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CHAPTER 1

Introduction

“It may happen that small differences in the initial conditions produce very great

ones in the final phenomena. A small error in the former will produce an enor-

mous error in the latter. Prediction becomes impossible, and we have the fortuitous

phenomenon.”—-Henri Poincarè

As far back as 1885, King Oscar II of Sweden established a prize for the person

who could produce a solution to the “three body problem” in the context of stability

of the solar system. The prize was ultimately awarded to Henri Poincarè even though

he did not quite solve the puzzle. He identified for the first time that there can be

non-periodic orbits that neither increase forever nor approach a fixed point. This

was the starting point for what we now know as “chaos”. Poincarè’s work led to

the understanding of mathematical spaces now known as manifolds an important

part of chaos. The next major progress in the field of chaos occurred in 1961 when

Edward Lorenz [1] serendipitously noticed odd behavior in a numerical model of

the atmosphere running on a simple digital computer. He soon realized that the

difference between what should have been identical simulations was the result of

rounding numbers to three significant figures when the program was reset in the

middle. At one point he stopped the simulation and then restarted it, using as initial

conditions the results obtained when the program was stopped. Surprisingly the

final result of the simulation was completely different to what was found if it ran

without interruption. Thus Lorenz discovered that long time weather predictions are

exquisitely sensitive to the initial conditions that are used.
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Perhaps the signature feature of chaotic motion is its sensitivity to initial condi-

tions [2]. One way of parameterizing this sensitivity is through the Lyapunov exponent

which quantifies the divergence of two arbitrarily close initial conditions separated in

phase space by δx0. The time evolution of the difference δx(t) is given by

δx(t) ∼ δx0e
λLt, (1.1)

where λL is the Lyapunov exponent. For λL > 0, the motion is chaotic. For t > 1/λL,

the chaos becomes appreciable. For λL < 0, the motion is regular and the evolution

is drawn towards a fixed point in phase space. For chaotic systems, two nearby close

initial conditions diverge exponentially. Once the separation between them reaches

the size of the phase space, they effectively evolve randomly. This classical chaos has

been identified in such diverse fields as chemical reactions [3], laser physics [4], plasma

physics [5], and Economics [6].

1.1 Quantum Chaos

The development of quantum mechanics was a major step towards the development

of our current understanding of nature. Quantum mechanics allows the description of

both matter and radiation using particle and wave behavior. One important consid-

eration is that any result determined using quantum mechanics, often reduces to the

classical result as a limit. Ehrnfest’s theorem gives the correspondence. One key area

where it is difficult to see how classical and quantum mechanics can be compatible

is chaos. In the quantum world, chaos can not be defined in the same sense as it is

defined in classical dynamics (i.e. through a Lyapunov exponent) since the evolution

operator in quantum mechanics is unitary. Thus two initially close states will not di-

verge exponentially as is the case in a classically chaotic system. To circumvent this

difficulty, alternative definitions of chaos have been proposed. For example, Peres [7]

suggested observing the overlap of two states after interacting with slightly differing

2



potentials. The potential chosen is of course important.

In the context of quantum chaos, the δ-kicked rotor model has been extensively

used. It has served as a paradigm for quantum chaos ever since it was first studied

classically by B. V. Chirikov [8] and quantum mechanically by G. Casati et al. [9]. This

system has attracted so much attention since its classical and quantum mechanical

dynamics can be analytically handled with relative ease. The classical δ-kicked rotor

displays chaotic behavior for certain parameter regimes, while the quantum δ-kicked

rotor exhibits the phenomena of quantum resonance, quantum anti-resonance and

dynamical localization (see chapter 7).

The quantum δ-kicked rotor was first realized in experiments on microwave ion-

ization of highly excited Hydrogen atoms [10, 11]. Despite early success with the

microwave system, it was relatively inflexible and difficult to implement. Ultimately

the search for a more versatile version of the quantum δ-kicked rotor led to the field

of atom optics.

The atom optics version of the quantum δ-kicked rotor was first realized by Mark

Raizen et al. using cold atoms subjected to a modulated standing wave of off-resonant

light [12-14] and they initiated the study of quantum chaos [15-25]. Since the Raizen

group’s first experiments several other research groups have investigated quantum

chaos using this system. For example, Phillips and coworkers at NIST studied the

Talbot effect and the related topic of quantum resonances [26-28] The quantum chaos

group at the University of Lille, have looked at the effect of two kicking frequencies on

dynamical localization. They observed that if the ratio of the two kicking frequencies

is a rational fraction, then dynamical localization is retained [29, 30]. A group at

the University of Auckland have examined quantum chaos in the presence of deco-

herence which is introduced by either noise in the amplitude of the kicking potential

or the addition of spontaneous emission into the kicking light [31, 32]. A group of

researchers at University College London realized the quantum δ-kicked rotor using

3



cold atoms and studied the quantum ratchet [33-35]. A group in Japan used the

Bose-Einstein Condensation of Rb-87 atoms to realize the kicked rotor and study the

quantum ratchet mechanism [36] at the same time we started our work on ratchet (see

Chapter 7). However, they restrict them selves to small changes in mean momentum,

so that the saturation of mean momentum was not observed in their experiments.

Furthermore, the work described in Chapter 7 is superior to that of Japanese group

since we realized the ratchet at arbitrary quasimomenta.

The realization of the atom optics version of the quantum δ-kicked rotor has also

enabled variants of the kicked rotor to be produced. Raizen and coworkers have

used the kicked rotor with an additional linear potential to study the Wannier-Stark

and Landau Zener tunneling problems [37-43]. Later a group at the University of

Oxford started work on the quantum δ-kicked accelerator using cold Cs atoms and

studied its properties [44-53]. This thesis reports the realization of the kicked rotor

and kicked accelerator and the study of associated resonances using a Bose-Einstein

Condensation (BEC) of Rb-87 atoms.

1.2 Bose-Einstein Condensation

The history of BEC begins with Satyendra Nath Bose in 1924, who used the concept

of a photon gas and devised the statistics now known as Bose-Einstein statistics

and succeeded in establishing Planck’s radiation formula on this basis [54]. Later

Einstein generalized Bose’s idea to particles of integer spin, now known as Bosons. In

1925, Einstein found that (under certain circumstances) there can be a macroscopic

occupation of the entire population in the ground state [55-57], now known as Bose-

Einstein Condensation. The prediction of BEC was the last major discovery of Albert

Einstein. For 70 years after its prediction, except for the indirect evidence of BEC

in experiments on liquid Helium [58, 59], it was only a theoretical concept. It was

not until 1995 that BEC was finally realized in dilute gases in a remarkable series
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of experiments separately conducted by groups at JILA [60] and MIT [61]. A good

review article on BEC can be found in reference [62]

The journey towards BEC in dilute atomic samples was long and on the way it

led to a greater understanding of atom optics. Ashkin proposed the idea of light

exerting a force on particles [63]. Ashkin’s proposal is considered to be the starting

point of laser cooling and the mechanical manipulation of matter with light (e.g.

optical tweezers). Laser cooling was first demonstrated in trapped ions [64, 65], with

later work by Phillips demonstrating a method of slowing a beam of atoms using

what is now known as a Zeeman slower [66, 67], and magnetically trapping neutral

atoms [68]. Steven Chu developed the idea of laser cooling of neutral atoms using

six counter propagating laser beams [69] and trapped them using a focused laser

beam [70], demonstrating the ideas of optical molasses and dipole trap. In 1987, Chu

and co-workers [71] realized the Magneto-Optic Trap (MOT), which has since become

the starting point for almost all laser cooling and BEC experiments to this day.

The standard MOT configuration involves using six counter propagating laser

beams to cool and trap the atoms in a spatially varying magnetic field. The cooling

involves absorbing a photon from a laser beam and then emitting it into random

direction via spontaneous emission. This results in the slowing of the atom after

many such absorptions and emissions. However the emission into random directions

also produces a heating effect. The cooling and subsequent heating sets a limit on the

lowest achievable temperature known as the Doppler limit. The MOT was expected

to produce a cooling up to, at the most, the Doppler limit. When Phillips and

coworkers measured the temperature of the cold cloud in the MOT, the measured

temperature was to their surprise much lower than the Doppler limit [72]. This

became a basis for the discovery of a new process that occurs in the laser cooling

called Sisyphus cooling or polarization gradient cooling [73]. In current experiments,

temperatures of the order of a few micro Kelvin can be achieved in a MOT. However

5



the temperatures and densities achievable in a MOT are not sufficient to realize Bose-

Einstein Condensation. Finally, in 1995 a new two-stage cooling technique resulted

in a BEC [60, 61]. In these experiments, atoms were first loaded into MOT, then

transferred to a magnetic trap and finally evaporatively cooled by selectively removing

the most energetic atoms using rf radiation [74, 75]. The group at JILA used a Time

Orbiting Potential (TOP) trap [60] to achieve the BEC, while the group at MIT used

an optical plug trap to realize the BEC [61]. The atomic physics community quickly

turned to testing fundamental physics using this new tool and the field of atom optics

has undergone a rapid growth.

1.3 Thesis organization

To study quantum chaos, the δ-kicked rotor (DKR) and the δ-kicked accelerator

(DKA) were used. The classical evolution of these kicked systems shows that for some

parameter regime, the dynamics becomes chaotic. The quantum evolution of these

kicked systems can be studied using Floquet operators. The quantum dynamics shows

that resonances occur for kicking periods at rational fraction of a characteristic time

known as the half-Talbot time (see Chapter 2). The dynamics near these resonances

can be described using a classical picture with an effective Planck’s constant related

to the separation of the kicking period from the resonances [76, 77]. A study of

the quantum dynamics near these resonances for the DKA was undertaken in this

thesis. For a quantum DKA, Quantum Accelerator Modes (QAMs) are formed near

the resonances. To understand the QAMs, a momentum distribution narrower than

a photon recoil is desired. Thus using a BEC is highly desirable. Two experiments

were undertaken in the lab at the same time. One experiment was to achieve BEC

and the other experiment was to obtain Magneto-Optic Trap (MOT) and kick the

cold atoms to produce QAMs. Later these were unified to kick a BEC. In Chapter

2, the theory of QAM is discussed. Two equivalent pictures, the rephasing model
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and the ǫ-classical model are discussed. Chapter 3 deals with the kicking of the

cold atoms and producing the QAM in cold uncondensed Rubidium atoms. Details

of the experimental configuration are given and numerical simulations are used to

understand the experimental results. In Chapter 4, a mechanism of achieving a BEC

is given. In this process, the observation of multiple micro-optical traps produced by

spherical aberration of a lens is discussed. In Chapter 5 the kicking of BEC using

standing wave pulses to produce QAMs is presented. Phase space plots described

by the effective classical description of the kicked accelerator are mapped onto the

quantum dynamics in this Chapter. In Chapter 6, the observation of resonances for

kicking periods near rational fractions of the half-Talbot time are reported and a

generalized ǫ-classical theory is outlined. The rephasing theory is generalized in this

Chapter to include all resonances. The direct observation of the fractional Talbot

effect in atom optics is reported. In Chapter 7, the resonances of the quantum

δ-kicked rotor are used to produce the quantum ratchet. Both the classical and

quantum dynamics of the kicked rotor are outlined before the experimental details to

realize the quantum ratchet are discussed. The quantum ratchet using the quantum

δ-kicked accelerator is described in Chapter 8. The theory predicts that the ratchet

exists only for certain values of the acceleration and the kicks. This is qualitatively

verified. Finally in Chapter 9, the conclusions are drawn and the future experiments

that can be designed with the existing understanding of the theory and experimental

developments are discussed.
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CHAPTER 2

Theory of the Quantum δ-Kicked Accelerator

2.1 Introduction

The quantum δ-kicked rotor first realized in an atom optical system by M. Raizen’s

group [13] was the begining of experimental studies of kicked systems and the Talbot

effect for matter waves. A series of experiments were then undertaken by a group

at the university of Oxford using a variant of the kicked rotor [44] in which a linear

potential was added to the kicking potential. This system is referred to as the δ-

kicked accelerator. The resonances in the quantum δ-kicked accelerator (QDKA) are

inferred through the observation of quantum accelerator modes (QAMs) which are

formed when the time period is close to a rational fraction of the half-Talbot time. The

QAMs are identified by linear growth of momentum with kicks of certain atoms (see

Fig. 3.9). The Oxford group observed the QAM at the primary resonances which occur

when the kicking period is close to integer multiples of the half Talbot time. These are

referred to as the primary QAMs (for simplicity, the term QAM will be used to refer to

the primary QAM until Chapter 5). The Oxford group also developed a simple picture

of the QAM using the rephasing of the momentum states [45], which was followed by a

more detailed theory of the QAMs developed by Fishman, Guarnari and Rebizzini [76,

77]. This latter theory, referred to as the ǫ-classical theory describes the QAM in

terms of a classical picture with a corresponding set of classical equations of motion.

This chapter provides details of the theory of QAM, discussing both rephasing and ǫ-

classical models. In section 2.2, the Hamiltonian of the quantum δ-kicked accelerator

is detailed. The classical evolution of the δ-kicked accelerator is discussed in section
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2.3. The evolution of a plane wave under this time dependent Hamiltonian using the

Floquet operators is discussed in section 2.4. The dynamics will be simplified in a free

falling frame (FFF) that is accelerating with the external acceleration experienced by

atoms. Using the matrix elements of the evolution operators in the FFF, the rephasing

model is reformulated in Section 2.5. Finally in Section 2.6, the ǫ-classical theory is

presented and it is shown how in a phase space produced by the equations of motion,

the QAMs correspond to stable islands in a chaotic sea.

2.2 The Hamiltonian

The quantum δ-kicked accelerator (QDKA) is realized by subjecting a sample of

cold atoms to δ-function like pulses from a standing wave optical potential. The

Hamiltonian of an atom of mass M interacting with such a sinusoidal potential pulsed

with period T is given by,

ˆH(t) =
P̂ 2

2M
−Mg′X̂ + ~φd cos(GX̂)

∞
∑

np=−∞

δ(t′ − npT ), (2.1)

where P is the momentum, g′ is the acceleration experienced by the atom (such as

the one produced by gravity), X is the position of the atom, ~ is Planck’s constant,

G = 4π/λ is called the grating wave vector, λ is the wavelength of the light used to

make the standing wave, t′ is the continuous time variable, and φd is called the phase

modulation depth (representing the strength of the kicking). The parameter φd plays

an important role in the classical dynamics of the kicked accelerator and is given by

φd =
Umax∆t

2~
, (2.2)

where ∆t is the kicking pulse length and Umax is the amplitude of the potential

corresponding to the maximum intensity of the standing wave and is given by

Umax =
~Ω2

4δL
, (2.3)
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where Ω is the Rabi frequency between the ground and excited states, and δL is

the detuning of the kicking laser light with respect to the atomic transition. It is

convenient to go to dimensionless units for the development of the theory. In typical

kicking experiments such as the ones described in this thesis, the standing wave

imparts two photon recoils momentum in quanta of ~G. It is thus convenient to write

the momentum in units of ~G as p = P/(~G). The position variable is conveniently

written in terms of the wavelength of the standing wave x = GX. Defining η =

Mg′T/(~G), the momentum gain in time T due to the acceleration g′, and τ =

2πT/T1/2, where T1/2 is called the half-Talbot time given by

T1/2 =
2πM

~G2
, (2.4)

the Hamiltonian in the dimensionless units is then given by

H =
p̂2

2
− η

τ
x̂+ φd cos(x̂)

∞
∑

np=−∞

δ(t− npτ), (2.5)

where H = H/ (~2G2/M), and t = 2πt′/T1/2 is the dimensionless continuous time

variable.

2.3 Classical Evolution

Hamilton’s equations of motion in the dimensionless units of Eq. (2.5) are then writ-

ten,

∂x

∂t
=

∂H
∂p

(2.6)

∂p

∂t
= −∂H

∂x
. (2.7)

To simplify the algebra of solving these equations, an assumption is made which

corresponds to the Raman-Nath approximation in the quantum regime: when the

pulse is on (for a duration ǫk which is infinitesimally small), the kinetic energy and

the acceleration terms in the Hamiltonian of Eq. (2.5) can be ignored. Hamilton’s
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equation of motion in region (0 ≤ t ≤ ǫk) are given by

∂x

∂t
= 0

∂p

∂t
= φd sin(x)δ(t− 0τ).

The dynamical variables x and p after the first kick are then given by

x(t = ǫk) = x(t = 0)

p(t = ǫk) = p(t = 0) + φd sin(x(t = 0)). (2.8)

For the region (ǫk ≤ t ≤ τ), the Hamilton’s equations of motion become,

∂x

∂t
= p

∂p

∂t
=

η

τ
.

Integrating these equations results in

x(t = τ) = x(t = ǫk) + p(t = ǫk)(τ − ǫk) +
η

τ

(

τ 2

2
− ǫ2k

2

)

p(t = τ) = p(t = ǫk) + η, (2.9)

Combining Eqs. (2.8) and (2.9) with ǫk → 0, one obtains the position and momentum

of the particle after the first kick:

x1 = x0 + τp1 − ητ/2,

p1 = p0 + φd sin(x0) + η, (2.10)

where x0 and p0 are the position and momentum before the first kick. To simplify

further, defining the variables

p′ = τ(p− η/2), (2.11)

and

k̃′ = τφd, (2.12)
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x and p′ after one kick are given by

x1 = x0 + p′1,

p′1 = p′0 + k̃′ sin(x0) + ητ. (2.13)

Solving these equations for second and later kicks, it is found that after np + 1 kicks

(a kick includes kicking followed by a free evolution),

xnp+1 = xnp
+ p′np+1

p′np+1 = p′np
+ k̃′ sin(xnp

) + ητ. (2.14)

This mapping is similar to the standard map [76] except for the constant shift ητ

in the momentum variable. Thus the classical dynamics of the δ-kicked accelerator

results in the map of Eq. (2.14) which are displayed in the phase-space portraits of

Figs. 2.1 to 2.4. The value of the acceleration g′ used in Figs. 2.1, 2.2, 2.3, and

2.4 are respectively, 0 ms−2, 0.5 ms−2, 1 ms−2 and 6 ms−2. The value of g′ = 6

ms−2 (natural value) corresponds to the experimental value used in chapter 5. This

value is referred to as the natural value since in the experiments, the standing wave

was oriented at an angle and the component of of gravitational acceleration in the

direction of standing wave was 6 ms−2. It should be noted that as g′ increases, the

phase space becomes more and more chaotic for small values of k̃′. In Chapter 5,

these maps have been explored experimentally.

2.4 Quantum evolution

2.4.1 Floquet operators

The quantum evolution of the system is given by the kick-to-kick Floquet operator,

Û = K̂F̂ ,

= e−iφd cos(x̂)F̂ , (2.15)
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Figure 2.1: Phase space plots of the classical δ-kicked accelerator for g′ = 0 ms−2 and

τ = 2π. The value of k̃′ used are (a) k̃′ = 0.4, (b) k̃′ = 0.7, (c) k̃′ = 1.0, (d) k̃′ = 1.5,

(e) k̃′ = 2.0, (f) k̃′ = 2.5, (g) k̃′ = 3.0, (h) k̃′ = 4.0, and (i) k̃′ = 5.5. For k̃′ = 0.4,

the dynamics are regular. As k̃′ increases, the regular region shrinks and for k̃′ > 5.5,

chaos is dominant.
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Figure 2.2: Phase space plots of the classical δ-kicked accelerator for g′ = 0.5 ms−2

and τ = 2π. The value of k̃′ used was (a) k̃′ = 0.4, (b) k̃′ = 0.7, (c) k̃′ = 1.0, (d)

k̃′ = 1.5, (e) k̃′ = 2.0, (f) k̃′ = 2.5, (g) k̃′ = 3.0, (h) k̃′ = 4.0, and (i) k̃′ = 5.5. Note

that apart from g′, the parameters used are same as in Fig 2.1. Thus the addition of

a linear term in the potential (for small acceleration such as 0.5 ms−2) increases the

chaotic regions at small k̃′.
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Figure 2.3: Phase space plots of the classical δ-kicked accelerator for g′ = 1 ms−2 and

τ = 2π. The value of k̃′ used was (a) k̃′ = 0.4, (b) k̃′ = 0.7, (c) k̃′ = 1.0, (d) k̃′ = 1.5,

(e) k̃′ = 2.0, (f) k̃′ = 2.5, (g) k̃′ = 3.0, (h) k̃′ = 4.0, and (i) k̃′ = 5.5.
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Figure 2.4: Phase space plots of the classical δ-kicked accelerator for g′ = 6 ms−2 and

τ = 2π. The value of k̃′ used was (a) k̃′ = 0.4, (b) k̃′ = 0.7, (c) k̃′ = 1.0, (d) k̃′ = 1.5,

(e) k̃′ = 2.0, (f) k̃′ = 2.5, (g) k̃′ = 3.0, (h) k̃′ = 4.0, and (i) k̃′ = 5.5. Note that

g′ = 6ms−1 corresponds to the natural value of the acceleration used in experiments

described in Chapter 5.
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where K̂ represents the kicking and the F̂ describes the evolution under the linear

potential during the time between the kicks. To find the states that enable the matrix

elements of the operator F̂ to be found, the Schrödinger equation should be solved

for a linear potential.

2.4.2 Solution of Schrödinger equation for a linear potential

The Schrodinger equation of a free particle in a linear potential is given by

Ĥ ′
g(p)uE(p) = EuE(p), (2.16)

where the Hamiltonian in dimensionless units is Ĥ ′
g = p̂2/2 − (η/τ)x̂. Using

x̂ = i~∂/∂p, (2.17)

and
∫ ∞

−∞

uE(p)u∗E′(p)dp = δ(E − E ′), (2.18)

Eq. (2.16) can be solved for uE(p). The solutions are given by

uE(p) =

(

τ

2πη

)1/2

ei(τ/η)(Ep−p3/6). (2.19)

Using these states, the matrix elements of the evolution operator during the time

between pulses can be calculated.

2.4.3 Matrix elements of the evolution operator

To understand the time evolution of a given initial state under the time dependent

Hamiltonian ∧H of Eq. (2.5), the matrix elements of the evolution operator Û need to

be evaluated. The matrix elements of Û can be calculated by evaluating the matrix

elements of F̂ and K̂. The matrix elements of F̂ are given by

〈p′|F̂ |p′′〉 =

∫

dE

∫

dE ′〈p′|E〉〈E|F̂ |E ′〉〈E ′|p′′〉

=

∫

dEe−iEτuE(p′)u∗E(p′′)

= δ(p′ − p′′ − η)e−i(τ/2)(p′−η/2)2e−i(τη2/24). (2.20)
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The matrix elements of the kick operator K̂ are given by

〈p|K|p′〉 =

∫

dx

∫

dx′〈p|x〉〈x|e−iφd cos(x)|x′〉〈x′|p′〉

=

∞
∑

l=−∞

(−i)lJl(φd)δ(p− p′ − l), (2.21)

where Jl(φd) is the Bessel function of order l and argument φd. Thus the matrix

elements of the evolution operator can be calculated:

(Uψ)(p) = 〈p|Uψ〉

=

∫

dp〈p|U |p′〉〈p′|ψ〉

=
∞
∑

l=−∞

(−i)lJl(φd)e
−i(τ/2)(p−l−η/2)2ψ(p− l − η), (2.22)

where the constant phase is ignored.

2.4.4 States of the kicked rotor and kicked particle

For the case of η = 0, the δ-kicked accelerator corresponds to the δ-kicked rotor. A

kicked particle such as the one realized in the experiments moves in straight lines,

where as the kicked rotor moves in circles. The link between the two can be found by

exploiting the fact that the particle moves in a periodic potential. As the standing

wave imparts momentum in integer multiples of ~G, the quasi momentum β (defined

as p mod 1) is conserved. Thus the momentum variable p can be written as p =

n + β, where n is the integer part of the momentum and β is the fractional part

of the momentum. Since the potential is spatially periodic, x can be written as

x mod 2π = θ. To construct the states of the kicked particle |ψ〉, the states |Ψβ〉 of

the kicked rotor (particle moving in circles) with quasi angular momentum β are first

constructed. In momentum representation, the β-rotor states 〈n|Ψβ〉 and the kicked

particle states 〈m|ψ〉 are related through

〈n|Ψβ〉 = 〈n+ β|ψ〉 (2.23)
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In θ representation, the two are related through

〈θ|Ψβ〉 =
1√
2π

∑

n

〈n + β|ψ〉 einθ (2.24)

As the particle state |ψ〉 after np kicks evolves into Ûnp |ψ〉, the β rotor state |Ψβ〉

evolves into Û
np

β |Ψβ〉, where Uβ is given by

Ûβ = exp
(

−iφd cos(θ̂)
)

exp
(

−iτ
2
(N̂ + β)2

)

, (2.25)

with the angular momentum operator N̂ = −i∂/∂θ in the θ-representation.

2.4.5 Dynamics in Freely Falling Frame (FFF)

For the case of η 6= 0, the quasimomentum is not conserved since the potential is not

periodic. The dynamics of the kicked particle can be simplified by going over to the

FFF. The states in the FFF after np kicks are given by

ψnp
(p) = 〈p+ ηnp|Ûnp|ψ〉. (2.26)

Using Eq. (2.22), the state after np + 1 kicks, is given by

ψnp+1(p) =

∞
∑

l=−∞

(−i)lJl(φd)e
− τ

2
(p−l+ηnp+η/2)2ψnp

(p− l) (2.27)

Writing Eq. (2.27) in the form Ûf (np)ψnp
(p), the evolution operator in the FFF Ûf (np)

is given by

Ûf (np) = exp (−iφd cos(x̂)) exp
(

−iτ
2
(p̂+ npη + η/2)2

)

(2.28)

This evolution operator can be obtained from the time evolution of a Hamiltonian

Hf(t
′) =

1

2

(

p+
η

τ
t
)2

+ φd cos(x̂)

∞
∑

np=−∞

δ(t− npτ). (2.29)

It may be noted that this Hamiltonian results from a gauge transformation of the

Hamiltonian of the δ-kicked accelerator. Equation (2.28) is identical to that of the
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kicked rotor except for the constant shift of momentum during the evolution between

the kicks. Thus quasimomentum conservation is restored in the FFF, enabling the

application of rotor dynamics. The matrix elements of the evolution operators K̂ (evo-

lution during δ-kicking) and R̂β (evolution during the time between kicks) between

the np-th kick and np + 1-th kick are

〈n|K̂|m〉 = (−i)n−mJn−m(φd) (2.30)

〈n|R̂β |m〉 = δnme
−i(τ/2)(n+β+npη+η/2)2 (2.31)

and the evolution operator between np and np + 1 kicks is given by

Ûβ(np) = e−iφd cos(θ̂)e−i(τ/2)(N̂+β+ηnp+η/2)2 . (2.32)

From Eq. (2.30), it can be seen that a kick “diffracts” atoms into various momentum

states with the population in each state proportional to the absolute square of a Bessel

function with the argument of the Bessel function nothing more than the strength of

the kicking. The evolution between the kicks merely introduces a phase proportional

to the kinetic energy of each momentum state.

2.5 Rephasing model

From Eq. (2.31), it can be seen that a momentum state |m〉 during the time between

kicks acquires a phase Φm given by

Φm =
τ

2
(m+ β + ηnp + η/2)2. (2.33)

A state |m− 1〉 during the same time acquires a phase of

Φm−1 =
τ

2
(m− 1 + β + ηnp + η/2)2. (2.34)

The phase difference between the two states |m〉 and |m−1〉 during the free evolution

between the np and np + 1 kicks is given by

Φm − Φm−1 = τ(m+ ηnp) + τ(β + η/2 − 1/2). (2.35)
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In Eq. (2.35), the term τ(m + ηnp) changes as the number of kicks changes. The

second term τ(β + η/2 − 1/2) is a constant for a given kicking period. Thus the two

terms evolve independently. For the orders that participate in a QAM, the phase

evolution between the states |m〉 and |m− 1〉 should be an integer multiple of 2π so

that the state |m−1〉 after np kicks can couple to the state |m〉 when the np+1 kick is

applied. Thus setting the phase difference to an integer multiples of 2π independently,

one obtains

τ(mQAM + ηnp) = 2πmQAML, (2.36)

τ(βQAM + η/2 − 1/2) = 2πL′, (2.37)

where L and L′ are integers and mQAM is the momentum order that participates

in a QAM. Equation (2.37) can be solved for the momentum of a QAM, mQAM

while Eq. (2.37) allows the initial momentum at which a QAM appears, βQAM, to

be determined. Hence,

mQAM = − ηnpτ

τ − 2πL
(2.38)

βQAM =
2πL′

τ
− η

2
+

1

2
(2.39)

The denominator of Eq. (2.38) is called ǫ and used in the development of the ǫ-classical

theory. The above rephasing theory was developed in Oxford [45] and successfully

applied to predict the behavior of the QAM.

2.6 The ǫ-classical theory

The QAM acquires observable momentum in the neighborhood of a resonance period.

Thus a parameter ǫ is defined as ǫ = τ −2πL = 2π(T/T1/2 −L), which represents the

closeness of the kicking period to a resonance time. With this definition, Eq. (2.31)

can be re written in terms of ǫ as,

〈n|Rβ|m〉 = δnme
−iπLn2−i(ǫ/2)n2−inτ(β+ηnp+η/2)−iτ(β+ηnp+η/2), (2.40)
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Ignoring the constant phase factor (the last term in the exponent) and using the

identity e−iπLn2

= e−iπLn, Eq. (2.40) becomes

〈n|Rβ|m〉 = δnme
−i ǫ

2
n2−in[πL+τ(β+ηnp+η/2)]. (2.41)

The evolution operator Uβ(np) can thus be written as

Ûβ(np) = e−i(k̃/|ǫ|) cos(θ̂)e−i/|ǫ|(1

2

ǫ
|ǫ|

Î2+Î(πL+τβ+τηnp+ητ/2)) (2.42)

where Î = |ǫ|N̂ = −i|ǫ|∂/∂θ represents the angular momentum operator and k̃ = |ǫ|φd

represents the kicking strength.

2.6.1 Classical description of the quantum system

If |ǫ| plays the role of Planck’s constant, in the limit |ǫ| → 0, an effective Hamiltonian

can be obtained from Eq. (2.42) which can be used to solve Hamilton’s equations of

motion as described in section 2.3. The solutions thus obtained are given by a map

Inp+1 = Inp
+ k̃ sin

(

θnp+1

)

θnp+1 = θnp
+

(

ǫ

|ǫ|

)

Inp
+ πL+ τ(β + ηnp + η/2). (2.43)

Defining

Jnp
= Inp

+ (ǫ/|ǫ|) [πL+ τ(β + npη + η/2)] , (2.44)

removes the explicit time dependence of the map resulting in

Jnp+1 = Jnp
+ k̃ sin(θnp+1) +

(

ǫ

|ǫ|

)

τη (2.45)

θnp+1 = θnp
+

(

ǫ

|ǫ|

)

Jnp
(2.46)

This mapping is similar to the result of Eq. (2.14) obtained by solving the classical

equations of motion of a δ-kicked accelerator. The difference between the two mapping

equations is that here |ǫ| plays the role of Planck’s constant.
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In the phase space of J and θ, if both J and θ are mod 2π, and if the trajectory

cycles back after p iterations for certain initial values of J0 and θ0, then the map of

Eq. (2.46) becomes

Jp = J0 + 2πj (2.47)

θp = θ0 + 2πl (2.48)

where j and l are integers. Thus on average, in np iterations the periodic orbits of

Eq. (2.47) acquire momentum Jnp
given by

Jnp
≃ J0 + 2π

j

p
np. (2.49)

Using the definition of Jnp
from Eq. (2.44), Eq. (2.49) becomes,

Inp
+

ǫ

|ǫ|ητnp ≃ I0 + 2π
j

p
np. (2.50)

Taking I = |ǫ|n, Eq. (2.50) becomes

|ǫ|
(

nnp
− n0

)

≃ − ǫ

|ǫ|ητnp + 2π
j

p
np. (2.51)

Thus the momentum of these periodic orbits after np iterations is given by

nnp
≃ n0 −

ητnp

ǫ
+ 2π

j

p

np

|ǫ| , (2.52)

Such orbits are called the accelerator orbits since the average momentum gain is linear

in pulse number. These accelerator orbits correspond to quantum accelerator modes

in the dynamics of the QDKA. The parameter j is called the jumping index and is

related to the number of units of momentum acquired per cycle, while the parameter

p is the order of the fixed point and represents the number of kicks required before

cycling back to the initial point in phase space. The mode (p, j)= (1, 0) is referred

to as the period 1 fixed point and shows prominently in an experiment. The island

corresponding to (1,0) mode is shown in Fig. 2.5. This figure was generated for a

kicking period of T = 61 µs which is near the Talbot time of Rb-87 atoms (Note that
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Figure 2.5: Accelerator orbits corresponding to various initial conditions constituting

an island in the phase-space. The map is generated for a kicking period of 61 µs (near

Talbot time which is 66.4 µs for Rb-87 atoms), g′ = 6 ms−2, φd = 1.4, and J0 = 0.

The periodic orbits corresponding to the value of θ0 = 0 to 0.75π in steps of 0.05π.

For θ0 = 0.8π, the ǫ-classical evolution becomes chaotic.

24



the half-Talbot time of Rb-87 is 33.2 µ s). This figure shows that for J0 = 0, periodic

orbits exist only for θ0 < 0.75π. For values of θ0 ≥ 0.75π, the dynamics is dominated

by chaos.

2.6.2 Higher order modes

The modes corresponding to j 6= 0 are referred to as higher order modes. Observable

higher order modes occur for periods close to the main resonance times and are very

sensitive to the parameters used in an experiment [78, 79]. These higher order modes

can be observed over a certain range of values of g′, τ , η and k̃. To understand the

dependence of the higher order modes on these values, a parameter

Ωp =
ητ

2π
(2.53)

can be defined. Equation (2.45) can be written in terms of Ωp as

Jnp+1 = Jnp
+ k̃ sin(θnp+1) +

(

ǫ

|ǫ|

)

2πΩp (2.54)

It can be seen that for k̃ = 0 and if Ωp is a rational fraction j/p, then after p iterations,

a given trajectory returns to its initial point in the phase space of J and θ. For non

zero k̃, and for values of Ωp near j/p, periodic orbits can still exist. A region in the

phase space of k̃ and Ω where a stable periodic orbit of a given j and p exists is referred

to as an Arnol’d tongue [80]. These tongues specify the range of parameters on g′, τ ,

η and k̃ in which a given (p,j) mode can be observed. The phase space plots for j = 1

and p = 1 to 9 are shown in Fig. 2.6. The order p can be inferred from these plots

by counting the number of islands in the momentum direction.

The higher order modes have been observed successfully by the Oxford group [81]

after their existence was predicted by S. Fishman and coworkers [76, 77]. The exper-

iment was very similar to the ones used for observing the primary accelerator modes.

However, the modes were observed for pulse periods much closer to the resonance

times. A large number of the higher order modes were observed for kicking periods
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Figure 2.6: Phase space maps of higher order modes. The modes (p,j) are (a) (1,1),

(b) (2,1), (c) (3,1), (d) (4,1), (e) (5,1), (f) (6,1), (g) (7,1) (h) (8,1) and (i) (9,1). The

order index p is equal to the number of islands observed in the momentum direction.
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near T1/2, 2T1/2 and 3T1/2. The presence of multiple (p,j) modes for certain parame-

ters (the overlap of the tongues) can possibly be used as a multi path beam splitter

in matter wave interferometry. Other applications of the higher order modes include

the study of the random walks, as proposed by K. Burnett and co-workers [82].
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CHAPTER 3

Quantum Accelerator Modes using a Rb Magneto-Optic Trap

3.1 Introduction

Quantum resonances studied by Mark Raizen and coworkers [13] using the atom

optics version of the kicked rotor were realized using a magneo-optic trap of sodium

atoms. Quantum accelerator modes (QAMs) were first observed in a cold Cesium

magneto-optic trap. After laser cooling these atomic samples can reach micro-Kelvin

temperatures making them a versatile tool for atom optics experiments [88]. Magneto-

optic traps (MOTs) have been a starting point for many of the most important atom

optics experiments. In this chapter, the details of Rb 87 MOT set up used for the

successful observation of Quantum Accelerator Modes (QAMs) is discussed. In section

3.2 the MOT and repump transitions used in Rubidium are discussed. In section 3.3,

the experimental configuration is discussed. Many of the details of the set up can be

found in Timmons thesis [83]. The sub Doppler cooling scheme using the Sisyphus

effect is explained in section 3.4. The time of flight used for imaging the MOT

and the data collection is discussed in section 3.5. In section 3.6, the realization of

QAMs using a MOT is demonstrated. In section 3.7, the numerical simulations that

were performed to guide and understand the experiments are detailed. In section

3.8, experiments in which two independent sets of kicking pulses were applied are

discussed. Finally the conclusions of the chapter is presented in section 3.9.

28



3.2 Rubidium D2 transition

Rubidium can be cooled with inexpensive laser diodes. Figure 3.1 shows the D2 level

structure of Rb 87. The two levels considered for the MOT transition are F = 2 of

52S1/2 ground state and F = 3 of 52P3/2 excited state. The laser used for generating

the MOT light is referred to as master laser and was locked to the transition between

F = 2 of the ground 52S1/2 state and the cross over line of F = 2 and F = 3 of the

excited 52P3/2 state. Thus the master laser was detuned by 133.3 MHz to the red of

the transition (see Fig. 3.1). The excited state of F = 3, due to power broadening,

can also populate the ground F = 1 state. There was a second laser tuned to F = 1 of

ground 52S1/2 state to F = 2 of the excited 52P3/2 state. This laser is called repump

laser. The repump laser was locked to the F = 0 ground state and the cross over line

between F = 2 and F = 3 of the excited 52P3/2 state. An AOM is used to tune the

repump light on resonance.

3.3 Experimental configuration

The apparatus used was similar to the one used to realize the quantum δ-kicked

accelerator by the Oxford group [44]. The experiment was designed such that the

laser sources were isolated from the vacuum chamber. The lasers were placed on an

optical table referred to as laser optical table and the experiments were performed

on a separate optical table referred to as the MOT optical table. The light was

transported to MOT table using optical fibers.

3.3.1 Laser optical table

The laser beams for the MOT came from a slave laser which was injection locked to a

master laser. The master laser was a grating stabilized Toptica laser. This laser was

a 70 mW cw laser in a temperature controlled housing. The slave laser, also placed on
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Figure 3.1: Rubidium-87 D2 level structure[84] (not to scale). The MOT and repump

transitions are shown.
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a temperature controlled housing, was a 120 mw cw laser. Figure 3.2 shows the path

of the slave laser beam which was used for producing the MOT on lasers optical table.

The collimated output beam from the laser was elliptical. An anamorphic prism pair

changed the beam shape from elliptical to circular. A half-wave plate placed next to

the anamorphic prism pair changed the polarization of the incident beam to 45o to

vertical. A polarized beam splitter cube was placed at 45o after the half wave plate

so that it allowed all the beam to go through it. This cube reflected away any light

coming back into the laser as shown in Fig. 3.2. The Faraday rotator placed after the

cube rotated the plane of polarization of the light incident from left by 45o clockwise

making it horizontally polarized. Any reflected horizontally polarized light incident

from right on the Faraday rotator, the rotator reflected the plane of polarization

counter clockwise making it 135o from vertical, which would be eliminated by the

polarized beam splitter cube placed at 45o before the Faraday rotator. The polarized

beam splitter cube placed after the Faraday rotator allowed the light from the master

laser to get injected into the slave laser. About 4 mW of master light was injected

into the slave. When injected, the slave laser follows the master laser. The following

of the slave was monitored by taking ∼ 50 µW of light using a partially reflecting

mirror, sending it through the Rb cell, and monitoring the beam’s absorption on a

photo diode. If the slave was properly following an absorption dip was observed on

the scope. The slave light exiting the polarizing beam splitter cube was then made to

propagate through an acousto-optic modulator (AOM) referred to as the MOT AOM.

The first order of the AOM was sent into a fiber referred to as Fiber1 in Fig. 3.2.

Repump light from repump laser was combined with the slave beam and sent to the

same fiber. On the MOT table, 40 mW of slave light and 1 mW of repump light

exited the fiber. About 700 µW of the slave light was taken into a separate fiber

referred to as Fiber2 in Fig. 3.2 and used to image the atoms (see later section).

During kicking, all the light except the kicking beams was extinguished. The
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MOT beams were turned off by switching off the MOT AOM. The MOT light then

propagated through an AOM called the kicking AOM. This AOM was used to control

the pulses of kicking light. The first order of the AOM was collected into the kicking

fiber.

The master laser was detuned by 133.3 MHz to the red of the MOT transition.

The light from the master laser was first injected into the first slave. The light from

this slave was then double passed through an AOM which was used as a control to

change the detuning of the MOT light. The first order on the second pass from the

AOM was injected into the MOT laser. The path of the light from this MOT laser is

shown in Fig. 3.2. The MOT AOM was driven at an acoustic frequency of 80 MHz.

The negative order was sent into the fiber. Thus the required detuning of the MOT

light δMOT was achieved using the equation

δMOT = −133.3 MHz − 80 MHz + 2fdp = −213.3 MHz + 2fdp, (3.1)

where fdp is the acoustic frequency with which the double pass AOM was driven [83,

85]. A MOT was achieved with a detuning of -15 MHz. This required that the double

pass AOM be driven at a frequency of 99.15 MHz. For further cooling the atoms in

MOT, a detuning of -70 MHz was used which corresponds to driving the double pass

AOM at 71.65 MHz. During the imaging of the atoms, on resonant light was required,

which was achieved by driving the double pass AOM at 106.65 MHz.

3.3.2 MOT optical table

The output of fiber1 was split into three equal beams as shown in Fig. 3.3 and then

propagated through the chamber as shown in Fig. 3.4. The MOT light propagated

through a polarizing beam splitter cube as shown in Fig. 3.3. This cube reflected all

the repump light and allowed all the MOT light to go through it. The reflected repump

beam then passed through another polarizing beam splitter cube, which reflected the

repump light again. The MOT light was also allowed to propogate through the cube.
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A half-wave plate placed before this cube allowed the control on the amount of light

in the reflected and transmitted paths. The half-wave plate was rotated to allow one

third of the MOT light (13 mW) to go through the cube. This cube also combined the

MOT and repump beams. The reflected and transmitted beams from this cube were

separately propagated through two lenses to expand the beams. The reflected beam

made the up-down beam in the chamber. A quarter-wave plate placed in the path

of this beam circularly polarized the up-down beam. The lenses L1 and L2 placed

along this beam were 3” and 20”. This combination expanded a 2 mm diameter beam

to 0.5” diameter. The second beam that had 2/3 of the power (27 mW) was also

expanded using a combination of lenses L3 and L4 respectively are 1.2” and 6.5” to

0.5” diameter. This beam was divided equally into two beams which made the east-

west and north-south beams. All three beams were aligned to go through the center of

the viewports of the vacuum chamber. These beams were reflected back with opposite

circular polarization. When a spatially varying magnetic field is applied using a pair

of coils in anti Helmholtz configuration, a MOT was formed at the intersection of all

the six beams.

The kicking and imaging beams leaving fiber 2 were separated using a polarizing

beam splitter cube. Kicking beam was expanded using a combination of 6” and 8”

lenses. This beam was aligned very close to vertical as shown in Fig. 3.4. Imaging

beam was circularly polarized and 50 µW of the imaging beam was sent to the ref-

erence photodiode. The remaining beam was expanded into a sheet of beam which

was 2 mm thick and 1/4 inch wide using a pair of cylindrical lenses. This beam

was aligned 4 inches below the MOT. The imaging beam was retro-reflected back on

the same path through the cylindrical lenses to the signal photodiode. The signal

from the signal photodiode was subtracted from the reference photodiode to get the

absorption signal of the cold atoms which appeared as a peak on the scope as shown

in Fig. 3.5. The data was collected through an analog input channel of the PCI card
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and saved to the computer.

To produce a MOT, a pair of anti-Helmholtz coils shown in Fig. 3.4 were used

to create a magnetic field gradient of 10 G/cm, which provide a trapping potential.

The vacuum chamber was maintained at a vacuum of 10−8 Torr using an 8 liter per

second ion pump. This vacuum was sufficient for the kicking experiments performed

to produce QAMs. Not shown in the figures are the nulling coils which were used

to control the position of the MOT. With this configuration, about 10 million atoms

were collected at the intersection of all the six beams in 6 seconds. It was found that

the loading of MOT is optimum when the MOT beams have a detuning of -15 MHz.

The temperature of the MOT is about 100 µK. This was brought down to 15 µK

using Sisyphus cooling.

3.4 Sub Doppler Cooling

The sub Doppler cooling was first observed by William Phillips when the temperature

of the cold atoms was measured using time of flight. Temperatures much lower than

expected from Doppler limit were observed [72]. A detailed discussion of the discovery

of Sisyphus cooling can be found in the Nobel lecture of W. Phillips [86]. W. Phillips

and co-workers anticipated that the multiple levels that were not considered in the

simple two level treatment were playing a role in cooling the atoms further [87]. The

theory of this cooling was then developed by Cohen Tanoudji [73]. This is also known

as the polarization gradient cooling since the origin of the cooling is the gradient in

polarization.

The Doppler limit is a limit in temperature resulting from the two competing

processes of Doppler cooling and recoil heating and is given by [88]

TD =
~Γ

2kB

, (3.2)

where TD is called the Doppler temperature and is the lowest temperature that was
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believed to be achieved in an optical molasses, Γ is the transition line width and kB

is the Boltzmann’s constant. The Doppler limit for Rubidium 87 atoms is 1 mK. The

subdoppler cooling can go down in principle to as low as the recoil temperature which

for Rubidim 87 is 360 nK. A detailed discussion of the cooling method, is given in the

theses of Timmons [83] and Ahmadi [85]. To cool the atoms well below doppler limit

and for efficient imaging, the following procedure was implemented. First the MOT

coils were switched off and the cooling detuning was set to -70 MHz. After waiting for

1 ms at this detuning, the MOT light was ramped down in 4 ms to about 1mW total

in all the three beams and then the repump shutter was closed. The ramping down

of the MOT power was achieved by misaligning the MOT light using the deflection

of the first order of the MOT AOM before it entered the fiber on the laser optical

table. The MOT shutter was switched on after the ramp down of the MOT beams

was complete. The MOT shutter took 15 ms to totally shut off the beams. However

4 ms after reaching 1 mW of power, the MOT beams were extinguished by switching

off the rf power to the MOT AOM. All the MOT light at this stage was available for

kicking when the kicking experiments were to be performed. This procedure allowed

the cloud to cool down to a temperature of 15 µK.

3.5 Time of Flight

After the atoms were cooled down to 15 µK temperature, the atoms were allowed

to fall freely under gravity when the MOT beams were extinguished. After falling

a distance of 4 inches, the atoms passed through a sheet of on-resonant light which

comprised the imaging beam. Data was collected by connecting the output of a

photodiode (which measured the absorption of the beam) to an analog input on

the controlling computer. The temperature was estimated by fitting the data to a

Gaussian and obtaining the Full Width at Half Maximum (FWHM) of the peak. The

FWHM is related to the standard deviation σt via FWHM = 2(
√

2 ln 2)σt and the
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temperature can be found from the equation

T =
mg2σ2

t

kB
, (3.3)

where m is the mass of the Rubidium 87 atom and g = 9.81 ms−2 is acceleration due

to gravity. It was observed that the nulling coil currents played a major role in the

imaging of the atoms. If the currents in the coils were not correctly set to cancel the

field, the atoms would move away from the sheet of the imaging beam. The cooling

depended critically on the steps of ramping down of the MOT light. By trial and

error, all these parameters were optimized to get the lowest temperature possible as

measured by the TOF.

3.6 Kicked MOT

The kicking experiments were performed by exposing the cooled atoms to a series

of laser pulses generated by the kicking AOM. The atoms were cooled, released and

allowed to fall under gravity for around 2 ms before they were kicked. Before kicking,

the atoms were transferred to the F = 1 level of the 52S1/2 state by switching off the

repump light before switching off the MOT beams. Atoms in the F = 1 level see the

MOT light with a detuning of -6.8 GHz (see Fig. 3.1). This detuning corresponds to

the separation of the two hyper fine levels of the ground state 52S1/2. This avoided the

need for additional laser such as a Ti-sapphire or Nd-YAG. The original proposal of

using a Nd-YAG laser was ruled out since the coherence length is very short (∼ 1 inch).

To pulse the kicking light, the kicking AOM was driven using a HP8770A arbitrary

waveform synthesizer. The output of the synthesizer was amplified and fed to the

kicking AOM. Once the kicking was complete, the MOT AOM was switched back

on to derive the imaging beam. The HP8770A function generator was programmed

to control the pulse period, kick pulse duration, number of kicks, and the wait-time

before kicking. The kicking beam was expanded to a diameter of 1.25 mm and
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contained 40 mW of power. The size of the MOT was 1 mm. With these parameters,

a phase modulation depth φd in Eq. 7.5 of π was achieved. This was sufficient to

produce efficient quantum accelerator modes. The momentum distribution of the

kicked atoms was measured by allowing atoms to fall freely for TTOF = 140 ms before

falling through the resonant beam. The momentum of the atoms with respect to the

center of the cloud is given by

p =
mg∆t

2

(

2TTOF + g∆t

TTOF + ∆t

)

, (3.4)

where ∆t is the difference in time for atoms imaged at TTOF + ∆t and the atoms

imaged at TTOF . The center of the cloud was chosen to have zero momentum.

Quantum Accelerator Modes (QAMs) can be observed for kicking periods close

to a resonance period. Thus a preliminary step to observe the QAMs is to perform

a scan of kicking period across a resonance in order to identify it. Figure 3.6 shows

the experimental results and the theoretical fit to Eq. (2.52) for a scan across the half

Talbot time 33.2 µs. Figure 3.6 was generated by stacking TOF images after 60 kicks

for the kicking period given on the x-axis. The numerical simulation was done based

on the diffraction picture and is shown in Fig. 3.7. As evidenced from the figures, a

very good agreement is found between the theory and the experiments. Scans of

the kicking period for the identical conditions at the half-Talbot time for circularly

polarized and elliptically polarized kicking beams are displayed in Fig. 3.8. For Cs-133

atoms used by Oxford group, the QAMs appear only for the linearly polarized kicking

light [45]. The fact that the quantum accelerator modes are observed for polarizations

other than linear polarization makes Rb 87 a versatile system for producing quantum

accelerator modes.

The theory predicts that a scan of kick number produces a linear increase in

momentum for a QAM. This is displayed in Fig. 3.9. This data was generated for

a kicking period of T = 29.5 µs. The fit shows that there is a very good agreement

between the theory of Eq. (2.52) and experiments.
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Figure 3.6: Final momentum distribution for the scan of kicking period across the

half-Talbot time (33.2 µs) after 60 kicks. The curve is the fit to Eq. (2.52) which is

a result of both the rephasing model and the ǫ-classical model.
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Figure 3.7: Numerical simulations for a scan across half-Talbot time (33.2 µs) for

the same parameters used to generate Fig. 3.6 and the solid line shows the fit to

Eq. (2.52).
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Figure 3.8: Experimental momentum distribution for the scan across the half Talbot

time (33.2 µs) after 60 kicks for (a) circularly polarized kicking light and (b) elliptically

polarized kicking light. The fact that the QAM can be observed in both cases makes

Rb 87 a versatile system

44



10 20 30 40 50 60 70 80 90 100

−40

−30

−20

−10

0

10

20

30

M
om

en
tu

m
 (

2 
ph

ot
on

 r
ec

oi
ls

)

Kick number

Figure 3.9: Final momentum distribution for a scan of kick number near the half-

Talbot time T = 37.2 µs. The dotted line shows the fit to QAM of Eq. (2.52).
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Figure 3.10: Momentum distribution for a scan at the Talbot time (66.6 µs) for

100 pulses with theoretical curves identified the higher order mode with j = −2 and

p = 17. An unknown high order resonance emerges at 63 µs. These high order

resonances were eventually observed and are detailed in Chapter 6 of the thesis.
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According to the FGR theory, a scan across the Talbot time produces higher order

accelerator modes as shown in Fig. 3.10. From Fig. 3.10, a higher order mode with

p = 17 and j = −2 was observed in our experiment by fitting Eq. (2.52) to the

observable mode in the experimental data. Also in Fig. 3.10 there is an un identified

QAM around a high order resonance between 62 µs and 64 µs. This motivated the

study of the high order resonances which is the subject matter of Chapter 6.

3.7 Numerical simulation results

To understand the experiments better, numerical simulations were performed. The

code for the simulations was developed in Oxford [89] and is based on Eq. (2.32). The

code was subsequently modified to apply to the experiments presented here. The kick

and free evolution matrices of Eq. (2.32) were first constructed, then for a given initial

state and parameters, the matrices were stacked in appropriate order with a column

matrix of initial state at the right most of the sequence. Each of these orders in

the initial state were convoluted with a Gaussian momentum distribution of certain

width to mimic the experimental situation. The product of these matrices gives the

final state from which the momentum distribution can be obtained. The results of

the numerical simulations performed for the parameters used in obtaining Fig. 3.6 is

displayed in Fig. 3.7. The theory curve of Eq. (2.52) is plotted on the same figure. The

strength of the numerical simulations can be seen in Figs. 3.11, 3.12. Figure 3.11 shows

a scan of kicking period across the first three primary resonances T1/2, 2T1/2 and 3T1/2.

Besides showing the primary resonances, these numerical simulations also display the

clear indication of the presence of the higher order resonances such as (3/2)T1/2,

(7/4)T1/2 and (5/2)T1/2 which are clearly evident in the the mean momentum plot

of Fig. (3.12). These simulations later guided the experiments to the observation of

some of these modes which are detailed in chapter 6.
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Figure 3.11: Numerical simulation of a scan of time between pulses after 30 pulses.

The numerical simulations have been used to guide the experiments. Note the pres-

ence of the primary resonances at ∼ 33, 66, 99 µs. Also visible are high order reso-

nances such as the one at 17 µs.
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3.8 Double kicking

To understand the behavior of the QAM (and motivated by the double-kicked ro-

tor [90, 91], and the kicked accelerator [48] experiments to study the dependence of

a QAM on the initial conditions), a series of experiments were performed where a

QAM was first produced and then the atoms were kicked with second set of pulses

with a different kicking period. The experimental results are displayed in Figs. 3.13

and 3.14. A series of unidentified modes have been populated which need to be ac-

counted for theoretically. The numerical simulations have been used to confirm the

experimental findings and are displayed in Figs. 3.15 and 3.16. For Fig. 3.13, a set

of 30 kicks were produced at 27 µs to populate a QAM with momentum 6 ~G and

then a second set of 30 kicks were used to kick the kicked and leftover atoms. A

scan of the kicking period of second set of kicks from 27 µs to 39 µs (which spans

the range of QAM at half Talbot time) was performed. For fig. 3.14, the first set of

kicks was at 35 µs which populated a QAM with momentum −17 ~G. A second set

of kicks was produced similar to the experiment that was used to generate Fig. 3.14.

The numerical simulation results of Figs. 3.15 and 3.16 were generated for the same

parameters as in Figs. 3.13 and 3.14 respectively

3.9 Conclusions

Thus an experimental design to produce the QAMs was successfully constructed using

a MOT as a source of atoms. The behavior of the QAMs as a function of kicking pe-

riod, number of kicks and polarization of the kicking light was studied. The numerical

simulations were used to understand the experimental data. With this understanding,

the BEC was kicked to produce the QAM which is discussed in chapter 5.
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Figure 3.13: Two sets of kicks for MOT: A set of 30 kicks at T = 29.5 µs populate

a QAM and a second set of 30 kicks at T = 27 µs to 39 µs produce various QAMs

(identified by arrows).
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Figure 3.14: Two sets of kcks: A set of 30 kicks at T = 35 µs and a second set of 30

kicks at T = 27 µs to 39 µs. Arrows identify the QAM formed by the second set of

kicks
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Figure 3.15: Numerical simulations of first set of 30 kicks at T = 29.5 µs and a second

set of 30 kicks at T = 27 µs to 39 µs (same parameters as in Fig. 3.13)
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Figure 3.16: Numerical simulation results for a set of 30 kicks at T = 35 µs followed

by a second set of 30 kicks at T = 27 µs to 39 µs (same parameters as in Fig. 3.14)
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CHAPTER 4

Bose-Einstein Condensation

4.1 Introduction

Bose-Einstein Condensation (BEC) was first predicted by Albert Einstein in 1925 [55,

56, 57] followed by the findings of Satyendra Nath Bose [54]. However it was not

until 1995 that the BEC was realized using magnetic trapping by Eric Cornell, Carl

Wiemann [60] and later by Wolfgang Ketterle [61]. In this chapter a technique of

utilizing the aberration to successfully produce the multiple microtraps is reported.

The successful realization of the all optical BEC using a single focused high power

laser is also reported.

All optical trapping was pioneered by M. Chapman at Georgia Institute of Tech-

nology. Chapman et al. [92, 93] used a QUasi Electro Static Trap (QUEST) to observe

the BEC using an all optical technique. A similar method of using a lens placed on

a motorized translational stage to achieve all optical BEC was reported by a group

led by David S. Weiss at Pennsylvania State University [94]. This chapter details the

all-optical method of trapping and the realization of BEC using a single high power

focused laser beam. One of the possible consequences of producing tightly focused

beams is spherical aberration which is also discussed. Such aberrations can be used

to produce multiple micro optical traps. Other details can be found in the paper in

the New Journal of Physics [95].

When far-off resonant light is incident on atoms, the electric field of the electro-

magnetic radiation induces a dipole moment which then interacts with the electric

field of the radiation. The interaction potential of atoms with such an external elec-
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tromagnetic field of which is given by

U = −1

2
αgE

2
z , (4.1)

where αg is the ground state polarizability. The electric field Ez is assumed to be in

the z direction. Since the interaction is effectively electrostatic, the trap is known

as QUasi Electro Static Trap (QUEST). These traps are also referred as Far-Off-

Resonant Traps (FORTs). These FORTs (or QUESTS) have been employed in the

realization of all optical BEC [92]. Consider now a focused Gaussian beam, the

electric field is given by,

Ez(r) = E0
exp [−r2/w(z)2]
√

1 + z2/z2
R

, (4.2)

where E0 is the amplitude of the electric field, r and z are the cylindrical radial and

axial coordinates, and w(z) is the beam size at an axial position z. It is given in

terms of the focused waist size w0 by, w(z) = w0

√

1 + z2/z2
R. The Raleigh range

zR = πw2
0/λ gives the axial extent of the trap where λ is the wavelength of the light.

The trapping potential is thus proportional to the absolute square of the electric filed

amplitude, which can be related to the intensity through I = (1/2)ǫ0cE
2
0 . Thus in a

focused laser beam, the potential is minimum (large negative) at focus. Close to the

focus, the trapping potential can be approximated to be a harmonic potential

U = −1

2
αgE

2
0

(

1 − 2x2

w2
0

− 2y2

w2
0

− z2

z2
R

)

= −Uc +
1

2

(

Kxx
2 +Kyy

2 +Kzz
2
)

. (4.3)

where x and y are coordinates in the direction perpendicular to the propagation of

the laser beam, ωx = ωy =
√

2αgE
2
0/(Mw2

0) =
√

(4αg/cǫ0M)(Iint/w
2
0) and ωz =

√

αgE2
0/(Mz2

R) =
√

(2αg/Cǫ0M)(Iint/z2
R) are trapping frequencies, where Iint is the

intensity of the light. Thus more tightly focused laser beams (with small w0 and ZR)

produce deeper traps. The trapping frequencies depend on the intensity and focus

of the laser beam. To get a tight focus, a lens of small focal length should be used.

If the lens is not corrected for aberrations, they can produce an observable effect on
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the trap. One such effect has been observed in the experiments described in this

chapter. The lens was not corrected for spherical aberration and it produced the

multiple traps. Thus in Sec 4.2 the theory of the spherical aberration is discussed.

In Sec 4.3 the experimental configuration is discussed. The experimental results are

presented in Sec 4.4. Finally the lens was replaced with one corrected for spherical

aberration and an all-optical BEC was realized (Sec 4.5).

4.2 Spherical aberration

When the first observation of BEC was reported by the Colorado group in 1995 [60],

The group led by Randall G Hulet at Rice university also published an article in

Physical Review Letters interpreting their results as the observation of BEC [96].

Later they found that the number of atoms had a big uncertainty [97]. Their imaging

lens was not corrected for spherical aberration [98], however, the signature of observa-

tion of BEC in the original experiment was clear but with less atoms than originally

quoted in the article [96].

Spherical aberration arises from the fact that rays traveling far away from the

optical axis (non-paraxial rays) are focused closer to a lens than the focus of the

paraxial rays. An extensive discussion of the diffraction theory of spherical aberration

is given in Born and Wolf [99]. The theory has been extensively developed by Youshida

and Asakura [100] and Pu and Zhang [101]. Taking all the wavelets on a lens as point

sources and integrating the contribution from the whole lens, the diffraction pattern

at the focus of the lens is given by

I(u, v) =
1

w2
L

∣

∣

∣

∣

∫ 1

0

ρdρ exp

[

− ρ2

(wL/a)2

]

exp

[

−i
(

uρ2

2
+ kβρ4

)]

J0(vρ)

∣

∣

∣

∣

2

, (4.4)

where wL is the diameter of the beam on the lens, a is the diameter of the lens, and

k = 2π/λ. The integration variable ρ is the radial coordinate on the lens, normalized
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to the size of the lens a. The variables

u =
2π

λ

( a

R

)2

z,

v =
2π

λ

( a

R

)

r, (4.5)

represent the scaled axial and radial coordinates respectively, where R is the radius

of the Gaussian reference sphere. The spherical aberration coefficient βsph represents

the amount of spherical aberration present in the configutaion and is usually specified

in terms of a number of wavelengths. This parameter is given for a lens of focal length

f by [102]

βsph =
w4

L

32f 3

[

(

4

n− 1

)2

+
n + 2

n(n− 1)2

(

B +
2(n2 − 1)

n+ 2
C

)2

− n

n + 2
C2

]

, (4.6)

where n is the refractive index of the lens, B = (c1 + c2)/(c1 − c2) is known as the

shape variable, ci = 1/ri, i = 1, 2; ri are the radii of curvature of the two surfaces of

the lens. C = (u1 + u2)/(u1 − u2) is known as the conjugate variable, where u1 and

u2 are the divergence angles of the Gaussian beam before and after passing through

the lens. These angles are given by ui = λ/πw0i, i = 1, 2, where w01 and w02 are the

minimum beam waists of the beam before and after the lens. It should be noted that,

according to the usual sign convention, if the lens produces a converging beam, then

u2 is negative so that the denominator in the definition of C is not zero.

4.3 Experimental configuration

The aberration theory was initially developed to explain the surprising experimental

observation of multiple micro traps. The experimental configuration is as shown in

Fig. 4.1. A CO2 laser beam was first propagated through two lenses in telescope

configuration. The telescope consisted of a pair of 12.7 cm focal length plano convex

lenses. The second lens of the telescope was placed on a translational stage. A third

lens (a meniscus lens) was placed approximately 2 m from the telescope. This lens
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was positioned inside the chamber and was not corrected for spherical aberration. It

had a focal length of 3.8 mm. The beam size on this lens was controlled by varying

the separation of the lenses in the telescope. The FORT light propagated at an angle

of 45o with respect to the vertical as shown in Fig. 4.1. The FORT (CO2) light was

focused on the MOT and was switched on when the MOT was turned on. After the

turn off of the MOT, about 1.5 million atoms were loaded into the FORT. The trap

was imaged after expanding for 3 ms after the FORT was switched off.

4.4 Experimental results

The experimental results are as shown in Fig. 4.2. These three images were chosen to

illustrate the effect of the aberration (and the agreement with the theory) for three

different values of the aberrations. A spherical aberration coefficient βsph of less than

a wavelength was used in Fig. 4.2(a) and 4.2(b). The value of βsph in panels (c) and

(d) of Fig. 4.2 was 12.6 wavelengths and in panels of (e) and (f), a value of βsph of

18.2 wavelengths was used. Experimental results are displayed in panels (a), (c), and

(e) while numerical simulations are presented in panels (b), (d) and (f).

When the telescope separation was varied in steps of 0.9 mm, the appearance

and disappearance of multiple peaks was visible as shown in Fig. 4.3. This figure

displays the emergence and disappearence of a trap adjacent to the main trap. The

spatial extent of the traps over which the MOT could populate the subtraps was

approximately three traps at the most, even though the aberration theory predicts

that there can be more traps than just three. A bigger MOT may be able to populate

additional traps.

It can thus be seen that spherical aberration which would normally be avoided in

a given experimental situation can be used to good effect to produce multiple traps

whose separation can be varied. These sub-traps may be useful in atom interferometry

and quantum information applications.
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Figure 4.2: Multiple traps resulting from spherical aberration. The abscissa and

ordinate are distances in millimeters in each image. (a) The spherical aberration βsph

is less than a wavelength because of the small size of the CO2 laser beam on the

primary lens. (c) βsph is 12.6 wavelengths. (e) a strong spherical aberration βsph of

18.2 wavelengths. Figures (b), (d) and (f) are the theoretical potentials corresponding

to the cases (a), (b) and (c), respectively. The atoms were imaged after 3.5 ms before

the image was taken. The CO2 laser beam propagates from lower right to the upper

left in the images.
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Figure 4.3: The emergence and disappearance of micro traps as the telescope sepa-

ration was varied.
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4.5 Bose-Einstein Condensation

The laser cooled atoms were at a temperature of 100 µK. To cool further and achieve

BEC, the second stage of cooling, evaporative cooling, was required. It was found that

the loading of the FORT was efficient for a bigger FORT size, while the evaporative

cooling worked better for a tighter trap [103]. It was thus proposed to position the

second lens of the telescope on a motorized translational stage. The first lens of the

telescope was replaced by a 38.1 mm focal length lens and the third focusing lens

was replaced with an aberration free 38.1 mm focal length lens. The separation of

the two telescope lenses was initially set to 173.7 mm. These parameters gave a

beam waist after the third lens at the site of MOT of 120 µm as shown in Fig. 4.4.

This configuration loaded about 4 million atoms at the focus of the CO2 laser beam.

The MOT light was extinguished after the FORT was loaded. The FORT was then

compressed by moving the second lens of the telescope 20 mm closer to the first lens

of the telescope. This brought the waist size to 8 µm. During the process, the beam

size on the third lens was monitored to ensure that it did not exceed the size of the

lens. This is shown in Fig. 4.4c. Figure (4.4a) shows the position of the focus relative

to the focal plane of the third lens. This plot shows that the focus can be moved

over a range of 5.5 mm. About 2 million atoms were observed in the FORT after

moving the telescope lens. As the FORT was compressed, the evaporative cooling

was initiated. The laser power was ramped down exponentially from 35 W to 1 W

in 6 s. The power was further ramped down for another 2.5 s, almost linearly, to

a final value of 100 mW. At the end of this process, a BEC with 30,000 atoms was

formed. The trap was turned off after waiting for another 0.5 s. Typically after 8

ms expansion, the BEC was imaged. Figure 4.5 shows an absorption image of the

BEC and the the 1D distribution of the atoms in the BEC. The cloud was imaged by

pulsing an on resonant light for a duration of 100 ns. A signal image was subtracted

from the reference image to obtain the distribution of atoms in the BEC.
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Figure 4.4: Plots showing the waist and position of CO2 laser beam at various posi-

tions as a function of the telescope separation. (a) Plot of the position of the CO2

beam waist relative to the focus of the third focusing lens, (b) plot of the waist size

and (c) The beam size on the third focusing lens as a function of the telescope sepa-

ration. The dashed line shows the starting position for loading atoms and the dotted

line shows the end position corresponding to tighter trap for evaporation and the

position of the BEC.
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Figure 4.5: TOF image of BEC after 8 ms of expansion. Also shown is the plot of a

1 D integrated profile of the BEC.
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Thus a BEC of 30,000 atoms was routinely produced and imaged. Once the BEC

was successfully produced, the experiments of kicking the BEC were started. This is

detailed in the following chapter.
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CHAPTER 5

The Quantum δ-kicked accelerator in a BEC

5.1 Introduction

Quantum Accelerator Modes (QAMs) were observed using atoms from a MOT as

detailed in Chapter 3. However, a sample of Rb atoms at a temperature of 15 µK has

a momentum spread of 4 photon recoils which can mask many effects when a kicking

potential is applied. A BEC has a much narrow distribution (less than a photon

recoil) making it the ideal candidate for experiments on kicked atom waves. In this

chapter the narrow distribution of momentum is utilized to explore a kicked system

[104]. QAMs are observed for rational fraction of the Talbot time. In this chapter the

QAMs at primary times (multiples of half-Talbot time) are considered. The QAMs

appearing at other times are called high-order resonances and will be discussed later.

Higher order modes should not be confused with higher order resonances.

5.2 Theory recap

The theory was discussed in chapter 2. The final results are summarized for com-

pleteness in this section. The momentum transferred to a (p, j) QAM is given by

Eq. (2.52) as

pQAM = −ητnp

ǫ
+

2πnp

|ǫ|
j

p
, (5.1)

The initial momentum at which a QAM appears is given by Eq. (2.39)

βQAM =
2πL′

τ
+

1

2
− η

2
. (5.2)
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The ǫ-classical theory makes use of the fact that for kicking periods close to a reso-

nance time, the system can be described by the classical mapping of Eqs. (2.46)

Jnp+1 = Jnp
+ k̃ sin(θnp+1) +

(

ǫ

|ǫ|

)

τη

θnp+1 = θnp
+

(

ǫ

|ǫ|

)

Jnp
(5.3)

As discussed previously the appearance of a stable island in the poincarè plot is

attributed to the presence of a QAM.

According to Eq. (5.2), at T = T1/2, (i.e., τ = 2π), a QAM can occur when β is

close to 0.5. Thus the unit cell in phase space has a width in momentum of 1 ~G.

For a sample of cold atoms, the momentum width of the atomic distribution is much

larger than the 1~G width of this phase-space. Thus if using cold atoms, the features

within the phase space, such as the island structure, can not be explored. Since the

OSUBEC has a width of 0.056 ~G [105], it can be used to explore the phase space of

the quantum δ kicked accelerator which produced a quantum chaotic system.

5.3 Experimental configuration

The experimental set up is as shown in Fig. 5.1. The BEC was produced as discussed

in Section 4.5 using a single focused CO2 laser beam. The kicking light exiting the

fiber was aligned with the BEC and was retroreflected to create the standing wave.

The kicking light was aligned at 41o to the vertical giving g′ = 6 ms−2. In the

experimental sequence, a BEC of 30000 atoms was produced. The trap was turned

off and after waiting a variable amount of time for the BEC to acquire the initial

momentum β, a variable number of kicks was applied to the atoms at a kicking period

which could be varied. After the sequence of kicking was complete, the resulting

cloud was typically allowed to fall for 10 ms and imaged to measure the momentum

distribution using time-of-flight method. Figure 5.2 shows the typical result of an

experiment.
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kicking beam exiting the fiber was aligned with the BEC.
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5.4 Data analysis

The experimental data was often noisy, necessitating the implementation of a Fourier

technique for its analysis. This was accomplished using Matlab. The Fourier trans-

form technique involves the elimination of unwanted spatial frequencies which contain

most of the noise. The unwanted frequencies in the data for the experiments described

in this thesis include both high and low frequency components. Figure 5.2 shows a

three dimensional plot of the raw data that we typically obtain in experiments de-

scribed in this thesis, while Fig. 5.3 showing the same data after Fourier analysis.

It is clear that removing the unwanted frequencies in the acquired data enables the

detection of much weaker signals in the experimental data. This Fourier analysis

technique was also useful in the observation of the high order resonances described in

Chapter 6.

5.5 BEC subject to 1 kick

When a plane wave |m〉 is subjected to a sinusoidal δ potential (in the temporal

domain), the sinusoidal potential acts like a thin phase grating and diffracts the

atoms into various momentum states given by

e−iφd cos(θ)|m〉 =

∞
∑

i=−∞

(−i)lJl(φd)|m+ l〉. (5.4)

Hence the population of the momentum states are given by the absolute square of

Bessel functions. In the experiments, the value of φd was estimated by comparing

the populations of the orders to the Bessel function values. Figure 5.4 shows a com-

parison between the experimental results and a fit to the Bessel functions. For all

the experiments described in this thesis, the value of φd was estimated using this

method. Recently this same method was used by another group to estimate the value

of φd [106].
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Figure 5.2: Momentum distribution before Fourier analysis. The signal of the weaker

momentum states is about the same size as the noise.
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Figure 5.3: Momentum distribution after analyzing and filtering the noise using a

Fourier transform. The momentum peaks which were the size of the noise remain

while the noise in Fig. 5.2 is greatly reduced.
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Figure 5.4: Experimental and theory curves for diffraction of BEC when the BEC

was subjected to 1 kick. A value of φd = 1.85 was used. Red points correspond to

the experimental data.
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5.6 Behavior of QAM as a function of kicks

A QAM can be identified as a linear increase of momentum to some atoms as more

kicks are applied near a resonance time. Figure 5.5 shows the behavior of a QAM as

a function of kicks np. The figure was generated by stacking a series final momentum

distributions. Figure 5.5 shows that a QAM primarily consists of four orders. How-

ever, it was observed that, depending on the value of the φd, more orders could be

populated. The inset in the figure shows a plot of the momentum distribution after

np = 21 kicks and gives a better idea of the population of atoms in a QAM. The

value of φd for this experiment was 1.6. It has been observed that more than 60%

of the atoms could be coupled into a QAM using a BEC,whereas using cold atoms,

a maximum of 20% populated a QAM [45]. The mean energy was calculated for the

case of the δ-kicked accelerator and plotted in Fig. 5.6. This can give a good signature

for the presence of a resonance where the mean energy is expected to rapidly increase.

The mean energy of Fig. 5.6 was generated from the data of Fig. 5.5.

5.7 Acceleration dependence, g′, of the δ-kicked accelerator

The momentum of atoms participating in a QAM varies linearly with acceleration

g′. For a kicked rotor (g′ = 0 ms−2) atoms move out from the zero momentum state

symmetrically. For the accelerator, g′ 6= 0, the symmetry is broken, and QAM appear

on only one side. The theory predicts that the momentum of a QAM is linear in g′.

To test this idea a scan of g′ at a kicking period of 36.2 µs was performed and is

displayed in Fig. 5.7. This figure was generated by stacking the images vertically

each taken for a value of g′ which was varied in steps of 1 ms−2. The images were

generated after 25 kicks.
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Figure 5.5: QAM as a function of kicks. Atoms participating in a QAM have the

momentum increasing linearly with number of pulses. The solid line is from Eq. (5.1).

The inset shows the momentum distribution for np = 21. The values of T = 61 µs

and φd = 1.4 were used
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Figure 5.6: Variation of mean energy as a function of kick number for the same data

presented in Fig. 5.5. This plot shows that the mean energy varies approximately

quadratically with kicks which is expected for the case of kicked rotor near a reso-

nance.
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Figure 5.7: A scan of applied gravity g′ after 25 kicks at a kicking period of 36.2 µs.

The line is a plot of Eq. (5.1).
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5.8 Scanning the kicking period across a resonance

The signature of a resonance in the QDKA is the nearby presence of a QAM, with

the momentum transferred to atoms participating in a QAM diverging to infinity as

the period approaches the resonance time. Figures 5.8 and 5.9 show scans of the

kicking period across the Talbot time (2T1/2) after 10 kicks. A value of g′ = 6 ms−2

and φd = 1.4 was used in both of these period scans. This value was chosen since

one kick at this φd diffracted atoms into momentum orders l = −1, 0, and 1 equally.

An initial momentum of 1.5~G was used in Fig. 5.8. This figure shows that only the

QAM with positive momentum is populated. This is because the initial momentum

used in the experiments to generate Fig. 5.8 efficiently populated only the mode with

positive momentum. For an initial momentum of 1.3~G used in Fig. 5.9, a QAM

with negative momentum was efficiently populated. This behavior motivated further

study on the dependence of the QAM on the initial momentum β.

5.9 Dependence of QAM on the initial momentum β

The narrow momentum distribution of the BEC can be exploited to study the de-

pendence of the QAM on initial momentum as shown in the Fig. 5.10. The initial

momentum in the experiment was varied by allowing the BEC to expand variable

amounts of time before kicking. However, the expansion time after kicking was fixed

to ensure that the momentum orders were separated by the same amount for each

initial momentum. Thus the whole distribution shifted downwards as the scan pro-

ceeded which can be seen in Fig. 5.10. Two different kicking periods were chosen (on

either side of the Talbot time). For Fig. 5.10(a) the kicking period was 61 µs and for

5.10(b) it was 72.2 µs. The experiments were performed using 10 kicks at φd = 1.4.

The period of appearance of the QAM in initial momentum is ∼ 0.5 ~G as expected

from Eq. (5.2). This shows that a QAM appears for initial momenta separated by
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Figure 5.8: A QAM as a function of kicking period for an initial momentum of 1.5

~G. The QAM with positive momentum is populated significantly. The parameters

used are φd = 1.4 and np = 10. The solid line is a plot of Eq. (5.1).
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Figure 5.9: A QAM as a function of kicking period for an initial momentum of 1.3

~G. The QAM with negative momentum was efficiently populated. The parameters

used are the same as that in Fig. 5.8 except for the initial momentum. The solid line

is a plot of Eq. (5.1).
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Figure 5.10: Dependence of QAM on the initial momentum showing that the QAM

appears once every ∼ 0.5 ~G. In (a) a kicking period of 61 µs was used and in (b)

72.2 µs was used. The two periods were chosen symmetrically on either side of the

resonance appearing at the Talbot time 66.4 µs.
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∆βQAM = 2π/τ . Both panels in Fig. 5.10 show that a QAM is populated not only

for the initial momenta separated by 0.5 ~G but also for a range of initial momenta

near these values. As will be seen shortly, this spread in initial momentum can be

interpreted as evidence for the existence of stable island in phase space with a size in

momentum given by the spread of the initial momenta for which the QAM appears.

5.10 Phase-space plots

The ǫ-classical description of the δ-kicked accelerator and the resulting map of Eq. (5.3)

shows that the value of k̃ plays important role in the dynamics. For small k̃, the dy-

namics are regular and predictable. However, as k̃ increases, chaotic regions start

to develop. For large k̃, the islands become elongated and higher period p fixed

points start to appear as displayed in the phase space portraits of Figs. 5.11 and

5.12. When a wavepacket is trapped in an island, stable quantum accelerator modes

are formed [76]. Thus the maps in Figs. 5.11 and 5.12 can be used to theoretically

estimate the size of an island. Figure 5.10 where the initial momentum was scanned,

was used to estimate the range in initial momentum over which a QAM appears. Sev-

eral such initial momenta scans (for different values of k̃) were performed to estimate

the size of the island experimentally. These results were plotted and are displayed

in Fig. 5.13. The results indicate that there is a good agreement between the theory

and experiments. The trend that the island gets elongated in the momentum direc-

tion is clearly visible in this figure. The experimental limitations did not allow the

observation of higher p fixed points since there was not a good overlap of the BEC

and the island for large k̃. For small k̃, the orders were not efficiently populated to

observe the QAM. To vary k̃ in Fig. 5.13, both φd and the kicking period (and thus

ǫ) were varied. The island size is quoted in units of ∆J which is related to physical

momentum in dimensionless units, β, according to the relation ∆β = ∆J
τ

.
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Figure 5.11: Phase-space plots of the quantum δ-kicked accelerator used for calculat-

ing the size of the island near the half-Talbot time. The value of k̃ used was (a) 0.36,

(b) 0.6433, (c) 1.8047, (d) 1.3515, (e) 1.7764, (f) 1.975.
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Figure 5.12: Phase-space plots of a quantum δ-kicked accelerator near the Talbot

time. Panels (a) through (i) were used for calculating the size of the island. The

overlap of BEC and the island was not appreciable for panels (j) to (l) and hence

no QAM was observed experimentally for those conditions. The value of k̃ used was

(a) 0.6963, (b) 0.9796, (c) 2.3960, (d) 0.8380, (e) 1.0466, (f) 2.7650, (g) 1.7075, (h)

2.6713, (i) 2.2439, (j) 3.5291, (k) 4.0665 and (l) 4.3207.
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Figure 5.13: Plot of island size as a function of effective kicking strength k̃. The

asterisks are inferred from the maps of Figs. 5.11 and 5.12. The filled circles are

determined from the experiments.
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5.11 Conclusions

The exploration of phase space was successfully achieved by taking advantage of the

narrow momentum width of the BEC and the correspondence between classically

chaotic system and its quantum version. The signature of resonance of a quantum

δ-kicked accelerator, the QAM was observed using BEC and it was found that more

than 60% of the atoms can be coupled into the QAM. (It was found that depending

the value of φd, the number of orders populated into a QAM can be varied.) The

dependence of the QAM on the kicking period, acceleration, kicks and initial momen-

tum was studied. With this understanding of primary resonances, the experiments

to observe the high-order resonances that occur at a rational fraction of the Talbot

time was undertaken and these form the context of next chapter.
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CHAPTER 6

High-order resonances of the Quantum δ-Kicked Accelerator

6.1 Introduction

The quantum resonances of a δ-kicked accelerator are formed for kicking periods at

rational fractions of the half-Talbot time T1/2. In chapters 2 through 5, only primary

resonances appearing for kicking periods at integer multiples of the half-Talbot time

T1/2 have been discussed. Recently several of these higher order quantum resonances

for the quantum δ-kicked rotor were observed using both BEC [26, 27] and a ther-

mal sample of atoms [107]. Such resonances have also been investigated theoretically

for a δ-kicked system within a harmonic potential (the δ-kicked harmonic oscilla-

tor) [108]. The numerical simulations suggested that several high order resonances

of the quantum δ- kicked accelerator can be observed within the parameter ranges

accessible to experiments. In this chapter the observation of these higher order reso-

nances and their associated QAMs is reported and a generalized ǫ-classical theory of

QAM is described. In addition, by treating the standing light wave as a diffraction

(phase) grating and using a picture analogous to the fractional Talbot effect in optics

[109, 110], the internal momentum state (diffraction order) structure of the QAMs

can be explained using a rephasing model. Finally, by examining how the momentum

states rephase with one another, it is possible to explain why only atoms with certain

initial momenta can participate in a QAM [111].
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6.2 Theory of high order resonances

The theory of the resonances occurring at kicking periods which are multiples of

the half-Talbot time was discussed in chapter 2. The rephasing model developed

in chapter 2 applies to the primary resonances. In this section, these theories are

extended to incorporate higher-order resonances.

6.2.1 The ǫ-classical theory of high order resonances

In this section the theory discussed in detail in the article by I. Guarnari et al. [112]

is reviewed. The evolution operator of a wave packet under the time dependent

Hamiltonian of the δ-kicked accelerator in a frame falling with acceleration of g′ is

given by Eq. (2.32),

Ûnp
= e−iφd cos(θ̂)e−(iτ/2)(N̂+β+ηnp+η/2)2 , (6.1)

where φd represents the kicking strength, τ represents the kicking period and η repre-

sents the acceleration of the kicked accelerator. Higher order resonances are expected

when T is a rational fraction (a/b) of T1/2 [113, 26], where a and b are integers. For

the quantum δ-kicked rotor (KR), η = 0, the resonances occur for

τr = 2π(a/b) (6.2)

β = βr =
L′

a
+
b

2
, (6.3)

where L′ is an integer. The subscript r refers to resonant parameters in Eqs. (6.2)

and (6.3). For the KR, using Poission’s summation formula, the resonant evolution

of the atomic wave function ψ(θ) is given by [112, 113]

Ûresψ(θ) = e−iφd cos(θ)
b−1
∑

s=0

Asψ(θ − 2πs/b) (6.4)

where

As =
1

b

q−1
∑

l=0

e−iπa(l+βr)2/be2πisl/b, (6.5)
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and Ûres is the one kick resonant evolution operator of the kicked rotor

Ûres = e−iφd cos θe−i(τ/2)(N̂+βr)2 . (6.6)

Expressing Eq. (6.1) in terms of Ûres, and writing the parameters τ and β using,

τ = 2π(a/b) + ǫ and (6.7)

β = βr + δβ, (6.8)

one obtains

Ûnp
= Urese

−i(ǫ/2)(N̂+βr)2e−iτ(δβ+η/2+ηnp)N̂ . (6.9)

Using Eqs. (6.4) and (6.5), Eq. (6.9) can be written as

〈θ|Unt
ψ〉 = e−iφd cos θ

b−1
∑

s=0

Asψ̃(θ − 2πs/b− τδβ − τη/2 − ητnp) (6.10)

where

ψ̃(θ) = e−i(ǫ/2)(N̂+βr)2ψ(θ). (6.11)

If ǫ plays the role of the Planck’s constant, then for small |ǫ|, Eq. (6.11) can be

described using a map [112]

Jnp+1 = Jnp
+ δnp

+ τη + k̃ cos(θnp+1)

θnp+1 = θnp
+ Jnp

, (6.12)

where Jnp
= Inp

+ τ(δβ + ηnp + η/2) + 2πsnp
/b, δnp

= 2π(snp+1 − snp
)/b, I = ǫN

and k̃ = φdǫ. The integers snp
take values from 1 to b and are arbitrary. Thus, there

are bnp maps for a given set of experimental parameters and not just one map. For a

periodic orbit with period p and jumping index j satisfying equation

J(l+p)T ′ = JlT ′ + 2πj, (6.13)

where T ′ is an integer satisfying the equation δnp+T ′ = δnp
, the average momentum is

given by

m = −ητnp

ǫ
+

(

2πj

pT ′
−
∑T ′−1

s=0 δs
T ′

)

np. (6.14)
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For snp
= 1, δs=0 and the mapping is identical to that of the primary resonances and

the momentum transferred to a QAM is also identical to that of primary resonances.

Even though it is interesting to explore the rich structure of the ǫ-classical theory,

the discussion is limited to snp
= 1 in this chapter. Experimentally only the primary

resonances were observed at higher order times. Thus, the discussion is further limited

to j = 0.

6.2.2 Rephasing theory of the higher order resonances

The rephasing theory was generalized for the first time for the higher order resonances

discussed in this chapter . The appearance of a resonance for the kicking periods at

rational fraction of the half-Talbot time suggests that the orders separated by b ~G

rephase for a resonance occuring at the kicking period of (a/b)T1/2. Thus the difference

in the phase evolution during the time between kicks for states |m〉 and |m− b〉 is an

integer multiple of 2π. The phase evolution of a state |m〉 during the time between

kicks is given by Eq. (2.33)

Φm =
τ

2
(m+ β + ηnp + η/2)2. (6.15)

A state |m− b〉 during the same time acquires a phase of

Φm−b =
τ

2
(m− b+ β + ηnp + η/2)2. (6.16)

The phase evolution between the two states |m〉 and |m− b〉 during the free evolution

between np and np + 1 kicks is given by

Φm − Φm−b = τb(m + ηnp) + τb(β + η/2 − b/2). (6.17)

The first term τb(m + ηnp) in Eq. (6.17) changes with pulse number and the second

term τb(β+η/2−b/2) is constant. Thus the phases corresponding to these two terms

evolve independently. Also at a resonance a/b, the phase evolution of the first term
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is proportional to a. Thus setting the phase evolution to multiples of 2πa,

τb(mQAM + ηnp) = 2πamQAM, (6.18)

and setting the second term of Eq. (6.17) to an integer multiple of 2π

τb(βQAM + η/2 − b/2) = 2πL′, (6.19)

where L′ is an integer. Solving Eq. (6.18) for the order that participates in a QAM,

and Eq. (6.19) for the initial momentum at which a QAM appears, we obtain

mQAM = − ητnp

τ − 2π(a/b)
= −ητnp

ǫ
, (6.20)

and

βQAM =
2πL′

τb
+
b

2
− η

2
. (6.21)

Thus Eqs. (6.20) and (6.21) are generalizations of Eqs. (2.38) and (2.39) which can

be obtained by setting a = l and b = 1 (corresponding to the primary resonances).

For kicking periods T = (a/b)T1/2, the denominator of the first term in Eq. (6.21), i.e.

τb, is 2πa, and Eq. (6.21) becomes βQAM = L′/a+ b/2 − η/2. Thus the resonances

in the initial momentum are spaced by ∆βQAM = 1/a.

6.3 Experimental Configuration

To experimentally observe these quantum resonances, the BEC was subjected to

pulses of standing wave light similar to the experiments described in chapter 5. As

before, the BEC was created in an optical trap and consisted of approximately 30000

Rb-87 atoms in the F = 1, 5S1/2 level. After release from the trap, the BEC was

kicked by 780 nm light which was 6.8 GHz detuned to the red of the atomic tran-

sition. For this detuning and φd ∼ 2 (the maximum used in the experiments) the

spontaneous emissions per pulse for each atom was negligible at about 1.8×10−3. One

major difference with the previous experiments was that this light propagated through
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two acousto-optic modulators (AOMs) to control the initial momentum and the ac-

celeration of the atoms with respect to the standing wave. This was accomplished

by driving the two AOMs with different frequencies (detailed design is discussed in

chapter 7). The kicking beam was oriented at 52◦ to the vertical. In order to vary

the kicking strength φd, the length of the kicking pulses was adjusted. Typically the

pulse length was approximately 1.8 µs giving φd ≈ 1.5. Although for pulse durations

of ∼ 2 µs, atoms in diffraction order m = 10 move a significant fraction (∼0.6) of

the standing wave, such a system can still be considered as a δ-kicked rotor (i.e. the

diffraction is in the Raman-Nath regime) but with a reduced φd [47]. This is one of

the factors which makes it difficult to observe high order resonances since they require

a large value of φd to become visible (see the following discussion). The value of φd

was estimated by comparing the relative population of various diffraction orders after

one kick as detailed in chapter 5. Note that the population in the l-th order is given

in terms of Bessel functions via |Jl(φd)|2 [45]. The momentum distribution of the

BEC was measured by taking an absorption image ∼ 8 ms after the completion of

the kicking sequence. Finally it should be noted that the mean field energy was weak

enough that it could be ignored, making the Hamiltonian of the δ-kicked accelerator

a valid approximation.

6.4 Scans of kicking period

The main resonance occurring at T = 2T1/2 was discussed in chapter 5. The ob-

servation of several higher order resonances is discussed in this section. Figures 6.1,

6.2, 6.3 and 6.4 show experimental scans of the kicking period across different higher

order resonances. These figures were generated by horizontally stacking the absorp-

tion images each with a different kick period. The curves are the QAM momenta

predicted by the theory of Eq. (6.20). It can be seen that the theory provides a good

description of the momentum transfer to the QAM.
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6.4.1 Resonance at T = (1/3)T1/2

This resonance occurs at T = 11.1 µs (a = 1 and b = 3). Figure. 6.1 shows a scan

of kicking period across 1/3 of the half-Talbot time. To generate this data, φd = 1.8

was used. It was observed that an efficient QAM at this resonance could be produced

for an acceleration g′ = 4.5 ms−2. Furthermore, a large number of kicks (30 kicks)

was needed to produce the QAM near 1/3 of the half-Talbot time. The requirement

of high φd is in accordance with the rephasing model since at this resonance, orders

separated by 3 ~G rephase.

6.4.2 Resonance at T = (2/3)T1/2

This resonance was predicted to occur at the kicking period T = 22.1 µs. Thus a

scan of kicking period across this resonance was performed. In the experiments, the

HP 8770A arbitrary waveform synthesizer used for generating the kicking sequence

had a resolution of 0.064 µs. Figure 6.2 shows the results of the experiment. The

initial momentum was chosen in order to populate the mode above the resonance

most efficiently. A high φd = 2 was required to populate this resonance. At this φd,

the atoms not participating in a QAM get diffracted into a wide range of orders that

it made it difficult to resolve the mode from the atoms not in the QAM, especially

for kicking periods far away from resonance (T ∼ 23 µs). The orders separated by 3

~G rephase for this resonance.

6.4.3 Resonance at T = (1/2)T1/2

This resonance occurs at the kicking period of T = (1/2)T1/2 = 16.6 µ s. Figure 6.3

shows the QAM and the fit to the theory of Eq. (6.20) taking a = 1 and b = 2. A

value of φd = 1.4 was sufficient to observe the mode, since the value of φd = 1.4

populates three orders (l = 0,−1 and +1) equally for a single kick. Diffraction orders

separated by 2~G rephase in the QAM around this resonance.
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Figure 6.1: Horizontally stacked momentum distributions for different kicking periods

for 30 kicks across (1/3)T1/2 (a = 1 and b = 3), g′ = 4.5 ms−2 and φd = 1.8. The

initial momentum was chosen such that the part of the mode above the resonance

time is populated more strongly. The dashed curve is the theory in Eq. (6.20).
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Figure 6.2: Horizontally stacked momentum distributions for kicking period across

T = (2/3)T1/2 (a = 2 and b = 3) for 30 kicks, effective acceleration of g′ = 6 ms−2 and

φd = 2. The initial momentum was chosen such that the part of the mode above the

resonance time was more strongly populated. The solid curve is that of the theory in

Eq. (6.20).
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Figure 6.3: Horizontally stacked momentum distributions for different kicking periods

after 40 kicks across (1/2)T1/2 (a = 1 and b = 2) for the effective acceleration g′ = 6

ms−2, and φd = 1.4. The initial momentum was chosen such that the part of the

mode below the resonance time was more strongly populated. The solid curve is the

result of the theory in Eq. (6.20).
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6.4.4 Resonance at T = (1/1)T1/2

For completeness a scan of kicking period around the half Talbot time T1/2 = 33.2

µs was performed. The result is displayed in Fig. 6.4. To generate this data a large

φd = 2 was used. As can be seen this populated more orders (5 orders) in the QAM

than were observed in the data of Fig. (5.5). The initial momentum was chosen so

that the component of the QAM appearing above the resonance time was populated

most efficiently.

6.5 Kick scan near higher order resonances

To investigate the properties of the QAM near the higher order resonances further,

a series of experiments where kick number was increased at a fixed kicking period

close to a resonance were conducted. Three resonances (2/3)T1/2, (1/2)T1/2 and the

resonance at Talbot time (2/1)T1/2 were chosen since for these resonances b = 3, 2 and

1 respectively. These values of b were chosen because it is expected that rephasing

occurs for orders separated by 3, 2, and 1 ~G respectively. Figure 6.5(a) is a scan

of number of kicks close to (2/3)T1/2. This clearly shows that the QAM primarily

consists of momentum states separated by 3~G (indicated by horizontal arrows). The

scan of kick number close to (1/2)T1/2 of Fig. 6.5(b) shows much more clearly that the

QAM is composed of momentum states separated by 2~G. These momentum states

are again emphasized by horizontal arrows. In contrast, at the Talbot time (2T1/2),

the QAM includes neighboring momentum states as seen from Fig. 6.5(c). The right

hand side of each of these figures shows a plot of the population vs. momentum at 33

kicks. Note again the separation of b~G between the momentum states participating

in a QAM. This rephasing is analogous to what has been postulated to occur (but

never directly observed) for the kicked rotor resonances [26], and is consistent with

what is known of the fractional Talbot effect [109, 110].
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Figure 6.4: Horizontally stacked momentum distributions for different kicking periods

across (1/2)T1/2 (a = 1 and b = 2). The number of kicks was 15, the effective

acceleration g′ = 6 ms−2, and φd = 2. The initial momentum was chosen such that

the part of the mode above the resonance time was more strongly populated. The

solid curve is that of theory in Eq. (6.20).
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Figure 6.5: Horizontally stacked momentum distributions as a function of number of

kicks (t) for (a) T = 22.68 µs, which is close to (2/3)T1/2, (b) T = 17.1 µs, which is

close to (1/2)T1/2, and (c) T = 72.4 µs which is close to 2T1/2. Note the different axes

for (a), (b) and (c). The horizontal arrows in (a) and (b) show that primarily orders

separated by b~G participate in each of the QAMs. Dashed lines show the position of

the QAM predicted by the theory of Eq. (6.20). The end panels show the momentum

distribution for 33 kicks. A value of g′ = 6 ms−2 was used for these experiments.
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In the experiments, different values of φd were used to observe each higher order

resonance. Since the range of momentum orders populated by a single kick is approx-

imately proportional to φd, φd must be increased at the higher order resonances so

that a single kick can diffract into a range of states comparable to b~G (the separation

between the states participating in the QAM). Recall that the population of a mo-

mentum state l~G is proportional to |Jl(φd)|2 after a single Raman-Nath diffraction,

with the highest population occurring in the state l ∼ φd. Paradoxically the high φd

needed at these large b resonances can also make it difficult to observe QAMs. Since

the distribution of momentum states that do not participate in a QAM broadens.

This can mask the presence of a QAM in either a scan of kick period or kick number

especially in the case of experiments with only a few kicks.

6.6 Phase Space maps

The rephasing model predicts that the QAMs in the δ-kicked accelerator are spaced

in initial momentum by ∆pi = 2π/τb ≈ 1/a. This means that the islands in the

phase space map (which are attributed to the existence of the QAMs [76, 77]) shown

in Fig. 6.6 are separated in momentum by ~G/a [76]. Figure 6.6 shows these phase

space islands close to (1/2)T1/2 in Fig. 6.6(a) and (2/3)T1/2 in Fig. 6.6(b). The

momentum axes in these maps cover a range of 1~G. Thus to resolve the structures

in phase-space within a unit cell and test the theory of Eq. (6.21), it is necessary that

the momentum width should be much narrower than ~G/a. In our experiments the

BEC had a momentum width of 0.056 ~G [105] which makes it an excellent candidate

for this task. The size of the BEC in momentum is shown in Fig. 6.6(b) with two

dashed lines. In the θ direction, BEC covers many unit cells.
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Figure 6.6: Phase space plot of the map in Eq. (6.12) for (a) φd = 1.5, g′ = 6 ms−2

and T = 17.1 µs, which is close to (1/2) T1/2, (b) φd = 1.8, g′ = 4.5 ms−2 and

T = 22.68 µs which is close to (2/3) T1/2 and (c) φd = 1.4, g′ = 6 ms−2 and T = 61

µs which is close to the Talbot time (2T1/2). When a wave packet is trapped in an

island, a QAM is formed [76]. The dashed lines in (b) show the width of the BEC.
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Figure 6.7: Horizontally stacked momentum distributions as a function of the initial

momentum of the BEC before kicking. (a) 30 kicks with a period of 17.1 µs (close

to (1/2)T1/2, a = 1), and g′ = 6 ms−2 (b) 40 kicks with the period of 22.53 µs (close

to (2/3)T1/2, a = 2), and g′ = 4.5 ms−2. The position of the modes are indicated by

the dashed lines. The panels (a1) and (b1) show the final momentum distribution for

initial momenta at which a QAM does not appear. Panels (a2) and (b2) correspond

to initial momenta at which a QAM is seen. The range of initial momentum over

which the QAMs is shown as double arrows in (a2) and (b2)
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6.7 Scan of initial momentum

Figure 6.7 shows the results from experiments in which the effective initial momentum

of the BEC was changed by moving the standing wave using a difference in frequency

between the kicking AOMs. This is equivalent to taking the strip shown between the

dashed lines in Fig. 6.6(b) and scanning it through the unit cell. The kicking period

was near (1/2)T1/2 in Fig. 6.7(a) and (2/3)T1/2 in Fig. 6.7(b). To improve clarity,

the initial momentum was scanned over a range of −0.3 ~G to 0.7 ~G. This range

was chosen since the QAMs appear at pi = 0 in both cases. During a scan over such

an interval of initial momentum, the QAM appears once at (1/2)T1/2 and twice at

(2/3)T1/2. This demonstrates that the initial momenta at which the modes can exist

are separated by ~G in the case of (1/2)T1/2 (a = 1) and ~G/2 for (2/3)T1/2 (a = 2)

in agreement with Eq. (6.21).

6.8 Conclusion

The existence of higher order resonances in the quantum δ-kicked accelerator has been

experimentally demonstrated. This was possible through the observation of QAMs

near these resonances. The ǫ-classical theory of FGR was generalized to predict the

behavior of the system near the higher order resonances. The narrow momentum

distribution of the BEC enabled the observation of the momentum state structure of

the QAMs and it was found that QAMs near higher order resonances have a structure

which is reminiscent of that produced by the fractional Talbot effect. Furthermore, it

was possible to explore the phase space structures produced by maps of the generalized

theory. This work opens the door towards the study of higher order QAMs near higher

order resonances. Other interesting questions include the effect of stronger mean field

interactions [114], the enhancement of QAMs using more complex initial states, and

the effect of finite pulse length.
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CHAPTER 7

Quantum Ratchet using a kicked BEC

7.1 Introduction

A ratchet is a process of extracting a flow of particles in a well defined direction from a

diffusive process without net bias. A key requirement for producing the net flow is an

asymmetry between a time periodic potential and the distribution of particles. The

first experiment to realize a ratchet was performed using Brownian particles subjected

to time periodic saw tooth potential. Diffusion of particles played a critical role in

the case of this classical ratchet [115, 116]. The mechanism in these experiments is

illustrated in Fig. 7.1. When a potential, as shown in Fig. 7.1 is turned on, particles

are trapped at the minima of the potential. When the potential is switched off,

the distribution diffuses uniformly. When the potential is turned on again all the

particles within the vertical lines shown in the figure are trapped again at the minima

of the well. If the potential is symmetric with respect to the distribution as shown

in Fig. 7.1(a), there is no net motion of the particles. If there is an asymmetry

in the potential with respect to the distribution as shown in Fig. 7.1(b), when the

potential is switched on the second time, part of the cloud that has expanded is

trapped in the well that is to the left of the cloud. If this pulsing of the potential

continues, there is a net flow of particles to the left. These so called Brownian motors

have attracted much attention recently [117]. Interesting applications of this classical

ratchet are a flow of current without any bias voltage in metals [118] and certain

biological motors [119, 120, 121]. A good review of Brownian motors is given in an

article in Physics Today [122].
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An atom optics system is used in this chapter to realize a quantum ratchet. J.

Gong and coworkers investigated theoretically a quantum ratchet using kicked sys-

tems [123, 124] such as the kicked Harper model. Here in this chapter the quantum

δ-kicked rotor model is used. Thus the δ-kicked rotor is described in section 7.2. The

classical evolution can be described using a map called the standard map. A Floquet

operator is used to understand the quantum evolution and derive an expression for

the mean momentum. In section 7.3 the theory of quantum ratchet investigated in

this thesis is discussed. Details of the experimental configuration are presented in

section 7.4 and in section 7.5, the experimental results are described. Finally, section

7.6 is devoted to conclusions of the chapter. This work was published in an article in

Physical Review Letters [105].

7.2 The δ-kicked rotor

An atom optics version of the quantum δ-kicked rotor can be realized by subjecting

the cold atoms to standing wave pulses of off-resonant light [12, 26, 46, 125]. Since

the atoms experience a spatially periodic potential, it can be described as a kicked

rotor as described in chapter 2. The time asymptotic dynamics such as dynamical

localization and quantum resonances have played an important role in studying chaos

in quantum world. Quantum resonance results when the pulsing period is a rational

fraction of a time called the half-Talbot time. This phenomena is analogous to the

Talbot effect in optics. For other pulse periods, quantum suppression of diffusion

occurs. This is called the dynamical localization. The δ-kicked rotor can be described

by a Hamiltonian (in dimensionless units) similar to the kicked accelerator but with

the acceleration η set to zero. That is,

H =
P 2

2
+ φd cos(X − γ)

∑

n

δ(t− nτ), (7.1)
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Figure 7.1: A ratchet resulting from asymmetry between the potential and the initial

distribution. (a) the potential and the distribution have a symmetry and (b) The

potential is not symmetric with respect to the distribution resulting in a net flow to

the left

106



where the parameter γ is a constant phase of the potential. This parameter plays an

important role in the quantum ratchet described later in this chapter

7.2.1 Classical Evolution

Starting from Hamilton’s equations of motion for the Hamiltonian of Eq. (7.1) and

following the procedure used for the case of the classical evolution of the δ-kicked

accelerator described in section 2.3, the classical evolution of the kicked rotor results

in the mapping given by

xn+1 = xn + τpn+1

pn+1 = pn + φd sin(xn − γ). (7.2)

Defining new variables τp = p′, and k̃′ = τφd, Eq. (7.2) becomes,

xn+1 = xn + p′n+1

p′n+1 = p′n + k̃′ sin(xn − γ). (7.3)

This mapping is called the standard mapping. Figure 7.2 shows a stroboscopic picture

of p′ vs. x of Eq. (7.3) for γ = 0 and various values of k̃′. It can be seen that as the

kicking strength k̃′ increases, the chaotic region becomes more pronounced. At the

value of k̃′ = 7, there is no regular region (the elliptical orbits) in the maps.

7.2.2 Quantum evolution

In the Raman-Nath regime, the quantum evolution can be obtained from the repeated

application of the one kick Floquet operator:

ÛR = F̂RR̂R = e−iφd cos(X̂−γ)e−iτ P̂ 2/2, (7.4)

where F̂R describes the evolution operator during kicking and R̂R describes the free

evolution between the kicks. The operator ÛR commutes with spacial translations

107



Figure 7.2: Phase space maps of Eq. 7.2 for γ = 0 and (a) k̃′ = 0.5 where only the

regular regions are seen, (b) k̃′ = 1 where a small chaotic region develops around the

central island, (c)k̃′ = 1.5, (d) k̃′ = 2, (e) k̃′ = 3, (f) k̃′ = 4 where the island becomes

elongated, (g) k̃′ = 4.5 where period 2 fixed point starts to visible, (h) k̃′ = 5.5, and

(i) k̃′ = 7 where the whole phase space is chaotic.
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by 2π. Hence Bloch theory requires that the quasi-momentum (initial momentum

modulo 1) is conserved. Following the same construction as in section 2.4.4 and

writing P = N + β, where 0 ≤ |β| ≤ 1), N is an integer and θ = x mod 2π, the

evolution operator becomes

ÛR = F̂RR̂R = e−iφd cos(θ̂−γ)e−i τ
2
(N̂+β)2 (7.5)

Following the procedure described in section 2.4.3, the matrix elements of the opera-

tors F̂R and R̂R can be evaluated

〈n|F̂R|m〉 = (−i)m−nJm−n(φd)e
i(m−n)γ , (7.6)

〈n|R̂R|m〉 = 〈n|e−i(τ/2)(N̂+β)2 |m〉 = δnme−i(τ/2)(n+β)2 . (7.7)

These equations can also be obtained by setting η = 0 in the quantum evolution of

the kicked accelerator of Eqs. (2.30) and (2.31).

7.2.3 The resonances

The quantum δ-kicked rotor exhibits a phenomenon known as quantum resonance.

Quantum resonance results when the evolution operator is invariant in translations

in momentum by an integer b, (T̂b = e−ibθ̂). Thus
[

T̂b, ÛR

]

= 0 for a resonance.

Evaluating
[

T̂b, ÛR

]

, we obtain,

[T̂b, ÛR]ψ(θ) = e−iφd cos(θ̂−γ)
(

e−ibθ̂e−i τ
2
(N̂+β)2 − e−i τ

2
(N̂+β)2e−ibθ̂

)

ψ(θ). (7.8)

Using the relations

e−i τ
2
N̂2

(

e−ibθ̂ψ(θ)
)

= e−ibθ̂e−i τ
2
(N̂−b)2ψ(θ),

eiθ0N̂ψ(θ) = ψ(θ + θ0)

(where the definition of N̂ = −i d
dθ

is used and the second of these relations is the

translations in position), Eq. (7.8) becomes,

[T̂b, ÛR]ψ(θ) = e−iφd cos(θ̂−γ)e−ibθ

(

e−i τ
2
N̂2

ψ(θ − τβ) − eibτ(β−b/2)e−i τ
2
N̂2

ψ(θ − τβ + τb)
)

. (7.9)
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Vanishing of this commutator requires that

τb = 2πa, and

bτ(β − b/2) = ±2πr, (7.10)

where a and r are any integers. Thus the resonance occurs whenever τ = 2πa/b (τ

is a rational fraction of 2π) and the quasimomentum β = b/2 ± r/a. For b ≥ 2, the

resonances are said to be high order resonances (these have been discussed for kicked

accelerator in detail in chapter 6. Several of these resonances for the kicked rotor have

been recently observed experimentally by William D Phillips and coworkers [27].

7.2.4 Rephasing model

The rephasing model that was successfully applied for the case of the δ-kicked ac-

celerator can be used to get an intuitive understanding of the resonant behavior in

the quantum δ-kicked rotor. In this picture, resonances result when the momentum

states separated by b~G rephase (evolve an integer multiple of 2π in phase difference).

Following the procedure discussed in section 6.2.2, the difference in phase acquired

by states |m〉 and |m− b〉 during the time between the kicks is given by,

Φm − Φm−b = τmb+ τb(β − b/2). (7.11)

The two terms in Eq. (7.11) evolve independently. Thus for resonances

τmb = 2πam, and (7.12)

τb(β − b/2) = ±2πr. (7.13)

Equation (7.12) results in the resonance condition that τ = 2πa/b (or the kicking

period T = (a/b)T1/2) and Eq. (7.13) shows the condition on the initial momentum

for a resonance at T = (a/b)T1/2. The resonances of the kicked rotor are shown in

Figs. 7.3 and 7.10. A value of φd = 2.5 was used at the half-Talbot time for β = 0.5 in
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Figure 7.3: Numerical simulation results of a resonance of the quantum δ-kicked

rotor. A value of φd of 2.5 and β of 0.5 were used at T = T1/2. The QAM moves out

symmetrically on either side.
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Fig. 7.3, which shows a numerical simulation result of a scan of kicks at the resonance

T = T1/2. The experimental data of Fig. 7.4 shows a scan of initial momentum for

the kicked rotor. The data indicates that the resonance occurs at β = 0.5.

7.2.5 Quantum Anti Resonance

For the half-Talbot time, Eq. (7.13) predicts that a resonance occurs for the initial

momentum β = 1/2. For β = 0, Eq. (7.13) predicts that an order m at the half-

Talbot time acquires a phase exp(−iπm2) = exp(−iπm). Thus the odd orders acquire

a phase of π and even orders acquire 2π. This pattern of phase shifts in the orders

means that the wavefunction after an evolution of T1/2 looks like the wavefunction

directly after the kick with a translation of π in the θ direction. Thus in a series of

two kicks, the effect of the first kick is canceled by the second kick resulting in the

original wavefunction. This can be seen in the numerical simulation results presented

in Fig. 7.5. This phenomena has been termed quantum anti-resonance.

If the kicking period is not a rational fraction of the half-Talbot time, the phases

of the orders randomize as the kicks are increased. This situation results in a process

known as dynamical localization, which was first studied in atom optics by Mark

Raizen [12], and is analogous to Anderson localization in a disordered lattice.

Thus a kicked rotor shows the phenomena of quantum resonance, quantum anti-

resonance and the dynamical localization. In this chapter, quantum resonances are

utilized to realize the quantum ratchet mechanism.

7.2.6 Evolution of a state ψ0(θ) at resonance

In this section, the discussion is limited to the primary resonances which occur when

b = 1. For these resonances (τ = 2πa) and using the fact that for an integer n,

e−iπn2

= e−iπn, the evolution operator becomes,

ÛR = e−iπaβ2

e−iφd cos(θ̂−γ)e−iπa(2β+1)N̂ (7.14)
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Figure 7.4: Experimental data of a scan of initial momentum of the quantum δ-kicked

rotor. It can be seen that at the resonance momentum of β = 0.5, more momentum

orders are populated. The parameters used are φd = 1.4, T = T1/2 = 33.152 µs and

kicks np = 5.
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Figure 7.5: Numerical simulation of the quantum anti-resonance of the quantum δ-

kicked rotor. Note how the effect ofthe first kick is “undone” by the second kick. A

value of φd = 2.5 and β = 0 were used at T = T1/2.
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Taking the initial state as ψ0(θ), the state after the first kick is given (apart from a

constant phase factor) by

ÛRψ0(θ) = e−iφd cos(θ−γ)ψ0(θ − τβ), (7.15)

where τβ = πa(2β + 1). The state after two kicks, is

Û2
Rψ0(θ) = e−iφd cos(θ−γ)e−iφd cos(θ−γ−τβ)ψ0(θ − 2τβ). (7.16)

Proceeding the same way, the state after t kicks is

Û t
Rψ0(θ) = exp

(

−iφd

t−1
∑

l=0

cos(θ − γ − lτβ)

)

ψ0(θ − tτβ). (7.17)

The sum in the exponent can be simplified using the relation,
∑t−1

s=0 eαs = (1−eαt)/(1−

eα). Thus
t−1
∑

l=0

cos(θ − γ − lτβ) = αt cos(θ − φt), (7.18)

where

αt =
sin(τβt/2)

sin(τβ/2)
,

φt =
τβ
2

(t− 1) + γ. (7.19)

It can be seen that αt = t when τβ = 0. The wave function after t kicks reduces to

〈θ|Û t
Rψ0〉 = e−iφdαt cos(θ−φt)ψ0(θ − tτβ). (7.20)

In momentum representation, the wavefunction has the form

〈n|Û t
Rψ0〉 =

∫ 2π

0

dθ〈n|θ〉〈θ|U t
Rψ0〉 (7.21)

=
1√
2π

∫ 2π

0

dθ e−inθe−iφdαt cos(θ−φt)ψ0(θ − tτβ) (7.22)

= ine−inφt

∑

m

cmeim(φt−tτβ−π/2)Jm−n(φdαt). (7.23)

where an initial state of the form

ψ0(θ) =
∑

m

cm√
2π

eimθ (7.24)
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and the property of the bessel functions

e−ik cos(θ) =

∞
∑

l=−∞

(−i)lJl(k)e
−ilθ (7.25)

are used. The momentum distribution is given by

pn =
∣

∣〈n|U t
Rψo〉

∣

∣

2

=
∑

m

∑

m′

c∗mcm′e−i(m−m′)(φt−tτβ−π/2)Jm−n(φdαt)Jm′−n(φdαt). (7.26)

7.2.7 Mean momentum of a kicked rotor

The mean momentum is given by

P̄ =

∞
∑

n=−∞

(n + β)pn

=
∑

m

∑

m′

[c∗mcm′e−i(m−m′)(φt−tτβ−π/2)

∞
∑

n=−∞

(n+ β)Jm−n(φdαt)Jm′−n(φdαt)]. (7.27)

Using the properties of the Bessel functions

∞
∑

m1=−∞

m1Jn−m1
(k)Jm−m1

(k) = mδmn − k/2(δm,n−1 + δm,n+1) (7.28)

and
∞
∑

m1=−∞

Jn−m1
(k)Jm−m1

(k) = δmn, (7.29)

the mean momentum reduces to

p̄− p0 = −φdαt/2
∑

m

(

c∗mcm+1e
i(φt−tτβ−π/2) + c∗mcm−1e

−i(φt−tτβ−π/2)
)

, (7.30)

where p0 =
∑

m(m + β) |cm|2 is the mean momentum corresponding to the initial

state ψ0(θ). If the initial state is a simple plane wave |n0〉, then cm = δm,n0
, and

p̄−p0 = 0. Thus an initial plane wave subjected to the QDKR spreads symmetrically

in momentum. This result is independent of the phase γ associated with the kicking

potential.
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7.2.8 Mean energy of a kicked rotor

The mean energy of a kicked rotor is given by

〈E〉 =
1

2

∞
∑

n=−∞

(n+ β)2pn

=
1

2

∑

mm′

c∗mcm′e−i(m−m′)(φt−tτβ−π/2)

{
∞
∑

n=−∞

n2Jm−n(φdαt)Jm′−n(φdαt)

+2β

∞
∑

n=−∞

nJm−n(φdαt)Jm′−n(φdαt)

+β2
∞
∑

n=−∞

Jm−n(φdαt)Jm′−n(φdαt)}

Applying the property of the Bessel functions

∞
∑

m1=−∞

m2
1Jm1−m(x)Jm1−n(x) = (n2 +

x2

2
)δmn − x

[

(m− 1

2
)δm,n+1 + (n− 1

2
)δn,m+1

]

+
x2

4
(δm,n+2 + δm,n−2) , (7.31)

and using 〈E0〉 = 1
2

∑

m |cm|2 (m+β)2 (the energy corresponding to the initial state),

the mean energy is given by

〈E〉 − 〈E0〉 =
1

2

∑

m

{ |cm|2
φ2

dα
2
t

2
− c∗mcm−1αtφd(m− 1

2
+ β0)e

−i(φt−tτβ−π/2)

−c∗mcm+1αtφd(m+
1

2
+ β0)e

−i(φt−tτβ−π/2)

+

(

αtφd

2

)2
(

c∗mcm+2e
2i(φt−tτβ−π/2) + c∗mcm−2e

−2i(φt−tτβ−π/2)
)

}.

For the simple initial state |n0〉, the mean energy reduces to

〈E〉 − 〈E0〉 =
φ2

d

4

sin2(tτβ/2)

sin2(τβ/2)
. (7.32)

It should be noted that for τβ = 2rπ, where r is an integer, 〈E〉−〈E0〉 = φ2
dt

2/4. Thus

a quadratic growth of mean energy can be observed for this resonant quasimomentum.

This property has been used to identify resonances of the quantum kicked rotor [125,

27].
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7.3 Quantum resonance ratchet

A natural question to arise out of the previous two sections is : can an initial state

be created that leads to a non-zero mean momentum? As will be seen the answer to

this question is yes. If the initial state is a superposition of two momentum states,

i.e.,

ψ0(θ) =
F√
2π

(

1 + Aeiθ
)

(7.33)

where A is a complex number given by A = |A| exp(−iγ0) and F = 1√
1+|A|2

is a

normalization constant. Using this initial state in Eq. (7.30), the mean momentum

becomes

p̄− p0 = − φd|A|
1 + |A|2

sin(tτβ/2)

sin(τβ/2)
sin [γ − γ0 − (t+ 1)τβ/2] . (7.34)

For the resonant case, i.e., τβ = 2rπ, the mean momentum expression is even simpler

p̄r − p0 = − φd|A|
1 + |A|2 t sin(γ − γ0) = Rt, (7.35)

where R is called the ratchet coefficient and is given by

R = − φd|A|
1 + |A|2 sin(γ − γ0). (7.36)

Thus the mean momentum increases linearly with time (number of kicks) at a reso-

nance. This is the quantum resonance ratchet. The ratchet mechanism can be seen

resulting from the non-coincidence of the symmetry centers of the atomic wave func-

tion γ0 and the standing wave γ as shown in Fig. 7.6. There is no ratchet for the case

when γ = γ0. The mean energy for this case is given by

〈E〉 − 〈E0〉 =
φ2

d

4

sin2(tτβ/2)

sin2(τβ/2)
+
τβ
πa

(p̄− p0). (7.37)

For the resonant quasimomentum, the energy is given by

〈E〉r − 〈E0〉 =
φ2

dt
2

4
− 2

(r

a

)

Rt. (7.38)

which shows that the mean energy is still quadratic in t. This case is called super-

diffusive or ballistic expansion. Thus a net momentum (linear in t) can be extracted

from a super-diffusive process.
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Figure 7.6: Physical picture of quantum ratchet. Diagram shows the symmetry cen-

ters of potential and the initial distribution. The non coincidence of the symmetry

centers results in the quantum ratchet. The top red curve is the initial distribution

|ψ0(θ)|2 ∼ cos(θ − γ0) and the bottom blue curve is the kicking potential (which is

proportional to cos(θ − γ)).
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7.4 Experimental configuration

The experimental setup is as shown in Fig. 7.7. BEC was produced as described

in chapter 4. After making a BEC, it was released and a Bragg pulse was applied.

A longer (typically around 38 µs) and less intense application of the standing wave

creates the Bragg pulse. Bragg diffraction was first observed for atomic beams by

David Pritchard’s group [126] and later using a BEC by William Phillip’s group [127].

Bragg diffraction can be used to measure the scattering length of the BEC which is

an important parameter of the BEC [128, 129]. Bragg diffraction is a convenient

way of splitting the atomic beam in atom interferometers [130]. The Bragg pulse

diffracts atoms into a superposition of |0~G〉 and |1~G〉 states (referred to as |0〉 and

|1〉 states from now on). The energy and momentum conservation in the diffraction

process allows the atoms to diffract only at certain values of initial momentum [127].

This standing wave light was red detuned by 6.9 GHz to the atomic transition and

was propagated through two Acousto-Optic Modulators (AOMs), were driven with rf

electrical signals described by the equations

AOM1 : Amp sin (ωt′)

AOM2 : Amp sin [(ω + ωD) t′ − γ] ,

where Amp is the amplitude of the rf waveform. An important property of the AOMs

is that they can shift the frequency of the light passing through them by an amount

equal to the frequency with which they are driven (in this case ω and ω + ωD). An

arbitrary wave form synthesizer was used to generate a 40 MHz sine wave to drive

AOM1 given by ω/2π = 40 MHz. Another synthesizer (which was phase locked to

the first one) supplied a frequency that was varied according to

ωD = (2π/T1/2)β + Gat′/2 (7.39)

so as to control the initial momentum β and the acceleration a of the standing wave

with respect to the atoms. The standing wave was oriented at 52o with respect to the
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Figure 7.7: Experimental set up used for the realization of the quantum resonance

ratchet

121



0 1
Momentum (2 photon recoils)

P
op

ul
at

io
n 

(a
rb

. U
ni

ts
) (a)

(b)

Figure 7.8: Momentum distribution of the superposition |0〉 and |1〉 states after Bragg

diffraction. (a) is the signal integrated along the vertical axis and shows the equal

population in the two states, (b) is a raw image of the momentum distribution
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vertical. The method described above allowed the standing wave to be accelerated

in order to cancel the component of gravitational acceleration along the direction of

the standing wave. The Bragg diffraction of the BEC as a function of the initial

momentum is displayed in Fig. 7.9. The figure shows the population of | − 1〉, |0〉

and|1〉 levels as the initial momentum was changed. The standing wave that was

producing the superposition state was moved to vary the initial momentum. For

certain initial momenta, all the atoms can be transferred into the |1〉 state making it

a π pulse. For the experiments discussed in this chapter, the initial momentum was

chosen so that the |0〉 and |1〉 states were equally populated. This Bragg pattern is

shown in Fig. 7.8. Figure 7.8(a) shows the distribution of atoms in the |0〉 and |1〉

states. After a superposition was created, a series of short intense pulses were applied.

These pulses simulate δ pulses. In the experiments, the pulses were ∼ 2 µs long with

a period of 33.152 µs (which is the half-Talbot time for Rb-87 atoms). The pulsing

sequence is shown in Fig. 7.10. The first long pulse represents the Bragg pulse. In

the experiments, up to 5 pulses were used.

7.5 Experimental results

The experiments were carried out at T = T1/2 which makes a = 1. Thus there is only

one resonant τβ possible (corresponding to r = 1). From Fig. 7.8, it can be seen that

the states |0〉 and |1〉 have a non zero momentum width. This width was found to

play an important role in the experiment. To account for the width, the BEC can be

assumed to have a Gaussian distribution (1/
√

2πσ2
β)e−((β′−β)2/2σ2

β
) with a width σβ

and average (p̄− p0)(β
′) over β ′,

〈p̄− p0〉β =

∫ ∞

−∞

dβ ′(p̄− p0)(β
′)

1
√

2πσ2
β

e−((β′−β)2/2σ2

β). (7.40)

Using the relation
t
∑

l=1

sin (lτβ − γ) = sin [(t+ 1) τβ/2 − γ]
sin (tτβ/2)

sin (τβ/2)
, (7.41)
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Figure 7.9: Scan of initial momentum to produce Bragg diffraction. The population

in the |1〉 state is depicted between the two solid lines. The inset shows the population

in the |1〉 state as a function of the initial momentum of BEC.
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the averaged mean momentum is

〈p̄− p0〉β =
φd|A|

1 + |A|2
t
∑

l=1

e−2l2σ2

β
π2

sin (lτβ − γ) (7.42)

In the experiments, the equal superposition of |0〉 and |1〉, corresponding to |A| = 1

was used.

The plot of mean momentum vs γ is shown in Fig. 7.11. The data was obtained by

subjecting the BEC to a Bragg pulse followed by 5 standing wave pulses. The initial

momentum used in the experiment was β = 0.5. The data fits well with a width

σβ = 0.056. This value was in accordance with the value of the width measured using

time-of-flight. Both the theory and experiments suggested that the mean momentum

was maximum for γ = π/2. Thus γ = π/2 was used in the later experiments on

pulse number and quasi-momentum. The data also demonstrated that the finite (but

small) width can suppress the ratchet effect. Figure 7.12 shows a scan of the initial

momentum of the distribution after a Bragg pulse on the BEC. This initial momentum

was changed by moving the standing wave with respect to the atoms after the Bragg

pulse was applied. Five standing wave pulses were applied. The data shows that

the oscillations shown by the theory curve (dotted line) are smoothed out because

of the finite width of the BEC. The experimental data again fits well with a width

σβ = 0.056. Figure 7.13 shows the plot of mean momentum vs pulse number. The

saturation of the mean momentum which is a result of finite width of BEC can be

seen. For the experimental parameters of τβ = 2π, a = 1, the value of the ratchet

coefficient is −φd/2. The experiments were performed at φd = 1.4. Thus R is -0.7.

The theoretical line shows this slope well.

To summerize, a the ratchet mechanism was demonstrated in this chapter using

a δ-kicked rotor. The suppression of the mean momentum due to the finite width of

the BEC was for the first time investigated and shown to have a significant effect,

which was not accounted for in the experiments performed in another group at the

same time as this work was pursued [36]. The quantum ratchet mechanism predicts
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that a large mean momentum can be transferred by increasing φd.
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Figure 7.10: Pulsing sequence used in realizing the quantum ratchet. The long and

less intense Bragg pulse creates a superposition of |0〉 and |1〉. The short intense

kicking pulses produce the potential required to realize the ratchet.
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Figure 7.11: Mean momentum as a function of the phase γ for γ0 = 0 after 5 pulses.

Dotted line corresponds to Eq. (7.34) and the solid line corresponds to Eq. (7.42)

with σβ = 0.056.
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Figure 7.12: Plot of mean momentum as a function of the quasimomentum β. The

ratchet happens at the resonance value of β which can be seen to be 0.5 for this case.

The dotted curve is a fit to Eq. (7.34). The solid curve is the result of averaging

the mean momentum over the initial momentum (or a convolution of the data with

a gaussian of width 0.056)
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Figure 7.13: Plot of mean momentum vs pulse number. The dotted line corresponds

to Eq. (7.34) and the solid line corresponds to the Eq. (7.42) with σβ = 0.056. The

inset shows the raw data and the drift of mean momentum towards the lower part of

the figure.
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CHAPTER 8

Ratchet using the δ-kicked accelerator

8.1 Introduction

The realization of the quantum ratchet using a δ-kicked rotor has been explored in

chapter 7. It is thus pertinent to ask the question: does such a ratchet mechanism

also exist in the kicked accelerator? Dana and coworkers answered this question

theoretically [131]. Thus as an extension to the experiments described in chapter 7,

the ratchet mechanism in the quantum δ-kicked accelerator was investigated. The

results of this chapter were presented at the DAMOP 2008 conference [132]

8.2 Theory

According to the theory of I. Dana et. al. [131], for an initial state |0〉 + |1〉, the

kicked accelerator at resonance can show a ratchet effect for certain values of the

acceleration. These values are given by η = w/(LTn) where w and Tn are integers

and L is an integer representing a primary resonance of the kicked accelerator. In

addition the resonance only occurs when the number of kicks is np = vnTn, where vn

is an integer. The mean momentum at these special values of the acceleration and

kick number is given by

〈N̂〉 − 〈N̂0〉 =
φd

2

sin(τβwvnTn/2)

sin(τβwTn/2)

Tn−1
∑

s=0

sin

[

γ + (vn + 1)τβw
Tn

2
−
(

τβs−
πws2

Tn

)]

,

(8.1)

where

τβw = τβ + πw (8.2)
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and

τβ = πL(2β + 1). (8.3)

The mean momentum is proportional to vn when τβwTn = πr for an integer r. The

parameter values accessible within the experimental regime are shown in Table 8.1.

For comparison, the parameters are also listed for the acceleration g′ of 6 ms−2 (which

Table 8.1: Experimental parameters to observe a ratchet for T = T1/2.

η = w/Tn g′ (ms−2) w Tn v Kicks

1/1 355 1 1 integer integer

1/10 35.5 1 10 1 10

2 20

3 30

4 40

1/20 17.75 1 20 1 20

2 40

1/15 23.7 1 15 1 15

2 30

1/5 71 1 5 1 5

2 10

3 15

4 20

5 25

6 30

7 35

8 40

1/59 6 (natural gravity) 1 59 1 59

corresponds to the natural value of gravity) in the last row of the table. Table 8.2
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shows parameters that would be necessary to observe the ratchet at T = 2T1/2. The

tables were generated up to kick number of 40. In the experiments, it was found that

at a a resonance, for kick numbers greater than 20, the distribution would go beyond

the field of view of the CCD camera used for imaging the atoms.

8.3 Numerical simulation results of the ratchet with a kicked accelerator

The numerical simulations were performed for the parameters that were feasible in

the experiments. The simulation program described in section 3.7 was modified to

take account of the initial state being a superposition of the |0〉 and |1〉 momentum

states. The results of the numerical simulation were then compared with the theory

of Eq. (8.1). Figure 8.1 shows a plot of the numerical simulation compared to the

theory of Eq. (8.1). The simulation data in Fig. 8.1 was generated assuming a width

of the BEC of σβ = 0.056, identical to the width found in the experiments described

in chapter 7. The solid curve in the Fig. 8.1 corresponds to the theory of Eq. (8.1)

averaged over a Gaussian distribution of initial momentum with a width of σβ = 0.056.

The plot was generated for 15 kicks at an acceleration of g′ = 71 ms−2 and a kicking

period of the half-Talbot time, T1/2. These parameters fix the values of w = 1, Tn = 5

and v = 3. The plot thus indicates that there is a good agreement between theory

and the numerical simulations and that the width of the BEC is important as well.

The simulations were then extended to see the behavior of the ratchet mechanism

as a function of kick number as shown in Fig. 8.2. It can be seen that the ratchet

saturates due to the finite width of the BEC. The theory predicts that the variation

in the mean momentum is small (maximum variation of 0.25 ~G). This makes it

difficult to observe this ratchet behavior in the case of kicked accelerator. Both

numerical simulations and the theory show the general trend of saturation, but there

is a small disagreement between the theory and simulation for kick numbers greater

than 25. It should be noted that the theory is only valid for kick numbers which are
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Table 8.2: Experimental parameters to observe a ratchet at T = 2T1/2.

η = w/Tn g′ (ms−2) w Tn v Kicks

1/1 89.1 1 1 integer integer

1/10 8.91 1 10 1 10

2 20

3 30

4 40

1/20 4.45 1 20 1 20

2 40

1/15 5.94 1 15 1 15

2 30

1/5 19.82 1 5 1 5

2 10

3 15

4 20

5 25

6 30

7 35

8 40
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Figure 8.1: Plot of mean momentum as a function of initial momentum for the δ-

kicked accelerator. Filled circles are the results of the numerical simulations. Solid

line corresponds to eq. (8.1) with σβ = 0.056.
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Figure 8.2: Plot of mean momentum as a function of kicks for the δ-kicked accelerator.

Filled blue circles are the results of the numerical simulations. Solid line and the filled

black circles correspond to Eq. (8.1) with σβ = 0.056. The parameters used in the in

this scan are g′ = 71 ms−2,T = T1/2 w = 1 and Tn = 5,
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a multiples of Tn, which is 5 for the parameters used in generating this data. The

values of the acceleration g′ = 71 ms−2 and kicking period T = T1/2 were used. For

the identical parameters used to scan the initial momentum displayed in Fig. 8.1,

the mean momentum is maximum for β = 0. Thus β = 0.5 was used in Fig. 8.2.

The momentum distribution used for generating Fig. 8.2 is shown in Fig. 8.3. The

asymmetric distribution of the population gives a qualitative picture of the ratchet

mechanism.

8.4 Experimental results

The experiment to realize a ratchet with gravity is very similar to the experimental set

up discussed in chapters 6 and 7. Briefly, the experiment consists of two AOMs which

are used to accelerate and move the standing wave. It was found that the frequency

change used on one of the AOMs (to accelerate the standing wave) was small enough

(KHz range) that the first order beam from the AOM did not significantly deviate

from the original direction, even for accelerations as high as 500 ms−2. Experiments

were performed for the parameters used in the simulations with a value of φd = 1.4

used throughout.

Figure 8.4 shows the experimental result of a kick scan. The asymmetry in the

population hints that a ratchet exists for these particular conditions. The parameters

used are g′ = 35.5 ms−2, β = 0.5 and T = T1/2. For these parameters the theory is

valid for kick numbers that are a multiple of Tn which is 10.

A scan of initial momentum was undertaken to verify the predictions of the theory

and is displayed in Fig. 8.5. The parameters used were T = T1/2, g
′ = 71 ms−2, and

β = 0 (same as the parameters used in Fig. 8.1). This data shows that in general

the trend of mean momentum as a function of initial momentum is predictable in the

experiments.

In summary, a quantitative analysis of the experimental data for a quantum
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Figure 8.3: Numerical simulation of the momentum distribution for a scan of kicks.

The asymmetry in the distribution of the population of orders on either side of zero

momentum is a manifestation of the ratchet effect.
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Figure 8.4: Experimental momentum distribution for a scan of kicks displaying the

ratchet for the kicked accelerator. The asymmetry in the distribution of the popula-

tion of orders on either side of zero momentum is a manifestation of the ratchet.

139



−0.2 0 0.2 0.4 0.6 0.8

−1.5

−1

−0.5

0

0.5

1

1.5

Initial momentum (β)

M
om

en
tu

m
 (

2 
ph

ot
on

 r
ec

oi
ls

)

period=T
1/2

, kicks=15, γ=π/2, g’=71 m/s2 

Figure 8.5: Experimental data of mean momentum as a function of initial momentum

for the δ-kicked accelerator. Filled circles are the experimental data. The solid line

corresponds to Eq. (8.1) with σβ = 0.056.
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ratchet in the case of the δ-kicked accelerator has been presented in this chapter.

It is interesting to study the ratchet mechanism experimentally for this system be-

cause of the rich parameter regime predicted by the theory. The quantum ratchet

effect for the δ-kicked accelerator is not as large as that of a δ kicked rotor for the

identical parameters.
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CHAPTER 9

Conclusions and Future work

9.1 Summary

The work described in this thesis involved the charecterization of several new aspects

of kicked quantum systems. Although Bose-Einstein Condensation (BEC) was sepa-

rately achieved in an independent experiment, the unexpected observation of multiple

micro optical traps using the aberration of a lens was investigated as part of this re-

port. An experimental design was developed which allowed cold atoms to be kicked

by a standing light wave. This led to first observation of the quantum δ-kicked ac-

celerator (and quantum accelerator modes) in BEC. Using a BEC to produce the

quantum accelerator modes enabled us to successfully study details of phase space

maps produced by modeling the δ-kicked accelerator as a classical system. When

the BEC had a good overlap with the stable islands of the phase space, quantum

accelerator modes were produced. This idea was utilized in chapter 5 to measure the

size of the island and compare it to theory. This work has motivated the study of

mean field interactions on quantum accelerator modes [114].

As discussed in chapter 6, higher order resonances of the quantum δ-kicked accel-

erator were observed for the first time. A generalized ǫ-classical theory was described

in this chapter and the rephasing theory of primary resonant QAM was extended to

explain the behavior of the higher order resonances. The rephasing of momentum

orders separated by b~G for a resonance occurring at a/b of T1/2 was clearly visible in

the scans of the kick number. This fundamental aspect of higher order resonances was

not observed in the earlier work of William D Phillips and coworkers [27]. Numerical
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simulations were carried out and helped to understand the experimental data. These

numerical results were used to identify the parameter regime where the high order

resonances of the quantum δ-kicked accelerator were to be expected.

Perhaps the most important achievement of the work described here involved the

first observation of a quantum ratchet using the resonances of the quantum δ-kicked

rotor. Although similar work was concurrently conducted by a Japanese group, we

developed a comprehensive theory to explain the ratchet and performed experiments

that confirmed the dependence of the ratchet on quasimomentum β. (The Japanese

group looked at the ratchet mechanism only at the initial momentum of β = 0.5.) It

was also found that the finite width of the BEC had a dramatic effect on the ratchet

and led to a saturation of the mean momentum after many kicks. For a much narrower

momentum distribution, and a large value of φd, it is possible to produce a high mean

momentum since the saturation effect is reduced. In the presence of a linear potential

such as the one produced by gravity, the ratchet is seen only at certain values of

gravity and kick number. This has been qualitatively investigated and was described

in chapter 8. The experimentally accessible parameters at which the ratchet appears

have been tabulated. Unfortunately the small change in the mean momentum made

it difficult to observe the ratchet mechanism of the kicked accelerator with the current

experimental parameters.

9.2 Future work

The apparatus and procedures developed in this thesis have opened up many new

avenues of investigation which will help test fundamental theory. Some of the experi-

ments that are currently being perused as well as some that are further in the future,

are described below.
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9.2.1 Loschmidt cooling

Laser cooling and trapping has revolutionized atom optics. When a sample of atoms

are cooled, the velocity distribution gets narrowed. This is the signature of low

temperatures used in all laser cooling and trapping experiments. Evaporative cooling

is a process where atoms at the high end of the Boltzmann velocity distribution are

lost in order to lower the temperature of the remaining atoms. Loschmidt cooling

can occur when two sequences of kicks are applied to an atomic sample. If an atom

has a certain initial momentum, then, the second set of kicks can reverse the effect

of the first set. This time reversing process results in narrowing the momentum

distribution [133]. The following theory sketches out the reason for this reversal.

Take the kicked rotor at β = 0. Two series of kicks are produced to observe

the Loschmidt cooling. A first set of tr kicks are produced at a kicking period of

τ = 2π + ǫ. The one kick evolution operator for the first set of kicks is given by

U1 = e−iφd cos θe−i(2π+ǫ)m2

= e−iφd cos θe−iǫm2

, (9.1)

where φd is kicking strength. To observe Loschmidt cooling, a second set of tr kicks

are produced at a kicking period of τ = 2πL− ǫ, the kicking strength φd is changed

to −φd and the kicking sequence is reversed. The one kick evolution operator for the

second set of tr kicks is given by

U2 = eiǫm2

eiφd cos θ = U †. (9.2)

The resulting evolution operator after 2tr kicks becomes unity and thus the final

state should be the same as the initial state. For a distribution of atoms around

β = 0 (as in realistic experiments), the reversal is not perfect for atoms not exactly

at β = 0. These atoms diffuse away and will not be observed in the final momentum

distribution. This narrowing results in cooling. Such an experiment is straightforward

to implement with the present experimental configuration. kicking period can easily
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be varied and the sign of φd can be changed by altering the phase in cosine factor by

π, i.e. φd cos θ can be replaced by φd cos(θ + π) = −φd cos θ.

9.2.2 Double kicking

Section 3.8 described how double kicking can produce a rich structure of quantum

accelerator modes. Understanding these modes theoretically and experimentally by

repeating these results using a BEC would enhance the understanding of the higher

order modes. Furthermore, another kicking beam in a direction perpendicular to the

current experimental arrangement could allow for the implementation of 2D kicked

rotor. Theoretical work shows that there are two kicking time scales involved in the

2D kicked rotors [134, 135].

9.2.3 Kicked harmonic oscillator

The kicked Harmonic Oscillator (HO) can be described using the Hamiltonian

H =
P 2

2m
+

1

2
kx2 + ~φd cos(Gx)

∑

np

δ(t′ − npT ). (9.3)

The harmonic potential (1/2)kx2 in the kicked harmonic oscillator replaces the linear

potential of the kicked accelerator. The classical evolution results in a mapping given

by

Xnp+1 = Xnp
cos(ωT ) +

[

Pnp
+ ~φdG sin(GXnp

)
] sin(ωT )

mω
(9.4)

Pnp+1 =
[

Pnp
+ ~φdG sin(GXn)

]

cos(ωT ) −mωXnp
sin(ωT ) (9.5)

where ω =
√

k/m was used. Using new dimensionless variables θ = GX and J =

G/mωP and k̃ = (T1/2/THO)φd where THO = 2π/ω, the period of the harmonic

potential, the mapping equations can be rewritten as

θnp+1 = θnp
cos(ωT ) +

(

Jnp
+ k̃ sin(θnp

)
)

sin(ωT ) (9.6)

Jnp+1 =
(

Jnp
+ k̃ sin(θn)

)

cos(ωT ) − θnp
sin(ωT ). (9.7)
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Such a map has two time scales which are important: the kicking period T and the

period of the harmonic potential THO. This map produces the stochastic web for

certain parameter values of k̃ and the regular dynamics are with in the cells defined

by the web [136]

With the experimental apparatus developed in the lab it is straightforward to

perform the experiments on the kicked harmonic oscillator. The harmonic potential

may be derived from the trap that is used to produce the BEC. The strength of the

harmonic potential can be varied by changing the power in the CO2 laser beam.

9.2.4 Quantum Accelerator Modes with atomic interactions

The investigation of QAM in BEC presented in chapter 5 motivated a further study

of QAM with atomic interactions [114]. The QAM can be enhanced or depressed

depending on the sign of the interaction. For large interactions, the QAM can even

be suppressed. In the experiments, the strength of the interaction between the atoms

in BEC can be changed via the Feshbach resonance. The QAM can be studied with

atoms interacting with both attractive and repulsive atom atom interactions.

9.2.5 Study of complex potentials using BEC

Complex potentials can be produced by introducing spontaneous emission by mixing

a controllable amount of on-resonant light with the kicking beams or introducing noise

in the amplitude of the kicking potential. Atom interferometry with such complex

potentials allows the study of the refractive index of the atomic beam in the potential.

Besides the use of kicked systems such as the δ-kicked rotor and δ-kicked accelera-

tor studied in this dissertation as a candidates to study quantum chaos, the coherent

manipulation of atomic waves can be useful in several contexts in atom optics such

as interferometry and quantum information processing.
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