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CHAPTER 1

INTRODUCTION

The appearance of the notion of extra dimensions in the high energy physics was

motivated by the attempt to unify all the elementary particle interactions. Indeed,

after the electricity and magnetism unification realized by Maxwell toward the end

of the 19th century, together with the recognition of its special relativistic invariance

observed later on, a quest for unifying the new found electromagnetism with the

gravity started. After some early attempts [1] and after the publication of Einstein’s

general relativity, it came the turn of Theodor Kaluza to propose a unified theory

based on a five-dimensional gravitational Einstein action [2]. The same theory was

rediscovered independently five years later by Oskar Klein [3].

Then, for many years, the extra dimensions were abandoned in favor of the

more successful four-dimensional theories which culminated with the appearance of

the Standard Model (SM) of elementary particles [4]. To further hinder the develop-

ment of the theories with more than four space-time dimensions was the impressive

experimental confirmation of the SM predictions.

Although successful, SM leaves also a lot of questions unanswered. Why are

the strengths of the gauge interactions so different at low energy scales? Why is the

number of generations three? Where do the fermion masses come from? Why is the

CP invariance broken? And those are only few of the questions SM fails to address.

All the hints point to the fact that SM is just an effective theory valid at lower

energies up to 246 GeV . Above that a more fundamental theory comes into place.

Attempts to answer some of the above questions materialized in the appearance of the

Grand Unified Theories (GUT). But GUTs too were formulated in a four-dimensional

framework.

1
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It was only recently realized, triggered by the appearance of the string theories,

the true potential of the 4+N dimensional∗ description of the physical phenomena. As

a parenthesis, we note that the recent theories (for example M-theory) require up to

seven extra dimensions to consistently describe all the four known fundamental forces.

Nowadays, along with the development of the theories including extra dimensions,

phenomenological studies try to shed more light on what influence the existence of

extra dimensions might have on the physics directly accessible to our experiments.

One such study constitutes this thesis. It is worth mentioning that, although most

of the phenomenological studies are based on simplified models of theories yet to be

established, their main advantage is the fact that they investigate different ways to

incorporate the idea of extra dimensions into some predictive models allowing for

quantitative estimates. This in turn, allows for the planning of different discovery

strategies of the extra dimensions.

Once one allows for the existence of extra dimensions, the next obvious ques-

tion is how big those extra dimensions are? Here, mostly because of the lack of a

compelling theory, there are several scenarios one can choose to follow. There are the

possibilities that the extra dimensions are infinite in size [5], or that they have finite

large sizes [6] and not all of them are equal [7].

Whether or not the extra dimensions are infinite or finite, flat [8] or compact-

ified, the scenarios involving them have some common features. The ordinary four

dimensional space is embedded in a higher dimensional 4+N space known as the

”bulk”. From the higher dimensional point of view then, our universe would appear

as a four dimensional ”brane” (in short, a 4D-brane). The higher dimensional brane

is just an extension of the two dimensional notion of ”membrane”. Now, the brane

itself can be infinitely thin or can be endowed with some thickness [9].

It is apparent now that as a function of what fields one allows to propagate in the

bulk, the scenarios mentioned above give (if at all) different experimental signatures.

In the simplest case, the ADD scenario [5], only gravity propagates in the extra

dimensions. Our universe is viewed as a 4D-brane embedded in the bigger 4+N

∗Here N stands for the number of extra dimensions one considers.
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dimensional space. In this picture, matter fields and gauge bosons are confined to

the 4D-brane, gravity is naturally weak because it is propagating in N extra compact

dimensions, and the hierarchy problem is resolved by bringing the fundamental scale

of gravity close to the electroweak scale according to the formula:

M2
Pl = MN+2

D

(
R

2π

)N

. (1.1)

Here MPl ≃ 1019 GeV is the Plank scale in four dimensions, while MD is the new

fundamental scale of gravity in 4+N dimensions. One can see that with MD of order

TeV , one would obtain R as large as eV −1 (for N = 2) up to MeV −1 (for N = 6).

A general feature of this type of models is the existence of the so called Kaluza-

Klein (KK) towers of excited states of the graviton. We will introduce in a more

appropriate way the KK excitations in the next chapter. For now suffice to say that

the mass splitting between levels ( KK excitations) is proportional to the inverse of

the compactification radius ∆m ∼ 1/R.

Of course, one can construct extensions of the ADD model where matter fields

are also allowed to propagate in extra dimensions [10]. Then ordinary matter will also

have KK excitations with masses of order 1/R. But no such excitations have been

seen at colliders. So, one might conclude that R should be at least of inverse TeV

order. However, we have to change our picture about gravity, then, by assuming ei-

ther that the extra dimensions are asymmetrical (some of order inverse eV , in which

only gravity propagate, and some of order inverse TeV , in which matter can also

propagate) or, if we keep all compact dimensions of TeV −1 size, reintroducing some

hierarchy between the gravity and electroweak scale. A better scenario is obtained if

all matter fields are allowed to propagate small distances in extra dimensions∗. One

obtains then the universal extra dimensions (UED) [11] plus fat branes scenario. Pre-

cisely this is the model we used in this thesis. While in the standard UED scenario

the first level of KK excitations is stable (due to KK number conservation and degen-

eracy at tree level), which means that they can be only pair-produced, adding the fat

∗This is the equivalent of saying that the branes have now finite thickness with
respect to the extra dimensions. Hence the name used in literature: ”fat branes”.
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branes to UED allows, through matter-gravity interactions which break the KK num-

ber conservation, for the gravitational decay of the first level KK particles. Another

interesting consequence is that in UED plus fat branes, gravitons can now mediate

the production of single KK excitations. Associated with the single KK production

comes the advantage of a bigger reach in mass for the experiments at present and

future colliders. But there is also a disadvantage: the scale of the higher dimensional

gravity should be low (order 10 TeV ).

Now one can pause and wonder how is possible to even compare the gravitational

interactions with the other three much stronger fundamental forces. Indeed, when one

considers only the effect of an individual graviton, the effects are negligible compared

to the other forces. But one must not forget that there is a large number of gravitons

with increasing masses (eV to MeV spaced) contributing to the interactions below

the typical TeV scale. And it is precisely this big number which ensures that the

gravitational decay width is big enough so that the KK excitations will decay inside

the detector. This is very important for the relevance of the results given in chapter

three.

The present thesis contains five chapters; chapters three and four are based on

the materials presented in three publications [12], [13], [14]. The second chapter is

provided as a brief review on the Standard Model of the elementary particles. It also

introduces the fundamental concepts and relations related to the extra dimensions. In

the third chapter we will describe two different methods to search for extra dimensions

at the present and future colliders. Both methods are applied in the context of the

UED with fat branes. The first method correlates the the existence of the extra

dimensions via gravity mediated processes with the characteristics of the two-jet

plus missing energy signals. The second method analyzes the monojet plus missing

energy signals coming from the production of a single KK excitation plus a graviton.

The fourth chapter provides another method for testing the existence of the extra

dimensions. This method is based on a variation of the model used in the third

chapter and which allows for different generations of SM fermions to be localized

on branes of different thickness. Although the phenomenological implications are
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broader than that, this model is applied mostly to neutrino physics. The last chapter

is reserved for conclusions.



CHAPTER 2

STANDARD MODEL AND BEYOND

This chapter is provided as a brief review of the Standard Model (SM) of the

elementary particle physics. It is also meant to introduce the key concepts of the

theories with extra dimensions.

2.1 The Standard Model

The Standard Model (SM) of elementary particle physics successfully describes

the physics beyond atomic scales up to about 10−18 m. It is a non-abelian gauge

theory based on the gauge group [15]

SU(3)C × SU(2)L × U(1)Y ,

where SU(3)C is the color gauge group describing strong interactions and SU(2)L ×
U(1)Y is the electroweak gauge group describing weak and electromagnetic interac-

tions. The field content, the transformation properties under the gauge symmetries

and the corresponding masses and charges [16] are shown in Table A.1 and Table A.2.

The SU(3)C gauge group of the strong interactions (also known as Quantum

Chromodynamics, in short QCD) details the interaction between ”colored”∗ quarks,

antiquarks, and gluons. The QCD is a flavor-blind symmetry based on the following

Lagrangian

∗Please keep in mind that the term ”color” denotes a quantum number, not an
actual color although traditionally, the three fundamental ”colors” for the quarks
are taken to be ”red”, ”green” and ”blue”. Regardless of the names one chooses
to use, the three possible states form the fundamental representation of the SU(3)C

symmetry group.

6
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LQCD = −1

4
F (a)

µν F (a)µν + ı
∑

q

Ψ̄i
qγ

µ (Dµ)ij Ψj
q −

∑

q

mqΨ̄
i
qΨqi, (2.1)

F (a)
µν = ∂µA

a
ν − ∂νA

a
µ − gsfabcA

b
µA

c
ν , (2.2)

(Dµ)ij = δij∂µ + ıgs

∑

a

λa
i,j

2
Aa

µ, (2.3)

with gs the strong coupling∗, fabc the structure constants, Ψi
q (x) a 4-component Dirac

spinor of color i = 1 − 3 and flavor q = 1 − 6, Aa
µ the Yang-Mills gluon field in the

adjoint representation of the SU(3)C gauge group with a = 1− 8. To the best of our

knowledge, the color symmetry is an exact symmetry in nature. This means that the 8

gluons are massless. It worth mentioning that so far, all the experimentally observed

hadrons are quark-antiquark (mesons) or three-quark (baryons) combinations in a

color singlet configuration.

The electroweak interaction on the other hand, based on the gauge group

SU(2)L × U(1)Y , is not an exact symmetry of the nature. The electroweak gauge

group is spontaneously broken down to U(1)em. The Lagrangian describing this for

the fermion fields is

LF =
∑

i

Ψ̄i

(
ı/∂ − mi −

gmiH

2MW

)
Ψi

− g

2
√

2

∑

i

Ψ̄iγ
µ
(
1 − γ5

) (
T+W+

µ + T−W−
µ

)
Ψi

− e
∑

i

Ψ̄iγ
µΨiAµ

− g

2 cos θW

∑

i

Ψ̄iγ
µ
(
gi

V − gi
Aγ5
)
ΨiZµ, (2.4)

where Ψi =

(
νi

l−i

)
,

(
ui

d′
i

)
is the left-handed fermionic field with d′ ≡ ∑j Vijdj and

V the Cabibbo-Kobayashi-Maskawa (CKM) matrix, θW ≡ tan−1 (g′/g) is the weak

∗The strong coupling gs is dependent of the momentum transferred in the inter-
action process. In fact, all the SM gauge couplings depend on the momentum scale.
Due to the nature of the gauge group, the strong coupling decreases as the momen-
tum transferred increases; this phenomenon is the well known ”asymptotic freedom”
of the strong interaction.
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angle, e = g sin θW the positron charge, A = B cos θW + W 3 sin θW the massless

photon (Bµ is the gauge boson for U(1) and W 3
µ is one of the three gauge bosons for

SU(2)). The rest of the fields in (2.4) are the massive charged W± ≡ (W 1∓ ıW 2)/
√

2

and neutral Z ≡ −B sin θW + W 3 cos θW weak bosons, and H is the physical neutral

Higgs. T+ and T− are the weak isospin raising and lowering operators, gi
V and gi

A are

the vector and axial-vector coupling

gi
V ≡ t3L(i) − 2qi sin

2 θW , (2.5)

gi
A ≡ t3L(i), (2.6)

with t3L(i) the weak isospin and qi the charge of the fermion i.

The electric charge Qem, the U(1)Y hypercharge and the third component of

weak isospin T3L are related by

Qem = T3L +
Y

2
. (2.7)

One important thing about the electroweak interactions is that the left and the

right handed components of the fermions are in different representations (doublets

and singlets respectively) of the weak gauge group SU(2)L giving a chiral structure

to the SM. This will prove to be an important constrain for any theory involving

extra dimensions because the 4 + N dimensional theories, where N is odd, have an

inherent vector-like character. If one is to start with a multi-dimensional theory or

model, one must make sure that, after dimensional reduction, the remaining effective

4-dimensional theory is chiral.

The rest of the SM Lagrangian describes the interactions of the Higgs boson

with the fermions (Yukawa) and the gauge bosons.

The Yukawa part of the SM Lagrangian is given by

LY ukawa = Y ℓ
αβℓαec

βφ̃ + Y d
αβQαdc

βφ̃ + Y u
αβQαuc

βφ + h.c., (2.8)

where φ =

(
φ+

φ0

)
is the scalar Higgs doublet responsible for the spontaneous sym-

metry breaking of SU(2)L ×U(1)Y → U(1)em, φ̃ = iσ2φ∗ =

(
φ̄0

−φ−

)
, α, β = 1, 3 the
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generation indices and Y’s the Yukawa matrices. Note that there is no mass for the

neutrinos in the SM due to the absence of the corresponding right-handed singlets.

After symmetry breaking and from the Yukawa interactions in (2.8), the

fermions acquire masses

Mu = Yuυ, Md = Ydυ, Mℓ = Yℓυ. (2.9)

Here Yu, d, ℓ are arbitrary 3 × 3 complex matrices in generation space. Note that the

mass terms for the fermions in (2.4) comes from this spontaneous symmetry breaking.

The Lagrangian for the gauge-Higgs interactions is

Lgauge−Higgs =

∣∣∣∣∂µφ − ig

2
~τ . ~Wµφ − ig′

2
Bµφ

∣∣∣∣
2

. (2.10)

If one chooses the vacuum expectation value (vev) for the Higgs field of the

form

〈φ0〉 =
1√
2

(
0

υ

)
. (2.11)

then the masses for the weak gauge bosons from (2.4) are

MW =
gυ

2
, MZ =

MW

cos θW

, MA = 0, (2.12)

where A is the photon field, g is the SU(2)L gauge coupling strength, tan θW = g′/g

and g′ is the U(1)Y gauge coupling constant.

After this brief review of the SM, it is now time to introduce the formalism

related to extra dimensions. We will achieve this in the next section.

2.2 Extra Dimensions

As mentioned before, the universal treatment based on the non-abelian gauge

theory SU(3)C × SU(2)L × U(1)Y , for the strong, electromagnetic and weak forces

provided by the SM of elementary particles is quite successful. It is only natural to

try to incorporate the notion of extra dimensions into it first. So let us first define the

theoretical framework used in this thesis. In the scenario envisioned in this thesis,
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matter (the SM content) propagates in one∗ extra dimension compactified in an S1/Z2

orbifold† of radius R of order inverse TeV .

In general, with respect to the compact extra dimension, one can write the

following Fourier expansions for the SM fields (fermions, scalars and gauge bosons)

correct up to a normalization constant:

Q = QL +
∞∑

n=1

[
Qn

L cos
(ny

R

)
+ Qn

L sin
(ny

R

)]

+ QR +
∞∑

n=1

[
Qn

R cos
(ny

R

)
+ Qn

R sin
(ny

R

)]
,

q = qL +
∞∑

n=1

[
qn
L cos

(ny

R

)
+ qn

L sin
(ny

R

)]

+ qR +
∞∑

n=1

[
qn
R cos

(ny

R

)
+ qn

R sin
(ny

R

)]
,

(Φ, Ba
µ) = (Φ0, B

a
µ,0) +

∞∑

n=1

[
(Φn, B

a
µ,n) cos(

ny

R
) + (Φn, Ba

µ,n) sin(
ny

R
)
]
. (2.13)

Here Q(q) is the 5D fermionic doublet(singlet) under SU(2) whose zero mode is the

usual SM fermionic doublet(singlet); Φ is the scalar field (Higgs) and Ba
µ are the vector

(gauge) fields. We work in a gauge where Ba
5 = 0 [17, 18]. Assigning the following

parities under the Z2(y → −y) symmetry for the fields in (2.13):

QL(x, y) = QL(x,−y), QR(x, y) = −QR(x,−y), Ba
µ(x, y) = Ba

µ(x,−y), (2.14)

one remains with the correct chiral content for the SM zero modes particles. The

expansions from (2.13) will then become (this time, the normalized wave functions

are given) [19]:

Q =
1√
πR

{
QL +

√
2

∞∑

n=1

[
Qn

L cos
(ny

R

)
+ Qn

R sin
(ny

R

)]}
,

q =
1√
πR

{
qR +

√
2

∞∑

n=1

[
qn
R cos

(ny

R

)
+ qn

L sin
(ny

R

)]}
,

∗The extrapolation of our results to more then one extra dimension, although
straightforward, is more involved.

†An approximate definition for orbifold is: a topologically smooth space with some
singularities(edges and sharp points).
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(Φ, Ba
µ) =

1√
πR

[
(Φ0, B

a
µ,0) +

√
2

∞∑

n=1

(Φn, B
a
µ,n) cos(

ny

R
)

]
. (2.15)

Note that we obtain two towers of KK excitations for each fermion of any flavor

and that the spacing between adjacent levels is indeed of order 1/R. Gravity, on the

other hand, is not affected in any way by orbifolding. So the following expansion over

the N extra dimensions in which only gravity propagates holds true:

ĥµ̂ν̂(x, y) =
∑

~n

ĥ~n
µ̂ν̂(x) exp

(
i
2π~n · ~y

r

)
. (2.16)

We assume that the N extra dimensions can have radii r as large as eV −1; the

radius r of these extra dimensions is given in terms of the fundamental Plank scale

MD by the ADD relation (1.1).

The ‘hat’ denotes quantities which live in 4+N dimensions: µ̂, ν̂ = 0, . . . , 3, . . . 4+

N , while µ, ν = 0, . . . , 3. At each KK level we have the decomposition of the ĥµ̂ν̂ field

((N + 2)(N + 3)/2 − 1 d.o.f.) into 4D tensor hµν (5 d.o.f), vector Aµi (3 ∗ (N − 1)

d.o.f.) and scalar φij (N(N − 1)/2 d.o.f) components by:

ĥ~n
µ̂ν̂ = V

−1/2
N


 h~n

µν + ηµνφ
~n A~n

µi

A~n
νj 2φ~n

ij


 (2.17)

where VN = (2πr)N is the volume of the N -dimensional torus.

For completion, we mention here that the fields in (2.17) obey also the following

relations:

∂µ̂(ĥµ̂ν̂ −
1

2
η̂µ̂ν̂ ĥ) = 0, niA

~n
µi = 0, niφ

~n
ij = 0. (2.18)

The above relations take care of the extra internal degrees of freedom of the 4+N

dimensional graviton. Having introduced the main ingredients of our model, the

matter and the gravity, it is time now to describe the way they interact.

In general, one can write the following N dimensional action describing the fact

that matter propagates only a limited distance in the fifth dimension while gravity

propagates in all N extra dimensions without restrictions [20]:

Sint = − κ̂

2

∫
d5xδ(x6) . . . δ(xN)ĥµ̂ν̂Tµ̂ν̂ , (2.19)
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Φ
∗m,Bam

β , Ψ̄m

Φ
l,Bal

α ,Ψl

h̃µν, Ãiµ, φ̃ij

Figure 2.1. The general matter-gravity interaction vertex.

with Tµ̂ν̂ the energy-momentum tensor of the 5D matter and κ̂ the strength of the

4 + N gravitational coupling (related to the 4D one by κ = κ̂V
−1/2
N ).

From (2.16), (2.17) and (2.19) one then obtains∗:

Sint = − κ̂

2

∫
d4x

∫ πR

0

dy
∑

~n

[(
h~n

µν + ηµνφ
~n
)
Tµν − 2A~n

µ5T
µ
5 + 2φ~n

55T55

]
e

2πı(n5y)
r .

(2.20)

Assuming a decomposition of the following from for the energy-momentum ten-

sor

T µν(x, y) =
∑

l,m

T µν
lm (x)(cos, sin)(

ly

R
)(cos, sin)(

my

R
) (2.21)

with respect to the fifth dimension, the Feynman rules [21] are similar to those for

matter propagating in four dimensions only [20]. However, the vertex is multiplied

by a form-factor [19, 22] which will prove important for some of our results :

F (c,s)
lm|n ∼ 1

πR

∫ πR

0

dy(cos, sin)

(
ly

R

)
(cos, sin)

(my

R

)
exp

(
2πi

ny

r

)
(2.22)

The form factor from (2.22) reflects the overlap of the graviton and matter wave

functions in the fifth dimension. It is just an example meant to illustrate the change

∗Note that we neglected so far any brane effects. That will no longer be the case
for the results obtained in section 3.2
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from the model in [20]. To understand its origin, consider the general vertex depicted

in Fig. 2.1 involving the lth level of an incoming KK excitation radiating a graviton

and thus becoming an mth level outgoing KK excitation.

The first factor under the integral (2.22) is coming precisely from the KK ex-

pansion of the incoming field. The second is due to the KK expansion of the outgoing

field. Finally, the last term originated from the expansion of the graviton filed. A

short summary of the Feynman rules is given in Appendix A.2 following the notation

conventions from [21].

Having briefly reviewed the basic notions we will use in the next chapters, it

is time now to present the results we obtained when using the UED plus fat branes

scenario.



CHAPTER 3

SINGLE KK PRODUCTION

This chapter is dedicated to the possible production of single KK excitations at

the hadron colliders experiments. We analyze the production of single KK excitations

at the present and future hadron colliders. The big advantage in doing this, when

compared to pair production of KK excited states, is the bigger reach in mass. But,

there is also a disadvantage. The scale of the higher dimensional gravity should be

low (order 10 TeV )∗.

At the time this thesis was written, recent results gave as lower limits for the

1/R of one extra dimension (in the UED scenario) values ranging from 400 to 600 GeV

depending on the assumed values for mt and mH [23]. The quoted values are already

within the reach of the Tevatron.

In this chapter, the quantity of interest for us is the cross-section. We compute

it in the usual way according to the formula:

σAB =
∑

ab

∫
fa/A(x1, Q

2) · fb/B(x2, Q
2) · σ̂ab · dx1dx2. (3.1)

The small letters (a, b) designate the partons and the capital ones (A,B) the

parent protons (LHC) or the parent proton and anti-proton (Tevatron).

3.1 Single KK production mediated by gravitons

The big advantage of the UED plus fat brane scenario resides in the possi-

bility for the KK excitations to decay to SM particles by radiating gravitons. The

KK number-conservation is broken by the interactions between matter and gravity.

∗As we will show later on, the cross section is proportional to M−10
D .

14
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Because we have a big number of gravitons with masses smaller than a TeV , the

gravitational decay width is big enough to ensure that the decay happens in the de-

tector. Thus, the experimental signature of a decaying KK excitation would be a jet

plus missing energy carried away by the graviton escaping detection. In Fig. 3.1 is

schematically depicted such a process [12].

Figure 3.1. Proton-proton collisions creating KK plus SM as primary particles which
in turn create two jets plus missing energy.

Since in this section we discuss the production of KK plus SM particle, the

experimental signature of this process would be two jets plus missing energy.

In the following subsections we discuss some of the details of the computations.

3.1.1 Parton Processes and Amplitudes

The partonic processes (classified by the initial state) contributing to the desired

experimental signal are given in Fig. 3.2.

Notice that there are no gravitons on the external lines. In all, there are 22

diagrams considered.

In order to compute the squared matrix elements for the sub-processes from

Fig. 3.2, we used the Jos Vermaseren’s FORM [24]. FORM is a symbolic computation
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hµν

q̄

q, q′, q∗, q′∗

q̄∗, q̄′∗, q̄, q̄′

q hµν

q̄
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q

q̄

hµν

q̄∗, q̄

q, q∗ q

q

hµν

q

q∗
q

q

q∗

q

hµν

q

g

hµν

q, q∗

g∗, g

g

g

hµν

g∗

g

g

g

hµν

g

g∗

g∗

g

g

g

hµν

Figure 3.2. Sub-processes creating a two jets plus missing energy signal.

program optimized for handling huge computations in reasonably short time intervals.

Pre-compiled binaries are available free from the web. In the appendix we give as an

example a listing of such a program.
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We use modified Mandelstam variables as follows:

s = 2p1p2 , t = −2p1p3 , u = −2p1p4

with p1, p2 the momenta of the initial state partons and p3, p4 for the momenta of the

final state ones. We also use the notation D(s), D(t) and D(u) for the the summed

graviton propagators (see next section) in the s, t and u channels. A ”*” will denote

the KK excitation. With the notations above, the matrix elements squared are:

1.for qq̄ → g∗g (s channel only):
∑̄

|M(qq̄ → g∗g)|2 =
1

3
tu(t2 + u2) ∗ Ds2

2.for gg → g∗g (s, t and u channels):
∑̄

|M(gg → g∗g)|2 =
1

18
[(t4 + u4) ∗ Ds2 + (s4 + u4) ∗ Dt2 +

(s4 + t4) ∗ Du2 + 2u4 ∗ Ds ∗ Dt + 2t4 ∗ Ds ∗ Du + 2s4 ∗ Du ∗ Dt]

3.for qg → qg∗ and q̄g → q̄g∗ (t channel only):
∑̄

|M(qg → qg∗)|2 = − 1

12
su(s2 + u2) ∗ Dt2

4.for gg → q∗q̄ (s channel):
∑̄

|M(gg → q∗q̄)|2 =
1

96
tu(t2 + u2) ∗ Ds2

5.for qq̄ → q∗q̄ and qq̄ → qq̄∗:
∑̄

|M(qq̄ → q∗q̄)|2 =
1

256
[(s4 − 10s2tu + 32t2u2) ∗ Ds2

+(t4 − 10t2su + 32s2u2) ∗ Dt2 − 2u2(4u2 + 9st) ∗ Ds ∗ Dt]

6.for qq → q∗q and q̄q̄ → q̄∗q̄:
∑̄

|M(qq → q∗q)|2 =
1

256
[(t4 − 10t2su + 32s2u2) ∗ Dt2 +

(u4 − 10u2st + 32s2t2) ∗ Du2 − 2s2(4s2 + 9tu) ∗ Dt ∗ Du]

7.for qg → q∗g:
∑̄

|M(qg → q∗g)|2 = − 1

24
su(s2 + u2) ∗ Dt2

The averaged squared matrix elements for scattering processes involving differ-

ent flavor quarks in the initial state (qq̄′ → q∗q̄′ and qq′ → q∗q′) are given by the t

channel contributions only from the corresponding expressions (5) and (6) above.
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3.1.2 Summed Propagator

The effective propagator for gravity mediated KK production is obtained by

summing over all graviton excitations up to a cut-off MD. Thus,

D(s) = κ2
∑

~n

F00|n5

i

s − m2
~n

(F c
10|n5

)∗, (3.2)

where κ =
√

16π/M2
Pl is the 4D gravitational coupling constant, and F00|n5 and

F c
10|n5

are form factors describing the interaction of the gravitons with the matter

excitations on the brane [21]. Note that terms in numerator of the propagator for a

single graviton proportional to pµ, pν [20] drop out due to the fact that one end of the

propagator couples always to two massless fermions∗. Hence the Lorenz structure of

the propagator for the spin 2 massive graviton is simply:

B(k)µν,ρσ =

(
ηµρηνσ + ηµσηνρ −

2

3
ηµνηρσ

)
D(k2) .

In the limit where s,M ≪ MD, the sum (3.2) has been evaluated in [21]:

D(s) ≃ VN−1
16

N − 3

M

M5
D

2
√

2

π2

∫ πMs/M

0

sin x

1 − x2/π2
dx . (3.3)

In the computations of this chapter, (3.2) was evaluated numerically for each

value of s and MD and it turned out that the approximate result (3.3) is reasonably

accurate, except for the cases N = 2, 3 (when it is not applicable).

In Fig. 3.3 we print the ratio between the exact summed propagator (obtained

by numerical integration) and the analytic approximation (3.3); negative values of s

are applicable for the case of t and u channel scattering.

As an example, in the following formulas i will give the expressions for the exact

summed propagator we integrated. We considered matter propagating in one extra

dimension and gravity propagating in two. For the case m2
5 < s we have:

I1(m
2
5 < s) =

∫ √
s−ǫ

0

dm5

√
2ı sin(πm5/M)

π2[1 − (m5/M)2]

ln(

√
M2

s −m2
5+
√

s−m2
5√

M2
s −m2

5−
√

s−m2
5

)
√

s − m2
5

, (3.4)

while for m2
5 > s we have:

∗The amplitude is proportional to T µν
00 Bµν,ρσT

ρσ
10 .
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Figure 3.3. Ratio of values for exact propagator versus analytic approximation, for
n = 6 extra dimensions. Here MD = 10 TeV . Lines correspond to
values for M of 1 TeV (straight) 2 TeV (dashed) and 5 TeV (dotted
line). On the horizontal axis is x = sign(s)

√
|s|.

I2(m
2
5 > s) =

∫ Ms

√
s+ǫ

dm5

√
2ı sin(πm5/M)

π2[1 − (m5/M)2]

arctan(

√
M2

s −m2
5√

m2
5−s

)
√

m2
5 − s

, (3.5)

Having clarified the details related to the summed propagator,we will now move

to presenting the results of our computations.

3.1.3 Results

The model under investigation has only three parameters: the fundamental

Plank scale MD, the mass of the KK excitation and the number of extra dimensions
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Figure 3.4. Production cross-sections at LHC (right) and Tevatron RunII (left) for
N = 2 (straight line), 4 (dashed line) and 6 (dotted line) extra dimen-
sions.

N . From the approximate relation (3.3) one can see that the cross-section is very

sensitive to the value one uses for MD and it scales roughly as 1/M10
D . In Fig. 3.4 we

give the gravity mediated production cross-sections for a KK excitation assuming a

fundamental Plank scale MD = 10 TeV for LHC and MD = 1.5 TeV for Tevatron.

The SM background of this process is given by events like Z + 2 jets processes

(where Z decays to νν̄ or τ τ̄ pairs), W + 2 jets (with the lepton from the W decay

unidentifiable), tt̄ production, with one top decaying to bν̄l and unidentified lepton

and jets, and QCD multijet production with mismeasured /ET . To eliminate this

background, one must impose cuts on the jets. The effect of such cuts on the signal

of interest is given in Fig. 3.5. Due to the large mass of the produced KK particle,

the transverse momentum of the jets is quite large.

By requiring a large transverse momentum for the two jets (p1T , p2T > pcut
T )

and a large transverse missing energy (/ET > npcut
T , n = 1, 2...) one can then obtain

presumably a good signal over the background. In our computations we analyzed

also the effect of some other cuts over the signal. Included in our results is a rapidity

cut of |y| < 4 and a requirement that the two observed jets are separated by a cone
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Figure 3.5. Cross section as function of cuts on the minimum pT of jets (left) and
missing energy /ET in an event (right). Straight and dashed line corre-
spond to M = 3 TeV (N = 2 and N = 6 respectively) while dotted
and dash-dotted lines correspond to M = 5 TeV (again, for N = 2
and N = 6).

with R =
√

∆φ2 + ∆η2 > 0.4. As a function of the transverse momentum and taking

M = 3 TeV , MD = 10 TeV and N = 6, one then obtains the results from Fig. 3.6

(left).

It is shown in literature [25] for example that for n = 1 and pcut
T > 400 GeV the

main backgrounds coming from Z + 2 jets and from mismeasured QCD processes are

about the same. But one expects that as the cuts get harder, the QCD background of

mismeasured events will decrease faster than the one from Z + 2 jets [26]. That being

the case, for high enough pT cuts, we will effectively have only the background given

by the Z + 2 jets events. This background can be evaluated at parton level using for

example MadEvent generator [27]. In Fig. 3.6 (right) we give the dependence of this

background on the pcut
T . From the figure, one can see that by demanding a number

of 10 events for the background, for an LHC integrated luminosity of 100 fb−1, there

are two possible sets of cuts satisfying the requirements.We will use those cuts in the

next figure.
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Figure 3.6. Signal (left) and background (right) as a function of pcut
T . The solid line

corresponds to n = 1, the dashed one to n = 2 and the dotted one to
n = 3. The rapidity and jet separation cuts are the ones mentioned in
the text.

In Fig. 3.7 we give the contour lines in the M −MD plane corresponding to the

signal being 20 events (straight line for N = 6 and dashed line for N = 2) and 100

events (dotted line for N = 6 and dot-dashed line for N = 2) at the same luminosity.

The left plot in the figure was obtained using pcut
T = 600 GeV and n = 3, while the

right plot was obtained using pcut
T = 800 GeV and n = 2. As noted before, the reach

in M can be large ( ∼ 6 TeV ) for low values of MD, but it drops quite fast as MD

decreases. We see from this plot that the most favorable case corresponds to N = 2,

due to the fact that the production cross-section is larger, and also that the transverse

momenta of the jets are stronger in this case.

In the next three figures 3.8, 3.9, 3.10 we illustrate the effect of different cuts

on the cross section. It can be seen that the invariant mass of the two jets might

prove itself as a useful cut, if possible to implement. The color code for the figures is

as follows: black are the curves for two extra dimensions; red are the curves for four

extra dimensions and green are the curves for 6 extra dimensions. The horizontal line

is the background (Z + 2 jets, with Z decaying invisibly) obtained this time using

the Isajet input given in the appendix B. So far, we have seen that the two jet plus
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Figure 3.7. LHC reach for 20 and 100 signal events (straight and dotted lines cor-
responds to N = 6, and dashed and dot-dashed line correspond to
N = 2, respectively). The cuts are the ones described in the text.

missing energy signal is a good candidate for the discovery of the existence of extra

dimensions. In the next section we will investigate another possible discovery channel.
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Figure 3.8. The production cross section for LHC using the following combined cuts:
1 TeV cut for the pT of the two jets, 1 TeV for the /ET and a 10 TeV
fundamental scale for gravity.
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Figure 3.9. The production cross section for LHC using the following combined cuts:
1 TeV cut for the pT of the two jets, 1 TeV for the /ET , 1 TeV for
the invariant mass of the two jets and a 10 TeV fundamental scale for
gravity.
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Figure 3.10. The production cross section for LHC using the following combined
cuts: 1 TeV cut for the pT of the two jets, 1 TeV for the /ET , 1 TeV
for the invariant mass of the two jets and a 5 TeV fundamental scale
for gravity.
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3.2 Single KK plus graviton production

Due to the presence of KK number-breaking gravitational interactions, in our

model it is possible to have again production of single KK excitations accompanied

this time by the emission of a KK graviton. As opposed to the previous section,

where virtual gravitons were mediating the interactions, this time the gravitons in

the final state are real. There is also another important difference. While in the last

section we had as internal propagators only spin 2 gravitons, for the production of

KK gravitons accompanied by KK (or SM) particles, we need to take into account

all the components of the decomposed 5D graviton, see (2.17). A typical process is

depicted in Fig. 3.11 [13].

Figure 3.11. Proton-proton collisions creating KK plus graviton as primary particles
which in turn create a jet plus a lot of missing energy.

As can be seen, the experimental signature for such a process would be a mono-

jet coming from the decay of the KK excitation plus a lot of missing energy carried

away by the primary graviton (the one produced in the primary interaction) and the

secondary one (the one produced in the decay of the KK excited state). It worth

emphasizing that the same signature can be obtained in the usual ADD-like scenarios
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Figure 3.12. Feynman diagrams contributing to the production of a g∗ and a graviton
KK excitation (either hµν , Aµi or Φij) at hadron colliders.

where the production of KK gravitons is accompanied by SM particles. The ADD-

like signal will then act as an additional background for our model’s signal. In the

ADD case, on the external lines there are also only spin 2 gravitons, since SM par-

ticles do not couple with vector gravitons and the SM coupling to the scalar ones is

proportional to their mass (thus, quite small).

3.2.1 Parton Processes and Amplitudes

For the monojet plus missing energy signal, there are 36 Feynman diagrams

contributing. Some of them are reproduced in Fig. 3.12.

As can be expected, the expressions for the parton amplitudes are no longer

simple expressions like in the case studied in the previous section. To give some

idea of these dependencies, we will reproduce the dominant terms for some of the

sub-processes:

1.for qq̄ → g∗hµν :

∑̄
|M(qq̄ → g∗hµν)|2 ∼

4

3
∗ (

M

mg

)4 ∗ t4u2 + t2u4

s(t − M2)2(u − M2)2
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2.for qg → q∗hµν :

∑̄
|M(qg → g∗hµν |2 ∼

2

3
∗ (

M

mg

)4 ∗ t4u2 + 3t3u3 + 4t2u4 + 2tu5

s(t − M2)2(u − M2)2

3.for gg → g∗hµν :

∑̄
|M(gg → g∗hµν)|2 ∼

8

3
∗ (

M

mg

)4 ∗ t6u + 3t5 ∗ u2 + 5t4u3 + 5t3u4 + 3t2u5 + tu6

t2u2s2

In the above relations, we use the modified Mandelstam variables:

s = 2p1p2 , t = −2p1p3 , u = −2p1p4

where p1, p2 are the momenta of the initial state partons, and p3, p4 the momenta of

the final state ones. A full listing of the amplitudes squared and mediated, can be

found in Appendix B.3.

In our model, in the case of the production of SM matter particles in the final

state, the amplitudes are similar to those evaluated in the pure ADD case [28, 29]

(when matter lives on the 4D brane); the only difference is the appearance of the

thick brane form-factor (announced in chapter two)

σ = |F c
00|n5

|2σADD, (3.6)

with [21]:

F c
00|n5

=
1

πR

∫ πR

0

dy exp

(
2πin5y

r

)
= i

eix − 1

x
.. (3.7)

In the above expression, x = πm5R, where m5 = 2πn5/r is the graviton momentum

along the fifth dimension. Since this form-factor is smaller than one, its contribution

has the effect of multiplying the total cross-section (obtained after adding the con-

tributions of all the gravitons in the KK tower) by a parameter r < 1. By numerical

simulations, we find that the parameter r takes values roughly in the interval 1 (cor-

responding to the case 1/R ≫ MS, where MS is the upper limit on the graviton mass

contributing to the process∗) to around 0.7 (corresponding to the case when 1/R is

of the same order of magnitude as MS).

∗The upper limit on the graviton mass is imposed by the collider energy and
luminosity considerations.
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For more that two extra dimensions, the heavy gravitons will bring the dominant

contribution to the total cross-section

σT =
∑

~n

σ~n =
M2

Pl

MN+2
D

∫
mN−1

h dmh dΩN σ~n (3.8)

(where we have replaced the sum over graviton states by an integral [20]), due prin-

cipally to the fact that the density of graviton states increases as mN−1
h . At large

masses, the form-factor (3.7) behaves like 1/m5, therefore one would expect a sub-

stantial reduction in the total cross-section. However, while it is true that most of the

cross-section comes from large values for mh = 2π
√

~n2/r, that is for mh of order Ms,

this actually corresponds to significantly smaller values∗ of m5 = 2πn5/r and thus,

most of the gravitons contributing to the total cross section will have x = πm5R ≪ 1

and therefore |F c
00|n5

|2 ∼ 1.

In the case of gravitons plus KK excitations † of a quark or gluon in the final

state the situation is exactly the same like above. To first order, the signal is in-

distinguishable from that coming from the production of a SM quark or gluon and

a graviton. One can even argue that, since in this case we produce also a massive

particle in the final state (the KK excitation of matter), this type of process will not

give a significant contribution. But this reasoning is not entirely correct.

To see that, let us consider again the cross-section for the production of a SM

particle with a graviton of mass mh. From dimensional analysis (see also [29]), one

can estimate this cross-section to be of order

σSM ∼ αs

M2
Pl

(
1 + O(

m2
h

s
)

)
. (3.9)

(assuming here m2
h ≪ s) Let us consider the case of a KK matter particle of mass

M in the final state. A naive estimate will give an expression of the form (3.9),

with terms of order M2/s in the final state. However, if one evaluate the amplitude

squared for the process with the spin 2 graviton in the final state, one obtains

σKK ∼ αs

M2
Pl

(
M

mh

)4(
1 + O(

m2
h

s
) + O(

M2

s
) + . . .

)
. (3.10)

∗For example, if we assume a flat distribution for the cross-section over a sphere
of radius MS in N dimensions, the average value for m5 would be of order MS/N2.

†Here we consider only q∗ or g∗ decaying to a SM quark or gluon by radiating a
graviton since we are interested in collider phenomenology.
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The term (M/mh)
4 can lead to a great enhancement of the cross-section for

producing light gravitons in the final state. To see how big this enhancement is, one

just need remember that mh can be as low as eV , while M is of order TeV ; this leads

to a 1048 factor. The appearance of this enhancement factor is due to the breaking

of translation invariance in the 5th dimension by the brane. This has as consequence

the non conservation of 4D energy-momentum tensor of the matter kµTµν 6= 0, for

interactions involving matter excitations with different KK numbers. Instead, one

has kMTMN = 0 (with the indices M,N going from 0 to 5), or

kµTµν = −k5T5ν ∼ ∆mkk ,

where we used the fact that the momentum in the fifth dimension is proportional to

the KK mass. In our case, we have one SM particle becoming a first level excitation,

therefore ∆mKK = 1/R = M . Then, if one considers the amplitude for the creation

of a KK matter excitation by the radiation of a graviton with momentum k:

∑

spin

|M(q → q∗h~n)|2 ∼ 〈q∗|Tµν |q〉〈q∗|Tρσ|q〉 Bµν,ρσ(k) ,

one sees that due to terms ∼ kµkνkρkσ/m4
h in the graviton polarization sum Bµν,ρσ(k)

(see, for example, [20] for the full expression), one will obtain
∑

spin |M(q →
q∗h~n)|2 ∼ (M/mh)

4 (see the examples given at the beginning of the subsection).

Similar behavior holds for the production of a scalar graviton in the final state (al-

though in this case terms ∼ kµkν/m2
h are due to the ∂µ∂ν/m2

~n factor in the interaction

lagrangian rather than to the sum over polarizations), while for the case with a vector

graviton field Ãµ in the final state, one has σ ∼ αs/M
2
Pl (M/mh)

2.

A behavior of the production cross-section ∼ (M/mh)
4 would mean that for the

case of N = 2, 3 one would be able to probe very large values of MD (by contrast,

the total production cross section for large N values is not affected very much, since,

as we have mentioned above, the contributions of heavy gravitons are enhanced by

a density of states factor mN−1
h , which will win over (1/mh)

4 factor). However, we

still have to take into account the form factors describing the overlap of graviton

and matter wave functions on the brane. For the processes with the spin-2 graviton
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or the scalar gravitons in the final state, the form factor multiplying the production

cross-section will be |F c
01|n5

|2, while for the vector graviton is |F s
01|n5

|2. Here

F (c,s)
01|n5

=

√
2

πR

∫ πR

0

dy (cos, sin)
( y

R

)
exp
(
2πi

n5y

r

)
, (3.11)

and therefore

|F c
01|n5

|2 =
4x2

(π2 − x2)2
[1 + cos(x)] , |F s

01|n5
|2 = π2

|F c
01|n5

|2

x2
, (3.12)

with x as defined after (3.7). According to the discussion above, generally small

values of x are relevant for the total cross-section; we then have

|F c
01|n5

|2 ∼ 8x2

π4
=

8

π2

m2
5

M2
, |F s

01|n5
|2 ∼ 8

π2
, for x ≪ 1 . (3.13)

We see then that the form-factors contribute additional terms of order (mh/M)2

to the cross-section for the production of spin-2 and scalar gravitons. For a small

number of extra dimensions (N = 2, 3) this has an effect of making the enhancement

factor in front of the cross-section the same for all final states, roughly (M/mh)
2.

This will enhance the cross-section somewhat, but not very much. (If one takes into

account the density of graviton states mhdmh for N = 2 , one sees that this is a

roughly logarithmic effect). In fact, we find that the cross-section for production of

gravitons with a KK excitation is still smaller than the production of gravitons with

SM particles (although typically lighter gravitons are predominant in the first case).

For N = 4 to 6, the form factor has a net effect of reducing the contributions coming

from spin 2 and scalar gravitons in the final state (unlike the enhancement due to

breaking of 5D translational invariance, which is important mostly for light gravitons,

the form-factor cancellation effect is valid for large graviton masses as well). As a

consequence, we find that for such processes, the gravitons appearing in the final state

for values of N larger than 4 are mostly vector gravitons. By contrast, for N = 2, 3

generally final states with spin-2 gravitons will dominate.

But this is not the whole story. As pointed out in [30], the orbifold compactifica-

tion introduces two types of radiative corrections to the masses of the KK excitations.

The first type of correction is the bulk correction. It appears because the 5-

dimensional Lorentz invariance is broken by the compactification itself. Since one
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can not set the radius of the extra dimension(s)to zero, when one considers Feynman

diagrams in extra dimensions, one will have non-local effects in a higher-dimensional,

non-renormalizable theory. Fortunately, those loop diagrams give finite, well-behaved

results (see (20)-(24) in the first reference from [30]).

The second type of correction are introduced by the orbifold. The orbifold itself

is required as it is one way to obtain 4-D chiral fermions from the multi-component

fermions of the higher dimensional theories. At the fixed points of the orbifold, the

translational invariance is also broken. This means that additional terms (localized

at the boundaries or, equivalently, on the two distinct 4-D branes situated at 0 and

πR in the fifth dimension) in the Lagrangian will add additional radiative corrections

to the bulk ones. We will refer again to [30] for the form of those corrections as well

as for a detailed discussion about the radiative corrections the standard model in

universal extra dimensions receives. As we will show in the next subsection, in the

model we consider, the radiative corrections are of order 0.16 to the masses of the

uncorrected KK levels.

3.2.2 Results

As explained in the previous subsection, the monojet plus missing energy signal

in the UED plus fat branes scenario can be seen as having two components. The

first one is given by the production of KK gravitons accompanied by zero mode KKs

(which are the SM particles). This component of the signal can be also obtained in

the ADD-like models. Again, as mentioned before, the experimental signature of the

two cases is the same. The apparition of the form-factor multiplying the vertex) in the

case of the UED plus fat branes proves to have only minor consequences. However,

the second component of the signal, namely the production of KK excited states of

quarks and gluons, can not appear in the ADD models. Let us analyze the two parts

of the monojet signal into some more detail and let us look first at the graviton plus

zero mode KK production.
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Figure 3.13. The jet+ missing energy cross section from graviton and SM quark
or gluon production at Tevatron Run II (left panel) and LHC (right
panel). The solid, dashed and dotted lines correspond to N = 2, 4 and
6 extra dimensions.

In Fig. 3.13 we plot the jet + /ET cross section∗ as a function of the fundamental

gravity scale MD for Tevatron Run II and LHC. Cuts on the jet transverse momentum

(pT > 200 GeV at Tevatron, pT > 1 TeV at LHC) and rapidity (|y| < 3.0) have been

used. The results are similar with the pure ADD cross-sections presented in [28, 29].

Let us move now to second component of the monojet plus missing energy signal

and let us consider first the case when the KK particle decay directly into SM plus

graviton.

Using the same cuts as for the case of SM particle production, we plot in

Fig. 3.14 (left panel) the cross section for the production of one quark or gluon KK

excitation and a graviton at the LHC as a function of the mass of the KK particle

mKK . We see that the production cross-section is generally smaller than the signal

due to production of the SM particle together with graviton. The flatness of the cross-

section for small values of mKK is due to the large pT cut imposed on the momentum

∗The SM background (assumed to come only from jet + Z production, with Z
decaying to neutrinos) at parton level, and with the cuts above is around 0.14 pb for
Tevatron and 10 fb for LHC.
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of the observable jet. Since in this case the jet comes from the decay of a massive

particle (the KK excitation), its transverse momentum will tend to increase with the

mass of the particle. This partially compensates for the decrease in cross-section due

to the production of heavier particles.

In Fig. 3.14 (right panel) we present the cross section as a function of the cut

pmin
T on the transverse momentum for the observable jet. The plot is made for N = 2

extra dimensions. Again as above, for small values of pmin
T , the cross-section for the

production of the SM particles dominates (this is a consequence of the form-factor

F c
01|n multiplying the amplitude rather than the appearance of a massive KK particle

in the final state). However, the transverse momentum of the jets due to production

of a SM particle falls faster than the pT of the jets coming from the decay of the heavy

KK excitation, and as it can be seen in figure, at very large pT the two signals are of

comparable magnitude. This suggests that if one wants to look for the production of
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Figure 3.14. Left panel: the jet+ missing energy cross section from graviton and
KK quark or gluon production at LHC. The solid line corresponds to
N = 2, while the dashed line corresponds to N = 4. Right panel: the
distribution of the cross-section as a function of the cut imposed on the
jet transverse momentum, for production of SM particle (solid line),
and production of KK excitations with mKK = 2 TeV (dashed line)
and mKK = 3 TeV (dotted line). MD is taken 5 TeV for both panels.
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KK excitations of matter in this channel, one should look primarily at very high pT

events.

So far we saw that the direct decay of the KK excitation into SM plus graviton

does not provide a very good signal for identifying KK particle production at hadron

colliders. But not all hope is lost as we still have to investigate the possibility of KK

excitations cascading to the LKP (which for the purpose of this thesis will be the γ∗),

which in turn will decay gravitationally to a photon plus a graviton. The signal in

this case will be a high pT photon in the final state plus missing energy (there will

also be some soft jets and leptons, but we will not consider those in our analysis).

The SM background in this case is much smaller that for the case of a jet + /ET ; the

signal due to the production of a SM photon with a graviton will also be smaller, since

the production process for such a signal will be an electroweak process rather than a

strong one. For example, at the LHC, for a pT cut of 500 GeV , the SM background is

∼ 1 fb. With a 100 fb−1 of integrated luminosity, a 5σ discovery would then require

50 signal events, of a cross-section of 0.5 fb. From direct production of a SM photon

with a graviton, the values of MD for which the cross-section will reach 0.5 fb will be

5.4 TeV for N = 6, 6 TeV for N = 4 and 8.3 TeV for N = 2.

In the case of production of a gluon/quark KK excitation which subsequently

decays to a photon, the values of MD corresponding to a 0.5 fb cross-section can

be as high as ∼ 7 TeV for N = 6, 10 TeV for N = 4 and 40 TeV for N = 2,

depending on the value of 1/R. We show in Figs. 3.15, 3.16(left panel) with the solid

lines the discovery reach in the (MD, 1/R) plane (that is, for points below and to the

left of the solid lines, the cross-section will be bigger than 0.5 fb). The dashed lines

correspond to values of parameters for which the gravitational decay widths start

becoming important; that is, for points below the dashed lines the quark and gluon

KK excitations will decay predominantly to γ∗, while for points above they will decay

directly to SM quarks and gluons through graviton radiation. Therefore, in the region

below both the solid and dashed lines, the signal will be photon + /ET , and it will be

large enough to ensure discovery. We see that in this channel we can probe values of

MD similar to those achievable in the jet + /ET channel for N = 4 and N = 6 (from
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Fig. 3.13) and almost twice as large for N = 2 (the 5σ discovery reach from jet +

missing energy being ∼ 20 TeV in this case).
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Figure 3.15. Solid lines: the 5σ discovery reach at the LHC in the photon + /ET

channel for N = 2 (left panel) and N = 4 (right panel). For values of
MD, 1/R below the dashed lines, the KK quarks and gluons decay first
to the LKP.
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Figure 3.16. Left panel: the 5σ discovery reach at the LHC in the photon + /ET

channel for N = 6. Right panel: the SM photon + /ET cross-section
at the Tevatron Run II, with pT > 100 GeV (solid, dashed and dotted
lines correspond to n = 2, 4 and 6 extra dimensions respectively).
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The case for the Tevatron is somewhat different. As it can be seen from Figs.

3.15, 3.16, the requirement that g∗ and q∗ decay first to the LKP implies rather large

values of MD (> 10 TeV for N = 2). This means that the production cross-section

is highly suppressed. Typically, for N = 4, 6 there is just a small region of values

for MD where g∗ and q∗ both decay to γ∗ and are produced in enough numbers to

be observable. However, in that region the signal coming from production of SM

photons plus KK gravitons is predominant. We show in Fig. 3.16(right panel) the

cross-section for SM photon production plus /ET (from KK gravitons), with a cut on

photon pT of 100 GeV . The Standard Model background (from Zγ production) is

∼ 80 fb. It is interesting to note that the the MD discovery reach at the Tevatron

is roughly similar in the jet + /ET channel versus photon + /ET channel. The reason

is that while the production cross-section is suppressed by a factor αem/αs ∼ 1/10,

the background is similarly suppressed, and one can use softer cuts (using a pT cut

of 100 GeV as opposed to 200 GeV will increase the cross-section by a factor of 10).

Moreover, the predominant initial state responsible for the production cross-section

is qq̄, which favors processes with photons in the final state (whereas for the LHC is

qg and gg, resulting in additional suppression of final state photons).



CHAPTER 4

LEPTONS AND EXTRA DIMENSIONS

So far, the use of the UED with fat branes model gave reasonable results for

the collider physics. But what are the implications of this model when used for the

neutrino and charged lepton physics? In this chapter we present the new results

obtained by applying the UED with fat branes scenario to the lepton sector [14].

But before going any further, let us review what is the current situation with

the lepton part of the SM.

4.1 Current situation in lepton physics

Charged leptons (as opposed to hadrons) experience only electroweak and grav-

itational interactions; their SM lagrangian contains only (2.4) and the first term in

(2.8). There is also another important difference between quarks and leptons. The

mixing in the quark sector is minimal. But the leptons exhibit almost maximal mix-

ing. While the properties of the charged leptons are well known (see Table A.1 and

Table A.2) and their interactions relatively well understood, the neutrinos continue

to rise many more questions. At the time of the writing of this thesis, two excellent

sources of information dedicated to neutrino physics are the websites maintained by

the American Physical Society (APS) [31] and by C. Giunti and M. Laveder [32].

In the last few years, atmospheric [33] and solar [34] experiments have well

established the neutrino oscillations. This is usually interpreted as evidence for the

existence of massive neutrinos. The argument goes as follows: the conventional SM

does not allow for neutrino masses because it lacks the right-handed singlet neutrino

fields thus, the easiest way to accommodate the experimental facts, is to minimally

extend SM (still in four dimensions) with the required fields and to give masses to

39



40

the neutrinos via an elegant mechanism called the seesaw mechanism∗ [35]. The

problem is that the neutrino oscillation experiments depend only on ∆m2
ij = m2

j −m2
i

and can not give the overall scale for the neutrino masses. This led to investigate

possible scenarios for neutrino masses involving extra dimensions. An interesting idea

to solve the puzzle of neutrino masses in the context of extra dimensions has been

proposed in [36, 37] (the ADD model).Here, all the SM particles are confined to the

four dimensional wall (three space and one time, the so called D3 brane). There exists

a SM singlet right-handed (RH) neutrino, which, like gravity, propagates into the sub-

mm size extra dimension. The Yukawa couplings of the SM left-handed neutrino with

this RH neutrino then gives a tiny Dirac mass for the LH neutrino. In this picture,

the smallness of the neutrino mass arises from the smallness of the effective four

dimensional Yukawa coupling due to large volume of the extra dimension in which

the RH neutrino propagates. Several extensions of this idea to study the neutrino

masses and mixings in detail have been pursued [38].

Now the important question is: Can an UED model incorporating fat branes

shade some light on the problem of neutrino masses?. As i will show in the following,

applying the UED with fat branes to leptons provides some interesting answers.

4.2 Leptons in UED with fat branes

4.2.1 The Model

In this section, we present a model which can account for large hierarchy among

the charged lepton masses, while giving practically no hierarchy among the light

neutrino masses. The light neutrinos get a tiny mass as in the ADD mechanism; but

∗It postulates the existence of a massive SM singlet right handed neutrino with
Majorana masses of order of M ∼ 1014GeV . The Yukawa coupling of the left-handed
neutrino to this heavy right-handed neutrino then gives a Dirac mass of the order
of the charged lepton masses, ml. As a result, the left-handed neutrino obtains a
tiny mass of the order of m2

l /M . See-saw model naturally does not lead to lack of
hierarchy among the light neutrino masses. In addition, in this mechanism, the light
neutrino masses are Majorana particles and will lead to neutrino-less double beta
decay.
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their masses are related to the corresponding charged lepton masses. The neutrinos

are naturally Dirac particles. When extended to accommodate two or three families,

the model naturally provides large mixings among neutrinos. Our model unifies the

ADD scenario [5] with the scenario of the Universal Extra Dimensions (UED) [11].

The SM particles of one family live in a fat brane [19, 21, 22] of TeV −1 size or smaller

which is a tiny part of the submm size extra dimensions. The graviton as well as

the SM singlet neutrinos propagate in the submm size extra dimensions. The three

SM fermion families live in fat branes of three different sizes (R1, R2, R3). Since all

the charged leptons get their masses from the Yukawa couplings in five dimensions of

sizes (R1, R2, R3), their mass hierarchies are naturally obtained from the hierarchy

of the sizes of the fat branes. Note that our model is different from the split fermions

in extra dimensions model [39] where the hierarchy of the charged fermion masses

are obtained from the different overlaps of the SM Higgs field wave function to the

split fermion locations. Light neutrinos, on the other hand, as in ADD, get their

masses from their Yukawa couplings with the SM singlet bulk neutrino propagating

in the submm size extra dimensions. So, their masses are of the same order, and hence

there is no hierarchy among the light neutrino masses. The neutrino masses are much

smaller compared to the charged lepton masses because their Yukawa interactions get

diluted by the volume of the submm size dimensional space compared to these of the

charged leptons. Since the light neutrino masses are all of same order including their

off-diagonal Yukawa coupling, large mixing among the neutrinos naturally arise.

To begin, we consider one extra dimension of size r (which, as in ADD model,

is of submm size). This extra dimension is taken to be S1 and is denoted by y. The

gravity propagates all the way in this extra dimension. The SM singlet neutrino can

propagate in y only in the space given by S1/Z2 orbifold. All the SM particles of the

first family can propagate only up to a distance R within the 5th dimension of size r.

Thus, these SM particles live in a fat brane of thickness R, and the space in which

they propagate is S1/Z2 orbifold of size R. We denote the left-handed lepton doublet

(νe, e)L by l(x, y), RH lepton singlet singlet by lR(x, y), Higgs doublet by H(x, y),

and the SM singlet neutrino by N(x, y). Note that l, lR and H are confined to the
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fat brane of size R (of TeV −1 size), while N and the gravity propagates in size r.

We can expand the five dimensional fields in terms of their zero modes and the KK

excitations as follows:

l(x, y) =
1√
πR

{
l0L(x) +

√
2

∞∑

n=1

[
lnL(x) cos

(ny

R

)
+ lnR(x) sin

(ny

R

)]}
, (4.1)

eR(x, y) =
1√
πR

{
e0

R(x) +
√

2
∞∑

n=1

[
en

R(x) cos
(ny

R

)
+ en

L(x) sin
(ny

R

)]}
,(4.2)

H(x, y) =
1√
πR

{
H0(x) +

√
2

∞∑

n=1

Hn(x) cos(
ny

R
)

}
. (4.3)

Note that the lL(x, y), eR(x, y) and H(x, y) are even under y → −y, while

lR(x, y) and eL(x, y) are odd under y → −y. The KK expansion for the SM singlet

neutrino N(x, y) is given by:

N(x, y) =
1√
πr

{N0
R(x) +

√
2

∞∑

n=1

[Nn
R(x) cos(

ny

r
) + Nn

L(x) sin(
ny

r
)]}. (4.4)

We have chosen only NR(x, y) to have zero mode, in analogy with that in the

usual 4D where we have only SM singlet. The quarks in the first family are also

assumed to be confined on the fat brane of size R, with R−1 ∼ TeV . The SM gauge

bosons are also confined to this fat brane as in the UED, and will have their KK

excitations in the TeV scale satisfying the current experimental bounds.

Let us now discuss the charged lepton and neutrino masses in the effective four

dimensional theory from our model. The charged lepton and Dirac neutrino mass

terms arise from the Yukawa interactions:

Sint
1 =

∫
d4x

∫ πR

0

dy[y5l(x, y)H(x, y)e(x, y) + ỹ5l(x, y)H̃(x, y)N(x, y)] + h.c. (4.5)

where H̃(x, y) = iσ2H
∗(x, y), and y5 and ỹ5 are five dimensional Yukawa couplings.

We assume that only the zero mode of the Higgs, H0(x) acquires vacuum ex-

pectation value which breaks the electroweak symmetry. This will then give rise to
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Dirac masses to the charged lepton as well as the light neutrino. From (4.5), using

the KK expansions of (4.1-4.3), we obtain:

Sint
1 =

∫
d4x

1√
πR

[y5eLeR
1√
2
(v + h) + ỹ5νLNR

1√
2
(v + h)] + h.c. (4.6)

where v√
(2)

is the vacuum expectation value of the Higgs field.

Defining the four dimensional Yukawa couplings y4 and ỹ4 to be:

y4 ≡
y5√
πR

, ỹ4 ≡
ỹ5√
πr

(4.7)

we obtain:

me = y4
v√
2
, mνe

= ỹ4
v√
2
. (4.8)

Note that even though the five dimensional Yukawa couplings, y5 and ỹ5 are of

the same order, the effective four dimensional neutrino Yukawa coupling is hierarchi-

cally small compared to that of the charged leptons because of the large size of the

extra dimension,r compared to the fat brane size, R. The SM singlet neutrino, N has

a much larger space ,r available compared to eR, thus producing tiny effective four

dimensional Yukawa coupling, ỹ4 compare to y4.

From (4.7) and (4.8), we note that:

mνe

me

=

(
ỹ5

y5

)√
R

r
. (4.9)

With R−1 ∼ 1 TeV , and r ∼ submm ∼ 10−3 eV , we obtain from (4.9)(assuming

ỹ5 and y5 to be the same), mνe
∼
√

R
r

me ∼ 1.5 · 10−2 eV. This is in the right range

as needed for the solar neutrino experiment.

In the above calculation, we have included only the zero mode of N(x, y), namely

N0
R. Since N propagates in the submm size dimension r, it will have KK excitations

with mass of 10−3 eV and its integral multiples. These will then mix substantially

with the left-handed neutrino, affecting its SM coupling and thus contradicting ex-

periments. To solve this problem, we introduce a bulk SM singlet scalar field Φ(x, y)

which is odd under y → −y. Then, the KK expansion for Φ(x, y) takes the form:

Φ(x, y) =
∞∑

n=1

Φn(x) sin
(ny

r

)
. (4.10)



44

This gives rise to additional bulk Yukawa interactions:

S1
1 = Ỹ5

∫
d4x

∫ πr

0

dy N(x, y) N(x, y) Φ(x, y). (4.11)

For simplicity, we assume that only Φ(1) has vev in the 5D string scale. Note that all

our interactions conserve lepton number. No Majorana mass is introduced, and all

masses are Dirac masses.

From eq. (4.11), we obtain the effective four dimensional action:

S1
1 = M N

n

L Nm
R (δn−m−1,0 + δn−m+1,0) (4.12)

where M ≡ Ỹ5<Φ>
πr

and < Φ > is the vacuum expectation value of the singlet field

Φ(x, y) in the TeV scale or higher.

We expect this mass, M, arising from the five dimensional SM singlet bulk fields

N and Φ, M0 to be in the string or five dimensional Plank scale. Including this SM

singlet Dirac mass, given by eq.(4.12) into account, we get a mass matrix involving

the zero modes
(
ν0

eL, N
1

L, N
2

L, ...
)

and (N0
R, N1

R, N2
R...). Taking only the first two

KK excitations of NL and NR, the mass matrix is:

(ν0
eL, N

1

L, N
2

L)




m
√

2m
√

2m

0 m′ M

0 M 2m′







N0
R

N1
R

N2
R


 (4.13)

where m′ ≡ 1
r
.

The mass matrix in (4.13) is diagonalized by a bi-unitary transformation. The

three mass eigenvalues are ∼ m,M,M , and to order m/M , the corresponding eigen-

states are :



1

O(m/M)

O(m/M)


 ,




O(m/M)

1

1


 ,




O(m/M)

−1

1


 (4.14)

Two Weyl neutrinos, ν0
L and N0

R forms a 4-component massive Dirac neutrino

of mass approximately m, where the (N1
L, N1

R) and (N2
L, N2

R) form two massive Dirac

neutrinos N1 and N2 with very large mass ∼ M . Note that while there is large mixing
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between N1
L and N1

R, or N2
L and N2

R; there is only a tiny mixing of order m/M of N0
L

with N1
L or N2

L and N0
R with N1

R or N2
R. With m ∼ 10−2 eV , and M ∼ few TeV ,

this mixing is negligibly small to affect the νeL coupling in the SM model.

The same conclusion holds if we include the higher level KK excitations of N.

If we include KK excitations of N up to the nth level, then the mass matrix involving(
ν0

eL, N
1

L, N
2

L, ..., N
n

L

)
and (N0

R, N1
R, N2

R..., Nn
R) gives one light eigenvalue with

mass ∼ m and (n − 1) eigenvalues of mass ∼ M in the TeV scale or higher. Note

that the Weyl neutrinos ν0
eL and N0

R form a light Dirac neutrino; νe of mass ∼ m.

The KK excitations N i
L and N i

R form a massive Dirac neutrino N i of mass ∼ M .

Thus our model produces the large hierarchy between the light neutrino and

charged lepton masses as well as the right magnitude for the left-handed light neutrino

mass.Also, in one family, we have only one light Dirac neutrino, and a large number

of very heavy (∼ TeV ) SM singlet Dirac neutrinos. The mixing between the light

neutrino and the heavy singlet Dirac neutrino are highly suppressed (of order mν/M

with M ∼ TeV ).

Let us now consider two families of fermions. As in the previous section, we

restrict ourself in only one extra dimension. The left handed doublets are le(x, y) and

lµ(x, y). In addition to N(x,y), we introduce a second SM singlet neutrino in the bulk,

N ′(x, y). Then, we will have bulk interactions for the 2nd family similar to (4.5) and

(4.11) with the replacements

l(x, y) → lµ(x, y), e(x, y) → µ(x, y), N(x, y) → N ′(x, y).

We also have the additional bulk interactions:

S12 =

∫
d4x

∫ πR

0

dy[y5(eµ)le(x, y)H(x, y)µ(x, y) + ỹ5(eµ)le(x, y)H̃(x, y)N ′(x, y)

+(e ↔ µ)] + h.c.(4.15)

and

S12 = Ỹ ′
5

∫
d4x

∫ πr

0

dy M ′
0

[
N(x, y)N ′(x, y) + N

′
(x, y)N(x, y)

]
Φ(x, y). (4.16)

Using the KK decompositions for le(x, y), lµ(x, y), H(x, y), N(x, y) and N ′(x, y)

and integrating over y in (4.5) and (4.11), and in similar equations for the 2-nd family,
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as well as (4.6) and (4.15), we obtain the mass terms in the effective four dimensional

theory involving
(
ν0

eL, N
1

L, N
2

L, ...; ν0
µL, N ′1

L, N ′2
L, ...

)
and (N0

R, N1
R, N2

R...; N ′0
R , N ′1

R , N ′2
R ...).

Again, keeping the terms only up to N2
L, N ′2

L and N2
R, N ′2

R , we get a 6x6

mass matrix . Choosing the basis to be L = (ν0
eL, ν0

µL, N
1

L, N ′1
L, N

2

L, N ′2
L), R =

(N0
R, N ′0

R , N1
R, N ′1

R , N2
R, N ′2

R ) , we get

Smass =

∫
d4x L M R (4.17)

where

M =




m q
√

2m
√

2q
√

2m
√

2q

q p
√

2q
√

2p
√

2q
√

2p

0 0 m′ 0 M M ′′

0 0 0 p′ M ′′ M ′

0 0 M M ′′ 2m′ 0

0 0 M ′′ M ′ 0 2p′




(4.18)

In (4.17), M’s are the string scale masses coming from (4.11) and (4.16), p is

the analogue of m from (4.13) for the muon sector, q is the cross-term between the e

and µ sector coming from (4.6).

The mass matrix M can be diagonalized by a bi-unitary transformation. Two

of the eigenvalues are small with mass of order m and p. These are the masses of the

two light neutrinos, mνe
and mνµ

. The other four eigenvalues are of order M, giving

very heavy neutrinos which are essentially SM singlets. As in the one family model,

the mixing between these light and heavy neutrinos are extremely small, of order

m/M . Thus, the coupling of these light neutrinos to the gauge bosons are essentially

same as in the SM. Two very important features of (4.18) to note are the following.

The off-diagonal element q in the first (2 × 2) sector of M is of the same order as

m and p. So, the light masses mνe
and mνµ

are of the same order and thus there is

no hierarchy between these two masses, as is the case experimentally. Furthermore,

since m, p, q are all of the same order, we naturally get large mixing between mνe

and mνµ
, in agreement with the experimental observation. Enlarging the mass matrix

(4.18) to include up to nth KK excitations, we get two light Dirac neutrinos of mass

∼ m and two very heavy Dirac neutrinos of masses ∼ M .
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Although we have included only the first two KK modes of N and N’, this pattern

persists if we include the other higher modes. We can easily extend the model to

include three families. The left handed doublets are le(e, y), lµ(x, y) and lτ (x, y). The

SM singlets are N(x, y), N ′(x, y) and N ′′(x, y). Then, writing the bulk interactions

analogous to (4.15) and (4.16) to include all the above fields, we get the three family

mass matrix. Again, keeping the terms only up to N2
L, N2

R, N ′2
L , N ′2

R , N ′′2
L , N ′′2

R , we get

a 9x9 mass matrix. Choosing the basis as:

L = (ν0
eL, ν0

µL, ν0
τL, N

1

L, N ′1
L, N ′′1

L, N
2

L, N ′2
L, N ′′2

L),

R = (N0
R, N ′0

R , N ′′0
R , N1

R, N ′1
R , N ′′1

R , N2
R, N ′2

R , N ′′2
R ).

The 9x9 mass matrix then becomes:

M =




m0 m01 m02

√
2m0

√
2m01

√
2m02

√
2m0

√
2m01

√
2m02

m01 m1 m12

√
2m01

√
2m1

√
2m12

√
2m01

√
2m1

√
2m02

m02 m12 m2

√
2m02

√
2m12

√
2m2

√
2m02

√
2m12

√
2m2

0 0 0 m′
0 0 0 M0 M01 M02

0 0 0 0 m′
1 0 M01 M1 M12

0 0 0 0 0 m′
2 M02 M12 M2

0 0 0 M0 M01 M02 2m′
0 0 0

0 0 0 M01 M1 M12 0 2m′
1 0

0 0 0 M02 M12 M2 0 0 2m′
2




The mass matrix, M can be diagonalized by a bi-unitary transformation. Three

of the eigenvalues are small, of the order of ∼ m, while the other six eigenvalues

are of the order M ∼ TeV scale or higher. The parameters in the mass matrix

can be suitable chosen to obtain values of the light neutrino masses and mixings in

the observed range. For example, one such choice is m0 = 0.00157, m1 = 0.025,

m2 = 0.029, m01 = 0.015, m02 = 0, m12 = 0.028, m′
0 = m′

1 = m′
2 = 0.001, M0 = 1014,

M1 = 2 ∗ 1015, M2 = 8 ∗ 1015, M01 = 1015, M02 = 0, M12 = 6 ∗ 1015.

In the numerical evaluations above, we used the following constrains:

7.1 × 10−5eV ≤ ∆m2
12 ≤ 8.9 × 10−5eV
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0.70 ≤ sin2 2θ12 ≤ 0.94

1.4 × 10−3eV ≤ |∆m2
23| ≤ 3.3 × 10−3eV

sin2 2θ23 ≥ 0.87

sin2 2θ13 ≤ 0.051 .

Although we have included only the first two KK modes of N , N ′ and N ′′, this

pattern of three light neutrino masses, and the rest very heavy, persists if we include

any number of KK modes.

The model produces the hierarchy of masses between me and mν naturally

if we assume that the 2nd family lives in a fat brane of much smaller size. For

three families, charged lepton mass ratios are essentially given by (assuming the bulk

Yukawa couplings are of the same order):

me : mµ : mτ =

√
1

R1

:

√
1

R2

:

√
1

R3

(4.19)

where R1,R2 and R3 are the sizes of the fat branes for the three families. Using the

experimental values of the masses in (4.19), we get :

R−1
1 : R−1

2 : R−1
3 ∼ 1 TeV : 104 TeV : 106 TeV . (4.20)

4.2.2 Results

There are several interesting phenomenological implications (of our model)

which can be tested in the upcoming neutrino experiments and high energy colliders.

The light neutrinos in our model are Dirac particles. So neutrinoless double beta

decay is not allowed in our model. This is a very distinctive feature of our model

compared to the traditional see-saw mechanism. In the see-saw model, light neutrinos

are Majorana particles, and thus neutrinoless double beta decay is allowed. Current

limit on the double beta decay is mee ∼ 0.3 eV . This limit is expected to go down to

about mee ∼ 0.01 eV in future experiments [40]. If no neutrinoless double beta decay

is observed to that limit, that will cast serious doubts on the see-saw model. In our

model, of course, it is not allowed at any level.
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Another interesting feature of our model is for the observation of the Kaluza-

Klein (KK) excitations of the SM particles at the high energy colliders, such as

LHC. In the ADD scenario, the SM particles are confined to a four dimensional wall

(D3 brane). So, no KK excitations of the SM particles exist. In the universal extra

dimensions scenario, all the SM particles propagate into the extra dimensions, and the

current limit on the compactification scale from Tevatron collider is about 350 GeV

[10,11]. So, if the compactification scale is few TeV or lower, we would observe the KK

excitations of all the SM particles at the upcoming LHC. In contrast, in our model,

the SM particles live in a fat branes. The sizes of the fat branes are of different values

for the three families. If the large extra dimension,r is of submm size, then to obtain

the right value of the electron neutrino mass, (4.9), we get the size of the fat brane

for the first family, R−1
1 ∼ 1 TeV , while the other sizes for the 2nd and 3rd families

are around 104 TeV and 106 TeV respectively. Thus, unlike in the UED model, only

the KK excitations of the first family will be observed at the LHC, but not those of

the 2nd and 3rd family. Thus is a very distinguishing feature of our model compared

to UED [12] and ADD models, or even to the simpler model used in the previous

chapter.

In models in which the SM particles propagate into the extra dimensions, the

unification of the three gauge couplings are accelerated due to the contribution of the

KK modes of the SM particles. Above the compactification scale, the evolution of the

gauge couplings become power law, instead of logarithmic as in the 4D case. In our

model, since KK excitation of the 1st family has much lower compactification scale

(order TeV ) compared to the second and third family, the unification will take place

at a higher scale than in UED.

One interesting question to ask in our model is where do the SM gage bosons

live? Since the three SM families live in fat branes of three different sizes, are their

gauge coupling universal (i.e. same for all three families). To be specific, let us assume

that the SM gauge bosons live in a fat brane of size R′, where R′ ≥ Ri. Then, their
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coupling to the SM fermions of the ith family is given by:

Si
gauge =

∫
d4x

∫ πRi

0

dy
1

(
√

πRi)2
√

πR
g5fi(x, y)ΓµT afi(x, y)Aa

µ

=

∫
d4x

g5√
πR

[fi
0
γµT af 0

i Aa0
µ + KK terms] (4.21)

Note that as long as Ri is smaller than R, the four dimensional gauge couplings

are universal for all three families. One very interesting implication of this is that the

compactification scale for the SM gauge bosons are smaller than the sizes of the fat

branes for all three SM fermionic families. Thus, in our model, the KK excitations

of the gauge bosons are lighter than the KK excitations of the fermions, and will be

the first ones to be observed at the LHC.

There are several other features of our model that can be tested in the high

energy colliders such as the Tevatron or LHC. As in the UED, KK particles can only

be pair produced in our model because of the KK number conservation. However,

only the KK excitations of the gluons and the first family of fermions are accessible.

The KK excitations of the 2nd and 3rd families are not accessible even at LHC. Thus,

the number of final states in the production processes is significantly reduced. This

effect is even more because of the doubling of the KK states. Because of this reduction

in the production cross section, current Tevatron bound of 350 GeV [11],[19] on the

compactification scale will be reduced further. Also, in our scenario, KK excitations

of the gluons are lighter than the KK excitations of the quarks. One loop correction

to the KK masses will be somewhat larger for the KK gluons than those of the KK

quarks. However, if the R′−1 is significantly smaller than R−1
1 , this correction may

not be enough (this is in contrast to UED where g* is always heavier than q*). This

will have interesting implications for their decays and the final state collider signals.



CHAPTER 5

CONCLUSIONS

In this thesis we investigated the phenomenological consequences of models

embedding extra dimensions and fat branes. As opposed to the standard Universal

Extra Dimensions (UED) models, where the first KK excited states are stable due

to KK number conservation and thus produced only in pairs, our model, involving

matter fields propagating on fat branes, escapes the previously mentioned constrain

by allowing for gravity interactions not obeying the KK number-conservation. In this

way, in our model we can produce single KK excitations which in turn can either

decay directly gravitationally into SM particles plus an undetectable graviton, or can

cascade to the lightest KK particle (LKP) which will decay again gravitationally .

So the experimental signal will be jet (or jets) plus missing energy. We have shown

that for certain range of the parameter space, the UED plus fat branes scenario gives

observable signal above the backgrounds in the two jet plus missing energy channel

available at Tevatron or LHC. The Tevatron can probe in this channel KK masses up

to few hundred∗ GeV while LHC’s reach is up to 7 TeV (again, see the footnote).

In the case of the monojet plus missing energy channel, the background coming

from the usual ADD scenario is typically bigger than the signal from UED plus fat

branes, even when one imposes quite hard cuts on the missing transverse momentum

of the jet. But this is valid only at tree level. When one includes radiative corrections,

the degeneracy of the KK excitations for a given level is lifted and that allows for

different decay chains. As a function of the parameters involved, now a KK excitation

can either decay directly gravitationally (like in the two jet channel) or can cascade

to the lightest KK particle (usually γ∗) which in turn will produce a γ and missing

∗Depending on the assumed value of the fundamental scale of gravity, MD, and
on the number of extra dimensions.
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energy. While the direct gravitational decay is sill unobservable due to the ADD

background, the single photon plus missing energy channel has a smaller background

(mostly due to electroweak processes) and thus allowing for discovery. The LHC will

be able to probe MD scales between 7 TeV (for six extra dimensions) and 40 TeV

(for two extra dimensions).

In the lepton sector, using a slightly more sophisticated UED plus fat branes

scenario, we found that we can account for the observed neutrino masses and mixing

angles and we were able also to relate the lack of hierarchy in neutrino masses with

the highly hierarchical charged lepton masses.

In summary, we can conclude that the models based on UED and incorporating

fat branes provide a rich phenomenology and their full potential is yet to be explored,

understood and achieved.
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APPENDIX A

Standard Model and Extra Dimensions

In this Appendix we give the SM particle content, the Feynman rules for matter-

gravity interactions.

A.1 Standard Model particle content

Fields Notation SU(3)C SU(2)W U(1)Y

Quarks Qi
α =

(
ui

α

di
α

)
3 2 1

3

uci
α 3̄ 1 −2

3

dci
α 3̄ 1 1

3

Leptons ℓα =

(
να

eα

)
1 2 −1

ec
α 1 1 2

Gluon Ga
µ 8 1 0

Intermediate weak bosons W r
µ 1 3 0

Hypercharge gauge boson Bµ 1 1 0

Higgs boson φ =

(
φ+

φ0

)
1 2 1

2

TABLE A.1. Particle content of the SM. Here α = 1, 2, 3 is the generation index, i = 1 − 3

(color), a = 1 − 8 (SU(3)C generators) and r = 1 − 3 (SU(2)L generators).
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Fields Notation Mass Electric Charge

Quarks u 1.5 − 4MeV +2/3

d 4 − 8MeV −1/3

s 80 − 130MeV −1/3

c 1.15 − 1.35GeV +2/3

b 4.1 − 4.9GeV −1/3

t 178GeV +2/3

Leptons νe < 3eV 0

νµ < 0.19MeV 0

ντ < 18.2MeV 0

e 0.51MeV −1

µ 105.65MeV −1

τ 1776.99GeV −1

Gluon g 0 0

Intermediate weak bosons W± 80.42GeV ±1

Z 91.18GeV 0

Hypercharge gauge boson γ 0 0

Higgs boson H > 114.4GeV 0

TABLE A.2. Particle masses and electric charges according to [16]. Only the central values are

quoted.

A.2 Feynman rules for matter-gravity interactions

The notations used in table A.3 are the following
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Tµν T5µ T55

S (Cµν,ρσk
ρ
1k

σ
2 + m2

Φηµν)F (cc)
lm|n + ml

R2 ηµνF (ss)
lm|n ı

(
k2µ

l
R
F (sc)

lm|n − k1µ
m
R
F (cs)

lm|n

)
(k1k2 − m2

Φ)F (cc)
lm|n + ml

R2F (ss)
lm|n

V [(m2
B − k1k2) Cµν,αβ − Dµν,αβ (k1, k2)]F (cc)

lm|n ı[−m
R

D′
ρµ,αβkρ

1F
(cs)
lm|n −

(
D′

ρσ,αβkρ
1k

σ
2 − m2

Bηαβ

)
F (cc)

lm|n

+ml
R2 Cµν,αβF (ss)

lm|n + l
R
D′

µρ,αβkρ
2F

(sc)
lm|n] −ml

R2 ηαβF (ss)
lm|n

F 1
4
C ′

µν,ρσγ
ρ (k1 + k2)

σ G(c)∓
lm|n + ηµνA±

lmn
ı
4

[
(k1 + k2)µ G

(s)±
l,−m|n + γµB±

lmn

]
1
2
(/k1 + /k2)G(c)∓

lm|n ∓ mQ

2
G(s)±

lm|n

TABLE A.3. The bilinear terms of the matter energy-momentum tensor in momentum representation.
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Cµν,ρσ = −ηµνηρσ + ηµρηνσ + ηµσηνρ

C ′
µν,ρσ = −2ηµνηρσ + ηµρηνσ + ηµσηνρ

Dµν,ρσ (k1, k2) = ηµνk1σk2ρ − [ηµσk1νk2ρ + ηµρk1σk2ν − ηρσk1µk2ν + (µ ↔ ν)]

D′
ρσ,αβ = ηρσηαβ − ηρβηασ

A±
lmn =

1

2R

(
lG(c)±

lm|n + mG(c)∓
lm|n

)
± mQG(s)±

lm|n

B±
lmn =

1

R

(
lG(s)±

l,−m|n + mG(s)∓
l,−m|n

)

G(c)±
lm|n =

(
F (c)±

l−m|n ±F (c)±
l+m|nγ5

)
/2

G(s)±
lm|n =

(
F (s)±

l+m|n ±F (s)±
l−m|nγ5

)
/2

F (...fi...)
...li...|n =

∫ πR

0

dy
∏

i

cifi(
liy

R
) exp(2πi

ny

r
) (A.1)

with fi(...) either sin(...) or cos(...) and

ci =





√
2

πR
, li 6= 0

√
1

πR
, li = 0

The upper/lower sign in the above relations corresponds to the case of the dou-

blet/singlet interacting fermions.



APPENDIX B

Single KK production

In this Appendix we give the listing of an example FORM program for a gravity

mediated process, the ISAJET input listing for two jet plus Z production and the

amplitudes squared and mediated for KK graviton plus a KK excitation production.

B.1 FORM program listing

The following example program is giving the matrix element squared for the s-

channel of the process qq̄ → q∗q̄. Of course, one still needs to compute the t and u

channel diagrams from Fig. 3.2 as well as the interference terms in order to obtain

the full result given in (5). Lines beginning with ”*” are comment lines.

*-

*- production of SM fermions mediated by gravitons

*- vertices from MMN Phys. Rev.D71,036003(2005)

*- definitions of the "variables"

*-

Vectors k1,k2,k,q1,q2,q,kd,kt;

Indices mu,nu,si,ro, mu1,nu1,si1,ro1,phi,the,

al,be,mup,nup,rop,sip;

* masses graviton,initial KK particle

Symbols mg,mKK,t,m,s,u,a,tp,up;

.global
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*-

*- various functions for vertices from Phys.Rev.D59,105006(1999)

*- (Eqs. A10, A11, A12)

*- or ec. (24) from Phys. Rev.D71,036003(2005)

*-

G Cf(mu,nu,ro,si) = d_(mu,ro)*d_(nu,si) + d_(mu,si)*d_(nu,ro) -

d_(mu,nu)*d_(ro,si);

G Cfp(mu,nu,ro,si) = d_(mu,ro)*d_(nu,si) + d_(mu,si)*d_(nu,ro) -

2*d_(mu,nu)*d_(ro,si);

G ds(mu,nu,k) = d_(mu,nu) - k(mu)*k(nu)/mg^2;

.store

*-

*- projection operators for the two fermionic lines

*-

G PL1 = (1-g5_(1))/2;

G PR1 = (1+g5_(1))/2;

G PL2 = (1-g5_(2))/2;

G PR2 = (1+g5_(2))/2;

.store

*-

*- sum over polarizations of spin 2 graviton<=>the propagator
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*- w/o 1/(s-m).....

*-

*G Bf(mu,nu,ro,si,k) = ds(mu,ro,k)*ds(nu,si,k) +

* ds(mu,si,k)*ds(nu,ro,k) -

* 2/3 * ds(mu,nu,k)*ds(ro,si,k) ;

*G Bfs(mu,nu,ro,si) = d_(mu,ro)*d_(nu,si) + d_(mu,si)*d_(nu,ro) -

* 2/3 * d_(mu,nu)*d_(ro,si) ;

*G Bfss(mu,nu,ro,si) = 2/3 * d_(mu,nu)*d_(ro,si) ;

G Bfeff(mu,nu,ro,si) = d_(mu,ro)*d_(nu,si) + d_(mu,si)*d_(nu,ro);

*- Note : you can use Bfeff for the spin 2 graviton propagator;

*- terms with k (also, the Bfss term) will be zero

.store

*-

*- interactions with the spin 2 graviton:

*- dirac spinor vertex with h_(mu,nu),both moments go in

*-

G Vspin1(mu,nu,k1,k2) = 1/8 * Cfp(mu,nu,ro,si)*g_(1,ro)*

(k1(si)-k2(si));

G Vspin2(mu,nu,k1,k2) = 1/8 * Cfp(mu,nu,ro,si)*g_(2,ro)*

(k1(si)-k2(si))*PL2 +
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1/4 *d_(mu,nu) * mKK *PL2*a;

.store

*G Vspin2mix(mu,nu,k1,k2) = 1/8 * Cfp(mu,nu,ro,si)*g_(1,ro)*

* (k1(si)+k2(si))*PL2 +

* 1/4 *d_(mu,nu) * mKK *PL2*a;

*.sort

*-

*- next functions defined for passing negative

*- arguments to functions in form....

*-

G Vspin1t(mu,nu,k1,k2) = 1/8 * Cfp(mu,nu,ro,si)*g_(1,ro)*

(k1(si)+k2(si));

G Vspin2t(mu,nu,k1,k2) = 1/8 * Cfp(mu,nu,ro,si)*g_(2,ro)*

(k1(si)+k2(si))*PL2 +

1/4 *d_(mu,nu) * mKK *PL2*a;

* Note that this last term does not matter, either; actually every term

* proportional to d_(mu,nu) in the second vertex will be 0

* note added:1/R is replaced by a*mKK....

*-

*- amplitude for qqb->Q’qb’

*- k1 + k2 -> q1 + q2

*- (s-channel)

*- (will be the same for Q=Q’)

*-
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G MKK = Vspin1(mu,nu,k1,k2) * Bfeff(mu,nu,ro,si) *

Vspin2(ro,si,q1,q2);

G MKKst = Vspin1(mu1,nu1,k1,k2) * Bfeff(mu1,nu1,ro1,si1) *

Vspin2(ro1,si1,q1,q2);

contract;

.store

*- from s-channel

G MKKsq = g_(1,k2)*MKK*g_(1,k1)*g_(2,q2)*MKKst*(g_(2,q1)-mKK);

.sort

contract;

trace4 1;

trace4,2;

*- Kinematics s-ch

* k1 + k2 - q2 = q1 => s + u + t = mKK^2

* use up = -2 q1.k2, tp = -2 q1.k1

id q1= k1 + k2 - q2;

id k = k1 + k2;

id kt= k1 - q1;

*id q1.q1 = mKK^2;

id q2.q2 = 0;

id k1.k1 = 0;

id k2.k2 = 0;

id q1.q2 = (s-mKK^2)/2;

id k1.k2 = s/2;
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id q1.k1 = (mKK^2-t)/2;

id q1.k2 = (mKK^2-u)/2;

id q2.k1 = -u/2;

id q2.k2 = -t/2;

*id u = mKK^2-s-t;

.sort

*- RESULTS

b mKK,mg;

print MKKsq;

.end

B.2 Isajet code listing

TEST JJZ EXTRADIM QCD BACKGROUND

14000.,1000,1,1000/

ZJJ

P

1000,6000,20,7000,20,7000/

PT

20,6000,500,6000,500,6000/

MIJLIM

2,3,50,7000/

MTOT

20,7000/

NSIGMA

200/
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NTRIES

1000000/

PDFLIB

’CTEQ’,48D0/

END

STOP

B.3 Amplitudes squared and mediated for KK graviton plus a KK excitation

production

Here we list all nine classes of Feynman diagrams contributing to the production

of a KK graviton together with a KK excitation of a SM particle. The classification

is based on the possible incoming states. Trying to keep the listing at a reasonable

length, we use the following short-hand notations for the terms in the amplitudes:

mKKsq = mKK ∗ ∗2

mKKfo = mKKsq ∗ mKKsq

mKKsi = mKKsq ∗ mKKfo

mKKei = mKKfo ∗ mKKfo

mKKte = mKKsq ∗ mKKei

mKKtw = mKKsi ∗ mKKsi

mKKft = mKKfo ∗ mKKei

m sq = m prodb ∗ ∗2

mg = m prodb

mgsq = m sq

mgfo = mgsq ∗ mgsq
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mgsi = mgsq ∗ mgfo

mgei = mgfo ∗ mgfo

mgte = mgsq ∗ mgei

(s, t, u)(i) = (s, t, u)i−1 ∗ s, i = 1 − n

s = s1

c11 = 2./3. ∗ (de space − 1)/(de space + 2)

c12 = −2./(de space + 2)

c22 = 2. ∗ (de space + 1)/(de space + 2) (B.1)

1)

t = u1 + mgsq

u = t1 + mKKsq

c -- for spin 2 graviton: q qb -> g* h_{mu,nu}

Msq_qqb = -(

. (-20*mgsq*mKKte)/3. - (14*mKKtw)/3. - (74*mgfo*mKKei)/3.-

. 4*mgei*mKKfo - 16*mgsi*mKKsi - 4*mgei*t*u +

. mgei*mKKsq*(4*t + 4*u) + mKK**10*(18*t + 18*u) +

. mgsi*mKKfo*(24*t + 24*u) +

. mgsq*mKKei*((116*t)/3. + (116*u)/3.) +

. mgfo*mKKsi*((194*t)/3. + (194*u)/3.) +

. mgsq*mKKsi*((-170*t2)/3. - 134*t*u - (170*u2)/3.) +

. mgfo*mKKfo*((-140*t2)/3. - (382*t*u)/3. - (140*u2)/3.) +

. mKKei*((-82*t2)/3. - (218*t*u)/3. - (82*u2)/3.) +

. mgsi*mKKsq*(-7*t2 - 34*t*u - 7*u2) +

. (mKK**10*(-t2/3. - (16*t*u)/3. - u2/3.))/mg**2 - 8*t4*u2 +
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. mgsi*(8*t2*u + 8*t*u2) +

. (mKKei*((4*t3)/3. + 14*t2*u + 14*t*u2 + (4*u3)/3.))/mg**2 +

. mgfo*mKKsq*(4*t3 + 72*t2*u + 72*t*u2 + 4*u3) +

. mKKsi*((62*t3)/3. + (266*t2*u)/3. + (266*t*u2)/3. +

. (62*u3)/3.) + mgsq*mKKfo*

. (28*t3 + (410*t2*u)/3. + (410*t*u2)/3. + 28*u3) +

. mgfo*(-6*t3*u - 24*t2*u2 - 6*t*u3) +

. (mKKei*((-2*t3*u)/3. - (4*t2*u2)/3. - (2*t*u3)/3.))/mg**4 +

. mKKfo*((-22*t4)/3. - 50*t3*u - (232*t2*u2)/3. - 50*t*u3 -

. (22*u4)/3.) + mgsq*mKKsq*

. (-t4 - (128*t3*u)/3. - (316*t2*u2)/3. - (128*t*u3)/3. - u4) +

. (mKKsi*(-t4 - (38*t3*u)/3. - 16*t2*u2 - (38*t*u3)/3. - u4))/

. mg**2 - 8*t2*u4 + (mKKsi*

. ((2*t4*u)/3. + 2*t3*u2 + 2*t2*u3 + (2*t*u4)/3.))/mg**4 +

. mgsq*(2*t4*u + 18*t3*u2 + 18*t2*u3 + 2*t*u4) +

. (mKKfo*((16*t4*u)/3. + 4*t3*u2 + 4*t2*u3 + (16*t*u4)/3.))/

. mg**2 + mKKsq*((38*t4*u)/3. + 30*t3*u2 + 30*t2*u3 +

. (38*t*u4)/3.) + (mKKsq*(-2*t4*u2 + 4*t3*u3 - 2*t2*u4))/

. mg**2

. + (mKKfo*((-4*t4*u2)/3. - (4*t2*u4)/3.))/mg**4 )

Msq_qqb = Msq_qqb/(t-mKKsq)**2/(u-mKKsq)**2/s *2./9. /2.

2)

t = t1

u = u1 - mKKsq + m_sq
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c -- for spin 2 graviton: g g -> g* h_{mu,nu}

Msq_gg = -16*mgte*t*u + 16*t6*u + 48*t5*u2

. + 80*t4*u3 + 80*t3*u4 +

. 48*t2*u5 + 16*t*u6 + mgsq*mKKei*

. ((-592*t2)/3. + (80*t*u)/3. - (592*u2)/3.) +

. mgsi*mKKfo*(-136*t2 + (160*t*u)/3. - 136*u2) +

. (mKKtw*((-88*t2)/3. - (128*t*u)/3. -

. (88*u2)/3.))/mgsq +

. (mKKft*((16*t2)/3. + (40*t*u)/3. +

. (16*u2)/3.))/mgfo +

. mg**8*mKKsq*(32*t2 + 16*t*u + 32*u2) +

. mKKte*(96*t2 + (128*t*u)/3. + 96*u2) +

. mg**4*mKKsi*((688*t2)/3. - (280*t*u)/3. +

. (688*u2)/3.) +

. mgei*(48*t2*u + 48*t*u2) +

. mgsq*mKKsi*(-448*t3 - 136*t2*u - 136*t*u2

. - 448*u3) +

. (mKKte*(-96*t3 - 152*t2*u - 152*t*u2 -

. 96*u3))/mgsq +

. mgsi*mKKsq*(-96*t3 - 64*t2*u - 64*t*u2

. - 96*u3) +

. (mKKtw*(16*t3 + 56*t2*u + 56*t*u2 +

. 16*u3))/mgfo +

. mKKei*(288*t3 + 200*t2*u + 200*t*u2 + 288*u3) +

. mgfo*mKKfo*(336*t3 + 48*t2*u + 48*t*u2 + 336*u3) +
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. mgsi*(-80*t3*u - 64*t2*u2 - 80*t*u3) +

. mgsq*mKKfo*(-312*t4 - (904*t3*u)/3. +

. (352*t2*u2)/3. -

. (904*t*u3)/3. - 312*u4) +

. (mKKei*((-376*t4)/3. - (632*t3*u)/3. -

. (640*t2*u2)/3. -

. (632*t*u3)/3. - (376*u4)/3.))/mg**2 +

. (mKKte*((56*t4)/3. + (248*t3*u)/3. +

. (400*t2*u2)/3. +

. (248*t*u3)/3. + (56*u4)/3.))/mg**4 +

. mgfo*mKKsq*(112*t4 + 168*t3*u - 96*t2*u2

. + 168*t*u3 +

. 112*u4) + mKKsi*((920*t4)/3. +

. (1024*t3*u)/3. +

. (368*t2*u2)/3. + (1024*t*u3)/3. +

. (920*u4)/3.) +

. mgfo*(80*t4*u + 48*t3*u2 + 48*t2*u3 +

. 80*t*u4) +

. (mKKsq*(8*t4*u3 + 8*t3*u4))/mgsq +

. (mKKsi*((-224*t5)/3. - 144*t4*u - (352*t3*u2)/3. -

. (352*t2*u3)/3. - 144*t*u4 -

. (224*u5)/3.))/mgsq +

. mgsq*mKKsq*(-64*t5 - 184*t4*u + 8*t3*u2 +

. 8*t2*u3 -

. 184*t*u4 - 64*u5) + (mKKei*

. ((32*t5)/3. + 56*t4*u + (376*t3*u2)/3. +
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. (376*t2*u3)/3. +

. 56*t*u4 + (32*u5)/3.))/mgfo +

. mKKfo*(128*t5 + (736*t4*u)/3. + 96*t3*u2 +

. 96*t2*u3 +

. (736*t*u4)/3. + 128*u5) +

. mgsq*(-48*t5*u - 64*t4*u2 - 48*t3*u3

. - 64*t2*u4 -

. 48*t*u5) + (mKKfo*(-16*t6 - 40*t5*u -

. (80*t4*u2)/3. -

. (80*t2*u4)/3. - 40*t*u5 - 16*u6))/mgsq +

. (mKKsi*((8*t6)/3. + (56*t5*u)/3. +

. (152*t4*u2)/3. +

. 72*t3*u3 + (152*t2*u4)/3. + (56*t*u5)/3.

. + (8*u6)/3.))/

. mgfo + mKKsq*(16*t6 + 80*t5*u + 112*t4*u2 +

. 104*t3*u3 +

. 112*t2*u4 + 80*t*u5 + 16*u6) +

. (mKKfo*((8*t6*u)/3. + 8*t5*u2 + (40*t4*u3)/3. +

. (40*t3*u4)/3. + 8*t2*u5 +(8*t*u6)/3.))/mgfo

Msq_gg = -Msq_gg/t2/u2/s2 *3./16.

3)

t = t1 + mKKsq

u = u1 + m_sq
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c -- for spin 2 graviton: q g -> q* h_{mu,nu}

Msq_qg =

. ((55*mgsq*mKKte)/3. + (22*mKKtw)/3. +(28*mgfo*mKKei)/3.+

. 5*mgsi*mKKsi + mgsq*mKKei*((-140*t)/3. - 79*u) +

. mKK**10*((-76*t)/3. - (142*u)/3.) +

. mgfo*mKKsi*((-52*t)/3. - 20*u) + 8*t*u**5 +

. mgsi*mKKfo*(-16*t + u) +

. mgfo*mKKfo*(18*t2 + (158*t*u)/3. - 6*u2) +

. mgsi*mKKsq*(3*t2 + 16*t*u - 4*u2) + 4*t4*u2 +

. (mKK**10*(t2/3. + (8*t*u)/3. + (8*u2)/3.))/mgsq +

. mgsq*mKKsi*((124*t2)/3. + (418*t*u)/3. + (284*u2)/3.) +

. mKKei*(36*t2 + (404*t*u)/3. + 122*u2) +

. mgsi*(-(t2*u) - 4*t*u2) +

. mKKsi*((-68*t3)/3. - (406*t2*u)/3. - (694*t*u2)/3.-120*u3)+

. mgsq*mKKfo*((-46*t3)/3. - (320*t2*u)/3. - 142*t*u2-24*u3) +

. (mKKei*((-4*t3)/3. - 11*t2*u - (56*t*u2)/3. - (56*u3)/3.))/

. mgsq + 12*t3*u3 + mgfo*mKKsq*

. (-2*t3 - (74*t2*u)/3. - 40*t*u2 + 12*u3) +

. (mKKei*((2*t3*u)/3. + (2*t2*u2)/3. + (16*t*u3)/3.))/mgfo +

. mgfo*(6*t2*u2 + 12*t*u3) + (mKKsq*(2*t4*u2 + 2*t3*u3))/mgsq+

. mgsq*mKKsq*(t4 + 26*t3*u + 76*t2*u2 + 66*t*u3 - 8*u4) +

. 16*t2*u4 + (mKKsi*(t4 + (34*t3*u)/3. + 24*t2*u2 +

. (82*t*u3)/3. + (68*u4)/3.))/mgsq +

. mKKfo*((14*t4)/3. + (182*t3*u)/3. + (520*t2*u2)/3. +

. 156*t*u3 + 40*u4) + mKKsq*

. ((-26*t4*u)/3. - 52*t3*u2 - 84*t2*u3 - 48*t*u4) +
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. mgsq*(-(t4*u) - 6*t3*u2 - 18*t2*u3 - 16*t*u4) +

. (mKKfo*(-3*t4*u - 8*u**5 - 14*t3*u2 - (32*t2*u3)/3. -

. (32*t*u4)/3.))/mgsq +

. (mKKsi*((-2*t4*u)/3. - (4*t3*u2)/3. - 6*t2*u3 -

. (16*t*u4)/3.))/mgfo +

. (mKKfo*((4*t*u**5)/3. + (2*t4*u2)/3. + 2*t3*u3 +

. (8*t2*u4)/3.))/mgfo )

Msq_qg = Msq_qg/(t-mKKsq)**2/(u-mKKsq)**2 /s *1./12. *2.

4)

t = t1 + mKKsq

u = u1 + m_sq

c -- for spin 1 gravitons: q qb -> g* A_{mu}

Msq_qqba = mgsi*mKKsi * ( - 1 )+

. mgsi*mKKfo * ( t + u )+

. mgsi*mKKsq * ( 1./8.*t2 - 5./4.*t*u + 1./8.*u2 )+

. mgfo*mKKei * ( - 5./2. )+

. mgfo*mKKsi * ( 3*t + 3*u )+

. mgfo*mKKfo * ( - 7./8.*t2 - 7./4.*t*u - 7./8.*u2 )+

. mgfo*mKKsq * ( - 3./8.*t3 - 1./8.*t2*u - 1./8.*t*u2 -

. 3./8.*u3 )+

. mgfo * ( 1./8.*t3*u + 3./4.*t2*u2 + 1./8.*t*u3 )+

. mgsq*mKKte * ( - 3./2. )+

. mgsq*mKKei * ( 9./2.*t + 9./2.*u )+



75

. mgsq*mKKsi * ( - 13./4.*t2 - 9./2.*t*u - 13./4.*u2 )+

. mgsq*mKKfo * ( 1./2.*t3 - 1./2.*t2*u - 1./2.*t*u2 +

. 1./2.*u3 )+

. mgsq*mKKsq * ( 1./4.*t4 + 9./8.*t3*u + 7./4.*t2*u2 +

. 9./8.*t*u3 + 1./4.*u4 )+

. mgsq * ( - 1./8.*t4*u - 3./8.*t3*u2 - 3./8.*t2*u3 -

. 1./8.*t*u4 )+

. mKKsi/mgsq * ( 1./2.*t3*u + t2*u2 + 1./2.*t*u3 )+

. mKKfo/mgsq * ( - 1./2.*t4*u - 3./2.*t3*u2 - 3./2.*t2*u3 -

. 1./2.*t*u4)+ mKKsq/mgsq * ( t4*u2 + t2*u4 )+

. mKKei * ( - 1./4.*t2 - 1./4.*u2 )+

. mKKsi * ( - 5./2.*t2*u - 5./2.*t*u2 )+

. mKKfo * ( 1./4.*t4 + 3*t3*u + 5*t2*u2 + 3*t*u3 + 1./4.*u4 )+

. mKKsq * ( - 3./2.*t4*u - 3./2.*t3*u2 - 3./2.*t2*u3 -

. 3./2.*t*u4 )+1./2.*t4*u2 - t3*u3 + 1./2.*t2*u4

Msq_qqba = Msq_qqba/(t-mKKsq)**2/(u-mKKsq)**2/s *2./9. /2.

5)

t = t1 + mKKsq

u = u1 + m_sq

c -- for spin 1 gravitons: g g -> g* A_{mu}

Msq_gg = mgei*mKKsq * ( 2*t2 - 4*t*u + 2*u2 )+

. mgsi*mKKfo * ( - 12*t2 + 6*t*u - 12*u2 )+

. mgsi*mKKsq * ( - 12*t3 + 8*t2*u + 8*t*u2 - 12*u3 )+

. mgsi * ( 2*t3*u + 2*t*u3 )+
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. mgfo*mKKsi * ( 28*t2 + 16*t*u + 28*u2 )+

. mgfo*mKKfo * ( 48*t3 + 18*t2*u + 18*t*u2 + 48*u3 )+

. mgfo*mKKsq * ( 22*t4 + 6*t3*u - 16*t2*u2 + 6*t*u3 + 22*u4)+

. mgfo * ( - 2*t4*u - 2*t3*u2 - 2*t2*u3 - 2*t*u4 )+

. mgsq*mKKei * ( - 32*t2 - 44*t*u - 32*u2 )+

. mgsq*mKKsi * ( - 72*t3 - 102*t2*u - 102*t*u2 - 72*u3 ) +

. mgsq*mKKfo * (- 58*t4 - 80*t3*u - 68*t2*u2 - 80*t*u3 - 58*u4)+

. mgsq*mKKsq * ( - 16*t5 - 24*t4*u - 8*t3*u2 - 8*t2*u3 -

. 24*t*u4 - 16*u5 )+

. mgsq * ( 2*t3*u3 )+

. mKKtw/mgsq * ( - 4*t2 - 10*t*u - 4*u2 )+

. mKKte/mgsq * ( - 12*t3 - 42*t2*u - 42*t*u2 - 12*u3 )+

. mKKei/mgsq * ( - 14*t4 - 62*t3*u - 100*t2*u2 - 62*t*u3 - 14*

. u4 )+

. mKKsi/mgsq * ( - 8*t5 - 42*t4*u - 94*t3*u2 - 94*t2*u3 - 42*t*

. u4 - 8*u5 )+

. mKKfo/mgsq * ( - 2*t6 - 14*t5*u - 38*t4*u2 - 54*t3*u3 - 38*

. t2*u4 - 14*t*u5 - 2*u6 )+

. mKKsq/mgsq * ( - 2*t6*u - 6*t5*u2 - 10*t4*u3 - 10*t3*u4 - 6*

. t2*u5 - 2*t*u6 )+

. mKKte * ( 18*t2 + 36*t*u + 18*u2 )+

. mKKei * ( 48*t3 + 118*t2*u + 118*t*u2 + 48*u3 )+

. mKKsi * ( 50*t4 + 134*t3*u + 184*t2*u2 + 134*t*u3 + 50*u4 )+

. mKKfo * ( 24*t5 + 68*t4*u + 104*t3*u2 + 104*t2*u3 + 68*t*u4 +

. 24*u5 )+

. mKKsq * ( 4*t6 + 14*t5*u + 20*t4*u2 + 20*t3*u3 + 20*t2*u4 +
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. 14*t*u5 + 4*u6 )-

. 2*t4*u3 - 2*t3*u4

Msq_gg = -Msq_gg/t2/u2/s2 *3./16.

6)

t = t1 + mKKsq

u = u1 + m_sq

c -- for spin 1 gravitons: q g -> q* A_{mu}

Msq_qg = mgsi*mKKsi * ( - 27./4. )+

. mgsi*mKKfo * ( 7./2.*t + 45./4.*u )+

. mgsi*mKKsq * ( - 3./4.*t2 - 7./2.*t*u - 5*u2 )+

. mgsi * ( 1./4.*t2*u + t*u2 )+

. mgfo*mKKei * ( - 35 )+

. mgfo*mKKsi * ( 101./2.*t + 151./2.*u )+

. mgfo*mKKfo * ( - 14*t2 - 89*t*u - 52*u2 )+

. mgfo*mKKsq * ( 1./2.*t3 + 43./2.*t2*u + 37*t*u2 + 13*u3 )+

. mgfo * ( - 7*t2*u2 - t*u3 )+

. mgsq*mKKte * ( - 45 )+

. mgsq*mKKei * ( 124*t + 129*u )+

. mgsq*mKKsi * ( - 401./4.*t2 - 541./2.*t*u - 141*u2 )+

. mgsq*mKKfo *(43./2.*t3 + 669./4.*t2*u + 205*t*u2 + 66*u3 )+

. mgsq*mKKsq * ( - 1./4.*t4 - 32*t3*u - 73*t2*u2 -

. 54*t*u3 - 12*u4)+

. mgsq * ( 1./4.*t4*u + 9*t3*u2 + 6*t2*u3 )+
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. mKKte/mgsq * ( - 4*t2 - 8*t*u )+

. mKKei/mgsq * ( 8*t3 + 24*t2*u + 16*t*u2 )+

. mKKsi/mgsq * ( - 4*t4 - 21*t3*u - 29*t2*u2 - 16*t*u3 )+

. mKKfo/mgsq * ( 5*t4*u + 14*t3*u2 + 17*t2*u3 + 8*t*u4 )+

. mKKsq/mgsq * ( - t4*u2 - 3*t3*u3 - 4*t2*u4 -2*t*u5)+

. mKKtw * ( - 8 )+

. mKKte * ( 48*t + 48*u )+

. mKKei * ( - 167./2.*t2 - 172*t*u - 84*u2 )+

. mKKsi * ( 52*t3 + 389./2.*t2*u + 212*t*u2 + 68*u3 )+

. mKKfo * ( - 17./2.*t4 - 82*t3*u - 155*t2*u2 - 113*t*u3 -

. 26*u4 )+

. mKKsq * ( 23./2.*t4*u + 36*t3*u2 + 40*t2*u3 + 24*t*u4 + 4*u5 )-

. 3*t4*u2 - 3*t3*u3

Msq_qg = Msq_qg/(t-mKKsq)**2/(u-mKKsq)**2 /s *1./12. *2.

7)

t = t1 + mKKsq

u = u1 + m_sq

c -- for spin 0 gravitons: q qb -> g* Phi

Msq_qqb = mgfo*mKKei * ( - 8*c11 + 8*c12 - 2*c22 )+

. mgfo*mKKsi * ( 8*t*c11 - 8*t*c12 + 2*t*c22 + 8*u*c11

. - 8*u*c12 + 2*u*c22 )+

. mgfo*mKKfo * ( - 2*t2*c11 + 2*t2*c12 - 1./2.*t2*c22 -

. 4*t*u*c11 +
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. 4*t*u*c12 - t*u*c22 - 2*u2*c11 + 2*u2*c12 - 1./2.*u2*c22 )+

. mgsq*mKKte * ( - 32*c11 + 12*c12 )+

. mgsq*mKKei * ( 56*t*c11 - 20*t*c12 + 56*u*c11 - 20*u*c12 )+

. mgsq*mKKsi * ( - 32*t2*c11 + 11*t2*c12 + 1./2.*t2*c22 -

. 72*t*u*c11 +

. 14*t*u*c12 + 3*t*u*c22 - 32*u2*c11 + 11*u2*c12 + 1./2.*u2*c22)+

. mgsq*mKKfo *( 6*t3*c11 - 2*t3*c12 - 1./2.*t3*c22 + 26*t2*u*c11+

. 2*t2*u*c12 - 7./2.*t2*u*c22 + 26*t*u2*c11 + 2*t*u2*c12 -

. 7./2.*t*u2*c22 + 6*u3*c11 - 2*u3*c12 - 1./2.*u3*c22 )+

. mgsq*mKKsq * ( - 2*t3*u*c11 - 2*t3*u*c12 + 3./2.*t3*u*c22 -

. 4*t2*u2*c11 - 4*t2*u2*c12 + t2*u2*c22 - 2*t*u3*c11 -

. 2*t*u3*c12 + 3./2.*t*u3*c22 )+

. mKKte/mgsq * ( 1./2.*t2*c11 + 11*t*u*c11 + 1./2.*u2*c11 )+

. mKKei/mgsq * (- 1./2.*t3*c11 - 39./2.*t2*u*c11 -

. 39./2.*t*u2*c11 - 1./2.*u3*c11 )+

. mKKsi/mgsq * ( 23./2.*t3*u*c11 + t3*u*c12 + 21*t2*u2*c11 +

. 2*t2*u2*c12 + 23./2.*t*u3*c11 + t*u3*c12 )+

. mKKfo/mgsq * (- 2*t4*u*c11 - t4*u*c12 - 6*t3*u2*c11 - 3*t3*

. u2*c12 - 6*t2*u3*c11 - 3*t2*u3*c12 - 2*t*u4*c11 - t*u4*c12 )+

. mKKsq/mgsq * ( 2*t4*u2*c12 + 2*t2*u4*c12 )+

. mKKei/mgfo * (- 1./2.*t3*u*c11 - t2*u2*c11 - 1./2.*t*u3*c11 )+

. mKKsi/mgfo * ( 1./2.*t4*u*c11 + 3./2.*t3*u2*c11 +

. 3./2.*t2*u3*c11 + 1./2.*t*u4*c11 )+

. mKKfo/mgfo * ( - t4*u2*c11 - t2*u4*c11 )+

. mKKtw * ( - 26*c11 )+

. mKKte * ( 66*t*c11 + 66*u*c11 )+
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. mKKei * ( - 125./2.*t2*c11 - t2*c12 - 125*t*u*c11 -

. 14*t*u*c12 - 125./2.*u2*c11 - u2*c12 )+

. mKKsi * ( 26*t3*c11 + t3*c12 + 86*t2*u*c11 + 23*t2*u*c12 +

. 86*t*u2*c11 + 23*t*u2*c12 + 26*u3*c11 + u3*c12 )+

. mKKfo * (- 4*t4*c11 - 24*t3*u*c11 - 13*t3*u*c12 -

. 1./2.*t3*u*c22- 40*t2*u2*c11 - 22*t2*u2*c12 - t2*u2*c22 -

. 24*t*u3*c11 - 13*t*u3*c12 - 1./2.*t*u3*c22 - 4*u4*c11 )+

. mKKsq * ( 2*t4*u*c11 + 2*t4*u*c12 + 1./2.*t4*u*c22 +

. 6*t3*u2*c11

. + 6*t3*u2*c12 + 3./2.*t3*u2*c22 + 6*t2*u3*c11 + 6*t2*u3*c12 +

. 3./2.*t2*u3*c22 + 2*t*u4*c11 + 2*t*u4*c12 + 1./2.*t*u4*c22 )-

. t4*u2*c22 - t2*u4*c22

Msq_qqb = msq_qqb/(t-mKKsq)**2/(u-mKKsq)**2/s *2./9. /2.

8)

t = t1 + mKKsq

u = u1 + m_sq

c -- for spin 0 gravitons: q g -> q* Phi

Msq_qg = mgsi*mKKsi * ( 4*c12 - 3*c22 )+

. mgsi*mKKfo * ( - 4*t*c12 + t*c22 - 4*u*c12 + 4*u*c22 )+

. mgsi*mKKsq * ( 4*t*u*c12 - u2*c22 )+

. mgsi * ( - t*u2*c22 )+

. mgfo*mKKei * ( 8*c11 - 10*c12 + 2*c22 )+

. mgfo*mKKsi * ( - 20*t*c11 + 14*t*c12 - 2*t*c22 - 4*u*c12 +
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. 8*u*c22 )+

. mgfo*mKKfo * ( 12*t2*c11 + 4*t*u*c11 + 4*t*u*c12 - t*u*c22 +

. 6*u2*c12 - 11*u2*c22 )+

. mgfo*mKKsq * ( - 4*t2*u*c11 - 8*t2*u*c12 - t2*u*c22 -

. 2*t*u2*c12 - 4*t*u2*c22 + 3*u3*c22 )+

. mgfo * ( 3*t2*u2*c22 + 3*t*u3*c22 )+

. mgsq*mKKte * ( 5*c11 - 4*c12 )+

. mgsq*mKKei * ( - 7*t*c11 + 4*t*c12 )+

. mgsq*mKKsi * ( 8*t2*c11 + 4*t2*c12 - t2*c22 - 4*t*u*c11 +2*t*u*

. c12 - 2*t*u*c22 - 5*u2*c11 + 14*u2*c12 - 8*u2*c22 )+

. mgsq*mKKfo * (- 8*t3*c11 - 4*t3*c12 + t3*c22 + 8*t2*u*c11 -26*

. t2*u*c12 + 2*t2*u*c22 + 3*t*u2*c11 - 2*t*u2*c22 - 6*u3*c12 + 8*

. u3*c22 )+

. mgsq*mKKsq * ( 12*t3*u*c12 + 10*t2*u2*c12 + 7*t2*u2*c22 - 6*t*

. u3*c12 + 10*t*u3*c22 - 2*u4*c22 )+

. mgsq * ( - 3*t3*u2*c22 - 6*t2*u3*c22 - 4*t*u4*c22 )+

. mKKte/mgsq * ( - t2*c11 - 2*t*u*c11 - 8*u2*c11 )+

. mKKei/mgsq * ( t3*c11 + 6*t2*u*c11 + 14*t*u2*c11 + 8*u3*c11 )+

. mKKsi/mgsq * ( - 4*t3*u*c11 - 2*t3*u*c12 - 21*t2*u2*c11 -2*t2

. *u2*c12 + 2*t*u3*c11 - 16*t*u3*c12 - 2*u4*c11 )+

. mKKfo/mgsq * ( 2*t4*u*c12 + 9*t3*u2*c11 + 4*t3*u2*c12 + 2*t2*

. u3*c11 + 18*t2*u3*c12 - 4*t*u4*c11 + 16*t*u4*c12 )+

. mKKsq/mgsq * ( - 2*t4*u2*c12 - 6*t3*u3*c12 - 8*t2*u4*c12 - 4*

. t*u5*c12 )+

. mKKei/mgfo * ( t3*u*c11 + t2*u2*c11 + 8*t*u3*c11 )+

. mKKsi/mgfo * ( - t4*u*c11 - 2*t3*u2*c11 - 9*t2*u3*c11 - 8*t*
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. u4*c11 )+

. mKKfo/mgfo * ( t4*u2*c11 + 3*t3*u3*c11 + 4*t2*u4*c11 + 2*t*u5

. *c11 )+

. mKKtw * ( 2*c11 )+

. mKKte * ( - 2*t*c11 - 8*u*c11 )+

. mKKei * ( 2*t2*c12 + 7*t*u*c11 + 4*t*u*c12 - 3*u2*c11 +

. 16*u2*c12)+

. mKKsi * (-4*t3*c11 - 2*t3*c12 + 7*t2*u*c11 - 8*t2*u*c12 + 4*t*

. u2*c11 - 12*t*u2*c12 + 3*u3*c11 - 16*u3*c12 )+

. mKKfo * ( 4*t4*c11 + 4*t3*u*c11 + 4*t3*u*c12 + t3*u*c22 -13*t2*

. u2*c11 + 14*t2*u2*c12 + t2*u2*c22 + 3*t*u3*c11 - 12*t*u3*c12

. + 8*t*u3*c22 + 4*u4*c12 )+

. mKKsq * ( - 4*t4*u*c11 - t4*u*c22 - 6*t3*u2*c12 - 2*t3*u2*c22

. + 4*t2*u3*c12 - 9*t2*u3*c22 + 8*t*u4*c12 - 8*t*u4*c22 )+

. t4*u2*c22 + 3*t3*u3*c22 + 4*t2*u4*c22 + 2*t*u5*c22

Msq_qg = Msq_qg/(t-mKKsq)**2/(u-mKKsq)**2 /s *1./12. *2.

9)

t = t1 + mKKsq

u = u1 + m_sq

c -- for spin 0 gravitons: g g -> g* Phi

Msq_gg = mgte * ( - 2*t*u*c22 )+

. mgei*mKKsq * ( 4*t2*c22 + 4*t*u*c12 + 14*t*u*c22 + 4*u2*c22 )+

. mgei * ( 6*t2*u*c22 + 6*t*u2*c22 )+
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. mgsi*mKKfo * ( - 8*t2*c12 - 16*t2*c22 - 2*t*u*c11 -

. 28*t*u*c12 - 40*t*u*c22 - 8*u2*c12 - 16*u2*c22 )+

. mgsi*mKKsq * (- 12*t3*c22 - 12*t2*u*c12 - 48*t2*u*c22 - 12*t*u2

. *c12 - 48*t*u2*c22 - 12*u3*c22 )+

. mgsi * ( - 10*t3*u*c22 - 20*t2*u2*c22 - 10*t*u3*c22 )+

. mgfo*mKKsi * ( 4*t2*c11 + 32*t2*c12 + 24*t2*c22 + 14*t*u*c11 +

. 80*t*u*c12 + 56*t*u*c22 + 4*u2*c11 + 32*u2*c12 + 24*u2*c22 )+

. mgfo*mKKfo * ( 24*t3*c12 + 36*t3*c22 + 6*t2*u*c11 + 96*t2*u*c12

. + 120*t2*u*c22 + 6*t*u2*c11 + 96*t*u2*c12 + 120*t*u2*c22 +

. 24*u3*c12 + 36*u3*c22 )+

. mgfo*mKKsq * ( 14*t4*c22 + 20*t3*u*c12 + 70*t3*u*c22 +40*t2*u2*

. c12 + 116*t2*u2*c22 + 20*t*u3*c12 + 70*t*u3*c22 + 14*u4*c22 )+

. mgfo * ( 10*t4*u*c22 + 30*t3*u2*c22 + 30*t2*u3*c22 + 10*t*u4*

. c22 )+

. mgsq*mKKei * (- 16*t2*c11 - 48*t2*c12 - 16*t2*c22 - 40*t*u*c11

. -112*t*u*c12 -38*t*u*c22 -16*u2*c11 -48*u2*c12 -16*u2*c22 )+

. mgsq*mKKsi * (-12*t3*c11 -72*t3*c12 -36*t3*c22 -48*t2*u*c11

. - 240*t2*u*c12 - 120*t2*u*c22 - 48*t*u2*c11 - 240*t*u2*c12-120

. *t*u2*c22 - 12*u3*c11 - 72*u3*c12 - 36*u3*c22 )+

. mgsq*mKKfo * (- 28*t4*c12 - 28*t4*c22 - 10*t3*u*c11 - 140*t3*u*

. c12 - 122*t3*u*c22 - 20*t2*u2*c11 - 232*t2*u2*c12 - 196*t2*u2*

. c22 -10*t*u3*c11 -140*t*u3*c12 -122*t*u3*c22 - 28*u4*c12 -28*

. u4*c22 )+

. mgsq*mKKsq * ( - 8*t5*c22 - 20*t4*u*c12 - 48*t4*u*c22 - 60*t3*

. u2*c12 - 112*t3*u2*c22 - 60*t2*u3*c12 - 112*t2*u3*c22 - 20*t*

. u4*c12 - 48*t*u4*c22 - 8*u5*c22 )+
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. mgsq * ( - 6*t5*u*c22 - 20*t4*u2*c22 - 30*t3*u3*c22 - 20*t2*

. u4*c22 - 6*t*u5*c22 )+

. mKKtw/mgsq * (- 16*t2*c11 - 8*t2*c12 - 38*t*u*c11 - 20*t*u*c12

. - 16*u2*c11 - 8*u2*c12 )+

. mKKte/mgsq * (- 36*t3*c11 - 24*t3*c12 - 120*t2*u*c11 - 84*t2*

. u*c12 - 120*t*u2*c11 - 84*t*u2*c12 - 36*u3*c11 - 24*u3*c12 )+

. mKKei/mgsq * (- 28*t4*c11 - 28*t4*c12 - 122*t3*u*c11 - 124*t3*

. u*c12 - 196*t2*u2*c11 - 200*t2*u2*c12 - 122*t*u3*c11 -124*t*u3

. *c12 - 28*u4*c11 - 28*u4*c12 )+

. mKKsi/mgsq * (- 8*t5*c11 - 16*t5*c12 - 48*t4*u*c11 - 84*t4*u*

. c12 - 112*t3*u2*c11 - 188*t3*u2*c12 - 112*t2*u3*c11 - 188*t2*

. u3*c12 - 48*t*u4*c11 - 84*t*u4*c12 - 8*u5*c11 - 16*u5*c12 )+

. mKKfo/mgsq * ( - 4*t6*c12 - 6*t5*u*c11 - 28*t5*u*c12 - 20*t4*

. u2*c11 - 76*t4*u2*c12 - 30*t3*u3*c11 - 108*t3*u3*c12 - 20*t2*

. u4*c11 - 76*t2*u4*c12 - 6*t*u5*c11 - 28*t*u5*c12 - 4*u6*c12 )+

. mKKsq/mgsq * ( - 4*t6*u*c12 - 12*t5*u2*c12 - 20*t4*u3*c12 -20

. *t3*u4*c12 - 12*t2*u5*c12 - 4*t*u6*c12 )+

. mKKft/mgfo * ( 4*t2*c11 + 10*t*u*c11 + 4*u2*c11 )+

. mKKtw/mgfo * ( 12*t3*c11 + 42*t2*u*c11 + 42*t*u2*c11 + 12*u3*

. c11 )+

. mKKte/mgfo * ( 14*t4*c11 + 62*t3*u*c11 + 100*t2*u2*c11 + 62*t*

. u3*c11 + 14*u4*c11 )+

. mKKei/mgfo * ( 8*t5*c11 + 42*t4*u*c11 + 94*t3*u2*c11 + 94*t2*

. u3*c11 + 42*t*u4*c11 + 8*u5*c11 )+

. mKKsi/mgfo * ( 2*t6*c11 + 14*t5*u*c11 + 38*t4*u2*c11 + 54*t3*

. u3*c11 + 38*t2*u4*c11 + 14*t*u5*c11 + 2*u6*c11 )+
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. mKKfo/mgfo * ( 2*t6*u*c11 + 6*t5*u2*c11 + 10*t4*u3*c11 + 10*t3

. *u4*c11 + 6*t2*u5*c11 + 2*t*u6*c11 )+

. mKKte * ( 24*t2*c11 + 32*t2*c12 + 4*t2*c22 + 56*t*u*c11 +

. 76*t*u*

. c12 + 10*t*u*c22 + 24*u2*c11 + 32*u2*c12 + 4*u2*c22 )+

. mKKei * ( 36*t3*c11 + 72*t3*c12 + 12*t3*c22 + 120*t2*u*c11 +

. 240*

. t2*u*c12 + 42*t2*u*c22 + 120*t*u2*c11 + 240*t*u2*c12 +42*t*u2*

. c22 + 36*u3*c11 + 72*u3*c12 + 12*u3*c22 )+

. mKKsi * (14*t4*c11 + 56*t4*c12 + 14*t4*c22 + 70*t3*u*c11 +244*

. t3*u*c12 + 62*t3*u*c22 + 116*t2*u2*c11 + 392*t2*u2*c12 + 100*

. t2*u2*c22 + 70*t*u3*c11 + 244*t*u3*c12 + 62*t*u3*c22 + 14*u4*

. c11 + 56*u4*c12 + 14*u4*c22 )+

. mKKfo * ( 16*t5*c12 + 8*t5*c22 + 10*t4*u*c11 + 96*t4*u*c12 +

. 42*

. t4*u*c22 + 30*t3*u2*c11 + 224*t3*u2*c12 + 94*t3*u2*c22 + 30*

. t2*u3*c11 + 224*t2*u3*c12 + 94*t2*u3*c22 + 10*t*u4*c11 + 96*t*

. u4*c12 + 42*t*u4*c22 + 16*u5*c12 + 8*u5*c22 )+

. mKKsq * ( 2*t6*c22 + 12*t5*u*c12 + 14*t5*u*c22 + 40*t4*u2*c12+

. 38*t4*u2*c22 + 60*t3*u3*c12 + 54*t3*u3*c22 + 40*t2*u4*c12 +

. 38*t2*u4*c22 + 12*t*u5*c12 + 14*t*u5*c22 + 2*u6*c22 )+

. 2*t6*u*c22 + 6*t5*u2*c22 + 10*t4*u3*c22 + 10*t3*u4*c22 + 6*t2

. *u5*c22 + 2*t*u6*c22

Msq_gg = -Msq_gg/t2/u2/s2 *3./16.
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