE Mean SE Mean SE F-value P-value 
Divers 106.80 26.77 200.84 76.48 89.66 29.74 1.55 0.2331 
Dabblers 6640.18 1802.48 11270.80 3263.00 4252.52 1606.19 2.48 0.1059 
Shorebirds 201.25 30.57 196.16 33.30 185.57 38.61 0.06 0.9415 
Geese 130.31 52.87 357.78 163.19 1294.49 1510.80 0.85 0.4418 
Species Richness 28.68 2.01 33.66 3.29 22.36 1.84 3.19 0.0599 
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Table 3.9: Predicted abundance of diving and dabbling ducks, shorebirds, geese, and species richness of waterbirds at reference, 
restored, and crop land use wetlands during spring migration in the Rainwater Basin in 2009.  Results are from all sampled wetlands 
regardless of size difference between land use treatments. 
  Reference Restored Agriculture     

Mean SE Mean SE Mean SE F-value P-value 
Divers 35.08 20.24 63.47 31.38 11.81 12.33 1.50 0.2379 
Dabblers 2064.68 1117.52 3247.95 1761.75 219.57 229.34 1.89 0.1683 
Shorebirds 64.91 29.50 88.46 38.80 8.57 8.95 2.45 0.1029 
Geese 36.10 19.89 397.53 300.32 2.75 2.87 1.84 0.1761 
Species Richness 11.33 5.11 15.18 5.76 2.42 2.53 2.29 0.1186 
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Table 3.10: Predicted abundance of diving and dabbling ducks, shorebirds, geese, and species richness of waterbirds at reference, 
restored, and crop land use wetlands during spring migration in the Rainwater Basin in 2009.  Results are from wetlands sampled after 
taken into account difference in area. 
  Reference Restored Agriculture     

Mean SE Mean SE Mean SE F-value P-value 
Divers 42.88 24.36 62.80 37.42 15.75 16.70 0.83 0.4490 
Dabblers 2523.49 1337.36 2083.22 1244.30 292.76 310.52 1.37 0.2727 
Shorebirds 79.34 34.63 68.98 33.01 11.42 12.12 1.85 0.1783 
Geese 44.12 23.85 134.23 95.21 3.66 3.89 1.56 0.2302 
Species Richness 13.85 6.00 14.65 6.49 3.23 3.43 1.52 0.2385 
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Appendix A: Wetland names, land use category, wetland type, and location of wetlands 
sampled during the 2008 – 2009 field season. 
Wetland Name Land Use Area Wetland Type Latitude Longitude 
Clay #116 Cropland 6.71 Seasonal Private Private 
Clay #117 Cropland 21.11 Seasonal Private Private 
Clay #158 Reference 6.33 Semi-permanent Private Private 
Clay #21 Cropland 6.92 Semi-permanent Private Private 
Clay #216 Reference 4.87 Seasonal Private Private 
Clay #29 Cropland/Restored 8.27 Seasonal Private Private 
Clay #30 Cropland 6.46 Temporary Private Private 
Clay #33 Cropland 8.64 Seasonal Private Private 
Clay #38 Cropland 9.96 Seasonal Private Private 
Clay #75 Reference 19.54 Seasonal Private Private 
Clay #79 Reference 50.92 Semi-permanent Private Private 
Alberding WPA Reference 14.87 Semi-permanent 40.490186 -97.989144 
Bluebill A (North) Restored 5.59 Temporary 40.640338 -97.702143 
Bluebill B (South) Restored 8.23 Seasonal 40.634556 -97.703007 
Brinkerhoff Reference 19.67 Seasonal Private Private 
Bulrush WMA Restored 60.36 Semi-permanent 40.390981 -98.082194 
Deepwell WMA Restored 18.95 Seasonal 40.842209 -98.218911 
Eckhadt WPA Reference 29.77 Semi-permanent 40.463739 -97.905435 
Fillmore #11 Cropland 20.85 Seasonal Private Private 
Gadwall WMA Restored 15.59 Seasonal 40.940638 -98.035952 
Gleason WPA Reference 35.86 Seasonal 40.436198 -99.024983 
Greenhead WMA Restored 26.96 Semi-permanent 40.444090 -97.940212 
Hultquist Cropland 5.60 Temporary Private Private 
Kissinger WMA Restored 103.23 Seasonal 40.445534 -98.102868 
Krause WPA Cropland 111.75 Semi-permanent 40.473080 -97.797308 
Lindau WPA Reference 39.38 Seasonal 40.402863 -99.036343 
Meadowlark WPA Reference 6.16 Semi-permanent 40.472426 -97.998571 
Moger WPA Reference 23.94 Semi-permanent 40.482401 -97.992891 
Morphy WPA Cropland 34.27 Semi-permanent 40.610023 -97.732966 
Renquist WMA Restored 50.47 Seasonal 41.030002 -97.700055 
Sandpiper WPA Restored 31.41 Semi-permanent 40.500141 -97.715647 
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Appendix A (cont.) 
Wetland Name Land Use Area Wetland Type Latitude Longitude 
Spikerush WMA Restored 66.53 Seasonal 40.909766 -97.486020 
TRPE Cropland 1.97 Temporary Private Private 
Verona WPA Reference 4.77 Seasonal 40.549900 -97.960198 
West Sac. WMA Restored 88.22 Semi-permanent 40.361005 -99.308859 
York #21 Cropland 20.00 Semi-permanent 40.714300 -97.528386 
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Appendix B: Plant guilds and scientific names for common species that germinated from 
the seed bank of Rainwater Basin wetlands. 
Species Abbreviation Plant Guild 
Abutilon theophrasti Abuttheo Upland 
Agrostis hyemalis Agrohyem Wet Prairie Perennial 
Alisma triviale Alistriv Shallow Emergent Perennial 
Amaranthus retroflexus Amarretr Mudflat Annual 
Ambrosia artemisifoliia Ambrarte Wet Prairie Perennial 
Ambrosia grayi Ambrgray Mudflat Annual 
Ammania robusta Ammarobu Mudflat Annual 
Aster ericoides Asteeric Wet Prairie Perennial 
Aster lanceolatus Astelanc Sedge Meadow Perennial 
Bacopa rotundifolia Bacorotu Shallow Emergent Perennial 
Boltonia asteroids Boltaste Sedge Meadow Perennial 
Capsella bursa-pastoris Capsburs Mudflat Annual 
Carex pellita Carepell Sedge Meadow Perennial 
Chenopodium album Chenalbu Mudflat Annual 
Chenopodium leptophyllum Chenlept Mudflat Annual 
Conyza Canadensis ConyCana Mudflat Annual 
Coreopsis tinctoria Coretinc Mudflat Annual 
Echinochloa crus-galli Echicrus Mudflat Annual 
Eleocharis acicularis Eleoacic Mudflat Annual 
Eleocharis compressa Eleocomp Shallow Emergent Perennial 
Eleocharis erythropoda Eleoeryt Shallow Emergent Perennial 
Eleocharis palustris Eleopalu Shallow Emergent Perennial 
Erechtites hieraciifolia Erechier Mudflat Annual 
Hedeoma hispida Hedehisp Upland 
Helianthus annuus Heliannu Mudflat Annual 
Hordeum jubatum Hordjuba Mudflat Annual 
Leersia  oryzoides Leer ory Wet Prairie Perennial 
Lepidium densiflorum Lepidens Mudflat Annual 
Mentha spp. Mint Upland 
Mollugo verticillata Mollvert Mudflat Annual 
Pascopyrum smithii Pascsmit Wet Prairie Perennial 
Phalaris arundinacea Phalarun Shallow Emergent Perennial 
Polygonum amphibium Polyamph Shallow Emergent Perennial 
Polygonum bicorne Polybico Mudflat Annual 
Polygonum pensylvanicum Polypens Mudflat Annual 
Polygonum ramosissimum Polyramo Mudflat Annual 
Potamogeton nodosus Potanodo Submerged Aquatic 
Potentilla norvegica Potenorv Mudflat Annual 
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Appendix B cont.     
Species Abbreviation Plant Guild 
Rorippa palustris Roripalu Mudflat Annual 
Rumex altissimus Rumealti Sedge Meadow Perennial 
Rumex crispsus Rumecris Sedge Meadow Perennial 
Runuculus spp. Rununcu Mudflat Annual 
Sagittaria calysina Sagicaly Mudflat Annual 
Schoenoplectus tabernaemontani Schotabe Deep Emergent Perennial 
Solanum rostratum Solarost Upland 
Solidago missouriensis Solimiss Upland 
Sparganium eurycarpum Spareury Shallow Emergent Perennial 
Teucrium canadense Teuccana Shallow Emergent Perennial 
Trifolium repens Trifrepe Upland 
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Appendix C. A list of the waterbird species that were encountered by Webb et al. (2010).  
All species listed were included in the species richness model.  Bird model designation is 
listed next to the species that were included in that particular model.  Species with no bird 
model designation were only included in the species richness model. 
Family Bird Model Scientific name Common name 

Anatidae Geese Anser albifrons 
Greater white-fronted 
goose 

 

Geese Chen sp. Snow and Ross' geese 

 

Geese Branta sp. Canada goose complex 

  

Cygnus buccinator Trumpeter swan 

 

Dabbling Aix sponsa Wood Duck 

 

Dabbling Anas strepera Gadwall 

 

Dabbling Anas penelope Eurasian wigeon 

 

Dabbling Anas americana American wigeon 

 

Dabbling Anas platyrhynchos Mallard 

 

Dabbling Anas discors Blue-winged teal 

 

Dabbling Anas cyanoptera Cinnamon teal 

 

Dabbling Anas clypeata Northern shoveler 

 

Dabbling Anas acuta Northern pintail 

 

Dabbling Anas crecca Green-winged teal 

 

Diving Aythya valisineria Canvasback 

 

Diving Aythya americana Redhead 

 

Diving Aythya collaris Ring-necked duck 

 

Diving Aythya affinis Lessur scaup 

 

Diving Bucephala albeola Bufflehead 

 

Diving Bucephala clangula Common goldeneye 

 

Diving Lophodytes cucullatus Hooded merganser 

 

Diving Mergus merganser Common merganser 

 

Diving Mergus serrator Red-breasted merganser 

 

Diving Oxyura jamaicensis Ruddy duck 
Podicipedidae 

 

Podilymbus podiceps Pied-bill grebe 

  

Podiceps auritus Horned grebe 

  

Podiceps nigricollis Eared grebe 

  

Aechmophorus clarkii Clark's grebe 
Pelecanidae 

 

Pelecanus occidentalis American white pelican 
Phalacrocoridae 

 

Phalacrocorax auritus Double-crested cormorant 
Anhingidae 

 

Anhinga anhinga Anhinga 
Ardeidae 

 

Botaurus lentiginosus American bittern 

  

Ixobrychus exilis Least bittern 

  

Aredea herodias Great blue heron 
 

   



 

110 

 

Appendix C (cont) 

Family Bird Model Scientific name Common name 

  

Aredea alba Great egret 

  

Egretta thula Snowy egret 

  

Bubulcus ibis Cattle egret 

  

Butorides virescens Green heron 

  

Nycticorax nycticorax 
Black-crowned night 
heron 

Threskiornithidae 
 

Plegadis chihi White-faced ibis 
Rallidae 

 

Porzana carolina Sora 

  

Fulica americana American coot 
Gruidae 

 

Grus canadensis Sandhill crane 
Charadriidae Shorebird Pluvialis squatarola Black-bellied plover 

 

Shorebird Pluvialis dominica American golden-plover 

 

Shorebird Charadrius semipalmatus Semipalmated plover 

 

Shorebird Charadrius melodus Piping plover 

 

Shorebird Charadrius vociferous Killdear 
Recurvirostridae Shorebird Himantopus mexicanus Black-necked stilt 

 

Shorebird Recurvirostra americana American avocet 
Scolopacidae Shorebird Tringa melanoleuca Greater yellowlegs 

 

Shorebird Tringa flavipes Lesser yellowlegs 

 

Shorebird Tringa solitaria Solitary sandpiper 

 

Shorebird 
Catoptrophorus 
semipalmatus Willet 

 

Shorebird Actitis macularius Spotted sandpiper 

 

Shorebird Bartramia longicauda Upland sandpiper 

 

Shorebird Limosa Haemastica Hudsonian godwit 

 

Shorebird Limosa fedoa Marbled godwit 

 

Shorebird Arenaria interpres Ruddy turnstone 

 

Shorebird Calidris canutus Red knot 

 

Shorebird Calidris alba Sanderling 

 

Shorebird Calidris pusilla Semipalmated sandpiper 

 

Shorebird Calidris mauri Western sandpiper 

 

Shorebird Calidris minutilla Least sandpiper 

 

Shorebird Caladris fuscicollis White-rumped sandpiper 

 

Shorebird Tryngites subruficollis Buff-breasted sandpiper 

 

Shorebird Limnodramus sp. Dowitcher complex 

 

Shorebird Gallinago delicata Wilson's snipe 

 

Shorebird Phalaropus tricolor Wilson's phalarope 
  Shorebird Phalaropus lobatus Red-necked phalarope 
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Appendix D: Predicted values after area has been removed from the models.  Results do not indicate predicted abundances for 
each waterbird group, however, results take into account differences in area among land use treatments.  Results indicate a 
relative abundance in comparison to local and landscape level variables.  Higher values indicate more suitable waterbird 
habitat. 
  Reference Restored Agriculture     
2008 All Wetlands Sampled Mean SE Mean SE Mean SE F-value P-value 

Divers 5.75 1.70 7.39 2.30 5.19 1.18 0.62 0.5461 
Dabblers 212.83 44.86 317.28 52.04 223.45 34.19 1.82 0.1789 
Shorebirds 133.55 12.30 127.54 9.18 142.48 18.39 0.32 0.7297 
Geese 17.07 2.54 22.76 3.61 17.98 3.40 1.00 0.3785 
Species Richness 13.59 1.36 18.46 2.97 13.81 1.33 2.35 0.1118 
2009 All Wetlands Sampled 

Divers 2.63 1.52 2.08 0.82 1.02 0.82 0.63 0.5386 
Dabblers 119.86 19.42 171.99 28.57 126.36 27.12 1.33 0.2784 
Shorebirds 120.30 3.18 138.15 22.20 143.91 18.44 0.31 0.7381 
Geese 13.98 0.57 18.41 3.78 16.25 3.11 0.64 0.5362 
Species Richness 11.22 1.62 15.98 2.44 10.90 1.10 2.80 0.0764 
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