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Preface

The activity of microorganisms exerts a substantial influence on the ever- 

changing conditions of the biosphere. Their small size, ubiquitous distribution, and 

potential enzymatic diversity impart an enormous collective ability for the recycling of 

elements and energy on the planet. Since the founding work of Winogradsky and 

Beijerinck, microbial ecologists have been concerned with describing the interactions of 

microorganisms with their biotic and abiotic surroundings. Often these investigations 

have taken the form of in situ approaches such as field studies as well as examination of 

complex microbial assemblages. In addition, microorganisms isolated from such 

environments have been subjected to intense laboratory analyses that are often used as a 

basis for predicting their ecological roles. However, the complexity of natural systems as 

well as limitations associated with laboratory studies place interpretational constraints on 

the information garnered by such endeavors.

The first two chapters of this dissertation address the quantitation of microbially 

catalyzed sulfate and hydrogen consumption occurring in situ. In Chapter 1 ,1 examine 

the in situ rate of sulfate reduction at various locations downgradient from the Norman 

landfill and investigate the factors that control the rate of this process. I propose that the 

decreased rate of sulfate reduction downgradient from the landfill is not due to the lack of 

a suitable inoculum, electron acceptor or donor availability, or the presence of an 

unknown inhibitory substance. Rather it was the diminishing quality of electron donor 

along the flowpath that negatively impacts the in situ rate of sulfate reduction. In 

sediments from the downgradient location, the addition of a heat-killed suspension of a
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sulfate reducing bacterium stimulated sulfate reduction by the same proportion as live 

cells. This result suggests that microbial inoculants can serve as a form of labile electron 

donor driving the very reaction the inoculant was intended to produce. This chapter was 

written in the format required by the journal Microbial Ecology.

Another process that is central to the global cycling of carbon and energy in 

nature is the ability of microorganisms to process the metabolic intermediate hydrogen. 

Hydrogen is a critical intermediate that is both produced and consumed by a variety of 

microorganisms during the oxidation of organic matter. In anaerobic environments, the 

continued oxidation of organic matter is contingent on the rapid consumption of 

hydrogen and subsequent maintenance at low levels. Thus, the rate of hydrogen turnover 

in aquifers reflects the metabolism of the total microbial community. Furthermore, 

intense competition for this electron donor exists among different trophic groups of 

microorganisms, necessitating an understanding of the factors that control the fate of 

hydrogen and the interactions among different hydrogenotrophic bacteria in anaerobic 

environments.

In Chapter 2 ,1 examine in situ hydrogen consumption kinetics in two 

contaminated aquifers, one at Cape Cod, Massachusetts, and the other at Norman, OK. 

Apparent first order constants were obtained from field tests and combined with steady 

state hydrogen determinations to calculate in situ rates of hydrogen turnover. Hydrogen 

consumption rates were proportional to the electron accepting regime as well as the level 

of contamination. This is the first report of in situ measures of hydrogen turnover. Given 

the central nature of hydrogen in microbial foodwebs, I propose that such measurements 

are useful to gauge how fast the food chain is functioning as well as assess the impact of
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stressors, such as a contamination episode, on microbial activities. In addition, hydrogen 

consumption in the laboratory exhibited kinetics that were very different from that 

determined in the field. Thus, laboratory assessments may be influenced by factors not 

present in the microoganisms’ natural environment, suggesting the results from such 

investigations should be interpreted with caution. This manuscript was written in the 

format required by the journal FEMSMicrobiology Ecology.

Chapter 3 investigates the factors influencing the fate of hydrogen and the 

interactions between acetogens and methanogens in pure culture. Acetogenic bacteria 

coexist with other hydrogen consumers in many environments, often in comparable 

numbers, although hydrogen consumption by acetogens is thought to be relatively 

ineffecient. In this chapter I describe a study of the factors influencing the outcome of 

hydrogen competition between these microorganisms as well as variables controlling the 

hydrogen threshold exhibited by the acetogen, Acetobacterium woodii. The hydrogen 

threshold could not be explained by a thermodynamic limitation as previously 

hypothesized. Rather the organisms simply were unable to consume hydrogen below the 

threshold concentration suggesting strict regulatory control measures as a function of 

hydrogen concentration. I further hypothesized that increasing the biomass level of A. 

woodii would confer a competitive advantage for this organism in coculture with a model 

methanogen, Methanospirillium hungatei JFl and kinetic simulations supported this 

contention. Hydrogen consumption rates were consistent with model predictions, but the 

fate of hydrogen in cocultures was not. Surprisingly, the presence of the acetogen 

stimulated hydrogen oxidation by the methanogen suggesting an amensalistic interaction 

exists between organisms belonging to different kingdoms {Archaea and Eubacteria).
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The factor responsible for the stimulation was heat-labile, and associated with the whole 

cells ofy4. woodii as well as membrane and cytoplasmic fractions but was not found in 

culture fluids. This manuscript was written for the journal Applied and Environmental 

Microbiology.

Appendix 1 was the result of a collaborative effort with my colleague Chetan 

Goudar who was responsible for the mathematical contribution and deveopment of the 

model. My contribution was to supply experimental hydrogen depletion data. I included 

this contribution in the appendix because it was this model that I used to analyze progress 

the curve data presented in chapters 1 and 3. This work details the implementation of an 

improved algorithm for obtaining solutions to differential rate expressions such as the 

Michaelis-Menten equation. This strategy represents a simplification of previous 

approaches that use a differential or nonlinear equation to solve the Michaelis-Menten 

equation via iterative estimation of Vmax and Km. This contribution describes the 

evaluation of a simple algebraic expression that provides relatively accurate estimations 

of kinetic parameters from progress curve data. Appendix 1 was written for the Journal 

o f Microbiological Methods. Appendix 2 includes an essay that describes the salient 

theory associated with nonlinear regression analysis as well as detailed instructions for 

preparing and analyzing progress curve data. A compact disc is included that contains 

the files required for kinetic parameter analysis as well as simulating the outcome of 

simple competition for a single substrate between two microorganisms. Thus, a 

researcher who desires to estimate Km and Vmax from substrate depletion data is provided 

with the necessary tools and background for making the best possible estimations. 

Software licensing aggreements do not allow me to include the MATLAB software

XV



package on the disc. The researcher is responsible for purchasing this software, which is 

readily available from The MathWorks, Inc., Natick, Massachusettes. A ftilly 

compatible, 30-day evaluation version is offered by The MathWorks, Inc. on their 

website, www.mathworks.com.
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Abstract

Information on in situ microbially-catalyzed reactions and the factors that 

influence those activities is required to accurately describe the transport and fate of both 

naturally occurring and contaminant forms of organic matter. While pure culture 

microbiological studies have provided insight on many phenomena, they are often 

difficult to extrapolate to more complex field settings. A combination of field and 

laboratory approaches proved useful for assessing differences in sulfate reduction rates at 

two locations in an aquifer contaminated by landfill leachate. The lack of activity in a 

downgradient location was not due to a deficiency in metabolic potential, sulfate 

availability, or quantity of dissolved organic matter (DOC). Rather, the quality of the 

DOC was such that it limited sulfate reduction at the distal site.

Given the importance of rate processes and the central role of hydrogen in 

anaerobic metabolism, comparable field methods were used to examine hydrogen 

turnover as an indicator of total community metabolism. Apparent first order rates in a 

number of redox zones in two aquifers differed by over three orders of magnitude and 

were negatively impacted by several environmental insults. Thus, such determinations 

have a necessary degree of sensitivity and may be an integrating gauge of in situ 

microbial activity.

Field determinations of the disposition of energy and materials ultimately depend 

on the interactions amongst microorganisms. The rate of hydrogen consumption by 

cocultures of Acetobacterium woodii and Methanospirillum hungatei could be described 

by a two-term Michaelis-Menten kinetic model, but the fate was consistently in favor of
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the methanogen. A heat-labile factor associated with whole cells, membranes, and 

cytoplasmic preparations of the acetogen was responsible for an amensalism between the 

organisms. This interaction allowed the methanogen to successfully compete for 

hydrogen even at cell densities that would normally preclude such activity. At low 

hydrogen concentrations, the threshold exhibited by A. woodii was independent of 

reaction thermodynamics as well as endproduct inhibition. Thus, hydrogen metabolism 

must be regulated by a mechanism different than previously hypothesized. Clearly, if 

such interactions are manifest in defined cocultures, it is reasonable to expect similar 

processes influence hydrogen metabolism in situ.
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Chapter 1

Changes in organic matter biodegradability influencing sulfate reduction 

in an aquifer contaminated by landfill leachate

Abstract

In situ experiments were conducted to measure sulfate reduction rates and identify 

rate-limiting factors in a shallow, alluvial aquifer contaminated with municipal landfill 

leachate. Single-well, push-pull tests conducted in a well adjacent to the landfill with > 8  

mM dissolved organic carbon (DOC) exhibited a sulfate reduction rate of 3.2 gmole SO4  

^*L sedimenf^*day ‘, a value in close agreement with laboratory-derived estimates. 

Identical tests conducted in wells located 90 meters downgradient where DOC remained 

elevated (> 3 mM) showed no detectable sulfate consumption and laboratory assays 

confirmed this observation. However, the rate of sulfate reduction in sediment samples 

obtained from this site were three times larger when they were amended with filter- 

sterilized groundwater from the upgradient location. The effect of various amendments 

on sulfate reduction rates was further examined in laboratory incubations using sediment 

collected from the downgradient site amended with ^^S-sulfate. Unamended sediments 

showed only weak conversion of the tracer to ^^S-sulfide (5 to 7 cpm/cm^), while the 

addition of Desulfovibrio cells increased ^^S-sulfide production to 44 cpm/cm^. 

However, the application of heat-killed Desulfovibrio had a similar stimulatory effect, as 

did a lactate amendment. Collectively, these findings indicate that the lack of measurable 

sulfate reduction at the downgradient site was not due to the absence of the necessary



metabolic potential, the presence of lower sulfate concentration, or the quantity of 

electron donor, but by its biodegradability. The findings also indicate that field 

bioaugmentation attempts should be interpreted with caution.

Introduction

The microbial decomposition of organic matter coupled with the reduction of 

sulfate is an important mechanism governing carbon and energy disposition in many 

anaerobic environments. In anoxic marine sediments up to half o f the total organic 

carbon is mineralized by sulfate reducing microorganisms [11,15]. Freshwater 

environments also harbor active populations of sulfate reducers that dominate carbon and 

energy metabolism even when sulfate concentrations are low [20,32]. Sulfate reducing 

bacteria utilize an impressive array of organic molecules and hydrogen to support their 

metabolic activity [1,10,18,28,33]. Often, electron acceptor availability is considered as 

a dominant factor controlling the activity of this group of organisms [12,16,19,29]. 

However, the distribution and supply of suitable electron donors can also be a critical 

variable affecting sulfate reduction. Indeed, electron donor supply exerts a powerful 

influence on microbial activities in a variety of environments [14,17,23,26]. In turn, 

microbial activities play a prominent role influencing physical and geochemical processes 

in aquifers [6]. Thus, organic matter degradation in contaminant plumes both depends on 

and contributes to the evolution of groundwater quality along aquifer flowpaths. 

Landfill leachate plumes typically demonstrate decreasing dissolved organic carbon 

(DOC) concentrations with increasing distance from the source [4,5,8]. Nevertheless, the 

distal portions of these plumes typically retain DOC levels that are diminished by only 

one-half to one-third of the concentration measured at the landfill source. For example, at



the Grindsted landfill, organic carbon concentrations were >6mM near the source and 

remained elevated at 60 m distance [27]. Thus, it is not unusual for elevated DOC levels 

to persist along aquifer flowpaths despite geochemical evidence of extensive microbial 

degradation.

We examined the influence of organic matter degradability on sulfate reduction 

along an aquifer flowpath. At an upgradient location near the landfill, in situ rates of 

sulfate reduction in the aquifer could be measured and even stimulated with formate in 

the presence of high (>8 mM) DOC levels in the groundwater. In contrast, sulfate 

reduction was not measurable in comparable assays conducted at a downgradient 

location, although DOC levels were still relatively high (~3 mM). Our results indicate 

that sulfate reduction rates in the more distal location are restricted by the 

biodegradability rather than the concentration of dissolved organic carbon in the 

groundwater.

Materials and Methods

Field Site. The study site is a closed municipal landfill occupying about 12 

hectares on the Canadian River Goodplain south of the town of Norman in central 

Oklahoma [3]. The alluvium consists of fluvial sediments 10-12m thick with a water 

table that is typically 1.5 to 2.5 m below land surface. Solid municipal waste was 

deposited at the site beginning in 1922 and continued unrestricted until 1985 when the 

landfill was closed and covered with local clay and silt. The landfill contains no liner or 

leachate collection devices. As a result, leachate emanating from the refuse comprises a 

complex waste stream that contaminates the local aquifer to at least 1.5 km from the base 

of the mound [7]. The aquifer is uniformly anoxic (02<5 pM) and iron reduction, sulfate



reduction and methanogenesis are important microbially catalyzed processes occurring at 

the site [3,8,12], Sulfate reduction was examined at two locations (identified as site 35 

and site 47 in figure 1). The upgradient site near the landfill (35) is characterized by high 

DOC, and low sulfate while the downgradient site (47) contains lower levels o f DOC and 

higher sulfate concentrations (Table 1). Each location has a series of wells located along 

a transect that is perpendicular to the direction of groundwater flow. This arrangement 

allowed us to conduct simultaneous push-pull tests in separate wells that intercepted 

zones of comparable groundwater geochemistry. The wells at each location had a single 

30 cm long screen located 3.7 m (site 35) and 1.6 m (site 47) below land surface.



Ce

iOOm

Groundwater 
flow direction

•  Push-pull test wells (distance between 
wells at each site was about 2m).

Figure 1. Map of the study area. Numbers refer to well sites along the groundwater 

flowpath. Site characteristics can be found at http .//csdokokl. cr.usgs.gov/norlan/.



Push-pull tests. Sulfate reduction rates were estimated using the push-pull test 

procedure [13]. This procedure involves injection of a test solution containing a reactant 

and conservative tracer into the aquifer. The solution is extracted while samples are 

taken for determination of reactant and tracer loss. Ratios o f extracted/injected 

concentrations (C/Co) are used to interpret reactant loss relative to that of the tracer, 

thereby correcting for dilution losses due solely to groundwater flow and to estimate in 

situ microbial activity. In this study, test solutions were prepared using 50 L of 

groundwater amended with sodium sulfate (0.3 mM at site 35; 70 pCi carrier-free 

Na2^^S0 4  at site 47) and sodium bromide (1.2 mM at both sites) as reactant and tracer, 

respectively. The solution was extracted from the test well into a plastic carboy and 

sparged with N2/CO2 (4/1) for 15 min prior to the start of each test. To start the tests, the 

test solution was injected into the aquifer using a peristaltic pump. Once the injection 

phase was complete, the solution was extracted from the same well periodically over a 

period of 23 days. In addition, some test solutions included added formate (20 mM) as a 

potential electron donor. During extraction, liquid samples (5 ml) were taken at discrete 

time intervals and analyzed by high-performance liquid chromatography (Dionex, 

Sunnyvale, CA) for sulfate, bromide, and formate.

We anticipated difficulty detecting sulfate reduction against the high background 

levels of sulfate at the downgradient location (Table 1). Therefore, we included 70 pCi 

Na2^^S-sulfate in the test solutions to provide a more sensitive means of assessing in situ 

microbial activity. The radiotracer allowed us to monitor the reduction of both injected 

^^S-sulfate and ^^S-sulfate. Furthermore, any ^^S-sulfate reduced during the test, would 

precipitate in the aquifer as stable iron sulfides and be subsequently quantified in the



laboratory via autoradiography (Instantlmager, Packard Instrument Co., Downers Grove, 

EL ) of intact cores obtained from the area impacted by the push-pull tests. The 

distribution of ^^S-sulfate and ^^S-sulfide was determined in unwashed samples. The 

unreacted ^^S-sulfate was then removed by an anoxic water wash to allow the 

determination of precipitated ^^S-sulfide in the sediment.

Sediment core collection. Sediment cores were collected with a Geoprobe 

sampling device, (Geotech, Inc., Salina, KS). Cores were flushed with N2 immediately 

after collection and transported to the laboratory where the samples were processed in an 

anaerobic glove bag.



constituent

well designation^

upgradient downgradient 
site 35 site 47

DOC (mM) >8 3.3
specific conductance (jxs*cm' )̂ 4990 5940
methane (pM) 396 45
sulfate (mM) 0.038 7.1
chloride (mM) 9.7 13.6
hydrogen (nM) 1.6 ND**
pH 7.0 6.9
oxygen (pM) <10 <10

DOC and specific conductance for site 35 and 47 are from [6] and Isabelle Cozarrelli, 
personal communieation, respectively.
’’ND, not determined

Table 1. Values of selected chemical and physical parameters from the well adjacent to 

the landfill (35) and the well located 90 meters downgradient (47).



Sulfate reduction activity in sediment. Filter-sterilized groundwater from the 

respective sites was used to supply soluble organic carbon to serve as electron donors for 

sulfate reduction in sediment samples. Serum bottle (160ml) incubations containing 50g 

of sediment as the inoculum and 75ml filter-sterilized groundwater were amended with 

sulfate (where necessary) to an initial concentration of 7mM. Sediment from near and 

distal sites were used in all possible combinations with filter-sterilized groundwater from 

the various locations. The bottles were sealed with butyl rubber stoppers and incubated 

under a N2/CO2 (4/1, latm.) headspace at 20°C in the dark. Sulfate depletion in slurries 

was determined by HPLC.

Electron donor amendments to cores. Sulfate reduction as a function of 

electron donor amendment was examined in sediment cores. Cores were transported 

within two hours of extraction and placed inside a N2-flushed glove bag where they were 

sectioned to produce segments (20 x 5 x 0.5cm) to be used in radioisotope experiments. 

Sulfate reduction was assessed by monitoring the conversion of ̂ ^S-sulfate to ^^S-sulfide 

on the surface of the core segments. The incubation was started by uniformly applying 

an anoxic sterile solution of 100 pCi of Na2^^SÛ4 in 15 ml water to the face of each core 

segment. The segments were incubated in gas tight containers in the dark at 20°C under 

a headspace of N2/CO2 (4/1) for 14 to 90 days. Once the incubation was complete, the 

core segments were washed with anoxic water to remove unreacted ^^S-sulfate while 

leaving the precipitated ^^S-sulfide unaltered. After the segments were washed, the 

distribution of ̂ ^S-sulfide was visualized by autoradiography. To investigate the effect of 

various amendments on sulfate reduction, core segments were prepared as above and 

subdivided into three sections of similar area. The first third was amended with lactate



by adding 5ml of a sterile lactate solution (10 mM) containing 33 |xCi ^^S-sulfate. 

Amendments that included washed preparations of Desulfovibrio G11 were prepared by 

centrifuging log-phase cells at 15,000 x g for 20 min. The cell pellet was resuspended in 

sterile anoxic water and centrifuged again. The cycle was repeated three times with fresh 

water to thoroughly wash media components from the cells. The final cell pellet was 

resuspended in 10 ml anoxic water and divided into two aliquots. The first aliquot was 

used as a live cell preparation; the second was boiled for 20 min to heat-inactivate the 

cells. Radiolabeled sulfate was added to each of these aliquots to a final activity of 33 

pCi. Then, 5 ml of each cell suspension (4.5 mg protein * mf^) was applied to the 

appropriate third of the core section. All amendments and cell manipulations were done 

in a Na-flushed anaerobic glove bag.

Results

In situ field sulfate reduction rates. Measured sulfate consumption rates in 

push-pull tests conducted at site 35, adjacent to the landfill (Figure 1) were ~ 3 pmole 

S0 4 ^*L sediment'^*day"\ Previous work indicated that sulfate reduction was an active 

microbial respiratory process occurring in the area [8,12,29]. The steady state dissolved 

hydrogen concentration in wells at this site was consistently 1.6-2.0 nM supporting the 

contention that sulfate reduction in this location was a dominant terminal electron 

accepting process [8]. The estimated rate determined in the push-pull test was similar to 

that observed in unamended laboratory incubations of intact core material obtained from 

the same depth (Figure 3). When two subsequent push-pull tests were conducted with 20 

mM added formate, sulfate consumption rates increased by a factor of about four to ~ 14 

pmole S0 4 ^*L sediment'^ *day‘‘ (estimated over the first 15 days of the tests). The

10



increased rate due to the presence of formate was comparable to that measured in 

laboratory incubations of material taken from near the water table (Figure 3).

11
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Figure 2. Microbial sulfate consumption at site 35 in push-pull tests amended with 

sulfate only ( • )  and in the presence of added sulfate and formate ( A  and ■). Sulfate data 

have been corrected for dilution via sodium bromide values.
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In contrast, measured rates of sulfate reduction in push-pull tests conducted at site 

47, located downgradient of the source (Figure 1) were not detectable. Breakthough 

curves for ^^S-sulfate and bromide were identical indicating that observed decreases in 

sulfate concentration were due simply to dilution as the injected test solution gradually 

drifted from the well (Figure 4A). Recoveries of ̂ ^S-sulfate and bromide were also 

nearly identical at 68.4% and 63.4%, respectively. Further, the addition of 20 mM 

formate did not stimulate sulfate reduction at this site even though this potential electron 

donor was consumed within 5d after injection (Figure 4B). In the formate amended test, 

recoveries of ̂ ^S-sulfate (79.2%) and bromide (80.7%) were almost identical. Sulfate 

reduction was also not detected in laboratory incubations. Although the residual 

radioactive signal was uniformly distributed in samples of cored material (data not 

shown) indicating that injected ^^S-sulfate from the push-pull test contacted the portion of 

the aquifer sampled. There was no evidence of the accumulation of ̂ ^S-sulfide. These 

findings confirm that little or no sulfate reduction occurred at the site distal from the 

landfill despite ample concentrations of sulfate and DOC (Table I).
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Figure 4. Breakthrough curves of sulfate (•), bromide (o), and formate (■) in an 

unamended (A) and formate-amended (B) push pull test at the downgradient location 

(sited 7.)
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Sulfate reduction activity in cores. Possible explanations for the lack of sulfate 

reduction at the downgradient site include the lack of organisms with the necessary 

metabolic potential, the presence of an inhibitory substance, and the lack of suitable 

electron donors. To explore these possibilities in more detail, laboratory incubations 

were conducted using sediment cores collected from this site. Results showed only a 

sparse distribution of sulfate reduction activity in the core segments despite incubations 

of up to seven weeks (data not shown). For example, a core taken from the downgradient 

site and incubated for 90d in the presence of ^^S-sulfate showed little overall sulfate 

reduction (Figure 5). The small amount of activity that was noted was spatially localized 

(Figure 5). The same core was subsequently divided into three subsections and 

supplemented with lactate (10 mM), an inoculum of Desulfovibrio G il (22.5 mg 

protein), or a heat-killed treatment of the same organism. After a 17d incubation, the 

core segments were assayed again (Figure 5). The presence of a suitable inoculum was 

ensured by the addition of live Desulfovibrio to the core segment and this treatment 

resulted in a 9-fold increase in sulfate reduction. However, the heat-killed preparation as 

well as the lactate amendment stimulated sulfate reduction to a comparable degree 

(Figure 5). The stimulation in sulfate reduction by both the live and heat-killed cell 

treatments suggested that the former served largely as an equivalent nutritional augment. 

We questioned if the live inoculum was capable of sulfate reduction in the core or if 

microbial activity was affected by an unknown inhibitor. The ability of the cells to 

reduce sulfate was confirmed in incubations of twice-autoclaved sediment (5 g) with live 

inoculum (1 ml of a washed cell suspension, 4.5 mg protein/ml). Sulfate was consumed 

(>2 mM) in these incubations and the sediment turned black in a few hours (data not
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shown). The addition of heat-killed Desulfovibrio G il  (1 ml of the same cell suspension, 

boiled) to twice-autoclaved slurries did not result in sulfate depletion or a black 

precipitate.
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Figure 5. Sulfate reduction activity distributions in a core segment incubated with ^^S- 

sulfate and amendments of lactate and Desulfovibrio preparations. Image A represents 

sparse distribution of ̂ ^S-sulfide in an unamended core segment incubated for 90 days in 

the presence of radiolabelled sulfate. Image B is the same segment analyzed immediately 

after lactate, ^^S-sulfate, and Desulfovibrio amendments showing uniform distribution of 

the radiotracer. Image C is the same segment after 17 days of incubation and represents 

precipitated ^^S-sulfide remaining after unreacted ^^S-sulfate was removed by washing.
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Effect of groundwater quality on sulfate reduction. We examined the ability 

of filter-sterilized groundwater from either the upgradient or downgradient site to supply 

electron donors for sulfate reduction in an additional series of laboratory incubations. 

Combinations of sediment and groundwater from site 35 consumed sulfate at the fastest 

rates, designated for comparative purposes as 100% (Figure 6). The activity was 

diminished to only 18% when groundwater from the distal site was used as the source of 

electron donor. The diminished rate was similar to the 19% value observed in 

incubations prepared using sediment and groundwater from the distal location. 

Groundwater from near the landfill was able to enhance the sulfate reduction rate by the 

organisms in the downgradient sediments to about 59%.
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Figure 6. Sulfate reduction rates in sediment slurries at saturating (5mM) sulfate 

concentrations and in the presence of different groundwaters as potential electron donor 

sources. Slurries containing sediment and groundwater from the upgradient site 

consumed sulfate at the highest rate (156nmole S0 4 °*g wet wt.'^*day'^) and were 

designated as 100%. Rates for the other treatments are relative to 100%. The values are 

the means of triplicate incubations +/- standard error.
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We considered whether the presence of an unknown inhibitory substance in 

downgradient groundwater reduced the level of activity in the samples. However, this 

did not appear to be the case. If sediment from near the landfill was incubated with no 

addition of groundwater, we would predict a sulfate reduction rate of only about 8% of 

the maximum observed in Table 1 (based on the residual amount of water in the 

sediment). However, addition of downgradient groundwater resulted in a rate of about 

18% , more than twice the expected level in absence of water from the distal site. 

Therefore, the presence of an inhibitor could not explain the reduced rate observed when 

groundwater from the distal site was used.

We examined the ability of hydrogen and formate to serve as potential electron 

donors for sulfate reduction in lab incubations (data not shown). Sulfate reduction was 

not stimulated by either potential electron donor in incubations using sediment from the 

upgradient site. In contrast, sulfate reduction in sediment from the distal site was 

stimulated by a factor of five in the presence of added hydrogen; and by a factor of two in 

the presence of added formate. In the presence of added formate, a small amount of 

methane was produced in slurries from the downgradient site. However, sulfate 

consumption, methane, and acetate production accounted for <10% of the formate that 

was consumed, suggesting an alternate fate for formate exists at this site, a result that was 

consistent with the field observations (Figure 2).

Discussion

Endogenous electron donors in the sediment/groundwater closest to the landfill 

supported measurable in situ rates of sulfate reduction (Figure 2). However, these rates 

could be increased by the addition of a labile electron donor like formate. Presumably,
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the stimulated effect observed in field tests was due to the proliferation of formate 

utilizing sulfate-reducing bacteria. This rate is comparable to those obtained in laboratory 

incubations using sediments from near the water table (1.5m depth. Figure 3) where the 

increased rates are supported by higher sulfate concentrations that result from seasonal 

oxidation of iron sulfides [29].

Sulfate reduction was not detected in field tests conducted at the downgradient 

site regardless of formate amendment [Figure 4]. Dissolved oxygen concentrations were 

uniformly low throughout the tests, indicating that aerobic conditions were not the reason 

for the lack of sulfate consumption. In addition, the lack of activity was not due to 

sulfate limitation, as the concentration of this anion remained nonlimiting during the 

course of the push-pull tests. One explanation for the lack of sulfate reduction in push- 

pull tests at the downgradient site was competition for formate by microorganisms other 

than sulfate reducers. Although sulfate consumption was not detected, added formate 

was rapidly degraded over the first 5d of the test indicating the presence of an active 

microbial community capable of metabolizing this compound. Similar to field results, 

added formate was rapidly consumed in slurries from the downgradient site but resulted 

in only a slight increase in the sulfate reduction rate (data not shown). After determining 

an electron balance in the slurries, less than 10% of the consumed formate was accounted 

for by sulfate reduction, methanogenesis, and acetogenesis further suggesting an 

alternative fate for formate exists at this site.

It is unlikely that it is merely the concentration of DOC that limits sulfate 

reduction at the downgradient site. The level of DOC near the landfill mound is 

relatively high (>8 mM) and at least as high as that measured in other contaminated
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aquifers including those polluted with landfill leachate [2,5,22,24], and at least an order 

of magnitude higher than that typically found in aquifers upgradient from landfills 

[5,27,29], In slurries from the Grindsted landfill, microbial iron reduction could not be 

stimulated by additions of amorphous iron hydroxides alone, despite the presence of 

comparably high DOC levels in the leachate [21], However, iron reduction was 

stimulated in the presence of acetate. These results are similar to those obtained in this 

study suggesting that the relatively recalcitrant nature rather than the quantity of electron 

donor is the primary factor limiting the rate of sulfate respiration. Dissolved organic 

matter emanating from the Norman landfill has been fractionated and examined 

previously [24]. The hydrophobic fraction was found to contain primarily highly 

branched, cyclic aliphatic compounds that likely represent sizing agents released during 

the biodégradation of cellulose from paper. Less refractory organic matter such as 

polysaccharides, cellulose, and proteins were either not detected or present at very low 

levels. Presumably, these compounds are present in the refuse deposited in the landfill 

but are degraded rapidly, leaving the more recalcitrant molecules to migrate 

downgradient to the sampled area. Thus, the high degree of aliphaticity of the leachate 

organic matter along with the lack of more labile carbon structures is consistent with the 

inability of the DOC fraction to support maximum rates of sulfate reduction. Moreover, 

DOC at the downgradient location (3.3 mM) is still 13 times higher than background 

concentrations [29]. If dilution were a significant factor in attenuating DOC levels along 

the flowpath, we would expect the concentration of other dissolved constituents to 

approach those found in background water. However, chloride and specific conductance 

determinations at the downgradient site remain three-times higher than background levels
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[29] and are not diminished relative to the upgradient site (Table 1), indicating that 

dilution alone cannot account for the decreased DOC concentrations along the 90m 

flowpath. These results suggest that microbial activity is responsible for decreasing 

organic matter concentrations along the flowpath. Indeed, several microbial processes 

have been detected in the aquifer that can contribute to the degradation of DOC along the 

groundwater flowpath [8]. Nevertheless, substantial amounts of DOC persist even at a 

distance of 90m from the landfill. We hypothesize that microbial degradation along the 

flowpath results in a diminished biodegradability of the DOC such that sulfate reduction 

is limited by electron donor at the distal site.

To further elucidate factors limiting sulfate consumption downgradient from the 

landfill, radiotracer experiments were done in cores from the distal site (Figure 5). The 

ability of lactate, as well as a heat-killed preparation o îDesulfovibrio to stimulate sulfate 

reduction indicated the lack of a suitable inoculum was not the reason for the lack of 

activity in the core. Active populations of sulfate reducing bacteria are clearly present in 

the sediment, but their activity could only be realized if they were supplied with a more 

labile form of electron donor. Moreover, this electron donor limitation could be supplied 

by lactate or a heat-killed cell preparation.

To further explore the lack of activity at the distal site, the ability of filter- 

sterilized groundwaters to support microbial sulfate consumption was examined in 

slurries that were replete with this anion. These experiments demonstrated the presence 

of active sulfate reducing microorganisms in the sediment from both sites sampled when 

groundwater from near the landfill supported relatively rapid rates of sulfate consumption 

whether the inoculum source was sediment from either site [Figure 6]. Thus, despite the
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obvious presence of a capable sulfate reducing community in these sediments, their 

activity was diminished to similar levels as the result of the inferior biodegradability of 

electron donor supplied by groundwater from the distal site.

These results are especially interesting in the context of using bioaugmentation to 

stimulate in situ bioremediation in contaminated aquifers. Several studies have examined 

microbial inoculation as a strategy to remediate contaminated aquifers [9,25,30]. 

However, in addition to acting as a catalytic entity, the microbial inoculant can also serve 

as a labile source of electron donor. Indeed, microbial inoculation experiments 

demonstrate various degrees of success, in part because of the lack of survival of the 

injected microorganisms [31]. The inactivation and subsequent lysis o f inoculated cells 

would provide a rich source of electron donor in the form of cell debris. This electron 

donor then becomes available to the native microbial community driving the catalysis of 

various processes that may include the very transformation the original inoculation was 

intended to produce. This is illustrated by the control treatment in Figure 5 where the 

heat-killed preparation of Desulfovibrio is included. A similar control containing an 

inactivated cell preparation is also necessary in field studies where microbial inoculation 

is employed as a remediative strategy. However, this type of treatment is seldom carried 

out and thus, the true nature of the contribution made by the microbial inoculant is not 

clear.

In summary, the lack of sulfate reduction at the distal site was not due to a lack of 

a suitable inoculum, sulfate limitation, the presence of an unknown inhibitory substance 

or the DOC quantity. Rather the results are more consistent with a limitation in DOC 

biodegradability.
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Chapter 2

In situ hydrogen consumption kinetics as a potential measure 

of subsurface microbial activity

Abstract

Rates of microbial hydrogen consumption were estimated from field tests 

conducted in two contaminated aquifers (Norman, OK and Cape Cod, MA) under various 

electron-accepting conditions using injection/withdrawal tests amended with hydrogen 

and a conservative tracer. In situ rates determined from first order constants varied by 

over three orders of magnitude from 0.002 nM*hr'^ for an aerobic interval to 2.5 nM*hr'* 

for a sulfate-reducing interval. Despite this range, the method could easily be adjusted to 

accommodate the variation in rates that existed between the sites. Comparable 

determinations in sediment slurries exhibited hydrogen consumption kinetics that differed 

from field estimates. Thus, microbial activities measured in the laboratory may be 

influenced by factors not present in situ. In a denitrifying zone the rate of hydrogen 

oxidation was 0.02 nM*hr'V However, the presence of air or an antibiotic mixture 

immediately abolished hydrogen consumption in this zone, suggesting that these 

measurements may be useful to gauge the effect of environmental insults on field 

microbial activities. These results reflect the relative ability of the resident 

microorganisms to process hydrogen coupled to several different electron acceptors. 

Anaerobic degradation of organic compounds relies on rapid consumption of hydrogen 

and subsequent maintenance at low levels. Thus, in situ measures of hydrogen turnover
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potentially reflect the rate the microbial food chain is functioning, including the rate of 

organic matter degradation.

Introduction

Hydrogen is an important intermediate being both produced and consumed by a 

wide variety of microorganisms during the decomposition of organic matter. In 

anaerobic environments, the thermodynamics associated with many bioconversions is 

regulated by the concentration of hydrogen [1]. For the same reasons, the transport and 

fate of many contaminants in the environment is also influenced by the partial pressure of 

hydrogen. Organisms dominating the consumption of hydrogen influence the redox 

status of the environment, which in turn influences the rate and extent of organic matter 

degradation. Thus, the rate of hydrogen turnover in the environment reflects the rate the 

microbial food chain is functioning. Furthermore, field measures of hydrogen turnover 

can assess the impact of contaminant chemicals on the normal functioning of microbial 

communities. Since hydrogen is a crucial intermediate that can be turned over rapidly 

and likely serves as the primary electron donor in many environments [2-5], a great deal 

of effort has been expended to appreciate the factors governing the bacterial consumption 

of hydrogen in the environment.

Most attempts at understanding hydrogen metabolism in nature are based on 

consumption kinetics exhibited by pure cultures of hydrogenotrophic bacteria cultivated 

in the laboratory [6-9]. Such studies have successfully described the competition for 

hydrogen as an electron donor supporting the metabolism of various hydrogenotrophs 

[10-12]. Sophisticated models employing Michaelis-Menten or Monod growth
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parameters, threshold considerations, and thermodynamic constraints have all been 

proposed [13-16] to describe hydrogen consumption between defined mixed cultures 

under various redox conditions. While such studies have provided insight on hydrogen 

consumption by pure or defined mixed cultures of bacteria, they are often of restricted 

utility when applied to more complex environments. For instance, a strict competition 

for a limiting resource is rarely the only microbial interaction influencing the hydrogen 

status in complex environments. Similarly, various hydrogenotrophs exhibit threshold 

concentrations below which hydrogen consumption, while thermodynamically feasible, 

ceases [7,8,11,17,18]. Unlike pure culture studies, hydrogen is typically consumed to a 

steady state concentration in the environment that reflects the predominant terminal 

electron accepting process. Under these conditions hydrogen production is balanced by 

consumption, although the absolute level of hydrogen is kinetically controlled [19]. To 

our knowledge the prospect of a true threshold, as defined by Conrad, 1994 has not been 

observed in any environmental sample.

The study of hydrogen consumption by microbial assemblages has revealed 

several phenomena that would not otherwise be evident with pure culture investigations. 

For instance, thermodynamic constraints associated with hydrogen consumption under 

different redox conditions help to restrict the distribution of specific microorganisms to 

areas where they can harness biologically usefial energy [21-23]. A study of hydrogen 

kinetics in soil slurries led to the postulation of a role for ahiontic hydrogenases that 

exhibit kinetic parameters far different from any known pure culture hydrogenotroph [24- 

25]. As noted, a steady state hydrogen concentration is readily observed in 

environmental samples [20,22]. Although the assumption of steady state may not always
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be the case in situ [21], such measures have proven to be a better indicator of the 

predominant electron accepting conditions than more traditional redox determinations 

[19,26].

Similarly, it might be expected that an examination of hydrogen consumption in 

the field would more accurately reflect in situ microbial activities that would otherwise 

be difficult to discern through laboratory investigations. While the steady state hydrogen 

concentration is consistently measured in field investigations and interpreted relative to 

the dominant terminal electron accepting conditions in an environment (19,21,26-30, this 

study], such determinations are independent of the rate of hydrogen production and 

consumption and therefore do not assess the dynamics of microbial activity. Based on 

the central nature of hydrogen as a metabolic intermediate, field measures of hydrogen 

turnover have the potential to assess in situ microbial activity and thereby serve as an 

indicator of total community metabolism. In situ hydrogen consumption determinations 

have the advantage of capturing the dynamics of the microbial food chain, thus providing 

a valuable augmentation to current assessments of field microbial activities.

In this study in situ hydrogen consumption rates were measured using single well 

injection tests under several terminal electron-accepting conditions in two contaminated 

aquifers. Microbial hydrogen consumption was observed under aerobic, as well as 

nitrate-, iron-, and sulfate-reducing conditions and in the presence of different types of 

contamination. In situ rates calculated from the first order constants and corresponding 

steady state hydrogen values varied by over three orders of magnitude suggesting that 

such determinations have a needed degree of sensitivity to assess total microbial activity 

in the field. Quantitative descriptions of subsurface microbial activity to process a key
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metabolic intermediate like hydrogen will help assess the influence of contaminating 

materials on the functioning of these ecosystems and gauge the potential impact of 

remedial efforts.

Materials and Methods

Site descriptions. The Norman landfill and Cape Cod sites are described in detail 

elsewhere [31-33]. The Norman site is a closed municipal landfill occupying 

approximately 12 hectares on the Canadian River alluvium in central Oklahoma, USA. 

The alluvium is 10-12 meters thick with a water table that is typically 2 meters below 

land surface. Solid waste was deposited in the landfill beginning in 1922 and continued 

until 1985 when the site was closed and covered with local clay and silt. There were no 

restrictions on the material deposited in the landfill and no liner or leachate collection 

devices were used. As a result, the leachate emanating from the refuse comprises a 

complex waste stream that permeates the thickness of the aquifer to approximately 1.5 

km from the mound. Recent geochemical surveys of the groundwater show uniformly 

low levels of O2 (<5 pM) throughout the plume [32]. The interval examined in this study 

intercepts a zone where microbial sulfate reduction is an important redox process and 

contains some of the highest levels of dissolved organic carbon (DOC), ferrous iron, 

ammonia, and chloride measured at the site [31,32].

The Cape Cod site is a freshwater sand and gravel aquifer, located near Falmouth, 

Massachusetts that has been contaminated by the disposal o f treated sewage onto rapid 

infiltration sand beds for more than 60 years. This has resulted in a groundwater 

contaminant plume that is more than 5 km long, 1 km wide and 30 m deep [33]. The
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contaminant plume, which is characterized by steep vertical concentration gradients [34], 

contains high concentrations of nitrate (>1 mM) and moderate concentrations of 

dissolved organic carbon (50-400 pM), most of which is relatively refractory [35]. 

Denitrification and iron reduction are the dominant electron accepting reactions known to 

occur at the site [36,37], In 1995, sewage disposal at the Cape Cod site was discontinued. 

Concentrations of nitrate, DOC and other constituents have decreased, but remain 

elevated, while oxygen gradients remain essentially unchanged, even at the infiltration 

beds where the plume originates.

In  situ hydrogen consumption determinations. In situ hydrogen consumption 

rates were estimated by injecting hydrogen dissolved in local groundwater and 

interpreting its loss relative to a conservative tracer, sodium bromide. At Norman, rates 

were estimated using the push-pull test procedure [38]. This procedure involves 

preparation of an injectate solution by constantly flushing a reservoir of groundwater with 

a compressed gas mixture containing 10% CO2 and a ratio of H2/N2 that was adjusted 

depending on the desired dissolved hydrogen concentration. The reservoir was fitted 

with a vented cap and commercial aquarium stones were used to allow for continuous 

sparging of groundwater and dissolution of gases and bromide in the injectate. The 

injectate contained either 2.5 or 150 pM dissolved hydrogen and 1.2 mM sodium 

bromide as required.

At Cape Cod, the injectate was prepared by pumping groundwater into a gas- 

impermeable bladder (100 L) that had been fitted with ports through which injections of 

gaseous as well as dissolved components were made. The bladder was flushed with N2 

and purged seven times before addition of 15 L N2 and 15 mL H2 . Sodium bromide (10.3
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g) was then added from an anoxic stock solution. In the denitrifying zone at Cape Cod, 

efforts were made to assess the impact of stressors by adding the antibiotics streptomycin 

(20 g) and ampicillin (10 g) or an air headspace to the injectate. The bladder was taken to 

the field site and filled with 80 L of groundwater. The gases in the headspace were 

allowed to equilibrate with groundwater in the bladder by gentle mixing. Then, the 

headspace was vented and the solution was injected directly into the well from which it 

was extracted.

Upon incubation in the aquifer, the tracer clouds were periodically sampled from 

the same well. Samples were collected by peristaltic pump and placed in He-flushed 

vials where hydrogen was allowed to equilibrate between gaseous and liquid phases. At 

Norman, hydrogen in the vial headspace was measured in the field within a few minutes 

of sampling, although the levels did not change if the vials were stored on ice for up to 24 

hr, which was the procedure for bromide determinations. In the Cape Cod tests the vials 

were placed on ice and analyzed for hydrogen within 24 hr. Bromide was determined 

with a high pressure liquid chromatograph equipped with a conductivity detector (Dionex 

Corporation, Sunnyvale, CA). Hydrogen was determined on a gas chromatograph 

equipped with a mercury vapor detector (Trace Analytical, Sparks, MD). Apparent in 

situ rates were estimated from breakthrough curves of hydrogen and bromide.

Decreasing bromide concentrations during extraction were attributed to abiotic processes 

such as dilution and dispersion. Thus, in tests where bromide concentrations decreased 

during extraction, such values were used to correct hydrogen levels for abiotic loss and 

generate apparent rates of microbial hydrogen consumption. In tests where bromide 

values were unchanged throughout the extraction (no abiotic loss), in situ rates were
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estimated directly from hydrogen loss data. Steady state dissolved hydrogen 

concentrations were determined by the gas stripping method [39] and combined with first 

order rate estimates to gauge in situ hydrogen turnover.

First order rates from in situ tests were normalized to the volume of aquifer so 

comparisons to laboratory measurements could be made (see Discussion). These 

calculations were done based on the porosity of each aquifer (0.40 at Norman, 0.39 at 

Cape Cod).

Laboratory experiments. Slurries of sediment and groundwater were 

constructed to compare hydrogen consumption in the laboratory to results obtained in the 

field. Sediment was obtained from the same areas as the field tests and incubated at in 

situ temperatures (15°C for Cape Cod and 19°C for Norman). Sediment (100 g) and 

groundwater (80 mL) from Cape Cod were incubated in 150 mL Erlenmeyer flasks while 

the same materials from Norman (50 g, 75 mL) were incubated in 160 mL serum bottles. 

The incubations contained latm. N2/CO2 (4/1) in the headspace, to which 0.01 to 3 mL of 

hydrogen was added at the start of the assay

Analysis of hydrogen turnover. At low initial hydrogen concentrations, first 

order rates were determined from the in situ hydrogen depletion curves. At high initial 

hydrogen concentrations, hydrogen depletion exhibited zero, mixed, and first order 

decay. Such curves are amenable to nonlinear regression analysis for the estimation of 

apparent kinetic constants as well as rate determinations [40]. These parameters were 

estimated from progress curve data by nonlinear least squares analysis using a computer 

model based on the Michaelis-Menten equation [41].
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Results

In situ microbial hydrogen consumption. In situ hydrogen consumption rates 

were estimated in two aquifers where either oxygen, nitrate, irori(iii), or sulfate served as 

the predominant electron acceptor. Within a sulfate-reducing zone at the Norman, OK 

site, substrate loss at saturating concentrations of hydrogen (150 pM), occurred at a rate 

that was faster than that of sodium bromide (Figure 1 A). This is indicative of biological 

hydrogen consumption. Hydrogen data were corrected for dilution via sodium bromide 

values to reveal an in situ consumption rate that was constant over the first 0.5 hr of the 

test, consistent with a zero order rate process (Figure IB). As hydrogen was depleted, the 

rate began to decrease and eventually transitioned to a first order process. Estimates of 

the kinetic constants derived from the entire progress curve suggested an apparent Km and 

Vmax of 3.48 pM [± 5.24] and 182 pmol*L sediment'**hr‘* [±24], respectively. However, 

nonlinear regression analysis suggested the first order rate deviated from that predicted 

by Michaelis-Menten kinetic theory. Rather, there was an alternate first order rate 

constant (1.3 hr'*) that was slower than model predictions and persisted until the end of 

the incubation (Figure 1C). This first order estimate was comparable to the value 

calculated from a replicate test at this site using lower initial hydrogen concentrations 

(1.2 hr'*; Figure 1C, Table 1).
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Figure 1. A: Breakthrough curves of sodium bromide (• )  and hydrogen (■) during an in situ test under 

sulfate reducing conditions at the Norman landfill site. B: zero, mixed, and first order hydrogen 

consumption after correcting data in plot A for abiotic loss via sodium bromide values. Plot C; Ln- 

transformed hydrogen values (■) from plot B illustrating deviation from model predictions (—-) in the first 

order region of the progress curve and results from a replicate test (♦) begun with a lower initial hydrogen 

concentration.
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Hydrogen consumption at the Cape Cod site was slow relative to Norman and 

occurred with little or no abiotic loss, as evidenced by consistent bromide concentrations 

throughout a test in the iron reducing zone (Figure 2A). Hydrogen was consumed over a 

10 hr period in two different iron reducing zones at Cape Cod. Although the areas 

interrogated by these tests were separated by 120 m, the first order rate constant for both 

tests were comparable (0.18 hr'^; Figure 2B). The iron reducing interval at Cape Cod is 

spatially distinct from another zone in which nitrate reduction is the dominant redox 

process. The first order rate constant derived under denitrifying conditions at Cape Cod 

was 0.05 hr'* (Figure 2C). In a shallower, less contaminated aerobic zone, the first order 

rate constant was only 0.01 hr'* (Figure 2D).

These first order rate constants were combined with measured steady state 

hydrogen concentrations to estimate in situ rates of hydrogen turnover. Rates determined 

in this way ranged from 0.002-0.02 nM*hr'* at Cape Cod and 2.52 nM*hr'* at Norman 

(Table 1).
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Figure 2. Hydrogen consumption curves from in situ tests illustrating apparent first order rates under 

the various electron-accepting conditions. A: Bromide ( • )  and hydrogen (■) breakthrough curves in 

an iron-reducing interval. B: In-transformed hydrogen depletion data from replicate tests in two iron 

reducing zones separated by 120m. C: In-transformed hydrogen depletion data from tests conducted 

in a nitrate reducing zone and amended with H% only (•), H2 in air (A), or with H2 and 

streptomycin/ampicillin mixture (■). D: In-transformed hydrogen depletion in an aerobic zone.

40
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e- acceptor 0 2 N O ] S O 4

0.1 0.2 0.05 >8

55-100 146 150-260 4990

0.01 0.05 0.18 1.2

0.2“ 0.4“ 0.1“ 2.1

0.002 0.020 0.018 2.52

-237 -224 -50 -38

DOC (mM)

specific 
conductivity 

(p.S*cm‘)

k, (hr-‘)

steady state Hz 
(nM) 

in situ rate 
(uM*hr 1)

AG°’
(kJ/mol Hz)"

“from R. Jakobsen, unpublished data
*’from Lovley and Goodwin, 1988 and references therein

Table 1. Summary of hydrogen consumption rates, geochemical parameters and thermodynamics 

as a function of the predominant electron-accepting processes active within the groundwater 

zones examined in this study.
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Impact of stressors on in situ hydrogen turnover. We hypothesized that the in 

situ hydrogen consumption rate was a sensitive measure of microbial community activity. 

To test this hypothesis, the influence of various amendments were examined in the 

denitrifying zone at the Cape Cod site (Figure 2C). A mixture of the antibiotics, 

streptomycin (0.25 g*L *) and ampicillin (0.13 g*L'*) effectively eliminated hydrogen 

consuming activity in the nitrate reducing zone. Furthermore, the addition of oxygen to 

the test solution also abolished hydrogen consumption in this area of the aquifer.

Hydrogen consumption in laboratory incubations. We compared the in situ 

observations of hydrogen consumption with laboratory incubations of sediment and 

groundwater from Norman. Unlike the field determinations, samples from the Cape Cod 

site did not consume hydrogen over 48 hr incubation. Although hydrogen consumption 

was observed in slurries from Norman, the kinetics were very different from the field 

results (Figure 3). Analysis of the laboratory progress curves yielded a much lower Km 

of 0.16 pM [±0.04]and a Vmax estimate of 16.18 pmol*L sediment'**hr'* [±1.03]. First 

order rates in these slurries ranged from 84-126 hr'**L sediment'*. Unlike the in situ 

determinations, the laboratory incubations also did not exhibit a detectable steady state or 

threshold hydrogen concentration. Rather, hydrogen was consumed according to 

Michaelis-Menten kinetics to below the detection limit (0.01 nM) and remained there for 

at least 14 days.
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Figure 3. Hydrogen consumption in a sediment slurry from the Norman landfill site. 

The inset shows the corresponding semi-logarithmic plot.
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Discussion

The purpose of this investigation was to develop and test an in situ method of 

assessing total microbial community metabolism in a groundwater environment. Field 

hydrogen consumption measurements provide first order rate constants, which in 

combination with steady state determinations produce estimates of in situ microbial 

hydrogen consumption rates. Such measurements capture the dynamics associated with 

the flux of hydrogen, a critical metabolic intermediate. Furthermore, in environments 

where hydrogen flux is at or near steady state, in situ hydrogen consumption reflects the 

rate of organic matter oxidation. Thus, the terminal electron accepting process can be 

identified (via steady state determinations) in addition to the rate that the microbial food 

chain is functioning.

In situ microbial hydrogen consumption kinetics were examined in two 

contaminated aquifers under several electron-accepting conditions. Hydrogen 

consumption was 10-1000 times faster at Norman relative to Cape Cod (Table 1). 

Because of the large rate difference, it was necessary to use slightly different approaches 

at the two sites. The push-pull test procedure [38] was a useful technique for estimating 

the relatively rapid hydrogen consumption rates at Norman. At Cape Cod however, 

hydrogen consumption was much slower and required a different approach illustrated by 

the natural gradient tests. Nevertheless, in all cases we were able to estimate first order 

rate constants and use those values to calculate in situ rates (Table 1). Thus, by adjusting
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the methodology to match the conditions at the different sites, we were able to quantify 

hydrogen consumption rates that differed by more than three orders of magnitude.

The Michaelis-Menten equation predicts a constant rate of decrease in the overall 

reaction rate as substrate concentrations become limiting. However, in situ hydrogen 

consumption demonstrated a deviation from Michaelian behavior during the latter portion 

of one of the in situ tests at Norman (Figure IB). In situ hydrogen production may be 

responsible for this deviation. Fermentative hydrogen production would not be favorable 

at the higher concentrations used in this test. However, as this substrate is consumed, 

hydrogen production from the oxidation of dissolved organic matter would become 

thermodynamically favorable and result in a net decrease in the overall hydrogen 

consumption rate. The hydrophobic fraction of DOC at Norman has been examined 

previously and found to consist primarily of highly branched, cyclic, aliphatic 

compounds resulting from the degradation of cellulose from paper [42]. Figure 4 

illustrates the thermodynamics associated with the initial oxidative (hydrogen-producing) 

step in the degradation of cyclohexane carboxylate, a relatively simple representative of 

such a class of compounds. Compared to less refractory fermentation intermediates such 

as ethanol and benzoate, cyclohexane carboxylate oxidation is thermodynamically 

unfavorable unless hydrogen levels are below 10 pM, similar to the concentration at 

which the deviation from the model occurs in Figure 2. Thus, hydrogen production from 

electron donors like cyclohexane carboxylate may be responsible for the net decrease in 

the apparent first order rate observed during in situ tests. This observation underscores 

the necessity of using rate-limiting concentrations (<5pM) of hydrogen in these tests. 

Dissolved hydrogen concentrations that are below saturating levels result in first order
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consumption and provide apparent first order rate constants that can be used to determine 

in situ rates. In addition to hydrogen production, the rate deviation may result from the 

presence of various hydrogen consuming populations that exhibit different kinetics. As 

hydrogen becomes depleted, organisms that exhibit a higher Km become unsaturated, and 

their rate of hydrogen consumption slows. Microorganisms that exhibit a lower Km, such 

as that determined in sediment slurries (Figure 3), continue to consume hydrogen at the 

maximum rate. Thus, the first order rate may not be constant when hydrogen 

consumption is examined in situ.
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Figure 4. Theoretical energy yield as a fianction of hydrogen concentration for selected 

fermentation intermediates. Reaction stoichiometry and thermodynamic yield for ethanol 
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In addition, the steady state hydrogen concentration, while consistently measured 

by many investigators in the field [19,21,26,28,29 this study], was difficult for us to 

reproduce in the laboratory. Despite measured hydrogen concentrations in the field of 1 

to 2 nM, we consistently observed hydrogen depletion below these levels in slurries from 

the Norman landfill site (Figure 3). Furthermore, hydrogen was not consumed by slurries 

from Cape Cod over a 48 hr incubation despite our observation of active hydrogen 

depletion during in situ tests conducted at the site. These results suggest that microbial 

activities measured in the laboratory can be influenced by factors not present in the 

microorganisms’ natural habitat. Consequently, information from laboratory analyses 

may be insufficient for understanding the dynamics of microbial activity as it occurs in 

the environment. I« situ tests are more sensitive by design in that a large volume of 

aquifer can be interrogated while using a small amount of hydrogen, all of which is 

dissolved in the groundwater and therefore in contact with the resident microorganisms. 

Indeed, the complexity associated with field studies as well as the limitations inherent in 

applying laboratory-based findings to natural settings, especially in the case of 

contaminated aquifers, are issues that have been addressed previously [43-45].

These tests were useful for determining hydrogen oxidation rates under both 

nitrate reducing and aerobic conditions (Figure 2). Relative to sulfate reduction and 

methanogenesis, little is known about hydrogen consumption under denitrifying 

conditions. Hydrogen oxidizing denitrifying bacteria appear to be common constituents 

of the Cape Cod aquifer, several of which have been isolated and characterized according 

to their hydrogen consuming capacity [46]. Many of these isolates exhibited kinetic
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parameters that were comparable to Paracoccus denitrificans, a well-characterized 

hydrogen oxidizing denitrifying bacterium. Although the relative extent to which 

hydrogen serves as an electron donor in the presence of nitrate is not clear, the presence 

of organisms capable of catalyzing this process suggests that whatever hydrogen might be 

produced would be readily consumed via denitrification in the environment. In situ 

hydrogen consumption tests could be a useful means of assessing the importance of this 

electron donor coupled to denitrification in environments where nitrate is available.

The importance of hydrogen metabolism to the overall functioning of a 

subsurface habitat suggests that perturbations that negatively impact ecosystem health 

may be manifested in the ability of the microbial communities to process hydrogen. A 

fairly simple test of this hypothesis was conducted by including two treatments designed 

to affect hydrogen metabolism in the denitrifying zone at Cape Cod where in situ 

hydrogen consumption was already shown to occur (Figure 2). Addition of air to test 

solutions resulted in the elimination of hydrogen consumption in situ. Although 

denitrifying bacteria generally prefer oxygen as an electron acceptor, this molecule does 

not simply replace nitrate in these bacteria; specific enzymes are produced depending on 

the availability of either electron acceptor [47]. Moreover, the enzymes involved in the 

reduction of nitrate to nitrogen are known to be inhibited by oxygen. Given these 

conditions, it is not unexpected that a relatively subtle stressor such as oxygen imposes a 

negative impact on hydrogen consumption in a denitrifying environment in the short

term. We would expect hydrogen to be consumed eventually by the organisms at this site 

even in the presence of air. It would likely require more time than the 15 hr test interval 

for the hydrogen consuming community to modify their metabolism from denitrification
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to aerobic respiration. This point further illustrates the utility of these tests for estimating 

field rates of microbial activity. Since these tests can be completed in a few hours, 

hydrogen consuming microorganisms have little time to adapt. In addition, dissolved 

hydrogen concentrations can be kept low enough (<1 pM) to preclude microbial growth 

in response to the added substrate. Thus, the results obtained from such tests are 

reflective of in situ activity in the sampled area.

In addition to air, the presence of the antibiotics streptomycin and ampicillin 

effectively eliminated hydrogen consumption (Figure 2C). Although these compounds 

would be expected to have a negative impact on microbial hydrogen metabolism, the 

complete abolition of hydrogen turnover may not be expected because the enzymes and 

organisms capable of hydrogen oxidation are already present and active in the aquifer as 

evidenced by the earlier test (Figure 2C). Nevertheless, the hydrogen consuming 

community was abruptly affected by the presence of the antibiotics. It thus seems likely 

that in situ hydrogen consumption measurements would be sensitive to other insults that 

affect the process of organic matter degradation in aquifers. A contamination episode 

may be such an insult that would be manifested by an alteration in the apparent in situ 

hydrogen consumption rate. Thus, the degree of insult to the microbial population may 

be gauged by in situ hydrogen consumption tests in addition to the progress of 

remediation in contaminated aquifers. Moreover, tests such as these may indicate when 

the progress of remediation has returned a polluted environment to its original condition.

Given the different geochemical conditions between and within the two sites, we 

are cautious about drawing conclusions concerning the relationship between field 

microbial hydrogen consumption rates and the predominant electron accepting
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conditions. Nevertheless, we noted that in situ rates were proportional to the electron 

accepting regime as well as to DOC concentrations in the tested areas (Table 1). Thus, 

field rates of microbial hydrogen consumption may be influenced by not only the electron 

accepting process, but by the quality of electron donor. The faster rates sustained under 

sulfate-reducing conditions may reflect the relative importance of interspecies hydrogen 

transfer under those conditions. In anaerobic environments, organic matter is oxidized by 

several, metabolically different groups of microorganisms [48]. This process involves 

fermentative or syntrophic hydrogen production followed by consumption by terminal 

microorganisms such as sulfate reducers or methanogens [1,49]. These terminal 

microorganisms maintain hydrogen at low partial pressures allowing organic matter 

oxidation to be thermodynamically favorable. It follows that in environments where 

interspecies hydrogen transfer is required for organic matter degradation, hydrogen 

turnover would necessarily be an efficient process. However, microorganisms that utilize 

oxygen or nitrate as electron acceptor are more likely to mineralize organic matter 

without producing hydrogen as a free intermediate [50]. Thus, hydrogen utilization under 

these conditions could be of lesser total importance, and may explain the faster rate 

observed under sulfate reducing conditions.

The value of conducting in situ experiments lies in the ability to capture the 

complexity of microbial interactions within their biotic and abiotic surroundings that 

would not otherwise be observed in laboratory assessments. We normalized first order 

rates from this and other studies by volume to compare hydrogen consumption rates from 

in situ tests to laboratory measures in this and other studies. In the laboratory, first order 

rates in slurries from the Norman site were comparable to similar incubations of aerobic
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soil (36-108 hr'^*L'' [6], assuming 100 g wet soil=50 mL volume), but slower than 

slurries from a eutrophic lake (517 hr‘**L'  ̂ [51]). However, when estimates from in situ 

tests were normalized by volume, the resulting rates were several orders of magnitude 

slower (0.006 to 0.8 hr'^*L'^) than most laboratory measures including those from 

Norman. This disparity between field and laboratory measures does not necessarily 

argue for a preference of one approach over another, especially given the limited number 

of sites and conditions examined in this study. However, the ability to incorporate the 

complex interactions of regulating microbial communities with their biotic and abiotic 

surroundings is an attractive feature of in situ tests. Such features indicate field 

measurements will serve as a valuable augmentation to more traditional laboratory 

investigations for providing accurate descriptions of microbial activities in the 

environment.

These results should be considered as a baseline study for comparison to in situ 

rates measured at other sites in the future. The large differences in rates observed at 

Norman and Cape Cod may stem from the substantial differences in organic matter 

concentrations that exist at the two sites. Thus, a series of similar measurements made 

within a single site may be a useful approach for characterizing microbial activity rather 

than comparing the absolute values obtained in this study with those from other locations. 

Nevertheless, the multiple electron-accepting regimes and diverse geochemical 

conditions interrogated here should serve as a model to ascertain whether other systems 

respond accordingly as well as a foundation for the interpretation of future results.
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Chapter 3

Examination of the rate, fate and threshold associated with hydrogen consumption by 

anaerobic bacteria: a basis for an amensalism between acetogens and methanogens

Abstract

Hydrogen consumption kinetics and thresholds were examined in resting cultures 

of various hydrogenotrophs. The acetogens Acetobacterium woodii, Eu bacterium 

limosum and strain SSI whole cells exhibited apparent hydrogen values (4.6-5.0 pM) 

that were similar to the mQihdLXiogQnMethanospirillum hungatei JFl (5.0 pM) but higher 

than that observed for Desulfovibrio G il (1.1 pM). In addition, hydrogen threshold 

values (409-519 nM) were typically 100 to 500 times higher in acetogens, similar to 

previous findings. The threshold in the acetogens was not controlled by a 

thermodynamic equilibrium as the AG’ values remained more negative than -68 kJ mof* 

at the cessation of hydrogen consumption. Hydrogenase activity in cell free extracts of A. 

woodii did not exhibit a threshold and kinetic parameter estimates for hydrogen 

consumption were different than comparable measures in whole cells. Thus, a higher 

level of regulation likely exists in whole cells that is not evident in enzyme preparations. 

At high hydrogen concentrations, a model based on a two term Michaelis-Menten 

equation was used to predict hydrogen consumption by resting cocultures of A. woodii 

and M  hungatei. The model accurately predicted the rate of hydrogen oxidation but not 

its fate. The presence of the acetogen had a stimulatory effect on the rate of methane 

production byM  hungatei resulting in a greater than expected proportion of hydrogen
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consumed by the latter organism. These results suggest that cell-cell interactions 

influence the fate of hydrogen in defined cocultures and environmental fate processes are 

likely to be at least as complex.

Introduction

Hydrogen is a central intermediate that is both produced and consumed during the 

oxidation of organic matter in anaerobic environments. In the absence of alternate 

electron acceptors, hydrogen oxidation must occur via carbon dioxide reduction, a 

process catalyzed by acetogenic bacteria and methanogenic archaea. It is therefore 

reasonable to expect intense competition between these organisms for hydrogen in 

electron acceptor limited environments. In non-marine environments, methanogenesis is 

typically the primary electron sink based in part, on the greater energy yield of methane 

production relative to acetogenesis [12] as well as the ability of methanogens to consume 

hydrogen below the threshold exhibited by acetogenic bacteria [8,9,48]. Nevertheless, 

acetogens successfully coexist with methanogens, often in comparable cell numbers in 

many anaerobic ecosystems [26,27,30,51] and even dominate electron flow in the 

gastrointestinal tract of many eucaryotic organisms [2,5,37,55]. While the ability of 

acetogens to grow mixotrophically is known [5,25,31], and yields more energy per mol 

hydrogen consumed than autotrophy, defined coculture studies give little indication that 

this mode of metabolism provides acetogens with a distinct advantage over other 

hydrogen consuming cells [4,29,42]. Other studies have suggested that acidic, low 

temperature, and carbon-limited environments favor acetogenesis over other microbial 

processes [7,23,27,41,43]. While these studies have advanced the understanding of the 

preferred modes of existence of acetogens and methanogens, we decided to examine the
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kinetics of competition for hydrogen by these organisms with particular attention to the 

reasons for the relatively high thresholds exhibited by acetogenic bacteria.

Competition for hydrogen by cocultures can be described by the sum of the 

consumption kinetics [34,45] exhibited by the organisms as well as the respective 

substrate thresholds [28]. Once the substrate is depleted below an organism’s threshold, 

the bacterium with the lower threshold dominates competition [35]. Hydrogen 

consumption in cultures of two competing microorganisms can be approximated using a 

two-term Michaelis-Menten equation containing the Km and Vmax exhibited by both 

species [34]. This model accurately described hydrogen consumption and fate in defined 

mixtures of sulfate reducing and methanogenic bacteria [45]. At saturating substrate 

concentrations, organisms exhibiting a higher Vmax are expected to have an advantage

[27] while the ratio Vmax/Km is a better assessment of competitive fitness when the 

substrate concentration is much lower [18]. The lower Km, higher Vmax, and lower 

threshold exhibited by sulfate reducing bacteria have been used to explain their ability to 

outcompete methanogens for hydrogen [8,9,28,35,45,49]. Recently, these same 

parameters were used to predict the outcome of hydrogen competition between 

psychrophilic acetogens and methanogens as a function of temperature and hydrogen 

concentration [27].

We measured the hydrogen consumption kinetic parameters and thresholds for a 

number of anaerobes and used these values to model hydrogen competition between 

Acetobacterium woodii a.ndMethanospirillum hungatei JFl. We then compared model 

predictions to experimental findings. Similar to results in a previous study [45], a two- 

term Michaelis-Menten equation accurately depicted hydrogen consumption by
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nongrowing cocultures at saturating hydrogen concentration. However, the actual fate of 

hydrogen was consistently in favor of the methanogen, despite model predictions of an 

equal partitioning of the electron donor between the two bacteria. That is, the presence of 

whole acetogen cells, cell extracts, or membrane preparations stimulated hydrogen 

consumption by the methanogen, but heat-inctivated preparations did not. Thus, at high 

hydrogen concentration there is likely an interkingdom amensalistic interaction between 

the organisms that influences the outcome of competition.

At low hydrogen concentrations, the threshold of the acetogens A. woodii, 

Eubacterium limosum, and strain SS1 were 2-3 orders of magnitude higher than the 

values exhibited byM  hungatei and Desulfovibrio G ll, a finding consistent with 

previous reports [42]. Closer examination of the factors controlling hydrogen threshold 

in A. woodii revealed that they were not due to an analytical insufficiency, a 

thermodynamic equilibrium, a nutritional limitation, inhibition by endproducts or 

moribund cells, or the simple balance between production and consumption. These 

results indicate that interactions besides simple competition and thresholds influence the 

disposition of hydrogen in anaerobic environments.

Materials and Methods 

Organisms, and growth conditions. Cultures o ïAcetobacterium woodii (ATCC 29683), 

Eubacterium limosum (ATCC 8486) and SSI [31] were grown in a defined medium [52] 

with syringate (8 mM) as the sole source of organic carbon under a H2/CO2 (4:1, 202 

kPa) headspace. For heterotrophic growth, fructose was used in place of syringate and 

the headspace was N2/CO2 (4:1, 101 kPa). Methanospirillum hungatei JF-1 was grown in 

a defined medium [40] containing lOmM acetate and a H2/CO2 (4:1, 202 kPa) headspace.
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Methanospirillum hungatei was chosen for use in competition experiments with A. 

woodii because this methanogen does not make methane from acetate, which would 

complicate hydrogen fate determinations. Desulfovibrio G11 was grown with 0.3% 

lactate in the medium of [40] with a N2/CO2 (4:1, 101 kPa) headspace. All cultures were 

grown in 2 L flasks containing 1 L medium at 35°C on a rotary shaker.

Resting cell suspensions. Cells were harvested anaerobically during the log phase of 

growth (Aeoo^O.l to 0.3) by centrifugation (15,000 x g for 15 min at 25°C) and washed in 

400 ml anaerobic HEPES buffer (10 mM N-2-hydroxyethylpiperazine-N’-2-ethane- 

sulfonic acid; pH 7.2), containing 40 mM NaHCOa, 0.4g/L MgCb, 0.15g/L CaCl2 . The 

final cell pellet was resuspended in 10-20 ml of the same buffer and used for hydrogen 

consumption assays.

Kinetic parameter and threshold determinations. The kinetic parameters Km and Vmax 

as well as hydrogen thresholds were determined from hydrogen consumption progress 

curves [16]. Washed cells were placed in 2L flasks containing 0.5 L of the wash buffer 

and a N2/CO2 (4:1, 101 kPa) headspace. Syringate (8 mM) and sulfate (20 mM) were 

included in experiments with acetogens and Desulfovibrio G ll, respectively. The flasks 

were continuously stirred and biomass levels were adjusted to avoid hydrogen mass 

transfer limitiations. Progress curve assays were started by injecting hydrogen (70 ml) 

into the flasks to an intial dissolved concentration of about 30 pM (~4 kPa). Threshold 

values were also determined in resting cell suspensions after hydrogen decay ceased. The 

viability of cell preparations was confirmed by reamending the flasks with hydrogen and 

monitoring substrate loss again. In experiments where the threshold level was examined 

as a function of endproduct formation, either sodium acetate or sodium gallate was
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included in the buffer in concentrations up to 100 mM.

Whole-cell protein was determined by the bicinchoninic acid assay (Pierce, 

Rockford, EL) with bovine serum albumin as the standard. Samples of whole cells and 

standards were boiled for 20 min in 0.1 N NaoH to lyse the cells prior to protein 

determination.

Energetic calculations. Once the hydrogen threshold was reached, the pEE, temperature, 

and concentrations of reactants and products were determined. The available Gibb’s free 

energy (AG’) for hydrogen oxidation under nonstandard conditions was determined from 

measured concentrations according to the following equation;

[C7fE4G4(OCH3)][CH3CGQ-][H2G]
AG’ = AG°’ + RT In --------------------------------------

[C7H3G3(GCH3)2'][HCG3][H2] 

where [H2] is the hydrogen partial pressure (in atmospheres), R is the gas constant (8.31 J

mof^ k  ‘), T is the temperature (°K) and the values in brackets are the molar

concentrations of reactants and products. The standard free energy change (AG°’) for

syringate reduction with hydrogen was determined from the data in [24,31].

Hydrogenase assays. Hydrogenase activity was examined in cell-free extracts of A.

woodii grown mixotrophically with H2/syringate or fermentatively with fructose.

Washed cells were lysed via French pressure under strict anaerobic conditions. The

crude lysate was centrifuged (27,200 x g for 30 min at 4°C) to remove unbroken cells

and larger cell debris. The supernatant was used as a crude cell extract in hydrogenase

assays. Hydrogenase kinetics were determined from substrate vs. velocity assays in SO

ml serum vials containing 20 ml of the Tris buffer described by [34], methyl viologen (10

mM) as an artificial electron acceptor, and hydrogen (0.2-3.0 ml) as the substrate. Bottles
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were equilibrated to 30°C prior to addition of the extract (1.5-2.5 mi) to start the reaction. 

Initial rates were estimated when less than 7% of the hydrogen pool had been oxidized 

(<3 min). Kinetic parameters for hydrogenase were estimated via nonlinear regression 

analysis [46].

Hydrogen competition experiments. Hydrogen consumption by a non-growing 

coculture was described by a two-term Michaelis-Menten equation having the form: 

-dS/dt = Vm«lS/(Kml + S) + Vm.x2S/(Km2 + S) 

where Vmaxi and Vmax2 are the maximum substrate consumption rates and Kmi and K^z 

are the half-saturation constants for the competing organisms [34]. Hydrogen kinetic 

parameters for individual A. woodii and M  hungatei preparations were used to simulate 

hydrogen consumption and fate by defined cocultures [16]. Most competition 

experiments contained A. woodii at a 1.4-fold biomass advantage (based on total protein) 

because simulations indicated this would result in a nearly equal partitioning of hydrogen 

between the two organisms. The experimental procedure used for the coculture 

competition assays was the same as that used for the kinetic parameter estimation. 

Competiton experiments consisted of duplicate coculture incubations as well as control 

monoculture preparations of A. woodii or M. hungatei at the same cell density. The fate 

of hydrogen consumed by the methanogen and acetogen was determined by measuring 

methane production and syringate consumption, respectively.

Hydrogen, methane and syringate determination. Hydrogen and methane were 

measured from headspace samples by gas chromatography using instruments equipped 

with a mercury vapor [39] or flame ionization detector [1], respectively. Culture fluids 

were centrifuged (15,800 x g for 4 min) prior to analysis by high-performance liquid
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chromatography for aromatic compounds [10] while acetate concentrations were 

determined by gas chromatography [21].

Influence of A. woodii on M  hungatei. Acetobacterium woodii preparations were 

examined for the ability to stimulate hydrogen consumption by resting cells of M  

hungatei. Assays were done in 160 ml serum bottles containing 50ml o f the anaerobic 

buffer and 10 ml hydrogen as the substrate. Whole cells and crude cell extracts o f A. 

woodii were incubated with a washed preparation o fM  hungatei. Crude extracts were 

ultracentrifuged (100,000 x g for 60 min at 4°C) to remove the membrane fraction. The 

pellet and supernatant from the ultracentrifugation were used as membrane and cell-free 

extract preparations, respectively. Spent buffer (0.5 L) was obtained by allowing A. 

woodii (40-50 gg protein mf^) to consume 2 mmol hydrogen over 6 h and filter- 

sterilizing the resulting preparation and using it to suspend resting cells of M. hungatei. 

Heat-inactivated A. woodii preparations were made by placing washed cells in a boiling 

water bath for 15 min. Hydrogen consumption and methane production were monitored 

over 3 h of incubation. Hydrogen consumption by M. hungatei was determined based on 

methane production rates assuming 4 mol hydrogen consumed per mol methane 

produced.

Results

Kinetics of hydrogen consumption in whole cells. Hydrogen depletion progress 

curves by resting cell suspensions were used to estimate Km, and Vmax for the selected 

anaerobes (Table 1). The three acetogens examined in this study displayed similar Km 

values for hydrogen of about 4.6-5 .0 pM. These values were comparable to the Km 

estimate forM  hungatei as well as for another acetogen, Sporomusa termitida [4].
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Desulfovibrio G ll exhibited a Km that was significantly lower at 1.1 |j.M, a value that is 

identical to the estimate reported by [45] for the same organism. The mean Vmax 

estimates were generally lower in the acetogens than the other organisms. Further, the 

first order decay constant was determined from hydrogen depletion data for each 

hydrogenotroph (Table 1). First order hydrogen consumption was statistically slower in 

the acetogens. Similar values were obtained when the same parameter was calculated by 

the ratio of Vmax/Km (data not shown).
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Organism V  ^V max ki"
(min'^*mg protein *)

Threshold
(nM)

A. woodii 970 ± 87 4.6 ±0.2 0.085 ± 0.008 409 ± 16
E. limosum 259 ± 18 4.6 ±0.6 0.021 ±0.004 457 ±30
SSI 966 ± 39 5.0 ±0.4 0.072 ±0.010 519 ±62
Sporomusa termitida^ 380 6.0 ND"* 640
M. hungatei JF l 1350 ±63 5.0 ±0.5 0.110 ±0.009 5.8 ±0.4
Desulfovibrio G11 1128 ±27 1.1 ±0.2 0.390 ±0.041 0.9 ± 0.4

'’determined from slope of In H2 vs. time 
“from [3,4]
‘'ND, not determined

Table 1. Hydrogen kinetic and threshold estimates in whole cells and cell free 

extracts of selected hydrogenotrophs.
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Hydrogen thresholds in pure cultures [9] as well as mixed assemblages of 

microorganisms [19,20,22] are postulated as being the result of a thermodynamic 

limitation. Factors that affect the Gibbs free energy from hydrogen oxidation should 

therefore influence the hydrogen threshold. However, in situ AG’ values determined 

once the cultures reached the hydrogen threshold revealed an available energy yield of at 

least -68 kJ/mol hydrogen (Table 2). In addition, inhibition by the endproducts acetate 

and methyl-gallate cannot explain these results as the threshold values were not 

significantly different at concentrations from 0-100 mM endproduct (Figure 1). We 

questioned whether the viability of the cells was the reason for cessation of hydrogen 

consumption in these incubations. However, consumption resumed without a lag upon 

hydrogen reamendment and the same threshold value was attained after each addition of 

substrate (Figure 2). Toxicity from the undissociated form of acetate could not explain 

the threshold in A. woodii, as concentrations of this form of acetate ranged from 9.8 to 

476 pM with no apparent affect on hydrogen threshold (Table 2). Finally, the threshold 

was not due to an equilibrium in hydrogen flux because no hydrogen production or 

consumption was observed in washed cells of A. woodii when initial hydrogen 

concentrations were below the threshold level (Figure 2). However, consumption 

occurred when hydrogen was added to the flask and resulted in a threshold similar to 

other incubations o f^ . woodii.
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Tf undissocîated acetic Tf in  s i tu  AG’ Tf in  s i tu  AG’ 
To acetate (mM)_______ acid  (kJ/mol H2)*’ (kJ/mol

0 9.8 - 80. 1± 0.0 - 7.3± 0.1
10 56.1 - 74.6± 0.1 -5.9± 0.1
20 101.5 - 73.0± 0.1 -5.4± 0.1
50 242.8 -70.0± 0.4 -4.6± 0.2
100 476.2 -68.5± 0.2 -4.3± 0.0

“parameters used in these calculations were as follows: pH=7.1, pKa=4.76, and time final (Tf) acetate 
concentrations, which were typically 2 mM higher than time zero (To) concentrations.
'’’“calculated from measured concentrations of reactants and products according to the following reaction 
stoichiometry:
’’C7H303(0CH3)2‘ + HCO3 + H2 C7H4 0 4 (0 CH3 ) + CH3COO + H2O 
“4 H2 + 2 HCO3 + HT ̂  CH3COO + 4 H2O 
from [30], and AGP values in [23].

Table 2. Time final (Tf) determinations of undissociated acetic acid concentrations and 

in situ AG’ values calculated as a function of acetate concentrations once resting cells of 

A. woodii reached the hydrogen threshold.
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Figure 1. Hydrogen thresholds in resting cells o f A. woodii as a function of 

gallate (solid bars) and acetate (open bars) concentration^.

“Mean of triplicate determinations +/- std. dev.
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Figure 2. Hydrogen consumption and resulting thresholds in resting cells 

ofv4. woodii receiving hydrogen reamendment(A and ■) or the addition 

of a washed preparation o fM  hungatei JFl (o).
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The bioavailability of the hydrogen was also not a factor in the threshold 

determinations since the addition ofM  hungatei cells resulted in immediate hydrogen 

consumption to a rather typical threshold for methanogens of about 6 nM [35], (Figure 2). 

Hydrogenase kinetics. To determine if the threshold was an inherent property of 

hydrogenases, hydrogen oxidation in cell free extracts of fructose- and H2/syringate- 

grown A. woodii were estimated by substrate vs. velocity assays (Figure 3). Typically, 

hydrogenase assays involve measuring the reduction of an artificial electron acceptor 

(usually a dye). Estimates of Vmax can be made using these assays but hydrogen Km and 

threshold estimates are possible only if the concentration of hydrogen is followed over 

time. Almost all (>95%) of the hydrogenase activity was located in the soluble fraction 

of the crude extract (data not shown). Hydrogen threshold determinations were not 

possible with the cell free extracts because at low substrate concentrations (<1 pM 

dissolved hydrogen), a net production of hydrogen occurred (data not shown). The Km 

estimates for hydrogenase were similar regardless of the substrate on which the cells 

were grown but the Vmax estimate was about two times higher when cells were grown 

with Hz/syringate (Figure 3).
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Figure 3. Hydrogen oxidation rate as a function of dissolved hydrogen 

concentration in cell free extracts of H2/syringate-grown (•)  and fructose-grown 

(■) A. woodii.
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Hydrogen competition experiments. Hydrogen competition by cocultures of A. woodii 

and M  hungatei was simulated based on the consumption kinetics exhibited by the 

individual cultures. Given the relative differences in kinetic parameters, the two-term 

Michaelis-Menten model predicted roughly equal partitioning of hydrogen between the 

two bacteria if the acetogen biomass was slightly elevated relative to that of the 

methanogen. Saturating levels of hydrogen were consumed in precisely the manner 

predicted by the model (Figure 4A). The two organisms both consumed hydrogen as 

confirmed by the production of methane and the consumption of syringate. However, 

control incubations o fM  hungatei at the same cell density did not consume hydrogen as 

expected (Figure 4B). In fact, only a low rate of hydrogen consumption (<20% of Vmax) 

was detected in monocultures of M. hungatei at this biomass level. In addition, the 

methanogen consistently dominated the competition with the acetogen by consuming at 

least 61% of the available hydrogen (Table 3). When the organisms were included at 

identical biomass levels, the methanogen consumed 73 to 81% of the hydrogen even 

though the model predicted that the methanogen would only consume 57% of the 

substrate (data not shown). Therefore, the model correctly predicted the rate, but not the 

fate of hydrogen in these experiments.
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Figure 4. Hydrogen decay in competition experiments. A. Replicate coculture incubations 

containing A. woodii andM  hungatei (A and ♦) and model prediction (-). B. 

Monococulture incubations containing A. woodii ( • )  and M  hungatei (■) and model 

prediction (-). Acetobacterium woodii and M. hungatei were inoculated at a cell densities 

of 33 and 24 pg protein m f \  respectively.
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Incubation*
mmol Hi 

consumed
mmoles Hi 

consumed by 
M  hungatei

mmoles Hi 
consmed by 
A. woodW

Hi recovery 
(%)

Coculture A 2.54 1.68(66%) 0.79 (31%) 97

Coculture B 2.62 1.71 (65%) 1.16(44%) 109

Coculture C 2.50 1.53(61%) 1.00 (40%) 101

A. woodii 1.69 ND** 1.64 (97%) 97

M. hungatei ND _
“Cocultures contained M hungatei and^. woodii at 24 and 34 p,g protein ml % respectively. Monocultures 
contained the same biomass level of each organism as in the cocultures.
‘’Assuming 4mol H2 consumed per mol CH, produced 
°Assuming Imol H2 consumed per mol syringate consumed 
‘‘ND, not detected

Table 3. Fate of hydrogen in a typical competition experiment between resting cells 

of A. woodii and M  hungatei.
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We hypothesized that the low rate of hydrogen consumption byM  hungatei in 

control incubations (Figure 4B) was the result of a relatively low cell density. To test this 

hypothesis, we assessed hydrogen consumption by M. hungatei as a function of cell 

density (Figure 5). Hydrogen consumption rates were not proportional to M  hungatei 

biomass levels in cell suspensions containing less than about 25 |Lig protein m l'\ which 

was similar to the cell density used in the control incubations. However, at cell densities 

of about 35-65 \i% protein m l'\ the rate was similar to the Vmax determined for this 

organism. Above this range, hydrogen consumption appeared to be mass transfer limited. 

Thus, the biomass level in M. hungatei controls was below the critical concentration 

necessary for hydrogen consumption.

Although methanogen biomass concentrations in the controls limited hydrogen 

consumption, the same cell density o fM  hungatei in coculture with A. woodii always 

resulted in methane production (Table 2). Furthermore, the methanogen consistently 

consumed about two-thirds of the available hydrogen in cocultures.
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Figure 5. Hydrogen Vmax estimates inM  hungatei as a function of cell density.
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The fate of hydrogen in the competition experiments suggested that the presence 

of the acetogen exerted a positive influence on the hydrogen consuming ability of the 

methanogen. We hypothesized that higher cell densities in the coculture provided a more 

reducing environment, thereby protecting M  hungatei from traces of oxygen that might 

have in advertently occurred during the assay. However, increased levels of cysteine- 

sulfide reductant had little impact on the rate of hydrogen consumption by the 

methanogen (Table 5). Further, the positive impact o f A. woodii cells was proportional to 

the amount of the acetogen in the incubation (Table 5). However, this effect was 

abolished if A. woodii whole cells were boiled. Similarly, no impact was noted if 

methanogen cells were suspended in spent, filter-sterilized buffer from an acetogenic 

incubation. Stimulation in hydrogen consumption byM  hungatei was noted when cell 

extracts or membrane fractions of A. woodii were included in resting cell incubations of 

the methanogen. Comparable additions of Desulfovibrio G11 had only a slight 

stimulatory effect while boiled preparations of either the sulfate reducer or the 

methanogen had a pronounced negative impact on methanogenesis.
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Treatment
relative Hi 

consumption rate'

*’M  hungatei JFl 1.00
2X cysteine-suifîde 1.05
5X cysteine-sulfide 1.27
live /I. woodii (IX)*' 6.15
live A. woodii (2X) 7.72
live A. woodii (4X) 10.79
live A. woodii (8X) 13.30
A. woodii crude cell extract (4X) 34.92
A. woodii cell-free extract (4X) 36.63
A. woodii membrane preparation (4X) 20.30
spent A. woodii buffer 1.04
boiled A. woodii (IX) 1.14
boiled A. woodii (2X) 1.08
live Desulfovibrio G ll (IX) 1.96
boiled Desulfovibrio G ll  (IX) 0.62
boiled M  hungatei JFl (IX) 0.08

“Mean of duplicates; calculated from CH4 production rate over 3 h incubation.
^M. hungatei was inoculated at a rate-limiting cell density (25pg protein ml ')
‘"Values in parentheses indicate protein concentration of the treatment relative to that of M.
hungatei.

Table 4. Hydrogen consumption rate byM  hungatei as a function of 

various amendments.
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Discussion

The Vmax exhibited by the acetogens are lower than those observed forM  

hungatei and Desulfovibrio G ll , suggesting that at equivalent biomass, the acetogens 

would not compete well at high hydrogen concentrations. In an earlier study, acetogens 

demonstrated a higher Vmax relative to methanogens isolated from the same low 

temperature environment [27]. High concentrations of hydrogen may favor acetogenesis 

over methanogenesis in low temperature environments.

The Km estimates for the acetogens were similar to those exhibited by M. hungatei 

as well as other methanogens (Table 1; [45]), but first order decay constants were 

relatively low for the acetogens (Table 1), suggesting these organisms would be less 

competitive at low hydrogen levels. Furthermore, the high thresholds exhibited by the 

acetogens indicates they would stop consuming hydrogen at concentrations where M  

hungatei would continue to metabolize.

Hydrogen thresholds measured in pure cultures of acetogens are typically 100 

times higher than for other hydrogen consuming microorganisms [4,9,29,35,42], an 

observation that has been used to explain the apparent inability of acetogens to compete 

for trace concentrations of hydrogen. We investigated if the threshold in A. woodii was 

simply due to a loss of activity or a nutritional insufficiency. If true, then resting cells of 

A. woodii should not consume hydrogen upon reamendment, but metabolism repeatedly 

resumed without a lag and reached the same threshold (Figure 2). We further 

hypothesized that the hydrogen threshold could be due to endproduct inhibition, either by 

the accumulation of acetate, methyl gallate or the undissociated form of acetate. To test 

this, we measured hydrogen thresholds in the presence of up to 100 mM acetate or methyl
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gallate. High concentrations these endproducts had no effect on the hydrogen threshold 

(Figure 1). Moreover, since woodii consumed hydrogen to the same threshold 

regardless of the acetate concentration, toxicity from undissociated acetic acid is not 

responsible for controlling hydrogen thresholds. On the contrary, undissociated acetic 

acid concentrations reached almost 500 pM without any noticeable affect on the 

hydrogen threshold (Table 2). In contrast, the methanogenic fermentation of acetate by 

Methanosarcina barkeri was inhibited by only 4-7 pM undissociated acetic acid [13]. 

Thus, hydrogen thresholds in acetogens appear insensitive to both ionized and 

undissociated forms of acetic acid. Alternatively, the observation of hydrogen thresholds 

in pure cultures [9] as well as mixed assemblages of bacteria [20] have been theorized as 

a thermodynamic limitation. In autotrophically-metabolizing acetogens, the hydrogen 

threshold was thought to result from a minimum energy requirement o f -5  to -7  kJ mof* 

required for hydrogen consumption [27,48]. Hydrogen oxidation coupled to the 

reductive 0-demethylation of syringate yields more energy per mol hydrogen than 

autotrophic metabolism [32]. Thus, if the hydrogen threshold in A. woodii is controlled 

by the thermodynamics of the hydrogen consuming reaction, then the increased energy 

yield due to the presence of syringate should result in a decreased threshold. We 

measured hydrogen thresholds in resting cells o f A. woodii in the presence of syringate 

and calculated the in situ AG’ to investigate the energy available when hydrogen 

consumption stopped. Resting cells of A. woodii consumed hydrogen to a threshold that 

was similar to previous measures for this organism [42,48] as well as other acetogens 

[4,27]. However, the reaction was far from thermodynamic equilibrium when the 

threshold was attained (Table 2). Thus, hydrogen thresholds measured in this study
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cannot be explained solely on the basis of a thermodynamic limitation. However, when 

thermodynamic calculations were done without considering the influence of syringate or 

its endproduct, methyl gallate (Table2), the resulting AG’ values were similar to the range 

(-5 to -7  kJ mol'^ hydrogen) found in previous studies [27,48] although less negative 

than that observed in sediments where acetogenesis was dominant (-18 kJ mol ' 

hydrogen) [19]. As suggested by [29], the energy yield associated with hydrogen 

oxidation may be isolated from the energy yield that is released by the reduction of the 

methyl group of syringate such that the increased thermodynamic yield from O- 

demethylation is uncoupled from the overall reaction. Thus, hydrogen oxidation, the less 

energetically favorable of the two processes, may not occur at low hydrogen 

concentrations despite an apparently large thermodynamic disequilibrium because of the 

uncoupled nature of the overall reaction.

We questioned if A. woodii hydrogenases exhibited a hydrogen threshold. 

However, even crude preparations with hydrogenase activity did not exhibit a threshold 

because these preparations exhibited a net production of hydrogen at low (<1 jiM) 

concentrations. Indeed, hydrogenases are known to be reversible enzymes and are often 

characterized according to the kinetics of hydrogen production [15]. The apparent Km for 

hydrogenase in A. woodii (18 pM) is about four times greater than that exhibited by the 

whole cell (5 pM; Table 1). Thus, hydrogen consumption kinetics by whole cells of this 

organism may reflect a higher level of regulation not observed in hydrogenase 

preparations. For comparison, the Km for hydrogen in A. woodii hydrogenase was similar 

to that observed for Alcaligenes eutrophus (37 pM) and Methanobacterium 

thermoautotrophicum (10 pM) [33,47].
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Hydrogenase preparations exhibited a higher Vmax when A. woodii was grown on 

Hi/syringate relative to fructose-grown cells. These results are analogous to those 

obtained with another acetogen, Sporomusa termitida, in which whole cells pregrown on 

various organic substrates demonstrated hydrogen dependent acetogenesis but at rates 

slower (5-85%) than those observed in cells pregrown on H2/CO2 [4], One explanation 

for these rate differences is the production of different hydrogenases. However, it is also 

possible that A. woodii and S. termitida produce the same enzymes when growing with 

different substrates, but simply make more hydrogenase when grown on hydrogen. This 

explanation is consistent with our findings of a similar Km when either H2/syringate or 

fructose was used as growth substrate for A. woodii but a higher Vmax estimate for the 

former condition (Table 2).

The intracellular location of hydrogenase in these microorganisms may play a role 

in the outcome of competition. Hydrogenase in A. woodii appears to be soluble [43; this 

study] and therefore located in the periplasm, cytoplasm, or both. Since A. woodii is 

gram positive, it seems likely that the the enzyme is likely located in the cytoplasm. In 

contrast, hydrogenase from M  hungatei is found in the cytoplasmic membrane [50]. If 

hydrogenase in A. woodii is restricted to the cytoplasm, hydrogen must diffuse or be 

transported from the environment to the interior of the cell before it can be oxidized, 

whereas this would not be necessary in other hydrogenotrophs expressing periplasmic or 

membrane-bound hydrogenases. Periplasmic hydrogenases are a universal feature of the 

genus Desulfovibrio [53] and many sulfate reducing bacteria express this enzyme in both 

the periplasm and cytoplasmic membrane [6,38]. The localization of hydrogenase in the 

cytoplasm of A. woodii may serve as a mechanism regulating consumption at low
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hydrogen concentrations, thereby influencing kinetics, thresholds, and ultimately the 

interaction with other organisms.

Although the two-term Michaelis-Menten model accurately described hydrogen 

decay by cocultures (Figure 3 A) we questioned why the methanogen consumed hydrogen 

at a relatively slow rate in the controls (Figure 3B). Control incubations contained the 

respective organisms at a low cell density (~ 30 pg protein ml^) in order to avoid mass 

transfer limitation when the same cell densities were combined in coculture. Thus, we 

suspected the low rate of hydrogen consumption byM  hungatei in controls was due to a 

cell density limitation. A minimum cell density of at least 35 pg protein mf* was 

necessary to produce consistent Vmax estimates for this organism (Figure 5). Lower cell 

densities supported rates that were less than Vmax while higher densities were likely mass 

transfer limited. Thus, the rate of hydrogen consumption in M. hungatei controls was 

slower than expected because of the low cell concentrations in those incubations.

However, the same cell density of M. hungatei that supported only slow hydrogen 

decay in controls readily consumed hydrogen (as evidenced by methane production) in 

coculture with A. woodii (data not shown). Moreover, the methanogen consistently 

dominated hydrogen competition in coculture with the acetogen (Table 3). Thus, the rate 

of hydrogen consumption by the cocultures was accurately predicted by the model, but 

the fate of hydrogen was not. Clearly, some interaction other than simple competition 

influenced the fate of hydrogen even in defined cocultures.

The rate of hydrogen consumption byM  hungatei was proportional to the amount 

of/4, woodii in the coculture (Table 5), indicating the presence of the acetogen was 

responsible for the observed increase in methanogenesis. Apparently, the acetogen
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supplied some factor that stimulated hydrogen consumption by M  hungatei influencing 

the fate of hydrogen in favor of the latter organism at the expense of the former. Rather 

than competition, this interaction is best described as an amensalism. Interestingly, a 

newly isolated Methanobacterium-X'k& organism catalyzes the oxidation of metallic iron 

surfaces during methanogenesis [11]. If the ability to remove electrons from various 

surfaces is widespread among methanogenic/irc/zaea, thenM  hungatei may be able to 

use the acetogen cell as a surface from which to scavenge electrons for methane 

production. This ability would help explain the stimulation of methanogenesis we 

observe w henM  hungatei is incubated in the presence of whole cells o f A. woodii.

Although we did not characterize the stimulating factor to a great extent, the 

effect appeared to be heat-labile since the stimulation was eliminated by boiling 

preparations of A. woodii prior to adding them to M  hungatei resting cells. The presence 

of Desulfovibrio G11 stimulated hydrogen consumption in the methanogen as well, 

although to a lesser degree. Thus, different combinations of organisms may exhibit a 

similar interaction. Extracellular signal molecules play a prominent role in cell-cell 

communication although most of these molecules, such as homoserine lactones are 

confined to certain bacterial species [14]. Further, a recent study has shown structurally 

and functionally homologous unsaturated fatty acids responsible for regulating 

pathogenecity are produced as signal molecules by several bacterial species as well as 

Candida albicans [54]. These compounds may serve as diffusible signals for bacterial 

and fungal cell-cell communication. These findings suggest that cross-kingdom 

communication, as would be the case between A. woodii and M  hungatei, may be a more 

common phenomenon than currently appreciated. Nevertheless, we suspect a cell-
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associated mechanism rather than a diffusible molecule is responsible for the results in 

the current study since filter-sterilized buffer from A. woodii incubations was not 

stimulatory (Table 5).

These results indicate that factors in addition to kinetics and thresholds exhibited 

by pure cultures can affect hydrogen consumption rates as well as the fate of this electron 

donor. If these factors exert an influence in resting cell incubations, less defined systems 

would be expected to exhibit features that are at least as complex. The finding that A. 

woodii effected a stimulation in methanogenesis by M. hungatei was unexpected and 

contrary to the enigmatic coexistence of acetogens and methanogens. However, it is 

reasonable to expect that other microbial interactions analogous to the one identified in 

this study take place in nature. One or more of these interactions may result in the 

stimulation of acetogenic bacteria and support their persistence in hydrogen-driven 

ecosystems. In addition, acetogenic bacteria are an extremely versatile physiological 

group of anaerobic microorganisms. Their ability to metabolize a wide range of 

substrates is likely an important factor in the persistence of acetogens in the environment.
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Appendix 1

Progress Curve Analysis for Enzyme and Microbial Kinetic Reactions using Explicit 
Solutions based on the Lambert PE Function

Abstract

We present a simple method for estimating kinetic parameters from progress curve 

analysis of biologically catalyzed reactions that reduce to forms analogous to the 

Michaelis-Menten equation. Specifically, the Lambert fVfianction is used to obtain explicit, 

closed-form solutions to differential rate expressions that describe the dynamics of 

substrate depletion. The explicit nature of the new solutions greatly simplifies nonlinear 

estimation of the kinetic parameters since numerical techniques such as the Runge-Kutta 

and Newton-Raphson methods used to solve the differential and integral forms of the 

kinetic equations, respectively, are replaced with a simple algebraic expression. The 

applicability of this approach for estimating Fmax and in the Michaelis-Menten equation 

was verified using a combination of simulated and experimental progress curve data. For 

simulated data, final estimates of Fmax and were close to the actual values of 1 pM/h 

and 1 pM, respectively, while the standard errors for these parameter estimates were 

proportional to the error level in the simulated data sets. The method was also applied to 

hydrogen depletion experiments by mixed cultures of bacteria in activated sludge resulting 

in Lmax and estimates of 6.531 |iM/h and 2.136 p,M, respectively. The algebraic nature 

of this solution, coupled with its relatively high accuracy make it an attractive candidate 

for kinetic parameter estimation from progress curve data.

Keywords: kinetics, Lambert W function, Michaelis-Menten equation, nonlinear 

parameter estimation, progress curve analysis
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1. INTRODUCTION

The Michaelis-Menten equation has been widely used to describe the kinetics of 

enzyme-catalyzed reactions (Michaelis and Menten, 1913). Applications also include non

growing microbial suspensions where substrate consumption takes place in the absence of 

active microbial growth (Betlach and Tiedje, 1981; Pauli and Kaitala, 1997; Suflita et al., 

1983). A wide variety of data analysis techniques have been developed to obtain the 

kinetic parameters PLx and K^, the maximal rate, and half-saturation constant, 

respectively, (Atkins and Nimmo, 1975; Duggleby, 1995; Nimmo and Atkins, 1974). The 

most widely used approach is graphical where the Michaelis-Menten equation is linearized 

by algebraic manipulation. This linear equation is subsequently plotted as a straight line in 

rectangular coordinates and the parameters Kiax and are estimated by linear least 

squares analysis. Graphical methods of kinetic analysis of substrate-velocity data pairs are 

well known (Cornish-Bowden, 1995) and include the direct linear plot that does not 

involve any algebraic manipulations (Cornish-Bowden, 1975; Eisenthal and Cornish- 

Bowden, 1974). While graphical methods possess the unique advantage of providing a 

visual representation of experimental data, their parameter estimates can be very 

inaccurate. This is primarily because a linear transformation of an inherently nonlinear 

equation, such as the Michaelis-Menten expression, distorts the error in the measured 

variables and this can subsequently impact estimates of the salient kinetic parameters 

(Cornish-Bowden, 1995; Duggleby, 1991; Leatherbarrow, 1990; Robinson, 1985).

Some of the limitations described above can be avoided through the coupling of 

nonlinear parameter estimation techniques and progress curve analysis. This approach 

involves the use of substrate depletion/product accumulation determinations over time
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rather than initial veiocity-substrate concentration data pairs to estimate V̂ ax and 

(Duggleby, 1994; Duggleby, 1995; Duggleby and Morrison, 1977; Duggleby and Wood, 

1989; Femley, 1974; Zimmerle and Frieden, 1989). In addition to the potential for 

obtaining improved parameter estimates, this method is consistent with most experimental 

designs that typically involve monitoring either substrate or product concentration over 

time. Despite the obvious advantages of progress curve analyses as described elsewhere 

(Duggleby, 1995; Robinson, 1985), this method is not commonly used for kinetic 

parameter estimation. This is because of the computational difficulties associated with 

progress curve analysis. The integral form of the Michaelis-Menten equation is implicit in 

the substrate concentration. As a result, numerical approaches such as bisection and 

Newton-Raphson methods are necessary to compute substrate concentration in the 

integrated Michaelis-Menten equation (Duggleby, 1995). Alternatively, substrate 

concentration must be calculated by numerically integrating the differential form of the 

Michaelis-Menten equation (Duggleby, 1994; Duggleby, 2001; Zimmerle and Frieden, 

1989). Kinetic parameter estimation in the Michaelis-Menten equation is a 

multidimensional approach that involves using one of the numerical techniques described 

above to solve the Michaelis-Menten equation followed by an iterative estimation of the 

kinetic parameters V̂ ax and using an appropriate nonlinear optimization routine. 

Implementation of a robust nonlinear kinetic parameter estimation approach can be 

difficult when there is inadequate experience in numerical techniques and computer 

programming. We believe a simplification in kinetic parameter estimation from progress 

curve data can make this approach more appealing to a wider group of experimentalists.
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While the implicit nature of the Michaelis-Menten equation presents computational 

difficulties, the first truly explicit solution of the Michaelis-Menten equation was derived 

only recently through the use of computer algebra (Schnell and Mendoza, 1997) and we 

have independently verified that this solution can be used to accurately calculate substrate 

concentration (Goudar et al, 1999). The availability of this explicit solution of the 

Michaelis-Menten expression has significant implications for simplifying estimation of Vmax 

and Km through progress curve analysis. Specifically, this approach replaces numerical 

solution of a differential/nonlinear equation with the evaluation of a simple algebraic 

expression that provides highly accurate values of the substrate concentration. The 

algebraic nature of this solution coupled with its relatively high accuracy makes it an 

attractive candidate for use in nonlinear kinetic parameter estimation from progress curve 

data.

In the present study, we present a brief derivation of the explicit solution for the 

Michaelis-Menten equation and illustrate its application for estimating Vmax and Km from 

simulated and experimental substrate concentration data. We also show that this approach 

is general and can be applied to any kinetic expression that can be reduced to a form 

analogous to the Michaelis-Menten equation. We have developed a suite of computer 

programs in MATLAB (The Mathworks, Natick, MA) that use this explicit solution for 

kinetic parameter estimation and these programs are available free of charge for academic 

use fi'om the corresponding author.

2. THEORY

The Michaelis-Menten equation in the differential form can be used to describe the 

dynamics of substrate depletion as
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^  =  ( 1 )

where S  is the substrate concentration, and V̂ ax and are the maximal rate and 

Michaelis half saturation constant, respectively. Equation (1) can be readily integrated to 

obtain the integral form of the Michaelis-Menten equation

where So is the initial substrate concentration. Equation (2) is nonlinear and clearly implicit 

with respect to the substrate concentration. Hence, numerical approaches such as bisection 

and Newton-Raphson methods are necessary to calculate S. In order to obtain the explicit 

form of Eq. (2), we rearrange to form

5 + = (3)

Substituting (j) = S/Km in Eq. (3) results in

^K,+K,  + K j n ( s , y v , j  (4)

Dividing Eq. (4) by Km and rearranging results in

 ̂+ ln(^) = -^-hln
A . _ K.

K J
(5)

\  m J  m

The left hand side of Eq. (5) is analogous to the Lambert W function as defined by 

(Corless et al., 1996)

IT(x) + ln{ir(x)} = ln(x) (6)

where W is the Lambert W  function and x  the argument of W. From equations (5) and (6), 

an expression for (}) may be obtained as
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(7)

As ^ = SIKra, Equation (7) can be written in terms of S  as

\  J
(8)

Equation (8), derived from Eq. (2), explicitly relates the substrate concentration to the 

initial substrate concentration. So, and the kinetic parameters Vmax and K^. Substrate 

concentrations can be readily estimated from Eq. (8) which is a simple algebraic 

expression.

While the above derivation of the explicit solution has been for the Michaelis- 

Menten equation, it is equally applicable to several other kinetic models that reduce to 

forms analogous to the Michaelis-Menten equation. For instance, inhibition reaction 

mechanisms such as competitive, uncompetitive, non-competitive and mixed inhibition can 

all be reduced to forms that are analogous to Eq. (1) with different definitions of Vmax &nd 

Km. Hence, they all have explicit closed-form solutions similar to Eq. (8) that can be used 

for progress curve analysis.

3. MATERIALS AND METHODS

3.1. Evaluating W

There are several methods for computing the value of W as defined by Eq. (6) 

(Barry et al., 1995a; Barry et al., 1995b; Fritsch et al, 1973). These algorithms are 

extremely robust and fairly simple to use with one method (Fritsch et al, 1973) 

converging in a single iteration. The FORTRAN source code implementing the method in 

Fritsch et a l, 1973 is presented in the original publication while that for the method in
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Barry et al., 1995a can be obtained from http://www.netlib.org/toms/743. In the present 

study, we have used the MAPLE® (Waterloo Maple Inc.) implementation of the W 

frinction as described in Corless et al., 1996.

3.2 S ubstra te  Depletion Data

To illustrate the applicability of Eq. (8) for estimating V̂ ax and K„ through 

progress curve analysis, simulated substrate concentration data were generated from Eq.

(8) using So = 10 |iM, Fmax= 10 p.M/h and = 1.0 pM. For the resulting error-free 

substrate depletion data to more realistically represent experimental observations, noise of 

known type and magnitude was introduced. Normally distributed error with a mean of 

zero and standard deviation ranging from 1 to 4 % of the magnitude of the initial substrate 

concentration (10 p,M) was generated using a pseudo-random number generator. This 

noise was added to the error-free substrate concentration data obtained from Eq. (8) and 

the resulting data set was used for estimating Lma%and using nonlinear least squares.

Experimental hydrogen depletion data were obtained with sewage sludge that was 

collected from the primary digestor at the municipal treatment plant in Norman, OK. 

Hydrogen partitioning was mass transfer limited in incubations of undiluted sludge. To 

overcome this, sludge was centrifuged at 15,000 g for 20 minutes. The resulting 

supernatant was used as a diluent to make a sludge preparation (10 %) that was not mass 

transfer limited. Diluted sludge (0.5 L) was transferred to a 2 L Erlenmeyer flask under 

constant sparging with N2/CO2 (80%/20%). The flask was stoppered, placed at 37 °C and 

constantly stirred. Hydrogen (50 mL) was injected into the headspace of the flask to begin 

the assay. Hydrogen consumption was monitored by periodically removing headspace
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samples and analyzing them by gas chromatography (RGA3 Gas Analyzer, Trace 

Analytical, Sparks, Maryland).

3.3. Initial Kinetic Param eter Estim ates through Linearization

Given the iterative nature of nonlinear least squares analysis, initial estimates of the 

parameters are necessary. These initial estimates are typically obtained through 

linearization of the original nonlinear equation and it is important that they be as accurate 

as possible since the final solution can be impacted. The integrated Michaelis-Menten can 

be linearized in three different ways (Robinson and Characklis, 1984)

In

I 1 ( ,1 )
( S o - S )  V, ( S , - S )  V,

and standard linear least squares can be used to obtain estimates of Vmax and from Eqs.

(9 )-(ll). These initial estimates were subsequently used as starting points for estimating 

Vmax and Km through nonlinear least squares analysis as described in the following section.

3.4. Nonlinear Kinetic Param eter Estimation

Nonlinear kinetic parameter estimation involves minimizing the residual sum of 

squares error (RSSE) between experimental and calculated substrate concentration data.

Minimize KSffi = î [ ( i „ p ) , (12)
1=1
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where («Sexp), is the experimental substrate concentration and (5'cai), is the calculated 

substrate concentration in a total of i observations. Initial estimates of Vmax and 

obtained from Eqs. (9 )-(ll)  were used in Eq. (8) to calculate the first set of substrate 

concentration data. Subsequently, a comparison was made between the experimental and 

calculated substrate concentrations and the RSSE was computed from Eq. (12). The 

kinetic parameters were iteratively updated using the Levenberg-Marquardt method 

(Marquardt, 1963) until the RSSE in Eq. (12) was minimized.

3.5. C om puter Implementation

Computer programs have been developed that implement the parameter estimation 

approach outlined in sections 3.3 and 3.4. Experimental S versus t data are first used to 

obtain initial estimates of Vmax and from Eqs. (9 )-(ll) . These initial estimates are 

subsequently used to obtain final estimates of Vmax and using nonlinear least squares. 

The output from this analysis includes detailed statistics regarding quality of the fit and 

graphical representation of the fit to experimental data along with a plot of the residuals. 

Finally, three-dimensional visualization of the error surface in the Vmax and Æm space along 

with contour plots for the RSSE can be obtained. This visualization allows observation of 

local minima on the error surface and helps determine if the true global minimum has 

actually been reached during nonlinear parameter estimation.

4. RESULTS

4.1. Lambert W Function

A plot of the Lambert W function as defined by Eq. (8) is shown in Figure 1 for 

real values of W. From Eq. (8), the argument of the W function, x, corresponds to
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m \  J

l ^ e x p The W fiinction has three distinct branches depending upon the

values of x. For x > 0, Wis  positive and has a unique value (Region 1). For x values in the 

range of -1/e < x < 0, two solutions exist on either side of  W = -I (Regions 2 and 3, 

respectively). An examination of the above expression for x indicates that x is always 

positive as and So are always positive suggesting that unique values of W exist for all x 

values of interest when applying this solution to the Michaelis-Menten equation.
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Figure 1. The three real branches of the Lambert W fiinction. ( (o), x > 
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4.2. Kinetic Param eter Estim ation from Sim ulated Data

Simulated substrate concentration data along with the theoretical predictions 

corresponding to the best fit kinetic parameters are shown in Figure 2. Significant scatter 

in simulated substrate depletion curves is seen for errors with standard deviations of 3 and 

4 % as might be encountered in actual progress curve experiments Despite the increased 

scatter, final estimates of and Km were very close to the actual values of 1.0 pM/h and 

1.0 pM, respectively. However, the standard errors for both Vmax and Km increased with 

increasing noise levels suggesting that greater uncertainty is associated with the final 

estimates of the kinetic parameters as error is amplified. The magnitude of the increase in 

standard errors for Vmax and Km was similar to the increase in the standard deviation of the 

error introduced in the simulated substrate depletion curves.

The standard errors for K^ were approximately six-fold higher than those for Vmax 

at all the four noise levels (Figure 2) indicating higher uncertainty in the Km estimates. 

Contour plots of the RSSE in the Vmax and Km space are shown in Figure 3 where the inner 

most contours which represent the region of lowest RSSE, extend over a wide range of 

Km values and only over a very narrow range of Vmax values. This suggests substantially 

lower sensitivity of the RSSE to Km values and is consistent with the higher standard 

errors for Km estimates.
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Figure 2. Simulated substrate depletion data (points) along with model predictions (solid 

lines) from Eq. (8) and the best fit kinetic parameters. Simulated substrate depletion data 

were characterized by normally distributed noise with a mean value of zero and standard 

deviations of 1, 2, 3 and 4 % of the initial substrate concentration of 10 |0.M.
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Figure 3. Contour plots showing dependence of the RSSE on P ^ a n d  for the four 

simulated data sets examined in this study. Final estimates of K,axand and the 

associated standard errors are shown in Figure 2.
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High parameter correlation can adversely affect parameter determination and must 

be taken into account while assessing the quality of model fit to experimental data. The 

off-diagonal element of the parameter correlation matrix was 0.968 for all cases indicating 

significant correlation between Vmax and Km. However, this did not adversely affect final 

estimates of the kinetic parameters (Figure 2).

4.3. Kinetic Param eter Estim ation from Experimental S ubstra te  Decay 

Curves

Hydrogen depletion in activated sludge was used to provide a demonstration of the 

applicability of this parameter estimation approach. The substrate concentration versus 

time data were used in Eqs. (9 )-(ll)  to obtain initial estimates of Vmax and Km. These 

linearized plots are shown in Figure 4 along with the corresponding estimates of Vmax and 

Km. Subsequently, each of these three sets of initial estimates was used to determine the 

final values of Vmax and Km from Eqs. (8) and (12) using nonlinear least squares. This was 

done to check if the same final Vmax and Km determinations would be obtained from the 

three different initial estimates. While this approach does not solve the problem of the 

solution converging on a local error minimum, it is a simple way of checking the 

robustness of the solution. For the hydrogen depletion data set, all starting points 

converged to the same final solution and a plot of experimental hydrogen depletion data 

with corresponding model prediction is shown in Figure 5 along with a plot of the 

residuals. There was good agreement between experimental data and model prediction and 

the residuals were randomly distributed. The corresponding best fit values of Vmax and K„ 

along with their respective standard errors are also shown in Figure 5. The standard errors
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for both Vmax and K„ were low compared to the actual parameter estimates indicative of a 

robust model fit to experimental data. However, there was significant correlation between 

Vmax and Km as the off-diagonal element of the parameter correlation matrix was 0.967 (a 

value of 1 indicates complete correlation).
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Figure 4. The three linearization approaches for obtaining initial estimates of Vmax and 

Km for hydrogen depletion in activated sludge
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Figure 5. Experimental substrate depletion data (points) and model predictions (smooth line) for 

hydrogen depletion in activated sludge. E^g^and were estimated from Eqs. (8) and (12) using 

nonlinear least squares and are presented as parameter ± standard error.
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To further characterize the robustness of the fit, RSSE values were generated over 

a grid of V„,ax and K„, values (0.2F„ax< Vmax< 2K ; 0.2K„, <K„< 2K„, ) and a contour plot 

of the RSSE in the Vmax and Km space is shown in Figure 6. The true global minimum 

corresponded to a Log(RSSE) value of 0.686 which is very close to that obtained from 

nonlinear parameter estimation (0.675; Figure 5). Whenever possible, a visual examination 

of the error surface should be made to check for convergence or lack thereof on the true 

global minimum. Recognizing the value of visual examination of the error surface in the 

Vmax and Æm space, this aspect of data analysis has been incorporated in the computer 

programs developed in this study.
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Figure 6. Visualization of the error surface {log(RSSE) values} as a two-dimensional 

contour plot in the F^^and Æm space (0.2F»«%< 2F„; Q.lKm <K^< 2K„) for hydrogen

depletion in activated sludge. The final estimates of and from nonlinear parameter 

estimation were 6.53 p,M/h and 2.14 |o,M, respectively (Figure 5).
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5. DISCUSSION

An alternate approach for estimating kinetic parameters in enzyme and microbial 

kinetic progress curves through the use of an explicit closed form solution of the 

differential rate expressions is presented. Unlike existing solutions that are implicit with 

respect to the substrate concentration, the new solutions describe substrate concentration 

as a function of the initial substrate concentration and the kinetic parameters alone and are 

hence truly explicit. This representation simplifies nonlinear estimation of kinetic 

parameters from progress curve data as current methods that rely on numerical solutions 

of the differential/integral rate expressions are replaced with a simple algebraic expression. 

Moreover, substrate concentrations with accuracy on the order of 10"'̂  can be readily 

obtained using the explicit closed form solution (Goudar et al., 1999). Such accuracies 

cannot be easily obtained with the standard numerical approaches for solving differential 

and nonlinear equations.

While we have used the Michaelis-Menten equation to illustrate the applicability of 

the W function based closed form solution, it is important to recognize that this approach 

is general and can be extended to any enzyme kinetic mechanism that can be reduced to a 

form analogous to the Michaelis-Menten equation. For instance, the rate expression for 

competitive inhibition can be written as

6#

K.
/  . \ (13)

+ S
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which reduces to Eq. (1) when the substitution K ^' = K^ is made. Hence the

solution presented as Eq. (8) is applicable to Eq. (13) as well as several other reaction 

schemes involving inhibition mechanisms (Cornish-Bowden, 1995) that reduce to forms 

analogous to the Michaelis-Menten with different definitions of V̂ ax and K^. Progress 

curve data for these kinetic mechanisms are readily amenable to the parameter estimation 

approach presented here thereby widening the scope of its applicability.

The computer programs developed in this study allow for comprehensive analysis 

of experimental substrate depletion versus time data. Three sets of Vmax and Km values are 

first determined through linearization and we recommend that each of these sets be 

subsequently used to estimate the final values using nonlinear least squares. This will help 

determine if the same final solution is obtained in all cases and will provide some 

indication of the robustness of the model fit. After successful parameter estimation, the 

programs provide detailed statistical information that can be used to asses the quality of 

the model fit to experimental data. There is also a provision to visualize the error surface 

in the Vmax and Km space which provides very useful information on the presence of 

multiple minima in the error surface. The computer programs developed in this study are 

intuitive and extremely easy to use.

6. CONCLUSIONS

Solution of both the differential and integral forms of the Michaelis-Menten and 

analogous equations has traditionally required the use of numerical techniques which adds 

to the complexity of nonlinear parameter estimation from progress curve data. In the 

present study, we present a simpler alternate approach to progress curve analysis that uses
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explicit, closed-from solutions of the differential rate equations. Applicability of the 

explicit solutions for progress curve analysis was verified using both simulated and 

experimental substrate depletion data. The simplicity and accuracy of the Lambert fV 

fiinction based solutions should increase the appeal of progress curve analysis for 

estimating kinetic parameters in the Michaelis-Menten and similar rate expressions. 

Computer programs have been developed that perform all the analyses presented in this 

study and are available free of charge for academic use from the corresponding author.
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Appendix II

The use of a nonlinear regression routine for estimation of kinetic parameters from
progress curves

Nonlinear regression is a technique to fit a curve that defines y as a function of x and one 

or more parameters. Nonlinear regression analysis requires the use of a microcomputer 

and involves an iterative approach that is discussed later in this appendix. The CD 

supplied with this appendix contains the necessary files for estimating K„ and Vmax from 

progress curve data via nonlinear regression analysis.

Steps in using nonlinear regression analysis to estimate Km and Vmax from progress 

curve data.

The following paragraphs are designed to explain the procedure for using nonlinear 

regression routines for kinetic analysis of substrate depletion data. A step-by-step 

procedure for using the programs supplied on the CD is given at the end of this appendix.

Choosing a mathematical model. The first step in using nonlinear regression is to 

choose a mathematical model to be fit to the data. While a computer program can choose 

a model, the choice should be driven by the scientific context of the experiment. Simply 

finding an equation that fits the data is not likely to be usefiil. Enzyme catalyzed 

reactions can be described by the Michaelis-Menten model. The program discussed in 

appendix I and provided on the CD that accompanies appendix II uses the Michaelis-
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Menten expression to evaluate Km and Vmax from progress curve data. Thus, the choice 

of model has been made when using these files.

Obtaining initial estimates. Since nonlinear regression is an iterative routine, initial 

estimates of So, Km, and Vmax, are required. Estimates of Sq and Vmax can be made fairly 

easily by simply examining the progress curve. However, the Km can be more difficult to 

discern in this way. A better approach is to perform linear regression. One of the 

advantages of the Michaelis-Menten equation is that it is transformably linear. That is, it 

can be linearized to produce estimates of So as well as Km, and Vmax. There are three 

linearization routines provided on the CD that transform progress curve data using 

equivalent versions of the Lineweaver-Burk, Hanes-Wolfe, and Eadie-Hofstee 

transformations. Each transformation generates values of So, Km, and Vmax for use in the 

nonlinear regression routine. Although values obtained from the linearized forms of the 

Michaelis-Menten equation are less accurate than the results of nonlinear regression, 

these values are appropriate for use as initial estimates.

It should be noted that the initial values can simply be guesses. If the data clearly define 

a zero, mixed, and first order decay regions, the estimates do not have to be very accurate 

for the routine to converge. Generally, the more scatter in the data, the more rigorous one 

needs to be in determining initial parameters to start the routine. If finding initial 

estimates is difficult, the program includes a way to simulate a progress curve from 

kinetic constants provided by the user. Thus, a family of curves can be generated from 

several possible values of So, Km and Vmax and compared the to the experimental progress
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curve. The parameters associated with the simulation that best matches the experimental 

progress curve should then be used for the initial estimates.

Assigning constants. When using nonlinear regression, it is not necessary to fit each 

parameter in the equation. For example, it may be necessary to subtract a background 

signal from the data. When following hydrogen depletion by the acetogen Eubacterium 

limosum, a threshold was observed below which hydrogen consumption did not occur 

(Figure 1). Thresholds are not predicted by Michaelis-Menten kinetics. Thus, the model 

was adjusted to account for a threshold term (St) that was experimentally determined and 

supplied when doing the analysis. A special file is included on the CD that incorporates a 

threshold term that is useful if a constant should be assigned to a bottom plateau of a 

curve due to a phenomenon similar to a substrate threshold.
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Figure 1. Hydrogen depletion and threshold exhibited by Eubacterium 

limosum (♦) and model fit (solid line). Equation represents modification of 

the Michaelis-Menten expression to incorporate a substrate threshold (St).
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Minimizing the sum of the squared error. Once the data and initial parameters are 

supplied, the program computes So, Km, and Vmax values that fit the data best. It does so 

by using the initial estimates to draw a curve through the data. The program computes 

the sum of the squares of the vertical distances between the data points and the curve.

The Km and Vmax estimates are then adjusted slightly and a second curve is drawn. The 

routine computes the sum of the squared distances of the second curve and determines 

which of the two curves is a better fit of the data based on the lower sum of squares. The 

routine does this many times until further adjustments to the kinetic parameters no longer 

decrease the sum of squares. It is typical for the algorithm to go through several, even 

dozens of iterations before estimates of Km and Vmax are attained for which the sum of 

squares has been minimized. The algorithm for adjusting the kinetic parameters to find 

the lowest sum of squares is the most important part of nonlinear regression routines. 

Some common algorithms are the method of linear descent and the Gauss-Newton 

method. These algorithms all differ in the way the initial kinetic estimates are adjusted 

with each subsequent iteration. More recently, the method of Levenberg and Marquardt 

has come into use and is comprised of both the linear descent and Gauss-Newton 

approaches. A more detailed description of these algorithms can be found at 

www.graphpad.com and in Taylor, 2002. Appendix 2 describes what the authors contend 

to be an improvement on existing methods for performing nonlinear regression. It is this 

improved program that is supplied with appendix 1.
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Local minima of error surfaces. It is possible that the surface of the error function 

exhibits multiple local minima that may cause the routine to converge on an answer that 

does not represent the true minimum of the sum of squares. Figure 2 is an adaptation 

from the GraphPad Software, Inc. website and illustrates a two-dimensional error surface 

with multiple minima. It is apparent from Figure 2 that the choice of initial parameter 

estimates is important in order to determine the true best fit. Although this problem is 

intrinsic to all algorithms that are used for nonlinear regression analysis, there are 

strategies available to the experimentalist to ensure that local minima are not 

compromising the accuracy of kinetic parameter estimation. I have had success testing 

for local minima by running the routine several times (with the same progress curve data) 

using different initial estimates of Km and Vmax- If the same final parameter estimates and 

the same sum of squares are obtained, then local minima are unlikely to be a problem. In 

fact, I have been able to use initial Km and Vmax estimates that are as much as two orders 

of magnitude larger or smaller than the actual final values without complications of local 

minima. Figure 2 of appendix 1 illustrates the ability of these programs to estimate the 

Km and Vmax ftom progress curve data containing various levels of error. Note that while 

the sum of squares error increases with increasing scatter of the data, the routines are still 

able to converge on similar parameter estimates. Nevertheless, progress curve data 

exhibiting little scatter combined with carefully chosen initial estimates are the best tools 

for avoiding local minima.

It has been my experience that the quality of the progress curve data has a greater 

influence on the final kinetic estimates and associated standard deviations than do the 

initial estimates. Attempting to estimate the Km and Vmax from a substrate decay curve
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that is curvilinear or linear throughout, often results in a Km that is not physiologically 

relevant, or a stalled routine. As stated earlier, the best way to use these programs 

successfully is to start with a good progress curve. By definition, progress curves exhibit 

zero, followed by mixed, and then first order decay regions. A good approach to 

obtaining this kind of decay curve is to start at a sub state concentration that is 5 to 10- 

fold greater than the Km and continue monitoring substrate depletion until the 

concentration is 1/10* of the Km or less. Figure 5A of appendix 1 is an example of a 

progress curve that is appropriate for nonlinear regression analysis.
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Figure 2, Two-dimensional depiction of a hypothetical error function 

illustrating the presence of multiple minima adapted from www.graphad.com.
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Installation of programs for kinetic analysis of progress curve data.

MATLAB requires MS Windows to operate. Once the software is installed, the files can 

be copied from the CD supplied in this appendix and used for nonlinear regression 

analysis.

Create a new folder on the hard drive and copy the folders ‘kinetics’, ‘competition’, and 

‘threshold’ from the CD to the new folder.

Obtaining initial estimates of So, Km, and Vmax via linear transformations of 

progress curve data.

Under the file menu, choose a new m-file.

Copy and paste substrate vs. time data pairs from a spreadsheet program into a new m- 

file. Make sure the time points are in the left column and substrate concentrations are in 

the right column. Save the new m file in the ‘kinetics’ folder with a filename you will 

remember.

On the MATLAB main screen, type ‘menteninitial’ at the EDU prompt to start the 

program for obtaining initial estimates. When the program menu appears, type in the 

value for So and the name of the file containing the data followed by m. Press OK.
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The initial estimates for So, Km, and Vmax will then appear on the dialog screen. In 

addition, three plots of model and experimental data will be displayed as well as the three 

linear plots. The three linear plots correspond to the Hanes-Wolfe, Eadie-Hofstee, and 

Lineweaver-Burk equivalents.

Estimating So, Km, and Vmax via nonlinear regression.

Type ‘mentenfit’ at the EDU prompt and press enter. Enter the values for So, Km, and 

Vmax determined from the previous linear transformations. Type the name of the data file 

followed by .m as before and press OK.

Record the parameter estimates and associated error provided by the program.

Repeat the above procedure with various initial estimates of Km and Vmax until you are 

satisfied that the estimates provided by the program correspond to the lowest possible 

standard deviations.

Analysis of hydrogen decay with a threshold. If a threshold is evident or suspected in 

the substrate depletion curve, then the analysis should be done with the file specifically 

designed to account for this phenomenon. The initial estimates must be obtained as 

explained earlier. Once that has been done, type ‘mmthresh’ at the EDU prompt on the 

MATLAB dialog screen. The menu will be similar to that provided by ‘mentenfit’
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except that an additional cell will be available to supply the experimentally determined 

threshold value. The rest of the analysis can then be carried out as before.

Hydrogen decay simulations. This file is useful for modeling competition between two 

microorganisms for a single substrate if the following parameters are provided: So, Km, 

Vmax, the time course of the incubation, and biomass. Hydrogen consumption can also be 

simulated by simply providing hypothetical parameters. The resulting simulation can 

then be used for initial parameter estimation if desired.

Type ‘compsolv’ at the EDU prompt. Enter the known parameters in the appropriate 

cells and press OK.

The program will then show a plot of hydrogen depletion for up to two different sets of

kinetic estimates as well as a third decay curve that illustrates the result of an additive

kinetic effect. It will likely be necessary to obtain the raw data from these simulations.

The commands must be entered on the main dialog page of MATLAB at the EDU

prompt. The commands are as follows:

Command Returns

tspan...................................................................time points
scala................................................................... substrate conc. for parameter set A
scalb................................................................... substrate conc. for parameter set B
scale................................................................... substrate conc. for parameter set C

Once these data are obtained they can be cut and pasted into any spreadsheet program for

further manipulation. Figure 3 shows several simulations for two microorganisms

exhibiting different kinetics as well as the decay curve expected for cocultures. The
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bacteria exhibit a similar K™ with respect to the substrate but organism 2 has a faster Vmax 

as illustrated by the faster decay curve in figure 3 A. The results suggest that if organism 

1 were included at a 1.3-fold relative biomass advantage (Figure 3B) it would consume 

the substrate at a comparable rate to organism 2 and would begin to dominate substrate 

competition at 1.5 times the biomass of organism 2 (Figure 3C). This illustrates how 

these simulations can be used to predict substrate consumption by cocultures as well as 

aid in the design of experiments. Figure 4 shows hydrogen consumption by a coculture 

of Acetobacterium woodii and Methanospirillum hungatei. The Km and Vmax for A. 

woodii were 4.6 ^iM and 970 nmol m in‘ mg protein"', respectively. The Km and Vmax for 

M  hungatei were 5.0 pM and 1350 nmol min"' mg protein"', respectively. Biomass 

concentrations for the two microorganisms were adjusted via a biomass term that is 

provided by the model. The predicted decay curve is the result of a simulation based on 

the kinetics exhibited by the two microorganisms in pure culture. The agreement 

suggests that the hydrogen consumption rate by the coculture represents an additive effect 

of the Vmax exhibited by the two individual microorganisms.
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Figure 3. Simulation of hydrogen decay by two organisms in monocultures and in coculture. 

Organisms included at equal biomass concentrations (A). Organism 1 included at a 1.3-fold 

(B) and 1.5-fold biomass advantage (C) relative to organism 2.
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Figure 4. Hydrogen consumption in a coculture of A. woodii and M  hungatei 

and the corresponding model prediction based on the kinetics exhibited in 

pure culture.
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