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CHAPTER I 
 

 

INTRODUCTION AND LITERATURE REVIEW 

 

1.1     INTRODUCTION 

      If nXX  ..., ,1  
is a sample from a normal population, then to estimate the population mean the 

usual point estimator is the sample mean 
nX . However, if the collected data violate the 

assumption of “identically distributed” setting, that is, if each iX  has heterogeneous mean, 

estimating the “population mean” will no longer make sense, except when structuring those 

means. Sometimes researchers believe that their collected sample is from a single population with 

a common constant mean when it is not, and they want to test the “population mean” equal to a 

specified value 0 without realizing that their data has previously been polluted due to some 

known or unknown mechanism. Hence the chance of rejection will be affected by the degree the 

data are polluted. Therefore it is necessary to model the disturbance of the data caused by the 

external or internal mechanisms and do inference for the parameter of interest. For example, let a 

random sample , ,...,1  , niX i   be assumed independently, normally distributed with 

heterogeneous means , ,...,1  , niCi 
 
and common variance 

2 . Let nCC ,...,1  be known, and 

assume that ),(~,..., 2

1 in CindNXX . Although each iX  has different mean, there is still an 

“underlying” mean  hidden in this model. Once   
is estimated, each mean ,iC  , ,...,1 ni   is 

obtained. Actually, this model is a linear regression model through the origin. For this univariate 
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case, the model is very easy to estimate, while when extending it to multivariate case, the 

matrices iC ’s become troublesome. A special case of interest for iC  is to assume it is a square 

matrix.  

      For the remainder of this chapter, a review of the literature for inferences of multivariate 

homogeneous mean models for single normal population is introduced in Section 1.2 as follows: 

Subsection 1.2.1 gives a review for inferences concerning the mean vector when the covariance 

matrix is unstructured. Subsections 1.2.2 to 1.2.4 are about inferences of the means assuming that 

the covariance matrices are patterned. Finally, Subsection 1.2.5 is about the inferences concerning 

both the means and covariance matrices. Section 1.3 is about the inferences for multivariate 

homogeneous mean model for k normal populations with 2k . Section 1.4 gives a brief review 

for meta analysis. Section 1.5 formally introduces the proposed model under multivariate normal 

setting and gives an overall introduction for the contents of later chapters. 

 

1.2     HOMOGENEOUS MEAN MODEL FOR SINGLE POPULATION 

      The p  dimensional multivariate normal model has mean μ  and covariance matrix Σ . The 

basic statistical problem is to estimate the parameters with a sample of n observations nXX ,...,1  

from the normal distribution with homogeneous mean μ  and homogeneous covariance matrix 

.Σ  The maximum likelihood estimator of μ  is just the sample mean and the maximum 

likelihood estimator of Σ  is proportional to the matrix of sample variances and sample 

covariances. The sample covariance matrix is defined by 

 )')((
1

1
1

XXXXS 


   ji

n

in
, (1.1)  

where  


n

i i
n 1

1
XX , and S  is unbiased for estimating Σ  and follows Wishart distribution 

)1,
1

1
( 


n
n

W Σ .  
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1.2.1    Inferences Concerning the Mean Vector When Covariance Matrix Is Unstructured 

      Tests for the mean μ  equal to a specified vector 0μ  have been discussed in many 

multivariate analysis textbooks (e.g. Anderson 2003, and Rencher 1998) for the cases that Σ  is 

known as well as that Σ  is unknown and unstructured. Since )( μX n is distributed according 

to ),( Σ0N , it follows that )()'( 1
μXΣμX  n has a central chi-square distribution with p 

degrees of freedom for the case that Σ  is known. For the case that Σ  is unknown and 

unstructured, the likelihood of the homogeneous mean model given observations nxx ,...,1  is  
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 (1.2)  

and the corresponding log likelihood is 

,)()(
2

1
||log

2
),...,|,(log

1

1

1 


 
n

i

i

T

in

n
constantL μxΣμxΣxxΣμ  

where log is the logarithm taken to base e. Let )()'( 0

1

0

2
μXSμX  nT . For the rest part of 

this subsection, the following theorem concerning Hotelling-
2T  distribution is stated and the 

likelihood ratio test for the hypothesis 00 : μμ H  is developed and based on the 
2T - statistic 

(Anderson 2003). 

 

Theorem 1.1 (Anderson 2003)  Let nXX ,...,1  be a sample from ),( ΣμN , and define 

)()'( 0

1

0

2
μXSμX  nT . The distribution of 







 









 p

pn

n

T

1

2

 is noncentral F  with 

p  and pn  degrees of freedom and noncentrality parameter )()'( 0

1

0 μμΣμμ  n . If 

0μμ  , then the F-distribution is central. 
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    Since the 
2T -statistic follows the Hotelling’s 

2T -distribution which is the generalized version 

of Student’s t distribution, the confidence region of the mean vector can be derived on the basis of 

the 
2T -statistic. The likelihood ratio for testing  00 : μμ H  is 
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Thus (1.3) becomes 
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Replacing Σ̂  and 0Σ̂  using (1.4), 
n/2  becomes  
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Further, to derive the likelihood ratio criterion, the following Corollary is required. 
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Corollary 1.1  (Anderson 2003) For C  nonsingular,  
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n

i ji1
)')(( XXXXA  and using Corollary 1.1, we have  
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where 
2T  is defined in Theorem 1.1. Thus the likelihood ratio test for 00 : μμ H  has rejection 

region }:,...,{ 0

2

1 CTn xx  where ),,1(
)1(

0 pnpF
pn

pn
C 




  is such that 

 )|( 00

2 HCTP , the significance level of the test.  

 

1.2.2    Inferences Concerning the Mean Vector When Covariance Matrix Has Compound  

Symmetry Structure 

      Define the p -variate mean vector ),...,( 1
 pμ . Wilks (1946) derived the exact 

likelihood ratio criterion for testing :0H equality of p  entries of the mean vector μ  or 

pH 1μ :0
, where   is an unknown real number and 

p1 is a 1p  vector with all entries 

equal to 1, when the covariance matrix Σ  has compound symmetry structure as defined in (1.5). 

This could be done when the likelihood ratio criterion, which was also derived in the same paper, 

for testing Σ:0H  has compound symmetry vs Σ:aH  is unstructured, does not have a 

significantly small value. The compound symmetry covariance matrix is of the form 
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 ,
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Σ  (1.5)  

where 0  and  1)1( 1   p  to ensure positive definiteness of the compound 

symmetry covariance structure of Σ . This structure assumes that the unknown p  variances are 

all equal through the common intra-class correlation.  

      Geisser (1963) derived the likelihood ratio test for testing 00 : μμ H  where 0μ  is a 

known constant, when the underlying covariance matrix has a compound symmetry structure as 

shown in (1.5). In this paper, the likelihood ratio test statistic L  for testing 00 : μμ H  under 

the covariance matrix structure in (1.5) is of the form 
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or 

 
2

1

1 BBL p , (1.8)  

where 
)1)(1(,1  pnpF  and 

1,1 nF  are independent  F  random variables with degrees of freedom 

indicated in subscripts and 2

1p , 
2

1 , 2

)1)(1(  np , and 2

1n  are independent chi-square random 

variables with the corresponding degrees of freedom shown in subscripts. 1B  and 2B  are 

independent beta variables ))1(
2

1
),1)(1(

2

1
(  pnpBeta  and )

2

1
),1(

2

1
( nBeta , 

respectively, based on the following properties about beta random variables.  
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Properties of beta random variables: (Bailey 1992)  Let U  and V  be independent, )(~ 2 mU  , 

)(~ 2 nV  . Then )
2

,
2

(~
nm

Beta
VU

U


. 

 

      The rth raw moment of L  can be calculated easily and approximations to the distribution of 

the product has been studied by Tukey and Wilks (1946) such that finding approximate critical 

values for the test is feasible. The hypothesis 00 : μμ H  is rejected when L  is sufficiently 

small.  

 

1.2.3    Inferences Concerning the Mean Vector When Covariance Matrix Is Circulant 

      A circulant matrix of order p , or circulant in short, is a pp  square matrix of the form  

 






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A . (1.9)  

The elements of each row of the matrix A  are identical to those of the previous row, but are 

moved one position to the right and wrapped around such that the last element of the previous 

row becomes the first element of the current row. Note that the whole circulant is evidently 

determined by the first row. Also we may denote the circulant A  in (1.9) by 

 ),...,,( 110  paaacircA . 

So A  is a pp  circulant if and only if 
pijij aa |)(  , where pij |)(   is defined as 










. when            

 ,      when 
|)(

jiij

jiijp
pij  

For more details about circulant matrices, refer to Davis (1979) and Graybill (1983). If a positive 

definite covariance matrix is circulant, it must also be symmetric. Examples for circulant  
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covariance matrices ),...,,( 1

2

1

22

pcirc  with 4p  and 5p  are, respectively,  
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 , 

satisfying 
jpj    of the symmetric circulant covariance matrix Σ  of the form 

 








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


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
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pp

p

Σ . (1.10)  

If assuming   11 ... p
 in (1.10), the covariance matrix is said to be compound 

symmetric defined in (1.5). 

      Olkin and Press (1969) have found the MLEs of the mean μ  and covariance matrix Σ  and 

have derived the exact likelihood ratio criteria for testing equality of p  entries of the mean 

vector μ  and the mean vector μ  equal to zero when the covariance matrix Σ  has a circulant 

structure. Their derivations for estimation and testing started by making the transformations on 

X  and S  such that ΓXY
2/1n , SΓΓV  , where X  and S  are sample mean and sample 

covariance matrix as defined in (1.1). Γ  is orthogonal such that it transforms the circulant 

covariance matrix Σ  to diagonal form. Note that Y  and V  are independent. They also derived 

the likelihood ratio tests and asymptotic approximations of the test statistics for means and 

covariance matrices. They simultaneously tested (i) that the mean vector μ  are zero and the 

covariance matrix is circulant, (ii) that the p  entries of the mean vector μ  are all equal and the 

covariance matrix is circulant, both against general alternatives that all the entries of μ  are real 

numbers and the covariance matrix is positive definitive.  
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1.2.4    Inferences Concerning the Mean Vector When Covariance Matrix Is Block 

Compound Symmetry 

      The estimating and testing problems for block compound symmetry arising from multivariate 

normal distributions was first studied by Votaw (1948). He proposed twelve hypotheses and 

tested them using likelihood ratio method. An introduction of the six hypotheses for one sample 

will be mentioned in Subsection 1.2.5. The other six hypotheses for k samples )2( k  are stated 

in Section 1.3. 

      A more recent paper that estimated and tested concerning means and covariance matrices 

under block compound symmetry covariance structure is given by Szatrowski (1982). In his 

paper, two types of covariance structures – block compound symmetry of type I (BCS-I) and 

block compound symmetry of type II (BCS-II) were considered. The problem of testing 

00 : μμ H  given that the covariance matrix has the block compound symmetry structure was 

also considered. In his paper, estimating and testing were based on maximum likelihood method. 

Null distributions of likelihood ratio statistics of the form |ˆ||ˆ|/2

 ΣΣn  were simplified for 

some special cases of Votaw’s six hypotheses for single population, where   is the parameter 

space under the alternative hypothesis, ω is the parameter space under the null hypothesis. 
Σ̂  is 

the MLE of covariance matrix under the alternative hypothesis and 
Σ̂  is the MLE of covariance 

matrix under the null hypothesis. Also the moments of 
n/2  were obtained under the null and the 

approximate null distributions of log2  were found using Box’s approximation (1949).  

      A BCS-I assumption can be illustrated by the following example. Suppose that a standard test 

score of college calculus is a random variable 1X  with mean 1 . There are a set of three other 

alternative tests, namely 2X , 3X ,and 4X  with means 2 , 3 , and 4 , respectively. So the 

vector )',,,( 4321 XXXXX  forms a 14  normal random vector with mean 
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)',,,( 4321 μ . Under the block compound symmetry of type I (BCS-I) assumption, the 

covariance structure is of the form 

 





















BDDC

DBDC

DDBC

CCCA

. (1.11)  

The hypothesis of interest is the interchangeability of variables 2X , 3X , and 4X . It is equivalent 

to the hypothesis that the vector X  has mean )',,,( 2221 μ  and the covariance structure 

is of the form in (1.11). That is the random vectors )',,( 4321 XXXX  , )',,( 3421 XXXX  ,

)',,( 4231 XXXX   , )',,( 2431 XXXX   , )',,( 3241 XXXX  , and )',,( 2341 XXXX   have the 

same distribution. For a more general case, consider b distinct standard tests and h sets of 

alternative tests, each of which measures ni abilities. That is, X  is partitioned into b + h subsets 

and forms a pnb
h

i i  1
-variate random vector. Under the BCS-I assumption, within each 

subset of variates, the means are equal, the variances are equal, and the covariances are equal and 

between any two distinct subsets of variates, the covariances are equal.
 

      In regard to the BCS-II assumption, we may consider the following example. Assume that 

there are two types of tests of cognitive abilities. Each type of cognitive tests measures the 

abilities of verbal (V) and thinking (T). So the two types of test scores are assumed to be a 

multivariate 14  normal random vector )',,( 4321 YYYY Y  with mean )',,,( 4321 μ ,  

where 1Y  and 2Y  are scores of verbal ability for type I and type II tests, respectively; 3Y  and 4Y  

are scores of thinking ability for type I and type II tests, respectively. Under the compound 

symmetry of type II (CS-II) assumption, the mean of Y  reduces to )',,,( 3311 μ , and the 

covariance matrix is of the form 
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



















BDEF

DBFE

EFAC

FECA

. (1.12)  

The test of hypothesis of interest would be 21   , 43   and that the covariance matrix has 

BCS-II structure shown in (1.12). Or equivalently be the test of simultaneous interchangeability 

of two types of measures for verbal and thinking abilities. For example, the distributions of 

)',,( 4321 YYYY   and )',,( 3412 YYYY   are the same but the distributions of )',,( 4321 YYYY   and 

)',,( 4312 YYYY   are not the same. These kinds of tests can also be applied to medical research 

especially for repeated measurements (Crowder & Hand 1990) data when comparing the effect of 

treatment and control groups (Morrison, 1972). For a more general case, one can consider n types 

of tests and h types of measures of cognitive abilities such that Y  is an hn  random vector.  

 

1.2.5    Inferences Concerning Both Means and Covariance Matrices 

       Wilks (1946) tested the hypothesis that a normal p-variate distribution has a complete 

symmetry covariance matrix structure as shown in (1.5) versus the hypothesis that the covariance 

matrix is unstructured by likelihood ratio test. In this paper, he also derived the LRT for testing 

p1μ   and Σ  is compound symmetry simultaneously against the general alternative that all 

the entries of μ are real numbers and the covariance matrix is positive definitive. 

     Votaw (1948) first studied the problem of estimating and testing for block compound 

symmetry in data arising from multivariate normal distributions. He extended Wilks’ result by 

considering a normal p-variate random vector which can be partitioned in q mutually independent 

subsets of which b subsets contain exactly one variate each and the remaining q - b = h  subsets 

(h ≥  1) contain n1,…, nh variates, respectively, where  nα ≥  2; α = 1,…, h; b + n1+…+ nh = p. Let 

(1
b
, n1,…, nh ) denotes such a partition of  a the p-variate random vector. Without loss of 
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generality, assume n1 ≤ … ≤  nh . A special case is that b = 0. For assumptions of block compound 

symmetry of type I and type II, Section 1.2.4 has given a brief introduction. In his paper, Votaw 

(1948) proposed 6 null hypotheses for testing the means or covariances or both based on a single 

sample. These hypotheses are: 1) )(1 mvcH , 2) )(1 vcH , 3) )(1 mH , 4) )(1 mvcH , 5) )(1 vcH , 

and 6) )(1 mH . The hypotheses 1-3 are for BCS-I assumptions and the remaining three are for 

BCS-II assumptions.  The null hypotheses 1, 2, 4, and 5 are against the alternative hypothesis that 

the means are real numbers and the covariance matrix is positive definite. The statements of the 

above six hypotheses are as follows: 

 )(1 mvcH  is the hypothesis that within each subset of variates, the means are equal, the 

variances are equal, and the covariances are equal and that between any two distinct 

subsets of variates, the covariances are equal. 

 )(1 vcH  is the hypothesis that within each subset of variates, the variances are equal and 

the covariances are equal and that between any two distinct subsets of variates, the 

covariances are equal. 

 )(1 mH  is the hypothesis that within each subset of variates, the means are equal, given 

that the variances are equal and the covariances are equal and that between any two 

distinct subsets, the covariances are equal. 

 )(1 mvcH  is the hypothesis that within each subset of variates, the means are equal, the 

variances are equal, and the covariances are equal and that between any two distinct 

subsets of variates, the diagonal covariances are equal and the off-diagonal covariances 

are equal. 

 )(1 vcH  is the hypothesis that within each subset of variates, the variances are equal and 

the covariances are equal and that between any two distinct subsets of variates, the 

diagonal covariances are equal and the off-diagonal covariances are equal. 
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 )(1 mH  is the hypothesis that within each subset of variates, the means are equal, given 

that the variances are equal and the covariances are equal and that between any two 

distinct subsets of variates, the diagonal covariances are equal and the off-diagonal 

covariances are equal.  

Votaw derived the likelihood ratio for each hypothesis. In his paper, he also developed an explicit 

expression of the likelihood ratio criterion for each hypothesis and found its rth moment and 

approximate distribution when the corresponding hypothesis is true.  

     Olkin and Press (1969) have considered the problem of 1) testing the null that Σ  has 

complete symmetry versus the alternative hypothesis that Σ  is a circulant; 2) testing the null that 

I2Σ  versus the alternative hypothesis that Σ  is a circulant; 3) testing the null hypothesis that 

Σ  is a circulant versus the alternative hypothesis that Σ  is positive definite. 

 

1.3     HOMOGENEOUS MEAN MODELS FOR k POPULATIONS WITH 2k  

      Votaw (1948) tested the following hypotheses based on k samples: 1*) )|( mvcMVCHk , 2*) 

)|( mvcVCHk , 3*) )|( mVCMHk , 4*) )|( mvcMVCHk
, 5*) )|( mvcVCHk

, and 6*) 

)|( mVCMHk
. The hypotheses 1-3 are for BCS-I assumptions and the rest three are for BCS-II 

assumptions.  The statements of the above six hypotheses are as follows: 

 )|( mvcMVCHk  is the hypothesis that k normal p-variate distributions are the same 

given that they all satisfy )(1 mvcH which is introduced in section 1.2.5.  

 )|( mvcVCHk is the hypothesis that k normal p-variate distribution have the same 

variance-covariance matrix given that they all satisfy )(1 mvcH .   

 )|( mVCMHk  is the hypothesis that k normal p-variate distributions are the same given 

that they all satisfy )(1 mvcH and that they all have the same variance-covariance matrix.   
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 )|( mvcMVCHk
 is the hypothesis that k normal p-variate distributions are the same 

given that they all satisfy )(1 mvcH which is introduced in section 1.2.5. 

 )|( mvcVCHk
 is the hypothesis that k normal p-variate have the same variance-

covariance matrix given that they all satisfy )(1 mvcH . 

 )|( mVCMHk
 is the hypothesis that k normal p-variate distributions are the same given 

that they all satisfy )(1 mvcH and that they all have the same variance-covariance matrix.  

For each of the above six hypotheses, Votaw developed the likelihood ratio test in terms of 

deriving the explicit expression of the likelihood ratio criteria 
2L  , where   is the likelihood 

ratio, for the hypotheses 1* – 4* and 
NL /2  for the remaining two hypotheses, where  N  is total 

number of sample sizes for all  k  populations. He also found the rth moment and approximate 

distribution for each test hypothesis.  

      Geisser (1963) compared the means of  k  p-variate normal populations under the assumption 

that the k normal populations have the common compound (complete) symmetry covariance 

structure using multivariate analysis of variance approach implemented by use of the information 

criterion (Chapter 9, Kullback 1959).  

 

1.4.     META ANALYSIS 

      Meta analysis has been widely used to synthesize results from systematic reviews of reliable 

research in many fields. There has been a massive growth in application of meta analysis to areas 

such as medical research, health care, education (Glass, 1976), criminal justice, social policy, etc. 

See Kulinskaya et al. (2008) and Sutton et al. (2000) for a detailed account of meta analysis.  A 

recent development of meta analysis has been summarized by Sutton and Higgins (2008).  

      One uses a fixed effect model to combine treatment or parameter estimates when assuming no 

heterogeneity between the study results. In fact, point estimates of parameters from different 
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studies are almost always different. If the differences of the point estimates are only simply due to 

sampling error, that is, the source of variation between studies is random variation, we can use a 

fixed effect model. Sometimes the researchers prefer to believe that the true unknown parameters 

from different studies vary from one study to the next, the studies represent a random sample of 

the parameters that could have been observed and comes from a specific distribution. Under this 

situation, a random effects model will be considered in the analysis. 

      The standard fixed effect model in meta-analysis is that if we have k independent studies, 

with data, each of which reports an estimate
)(

ˆ
i for a common parameter  . Each estimate 

)(
ˆ

i  

is assumed independently, normally distributed as 

 ,,...,1 ), ,(~ˆ
2

)( ki
n

N
i

i
i 


  (1.13)  

where is the sample size of ith study and 
2

i  is the underlying variance parameter for ith study. 

Given (
)(

ˆ
i ,

2

i , in ) the ML estimator for   and its variance are, respectively, 

 ,

ˆ
~

1

2

1

)(

2














k

i

ii

k

i

iii

n

n





  (1.14)  

and 

 
.

1
)~(

1

2







k

i

iin

Var



  
(1.15)  

     Now consider the multivariate models with k independent samples, each of which 
iini XX ,...,1  

is from ),( ipMVN Σμ  population for ki ,...,1  . Suppose μ  is the parameter vector of 

interest. The ML estimator for μ  based on ith sample is  

 .,...,1 ,ˆ
)( kiii  Xμ  (1.16)  
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Here we assume iΣ is known for all ki ,...,1 . In fact, s'ˆ
)(iμ are independent and  

 .,...,1 ),
1

 ,(~ˆ
)( ki

n
MVN i

i

i Σμμ  (1.17)  

     Given (
)(

ˆ
iμ ,

2

iΣ , in ) for the k studies, the ML estimator for μ  and its variance-covariance 

matrix based on the k independent samples are respectively 

   ,ˆ~

1

)(

1

1

1

1





















k

i

iii

k

i

ii nn ΣΣμ  (1.18)  

   .)~(

1

1

1














 

k

i

iinCov Σμ  (1.19)  

Statistical inferences are based on the fact that  

       .~~'~ 2

,

1

1

 p

k

i

iin μμΣμμ 







 




 (1.20)  

      Applications of the proposed heterogeneous means normal model to random and fixed effects 

meta analysis will be developed and presented in Chapter 4. The proposed models will be stated 

in the next section. 

 

1.5     PROPOSED HETEROGENEOUS MEANS MODELS 

      Consider an independent sample MXX ,...,1  
such that ),(~ ΣμX ipi MVN , where 

μCμ ii   for all Mi ,...,1 , and both μ and Σ  are unknown. The matrices iC
 
are pp for all 

Mi ,...,1 and the covariance matrix Σ  is positive definite. Some further restrictions will be 

considered later for iC
 
when necessary. The likelihood function is 
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12

1
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

 (1.21)  
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 The covariance matrix Σ  is patterned in order to make the maximum likelihood estimator 

(MLE) of μ  vector not involve the ML estimator of Σ . 

      Based on the likelihood function for a given sample, inferences for one-sample and 

multisample data are presented in Chapters 2 and 3, respectively. The likelihood ratio test for 

one-sample case for 00 : μμ H  is derived explicitly under some constraints on the matrices iC  

and covariance matrix Σ . Especially, iC  is assumed circulant for all i. Σ  is assumed compound 

(complete) symmetry of the form in (1.5). The distributions of the MLEs of the intraclass 

correlation   and variance 
2 , namely ̂  and 

2̂ , respectively, are obtained and the behavior 

of  ̂  is investigated in terms of its mean and standard deviation by a simulation study. For the 

two-sample and multisample cases, the likelihood ratio test for testing kH μμ  ...: 10  is 

derived exactly assuming equal compound symmetry covariance matrix for the k  populations. 

Large sample χ
2
 test is gained for each of one-sample and two-sample cases.  

      An application of the proposed model to meta analysis is developed in Chapter 4. In 

traditional meta analysis, the sample from each study is assumed independently, identically 

distributed, while the sample from the proposed model is not the case. In Chapter 4, applications 

of the proposed model to fixed and random effects models for multivariate meta analysis (Jackson 

et al., 2011, Nam et al., 2003) about continuous outcomes will be developed and presented. Since 

the outcome measures in the proposed model are non-comparative continuous, one-stage method 

for individual patient / participant data (IPD) random effects model is suggested by Higgins et al. 

(2001) to investigate the heterogeneity of the effects (parameters) among several studies. 
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CHAPTER II 
 

 

ONE-SAMPLE INFERENCE 

 

2.1     INTRODUCTION AND PRELIMINARY CASES 

      Consider an independent sample of size M, MXX ,...,1  ~ ),( ΣμipMVN , where μCμ ii   

for all Mi ,...,1 , and both μ  and Σ  are unknown. The matrices iC  are pp
 
for all 

Mi ,...,1  and the covariance matrix Σ  is positive definite. Some further restrictions will be 

considered later for iC  when necessary. The likelihood function is already shown in (1.21), thus 

the log likelihood function is 

 

.)()(
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iiM
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 (2.1)  

For simplicity, ),...,|,(log 1 ML xxΣμ  will be expressed as )|,(log xΣμL from now on. Let 




 
M

i

ii

T

iiQ
1

1 )()( μCxΣμCx . Our goal is to find the MLEs for μ  and Σ . We can start by 

rewriting the log likelihood function in (2.1) such that maximizing )|,(log xΣμL , or 

equivalently minimizing Q  with respect to μ , becomes easier. But Q  can be expressed as 
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where the second equality is justified by  
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Therefore, the log likelihood becomes 
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1ˆ xΣCCΣCμ . We can base on the 

log likelihood expressed in (2.2) to find the MLEs for μ  and/or Σ  under some specified 

conditions. 

 

2.1.1      Inference for μ  When Σ  Is Known 

      From the log likelihood derived in (2.2), we can see that the third term of the right-hand side 

is the only one involving μ . If  
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which is the MLE of μ , a linear combination of s'iX . Note that μ̂  is normally distributed with 

mean 
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and the covariance matrix )ˆ(μCov  obtained in the following way. Since μ̂  satisfies the identity 
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Hence μ̂  is normally distributed as 
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which leads to the result 
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Therefore, for testing 00 : μμ H  we reject 0H  if  
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2.1.2      Inference for  When Σ  Is Unknown without Pattern 

      When Σ  is unknown we have the MLE of μ  which has the same form as that in (2.3) with 

Σ replaced by Σ̂ , the MLE of Σ .  Hence the MLE of μ  is 

μ
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where Σ̂  is the MLE of Σ . Therefore based on a result of Anderson (2003, Lemma 3.2.2, p. 69) 

in connection with (2.2), we have the MLE of Σ  
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iiii
M 1

.)ˆ)(ˆ(
1ˆ μCXμCXΣ  (2.6)  

     We should note that the expression of μ̂  in (2.5) involves Σ̂ . Recall that in the iid case, if 

μμ i  for all i, the MLE of μ  does not involve Σ  at all. In general, there are no explicit 

solutions for μ̂  and Σ̂  and the equations in (2.5) and (2.6) need to be solved iteratively for μ̂  

and Σ̂  . Thus the approximation 
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μμCΣCμμ  (Crowder 

and Hand, 1990) is still attainable such that testing 00 : μμ H  asymptotically can be done. 

Nevertheless, to remove Σ̂  in (2.5) such that the MLEs μ̂  and Σ̂  can be gained explicitly, we 

should consider a patterned covariance matrix Σ  with details about inference for μ  covered in 

Section 2.2. Before doing so, let us consider another structure of Σ  in the next subsection. 

 

2.1.3      Inference for μ  When VΣ
2 , 

2 Unknown,
 
V Known 

      Recall that ),(~ ΣμX ipi MVN . In this subsection, we consider the case that VΣ
2 , 

where 02   is an unknown constant and  is a known positive definite matrix. So μ  and 

2  are the only unknown parameters. Therefore, the maximum likelihood estimator of μ
 
is 
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To find the MLE of 
2 , let us consider the log likelihood function first. Define 

2  , the log  

V
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likelihood function is 
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Setting the above equation zero and solving for  , the MLE of 
2  is 
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Since μ̂  is a linear combination of s'iX , the distribution of μ̂  can be found as 
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Next, the distribution of  
22 /ˆ Mp  can be shown to follow 

2  distribution with )1( Mp  

degrees of freedom. We may also show that μ̂  and 
2̂  are independent. To proceed, partition the 
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We need to note that 
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We can show that both terms of the above quantity are independent by showing that each pair of 

μ̂  and μCX ˆ
ii   for all Mi ,...,1  are independent. Since both μ̂  and μCX ˆ

ii   are normally 

distributed, we can show that they are statistically independent by just showing that their 
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random variables (Bain & Engelhardt 1992, page 284), we have  
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which can be used for testing  00 : μμ H . 

 

2.2      MAINSTREAM: INFERENCE FOR μ  WHEN Σ  HAS COMPOUND 

SYMMETRY STRUCTURE AND iC  ARE CIRCULANT 

 

2.2.1      Maximum Likelihood Estimators  

      There are three conditions considered before deriving the MLEs for the unknown parameters.      

The theories developed later for section 2.2 are based on these three assumptions stated below.  

Condition (1).  If 
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Condition (2).  To guarantee 
T

i

T

i CΣΣC
11    in Condition (1), we assume that iC  is a circulant 

matrix for every i and Σ  has a compound symmetry structure. The following theorem will be 

applied to this condition.  

 

Theorem 2.0: (Schott (1997): Theorem 7.58, page 303) Suppose that A and B are m×m circulant 

matrices. Then their product commutes; That is, AB = BA. 

 

      Let Σ  have the structure 

 ],)1[(2

pp JIΣ    (2.8)  
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by rewriting the covariance matrix defined in (1.5), where 
1)1(  p  to ensure positive 

definiteness of Σ . Note that the eigenvalues for Σ  in (2.8) are ])1(1[2   p  with 

multiplicity 1 and )1(2    with multiplicity 1p . Thus Σ  is a symmetric circulant matrix 

and we say Σ  has compound symmetry which has been introduced in Subsection 1.2.2. For each 

Mi ,...,1 , if iC  is also a circulant matrix, then we have 
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i CΣΣC
11    which results in the 

reduced form of μ̂  shown in (2.7). Working on the log likelihood function in (2.1) with Σ  of 

the form in (2.8), we may get the MLEs for   and 
2 . To find the MLEs for   and 

2 , first 
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(cf. Graybill, 1983, Theorem 8.34, page 190.) 

      Let 
2  , the log likelihood function in (2.1) becomes  
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square matrix with all elements equal to 1. To find the maximum likelihood estimators 

for )( 2   and  , we take the first partial derivative of the log likelihood function in (2.9) 

with respect to   and 
 
separately. So we have 
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Note that ̂  in (2.10) can also be expressed as 
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Inserting ̂  in (2.10) into (2.11) and solving for ̂  yields 
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Hence we arrive at the following lemma. 

 

Lemma 2.1:  Let ),(~,...,1 ΣμXX ipM N , where μCμ ii   for all Mi ,...,1 , iC  is 
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2.2.2      Hypothesis Testing for 00 : μμ H Using LR Test 

      In this subsection, the likelihood ratio test will be derived for 00 : μμ H . Restrictions 

T

i

T

i CΣΣC
11   for all Mi ,...,1 are still valid here and we also assume that RΣ

2 , 

where pp JIR   )1( , and both 
2  and   are unknown. The following theorem states 

the likelihood ratio test for 00 : μμ H  under the above assumptions.  
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Theorem 2.1:  Let ),(~,...,1 ΣμXX ipM N , where μCμ ii   for all Mi ,...,1 , iC  is 

circulant and ])1[(2

pp JIΣ    defined in (2.8). The likelihood ratio test for testing 

00 : μμ H  is to reject 0H  if ,CW  where C  is such that   )|( 0HCWP , and W  is 

defined as: 

,
)()(

)ˆ()ˆ(
                                  

)()()()(

)ˆ()ˆ()ˆ()ˆ(

1
00

1

1

1 1
0000

1 1

 

 


















  

  








 

 

M

i
iip

T

ii

M

i
iip

T

ii

p

M

i

M

i
iip

T

iiii

T

ii

M

i

M

i
iip

T

iiii

T

ii

p

p
W

μCXJμCX

μCXJμCX

μCXJμCXμCXμCX

μCXJμCXμCXμCX

 

where μ̂  is defined in (2.7). 

Proof: 

      The likelihood ratio   for testing 00 : μμ H  is  
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Using the above expressions for 
2

0̂ , 0̂ , 
2̂ , and ̂  in (2.13), we gain the likelihood ratio test 

as stated in this theorem (detail shown in Appendix A.2). The proof is complete. 

 

      Although the likelihood ratio has been derived in Theorem 2.1, the null distribution of  W  in 

Theorem 2.1 is still not derived yet. Define 
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      Under the null hypothesis 00 : μμ H , the exact, asymptotic, or approximate distributions 

of  W
 
is of our great interest. To find the exact null distribution of  W , the following 

propositions are needed. 

 

Proposition 2.1:  Under 00 : μμ H , 00 2
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Proof: 

      Under 00 : μμ H , the distribution of 0μCX ii   is ),( Σ0pN , where the covariance matrix

 pp JIΣ   )1(2 . It follows from Box (1954) that the quantities 
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The proof is complete. 

 

Proposition 2.2:  Under 00 : μμ H , 02B is distributed as a chi-square random variable with 
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The proof is complete. 
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j ’s are the latent roots of the matrix 








































 







)
1

(
1

1

1

3 pp

M

i

i

T

i

M

i

i

T

i
p

JICCΣCCP . 

Note that Σ  and 


M

i

i

T

i

1

CC  commute so 13 )
1

( PJIΣP  pp
p

 , where 1P  is defined in 

(2.14). Hence we have 

2

1

2

1

)1()ˆ)(
1

()ˆ( 











  p

d

pp

M

i

i

T

i

T

p
μμJICCμμ . 

Note that 2
1

1 B
p

B  and )ˆ)(
1

()ˆ( 0

1

0 μμJICCμμ 







 



pp

M

i

i

T

i

T

p
are independent chi-square 

random variables since 2
1

1 B
p

B   is a function of μCX ˆ
ii  ’s , also μCX ˆ

ii   and μ̂  are 



 

36 

 

independent due to the fact that 0)ˆ,ˆ(  μμCX iiCov . In addition, using the result of sum of 

two independent chi-square random variables, we have 

              .)1(2
1

1 2

)1)(1(

2

 pM

d

B
p

B   

The proof is complete. 

 

Proposition 2.4:  2B  is distributed as a chi-square random variable with 1M degrees of 

freedom times a constant   )1(12  pp ; that is,  

  2

1

2 )1(12  M

d

ppB  . 

Proof: 

      Assume that μμ )ˆ(E . Using the fact that 0)ˆ(
1




M

i

ii

T

i μCXC , we have the expression 

for 2B  that  

).ˆ()ˆ()()(      

)ˆ()ˆ(2

11

1

μμJCCμμμCXJμCX

μCXJμCX









 

 






p

M

i

i

T

i

T
M

i
iip

T

ii

M

i
iip

T

iiB

 

The second term )ˆ()ˆ(
1

μμJCCμμ 







 



p

M

i

i

T

i

T
of the last expression above is distributed as the 

quantity 


p

j
j

1

2

1  where 
j ’s are the latent roots of the matrix 

2

1

1

1

4 PΣJJCCΣCCP 
















 







pp

M

i

i

T

i

M

i

i

T

i , 

where 2P  is previously defined in the proof of Proposition 2.2. Hence 

  .)1(1)ˆ()ˆ( 2

1

2

1

 







 



pp
d

p

M

i

i

T

i

T
μμJCCμμ  
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Since 2B  and )ˆ()ˆ(
1

μμJCCμμ 







 



p

M

i

i

T

i

T
 are independent and we have from Proposition 

2.2 that 

  22

1

)1(1)()( M

dM

i
iip

T

ii pp   


μCXJμCX , 

2B is distributed as the quantity 

  2

1

2 )1(1  Mpp  . 

The proof of Proposition 2.4 is complete. 

      The following proposition can be used to show independence of 2
1

1 B
p

B   and 2B  

required when finding the exact null distribution of the likelihood ratio test statistic W  stated in 

Theorem 2.1.  

 

Proposition 2.5:  Let μCXY ˆ
iii  , 

















M

i

i

T

i

M

i

i

T

i

1

1

1

ˆ XCCCμ , p
p

JIA
1

 , p
p

JB
1

 ,





M

i

i

T

iS
1

AYYA  and 



M

i

i

T

iS
1

BYYB . Then 
i

T

i AYY  and 
j

T

j BYY  are independent for all i and 

j and hence AS  and BS  are independent. 

 

Remark 2.1: Since iY  is a linear combination of  Mvec XXX ,...,1  it can be expressed as 

XMY ii  , where iM  is a Mpp  matrix with the structure  

 T

Mi

T

ii

T

iip

T

ii

T

ii CQCCQCCQCICQCCQCM
1

1

11

1

1

1

1 







   , 

where 







 



M

i

i

T

i

1

CCQ .  

Rewrite both AS  and BS  we have  
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   



M

i

i

T

iS
1

XMAXMA
  and     




M

i

i

T

iS
1

XMBXMB
, 

X is distributed as a multivariate normal   ),,...,( 1 ΣμCμC MMMp IvecMVN . And we have 

XAMMXA 







 



M

i

i

T

i

TS
1

 and XBMMXB 







 



M

i

i

T

i

TS
1

. 

To show that AS  and BS  are independent, it suffices to show that 

   0BMMΣAMM 



















M

i

i

T

iM

M

i

i

T

i I
11

, (2.19)  

where Σ  has compound symmetry with the structure ])1[(2

pp JIΣ    and is 

circulant. The calculation of the matrix 


















M

i

i

T

i

M

i

i

T

i

11

BMMΣAMM  is complicated so 

another way to prove Proposition 2.5 is to show first that 
i

T

i AYY  and 
j

T

j BYY  are independent 

for all i and j. 

 

Proof of Proposition 2.5:  

       Because both A and B are symmetric and idempotent, we may rewrite 
i

T

i AYY  and 
j

T

j BYY

respectively by 

i

T

i

T

ii

T

i AYAYAAYYAYY )( , 

and 

i

T

i

T

ii

T

i BYBYBBYYBYY )( . 

Note that 
i

T

i AYY  and 
j

T

j BYY  are squared lengths of iAY  and 
jBY , respectively. So we only 

have to show that iAY  and 
jBY  are independent. 

      Consider the distribution of the random vector 
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X
BM

AM

XBM

XAM

BY

AY











































j

i

j

i

j

i
, 

where iM  is defined in Remark 2.1. 













j

i

BY

AY
 is a linear combination of X which is normal so 















j

i

BY

AY
is normal. Thus showing  0BYAY ),( jiCov  implies that iAY  and 

jBY  are 

 independent normal random vectors then the proof is done. Since B  is symmetric, we have
 

BYYABYYABYAY ),(),(),( ji

T

jiji CovCovCov  . 

Thus it suffices to show that ),( jiCov YY  is a circulant matrix so A , B , and ),( jiCov YY

commute implying that 0ABYYBYYA  ),(),( jiji CovCov , using the fact that 0AB  . 

To show that ),( jiCov YY  is a circulant matrix, we may use a direct proof. We have 

,)ˆ()()(),(                  

)ˆ()()())((),(                  

)ˆ(),(),(),(                  

)ˆ,ˆ(),ˆ()ˆ,(),(                  

)ˆ,ˆ(),ˆ()ˆ,(),(                  

)ˆ,ˆ(),(

11

11

1

1

1

1

T

jij

T

ji

T

jiiji

T

jij

T

ji

T

j

TT

iiji

T

jij

M

i

i

T

ii

T

j

M

i

i

T

iiji

T

jiji

T

jiji

jijijiji

jjiiji

VarVarVarCov

VarVarVarCov

VarCovCovCov

CovCovCovCov

CovCovCovCov

CovCov

CμCXCQCCQCXXX

CμCXCQCCCQXXX

CμCXXCQCCXCQXXX

CμμCXμCCμXXX

μCμCXμCμCXXX

μCXμCXYY























 

 

where 



M

i

i

T

i

1

CCQ . Note that ),( jiCov XX = Σ  if  ji   and 0  otherwise. Also from 

Section 2.3.1 we have ΣQμ
1)ˆ( Var  and the fact that Σ , iC , and Q  are circulant matrices 

implying that their inverse and transpose are also circulant so the commutability holds. Hence 

),( jiCov YY  becomes 
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





























. if ,)( 

 if ,)(
                  

 if ,

 if ,
),(

1

1

111

111

ji

jiI

ji

ji
Cov

T

ji

T

ii

T

ji

T

ji

T

ji

T

ii

T

ii

T

ii

ji

ΣCQC

ΣCQC

ΣCQCΣCQCCQΣC0

ΣCQCΣCQCCQΣCΣ
YY

 

Therefore ),( jiCov YY  is circulant. The proof of Proposition 2.5 is complete. 

 

      Now, it is time to state and prove the following main results using Propositions 2.1 – 2.5. 

 

Theorem 2.2:  The likelihood ratio test for testing 00 : μμ H  in Theorem 2.1 is to reject 0H  if  

CW   , where C  is such that   )|( 0HCWP , and W  is expressed as 

 
 

,

22
1

1

22
1

1

221

221
1

1

0

1

00

1

0

1

00

1

CA

DB

BB
p

B

BB
p

B

BBpB

BBpB
W

p

p

p

p

p

p







































  

where  

 


M

i
ii

T

iiB
1

)ˆ()ˆ(1 μCXμCX  and  


M

i
iip

T

iiB
1

)ˆ()ˆ(2 μCXJμCX , 

 


M

i
ii

T

iiB
1

000 )()(1 μCXμCX  and  


M

i
iip

T

iiB
1

000 )()(2 μCXJμCX , 

00 2
1

1 B
p

BA  , 2
1

1 B
p

BB  , 02BC  , 2BD  . 

Furthermore, under 00 : μμ H , W  is distributed as the random variable 


























**

1

*

1

1
1

1

1
1

1

F
M

F
M

p
, 
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where 
*F and 

**F are independent and distributed as 
)1)(1(,1  pMpF , and 

1,1 MF  random variables, 

respectively. 

Proof: 

      Recall from the proofs of propositions 2.1 - 2.4 that 

 RBA  , (2.20)  

where 

)ˆ)(
1

()ˆ( 0

1

0 μμJICCμμ 







 



pp

M

i

i

T

i

T

p
R . 

Also 

 SDC  , (2.21)  

where 

)ˆ()ˆ( 0

1

0 μμJCCμμ 







 



p

M

i

i

T

i

TS . 

      If we can show that B, R, D, and S are mutually independent, combined with the following 

facts (7), (8), (9), and (10), then the proof is done. Note that Facts (1) - (6) for showing pairwise 

independence among B, R, D, and S are sufficient for showing mutual independence among them.  

The facts needed to prove this theorem are shown below: 

(1) B and R are independent, 

(2) D and S

 

are independent, 

(3) B and D are independent (Proposition 2.5), 

(4) B and S are independent, 

(5) R and D are independent, 

(6) R and S are independent, 
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(7) ))1)(1(()1()ˆ)(
1

()ˆ(2
1

1 22

1

 


pM
p

B
p

BB
dM

i
iipp

T

ii μCXJIμCX , 

(8) )1()1()ˆ)(
1

()ˆ( 22

0

1

0 







 



p
p

R
d

pp

M

i

i

T

i

T μμJICCμμ , 

(9)   )1()1(1)ˆ()ˆ(2 22

1

 


MppBD
dM

i
iip

T

ii μCXJμCX , and 

(10)   )1()1(1~)ˆ()ˆ( 22

0

1

0  







 



ppS p

M

i

i

T

i

T
μμJCCμμ . 

       

      First, Facts (1), (2), (4), and (5) hold due to the facts that μCX ˆ
ii   and μ̂  are independent 

for each i. Fact (6) is true because 0JJI  ppp
p

)
1

( . Fact (3) is the result of Proposition 2.5. 

Facts (7) and (9) are direct results of Propositions 2.3 and 2.4, respectively. Facts (8) and (10) are 

shown in the proofs of Proposition 2.3 and 2.4, respectively. Hence the result that R , S , B , and 

D  are independent in connection with the expressing of  W  




























D

S

B

RSDRB

DB
W

pp

p

11

1

)()(
11

1

 

fulfills the proof of Theorem 2.2. 

 

2.2.3      Properties and Useful Results about ML Estimators 

      In addition to the likelihood ratio test for testing 00 : μμ H , the null distribution of the 

statistic  

 )ˆ()]ˆ(̂[)ˆ( 0

1

0 μμμμμ  Var  (2.22)  

also draws our attention. The exact null distribution of (2.22) is not easy to obtain while we may 

at least find its asymptotic distribution. First note that 
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ΣCCμ ˆ)'()ˆ(̂
1

1



M

i

iiVar , 

and 
















pp
p

JIΣ




 ˆ)1(1

ˆ

)ˆ1(ˆ

1ˆ
2

1
. 

The quadratic form (2.22) can be phrased as: 

 

)1(ˆ

)ˆ(ˆ)ˆ(

2

0
1

1

0















MM

p
M

i
i

T

i

T



μμCRCμμ

, 
(2.23)  

where  
















pp
p

JIR




 ˆ)1(1

ˆ

)ˆ1(

1ˆ 1
. 

      The following propositions are helpful for developing an approximate distribution of the 

statistic in (2.22) under the hypothesis 00 : μμ H . Details of the derivation of the approximate 

null distribution of (2.22) will be shown in Subsection 2.2.4. Before deriving the approximate null 

distribution of the statistic in (2.22), let us first look at the following proposition about the MLE 

of 
2 .  

 

Proposition 2.6: Let 



M

i

ii

T

iiB
1

)ˆ()ˆ(1 μCXμCX . Then 1

2 1
ˆ B

Mp
 is the MLE of 

2 ,  

and 22 ˆ
1

ˆ̂ 



M

M
is an unbiased estimator for 

2 . In addition the following results hold. 

a) 
2

1

2 )
1

1(
1

)ˆ( 
M

B
Mp

EE  , and 
2

1

2

)1(

1
)ˆ̂(  


 B

pM
EE .   
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b) )
1

(])1(1[
)1(2

)ˆ( 42

2

2

M
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pM

M
V 


  , and

)
1

(])1(1[
)1(

2
)ˆ̂( 422

M
Op

pM
V 


  . 

c) Both 
2̂  and 

2ˆ̂  are consistent estimators of 
2 ; that is, 

22ˆ  p
and 

22ˆ̂  p
. 

Proof: 

      Recall that the MLE of μ  is 


















M

i

i

T

i

M

i

i

T

i

1

1

1

ˆ XCCCμ . 

To find )1(BE , )ˆ( 2E , )1( 2BE , and )ˆ( 2V , recall that 1B  can be expressed as 

),ˆ)('()ˆ()()(1
11

μμCCμμμCXμCX  


M

i

ii

M

i

ii

T

iiB

 

and the following result (cf. Christenson (2002), Theorem 1.3.2) is needed. 

If μY )(E  and VY )(Cov then AμμAVAYY ')()'(  trE . 

So we have 
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which implies that 
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where A, B, and C are, respectively, given by 

 

       ),(2)()(2    

)()()()(2       

4.2) Theorem(1979), Magnus & (Neudecker    )()(    
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Let us attend to the representation of B. Define 



M

i

ii

1

'CCQ , we have 



M

i

i

T

i

1

1ˆ XCQμ . Thus 

the quadratic form )ˆ()ˆ( μμQμμ   can be rewritten as: 
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So B can be expressed as  
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   . )()()()(
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 (2.24)   

Consider the term in (2.24):  

    )()()()( 1
μXCQCμXμCXμCX jj

T

ji
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iikk

T

kk CCE   . (2.25)   

To calculate (2.25), the results of Magnus (1979) can be applied to the following two cases.  

Case 1: ji  , 

 kji   
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 (2.26)   

 For i, j such that kji   
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 (2.27)   

Case 2: ji  , 

      In this case, only one of i and j equal to k, or neither of them equal to k. For these two 

scenarios, (2.25) is equal to zero. That is, 

     0)()()()( 1  
μXCQCμXμCXμCX jj

T

ji

T

iikk

T

kk CCE . (2.28)   

 Thus (2.24) becomes  

       )(2)()1()(2)( 22222
ΣΣΣΣΣ trtrMtrMtrtrB   (2.29)   

So we have 
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       
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Hence we have 
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Therefore we have that 
22ˆ  p

. The proof is complete. 

 

Remark 2.2: Proposition 2.6 (a) and (b) can be shown more effortlessly by using the results about 

the distribution of 1B  which will be stated in Theorem 2.3 later in this subsection. Theorem 2.3 

(a) states that 1B  is distributed as the quantity 2

)1)(1(

2 )1(  pM  + 2

)1(

2 ])1(1[  Mp  , 

where 2

)1)(1(  pM  and 2

)1( M  are independent chi-squared random variables with )1)(1(  pM  

and )1( M  degrees of freedom, respectively. Hence the results 

http://tw.wrs.yahoo.com/_ylt=A3eg.8vNQpVNjw0AyJjhbB4J/SIG=12e53hvj5/EXP=1301656397/**http%3a/tw.dictionary.yahoo.com/dictionary%3fp=effortlessly
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obtained from Theorem 2.3 (a) are exactly the results of Proposition 2.6 (a) and (b), respectively.  

 

      The following proposition is helpful to prove Theorem 2.3 (a). 

 

Proposition 2.7:  

(a) If 


p

j

ijj

iid

i XA
1

~  , Mi ,...,1 , where 
ijX  are independent 

2  random variables with 1 

degree of freedom. Then 
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
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iA
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 . 

(b) If 
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pA    , where 2

)1( pM  and 
2

M  are independent,

2

1
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1

2 ])1(1[)1(    pC p

d

, where 2

1p  and 
2

1  are independent, CBA  , 

where B  and C  are independent, then B  is distributed as the quantity  

2

1

22

)1)(1(

2 ])1(1[)1(   MpM p 
.
 

Proof: 

(a)    Let 
jY  be independent chi-squared random variables with M degrees of freedom. The 

moment generating function of  

M

i iA
1

 is 
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 which is the moment generating function of the random variable 


p

j

jjY
1

 . 

(b)       Since B and C are independent, we have the moment generating of A which can be 

expressed as )()()()( tMtMtMtM CBCBA   . The mgf of A is 
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Thus the mgf of B is 
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which is the mgf of 2

1
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2 ])1(1[)1(   MpM p  random variable, where 

2

)1)(1(  pM and
2

1M  are independent chi-squared random variables with )1)(1(  pM and 

1M degrees of freedom, respectively. The proof is complete. 
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      Proposition 2.7 will be used to prove the following theorem. 

 

Theorem 2.3:  

(a) 



M
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ii

T

iiB
1

)ˆ()ˆ(1 μCXμCX  is distributed as the quantity 
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where 2

)1)(1(  pM  and 
2

1M  are independent chi-squared random variables with 

)1)(1(  pM and )1( M  degrees of freedom, respectively. 

(b) 1B has an approximate 2
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2

hMg   distribution, where  
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p
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Proof:  

      (a)      Recall that B1 can be expressed as  
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      The first term of the last expression in (2.30) has the same distribution as that of sum of M

independent random variables 2

1

1




p

j

j , where
2

1  are independent chi-square random variables 

with 1 degree of freedom. 
j ’s are eigenvalues of ])1[(2

pp JI  Σ .  The eigenvalues of 

Σ  are )1(2   with multiplicity 1p and   )1(12  p  with multiplicity 1. Thus 
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; that is,  
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


p

j

j

1

2

1 ,where
j ’s are eigenvalues of ΣΣCCCC 



 1

11

)')('(
M

i

ii

M

i

ii . Since 1B and

)ˆ)('()ˆ(
1

μμCCμμ  


M

i

ii  are independent, based on Proposition 2.7 1B is distributed as the 

quantity 

2

1

22

)1)(1(

2 ])1(1[)1(   MpM p  , 

where 2

)1)(1(  pM and
2

1M are independent chi-squared random variables with )1)(1(  pM and

)1( M degrees of freedom, respectively. The proof  of part (a) is complete. 

      (b)  Box (1954, Theorem 3.1) showed that  
 


p

j

p

i

ijg
1 1

2
/   and 

















p

i

i

p

j

jh
1

2

2

1

/   are 

chosen so that the distribution of 


p

j

j

1

2

1  has the same first two moments as 22

hg .  Since 

1B  is distributed like sum of 1M  independent random variables 2

1

1




p

j

j
, 1B  has an 

approximate 2

)1(

2

hMg  distribution. The proof of Theorem 2.3 (b) is complete. 

 

Corollary 2.1: The test statistic for testing 
2

0

2

0 :  H  is 
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



M

i

ii

T

iiMp
1

2 )ˆ()ˆ(ˆ μCXμCX . 

Under 0H , 
2

ˆ)1(

.

2

0

2

ˆ~
ˆ

hM
g

Mp






, where

p

pp
g

22 ]ˆ)1(1[)ˆ1)(1(
ˆ

 
 , and 

22

2

]ˆ)1(1[)ˆ1)(1(
ˆ

 


pp

p
h . 

Proof:    

      It follows directly from Theorem 2.3. 

 

      The maximum likelihood estimator of  is biased while its approximate mean is   and the 

approximate variance can also be obtained. Some results about the maximum likelihood estimator 

of   are shown in the next proposition. 

 

Proposition 2.8: The MLE of  , namely )1
1

2
(

1

1
ˆ 




B

B

p
 , where 





M

i

ii

T

iiB
1

)ˆ()ˆ(1 μCXμCX  and 



M

i

iip

T

iiB
1

)ˆ()ˆ(2 μCXJμCX , has the following 

properties:  

a) ,
])1(1[

)1(1
)2,1(

2








pp

p
BBCorr  

b)  










 )1

1

2
(

1

1
)ˆ(

B

B

p
EE , 

)1(

)1(])1(1[

1

2
)ˆ(

22









pp

p

M
V


 , and 

c)  ˆ
 
 in probability. 

Proof: 

      Recall that  
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),ˆ()ˆ()()(     

)ˆ()ˆ(1
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1
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μCXμCX













T
M

i
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T

ii

M

i
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T
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 (2.31)   

 

),ˆ()ˆ()()(     

)ˆ()ˆ(2

1

1

μμQJμμμCXJμCX

μCXJμCX













p

T
M

i

iip

T

ii

M

i

iip

T
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 (2.32)   

and 

 
 

 
M

i

M

j

jj

T

ji

T

ii CC
1 1

1 ),()()ˆ()ˆ( μXCQCμXμμQμμ  (2.33)   

where 



M

i

i

T

i

1

CCQ . Similarly, 

 .)()()ˆ()ˆ(
1 1

1
 

 
M

i

M

j

jjp

T

ji

T

iip

T CC μXJCQCμXμμQJμμ  (2.34)   

Note that iC , 
1

Q , 
T

jC , and 
pJ commute with each other since all of them are circulant 

matrices.  The commutation property will be used when necessary in calculations. So 

)2,1( BBCov can be expressed as 

 
,                   

)ˆ()ˆ(),ˆ()ˆ(                               

)()(),ˆ()ˆ(                               

)ˆ()ˆ(,)()(                               

)()(,)()()2,1(

1

1

11

GFED

Cov

JCov

Cov

CovBBCov

p

M

i

iip

T
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p

M

i

ii

T
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M

i

iip

T
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M

i

ii

T
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













































μμQJμμμμQμμ

μCXμCXμμQμμ

μμQJμμμCXμCX

μCXJμCXμCXμCX

 

The derivations of D, E, F, and G are shown below. 
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 

 

 
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T
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T
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T
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i
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i
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T
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
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









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
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
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
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
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
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
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Similarly,  

)(2)()(),ˆ()ˆ( 2

1

ΣJμCXμCXμμQμμ p

M

i

iip

T

ii trJCovF 







 



. 

So D, E, F, and G are, respectively, 

,])1(1[2)(2 422  pMptrMD pΣJ and 

.])1(1[2)(2 422  pptrGFE pΣJ  

Therefore, )2,1( BBCov  and )2,1( BBCorr  are respectively 
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Finally, we may compute the approximate mean and variance of 12 / BB  using the first-order 

Taylor’s series in two variables yxyxf /),(   , 0y . Hence we have 

 ,)1(1
])1(1[

)()1(

)()1(

)1(
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 (2.36)   

and 
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
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 (2.37)   

implying that  ˆ  in probability. The proof is complete. 

 

      The following theorem states the exact distribution of the MLE of  . 

Theorem 2.4: The MLE of  , say )1
1

2
(

1

1
ˆ 




B

B

p
  with 




M

i
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T

iiB
1

)ˆ()ˆ(1 μCXμCX

and 



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i
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T
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1

)ˆ()ˆ(2 μCXJμCX  is distributed as the quantity 
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








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
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Remark 2.3: ̂  is between 
1)1(  p  and 1 since the ratio 

1

2

B

B
 is between 0 and p. To show 

this, first we have that 0
1

2


B

B
 implying 

1)1(  p  since 01B and 02 B  for nonzero 

vectors μCX ˆ
ii  . Secondly, consider the identity 

ippiipiii xpxxpxxx )()( 11
JIJ

  . Since 

all the three quantities ii xx ,  
ipi xpx )( 1

J
 , and 

ippi xpx )( 1
JI

  are positive for nonzero vectors 

ix , the inequality  






M

i ipi

M

i ii xpxxx
1

1

1
)( J  holds and it implies that 

pxxxx
M

i

M

i iiipi   1 1
/J . Hence 1 . 

 

Proof of Theorem 2.4: 

           Recall from (2.31) and (2.32) that  

),ˆ()ˆ()()(1
1
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
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i

1

CCQ . And we have   2)/1(2)/1(11 BpBpBB  . Since from Proposition 2.5 

2)/1(1 BpB  and 2)/1( Bp  are independent, and from Propositions 2.3 and 2.4 2)/1(1 BpB 

and 2)/1( Bp are distributed as ))1)(1(()1( 22  pM and   )1()1(1 22  Mp 

random variables, respectively, we have  

 
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1),1)(1(  MpMF  is F random variable with )1)(1(  pM and 1M  as the numerator and 

denominator degrees of freedom, respectively. Thus ̂ is distributed as the quantity  




















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1
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p
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


. 

The proof is complete. 

 

      For the rest of this subsection, a simulation study is performed to investigate the behavior of 

̂  based on the distribution of ̂
 
obtained from Theorem 2.4. Figure 1 and Figure 2 show the 

expectation and the standard deviation of ̂   , the MLE of  , for each value )1,)1(( 1 p  

via a simulation study with various combinations of dimensions 7 ,6 ,5 ,4 ,3 ,2p  and sample 

sizes 100 ,50 ,20 ,10 ,5 ,3 ,2M . Note that the starting points of   on the x-axis are different 

for various p values since the restriction on   is 
1)1(  p due to the requirement of a 

positive definite compound symmetry covariance matrix structure. Summarizing the information 

provided from Figure 1 and Figure 2 we have the following results: 

 

About the expectation of ̂ : 

(1)  When 0 , the MLE ̂  is unbiased. This can also be verified by looking at the pdf of ̂  

stated in Theorem 2.4 for the special case that 0 . With 0 , ̂  is distributed like the 

random variable  1),(
1

1



Betap

p
, where 2/)1(  M , 2/)1)(1(  pM , and

),( Beta is the beta random variable . Therefore ̂  is unbiased since 
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1
1

1

1
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1

1
)ˆ( 1 




















 pp

p
p

p
EBetap

p
E




 . 

(2) When   is close to one of the end points
1)1(  p and 1, ̂  tends to be unbiased. 

Otherwise, when 0 , ̂
 
overestimates  ; when 0 , ̂  underestimates  .  

(3)  When the sample size M increases, ̂  becomes more accurate. Actually from the results of 

Proposition 2.8, ̂  converges in probability to  . 

 

About the standard deviation of ̂ : 

 (1)  When p = 2, the function of the standard deviation of ̂  is like an upside-down bathtub when 

M is small. When the same size increases, the bathtub shape become flatter.  

(2)  When p > 2, the bathtub shape is not symmetric and shrinks to the right. 

(3)  Basically, with fixed p and  , the standard deviation decreases when the sample size 

increases. 

 

      Figures 3 and 4 illustrate the simulated probability density functions for the MLE of   for 

the cases p = 2 and p = 3, respectively. Various sample sizes 2, 5, 20, and 40 are considered for 

each figure. Summarizing the information provided from these two figures we have the following 

results about the probability density function of ̂ : 

(1)  With fixed  p, when sample size is very small (M = 2), the probability density function is 

bimodal. Otherwise it is unimodal.  

(2)  With fixed p, when sample size becomes larger, the pdf of ̂  becomes more concentrated 

and symmetric.   

(3)  With fixed sample size, when   is less than 0, the pdf is skewed to the right; otherwise it is 

skewed to the left. 
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(4) With fixed sample size, when   is more extreme, the pdf of ̂  is steeper. 

 

 

Figure 1 

 

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

simulation study of expected rho.hat  

 with p= 2

rho

E
(r

h
o
.h

a
t)

M=2

M=3

M=5

M=10

M=20

M=50

M=100

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

simulation study for standard deviation of rho.hat  

 with p= 2

rho

S
D

(r
h
o
.h

a
t)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

simulation study of expected rho.hat  

 with p= 3

rho

E
(r

h
o
.h

a
t)

M=2

M=3

M=5

M=10

M=20

M=50

M=100

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

simulation study for standard deviation of rho.hat  

 with p= 3

rho

S
D

(r
h
o
.h

a
t)

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0
.0

0
.5

1
.0

simulation study of expected rho.hat  

 with p= 4

rho

E
(r

h
o
.h

a
t)

M=2

M=3

M=5

M=10

M=20

M=50

M=100

-1.0 -0.5 0.0 0.5 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

simulation study for standard deviation of rho.hat  

 with p= 4

rho

S
D

(r
h
o
.h

a
t)



 

61 

 

 

Figure 2 
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Figure 3 
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2.2.4      Hypothesis Testing for 00 : μμ H  Using Approximate χ
2
 Test 

      Using the results from Subsection 2.2.3 that
22ˆ  p

 and  pˆ , we arrive at the 

following approximation theorem which can be used to test the hypothesis 00 : μμ H . 

 

Theorem 2.5:  21  )ˆ()]ˆ(̂[)ˆ( p

dVar   μμμμμ . 

Proof: 

      Recall that  

1

1

11 )'(ˆ)]ˆ(̂[ 



 
M

i

iiVar CCΣμ , 
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
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
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
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pp
p

JIΣ




 ˆ)1(1

ˆ

)ˆ1(ˆ

1ˆ
2

1
. 

Also we have the expression 
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Since 1
)1(

)ˆ1(ˆ
2

2




 p




 and 0

)1(1ˆ)1(1

ˆ







p

pp 






, we have by Slutsky’s 

theorem that 

  dVar )ˆ()]ˆ(̂[)ˆ( 1
μμμμμ )ˆ)('()ˆ(

1

1
μμCCΣμμ  




M

i

ii , 

which follows a 2

p  distribution. The proof is complete. 
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2.3     SIMULATION STUDY FOR MISUSE OF HOMOGENEOUS MEAN MODELS 

      In this section, power under 00 : μμ H  based on two test procedures, each of which 

corresponds to the same hypothesis but different model setting, will be compared for the purpose 

of showing that the usual test procedure for testing 00 : μμ H  is not appropriate when our data 

are polluted by some reasons but ignored by researchers. 

      In each simulation, a sample of independent bivariate normal data mXX  ..., ,1 , 100m is 

generated from ),( 02 ΣμCiMVN , where 02 ii CIC  , where 











00

00

0

ii

ii

i
ab

ba
C . 

Note that 0iC  is (symmetric) circulant, and thus so is iC . Two likelihood ratio tests are denoted 

by LRTCµ and LRTµ which are stated below respectively: 

- LRTCµ: LRT for testing 00 : μμ H  for homogeneous mean model ),(~ 2 ΣμCX ii N , and 

- LRTµ: LRT for testing 00 : μμ H  for heterogeneous means model ),(~ 2 ΣμX Ni , 

where μ  and Σ  are unknown but  has compound symmetry structure.  Recall from Theorem 

2.2 that the test statistics for LRTCµ is 

  LRTCµ statistic =
 

  0

1

00

1

221

221

BBpB

BBpB
p

p








, 

where  

 


M

i
ii

T

iiB
1

)ˆ()ˆ(1 μCXμCX  ,  


M

i
iip

T

iiB
1

)ˆ()ˆ(2 μCXJμCX , 

 


M

i
ii

T

iiB
1

000 )()(1 μCXμCX  ,  


M

i
iip

T

iiB
1

000 )()(2 μCXJμCX ,  

and 

Σ
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M

i

i
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M
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1

1

1

ˆ XCCCμ . 

When 0C 0i  for all i, the two test statistics are the same. Under 00 : μμ H , both of the test 

statistics are distributed as the random variable stated in Theorem 2.2. We reject the null 

hypothesis when the test statistics are sufficiently small.   

      The simulation study is described as follows. 

Data:  Data are generated from ),( 02 ΣμCiN , where 02 ii CIC   , 0μ , Σ , and 0iC  are 

shown in the first four columns in Table 1.  

Hypotheses: Both tests correspond to the hypothesis of interest 00 : μμ H . 

Tests and critical value: Two likelihood ratio tests are performed based on the generated data. 

The critical value for the two tests is the same since the null distribution of both tests are the 

same. As we can see in Theorem 2.2, the null distribution of the test statistic of LRTCµ does not 

depend on the matrices iC .  

Number of simulations: The number of LRT values needed to compute the empirical alpha of the 

test LRTCµ or the rejection probability of the test LRTµ is 10000.  

Interpretation of the simulation study: Column 4 of Table 1 shows the diagonal elements 0ia  of 

the matrices iC . For instance, 0ia = - .99(.02) means that the first value of 0ia  is 99.10 a , 

then increases by 0.02 for each one unit increase of i. As denoted in column 5 from Table 1, the 

value (probability) in each cell is the empirical α for the test LRTCµ given the generated data from 

the heterogeneous means models. All the values in column 5 are close to 0.05, the significant 

level specified for the test and is as expected. On the other hand, since the data are polluted, 

adopting the test LRTµ does not make sense and is not appropriate. If we still consider that the 
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generated data are from the homogeneous mean model ),(2 ΣμN , the rejection probability for 

each scenario is shown in column 6 of Table 1. As we can see, the values of this column vary 

from one scenario to another. Some achieve the probability of 1 and some is less than 0.05. 

Generally, when the pollution of the data becomes more severe, that is when matrices 0iC  is far 

away from zero matrix with a faster rate, the rejection probability is larger. Under the scenario

  0C 0i
, all the three rejection probabilities are less than 0.05 and one of them is even 0. 

Lastly, the two rejection probabilities of column 6 are 1 even when data suffer only slight 

contamination ( 0ia =.001(.001) and 00 ii ab  for both of the two cases about Σ ). 

TABLE 1: Result of simulation study for misuse of homogeneous mean model 

(1) (2) (3) (4) (5) (6) 

µ0 Σ 











00

00

0

ii

ii

i
ab

ba
C  

Ci = I2 + Ci0 

i=1,…, m 

Values of 0ia  Testing 00 : μμ H  

LRTCµ 

(Empirical 

α) 

LRTµ 

(Rejection 

Probability) 










30

10
 









15.

5.1
 

00 ii ab   0ia =.02(.02) .055 1 

00 ib  .045 1 

00 ii ab   .051 1 

00 ii ab   ΣCi0 = 0 

0ia = - .99(.02) 

.049 .015 

00 ib  .043 0 

00 ii ab   .047 .014 

00 ii ab   001).00001(.000 ia  .050 .0528 

0ia =.0001(.0001) .06 .407 

=.001(.001) .047 1 










12.

2.1
 

 
0ia =.00001(.00001) .056 .057 

0ia =.0001(.0001) .053 .18 

=.001(.001) .046 1 

 

0ia

00 ii ab 

0ia
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CHAPTER III 
 

 

MULTISAMPLE INFERENCE 

 

3.1     INTRODUCTION 

In this chapter, we move on to the inference for multisample case when the heterogeneous means 

models are adopted. Two-sample inference will be the starting point. Consider two independent 

samples 
xiixipM MVN μCμΣμXX  ),,(~,...,1
, for all Mi ,...,1 , and 

yjjyjpN MVN μDvΣvYY  ),,(~,...,1
, for all Nj ,...,1 . Both iC  and 

jD  are known  pp

matrices. The hypotheses of interest are 
yxH μμ :0  

versus 
yxaH μμ : . The likelihood 

function is 
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The corresponding log likelihood function is 

 





 




 









N

j
yjjy

T

yjj

M

i
xiix

T

xiiyx

yxyx

NM
constant

L

1

1

1

1

)()(                               

)()(
2

1
log

2
log

2
              

),,,(log

μDyΣμDy

μCxΣμCxΣΣ

ΣΣμμ

 
(3.1)  

 First consider the simple case where both xΣ  and 
yΣ  are known. The MLEs for xμ  and 

yμ       
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are, respectively, 
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yμ̂ are independent and 
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Under the null hypothesis 
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0 ~ pT  . Thus we reject H0 if  
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,0  pT  . 

      For the case that both xΣ and 
yΣ are unknown but equal, likelihood approach is used to test 

yxH μμ :0
 in Section 3.2. In Section 3.3, the asymptotic χ

2
 test for testing 

yxH μμ :0
 is 

derived. Finally in Section 3.4 the LR test for two-sample case is extended to k-sample case and 

the exact distribution of the LRT statistic for kH μμ  ...: 10  
is derived. 
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3.2      LIKELIHOOD RATIO TEST FOR TWO-SAMPLE CASE 

      In this section, the case that ΣΣΣ  yx
 unknown is considered. We also assume that Σ  

has compound symmetry with the form in (2.8), iC , 
jD , and Σ  commute with each other; that 
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11   for all i  and j . Before deriving the likelihood ratio test 

for 
yxH μμ :0
, it is necessary to find the MLEs of the parameters under the null and 

alternative hypotheses separately. 
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Therefore 
0Σ̂  can be obtained using the reduced log likelihood function 
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The MLE for Σ  under 0H is thus  
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Using a similar approach as shown in Section 2.2.3, the MLEs for xμ , 
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3.2.3      Likelihood Ratio Test for Testing 
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imply that the likelihood ratio is  
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Thus we arrive at the following theorem. 

 

Theorem 3.1:  The likelihood ratio test for testing 
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where   is the likelihood ratio and
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)0(2B are defined in (3.5) and (3.7). 

To show the null distribution of L , the following propositions are needed. 
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 Appendix A.4 shows that 
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
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
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


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


 


















 

  













 Applying Proposition 2.3 we have that 

2

)1)(1(

2)()( )1(2
1

1  pM

d
aa B

p
B   

and 

2

)1)(1(

2)()( )1(2
1

1  pN

d
aa E

p
E  . 

Since 
)()( 2

1
1 aa B

p
B  and 

)()( 2
1

1 aa E
p

E  are independent, we have 

2

)1)(1(

2)()()()( )1()22(
1

)11(  pNM

d
aaaa EB

p
EB  . 

The proof is complete. 

 

Proposition 3.4: 
)()( 22 aa EB  is distributed as the random variable 

2

2

2 ])1(1[  NMpp  . 

Proof: 
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  


N

j
yjjp

T

yjj

M

i
xiip

T

xii

aa EB
11

)()( )ˆ()ˆ()ˆ()ˆ(22 μDYJμDYμCXJμCX  

Applying Proposition 2.4, 
)()( 22 aa EB  is distributed as the sum of two independent random 

variables 
2

1

2 ])1(1[  Mpp  and 2

1

2 ])1(1[  Npp  . Therefore 

2

2

2)()( ])1(1[22  NM

d
aa ppEB  . 

The proof is complete. 

 

Now we arrive at the following theorem. 

 

Theorem 3.2:  The likelihood ratio test statistic in Theorem 3.1 for testing 
yxH μμ :0

 is L  

defined as: 

CA

DB

EBEB
p

EB

EBEB
p

EB

L
p

p

p

aa

p

aaaa

1

1

)0()0(

1

)0()0()0()0(

)()(

1

)()()()(

)22()22(
1

)11(

)22()22(
1

)11(































 , 

where )22(
1

)11( )0()0()0()0( EB
p

EBA  , )22(
1

)11( )()()()( aaaa EB
p

EBB  , 

)0()0( 22 EBC  , and 
)()( 22 aa EBD  . 

(a)   B and D are distributed respectively as the following: 

2

)1)(2(

2 )1(  pNM

d

B   and 
2

2

2 ])1(1[  NM

d

ppD  . 

Under 
yxH μμ :0
, A and C are distributed respectively as the following: 

2

)1)(1(

2 )1(  pNM

d

A   and 
2

1

2 ])1(1[  NM

d

ppC  . 

 (b)      A-B, B, C-D, and D are mutually independent weighted chi-square random variables. 
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 (c)    Furthermore, under 
yxH μμ :0
, L  is distributed as the random variable 


























**

1

*

2

1
1

2

1
1

1

F
NM

F
NM

p
, 

where 
*F  and 

**F  are independent and distributed like 
)1)(2( ,1  pNMpF , and 

2,1 NMF , 

respectively. 

 

Proof of (a):      Results are obtained directly from Propositions 3.1 to 3.4. 

 

Proof of (b) and (c): 

      First rewrite A and C as follows. A can be expressed as 

,    
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1
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1
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

μDYJIμDYμCXJIμCX
 

where B and R are, respectively, 

  


N

j
yjjpp
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yjj
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xiipp
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(3.12)  

Similarly, C can be expressed as 

,   

)ˆ()ˆ()ˆ()ˆ(
1
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1
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C
N

j
jjp

T

jj

M

i
iip

T

ii
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  
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μDYJμDYμCXJμCX
 

where 
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  
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j
yjjp

T

yjj
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i
xiip

T
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
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
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i
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(3.13)  

Some other facts necessary to prove (b) are stated below. 

(1) B and R are independent 

(2) D and S are independent 

(3) 
2

1

2 )1(  p

d

R   and 
2

1

2 ])1(1[   ppS
d

. 

(4) B and D are independent 

(5) B and S are independent 

(6) R and D are independent 

(7) R and S are independent  

 

      Facts (1) and (2) are true because both B and D  are functions of xii μCX ˆ
 
and 

yjj μDY ˆ

for all Mi ,...,1 , Nj ,...,1 , also R and S are functions of xμ̂ and 
yμ̂  since 0μ̂  in (3.2) can 

be expressed as a linear combination of xμ̂ and 
yμ̂  as follows: 

 ]ˆˆ[)(ˆ **1**

0 yx μDμCDCμ   , (3.14)  

where 



M

i

i

T

i

1

*
CCC , 




N

j

j

T

j

1

*
DDD ,  




M

i

i

T

ix

1

1*)(ˆ XCCμ and 



N

j

j

T

jy

1

1*)(ˆ YDDμ .  

Combining the facts that xii μCX ˆ and xμ̂ are independent as well as 
yjj μDY ˆ and 

yμ̂  are 

independent, Facts (1) and (2) are shown. 
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      Fact (3) can be shown using the results in part (a) in conjunction with Facts (1) and (2), and 

the result about sum of independent chi-square random variables. More clearly, the results  

2

)1)(1(

2 )1(  pNM

d

A   and 
2

)1)(2(

2 )1(  pNM

d

B    

combined with Fact (1) imply 
2

1

2 )1(  p

d

R  . In addition, the results  

2

1

2 ])1(1[  NM

d

ppC   and 
2

2

2 ])1(1[  NM

d

ppD   

in connection with fact (2) implies 
2

1

2 ])1(1[   ppS
d

. 

      Fact (4) can be shown by applying Proposition 2.5. )2
1

1( )()( aa B
p

B  and 
)(2 aB  are 

independent, )2
1

1( )()( aa E
p

E  and 
)(2 aE  are independent as well. As a matter of fact, 

)2
1

1( )()( aa B
p

B  ,
)(2 aB  , )2

1
1( )()( aa E

p
E  and 

)(2 aE  are mutually independent so fact (4) is 

shown. 

      Facts (5) and (6) are true using the same argument when Facts (1) and (2) were shown.  

      To show Fact (7), it is necessary to rewrite R and S in (3.12) and (3.13), respectively. In (3.12) 

the two terms on the right-hand side can be expressed respectively as 
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()ˆˆ(2

)ˆ)(
1

()ˆ()ˆ)(
1

()ˆ(

)ˆˆ)(
1

()ˆˆ(

00

*

0

00

*

000

*

0

0

*

0

μμJICμμ

μμJICμμμμJICμμ

μμJICμμ







pp

T

x

pp

T

xpp

T

x

xpp

T

x

p

pp

p

  

and 

http://tw.wrs.yahoo.com/_ylt=A3eg.8t02x1OInQAsxrhbB4J/SIG=12tcr48mb/EXP=1310608372/**http%3a/tw.dictionary.yahoo.com/dictionary%3fp=as%2ba%2bmatter%2bof%2bfact
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We should note that  
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by substituting (3.14) into the left-hand side of the above equation. Therefore, R becomes 
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(3.15)  

Likewise, S can be written as 
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(3.16)  

Since 00
ˆ μμ   can be written as  
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the last term of (3.15) becomes 

).ˆ()
1

()()ˆ(2

)ˆ()
1

()()ˆ(

)ˆ()
1

()()ˆ(

0

*1***

0

0

*1***

0

0

*1***

0

μμDJIDCCμμ

μμDJIDCDμμ

μμCJIDCCμμ













ypp

T

x

ypp

T

y

xpp

T

x

p

p

p

 

Hence R can be expressed as 
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(3.17)  

Likewise, S can be expressed as 
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(3.18)  

Now rewrite R and S in (3.17) and (3.18) respectively in matrix forms as  
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then the proof of fact (7) is done. Expression (3.19) is true because of the facts 

0JJI  ppp
p

)
1

(  and commutability of circulant matrices. Thus R and S are independent. 

Therefore,  
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where 
*F  and 

**F  are independent and distributed like 
)1)(2( ,1  pNMpF , and 2,1 NMF , 

respectively. The proof of Theorem 3.2 is complete. 

 

3.3      APPROXIMATE χ
2
 TEST FOR 

yxH μμ :0
 

      Referring to the beginning of Section 3.2, we have the quadratic form 
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where xΣ  and 
yΣ  are known. What if both xΣ  and 

yΣ  are unknown? In this section, the 

assumption ΣΣΣ  yx
 is assumed, where Σ  is unknown and with compound symmetry 

structure for testing 
yxH μμ :0
using approximate χ

2
 test. 

      First note that  
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The test statistic for testing 
yxH μμ :0
 is defined as  
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(3.20)  

where 
1ˆ 

Σ  is 

]
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, 

where 
2̂  and ̂  are defined in (3.6).  

 

Theorem 3.3:  Under 
yxH μμ :0
,  
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Proof: 

      Recall that  
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Extending the result from (2.35) we have  

 
.])1(1[)2(2)()2(2

)2,1()2,1()22,11(

422

)()()()()()()()(
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

ppNMtrNM

EECovBBCovEBEBCov

p

aaaaaaaa

ΣJ
 (3.21)   

From the result of Theorem 2.3 and the fact that 
)(1 aB and 

)(1 aE defined in (3.7) are independent, 

we have 
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d
aa pEB  ,  (3.22)   

which, after doing some calculation, implies that  
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  42)()( )1(1)2(2)11(  ppNMEBV aa
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(3.23)   

Similarly, from the result of Proposition 2.4 and the fact that 
)(2 aB and 

)(2 aE  defined in (3.7) 

are independent, we have 
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which implies that  
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(3.25)   

Using the results from (2.36), (2.37), (3.22), and (3.24) we have  
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and 
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Therefore,  ˆ  in probability. In addition,  )()(2 11
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1
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converges in 

probability to 
2  due to the facts from (3.23). Hence using the decompositions 
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and mimicking the proof in Theorem 2.5, we have under 
yxH μμ :0  

that 
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, we have by Slutsky’s 
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which follows a  2

p distribution under 
yxH μμ :0
. The proof is complete. 

 

3.4     LRT FOR k-SAMPLE CASE 

     Consider k independent samples each with sample size iN  from p-variate multivariate normal 

distributions with heterogeneous mean vectors 
iijμC , where iNj ,...,1 , ki ,...,1 . The 

homoscedastic case is considered in this section such that all covariance matrices of the k 

populations are the same. For the ith sample, we have ),(~,...,1 ΣμCXX iijpiNi MVN
i

. All ijC  

are known  pp circulant matrices, Σ  has compound symmetry structure defined in (2.8) such 
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that ijC  and Σ  commute for all i and j, and  NN
k

i i  1
. The hypotheses of our interest are 

kH μμ  ...: 10  
versus 

jiaH μμ :  for some ji  . The likelihood function is 
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exp|| ),,...,(

1 1

12
 

1








   


 k

i

N

j iijij

T

iijij

N

k

i

constantL μCxΣμCxΣΣμμ  

The corresponding log likelihood function is 
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constantL μCxΣμCxΣΣμμ  (3.28)  

      We skip the trivial case that Σ  is known. Before deriving the likelihood ratio test for 

)(...: 010 μμμ  kH , it is necessary to find the MLEs of the parameters kμμ ,...,1  and Σ  

under the null and alternative hypotheses separately. 

 

3.4.1      Estimation Under kH μμ  ...: 10  

      Assume that 0μμ i  for all ki ,...,1  under 0H , the MLE of 0μ , say 0μ̂ , can be derived 

as 
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(3.29)  

Hence, the MLE for Σ  under 0H , namely 
0Σ̂ , can be obtained using the reduced log likelihood 

function 
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which yields 
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where  
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(3.32)  

by extending the results of two-sample case in (3.4) and (3.5). 

 

3.4.2      Estimation Under 
jiaH μμ : for some ji   

      Consider the case that the iμ ’s are distinct, the log likelihood function is  
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Hence the MLEs for kμμ ,...,1  , and Σ  are, respectively, 
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(3.36)  

 

3.4.3      Likelihood Ratio Test for Testing kH μμ  ...: 10  

      Sections 3.4.1 and 3.4.2 derived the MLE’s for parameters under both hypotheses. The 

likelihood ratio test now can be developed. The likelihood ratio is 

 

 
,

)ˆ(ˆ)ˆ(
2

1
exp

)ˆ(ˆ)ˆ(
2

1
exp

|ˆ|)2(

|ˆ|)2(
 

),,...,(max

),,...,(max

1 1

1

1 1 0

1

00

22

2
0

2

1

1
0

 

 

 



 
















k

i

N

j iijij

T

iijij

k

i

N

j ijij

T

ijij

NNp

NNp

k

k

i

i

L

L

μCxΣμCx

μCxΣμCx

Σ

Σ

Σμμ

Σμμ

θ

θ




  

where ),,...,( 1 Σμμθ k , 
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Hence the results (by mimicking Appendix A.3) 
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Thus we arrive at the following theorem. 
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Theorem 3.4:  The likelihood ratio test for testing kH μμ  ...: 10  is to reject 0H  if ,CL   

where C
 
is such that   )( CLP , and L  is defined as: 
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where   is the likelihood ratio and )(a

iB I
, )(a

iB J
, )0(

IiB , and )0(

JiB are defined in (3.32) and (3.36). 

       Before deriving the exact null distribution of the LRT statistic L , we need the following 

propositions. 

 

Proposition 3.5: Under kH μμ  ...: 10 ,  
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      By extending the result in (3.8) for two-sample case we obtain 
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 )ˆ()
1

)(()ˆ( 001

*

00 μμJICμμ 







   p

k

i i

T

 

(3.38)  
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is distributed as sum of weighted chi-square random variable 


p

j
j

1

2

1 , where 
j ’s are 0 with 

multiplicity 1 and )1(2    with multiplicity 1p , the latent roots of the matrix 1P  as defined 

in (2.14), using the results in the proof of Proposition 2.1. Hence (3.38) is distributed as a 2

1p

random variable times a constant )1(2   . 

      Since each pair of 0μ̂CX ijij   and 0μ̂  are independent for all i and j, the quantities 

 


iN

j ijij

T

ijij
p1 00 ))(
1

()( μCXJIμCX , ki ,...,1 , are independently distributed as chi-

square random variables with )1( pNi degrees of freedom times a constant )1(2    

respectively, so the sum of them are distributed as 2

)1)((

2

1

)1(
 


pNk

i i

  random variable. It 

follows that  


k

i ii BpB
1

)0()0( ])/1([ JI
 is distributed as a 2

)1)(1(

2 )1(  pN  random variable, 

where NN
k

i i  1
, by the result of the sum of two independent chi-square random variables. 

The proof is complete. 

 

Proposition 3.6: Under kH μμ  ...: 10 ,  

k

i iB
1

)0(

J
is distributed as the quantity

2

1

2 ])1(1[  Npp  .                                                                                                                                                                                                                                                                                                                                                                                                                                    

Proof: 

      Rewrite  

k

i iB
1

)0(

J
 as 

).ˆ()()ˆ(                              

)()(               

)ˆ()ˆ(

001

*

00

1 1 00

1 1 001

)0(

μμJCμμ

μCXJμCX

μCXJμCXJ









 

 



 

 

k

i i

T

k

i

N

j ijij

T

ijij

k

i

N

j ijij

T

ijij

k

i i

i

i

B
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Under )(...: 010 μμμ  kH , extending the results of two-sample case in (3.10) and (3.11) to 

k-sample case we have 

22

1 1 00 ])1(1[ )()( N

d
k

i

N

j ijij

T

ijij pp
i

   
μCXJμCX  

and 

2

1

2

001

*

00 ])1(1[)ˆ]()[()ˆ(    
pp

d

p

k

i i

T
μμJCμμ . 

Connecting the facts that each pair of 0μ̂CX ijij   and 0μ̂  are independent for all i and j, and the 

result of sum of two independent chi-square random variables, we have 

2

1

2

1

)0( ])1(1[ 
 N

d
k

i i ppB J . 

The proof is complete. 

 

Proposition 3.7:  


k

i

a

i

a

i BpB
1

)()( ])/1([ JI
is distributed as the quantity 2

)1)((

2 )1(  pkN .  

Proof: 

Assume that iiE μμ )ˆ(  for all ki ,...,1 . So we have 

,)ˆ)(
1

)(()ˆ(                              

))(
1

()(                          

)ˆ)(
1

()ˆ(])/1([

1

*

1 1

1 11

)()(



 

 



 

 







k

i iii

T

ii

k

i

N

j iijij

T

iijij

k

i

N

j iijij

T

iijij

k

i

a

i

a

i

p

p

p
BpB

i

i

μμJICμμ

μCXJIμCX

μCXJIμCXJI

 

Hence, under )(...: 010 μμμ  kH , we have that )()( )/1( a

i

a

i BpB JI   are independently 

distributed and 

2

)1)(1(

2)()( )1()/1(  pN

d
a

i

a

i i
BpB JI  for all ki ,...,1 , 

by applying Proposition 2.3. Therefore,  
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2

)1)((

2

1

)()( )1(])/1([ 
 pkN

d
k

i

a

i

a

i BpB JI , where  


k

i iNN
1

. 

The proof is complete. 

 

Proposition 3.8:  

k

i

a

iB
1

)(

J
is distributed as the quantity 22 ])1(1[ kNpp   .  

Proof: 

      Applying Proposition 2.4, )(a

iB J
 are independently distributed and each of which is distributed 

as 
2

1

2 ])1(1[ 
iNpp  random variable, so  

k

i

a

iB
1

)(

J
is distributed as the sum of k 

independent chi-square random variables 2

1iN  times a constant ])1(1[2   pp . Therefore we 

have 
22

1

)( ])1(1[ kN

d
k

i

a

i ppB 
 J , where  


k

i iNN
1

. The proof is complete. 

 

Theorem 3.5:  The likelihood ratio test statistic in Theorem 3.4 for testing kH μμ  ...: 10  is 

L  which is defined as: 

CA

DB

BBpB

BBpB
L

p

p

k

i i

pk

i ii

k

i

a

i

pk

i

a

i

a

i

1

1

1

)0(1

1

)0()0(

1

)(1

1

)()(

)(}])/1([{

)(}])/1([{














 









JJI

JJI
, 

where  


k

i ii BpBA
1

)0()0( ])/1([ JI
,  


k

i

a

i

a

i BpBB
1

)()( ])/1([ JI
,  


k

i iBC
1

)0(

J
, and 

 


k

i

a

iBD
1

)(

J
. 

(a)    B and D are distributed, respectively, as the following: 

2

)1)((

2 )1(  pkN

d

B   and 
22 ])1(1[ kN

d

ppD   . 

Under kH μμ  ...: 10 , A and C are distributed respectively as the following: 

2

)1)(1(

2 )1(  pN

d

A   and 
2

1

2 ])1(1[  N

d

ppC  , 
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(b)     A-B, B, C-D, and D are mutually independent weighted chi-square random variables. 

(c)     Furthermore, under kH μμ  ...: 10 , L  is distributed as the random variable 






























**

1

* 1
1

1
1

1

F
kN

k
F

kN

k
p

, 

where 
*F  and 

**F  are independent and distributed like 
)1)(( ),1)(1(  pkNpkF , and kNkF  ,1 , 

respectively. 

 

Proof of (a):      Results can be obtained by directly applying Propositions 3.5 to 3.8. 

Proof of (b) and (c): 

      First rewrite A and C as follows. A can be expressed as , RBA  where  

 .)ˆˆ)(
1

()ˆˆ(
1 0

*

0 


k

i ii

T

i
p

BAR μμJICμμ

 

(3.39)  

C can be expressed as ,SDC  where 

 .)ˆˆ()ˆˆ(
1 0

*

0 


k

i ii

T

iDCS μμJCμμ

 

(3.40)  

Some other facts necessary to prove part (b) are stated below. 

(1) B and R are independent 

(2) D and S are independent 

(3) 
2

)1)(1(

2 )1(  pk

d

R  and 
2

1

2 ])1(1[  k

d

ppS  . 

(4) B and D are independent 

(5) B and S are independent 

(6) R and D are independent 

(7) R and S are independent  
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      Facts (1), (2), (5), and (6) are true because both B and D  are functions of iijij μCX ˆ , and 

R  and S  are functions of iμ̂ ,  due to the fact that 0μ̂  in (3.39) can be expressed as a linear 

combination of iμ̂  which is  

  






k

i ii

k

i i 1

*1

1

*

0
ˆ)(ˆ μCCμ ,

 

(3.41)  

by using the relation  


iN

j ij

T

ijii 1

1*)(ˆ XCCμ . 

Combining the facts that each pair of 0μ̂CX ijij   and 0μ̂  are independent for all i and j, Facts 

(1), (2), (5), and (6) are shown. 

      Fact (3) can be shown using the results in part (a) in conjunction with facts (1) and (2) and the 

result about sum of independent chi-square random variables. More clearly, the results  

2

)1)(1(

2 )1(  pN

d

A   and 
2

)1)((

2 )1(  pkN

d

B    

combined with fact (1) imply 
2

)1)(1(

2 )1(  pk

d

R  . In addition, the results  

2

1

2 ])1(1[  N

d

ppC   and 
22 ])1(1[ kN

d

ppD    

in connection with fact (2) implies )1(])1(1[ 22  kppS
d

 . 

      Fact (4) can be shown using the result in Proposition 2.5 that )()( )/1( a

i

a

i BpB JI   and 
)(a

iB J  for 

all ki ,...,1  are independent. 

      To show Fact (7), it is necessary to rewrite R and S in (3.39) and (3.40), respectively. R in 

(3.39) can be expressed as 
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.)ˆˆ)(
1

()ˆˆ(2

)ˆ)(
1

()ˆ(

)ˆ)(
1

()ˆ(

1 00

*

0

1 00

*

00

1 0

*

0



















k

i i

T

i

k

i i

T

k

i ii

T

i

p

p

p

μμJICμμ

μμJICμμ

μμJICμμ

  

Note that the identity 0)ˆˆ(
1

*

0  

k

i i

T

i Cμμ  is true based on the substitution of the expression 

of 0μ̂  in (3.41). Hence we have 

 

).ˆ)(
1

)(()ˆ(       

)ˆ)(
1

()ˆ(

001

*

00

1 0

*

0

μμJICμμ

μμJICμμ













p

p
R

k

i i

T

k

i ii

T

i

 

(3.42)  

Similarly,  

 .)ˆ()ˆ()ˆ()ˆ(
1 00

*

001 0

*

0  


k

i i

Tk

i ii

T

iS μμJCμμμμJCμμ

 

(3.43)  

Since 00
ˆ μμ   can be written as  

,])ˆ([)(             

)()()ˆ()(ˆ

01

*1

1

*

01

*1

1

*

1

*1

1

*

00

μμCC

μCCμCCμμ

























i

k

i i

k

i i

k

i i

k

i ii

k

i i

k

i i

 

the second term of (3.42) of the right-hand side becomes 

  

 

 





 













k

i

k

j j

k

i iji

T

i

k

i

k

j jj

k

i i

k

i i

k

i ii

T

i

p

p

1 1 0

1

1

***

0

1 1 0

*1

1

*

1

*1

1

**

0

).ˆ)(
1

()()ˆ(

)ˆ())(
1

)(()()ˆ(

μμJICCCμμ

μμCCJICCCμμ

 

Hence R in (3.42) can be expressed as 

 

.)ˆ)(
1

()()ˆ(       

)ˆ)(
1

]()([)ˆ(

0

1

1

***

0

1 0

1

1

*2**

0

 

 

















ji j

k

i iji

T

i

k

i i

k

i iii

T

i

p

p
R

μμJICCCμμ

μμJICCCμμ

 

(3.44)  

Likewise, S can be expressed as 
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.)ˆ()()ˆ(       

)ˆ(])([)ˆ(

0

1

1

***

0

1 0

1

1

*2**

0

 

 

















ji j

k

i iji

T

i

k

i i

k

i iii

T

iS

μμJCCCμμ

μμJCCCμμ

 

(3.45)  

Now rewrite R and S in (3.44) and (3.45) respectively in matrix forms. R can be written as  

 










































0

01

0

01

ˆ

ˆ

  

ˆ

ˆ

μμ

μμ

Ψ

μμ

μμ

k

ij

T

k

R  , 

where 

 























kkkk

k

k

ij

ΨΨΨ

ΨΨΨ

ΨΨΨ

Ψ









21

22221

11211

, 

where 






























.           ),
1

()(

,    ),
1

]()([

1

1

***

1

1

*2**

ji
p

ji
p

k

i iji

k

i iii

ij

JICCC

JICCC

Ψ  

Likewise, S can be written as 

 










































0

01

0

01

ˆ

ˆ

  

ˆ

ˆ

μμ

μμ

Φ

μμ

μμ

k

ij

T

k

S  , 

where 

 























kkkk

k

k

ij

ΦΦΦ

ΦΦΦ

ΦΦΦ

Φ









21

22221

11211

, 

where 
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























.           ,)(

,    ,])([

1

1

***

1

1

*2**

ji

ji

k

i iji

k

i iii

ij

JCCC

JCCC
Φ  

Note that the vector )ˆ,...,ˆ( 001
 μμμμ k is distributed as ))(diag,( *

ΣC0 ikpN , where  

kpkp
k

i























ΣC

ΣC

ΣC
*

*

1

*

0

0
)(diag  . 

If we can show 

     0)(diag * ijiij ΦΣCΨ , (3.46)   

then the proof of Fact (8) is done. The expression (3.46) is true because we have 

   

 ,                 

                

                

)(diag

1

*

21

22221

11211

**

22

*

11

*

2

*

222

*

121

*

1

*

212

*

111

21

22221

11211

*

*

1

21

22221

11211

*

0

0

 








































































































k

m mjmim

kkkk

k

k

kkkkk

kk

kk

kkkk

k

k

k

kkkk

k

k

ijiij

ΣΦCΨ

ΦΦΦ

ΦΦΦ

ΦΦΦ

ΣCΨΣCΨΣCΨ

ΣCΨΣCΨΣCΨ

ΣCΨΣCΨΣCΨ

ΦΦΦ

ΦΦΦ

ΦΦΦ

ΣC

ΣC

ΨΨΨ

ΨΨΨ

ΨΨΨ

ΦΣCΨ



































 

which is zero matrix because of validity of the identities 

0ΣΦCΨ  

k

m mjmim1

*
 for all i  and j , 

due to the fact 0JJI  ppp
p

)
1

(  and commutability of circulant matrices. Thus R and S are 

independent. Therefore,  
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1
1

1

1
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1
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*
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1

1
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





























































F
kN

k
F

kN

k

D

S

B

RSDRB

DB

CA

DB
L

p

d

pp

p

p

p

 

where 
*F  and 

**F  are independent and distributed like 
)1)(( ),1)(1(  pkNpkF and kNkF  ,1 , 

respectively. The proof of Theorem 3.5 is complete. 
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CHAPTER IV 
 

 

APPLICATION TO META ANALYSIS 

 

4.1     INTRODUCTION AND PRELIMINARY UNIVARIATE CASE 

      In this chapter, an application of the proposed model to fixed and random effects multivariate 

meta analysis (Jackson et al. 2011, Nam et al. 2003) will be introduced and developed. Individual 

patient / participant data (IPD) are assumed available in the whole chapter. Since the outcome 

measures under the assumption of the proposed heterogeneous means model are continuous, one-

stage method for IPD random effects model is suggested by Higgins et al. (2001) to investigate 

the parameter of interest for each study. In the analysis, both fixed and random effects models are 

focused. 

      First consider the fixed effect model of univariate case. Let ijX  denote the outcome measure 

of subject  j  in study  i  generated from k  independent studies, where ki ,...,1 , inj ,...,1 , and

 ),,(~
2

)( iiijpij CNX   where 
)(i  is an unknown constant, 

ijC  and 
2

i  are known. The ML 

estimator for 
)(i  based on the ith study is  

 .,...,1 ,ˆ
1

1

1

2

)( kiXCC
ii n

j

ijij

n

j

iji 












 







   

Since the estimates are derived from different individual participant data sets, 
)(

ˆ
i  are 
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conditionally independent given 
)(i . Hence 

)(
ˆ

i  given 
)(i  are independent and exact normal 

with 

 ,,...,1 ), ,(~ˆ
2

)()( kiN iii   (4.1)  

where 
21

1

22
)( i

n

j iji

i

C  



  . 

      In traditional meta analysis, results from several studies are combined. For a fixed effect 

model, if we tacitly assume that the true value  )(i
 is the same for the k  studies, given (4.1) 

the ML estimator for   and its variance based on the k independent samples are, respectively, 

 ,
ˆ

ˆ)(~

1
2

)(1

21

1
2

1

2

1 )(

21

1

2



































 


k

i i

i

n

j ij
k

i i

n
j ijk

i ii

k

i i

i
i CC






   

and 

 .)()~(

1

1
2

1

2

1

1

2

























 



k

i i

n

j ijk

i i

i

C
Var


   

Hence, statistical inference for   is based on the fact that  

 ).1,0(~
)~(

~
N

Var 

 
  

Some other fixed effect models of multivariate case will be considered in Section 4.2. 

 

4.2     FIXED EFFECT MODEL 

      Let ijX  denote the outcome measure of subject  j  in study  i  generated from k  independent 

studies, where ki ,...,1 , inj ,...,1 , and
 

),(~ )( iiijpij N ΣμCX . The ML estimator for 
)(iμ

based on ith sample is 
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 .,...,1 ,''ˆ
1

1

1

1

1

)( ki
ii n

j

ijiij

n

j

ijiiji 












 










XΣCCΣCμ  (4.2)  

Here we assume that iΣ  is known for all ki ,...,1 . In fact, s'ˆ
)(iμ are independent and  

 .,...,1 ),' ,(~ˆ

1

1

1

)()( kiMVN
in

j

ijiijii 


















 CΣCμμ  (4.3)  

      For traditional meta analysis, the true core mean vector μμ )(i
 is the same for the k  

studies, given (4.3) for the k  studies, the ML estimator for μ  and its variance-covariance matrix 

based on the k  independent samples are, respectively, 

 ,ˆ''~

1

)(

1

1

1

1 1

1

  
 





 














































k

i

i

n

j

ijiij

k

i

n

j

ijiij

ii

μCΣCCΣCμ    

and 

 .')~(

1

1 1

1



 






























  

k

i

n

j

ijiij

i

Cov CΣCμ    

Statistical inference for μ  is based on the fact 

 ),',(~~
1

1 1

1



 






























 

k

i

n

j

ijiijp

i

N CΣCμμ    

which results in  

 .~)~(')~( 2

1 1

1

p

k

i

n

j

ijiij

i

μμCΣCμμ 


























  
 


   

      A great difficulty for multivariate meta analysis in practice is that the within-study covariance 

matrix 

1

1

1
'






















in

j

ijiij CΣC  is usually unknown since iΣ  is unknown. If IPD are available, we 

may use an appropriate estimate iS  from IPD data for the ith study to replace iΣ  . Hence the 
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estimator of 
)(iμ  becomes 

 ki
ii n

j

ijiij

n

j

ijiiji ,...,1 ,''ˆ
1

1

1

1

1

)( 












 










XSCCSCμ , (4.4)  

where iS  is a consistent estimator of iΣ  it follows that 
)(

ˆ
iμ  is approximate normal with 

covariance matrix estimated by 

 .,...,1 ,'

1

1

1
ki

in

j

ijiij 


















 CSC  (4.5)  

There must be some impact on the analysis using estimate iS  instead of true iΣ . Basically, 

when the ith sample size is large, iS  is a good substitute for iΣ , ki ,...,1 . If μμ )(i
 is the 

same for the k  studies, the estimator of  μ  can be obtained by  

 ,ˆ''~

1

)(

1

1

1

1 1

1

  
 





 














































k

i

i

n

j

ijiij

k

i

n

j

ijiij

ii

μCSCCSCμ  (4.6)  

 with the following approximation: 

 
2

1 1

1
~)~(')~( p

k

i

n

j

ijiij

i




 






























   μμCSCμμ . (4.7)  

Inference about μ  can be based on the above approximation by means of meta-analysis. 

      There are two conditions about the structure of iΣ  for the ith study considered here. 

Condition 1:  If iΣ  is unknown and unstructured, iS  is obtained from IPD data assuming that 

iΣ  is positive definite. As mentioned in Chapter 2, iS  needs to be assessed iteratively based on 

the ith study. 

Condition 2:  iΣ  is has compound symmetric structure, that is ])1[(2

pipiii JIΣ   . 
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Assume that 
ijC  and iΣ  commute for all i  and j .  Hence iS  is obtained based on maximum 

likelihood method in Chapter 2 from ith study with estimators 

 


in

j
iijij

T

iijij

i

i
pn 1

)()(

2
)ˆ()ˆ(

1
ˆ μCXμCX , 

and 



















 

 







1

)ˆ()ˆ(

)ˆ()ˆ(

1

1
ˆ

1
)()(

1
)()(

i

i

n

j
iijij

T

iijij

n

j
iijijp

T

iijij

i
p μCXμCX

μCXJμCX

 , for all ki ,...,1 , 

where 
)(

ˆ
iμ  in (4.4) reduces to 

 




















ii n

j

ijij

n

j

ijiji

1

1

1

)( ''ˆ XCCCμ ,  (4.8)  

for all ki ,...,1 . 

 

4.3     RANDOM EFFECTS MODEL 

4.3.1     Two-Stage Method 

      The two-stage meta analysis still can be used when IPD are available. We denote the 

estimated core mean vector for the ith study as 
)(

ˆ
iμ  and it is assumed that 

kiMVN ii

ind

ii ,...,1 ), ,(~|ˆ
)()()( Ψμμμ ,

 

which is referred as the within-study model. The entries of the matrices iΨ  for each study are 

estimated from IPD data and are usually assumed known and fixed. If the covariance matrix iΣ  
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of  
ijX  is known for each study, for example, 

1

1

1
'




















 

in

j

ijiiji CΣCΨ  is known and there is no 

need to estimate it.   

      The multivariate random effect model allows 
)(iμ  to vary from one study to the next. So we 

can further assume that the between-study normal assumption is 

.,...,1 ), ,(~)( kiMVN
iid

i Γμμ  

The resulting two-stage marginal model is obtained by 

kiMVN i

ind

i ,...,1 ), ,(~ˆ
)(  ΓΨμμ , 

with corresponding log likelihood  

.)ˆ()()ˆ(
2

1
|)(|log
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1
)2log(

2
          

),(log

1

)(

1

)(

1









k

i

ii

T

i

k

i

i

kp

L

μμΓΨμμΓΨ

Γμ


 

The parameters of interest which need to be estimated would be μ and Γ . The MLE of μ  is  










 









k

i

ii

k

i

i

1

)(

1

1

1

1 ˆ)ˆ()ˆ(~ μΓΨΓΨμ , 

where μ~  is approximate normal with the variance  

1

1

1)ˆ()~(















 

k

i

iVar ΓΨμ . 

The main statistical difficulty is to estimate the between-study covariance matrix Γ . A few 

methods can be used to obtain the estimated Γ̂ . They are maximum likelihood (ML) estimation, 

restricted maximum likelihood (REML) estimation, method of moment (MM), and some 

alternative procedures such as profile likelihood and Bayesian analyses which have been 

reviewed by Jackson et al. (2011).  
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4.3.2      One-Stage Method 

      If individual participant data are available, we have the assumption 

) ,(~| )()( iiij

ind

iij MVN ΣμCμX , ki ,...,1 , inj ,...,1 , 

where iΣ  is unknown, and kiMVN
iid

i ,...,1 ), ,(~)( Γμμ , which implies that 

) ,(~)(

T

ijijij

ind

iij MVN ΓCCμCμC , ki ,...,1 , inj ,...,1 . 

The unknown parameters are kΣΣμ ,...,, 1 , and Γ . With the above assumptions,  

i

T

ijijiij

ind

ij njkiMVN ,...,1 ,,...,1 ), ,(~  ΓCCΣμCX . 

We may rewrite the model in matrix notation as: 

iijijij EFμCX  )( , 

where ),(~ ii N Σ0E  and ),(~ Γ0F Nij
. The corresponding likelihood is 
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  
(4.9)  

where 



k

i

inn
1

 is the total number of observations. 

      The MLEs of kΣΣμ ,...,, 1  and Γ , say kΣΣμ
~~

,...,
~~

,
~~

1 and Γ
~~

, can be found iteratively. The 

MLE of μ  is 

   
 





 













































k

i

n

j

ij

T

ijijiij

k

i

n

j

ij

T

ijijiij

ii

X
1 1

1

1

1 1

1 )
~~~~

(')
~~~~

('
~~ CΓCΣCCCΓCΣCμ , (4.10)  

where μ
~~  is approximate normal with the variance estimated by: 
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Finding the MLEs for kΣΣ ,...,1  and Γ  is not easy work, a large amount of computations will be 

needed to assess the result. If we make some assumptions on the forms of the matrices kΣΣ ,...,1   

and Γ , we may get some explicit results for the MLEs. Consider the following assumptions: 

 

Assumption 1. 
ijC , kΣΣ ,...,1  and Γ  are symmetric regular circulant matrices providing that 

they commute with each other. Note that kΣΣ ,...,1  and Γ  are also positive definite. 

Assumption 2.  JIΣ iiii   )1(
2

,  JIΓ   )1(2
, where 0)1(1  ip   

and 0)1(1  p . 

Assumption 3. ΣΣ i for all ki ,...,1 . 

Assumption 4. 
ijC  is a pp  circular matrix for all  i  and  j  with 2p  and 

JIC ijijijij tts  )( . 

Assumption 5. 2p . 

 

The following proposition can be used to simplify the log likelihood function in (4.9) under 

Assumption 4 stated above.  

 

Proposition 4.1: Suppose 
ijC  is a pp  circular matrix for all  i  and  j  with 2p  and 

JIC ijijijij tts  )( . Then JIC ijijijij bba  )(2
, where 

22 )1( ijijij tpsa   , 

2)2(2 ijijijij tptsb  , and 
ijij ba  . 

Proof:  
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      Since JIC ijijijij tts  )( , 
2

ijC  becomes 

   
  ,)()2(2)(      

)(2)()()(
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2222
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


 

where 0)1( 22  ijijij tpsa  , 
2)2(2 ijijijij tptsb  , and 

ijij ba  . The proof is complete. 

 

We should first expand the matrix
T

ijiji ΓCCΣ  under the above Assumptions 1 - 3. 

 ΓCΣΓCCΣΓCCΣ
2

ij

T

ijij

T

ijiji   (4.11)  

Furthermore, with Assumption 4, (4.11) becomes  
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 (4.12)  

where 0)1( 22  ijijij tpsa  , 
2)2(2 ijijijij tptsb  , 

ijij ba  , and 

 ])1([22

ijijij bpaA    , ]))2(1([22

ijijij bpaB   . (4.13)  

Also note that 
ijij BA   since 

ijij ba  . Hence (4.11) can be expressed as a symmetric p by p

matrix with diagonals equal to 
ijA  and off-diagonals equal to 

ijB  as shown in (4.12). Therefore, 

under Assumptions 1-4 we have (Graybill (1983), Theorem 8.3.4) 

  ,)1()()( 1

ijij

p

ijijijijij

T

ijiji BpABABBA  
JIΓCCΣ  (4.14)  

and 
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1
)( 1

. (4.15)  

      Consider a special case that 2p (Assumption 5), (4.12) reduces to  
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where )(22

)2( ijijij baA   and )(22

)2( ijijij baB   .  

Thus, under Assumptions 1-5, we have from (4.14) and (4.15) that 
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and 
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 (4.17)  

Note that 0 T

ijiji ΓCCΣ since 
ijij BA  . 

 

      Now we arrive at the following theorem. This theorem states the marginal log likelihood of 

μ , Σ , and Γ  based on one-stage meta analysis of the random effect multivariate 

heterogeneous means model. Inference about the overall core mean vector μ  for the  k  studies 

can be obtained using the log likelihood stated in the following theorem.  

 

Theorem 4.1: Under Assumptions 1-4, and 0)1( 22  ijijij tpsa , 
2)2(2 ijijijij tptsb  , the 

corresponding likelihood of μ , Σ , and Γ  is 
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where 
T

ijijΓCCΣ   and   1
 T

ijijΓCCΣ  are stated in (4.14) and (4.15), respectively, and 

 


k

i inn
1

 is the total number of observations. For the special case where p = 2 (Assumption 5), 

the determinant and the inverse of the matrix T

ijijΓCCΣ  ,
T

ijijΓCCΣ   and   1
 T

ijijΓCCΣ  , 

are stated in (4.16) and (4.17) , respectively.  

 

      In the next subsection, a simulation study for finding the estimates of the unknown parameters 

based on the marginal log likelihood function stated in Theorem 4.1 is investigated.  

 

4.3.3      One-Stage Method – Simulation Study 

      The main purpose of this simulation study is to maximize the log likelihood function in (4.18) 

with respect to the unknown parameters such that the inference for the overall core mean μ  can 

be obtained using Quasi-Newton optimization method. In this simulation study, bivariate data 

based on the marginal model  

i

T

ijijiij

ind

ij njkiMVN ,...,1 ,,...,1 ), ,(~  ΓCCΣμCX  

are generated. 
ijC  is circulant with the form 















ijij

ijij

ij ab

ba
IC , where 

ija  and 
ijb  are 

independently generated from Uniform (-1, 1) distribution for each simulation study. We assume 

ΣΣ i for all i and  JIΣ   )1(2
,  JIΓ   )1(2

. We also assume equal 

sample size NNi   for all the k studies and consider four cases 40 ,20 ,10 ,5N  for each of 

the k studies. 

      Define the unknown parameter vector ),,,,,( 21

22   , where ),( 21
 μ .  Let 

the data of the k studies be generated based on the given true vector )2 ,10 ,5. ,3 ,1. ,2( True . 
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The initial guesses of the vector of parameter estimators which maximize the log likelihood 

function in (4.18) are: 

 TrueGuess  1  for the first simulation study, and  

)20 1, 0, 6, 0, 20,(2
Guess  for the second simulation study.  

We shall see the impact of the two sets of initial guesses on the estimates of the parameters. It can 

be seen from the left-hand column of Figures 5-8 about the behaviors of the parameter estimates 

based on 100 generated data sets. Each graph of the right-hand column illustrates the boxplots 

corresponding to the 100 sets of parameter estimates on its left. From the left-hand column of 

Figures 5 and 6, we can see that the use of the true parameter vector True  as the initial guess 

produces more stable parameter estimates, while the use of second initial guess 2Guess  produces 

some estimates of parameter vector falling outside the main trail of most of the estimated 

parameter vectors as seen from the left-hand column of Figures 7 and 8. Therefore our conclusion 

about parameter estimates will be based on the results of the initial guess True . 

      For each case of equal sample size for the k = 4 studies, 100 data sets are generated and each 

of which is based on the same sets of 
ijC  matrices generated from Uniform (-1, 1) distribution 

stated previously. In the left-hand column of Figures 5 and 6, each line denotes the estimates for 

the six parameters expressed as the vector form  . When the equal sample size is 5, the estimates 

look unstable and vary more dramatically than the estimates with larger equal sample size. This 

can be seen from the boxplots of the estimates on the right columns. The estimates seem accurate 

especially for the two elements of the overall core mean vector 1  and 2 .  

      This simulation study is an introduction to application to meta analysis when we have 

heterogeneous data and want to do inference for the overall core mean μ  of the k studies. We 
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could use the same computational technique to deal with more general cases when necessary 

without being subject to specific conditions.  

 

 

Figure 5: First simulation study using initial guess  

)2 ,10 ,5. ,3 ,1. ,2(1
 TrueGuess  for N = 5 and 10 
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Figure 6: First simulation study using initial guess  

)2 ,10 ,5. ,3 ,1. ,2(1
 TrueGuess  for N = 20 and 50 
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Figure 7: Second simulation study using initial guess  

)20 ,1 ,0 ,6 ,0 ,20(2
Guess for N = 5 and 10 
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Figure 8: Second simulation study using initial guess  

)20 ,1 ,0 ,6 ,0 ,20(2
Guess for N = 20 and 50 

 



 

115 
 

CHAPTER V 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

5.1 CONCLUSIONS 

      For multivariate estimating and testing procedures, one uses the sample mean of the data

nXX ,...,1  to estimate the population mean assuming, for example, that the given sample is from 

a p  variate normal distribution with mean μ  and covariance matrix Σ ; that is to assume that 

the sample is a set of independently, identically distributed ),( ΣμpN  random vectors. When 

testing 00 : μμ H , one uses Hotelling’s 
2T  statistic without doubts. These are standard 

procedures for estimating and testing for the mean, while most of the time we obtain data that 

violate the “identically distributed” assumption. Some known or unknown disturbances may exist 

in the data which may be caused by specific mechanisms that are often neglected by analyzers. 

When this situation occurs, a heterogeneous means model should be employed. If the standard 

Hotelling’s 
2T  procedure is adopted in this case to test 00 : μμ H , one might expect that the 

rejection probability would be quite high even if the data just suffer slightly disturbed noise.  

      To remedy the violation of assumptions of the data stated above, assume that each iX  

follows ),( ΣμCipN  distribution for ni ,...,1 . The disturbance of the data can be structured by
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the matrix iC  which is a pp  square matrix such that the vector μ  is meaningful. We name 

the vector μ  the core mean. To further look at the model, we can assume that the square matrix

iC  is known or unknown, fixed or random.  

      The current research deals with the case that iC  is a known square matrix. When iC  is 

circulant for ni ,...,1  and Σ  has a compound symmetry structure, we can still do inference by 

generalizing the Hotelling’s 
2T statistic.  

      The exact distribution of the ML estimator ̂  of the intra-correlation is derived and it is 

distributed as a function of F random variable. In addition, it is not unbiased in general, yet it is 

unbiased when   is 0 and tends to be unbiased when   is close to 
1)1(  p  or 1. So there is a 

need to do bias correction on ̂  when 0 . As for the inference about the MLE of 
2 , 

2̂  is 

exactly distributed like sum of two weighted chi-square random variables. An approximate χ
2
 test 

is also derived for testing 00 : μμ H .   

      When extending the inference about the core mean for one sample case to comparing two 

core means for the two-sample case, i.e. to testing 210 : μμ H , the test statistic has been 

proved to be distributed as the random variable similar to the one in one sample case when testing 

00 : μμ H . An approximate χ
2
 test is also derived for testing 210 : μμ H . When comparing 

k  core means iμ , ki ,...,1  for k  independent studies, the likelihood ratio test statistic for 

testing kH μμ  ...: 10  has a null distribution which is analogous to the ones for one-sample 

and two-samples cases.  
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      It is believed that the effect of commutability of the covariance matrix Σ  and the iC  play a 

crucial role on the absence of the iC  in the null distribution of the LRT statistic for testing

00 : μμ H for one-sample data and analogous effect for kH μμ  ...: 10  multi-sample data. 

      An application to meta analysis of the data from heterogeneous means models for k 

independent studies is addressed. Some preliminary results are presented as well. Results are 

synthesized from k studies, each study reports an estimate for the parameters of interest – the core 

mean.  The fixed effect model assumes that the true core mean vector is the same for the k 

studies, so the ML estimator for the common core mean is obtained when the covariance matrix 

for each within-study model is known. If the covariance matrix for each study is unknown, a 

consistent estimator of the corresponding covariance matrix could be used to estimate the true 

unknown one, so the inference for the common core mean can be done, for both general case and 

the case that the covariance matrix for each study is compound symmetric and iC  is circulant for 

all i. 

      Two methods for random effects model are considered in the current research. The two-stage 

meta analysis considers both the within- and between- study models. The within-study model 

requires an estimate for the covariance matrix of the estimator of the core mean for each study, 

which is assumed fixed and known in the resulting two-stage marginal model involving the  

unknown common core mean and the unknown between-study covariance matrix. Unlike the 

two-stage meta analysis model, the one-stage meta analysis using the individual participant data 

(original data) to simultaneously do inference on the estimates for the common core mean and 

both within and between studies covariance matrices. A simulation study for a special case of the 

one-stage meta analysis is performed for finding the estimates for all the unknown parameters 

based on the derived marginal log likelihood function.     
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5.2 FUTURE WORK 

      For the future research, the case that the matrix iC  is random will be the starting point 

because it is more apt for real data. Consider the univariate case that ),(~| 2iii CNCX , 

where  , 
2  are unknown parameters, iC  is random and ),(~ 2ii DNC , where iD  and 

2  

are known. Then the marginal pdf of iX  is  

















)(2

)(
exp

2

1
)(

222

2

222 


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ii
i

Dx
xf ; 

that is, ),(~ 222  ii DNX . Hence the marginal likelihood function is 

  


M

i ixfL
1

2 )(),(   

and the corresponding log likelihood function is  
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)(2ln
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222

1

2

2222
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
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



 

M

i ii DxM
L , 

on which the inference about   could be based. 

      When extending it to multivariate case, one would expect that a great amount of 

computational calculation should be done when moving on to the general setting. The starting 

point for this would be the case that iC  are diagonal. Suppose that a sample MXX ,...,1  is from 

),( ΣμCipN  distribution. Define ),...,( 1
 ipii XXX , ),...,( 1

 pμ , ),...,( 1 ipii ccdiagC

, where Σ  is unknown , 
ijc  are independently distributed like a normal random variable, for 

example, ),( 2ijdN , where 
2  is specified. Note that μCi can be re-parameterized by  ic , 

where ),...,( 1 pdiag  , ),...,( 1


ipii ccc , and ),(~ 2
Idc ii N   implying that 

),(~ 22  ii N dc , where ),...,( 1
 ipii ddd . Assume that the conditional pdf of  ii cX |  is 
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),( Σc
 iN , then the marginal distribution of  iX  is ),( 22

Σd  iN  which can be used to 

do inference for μ . The general case when 

ic  is multivariate normal is working in progress. 

      For a special bivariate case, let 









ii

ii

i
ab

ba
C  and assume that both ia  and ib  have a prior 

distribution, for instance, a Uniform (a, b) distribution. In addition to the normal case, some other 

continuous models like finite mixture normal models also will be considered in my future 

research. Testing 210 : Gμμ H  for two heterogeneous normal samples will also be my interest. 
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APPPENDICES 
 

 

 

A.1 

      We need to show that  
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Since from Section 2.2.2 we have 
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we have  
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Similarly, the identity Mptr
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i

T
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Similar argument can be used when showing 
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