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CHAPTER |

INTRODUCTION AND LITERATURE REVIEW

1.1 INTRODUCTION

If X,,..., X, isasample from a normal population, then to estimate the population mean the
usual point estimator is the sample mean X . However, if the collected data violate the

assumption of “identically distributed” setting, that is, if each X, has heterogeneous mean,

estimating the “population mean” will no longer make sense, except when structuring those
means. Sometimes researchers believe that their collected sample is from a single population with

a common constant mean when it is not, and they want to test the “population mean” equal to a
specified value £¢, without realizing that their data has previously been polluted due to some

known or unknown mechanism. Hence the chance of rejection will be affected by the degree the
data are polluted. Therefore it is necessary to model the disturbance of the data caused by the

external or internal mechanisms and do inference for the parameter of interest. For example, let a
random sample X;, i =1,...,n, be assumed independently, normally distributed with

heterogeneous means C,z, i =1,...,n, and common variance o’ Let C,....,C, be known, and
assume that X,,..., X, ~indN (C,z,c”) . Although each X, has different mean, there is still an

“underlying” mean g hidden in this model. Once x is estimated, each mean C, z, i=1..n,is

obtained. Actually, this model is a linear regression model through the origin. For this univariate
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case, the model is very easy to estimate, while when extending it to multivariate case, the
matrices C, ’s become troublesome. A special case of interest for C, is to assume it is a square

matrix.

For the remainder of this chapter, a review of the literature for inferences of multivariate
homogeneous mean models for single normal population is introduced in Section 1.2 as follows:
Subsection 1.2.1 gives a review for inferences concerning the mean vector when the covariance
matrix is unstructured. Subsections 1.2.2 to 1.2.4 are about inferences of the means assuming that
the covariance matrices are patterned. Finally, Subsection 1.2.5 is about the inferences concerning

both the means and covariance matrices. Section 1.3 is about the inferences for multivariate
homogeneous mean model for k normal populations with k > 2. Section 1.4 gives a brief review

for meta analysis. Section 1.5 formally introduces the proposed model under multivariate normal

setting and gives an overall introduction for the contents of later chapters.

1.2 HOMOGENEOUS MEAN MODEL FOR SINGLE POPULATION

The p dimensional multivariate normal model has mean g and covariance matrix 2. The
basic statistical problem is to estimate the parameters with a sample of n observations X;,..., X,
from the normal distribution with homogeneous mean # and homogeneous covariance matrix
2'. The maximum likelihood estimator of g is just the sample mean and the maximum

likelihood estimator of X' is proportional to the matrix of sample variances and sample

covariances. The sample covariance matrix is defined by

1 n = —
S:n—_lzizl(xi—X)(Xj—X), (1.1)
where X = lZ:_nlxi ,and S is unbiased for estimating X and follows Wishart distribution
n <=

W(iz,n—l).
n-1



1.2.1 Inferences Concerning the Mean Vector When Covariance Matrix Is Unstructured

Tests for the mean u equal to a specified vector g, have been discussed in many
multivariate analysis textbooks (e.g. Anderson 2003, and Rencher 1998) for the cases that X' is
known as well as that 2" is unknown and unstructured. Since \/ﬁ()?—y) is distributed according
toN(0,2), it follows that n(X — u)' 2 (X — a) has a central chi-square distribution with p
degrees of freedom for the case that X' is known. For the case that X' is unknown and

unstructured, the likelihood of the homogeneous mean model given observations X,,..., X, is

LGt Z 1% X) = [ [@) 7 1217 o023 06— 2% -}
= . (1.2)

np n

— (@) * 2] opl-S 2%~ T (% -

and the corresponding log likelihood is

log L(#, % | X,,..., X, ) = constant —glog | X | —%Z:(xi —u) (X — p),

i=1

where log is the logarithm taken to base e. Let T? = n(X — g,)'S ™ (X — u,) . For the rest part of

this subsection, the following theorem concerning Hotelling- T ~ distribution is stated and the

likelihood ratio test for the hypothesis H, : g = u, is developed and based on the T %~ statistic

(Anderson 2003).

Theorem 1.1 (Anderson 2003) Let X,,..., X, be a sample from N(u, %), and define

2 p—
T? =n(X —u,)' S (X — u,) . The distribution of [nT 1J(n—ppj is noncentral F with

p and N— p degrees of freedom and noncentrality parameter Nz — )" X~ (1 — p) . If

M = u,, then the F-distribution is central.



Since the T ?-statistic follows the Hotelling’s T *-distribution which is the generalized version

of Student’s t distribution, the confidence region of the mean vector can be derived on the basis of

the T ?-statistic. The likelihood ratio for testing H, : z = g, is

_ mgx L (s, 2) _ L(ﬂoyi‘o)

Tma(e) | L) (13)
where

2y = TG = )X~ ),

i = Y:%Zi"_lxi,and (1.4)

223 X=X, - )

Thus (1.3) becomes

e 1n A
@) 12,1 09~ 50~ m) 270X, )|
A=

np n

@) * 1217 oL E () 220X, |

:[ £ J exp{—%(trfo*g(xi ~ o)X — ) (X = @)X, —ﬁ)Tj}

| 2 |
NG INET (IEIV L (1 (12]
_[Ifo J exp{ 2(tr(nlp) tr(nlp))} [|EAO|] exp{ 2(np np)} [|fo J.

Replacing £ and X, using (1.4), 2" becomes

NS
NS

o 121 _ | 20 (X = X)X =Xy
|20l 1D (X = mp)(X = o)’

Further, to derive the likelihood ratio criterion, the following Corollary is required.



Corollary 1.1 (Anderson 2003) For C nonsingular,

C vy 1=y -
= = = 1
‘—y‘ 1‘ IC+yy] ‘y C‘ Cla+y'C?y).

Defining A = Z:in:l(xi — X)(X; = X)" and using Corollary 1.1, we have

2/n |A| 1
220 — _ _ = — —
[A+n(X =) (X =py)|  1+0(X = o) A (X = pay)
~ 1 . 1
C1en(X - o) [(N-DSTH(X ) L+T2(n-D)’

where T? is defined in Theorem 1.1. Thus the likelihood ratio test for H, : u = u, has rejection
i T2 _(=-Dp_ o)
region {x,..., X, : T* > C,} where C, = F(1—«, p,n— p) is such that
n-p

P(T?>C,|H,) = «, the significance level of the test.

1.2.2 Inferences Concerning the Mean Vector When Covariance Matrix Has Compound
Symmetry Structure

Define the P -variate mean vector u# = (44,..., £¢,)" . Wilks (1946) derived the exact
likelihood ratio criterion for testing H, :equality of p entries of the mean vector 4 or
Ho @ p = pul,, where x isan unknown real number and 1 isa P x1 vector with all entries

equal to 1, when the covariance matrix 2 has compound symmetry structure as defined in (1.5).
This could be done when the likelihood ratio criterion, which was also derived in the same paper,

for testing H, : 2 has compound symmetry vs H, : 2" is unstructured, does not have a

significantly small value. The compound symmetry covariance matrix is of the form



o’ po po
2 .
po
| P G ! (15)
po’ po’ o’

where >0 and —(p—1)"" < p <1 to ensure positive definiteness of the compound

symmetry covariance structure of 2. This structure assumes that the unknown p variances are

all equal through the common intra-class correlation.

Geisser (1963) derived the likelihood ratio test for testing H, : # = u, where u, isa
known constant, when the underlying covariance matrix has a compound symmetry structure as
shown in (1.5). In this paper, the likelihood ratio test statistic L for testing H, : g = g, under

the covariance matrix structure in (1.5) is of the form

1 7( pfl) 1 -1
L= (1+ 1 Fos oy p_l)] [1+ 1 Fl,n—l] : (1.6)
Zz -(p-1) 2 -1
L=|1+—222 (1+Z—;j , (17)
X (p-1)(n-1) Xna
or

L=BP"B,, (1.8)

where F_, 1, and F ; areindependent F random variables with degrees of freedom

indicated in subscripts and 4, 12, Xisns» @nd 2, are independent chi-square random
variables with the corresponding degrees of freedom shown in subscripts. B, and B, are

. . 1 1 1 1
independent beta variables Beta(E (p—D(n-2), 5 (p—21) and Beta (E (n-1), E) ,

respectively, based on the following properties about beta random variables.



Properties of beta random variables: (Bailey 1992) Let U and V be independent, U ~ ;gz(m),

U m n
V ~ #%(n). Then ~ Beta(—,—).
2 U+V (2 2)

The rth raw moment of L can be calculated easily and approximations to the distribution of
the product has been studied by Tukey and Wilks (1946) such that finding approximate critical
values for the test is feasible. The hypothesis H, : g = u, is rejected when L is sufficiently

small.

1.2.3 Inferences Concerning the Mean Vector When Covariance Matrix Is Circulant

A circulant matrix of order p, or circulant in short, isa Px P square matrix of the form

ao a1 ap—l
a a cee a

A=(a;)= F:’—l o ":‘2 . (1.9)
a1 a2 see aO

The elements of each row of the matrix A are identical to those of the previous row, but are
moved one position to the right and wrapped around such that the last element of the previous

row becomes the first element of the current row. Note that the whole circulant is evidently

determined by the first row. Also we may denote the circulant A in (1.9) by
A=circ(ay,a,...,a, 4)-

So Aisa px p circulant if and only if a; = a,,;,,, where (J—1)| P is defined as

—ip’

. p+j—i  wheni>j,
(J—|)||0={. : o
j-i when i< j.

For more details about circulant matrices, refer to Davis (1979) and Graybill (1983). If a positive

definite covariance matrix is circulant, it must also be symmetric. Examples for circulant



covariance matrices circ(c?,o?py,...,5°p, ) With P=4 and P =3 are, respectively,

1 o po P P
1 p p, p v P2 P2 P
11 © ol opop P
2| A1 P P2 d o2
o 1 cand o\p, op 1o oy
P2 P P
P P A1 o p
PP Pl

PP o1

satisfying p; = p,_; of the symmetric circulant covariance matrix 2" of the form

1 p o Py
soof P b P (1.10)
pop 1
If assuming p, =...= p,_, = p in (1.10), the covariance matrix is said to be compound

symmetric defined in (1.5).

Olkin and Press (1969) have found the MLEs of the mean g and covariance matrix 2" and
have derived the exact likelihood ratio criteria for testing equality of p entries of the mean
vector u and the mean vector u# equal to zero when the covariance matrix 2’ has a circulant
structure. Their derivations for estimation and testing started by making the transformations on
X and S suchthat Y =n"?XI", V = I'SI", where X and S are sample mean and sample
covariance matrix as defined in (1.1). I" is orthogonal such that it transforms the circulant
covariance matrix 2 to diagonal form. Note that Y and V' are independent. They also derived

the likelihood ratio tests and asymptotic approximations of the test statistics for means and

covariance matrices. They simultaneously tested (i) that the mean vector g are zero and the
covariance matrix is circulant, (ii) that the P entries of the mean vector g are all equal and the
covariance matrix is circulant, both against general alternatives that all the entries of g are real

numbers and the covariance matrix is positive definitive.



1.2.4 Inferences Concerning the Mean Vector When Covariance Matrix Is Block
Compound Symmetry

The estimating and testing problems for block compound symmetry arising from multivariate
normal distributions was first studied by Votaw (1948). He proposed twelve hypotheses and

tested them using likelihood ratio method. An introduction of the six hypotheses for one sample
will be mentioned in Subsection 1.2.5. The other six hypotheses for k samples (K > 2) are stated

in Section 1.3.

A more recent paper that estimated and tested concerning means and covariance matrices
under block compound symmetry covariance structure is given by Szatrowski (1982). In his
paper, two types of covariance structures — block compound symmetry of type | (BCS-I) and

block compound symmetry of type 1l (BCS-I1) were considered. The problem of testing
H, : 4 = p, given that the covariance matrix has the block compound symmetry structure was
also considered. In his paper, estimating and testing were based on maximum likelihood method.
Null distributions of likelihood ratio statistics of the form A% =| fQ |/| fw | were simplified for
some special cases of Votaw’s six hypotheses for single population, where €2 is the parameter
space under the alternative hypothesis, o is the parameter space under the null hypothesis. ﬁg is
the MLE of covariance matrix under the alternative hypothesis and % is the MLE of covariance
matrix under the null hypothesis. Also the moments of /" were obtained under the null and the
approximate null distributions of —2log A were found using Box’s approximation (1949).

A BCS-I assumption can be illustrated by the following example. Suppose that a standard test

score of college calculus is a random variable X; with mean £ . There are a set of three other
alternative tests, namely X,, X;,and X, with means z¢,, £¢,, and £, , respectively. So the

vector X = (X, X,, X3, X,)" forms a 4x1 normal random vector with mean



=1y, 1, 143, 14,)". Under the block compound symmetry of type | (BCS-1) assumption, the

covariance structure is of the form

(1.11)

OO0 >
OO0 w O
O m T O
w O OO

The hypothesis of interest is the interchangeability of variables X,, X, , and X, . It is equivalent

to the hypothesis that the vector X has mean u = (14, 14, 1, 14,)" and the covariance structure
is of the form in (1.11). That is the random vectors (X,: X,, X5, X,)", (X,:X,, X,, X,)',
(X X5 Xy, X)) (X X5, Xy, X)) (X5 X, Xy, X,)' and (X, i X, Xy, X,)" have the
same distribution. For a more general case, consider b distinct standard tests and h sets of
alternative tests, each of which measures n; abilities. That is, X is partitioned into b + h subsets
and formsa b+ Z:ll n, = p -variate random vector. Under the BCS-I assumption, within each
subset of variates, the means are equal, the variances are equal, and the covariances are equal and
between any two distinct subsets of variates, the covariances are equal.

In regard to the BCS-I1l assumption, we may consider the following example. Assume that

there are two types of tests of cognitive abilities. Each type of cognitive tests measures the

abilities of verbal (V) and thinking (T). So the two types of test scores are assumed to be a

multivariate 4x1 normal random vector Y =(Y,,Y,:Y,,Y,)" with mean g = (14, 14, 15, 14s)',

where Y; and Y, are scores of verbal ability for type I and type Il tests, respectively; Y, and Y,
are scores of thinking ability for type | and type Il tests, respectively. Under the compound
symmetry of type Il (CS-11) assumption, the mean of Y reduces to # = (14, 4, 14, 1&)', and the

covariance matrix is of the form

10



(1.12)

MmO >
m T > O
O oo T m
w O m M

The test of hypothesis of interest would be £4 = &, , 1, = 14, and that the covariance matrix has
BCS-II structure shown in (1.12). Or equivalently be the test of simultaneous interchangeability
of two types of measures for verbal and thinking abilities. For example, the distributions of
(Y,,Y,:Y,,Y,) and (Y,,Y;:Y,,Y,)" are the same but the distributions of (Y,,Y,:Y;,Y,)" and
(Y,,Y;:Y;,Y,)" are not the same. These kinds of tests can also be applied to medical research
especially for repeated measurements (Crowder & Hand 1990) data when comparing the effect of
treatment and control groups (Morrison, 1972). For a more general case, one can consider n types

of tests and h types of measures of cognitive abilities such that Y isan nxh random vector.

1.2.5 Inferences Concerning Both Means and Covariance Matrices
Wilks (1946) tested the hypothesis that a normal p-variate distribution has a complete
symmetry covariance matrix structure as shown in (1.5) versus the hypothesis that the covariance

matrix is unstructured by likelihood ratio test. In this paper, he also derived the LRT for testing

u=ul, and 2’ is compound symmetry simultaneously against the general alternative that all

the entries of u are real numbers and the covariance matrix is positive definitive.

Votaw (1948) first studied the problem of estimating and testing for block compound
symmetry in data arising from multivariate normal distributions. He extended Wilks’ result by
considering a normal p-variate random vector which can be partitioned in g mutually independent
subsets of which b subsets contain exactly one variate each and the remaining g - b = h subsets
(A > 1) contain ny,..., n, variates, respectively, where n,> 2; a=1,..., h; b + n;+...+ n, = p. Let

(1°, ny,..., n, ) denotes such a partition of a the p-variate random vector. Without loss of

11



generality, assume n; <... < ny, . A special case is that b = 0. For assumptions of block compound

symmetry of type | and type Il, Section 1.2.4 has given a brief introduction. In his paper, Votaw

(1948) proposed 6 null hypotheses for testing the means or covariances or both based on a single

sample. These hypotheses are: 1) H,(mvc), 2) H,(vc), 3) H,(m), 4) H,(mvc), 5) H,(vc),

and 6) Hl(m) . The hypotheses 1-3 are for BCS-I assumptions and the remaining three are for

BCS-I1l assumptions. The null hypotheses 1, 2, 4, and 5 are against the alternative hypothesis that

the means are real numbers and the covariance matrix is positive definite. The statements of the

above six hypotheses are as follows:

H,(mvc) is the hypothesis that within each subset of variates, the means are equal, the

variances are equal, and the covariances are equal and that between any two distinct

subsets of variates, the covariances are equal.
H, (vc) is the hypothesis that within each subset of variates, the variances are equal and

the covariances are equal and that between any two distinct subsets of variates, the

covariances are equal.
H, (m) is the hypothesis that within each subset of variates, the means are equal, given

that the variances are equal and the covariances are equal and that between any two

distinct subsets, the covariances are equal.
H, (mvc) is the hypothesis that within each subset of variates, the means are equal, the

variances are equal, and the covariances are equal and that between any two distinct
subsets of variates, the diagonal covariances are equal and the off-diagonal covariances

are equal.
ﬁl (vc) is the hypothesis that within each subset of variates, the variances are equal and

the covariances are equal and that between any two distinct subsets of variates, the

diagonal covariances are equal and the off-diagonal covariances are equal.

12



. Hl(m) is the hypothesis that within each subset of variates, the means are equal, given

that the variances are equal and the covariances are equal and that between any two
distinct subsets of variates, the diagonal covariances are equal and the off-diagonal
covariances are equal.
Votaw derived the likelihood ratio for each hypothesis. In his paper, he also developed an explicit
expression of the likelihood ratio criterion for each hypothesis and found its rth moment and

approximate distribution when the corresponding hypothesis is true.
Olkin and Press (1969) have considered the problem of 1) testing the null that X' has

complete symmetry versus the alternative hypothesis that 2" is a circulant; 2) testing the null that

X =c?| versus the alternative hypothesis that X' is a circulant; 3) testing the null hypothesis that

2 isacirculant versus the alternative hypothesis that X' is positive definite.

1.3 HOMOGENEOUS MEAN MODELS FOR k POPULATIONS WITH k > 2

Votaw (1948) tested the following hypotheses based on k samples: 1*) H, (MVC | mvc), 2*)
H, (VC|mvc), 3*) H (M | mVC), 4*) H,(MVC | mvc), 5*) H, (VC | mvc), and 6*)
H, (M | mVC). The hypotheses 1-3 are for BCS-I assumptions and the rest three are for BCS-II

assumptions. The statements of the above six hypotheses are as follows:

e H,(MVC | mvc) is the hypothesis that k normal p-variate distributions are the same
given that they all satisfy H,(mvc) which is introduced in section 1.2.5.

e H, (VC|mvc)is the hypothesis that k normal p-variate distribution have the same
variance-covariance matrix given that they all satisfy H,(mvc).

e H,(M|mVC) is the hypothesis that k normal p-variate distributions are the same given

that they all satisfy H,(mvc)and that they all have the same variance-covariance matrix.

13



e H,(MVC |mvg) is the hypothesis that k normal p-variate distributions are the same

given that they all satisfy ﬁl(mvc) which is introduced in section 1.2.5.

e H,(VC|mvc) is the hypothesis that k normal p-variate have the same variance-

covariance matrix given that they all satisfy H,(mvc).

e H,(M | mVC) is the hypothesis that k normal p-variate distributions are the same given

that they all satisfy ﬁl(mvc) and that they all have the same variance-covariance matrix.
For each of the above six hypotheses, VVotaw developed the likelihood ratio test in terms of
deriving the explicit expression of the likelihood ratio criteria L = 2 , where A is the likelihood

ratio, for the hypotheses 1* —4* and L = "N for the remaining two hypotheses, where N is total
number of sample sizes for all k populations. He also found the rth moment and approximate
distribution for each test hypothesis.

Geisser (1963) compared the means of k p-variate normal populations under the assumption
that the k normal populations have the common compound (complete) symmetry covariance
structure using multivariate analysis of variance approach implemented by use of the information

criterion (Chapter 9, Kullback 1959).

14. META ANALYSIS
Meta analysis has been widely used to synthesize results from systematic reviews of reliable
research in many fields. There has been a massive growth in application of meta analysis to areas
such as medical research, health care, education (Glass, 1976), criminal justice, social policy, etc.
See Kulinskaya et al. (2008) and Sutton et al. (2000) for a detailed account of meta analysis. A
recent development of meta analysis has been summarized by Sutton and Higgins (2008).
One uses a fixed effect model to combine treatment or parameter estimates when assuming no

heterogeneity between the study results. In fact, point estimates of parameters from different

14



studies are almost always different. If the differences of the point estimates are only simply due to
sampling error, that is, the source of variation between studies is random variation, we can use a
fixed effect model. Sometimes the researchers prefer to believe that the true unknown parameters
from different studies vary from one study to the next, the studies represent a random sample of
the parameters that could have been observed and comes from a specific distribution. Under this
situation, a random effects model will be considered in the analysis.

The standard fixed effect model in meta-analysis is that if we have k independent studies,

with data, each of which reports an estimate /;, for a common parameter 4 . Each estimate /i,

is assumed independently, normally distributed as

2
. o\ L
,Ll(i) ~ N(/J, n—), \vdl :1,...,k, (113)

where is the sample size of ith study and Giz is the underlying variance parameter for ith study.

Given (,&(i) , Giz , N, ) the ML estimator for 4 and its variance are, respectively,

k
Znio-i_zla(i)
p=E (114)

and

Yno; ' (1.15)

is from MVN _ (#, ;) population for i =1,...,K . Suppose s is the parameter vector of
interest. The ML estimator for u# based on ith sample is

figy = X, Vi=1..k. (1.16)
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Here we assume X is known for all 1 =1,...,K . In fact, A1;,'s are independent and

: 1

? n,) for the k studies, the ML estimator for 4 and its variance-covariance

Given (ﬁ(i) X

matrix based on the k independent samples are respectively

_1k

ji= (Zk:(nizil)] >onx iy, (1.18)

i=1

Cov() =[ (nizi‘l)y. (1.19)

k
i=1
Statistical inferences are based on the fact that

Kk
(m —#)‘(Z(nifil)j(ﬂ —n)~ xh. (1.20)
i=1
Applications of the proposed heterogeneous means normal model to random and fixed effects

meta analysis will be developed and presented in Chapter 4. The proposed models will be stated

in the next section.

1.5 PROPOSED HETEROGENEOUS MEANS MODELS

Consider an independent sample X,..., X, such that X; ~ MVN (g, X), where
p, =Cpu forall i=1..,M  andboth g and X are unknown. The matrices C, are px p for all

I=1,...,M and the covariance matrix X' is positive definite. Some further restrictions will be

considered later for C, when necessary. The likelihood function is

L(w, 2] %y Xy ) :H(Zﬂ)iz | Z |7E eXp{_%(Xi ~Cip)" 27 (% —Cm)}
= (1.21)

Mp M 1

=@m) 7 1Z] 7 opf-5x (% ~Cu) £ (x, ~Cun}

16



The covariance matrix 2’ is patterned in order to make the maximum likelihood estimator
(MLE) of u vector not involve the ML estimator of 2.

Based on the likelihood function for a given sample, inferences for one-sample and
multisample data are presented in Chapters 2 and 3, respectively. The likelihood ratio test for

one-sample case for H : u = u, is derived explicitly under some constraints on the matrices C,

and covariance matrix 2. Especially, C, is assumed circulant for all i. 2" is assumed compound

(complete) symmetry of the form in (1.5). The distributions of the MLEs of the intraclass
correlation o and variance o’ , hamely p and 62 , respectively, are obtained and the behavior
of p isinvestigated in terms of its mean and standard deviation by a simulation study. For the
two-sample and multisample cases, the likelihood ratio test for testing H, : g, =... = g, is

derived exactly assuming equal compound symmetry covariance matrix for the k populations.
Large sample y? test is gained for each of one-sample and two-sample cases.

An application of the proposed model to meta analysis is developed in Chapter 4. In
traditional meta analysis, the sample from each study is assumed independently, identically
distributed, while the sample from the proposed model is not the case. In Chapter 4, applications
of the proposed model to fixed and random effects models for multivariate meta analysis (Jackson
etal., 2011, Nam et al., 2003) about continuous outcomes will be developed and presented. Since
the outcome measures in the proposed model are non-comparative continuous, one-stage method
for individual patient / participant data (IPD) random effects model is suggested by Higgins et al.

(2001) to investigate the heterogeneity of the effects (parameters) among several studies.

17



CHAPTER I
ONE-SAMPLE INFERENCE

2.1 INTRODUCTION AND PRELIMINARY CASES

Consider an independent sample of size M, X,,..., Xy ~ MVN_ (g;, %), where g, =Cu
forall i=1..,M,and both # and X are unknown. The matrices C, are pxp forall
i=1...,M and the covariance matrix X' is positive definite. Some further restrictions will be

considered later for C, when necessary. The likelihood function is already shown in (1.21), thus

the log likelihood function is

Mp M 1Y e
log L (s, 2 | X, %) = ==~ 10g(27) == -log | X | =23 (%, = Cyan) X (%, ~C;pa)
\ L = (2.1)
= constant —?Iog | X | —EZ(Xi —Cu)" X7 (x, —C,p).

i=1

For simplicity, log L(z, 2| X;,..., X,y ) will be expressed as log L(#, 2 | X) from now on. Let

M
Q=Y (% —Cu)" (%, —C,u) . Our goal is to find the MLEs for u# and X'. We can start by

i=1
rewriting the log likelihood function in (2.1) such that maximizing log L(ﬂ,2| X), or

equivalently minimizing Q with respect to g , becomes easier. But Q can be expressed as

18



Q= trZ(Xi _Ci,”)T Zil(xi -Cip) = Ztr[(xi _Ci/‘)T Zil(xi _Ciﬂ)]

i=1 i=1

= Ztr[E_l(Xi —Cip)(X; _Ciﬂ)T]: t{zz_l(xi —Cip)(X; _Ciﬂ)T}

= t{z_li(xi ~Ciu)(x, ~Cp)' } =tr[Z7V],

M M 1w
where V =" (x; —C,u)(x; —C,p)" . Define it = (ZC:Z@J >'C'2 X, then V can

i=1 i=1 i=1
be expressed as
M
V= Z(Xi ~Ciit+Ci—Cip)(X, —Cifa+Cia—Cip)'
i=1

= A+ z (Caa—Ciu)(Cii—Cip)’

i=1

+Z(Xi -Cu)Cu _Ci.u)T +Z(Ciﬁ —Ciu)(X; _Ci,il)Tv

M
where A=>"(x, —C,a)(x, —~C;f1)" .

i=1l
Hence we have
M
Q= trzilA"'trEilz (Cipr—Cip)(Cipr - Ci.”)T
i=1

M M
+tr2_12()(i ~C@)(Cia—~Cim)' +tr2_lz(ci:&_ci:u)(xi ~Cipr)’

i=1 i=1

M
= tr2‘1A+tr2‘1Z (Cip—Cip)(Cipr - Ciﬂ)T ,

i=1

where the second equality is justified by
M M T
trzilz(xi -Ca)Ca-Cp)' = Ztr [Eil(xi -Ca)(a-n)'C, ]
i=1 i=1

= (- .0 Z(x ~C,i) =0.

i=1

M
Likewise, we have tr= > (C,a—C;u)(x; —C;f1)" =0.Hence Q can be expressed as

i=1
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M
Q= trz-1A+t{z-lz[ci (it~ w]IC, (i —u)]T}
i=1
1 M T 1
=trZ A+ Y [C,(i—p)]" Z7[C,(f - w)])
i=1
Therefore, the log likelihood becomes
M
log L(u, 2" | X) = constant —?Iog | 2|

i=1

) . (2.2)
—E{trz_lAJr (a—p)' {Zci 27C, }(ﬂ - ﬂ)}’

M M Y
where A=Y (x-Ca)(x,—Ca)", ai= (ZCJZ*CJ > 'C,"Zx; . We can base on the
i=1

i=1 i=1
log likelihood expressed in (2.2) to find the MLEs for g and/or X' under some specified

conditions.

2.1.1  Inference for 4 When X' Is Known

From the log likelihood derived in (2.2), we can see that the third term of the right-hand side
M

is the only one involving g . If Zcfz-lci is a positive definite matrix, the minimum of Q ,
i=1

w.r.t. g, occurs at

M 1M
i = (Zclecij > C'EX,, (2.3)
i=1 i=1

which is the MLE of # , a linear combination of X;'s. Note that 4 is normally distributed with

mean
M 1M
E(a)=E (Zcﬁzlcij C,'Z X,
i=1 i=1
M Im
) (ZCiTzlci] 2.ClxCu=p,
i=1 i=1
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and the covariance matrix Cov(z) obtained in the following way. Since a satisfies the identity

M M
>'.c'x7Ca=>.C 27X, , taking covariance on both sides yields
i=1 i=1

M M
Cov(ZCiTzlciﬁj = Cov(ZCiTzlxi]
i=1 i=1

=N (icjz—lcijc:ov(ﬁ)(icfz-lcij = i(cfz—l)c:ov(xi)(ciTz-l)T

M M
= C'2'rx7C,=).C'2C, (Xispositivedefinite)
i=1 i=1

= (icﬁz1cij00v(ﬁ)(icleciJ = icfzflci

i=1 i=1
M -1
— Cov(a) = (Z ciTz-lcij .
i=1

Hence g is normally distributed as

i=1

M -1
i~ MVN {y, (ZCiTZ_lCi] J : (2.4)
which leads to the result

(a—u)' [iCin ‘1Cij(it—ﬂ) ~ 1

i=1

Therefore, for testing H, : # = p, we reject H,, if

(ﬁ_ﬂo)T (ZCiTzlcij(ﬁ_ﬂo) > Z;za,a :

i=1

2.1.2  Inference for 4 When 2 Is Unknown without Pattern

When 2" is unknown we have the MLE of g which has the same form as that in (2.3) with

2 replaced by 2, the MLE of . Hence the MLE of M is
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M . 1w .
ji = (ZCiTzlci] >c'EX,, (2.5)
=1 i=1

where X' is the MLE of X . Therefore based on a result of Anderson (2003, Lemma 3.2.2, p. 69)

in connection with (2.2), we have the MLE of X

x

13 N -
MZ(Xi -Ca)(X; _Ci:”)T- (2.6)
i=1
We should note that the expression of fl in (2.5) involves 2 . Recall that in the iid case, if
;= p forall i, the MLE of g does not involve 2" at all. In general, there are no explicit

solutions for g and 2 and the equations in (2.5) and (2.6) need to be solved iteratively for a

M
and X . Thus the approximation (f — ,u)’(z CiTZ‘lCij(ﬁ — u) —2—> x5 (Crowder

i=1

and Hand, 1990) is still attainable such that testing H, : # = u, asymptotically can be done.

Nevertheless, to remove 2 in (2.5) such that the MLEs 4 and 2 canbe gained explicitly, we
should consider a patterned covariance matrix 2" with details about inference for # covered in

Section 2.2. Before doing so, let us consider another structure of X' in the next subsection.

2.1.3 Inference for 4 When 2=0V, o’ Unknown, V Known

Recall that X; ~ MVN (#;, X)) . In this subsection, we consider the case thatX =¢V ,

where o > 0 is an unknown constant and V' is a known positive definite matrix. So g and

o’ arethe only unknown parameters. Therefore, the maximum likelihood estimator of # is

M 1w
ji = (Zcfv 1(;) > CVIX;.
i=1 i=1
To find the MLE of &, let us consider the log likelihood function first. Define & = o, the log
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likelihood function is
In L(u, 6| x) = constant — 2p In Q—Z—Z(X —C,u)'V(x —C.p),

which yields

olnL Mp
06

: Z(x —Cw)'V (X, ~Com)
Setting the above equation zero and solving for &, the MLE of o is
oo 1S X, —C. )"V (X, -C.j
o —_Z( i—Cip) (X; =Cip).
Mp =

Since 4 is a linear combination of X.'s, the distribution of & can be found as

A v Ty 7 = -
i~ MVNp(,u,az(ZCi V7C | ).

i=1
Next, the distribution of Mp&~ /o can be shown to follow y? distribution with p(M —1)

degrees of freedom. We may also show that z and & are independent. To proceed, partition the

M
quantity » (X, —C,u)"V (X, —C,p) . That s,

i=1l

Z(Xi _Ci/‘)TV _1(Xi —Ciu)

i=1

(X, =Cia+Cai—=Com)'V (X, ~Cia+C i —C, i)

L= EMz

(X ~Cia)'V (X Cﬂ)+22(ﬂ #)'C'V (X, ~Cia1)

+(f—p)' [ZCJV ‘h}(ﬂ—u)
= Z(Xi ~C@)'V (X =Cif) + (o~ p)' {ZCiTV lci}(ﬁ —H)

i=1 i=1

M
We need to note that »_ (2— )" C;'V *(X; —C, /1) equals 0 due to the fact that

i=1
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M M
> 'C'V (X, —C,r) =0. Therefore we have 2> (X; —C,u)"V *(X; —C,p) equal to
i=1

i=1 i=!
M M T
G_ZZ(Xi - Ciﬁ)TV _1(xi —-Ciu)+ o (fi—p)' |:2Ci \% _lci}(i’ — H).
i=1 i=1
We can show that both terms of the above quantity are independent by showing that each pair of

jt and X, —C, forall i=1,...,M are independent. Since both # and X; —C, are normally

distributed, we can show that they are statistically independent by just showing that their

covariance matrix is zero. That is,

Cov(a, X, —C, 1) = Cov(a, X, ) —Cov(a,Cy 1)

M Im
= Cov([ZCiTV -1cij > C'VIX,, XkJCov(ﬁ, aC,’
i=1 i=1

M - M -1

{Zcfvlcij CkTVlCOV(Xk,Xk)—O'Z(ZCiTV1Cij C.

i=1 i=1
-1

M 1 M

:(Zcfv-lci} ckTv-l(azv)—az(zCiTv-lcij C.

i=1 i=1
1

M -1 M -
202(2 fvlcij CkT—JZ(ZCiTvlCij c,' =0
i=1

i=1
M 2/~ T i Ty/-1 ~
This implies that 23" (X, —C,1)'V (X, ~C.ji) and o *(—p)"| X_C,'VC; (- p)
i=1 i=1
are statistically independent. In addition, using the result of sum of two independent chi-square
random variables (Bain & Engelhardt 1992, page 284), we have
2 T - T 1 2
o (p—p) {ZQ V_Cij|(:u_:u) ~ X
i=1
implying that
M
Mpé®/o? = O'_ZZ(Xi _Ciﬁ)TV_l(xi -Cim) ~ /Y(ZMfl)p :
i=1

Therefore, under Hy: u = u,,, we have
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Gi—o)" {icﬁv *ci}(ﬁ—uo) / p
~F

i=1

M&2/(M —1) P

which can be used for testing H, : u = u,.

22  MAINSTREAM: INFERENCE FOR ¢ WHEN 2" HAS COMPOUND

SYMMETRY STRUCTURE AND C, ARE CIRCULANT

2.2.1  Maximum Likelihood Estimators
There are three conditions considered before deriving the MLEs for the unknown parameters.

The theories developed later for section 2.2 are based on these three assumptions stated below.

Condition (1). If C,/X ™" =X"C, foralli, the MLE for # in (2.3) reduces to
Mo M ;
ﬂ:[zci CiJ Ci Xi. (2.7)
i=1 i=1

Condition (2). To guarantee C,' X~* = X'C." in Condition (1), we assume that C. is a circulant

matrix for every i and X' has a compound symmetry structure. The following theorem will be

applied to this condition.

Theorem 2.0: (Schott (1997): Theorem 7.58, page 303) Suppose that A and B are mxm circulant

matrices. Then their product commutes; That is, AB = BA.

Let 2’ have the structure

X =o’[A-p)1, +p3,] (238)
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by rewriting the covariance matrix defined in (1.5), where p >—(p —1)‘1 to ensure positive
definiteness of X . Note that the eigenvalues for X' in (2.8) are o*[1+ (p —1) o] with

multiplicity 1 and o (1 p) with multiplicity P—1. Thus X' is a symmetric circulant matrix

and we say 2’ has compound symmetry which has been introduced in Subsection 1.2.2. For each
i=1..,M if C, is also a circulant matrix, then we have C,' £~* = X*C," which results in the
reduced form of ,fl shown in (2.7). Working on the log likelihood function in (2.1) with X' of

the form in (2.8), we may get the MLEs for p and o’ . To find the MLEs for L and o’ , first

note that the determinant and inverse of X' are, respectively,

2 _ -1 _ = 1 _ P
2= ) e (p Dol ang £ = = 9]

(cf. Graybill, 1983, Theorem 8.34, page 190.)

Let 0=0" , the log likelihood function in (2.1) becomes

log L(u,8, p| x) = constant —M{p log @+ (p—1)log(1- p) +log[1+ (p—1) p]}
1
29@—

1 1
T 200-p)1+(p- 1)p2( G 3506 ~Cun)

Z( ~Cu)" (X, —Cy) (2.9)

M M
Let BL=Y (x,—Cia)" (X, —C;r),and B2 =>"(x, —C;4)" J (X, —C, 1), where J _ is

i=1 i=1
a px p square matrix with all elements equal to 1. To find the maximum likelihood estimators
for 6 (= o) and p , we take the first partial derivative of the log likelihood function in (2.9)
with respectto & and p separately. So we have

ologL(w.0.p|¥) _ Mp 1 o 1 P g
o0 2 0 20°(1-p) 20°(A-p)l+(p-Dp
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and

op 2| 1-p 1+(p-Dp| 260-p)
_@=-p)+(p-Dp]H{A-p)(p-1) -1+ (p-1)pl}p 5,
20(1- p)*[1+(p-1) oI’
_ Mj=(p-D),  p-1 [ 1 1
2| 1-p 1+(p-Dp) 260-p)
1+(p-1p°
20(1- p)’[1+(p-1)pT

alogL(u,e,plx):_M{—(p—l)+ p-1 }1 1

ologL(#.0,p|X) =0 and olog L(4,0,p| %) =0 and solving for & and p , we

Setting
o0 op

have

fo_ 1 A{Bl— p Asz} (2.10)
Mp- o) 1+(p-Dp

and

_M{—(pil)Jr p-1 A}_ _ 1 ; {31_ 1+(p—1),z:722 BZ}:O. (2.11)
1-p  1+(p-Dp| 6@1-p) [L+(p-1)p]

Note that & in (2.10) can also be expressed as

_ 1 {[1+(p—1),[)]Bl—,bBZ}
Mp(1- p) 1+(p-1p '

Inserting 0 in (2.10) into (2.11) and solving for p yields

1-p)L+(p-p] 0~ p) [L+(p-Dp)

! {[1+(p—1)[7]2Bl—[1+(p—l)/32182}:0
6(1-p) 1+(p-1p
= (p-Dp{L+(p-1)pIBL- pB2}—[L+(p-1) ) Bl+[L+(p-1)»*]B2=0

= L+ (p-DAI(p-Dp-1-(p-DAIBL+[(p-D)p* +1+(p-1)p°1B2=0
= —[1+(p-1)p]B1+B2=0,

Mp(p-Dp 1 {[1+(p—1)/5]281—[1+(p—1)ﬁ2182}:O

= Mp(p-1)po-
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which implies
5 =i(§—1} (2.12)

Substituting 2 in (2.12) into (2.10) , the MLE for & is

G =fo—t Jpm-_ P gl Iy P g
Mp(L— 5) 1+(p-1)p Mp(l— 5) 1+(B2/B1-1)

1 1
=~ {Bl-/Bl}=—Bl.
Mp(1-p) Mp

Hence we arrive at the following lemma.

Lemma2.1: Let X,,..., X, ~ N (#, %), where g, =C,p for all i=1..,M,C is
circulantand X = o”[(L— p) 1, + pJ ] defined in (2.8) such that C;' ' = X'C,” . Then

the MLEs for u , 02, and o are, respectively,
M 1
1 1 (B2
i=|3'C/'C C/'X,, 6*=——Bl,and p=—|—-=-1]|,
”(ij "7 T vp p p-l(Bl )

M M

where B1=Y" (X; —C,1)" (X; —C;41) ,and B2 =Y (X, —C;1)" I, (X; —Ct).
i=1 i=1

2.2.2  Hypothesis Testing for H, : g = g,Using LR Test

In this subsection, the likelihood ratio test will be derived for H : u = u, . Restrictions

C,/ 2" =x7C, forall i =1,...,M are still valid here and we also assume that X = o°R,

I
where R=(1—p)I,+ 23, and both o’ and £ are unknown. The following theorem states

the likelihood ratio test for H, : 4 = p, under the above assumptions.
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Theorem 2.1: Let X,,..., X,, ~ N_ (s, %), where g, =Cyp forall i=1..,M C,is
circulantand X = o*[(1—- p) 1, + pJ,] defined in (2.8). The likelihood ratio test for testing
H,:u =, istoreject H, if W <C_,where C,_, issuchthatPW <C_ |H,)=a,and W is

defined as:

M M p-1
oy | PEOGZCA O i) —3 (X, ~C)' 3, (X, ~Cid)

pg(xi _Ci.”o)T(Xi _Ciﬂo)_é(xi _Ci.”o)TJp(Xi _Ci.”o)

> (X, ~Cyi) 3,(X, ~C,f)

%(Xi _Ci.”o)T J p(xi —-Cinp)

where # is defined in (2.7).

Proof:

The likelihood ratio A for testing H, : u = p, is

max L(u,2)

HEQO

max L(u, X)

which can be further derived as follows:

Mp M
MM 1™ .

maxL(u,X)  (27) 2 |5, exp[—zg(xi—ciﬂofzo 1(xi—ciu0)j
_ =% _ =
CmaxL(p,ZX) Mo M .

TLEE) gy 5 exp[—;%(xi—cimTz*(xi—cimj

i=1
M

302 expl - 1S (X —Cop )T E (X —C.
| 0| EXp ZE( i u”o) 0 ( i |.”0)

.M 1M .
1217 om0 - C 570X, -C)

i1
PARE 1(, oM © e . .
=l | X ——(II’ZO 2 (X =Cip)(X; =Ciy) —trZ= 3 (X; =Cu)(X; —-C;p) j )
|20| 2 i=1 i=1

where Q={(u,2) | Zispd}, Q, ={(u,2) | u = py, 2 is pd}. Showing
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Y
tr, 1§(Xi —Cip)(X, _Ci,“o)T =Mp

and

T M§

(X —Cit)(X; —Ct)" =Mp

from Appendix A.1 we obtain

)

1 52 ( (6%)° (- 5)" L+ (p-1)5] J
A="—5-eXp—=(Mp-Mp — 3 - , 2.13
2 2( ) 32 (G, )p(l_po)p [1+(p-1)p,] ( )
where
&OZ=M—§(X —Cit0)" (X, =Cipty)
X 1 Z(X C:”o) J (X —~Cipy) 1
Po = ’
p-1 z<x —Citto)" (X, —Cito)
) 1 ™ AT A
c Z_Z(Xi_ciﬂ) (Xi=Cia),
Mp i=1
and
M T )
1 Z(Xi_ci.u) Jp(xi_ci.”)
p= = -11.

p_l %(Xi _Ciﬂ)T (Xi _Ci.i’)

Using the above expressions for &02, Lo 62, and p in (2.13), we gain the likelihood ratio test

as stated in this theorem (detail shown in Appendix A.2). The proof is complete

Although the likelihood ratio has been derived in Theorem 2.1, the null distribution of W in

Theorem 2.1 is still not derived yet. Define
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BL, = izl\ji(xi _Ci,”o)T(Xi —Cin,) and B2, = %(Xi _Ciﬂo)TJp(xi ~Citp) -

Bland B2 have been defined in Lemma 2.1. Hence W can be expressed as

p-1
- {81—182} B2
[pB1-B2]"'B2 p

~[pBL -B2 'B2. 2
[plo 0] 0 { 1 } B2,

B%—BB%

Under the null hypothesis H, : g = u,, the exact, asymptotic, or approximate distributions

of W is of our great interest. To find the exact null distribution of W , the following

propositions are needed.

Proposition 2.1: Under H,: u = u,, Bl, 1 B2, is distributed as a chi-square random variable
P

with M (p—1) degrees of freedom times a constant o (1-p); that is,

d 1 1
BL, _% B2, 262(1_10);“2“‘371) . In addition, M(Blo —E BZO] is strongly convergent to a

constant (p—1)c’(L— p), that is,

%(Blo —%Bzojw—m>(p—1)az(1—p).

Proof:

Under H, : p = uy, the distribution of X; —C, x4, is N (0,Z), where the covariance matrix

X =0 [(l—p) I, +0J p]. It follows from Box (1954) that the quantities

Q =(X; _Ciﬂo)T(I p _%Jp)(xi —Ciny), i=1.,M
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are independently, identically distributed like a ilﬂj Zf random variable, where A;’s are the
e
latent roots of
P=2(, —%Jp) = ?[(L-p)1, +p3, 1, —%Jp)
:a{(l—pnp—@mpap—mp} @14

=02(1—,0)(|p —lJp}
P

and ;(12 ’s are independent chi-square random variables with 1 degree of freedom. Hence
1 M . 1 M
Bl _B B2, = é(xi —Cim,) (1, _B‘]p)(xi —Cimg) = %Qu
is distributed as sum of M independent i/ljgf random variables.
j=1

1. . . 1
Because |, ——J  is symmetric idempotent, the latent roots of I ,——J  are 0’sor 1’s. In
p p

fact, the latent roots of 1 —lJ o are 1 with multiplicity P —1 and 0 with multiplicity 1.
p

Therefore the latent roots of P, are 0'2(1—,0) with multiplicity p—1 and 0 with multiplicity 1.

So we have
iid
Q, ~o’(1-p) x: distribution (2.15)
forall 1 =1,...,M | implying that
1 d 2 M 2 d 2 2
Bl _E B2,=0 (1_P)§Zp71:f7 A=) 2w (p)-

Moreover, based on SLLN in connection with (2.15), we have
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1 1 1|wMm - 1
M(Blo _6820] = M|:§(XI —Cip,) (I P _BJ p)(xi _Ciﬂo)}

— 5 E[o? (1~ p) 72 (p-D)]= (p-Do? (L ).

The proof is complete.

Proposition 2.2: Under H,: u = u,, B2, is distributed as a chi-square random variable with
d
M degrees of freedom times a constant po-2[1+ (p —1)p], that is, B2, = p02[1+(p —1),0];(,3,,

. In addition, ﬁ B2, is strongly convergent to a constant p02[1+ (p —1),0], that is,

1 w
v B2,—&— po’[l+(p-1)p].

Proof:
M
Recall that B2, = E(Xi —Cin)" 3, (X, —Cipy) , where (X, —Ci)" 3, (X; —Ciptp) ’s
are iid random variables. First we have
T 13 2
(X =Cimp) I, (X _Ciﬂo):zﬂjﬂﬁ ' (2.16)
j=1
where A ; ’s are latent roots of
P, =3I, =c*[@-p)I, + 21, P, =c?[1+(p-Dp),.
Note that the latent roots of J Jis p with multiplicity 1 and 0 with multiplicity P -1.s0 A;’s
are po’ [1+ (p —l)p] with multiplicity 1 and 0 with multiplicity p—1. Hence (2.16) becomes
T d 2 2

(Xi =Cittg)" 3, (X; ~Cig)= po’[L+ (P~ ol

implying that

B2, = po?fi+ (p-D)plrs (217)
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and

1 1M T
—B2, = Mé(xi —Cinp) Jp(Xi —Cin,)

M
— 5 E[po?(L+(p-D)p)r*M)]= poli+(p-1)p)

The proof is complete.

Proposition 2.3: Bl—i B2 is distributed as a chi-square random variable with (M —1)(p—1)
p

degrees of freedom times a constant o°(1— p), that is,
1 d 2 2
Bl—B B2=0"(1-p) X(m-1p -
Proof:
. M 1 _
Assume that E(#) = . So 3 (X, —~Cip)" (1, —=3,)(X; —C,p) can be written as
i=1 p

$(x —ciu)wlp—%ap)(xi —Ci)

- Bl—%szﬂﬁ—ﬂf(chcij(lp—%Jp)(ﬂ—m

i=1

M A TAT 1 .
+2§(ﬂ—ﬂ) C, (lp—BJp)(Xi—Ciﬂ)-

1 . . 1
Because both C; and I j——J  are circulant matrices, C; and I, ——J  are commutable such
p P

M
that C," (1, —%J ) =(1, —%J 2)C;" . In connection with the fact that » C," (X; —C,f1) =0,

i=1

we have %(ﬁ—,u)T c'(, —%J 2)(X; —C; ) =0 implying that
i=1
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31_%52 =S -caa, —%Jpxxi —C)

" (2.18)
. T T 1 .
—(a—p) (;Ci Cij(lp—BJp)(ﬂ—ﬂ)-
From Proposition 2.1 we have

T 1 ) 2
i%(Xi_ci.") (Ip_B‘]p)(xi_Ci”)za A= P) Xm(py -

Also we need to know the distribution of the second term of the last expression in (2.18). Because

we have that

i~ ~ MUN (o,[idcij 5).

the quadratic form
n WL 1 .
(a—p) (;Ci Cij(lp—EJp)(ﬂ—ﬂ)

T . . P .
is distributed like the quantity > A, ;(12 , where 4,’s are the latent roots of the matrix
=i

e[y =Bl

M
Note that 2" and ZCiTCi commute so P, =2 (I —in) =P, , where P, is defined in
Y

i=1

(2.14). Hence we have

(ﬁ—uf&cﬁcij(l p —%Jp)m—mi&(l—p)z;_l.

i=1

M
. 1 .
Note that B1— 1 B2 and (# —,uo)T (ZCiTCi j( I, - EJ o)(# — p,) are independent chi-square
p

i=1

: . 1 : : ~ . ~
random variables since BL——B2 is a function of X, —C,zt’s ,also X;—C, s and g are
P
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independent due to the fact that Cov(X; —C, 4, ) =0. In addition, using the result of sum of

two independent chi-square random variables, we have
1 d 2 2
51—68220' A= P X -1y py-

The proof is complete.

Proposition 2.4: B2 is distributed as a chi-square random variable with M —1degrees of

freedom times a constant po [1+ (p-2) p] ; that is,
d
B2=po’[L+(p-1)p]re-
Proof:

M
Assume that E(@1) = . Using the fact that > C," (X; —C, 1) = 0, we have the expression

i=1

for B2 that
B2=3(X,~Ciit)" J,(X, ~C,1)
i=1

~Sox e a,06 - -Gy SeTe o, m

i=1

M
The second term (i1 — u)" [ZCiTCi jJ o (# — ) of the last expression above is distributed as the

i=1

. p .
quantity > 4; ;(12 where A ; ’s are the latent roots of the matrix
=i

M -1 M
P, = [ZCJCJ E(ZCJCJJP =XJ, =P,
i=1 i=1

where P, is previously defined in the proof of Proposition 2.2. Hence

(ﬁ—u)T(icfciJJp(ﬁ—u)i po’fl+(p-Dplr’.

i=1
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i=1

M
Since B2 and (fi—p)' (ZC:CJJ o (f1— ) are independent and we have from Proposition

2.2 that
M - d , ,
2 (X =C)"3,(X =Cip)=po”[L+(p-Dplri

B2is distributed as the quantity

po’ll+(p-Dplr.

The proof of Proposition 2.4 is complete.

The following proposition can be used to show independence of Bl—i B2 and B2
P

required when finding the exact null distribution of the likelihood ratio test statistic W stated in

Theorem 2.1.

M 1M
Proposition 2.5: LetY, = X,—C.it, fi =(ZCiTCij YC'X, A=1 —lJp, B zlJp,
i1 i1 p p

M M
Sa=> Y AY, and S; = > Y,"BY;. Then Y," AY, and Y, BY, are independent for all i and

i=1 i=1

jand hence S, and S; are independent.

Remark 2.1: Since Y, is a linear combination of X = VeC(Xl,..., Xu ) it can be expressed as
Y, = M, X, where M, isa pxMp matrix with the structure

M =(cQic” - -—cQcl, 1,-cQcT -cQcl, - -cQ'c,’),

M
where Q = (ZCiTCij.
i1
Rewrite both S, and Sy we have
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M M
A(M,X)  and B(M,X),
:1 :l

X is distributed as a multivariate normal MVN,,, (vec(C,4....,C, #), 1, ® X) . And we have

M M
SAsz(ZMiTAMin and SB=XT(ZMiTBMin.

i=1 i=1

To show that S, and Sy are independent, it suffices to show that

(iMiTAMiJ(IM®2)[iMiTBMij:O, (2.19)

i=1 i=1

where 2’ has compound symmetry with the structure X = o*[1—p)1,+ pJ ] and is

M M
circulant. The calculation of the matrix (Z MiT AMJZ[Z MiT BMij is complicated so

i=1
another way to prove Proposition 2.5 is to show first that YiT AY,; and Y jT BY, are independent

forall iand j.

Proof of Proposition 2.5:

Because both A and B are symmetric and idempotent, we may rewrite YiT AY,; and YJ.T BY;
respectively by
Y,"AY, =Y," AAY = (AY,)T AY,,
and
Y,'BY, =Y, BBY =(BY,)" BY,.
Note that Y," AY, and Y jT BY, are squared lengths of AY; and BY, respectively. So we only
have to show that AY; and BY, are independent.

Consider the distribution of the random vector
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AY, AM; X AM;, N
BY,] (BM;X ) (BM, )"’
AY,

where M; is defined in Remark 2.1. BY is a linear combination of X which is normal so
j

BY is normal. Thus showing Cov(AY;,BY;) =0 implies that AY; and BY, are

j
independent normal random vectors then the proof is done. Since B is symmetric, we have
Cov(AY,,BY;) = ACov(Y,,Y;)B" = ACov(Y,,Y,)B.

Thus it suffices to show that Cov(Y;,Y ) is a circulant matrix so A, B, and Cov(Y,,Y))
commute implying that ACov(Y;,Y;)B = Cov(Y;,Y;)AB =0, using the fact that AB =0.

To show that Cov(Y;,Y;) is a circulant matrix, we may use a direct proof. We have

Cov(Y;,Y;) =Cov(X; -Ca, X, -C, i)
= Cov(X;, X;)—Cov(X;,C,)—Cov(C,ft, X,) +Cov(C;1,C, )
= Cov(X;, X;)—Cov(X,, 1)C| —C,Cov(s1, X,)+C,Cov(a, i)C]

M M
=Cov(X;, X;)—Cov(X;,Q™>.C/"X,)C] ~C,Cov(Q*Y.C;"X,, X,)+C\Var(@)C]
i=1 i=1

=Cov(X;, X;)-Var(X;)(Q'C,")'C] —C,(Q"'C,")Var(X,)+C\Var(a)C]
=Cov(X;, X;)-Var(X,)C,Q'C] -C,Q"'C, Var(X,)+CVar(a)C],

M
where Q = C,"C; . Note that Cov(X;,X;)=2 if i =] and O otherwise. Also from

i=1
Section 2.3.1 we have Var () = QX and the factthat X', C.,and Q are circulant matrices

implying that their inverse and transpose are also circulant so the commutability holds. Hence

Cov(Y, ,Yj) becomes
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r-3cQ'cl-cQic'r+CcQixc,ifi=j

Cov(Y;,Y;) = o
Y5) {O—ECiQ1CJT—CiQ1CjT2+CiQ12CjT,|f|¢J

Ja-cQehHzifi= |
| -(cQicHrifi=j.

Therefore Cov(Y;,Y;) is circulant. The proof of Proposition 2.5 is complete.

Now, it is time to state and prove the following main results using Propositions 2.1 — 2.5.

Theorem 2.2: The likelihood ratio test for testing H, : # = g, in Theorem 2.1 is to reject H if

W <C, ,where C, issuchthat PW <C, |H,) =« ,and W is expressed as

p-1
g} Bl-1B2| B2
_ (pB1-B2)"'B2 p _B"™D

~ (pB1,-B2.)"'B2, T AP
(pBL, ~B2,)" B2, (B%—;B%j B2,

where

Bl= %(Xi —-Cip)' (X;—C;p1) and B2 = %(Xi _Ciﬂ)TJp(xi -Ca),
i=1 i=1

B, = (X, ~Cto) (X, —Cyttp) and B2, = (X, ~Cyto) I, (X, ~Coty)

A-BL, -1B2, B=Bl-1B2, C=B2,, D=B2.
p

P

Furthermore, under H, : g = u,, W is distributed as the random variable

1

p-1
1+t (1+ 1 -
M -1 M -1
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where F and F ™ are independent and distributed as F and F,,, , random variables,

p-L(M-1)(p-1)’
respectively.
Proof:

Recall from the proofs of propositions 2.1 - 2.4 that

A=B+R, (2.20)

where
A T o T l A
R=(it—u,) [Zci Cij(l D _B‘]p)(ﬂ_”O) .

i=1
Also

C=D+5S, (2.21)
where

s = (ﬂ—ﬂofficfci]%(ﬁ—ua.

i=1

If we can show that B, R, D, and S are mutually independent, combined with the following
facts (7), (8), (9), and (10), then the proof is done. Note that Facts (1) - (6) for showing pairwise
independence among B, R, D, and S are sufficient for showing mutual independence among them.
The facts needed to prove this theorem are shown below:
(1) B and R are independent,
(2) D and S are independent,
(3) B and D are independent (Proposition 2.5),
(4) Band S are independent,
(5) Rand D are independent,

(6) Rand S are independent,
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() B=BL- B2=3(X,~Ci)| (1, ~ 3,)(X, ~Ci)=0"(L-p)7*(M ~D(p-1),

®) R= (ﬁ—%)T(ZCJCJU : —%Jp)(ﬂ—uo)wz(l—p)zz(p—l) ,
©) D=B2=3(X,~C)' 3, ~C)=po?fL+ (p-Dpl*(M -1) and

(100 S= (ﬁ—uof[ZCfciijm—ﬂo) ~ po’fl+(p-Dplr’ @ .

i=1

First, Facts (1), (2), (4), and (5) hold due to the facts that X, —C. & and # are independent
for each i. Fact (6) is true because (I, —EJ 0)J, =0. Fact (3) is the result of Proposition 2.5.
p

Facts (7) and (9) are direct results of Propositions 2.3 and 2.4, respectively. Facts (8) and (10) are
shown in the proofs of Proposition 2.3 and 2.4, respectively. Hence the result that R, S, B, and

D are independent in connection with the expressing of W

B*'D 1

W = B p-1 = p-1
(B+R)"™(D+S) (“RJ (1+Sj
B D

fulfills the proof of Theorem 2.2.

2.2.3  Properties and Useful Results about ML Estimators
In addition to the likelihood ratio test for testing H, : # = p,, the null distribution of the
statistic
(= o) Var ()] ™ (- o) (2.22)
also draws our attention. The exact null distribution of (2.22) is not easy to obtain while we may
at least find its asymptotic distribution. First note that
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Var(i) = (3.C'C) ',

i=1

and

5 :%PP _Lﬂ]p} _
o (1-p) 1+(p-Dp
The quadratic form (2.22) can be phrased as:

Gi-m)' | 3CTRC, (i) /p
Mé&?/(M —1) ’

(2.23)

where

1 1 1o,
= —~| 1, ~J, |
1-p) 1+(p-Dp
The following propositions are helpful for developing an approximate distribution of the
statistic in (2.22) under the hypothesis H, : g = g, . Details of the derivation of the approximate
null distribution of (2.22) will be shown in Subsection 2.2.4. Before deriving the approximate null

distribution of the statistic in (2.22), let us first look at the following proposition about the MLE

2
of o°.

M
Proposition 2.6: Let Bl=>"(X; —=C,a)" (X; —~C,&) . Then 67 = Mi B,is the MLE of &°,
p

i=1

2 M L. . . . .
and 6% = M—laz is an unbiased estimator for o> . In addition the following results hold.

- 1 1 2 1
a) E(6%)= EM—p B, = CL_M)O-Z' and E(6°)=E——B, =0"

(M-Dp
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b) V(62 = z(h“ﬂ"—;pl)[u(p—l)pﬁa“ ~0(5). anc

V@) = o (D0l =00

c) Both 6% and 62 are consistent estimators of & ; thatis, 6° —2—>c°and 6> —2—>o?.
Proof:

Recall that the MLE of u is

M 1w
i :[Zcﬁcij >ClX,.
i=1 i=1
Tofind E(B), E(6%), E(B1?),and V(6?), recall that B1 can be expressed as

M M
BL=2"(X; =Cim)" (X; =Cip) — (i — ) Q_C,'C)(a — ),
i=1 i=1
and the following result (cf. Christenson (2002), Theorem 1.3.2) is needed.
If E(Y)=m and Cov(Y)=V thenE(Y'AY) =tr(AV)+u'Au.
So we have

E(BL) = Y E(X, ~Cup)" (X, ~Cor) ~E(a— ) (O .C,'C) (it — )

= i[tr(:) +0]—tr{(ici'ci)(ici'ci)—lz+o}
= Mtr(Z)-tr(2) = (M -1) po?’,

which implies that E(67) = el pi- (1—i)az. Next,
Mp M

E(BY*) = E|:Z(Xi _Ci.”)T (X, _Ciﬂ)}

i=1

‘ZE{Z(Xi ~Cu)' (X —Cw)}{(ﬁ—u)'(zci'ci)(ﬁ—ﬂ)}

i=1 i=1

+E{(ﬁ—ﬂ)'(zcilci)(ﬁ—ﬂ)} — A-2B+C,

i=1
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where A, B, and C are, respectively, given by
M 2
A= E|:Z(Xi -Cu) (X _Ci.”):|
i=1

M
=> E[(Xi —C.u)" (X, —Ci;z)]2 (Neudecker & Magnus (1979), Theorem 4.2)
i=1

+22 E(X;-Cip)" (X, —-Cip)-E(X, _Cjﬂ)T(xj —-C,n)

i<j

“ Mtz +2r (z2) [+ (M2 - M)ErE = M2z} + 2Mir(22),

i=1 i=1

B = bei ~Com)" (X, —ciu)}{(ﬂ—ﬂ)'(zci'ci)w—u)},

and

= E{(ﬁ—y)'(zci'ci)(ﬁ—u)}

i=1

= (trX)? + 2tr (Z'?).

M M
Let us attend to the representation of B. Define Q = ZCi '‘C, , we have g = Q‘lzciT X, . Thus

i=1 i=1

the quadratic form (f — u)'Q(& — u) can be rewritten as:
(=) QUi -1 =(Q7LC X -Q" Q' QQ ™Y/ X, -Q"Qu)

= (iciT X, —Qu)’ Q‘l(i C,' X, —Qu) (Qissymmetric,circulant)

M

M M M
QX ->clewQtQ.CX - ¢ Cp)
=1 i=1 i=1

Il
Ms
Mz

(X, —Ciu)' CQ'C, (X, —Cm).

i
1]
=

i=L ]

So B can be expressed as
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os)
I

E|:Z(Xk _Ckﬂ)T(Xk _Ck”)}.{zz(xi _Ci”)TCiQ&CjT(Xj -Ciu)
k= i=l j=1 (224)

- ii E[(xk ~Cem) (X, _Ck”)]' [(Xi ~Cu)' CQC, (X, _Cjﬂ)]-

= j=l

N

M=

=
]

1

Consider the term in (2.24):
E[(X, —Com)" (X, —Com)]-[(X, —c) CQC, (X, —C,m)|  (2.25)
To calculate (2.25), the results of Magnus (1979) can be applied to the following two cases.
Casel:i=],
e i=j=k
Efx, —c.m” (X, —Cem}x, -com’c. e (X, ~Com)]
—rxtr((c,Qc,)x)+2-r(x(C,Q7c,")x) (2:26)
e Fori,jsuchthat i= =Kk

E[(Xk _Ck.”)T (Xk _Ckﬂ)]'[(xi _Ciﬂ)TCiQ_lciT (Xi _Ciﬂ)]
—E[(X, —Com)" (X, ~Com)] E[(X, ~Cm)"C,QCT (X, ~Com)]  (227)
—trx-tr((c,Q'c)x)
Case2: 1# ],
In this case, only one of i and j equal to k, or neither of them equal to k. For these two
scenarios, (2.25) is equal to zero. That is,
E[(X, —Cu)" (X, —Cm)]-[(X, —Ccm" cQC T (X -Cim)]=0.  (2.28)
Thus (2.24) becomes

B=[trz)’ +2-tr(Z%)]+[(M —1)- @rZ)? |= MU=} +2-r(2?) (2.29)

So we have
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E(BL)= A—2B +C
“ M2z} oM (22 M s Y +2-tr(z?)]+ [arz)? + 2tr (22)]
=(M =D)*(trZ) + 2(M —tr (Z?)
= (M -D)’[pc’] +2(M - p[1+(p-1)p°]o*,

and

V (BL) = E(BL?) - E2(BL)
= (M -2z} + 2M -2t (27)]- (M ~D)*(trx
=2(M =Dtr(Z?)
=2(M -1)p[L+(p-1)p°1o*.

Hence we have

E(67)7] = E(ﬁj ~ -yt 2 p1[1+(p—1)p2]a4,

yielding

v (6?) = E[(61)]-[e1641f

1 M -1 1
= (1—M)20'4 +2 M7 [1+(p-1)p°lc’ —(1—M)Za4

= I (p-Dolo =0 )

Therefore we have that 6> —2— . The proof is complete.

Remark 2.2: Proposition 2.6 (a) and (b) can be shown more effortlessly by using the results about
the distribution of B1 which will be stated in Theorem 2.3 later in this subsection. Theorem 2.3

(a) states that B1 is distributed as the quantity o*(1— p) ¥iu s T L+ (P—D ol
where y7, .y, and x3,.,, are independent chi-squared random variables with (M —1)(p—1)

and (M —1) degrees of freedom, respectively. Hence the results
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E(B) = E[O'Z(l_P)Z(ZM_n(p—l) +0_2[1+(p_1)P]Z(2M—1)]
= (M -1)(p-1)(@A-p)o’+(M -D[1+(p-1)plo?
=(M -1 po?,

and

Var(B,) =Var[0'2(l—p);((2Mfl)( oy T 02[1+(p _l)p]Z(ZM—l)]
=2(M -)(p-1)(-p)’c* +2(M DL+ (p-D)pl°c’

=2(M -Do*{(p-D(A-p)’ +[L+(p-D) oI’}
=2(M -1 p[l+(p-1)p°lo*

obtained from Theorem 2.3 (a) are exactly the results of Proposition 2.6 (a) and (b), respectively.

The following proposition is helpful to prove Theorem 2.3 (a).

Proposition 2.7:

iid _P
(@) If A ~z}tjxij ,1=1...,M , where X, are independent ;(2 random variables with 1
j=1

M d _pP
degree of freedom. Then > A =>"2, 77 .

i=1 j=1
d
() If A=0*(A=p) xm(psy + 0 [+ (P—-D plys . where x2 ., and yy are independent,
d
C=c’(-p)x;,+0’[L+(p-D)plx where x2, and y; areindependent, A=B+C,
where B and C are independent, then B is distributed as the quantity

* (L= P) X axpn + o L+ (P-D P12 s

Proof:

(@) LetY; be independent chi-squared random variables with M degrees of freedom. The

moment generating function of Zi'\ilA is
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M2

{ﬁmxﬁ(mj)} {]ﬂ[(l—zmj)-“z}

= =

“[le-2) =T m, =T [Ee ™ =6 =M, ©

i

p
which is the moment generating function of the random variable ZAJY. :

j=L
(b)  Since B and C are independent, we have the moment generating of A which can be
expressed as M, (t) = Mg, . (t) = M (t)M (t) . The mgf of A is

Ma®) =M, (1=p) Zin (o +o " I+ (P-D) Pl =M. (A=) i1 (p1) OM,.. [2+(p-1) p) iy ©

=M, (o' A=p) M, (to’lL+ (P-Dp)

= (1-2tc?@-p)) """ -2t [+ (p-D) )

The mgf of C is

Mc(®)=M_. (1-p) 221 +02 [+ (p-1) pl 22 =M @-p)z2, OM o2 [1+(p-1) pl (®)

=M, (to*@L-p))-M .(to’[L+(p-D)p))
=([-2ta?1-p)) " 12t + (p-1)p])

Thus the mgf of B is

M = Ma® _ (L-2ta”@- )] """ 1201+ (p-1)p) "
B M (1) (1_2to_2(1_p))f(pfl)/2 ‘(1—2t0'2[l+(p—1)p])7l/2
= (l— 2to?(1- p))_(M_l)( Iz (1_ 2te?[L+(p _1)p])—(lvl—1)/z

which is the mgf of o (1— p) ¥(u_1ypy) + 0 [1+ (P —1) pl x5, random variable, where

Ziw-ayppy @ %+, are independent chi-squared random variables with (M —1)(p —1) and

M —1degrees of freedom, respectively. The proof is complete.
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Proposition 2.7 will be used to prove the following theorem.

Theorem 2.3:

M
(a) Bl= Z:(Xi —C, )" (X, —C,f) is distributed as the quantity

i=1
(A= P) X appy + O L+ (P—D ol 1.
where y7, 4, @nd 24, are independent chi-squared random variables with
(M =1)(p-2)and (M —1) degrees of freedom, respectively.

(b) Blhas an approximate o°gy3, . distribution, where
X (M-1)h

@ g (P00 p) ;[1+<p—1)p]2 and

@ h= P .
(p-DA-p)" +[A+(p-Dp]

Proof:

(@ Recall that B1 can be expressed as

BL= Y (X, ~C)” (X, ~Cy) — G — ) (3C,'C )i — ). (2.30)

i=1 i=1

The first term of the last expression in (2.30) has the same distribution as that of sum of M

P
independent random variables 2/1,-)(12 ,Where ;(12 are independent chi-square random variables
j=L

with 1 degree of freedom. A, s are eigenvalues of X' = o[- p)l o +03,]. The eigenvalues of

X are o(1- p) with multiplicity p—land o®[L+(p—1)] with multiplicity 1. Thus

M
Z:(Xi —C.u)" (X, —C,p) is distributed as M independent random variables each of which is

i=1
(- p)x2,+ oL+ (p—Dplyl; that s,
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DX =Cm)' (X, —Cimiaza—p)za(p_l) +o’fL+(p-Dplrs -

i=1

M
Similarly for the second term of the last expression in (2.30), (& — ;4)'(Z:Ci 'C)a—p)is

i=1

distributed like the quantity o (1— p) ;(ﬁfl -+ 0'2[1+ (p-1 p];(f because g — pu is distributed as

M M
N(0,(>.C,'C,)*X), implying that (1 —p)'(D_C,'C;)(fa— ) is distributed as the quantity

i=1 i=1

p

M M
Z/lj;(f Wwhere 1, ’s are eigenvalues of(ZCi'Ci)(ZCi'Ci)le =Y. Since Bland
i1 i1

i

M
(a —,u)'(Z:Ci 'C,)(#2 — p) are independent, based on Proposition 2.7 Blis distributed as the

i=1
guantity

o’ a- p)z(szl)( pny t o* [1+(p _1)/7];(1\2#1 '
where 42, ., and x%_,are independent chi-squared random variables with (M —1)(p —1) and
(M —1) degrees of freedom, respectively. The proof of part (a) is complete.

p

2
P p P
(b) Box (1954, Theorem 3.1) showed that g = Y 4,°/>" 4 and h :[lej 1> 27 are
=1 j=1

j=1 i= i i=1

p
chosen so that the distribution of Z/lj;(f has the same first two moments as o*gy; . Since
j=L

p
B1 is distributed like sum of M —1 independent random variables »" 4, 77, Bl has an

=

approximate o g ;((ZMfl)h distribution. The proof of Theorem 2.3 (b) is complete.
Corollary 2.1: The test statistic for testing H, : 6% = &,” is
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M
MpOA'2 = Z(Xi _Ciﬂ)T (X; =Cip).

i=1

Mpé? - . _ Ay2 N\ AT2
Under H,, p2 ~g}((z,\,lfl)ﬁ,where\cj _ (p=0)A=p) +[+(p=1)7] , and
o, Y

2

p
(p-DA-p)* +[1+(p-Dp)

h=

Proof:

It follows directly from Theorem 2.3.

The maximum likelihood estimator of o is biased while its approximate mean is o and the
approximate variance can also be obtained. Some results about the maximum likelihood estimator

of o are shown in the next proposition.

Proposition 2.8: The MLE of p, namely p = Ll(i—i —1), where
p J—

M M
Bl=> (X, -Cia)" (X;—C,r) and B2 =Y (X;-C;a)" J,(X; —C;A), has the following
i=1 i=1

properties:

1+(p-Dp |
Jpll+(p-1)p]

a) Corr(BLB2)=

~ 1 B2 . 2 [A+(p-D)pl@a-p)
E El —— (221 |~ - .
b) E(p) {p 1( B1 )} P, V(p)=~ 1 o(p_1) , and

c) P —> p inprobability.
Proof:

Recall that
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Bl= i(xi —-Ca)' (X, -Cip)

o (2.31)
=2 (X ~C)! (X, ~Con) = (= )" QU — ),
B2 =3 (X, ~C,)" 3, (X, ~C,0)
- (2.32)
=2 (6 =Cim) 3, (X, ~Cip) = (=)' Q, (= ),
and
(A= u)QUa—p) = 3.3 (X, ~Cim) CQ'C;T (X, ~Cym), (2:33)

i=1 j-1

M
where Q =Y "C,"C; . Similarly,

i=1

i) QI G- ) =3 S (X, ~C) CQC I, (X, ~Co). (2.34)

i=1 j=1
Note that C;, Q %, C J.T ,and J , commute with each other since all of them are circulant

matrices. The commutation property will be used when necessary in calculations. So
Cov(B1, B2) can be expressed as

M

Cov(B1,B2) = COV(Z(Xi ~Cm)' (X, _Ci:u)vi(xi ~Cu)'J o (X _Ciﬂ)]

i=1 i=1

—COVLZ(Xi -Ci)" (X —Ciﬂ).(ﬂ—ﬂ)'QJp(ﬁ—ﬂ)J

i=1

+Cov((ft - ) QUi — ), (it — ) QI , (ji— 1))
—D-E-F+G,

—Cov((ﬂ—m(ﬂ—u)i(xi —C) I, (X, —ciﬂ)]

The derivations of D, E, F, and G are shown below.

53



D=cOv(Z(><. Cu)' (X, cmz(x ~Cu)' 3, (X, c,m]

i =

> Cov{(X; —Cyat) (X, ~Cop), (X, ~C,)" 3 (X ~C ;)

TMz le .LMZ L=
Mz

'[‘

(X —C.u) (X, —=C,u), (X, -C,p)" J o (X Cy)) if i # j, covariance is zero.

{E[(x ~Cot)" (X, ~Cot)- (X, ~Cop)" 3, (X, ~Cypr)] }
B[O ~Com)" (X, ~Cm) | E[OX —Cop)" 3, (X, ~Ci)]

r(Z)tr(J ) +2r(Z-J X)) -tr(Z)tr(J 2)} 2M -tr(J,X%) = 2Mp[1+(p-1)pl o,

G = Cov((i— ) Q(it—p), (s— ) QI, (i — 1))
= E[(— n)QUia— m)- (- p)'QI, (it~ )
— E[( - ) QUir— ) E|(it - 1) QI , (i — )]
= [r(QQ o) (Q3,Q 1) + 2r(QQ207,Q ) |- r(QQ5)r (QJ,Qx)
=2tr(QQ'ZQJ ,Q7X) = 2tr (27 ,X) = 2tr (3 ,.2?),

E= COV(Z(Xi -Ci)" (X, —Ciﬂ),(ﬁ—ﬂ)’QJp(ﬁ—ﬂ)J
:cov[i(xl C.u) (X, -C.p), ZZ(X -Cw)'CQ'C, I (X, cﬂ)J
= ZZZCOV((X,( -Cu)' (X, =Cyp), (X _Ci”)TCiQ_ICjT‘] o (X _Cjﬂ))

> Cov{(X, ~C,m) (X, ~Com). (X, ~C) CQ'CTI, (X, ~Cy))

j k

Sk

M
+ g?ov((xk —Cm)" (X, =Ce), (X, _Ci:u)TCiQ_leT‘Jp(Xj _Cjﬂ))
1, ],K=
iz )2k

if i # j, covariance is zero
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= iCOV((Xi ~Cim)" (X; =Cim), (X _Ci,”)TCiTCiQ_lJ o (X _Ci.”))

i=1

+ Y Cov{(X, ~Cp) (X, ~Cot), (X, ~Cot) € CQ™ (X, ~C))

u [E[X —Cm (X G- (X, ~C) €T CQ (X, ~C o)
= {— E[(X, —Con)" (X, —C) |- E[(X, -y’ €@, (X, —ciﬂ)]}
w [E[(X, = Cop)T (X, ~Com)- (X, ~Co) €T C,Q™, (X, ~Cop)]
{— E[(X, ~Co) (X, ~Co)|- E[(X, —Cm" € CQ 13, (X, —ciu)]}

M

+
i,k=1
izk

_ i{[tr(Z)tr(CiTciQ-lJ D)+2r(z-c’cQ 0| r@rc e, o
= 2tr(2-iCiTCin\J X)=2tr(2-QQ N, X)=2tr(J,2%).
Similarly,
F =C0V[(ﬁ—ﬂ)’Q(ﬂ—ﬂ),§:(Xi —C)3,(X, —cim]= 2r(3,5%).

So D, E, F, and G are, respectively,
D=2M-tr(J ,2%) = 2Mp[1+(p-1)pJ’c* and
E=F=G=2-tr(J pZZ) =2p[l+(p-Dplc’
Therefore, Cov(B1,B2) and Corr(B1, B2) are respectively

Cov(BLB2)=D-E-F +G

= 2(M —1)tr(J pZZ) = 2(M _1) p[1+(p_1)p]20_4’ (235)

and

Cov(B1,B2)
JVar(B1)/Var (B2)
_ 2(M =) plL+(p -Dpfo’
J2(M -1 plL+(p-Dp*lo*y2(M -1)- p’[i+(p-Dplc*
__+(p-Dp
JplL+(p-1)p%]

Corr(BLB2) =
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Finally, we may compute the approximate mean and variance of B, / B, using the first-order
Taylor’s series in two variables f(X,y)=X/Yy , y#0. Hence we have

£(B2) L E(B2) _ (M-Dr(J, %) _ pli+(p-Dplo” _
Bl E(B) (M-Dtr(X) po’ -

1+(p-1p, (2.36)

and

V(g)~ E?(B2) | V(B2) L V(B ,Cov(B2BI)
Bl”  E?(B) |E*(B2) E’(Bl) ~E(B2)E(B))

_ ) 20 2L+ (p-1)p'] 4L+ (p-Dp]

=[1+(p 1)/0]{M_1+ M _Dp M —Dp }

:ZHJJQE;gﬂ3{p+n+(p—npﬂ—2n+(p—npﬂ

_ 2 [+ (p-Dpl(p-1A-p)°
M -1 P ’

(2.37)

implying that © — p in probability. The proof is complete.

The following theorem states the exact distribution of the MLE of o .

M
Theorem 2.4: The MLE of p,say p = i(%—l) with Bl = Z:(Xi -C.n)" (X, -C,1)
p_

i=1

M
and B2=>"(X;-C,a)"J (X, —C, ) is distributed as the quantity

i=1

1 p 1
p—1| T=p)(p—1) ek
1+(p_1)p (M—l)(p—l),M—l
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Remark 2.3: p is between —(p—1)"" and 1 since the ratio I;—i is between 0 and p. To show

this, first we have that BB—i >0 implying p>—(p—1)"" since B1>0and B2 > 0 for nonzero

vectors X; —C; . Secondly, consider the identity x'x, = x/(p™J,)x + X (I, —p™J)x; . Since
all the three quantities X/X;, x/(p™J,)x,and /(1 —p~J )x are positive for nonzero vectors

X; , the inequality Z:i“:lxi’xi > Z:lei’(p’lJp)xi holds and it implies that

SV x3,% 1D X% < p. Hence p <1,

=1

Proof of Theorem 2.4:

Recall from (2.31) and (2.32) that

BL= 3" (X, ~Cy)" (X, ~Cot) — (it — )" QUi — ),

i=1

and

B2="(X,~Co) 3, (X, ~C,p) — ()" QJ, (i — ),

i=1

M
where Q = Z:CiTCi . And we have Bl= [Bl— 1/ p)BZ]+(1/ p)B2. Since from Proposition 2.5

i=1

B1-(1/ p)B2and (1/ p)B2 are independent, and from Propositions 2.3 and 2.4 B1—(1/ p)B2

and (1/ p)B2are distributed as o>(1— p) z*(M —=1)(p—1)) and o*[1+(p-1) plx*(M -1)

random variables, respectively, we have

B2 _ B2 _ p
Bl [Bl-(l/p)B2]+(l/p)B2 BL-(/p)B2 .’
1/ p)B2

-1
which is distributed as p| ———(p-1F +1! random variable where
pLJr(p—l)p(p )Fou-1p-nm -1 }
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Fov-1(p-nm 1S F random variable with (M —1)(p—1) and M —1 as the numerator and

denominator degrees of freedom, respectively. Thus p is distributed as the quantity

1 p 1
p-1| A-p)(p-1) '

+1
l+ ( p —l)p (M*l)( p*l),Mfl

The proof is complete.

For the rest of this subsection, a simulation study is performed to investigate the behavior of

0 based on the distribution of p obtained from Theorem 2.4. Figure 1 and Figure 2 show the

expectation and the standard deviation of o , the MLE of o, for each value p € (—(p—1)"1)
via a simulation study with various combinations of dimensions p =2, 3, 4,5, 6,7 and sample

sizes M =2,3,5,10, 20, 50,100. Note that the starting points of o on the x-axis are different

for various P values since the restriction on p is p > —(p —1)"due to the requirement of a

positive definite compound symmetry covariance matrix structure. Summarizing the information

provided from Figure 1 and Figure 2 we have the following results:

About the expectation of 0 :
(1) When p =0, the MLE p is unbiased. This can also be verified by looking at the pdf of

stated in Theorem 2.4 for the special case that p=0.With p=0, p is distributed like the

random variable pil[p Beta(c, ) —1], where a = (M -1)/2, f=(M -1)(p-1)/2,and

Beta(a, f3) is the beta random variable . Therefore p is unbiased since
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5oL T ) I ] T T e I
E(p) = [P EBeta(e. p) 1] p_l{p py 1} lp-p-1]=0.

(2) When p is close to one of the end points—(p—1) *and 1, p tends to be unbiased.
Otherwise, when p <0, O overestimates p ; when p >0, 0 underestimates o .
(3) When the sample size M increases, 0 becomes more accurate. Actually from the results of

Proposition 2.8, 0 converges in probability to p .

About the standard deviation of p :

(1) When p = 2, the function of the standard deviation of p is like an upside-down bathtub when

M is small. When the same size increases, the bathtub shape become flatter.
(2) When p > 2, the bathtub shape is not symmetric and shrinks to the right.

(3) Basically, with fixed p and p, the standard deviation decreases when the sample size

increases.

Figures 3 and 4 illustrate the simulated probability density functions for the MLE of o for

the cases p = 2 and p = 3, respectively. Various sample sizes 2, 5, 20, and 40 are considered for

each figure. Summarizing the information provided from these two figures we have the following
results about the probability density function of p :

(1) With fixed p, when sample size is very small (M = 2), the probability density function is
bimodal. Otherwise it is unimodal.

(2) With fixed p, when sample size becomes larger, the pdf of p becomes more concentrated
and symmetric.

(3) With fixed sample size, when p is less than 0, the pdf is skewed to the right; otherwise it is

skewed to the left.
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(4) With fixed sample size, when p is more extreme, the pdf of p is steeper.
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2.24  Hypothesis Testing for H, : # = u, Using Approximate * Test

Using the results from Subsection 2.2.3 that 6 —2—>oc” and p—L— p, we arrive at the

following approximation theorem which can be used to test the hypothesis H, : g = u,.

Theorem 2.5 (fi — p) [Var ()] (f1— u)—— x2.
Proof:

Recall that

S 1l el R A71:# _L
War(a)]" =273 C/C)", 2 &2(1—,5)(“’ 1+(p—1)/5Jp]'

Also we have the expression
(4 — p) Var ()] (e — p)

1 Yo, M .
= | C'C -
=l m) p)(” 1+(p 15" IZ | '](” #

1 M
= p) ! c.'C, |-
=(:u ”) (72(1_10)[ P 1+(p 1)p j[; i Ij(” :u)+
°L-p)
a’(1-p)
NERY; 1 Ib B ) \](MC'CJA_
(,“ 'u) (72(1—p)(1+(p_1)15 1+(p_1)p] p Izzll i i (:” ,u)
G L-p) |
o’ (1-p)
Since o 1=p)_, >1 and p — P P50, we have by Slutsky’s

c’l-p) 7 1+(p-1p L1+(p-Yp

theorem that

(it — py Var ()] (e — ) —> (- p) 27 (Q_C'C)(aa—p),

i=1

which follows a xﬁ distribution. The proof is complete.
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2.3 SIMULATION STUDY FOR MISUSE OF HOMOGENEOUS MEAN MODELS

In this section, power under H, : # = u, based on two test procedures, each of which
corresponds to the same hypothesis but different model setting, will be compared for the purpose
of showing that the usual test procedure for testing H, : # = u, is not appropriate when our data

are polluted by some reasons but ignored by researchers.

In each simulation, a sample of independent bivariate normal data X, ..., X,,, m=100is

generated from MVN, (C,u,,2"), where C, =1, +C,,, where

Note that C,, is (symmetric) circulant, and thus so is C,. Two likelihood ratio tests are denoted
by LRT¢, and LRT, which are stated below respectively:

- LRT¢,: LRT for testing H, : u = u, for homogeneous mean model X; ~ N,(C, 4, %), and

- LRT,: LRT for testing H, : u = u, for heterogeneous means model X, ~ N, (#,2),

where u# and X' are unknown but 2" has compound symmetry structure. Recall from Theorem
2.2 that the test statistics for LRTc, is

[pB1-B2]""B2

LRT, statistic = ,
- [pBL, - B2,]""B2,
where
Bl= %(Xi _Ciﬁ)T(Xi -Cu) , B2= %(Xi _Ciﬁ)TJp(xi -Cia),
i=1 i=1
M M
B, = E(Xi _Ciﬂo)T(Xi -Cipy) . B2y = E(Xi _CiIuO)TJp(Xi -Cing)
and
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M 1M
ji= [Zcﬁcij >CX, .
i=1 i=1

When C,, =0 forall i, the two test statistics are the same. Under H, : u# = u,, both of the test

statistics are distributed as the random variable stated in Theorem 2.2. We reject the null

hypothesis when the test statistics are sufficiently small.

The simulation study is described as follows.

Data: Data are generated from N,(C,4,,%),where C, =1,+C,, , u,, 2',and C,, are

shown in the first four columns in Table 1.
Hypotheses: Both tests correspond to the hypothesis of interest H, : u = u,,.

Tests and critical value: Two likelihood ratio tests are performed based on the generated data.
The critical value for the two tests is the same since the null distribution of both tests are the

same. As we can see in Theorem 2.2, the null distribution of the test statistic of LRTc, does not

depend on the matrices C,.

Number of simulations: The number of LRT values needed to compute the empirical alpha of the

test LRTc, or the rejection probability of the test LRT,, is 10000.

Interpretation of the simulation study: Column 4 of Table 1 shows the diagonal elements a,, of
the matrices C,. For instance, &;,= - .99(.02) means that the first value of a,, is a,, =—99,

then increases by 0.02 for each one unit increase of i. As denoted in column 5 from Table 1, the
value (probability) in each cell is the empirical « for the test LRTc, given the generated data from
the heterogeneous means models. All the values in column 5 are close to 0.05, the significant
level specified for the test and is as expected. On the other hand, since the data are polluted,

adopting the test LRT,, does not make sense and is not appropriate. If we still consider that the
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generated data are from the homogeneous mean model N, (#, ), the rejection probability for

each scenario is shown in column 6 of Table 1. As we can see, the values of this column vary

from one scenario to another. Some achieve the probability of 1 and some is less than 0.05.
Generally, when the pollution of the data becomes more severe, that is when matrices C,,, is far
away from zero matrix with a faster rate, the rejection probability is larger. Under the scenario
ZCiO =0, all the three rejection probabilities are less than 0.05 and one of them is even 0.
Lastly, the two rejection probabilities of column 6 are 1 even when data suffer only slight
contamination ( &,;,=.001(.001) and b,, = —a,, for both of the two cases about 2").

TABLE 1: Result of simulation study for misuse of homogeneous mean model

1) 3] 3) (4) G [ (®)
Ho >) c - (aio bm] Values of a, Testing H, : p = u,
" b, a, LRTcy LRT,
el | (Fjcton
10 1 5 b, =a, a,,=.02(.02) .055 1
(30) [.5 1} by =0 045 1
b, =-a, 051 1
=a, £Cio =0 049 015
a,, = - .99(.02)
b, =0 043 0
b, =—a, 047 014
b, =-a, a,, =.00001(.00001) | .050 0528
a,, =.0001(.0001) 06 407
a,, =.001(.001) 047 1
1 2 b, = —a,, a,, =.00001(.00001) 056 057
P
a,,=.0001(.0001) 053 18
a,, =.001(.001) 046 1
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CHAPTER 111

MULTISAMPLE INFERENCE

3.1 INTRODUCTION
In this chapter, we move on to the inference for multisample case when the heterogeneous means
models are adopted. Two-sample inference will be the starting point. Consider two independent
samples X,,..., X\, ~ MVN (&, %), #; =Cipu,, forall i=1..,M , and
YooYy ~ MUN (v, X)), v, = D,u,, forall j=1,..,N.Both C; and D, are known pxp
matrices. The hypotheses of interest are H : g, = g, versus H, : u, # u, . The likelihood

function is

M N

L(u. p,, 2, Z,)=constant - | 2, | 2 -|Z,| 2
1M T -1 1N T -1
EXp _E_Zi(xi -Cip,) 2, (X _Ci:ux)_z_zl(yj - Dj:uy) 2, (yj - Djﬂy) .
1= J=

The corresponding log likelihood function is

log L(w,, py, 2, 2)

M N 1 (M a
= constant — —log|X |- —1log|X |- =43 (x. —-C.u.)" 2. (x. —C,
S logx, - Dloglx, |- 2 S (x —Cm) 0 -Cm) g
N i
+§.1(y1' - Dj”y)TZy 1(yj - Dj:uy)}

First consider the simple case where both 2, and X' are known. The MLEs for u, and u
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are, respectively,

ﬁx :(iCiszlci iCiTExilXi )

i=1 i=1

N 1y
A T -1 T -1\
”y:[ZDi 2, D ZDJ 2N

= =

f.and i are independent and

A M T -1 N
e~ MVNp :ux’(zci Z‘>< Clj !

-1
N
A T -1
#y, ~ MVN, ”y(zDi 2, Djj ’
M -1 N -1
A A T -1 T -1
ft,—fi, ~ MUN | ﬂx—yy,(;ci 58 cij +[Z;Di z, DJ} :
1= )=

Define the statistic

M -1 N -
TO :(ﬂx_ﬁy)T (zCiszlcij +[z DiTZlej] (ﬂx_ﬂy)'
i=1

j=1
Under the null hypothesis H, : , = p,,, T, ~ ;{§ . Thus we reject Hy if To > Zﬁ,a-
For the case that both 2", and X are unknown but equal, likelihood approach is used to test
H, : 4, = p, in Section 3.2. In Section 3.3, the asymptotic ¥ test for testing Ho:m, =p, is

derived. Finally in Section 3.4 the LR test for two-sample case is extended to k-sample case and

the exact distribution of the LRT statistic for H, : g, =... = g, is derived.
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3.2 LIKELIHOOD RATIO TEST FOR TWO-SAMPLE CASE

In this section, the case that X', = X =X unknown is considered. We also assume that X'
has compound symmetry with the form in (2.8), C,, D, and 2’ commute with each other; that
is, C/ 2 '=x7C', D, =x"'D, forall i and j. Before deriving the likelihood ratio test
for Hy @ u, = p,, itis necessary to find the MLEs of the parameters under the null and

alternative hypotheses separately.

3.21  Estimation Under H,: u, = p,

Assume that u, = a2, = p, under Ho. Using the same technique as shown in one-sample

case, the MLE of u,, say #,, can be derived as

M N Y N
fiy = (Zcfzolci +>'D,'%,"D ‘} (Zcfzolxi +>'D," 2,7, J
i=1 j=1 i=1 j=1

where 2, isthe MLE for X under H,. Since "2, =2,7C," andD,' £, = 2,'D;  for all

iand j, s, reducesto
Mo N T 1w T N T
fo=| > C/Ci+>.D;D;| | D.C' X +> DY, |. 3.2)
i=1 j=1 i=1 j=1
Therefore fo can be obtained using the reduced log likelihood function

log L(u,,2") = constant — M+N

1fu T g
Iog|2|—§{i§(xi —Cimg) 27 (X —Cipp)
y (3.3)
+ J_Z::l(yj - Djﬂo)Tzil(yj - Dj”o)}v

The MLE for 2’ under H,is thus

2, =6,"TA- P, +Ppd 1,
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where

6=t
® (M +N)p

(3.4)

1 (B2?+E29
(0) ®) A = _
(Bl +E1 ), Po = D —l( Bl(o) N El(o) )

where

M M
B1® = Z(Xi _CiﬁO)T(Xi _Ciﬁo) ' B2 = Z(Xi _Ciﬁo)T‘J p(xi _Ci.i’o) '
o o (3.5)
E1© = Z(YJ - Dj.ilo)T (Yj - Dji’o)’ E2® = Z(YJ - Dj.i’o)-r~J p(Yj - Dj.i’o) '
j=1 j=t

3.2.2  Estimation Under H, :u, # u,
Under H_ : u, # u, , the log likelihood function is

M +N

log L(,, p,, %) = constant — log|Z|

1(Mm T o -l N T g -1
_E iZ:j:L(Xi_Ci‘uX) Zx (Xi_Ci”x)+£(yj_Dj”y) Ey (yj_Dj”y) '

Using a similar approach as shown in Section 2.2.3, the MLEs for g, , u,, and X are,

respectively,

M 1y N 1y
i, :(ZCJCJ >C'X;, A, =(ZDJ.TDJ) >'D/Y,,
i i=1 j=L '
and
Z:&le+/3&2(Jp—Ip):62[(1—,6)lp+/33p],

where

2 1
o =—
(M +N)p

(3.6)

(Bl(a) + El(a)) ,[) _ 1 (BZ“‘) +E2® j

p—1| BL® +E1®

where
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M M
B1® = Z(Xi _Ci:ilx)T(Xi _Ciﬁx)' B2® = Z(Xi _Ciﬁx)TJp(Xi _Ci:ilx)'

i=1 i=1
E1® = , Da) D.a), E2® = ) Da)'J D. i (3.7)
—Z;,(YJ_ i#ty) (Y;=Dja,), —Zl(Yj_ ify) 3,(Y;=Dja,).
J= J=

3.23  Likelihood Ratio Test for Testing H, : u, = a1,

Subsections 3.2.1 and 3.2.2 derived the MLE’s for parameters under both null and alternative

hypotheses. The likelihood ratio test can now be developed. The likelihood ratio is

(M+N)p M+N
maxL(uo sy 2) oy B2
= = X

(M+N)p M+N
MaxLlmomy®) o2 |5 2

1(m AT g -l ; S a ) >t 7
eXp_E E(Xi —Cime) 25 (X _Ci/‘o)—i_,z::l(yi = Djdtg) 2,7 (y; — D)

_EM _ AT g1 _ ~ N _ A NT g1 _ ~
EXp 5 E(Xi Ciu,) 27(x Ci”x)"‘jZ::l(yj Dj.”y) ) (yJ' Dj.”y)
where 0 = (u,, p,, %),
Q={(u,pu,, 2)| £ =0’[1-p)I,+ 03,1} and

Qo =, D) | 1, =1, E =0*[A-p)1, + 3, T}

Hence the results (from Appendix A.3)
M A n N n A n
%(Xi _Ci.”o)T 2, l(Xi —Cifty) + Zl(yj - Dj.”o)T 2 1(yj - Dj.”o) =(M+N)p
i= i=
and
M A N\T vl ~ N A \T -1 ~
3.(% ~Ciit) £70% ~Cyfi) + 2(¥; = Dyt )' £y, ~Dyia,) = (M +N)p
i= i=

imply that the likelihood ratio is
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i:[sz:[ (64— p)" i+ (p-1)7] J
(66)" (L 5o) "I+ (P -1),]

M+N
2

p-1
{(Bﬂa) vE1@) - L B2 4 E2(a’)} (B2® 4 E2®)
p

p-1
{(81“” +E19)- L (B20 4 E2<°>)} (B29 +E29)
P

Thus we arrive at the following theorem.
Theorem 3.1: The likelihood ratio test for testing H, : 4, = u,, istoreject H,, if L<C,,
where C issuch that P(L<C_ |H,) =, and L is defined as:

p-1
{(Bﬂa) +E1®) —;(BZ“‘) + E2<a>)} (B2® +E2®)
L — /12/(M+N) —

p-1
{(51@) +E19) —3(52@) + E2(°))} (B2 +E2)
p

where 1 is the likelihood ratio and B1® , B2® | B1©®, and B2 are defined in (3.5) and (3.7).

To show the null distribution of L, the following propositions are needed.

Proposition 3.1: Under H, : u, = p, (= ) . (B1? + El(o))—i(BZ(o) +E29) is distributed
p

as the quantity & (1— ) X ns(p) -

Proof:

First rewrite (B1® + E1?) _1(32(0) +E29) as
p

(B1? + E1) —1(52”) +E29) = (B1Y 1 B2©)+ (E1? 1 E2)
P P P

M=

R 1 N . 1 N
:i (X _Ci.”o)T(Ip _E‘]p)(xi _Ci.”o)"'j%l(Yj - Dj/‘o)T(I P _B‘]p)(Yj - Djﬂo),

1
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M N Lrwm N
where i, {chci +>° D/ D]} (Zcfxi +>° DJ.TYJ.].
i=1 =1 i=1 j=1

Appendix A.4 shows that

(B1? + E1?) —1(52“’) +E2)
P

=50 ~Com)" (1, = 3,0, ~Cim)

N . 1 (3.8)
+JZ=:1(Y,'_D].”0) (Ip_B‘]p)(Yj_Dj”O)
A T M T N T 1 A
—(f1y — py) ;Ci Ci"'lej Dj (Ip_E‘]p) (1o — Hy)-
i= IE:
Under H, : u, = u, (= u,) We have
n AT T N
o ~ N(p,, ZCi Ci+Z:Dj D, | 2).
i1 j=1
Thus the quadratic form
A T M T N T 1 A
(#o — #o) ZCi Ci+ZDj Dj (Ip_g‘]p) (# — #o) (3.9)
i1 j=1

is distributed as the quantity zpj}Lj ;(12 , Where 4, ’s are the latent roots of P, defined in (2.14).
j=1

Using the results in the proof of Proposition 2.3, expression in (3.9) is distributed as a

oc’(1- p);(é_l random variable, and the random variable

M 1 N 1
_Zi(xi _Ciﬂo)T (1 p —EJ p)(Xi —Cipp) + Z‘i(Y' - Djﬂo)T(l P —EJ p)(Yj - Djﬂo)
i= i=
are distributed as chi-square random variables with (M + N)(p —1) degrees of freedom times a

constant o (L— p) . Hence, using the result of sum of independent chi-square random variables,
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it follows that (B{® + E[?) —E(Béo’ +E{?) is distributed as the random variable
P

? (1= P) Xwn-1psy - THe proof is complete.

Proposition 3.2: Under H, : s, = s, (= p,) , B2 + E2% is distributed as the quantity

po_2[1+ (p _1)p]Zl\2/I+N—1‘

Proof:
(0) (0) M A T A N A T A
B2™ +E2V = ZJ:.(Xi —Cipy) I, (X, =Cipp) + Zl(YJ —Djpy) I,(Y;—D;m)
i= =

M N
= E(Xi _Ci.”o)TJ p(xi —Cipp) + E(YJ - Dj.”o)TJ p(Yj - Dj.”o)
M - N T
_(i’o_ﬂo)T zCi Ci+sz D; J, (210 — 1o) AppendixA.4
i=1 j=1
Under H, @ u, = u, (= p,) , referring to the proof of Proposition 2.4,

3 (X, = Coto)" 3, (X, —Cotto) + 2 (Y; = Dysag)" 3, (Y, — D, )
E i (3.10)

d
=pa’[L+(p-1) ol

and
~ T S T . T ~ ¢ 2 2
(#4o — 1o) ZCi C, +ZDj Dj Jp (fty—my)=po’L+(p-Dplx (3.11)
i=1 =1
implies that

d
B2? +E2” =pa”[L+(p~D) P turns
by using the result of sum of two independent chi-square random variables. The proof is

complete.
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Proposition 3.3: (B1® + E1®) —l(BZ(a) + E2®)is distributed as the quantity
p

o’ (- P)Z(2M+N—2)( p-1) -
Proof:

Assume that E(a,) = u, and E(41,) = u,, . So we have

(BL® + EL®)— L (B2 + E2) = (BL® — £ B2) + (E1® — L E2)
p p p

M A \T 1 R N A NT 1 N
:E(Xi_ciﬂx) (Ip_g‘]p)(xi_ci”x)_FE(Yj_Dj:uy) (Ip_EJp)(Yj_Dj:uy)

= %(X' —Ciﬂx)T(I P —%\] p)(xi _Ci:ux)_(ﬁx _qu)T |:(Z’\_A:C|TCIJ(I p _%J p):|(ﬁx _”X)

j=1

N 1 . N 1 -
J=
Applying Proposition 2.3 we have that

a 1 a ’
B1( )_EBZ( ):02(1—/7))((2M—1)(p—1)

and

R
E1 )_EEZ( ’:02(1—P)Z(2N—1)<p—1)'

Since B1® — L B2® and E1® — L E2 are independent, we have
p p

d
(BL® + E19) — = (B2 + E29) 2 0% (1 9) 22y n 5000
p

The proof is complete.

Proposition 3.4: B2® + E2® s distributed as the random variable
po_2[1+ (p _1)p]Zl\2/I+N72 '
Proof:
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M N
B2® + E2® = _Zi(xi -Cif,)'J o (X =Cip,) + Zl(YJ - Djﬁy)TJp(Yj -Dja,)
i= i

Applying Proposition 2.4, B2® 4+ E2® js distributed as the sum of two independent random

variables po’[1+(p-2)plxs and po’[1+(p—1)ply2., . Therefore

d
B2® +E2¥ = po’[1+(p-D) ol xh.ns

The proof is complete.
Now we arrive at the following theorem.

Theorem 3.2: The likelihood ratio test statistic in Theorem 3.1 for testing H, : g1, = g, is L

defined as:

p-1

(a) (a)
(B2 +E2%)

pIc

{(Bl‘a) +E1@) - (gaw 4 Ez(a))}
p
L=

p-1

{(Bl(o) +E19) —:(BZ(O) + EZ(O))} (B2 +E2)

where A= (B1? + El“”)—l(Bz‘O) +E29), B=(B1® + E1®) —1(82“" +E2@),
p p

C=B2Q +E2® and D=B2® +E2@ .

(@) B and D are distributed respectively as the following:

d d
B=o’ (1_p)Z(2M+N—2)( o) and D= po’L+(P—D)plxmns -

Under H, @, =, A and C are distributed respectively as the following:
d 2 2 d 2 2
A=c (1_,0)Z(M+N—1)(pfl) and C=po[1+(p-1) ol xu.na-
(b) A-B, B, C-D, and D are mutually independent weighted chi-square random variables.
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(c) Furthermore, under H, : g, = My, L is distributed as the random variable

1
p-1 ’
14+ F [1+1F**
M+N-2 M+N-=-2

where F™ and F are independent and distributed like F_ ., o, n_opsy 30 Foyin s

respectively.
Proof of (a):  Results are obtained directly from Propositions 3.1 to 3.4.

Proof of (b) and (c):

First rewrite A and C as follows. A can be expressed as

M . 1 . N . 1 .
A= Zi(xi —Ciip)" (I P _BJ ) (X, _CiIuO)+Zl(Yj - Djﬂo)T(I P _EJ )Y —Djag)
i= =
=B+R,

where B and R are, respectively,
M o \T 1 R N . NT 1 R
Bzé(xi_ciﬂx) (Ip_E‘Jp)(xi_Ci:ux)_'_JZ_:l(Yj_Dj”y) (Ip_E‘Jp)(Yj_Dj.uy)

and
A A T L T 1 A A
R=(a,—n,) (Zci Ci)(l 0 _BJp)(ﬂx — i)
i=1

(3.12)

N
P 1 A A
+ (:uy _:uO)T (z Dj-r Djj(l p _B‘] p)(.uy _”0)'
j=1
Similarly, C can be expressed as
M N
C :zi(xi _Ciﬂo)TJp(Xi —City) + Zl(Y] - DquO)TJp(Yj - Dj.”o)
i= =
=D+S5,

where
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M N
D= E(Xi _Ci.”x)TJp(xi -Cip,) + JZ::l(YJ - Dj”y)TJp(YJ' a DJ"uy)

and

M
S=(a,— i) [ZCICJJp(ﬂX ~ ity)
i=1

. (3.13)
+ (:ily - :ilO)T [Z DjT Dj j‘] p (ﬂy - ﬂO)
j=1
Some other facts necessary to prove (b) are stated below.

(1) B and R are independent

(2) D and S are independent

® R=0’(L- )12 and SZ po?fL+ (p-Dol
(4) Band D are independent
(5) B and S are independent
(6) R and D are independent

(7) Rand S are independent

Facts (1) and (2) are true because both B and D are functions of X, —C, &, and Y, —Da,
forall i=1,..,M, j=1.., N, alsoRand S are functions of &, and A, since M, in (3.2) can
be expressed as a linear combination of 4, and i, as follows:

fio =(C"+D")*[C i, + D', ], (314)

N

M N M
where C"=>"C,'C;, D'=>.D,'D,, i, =(C")*>.C;'X;and i, =(D")*>.D,"Y;.
] = i=1 =

j
Combining the facts that X; —C; &, and , are independent as well as Y, — Dz, and 4, are

independent, Facts (1) and (2) are shown.

78



Fact (3) can be shown using the results in part (a) in conjunction with Facts (1) and (2), and

the result about sum of independent chi-square random variables. More clearly, the results

d d
A=c*(1- P)I(2M+N-1)( oz and B =0’ (L~ P)Z(ZM #N-2)(p-1)

d
combined with Fact (1) imply R=0" (1—p);{r2j,1. In addition, the results

d d
C=po’[l+(p _l)p]lfll+N—l and D=po’[1+(p _1),0]Z|\2/|+N—2
d
in connection with fact (2) implies S=po’[L+(p-1)p]x7.

1
Fact (4) can be shown by applying Proposition 2.5. (B1® - B2®)and B2® are

1
independent, (E1® —=E2®)and E2® are independent as well. As a matter of fact,
p

(B1® —% B2®),B2® | (E1® —% E2®)and E2® are mutually independent so fact (4) is

shown.
Facts (5) and (6) are true using the same argument when Facts (1) and (2) were shown.
To show Fact (7), it is necessary to rewrite R and S in (3.12) and (3.13), respectively. In (3.12)

the two terms on the right-hand side can be expressed respectively as
A A N\T * l A A
(a,—my) C (Ip_BJp)(.”x_.”o)
N T A 1 R . T 1 ~
= (s, —my) C (Ip_g‘]p)(ﬂx_ﬂo)_(ﬂo_”o) C (Ip_E‘]p)(”O_”O)
A AT~ 1 N
_2(:”x_:u0) C (Ip_EJp)(”O_”O)’

and
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A~ A . 1 A~ A R x 1 n
(”y _IuO)T D (I p __'Jp)(:uy _”O) = (:uy _”O)T D (I p __‘]p)(”y _”O)
p p
A T * 1 A A A T * 1 A
—(fty—m) D (1, _BJ o)t —mo) —2(p1, — 1) D (1, _BJ o) ity — Ho)-
We should note that
A AT~ 1 R A A ATt 1 N
(4, —1,) C (I p _BJp)(ﬂo _”0)+(”y —#,) D (I p _E‘Jp)(."o —#,)=0
by substituting (3.14) into the left-hand side of the above equation. Therefore, R becomes
~ TrA* 1 N
R= (.ux _”0) [C (I p __‘]p)](:ux _”0)
p
A « 1 A
+(f, — )" [D(1, —EJp)](ﬂy — 1) (3.15)
A * * 1 ~
— (a1, _”O)T[(C +D7)(1 p __‘]p)](.”o — Hy)-
p
Likewise, S can be written as

S = (fi, — #o) [C I 1(fa, — o) + (i1, — 1) [D" 3, 1, — ) (3.16)
_(ﬁo_.”o)T[(C*"‘ D*)Jp](ﬁO_MO)' l

Since fi, — u, can be written as
fiy—ty =(C"+ D) (C it + D', ) ~(C"+ D) {(C" + D)
= (C"+D")'[C (@, — o)+ D" (lty — o),
the last term of (3.15) becomes

. ok e 1 .
(A, —p,)'C(C"+D) I(IP_BJ")C (A, — o) +

A * * *y\ 1 * 7 A
(‘uy_”O)TD (C +D)1(Ip_EJp)D (”y_”o)_

A * * Ky 1 * 7 A
20t~ o) €' (CT4 DY (1, = 3,)D" (i, )

Hence R can be expressed as
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R = (i, — )" [C” —C(C"+ D)1, —%Jp)(ﬁx )
+ (&, - )" [D" - D™ (C”+ D)1, —%Jp)(ﬁy o) (3.17)

~2(j1, - u,)'[CD(C”+ D) (1, —%J O, o),

Likewise, S can be expressed as

S = (ji, — ) [C"~C™(C" + D) 13, (i, — o)
+(fiy ~ ) [D" =D (C" + D)W, (i, ~ my) (3.18)
= 2(ft, ~ ) [C"D"(C™+ D) 13, Gy — o).

Now rewrite R and S in (3.17) and (3.18) respectively in matrix forms as

~ T ~
R | HxHo Y, -\ uH
.&y —H _Y’Q, qlz fly — M

~ T ~
g [ HxHo Y, Y\ H—H
lA’y_.”o _q’e q’5 .ily_”o ,

and

where

* * * *y\ 1 * * * Ky 1
w =[C"-C"(C +D)1](Ip—BJp),Y’2:[D -D”(C +D)1](Ip—EJp),
* * * *y 1 * * * *y
¥, =[C'D'(C +D)1](|p—63p),q14=[c —c*(C +D)3,,

¥, =[D"-D”(C"+D") 3, ,and ¥; =[C'D"(C"+D") '],

i — cx o0
Since {l Ho are distributed as N, (0, .|, if we can show
”y _”0 0 D E
v -y * 4 -y
! | © 2 ? ! ®1=0, (3.19)
-¥, ¥ 0 DX)\-¥ ¥
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then the proof of fact (7) is done. Expression (3.19) is true because of the facts

(1, —EJ »)J, =0 and commutability of circulant matrices. Thus R and S are independent.
p

Therefore,

L B*'D _ B*'D B 1
A" (B+R)D+S) Pt
(B+R)™(D+5) (1+Rj (1+S)

B D
d 1

B 1 P 1
1+—— F | [1+——F"
M+N-2 M+N-2

where F~ and F~ are independent and distributed like F,_ ,n_ayp+ a0 Fry oy

)

respectively. The proof of Theorem 3.2 is complete.

33 APPROXIMATE y’ TEST FOR H,: pu, = p,

Referring to the beginning of Section 3.2, we have the quadratic form

M -1 N -\
To(ﬁx—ﬁyf((chleci) {ZDJZVID,} ] o~ 1)
i1

j=1
Under the hypothesis H, : s, =, ,
" 3 y N1
To = (i, ﬁy)T( [ZCZCJ +[Z szy‘le] J (it =) ~ 25,
where 2, and X' are known. What if both 2, and X' are unknown? In this section, the
assumption X =X =X isassumed, where 2" is unknown and with compound symmetry

structure for testing H : g, = a, using approximate +* test.

First note that
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M -1 N -
ﬁx_ﬁy~Np(”x_ﬂy![(ZCiTCiJ +£ZDjTDjJ ]2)
i=1 j=1
The test statistic for testing H,, : 4, = u, is defined as

N ]
T= G, — i) [Var(ﬁx —ﬁy)} G, — )
4 (3.20)

—<ﬁx—ﬁy)Tﬁll(i0.TC.j +[ZD,—TD,-] } iy — i),

where 27 is

. 1 P
Pt - P 33
Fa-A e (p-0p""

where &2 and p are defined in (3.6).

Theorem 3.3: Under H, : p, = 1,
1

T = Gy — )" [Vaf(itx —ﬂy)} Gy — ) —s 72 .

Proof:

Recall that

A - M -1 N AT
[Var([zx —ﬁy)} =21[(ZC,TC,) +(Z DjTDjJ } :
i=1 j=1
Extending the result from (2.35) we have

Cov(B1® + E1®,B2® + E2®) = Cov(B1®, B2®) + Cov(E1®, E2®)

, - (3.21)
=2(M +N-2)tr(J, ) = 2(M +N -2) p[L+ (p-1) pJc*,

From the result of Theorem 2.3 and the fact that B1® and E1® defined in (3.7) are independent,

we have
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d
BLY + E1¥ =0 (1= p) X 2xp T 0 [+ (P=DPL2wrin 2 (3.22)
which, after doing some calculation, implies that
E(B1® + E1®)=(M +N -2)po?,
(3.23)
V(B1® + E1®) =2(M + N - 2) plL+ (p-1) p° .

Similarly, from the result of Proposition 2.4 and the fact that B2® and E2® defined in (3.7)
are independent, we have
d
B2 + E2 = po’[L+(P—-Dplfm -2 (3.24)
which implies that

E(B2® +E2®)=(M +N -2)p[L1+ (p-1 plo?,

(3.25)
V(B2® + E2@)=2(M + N —2)p*[l+(p-Dp[c’.
Using the results from (2.36), (2.37), (3.22), and (3.24) we have
B2® +E2®  E(B2® +E2W)
E ~ =1+(p-1p, 3.26
(e E1® ) E@@ @) (PP (3.26)
and
@ @) AN ATl TV )2
V(BZ +E27, 2 BE+(p=Dpl'(p-Hl-p)° (3.27)
BI+E1®" M+N-2 p
1

Therefore, p — p in probability. In addition, 52 = (Bl(a) + El(a)) converges in

(M+N)p

probability to o® due to the facts from (3.23). Hence using the decompositions

P P p P
| —— 2 J =(I_ - J — J
-0 T m-0p 2 T (oD 1r(p-Dp

and

1 _ofa-p) 1
*(1-p) 6*(1-p)oil-p)
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and mimicking the proof in Theorem 2.5, we have under H, : #, = u, that

1

G i)’ [Var(ﬁi —ﬁy)} G, — )

A A N\T 1 ﬁ ~ ~
= (1, — | - J _

(4, —ny) &2(1_[3)( T Ir(p_D)p pJ(ﬂx i)

Gt~ ) (I YR NZCCJ{ZDDJ G-
B et l-p " 1+ (p-Dp P\ = o
- 52(1-p) "

a*(1-p)

Ry p— ( 2 2 ]J[[ZCCJ +[iD,—TD,-”<ﬁX—ﬁy).

G (L-p)\1+(p-9p 1+(p-1p

AT AR S
a’(1-p) 1+(p-1p 1+(p-Dp

Since

P 50, we have by Slutsky’s

d
Theorem and the fact (ji, — i, )" Var (i, — t,) " (i, — o) = 72 that
(A, —p,) Nar (@] (4, - a,)——

M 1 N A
(a,—p,)Z" (ZCiTCiJ +(z DjTDjJ (.- py),
i1 =

which follows a Z,ﬁ distribution under Hy : g, = u, . The proof is complete.

3.4 LRT FOR k-SAMPLE CASE

Consider k independent samples each with sample size N; from p-variate multivariate normal
distributions with heterogeneous mean vectors C g, , where j =1,...,N;, i=1...,k. The

homoscedastic case is considered in this section such that all covariance matrices of the k

populations are the same. For the ith sample, we have X;,,..., X;, ~ MVN (C;x;, X) . All C;

are known px p circulant matrices, X' has compound symmetry structure defined in (2.8) such
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that Cij and 2 commute for all i and j, and Z:;Ni = N . The hypotheses of our interest are

Ho sy =...= m, versus H, : p; = p; for some i # j. The likelihood function is

N
- 1 i _
L(4y,... s 2) = constant - [ 2| 2 'eXp{_EZik_lZ’j\l_l(Xii —Cym) 27 (X _Cij”i)}-
The corresponding log likelihood function is
| N | 1« N; S — 5
og L(,ul,...,,uk,Z):constant—E 09|2|—§zi:12j:1(xu—Cuﬂi) (% —Cym). (3.28)

We skip the trivial case that 2" is known. Before deriving the likelihood ratio test for
Hy:m, =...= u (= u,), itis necessary to find the MLEs of the parameters ..., ¢, and X

under the null and alternative hypotheses separately.

3.4.1 Estimation Under H;: g =...= u,
Assume that g, = p, forall i =1,...,K under H, the MLE of u,, say #,, can be derived

as

o= (2300 TLEe X, (3.29)

Hence, the MLE for 2" under H,, namely ﬁo, can be obtained using the reduced log likelihood

function
L(g,, =) = constant —%|og|2|—%zik_lzj“11(xij —Cy o) Z(%, —Cy o), (3.30)
which yields
2y =64 1A= )1, +d, ],
where

86



p-1| 3 BY

K Rp)
) 1 k R 1 i BiJ
Oy :_Zi=1 Bi(IO) v Po = kl
Np =1 il
where
NI
Bi(lo) = (Xij _Cijf‘o)T(Xij _Cijﬁo)’
=1
NI

By =2 (Xy —Cytg)" I(X;; = Cyjfy)

i

by extending the results of two-sample case in (3.4) and (3.5).

3.4.2  Estimation Under H, : g; # p; for some i # j

_1}

Consider the case that the g, ’s are distinct, the log likelihood function is

log L(u,,..., #, X) = constant — % log|2|

1 i _
_Ezizlzlj\l:l(xij _Cij.”i )Tz l(Xij _Cij:ui)'

Hence the MLEs for g,,...,, , and X' are, respectively,

N
. N AN :
Hi = (ijlcijTCij) lZlCiJ'TXij fori=1...k,
j=

and
2 =61-p)1,+A,],
where
&ZZNLZLB‘('&)’ p=—" [2;18'8:) —1}
P p-1{ > BY
where
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(3.33)

(3.34)
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N;
B = Z(Xij _Cijﬂi)T(xij —Cyi)

j=1
(3.36)
N;
Bi(Ja) = Z(xij _Cij:ili)T‘] (Xij _Ciiﬁi) )

j=1

3.4.3 Likelihood Ratio Test for Testing H, : g, =...= g,
Sections 3.4.1 and 3.4.2 derived the MLE’s for parameters under both hypotheses. The
likelihood ratio test now can be developed. The likelihood ratio is
NN 1(Zk N T )
~ glgz( L(atyyes by, ) RO EIPAE . eXp_E izlzjzl(xij _Cij.”o) 2, (Xij _Cij/‘o)

Np N

" max L(uy.. i, X Np - N 1 i e 5
rTolng (ps y 2) 27z) 2|12 2 em_z(z:(lz?l(xij_cijﬂifzl(Xij_Cij.”i))
where 0 = (uy,..., 4, , %),
Q= {1 £)| £ = P [A= p)1 , + 03, 1}, and

Qy ={(ty . ) | 1y = p; Vi = ;X = 0°[(1-p) 1, + pI, T}

Hence the results (by mimicking Appendix A.3)
k n AT g -1 A
Zi:lzjzl(xij —Ciimy) 2y (% —Cype) =Np

and

k n A A A
zizlzjzl(xij _Cij:ui )TE 1(Xij _Cij:ui) =Np

imply that

A Z(I?IT z[ (6%)°@- )" 1L+ (p-D7] j
|Zo| (&oz)p(l_ﬁo)p_l[l"'(p_l)lao]

) {{2?1[85.” W PR, B.Ef))]“'z

k

O BY -/ pBOT (O, BY

Thus we arrive at the following theorem.
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Theorem 3.4: The likelihood ratio test for testing H, : g, =...= g, istoreject H, if L<C_,

where C, issuchthat P(L<C,) =, and L is defined as:

O [BY -/ pBY O BY)
O [BY - pBYT (Y, BY)

L=ZZ/N

where A is the likelihood ratio and B{®, BS”, B{”, and B{” are defined in (3.32) and (3.36).

Before deriving the exact null distribution of the LRT statistic L, we need the following

propositions.

Proposition 3.5: Under H,: g, =...= p, , Z:(:l[Bf,O) —(1/ p)BY] is distributed as the random

variable o (1— 0) i\ py
Proof:

By extending the result in (3.8) for two-sample case we obtain

3B -1 PBET= 3, 30 0%, ~Coe) (1 =YX,y ~Cy)

= 3 (X = Ca) (1 —%J)(xu —Cym)  (337)

(it~ 1) (X ,C .)(l——J)(ﬂo Ho),

where C; Z LG Cij . Under H,: p, =...= p (= p,) we have

N(”O'(zl =1 i )_12)

Hence the quadratic form

(4, — mo) {(Z—l D _EJ)}(.“O Ho) (3.38)
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p
is distributed as sum of weighted chi-square random variable Z}tj;(f , Where 4, ’s are 0 with
j=1

multiplicity 1 and o(1— p) with multiplicity p—1, the latent roots of the matrix P, as defined

in (2.14), using the results in the proof of Proposition 2.1. Hence (3.38) is distributed as a Z,L

random variable times a constant ¢*(1- p).

Since each pair of X;; —C; i, and j, are independent for all i and j, the quantities
. 1 .
Z'}i‘l(xij —Cij,uO)T(I _EJ)(X” —C;ny) . 1=1..,k , are independently distributed as chi-

square random variables with N, (p —1) degrees of freedom times a constant o (1— p)

respectively, so the sum of them are distributed as o (1— p) Z(Zz.k, nyppy Fandom variable. It

follows that Z:ll[Bi(,O) —(1/ p)BY’] is distributed as a & (1— p) ¥{y_1yp1y Fandom variable,

where Z:(:l N; = N, by the result of the sum of two independent chi-square random variables.

The proof is complete.

Proposition 3.6: Under H, : g, =...= g, Z:‘zl B is distributed as the quantity
po’ll+(p-Dplris.
Proof:
Rewrite Zik:l B as
K K N, R .
Zi:1 Bi(JO) = zizlzjzl(xij _CiquO)T J (Xij _Cij,”o)
k N,
= Zi:lzj:l(xij _Cij.”o)T J (Xij _Cij.”o)

k *

— (g — )’ (Zizlci )J (s1y — po)-
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Under H, @ g, =...= p, (= p,) , extending the results of two-sample case in (3.10) and (3.11) to

k-sample case we have

. d
Z:‘:lsz:'l(Xu _Cij.”o)T J (Xij _Cij.”o) = p02[1+ (p _1),0])5131
and

k *

d
(it = 1) [, C)I 1ty — py) =P [L+ (P —~Dpl 1 -
Connecting the facts that each pair of X;; —C; s, and f, are independent for all i and j, and the

result of sum of two independent chi-square random variables, we have

d
3 BO=po’[L+ (p-Dplrls.

The proof is complete.

Proposition 3.7: Zik:l[Bi(la) —(1/ p)B{ s distributed as the quantity o (1— ) iy 1)
Proof:

Assume that E(4;) = g, forall i =1,...,K. So we have
S8 -/ PBEI= T, 3 (X, ~Cy) (1= 9)(0X, ~Cy)
= 304 ~Cym) (1= )X, ~Cyn)
=3 G- ) (€©)) —%J)(ﬁi ),

Hence, under H, : g, =...= (= p,) , we have that B® — (1/ p)B% are independently

distributed and

d
Bi(la) _(1/ p) Bi(Ja) 20-2(1_p)Z(2Ni—1)(p—1) forall i=1..,k,

by applying Proposition 2.3. Therefore,
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d
Z, 1[8(3) @/ p)Bi(.]a)]zo-z(1_p)Z(2N—k)(p—l)’Where N = iklei'

The proof is complete.

Proposition 3.8: Zik=1 B is distributed as the quantity pa?[1+(p—1) plx2_ -
Proof:

Applying Proposition 2.4, B are independently distributed and each of which is distributed
as po’[1+(p—1) plxy, ; random variable, so Z:‘:l B® is distributed as the sum of k

independent chi-square random variables 4y , times a constant po’[1+(p—1)p]. Therefore we

have Z lB,(j")—p(y [L+(p-1)plxi,, where N = Z N, . The proof is complete.

Theorem 3.5: The likelihood ratio test statistic in Theorem 3.4 for testing H, : g, =...= g, is

L which is defined as:

{XBP - pBP TS BY)  BPD
(T80 -WPBII (T, BY) AT

where A= Z [B —@/ p)BY], B= Z [B® —(L/ p)BP], C = Z B© and

=1 iJ
D= 2_135;‘).

(@) Band D are distributed, respectively, as the following:

d d
Bzaz(l_p)Z(ZN_k)(p_n and D=po’[1+(p-1)plxi.

Under H, : s, =...= p,, A and C are distributed respectively as the following:
° 2 ¢ 2
A=0"(1- p) Xin-1yp) and C=po’[L+(p-D)plxy,,
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(b) A-B, B, C-D, and D are mutually independent weighted chi-square random variables.

(c) Furthermore, under H, : g, =...= g, , L isdistributed as the random variable

p-1 !
(1+ k-1 = 1+ k-1 F”j
N —k N —k

where F~ and F are independent and distributed like Fy ) 1) v » 30 By

respectively.

Proof of (a):  Results can be obtained by directly applying Propositions 3.5 to 3.8.
Proof of (b) and (c):

First rewrite A and C as follows. A can be expressed as A= B+ R, where
k A A * 1 A A
R:A_B:Ziﬂ(ﬂi _.”O)TCi (I _BJ)(ﬂi — Hy). (3.39)

C can be expressed as C = D+ S, where

k A ~ * A A
S=C-D Zzizl(.”i _ﬂo)TCiJ(ﬂi — M) (3.40)
Some other facts necessary to prove part (b) are stated below.

(1) B and R are independent

(2) D and S are independent

2

(3) Rio'z (8 p)Z(H)( ppand S i po’[L+(p _1)p])(|<2_1 -
(4) B and D are independent
(5) Band S are independent
(6) R and D are independent

(7) Rand S are independent
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Facts (1), (2), (5), and (6) are true because both B and D are functions of Xij — Cij A, and
R and S are functions of ;, due to the fact that z, in (3.39) can be expressed as a linear

combination of f; which is
A k *y k * A
Mo = (Zizlci ) 1Zi:1Ci M (3.41)

by using the relation #;, = (Ci*)_lz:Ni CIX

=g
Combining the facts that each pair of X; —Cijﬁo and g, are independent for all i and j, Facts

(1), (2), (5), and (6) are shown.
Fact (3) can be shown using the results in part (a) in conjunction with facts (1) and (2) and the

result about sum of independent chi-square random variables. More clearly, the results
d 2 2 d 2 2
A=0"(1-P) Xin-aypy and B=0"(1=0) Zinoipy
. . . d 2 2 .-
combined with fact (1) imply R=0 1-p) X(k-1p-y) - In addition, the results
d d
C=po’[1+(p-D)plryy and D=po’L+(p-D)plxy

d
in connection with fact (2) implies S=po’[L+(p-1)plx*(k-1).
Fact (4) can be shown using the result in Proposition 2.5 that B(® — (1/ p)B® and B for

all i =1,...,k are independent.

To show Fact (7), it is necessary to rewrite R and S in (3.39) and (3.40), respectively. R in

(3.39) can be expressed as
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S (i — 1) C; (1 —%J)(fzi ~ )
=3 (Gt - 1) C1 (1 —leﬂo ~ o)

— 23 (i~ i) (1 - J)(ﬂo Ho).

Note that the identity Z:;l (@, — f1,)" C; =0 is true based on the substitution of the expression

of @, in (3.41). Hence we have

R=>" (it — ) C; (1 —%J)(ﬁi )

(3.42)
~ (1, — o)’ (Z, 4 cH( __‘])(.”0 Ho)-
Similarly,
S =3 (= 5) ClI — ) =D (o — 1) ClI(fig — o). (3.43)
Since fi, — p, can be written as
”O (Zl | )_1(Zl - | ) (Zl | )—1(ZI | )IuO
=0 COD LG i — mo))
the second term of (3.42) of the right-hand side becomes
DINCE ATV RO (RSO D FEHCRS
= 3G =) G (5,C (1~ )y )
Hence R in (3.42) can be expressed as
R=" Gy~ mo) IC; ~C (T ,CI(0 — = 3)(i — o)
P (3.44)

_ 1
=22, (= mo) CIC; O .)l(|—63)(ﬂ, Ho)-
Likewise, S can be expressed as
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S =2, G —mo)'[C ~C (X, 113 (i — o)

wr ek (3.45)
_Zzi$j(ﬂi _.”o)T Cicj(zi=lci )_13(.&] — Hy)-

Now rewrite R and S in (3.44) and (3.45) respectively in matrix forms. R can be written as

N T A
M~ Ky H—H
R= : (qlij) : :
My — p, iy — py
where
l1’11 q’12 qllk
(Ylij ): Yl.Zl ql.zz lp.zk ’
?lkl sz qlkk
where

[C; -G (ZL.C =) =

'Pij = 1
* * k *\ - -
—cicj(zizlci)l(l—BJ), i # .
Likewise, S can be written as
A T A
M~ Hy M~ Hy
S — : (¢ij : ,
My — g y — g
where
¢11 ¢12 Qlk
(¢ij): 45.21 dj.zz dj.2k ,
djkl ¢k2 djkk
where
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* *2 k *y . .
_ [Ci -C; (Zizlci) 9, i=],
~c/c;> chHta, i j.

ij

Note that the vector (i, — py,..., f, — H,)"is distributed as N, (0, diag (C'X)), where

C'x 0
diag(C; X) = .
0 C.x

kpxkp
If we can show
(, Jdiag(C; X))@, )=0,

then the proof of Fact (8) is done. The expression (3.46) is true because we have

(v, \diag(C; X)), )

v, v, - ¥, CIZ' 0 o, O, - D

_ TZl q’zz Yle . @21 ¢22 ¢2k
- 0 Cx S
Ylkl Y,kz qlkk ¢k1 ¢k2 ¢kk
Wllcl*z 7’12C§27 qllkcljz ¢11 ¢12 ¢1k

_ !1121(:1*2 Y’ZZC;E TZkC:2 ¢21 ¢22 ¢2k
'Ple;E ‘I’MCEE o qlka;Z Dy, D, - Dy

= (er(n:lylimc;z¢mi )’

which is zero matrix because of validity of the identities
k * . .
> W.CoX® =0 foralliand j,

im~m

1

(3.46)

due to the fact (I, ——J,)J, =0 and commutability of circulant matrices. Thus R and S are

independent. Therefore,
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__B"'D_ B"'D ~ 1
A'C  (B+R)**(D+5S) ( ijl( sj

1+ — 1+ —
B D

d 1

- = ,
1+ k-1 F 1+ k-1 =
N —k N —k

where F” and F~ are independent and distributed like F,

k-1)( p-1), (N-k)(p-1) and I:k—l,N—k !

respectively. The proof of Theorem 3.5 is complete.
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CHAPTER IV

APPLICATION TO META ANALYSIS

41 INTRODUCTION AND PRELIMINARY UNIVARIATE CASE

In this chapter, an application of the proposed model to fixed and random effects multivariate
meta analysis (Jackson et al. 2011, Nam et al. 2003) will be introduced and developed. Individual
patient / participant data (IPD) are assumed available in the whole chapter. Since the outcome
measures under the assumption of the proposed heterogeneous means model are continuous, one-
stage method for IPD random effects model is suggested by Higgins et al. (2001) to investigate
the parameter of interest for each study. In the analysis, both fixed and random effects models are

focused.

First consider the fixed effect model of univariate case. Let X;; denote the outcome measure
of subject j instudy i generated from K independent studies, where i =1,...,k, j=1,...,n,, and
Xij ~ Np(Cijy(i),aiz), where g, is an unknown constant, C;; and o,” are known. The ML

estimator for 4, based on the ith study is

1
A A .
Ky :(Z;Cij J Z;Ciixiw i=1..k
j= i=

Since the estimates are derived from different individual participant data sets, 4, are
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conditionally independent given ;. Hence z ;) given p; are independent and exact normal
with

figy ~ Nty o) i =1 K, (4.1)
where o —(Z .G ol

In traditional meta analysis, results from several studies are combined. For a fixed effect

model, if we tacitly assume that the true value g, = g is the same for the k studies, given (4.1)

the ML estimator for 4 and its variance based on the K independent samples are, respectively,

-1 21—1 |J2 h K r:il ljru|
(T o) S o iy - [z Jzz 0

i=1 i i=1 i

and

K r.‘i Cij2 -1
Var(ii) = (3,07 ) = ZZJ+

i=1 O-i

Hence, statistical inference for x4 is based on the fact that
Hon (0.0).

JVar ()

Some other fixed effect models of multivariate case will be considered in Section 4.2.

4.2 FIXED EFFECT MODEL

Let Xij denote the outcome measure of subject j instudy i generated from K independent

studies, where 1 =1,...,k, j=1,...,n, and X ~ N (Cjugy, Z;) - The ML estimator for u;,

based on ith sample is
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1
>, 57X, i=1.k (4.2)
=

- < —]
20! :[Zlcij 2 CijJ
j=

Here we assume that 2 is known forall i =1,...,k. In fact, 4, 's are independent and
n -1
figy ~ MVN (a1, [Zc”'zﬁcijj )i =1,k (4.3)
j=1

For traditional meta analysis, the true core mean vector u;, = u is the same for the k

studies, given (4.3) for the Kk studies, the ML estimator for g and its variance-covariance matrix
based on the k independent samples are, respectively,

[ n; - Kk n;
ﬁZ(Z[ Cij'Ei‘lcijD Z(Zcu'fi‘lCuJﬁaw

i=1 \_j=1 i=1 \_j=1

and

i=1 \_j=1

Cov(u) = [ZKJ{ZCJ '27Cy Bl

Statistical inference for g is based on the fact

i=1 \_j=

which results in
[ K N 1
-~ 1 — -~ 2
(m-p)| Y| D.Ci'ZCy | ((m—m)~ 2t
i=1 \_j=L
A great difficulty for multivariate meta analysis in practice is that the within-study covariance
n; -1
matrix [ZCU 'Zi_lCijJ is usually unknown since 2 is unknown. If IPD are available, we
j=1

may use an appropriate estimate S; from IPD data for the ith study to replace 2’ . Hence the
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estimator of u,, becomes

-1
ﬁ(i) Z(zcu'silcuj ZI:Ciilsiilxij’ i=1..k, (4.4)
j=1 =1

j
where S; is a consistent estimator of 2 it follows that 4, is approximate normal with

covariance matrix estimated by

-1
(Zc”'silcijj i=1..k (4.5)
=L

There must be some impact on the analysis using estimate S; instead of true X', . Basically,
when the ith sample size is large, S; is a good substitute for X', i=1..Kk.If Hiy = H is the
same for the k studies, the estimator of # can be obtained by

k N - k n;
ﬁ :[Z(Zciilsilcij Jj Z[Zcijlsilcij J.‘A’(i)v (4-6)
=1\ j= i=1 \_j=1

with the following approximation:

(ﬁ_ﬂ),(Z(iCij|Si_lcijB(l~‘_ﬂ)':Z§- (4.7)

i=1

Inference about u can be based on the above approximation by means of meta-analysis.

There are two conditions about the structure of X, for the ith study considered here.
Condition 1: If 2, is unknown and unstructured, S; is obtained from IPD data assuming that

2, is positive definite. As mentioned in Chapter 2, S; needs to be assessed iteratively based on
the ith study.

Condition 2: X, is has compound symmetric structure, that is 2; = Giz[(l—pi) | o +pJ p].
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Assume that C;; and 2, commute for all I and j. Hence S, is obtained based on maximum

likelihood method in Chapter 2 from ith study with estimators

R 12 A A
Uiz :_Z(xij _Cijﬂ(i))T(xij _Cijﬂ(i))v
npi=

and

~

1 E(Xij _Cij:[l(i))T‘]p(xij _Cij.i‘(i))
P =

~,_1 @ ~1{, forall i=1..,k,
p— 1 A T A
P E(Xii _Cij'”(i)) (xij _Cij.”(i))

where 4 in (4.4) reduces to

-1
figy = [Zl“cij'cij] Zl“c:ij'xij , (4.8)
J= J=

forall i=1...,K.

4.3 RANDOM EFFECTS MODEL
4.3.1 Two-Stage Method

The two-stage meta analysis still can be used when IPD are available. We denote the

estimated core mean vector for the ith study as s, and it is assumed that

ind
K | Hiy ~ MVN (”(i)' Ti), i=1..,k,
which is referred as the within-study model. The entries of the matrices ¥; for each study are

estimated from IPD data and are usually assumed known and fixed. If the covariance matrix 2
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-1
of X is known for each study, for example, ¥; = (ZC” 'Ei_lCijJ is known and there is no
j=L

need to estimate it.

The multivariate random effect model allows H tovary from one study to the next. So we
can further assume that the between-study normal assumption is
iid i
My ~MVN(u, I),i=1...k.
The resulting two-stage marginal model is obtained by
ind i
Mg ~MUN(u, W, +1),i=1..Kk,
with corresponding log likelihood

logL(u,I")

k 1 1& ., 1A
= _?plog(Zﬂ') _Ezlog [P+ 1) |_EZ(ﬂ(i) _.”)T ¥, +1) 1(.”(i) — M)
i=1 i=1
The parameters of interest which need to be estimated would be g and I'". The MLE of u is
~ . r-1 T r\-1
H :{Z(Ti +1)” } Z(Ylu +1) " agy
i=1 i=1
where u is approximate normal with the variance
K -1
Var (i) = [Z(Y’i + I“)l} .
i=1

The main statistical difficulty is to estimate the between-study covariance matrix I". A few

methods can be used to obtain the estimated 1" . They are maximum likelihood (ML) estimation,
restricted maximum likelihood (REML) estimation, method of moment (MM), and some
alternative procedures such as profile likelihood and Bayesian analyses which have been

reviewed by Jackson et al. (2011).
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4.3.2 One-Stage Method
If individual participant data are available, we have the assumption

ind
Xii | gy ~ MVN(Cypgy, ), =1k, j=1..,n;,

iid
where X' is unknown, and g, ~MVN (g, I'),i =1,...,k , which implies that
[ Ky H

ind

Cimg ~ MVN(Cyp, CijFCi}) =1k, j=1..,n.

The unknown parameters are u,2,...,2, ,and I". With the above assumptions,

ind

X; ~ MVN(Cyp, Z, +C,IC}),i =1,...,K, j=1,...,n,

i .
We may rewrite the model in matrix notation as:

Xii :Cij(.”+ Fij)+ E:.
where E; ~N(0,2}) and F; ~ N(0, I'). The corresponding likelihood is

log L(gt, 2y, 2y, T)

__mp 1ss .
=5 log(27) Zgglog\2i+cijrcij\ @9)

1E Y _
_EZZ(XU’ _Cij.”)T (2 +CijFC;) 1(Xij _Cij.”)v

i=1 j=1

kK
where n = Zni is the total number of observations.
i=1

The MLEs of g, 2,...,. 2, and I', say fl,fl,...,fk and I , can be found iteratively. The

MLE of u is

- k(o ~ = T (a = =
P 2Berd e e || H[Sed it wo

i=L \_ j=1 i=1 \_j=1

where Z is approximate normal with the variance estimated by:
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VarA(ﬁ) = {i(icu '(Ei wLCiJ.IZ*(:iJT)flCij ﬂ :

i=1 \_j=1
Finding the MLEs for 2,...,2\ and I' is not easy work, a large amount of computations will be
needed to assess the result. If we make some assumptions on the forms of the matrices 2,..., 2

and I, we may get some explicit results for the MLEs. Consider the following assumptions:

Assumption 1. C;;, 2},..., 2, and I' are symmetric regular circulant matrices providing that
they commute with each other. Note that 2',...,2, and I" are also positive definite.

Assumption 2. X = O'iz[(l—pi)l +piJ], I' = o*[1-7)1 + 2], where 1+ (p-1)p, >0
and 1+(p-1z>0.

Assumption 3. 2; =X forall i =1,...,K.

Assumption 4. C; isa px p circular matrix forall i and j with p>2 and
Ci= (sij —tij)l +1;J.

Assumption 5. p=2.

The following proposition can be used to simplify the log likelihood function in (4.9) under

Assumption 4 stated above.

Proposition 4.1: Suppose C;; isa px p circular matrix for all i and j with p>2 and

C, =(s; —t,)1 +t,J. Then C = (a; —b;)I +b,J , where &; =s; +(p-1)t; ,

2
bij =25, +(p—2)tij ,and a; > by .

Proof:
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Since C, = (s, —t;)1 +t,J, C;; becomes

C2 = (s, —t)1+t,3 ][5y —t,)1 +t,3]= (5, —t,)2 1 +2(5, —t,)t,J +123°
— (5, —t,)2 1 +[2s,t, + (p-2)2]) = (&, —b,)1 +b,J,

where &; = Si? +(p —1)ti? >0, by =2s;t; +(p- 2)t§ ,and a; > b, . The proof is complete.

We should first expand the matrix & +C”FCUT- under the above Assumptions 1 - 3.

X +C,IC; =x+C,CiIr =X +C{I (4.12)
Furthermore, with Assumption 4, (4.11) becomes

o’[1-p)I +pJ]+CiJ? o’ [(L-7)1 +4]

=o’[(1- p)I + pI]+[(ay =) 1 +b,3]- @’ [(1- 7)1 +H]

—[o?(1- p) + & (1—7)(a; —b)]I + {02 p + w?[z(a, —b,) + A-7)b, + pdy, 1P (4.12)
—[0?(1- p)+ @’ (1-7)(8, —b))]1 +{o?p+ @[, + 1+ (p—2)7)b,1}J

=(A; —By)1 +B;J,

2 2 2
where &; =S +(p-1t; 20 , by =2st; +(p-2)tj, a; > b;, and

A =o’+a’[a;+(p-Dy] B, =0’ p+ o[y +1L+(p-2)7)b]. (4.13)
Also note that A; > B since a; > b, . Hence (4.11) can be expressed as a symmetric p by p
matrix with diagonals equal to A; and off-diagonals equal to Bj; as shown in (4.12). Therefore,
under Assumptions 1-4 we have (Graybill (1983), Theorem 8.3.4)
‘Zi +CijFCiJT" = ‘(A] - Bij)l + Bij‘J‘ = (A] - Bij)pil[Aj +(p_l)Bij]' (4.14)

and

1 B;
X +C. ICH* = I - ! J|. 4.15

Consider a special case that p = 2 (Assumption 5), (4.12) reduces to
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ij(2)

O'2+w2(aij+fbij) O-Zp+a)2(7:aij+bij) :[AJ(Z) Bij(Z)J
B Ai(z)

o’ p + o’ (7a; +1by) o’ + o’ (a; + ;)
where Ay, =0° +@’(ay + ;) and By, =0’ p+ o’ (my +by).
Thus, under Assumptions 1-5, we have from (4.14) and (4.15) that

T 2 2
‘Zi +CyICy ‘ = Aje ~ Biw

(4.16)
= o (1- p?) + 26202 |(1- pr)a, + (r - )b, |+ @' L—77)(aZ —b?)
and
B.
(& +C”FC‘Dl:;B{IZ_ A+ (p-DE Jz}
iy — B; o F(P— "
j(2) j(2) j(2) j(2) (4.17)
p=2 1 | 02p+a)2(zaij +by) 3
B o’(l-p)+@’(L-7)(a; -b)| * o’U+p)+o’*AL+7)(a; +b;) |

Note that ‘Zi +CijFCH >0Osince A, > B;.

Now we arrive at the following theorem. This theorem states the marginal log likelihood of

u, 2 and I' based on one-stage meta analysis of the random effect multivariate
heterogeneous means model. Inference about the overall core mean vector g for the k studies

can be obtained using the log likelihood stated in the following theorem.

Theorem 4.1: Under Assumptions 1-4, and &; = Si? +(p —l)ti? >0, b =2s;t; +(p— 2)t§ , the

corresponding likelihood of g, 2, and I" is

logL(u,2,T)
:—mlog(Zn)—lzk:ilog‘2+cul“€f‘
2 2455 o (4.18)
188 ;
—Egzl:(xij _Cij:u)T (2+CijFCi}-) 1(Xij —C;m),
i=1 j=
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where ‘2 +CijFCiJT- ‘ and (E +CijFCiJT. )_1 are stated in (4.14) and (4.15), respectively, and
n= Z; n, is the total number of observations. For the special case where p = 2 (Assumption 5),

the determinant and the inverse of the matrix X +CijFCi} & +CijFCﬂ and (E +CijFCi} )71 ,

are stated in (4.16) and (4.17) , respectively.

In the next subsection, a simulation study for finding the estimates of the unknown parameters

based on the marginal log likelihood function stated in Theorem 4.1 is investigated.

4.3.3  One-Stage Method — Simulation Study

The main purpose of this simulation study is to maximize the log likelihood function in (4.18)

with respect to the unknown parameters such that the inference for the overall core mean u can

be obtained using Quasi-Newton optimization method. In this simulation study, bivariate data

based on the marginal model

ind
X; ~ MVN(Cyp, 2, +C,IC} )i =1...k, j=1..,n

1] i

a; by

b.

are generated. C; is circulant with the form C;; = | +[ a
ij ij

J,where a; and bij are

independently generated from Uniform (-1, 1) distribution for each simulation study. We assume
X =Xforalliand X =c*[1—p)l + pI], I' = &*[1—7)1 +3]|. We also assume equal
sample size N, = N for all the k studies and consider four cases N = 5,10, 20, 40 for each of
the k studies.

Define the unknown parameter vector ¢ = (o, p,@”,7, 14, 18,) , where = (14, 14,)" . Let

the data of the k studies be generated based on the given true vector &, = (2,.1, 3,.5,10, 2)".

109



The initial guesses of the vector of parameter estimators which maximize the log likelihood

function in (4.18) are:

l9Guessl = "9

True

for the first simulation study, and

9

- iess2 = (20,0,6,0,1, 20)" for the second simulation study.

We shall see the impact of the two sets of initial guesses on the estimates of the parameters. It can
be seen from the left-hand column of Figures 5-8 about the behaviors of the parameter estimates
based on 100 generated data sets. Each graph of the right-hand column illustrates the boxplots

corresponding to the 100 sets of parameter estimates on its left. From the left-hand column of

Figures 5 and 6, we can see that the use of the true parameter vector &, as the initial guess

rue
produces more stable parameter estimates, while the use of second initial guess 3., produces
some estimates of parameter vector falling outside the main trail of most of the estimated
parameter vectors as seen from the left-hand column of Figures 7 and 8. Therefore our conclusion

about parameter estimates will be based on the results of the initial guess %

rue*

For each case of equal sample size for the k = 4 studies, 100 data sets are generated and each
of which is based on the same sets of C;; matrices generated from Uniform (-1, 1) distribution
stated previously. In the left-hand column of Figures 5 and 6, each line denotes the estimates for
the six parameters expressed as the vector form 9. When the equal sample size is 5, the estimates

look unstable and vary more dramatically than the estimates with larger equal sample size. This

can be seen from the boxplots of the estimates on the right columns. The estimates seem accurate

especially for the two elements of the overall core mean vector £, and 4, .

This simulation study is an introduction to application to meta analysis when we have

heterogeneous data and want to do inference for the overall core mean g of the k studies. We
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could use the same computational technique to deal with more general cases when necessary

without being subject to specific conditions.
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Figure 5: First simulation study using initial guess

l9Guessl = l9T

rue

=(2,.1,3,.5,10, 2)' for N = 5 and 10
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Figure 6: First simulation study using initial guess

'9Guessl = '9True

=(2,.1,3,.5,10, 2)’ for N = 20 and 50
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Figure 7: Second simulation study using initial guess

Fenesr = (20,0,6,0,1, 20) for N =5 and 10
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Figure 8: Second simulation study using initial guess

Gpeees = (20,0,6,0,1, 20) for N = 20 and 50
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

For multivariate estimating and testing procedures, one uses the sample mean of the data

X, X,, to estimate the population mean assuming, for example, that the given sample is from
a p variate normal distribution with mean g and covariance matrix X'; that is to assume that

the sample is a set of independently, identically distributed N (s, X) random vectors. When

testing H, : u = a1, , one uses Hotelling’s T ? statistic without doubts. These are standard

procedures for estimating and testing for the mean, while most of the time we obtain data that
violate the “identically distributed” assumption. Some known or unknown disturbances may exist
in the data which may be caused by specific mechanisms that are often neglected by analyzers.

When this situation occurs, a heterogeneous means model should be employed. If the standard
Hotelling’s T? procedure is adopted in this case to test H, : # = u,, one might expect that the

rejection probability would be quite high even if the data just suffer slightly disturbed noise.

To remedy the violation of assumptions of the data stated above, assume that each X,

follows N_(C;u,Z) distribution for i =1,...,n. The disturbance of the data can be structured by
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the matrix C, whichisa px p square matrix such that the vector g is meaningful. We name
the vector u the core mean. To further look at the model, we can assume that the square matrix

C, is known or unknown, fixed or random.

The current research deals with the case that C; is a known square matrix. When C, is
circulant for 1 =1,...,n and X has a compound symmetry structure, we can still do inference by

generalizing the Hotelling’s T *statistic.

The exact distribution of the ML estimator p of the intra-correlation is derived and it is
distributed as a function of F random variable. In addition, it is not unbiased in general, yet it is

unbiased when p is 0 and tends to be unbiased when p is close to —(p—1)"" or 1. So there is a
need to do bias correction on p when p # 0. As for the inference about the MLE of o’ 6% is

exactly distributed like sum of two weighted chi-square random variables. An approximate y? test

is also derived for testing H, : u = p,.

When extending the inference about the core mean for one sample case to comparing two
core means for the two-sample case, i.e. to testing H, : g, = u,, the test statistic has been
proved to be distributed as the random variable similar to the one in one sample case when testing
H, : # = p,. An approximate y’ test is also derived for testing H, : , = u,. When comparing
k core means g, i =1,...,k for k independent studies, the likelihood ratio test statistic for
testing H, : g, =...= p, has a null distribution which is analogous to the ones for one-sample

and two-samples cases.
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It is believed that the effect of commutability of the covariance matrix X and the C, play a
crucial role on the absence of the C; in the null distribution of the LRT statistic for testing

H, : u = u, for one-sample data and analogous effect for H, : g, =... = g, multi-sample data.

An application to meta analysis of the data from heterogeneous means models for k
independent studies is addressed. Some preliminary results are presented as well. Results are
synthesized from k studies, each study reports an estimate for the parameters of interest — the core
mean. The fixed effect model assumes that the true core mean vector is the same for the k
studies, so the ML estimator for the common core mean is obtained when the covariance matrix
for each within-study model is known. If the covariance matrix for each study is unknown, a
consistent estimator of the corresponding covariance matrix could be used to estimate the true

unknown one, so the inference for the common core mean can be done, for both general case and

the case that the covariance matrix for each study is compound symmetric and C, is circulant for

all i.

Two methods for random effects model are considered in the current research. The two-stage
meta analysis considers both the within- and between- study models. The within-study model
requires an estimate for the covariance matrix of the estimator of the core mean for each study,
which is assumed fixed and known in the resulting two-stage marginal model involving the
unknown common core mean and the unknown between-study covariance matrix. Unlike the
two-stage meta analysis model, the one-stage meta analysis using the individual participant data
(original data) to simultaneously do inference on the estimates for the common core mean and
both within and between studies covariance matrices. A simulation study for a special case of the
one-stage meta analysis is performed for finding the estimates for all the unknown parameters

based on the derived marginal log likelihood function.
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5.2 FUTURE WORK

For the future research, the case that the matrix C; is random will be the starting point
because it is more apt for real data. Consider the univariate case that X, | C, ~ N(C,z,5%),
where 4, o are unknown parameters, C, is random and C, ~ N(D,,v2), where D, and v?

are known. Then the marginal pdf of X, is

1 (% —Dw)?
f ) = R S I DAt A :
() \/E\/Vz,u2+02 exp{ 2(V2ﬂ2+0'2)}

that is, X, ~ N(D,, z*v? +c?) . Hence the marginal likelihood function is

L(w.o®) =TT, FO0)

and the corresponding log likelihood function is

> (% — D)’
20212 +0%)

log L(u,0%) = —%In[Z;r(vzlu2 +62)]—
on which the inference about x££ could be based.

When extending it to multivariate case, one would expect that a great amount of

computational calculation should be done when moving on to the general setting. The starting

point for this would be the case that C; are diagonal. Suppose that a sample X,,..., X,, is from
N, (C,u, X) distribution. Define X; = (X;;,..., X;,)", = (44, 11,)", C; =diag(cy,...,C;,)

, Where 2" is unknown , ¢; are independently distributed like a normal random variable, for

example, N(d,,v?), where v* is specified. Note that C,u can be re-parameterized by Qc;,

ij?

where © = diag (4,..., 14,) » € = (Cyy,..-,C;,)  @nd ¢ ~ N(d;,v?1) implying that

Oc; ~ N(©d;,v*®?) , where d, = (d,,...,d;))". Assume that the conditional pdf of X; | ©c; is
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N(®c/,X), then the marginal distribution of X; is N(®d,,v*®* + %) which can be used to

do inference for g . The general case when c;" is multivariate normal is working in progress.

a. .
For a special bivariate case, let C, = (bl '

i ai

) and assume that both &, and b, have a prior

distribution, for instance, a Uniform (a, b) distribution. In addition to the normal case, some other

continuous models like finite mixture normal models also will be considered in my future

research. Testing H, : g, = Gu, for two heterogeneous normal samples will also be my interest.
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APPPENDICES

Al

We need to show that

() trZAo_l_MZl(Xi —Cipto) (% —Ciptp)" = Mp , and

(i) tr£ 3 (x, ~C,)(x, ~C,4)" = Mp

First show (i). Based on theories of trace of a matrix, we have

Y 1 P M
tr2, S (X, — Copty) (X, —Cipay)" =1r - O J 13(% —Coup) (X, —Copp)'
0 Ei( i iHo) (X, iHo) 6‘02(1—,50)[ P 1+ (p-1p, p]igi( Ho)( Hy)
1 . ! :
= — U XX -Cu)(X, —C ) - N - S——trd > (% — Cip) (% — Cipap)
002(1_,00) =1 ’ i 002(1_/00) 1+(p-1)p, ‘i@ i i
1 ] 1 P W T
=———-2(X-Cu )" (X, —Cipo) — N N > (% —Ciy)" I, (X, —Cipp).
0-02(1_ Po) it ’ i O'o2 1= p) 1+ (p-Dp, 2 v i

Since from Section 2.2.2 we have

A2

0, —_—1 }M(x —Ciu,)" (X —C.p,)
0 Mpi=1 i ir”0 i irf0/1
and

M
1 | 200=Ciae) 3,06 ~Cim)

Po = M
p-1 E(Xi _Ciﬂo)T (X —Cimp)

-1{,
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we have
M T 2
E(Xi _Ci.”o) (Xi _Ci.”o):MpO'o )
and

M . .
E(Xi _Ci,”o)T J p(Xi -Cipy)= [1+(p—1)p0]|\/|p0'02.
A M
Therefore, tr2, > (X, —C, s, )(X; —C, u1,)" becomes
i-1

A M T
tr, i%(Xi —Cimo) (X —Cipy)
=%'M 502—@1 - Po__
Oy (1_,00) Oy (1_,00) 1+(p_1)p0
__Mp  Mpp,
(1-05) (A=)

[L+(p-1)5,Mp&,’

= Mp.

A M
Similarly, the identity tr> "> (x, —C, #)(X, —C,fi)" = Mp can be obtained in the same way.
i=1

A2

The likelihood ratio for testing H, : g = u, in (2.13) can also be expressed as

:[ [6° (- A" 6"+ (p-DA] ]
60" (L)1 60 T+ (P-D) 3]

Since we have from Section 2.2.2 that

. 1w
O_02 =M_pi§(xi —Cipo)" (X; =Ci).

M
1 ;l(xi _Ciﬂo)TJp(Xi -Cing)

IOO = -1 IiM T -1 )
P Ei(xi —Cipy) (X —Cipy)
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. 1 v N N
&* :_Z(Xi _Ci.”)T (X, =C;p),
Mp i=1
and

M
1 Z(Xi_ciﬁ)TJp(Xi_Ciﬁ)

/3= |:1NI -1 ,
P S0 —Cid) (x ~Ci)

Substituting the above expressions for o”-oz, Do s 62, and p into (2.13) we have
~2 ~ A2 A2 A 1w ANT ~
c°(l-p)=c"-c"p=—2(%-Ca) (x;-C;n)
Mp i=1
1 M AT A M AT .
I Z(Xi_CiIu) Jp(Xi_Ci/‘)_Z(Xi_Ciﬂ) (x; —C;n)
Mp(p-1)Li= =

1 M ANT _ ,\_M _ ANT _C i
= | PE 06 G (6 =€ =506 i) 3, 06, ~C.f)|

and

S+ (p-Dpl=6*+(p-D3&?p
1 M AT R
:_Z(Xi -Cip) (x,-C;p)
Mp|=l
1 M T . M T .
+_|:_Z(Xi —Cip) I, (% =Cp)-2(x; -Ciz)" (X _Ciﬂ)}
Mp i=1 i=1
_ L S —C )T (x —C. )
_Mpi:l [ i p A iM)
Likewise, we have
A2 n 1 d T v T
Oy CL_pO)ZM_p[pizi(Xi —Cimy) (X _Ci”O)_E(Xi -Cipy) J p(Xi _Ci.”o)}
and

. o 1w
002[1+(p_1)p°]:M_p£(Xi _Ci:uO)T‘]p(Xi —Ciuy)

Therefore the likelihood ratio test is to reject H if
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M M pP-1
P0G = C) (X, = Cy) = 50X, = CL 3,(X, ~Cifi) | 30X, = C.a" 3, (X, ~Cy)

<C

a*

M M iy
|:pi§1(xi _Ci:uO)T(Xi _Ci/‘o)_g(xi _Ciﬂo)TJp(Xi _Ciﬂo)} i:Zl(xi _Ci:uO)T‘Jp(Xi -Cipy)

A3

We need to show that
1 M AT o -1 A 1 N AT w -1 A
eXp[_Eiz‘i(Xi_Ci.”o) 2 (Xi_ciﬂo)_zjzzl(yj'_Djﬂo) 2 (yj_Djﬂo)j
1
=exp{—5(M +N>p},
and
1M A NT el N 1 A NT el ~
exp _EE(Xi_Ci/‘x) ) (Xi_Ci/‘x)_EjZ::l(yj_Djﬂy) > (yj_Dj'uy)
1
:exp{—E(M +N)p}.
Proof:

M . . N A .
;(Xi _Ci,”o)T 2, 1(Xi -Cipy) + _Zl(yj - Dj”O)T 2, 1(yj - Dj,”o)
i= iz

T

A M R T ~ 4N R R
=12, 1E(Xi —City) (% —Cipay) +1rz, ljZ_:l(yJ' - Djﬂo)(yj - Dj.”o)

A 4| M R Y . T
=2, I{E(Xi —Ciae)(%; —Cipp) + J_Z::l(yj —Dijsy)(y; —Dja,) }
1 P
=tr — —[I,- —J ]
(702(1—,00) P 1+(p-Dp, "

M A AT, n A \T
{E(Xi —Ci) (X —Cipp) + J_Z:l(yj - Dj”o)(yj - Dj,”o) }

1 M N N N N N
=72 - 'tr{Z(Xi =Ci0)(X; _Ci.”o)T + _Z(yj' - Dj”o)(yj - Djﬂo)T}
G-y A

1 s
G (L= py) 1+ (p-1) 2,

M N
-rd p{é(xi _Ci:[‘o)(xi _Ciﬁo)T + jz::l(yj' - Djﬁo)(yj - Djﬁo)T}

126



1 4 ~\T ~ N A NT ~
= " {Z(Xi_ci/‘o) (Xi_Ci”O)+Z(yj_Dj”O) (yj_DquO)}
&l a—py |3

1 ol i AT Ay AT -
_ _C. J (x —C. _D. J (v.-D.
6o (L-py) 1+ (p-1) 3, {E(X' o) 3y (% '”°)+12:1(y1 i#o) IV, ‘”O)}
1 .2 1 o) R .2
=—5—-(M+N)ps,” —— - o [i+(p-1)p,)(M +N)pé,
(702(1_100) ’ (702(1_,00) 1+(p—1),00 ’ °
_(MN)D (M ENPA
(1_/50) (1_/30)

Similar argument can be used when showing
1w A NT g1 ~ 1N A NT g1 ~
exXp _EE(Xi_Ci”x) >) (Xi_ciﬂx)_EE(yj_Dj”y) 27(y;-Dja,)

=exp{—%(M + N)p}.

A4

We need to show that
M T 1 N T l
E(Xi ~Cim) (1 _BJp)(Xi =Cittg) + E(Yj —Djuy) (1, _B‘]p)(Yj —Djn,)
M A AT 1 .
B E(Xi _Ci’uO) (1 P _EJp)(Xi _Ci.”o)
N A AT 1 .
+jZ::1(YJ_Di”0) (IP_BJp)(Yj_Dj”o)

+ (fy _ﬂo)T KiCiTCi +ZN_:DJ'T Dj](l p _%J p):l(.i‘o — M)

M N Y N
where i, {Zcﬁci +ZDjTDjj (Zcﬁxi +ZDJTYJ.].
i=1 = i=1 j=1

We first rewrite %(Xi —Ciu,) (1 o —EJ ) (X; —Cim,) as
i=1 P
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M AT 1 N
i:Zi(xi_ci:”o) (Ip_EJp)(Xi_Ci”O)

A T 1 u T A
+2(py — py) (Ip_B‘]p)ZCi (X;=Cia,)

+(a, - [ZC C J(I — 3,y — py).

Note that the last quantity is expressed so because C; and (I | —lJ ,) commute due to the fact
Y

that both of them are circulant matrices. Similarly, we have
N T 1 N AT 1 -
Zl(Yj —Djuy) (1, _BJp)(Yj —Dju,) = Zl(Yj —Djay) (1, _BJp)(Yj - Dja,)
= =

A T 1 N T A

+2(f— o) (1 P __Jp)z Dj (Yj - Djﬂo)

+(py — (ZD D; ](I —J )(.”o Ho)-

Therefore, we arrive at
306 ~Copo) (1, =2 300X, =Gyt + 304, = Dy (1, — 3,00, ~Dy)
=506~ Cuo) (1~ )X, ~Cyio)+ 101, =Dy (1, = 3,)0Y, - D)
+2(ﬁ0—ﬂ0)T(|p—%Jp)Hﬁcﬁxi+%Dijj]—(%cfci+DijTJﬁO}
+ (1, — [ZC C. +ZD Dj(l =J3.)(f, — mo)
:f;(xi—ciﬁofup—gap)(xi—ciﬁo)+_z_lm—Djﬁ(,)T(Ip—%Jp)(Y,-—D,ﬁo)

+ (i~ [ZC C+ZD Dj(l =3,) ity — o)
due to the fact that {Z‘C:Xi +Z DjTYj}—(ZCiTCi +D; DjT J[;O =0.

i=1 j=1 ji=1
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